
 

Oracle® Fusion Middleware
Securing Oracle Coherence 

12c (12.1.3) 

E47885-02

December 2014

Documentation for developers and system administrators 
that describes how to secure Oracle Coherence clusters, 
Oracle Coherence*Extend clients, and Oracle Coherence 
REST, using technologies that offer varying levels of security



Oracle Fusion Middleware Securing Oracle Coherence, 12c (12.1.3)

E47885-02

Copyright © 2008, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author:  Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, 
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly 
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle 
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your 
access to or use of third-party content, products, or services.



iii 

Contents

Preface ................................................................................................................................................................   vii

Audience......................................................................................................................................................    vii
Documentation Accessibility ....................................................................................................................    vii
Related Documents ....................................................................................................................................    vii
Conventions ...............................................................................................................................................    viii

What's New in This Guide ........................................................................................................................   ix

New and Changed Features for 12c (12.1.3) ............................................................................................    ix
Other Significant Changes in This Document for 12c (12.1.3) ..............................................................    ix
New and Changed Features for 12c (12.1.2) ............................................................................................    ix
Other Significant Changes in This Document for 12c (12.1.2) ..............................................................    ix

1 Introduction to Oracle Coherence Security 

Conceptual Overview of Oracle Coherence Security........................................................................   1-1
Coherence Security Quick Start ............................................................................................................   1-2
Overview of Security Configuration ....................................................................................................   1-3

2 Enabling General Security Measures

Using the Java Security Manager ..........................................................................................................   2-1
Enable the Java Security Manager ...................................................................................................   2-1
Specify Permissions ...........................................................................................................................   2-2

Using Host-Based Authorization ..........................................................................................................   2-2
Overview of Host-Based Authorization .........................................................................................   2-3
Specify Cluster Member Authorized Hosts ...................................................................................   2-3
Specify Extend Client Authorized Hosts........................................................................................   2-4
Use a Filter Class to Determine Authorization..............................................................................   2-4

Managing Rogue Clients ........................................................................................................................   2-5

3 Using an Access Controller 

Overview of Using an Access Controller.............................................................................................   3-1
Using the Default Access Controller Implementation......................................................................   3-3

Enable the Access Controller............................................................................................................   3-4
Create a Keystore ...............................................................................................................................   3-4
Include the Login Module ................................................................................................................   3-4



iv

Create a Permissions File ..................................................................................................................   3-5
Create an Authentication Callback Handler ..................................................................................   3-6

Using a Custom Access Controller Implementation .........................................................................   3-6

4 Securing Extend Client Connections 

Using Identity Tokens to Restrict Client Connections .....................................................................   4-1
Overview of Using Identity Tokens ................................................................................................   4-1
Creating a Custom Identity Transformer .......................................................................................   4-2
Enabling a Custom Identity Transformer.......................................................................................   4-3
Creating a Custom Identity Asserter...............................................................................................   4-3
Enabling a Custom Identity Asserter ..............................................................................................   4-4
Using Custom Security Types ..........................................................................................................   4-5
Understanding Custom Identity Token Interoperability .............................................................   4-5

Associating Identities with Extend Services.......................................................................................   4-6
Implementing Extend Client Authorization .......................................................................................   4-7

Overview of Extend Client Authorization .....................................................................................   4-7
Create Authorization Interceptor Classes ......................................................................................   4-7
Enable Authorization Interceptor Classes...................................................................................    4-10

5 Using SSL to Secure Communication 

Overview of SSL.......................................................................................................................................   5-1
Using SSL to Secure TCMP Communication .....................................................................................   5-3

Overview of Using SSL to Secure TCMP Communication ..........................................................   5-4
Define an SSL Socket Provider .........................................................................................................   5-4
Using the Predefined SSL Socket Provider ....................................................................................   5-6

Using SSL to Secure Extend Client Communication ........................................................................   5-8
Overview of Using SSL to Secure Extend Client Communication .............................................   5-8
Configuring a Cluster-Side SSL Socket Provider ..........................................................................   5-9

Configure an SSL Socket Provider per Proxy Service ...........................................................   5-9
Configure an SSL Socket Provider for All Proxy Services .................................................    5-10

Configuring a Java Client-Side SSL Socket Provider .................................................................    5-11
Configure an SSL Socket Provider per Remote Service .....................................................    5-12
Configure an SSL Socket Provider for All Remote Services ..............................................    5-14

Configuring a .NET Client-Side Stream Provider ......................................................................    5-15
Controlling Cipher Suite and Protocol Version Usage..................................................................    5-16

6 Securing Oracle Coherence in Oracle WebLogic Server 

Overview of Securing Oracle Coherence in Oracle WebLogic Server...........................................   6-1
Securing Oracle Coherence Cluster Membership .............................................................................   6-1

Enabling the Oracle Coherence Security Framework...................................................................   6-2
Specifying an Identity for Use by the Security Framework.........................................................   6-2

Authorizing Oracle Coherence Caches and Services ........................................................................   6-3
Specifying Cache Authorization ......................................................................................................   6-3
Specifying Service Authorization ....................................................................................................   6-3

Securing Extend Client Access with Identity Tokens.......................................................................   6-4
Enabling Identity Transformers for Use in Oracle WebLogic Server.........................................   6-5



v 

Enabling Identity Asserters for Use in Oracle WebLogic Server ................................................   6-5

7 Securing Oracle Coherence REST 

Overview of Securing Oracle Coherence REST .................................................................................   7-1
Using HTTP Basic Authentication with Oracle Coherence REST..................................................   7-1

Specify a Login Module.....................................................................................................................   7-2
Using SSL Authentication With Oracle Coherence REST ...............................................................   7-3

Configure an HTTP Acceptor SSL Socket Provider ......................................................................   7-3
Access Secured REST Services .........................................................................................................   7-5

Using SSL and HTTP Basic Authentication with Oracle Coherence REST .................................   7-7
Implementing Authorization For Oracle Coherence REST .............................................................   7-7



vi



vii

Preface

Securing Oracle Coherence explains key security concepts and provides instructions for 
implementing various levels of security for Oracle Coherence clusters, Oracle 
Coherence REST, and Oracle Coherence*Extend clients.

Audience
This guide is intended for the following audiences:

■ Primary Audience – Application developers and operators who want to secure an 
Oracle Coherence cluster and secure Oracle Coherence*Extend client 
communication with the cluster

■ Secondary Audience – System architects who want to understand the options and 
architecture for securing an Oracle Coherence cluster and Oracle 
Coherence*Extend clients

The audience must be familiar with Oracle Coherence, Oracle Coherence REST, and 
Oracle Coherence*Extend to use this guide effectively. In addition, users must be 
familiar with Java and Secure Socket Layer (SSL). The examples in this guide require 
the installation and use of the Oracle Coherence product, including Oracle 
Coherence*Extend. The use of an integrated development environment (IDE) is not 
required, but it is recommended to facilitate working through the examples.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or 
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Related Documents
For more information, see the following documents in the Oracle Coherence 
documentation set:

■ Administering HTTP Session Management with Oracle Coherence*Web

■ Administering Oracle Coherence



viii

■ Developing Applications with Oracle Coherence

■ Developing Remote Clients for Oracle Coherence

■ Integrating Oracle Coherence

■ Managing Oracle Coherence

■ Tutorial for Oracle Coherence

■ Java API Reference for Oracle Coherence

■ C++ API Reference for Oracle Coherence

■ .NET API Reference for Oracle Coherence

■ Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.



ix

What's New in This Guide

The following topics introduce the new and changed features of Oracle Coherence and 
other significant changes that are described in this guide, and provides pointers to 
additional information. This document is the new edition of the formerly titled Oracle 
Coherence Security Guide.

New and Changed Features for 12c (12.1.3)
Oracle Coherence 12c (12.1.3) does not contain any new and changed features for this 
features document.

Other Significant Changes in This Document for 12c (12.1.3)
For 12c (12.1.3), this guide has not been updated.

New and Changed Features for 12c (12.1.2)
Oracle Coherence 12c (12.1.2) includes the following new and changed features for this 
document.

■ WebLogic Server Security Integration, which provides the ability to enable security 
when Coherence is deployed within a WebLogic Server Domain. See Chapter 6, 
"Securing Oracle Coherence in Oracle WebLogic Server."

■ Coherence Rest Security, which provides the ability to secure Coherence REST 
deployments. See Chapter 7, "Securing Oracle Coherence REST."

Other Significant Changes in This Document for 12c (12.1.2)
For 12c (12.1.2), this guide has been updated in several ways. Following are the 
sections that have been added or changed.

■ Added quick start instructions that highlight common security features that are 
used to secure Coherence. See "Coherence Security Quick Start" on page 1-2.

■ Revised Java security managed documentation. See "Using the Java Security 
Manager" on page 2-1.

■ Revised host-based authorization documentation. See "Using Host-Based 
Authorization" on page 2-2.

■ Revised the client token overview documentation. See "Overview of Using 
Identity Tokens" on page 4-1.



x

■ Revised the client authorization overview documentation. See "Overview of 
Extend Client Authorization" on page 4-7.

■ Revised the TCMP SSL overview documentation. See "Overview of Using SSL to 
Secure TCMP Communication" on page 5-4

■ Revised the extend client SSL overview documentation. See "Overview of Using 
SSL to Secure Extend Client Communication" on page 5-8.



1

Introduction to Oracle Coherence Security 1-1

1Introduction to Oracle Coherence Security 

Note: This guide does not provide detailed instructions for setting 
up a cluster or creating Oracle Coherence*Extend clients. See 
Developing Applications with Oracle Coherence and Developing Remote 
Clients for Oracle Coherence, respectively, for details on setting up a 
cluster and creating Oracle Coherence*Extend clients.

[1] This chapter provides an introduction to Oracle Coherence security features. Oracle 
Coherence security features provide varying levels of security and are generally 
implemented as required. The security features include industry standards, such as 
Secure Sockets Layer (SSL), and features specific to Oracle Coherence.

This chapter includes the following sections:

■ Conceptual Overview of Oracle Coherence Security

■ Coherence Security Quick Start

■ Overview of Security Configuration

Conceptual Overview of Oracle Coherence Security
This section lists and describes the security features available for Oracle Coherence 
and Oracle Coherence*Extend. Evaluate the security features and determine which 
features to use based on your security requirements, concerns, and tolerances. The 
organization in this section (and throughout the book) presents basic security 
measures before more advanced security measures.

Java Policy Security
A Java security policy file is provided that contains the minimum set of security 
permissions necessary to run Oracle Coherence. Edit the file to change the permissions 
based on an application's requirement. The security policy protects against malicious 
use and alterations of the Oracle Coherence library and configuration files. See "Using 
the Java Security Manager" on page 2-1 for details.

Host-Based Authorization
Host-based authorization explicitly specifies which hosts become members of a cluster 
and which extend clients connect to a cluster. This type of access control is ideal in 
environments where host names (or IP addresses) are known in advance. Host-based 
authorization protects against unauthorized hosts joining or accessing a cluster. See 
"Using Host-Based Authorization" on page 2-2 for details.



Coherence Security Quick Start

1-2 Oracle Fusion Middleware Securing Oracle Coherence

Client Suspect Protocol
The client suspect protocol automatically determines if an extend client is acting 
malicious and blocks the client from connecting to a cluster. The suspect protocol 
protects against denial of service attacks. See "Managing Rogue Clients" on page 2-5 
for details.

Client Identity Tokens
Client identity tokens control which extend clients access the cluster. A proxy server 
allows a connection only if the client presents a valid token. Identity tokens are 
application-specific and typically reuse existing client authentication implementations. 
Identity tokens protect against unwanted or malicious clients accessing the cluster. See 
"Using Identity Tokens to Restrict Client Connections" on page 4-1 for details.

Client Authorization
Client authorization controls which actions a particular client can perform based on its 
access control rights. A proxy server performs the authorization check before an 
extend client accesses a resource (cache, cache service, or invocation service). Client 
authorization is application-specific and protects against unauthorized use of cluster 
resources. See "Implementing Extend Client Authorization" on page 4-7 for details.

Access Controller Security Framework
The access controller manages access to clustered resources, such as clustered services 
and caches, and controls which operations a user can perform on those resources. 
Cluster members use login modules to provide proof of identity; while, encrypting 
and decrypting communication acts as proof of trustworthiness. The framework 
requires the use of a keystore and defines permissions within a permissions file. The 
access controller prevents malicious cluster members from accessing and creating 
clustered resources. See Chapter 3, "Using an Access Controller," for details.

SSL
SSL secures the Tangosol Cluster Management Protocol (TCMP) communication 
between cluster nodes. SSL also secures the TCP communication between Oracle 
Coherence*Extend clients and proxies. SSL uses digital signatures to establish identity 
and trust, and key-based encryption to ensure that data is secure. SSL is an industry 
standard that protects against unauthorized access and data tampering by malicious 
clients and cluster members. See Chapter 5, "Using SSL to Secure Communication," for 
details.

Coherence Security Quick Start
Coherence security features are disabled by default and are enabled as required to 
address specific security requirements or concerns. Different levels of security can be 
achieved based on the security features that are enabled. The following list provides a 
quick start to security and results in a Coherence environment that includes file 
permissions, SSL, and authorization.

■ Configure file system permissions and Java policy permissions to protect against 
reads and writes of Coherence files. See "Using the Java Security Manager" on 
page 2-1 for details.

■ Configure and enable SSL to secure communication between cluster members and 
protect against unauthorized members joining the cluster. See "Using SSL to 
Secure TCMP Communication" on page 5-3.



Overview of Security Configuration

Introduction to Oracle Coherence Security 1-3

■ When using Coherence*Extend or Coherence REST, configure and enable SSL to 
secure communication between external clients and Coherence proxy servers. SSL 
protects against unauthorized clients from using cluster services. See "Using SSL 
to Secure Extend Client Communication" on page 5-8 and "Using SSL 
Authentication With Oracle Coherence REST" on page 7-3, respectively, for details.

