

Oracle® Fusion Middleware
Developing Applications Using Continuous Integration

12c (12.1.3)

E42023-03

February 2015

Describes how to build automation and continuous
integration for applications that you develop and deploy to a
Fusion Middleware runtime environment. It uses
Subversion, Maven, Archiva, Hudson, and Oracle Maven
plug-ins to demonstrate continuous integration.

Oracle Fusion Middleware Developing Applications Using Continuous Integration, 12c (12.1.3)

E42023-03

Copyright © 2013, 2015 Oracle and/or its affiliates. All rights reserved.

Primary Author: Helen Grembowicz

Contributing Author: Wortimla RS, Sreetama Ghosh

Contributors: Mark Nelson, Leon Franzen, Robert Patrick

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... ix

1 Introduction to Continuous Integration

1.1 Introducing Continuous Integration for Oracle Fusion Middleware 1-1
1.2 Version Control with Subversion ... 1-3
1.3 Build Automation and Dependency Management with Maven 1-3
1.4 About the Oracle Maven Repository .. 1-4
1.5 Repository Management with Archiva .. 1-5
1.6 Continuous Integration with Hudson .. 1-5
1.7 Summary .. 1-6

2 Roadmap for Continuous Integration

2.1 Roadmap .. 1-1
2.2 Overview of the Reference Continuous Integration Environment 1-3
2.3 Shared Disk Layout .. 1-4

3 Installing and Configuring Subversion for Version Control

3.1 Downloading Subversion ... 1-1
3.2 Installing Subversion .. 1-1
3.3 Configuring the Subversion Server as a Service ... 1-2
3.4 Setting Up a Repository .. 1-2
3.4.1 Creating a Repository .. 1-2
3.4.2 Subversion Layout ... 1-4
3.4.3 Importing Existing Projects .. 1-5
3.5 Understanding SVN Workflow .. 1-6
3.6 Considerations for Tagging and Branching .. 1-7
3.7 Subversion Clients .. 1-8
3.7.1 WebSVN .. 1-8
3.7.2 TortoiseSVN ... 1-8
3.8 More Information About Subversion ... 1-8

iv

4 Installing and Configuring the Archiva Maven Repository Manager

4.1 Overview of Archiva .. 1-1
4.2 Downloading Archiva .. 1-1
4.3 Installing Archiva ... 1-2
4.4 Configuring Archiva .. 1-2
4.4.1 Configuring the Server .. 1-2
4.4.2 Starting the Server ... 1-3
4.4.3 Creating an Administrator User .. 1-3
4.4.4 Internal and Snapshot Repositories ... 1-3
4.4.5 Proxy Repository ... 1-4
4.4.6 Configuring Mirror Repositories ... 1-4
4.4.7 Creating Development, Production, Quality Assurance, and Test Repositories 1-6
4.4.8 Creating a Deployment Capable User ... 1-7
4.5 More Information About Archiva .. 1-8
4.6 Maven Repository Manager Administration ... 1-8
4.6.1 Snapshot Cleanup .. 1-8
4.6.1.1 Setting Retention Options ... 1-10
4.6.1.2 Deleting Released Snapshots ... 1-10
4.6.2 Advanced User Management .. 1-10
4.6.3 Backing Up Archiva ... 1-10
4.6.4 Archiva and Failover ... 1-10

5 Installing and Configuring Maven for Build Automation and Dependency
Management

5.1 Setting Up the Maven Distribution .. 1-1
5.2 Customizing Maven Settings ... 1-2
5.3 Populating the Maven Repository Manager ... 1-3
5.3.1 Introduction to the Maven Synchronization Plug-In ... 1-4
5.3.2 Installing Oracle Maven Synchronization Plug-In ... 1-4
5.3.3 Running the Oracle Maven Synchronization Plug-In .. 1-5
5.3.4 Things to Know About Replacing Artifacts ... 1-6
5.3.5 Populating Your Maven Repository .. 1-6
5.3.5.1 Populating a Local Repository .. 1-6
5.3.5.2 Populating a Remote Repository ... 1-7
5.3.6 Running the Push Goal .. 1-8
5.3.7 Running the Push Goal on an Existing Maven Repository .. 1-9
5.3.8 Things to Know About Patching ... 1-9
5.3.8.1 Oracle's Approach to Patching .. 1-9
5.3.8.2 Maintain One Maven Repository for Each Environment 1-10
5.3.8.3 Run the Oracle Maven Synchronization Plug-In Push Goal After Patching 1-10
5.3.9 Considerations for Archetype Catalogs ... 1-10
5.3.10 Example settings.xml file ... 1-10
5.3.11 Deploying a Single Artifact .. 1-13

6 Configuring the Oracle Maven Repository

6.1 Accessing the Oracle Maven Repository .. 2-1

v

6.2 Artifacts Provided .. 2-2
6.3 Adding the Oracle Maven Repository to Your Project POM .. 2-2
6.4 Configure Maven to Use a Compatible HTTP Wagon ... 2-2
6.5 Configuring the HTTP Wagon ... 2-3
6.6 Considerations for Using the Oracle Maven Repository with Maven Without a POM 2-3
6.7 Accessing the Oracle Maven Repository from an Automated Build Tool 2-4

7 Installing and Configuring Hudson for Continuous Integration

7.1 Prerequisites for Installing and Configuring Hudson .. 1-1
7.2 Downloading Hudson .. 1-1
7.3 Installing Hudson ... 1-2
7.3.1 Installing Hudson on Linux ... 1-2
7.3.2 Installing Hudson on Windows ... 1-2
7.4 Configuring the HTTP Port .. 1-2
7.5 Starting Hudson ... 1-3
7.6 Configuring Maven After Startup .. 1-3
7.6.1 First Time Startup .. 1-3
7.6.2 Configuring the JDK .. 1-4
7.6.3 Specifying the Maven Home .. 1-4
7.6.4 Setting Up Maven for Use by Hudson ... 1-4
7.6.5 Installing Hudson Plug-Ins .. 1-5
7.6.6 Integrating the Repository ... 1-6
7.6.7 Monitoring Subversion .. 1-6
7.7 More Information About Hudson .. 1-6

8 Understanding Maven Version Numbers

8.1 How Version Numbers Work in Maven ... 1-1
8.2 The SNAPSHOT Qualifier .. 1-2
8.3 Version Range References .. 1-3
8.4 Understanding Maven Version Numbers in Oracle Provided Artifacts 1-4
8.4.1 Understanding Version Numbers in Maven Coordinates ... 1-4
8.4.2 Understanding Version Number Ranges in Dependencies .. 1-5

9 Customizing the Build Process with Maven POM Inheritance

10 Building Java EE Projects for WebLogic Server with Maven

10.1 Introduction to Building Java EE Project with Maven .. 1-1
10.2 Using the Basic WebApp Maven Archetype .. 1-1
10.2.1 Customizing the Project Object Model File to Suit Your Environment 1-4
10.2.2 Compiling Your Project ... 1-4
10.2.3 Packaging Your Project .. 1-4
10.2.4 Deploying Your Project to the WebLogic Server Using Maven 1-4
10.2.5 Deploying Your Project to the WebLogic Server Using Different Options 1-5
10.2.6 Testing Your Basic WebApp Project .. 1-5
10.3 Using the Basic WebApp with EJB Maven Archetype .. 1-5
10.4 Using the Basic WebService Maven Archetype .. 1-8

vi

10.5 Using the Basic MDB Maven Archetype .. 1-11

11 Building Oracle Coherence Projects with Maven

11.1 Introduction to Building Oracle Coherence Projects with Maven 1-1
11.2 Creating a Project from a Maven Archetype .. 1-1
11.3 Building Your Project with Maven ... 1-3
11.4 Deploying Your Project to the WebLogic Server Coherence Container with Maven 1-4
11.5 Building a More Complete Example .. 1-4

12 Building ADF Projects with Maven

12.1 Introduction to Building Oracle ADF Projects with Maven ... 1-1
12.2 Creating an ADF Application Using the Maven Archetype ... 1-1
12.3 Building Your Project with Maven ... 1-2

13 Building Oracle SOA Suite and Oracle Business Process Management
Projects with Maven

13.1 Introduction to Building Oracle SOA Suite and Oracle Business Process Management
Projects with Maven ... 1-1

13.2 Creating a New SOA Application and Project from a Maven Archetype 1-2
13.3 Creating a SOA Project in an Existing SOA Application from a Maven Archetype 1-5
13.4 Editing Your Application in Oracle JDeveloper ... 1-7
13.5 Building Your Project with Maven ... 1-7
13.6 What You May Need to Know About Building Projects .. 1-8
13.7 Deploying Your Project to the SOA Server with Maven .. 1-9
13.8 Running SCA Test Suites with Maven ... 1-10
13.9 What You May Need to Know About Deploying Composites 1-10
13.10 What You May Need to Know About ADF Human Task User Interface Projects 1-14
13.11 Undeploying Your SOA Project ... 1-16
13.12 What You May Need to Know About the SOA Parent POM ... 1-16

14 Building Oracle Service Bus Projects with Maven

14.1 Introduction to Building Oracle Service Bus Projects with Maven 1-1
14.2 Creating an Oracle Service Bus Application from a Maven Archetype 1-2
14.3 Editing Your Application in Oracle JDeveloper ... 1-3
14.4 Creating an Oracle Service Bus Project from a Maven Archetype 1-4
14.5 Building Your Project with Maven ... 1-6
14.6 Deploying Your Project to the Oracle Service Bus Server with Maven 1-6
14.7 What You May Need to Know About the Oracle Service Bus Parent POM 1-7

15 Building a Real Application with Maven

15.1 Introducing the Example .. 1-1
15.2 Multi-Module Maven Projects .. 1-1
15.3 Building a Maven Project ... 1-2
15.3.1 Creating a Directory for the Projects .. 1-3
15.3.2 Creating the GAR Project ... 1-3

vii

15.3.2.1 Creating or Modifying the POM File ... 1-3
15.3.2.2 Creating or Modifying the Coherence Configuration Files 1-5
15.3.2.3 Creating the Portable Objects .. 1-6
15.3.2.4 Creating a Wrapper Class to Access the Cache ... 1-7
15.3.3 Creating the WAR project .. 1-7
15.3.3.1 Creating or Modifying the POM File ... 1-8
15.3.3.2 Creating the Deployment Descriptor ... 1-9
15.3.3.3 Creating the Servlet ... 1-9
15.3.4 Creating the EAR project ... 1-11
15.3.4.1 The POM File ... 1-11
15.3.4.2 Deployment Descriptor ... 1-15
15.3.5 Creating the Top-Level POM ... 1-15
15.3.6 Building the Application Using Maven ... 1-16

16 From Build Automation to Continuous Integration

16.1 Dependency Management .. 1-1
16.1.1 Using SNAPSHOT ... 1-2
16.1.2 Dependency Transitivity .. 1-2
16.1.3 Dependency Scope ... 1-2
16.1.4 Multiple Module Support .. 1-3
16.2 Maven Configuration to Support Continuous Integration Deployment 1-3
16.2.1 Distribution Management .. 1-3
16.2.2 Snapshot Repository Settings ... 1-4
16.3 Automating the Build with Hudson ... 1-5
16.3.1 Creating a Hudson Job to Build a Maven Project ... 1-5
16.3.2 Triggering Hudson Builds ... 1-6
16.3.2.1 Manual Build Triggering ... 1-7
16.3.2.2 Subversion Repository Triggering ... 1-7
16.3.2.3 Schedule Based Triggering .. 1-7
16.3.2.4 Trigger on Hudson Dependency Changes .. 1-7
16.3.2.5 Maven SNAPSHOT Changes .. 1-7
16.3.3 Managing a Multi-Module Maven Build with Hudson ... 1-7
16.4 Monitoring the Build .. 1-8
16.4.1 Following Up on the Triggered Builds ... 1-8

viii

List of Tables

1–1 Maven Build Phases... 1-4
2–1 Roadmap to Attain Continuous Integration .. 1-1
5–1 Push Goal Parameters and Description.. 1-5
8–1 Version Range References... 1-3
10–1 Maven Coordinates with WebLogic Server ... 1-1
10–2 Parameters for the Basic WebApp Project.. 1-2
10–3 Files Created for the Basic WebApp project .. 1-3
10–4 Parameters for the Basic WebApp with EJB Project ... 1-6
10–5 Files Created for the Basic WebApp with EJB Project .. 1-8
10–6 Parameters for the Basic WebService Project... 1-9
10–7 Files Created for the Basic WebService Project... 1-10
10–8 Parameters for the Basic MDB Project ... 1-12
10–9 Files Created for the Basic MDB Project .. 1-14
11–1 Maven Coordinates with Coherence... 1-1
11–2 Oracle Coherence Goals .. 1-1
11–3 Parameters for the Coherence Projects ... 1-2
11–4 Files Created for the Coherence Project.. 1-3
12–1 Maven Coordinates with Oracle ADF .. 1-1
12–2 Parameters for the Oracle ADF Project... 1-2
13–1 Maven Coordinates with Oracle SOA Suite... 1-2
13–2 Oracle SOA Suite Plug-In Goals .. 1-2
13–3 Parameters for the Oracle SOA Suite Application .. 1-3
13–4 Files Created for the Oracle SOA Suite Application and Project .. 1-5
13–5 Parameters for the Oracle SOA Suite Project ... 1-5
13–6 Parameters for Deploying a SOA Project ... 1-9
14–1 Maven Coordinates with Oracle Service Bus... 1-1
14–2 Parameters for the Oracle Service Bus Project ... 1-2
14–3 Files Created for the Oracle Service Bus Project.. 1-3
14–4 Parameters for the Oracle Service Bus Project from a Maven Archetype 1-5

ix

Preface

This book describes build automation and continuous integration for applications that
you develop and deploy to a Fusion Middleware runtime environment. This book
describes the features in Fusion Middleware 12c to make it easier for users to automate
application build and test and to adopt continuous integration techniques with Fusion
Middleware.

Audience
This document is intended for developers and build managers who are responsible for
building applications that will be deployed into a Fusion Middleware runtime
environment and who want to automate their build processes or adopt, or both
continuous integration techniques in the context of Fusion Middleware.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
documentation set:

■ Developing Applications for Oracle WebLogic Server

■ Developing Applications with Oracle JDeveloper

■ Developing Services with Oracle Service Bus

■ Developing SOA Applications with Oracle SOA Suite

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

x

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction to Continuous Integration 1-1

1Introduction to Continuous Integration

[1] This chapter introduces the core concepts of continuous integration and explores a set
of tools that can be used to create a continuous integration environment in the context
of Oracle Fusion Middleware.

This chapter contains the following sections:

■ Introducing Continuous Integration for Oracle Fusion Middleware

■ Version Control with Subversion

■ Build Automation and Dependency Management with Maven

■ About the Oracle Maven Repository

■ Repository Management with Archiva

■ Continuous Integration with Hudson

■ Summary

1.1 Introducing Continuous Integration for Oracle Fusion Middleware
When enterprises develop applications to support their business needs, they typically
employ teams of developers who work together, often in small teams, with each team
building a part of the application. These parts are then assembled to create the whole
application.

Many modern applications are based on a service-oriented architecture (SOA). This
means that developers build services (small pieces of business functionality) that can
be assembled in various ways to meet the needs of the business application. Some of
the features of SOA that make it popular today are:

■ Loose coupling of components of the application, which reduces the impact of
change

■ Reuse of services, a long time goal of Information Technology development

■ The flexibility and agility to easily change the application's behavior as the
business need changes

In this new paradigm, many development organizations are also adopting iterative
development methodologies to replace the older waterfall-style methodologies.
Iterative, agile development methodologies focus on delivering smaller increments of
functionality more often than traditional waterfall approaches. Proponents of the new
approach claim that the impact is usually less for errors that are found sooner and that
the approach is especially suitable to today's environment of constant and rapid
change in business requirements.

Introducing Continuous Integration for Oracle Fusion Middleware

1-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

Many of these techniques also feature the adoption of continuous integration.
Organizations have a strong interest in automating their software builds and testing,
and continuous integration can help accomplish this.

Continuous integration is a software engineering practice that attempts to improve
quality and reduce the time taken to deliver software by applying small and frequent
quality control efforts. It is characterized by these key practices:

■ A version control system is used to track changes.

■ All developers commit to the main code line, head and trunk, every day.

■ The product is built on every commit operation.

■ The build must be automated and fast.

■ There should be automated deployment to a production-like environment.

■ Automated testing should be enabled.

■ Results of all builds are published, so that everyone can see if anyone breaks a
build.

■ Deliverables are easily available for developers, testers, and other stakeholders.

Oracle Fusion Middleware 12c provides support for enterprises that adopt continuous
integration techniques to develop applications on the Oracle Fusion Middleware
platform. Specifically, it provides the following:

■ Integration with common version control systems from the development tool,
Oracle JDeveloper

■ The ability to build projects from the command line using Maven, a build and
project management system, so that the build can be scripted and automated

■ The ability to create new projects from Maven archetypes

■ The ability to parameterize projects so that builds can be targeted to different
environments, such as Test, QA, SIT, and production

■ The ability to include testing of projects in the Maven build life cycle

■ The ability to populate a Maven repository with Oracle-provided dependencies
from an existing local Oracle home software installation directory

■ The ability to run Maven builds under the control of a continuous integration
server like Hudson

■ Comprehensive documentation about setting up your build or continuous
integration environment, or both, to use with Oracle Fusion Middleware

Choices are available for version control, continuous integration, and other
components that enterprises typically use in this kind of environment. Many of these
components are free and open source, and others are commercial products. This guide
presents a reference environment based on the following set of components:

■ Apache Subversion for version control

■ Apache Maven for build or project management

■ Apache Archiva as the Maven Repository Manager

■ Apache Hudson as the continuous integration server

Note that these are not the only choices available. You can use, for example, a different
version control system or a different continuous integration server. For most common

Build Automation and Dependency Management with Maven

Introduction to Continuous Integration 1-3

alternatives, you should be able to adapt the examples in this guide without much
difficulty.

1.2 Version Control with Subversion
Subversion is a popular version control system. It was originally created as a logical
successor to the Concurrent Versioning System (CVS), which is still widely used today.
Subversion is used as the version control system in the examples in this guide for the
following reasons:

■ It is well integrated with Oracle JDeveloper, the development tool that is most
commonly used to build applications for the Oracle Fusion Middleware platform
and with other common development tools.

■ It works well in various network environments, including virtual private networks
and HTTP proxies. Thus, it is well suited for the kind of network environments
often encountered in enterprises and their partners, and suppliers.

■ It supports various authentication options, including strong authentication with
certificates.

■ For projects using Oracle SOA Suite, it provides an atomic commit that enables
developers to update several files as part of a single check-in or commit operation.

A typical Subversion environment consists of one or more Subversion repositories that
store source code artifacts. These are accessed by developers using Subversion clients,
either included in their integrated development environments or as standalone clients.
Developers can copy artifacts to and from the repositories. When a developer changes
an artifact, a new version of the artifact is created in the repository. Developers can
view and compare versions of artifacts to see what was changed and who changed it.