■ Implement authorization policies to restrict client access to specific Coherence 
operations based on user roles. See "Implementing Extend Client Authorization" 
on page 4-7.

Overview of Security Configuration
Security configuration occurs in both an operational override file and the cache 
configuration file. See Developing Applications with Oracle Coherence for detailed 
information about configuration.

■ Operational Override File – The tangosol-coherence-override.xml file overrides 
the operational deployment descriptor, which specifies the operational and 
runtime settings that maintain clustering, communication, and data management 
services. This file includes security settings for cluster members.

■ Cache Configuration File – The coherence-cache-config.xml file is the default 
cache configuration file. It specifies the various types of caches within a cluster. 
This configuration file includes security settings for Oracle Coherence*Extend. 
Both the extend client side and the cluster side require a cache configuration file. 
See Developing Remote Clients for Oracle Coherence for details on setting up Oracle 
Coherence*Extend.



Overview of Security Configuration

1-4 Oracle Fusion Middleware Securing Oracle Coherence



2

Enabling General Security Measures 2-1

2Enabling General Security Measures

[2] This chapter provides instructions for enabling general security measures. The 
measures help to protect against unauthorized use of the Oracle Coherence API and 
system resources. They also protect against unauthorized connections to a cluster.

This chapter includes the following sections:

■ Using the Java Security Manager

■ Using Host-Based Authorization

■ Managing Rogue Clients

Using the Java Security Manager
Java provides a security manager that controls access to system resources using 
explicit permissions. The COHERENCE_HOME/lib/security/security.policy policy 
configuration file specifies a minimum set of permissions for Oracle Coherence. Use 
the file as provided, or modify the file to set additional permissions. 

The section includes the following topics:

■ Enable the Java Security Manager

■ Specify Permissions

Enable the Java Security Manager
To enable the Java security manager and use the COHERENCE_
HOME/lib/security/security.policy file, set the following properties on a cluster 
member:

1. Set the java.security.manager property to enable the Java security manager. For 
example:

-Djava.security.manager

2. Set the java.security.policy property to the location of the policy file. For 
example:

-Djava.security.manager
-Djava.security.policy=/coherence/lib/security/security.policy

3. Set the coherence.home system property to COHERENCE_HOME. For example:

-Djava.security.manager
-Djava.security.policy=/coherence/lib/security/security.policy
-Dcoherence.home=/coherence



Note: The security policy file assumes that the default Java Runtime 
Environment (JRE) security permissions have been granted. Therefore, 
you must be careful to use a single equal sign (=) and not two equal 
signs (==) when setting the java.security.policy system property.

Using Host-Based Authorization

2-2 Oracle Fusion Middleware Securing Oracle Coherence

Specify Permissions
Modify the COHERENCE_HOME/lib/security/security.policy file to include 
additional permissions as required. See the Java SE Security Guide for details about the 
file format and syntax:

http://download.oracle.com/javase/7/docs/technotes/guides/security/permiss
ions.html

To specify additional permissions in the security.policy file:

1. Edit the security.policy file and add a permission for a resource. For example, 
the following permission grants access to the coherence.jar library:

grant codeBase "file:${coherence.home}/lib/coherence.jar"
    {
            permission java.security.AllPermission;
    };

2. When you declare binaries, sign the binaries using the JDK jarsigner tool. The 
following example signs the coherence.jar resource declared in the previous 
step:

jarsigner -keystore ./keystore.jks -storepass password coherence.jar admin

Add the signer in the permission declaration. For example, modify the original 
permission as follows to add the admin signer.

grant SignedBy "admin" codeBase "file:${coherence.home}/lib/coherence.jar"
    {
            permission java.security.AllPermission;
    };

3. Use operating system mechanisms to protect all relevant files from malicious 
modifications.

Using Host-Based Authorization
Host-based authorization is a type of access control that allows only specified hosts 
(based on host name or IP address) to connect to a cluster. The feature is available for 
both cluster member connections and extend client connections.

This section includes the following topics:

■ Overview of Host-Based Authorization

■ Specify Cluster Member Authorized Hosts

■ Specify Extend Client Authorized Hosts

■ Use a Filter Class to Determine Authorization

http://download.oracle.com/javase/7/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/7/docs/technotes/guides/security/permissions.html


Using Host-Based Authorization

Enabling General Security Measures 2-3

Overview of Host-Based Authorization
Host-based authorization uses the host name and IP address of a cluster member or 
extend client to determine whether a connection to the cluster is allowed. Specific host 
names, addresses, and address ranges can be defined. For custom processing, a custom 
filter can be created to validate hosts.

Host-based authorization is ideal for environments where known hosts with relatively 
static network addresses are joining or accessing the cluster. In dynamic environments, 
or when updating a DNS server, IP addresses can change and cause a cluster member 
or extend client to fail authorization. Cache operations may not complete if cluster 
members or extend clients are no longer authorized. Extend clients are more likely to 
have access problems because of their transient nature.

When using host-based authorization, consider the dynamic nature of the network 
environment. The need to reconfigure the list of authorized hosts may become 
impractical. If possible, always use a range of IP addresses instead of using a specific 
host name. Or, create a custom filter that is capable of resolving address that have 
changed. If host-based authorization becomes impractical, consider using extend client 
identity tokens (see "Using Identity Tokens to Restrict Client Connections" on 
page 4-1) or SSL (Chapter 5, "Using SSL to Secure Communication").

Specify Cluster Member Authorized Hosts
The default behavior of a cluster allows any host to connect to the cluster and become 
a cluster member. Host-based authorization changes this behavior to allow only hosts 
with specific host names or IP addresses to connect to the cluster.

Configure authorized hosts in an operational override file using the 
<authorized-hosts> element within the <cluster-config> element. Enter specific 
addresses using the <host-address> element or a range of addresses using the 
<host-range> element. The <host-address> and <host-range> elements support an 
id attribute for uniquely identifying multiple elements.

The following example configures a cluster to accept only cluster members whose IP 
address is either 192.168.0.5, 192.168.0.6, or within the range of 192.168.0.10 to 
192.168.0.20 and 192.168.0.30 to 192.168.0.40.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <cluster-config>
      <authorized-hosts>
         <host-address id="1">192.168.0.5</host-address>
         <host-address id="2">192.168.0.6</host-address>
         <host-range id="1">
            <from-address>192.168.0.10</from-address>
            <to-address>192.168.0.20</to-address>
         </host-range>
         <host-range id="2">
            <from-address>192.168.0.30</from-address>
            <to-address>192.168.0.40</to-address>
         </host-range>
      </authorized-hosts>
   </cluster-config>
</coherence>



Using Host-Based Authorization

2-4 Oracle Fusion Middleware Securing Oracle Coherence

Specify Extend Client Authorized Hosts
The default behavior of an extend proxy server allows any extend client to connect to 
the cluster. Host-based authorization changes this behavior to allow only hosts with 
specific host names or IP addresses to connect to the cluster.

Configure authorized hosts in a cache configuration file using the 
<authorized-hosts> element within the <tcp-acceptor> element of a proxy scheme 
definition. Enter specific addresses using the <host-address> element or a range of 
addresses using the <host-range> element. The <host-address> and <host-range> 
elements support an id attribute for uniquely identifying multiple elements.

The following example configures an extend proxy to accept only client connections 
from clients whose IP address is either 192.168.0.5, 192.168.0.6, or within the range of 
192.168.0.10 to 192.168.0.20 and 192.168.0.30 to 192.168.0.40.

<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <thread-count>5</thread-count>
   <acceptor-config>
      <tcp-acceptor>
         ...
         <authorized-hosts>
            <host-address id="1">192.168.0.5</host-address>
            <host-address id="2">192.168.0.6</host-address>
            <host-range id="1">
               <from-address>192.168.0.10</from-address>
               <to-address>192.168.0.20</to-address>
            </host-range>
            <host-range id="2">
               <from-address>192.168.0.30</from-address>
               <to-address>192.168.0.40</to-address>
            </host-range>
         </authorized-hosts>
         ...
      </tcp-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Use a Filter Class to Determine Authorization
A filter class determines whether to accept a particular host connection. Both extend 
client connections and cluster member connections support using filter classes. A filter 
class must implement the com.tangosol.util.Filter interface. The evaluate() 
method of the interface is passed the java.net.InetAddress of the host. 
Implementations should return true to accept the connection. 

To enable a filter class, enter a fully qualified class name using the <class-name> 
element within the <host-filter> element. Set initialization parameters using the 
<init-params> element. See the Java API Reference for Oracle Coherence for details on 
the Filter interface.

The following example configures a filter named MyFilter, which determines if a host 
connection is allowed.

<authorized-hosts>
   <host-address id="1">192.168.0.5</host-address>
   <host-address id="2">192.168.0.6</host-address>
   <host-range id="1">



Managing Rogue Clients

Enabling General Security Measures 2-5

      <from-address>192.168.0.10</from-address>
      <to-address>192.168.0.20</to-address>
   </host-range>
   <host-filter>
      <class-name>package.MyFilter</class-name>
         <init-params>
            <init-param>
               <param-name>sPolicy</param-name>
               <param-value>strict</param-value>
            </init-param>
         </init-params>
   </host-filter>
</authorized-hosts>

Managing Rogue Clients
Rogue clients are extend clients that operate outside of acceptable limits. Rogue clients 
are slow-to-respond clients or abusive clients that attempt to overuse a proxy— as is 
the case with denial of service attacks. In both cases, the potential exists for a proxy to 
run out of memory and become unresponsive. The suspect protocol safeguards against 
such abuses.

The suspect algorithm monitors client connections looking for abnormally slow or 
abusive clients. When a rogue client connection is detected, the algorithm closes the 
connection to protect the proxy server from running out of memory. The protocol 
works by monitoring both the size (in bytes) and length (in messages) of the outgoing 
connection buffer backlog for a client. Different levels determine when a client is 
suspect, when it returns to normal, or when it is considered rogue.

Configure the suspect protocol within the <tcp-acceptor> element of a proxy scheme 
definition. See Developing Applications with Oracle Coherence for details on using the 
<tcp-acceptor> element. The suspect protocol is enabled by default.

The following example demonstrates configuring the suspect protocol and is similar to 
the default settings. When the outgoing connection buffer backlog for a client reaches 
10 MB or 10000 messages, the client is considered suspect and is monitored. If the 
connection buffer backlog for a client returns to 2 MB or 2000 messages, then the client 
is considered safe and the client is no longer monitored. If the connection buffer 
backlog for a client reaches 95 MB or 60000 messages, then the client is considered 
unsafe and the proxy closes the connection.

<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <thread-count>5</thread-count>
   <acceptor-config>
      <tcp-acceptor>
         ...
         <suspect-protocol-enabled>true</suspect-protocol-enabled>
         <suspect-buffer-size>10M</suspect-buffer-size>
         <suspect-buffer-length>10000</suspect-buffer-length>
         <nominal-buffer-size>2M</nominal-buffer-size>
         <nominal-buffer-length>2000</nominal-buffer-length>
         <limit-buffer-size>95M</limit-buffer-size>
         <limit-buffer-length>60000</limit-buffer-length>
      </tcp-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>



Managing Rogue Clients

2-6 Oracle Fusion Middleware Securing Oracle Coherence



3

Using an Access Controller 3-1

3Using an Access Controller 

Note: This chapter does not discuss SSL. See Chapter 5, "Using SSL 
to Secure Communication," for detailed SSL instructions.

[3] This chapter provides instructions for enabling an access controller to help protect 
against unauthorized use of cluster resources. The default access controller 
implementation is based on the key management infrastructure that is part of the 
HotSpot JDK. This implementation uses Java Authentication and Authorization 
Service (JAAS) for authentication.

This chapter includes the following sections:

■ Overview of Using an Access Controller

■ Using the Default Access Controller Implementation

■ Using a Custom Access Controller Implementation

Overview of Using an Access Controller
An access controller secures access to cluster resources and operations. A local login 
module is used to authenticate a caller, and an access controller on one or more cluster 
nodes, verifies a caller's access rights. See the JAAS Reference Guide for details on login 
modules. 

An access controller:

■ Grants or denies access to a protected clustered resource based on the caller's 
permissions

■ Encrypts outgoing communications based on the caller's private credentials

■ Decrypts incoming communications based on the caller's public credentials

A default access controller implementation is provided. The implementation is based 
on the key management infrastructure that ships as a standard part of the HotSpot 
JDK. See "Using the Default Access Controller Implementation" on page 3-3. 

Figure 3–1 shows a conceptual view of securing two cluster members using access 
controllers.



Overview of Using an Access Controller

3-2 Oracle Fusion Middleware Securing Oracle Coherence

Figure 3–1 Conceptual View of Access Controller Security

Understanding the Security Context
Each clustered service maintains the concept of a senior service member that serves as 
a controlling agent for a particular service. The senior member does not consult with 
other members when accessing a clustered resource. However, juniors member that 
want to join a service must request and receive a confirmation from the senior 
member. The senior member notifies all other cluster members about the joining 
member.

The security subsystem is designed to operate in a partially hostile environment 
because data is distributed among cluster members. Every member is considered to be 
a malicious member. That is, members are assumed to lack sufficient credentials to join 
a clustered service or obtain access to a clustered resource.

File system mechanisms and standard Java security policies guarantee the 
trustworthiness of a single node. However, there are two scenarios to consider with 
member communication:

■ A malicious node surpasses the local access check and attempts to join a clustered 
service or gain access to a clustered resource that a trusted node controls.

■ A malicious node creates a clustered service or clustered resource and becomes its 
controller.

The security subsystem uses a two-way encryption algorithm to prevent either of these 
two scenarios from occurring. All client requests must establish proof of identity, and 
all service responses must establish proof of trustworthiness.