1.3 Build Automation and Dependency Management with Maven
Maven is a project management and build management system.

Maven provides project management in terms of:

■ Naming and version numbering

■ Dependencies

■ Where the source code is stored

■ Where builds are stored

■ Templates for project types

■ The release process

Maven provides build management in terms of:

■ How to execute the build

■ What to do in each phase

■ Parameterization of the build

■ An extensible framework

Maven is based on the central concept of a build life cycle. The process for building
and distributing a particular artifact or project is clearly defined.

About the Oracle Maven Repository

1-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

For developers to use Maven, they must learn a small set of commands that enable
them to build any Maven project. The Maven Project Object Model (POM) ensures that
the project is built correctly.

There are three main life cycles defined:

■ Default: To build the project

■ Clean: To remove all generated artifacts from the project

■ Site: To build documentation for the project

Build life cycles are further defined by a set of build phases. A build phase represents a
stage in the life cycle. Build phases are executed sequentially to complete the life cycle.
Build phases consist of goals that perform the actual tasks. There is a default set of
goal bindings for standard lifecycle phases. Maven plug-ins contribute additional
goals to a project. The following table shows the build phase and purpose of each
phase:

A typical Maven environment consists of a Maven installation on each developer's
local machine, a shared Maven repository manager within the enterprise, and one or
more public Maven repositories where dependencies are stored. The main Maven
repository is known as Maven's central repository. This repository stores many free
and open source libraries that are commonly used as dependencies during
development projects. Examples include the JUnit unit testing framework; Spring,
Struts, and other common user interface libraries; and code coverage and
style-checking libraries like Cobertura and PMD.

1.4 About the Oracle Maven Repository
Oracle provides the Oracle Maven Repository. The Oracle Maven Repository contains
artifacts provided by Oracle that you may require to compile, test, package, perform
integration testing, or deploy reapplications. Specifically, it contains the following:

■ Client API classes

■ Compilation, packaging, and deployment utilities, for example, wlst

Table 1–1 Maven Build Phases

Build Phase Purpose

validate Ensure that the project is correct and all necessary information is
available.

compile Compile the source of the project.

test Test the compiled source code using a suitable unit testing
framework; tests should not require the code to be packaged or
deployed.

package Take the compiled code and package it in its distributable
format, such as a JAR, WAR, EAR, SAR, or GAR files.

integration-test Process and deploy the package, if necessary, into an
environment where integration tests can be run.

verify Run checks to verify whether the package is valid and meets
quality criteria.

install Install the package into the local repository for use as a
dependency in other projects locally.

deploy For the final release, copy the final package to a remote
repository for sharing with other developers and projects.

Continuous Integration with Hudson

Introduction to Continuous Integration 1-5

■ Component JARs that must be embedded in the application

■ Client-side runtime classes, for example, t3 and JAX-WS client runtimes

1.5 Repository Management with Archiva
When several developers are working on a project, enterprises often find it useful to
establish their own internal Maven repository for two purposes:

■ To act as a proxy or cache for external binary repositories, like Maven's central
repository, so that dependencies are downloaded only once and cached locally so
that all developers can use them.

■ To store artifacts that are built by the developers so that they can be shared with
other developers or projects.

Although a Maven repository can be as simple as a file system in a particular layout
(directory structure), most organizations find that it is more convenient to use a type of
software called a Maven repository manager. This helps in addressing the purposes
previously listed. In this guide, Apache Archiva is used as the Maven Repository
Manager. Others are available, either for free and commercially.

In a typical enterprise that use Archiva, Archiva is set up on a server that is accessible
to developers and build machines. The enterprise defines the following repositories on
this server:

■ A mirror of Maven's central repository

■ An internal repository to store internally developed artifacts that are completed or
published

■ A snapshot repository to store internally developed artifacts that are under
development and not completed yet.

There can also be additional repositories depending on the need. For example, there
can be additional repositories for particular projects, or for different versions of
dependencies needed for different life cycle stages. For example, bug fix to production
might use different dependencies from the current version under development.

All developers must configure Maven installations to point to these internal
repositories instead of the external repositories, so that developers can use artifacts
already stored in the internal repositories and reduce the download and build time.
This also helps to ensure that all developers use the same version for various
dependencies.

Archiva also provides the ability to manage the expiration of artifacts from your
snapshot repository. Each time that you execute a build, artifacts are created and
stored in the snapshot repository. If you are using continuous integration, you may
want to execute builds several times each day. The best practice is to configure Archiva
to remove these stored artifacts after a certain amount of time (for example, one week).
Alternatively, you can configure Archiva to keep just the last n versions of each
artifact. Either approach helps to automatically manage the expiration and deletion of
your snapshot artifacts.

1.6 Continuous Integration with Hudson
Hudson is a common continuous integration server product that enables you to
automate the build process. Typically this automation include steps such as:

■ Initiating a build whenever a developer commits to the version control system

Summary

1-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

■ Checking out the code from the version control system

■ Compiling the code

■ Running unit tests and collating results (often through JUnit)

■ Packaging the code into a deployment archive format

■ Deploying the package to a runtime environment

■ Running integration tests and collating results

■ Triggering the build to the Maven snapshot repository

■ Alerting developers through email of any problems

However, it is also possible to use the build system to enforce compliance with
corporate standards and best practices. For example, enterprises can include the
following steps in the build process:

■ Running code coverage checks to ensure that an appropriate number of unit tests
exist and are executed

■ Running code quality checks to look for common problems

■ Running checks to ensure compliance with naming conventions, namespaces, and
so on

■ Running checks to ensure that documentation is included in the code

■ Running checks to ensure that the approved versions of dependencies are used
and that no other dependencies are introduced without approval

Hudson provides a web-based console that enables build managers to define, execute,
and monitor builds. Builds are executed on one or more build servers. The number of
build servers is typically defined based on the volume of builds and the expected time
for a build to complete. Hudson also provides APIs and can be extended through a
plug-in mechanism, so that additional functionality can be added, as needed.

1.7 Summary
This guide describes how to establish a continuous integration environment that
supports a large team of developers who develop applications on the Oracle Fusion
Middleware 12c platform. This environment includes version control, Maven for build
automation and dependency management, Archiva as a Maven repository, and the use
of a continuous integration server like Hudson to automate the build process.

All examples in this book are Apache tools: Subversion, Maven, Archiva, and Hudson.
However, there are other commercial and open source alternatives that you can use.
The intention here is to provide an example that you can refer to and that should be
easy enough to adapt to other tools. For example, you may choose to use git for
version control or Nexus as your repository manager. The choice of tools in this
documentation does not imply that other tools will not deliver equivalent outcome.

1

Roadmap for Continuous Integration 2-1

2Roadmap for Continuous Integration

[2] Oracle Fusion Middleware 12c introduces new capabilities for build automation and
continuous integration. Continuous integration is both a journey and a destination. If
you have not automated your build process before, then you may find yourself at the
beginning of the journey. This chapter provides a roadmap to help you to understand
the steps you need to take to attain continuous integration.

If you are familiar with build automation or continuous integration already, this
chapter provides a summary of the features provided in Oracle Fusion Middleware
12c and helps you relate it to your existing experiences.

This chapter also describes a reference continuous integration environment. This is
provided as an example to help you to visualize what your environment may look like
after adopting the continuous integration approach and the tools and technologies
described in this book.

This chapter contains the following sections:

■ Roadmap

■ Overview of the Reference Continuous Integration Environment

■ Shared Disk Layout

2.1 Roadmap
Table 2–1 describes the common steps that you must take to implement continuous
integration, and also provides pointers for more information in each step.

Table 2–1 Roadmap to Attain Continuous Integration

No. Task For More Information

1. Implement a version
control strategy

Chapter 3 provides details on how to set up a version
control environment using Subversion.

If you are not currently using version control in your
development environment, then you should pay particular
attention to repository layout, the Subversion workflow, and
tagging and branching, which are described in Chapter 3.

For more information about Version Control with
Subversion, see:

http://svnbook.red-bean.com

Roadmap

2-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

2. Implement a binary
repository strategy

Chapter 4 provides details on how to use Apache Archiva to
set up a repository for binary artifacts, both those that you
are building and those that your builds depend on. You
should pay particular attention to understanding the need
for multiple repositories, understanding the difference
between snapshot and other repositories, and the
administration and maintenance required for repositories.

3. Implement a build
automation and
dependency
management strategy

Chapter 5 provides a brief introduction to Maven and the
installation and configuration steps. If you have never used
Maven before, you should do some reading to get familiar
with it. Start by reading "What is Maven?" at the official
Maven web site at:

http://maven.apache.org/what-is-maven.html

There are also a number of resources available online,
including:

■ Maven By Example and Maven: The Complete Reference at:

http://www.sonatype.org/maven

■ Better Builds with Maven at:

http://www.maestrodev.com/better-builds-with-mav
en/about-this-guide/

These resources can help you to form a comprehensive
understanding on how to use Maven, some of the principles
behind its design, and the kind of things you can do with
Maven.

4. Populate your
repository with Oracle
artifacts

Section 5.3 provides details on how to populate your Maven
Repository with Oracle-provided artifacts. You should pay
particular attention to understanding the Oracle Maven
synchronization plug-in, what happens when you apply
patches to your Oracle runtime environments, the
implications of patching on your build environment, and
understanding the role of archetypes.

5. Ensure that you
understand Maven
version numbers

Chapter 8 provides details on the important nuances of
Maven version numbers. Ensure that you understand how
to use Maven version numbers and version number ranges
to specify dependencies, and how Maven resolves
dependencies based on the way you specify version
numbers.

6. Learn how to build Java
EE applications for
WebLogic Server using
Maven

Chapter 10 provides details on how to create Java EE
applications using the Oracle WebLogic Maven archetypes,
and how to compile, package, and deploy your applications
to a WebLogic Server.

7. Learn how to build
Coherence applications
using Maven

Chapter 11 provides details on how to create Coherence
GAR applications using the Oracle Coherence Maven
archetypes, and how to compile, package, and deploy your
applications to the Coherence container on WebLogic Server.

8. Learn how to build
other types of
applications using
Maven

For information on building other types of applications
using Maven, see:

■ Chapter 12, "Building ADF Projects with Maven"

■ Chapter 13, "Building Oracle SOA Suite and Oracle
Business Process Management Projects with Maven"

■ Chapter 14, "Building Oracle Service Bus Projects with
Maven"

Table 2–1 (Cont.) Roadmap to Attain Continuous Integration

No. Task For More Information

Overview of the Reference Continuous Integration Environment

Roadmap for Continuous Integration 2-3

2.2 Overview of the Reference Continuous Integration Environment
This chapter provides a reference implementation of a continuous integration
environment based on Subversion, Maven, Hudson, and Archiva.

Figure 2–1 provides an overview of the recommended development environment. The
dark blue components (shown in the middle) make up the shared (server) portion of
the development environment.

Figure 2–1 Reference Continuous Integration Environment Architecture

The following is a description of the environment:

■ The developer's machine: Each developer has a workstation on which to run an
integrated development environment (Oracle JDeveloper) to create source artifacts
like Java code, deployment descriptors, BPEL processes, and ADF user interface
projects. JDeveloper includes a Subversion client. This enables the developer to
perform actions like checking code in and out of repositories on the Subversion

9. Learn how to build a
whole application using
Maven

Chapter 15 describes how to bring together many of these
concepts to build a more realistic application. The example
application has multiple component parts, each targeted to a
different Oracle Fusion Middleware runtime environment. It
also has dependencies between components, and some
custom packaging requirements.

10. Learn how to customize
your build process
using Maven POM
inheritance

Chapter 9 provides details on the Maven POM hierarchy
that is included with Oracle Fusion Middleware 12c. The
common Oracle 'parent POMs provide an easy way to
customize your build process.

11. Implement a continuous
integration strategy

Chapter 7 describes how to set up Hudson to create an
environment in which to perform continuous integration.
Chapter 16 expands on this with details of the important
considerations for establishing and operating a continuous
integration environment.

Table 2–1 (Cont.) Roadmap to Attain Continuous Integration

No. Task For More Information

Maven Repository
Manager

Asset
Developers

AAsset
Developers

Asset
Developers

Asset Asset Asset

DevelopersDevelopersDevelopers
A t
Hudson

slave
servers

Maven repositories

Subversion
server

Maven repositories
File server

Product binaries

Asset
Developers

Asset
Developers

Asset
Developers

Asset AsseAsse

DevelopersDevelopersDevelopers
A t

Developer’s
machine

JDeveloper

Subversion
client

Maven
local

repository

Hudson (CI) server
(master)

Maven Central
Repository

Shared Disk Layout

2-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

server, checking differences, performing merges, and resolving conflicts. Each
developer's machine also has a local Maven repository on their workstation, which
holds dependencies that are needed to perform local builds that they may want to
perform on their workstation. For example, a developer might want to check a
build and run unit tests locally before checking in code to the shared Subversion
server.

■ The Maven Repository Manager: This part of the development environment is the
repository for all built artifacts and dependencies, both for those created in your
environment and those sourced externally. Typically, there are different
repositories for different purposes:

– The Binary Repository Manager acts as a mirror or proxy for external Maven
repositories like Maven's central repository. When artifacts from these
repositories are needed for a build, they are downloaded and stored in a
repository managed by the Maven Repository Manager.

– When you build an artifact (for example, a WAR, JAR, or SAR file), it is
published into a repository managed by the Maven Repository Manager.
Often there are separate repositories for SNAPSHOT (work in progress)
artifacts and release (final) artifacts.

■ The Subversion server: The repository for source artifacts that are created by your
developers. Typically, there are multiple repositories. For example, there may be
one per project.

■ The Hudson continuous integration (parent) server: The server that manages
your continuous integration builds. It is responsible for running builds and
collecting and reporting results of those builds.

■ Hudson child servers: Optional additional Hudson servers that are used to
provide additional capacity. If you are running a large number of builds, you can
set up several Hudson child servers to share or perform some of the builds.

■ File server: A storage area network (SAN) or network-attached storage (NAS) that
hosts copies of any product binaries that are needed by the Hudson build servers.
For example, ojdeploy is required to build Oracle ADF applications. All of the
Hudson servers have access to this file server.

■ Test servers (not shown): If you are performing integration tests, you may also
have a set of test servers in which you deploy built artifacts like WARs, JARs, and
SARs, and execute your integration tests.

Depending on the size of your environment, these components (excluding the external
ones and the developer's machine), might be on a single server, or spread across
several machines.

2.3 Shared Disk Layout
If you plan to use a shared disk, consider keeping all of your Subversion, Maven,
Hudson data, and product binaries on the shared disk.

Figure 2–2 shows a suggested directory structure. This structure shows only the
high-level directories that you would consciously consider creating.

Shared Disk Layout

Roadmap for Continuous Integration 2-5

Figure 2–2 Directory Structure for a Shared Disk

Note that for the product binaries, you must keep one copy for each environment
(such as production, development, and QA). Although the product binaries are on the

dev

test

dev

internal

mirror

prod

qa

snapshot

12.1.3-0-0

12.1.2-0-0

ci_root

subversion

project-C

project-B

project-A

repositories

test

dev

production

qa

dev

12.1.3-0-0

12.1.2-0-0

test

dev

production

qa

archive

wls

jdev

product_binaries

hudson

Shared Disk Layout

2-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

same version of the software, they are likely to have different patches installed. Ensure
that you can always build using the same set of artifacts, possibly patched, as the
environment to which you want to deploy.

Although you may have moved your development environment to 12.1.3 in the
example in Figure 2–2, you still must to be able to build against 12.1.2. If you find a
bug in production or QA, you must be able to build using the same versions of
artifacts as you have installed in those environments.

Your Maven Repository Manager, Archiva in this case, includes the following
repositories:

■ Internal: Stores finished artifacts that you have built in your development
environment.

■ Snapshot: Stores work-in-progress artifacts that you have built in your
development environment.

■ Mirror: Stores dependencies that have been downloaded from an external
repository.

■ Dev, test, qa, prod: You have one repository for storing the dependencies needed
for each target environment. You do this because it is possible that two
environments might have the same version of an artifact (for example, 12.1.3-0-0)
even though the artifact has been patched in one environment, and is therefore
different. See Section 5.3.8 to learn more about this requirement.

The shared disk server must provide sufficient space for product binaries, Subversion
repositories, the Archiva repository, Maven binaries, Hudson binaries, configuration,
and file storage. At a minimum, Oracle recommends that you allocate at least 40
gigabytes. Factors, such as Archiva snapshot clean up rules and whether or not you
permit check-in of binaries into the source control system, can increase the required
space.

1

Installing and Configuring Subversion for Version Control 3-1

3Installing and Configuring Subversion for
Version Control

[3] Subversion is a version control system that keeps track of changes made to files and
folders or directories, thus facilitating data recovery and providing a history of the
changes that have been made over time. This chapter describes how to install and
configure Subversion for version control.

This chapter contains the following sections:

■ Downloading Subversion

■ Installing Subversion

■ Configuring the Subversion Server as a Service

■ Setting Up a Repository

■ Understanding SVN Workflow

■ Considerations for Tagging and Branching

■ Subversion Clients

■ More Information About Subversion

3.1 Downloading Subversion
Although Subversion is an Apache project, Apache does not build their own binary
files for any operating system. The following URL provides URLs about the latest
stable releases of Subversion built by third parties for all major operating systems:

http://subversion.apache.org/packages.html

If possible, use a package manager such as YUM or APT to manage the installation of
other software.

On Windows, Oracle recommends that you use a precompiled binary package such as
Silk SVN which is available in the following URL:

http://www.silksvn.com

On Windows, if you install Subversion through the installer package, then ensure that
you choose an installer which includes the server binary files.

3.2 Installing Subversion
The installation method varies depending upon the platform and distribution method.

For example, if you use YUM, the command is likely to be:

Configuring the Subversion Server as a Service

3-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

sudo yum install subversion

On Windows, you can change the default installation path to a shorter location.

C:\svn

Ensure that the PATH variable is correctly set by the installer.

To obtain the version information of svnserve, run the following command:

svnserve --version

If you cannot find the command, then do the following:

1. Open Control Panel.

2. Select System, and then Advanced System Settings.

3. Under Advanced, select Environment Variables.

4. Edit the PATH variable in the System variables pane by adding the path to the
Subversion binary directory.

3.3 Configuring the Subversion Server as a Service
To configure the Subversion server as a service:

■ On Linux

The Linux installation process automatically creates an /etc/init.d/svnserve
script. This starts the server when you start up your system.

To start the service manually, run the following command:

sudo /etc/init.d/svnserve start

■ On Windows

You must register svnserve with the service manager. To register svnserve, run
the following command:

sc create svnserver binpath= "C:\svn\svnserve.exe" --service -r "REPOS_PATH"
 displayname="Subversion" depend=Tcpip start=auto

In the preceding command, REPOS_PATH is the absolute path to the local file
system.

3.4 Setting Up a Repository
A Subversion repository is a collection of versioned artifacts on the Subversion server.

This section contains the following topics:

■ Creating a Repository

■ Subversion Layout

■ Importing Existing Projects

3.4.1 Creating a Repository
After Subversion is installed, you must create a repository. The command-line utility
called svnadmin is the primary tool for server-side administrative operations.

Setting Up a Repository

Installing and Configuring Subversion for Version Control 3-3

■ On Linux

To create a repository:

1. Create a directory for the repository by running the following command:

mkdir -p REPOS_PATH

In this command, REPOS_PATH is the absolute path to the local file system.

For example:

mkdir –p /ciroot/subversion/repository

2. Create a repository on a given path by running the following command:

svnadmin create REPOS_PATH

In this command REPOS_PATH is the absolute path to the local file system.

For example:

svnadmin create /ciroot/subversion/repository

■ On Windows

To create a repository:

1. Create a directory for the repository by running the following command:

mkdir REPOS_PATH

In this command, REPOS_PATH is the absolute path to the local file system.

For example:

mkdir C:\ciroot\subversion\repository

2. Create a repository on a given path by running the following command:

svnadmin create REPOS_PATH

In this command, REPOS_PATH is the absolute path to the local file system.

For example:

svnadmin create C:\ciroot\subversion\repository

Access to the repository is controlled by file permissions and the user referenced for
accessing the repository through the SVN client. Ensure that user and group
permissions for all files in the new repository reflect the type of access control that you
want to have over the repository contents.

By default, anonymous, read-only access is enabled for a new repository. This means
that anyone with SSH access, regardless of repository permissions settings, can check
out repository files. You can modify this in the REPOS_PATH/conf/svnserve.conf file.

Now that you have created a repository, you can use the Subversion client to perform
standard operations against the new repository by using the following base URL:

svn+ssh://USER@HOST/REPOS_PATH

For example:

svn ls svn+ssh://mycompany@localhost/ciroot/subversion/repository

Setting Up a Repository

3-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

In addition to svn+ssh, there are several other protocols that are supported by
Subversion. Refer to the Subversion documentation for information on how to
configure other protocols. svn+ssh might not be available on Windows by default.

3.4.2 Subversion Layout
Although Subversion does not require any particular subdirectory structure within a
repository, it is a good idea to follow an established convention, as this book does. The
typical repository layout should resemble the following figure:

Development of the main code line occurs in the trunk directories. When a release is
made, the current trunk source is copied into the tags directory, to a tag corresponding
to the release. Subversion copy operations are not expensive in terms of storage
because the server tracks changes internally.

The following is an example of a tag:

my-project/tags/3.0.5

In the preceding example, 3.0.5 indicates the release version to which this tag
corresponds.

A tag is important for future work that might be necessary for patch creation or
bug-fix releases. Another importance of a release tag is to facilitate investigation
regarding issues in the associated release.

If a patch or subsequent change of a tag is considered necessary, then you must create
a branch. A branch is a copy of a location elsewhere in the repository and does not
differ in composition from a tag. After a copy of the tag is made under the branches
directory, you can check out the code and modify it as necessary. When changes are
complete, the new release is made from the branch and a corresponding tag is created.

This Project-A example outlines the general workflow for patch management of source
code:

In Project-A, the main code line is managed under project-A/trunk. The current
version developing under the trunk directory is version 2.1. The three previous

root

tags

trunk

branches

project-A

subproject-A2

tags

trunk

branches

subproject-A1

project-B

Setting Up a Repository

Installing and Configuring Subversion for Version Control 3-5

releases of Project-A are 1.0, 1.1, and 2.0. A problem is discovered in version 1.0 that
requires a patch release.

To address the problem, the project-A/tags/1.0 tag is copied, using the svn copy
command, to project-A/branches/1.0.1-SNAPSHOT. The SNAPSHOT designation is a
Maven device indicating a version that is not yet released, as shown in the following
figure.

When the branch code fix is complete, the branch is copied from
project-A/branches/1.0.1-SNAPSHOT to a project-A/tags/1.0.1 tag. The release
build can then be made from the tag.

For more information on directory structure conventions, see the section about the
recommended repository layout in Version Control with Subversion at the following
URL:

http://svnbook.red-bean.com/

3.4.3 Importing Existing Projects
If you have existing projects that you want to manage in your repository, you can
import them using the SVN client's import command:

svn import LOCAL_PATH REPOSITORY_URL/REPOSITORY_PATH

For example:

svn import /checkouts/project-a
svn+ssh://user@svn.mycompany.com/ciroot/subversion/repository/project-a/trunk/ -m
"initial import"

root

1.0

1.1

2.0

1.0.1-SNAPSHOT

project-A

trunk

branches

tags

1.0

project-B

trunk

branches

tags

Understanding SVN Workflow

3-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

3.5 Understanding SVN Workflow
To modify code, you usually perform the following operations:

1. Update the working copy using the svn update command.

2. Make changes. Use the svn add, svn delete, svn copy, and svn move commands
as needed to edit your files.

3. Review changes through the svn status and svn diff commands.

4. Fix mistakes. You can revert and abandon changes using the svn revert
command.

5. Resolve conflicts. When they are resolved, mark them using the svn resolve
command.

6. Commit changes using the svn commit or svn ci command.

Figure 3–1 shows the complete life cycle of an SVN operation:

Figure 3–1 SVN Workflow

In a continuous integration development process, this workflow remains largely
unchanged. Committed change sets tend to be smaller and occur more frequently than
in a noncontinuous integration process. You must commit the active trunk or branch
code for the target release so that the continuous integration system can perform an
integration build. Avoid creating a personal branch with the intention of merging back
to the main-line code base in the future. The personal branch and merge technique
defers integration and runs counter to continuous integration precepts.

To begin working on a Subversion-managed project, you must first check out the files
into your local file system. The SVN client copies the project files to your system,
including Subversion metadata in .svn directories located in each subdirectory. Run
the following command to check out files:

svn co REPOSITORY_URL/REPOSITORY_PATH LOCAL_DIRECTORY

In the preceding command:

■ REPOSITORY_URL is the URL to the Subversion repository.

■ REPOSITORY_PATH is the path to the directory being checked out.

Commit
svn commit

Update
svn update

Resolve Conflicts
svn resolve

Make Changes
svn add, svn delete
svn copy, svn move

Fix Problems
svn revert

Considerations for Tagging and Branching

Installing and Configuring Subversion for Version Control 3-7

■ LOCAL_DIRECTORY is the path to the local directory in which the checked out project
is stored.

The test-project example demonstrates main-line code development on a project:

svn checkout
 svn+ssh://user@svn.mycompany.com/subversion/repository/test-project/trunk
test-project

In this case, a directory called test-project is created and the project contents are
recursively copied into the directory from the server.

You can make any number of changes to the checked out files. When you are ready to
commit the changes to the repository, check in the files or directories that you want to
commit. The file or directory set being checked in does not have to correspond to what
was checked out as long as all components are members of the checked out directory.
Run the following commands to commit the changes:

svn commit -m "Added code and test case" test-project/src/main/java
 test-project/src/test/resources/testdata.xml
svn resolve test-project/src/test/resources/testdata.xml

After you have resolved any conflict, proceed with a normal check-in operation.

After the project is checked out once on your system, there is no need to perform
subsequent checkouts on that source code. To stay synchronized with the Subversion
repository content, you can run the svn update command on a checked out directory
or even on individual files.

Before committing local changes to the repository operation, run svn update to
integrate any changes committed to the code by others, since your last checkout or
update, by running the following command:

svn update

Finally, commit your changes by running the following command:

svn commit -m "description of the updates"

3.6 Considerations for Tagging and Branching
Tagging creates a named point-in-time copy of a branch. Tagging should be done on
two occasions:

■ Whenever a project is released

■ Whenever an important milestone occurs

It is important to tag releases, as tags provide a simple mechanism for patching
releases. When a bug is found in a release, you can branch from the tag for that release,
implement the fix, and then create a patch for the release. Tag this new (patched)
release as well, in case you find an issue with it later and need to fix that new issue.

If you do not tag a release, then it is very difficult to obtain the exact code line that was
built into that release.

Note: Treat tagged releases as read-only artifacts. You must not
continue merging into a release after it is tagged.

Subversion Clients

3-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

3.7 Subversion Clients
This section describes two popular Subversion clients:

■ WebSVN

■ TortoiseSVN

3.7.1 WebSVN
WebSVN provides a web-based view of a repository and supports visual differences,
blame, and search.

WebSVN can be downloaded from:

http://www.websvn.info/

3.7.2 TortoiseSVN
TortoiseSVN is a free Windows Subversion client that integrates with Windows
Explorer. All standard Subversion client operations can be performed through the
Windows user interface. Folder and file icon decorators indicate the status of
Subversion files. Command-line tools are mapped with menu items and options are
configurable through dialogs boxes. Tortoise also provides sophisticated graphical diff
and merge tools that can be helpful for resolving conflicts.

TortoiseSVN can be downloaded from:

http://tortoisesvn.net/

3.8 More Information About Subversion
This document is meant as a quick guide for starting and running Subversion. For a
detailed guide, see Version Control with Subversion at:

http://svnbook.red-bean.com

Note: Oracle strongly recommends reading Version Control with
Subversion if you are new to Subversion.

1

Installing and Configuring the Archiva Maven Repository Manager 4-1

4Installing and Configuring the Archiva Maven
Repository Manager

[4] This chapter describes the installation and basic configuration of Apache Archiva.
Archiva is one of several choices for an artifact repository, an important component of
a Maven-based continuous integration build system.

If you are not familiar with Maven Repository Managers or artifact repositories, see
Section 1.5 for more details.

This chapter contains the following sections:

■ Overview of Archiva

■ Downloading Archiva

■ Installing Archiva

■ Configuring Archiva

■ More Information About Archiva

■ Maven Repository Manager Administration

After you have completed installation and configuration of Archiva (as detailed in this
chapter) and Maven (as detailed in Chapter 5), you should populate your Archiva
repository with the Oracle-provided artifacts. Refer to Section 5.3 for more details.

4.1 Overview of Archiva
Archiva is distributed as a standalone installation that is bundled with Jetty. A WAR
file distribution is also provided so that Archiva can be installed into an existing
application server.

This chapter describes the process of installing the standalone version. Instructions for
WAR file installation and configuration are available in the official Archiva
documentation in the following location:

http://archiva.apache.org/docs/1.3.6

4.2 Downloading Archiva
You can download the latest standalone Archiva release either as a .zip file or tar.gz
file from the following location:

http://archiva.apache.org/download.html

Installing Archiva

4-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

4.3 Installing Archiva
Unpack the distribution to the target installation directory. This location depends on
your preference and target operating system. Oracle recommends that you create a
common location for continuous integration related workspaces. For example, unpack
the distribution in the following location:

/ciroot/archiva

■ On Linux

Run the following command:

sudo mkdir -p /ciroot/archiva ; sudo tar xzvf apache-archiva-1.3.6-bin.tar.gz
 --strip-components 1 -C /ciroot/archiva

After you run the command, ensure that you change the owner of the files to
match your user and group. For example, if you are using oracle as the user id
and oracle as the group name, you would run the following command:

chown -R oracle:oracle /ciroot/archiva

■ On Windows

Create a directory to create the Archiva installation files:

mkdir c:\ciroot\archiva

Extract the Archiva zip file that you downloaded into this new directory.

4.4 Configuring Archiva
This section provides details on how to configure Archiva, not just in general, but also
some specific configuration for use in a Fusion Middleware environment.

This section contains the following topics:

■ Configuring the Server

■ Starting the Server

■ Creating an Administrator User

■ Internal and Snapshot Repositories

■ Proxy Repository

■ Configuring Mirror Repositories

■ Creating Development, Production, Quality Assurance, and Test Repositories

■ Creating a Deployment Capable User

4.4.1 Configuring the Server
The Archiva Jetty instance starts up with a default HTTP port of 8080. If you want to
change this, before startup, modify /ciroot/archiva/conf/jetty.xml. Change the
connector configuration's SystemProperty value for jetty.port to a different value,
for example, 8081:

For example:

<Call name="addConnector">
 <Arg>
 <New class="org.mortbay.jetty.nio.SelectChannelConnector">

Configuring Archiva

Installing and Configuring the Archiva Maven Repository Manager 4-3

 <Set name="host">
 <SystemProperty name="jetty.host"/>
 </Set>
 <Set name="port">
 <SystemProperty name="jetty.port" default="8081"/>
 </Set>

4.4.2 Starting the Server
After the server is configured, you can start it from the command-line interface.

To start the server:

■ Run the following command:

/ciroot/archiva/bin/archiva start

On 64-bit Linux systems, you may receive an error message similar to this:

./archiva: /ciroot/archiva/bin/./wrapper-linux-x86-32:
 /lib/ld-linux.so.2: bad ELF interpreter: No such file or directory

If you receive this error, install the glibc.i686 package (using yum for example)
and try again.

■ Check the log output while the server is starting, to ensure that it starts as
expected, by running the following command:

tail -f /ciroot/archiva/logs/*

After the startup tasks complete, the Archiva server is available in the following
location:

http://localhost:8081/archiva

4.4.3 Creating an Administrator User
When you visit the Archiva home page for the first time, you are prompted to set the
administration password. Specify the full name, email address, and password of the
administration user.

4.4.4 Internal and Snapshot Repositories
Archiva starts up with two hosted repositories configured:

■ Internal

The internal repository is for maintaining fixed-version released artifacts deployed
by your organization, which includes finished versions of artifacts, versions that

Configuring Archiva

4-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

are no longer in development, and released versions. Note that in-development
versions of the same artifacts may exist in the snapshot repository in the future.

■ Snapshot

The snapshot repository holds the work-in-progress artifacts, which are denoted
with a version with the suffix SNAPSHOT, and artifacts that have not yet been
released.

4.4.5 Proxy Repository
In addition to hosting your internally deployed artifacts, the internal repository is
configured to serve as a proxy for the public Maven Central repository by default. A
proxy repository can be used instead of directly referring to a third-party repository. A
proxy caches previously requested artifacts locally. This reduces the load on public
servers, which is recommended, especially if you run builds from a clean repository. If
you place too much load on the public server, it may throttle or ban your host from
placing additional requests. For significant build performance improvement, fetch
dependencies from a less loaded, more proximate, proxy server.

If you require third party artifacts from other public repositories, then add them to
your repository as additional Proxy Connectors.

4.4.6 Configuring Mirror Repositories
Because you will typically want to share cached third-party proxied artifacts among
multiple repositories, you should separate the cached artifacts from your project
artifacts by moving them into a separate repository.

To create mirror repositories:

1. Remove the proxy connections from the internal repository.

a. Under the Administration menu, click Proxy Connections.

b. Delete the Central Repository and maven2-repository.dev.java.net proxy
connectors by clicking the red X on each entry.

2. Add a new mirror repository.

a. From the Administration menu, click Repositories.

b. From the top right corner, click Add.

c. Specify the following information in the Admin: Add Managed Repository
dialog box:

– Identifier: mirror

– Name: Mirror

– Directory: /ciroot/archiva/data/repositories/mirror

– Select Releases Included, Block Re-deployment of Released Artifacts,
and Scannable.

d. Click Add Repository.

Configuring Archiva

Installing and Configuring the Archiva Maven Repository Manager 4-5

3. Add proxy connectors to the mirror repository:

a. Under the Administration menu, click Proxy Connections.

b. Click Add.

c. Select mirror in Managed Repository.

d. Select central for Remote Repository.

e. Click Add Proxy Connector.

For configuring a mirror repository in a remote repository, complete steps 1-3.
However, select maven2-repository.dev.java.net in step 1-b.

After completing these steps, you should see the following:

To configure the anonymous guest user to enable read privileges for the new
repository:

1. Under the Management menu, click User management.

2. Click Guest.

3. Click Edit Roles.

Configuring Archiva

4-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

4. Select the Repository Observer role next to mirror.

5. Click Submit to save your changes.

4.4.7 Creating Development, Production, Quality Assurance, and Test Repositories
You must create a separate repository for each Oracle Fusion Middleware environment
that you want to target with a Maven build. Oracle's support for one-off patching (see
Section 5.3.8), means that it is possible that you could have two different environments
(for example, production and test), which are at the same version but have some
different files due to different one-off patches applied.

To ensure that your Maven builds are using the correct version of files, create and
configure a group Maven repository for each target environment:

1. Create a repository:

a. From the Administration menu, click Repositories.

b. To add a new repository, click Add from the top right corner.

c. In the Admin: Add Managed Repository dialog box, specify the following
details:

– Identifier: Provide an identifier, like dev, prod, qa, or test.

– Name: Provide a name.

– Directory: Add a directory path like
/ciroot/archiva/data/repositories/${IDENTIFIER}, where
${IDENTIFIER} matches the string that you provided in Identifier.

– Deselect Block Re-deployment of Released Artifacts.

– Select Releases Included and Scannable.

d. Click Add Repository.

2. To configure the anonymous guest user to have read privileges for the new
repository:

a. Under Manage, click User Management.

Configuring Archiva

Installing and Configuring the Archiva Maven Repository Manager 4-7

b. Select guest.

c. Select Edit Roles.

d. Select the Repository Observer role next to the appropriate repository entry.

e. Click Submit to save your changes.

3. To create a corresponding group for the new repository:

a. From the Administration menu, click Repository Groups.

b. In the top right corner, click Add Group.

c. In the Identifier field, specify a name that matches the repository that you
created, with the addition of -group, for example, dev-group.

d. Click Add Group.

e. Select your new repository, like dev, from the drop-down menu next to Add
Repository and click Add Repository.

Repeat steps 3-a to 3-d to add mirror and snapshots.

The following figure shows the Repository Groups page.

f. Repeat the repository and group creation steps 1-3 for each repository type:
test, qa, and prod.

4.4.8 Creating a Deployment Capable User
To support deployment in your internal repository, you must add at least one user
with appropriate permissions:

1. Under Management, click User Management.

More Information About Archiva

4-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

2. Click Create New User to add a user. Then, specify the required details like name,
email address, and password. After the user is added, you are directed to a Role
Administration dialog box for that user.

3. In the Role Administration dialog box, under Resource Roles, select the
Repository Manager role for Snapshot and Internal Repositories.

4. Click Submit to save your changes.

Typically, you want to create a new user for each individual with access to the
repository. For Hudson, to publish build output to the repository, each user who
accesses the repository should have their own user ID, and you should create an
additional user with deployment permissions.

After you have completed installation and configuration of Archiva (as detailed in this
chapter) and Maven (as detailed in Chapter 5), you should populate your Archiva
repository with the Oracle-provided artifacts, as described in Section 5.3.

4.5 More Information About Archiva
The user guide for Archiva 1.3.6 is available at:

http://archiva.apache.org/docs/1.3.6/userguide/

Other releases are available in the Archiva home page at:

http://archiva.apache.org

4.6 Maven Repository Manager Administration
This section contains the following topics:

■ Snapshot Cleanup

■ Advanced User Management

■ Backing Up Archiva

■ Archiva and Failover

4.6.1 Snapshot Cleanup
Archiva retains an instance of a particular snapshot-versioned artifact for every
successfully deployed job. When you request a snapshot artifact, the most recent
snapshot is obtained. Maven examines the associated metadata in the repository to
determine the correct copy to download. The Maven Repository Manager maintains
each copy with a unique timestamp and build number.