Proof of Identity
The following client code sample authenticates a caller and performs necessary 
actions:

import com.tangosol.net.security.Security;
import java.security.PrivilegedAction;
import javax.security.auth.Subject;

...

Subject subject = Security.login(sName, acPassword);
PrivilegedAction action = new PrivilegedAction()
    {
    public Object run()
        {
        // all processing here is taking place with access



Using the Default Access Controller Implementation

Using an Access Controller 3-3

        // rights assigned to the corresponding Subject
        // for example:
         CacheFactory.getCache().put(key, value);
        ...
        }
    };
Security.runAs(subject, action);

The caller is authenticated using JAAS on the caller's node during the login call. If the 
authentication is successful, the local access controller:

■ Determines whether the local caller has sufficient rights to access the protected 
clustered resource (local access check)

■ Encrypts the outgoing communications regarding the access to the resource with 
the caller's private credentials retrieved during the authentication phase

■ Decrypts the result of the remote check using the requester's public credentials

■ Verifies whether the responder has sufficient rights to be granted access

The encryption step provides proof of identity for the responder and blocks a 
malicious node that pretends to pass the local access check phase.

There are two additional ways to provide the client authentication information. First, 
pass a reference to a CallbackHandler class instead of the user name and password. 
Second, use a previously authenticated Subject. The latter approach is ideal when a 
Java EE application uses Oracle Coherence and retrieves an authenticated Subject 
from the application container.

If a caller's request does not include any authentication context, a CallbackHandler 
implementation is instantiated and called. The implementation is declared in an 
operational override file and retrieves the appropriate credentials. However, this lazy 
approach is much less efficient, because without an externally defined call scope every 
access to a protected clustered resource forces repetitive authentication calls.

Proof of Trustworthiness
Cluster members use explicit API calls to create clustered resources. The senior service 
member retains the private credentials that are presented during a call as a proof of 
trustworthiness. When the senior service member receives an access request to a 
protected clustered resource, the local access controller:

■ Decrypts the incoming communication using the remote caller's public credentials

■ Encrypts the access check response using the private credentials of the service.

■ Determines whether the remote caller has sufficient rights to access the protected 
clustered resource (remote access check).

Using the Default Access Controller Implementation
A default access controller implementation is provided that uses a standard Java 
keystore. The implementation class is the 
com.tangosol.net.security.DefaultController class. It is configured within the 
<security-config> element in the operational deployment descriptor. See Developing 
Applications with Oracle Coherence for details on the <security-config> element and its 
subelements. To use the default access controller, complete the topics in this section.

This section includes the following topics:

■ Enable the Access Controller



Using the Default Access Controller Implementation

3-4 Oracle Fusion Middleware Securing Oracle Coherence

■ Create a Keystore

■ Include the Login Module

■ Create a Permissions File

■ Create an Authentication Callback Handler

Enable the Access Controller
To enable the default access controller implementation within the <security-config> 
element, add an <enabled> element that is set to true. For example:

<security-config>
   <enabled system-property="tangosol.coherence.security">true</enabled>
</security-config>

The tangosol.coherence.security system property also enables the access controller. 
For example:

-Dtangosol.coherence.security=true

Note: When access controller security is enabled, every call to the 
CacheFactory.getCache() or 
ConfigurableCacheFactory.ensureCache() API causes a security 
check. This negatively affects an application's performance if these 
calls are made frequently. The best practice is for the application to 
hold on to the cache reference and reuse it so that the security check is 
performed only on the initial call. With this approach, ensure that 
your application only uses the references in an authorized way.

Create a Keystore
An access controller requires a keystore that is used by both the controller and login 
module. Create a keystore with necessary principals using the Java keytool utility. 
Ensure that the keystore is found on the classpath at runtime, or use the 
tangosol.coherence.security.keystore system property to explicitly enter the name 
and location of the keystore. For example:

-Dtangosol.coherence.security.keystore=keystore.jks

The following example creates three principals: admin (to be used by the Java Security 
framework), manager, and worker (to be used by Oracle Coherence).

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Administrator,O=MyCompany,L=MyCity,ST=MyState

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias manager
-keypass password -dname CN=Manager,OU=MyUnit

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias worker
-keypass password -dname CN=Worker,OU=MyUnit

Include the Login Module
Oracle Coherence includes the COHERENCE_HOME/lib/security/coherence-login.jar 
Java keystore (JKS) login module, which depends only on standard Java run-time 



Using the Default Access Controller Implementation

Using an Access Controller 3-5

classes. Place the library in the JRE lib/ext (standard extension) directory. The name 
in the <login-module-name> element, within the <security-config> element, serves 
as the application name in the COHERENCE_HOME/lib/security/login.config login 
module file. The login module declaration contains the path to the keystore. Change 
the keyStorePath variable to the location of the keystore.

// LoginModule Configuration for Oracle Coherence
Coherence {
    com.tangosol.security.KeystoreLogin required
      keyStorePath="${user.dir}${/}security${/}keystore.jks";
};

Create a Permissions File
An access controller requires a permissions.xml file that declares access rights for 
principals. See the COHERENCE_HOME/lib/security/permissions.xsd schema for the 
syntax of the permissions file. Ensure that the file is found on the classpath at runtime, 
or use the tangosol.coherence.security.permissions system property to explicitly 
enter the name and location of the permissions file. For example:

-Dtangosol.coherence.security.permissions=permissions.xml

The following example assigns all rights to the Manager principal, only join rights to 
the Worker principal for caches that have names prefixed by common, and all rights to 
the Worker principal for the invocation service named invocation.

<?xml version='1.0'?>
<permissions>
   <grant>
      <principal>
         <class>javax.security.auth.x500.X500Principal</class>
         <name>CN=Manager,OU=MyUnit</name>
      </principal>
      <permission>
         <target>*</target>
         <action>all</action>
      </permission>
   </grant>
   <grant>
      <principal>
         <class>javax.security.auth.x500.X500Principal</class>
         <name>CN=Worker,OU=MyUnit</name>
      </principal>
      <permission>
         <target>cache=common*</target>
         <action>join</action>
      </permission>
      <permission>
         <target>service=invocation</target>
         <action>all</action>
      </permission>
   </grant>
</permissions>



Using a Custom Access Controller Implementation

3-6 Oracle Fusion Middleware Securing Oracle Coherence

Create an Authentication Callback Handler
An access controller uses an authentication callback handler to authenticate a client 
when all other authentication methods have been unsuccessful. To create a callback 
handler, implement the javax.security.auth.callback.CallbackHandler interface. 

Note:  the handler approach is much less efficient since without an 
externally defined call scope every access to a protected clustered 
resource forces repetitive authentication calls.

To configure a custom callback handler within the <security-config> element, add a 
<callback-handler> element that includes the fully qualified name of the 
implementation class. The following example configures a callback handler named 
MyCallbackHandler.

<security-config>
   <callback-handler>
      <class-name>package.MyCallbackHandler</class-name>
   </callback-handler>
</security-config>

Using a Custom Access Controller Implementation
Custom access controllers must implement the 
com.tangosol.net.security.AccessController interface. See the Java API Reference 
for Oracle Coherence for details on using this API. To configure a custom access 
controller within the <security-config> element, add an <access-controller> 
element that includes the fully qualified name of the implementation class. The 
following example configures a custom access controller called MyAccessController.

<security-config>
   <enabled system-property="tangosol.coherence.security">true</enabled>
   <access-controller>
      <class-name>package.MyAccessController</class-name>
   </access-controller>
</security-config>

Specify any required initialization parameters by using the <init-params> element. 
The following example includes parameters to pass the MyAccessController class a 
keystore and a permissions file.

<security-config>
   <enabled system-property="tangosol.coherence.security">true</enabled>
   <access-controller>
      <class-name>package.MyAccessController</class-name>
      <init-params>
         <init-param>
            <param-type>java.io.File</param-type>
            <param-value>./keystore.jks</param-value>
         </init-param>
         <init-param>
            <param-type>java.io.File</param-type>
            <param-value>./permissions.xml</param-value>
         </init-param>
      </init-params>
   </access-controller>
</security-config>



Using a Custom Access Controller Implementation

Using an Access Controller 3-7



Using a Custom Access Controller Implementation

3-8 Oracle Fusion Middleware Securing Oracle Coherence



4

Securing Extend Client Connections 4-1

4Securing Extend Client Connections 

[4] This chapter provides instructions for using identity tokens and interceptor classes to 
provide authentication and authorization for Oracle Coherence*Extend clients. 
Identity tokens protect against unauthorized access to an extend proxy. Interceptor 
classes control which operations are available to an authenticated client.

This chapter includes the following sections:

■ Using Identity Tokens to Restrict Client Connections

■ Associating Identities with Extend Services

■ Implementing Extend Client Authorization

Using Identity Tokens to Restrict Client Connections
Identity tokens restrict extend clients from accessing a cluster. The token is sent 
between extend clients and extend proxies whenever a connection is attempted. Only 
extend clients that pass a valid identity token are allowed to access the cluster.

This section includes the following topics:

■ Overview of Using Identity Tokens

■ Creating a Custom Identity Transformer

■ Enabling a Custom Identity Transformer

■ Creating a Custom Identity Asserter

■ Enabling a Custom Identity Asserter

■ Using Custom Security Types

■ Understanding Custom Identity Token Interoperability

Overview of Using Identity Tokens
Identity token security uses an identity transformer implementation to create identity 
tokens and an identity asserter implementation to validate identity tokens. These 
implementations are described as follows:

■ Identity transformer – a client-side component that converts a Subject, or 
Principal, into an identity token that is passed to an extend proxy. An identity 
token can be any type of object that is useful for identity validation; it is not 
required to be a well-known security type. In addition, clients can connect to 
multiple proxy servers and authenticate to each proxy server differently.



Using Identity Tokens to Restrict Client Connections

4-2 Oracle Fusion Middleware Securing Oracle Coherence

■ Identity asserter – A cluster-side component that resides on the cache server that is 
hosting an extend proxy service. The asserter validates an identity token that is 
created by an identity transformer on the extend client. The asserter validates 
identity tokens unique for each proxy service to support multiple means of token 
validation. The token is passed when an extend client initiates a connection. If the 
validation fails, the connection is refused and a security exception is thrown. The 
transformer and asserter are also invoked when a new channel within an existing 
connection is created.

Figure 4–1 shows a conceptual view of restricting client access using identity tokens.

Figure 4–1 Conceptual View of Identity Tokens

An identity transformer (DefaultIdentityTransformer) and identity asserter 
(DefaultIdentityAsserter) are provided and enabled by default. The 
implementations simply use the Subject (Java) or Principal (.NET) as the identity 
token. The default behavior is overridden by providing custom identity transformer 
and identity asserter implementations and enabling them in the operational override 
file.

Note: 

■ At runtime, identity transformer implementation classes must be 
located on the extend client's classpath and identity asserter 
implementation classes must be located on the extend proxy 
server's classpath.

■ See "Using Custom Security Types" on page 4-5 for more 
information about using security object types other than the types 
that are predefined in Portable Object Format (POF).

Creating a Custom Identity Transformer
A default identity transformer implementation (DefaultIdentityTransformer) is 
provided that simply returns a Subject or Principal that is passed to it. If you do not 
want to use the default implementation, you can create your own custom transformer 
implementation.

Note: At runtime, identity tokens are automatically serialized for 
known types and sent as part of the extend connection request. For 
.NET and C++ clients, the type must be a POF type. See "Using 
Custom Security Types" on page 4-5 for more information about using 
security object types other than predefined POF types.



Using Identity Tokens to Restrict Client Connections

Securing Extend Client Connections 4-3

For Java and C++, create a custom identity transformer by implementing the 
IdentityTransformer interface. C# clients implement the IIdentityTransformer 
interface.

Example 4–1 demonstrates a Java implementation that restricts client access by 
requiring a client to supply a password to access the proxy. The implementation gets a 
password from a system property on the client and returns it as an identity token.

Example 4–1 A Sample Identity Transformer Implementation

import com.tangosol.net.security.IdentityTransformer;
import javax.security.auth.Subject;
import com.tangosol.net.Service;
 
public class PasswordIdentityTransformer 
        implements IdentityTransformer
    {
    public Object transformIdentity(Subject subject, Service service)
            throws SecurityException
        {
        return System.getProperty("mySecretPassword");
        }
    }

One possible solution for preexisting client authentication implementations is to add a 
new Principal to the Subject with the Principal name as the password. Add the 
password Principal to the Subject during JAAS authentication by modifying an 
existing JAAS login module or by adding an additional required login module that 
adds the password Principal. The JAAS API allows multiple login modules, each of 
which modifies the Subject. Similarly, in .NET, add a password identity to the 
Principal. The asserter on the cluster side then validates both the Principal and the 
password Principal. See "Creating a Custom Identity Asserter" on page 4-3.

Enabling a Custom Identity Transformer
To enable a custom identity transformer implementation, edit the client-side 
tangosol-coherence-override.xml file and add an <identity-transformer> element 
within the <security-config> node. The element must include the full name of the 
implementation class. For example: 

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <security-config>
      <identity-transformer>
        <class-name>com.my.PasswordIdentityTransformer</class-name>
      </identity-transformer>
   </security-config>
</coherence>

Creating a Custom Identity Asserter
A default identity asserter implementation (DefaultIdentityAsserter) is provided 
that asserts that an identity token is a Subject or Principal. If you do not want to use 
the default implementation, you can create your own custom asserter implementation. 



Using Identity Tokens to Restrict Client Connections

4-4 Oracle Fusion Middleware Securing Oracle Coherence

For Java and C++, create an identity asserter by implementing the IdentityAsserter 
interface. C# clients implement the IIdentityAsserter interface.