For example, the contents of the repository directory for an artifact should look similar
to the following:

maven-metadata.xml
test-artifact-2.1-20110928.112713-14.jar
test-artifact-2.1-20110928.112713-14.pom

Note: The Repository Manager role, while allowing you to upload
artifacts, also allows you to change the repository configuration.

To customize or change the role, in the User Roles section, add a new
more limited role and assign it to the appropriate users.

Maven Repository Manager Administration

Installing and Configuring the Archiva Maven Repository Manager 4-9

test-artifact-2.1-20110924.121415-13.pom
test-artifact-2.1-20110924.121415-13.jar

The corresponding repository metadata should look similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<metadata>
 <groupId>com.my.company</groupId>
 <artifactId>test-artifact</artifactId>
 <version>2.1-SNAPSHOT</version>
 <versioning>
 <snapshot>
 <timestamp>20110928.112713</timestamp>
 <buildNumber>14</buildNumber>
 </snapshot>
 <lastUpdated>20110928112718</lastUpdated>
 <snapshotVersions>
 <snapshotVersion>
 <extension>jar</extension>
 <value>2.1-20110928.112713-14</value>
 <updated>20110928112713</updated>
 </snapshotVersion>
 <snapshotVersion>
 <extension>pom</extension>
 <value>2.1-20110928.112713-14</value>
 <updated>20110928112713</updated>
 </snapshotVersion>
 <snapshotVersion>
 <extension>jar</extension>
 <value>2.1-20110924.121415-13</value>
 <updated>20110924121415</updated>
 </snapshotVersion>
 <snapshotVersion>
 <extension>pom</extension>
 <value>2.1-20110924.121415-13</value>
 <updated>20110924121415</updated>
 </snapshotVersion>
 ...
 </snapshotVersions>
 </versioning>
</metadata>

The /metadata/versioning/snapshot element contains the information for the latest
snapshot that is fetched when you request the snapshot artifact for
test-artifact-2.1-SNAPSHOT. You can directly request a specific snapshot of your
requirement by referencing timestamp and build numbers in your version, for
example, 2.1.-20110928.112713-14.

Usually, only the latest snapshot is required for proper operation of continuous
integration builds. Retention of older instances of a snapshot is helpful for
troubleshooting purposes when the continuous integration server indicates that a
snapshot dependency change has broken the integration process. It is sometimes
useful to pull slightly older builds from the repository, after the last working build, to
identify the problem.

If no recurring cleanup operation occurs, snapshot instances can accumulate quite
rapidly over the lifetime of a project. To keep storage requirements of the repository
manager under control, delete older snapshots. Set options regarding retention policy
according to available storage and performance requirements.

Maven Repository Manager Administration

4-10 Oracle Fusion Middleware Developing Applications Using Continuous Integration

4.6.1.1 Setting Retention Options
In a continuous integration environment, where builds are often triggered by checking
in artifacts, there is the potential for a large number of builds to be executed. Each of
these builds, at least the successful ones, results in some artifacts being published into
the repository. These can start consuming a lot of space, and it is important to manage
them.

Archiva provides two different options for automatically cleaning up old snapshots on
a per-repository basis:

■ Repository Purge by Number of Days Older

Archiva automatically deletes snapshots older than the specified number of days.
Archiva always retains the most recent snapshot, no matter how old it is.

■ Repository Purge by Retention Count

To use this method, you must set the purge-by-days-older value to 0. Archiva
retains only the most recent snapshot instances up to this value. Older instances
that exceed this count are deleted.

Both of these options can be viewed and changed by clicking Repositories under the
Administration menu, and then clicking Edit for the repository you are interested in.

4.6.1.2 Deleting Released Snapshots
Once the corresponding version is released, a snapshot of that version is no longer
needed. Not only does this save space, but it also ensures that your dependency
references are up-to-date.

Any existing continuous integration builds that refer to the snapshot fail with a
missing dependency message after the dependency is deleted from the repository
manager. This failure reminds you that a dependency reference is stale and encourages
you to fix the problem.

4.6.2 Advanced User Management
Archiva uses Apache Redback for its user management infrastructure. To use
Archiva's authentication and role management system with your organization's
existing user management system, you must provide additional configuration with
Redback. Redback has limited support for LDAP and other authentication systems.

Complete details are available in the following location:

http://archiva.apache.org/redback/

4.6.3 Backing Up Archiva
You should provide a mechanism for backing up your Archiva file store and
configuration so that you can restore it if a file system failure or corruption occurs.

The choice of backup solutions may be affected by your failover method.

4.6.4 Archiva and Failover
Although Archiva does not provide a failover solution, it is important for you to
maintain a failover system that stays current. Depending on your preference, you can
either set up an identically configured backup system with a separate file system that
is synchronized with the primary systems or configure both systems to use the same
shared file system.

Maven Repository Manager Administration

Installing and Configuring the Archiva Maven Repository Manager 4-11

For more information, see the Archiva page:

https://cwiki.apache.org/ARCHIVA/high-availability-archiva.html

Maven Repository Manager Administration

4-12 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Installing and Configuring Maven for Build Automation and Dependency Management 5-1

5Installing and Configuring Maven for Build
Automation and Dependency Management

[5] Maven is a build management tool that is central to project build tasks such as
compilation, packaging, and artifact management. Maven uses a strict XML-based rule
set to promote consistency while maintaining flexibility. Because most Java-centric
continuous integration systems integrate well with Maven, it is a good choice for an
underlying build system. This chapter describes how to install and configure Maven.

This chapter contains the following sections:

■ Setting Up the Maven Distribution

■ Customizing Maven Settings

■ Populating the Maven Repository Manager

5.1 Setting Up the Maven Distribution
A distribution of Maven 3.0.5 is included with Oracle Fusion Middleware. After you
install Oracle WebLogic Server, you can find Maven in your Oracle home in the
following location:

ORACLE_HOME/oracle_common/modules/org.apache.maven_3.0.5

This is a copy of the standard Maven 3.0.5 release, without any modifications.

Alternatively, you can download and install your own copy of Maven from the Maven
website:

http://maven.apache.org

Oracle Fusion Middleware supports Maven 3.0.5 or higher.

After installation, add Maven to your operating system's PATH environment variable:

■ On UNIX:

You must update your shell startup script, your .profile or .bash_profile, to
update the path.

For example, if you have installed Oracle WebLogic Server in /u01/fmwhome and
you are using the bash shell, then you must add the following to the PATH
environment variable:

export M2_HOME=/u01/fmwhome/oracle_common/modules/org.apache.maven_3.0.5
export PATH=${M2_HOME}/bin:$PATH

Customizing Maven Settings

5-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

You also need to set the JAVA_HOME environment variable to point to your JDK
installation. For example:

export JAVA_HOME=/u01/jdk1.7.0_45

■ On Windows:

Edit your PATH environment variable and add the correct path to Maven at the
beginning of the PATH environment variable.

For example, if you have installed WebLogic Server in c:\fmwhome, then you must
add the following:

C:\fmwhome\oracle_common\modules\org.apache.maven_3.0.5\bin

You also need to set the JAVA_HOME environment variable to point to your JDK
installation.

5.2 Customizing Maven Settings
You must create a Maven settings file if:

■ You are working behind a firewall or proxy server.

■ Your organization has its own internal Maven Repository Manager.

If you have installed Maven for the first time, either as part of the Oracle WebLogic
Server installation, or by downloading it from the Maven website, you will not have a
settings file yet.

The Maven settings file is called settings.xml and is usually kept in the .m2 directory
inside your home directory. However, if you want to point Maven to a different
location, see the Maven documentation.

■ On UNIX:

If your user name is bob, then the directory path should look similar to the
following:

/home/bob/.m2/settings.xml

■ On Windows:

If your user name is bob, then the directory path should look similar to the
following:

C:\Users\bob\.m2\settings.xml

The following is an example of a Maven settings file:

<settings>
<proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.mycompany.com</host>
 <port>8080</port>
 <nonProxyHosts>mycompany.com</nonProxyHosts>
 </proxy>
 </proxies>
 <servers>
 <server>
 <id>maven.mycompany.com</id>
 <username>me@mycompany.com</username>

Populating the Maven Repository Manager

Installing and Configuring Maven for Build Automation and Dependency Management 5-3

 <password>{COQLCE6DU6GtcS5P=}</password>
 </server>
 </servers>
 <mirrors>
 <mirror>
 <id>archiva</id>
 <name>Internal Archiva Mirror of Central</name>
 <url>http://archiva.mycompany.com/repositories/internal</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>

</settings>

This example shows three common configuration settings that you may need to use:

■ Proxy: Enables you to communicate with Maven about the HTTP proxy server that
is required to access Maven repositories on the Internet.

■ Servers: Enables you to communicate with Maven about your credentials for the
Maven repository, so that you do not have to enter them every time you want to
access the repository.

■ Mirrors: Informs Maven that instead of trying to access the Maven central
repository directly, it should use your internal Maven repository manager as a
mirror (cache) of Maven's central repository.

If you are not familiar with these terms, review the introduction in Chapter 1. For
more information about available Maven settings, see the Maven documentation at:

http://maven.apache.org/settings.html

5.3 Populating the Maven Repository Manager
After you have configured your Maven Repository Manager, for example, you set up
Archiva in Chapter 4, you populate it with Oracle artifacts.

For this reason, a Maven Synhronization plug-in is provided, which allows you to
populate a local or shared Maven repository from an Oracle home. When you install a
Fusion Middleware 12c product, the Maven archetypes, plug-ins, and POMs are
installed with the product so that the synchronization plug-in can find them.

This section contains the following topics:

■ Introduction to the Maven Synchronization Plug-In

■ Installing Oracle Maven Synchronization Plug-In

■ Running the Oracle Maven Synchronization Plug-In

■ Things to Know About Replacing Artifacts

■ Populating Your Maven Repository

■ Running the Push Goal

■ Running the Push Goal on an Existing Maven Repository

■ Things to Know About Patching

■ Considerations for Archetype Catalogs

■ Example settings.xml file

■ Deploying a Single Artifact

Populating the Maven Repository Manager

5-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

5.3.1 Introduction to the Maven Synchronization Plug-In
Oracle Fusion Middleware 12c provides a Maven Synchronization plug-in that
simplifies the process of setting up repositories and completely eliminates the need to
know what patches are installed in a particular environment. This plug-in enables you
to populate a Maven repository from a given Oracle home. After you patch your
Oracle home, you should run this plug-in to ensure that your Maven repository
matches Oracle home. This ensures that your builds use correct versions of all artifacts
in that particular environment.

The Oracle Maven Synchronization Plug-in is included in the Oracle WebLogic Server,
Oracle Coherence and Oracle JDeveloper installations. To use the plug-in, you must
specify the location of the Oracle home and the location of the Maven repository. The
Maven repository can be specified using either a file system path or a URL. The
plug-in checks for all Maven artifacts in the Oracle home, ensures that all artifacts are
installed in the specified Maven repository, and that the versions match exactly. This
means that the version numbers and the files are exactly same at the binary level,
ensuring that all patched files reflects accurately in the Maven repository.

Oracle homes in 12c contain maven directories which contain Maven Project Object
Models (POMs) for artifacts provided by Oracle, archetypes for creating projects, and
Maven plug-ins provided by Oracle, for executing various build operations.

5.3.2 Installing Oracle Maven Synchronization Plug-In
Before you start using the Oracle Maven Synchronization plug-in, you must install it
into your Maven repository. You can install it into your local repository on your
computer, or you can deploy it into your shared internal repository, if you have one.

The plug-in is located in your Oracle WebLogic Server 12c home and consists of two
files:

■ The Maven Project Object Model (POM) file that describes the plug-in, which is
located at:

ORACLE_HOME/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3/oracle-maven-syn
c.12.1.3.pom

■ The JAR file that contains the plug-in, which is located at:

ORACLE_HOME/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3/oracle-maven-syn
c.12.1.3.jar

To install the plug-in into your local Maven repository, run the following command
from the ORACLE_HOME/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3 directory:

mvn install:install-file -DpomFile=oracle-maven-sync.12.1.3.pom
-Dfile=oracle-maven-sync.12.1.3.jar

The simplest way deploy the plug-in into a shared internal repository is to use the web
user interface provided by your Maven Repository Manager to upload the JAR file
into the repository.

An alternative method is to use the deploy plug-in, which you can do by using a
command like the following from the ORACLE_HOME/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3 directory:

mvn deploy:deploy-file -DpomFile=oracle-maven-sync-12.1.3.pom

Populating the Maven Repository Manager

Installing and Configuring Maven for Build Automation and Dependency Management 5-5

-Dfile=oracle-maven-sync-12.1.3.jar
 -Durl=http://servername/archiva/repositories/internal -DrepositoryId=internal

To use the deploy plug-in as shown, you must define the repository in your Maven
settings.xml file and define the credentials if anonymous publishing is not allowed.

For information about this command, refer to the Maven documentation at:

http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html

If you would like to use the shorter name for the Oracle Maven Synchronization
Plug-in, so that you do not have to provide the full coordinates when using it, you
should add an entry to your Maven settings.xml as follows:

<pluginGroups>
 <pluginGroup>com.oracle.maven</pluginGroup>
 ...
 </pluginGroups>

This allows you to refer to the plug-in using the name oracle-sync.

5.3.3 Running the Oracle Maven Synchronization Plug-In
The Oracle Maven Synchronization Plug-in supports a single push goal used to
populate a repository.

To obtain usage and parameter descriptions you can invoke the help:describe goal by
running the following command:

mvn help:describe -Dplugin=com.oracle.maven:oracle-maven-sync -Ddetail

This output shows the parameters that are available for the plug-in's push goal.
Table 5–1 describes the parameters.

Table 5–1 Push Goal Parameters and Description

Parameter Description

serverId A pointer to the server entry in your Maven settings.xml file.
This is required only if you intend to deploy to a remote
repository. The settings.xml should provide the remote artifact
repository's deployment information, such as URL, user name,
and password.

oracleHome The path to the Oracle home from which you want to populate
the Maven repository.

testingOnly This controls whether the plug-in attempts to publish the
artifacts to the repository.

If you set this to true, which is the default value, then the push
goal finds all of your POM files and print out details of what it
would have been done if this is set to false. However, it does
not publish any artifacts or make any change to the system.

failOnError If you set this property to false and the plug-in fails to process a
resource, it continues to process all other resources. Failures are
logged as warnings, but the process completes successfully.

If you set this property to true, when it encounters the first
problem the plug-in immediately exits with an error.This is the
default.

Populating the Maven Repository Manager

5-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

5.3.4 Things to Know About Replacing Artifacts
Some Maven Repository Managers have a setting that controls whether you can
replace an existing artifact in the repository. If your Maven Repository Manager has
such a setting, you must ensure that you have set it correctly so that the Oracle Maven
Synchronization Plug-in is able to update the artifacts in your repository. This screen is
accessed by selecting Repositories under the Administration menu. Then, click Edit to
change the setting of the repository you want to change.

If you are using Archiva, you must deselect the Block Re-deployment of Released
Artifacts option in the Managed Repository settings.

Other Maven Repository Managers have similar settings. If you are using a different
tool, consult the documentation for that tool to find out how to change this setting.

5.3.5 Populating Your Maven Repository
To populate your repository, you must use the push goal. You can specify the
parameters given in Table 5–1 on the command line or in your Project Object Model
file.

This section contains the following topics:

■ Populating a Local Repository

■ Populating a Remote Repository

5.3.5.1 Populating a Local Repository
If you are populating your local repository, you only need to specify oracleHome and
testingOnly=false.

For example:

mvn com.oracle.maven:oracle-maven-sync:push
 -Doracle-maven-sync.oracleHome=/path/to/oracleHome
 -DtestingOnly=false

The localRepository element in your settings.xml file indicates the location of your
local Maven repository. If you exclude the localRepository element in settings.xml,
the default location is in the ${HOME}/.m2/repository directory.

If you want to override the localRepository value, then you must specify the
override location on the command line as a Maven option.

overwriteParent If you set this property to true, the plug-in overwrites POM
artifacts with ancestry to oracle-common if they exist in the
target repository. The default value of false prevents automatic
overwrite of customized POM contents. If any such POMs are
encountered during plug-in execution, an error is thrown and
handled according to the failOnError flag value. To carry over
changes, save the existing POMs, run the push goal with
overwriteParent=true, and manually transfer the changes to the
newly pushed POMs.

pushDuplicates If you set this property to true, the plug-in pushes all duplicate
locations. That is, if multiple POMs with different Maven
coordinates (GAV) are assigned to the same location path, the
plug-in pushes them all to the destination repository.

Table 5–1 (Cont.) Push Goal Parameters and Description

Parameter Description

Populating the Maven Repository Manager

Installing and Configuring Maven for Build Automation and Dependency Management 5-7

For example:

mvn com.oracle.maven:oracle-maven-sync:push
 -DoracleHome=/path/to/oracleHome
 -Dmaven.repo.local=/alter/nate/path

To specify the parameters in your Project Object Model file, you must add a plug-in
entry similar to the following:

<plugin>
 <groupId>com.oracle.maven</groupId>
 <artifactId>oracle-maven-sync</artifactId>
 <version>12.1.3-0-0</version>
 <configuration>
 <oracleHome>/path/to/oracleHome</oracleHome>
 <testOnly>false</testOnly>
 </configuration>
</plugin>

After adding the plug-in, execute Maven by running the following command:

mvn com.oracle.maven:oracle-maven-sync:push

5.3.5.2 Populating a Remote Repository
If you are populating your remote repository, you must specify serverId and
oracleHome on the command line interface or in the plug-in configuration. You must
also have a repository configuration in your settings.xml file that matches the
serverId you provide to the plug-in. If authentication is required for deployment, you
must also add a server entry to your Maven settings.xml file.

For example:

mvn com.oracle.maven:oracle-maven-sync:push
 -DoracleHome=/path/to/oracleHome
 -DserverId=internal

The corresponding Maven settings.xml file with authentication details look like the
following:

...
<profiles>
 <profile>
 <id>default</id>
<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <id>internal</id>
 <name>Team Internal Repository</name>
 <url>http://some.host/maven/repo/internal</url>
 <layout>default</layout>
 </repository>
</repositories>

Populating the Maven Repository Manager

5-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

</profile>
</profiles>
...
<server>
 <id>internal</id>
 <username>deployer</username>
 <password>welcome1</password>
 </server>
...
<activeProfiles>
 <activeProfile>default</activeProfile>
</activeProfiles>

You must define the target repository in a profile, and activate that profile using the
activeProfiles tag as shown in the preceding example.

To specify the parameters in your Project Object Model file, you must add a plug-in
entry similar to the following:

<plugin>
 <groupId>com.oracle.maven</groupId>
 <artifactId>oracle-maven-sync</artifactId>
 <version>12.1.3-0-0</version>
 <configuration>
 <serverId>internal</serverId>
 <oracleHome>/path/to/oracleHome</oracleHome>
 <testOnly>false</testOnly>
 </configuration>
</plugin>

After adding the plug-in, execute Maven by running the following command:

mvn com.oracle.maven:oracle-maven-sync:push

After you have populated the repository you may want to perform some operations on
the repository manager, such as update indexes or update the archetype catalog. You
should refer to the documentation for the repository manager to check if any such
operations are necessary or recommended.

5.3.6 Running the Push Goal
When you run the push goal, it takes the following actions:

■ Checks the Oracle home you have provided and makes a list of all of the Maven
artifacts inside that Oracle home. This is done by looking for Project Object Model
files in the ORACLE_HOME/oracle_common/plugins/maven dependencies directory
and its subdirectories, recursively and in the ORACLE_HOME/PRODUCT_
HOME/plugins/maven directory and its subdirectories recursively for each PRODUCT_
HOME that exists in the ORACLE_HOME.

■ Checks if the JAR file referred to by each Project Object Model file is available in
the Oracle home.

Note: You should specify an encrypted password in the server
section. For details on how to encrypt the server passwords, see:

http://maven.apache.org/guides/mini/guide-encryption.html#Ho
w_to_encrypt_server_passwords

Populating the Maven Repository Manager

Installing and Configuring Maven for Build Automation and Dependency Management 5-9

■ Calculates a SHA1 checksum for the JAR file.

■ Attempts to publish the JAR, Project Object Model, and SHA1 files to the
repository that you have provided.

The following types of Maven artifacts are installed into your repository:

■ Maven dependencies provided by Oracle, which include the following:

– Client API classes

– Compilation, packaging, and deployment utilities, for example, appc and wlst

– Component JARs that must be embedded in the application

– Client-side runtime classes, for example, t3 and JAX-WS client runtimes

■ Maven plug-ins provided by Oracle that handle compilation, packaging, and
deployment

■ Maven archetypes provided by Oracle that provide project templates

5.3.7 Running the Push Goal on an Existing Maven Repository
When you run the push goal against a Maven repository which already has Oracle
artifacts in it, the Oracle Maven Synchronization Plug-in detects that you have existing
Parent POMs in the repository. It does not overwrite these Parent POMs, in case you
have modified them, for example, by adding your own settings to them. Instead, it
prints a warning message. If you want to overwrite the Parent POMs, you need to
specify the extra parameter -DoverriteParents=true on the push goal.

5.3.8 Things to Know About Patching
Patching is the practice of updating a system with minor changes, usually to fix bugs
that have been identified after the software goes into production. Oracle Fusion
Middleware uses Oracle Patch (OPatch) to manage application of patches to installed
software in the Oracle home. When you use Oracle Patch to apply a patch, the version
number of the installed software may not change.

Maven uses a different approach to patching which assumes that released software
will never be changed. When a patch is necessary, a new version of the artifact, with a
new version number, is created and distributed as the patch.

This difference creates an issue when you use Maven to develop applications in an
Oracle Fusion Middleware environment. Oracle Fusion Middleware 12.1.3 provides a
mechanism to address this issue.

5.3.8.1 Oracle's Approach to Patching
If any problems are found after a release of Oracle Fusion Middleware (for example,
12.1.3) into production, a one-off patch is created to fix that problem. Between any two
releases, for example 12.1.2 and 12.1.3, a number of these patches are released. You can
apply many combinations of these patches, including all or none of these patches.

This approach gives a great deal of flexibility and you can apply only the patches that
you need, and ignore the rest. However, it can create an issue when you are using
Maven. Ensure that the artifacts you are using in your build system are the exact same
(potentially patched) versions that are used in the target environment.

The complications arises when you have a number of environments, like test, QA, SIT,
and production, which are likely to have different versions (or patches) installed.

Populating the Maven Repository Manager

5-10 Oracle Fusion Middleware Developing Applications Using Continuous Integration

5.3.8.2 Maintain One Maven Repository for Each Environment
It is recommended that, in such a situation, you set up one Maven repository for each
environment that you want to target. For example, a Maven test repository that
contains artifacts that matches the versions and patches installed in the test
environment and a Maven QA repository that contains artifacts that match the
versions and patches installed in the QA environment.

5.3.8.3 Run the Oracle Maven Synchronization Plug-In Push Goal After Patching
After you patch your Oracle home, you should run this plug-in to ensure that your
Maven repository matches the Oracle home. This ensures that your builds use correct
versions for all artifacts in that particular environment.

5.3.9 Considerations for Archetype Catalogs
By running the Oracle Maven Synchronization Plug-in's push goal, you may have
installed new Maven archetypes into your Maven repository. You might need to run a
command to rebuild the index of archetypes. Some Maven repository managers do
this automatically.

To rebuild your local archetype catalog, execute a command like the following:

mvn archetype:crawl -Dcatalog=$HOME/.m2/archetype-catalog.xml

5.3.10 Example settings.xml file
This example settings.xml file provides a template for Maven integration with the rest
of the continuous integration system described in this book. It provides configuration
to support central Archiva repository interaction and Hudson continuous integration
server integration as described in Chapter 4 and Chapter 16. You must change values
of URLs, passwords, and so on to match your system's values:

<settings>
 <profiles>
 <profile>
 <id>default</id>
 <repositories>
 <repository>
 <id>dev-group</id>
 <name>Dev Group</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/dev-group</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>dev</id>
 <name>Dev</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>

Populating the Maven Repository Manager

Installing and Configuring Maven for Build Automation and Dependency Management 5-11

 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/dev</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>prod-group</id>
 <name>Prod Group</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/prod-group</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>prod</id>
 <name>Prod</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/prod</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>qa-group</id>
 <name>QA Group</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/qa-group</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>qa</id>

Populating the Maven Repository Manager

5-12 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 <name>QA</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/qa</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>test-group</id>
 <name>Test Group</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/test-group</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>test</id>
 <name>Test</name>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/test</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>archiva-snapshots</id>
 <name>Archiva Snapshots</name>
 <releases>
 <enabled>false</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <url>http://SERVER:PORT/archiva/repository/snapshots</url>

Populating the Maven Repository Manager

Installing and Configuring Maven for Build Automation and Dependency Management 5-13

 <layout>default</layout>
 </repository>
 </repositories>
 </profile>
 </profiles>
 <servers>
 <server>
 <id>dev</id>
 <username>hudson</username>
 <password>PASSWORD</password>
 </server>
 <server>
 <id>dev-group</id>
 <username>hudson</username>
 <password>PASSWORD</password>
 </server>
 <server>
 <id>archiva-snapshots</id>
 <username>hudson</username>
 <password>PASSWORD</password>
 </server>
 </servers>
 <mirrors>
 <mirror>
 <id>dev-mirror</id>
 <name>All else</name>
 <url>http://SERVER:PORT/archiva/repository/dev-group</url>
 <mirrorOf>*</mirrorOf>
 </mirror>
 </mirrors>
 <activeProfiles>
 <activeProfile>default</activeProfile>
 </activeProfiles>
</settings>

5.3.11 Deploying a Single Artifact
The Maven deploy plug-in can also be used to deploy an artifact (or artifacts) and
Project Object Module to the remote artifact repository.

For example, run the following command to deploy to the archiva-releases
repository, as defined in the sample settings.xml file:

mvn deploy:deploy-file
 -Dfile=/path/to/oracle-maven-sync-12.1.3.jar
 -DrepositoryId=archiva-releases
 -DpomFile=/path/to/oracle-maven-sync-12.1.3.pom
 -Durl=http://server:port/archiva/repository/internal

Populating the Maven Repository Manager

5-14 Oracle Fusion Middleware Developing Applications Using Continuous Integration

2

Configuring the Oracle Maven Repository 6-1

6Configuring the Oracle Maven Repository

[6] The Oracle Maven Repository contains artifacts provided by Oracle that you may
require to compile, test, package, perform integration testing, or deploy reapplications.
The following topics provide information about accessing and configuring Oracle
Maven Repository:

■ Accessing the Oracle Maven Repository

■ Artifacts Provided

■ Adding the Oracle Maven Repository to Your Project POM

■ Configure Maven to Use a Compatible HTTP Wagon

■ Configuring the HTTP Wagon

■ Considerations for Using the Oracle Maven Repository with Maven Without a
POM

■ Accessing the Oracle Maven Repository from an Automated Build Tool

6.1 Accessing the Oracle Maven Repository
To access the Oracle Maven Repository, you must first register for access on Oracle
Technology Network. You can access the registration application at:

https://www.oracle.com/webapps/maven/register/license.html

This application displays the license agreement for access to the Oracle Maven
Repository. You must accept the license agreement to access the Oracle Maven
Repository.

Every time you want to access the Oracle Maven Repository, you must provide the
user name and the password you used to log in to Oracle Technology Network (OTN).
Access is only provided over HTTPS. You can store your credentials in the Maven
settings file so that you do not have to specify them manually every time. Oracle
recommends that you encrypt your password, using the utilities provided with
Maven.

To access the Oracle Maven Repository, you must use Maven 3.0.4 or later and make a
few modifications to your Maven settings and project POM, as described in
Section 6.3, Section 6.4, and Section 6.5.

Note that due to changes made in Maven 3.1, some Maven plugins developed for
Maven 3.0.n may not work properly with Maven 3.1.n (or later). Oracle recommends
that you use the version of Maven recommended by your particular Oracle Fusion
Middleware release.

Artifacts Provided

6-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

6.2 Artifacts Provided
Oracle Maven Repository provides only release-level artifacts, such as 12.1.2 and
12.1.3. If a patch is required, please obtain the patch from Oracle Support, apply it to a
local Oracle Home installation, and use the Maven Synchronization plug-in to update
your local Maven repository.

6.3 Adding the Oracle Maven Repository to Your Project POM
Add a repository definition to your Maven settings.xml file or to your Maven Project
Object Model (POM) files, or both. The repository definition should look like the
following:

<repositories>
 <repository>
 <id>maven.oracle.com</id>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <url>https://maven.oracle.com</url>
 <layout>default</layout>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>maven.oracle.com</id>
 <url>https://maven.oracle.com</url>
 </pluginRepository>
</pluginRepositories>

6.4 Configure Maven to Use a Compatible HTTP Wagon
By default, Maven uses the wagon-http component to access remote repositories
including the Oracle Maven Repository. Since the Oracle Maven Repository is
protected by Oracle's Single Sign-On (SSO) technology, the Oracle Maven Repository
requires a version of the wagon-http component that supports authentication with an
enterprise-grade SSO solution. Prior to wagon-http version 2.8, the wagon-http
component did not support the necessary configuration to be able to handle SSO-style
authentication. As such, the Oracle Maven Repository requires the use of wagon-http
2.8 (or later).

By default, Maven picks up the version of the wagon-http from the local Maven
installation. As of Maven 3.2.5, the wagon-http version included in the Maven
distribution is wagon-http version 2.8.

Users of older versions of Maven can configure Maven to use wagon-http version 2.8
by adding the wagon-http 2.8 version:

1. Download the wagon-http 2.8 shaded JAR file from Maven Central:

http://central.maven.org/maven2/org/apache/maven/wagon/wagon-http/2.8/wagon-htt
p-2.8-shaded.jar

2. Move that JAR file to the following directory:

MAVEN_HOME/lib/ext/

Considerations for Using the Oracle Maven Repository with Maven Without a POM

Configuring the Oracle Maven Repository 6-3

6.5 Configuring the HTTP Wagon
The Maven settings.xml requires additional settings to support the Oracle Maven
Repository. Add the following <server> element to the <servers> section of the Maven
settings.xml:

 <server>
 <id>maven.oracle.com</id>
 <username>username</username>
 <password>password</password>
 <configuration>
 <basicAuthScope>
 <host>ANY</host>
 <port>ANY</port>
 <realm>OAM 11g</realm>
 </basicAuthScope>
 <httpConfiguration>
 <all>
 <params>
 <property>
 <name>http.protocol.allow-circular-redirects</name>
 <value>%b,true</value>
 </property>
 </params>
 </all>
 </httpConfiguration>
 </configuration>
 </server>

Replace the <username> and <password> entries with your OTN user name and
password. Oracle strongly recommends that you encrypt your password using the
standard Maven encryption mechanisms, as described in the following:

 http://maven.apache.org/guides/mini/guide-encryption.html

6.6 Considerations for Using the Oracle Maven Repository with Maven
Without a POM

When you invoke Maven from the command-line to run a plugin goal directly, Maven
uses a standalone POM that does not use the repositories listed in the settings.xml file
unless they are part of a profile that is set to be "active by default". For example, the
typical way to generate a new project from an archetype is to invoke the Maven's
archetype:generate goal from the command line directly without a project POM in
place. In order for this to work, the Oracle Maven Repository must be declared within
a profile that is active by default, as shown in the following example:

<profiles>
 <profile>
 <id>main</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>maven.oracle.com</id>
 <url>https://maven.oracle.com</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>

Accessing the Oracle Maven Repository from an Automated Build Tool

6-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 </releases>
 </repository>
 </repositories>
 </profile>
 </profiles>

6.7 Accessing the Oracle Maven Repository from an Automated Build
Tool

If you wish to access the Oracle Maven Repository from an automated build tool, such
as Hudson Continuous Integration server, you may wish to encrypt your password
and store it in your Maven settings-security.xml file.

1

Installing and Configuring Hudson for Continuous Integration 7-1

7Installing and Configuring Hudson for
Continuous Integration

[7] Hudson is a popular continuous integration server product. It enables you to define
build jobs and manages the execution of those jobs for you. If necessary, it has the
ability to scale up to a farm of build servers.

This chapter describes how to install and configure Hudson to automate the build
process and how to integrate Hudson with Maven.

This chapter contains the following sections:

■ Prerequisites for Installing and Configuring Hudson

■ Downloading Hudson

■ Installing Hudson

■ Configuring the HTTP Port

■ Starting Hudson

■ Configuring Maven After Startup

■ More Information About Hudson

7.1 Prerequisites for Installing and Configuring Hudson
Ensure that you have the following components of the continuous integration system
configured before you begin installing:

■ Subversion server configured and running, as directed in Chapter 3.

■ Archiva configured and running as directed in Chapter 4, which implies that you
have an Oracle Fusion Middleware product installed in an Oracle home and have
run the Oracle Maven synchronization plug-in to populate Archiva.

■ JDK 1.6 or higher installed on the Hudson host.

■ Maven 3 installed on the Hudson host.

7.2 Downloading Hudson
The latest production version of Hudson can be downloaded directly from the
following location:

http://hudson-ci.org/

Hudson is distributed in two distinct versions:

Installing Hudson

7-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

■ WAR file, which can either run as standalone or can be added to an existing
application server installation.

■ Linux RPMs compiled for specific operating systems. Package management
support in the form of appropriate repositories are available to install the RPM
and necessary dependencies.

This document focuses on Oracle Linux and Windows installation. Details for the
other operating systems may vary from these. For instructions on various types of
installations, see http://wiki.eclipse.org/Hudson-ci/Installing_Hudson.

7.3 Installing Hudson
This section contains the following topics:

■ Installing Hudson on Linux

■ Installing Hudson on Windows

7.3.1 Installing Hudson on Linux
On a Linux computer supporting YUM, run the following commands:

sudo wget -O /etc/yum.repos.d/hudson.repo http://hudson-ci.org/redhat/hudson.repo
sudo yum check-update
sudo yum install hudson

This installs Hudson as a daemon and creates a Hudson user. This user is used by the
server to perform build job-related activities.

7.3.2 Installing Hudson on Windows
You must download the Hudson WAR distribution and start it in standalone mode by
running the following command:

java -jar hudson-3.2.1.war

When Hudson starts:

1. Open the following URL in a web browser:

http://localhost:8080

2. Navigate to Manage Hudson, then Install as Windows Service. This enables you
to configure Hudson as a standard Windows service.

For instructions, see

http://wiki.eclipse.org/Hudson-ci/Installing_Hudson_Windows_Service

7.4 Configuring the HTTP Port
If you are using a single host for your artifact repository and continuous integration
server, you must change the HTTP port used by Hudson.

■ On Linux

This value is located in the /etc/sysconfig/hudson directory with HUDSON_PORT .

■ On Windows

This value is located in the c:\ciroot\hudson\etc\sysconfig\hudson directory.

Configuring Maven After Startup

Installing and Configuring Hudson for Continuous Integration 7-3

7.5 Starting Hudson
To start Hudson:

■ On Linux

If you have installed Hudson as a service, you can start the application by running
the following command:

/etc/init.d/hudson start

Start up can be monitored on Linux by checking the logs in the following
directory:

/var/log/hudson/hudson.log

Run the following command to monitor logs:

tail -f /var/log/hudson/hudson.log

■ On Windows

Start Hudson on Windows as a normal service:

1. Go to Control Panel.

2. Navigate to Administrative Tools, then Services.

3. Select the Hudson service and click Start.

Hudson logs are available in the following location:

HUDSON_HOME/logs

7.6 Configuring Maven After Startup
This section contains the following topics:

■ First Time Startup

■ Configuring the JDK

■ Specifying the Maven Home

■ Setting Up Maven for Use by Hudson

■ Installing Hudson Plug-Ins

■ Integrating the Repository

■ Monitoring Subversion

7.6.1 First Time Startup
The first time you start Hudson, go to the home page to complete the installation:

1. Open a browser and go to http://localhost:8080 (change the port if you
modified it during installation).

2. In the list of plug-ins that is presented, scroll down to find the Subversion, Maven
3 and Maven 3 SNAPSHOT Monitor options and select these options.

3. Scroll down to the bottom and click Install.

4. Click Finish to move to the Hudson home page.

The rest of the configuration in this section is continued from the Hudson home page.

Configuring Maven After Startup

7-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

7.6.2 Configuring the JDK
You must configure the JDK you intend to use for direct Java build configurations. To
configure:

1. Log in to Hudson:

http://HOSTNAME:HUDSON_PORT

2. Navigate to Manage Hudson, then Configure System.

3. In the Configure System screen, scroll down to the JDK section and click Add
JDK, deselect the option Install automatically and then enter a name, for example,
jdk1.7.0 and add the complete path of your installed JDK.

For example: /ciroot/product_binaries/jdk1.7.0.

4. Scroll down to the bottom of the page and click Save.

7.6.3 Specifying the Maven Home
You must specify the Maven 3 location so that Hudson knows where Maven is located.
To do so:

1. Log in to Hudson:

http://HOSTNAME:HUDSON_PORT

2. Navigate to Manage Hudson, then Configure System.

3. On the Configure System screen, scroll down to the section Maven 3.

4. Click Add Maven, then deselect the option Install automatically and enter a name
and the path to the Maven installation, as shown in the following image:

5. Scroll down to the bottom of the page and click Save.

7.6.4 Setting Up Maven for Use by Hudson
To utilize Maven settings from Hudson, embed the settings.xml content into a settings
object in Hudson's global Maven configuration:

1. Log in to Hudson:

http://HOSTNAME:HUDSON_PORT

2. Go to Manage Hudson, then Maven 3 Configuration.

3. Click Add.

4. For Type, select SETTINGS.

Configuring Maven After Startup

Installing and Configuring Hudson for Continuous Integration 7-5

5. Provide a name and optional description.

6. Find the settings.xml on your file system (that you have configured in Chapter 5)
and copy the contents into the large text field at the bottom of the page. It is
located at/$HOME/.m2/settings.xml.