Example 4–2 is a Java implementation that checks a security token to ensure that a 
valid password is given. In this case, the password is checked against a system 
property on the cache server. This asserter implementation is specific to the identity 
transformer sample in Example 4–1.

Example 4–2 A Sample Identity Asserter Implementation

import com.tangosol.net.security.IdentityAsserter;
import javax.security.auth.Subject;
import com.tangosol.net.Service;
 
 
public class PasswordIdentityAsserter 
        implements IdentityAsserter
    {
    public Subject assertIdentity(Object oToken, Service service)
            throws SecurityException
        {
        if (oToken instanceof String)
            {
            if (((String) oToken).equals(System.getProperty("mySecretPassword")))
                {
                return null;
                }
            }
        throw new SecurityException("Access denied");
        }
    }

There are many possible variations when you create an identity asserter. For example, 
you can create an asserter that rejects connections based on a list of principals, that 
checks role principals, or validates the signed principal name. The asserter blocks any 
connection attempts that do not prove the correct identity.

Enabling a Custom Identity Asserter
To enable a custom identity asserter implementation, edit the cluster-side 
tangosol-coherence-override.xml file and add an <identity-asserter> element 
within the <security-config> node. The element must include the full name of the 
implementation class. For example: 

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <security-config>
      <identity-asserter>
        <class-name>com.my.PasswordIdentityAsserter</class-name>
      </identity-asserter>
   </security-config>
</coherence>



Using Identity Tokens to Restrict Client Connections

Securing Extend Client Connections 4-5

Using Custom Security Types
Security objects are automatically serialized and deserialized using Portable Object 
Format (POF) when they are passed between extend clients and extend proxies. 
Security objects that are predefined in POF require no configuration or programming 
changes. However, security objects that are not predefined in POF (for example, when 
an application uses Kerberos authentication) cause an error. For custom security types, 
an application must convert the custom type or define the type in POF. There are two 
approaches for using unsupported types.

Converting the Type
The custom identity transformer implementation converts a custom security object 
type to a type that is predefined for POF, such as a character array or string, before 
returning it as an object token. On the proxy server, the custom identity asserter 
implementation converts the object back (after validation) to a Subject.

For example, a subject may contain credentials that are not serialized. The identity 
transformer implementation extracts the credential and converts it to a character array, 
returning that array as the token. On the proxy server, the identity asserter converts 
the character array to the proper credential type, validates it, and then constructs a 
Subject to return.

Defining the Custom Type in POF
You can define the custom security types in both the client's and the proxy's POF 
configuration file. For detailed information about using POF with Java, see Developing 
Applications with Oracle Coherence. For more information about using POF with C++ 
and C#, see "Building Integration Objects (C++)" and "Building Integration Objects 
(.NET)", respectively in Developing Remote Clients for Oracle Coherence.

Understanding Custom Identity Token Interoperability
Solutions that use a custom identity token must always consider what tokens may be 
sent by an extend client and what tokens may be received by an extend proxy. This is 
particularly important during rolling upgrades and when a new custom identity token 
solution is implemented.

Oracle Coherence Upgrades
Interoperability issues may occur during the process of upgrading. In this scenario, 
different client versions may interoperate with different proxy server versions. Ensure 
that a custom identity asserter can handle identity tokens sent by an extend client. 
Conversely, ensure that a custom identity transformer sends a token that the extend 
proxy can handle.

Custom Identity Token Rollout
Interoperability issues may occur between extend clients and extend proxies during 
the roll out a custom identity token solution. In this scenario, as extend proxies are 
migrated to use a custom identity asserter, some proxies continue to use the default 
asserter until the rollout operation is completed. Likewise, as extend clients are 
migrated to use a custom identity transformer, clients continue to use the default 
transformer until the rollout operation is completed. In both cases, the extend clients 
and extend proxies must be able to handle the default token type until the rollout 
operation is complete.

One strategy for such a scenario is to have a custom identity asserter that accepts the 
default token types temporarily as clients are updated. The identity asserter checks an 



Associating Identities with Extend Services

4-6 Oracle Fusion Middleware Securing Oracle Coherence

external source for a policy that indicates whether those tokens are accepted. After all 
clients have been updated to use a custom token, change the policy to accept the 
custom tokens.

Associating Identities with Extend Services
Subject scoping allows remote cache and remote invocation service references that are 
returned to a client to be associated with the identity from the current security context. 
By default, subject scoping is disabled, which means that remote cache and remote 
invocation service references are globally shared.

With subject scoping enabled, clients use their platform-specific authentication APIs to 
establish a security context. A Subject or Principal is obtained from the current 
security context whenever a client creates a NamedCache and InvocationService 
instance. All requests are then made for the established Subject or Principal.

Note: See "Using Custom Security Types" on page 4-5 for more 
information about using security object types other than the types that 
are predefined in POF.

For example, if a user with a trader identity calls 
CacheFactory.getCache("trade-cache") and a user with the manager identity calls 
CacheFactory.getCache("trade-cache"), each user gets a different remote cache 
reference object. Because an identity is associated with that remote cache reference, 
authorization decisions can be made based on the identity of the caller. See 
"Implementing Extend Client Authorization" below for details on implementing 
authorization.

For Java and C++ clients, enable subject scope in the client-side 
tangosol-coherence-override.xml file using the <subject-scope> element within 
the <security-config> node. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <security-config>
      <subject-scope>true</subject-scope>
   </security-config>
</coherence>

For .NET clients, enable subject scope in the client-side 
tangosol-coherence-override.xml file using the <principal-scope> element within 
the <security-config> node. For example:

<?xml version='1.0'?>

<coherence xmlns="http://schemas.tangosol.com/cache"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://schemas.tangosol.com/cache
  assembly://Coherence/Tangosol.Config/coherence.xsd">
  <security-config>
     <principal-scope>true</principal-scope>
  </security-config>
</coherence>



Implementing Extend Client Authorization

Securing Extend Client Connections 4-7

Implementing Extend Client Authorization
Oracle Coherence*Extend authorization controls which operations can be performed 
on a cluster based on an extend client's access rights. Authorization logic is 
implementation-specific and is enabled on a cluster proxy.

This section includes the following topics:

■ "Overview of Extend Client Authorization"

■ "Create Authorization Interceptor Classes"

■ "Enable Authorization Interceptor Classes"

The code samples in this section are based on the Java authorization example, which is 
included in the examples that are delivered as part of the distribution. The example 
demonstrates a basic authorization implementation that uses the Principal obtained 
from a client request and a role-based policy to determine whether to allow operations 
on the requested service. Download the examples for the complete implementation.

Overview of Extend Client Authorization
Interceptor classes provide the ability to implement client authorization. An extend 
proxy calls the interceptor classes before a client accesses a proxied resource (cache, 
cache service, or invocation service). Interceptor classes are implementation-specific. 
They must provide the necessary authorization logic before passing the request to the 
proxied resources.

Figure 4–2 shows a conceptual view of extend client authorization.

Figure 4–2 Conceptual View of Extend Client Authorization

Create Authorization Interceptor Classes
To create interceptor classes for both a proxied cache service and a proxied invocation 
service, implement the CacheService and InvocationService interfaces, respectively. 
Or, as is more common, extend a set of wrapper classes: 
com.tangosol.net.WrapperCacheService (with 
com.tangosol.net.cache.WrapperNamedCache) and 
com.tangosol.net.WrapperInvocationService. The wrapper classes delegate to their 
respective interfaces and provide a convenient way to create interceptor classes that 
apply access control to the wrapped interface methods.

Example 4–3 is taken from the Oracle Coherence examples. The example demonstrates 
creating an authorization interceptor class for a proxied cache service by extending the 



Implementing Extend Client Authorization

4-8 Oracle Fusion Middleware Securing Oracle Coherence

WrapperCacheService class. It wraps all CacheService methods on the proxy and 
applies access controls based on the Subject passed from an extend client. The 
implementation allows only a Principal with the specified role to access the 
CacheService methods

Example 4–3 Extending the WrapperCacheService Class for Authorization

public class EntitledCacheService
   extends WrapperCacheService
   {
   public EntitledCacheService(CacheService service)
       {
       super(service);
       }

   public NamedCache ensureCache(String sName, ClassLoader loader)
      {
      SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
      return new EntitledNamedCache(super.ensureCache(sName, loader));
      }

   public void releaseCache(NamedCache map)
      {
      if (map instanceof EntitledNamedCache)
         {
         EntitledNamedCache cache =  (EntitledNamedCache) map;
         SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
         map = cache.getNamedCache();
         }
      super.releaseCache(map);
      }

   public void destroyCache(NamedCache map)
      {
      if (map instanceof EntitledNamedCache)
         {
         EntitledNamedCache cache =  (EntitledNamedCache) map;
         SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_ADMIN);
         map = cache.getNamedCache();
         }
      super.destroyCache(map);
      }
}

Notice that the EntitledCacheService class requires a named cache implementation. 
The WrapperNamedCache class is extended and wraps each method of the NamedCache 
instance. This allows access controls to be applied to different cache operations. 
Example 4–4 is a code excerpt taken from the Oracle Coherence examples. The 
example demonstrates overriding the NamedCache methods and applying access checks 
before allowing the method to be executed. See the examples for the complete class.

Example 4–4 Extending the WrapperNamedCache Class for Authorization

public class EntitledNamedCache
   extends WrapperNamedCache
   {
   public EntitledNamedCache(NamedCache cache)
      {
       super(cache, cache.getCacheName());
      }



Implementing Extend Client Authorization

Securing Extend Client Connections 4-9

   public Object put(Object oKey, Object oValue, long cMillis)
      {
      SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER);
      return super.put(oKey, oValue, cMillis);
      }

   public Object get(Object oKey)
      {
      SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
      return super.get(oKey);
      }

   public void destroy()
      {
      SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_ADMIN);
      super.destroy();
      }
...

Example 4–5 is taken from the Oracle Coherence examples. The example demonstrates 
creating an authorization interceptor class for a proxied invocation service by 
extending WrapperInvocationService. It wraps all InvocationService methods on 
the proxy and applies access controls based on the Subject passed from an extend 
client. The implementation allows only a Principal with a specified role name to 
access the InvocationService methods.

Example 4–5 Extending the WrapperInvocationService Class for Authorization

public class EntitledInvocationService
   extends WrapperInvocationService
   {
   public EntitledInvocationService(InvocationService service)
      {
      super(service);
      }

   public void execute(Invocable task, Set setMembers, InvocationObserver 
      observer)
      {
      SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER)
      super.execute(task, setMembers, observer);
      }

   public Map query(Invocable task, Set setMembers)
      {
      SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER)
      return super.query(task, setMembers);
      }
}

When a client attempts to use a remote invocation service, the proxy calls the query() 
method on the EntitledInvocationService class, rather than on the proxied 
InvocationService instance. The EntitledInvocationService class decides to allow 
or deny the call. If the call is allowed, the proxy then calls the query() method on the 
proxied InvocationService instance.



Implementing Extend Client Authorization

4-10 Oracle Fusion Middleware Securing Oracle Coherence

Enable Authorization Interceptor Classes
To enable interceptor classes for a proxied cache service and a proxied invocation 
service, edit a proxy scheme definition and add a <cache-service-proxy> element 
and <invocation-service-proxy> element, respectively. Use the <class-name> 
element to enter the fully qualified name of the interceptor class. Specify initialization 
parameters using the <init-params> element. See "cache-service-proxy" and 
"invocation-service-proxy" in Developing Applications with Oracle Coherence for detailed 
information about using these elements.

The following example demonstrates enabling interceptor classes for both a proxied 
cache service and a proxied invocation service. The example uses the interceptor 
classes from Example 4–3 and Example 4–5.

<proxy-scheme>
   ...
   <proxy-config>
      <cache-service-proxy>
         <class-name>
            com.tangosol.examples.security.EntitledCacheService
         </class-name>
         <init-params>
            <init-param>
               <param-type>com.tangosol.net.CacheService</param-type>
               <param-value>{service}</param-value>
            </init-param>
         </init-params>
      </cache-service-proxy>
      <invocation-service-proxy>
         <class-name>
            com.tangosol.examples.security.EntitledInvocationService
         </class-name>
         <init-params>
            <init-param>
               <param-type>com.tangosol.net.InvocationService</param-type>
               <param-value>{service}</param-value>
            </init-param>
         </init-params>
      </invocation-service-proxy>
</proxy-config>



5

Using SSL to Secure Communication 5-1

5Using SSL to Secure Communication 

[5] This chapter provides instructions for using Secure Sockets Layer (SSL) to secure 
TCMP communication between cluster nodes and to secure the TCP communication 
between Oracle Coherence*Extend clients and proxies. Oracle Coherence supports the 
Transport Layer Security (TLS) 1.0 protocol, which superseded the SSL 3.0 protocol; 
however, the term SSL is used in this documentation because it is the more widely 
recognized term.

This chapter includes the following sections:

■ Overview of SSL

■ Using SSL to Secure TCMP Communication

■ Using SSL to Secure Extend Client Communication

■ Controlling Cipher Suite and Protocol Version Usage

Overview of SSL
This section provides a brief overview of common SSL concepts that are used in this 
documentation. It is not intended to be a complete guide to SSL. See the following 
resources for complete documentation. Users who are familiar with SSL can skip this 
section.

■ Formal SSL and TLS specifications – http://www.ietf.org

■ Java SE Security – 

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.htm
l

SSL is a security protocol that secures communication between entities (typically, 
clients and servers) over a network. SSL works by authenticating clients and servers 
using digital certificates and by encrypting and decrypting communication using 
unique keys that are associated with authenticated clients and servers.

Establishing Identity and Trust
The identity of an entity is established by using a digital certificate and public and 
private encryption keys. The digital certificate contains general information about the 
entity and also contains the public encryption key embedded within it. A digital 
certificate is verified by a Certificate Authority (CA) and signed using the CA's digital 
certificate. The CA's digital certificate establishes trust that the entity is authentic.