7. Click Save.

7.6.5 Installing Hudson Plug-Ins
Hudson jobs may require job-specific customizations of environment variables.
Because Hudson does not support this by default, you must install an additional
plug-in. To install the plug-in:

1. Log in to Hudson:

http://HOSTNAME:HUDSON_PORT

Note: Oracle recommends that you replace any localhost URL
references in the settings.xml with fully qualified domain names or IP
addresses because Hudson builds can eventually occur on non-local
build hosts.

More Information About Hudson

7-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

2. Go to Manage Hudson, then Manage Plugins.

3. Select Available.

4. Select Hudson Setenv Plugin.

5. Click Install.

6. After the installation completes, use the restart option in Hudson to enable the
plug-in.

7.6.6 Integrating the Repository
To configure automatic builds when changes are checked in, you must configure
Hudson to monitor the artifact repository for SNAPSHOT deployment changes. Such
changes trigger builds of affected components that have dependencies on the changed
artifacts. To configure Hudson to monitor the artifact repository:

1. Log in to Hudson using the following URL:

http://HOSTNAME:HUDSON_PORT

2. Navigate to Manage Hudson, then System Configuration.

3. In the main system configuration panel under System Configuration, select Maven
3 SNAPSHOT Monitor. In the Archiva configuration instructions, you must have
created a continuous integration specific user for continuous integration server
access to the repository. Enter the path to Maven repository.

4. Set the User and Password for the continuous integration user.

7.6.7 Monitoring Subversion
In addition to monitoring the artifact repository for updated dependencies, the
continuous integration server must constantly check the source control system for
updates and trigger project builds accordingly. Unlike repository monitoring, software
configuration management monitoring must be uniquely configured per build
configuration. As you create new build configurations, you must set the Subversion
location information for the related project. For more information, see Section 16.3.

Subversion support comes with the base Hudson distribution. Other source control
systems may require separate Hudson plug-in installation.

7.7 More Information About Hudson
You can find the primary source of the official documentation on Hudson in the
following location:

http://wiki.hudson-ci.org/display/HUDSON/Use+Hudson

For new users, you can find introductory guides to Hudson in the following location:

http://wiki.eclipse.org/Hudson-ci/Using_Hudson

The Hudson book is located in the following location:

More Information About Hudson

Installing and Configuring Hudson for Continuous Integration 7-7

http://wiki.eclipse.org/The_Hudson_Book

More Information About Hudson

7-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Understanding Maven Version Numbers 8-1

8Understanding Maven Version Numbers

[8] In a Maven environment, it is very important to understand the use of version
numbers. A well thought out strategy can greatly simplify your dependency
management workload. This chapter presents important concepts about how version
numbers work in Maven in general, and also some specific details of how the
Oracle-supplied artifacts use version numbers and how you should use them when
referring to Oracle artifacts.

This chapter includes the following sections:

■ How Version Numbers Work in Maven

■ The SNAPSHOT Qualifier

■ Version Range References

■ Understanding Maven Version Numbers in Oracle Provided Artifacts

8.1 How Version Numbers Work in Maven
Maven's versioning scheme uses the following standards:

■ MajorVersion

■ MinorVersion

■ IncrementalVersion

■ BuildNumber

■ Qualifier

For example:

■ MajorVersion: 2.0

■ MinorVersion: 1.2.1

■ IncrementalVersion: 1.2-SNAPSHOT

■ BuildNumber: 1.4.2-12

■ Qualifier: 1.2-beta-2

All versions with a qualifier are older than the same version without a qualifier
(release version).

For example:

1.2-beta-2 is older than 1.2.

The SNAPSHOT Qualifier

8-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

Identical versions with different qualifier fields are compared by using basic string
comparison.

For example:

1.2-beta-2 is newer than 1.2-alpha-6.

If you do not follow Maven versioning standards in your project versioning scheme,
then for version comparison, Maven interprets the entire version as a simple string.
Maven and its core plug-ins use version comparison for a number of tasks, most
importantly, the release process.

If you use a nonstandard versioning scheme, Maven release and version plug-in goals
might not yield the expected results. Because basic string comparison is performed on
nonstandard versions, version comparison calculates the order of versions incorrectly
in some cases.

For example, Maven arranges the version list in the following manner:

1.0.1.0
1.0.10.1
1.0.10.2
1.0.9.3

Version 1.0.9.3 should come before 1.0.10.1 and 1.0.10.2, but the unexpected
fourth field (.3) forced Maven to evaluate the version as a string.

An example of this effect on Maven is found in the Maven Versions plug-in. The
Maven Versions plug-in provides goals to check your project dependencies for
currency in a different ways. One useful goal is
versions:dependency-updates-report. This goal examines a project's dependency
hierarchy and reports which ones have newer releases available. When you are
coordinating a large release, this goal can help you to find stale references in
dependency configuration. If Maven incorrectly identifies a newer release, then it is
also reported incorrectly in the plug-in. Given the preceding example sequence, if your
current reference was 1.0.10.2, then the plug-in would report 1.0.9.3 as a newer
release.

Version resolution is also very important if you intend to use version ranges in your
dependency references. See Section 8.3 for information about version changes.

8.2 The SNAPSHOT Qualifier
Maven treats the SNAPSHOT qualifier differently from all others. If a version number
is followed by -SNAPSHOT, then Maven considers it the "as-yet-unreleased" version
of the associated MajorVersion, MinorVersion, or IncrementalVersion.

In a continuous integration environment, the SNAPSHOT version plays a vital role in
keeping the integration build up-to-date while minimizing the amount of rebuilding
that is required for each integration step.

SNAPSHOT version references enable Maven to fetch the most recently deployed
instance of the SNAPSHOT dependency at a dependent project build time. Note that
the SNAPSHOT changes constantly. Whenever an agent deploys the artifact, it is
updated in the shared repository. The SNAPSHOT dependency is refetched on a
developer's machine or it is updated in every build. This ensures that dependencies
are updated and integrated with the latest changes without the need for changes to the
project dependency reference configuration.

Version Range References

Understanding Maven Version Numbers 8-3

Usually, only the most recently deployed SNAPSHOT, for a particular version of an
artifact is kept in the artifact repository. Although the repository can be configured to
maintain a rolling archive with a number of the most recent deployments of a given
artifact, the older instances are typically used only for troubleshooting purposes and
do not play a role in integration.

Continuous build servers that include the ability to define and execute a job based on a
Maven project, such as Hudson, can be configured to recognize when a SNAPSHOT
artifact is updated and then rebuild projects that have a dependency on the updated
artifact.

For example, a Hudson build configuration that maps to a Maven Project Object
Model has a SNAPSHOT dependency. Hudson periodically checks the artifact
repository for SNAPSHOT updates. When it detects the update of the project's
dependency, it triggers a new build of the project to ensure that integration is
performed with the most recent version of the dependency. If other projects have a
dependency on this project, they too are rebuilt with updated dependencies.

8.3 Version Range References
Maven enables you to specify a range of versions that are acceptable to use as
dependencies. Table 8–1 shows a range of version specifications:

When Maven encounters multiple matches for a version reference, it uses the highest
matching version. Generally, version references should be only as specific as required
so that Maven is free to choose a new version of dependencies where appropriate, but
knows when a specific version must be used. This enables Maven to choose the most
appropriate version in cases where a dependency is specified at different points in the
transitive dependency graph, with different versions. When a conflict like this occurs,
Maven chooses the highest version from all references.

Given the option to use version ranges, you may wonder if there is still utility in using
SNAPSHOT versions. Although you can achieve some of the same results by using a
version range expression, a SNAPSHOT works better in a continuous build system for
the following reasons:

■ Maven artifact repository managers deal with SNAPSHOTs more efficiently than
next version ranges. Because a single artifact can be deployed multiple times in a

Table 8–1 Version Range References

Range Meaning

(,1.0] x <= 1.0

1.0 It generally means 1.0 or a later version, if 1.0 is not available.

Various Maven plug-ins may interpret this differently, so it is
safer to use one of the other, more specific options.

[1.0] Exactly 1.0

[1.2,1.3] 1.2 <= x <= 1.3

[1.0,2.0) 1.0 <= x < 2.0

[1.5,) x >= 1.5

(,1.0],[1.2,) x <= 1.0 or x >= 1.2.

Multiple sets are separated by a comma.

(,1.1),(1.1,) This excludes 1.1 if it is known not to work in combination with
the library.

Understanding Maven Version Numbers in Oracle Provided Artifacts

8-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

day, the number of unique instances maintained by the repository can increase
very rapidly.

■ Non-SNAPSHOT release versions are meant to be maintained indefinitely. If you
are constantly releasing a new version and incrementing the build number or
version, the storage requirements can quickly become unmanageable. Repository
managers are designed to discard older SNAPSHOTs to make room for new
instances so the amount of storage required stays constant.

■ SNAPSHOTs are also recognized by Maven and Maven's release process, which
affords you some benefits when performing a release build.

8.4 Understanding Maven Version Numbers in Oracle Provided Artifacts
The two important scenarios where Maven version numbers are used in Oracle
provided artifacts are as follows:

■ In the Maven coordinates of the artifact, that is, in the project.version of the
artifact's POM

■ In the dependency section of POMs to refer to other artifacts

This section provides details on how version numbers are defined for Oracle artifacts
in both the scenarios. It contains the following topics:

■ Understanding Version Numbers in Maven Coordinates

■ Understanding Version Number Ranges in Dependencies

8.4.1 Understanding Version Numbers in Maven Coordinates
The version number of the artifact defined in the POM file is the same as the version
number of the released product, for example, 12.1.3.0.0, expressed using five digits, as
described in the following:

In x.x.x-y-z:

■ x.x.x is the release version number, for example 12.1.3.

■ y is the PatchSet number, for example 0,1,2,3, … with no leading zeros.

■ z is the Bundle Patch number, for example 0,1,2,3, … with no leading zeros.

■ The periods and hyphens are literals.

The release version number of Oracle-owned components do not change by a one-off
patch. The release version number changes with a release and always matches the
release, even if the component has not changed from the previous release.

The PatchSet (fourth position) changes when you apply a PatchSet. The Bundle Patch
(fifth position) changes when you apply a Bundle Patch, PatchSet Update, or
equivalent (the name of this type of patch varies from product to product).

Following are examples of valid version numbers:

12.1.3-0-0 12.1.3-1-0 12.1.3-2-0

Note: The version numbers of artifacts (as specified in
project.version in the POM) use a different format than version
number ranges used in dependencies (as specified in
project.dependencies.dependency.version in the POM).

Understanding Maven Version Numbers in Oracle Provided Artifacts

Understanding Maven Version Numbers 8-5

12.1.3-0-1 12.1.3-1-1 12.1.3-2-1
 ...
12.1.3-0-10 12.1.3-1-1 12.1.3-2-1

8.4.2 Understanding Version Number Ranges in Dependencies
The two important scenarios where dependencies on Oracle-provided Maven artifacts
are specified are as following:

■ Inside the POM files of artifacts that are part of the Oracle product

■ Inside POM files that you include in your own projects

The version number range should be specified in both the scenarios. This section
describes how version number ranges are specified in Oracle-provided artifacts and
when you are declaring a dependency on an Oracle-provided artifact.

When specifying dependencies on other artifacts, the most specific correct syntax
should be used to ensure that the definition does not allow an incorrect or unsuitable
version of the dependency to be used.

In [x.x.x,y.y.y):

■ x.x.x is the release version number, for example 12.1.2

■ y.y.y is the next possible release version number, for example. 12.1.3

■ Brackets, periods, commands and parenthesis are literals

An example of the correct way to specify a dependency is as follows:

12.1.2,12.1.3)

As Table 8–1 shows, the previous example means that the latest available version is
12.1.2 or greater, but less than 12.1.3.

The version number scheme used by Oracle-provided artifacts ensures correct sorting
of version numbers, for example, Maven resolves the following versions in the order
shown (from oldest to newest):

12.1.2-0-0, 12.1.2-0-1, 12.1.2-0-2, 12.1.2-0-10, 12.1.2-1-0, 12.1.2-1-1,
12.1.2-1-2, 12.1.2-1-10, 12.1.3-0-0

If it is necessary to specify a dependency which relies on a certain PatchSet or Bundle
Patch, for example, when a new API is introduced, you must include the fourth or
fourth and fifth digits respectively.

For example:

[12.1.2-2,12.1.3) depends on 12.1.2 with PatchSet 2
[12.1.2-2-5,12.1.3) depends on 12.1.2 with PatchSet 2 and Bundle Patch 5

Understanding Maven Version Numbers in Oracle Provided Artifacts

8-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Customizing the Build Process with Maven POM Inheritance 9-1

9Customizing the Build Process with Maven
POM Inheritance

[9] Oracle provides a set of common parent Project Object Models (POMs) to enable easy
customization of the build process for all projects targeted at a particular product,
runtime environment, or for all projects targeted at Oracle Fusion Middleware.

Each of the Oracle-provided Maven archetypes have their parent POM set to an
Oracle-provided common parent specific to the target runtime environment that the
archetype is for, such as WebLogic Server and Coherence. The common parent POMs,
one per product or target runtime environment, in turn have their parent POM set to
an Oracle Fusion Middleware common parent.

The common POMs and Oracle-provided archetypes form the following inheritance
hierarchy:

■ Provided by 12.1.2:

com.oracle.maven:oracle-common:12.1.2-0-0
- com.oracle.weblogic:wls-common:12.1.2-0-0
 - com.oracle.weblogic.archetype:basic-webapp:12.1.2-0-0
 - com.oracle.weblogic.archetype:basic-webapp-ejb:12.1.2-0-0
 - com.oracle.weblogic.archetype:basic-webservice:12.1.2-0-0
 - com.oracle.weblogic.archetype:basic-mdb:12.1.2-0-0
- com.oracle.coherence:gar-common:12.1.2-0-0
 - com.oracle.coherence:maven-gar-archetype:12.1.2-0-0

■ Provided by 12.1.3:

com.oracle.maven:oracle-common:12.1.3-0-0
- com.oracle.weblogic:wls-common:12.1.3-0-0
 - com.oracle.weblogic.archetype:basic-webapp:12.1.3-0-0
 - com.oracle.weblogic.archetype:basic-webapp-ejb:12.1.3-0-0
 - com.oracle.weblogic.archetype:basic-webservice:12.1.3-0-0
 - com.oracle.weblogic.archetype:basic-mdb:12.1.3-0-0
- com.oracle.coherence:gar-common:12.1.3-0-0
 - com.oracle.coherence:maven-gar-archetype:12.1.3-0-0
- com.oracle.soa:sar-common:12.1.3-0-0
 - com.oracle.soa.archetype:oracle-soa-application:12.1.3-0-0
 - com.oracle.soa.archetype:oracle-soa-project:12.1.3-0-0
- com.oracle.servicebus:project:12.1.3-0-0
 - com.oracle.servicebus:sbar-project-common:12.1.3-0-0
 - com.oracle.servicebus.archetype:oracle-servicebus-project:12.1.3-0-0
 - com.oracle.servicebus:sbar-system-common:12.1.3-0-0
- missing
 - com.oracle.adf.archetype:oracle-adffaces-ejb:12.1.3-0-0

9-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

If you want to customize your build process, for example, setting some default
properties, setting up default settings for a particular plug-in, or defining Maven
profiles, then you can add your definitions to the appropriate parent POM. For
example, if you add definitions to com.oracle.weblogic:wls-common:12.1.3-0-0, all
projects associated with this parent are affected, which includes all projects that you
have created from the WebLogic Maven archetypes (unless you modify their parents)
and projects that you have created manually.

This enables you to minimize the number of settings needed in each project POM. For
example, if you are going to deploy all of builds to the same test server, then you can
provide the details for the test server by adding the appropriate build, plug-ins, and
plug-in section for com.oracle.weblogic:wls-maven-plugin:12.1.3-0-0 as shown in
the following example of a customized parent WebLogic POM:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.oracle.weblogic.archetype</groupId>
 <artifactId>wls-common</artifactId>
 <version>12.1.3-0-0</version>
 <packaging>pom</packaging>
 <name>wls-common</name>
 <parent>
 <groupId>com.oracle.maven</groupId>
 <artifactId>oracle-common</artifactId>
 <version>12.1.3-0-0</version>
 </parent>
 <build>
 <plugins>
 <plugin>
 <groupId>com.oracle.weblogic</groupId>
 <artifactId>wls-maven-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <executions>
 <execution>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <user>weblogic</user>
 <password>welcome1</password>
 <verbose>true</verbose>
 </configuration>
 </execution>
 </executions>
 <configuration>
 <middlewareHome>/home/oracle/fmwhome</middlewareHome>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Similarly, if you want to affect all projects targeted at any Oracle Fusion Middleware
runtime, then you should place your customizations in
com.oracle.maven:oracle-common:12.1.3-0-0.

Customizing the Build Process with Maven POM Inheritance 9-3

If you are using a shared internal repository, then after you customize the parent
POMs, publish them into your shared Maven repository or repositories.

To see how these customizations are brought into your projects, you can use the
following command, from your project's directory, to see the full POM that will be
used to build your project:

mvn help:effective-pom

If you want to define more than one set of shared properties in the parent POM, for
example, one set for your test environment, and one for your QA environment, Oracle
encourages you to explore the use of Maven profiles. For more information, see:

http://www.sonatype.com/books/mvnref-book/reference/profiles.html

Profiles enable you to switch various settings on for a particular build by setting a
command line argument, or based on the presence or absence of various properties in
the POM.

9-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Building Java EE Projects for WebLogic Server with Maven 10-1

10Building Java EE Projects for WebLogic Server
with Maven

[10] This chapter provides details on how to use the WebLogic Maven archetypes to create,
build, and deploy WebLogic Server Java EE applications.

This chapter contains the following sections:

■ Introduction to Building Java EE Project with Maven

■ Using the Basic WebApp Maven Archetype

■ Using the Basic WebApp with EJB Maven Archetype

■ Using the Basic WebService Maven Archetype

■ Using the Basic MDB Maven Archetype

10.1 Introduction to Building Java EE Project with Maven
A Maven plug-in and four archetypes are provided for Oracle WebLogic Server.
Table 10–1 describes the Maven coordinates.

As with Maven archetypes in general, the Oracle WebLogic Maven archetype provides
a set of starting points and examples for building your own applications.

10.2 Using the Basic WebApp Maven Archetype
To create a new Basic WebApp project using the Maven archetype, you must issue a
command similar to the following:

mvn archetype:generate

Table 10–1 Maven Coordinates with WebLogic Server

Artifact groupId artifactId version

WebLogic Server plug-in com.oracle.weblogic weblogic-maven-
plugin

12.1.3-0-0

Basic WebApp archetype com.oracle.weblogic.archetype basic-webapp 12.1.3-0-0

WebApp with EJB
archetype

com.oracle.weblogic.archetype basic-webapp-ej
b

12.1.3-0-0

Basic MDB archetype com.oracle.weblogic.archetype basic-mdb 12.1.3-0-0

Basic WebServices
archetype

com.oracle.weblogic.archetype basic-webservic
e

12.1.3-0-0

Using the Basic WebApp Maven Archetype

10-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 -DarchetypeGroupId=com.oracle.weblogic.archetype
 -DarchetypeArtifactId=basic-webapp
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-basic-webapp-project
 -Dversion=1.0-SNAPSHOT

This runs Maven's archetype:generate goal which enables you to create a new project
from an archetype. Table 10–2 describes the parameters.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

mvn archetype:generate

If you want to limit Maven to look only into a particular repository, you can specify
the -DarchetypeCatalog option. Specify the value as local to look only in your local
repository, or specify the serverId for the repository you want Maven to look in. This
limits the number of archetypes that you are shown and makes the command execute
much faster.