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html


Overview of SSL

5-2 Oracle Fusion Middleware Securing Oracle Coherence

Encrypting and Decrypting Data
The digital certificate for an entity contains a public encryption key that is paired with 
a private encryption key. Certificates are passed between entities during an initial 
connection. Data is then encrypted using the public key. Data that is encrypted using 
the entity public key can only be decrypted using the entity private key. This ensures 
that only the entity that owns the public encryption key can decrypt the data.

Using One-Way Authentication Versus Two-Way Authentication
SSL communication between clients and servers is set up using either one-way or 
two-way authentication. With one-way authentication, a server is required to identify 
itself to a client by sending its digital certificate for authentication. The client is not 
required to send the server a digital certificate and remains anonymous to the server. 
Two-way authentication requires both the client and the server to send their respective 
digital certificates to each other for mutual authentication. Two-way authentication 
provides stronger security by assuring that the identity on each sides of the 
communication is known.

Generating Java SSL Artifacts
The Java keytool utility that is located in the JDK_HOME/bin directory generates and 
manages SSL artifacts. This activity includes: creating a keystore; generating a unique 
public/private key pair; creating a self-signed digital certificate that includes the 
public key; associating the certificate with the private key; and storing these artifacts in 
the keystore.

The following example creates a keystore named server.jks that is located in the 
/test directory. A public/private key pair is generated for the entity identified by the 
-dname value ("cn=administrator, ou=Coherence, o=Oracle, c=US"). A self-signed 
certificate is created that includes the public key and identity information. The 
certificate is valid for 180 days and is associated with the private key in a keystore 
entry referred to by the alias (admin). Both the keystore and private key must have a 
password.

keytool -genkeypair -dname "cn=administrator, ou=Coherence, o=Oracle, c=US" 
-alias admin -keypass password -keystore /test/server -storepass password 
-validity 180

The certificate that is generated by the preceding command is adequate for 
development purposes. However, certificates are typically verified by a trusted CA 
(such as VeriSign). To have the certificate verified, use the keytool utility to generate a 
Certificate Signing Request (CSR) file:

keytool -certreq -file admin.csr

Send the CSR file to a CA, which returns a signed certificate. Use the keytool utility to 
import the returned certificate, which replaces the self-signed certificate in the 
keystore:

keytool -importcert -trustcacerts -file signed_admin.cer

Lastly, use the keytool utility to create a second keystore that acts as a trust keystore. 
The trust keystore contains digital certificates of trusted CAs. Certificates that have 
been verified by a CA are considered trusted only if the CA's certificate is also found 
in the trust keystore. For example, in a typical one-way authentication scenario, a 
client must have a trust keystore that contains a digital certificate of the CA that signed 
the server's certificate. For development purposes, a self-signed certificate can be used 
for both identity and trust; moreover, a single keystore can be used as both the identity 
store and the trust keystore.



Using SSL to Secure TCMP Communication

Using SSL to Secure Communication 5-3

Generating Windows SSL Artifacts
The following steps describe how to set up two-way authentication on Windows to 
secure Oracle Coherence*Extend .NET clients. See "Configuring a .NET Client-Side 
Stream Provider" on page 5-15 for details on configuring .NET clients. See the 
Windows documentation for complete instructions on setting up SSL on Windows:

http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.aspx

To set up two-way authentication on Windows:

1. Run the following commands from the Visual Studio command prompt:

c:\>makecert -pe -n "CN=Test And Dev Root Authority" -ss my -sr LocalMachine -a 
sha1 -sky signature -r "Test And Dev Root Authority.cer"

c:\>makecert -pe -n "CN=MyServerName" -ss my -sr LocalMachine -a sha1 -sky 
exchange -eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir 
LocalMachine -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

c:\>makecert -pe -n "CN=MyClient" -ss my -sr LocalMachine -a sha1 -sky exchange 
-eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir 
LocalMachine -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

2. Create the certificate trusted root certification authority (for tests only).

makecert -pe -n "CN=Test And Dev Root Authority" -ss my -sr LocalMachine -a 
sha1 -sky signature -r "Test And Dev Root Authority.cer"

3. Copy the created certificate from the personal store to the trusted root certification 
authority store.

4. Create the server certificate based on the trusted root certification.

makecert -pe -n "CN=MyServerName" -ss my -sr LocalMachine -a sha1 -sky exchange 
-eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir 
LocalMachine -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

5. From the certificate store of the trusted root certification authority (Test And Dev 
Root Authority), export a certificate file without a public key (.cer).

6. From the certificate store of the trusted root certification authority (Test And Dev 
Root Authority), export a certificate file with a private key (.pfx).

7. Copy the .cer file to each client computer. The location must be accessible to the 
sslstream client program.

8. Copy the .pfx file to each client computer.

9. Import the .pfx file to the trusted root certification authority certificate store of 
each client computer.

10. On each client computer, delete the .pfx file. (This step ensures that the client does 
not communicate or export the private key.)

Using SSL to Secure TCMP Communication
This section provides instructions for configuring SSL to secure communication 
between cluster members. The configuration examples in this section assume that 
valid digital certificates for all clients and servers have been created as required and 
that the certificates have been signed by a Certificate Authority (CA). The digital 
certificates must be found in an identity store, and the trust keystore must include the 
signing CA's digital certificate. Use self-signed certificates during development as 

http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.aspx


Using SSL to Secure TCMP Communication

5-4 Oracle Fusion Middleware Securing Oracle Coherence

needed. See "Using SSL to Secure Extend Client Communication" on page 5-8 for 
instructions on using SSL with Oracle Coherence*Extend.

This section includes the following topics:

■ Overview of Using SSL to Secure TCMP Communication

■ Define an SSL Socket Provider

■ Using the Predefined SSL Socket Provider

Overview of Using SSL to Secure TCMP Communication
Both one-way and two-way SSL authentication are supported with TCMP. Two-way 
authentication is typically used more often than one-way authentication, which has 
fewer use cases in a cluster environment. In addition, it is important to realize that 
TCMP is a peer-to-peer protocol that generally runs in trusted environments where 
many cluster nodes are expected to remain connected with each other. Carefully 
consider the implications of SSL on administration and performance.

Figure 5–1 shows a conceptual view of cluster members using two-way SSL. Each 
cluster member includes a trust keystore and a Java keystore (JKS) that contains digital 
certificates that are used for mutual authentication.

Figure 5–1 Conceptual Architecture of SSL with TCMP

Define an SSL Socket Provider
Configure SSL for TCMP in an operational override file by overriding the 
<socket-provider> element within the <unicast-listener> element. The preferred 
approach is to use the <socket-provider> element to reference an SSL socket provider 
configuration that is defined within a <socket-providers> node. However, the 
<socket-provider> element also supports including an in-line SSL configuration. Both 
approaches are demonstrated in this section. See Developing Applications with Oracle 
Coherence for a detailed reference of the <socket-provider> element.

Note: The use of Well Known Addresses (WKA) is required to use 
SSL with TCMP. See Developing Applications with Oracle Coherence for 
details on setting up WKA.

Example 5–1 demonstrates an SSL two-way authentication setup. The setup requires 
both an identity store and trust keystore to be located on each node in the cluster. The 
example uses the default values for the <protocol> and <algorithm> element (TLS and 
SunX509, respectively). These are shown only for completeness; you can omit them 
when you use the default values. The example uses the preferred approach, in which 
the SSL socket provider is defined within the <socket-providers> node and referred 
to from within the <unicast-listener> element.



Using SSL to Secure TCMP Communication

Using SSL to Secure Communication 5-5

Example 5–1 Sample SSL Configuration for TCMP Communication

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <cluster-config>
      <unicast-listener>
         <socket-provider system-property="tangosol.coherence.socketprovider>
            mySSLConfig</socket-provider>
         <well-known-addresses>
            <socket-address id="1">
               <address system-property="tangosol.coherence.wka">198.168.1.5
               </address>
               <port system-property="tangosol.coherence.wka.port">8088</port>
            </socket-address>
         </well-known-addresses>
      </unicast-listener>

      <socket-providers>
         <socket-provider id="mySSLConfig">
            <ssl>
               <protocol>TLS</protocol>
               <identity-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:server.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
                  <password>password</password>
               </identity-manager>
               <trust-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:trust.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
               </trust-manager>
               <socket-provider>tcp</socket-provider>
            </ssl>
         </socket-provider>
      </socket-providers>
   </cluster-config>
</coherence>

As an alternative, the SSL socket provider supports in-line configuration directly in the 
<unicast-listener> element, as shown in Example 5–2:

Example 5–2 Sample In-line SSL Configuration for TCMP Communication

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <cluster-config>



Using SSL to Secure TCMP Communication

5-6 Oracle Fusion Middleware Securing Oracle Coherence

      <unicast-listener>
         <socket-provider system-property="tangosol.coherence.socketprovider>
            <ssl>
               <protocol>TLS</protocol>
               <identity-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:server.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
                  <password>password</password>
               </identity-manager>
               <trust-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:trust.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
               </trust-manager>
               <socket-provider>tcp</socket-provider>
            </ssl>
         </socket-provider>
         <well-known-addresses>
            <socket-address id="1">
               <address system-property="tangosol.coherence.wka">198.168.1.5
               </address>
               <port system-property="tangosol.coherence.wka.port">8088</port>
            </socket-address>
         </well-known-addresses>
      </unicast-listener>
   </cluster-config>
</coherence>

Using the Predefined SSL Socket Provider
Oracle Coherence includes a predefined SSL socket provider that allows for 
configuration of two-way SSL connections. The predefined socket provider is based on 
peer trust: every trusted peer resides within a single JKS keystore. The proprietary 
peer trust algorithm (PeerX509) works by assuming trust (and only trust) of the 
certificates that are in the keystore. The peer algorithm increases the performance of 
SSL by relying on the fact that TCMP is a peer-to-peer protocol.

The predefined SSL socket provider is located within the <socket-providers> element 
in the operational deployment descriptor: 

...
<cluster-config>
   <socket-providers>
      <socket-provider id="ssl">
         <ssl>
            <identity-manager>
               <key-store>
                  <url system-property="tangosol.coherence.security.keystore">
                     file:keystore.jks
                  </url>
                  <password system-property="tangosol.coherence.security.
                     password"/>



Using SSL to Secure TCMP Communication

Using SSL to Secure Communication 5-7

               </key-store>
               <password system-property="tangosol.coherence.security.password"/>
            </identity-manager>
            <trust-manager>
               <algorithm>PeerX509</algorithm>
               <key-store>
                  <url system-property="tangosol.coherence.security.keystore">
                     file:keystore.jks
                  </url>
                  <password system-property="tangosol.coherence.security.
                     password"/>
               </key-store>
            </trust-manager>
            <socket-provider>tcp</socket-provider>
         </ssl>
      </socket-provider>
   </socket-providers>
</cluster-config>
...

As configured, the predefined SSL socket provider requires a Java keystore named 
keystore.jks that is found on the classpath. Use an operation override file to modify 
any socket provider values as required. The tangosol.coherence.security.keystore 
and tangosol.coherence.security.password system properties override the keystore 
and password instead of using the operational override file. For example:

-Dtangosol.coherence.security.keystore=/mykeystore.jks 
-Dtangosol.coherence.security.password=password

Note:  Ensure that certificates for all nodes in the cluster have been 
imported into the keystore.

To use the predefined SSL socket provider, override the <socket-provider> element in 
the <unicast-listener> configuration and reference the SSL socket provider using its 
id attribute. The following example configures a unicast listener to use the predefined 
SSL socket provider.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/
   coherence-operational-config coherence-operational-config.xsd">
   <cluster-config>
      <unicast-listener>
         <socket-provider
            system-property="tangosol.coherence.socketprovider>ssl
         </socket-provider>
         <well-known-addresses>
            <socket-address id="1">
               <address system-property="tangosol.coherence.wka">198.168.1.5
               </address>
               <port system-property="tangosol.coherence.wka.port">8088</port>
            </socket-address>
         </well-known-addresses>
      </unicast-listener>
   </cluster-config>
</coherence>



Using SSL to Secure Extend Client Communication

5-8 Oracle Fusion Middleware Securing Oracle Coherence

Using SSL to Secure Extend Client Communication
This section provides instructions for configuring SSL to secure communication 
between extend clients and cluster proxies. The configuration examples in this section 
assume that valid digital certificates for all clients and servers have been created as 
required and that the certificates have been signed by a Certificate Authority (CA). The 
digital certificates must be found in an identity store, and the trust keystore must 
include the signing CA's digital certificate. Use self-signed certificates during 
development as needed. See "Using SSL to Secure TCMP Communication" on page 5-3 
for instructions on using SSL between cluster members.

This section includes the following topics:

■ Overview of Using SSL to Secure Extend Client Communication

■ Configuring a Cluster-Side SSL Socket Provider

■ Configuring a Java Client-Side SSL Socket Provider

■ Configuring a .NET Client-Side Stream Provider

Overview of Using SSL to Secure Extend Client Communication
SSL is used to secure communication between extend clients and extend proxies. SSL 
requires configuration on both the client side and the cluster side. SSL is supported for 
both Java and .NET clients but not for C++ clients.

Figure 5–2 shows a conceptual view of extend clients using SSL to communicate with a 
cluster proxy. The clients and the proxy include a trust keystore and an identity 
keystore that contain digital certificates that are used for authentication. Extend clients 
typically use one-way authentication in which only proxies authenticate with clients, 
and clients remain anonymous to proxies.

Figure 5–2 Conceptual Architecture of SSL with Oracle Coherence*Extend



Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-9

Configuring a Cluster-Side SSL Socket Provider
Configure SSL in the cluster-side cache configuration file by defining an SSL socket 
provider for a proxy service. There are two options for configuring an SSL socket 
provider, depending on the level of granularity that is required:

■ Per Proxy Service – Each proxy service defines an SSL socket provider 
configuration or references a predefined configuration that is included in the 
operational configuration file.

■ All Proxy Services – All proxy services use the same global SSL socket provider 
configuration. A proxy service that provides its own configuration overrides the 
global configuration. The global configuration can also reference a predefined 
configuration that is included in the operational configuration file.

Configure an SSL Socket Provider per Proxy Service
To configure an SSL socket provider for a proxy service, add a <socket-provider> 
element within the <tcp-acceptor> element of each <proxy-scheme> definition. See 
Developing Applications with Oracle Coherence for a detailed reference of the 
<socket-provider> element.

Example 5–3 demonstrates a proxy scheme that configures an SSL socket provider that 
uses the default values for the <protocol> and <algorithm> elements (TLS and 
SunX509, respectively). These are shown only for completeness; you can omit them 
when you use the default values.

Example 5–3 configures both an identity keystore (server.jks) and a trust keystore 
(trust.jks). This is typical of two-way SSL authentication, in which both the client 
and proxy must exchange digital certificates and confirm each other's identity. For 
one-way SSL authentication, the proxy server configuration must include an identity 
keystore but not a trust keystore.

Note: If the proxy server is configured with a trust manager, then the 
client must use two-way SSL authentication, because the proxy 
expects a digital certificate to be exchanged. Make sure a trust 
manager is not configured if you want to use one-way SSL 
authentication.

Example 5–3 Sample Cluster-Side SSL Configuration

...
<proxy-scheme>
   <service-name>ExtendTcpSSLProxyService</service-name>
   <acceptor-config>
      <tcp-acceptor>
         <socket-provider>
            <ssl>
               <protocol>TLS</protocol>
               <identity-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:server.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
                  <password>password</password>
               </identity-manager>
               <trust-manager>



Using SSL to Secure Extend Client Communication

5-10 Oracle Fusion Middleware Securing Oracle Coherence

                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:trust.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
               </trust-manager>
               <socket-provider>tcp</socket-provider>
            </ssl>
         </socket-provider>
         <local-address>
            <address>192.168.1.5</address>
            <port>9099</port>
         </local-address>
      </tcp-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>
...

The following example references an SSL socket provider configuration that is defined 
in the <socket-providers> node of the operational deployment descriptor by 
specifying the id attribute (ssl) of the configuration. See Developing Applications with 
Oracle Coherence for a detailed reference of the <socket-providers> element. 

Note: A predefined SSL socket provider is included in the 
operational deployment descriptor and is named ssl. The predefined 
SSL socket provider is configured for two-way SSL connections and is 
based on peer trust, in which every trusted peer resides within a 
single JKS keystore. See "Using the Predefined SSL Socket Provider" 
on page 5-6 for details. To configure a different SSL socket provider, 
use an operational override file to modify the predefined SSL socket 
provider or to create a socket provider configuration as required.

...
<proxy-scheme>
   <service-name>ExtendTcpSSLProxyService</service-name>
   <acceptor-config>
      <tcp-acceptor>
         <socket-provider>ssl</socket-provider>
         <local-address>
            <address>192.168.1.5</address>
            <port>9099</port>
         </local-address>
      </tcp-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>
...

Configure an SSL Socket Provider for All Proxy Services
To configure a global SSL socket provider for use by all proxy services, use a 
<socket-provider> element within the <defaults> element of the cache configuration 
file. With this approach, no additional configuration is required within a proxy scheme 



Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-11

definition. See Developing Applications with Oracle Coherence for a detailed reference of 
the <default> element.

The following example uses the same SSL socket provider configuration from 
Example 5–3 and configures it for all proxy services.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <defaults>
      <socket-provider>
         <ssl>
            <protocol>TLS</protocol>
            <identity-manager>
               <algorithm>SunX509</algorithm>
               <key-store>
                  <url>file:server.jks</url>
                  <password>password</password>
                  <type>JKS</type>
               </key-store>
               <password>password</password>
            </identity-manager>
            <trust-manager>
               <algorithm>SunX509</algorithm>
               <key-store>
                  <url>file:trust.jks</url>
                  <password>password</password>
                  <type>JKS</type>
               </key-store>
            </trust-manager>
            <socket-provider>tcp</socket-provider>
         </ssl>
      </socket-provider>
   </defaults>
   ...

The following example configures a global SSL socket provider by referencing an SSL 
socket provider configuration that is defined in the operational deployment descriptor:

<defaults>
   <socket-provider>ssl</socket-provider>
</defaults>

Configuring a Java Client-Side SSL Socket Provider
Configure SSL in the client-side cache configuration file by defining an SSL socket 
provider for a remote cache scheme and, if required, for a remote invocation scheme. 
There are two options for configuring an SSL socket provider, depending on the level 
of granularity that is required:

■ Per Remote Service – Each remote service defines an SSL socket provider 
configuration or references a predefined configuration that is included in the 
operational configuration file.

■ All Remote Services – All remote services use the same global SSL socket provider 
configuration. A remote service that provides its own configuration overrides the 



Using SSL to Secure Extend Client Communication

5-12 Oracle Fusion Middleware Securing Oracle Coherence

global configuration. The global configuration can also reference a predefined 
configuration that is included in the operational configuration file.

Configure an SSL Socket Provider per Remote Service
To configure an SSL socket provider for a remote service, add a <socket-provider> 
element within the <tcp-initiator> element of a remote scheme definition. See 
Developing Applications with Oracle Coherence for a detailed reference of the 
<socket-provider> element.

Example 5–4 demonstrates a remote cache scheme that configures a socket provider 
that uses SSL. The example uses the default values for the <protocol> and 
<algorithm> elements (TLS and SunX509, respectively). These are shown only for 
completeness; you can omit them when you use the default values.

Example 5–4 configures both an identity keystore (server.jks) and a trust keystore 
(trust.jks). This is typical of two-way SSL authentication, in which both the client 
and proxy must exchange digital certificates and confirm each other's identity. For 
one-way SSL authentication, the client configuration must include a trust keystore but 
need not include an identity keystore, which indicates that the client does not 
exchange its digital certificate to the proxy and remains anonymous. The client's trust 
keystore must include the CA's digital certificate that was used to sign the proxy's 
digital certificate. 

Note: If the proxy server is configured with a trust manager, then the 
client must use two-way SSL authentication, because the proxy 
expects a digital certificate to be exchanged. Remove the proxy’s trust 
manager configuration if you want to use one-way SSL authentication.

Example 5–4 Sample Java Client-Side SSL Configuration

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-extend</cache-name>
         <scheme-name>extend-dist</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>

   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>extend-dist</scheme-name>
         <service-name>ExtendTcpSSLCacheService</service-name>
         <initiator-config>
            <tcp-initiator>
               <socket-provider>
                  <ssl>
                     <protocol>TLS</protocol>
                     <identity-manager>
                        <algorithm>SunX509</algorithm>
                        <key-store>
                           <url>file:server.jks</url>
                           <password>password</password>



Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-13

                           <type>JKS</type>
                        </key-store>
                        <password>password</password>
                     </identity-manager>
                     <trust-manager>
                        <algorithm>SunX509</algorithm>
                        <key-store>
                           <url>file:trust.jks</url>
                           <password>password</password>
                           <type>JKS</type>
                        </key-store>
                     </trust-manager>
                     <socket-provider>tcp</socket-provider>
                  </ssl>
               </socket-provider>
               <remote-addresses>
                  <socket-address>
                     <address>198.168.1.5</address>
                     <port>9099</port>
                  </socket-address>
               </remote-addresses>
               <connect-timeout>10s</connect-timeout>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>5s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
   </caching-schemes>
</cache-config>

The following example references an SSL socket provider configuration that is defined 
in the <socket-providers> node of the operational deployment descriptor by 
specifying the id attribute (ssl) of the configuration. See Developing Applications with 
Oracle Coherence for a detailed reference of the <socket-providers> element. 

Note: A predefined SSL socket provider is included in the 
operational deployment descriptor and is named ssl. The predefined 
SSL socket provider is configured for two-way SSL connections and is 
based on peer trust, in which every trusted peer resides within a 
single JKS keystore. See for "Using the Predefined SSL Socket 
Provider" on page 5-6 for details. To configure a different SSL socket 
provider, use an operational override file to modify the predefined 
SSL socket provider or to create a socket provider configuration as 
required.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-extend</cache-name>
         <scheme-name>extend-dist</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>



Using SSL to Secure Extend Client Communication

5-14 Oracle Fusion Middleware Securing Oracle Coherence

   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>extend-dist</scheme-name>
         <service-name>ExtendTcpSSLCacheService</service-name>
         <initiator-config>
            <tcp-initiator>
               <socket-provider>ssl</socket-provider>
               <remote-addresses>
                  <socket-address>
                     <address>198.168.1.5</address>
                     <port>9099</port>
                  </socket-address>
               </remote-addresses>
               <connect-timeout>10s</connect-timeout>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>5s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
   </caching-schemes>
</cache-config>

Configure an SSL Socket Provider for All Remote Services
To configure a global SSL socket provider for use by all remote services, use a 
<socket-provider> element within the <defaults> element of the cache configuration 
file. With this approach, no additional configuration is required within a remote 
scheme definition. See Developing Applications with Oracle Coherence for a detailed 
reference of the <default> element.

The following example uses the same SSL socket provider configuration from 
Example 5–4 and configures it for all remote services.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <defaults>
      <socket-provider>
         <ssl>
            <protocol>TLS</protocol>
            <identity-manager>
               <algorithm>SunX509</algorithm>
               <key-store>
                  <url>file:server.jks</url>
                  <password>password</password>
                  <type>JKS</type>
               </key-store>
               <password>password</password>
            </identity-manager>
            <trust-manager>
               <algorithm>SunX509</algorithm>
               <key-store>
                  <url>file:trust.jks</url>
                  <password>password</password>
                  <type>JKS</type>



Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-15

               </key-store>
            </trust-manager>
            <socket-provider>tcp</socket-provider>
         </ssl>
      </socket-provider>
   </defaults>
   ...

The following example configures a global SSL socket provider by referencing an SSL 
socket provider configuration that is defined in the operational deployment descriptor:

<defaults>
   <socket-provider>ssl</socket-provider>
</defaults>

Configuring a .NET Client-Side Stream Provider
Configure SSL in the .NET client-side cache configuration file by defining an SSL 
stream provider for remote services. The SSL stream provider is defined using the 
<stream-provider> element within the <tcp-initiator> element.

Note: Certificates are managed on Window servers at the operating 
system level using the Certificate Manager. The sample configuration 
assumes that the Certificate Manager includes the extend proxy's 
certificate and the trusted CA's certificate that signed the proxy's 
certificate. See "Generating Windows SSL Artifacts" on page 5-3 for a 
generic example. For more information about managing certificates, 
see

http://technet.microsoft.com/en-us/library/cc782338(WS.10).a
spx

Example 5–5 demonstrates a remote cache scheme that configures an SSL stream 
provider. Refer to the cache configuration XML schema (INSTALL_
DIR\config\cache-config.xsd) for details on the elements that are used to configure 
an SSL stream provider.

Example 5–5 Sample .NET Client-Side SSL Configuration

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://schemas.tangosol.com/cache
   assembly://Coherence/Tangosol.Config/cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-extend</cache-name>
         <scheme-name>extend-dist</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>

   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>extend-dist</scheme-name>
         <service-name>ExtendTcpSSLCacheService</service-name>
         <initiator-config>



Controlling Cipher Suite and Protocol Version Usage

5-16 Oracle Fusion Middleware Securing Oracle Coherence

            <tcp-initiator>
               <stream-provider>
                  <ssl>
                     <protocol>Tls</protocol>
                     <local-certificates>
                        <certificate>
                           <url>C:\</url>
                           <password>password</password>
                           <flags>DefaultKeySet</flags>
                        </certificate>
                     </local-certificates>
                  </ssl>
               </stream-provider>
               <remote-addresses>
                  <socket-address>
                     <address>198.168.1.5</address>
                     <port>9099</port>
                  </socket-address>
               </remote-addresses>
               <connect-timeout>10s</connect-timeout>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>5s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
   </caching-schemes>
</cache-config>

Controlling Cipher Suite and Protocol Version Usage
An SSL socket provider can be configured to control the use of potentially weak 
ciphers or specific protocol versions. 

To control cipher suite and protocol version usage, edit the SSL socket provider 
definition and include the <cipher-suites> element and the <protocol-versions> 
elements, respectively, and enter a list of cipher suites and protocol versions using the 
name element. Include the usage attribute to specify whether the cipher suites and 
protocol versions are allowed (value of white-list) or disallowed (value of 
black-list). The default value for the usage attribute if no value is specified is 
white-list. For example:

<socket-provider>
   <ssl>
   ...
      <cipher-suites usage="black-list">
         <name>TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256</name>
      </cipher-suites>
      <protocol-versions usage="black-list">
         <name>SSLv3</name>
      </protocol-versions>
   ...
   </ssl>
</socket-provider>



6

Securing Oracle Coherence in Oracle WebLogic Server 6-1

6Securing Oracle Coherence in Oracle 
WebLogic Server 

[6] This chapter provides instructions for using authentication and authorization to secure 
Oracle Coherence in an Oracle WebLogic Server domain. The instructions are specific 
to the Oracle WebLogic Server Administration Console and do not include details for 
the Oracle WebLogic Scripting Tool (WLST). For details on using the Oracle WebLogic 
Server Administration Console, see Oracle WebLogic Server Administration Console 
Online Help. For details on using WLST, see WebLogic Scripting Tool Command Reference.