After creating your project, it contains the following files:

Table 10–2 Parameters for the Basic WebApp Project

Parameter Purpose

archetypeGroupId Identifies the group ID of the archetype that you want to use to
create the new project. This must be com.oracle.weblogic as
shown in the preceding example.

archetypeArtifactId Identifies the archetype artifact ID of the archetype that you want to
use to create the new project. This must be basic-webapp as shown
in the preceding example.

archetypeVersion Identifies the version of the archetype that you want to use to create
the new project. This must be 12.1.3-0-0 as shown in the preceding
example.

groupId Identifies the group ID for your new project. This usually starts
with your organization's domain name in reverse format.

artifactId Identifies the artifact ID for your new project. This is usually an
identifier for this project.

version Identifies the version number for your new project. This is usually
1.0-SNAPSHOT for a new project.

Using the Basic WebApp Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-3

These files make up a small sample application, which you can deploy as is. You can
use this application as a starting point for building your own application.

There are a number of files included in the project, as described in Table 10–3.

After you have written your project code, you can use Maven to build the project. It is
also possible to build the sample as is.

This section contains the following topics:

■ Customizing the Project Object Model File to Suit Your Environment

■ Compiling Your Project

■ Packaging Your Project

Table 10–3 Files Created for the Basic WebApp project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your
new project. It includes the Maven coordinates that you
specified for your project, and it also includes the appropriate
plug-in definitions to use the WebLogic Maven plug-in to build
your project.

Files under src/main/java An example Enterprise Java Bean that is used by the Web
application to store data.

All other files HTML and other files that make up the web application user
interface.

weblogic.xml

bootstrap.css

index.xhtml

css

WEB-INF

template.xhtml

web.xml

beans.xml

AccountBean.java

pom.xml

webapp

src

main

java

org

mycompany

Using the Basic WebApp Maven Archetype

10-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

■ Deploying Your Project to the WebLogic Server Using Maven

■ Deploying Your Project to the WebLogic Server Using Different Options

■ Testing Your Basic WebApp Project

10.2.1 Customizing the Project Object Model File to Suit Your Environment
The Project Object Model (POM) file that is created by the archetype is sufficient in
most cases. You should review the POM and update any of the settings where the
provided default values differ from what you use in your environment.

If you are using an internal Maven Repository Manager, like Archiva, you should add
a pluginRepository to the POM file. The following is an example; you can modify it to
suit your environment:

 <pluginRepositories>
 <pluginRepository>
 <id>archiva-internal</id>
 <name>Archiva Managed Internal Repository</name>
 <url>http://localhost:8081/archiva/repository/internal/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

10.2.2 Compiling Your Project
To compile the source code in your project, such as Java Beans, Servlets, and JSPs, use
the following command:

mvn compile

This uses the standard Maven plug-ins to compile your source artifacts into class files.
You can find the class files in the target directory of your project.

10.2.3 Packaging Your Project
To build the deployment archive, for example WAR or EAR file, use the following
command:

mvn package

Again, this uses the standard Maven plug-ins to package your compiled artifacts and
metadata into a deployment archive. When you run a Maven goal like package, Maven
runs not just that goal, but all of the goals up to and including the goal you name. This
is very similar to a standard Java EE application, except that if you have some
WebLogic deployment descriptors in your project, they are also packaged into the
deployment archive.

The deployment archive, in this case a WAR file, is available in the target directory of
your project.

10.2.4 Deploying Your Project to the WebLogic Server Using Maven
To deploy the deployment archive using Maven, use the following command:

Using the Basic WebApp with EJB Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-5

mvn pre-integration-test

This executes the deploy goal in the WebLogic Maven plug-in. This goal supports all
standard types of deployment archives.

10.2.5 Deploying Your Project to the WebLogic Server Using Different Options
After you have packaged your project, you can also deploy it to the WebLogic Server
using any of the other existing (non-Maven) mechanisms. For example, the WebLogic
Administration Console, or an ANT or WLST script.

10.2.6 Testing Your Basic WebApp Project
You can test the Basic WebApp by visiting the following URL on the WebLogic Server
where you deployed it:

http://servername:7001/basicWebapp/index.xhtml

The following shows the user interface for the Basic WebApp:

Provide the Account Name and Amount, then select Deposit to see how the
application works.

10.3 Using the Basic WebApp with EJB Maven Archetype
To use the Basic WebApp with EJB project using the Maven archetype:

1. Create a new Basic WebApp project using the Maven archetype, executing a
command similar to the following:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.weblogic.archetype
 -DarchetypeArtifactId=basic-webapp-ejb
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-basic-webapp-ejb-project
 -Dversion=1.0-SNAPSHOT

This runs Maven's archetype:generate goal which enables you to create a new
project from an archetype. See Table 10–4 for a description of the parameters.

Using the Basic WebApp with EJB Maven Archetype

10-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

mvn archetype:generate

After creating your project, it contains the following files:

Table 10–4 Parameters for the Basic WebApp with EJB Project

Parameter Purpose

archetypeGroupId Identifies the group ID of the archetype that you want to use to
create the new project. This must be com.oracle.weblogic as
shown in the preceding example.

archetypeArtifactId Identifies the artifact ID of the archetype that you want to use to
create the new project. This must be basic-webapp-ejb as shown in
the preceding example.

archetypeVersion Identifies the version of the archetype that you want to use to create
the new project. This must be 12.1.3-0-0 as shown in the preceding
example.

groupId Identifies the group ID for your new project. This usually starts
with your organization's domain name in reverse format.

artifactId Identifies the artifact ID for your new project. This is usually an
identifier for this project.

version Identifies the version number for your new project. This is usually
1.0-SNAPSHOT for a new project.

Using the Basic WebApp with EJB Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-7

These files make up a small sample application, which you can deploy as is. You
can use this application as a starting point for building your own application.

persistence.xml

weblogic.xml

bootstrap.css

META-INF

index.xhtml

css

WEB-INF

template.xhtml

web.xml

beans.xml

AccountManagerImpl.java

service

Account.java

entity

OnDeposit.java

LogInterceptor.java

AccountManager.java

AccountBean.java

interceptor

my-basic-webapp-ejb-project/

pom.xml

webapp

src

main

java

resources

scripts

org

mycompany

Using the Basic WebService Maven Archetype

10-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

There are a number of files included in the project, as described in Table 10–5.

2. After you have written your project code, you can use Maven to build the project.
It is also possible to build the sample as is.

3. Customize the POM to suit your environment. See Section 10.2.1.

4. Compile your Basic WebApp with EJB Project. See Section 10.2.2.

5. Package your Basic WebApp with EJB Project. See Section 10.2.3.

6. Deploy your Basic WebApp with EJB Project. For information about deploying it
using Maven, see Section 10.2.4. For information about deploying it using other
options, see Section 10.2.5.

7. Test your Basic WebApp with EJB Project.

You can test the Basic WebApp with EJB by visiting the following URL on the
WebLogic Server where you deployed it:

http://servername:7001/basicWebapp/index.xhtml

The following shows the user interface for the Basic WebApp with EJB:

Provide the Account Name and Amount, then select Deposit to see how the
application works.

10.4 Using the Basic WebService Maven Archetype
To use the Basic WebService project using the Maven Archetype:

Table 10–5 Files Created for the Basic WebApp with EJB Project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your
new project. It includes the Maven coordinates that you
specified for your project, and it also includes the appropriate
plug-in definitions to use the WebLogic Maven plug-in to build
your project.

Files under src/main/java An example Enterprise Java Bean that is used by the web
application to store data.

All other files HTML and other files that make up the web application user
interface.

Using the Basic WebService Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-9

1. Create a new Basic WebService project using the Maven archetype, issue a
command similar to the following:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.weblogic.archetype
 -DarchetypeArtifactId=basic-webservice
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-basic-webservice-project
 -Dversion=1.0-SNAPSHOT

This runs Maven's archetype:generate goal which enables you to create a new
project from an archetype. See Table 10–6 for the parameters and description.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

mvn archetype:generate

After creating your project, it contains the following files:

Table 10–6 Parameters for the Basic WebService Project

Parameter Purpose

archetypeGroupId Identifies the group ID of the archetype that you want to use to
create the new project. This must be com.oracle.weblogic as
shown in the preceding example.

archetypeArtifactId Identifies the artifact ID of the archetype that you want to use to
create the new project. This must be basic-webservice as shown in
the preceding example.

archetypeVersion Identifies the version of the archetype that you want to use to create
the new project. This must be 12.1.3-0-0 as shown in the preceding
example.

groupId Identifies the group ID for your new project. This usually starts
with your organization's domain name in reverse format.

artifactId Identifies the artifact ID for your new project. This is usually an
identifier for this project.

version Identifies the version number for your new project. This is usually
1.0-SNAPSHOT for a new project.

Using the Basic WebService Maven Archetype

10-10 Oracle Fusion Middleware Developing Applications Using Continuous Integration

These files make up a small sample application, which you can deploy as is. You
can use this application as a starting point for building your own application.

There are a number of files included in the project; see Table 10–7 for the purpose
of each file.

2. After you have written your project code, you can use Maven to build the project.
It is also possible to build the sample as is.

3. Customize the POM to suit your environment. See Section 10.2.1.

4. Compile your Basic WebService Project. See Section 10.2.2.

5. Package your Basic WebService Project. See Section 10.2.3.

6. Deploy your Basic WebService Project. For information about deploying it using
Maven, see Section 10.2.4. For information about deploying it using other options,
see Section 10.2.5.

7. Test your Basic WebService Project.

You can test the Basic WebService by visiting the following URL, on the WebLogic
Server where you have deployed it:

http://servername:7001/basicWebservice/SayHello

The following shows the user interface for the Basic WebService:

Table 10–7 Files Created for the Basic WebService Project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your new
project. It includes the Maven coordinates that you specified for your
project, and it also includes the appropriate plug-in definitions to use
the WebLogic Maven plug-in to build your project.

SayHello.java An example Web Service.

SayHello.java

my-basic-webservice-project/

src

main

java

org

mycompany

pom.xml

jaxws

org

mycompany

Using the Basic MDB Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-11

You can access the WSDL for the web service, and you can open the WebLogic
Web Services Test Client by selecting the Test link. This enables you to invoke the
web service and observe the output.

To test the web service, select SayHello operation in the left hand pane, then enter
a value for arg0 as shown in the following example, and select Invoke.

Scroll down to see the test results, as shown in the following example:

10.5 Using the Basic MDB Maven Archetype
To use the Basic MDB project using the Maven Archetype:

1. Create a new Basic MDB project using the Maven archetype, by running a
command similar to the following:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.weblogic.archetype
 -DarchetypeArtifactId=basic-mdb
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-basic-mdb-project
 -Dversion=1.0-SNAPSHOT

This runs Maven's archetype:generate goal which enables you to create a new
project from an archetype. See Table 10–8 for the parameters and description.

Using the Basic MDB Maven Archetype

10-12 Oracle Fusion Middleware Developing Applications Using Continuous Integration

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts
you to enter the required information.

mvn archetype:generate

After creating your project, it contains the following files:

Table 10–8 Parameters for the Basic MDB Project

Parameter Purpose

archetypeGroupId Identifies the group ID of the archetype that you want to use to
create the new project. This must be com.oracle.weblogic as
shown in the preceding example.

archetypeArtifactId Identifies the artifact ID of the archetype that you want to use to
create the new project. This must be basic-mdb as shown in the
preceding example.

archetypeVersion Identifies the version of the archetype that you want to use to
create the new project. This must be 12.1.3-0-0 as shown in the
preceding example.

groupId Identifies the group ID for your new project. This usually starts
with your organization's domain name in reverse format.

artifactId Identifies the artifact ID for your new project. This is usually an
identifier for this project.

version Identifies the version number for your new project. This is
usually 1.0-SNAPSHOT for a new project.

Using the Basic MDB Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-13

These files make up a small sample application, which you can deploy as is. You
can use this application as a starting point for building your own application.

There are a number of files included in the project; see Table 10–9 for the purpose
of each file.

weblogic.xml

bootstrap.css

configure_resources.py

index.xhtml

css

WEB-INF

template.xhtml

web.xml

beans.xml

AccountBean.java

QueueMDB.java

destination

jsf

jms

my-basic-mdb-project/

pom.xml

webapp

src

main

java

scripts

org

mycompany

Using the Basic MDB Maven Archetype

10-14 Oracle Fusion Middleware Developing Applications Using Continuous Integration

2. After you have written your project code, you can use Maven to build the project.
It is also possible to build the sample as is.

3. Customize the POM to suit your environment. See Section 10.2.1.

4. Compile your Basic MDB Project. See Section 10.2.2.

5. Package your Basic MDB Project. See Section 10.2.3.

6. Deploy your Basic MDB Project. For information about deploying it using Maven,
see Section 10.2.4. For information about deploying it using other options, see
Section 10.2.5.

7. Test your Basic MDB Project.

You can test the Basic MDB by visiting the following URL on the WebLogic Server
where you deployed it:

http://servername:7001/basicMDB/index.xhtml

The following shows the user interface for the Basic MDB:

Provide the Account Name and Amount, then select Deposit:

Table 10–9 Files Created for the Basic MDB Project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your
new project. It includes the Maven coordinates that you
specified for your project, and it also includes the appropriate
plug-in definitions to use the WebLogic Maven plug-in to build
your project.

Files under src/main/java An example Message Driven Bean that is used by the web
application to store data.

All other files HTML files that make up the web application user interface.

Using the Basic MDB Maven Archetype

Building Java EE Projects for WebLogic Server with Maven 10-15

As indicated in the user interface, you must check the WebLogic Server output to
find the message printed by the MDB. It looks like the following example:

The money has been deposited to frank, the balance of the account is 500.0

Using the Basic MDB Maven Archetype

10-16 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Building Oracle Coherence Projects with Maven 11-1

11Building Oracle Coherence Projects with
Maven

[11] This chapter provides details on how to use the Oracle Coherence archetypes to create,
build, and deploy Oracle Coherence applications.

This chapter includes the following topics:

■ Introduction to Building Oracle Coherence Projects with Maven

■ Creating a Project from a Maven Archetype

■ Building Your Project with Maven

■ Deploying Your Project to the WebLogic Server Coherence Container with Maven

■ Building a More Complete Example

11.1 Introduction to Building Oracle Coherence Projects with Maven
A Maven plug-in and an archetype is provided for Oracle Coherence Grid Archive
(GAR) projects. Table 11–1 describes the Maven coordinates.

Table 11–2 describes the goals supported by the Oracle Coherence plug-in.

11.2 Creating a Project from a Maven Archetype
To create a new Coherence project using the Coherence Maven archetype, issue a
command similar to the following:

Table 11–1 Maven Coordinates with Coherence

artifacts groupId artifactId version

Coherence plug-in com.oracle.coherence maven-gar-plugin 12.1.3-0-0

Coherence archetype com.oracle.coherence maven-gar-archetype 12.1.3-0-0

Table 11–2 Oracle Coherence Goals

Goal Purpose

generate-descriptor Generates the project's POF configuration file.

package Packages the basic GAR assets, including library dependencies
into a JAR archive.

repackage Repackages the packaged JAR archive with optional metadata
and GAR extension.

Creating a Project from a Maven Archetype

11-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.coherence
 -DarchetypeArtifactId=maven-gar-archetype
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-gar-project
 -Dversion=1.0-SNAPSHOT

This command runs Maven's archetype:generate goal which lets you create a new
project from an archetype. Table 11–3 describes the parameters.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

mvn archetype:generate

After creating your project, it contains the following files:

There are a number of files included in the project, as described in Table 11–4.

Table 11–3 Parameters for the Coherence Projects

Parameter Purpose

archetypeGroupId Identifies the group ID of the archetype that you want to use to
create the new project. This must be com.oracle.coherence.

archetypeArtifactId Identifies the artifact ID of the archetype that you want to use to
create the new project. This must be maven-gar-archetype.

archetypeVersion Identifies the version of the archetype that you want to use to
create the new project. This must be 12.1.3-0-0.

groupId Identifies the group ID for your new project. This usually starts
with your organization's domain name in reverse format.

artifactId Identifies the artifact ID for your new project. This is usually an
identifier for this project.

version Identifies the version for your new project. This is usually
1.0-SNAPSHOT for a new project.

my-gar-project/

main

src

resources

java

META-INF

pof-config.xml

cache-config.xml

coherence-application.xml

pom.xml

Building Your Project with Maven

Building Oracle Coherence Projects with Maven 11-3

If you are using POF in your project, you must add the following parameter into your
project's POM file:

To generate a GAR with correctly generated pof-config.xml, add the following to
your GAR plug-in configuration in the POM:

<build>
<plugins>
…
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>maven-gar-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <extensions>true</extensions>
 <configuration>
 <generatePof>true</generatePof>
 </configuration>
 </plugin>
…
 </plugins>
</build>

11.3 Building Your Project with Maven
After you have written your project code, you can use Maven to build the project.

To compile the source code in your project, execute the following command:

mvn compile

To package the compiled source into a GAR, execute the following command. Note
that this runs all steps up to package, including the compile.

mvn package

Table 11–4 Files Created for the Coherence Project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your
new project. It includes the Maven coordinates that you
specified for your project and the appropriate plug-in definitions
to use the Coherence Maven plug-in to build your project into a
gar file.

cache-config.xml A starter Coherence cache configuration file.

coherence-application.xm
l

A starter Coherence GAR deployment descriptor for your GAR
file.

pof-config.xml A starter Coherence Portable Object Format (POF) configuration
file. The POF configuration file is processed and inserted into the
final GAR file if the plug-in option generatePof is set to true.
By default, POF configuration metadata will not be generated.

Parameter Purpose

generatePof The POF configuration file is generated and inserted into the final
GAR file if this plug-in option is true. The configuration file is
generated by scanning all classes in the GAR's classpath annotated
with the class com.tangosol.io.pof.annotation.Portable. By
default, POF configuration metadata is not generated.

Deploying Your Project to the WebLogic Server Coherence Container with Maven

11-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

11.4 Deploying Your Project to the WebLogic Server Coherence
Container with Maven

To deploy your GAR to a Coherence Container in a WebLogic Server environment, you
must add some additional configuration to your project's POM file. This is done by
adding instructions to use the Oracle WebLogic Maven plug-in to deploy the GAR, as
shown in the following example:

 <plugin>
 <groupId>com.oracle.weblogic</groupId>
 <artifactId>weblogic-maven-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <executions>
 <!--Deploy the application to the server-->
 <execution>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <adminurl>t3://localhost:7001</adminurl>
 <user>weblogic</user>
 <password>welcome1</password>
 <!--The location of the file or directory to be deployed-->

<source>${project.build.directory}/${project.build.finalName}.${project.packaging}
</source>
 <!--The target servers where the application is deployed-->
 <targets>AdminServer</targets>
 <verbose>true</verbose>
 <name>${project.build.finalName}</name>
 </configuration>
 </execution>
 </executions>
 </plugin>

After you have added this section to your POM, use the following command to
compile, package, and deploy your GAR to the WebLogic Server:

mvn verify

11.5 Building a More Complete Example
In a real application, you are likely to have not just a GAR project, but also some kind
of client project that interacts with the Coherence cache established by the GAR. Refer
to Chapter 15, "Building a Real Application with Maven" to see an example that
includes a Coherence GAR and a web application (WAR) that interacts with it.