This chapter includes the following sections:

■ Overview of Securing Oracle Coherence in Oracle WebLogic Server

■ Securing Oracle Coherence Cluster Membership

■ Authorizing Oracle Coherence Caches and Services

■ Securing Extend Client Access with Identity Tokens

Overview of Securing Oracle Coherence in Oracle WebLogic Server
There are several security features that can be used when deploying Oracle Coherence 
within an Oracle WebLogic Server domain. The default security configuration allows 
any server to join a cluster and any extend client to access a cluster's resources. The 
following security features should be configured to protect against unauthorized use 
of a cluster:

■ Oracle Coherence access controllers – provides authorization between cluster 
members

■ Oracle WebLogic Server authorization – provides authorization to Oracle 
Coherence caches and services

■ Oracle Coherence identity tokens – provides authentication for extend clients

Much of the security for Oracle Coherence in a Oracle WebLogic Server domain reuses 
existing security capabilities. Knowledge of these existing security components is 
assumed. References are provided in this documentation to existing content where 
applicable.

Securing Oracle Coherence Cluster Membership
The Oracle Coherence security framework (access controller) can be enabled within a 
Oracle WebLogic Server domain to secure access to cluster resources and operations. 
The access controller provides authorization and uses encryption/decryption between 



Securing Oracle Coherence Cluster Membership

6-2 Oracle Fusion Middleware Securing Oracle Coherence

cluster members to validate trust. For details on the access controller, see "Overview of 
Using an Access Controller" on page 3-1.

In Oracle WebLogic Server, access controllers use a managed Coherence server's 
keystore to establish a caller's identity between Oracle Coherence cluster members. 
The Demo Identity keystore is used by default and contains a default SSL identity 
(DemoIdentity). The default keystore and identity require no setup and are ideal 
during development and testing. Specific keystores and identities should be created 
for production environments. For details on configuring keystores, identity and trust 
in Oracle WebLogic Server, see Administering Security for Oracle WebLogic Server.

Enabling the Oracle Coherence Security Framework
To enable the security framework in an Oracle WebLogic server domain:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to 
configure its settings.

2. From the cluster's settings page, click the Security tab.

3. From the General tab, click the Security Framework Enabled option to enable the 
security framework.

4. Click Save.

Specifying an Identity for Use by the Security Framework
The Oracle Coherence security framework requires a principal (identity) when 
performing authentication. The SSL Demo Identity keystore is used by default and 
contains a default SSL identity (DemoIdentity). The SSL Demo keystore and identity 
are typically used during development. For production environments, you should 
create an SSL keystore and identity. For example, use the Java keytool utility to create 
a keystore that contains an admin identity:

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Administrator,O=MyCompany,L=MyCity,ST=MyState

Note: If you create an SSL keystore and identity, you must configure 
Oracle WebLogic Server to use that SSL keystore and identity. In 
addition, the same SSL identity must be located in the keystore of 
every managed Coherence server in the cluster. Use the Keystores and 
SSL tabs on the Settings page for a managed Coherence server to 
configure a keystore and identity.

To override the default SSL identity and specify an identity for use by the security 
framework:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to 
configure its settings.

2. From the cluster's settings page, click the Security tab.

3. From the General tab, click the Security Framework Enabled option to enable the 
security framework if it has not already been enabled.

4. In the Private Key Alias field, enter the alias for the identity.

5. In the Private Key Pass Phrase field, enter the password for the identity.



Authorizing Oracle Coherence Caches and Services

Securing Oracle Coherence in Oracle WebLogic Server 6-3

6. In the Confirm Private Key Pass Phrase field, re-enter the password.

7. Click Save.

Authorizing Oracle Coherence Caches and Services
Oracle WebLogic Server authorization can be used to secure Oracle Coherence 
resources that run within a domain. In particular, different roles and policies can be 
created to control access to caches and services. Authorization is enabled by default 
and the default authorization policy gives all users access to all Oracle Coherence 
resources. For details on creating roles and policies in Oracle WebLogic Server, see 
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Authorization roles and policies are explicitly configured for caches and services. You 
must know the cache names and service names that are to be secured. In some cases, 
inspecting the cache configuration file may provide the cache names and service 
names. However, because of wildcard support for cache names in Oracle Coherence, 
you may need to consult an application developer or architect that knows the cache 
names being used by an application. For example, a cache mapping in the cache 
configuration file could use a wildcard (such as * or dist-*) and does not indicate the 
name of the cache that is actually used in the application.

Note: Deleting a service or cache resource does not delete roles and 
policies that are defined for the resource. Roles and policies must be 
explicitly deleted before deleting a service or cache resource.

Specifying Cache Authorization
Oracle WebLogic Server authorization can be used to restrict access to specific Oracle 
Coherence caches. To specify cache authorization:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to 
configure its settings.

2. From the cluster's settings page, click the Security tab and Caches subtab.

3. Click New to define a cache on which roles and polices will be defined. The Create 
a Coherence Cache page displays.

4. Enter the name of a cache in the Name field. The name of the cache must exactly 
match the name of the cache used in an application.

5. Click Finish. The cache is listed on the Coherence Caches page.

6. Click the cache to access its settings page where you can define scoped roles and 
policies using the Roles and Policies tab, respectively. For example, you can create 
a policy that allows specific users to access the cache. The users can be selected 
based on their membership in a global role, or a Coherence-specific scoped role 
can be created and used to define which users can access the cache. For details on 
specifying scoped roles and policies, see Oracle WebLogic Server Administration 
Console Online Help.

Specifying Service Authorization
Oracle WebLogic Server authorization can be used to restrict access to Oracle 
Coherence services. Specifying authorization on a cache service (for example a 
distributed cache service) affects access to all the caches that are created by that 
service.



Securing Extend Client Access with Identity Tokens

6-4 Oracle Fusion Middleware Securing Oracle Coherence

To specify service authorization:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to 
configure its settings.

2. From the cluster's settings page, click the Security tab and Services subtab.

3. Click New to define a service to which roles and polices will be defined. The 
Create a Coherence Service page displays.

4. Enter the name of a service in the Name field. The name of the service must 
exactly match the name of the service used in an application.

Note: The exact name must include the scope name as a prefix to the 
service name. The scope name can be explicitly defined in the cache 
configuration file or, more commonly, taken from the deployment 
module name. For example, if you deploy a GAR named 
contacts.gar that defines a service named ContactsService, then the 
exact service name is contacts:ContactsService.

5. Click Finish. The service is listed on the Coherence Services page.

6. Click the service to access its settings page where you can define scoped roles and 
policies using the Roles and Policies tab, respectively. For example, you can create 
a policy that allows specific users to access the service. The users can be selected 
based on their membership in a global role, or a Coherence-specific scoped role 
can be created and used to define which users can access the service. For details on 
specifying scoped roles and policies, see Oracle WebLogic Server Administration 
Console Online Help.

Securing Extend Client Access with Identity Tokens
Identity tokens are used to protect against unauthorized access to an Oracle Coherence 
cluster through an Oracle Coherence proxy server. Identity tokens are used by local 
(within WebLogic Server) extend clients and remote (outside of WebLogic Server) Java, 
C++, and .NET extend clients. Only clients that pass a valid identity token are 
permitted to access cluster services. If a null identity token is passed (a client 
connecting without being within the scope of a Subject), then the client is treated as 
an Oracle WebLogic Server anonymous user. The extend client is able to access caches 
and services that the anonymous user can access.

Note: Once an identity is established, an authorization policy should 
be used to restrict that identity to specific caches and services. For 
details on configuring authorization, see "Authorizing Oracle 
Coherence Caches and Services" on page 6-3.

Identity token security requires an identity transformer implementation that creates an 
identity token and an identity asserter implementation that validates the identity 
token. A default identity transformer implementation (DefaultIdentityTransformer) 
and identity asserter implementation (DefaultIdentityAsserter) are provided. The 
default implementations use a Subject or Principal as the identity token. However, 
custom implementations can be created as required to support any security token type 
(for example, to support Kerberos tokens). For details on creating transformer and 
asserter implementations, see "Using Identity Tokens to Restrict Client Connections" 
on page 4-1.



Securing Extend Client Access with Identity Tokens

Securing Oracle Coherence in Oracle WebLogic Server 6-5

Enabling Identity Transformers for Use in Oracle WebLogic Server
An identity transformer associates an identity token with an identity. For local (within 
Oracle WebLogic Server) extend clients, the default identity transformer cannot be 
replaced. The default identity transformer passes a token of type 
weblogic.security.acl.internal.AuthenticatedSubject representing the current 
Oracle WebLogic Server user.

For remote (outside of Oracle WebLogic Server) extend clients, the identity 
transformer implementation class must be included as part of the application's 
classpath and the fully qualified name of the implementation class must be defined in 
the client operational override file. For details on enabling an identity transformer, see 
"Enabling a Custom Identity Transformer" on page 4-3. The following example enables 
the default identity transformer:

...
<security-config>
   <identity-transformer>
      <class-name>
         com.tangosol.net.security.DefaultIdentityTransformer</class-name>
   </identity-transformer>
</security-config>
...

Remote extend clients must execute cache operations within the Subject.doAS 
method. For example,

Principal principal = new WLSUserImpl("user");
Subject subject = new Subject();
subject.getPrincipals().add(principal);

Subject.doAs(subject, new PrivilegedExceptionAction()
   {
      NamedCache cache = CacheFactory.getCache("mycache");
      ...

Enabling Identity Asserters for Use in Oracle WebLogic Server
Identity asserters must be enabled for an Oracle Coherence cluster and are used to 
assert (validate) a client's identity token. For local (within Oracle WebLogic Server) 
extend clients, the an identity asserter is already enabled for asserting a token of type 
weblogic.security.acl.internal.AuthenticatedSubject.

For remote (outside of Oracle WebLogic Server) extend clients, a custom identity 
asserter implementation class must be packaged in a GAR. However, an identity 
asserter is not required if the remote extend client passes null as the token. If the 
proxy service receives a non-null token and there is no identity asserter 
implementation class configured, a SecurityException is thrown and the connection 
attempt is rejected.

To enable an identity asserter for a cluster:

1. From the Summary of Coherence Clusters page, click a Coherence Cluster to 
configure its settings.

2. From the cluster's settings page, click the Security tab.

3. From the General tab, use the Identity Assertion fields to enter the fully qualified 
name of the asserter class and, if required, any class constructor arguments. For 
example, to use the default identity asserter, enter:

com.tangosol.net.security.DefaultIdentityAsserter



Securing Extend Client Access with Identity Tokens

6-6 Oracle Fusion Middleware Securing Oracle Coherence

4. Click Save.

5. Restart the cluster servers or redeploy the GAR for the changes to take effect.



7

Securing Oracle Coherence REST 7-1

7Securing Oracle Coherence REST 

[7] This chapter provides instructions for securing Oracle Coherence REST and does not 
include general instructions for using Oracle Coherence REST. For detailed 
information on using Oracle Coherence REST, see Developing Remote Clients for Oracle 
Coherence.

This chapter includes the following sections:

■ Overview of Securing Oracle Coherence REST

■ Using HTTP Basic Authentication with Oracle Coherence REST

■ Using SSL Authentication With Oracle Coherence REST

■ Using SSL and HTTP Basic Authentication with Oracle Coherence REST

■ Implementing Authorization For Oracle Coherence REST

Overview of Securing Oracle Coherence REST
Oracle Coherence REST security uses both authentication and authorization to restrict 
access to cluster resources. Authentication support includes: HTTP basic, client-side 
SSL certificate, and client-side SSL certificate together with HTTP basic. Authorization 
is implemented using Oracle Coherence*Extend-styled authorization, which relies on 
interceptor classes that provide fine-grained access for cache service and invocation 
service operations. Oracle Coherence REST authentication and authorization reuses 
much of the existing security capabilities of Oracle Coherence: references are provided 
to existing content where applicable.

Security for Oracle Coherence REST is disabled by default and is enabled as required. 
Authentication and authorization are configured separately. Authentication is 
configured in a cache configuration file using the <auth-method> element within the 
<http-acceptor> element. For details on the <auth-method> element, see the 
Developing Applications with Oracle Coherence. For detailed information about 
implementing authorization, see "Implementing Extend Client Authorization" on 
page 4-7.

Using HTTP Basic Authentication with Oracle Coherence REST
HTTP basic authentication provides authentication using credentials (username and 
password) that are encoded and sent in the HTTP authorization request header. HTTP 
basic authentication requires a Java Authentication and Authorization Service (JAAS) 
login module as described in this section.

To specify basic authentication, add an <auth-method> element, within the 
http-acceptor element, that is set to basic.



Using HTTP Basic Authentication with Oracle Coherence REST

7-2 Oracle Fusion Middleware Securing Oracle Coherence

<proxy-scheme>
   <service-name>RestHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
         <auth-method>basic</auth-method>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Specify a Login Module
HTTP basic authentication requires a JAAS javax.security.auth.spi.LoginModule 
implementation that authenticates client credentials which are passed from the HTTP 
basic authentication header. The resulting Subject can then be used for both Oracle 
Coherence*Extend-style and Oracle Coherence Security Framework authorization as 
required. Refer to the JAAS Reference Guide for instructions about JAAS and creating 
a LoginModule implementation:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRe
fGuide.html

To specify a login module, modify the COHERENCE_HOME/lib/security/login.config 
login configuration file and include a CoherenceREST entry that includes the login 
module implementation to use. For example:

CoherenceREST {
    package.MyLoginModule required debug=true;
};

At runtime, specify the login.config file to use either from the command line (using 
the java.security.auth.login.config system property) or in the Java security 
properties file. For details, see:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLM
DevGuide.html

As a convenience, a Java keystore (JKS) LoginModule implementation which depends 
only on standard Java run-time classes is provided. The class is located in the 
COHERENCE_HOME/lib/security/coherence-login.jar file. To use the implementation, 
either place this library in the proxy server classpath or in the JRE's lib/ext (standard 
extension) directory.

Specify the JKS login module implementation in the login.config configuration file 
as follows:

CoherenceREST {
    com.tangosol.security.KeystoreLogin required
      keyStorePath="${user.dir}${/}security${/}keystore.jks";
};

The entry contains a path to a keystore. Change the keyStorePath variable to the 
location of a keystore. For instructions about creating a keystore, see "Generating Java 
SSL Artifacts" on page 5-2. 

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html


Using SSL Authentication With Oracle Coherence REST

Securing Oracle Coherence REST 7-3

Using SSL Authentication With Oracle Coherence REST
SSL provides an authentication mechanism that relies on digital certificates and 
encryption keys to establish both identity and trust. For an overview of SSL, including 
generating SSL artifacts, see "Overview of SSL" on page 5-1.

Client-side SSL certificates are passed to the HTTP acceptor to authenticate the client. 
SSL requires an SSL-based socket provider to be configured for the HTTP acceptor. The 
below instructions only describe how to configure SSL and define an SSL socket 
provider on the proxy for an HTTP acceptor. Refer to your REST client library 
documentation for instructions on setting up SSL on the client side.

To specify SSL authentication, add an <auth-method> element, within the 
http-acceptor element, that is set to cert.

<proxy-scheme>
   <service-name>RestHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
         <auth-method>cert</auth-method>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Configure an HTTP Acceptor SSL Socket Provider
Configure an SSL socket provider for an HTTP acceptor when using SSL for 
authentication. To configure SSL for an HTTP acceptor, explicitly add an SSL socket 
provider definition or reference an SSL socket provider definition that is in the 
operational override file.

Explicitly Defining an SSL Socket Provider
To explicitly configure an SSL socket provider for an HTTP acceptor, add a 
<socket-provider> element within the <http-acceptor> element of each 
<proxy-scheme> definition. See Developing Applications with Oracle Coherence for a 
detailed reference of the <socket-provider> element.

Example 7–1 demonstrates configuring an SSL socket provider that uses the default 
values for the <protocol> and <algorithm> element (TLS and SunX509, respectively). 
These are shown for completeness but may be left out when using the default values.

Example 7–1 configures both an identity keystore (server.jks) and a trust keystore 
(trust.jks). This is typical of two-way SSL authentication, in which both the client 
and proxy must exchange digital certificates and confirm each other's identity. For 
one-way SSL authentication, the proxy server configuration must include an identity 
keystore but need not include a trust keystore.

Example 7–1 Sample HTTP Acceptor SSL Configuration

<proxy-scheme>
   <service-name>RestHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
         <socket-provider>
            <ssl>
               <protocol>TLS</protocol>



Using SSL Authentication With Oracle Coherence REST

7-4 Oracle Fusion Middleware Securing Oracle Coherence

               <identity-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:server.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
                  <password>password</password>
               </identity-manager>
               <trust-manager>
                  <algorithm>SunX509</algorithm>
                  <key-store>
                     <url>file:trust.jks</url>
                     <password>password</password>
                     <type>JKS</type>
                  </key-store>
               </trust-manager>
            </ssl>
         </socket-provider>
         ...
         <auth-method>cert</auth-method>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Referencing an SSL Socket Provider Definition
The following example references an SSL socket provider configuration that is defined 
in the <socket-providers> element of the operational deployment descriptor by 
specifying the id attribute (ssl) of the configuration. See Developing Applications with 
Oracle Coherence for a detailed reference of the <socket-providers> element. 

Note: A predefined SSL socket provider is included in the 
operational deployment descriptor and is named ssl. The predefined 
SSL socket provider is configured for two-way SSL connections and is 
based on peer trust, in which every trusted peer resides within a 
single JKS keystore. See "Using the Predefined SSL Socket Provider" 
on page 5-6 for details. To configure a different SSL socket provider, 
use an operational override file to modify the predefined SSL socket 
provider or to create a socket provider configuration as required.

<proxy-scheme>
   <service-name>RestHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
         <socket-provider>ssl</socket-provider>
         ...
         <auth-method>cert</auth-method>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>



Using SSL Authentication With Oracle Coherence REST

Securing Oracle Coherence REST 7-5

Access Secured REST Services
The following example demonstrates a Jersey-based client that accesses REST services 
that require certificate and HTTP basic authentication. For details about creating Jersey 
clients, see http://jersey.java.net/nonav/documentation/latest/index.html.

Client SSL Configuration File
The client SSL configuration file (ssl.xml) configures the client's keystore and trust 
keystore.

<ssl>
  <identity-manager>
    <key-store>
      <url>file:keystore.jks</url>
      <password>password</password>
    </key-store>
    <password>password</password>
  </identity-manager>
  <trust-manager>
    <key-store>
      <url>file:trust.jks</url>
      <password>password</password>
    </key-store>
  </trust-manager>
</ssl>

Sample Jersey SSL Client
package example;
import com.oracle.common.net.SSLSocketProvider;
import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import com.sun.jersey.api.client.config.DefaultClientConfig;
import com.sun.jersey.client.urlconnection.HTTPSProperties;
import com.sun.jersey.api.client.filter.HTTPBasicAuthFilter;
import com.tangosol.internal.net.ssl.LegacyXmlSSLSocketProviderDependencies;
import com.tangosol.run.xml.XmlDocument;
import com.tangosol.run.xml.XmlHelper;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import javax.ws.rs.core.MediaType;
 
public class SslExample
   {
   public static Client createHttpsClient(SSLSocketProvider provider)
      {
      DefaultClientConfig dcc = new DefaultClientConfig();
      HTTPSProperties prop = new HTTPSProperties(new HostnameVerifier()
         {
         public boolean verify(String s, SSLSession sslSession)
            {
               return true;
            }
         }, provider.getDependencies().getSSLContext());
      dcc.getProperties().put(HTTPSProperties.PROPERTY_HTTPS_PROPERTIES, prop);
      return Client.create(dcc);
      }
 
   public static void PUT(String url, MediaType mediaType, String data)



Using SSL Authentication With Oracle Coherence REST

7-6 Oracle Fusion Middleware Securing Oracle Coherence

      {
      process(url, "put", mediaType, data);
      }
 
   public static void GET(String url, MediaType mediaType)
      {
      process(url, "get", mediaType, null);
      }
 
   public static void POST(String url, MediaType mediaType, String data)
      {
      process(url, "post", mediaType, data);
      }
 
   public static void DELETE(String url, MediaType mediaType)
      {
      process(url, "delete", mediaType, null);
      }
 
   static void process(String url, String action, MediaType mediaType, String
      data)
      {
      try
         {
         XmlDocument xml = XmlHelper.loadFileOrResource("/ssl.xml", null);
         SSLSocketProvider provider = new SSLSocketProvider(new
            LegacyXmlSSLSocketProviderDependencies(xml));
         Client client = createHttpsClient(provider);
         ClientResponse response = null;
         WebResource webResource = client.resource(url);

         // If you've specified the "cert+basic" auth-method in your Proxy
         // http-acceptor configuration, initialize and add an HTTP basic
         // authentication filter by
         // uncommenting the following line and changing the username and password
         // appropriately.
         //client.addFilter(new HTTPBasicAuthFilter("username", "password"));

         if (action.equalsIgnoreCase("get"))
            {
            response = webResource.type(mediaType).get(ClientResponse.class);
            }
         else if (action.equalsIgnoreCase("post"))
            {
            response = webResource.type(mediaType).post
               (ClientResponse.class, data);
            }
         else if (action.equalsIgnoreCase("put"))
            {
            response = webResource.type(mediaType).put
               (ClientResponse.class, data);
            }
         else if (action.equalsIgnoreCase("delete"))
            {
            response = webResource.type(mediaType).delete
               (ClientResponse.class, data);
            }
         System.out.println("response status:" + response.getStatus());
         if (action.equals("get"))
            {



Implementing Authorization For Oracle Coherence REST

Securing Oracle Coherence REST 7-7

            System.out.println("Result: " + response.getEntity(String.class));
            }
         }
      catch (Exception e)
         {
         e.printStackTrace();
         }
      }
 
   public static void main(String args[])
      {
      PUT("https://localhost:8080/dist-http-example/1",
         MediaType.APPLICATION_JSON_TYPE, "{\"name\":\"chris\",\"age\":32}");
      PUT("https://localhost:8080/dist-http-example/2",
         MediaType.APPLICATION_XML_TYPE,
         "<person><name>admin</name><age>30</age></person>");
      DELETE("https://localhost:8080/dist-http-example/1",
         MediaType.APPLICATION_XML_TYPE);
      GET("https://localhost:8080/dist-http-example/2",
         MediaType.APPLICATION_XML_TYPE);
      }
   }

Using SSL and HTTP Basic Authentication with Oracle Coherence REST
The use of HTTP basic authentication does not preclude the use of SSL authentication. 
That is, both HTTP basic authentication and SSL can be used together for added 
protection. For details about setting up both SSL and HTTP basic authentication, see 
"Using HTTP Basic Authentication with Oracle Coherence REST" on page 7-1 and 
"Using SSL Authentication With Oracle Coherence REST" on page 7-3, respectively.

To specify the use of both HTTP basic authentication and SSL, add an <auth-method> 
element, within the http-acceptor element, that is set to cert+basic.

<proxy-scheme>
   <service-name>RestHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
         <socket-provider>
            <ssl>
            ...
            </ssl>
         </socket-provider>
         ...
         <auth-method>cert+basic</auth-method>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Implementing Authorization For Oracle Coherence REST
Oracle Coherence REST relies on the Oracle Coherence*Extend authorization 
framework to restrict which operations a REST client performs on a cluster. For 
detailed instructions on implementing Oracle Coherence*Extend-style authorization, 
see "Implementing Extend Client Authorization" on page 4-7.



Implementing Authorization For Oracle Coherence REST

7-8 Oracle Fusion Middleware Securing Oracle Coherence

Oracle Coherence*Extend-style authorization with REST requires basic HTTP 
authentication or HTTP basic authentication together with SSL authentication. That is, 
when implementing authorization, both HTTP basic authentication and SSL can be 
used together for added protection. For details on using HTTP basic authentication, 
see "Using HTTP Basic Authentication with Oracle Coherence REST" on page 7-1. For 
details on using SSL with HTTP Basic Authentication, see "Using SSL and HTTP Basic 
Authentication with Oracle Coherence REST" on page 7-7.

Note: When using SSL and HTTP basic authentication together, 
make sure that SSL is setup as shown in "Using SSL Authentication 
With Oracle Coherence REST" on page 7-3 in addition to setting up 
HTTP basic authentication.


	Contents
	Preface
	What's New in This Guide
	1 Introduction to Oracle Coherence Security
	Conceptual Overview of Oracle Coherence Security
	Coherence Security Quick Start
	Overview of Security Configuration

	2 Enabling General Security Measures
	Using the Java Security Manager
	Enable the Java Security Manager
	Specify Permissions

	Using Host-Based Authorization
	Overview of Host-Based Authorization
	Specify Cluster Member Authorized Hosts
	Specify Extend Client Authorized Hosts
	Use a Filter Class to Determine Authorization

	Managing Rogue Clients

	3 Using an Access Controller
	Overview of Using an Access Controller
	Using the Default Access Controller Implementation
	Enable the Access Controller
	Create a Keystore
	Include the Login Module
	Create a Permissions File
	Create an Authentication Callback Handler

	Using a Custom Access Controller Implementation

	4 Securing Extend Client Connections
	Using Identity Tokens to Restrict Client Connections
	Overview of Using Identity Tokens
	Creating a Custom Identity Transformer
	Enabling a Custom Identity Transformer
	Creating a Custom Identity Asserter
	Enabling a Custom Identity Asserter
	Using Custom Security Types
	Understanding Custom Identity Token Interoperability

	Associating Identities with Extend Services
	Implementing Extend Client Authorization
	Overview of Extend Client Authorization
	Create Authorization Interceptor Classes
	Enable Authorization Interceptor Classes


	5 Using SSL to Secure Communication
	Overview of SSL
	Using SSL to Secure TCMP Communication
	Overview of Using SSL to Secure TCMP Communication
	Define an SSL Socket Provider
	Using the Predefined SSL Socket Provider

	Using SSL to Secure Extend Client Communication
	Overview of Using SSL to Secure Extend Client Communication
	Configuring a Cluster-Side SSL Socket Provider
	Configure an SSL Socket Provider per Proxy Service
	Configure an SSL Socket Provider for All Proxy Services

	Configuring a Java Client-Side SSL Socket Provider
	Configure an SSL Socket Provider per Remote Service
	Configure an SSL Socket Provider for All Remote Services

	Configuring a .NET Client-Side Stream Provider

	Controlling Cipher Suite and Protocol Version Usage

	6 Securing Oracle Coherence in Oracle WebLogic Server
	Overview of Securing Oracle Coherence in Oracle WebLogic Server
	Securing Oracle Coherence Cluster Membership
	Enabling the Oracle Coherence Security Framework
	Specifying an Identity for Use by the Security Framework

	Authorizing Oracle Coherence Caches and Services
	Specifying Cache Authorization
	Specifying Service Authorization

	Securing Extend Client Access with Identity Tokens
	Enabling Identity Transformers for Use in Oracle WebLogic Server
	Enabling Identity Asserters for Use in Oracle WebLogic Server


	7 Securing Oracle Coherence REST
	Overview of Securing Oracle Coherence REST
	Using HTTP Basic Authentication with Oracle Coherence REST
	Specify a Login Module

	Using SSL Authentication With Oracle Coherence REST
	Configure an HTTP Acceptor SSL Socket Provider
	Access Secured REST Services

	Using SSL and HTTP Basic Authentication with Oracle Coherence REST
	Implementing Authorization For Oracle Coherence REST