1

Building ADF Projects with Maven 12-1

12Building ADF Projects with Maven

[12] This chapter provides details on how to use the Oracle Application Development
Framework Maven archetypes to create, build, and deploy Oracle Application
Development Framework applications.

This chapter includes the following sections:

■ Introduction to Building Oracle ADF Projects with Maven

■ Creating an ADF Application Using the Maven Archetype

■ Building Your Project with Maven

For more information about using the Oracle ADF development plug-in with Maven,
see "Building and Running with Apache Maven " in Developing Applications with Oracle
JDeveloper.

12.1 Introduction to Building Oracle ADF Projects with Maven
Two Maven plug-ins and an archetype are provided for Oracle ADF projects.
Table 12–1 describes the Maven coordinates.

JDeveloper also has extensive support for Maven. This documentation covers Maven
use outside of JDeveloper. Refer to "Building and Running with Apache Maven" in
Developing Applications with Oracle JDeveloper for more details about using Maven
within JDeveloper.

12.2 Creating an ADF Application Using the Maven Archetype
To create a new Oracle ADF Application using the Oracle ADF Application Maven
archetype, issue a command similar to the following:

mvn archetype:generate
-DarchetypeGroupId=com.oracle.adf.archetype
 -DarchetypeArtifactId=oracle-adffaces-ejb
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany

Table 12–1 Maven Coordinates with Oracle ADF

Artifact groupId artifactId Version

ADF ojmake plug-in com.oracle.adf.plugin ojmake 12.1.3-0-0

ADF ojdeploy plug-in com.oracle.adf.plugin ojdeploy 12.1.3-0-0

ADF archetype com.oracle.adf.archetype oracle-adffaces-ejb 12.1.3-0-0

Building Your Project with Maven

12-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 -DartifactId=my-adf-application
 -Dversion=1.0-SNAPSHOT

This command runs Maven's archetype:generate goal which allows you to create a
new project from an archetype. Table 12–2 describes the parameters.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

mvn archetype:generate

12.3 Building Your Project with Maven
After you have written your code, you can use Maven to build the project.

To compile your project, execute the following command:

mvn compile

This command runs the ojmake plug-in.

To package the project into an EAR file, execute the following command (note that this
actually runs all steps up to package, including the compile again):

mvn package

This command runs the ojdeploy plug-in.

Table 12–2 Parameters for the Oracle ADF Project

Parameter Purpose

archetypeGroupId Identifies the groupId of the archetype that you want to use to create
the new project. This must be com.oracle.adf.archetype in the
example.

archetypeArtifactId Identifies the artifactId of the archetype that you want to use to create
the new project. This must be oracle-adffaces-ejb as shown in the
example.

archetypeVersion Identifies the version of the archetype that you want to use to create
the new project. This must be 12.1.3-0-0 as shown in the example.

groupId The groupId for your new project. This usually starts with your
organization's domain name in reverse format.

artifactId The artifactId for your new project. This is usually an identifier for
this project.

version The version for your new project. This is usually 1.0-SNAPSHOT for
a new project.

1

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-1

13Building Oracle SOA Suite and Oracle
Business Process Management Projects with

Maven

[13] This chapter provides details on how to use the Oracle SOA Suite and Oracle
Business Process Management Maven archetypes to create, build, and deploy
Oracle SOA Suite and Oracle Business Process Management applications.

This chapter contains the following sections:

■ Introduction to Building Oracle SOA Suite and Oracle Business Process
Management Projects with Maven

■ Creating a New SOA Application and Project from a Maven Archetype

■ Creating a SOA Project in an Existing SOA Application from a Maven Archetype

■ Editing Your Application in Oracle JDeveloper

■ Building Your Project with Maven

■ What You May Need to Know About Building Projects

■ Deploying Your Project to the SOA Server with Maven

■ Running SCA Test Suites with Maven

■ What You May Need to Know About Deploying Composites

■ What You May Need to Know About ADF Human Task User Interface Projects

■ Undeploying Your SOA Project

■ What You May Need to Know About the SOA Parent POM

For more information about using the Oracle SOA Suite development plug-in with
Maven, see "Using the Oracle SOA Suite Development Maven Plug-In" in Developing
SOA Applications with Oracle SOA Suite.

13.1 Introduction to Building Oracle SOA Suite and Oracle Business
Process Management Projects with Maven

A Maven plug-in and two archetypes are provided for Oracle SOA Suite and Oracle
Business Process Management. Table 13–1 describes the Maven coordinates.

Creating a New SOA Application and Project from a Maven Archetype

13-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

Table 13–2 describes the goals supported by the Oracle SOA Suite plug-in.

The SOA Application archetype allows you to create a new SOA Application with a
single SOA Project in it. This can be imported in JDeveloper for editing.

The SOA Project archetype allows you to add a new SOA Project to an existing SOA
Application.

13.2 Creating a New SOA Application and Project from a Maven
Archetype

To create a new SOA application (containing a single SOA project) using the SOA
Maven archetype, execute a command similar to the following:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.soa.archetype
 -DarchetypeArtifactId=oracle-soa-application
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-soa-app
 -Dversion=1.0-SNAPSHOT
 -DprojectName=my-project

This command runs Maven's archetype:generate goal which allows you to create a
new SOA Application from an archetype. Table 13–3 describes the parameters.

Table 13–1 Maven Coordinates with Oracle SOA Suite

Artifact groupId artifactId version

SOA plug-in com.oracle.soa.plugin oracle-soa-plugin 12.1.3-0-0

SOA Application
archetype

com.oracle.soa.archetype oracle-soa-application 12.1.3-0-0

SOA Project archetype com.oracle.soa.archetype oracle-soa-project 12.1.3-0-0

Table 13–2 Oracle SOA Suite Plug-In Goals

Goal Purpose

compile Runs the SCA composite validation routine on your project---this is somewhat
equivalent to a traditional compile operation in that it inspects the source
artifacts and produces errors and warnings. However it does not produce any
compiled version of the source artifacts.

sar Creates a SOA archive (SAR) file from the project.

deploy Deploys the SAR file to a runtime environment. Note that this goal is mapped
to the pre-integration-test phase in the default lifecycle, not the deploy phase,
as deployment to a runtime environment is normally done in the
pre-integration-test phase in Maven.

test Executes SCA tests in the composite. Note that this goal is mapped to the
integration-test phase, not the test phase, as it depends on the composite (SAR)
having been deployed to a runtime environment.

undeploy Undeploys a composite (SAR) from a runtime environment. Note that this goal
is not mapped to any phase in the default Maven lifecycle.

Creating a New SOA Application and Project from a Maven Archetype

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-3

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

mvn archetype:generate

After creating your application, it contains the following files, assuming you named
your application my-soa-app and your project my-project, as shown in the previous
example:

Table 13–3 Parameters for the Oracle SOA Suite Application

Parameter Purpose

archetypeGroupId Identifies the groupId of the archetype that you want to use to create
the new SOA application. This must be com.oracle.soa as shown in
the previous example.

archetypeArtifactId Identifies the artifactId of the archetype that you want to use to
create the new SOA application. This must be
oracle-soa-application as shown in the previous example.

archetypeVersion Identifies the version of the archetype that you want to use to create
the new SOA application. This must be 12.1.3.0.0 as shown in the
previous example.

groupId The groupId for your new SOA application. This would normally
start with your organization's domain name in reverse format.

artifactId The artifactId for your new SOA application. This would normally
be an identifier for this SOA application.

version The version for your new SOA application. This would normally be
1.0-SNAPSHOT for a new project.

projectName The name for the SOA project inside your new SOA application.
This should be different to the name of the SOA application
(artifactId).

Creating a New SOA Application and Project from a Maven Archetype

13-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

The generated project contains files and a handful of empty directories, as described in
Table 13–4.

src

classes

gen-classes

lib

my-project.diagram.jpg

my-project.diagram.xml

fileList.xml

jps-config.xml

META-INF

adf-config.xml

META-INF

WSDLs

composite.xml

Events

measurements.xml

SCA-INF

Schemas

testsuites

Transformations

SOA

pom.xml

my-soa-app

src

.adf

my-project

Creating a SOA Project in an Existing SOA Application from a Maven Archetype

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-5

13.3 Creating a SOA Project in an Existing SOA Application from a Maven
Archetype

To create a new SOA project (in an existing SOA application) using the SOA Maven
archetype, execute a command similar to the following, while in the SOA application
directory:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.soa.archetype
 -DarchetypeArtifactId=oracle-soa-project
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-second-project
 -Dversion=1.0-SNAPSHOT

This command runs Maven's archetype:generate goal which allows you to create a
new SOA Project from an archetype. Table 13–5 describes the parameters:

Table 13–4 Files Created for the Oracle SOA Suite Application and Project

File Purpose

pom.xml The Maven Project Object Model (POM) file that describes your
new application. It includes the Maven coordinates that you
specified for your application, and a reference to the SOA project
inside the application.

PROJECT/pom.xml The Maven POM file that describes your new project. It includes
the Maven coordinates that you specified for your project, and
the appropriate plug-in definitions to use the SOA Maven
Plug-in to build your project into a SAR file.

PROJECT/composite.xml Composite metadata.

.adf/META-INF/adf-config.
xml

The definitions for MDS repositories that may be needed to
build your composites.

Others The remainder are the standard files that are created in any new
composite. These are the same files as you would find in a new
SOA Application and SOA Project created in JDeveloper.

Table 13–5 Parameters for the Oracle SOA Suite Project

Parameter Purpose

archetypeGroupId Identifies the groupId of the archetype that you want to use to create
the new SOA application. This must be com.oracle.soa as shown in
the previous example.

archetypeArtifactId Identifies the artifactId of the archetype that you want to use to create
the new SOA application. This must be oracle-soa-project as shown
in the previous example.

archetypeVersion Identifies the version of the archetype that you want to use to create
the new SOA application. This must be 12.1.3.0.0 as shown in the
previous example.

groupId The groupId for your new SOA project. This would normally start
with your organization's domain name in reverse format.

artifactId The artifactId for your new SOA project. This would normally be an
identifier for this SOA project.

version The version for your new SOA project. This would normally be
1.0-SNAPSHOT for a new project.

Creating a SOA Project in an Existing SOA Application from a Maven Archetype

13-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

mvn archetype:generate

After creating your new project, it contains the following files, assuming that you
named your project my-second-project:

The generated project contains files and a handful of empty directories described in
Table 13–4.

The mvn generate command also updates your SOA Application POM to add the new
project. For example, if you created this project in the application in Section 13.2, you
would see the following list in the SOA Application POM:

<modules>
 <module>my-project</module>
 <module>my-second-project</module>
</modules>

When you have a SOA Application with multiple SOA Projects like this (a Maven
multi-module project), Maven builds your projects one by one, in the order they are
listed in the SOA Application POM.

src

classes

gen-classes

lib

my-second-project.diagram.jpg

my-second-project.diagram.xml

fileList.xml

WSDLs

composite.xml

Events

measurements.xml

SCA-INF

Schemas

testsuites

Transformations

SOA

pom.xml

my-second-project

Building Your Project with Maven

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-7

13.4 Editing Your Application in Oracle JDeveloper
You can edit your application in Oracle JDeveloper to configure SOA composites.

To open the project:

1. Open the File menu, then select Import….

2. In the Import dialog box, select the Maven Project option and click OK.

The Import Maven Projects dialog appears:

3. In the Root Directory field, enter the path to the application you want to import
into JDeveloper.

4. In the Settings File field, enter the path to your Maven settings.xml file. The
default value is most likely correct unless you are using a non-standard location
for your Maven settings file.

5. Click Refresh to load a list of projects available at that location.

6. Select the projects that you want to import. Also, select Also import source files
into application and Update existing JDeveloper Projects to synch with
imported POM files.

7. Click OK to complete the import.

Your projects are then opened in JDeveloper.

13.5 Building Your Project with Maven
After you have written your project code, you can use Maven to build the project.

To run the SCA validation on your project, execute this command:

mvn compile

What You May Need to Know About Building Projects

13-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

To build the SAR file, execute this command:

mvn package

13.6 What You May Need to Know About Building Projects
Some composite projects require access to an MDS repository in order to be built. This
includes all composites that contain a Human Task or Business Rule component. These
components refer to WSDL or XSD files, or both, in MDS.

To build these projects, you need to provide the build with access to an MDS
repository. This can be either a file-based or a database-based MDS repository.

The MDS repository connection details are specified in the SOA
Application/.adf/META-INF/adf-config.xml file. This means that any SOA Project
which requires access to MDS must be located inside a SOA Application.

If you create a new project using the SOA Maven Application archetype or using
JDeveloper, the adf-config.xml will contain the following default MDS repository
configuration:

<metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store
class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property name="metadata-path" value="${oracleHome}/integration"/>
 <property name="partition-name" value="seed"/>
 </metadata-store>
 </metadata-store-usage>
</metadata-store-usages>

This example defines a file-based MDS repository in the location
${oracleHome}/integration. If you run this build in Maven, the oracleHome variable
may not be defined. In that case, you need to specify it on the Maven command line, as
shown in the following example:

mvn compile -DoracleHome=MW_HOME/soa -DappHome=dir_for_application_for_proj

Notice that the value of oracleHome points to the soa directory in the Oracle Home in
which you installed the SOA Quickstart or JDeveloper. That directory contains the seed
MDS repository.

Alternatively, you can just update the adf-config.xml file to provide the full path to the
MDS repository that you want to use.

If you want to use a database-based MDS repository, you must alter the configuration
to specify the JDBC values, similar to that shown in the following example:

<metadata-store-usage id="mstore-usage_1">
 <metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore">
 <property name="jdbc-userid" value="your_prefix_mds"/>
 <property name="jdbc-password" value="welcome1"/>
 <property name="jdbc-url"
 value="jdbc:oracle:thin://@database.server:1521/service_name"/>
 <property name="partition-name" value="soa-infra"/>
 </metadata-store>
</metadata-store-usage>

Deploying Your Project to the SOA Server with Maven

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-9

13.7 Deploying Your Project to the SOA Server with Maven
To deploy the SAR file, execute the following command:

mvn pre-integration-test

Table 13–6 describes the parameters that you can specify for the deployment. These
may be specified either in the POM file for the project or on the command line.

To specify the parameters on the command line, use the format -Dparameter=value, as
shown in this example (note that the whole command would be entered on one line):

mvn pre-integration-test -DserverURL=http://test.server:7001
 -DsarLocation=deploy/sca_my-project_rev1.0.sar
 -Doverwrite=true
 -DforceDefault=true
 -Dcomposite.partition=test
 -Duser=weblogic
 -Dpassword=welcome1

To specify the parameters in your project POM file, you should specify replacement
values for the defaults already specified in the parameters section of the project POM:

<properties>
 <!-- these parameters are used by the compile goal -->
 <scac.input.dir>${project.basedir}/SOA/</scac.input.dir>
 <scac.output.dir>${project.basedir}/target</scac.output.dir>
 <scac.input>${scac.input.dir}/composite.xml</scac.input>
 <scac.output>${scac.output.dir}/out.xml</scac.output>
 <scac.error>${scac.output.dir}/error.txt</scac.error>
 <scac.displayLevel>1</scac.displayLevel>
 <!-- if you are using a config plan, uncomment the following line and
update to point
 to your config plan -->
 <!--<configplan>${scac.input.dir}/configplan.xml</configplan>-->
 <!-- these parameters are used by the deploy and undeploy goals -->
 <composite.name>${project.artifactId}</composite.name>
 <composite.revision>1.0</composite.revision>
 <composite.partition>default</composite.partition>
 <serverUrl>${oracleServerUrl}</serverUrl>

Table 13–6 Parameters for Deploying a SOA Project

Parameter Purpose

serverURL The URL of the Administration Server in the SOA domain.

sarLocation The location of the SAR file.

overwrite Whether deployment should overwrite any existing composite
with the same revision.

configplan (Optional) The name of the SOA configuration plan to use, if
any.

forceDefault Whether deployment should make this revision the default
revision.

regenerateRuleBase Whether the base rule dictionary should be regenerated.

composite.partition The SOA partition that the composite will be deployed into.

user User name to be used for deployment.

password Password to be used for deployment.

Running SCA Test Suites with Maven

13-10 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 <user>${oracleUsername}</user>
 <password>${oraclePassword}</password>
 <overwrite>true</overwrite>
 <forceDefault>true</forceDefault>
 <regenerateRulebase>false</regenerateRulebase>
 <keepInstancesOnRedeploy>false</keepInstancesOnRedeploy>
 <!-- these parameters are used by the test goal -->
 <!-- if you are using the sca-test (test) goal, you need to uncomment
 the following line and point it to your jndi.properties file. -->

<!--<jndi.properties.input>${basedir}/jndi.properties</jndi.properties.input>-->
 <scatest.result>${scac.output.dir}/testResult</scatest.result>
 <!-- input is the name of the composite to run test suties against -->
 <input>project12</input>
</properties>

13.8 Running SCA Test Suites with Maven
If you want to execute your SCA Test Suites as part of the Maven build process, you
need to create a jndi.properties file (as you would if you were executing SCA Test
Suites from ANT, for example) in your SOA composite project directory. This file
contains the following information:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://test.server:7003/soa-infra
java.naming.security.principal=weblogic
java.naming.security.credentials=welcome1
dedicated.connection=true
dedicated.rmicontext=true

Additionally, you need to uncomment the jndi.properties entry in the SOA composite
project POM (pom.xml) and ensure that it points to the file you just created.

The SOA Maven Plug-in executes the SCA Tests in the integration-test phase. To
compile and package your composite, deploy it to a server and run the SCA Tests,
execute this command:

mvn verify

13.9 What You May Need to Know About Deploying Composites
When you create a SOA composite, you may use new resources, such as WebLogic
data sources, JMS queues, and Topics. These resources may not be present in the
runtime environment where you want to deploy your composite. This means that you
may not be able to successfully execute any instances of your composite, for example
to run test cases.

While it is possible to manually create these resources through the WebLogic console,
this would not be appropriate for an automated build environment. To address this
issue, WLST scripts can be created and executed as part of the build to ensure that any
necessary resources are created and configured on the runtime environment. You can
execute the WLST scripts at the appropriate time in your build using the
weblogic-maven-plugin:wlst goal.

The following is an example of a WLST script to create a data source. You could add it
to your project as misc/create-datasource.py:

Copyright 2012, 2014 Oracle Corporation.
All Rights Reserved.
#

What You May Need to Know About Deploying Composites

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-11

Provided on an 'as is' basis, without warranties or conditions of any kind,
either express or implied, including, without limitation, any warranties or
conditions of title, non-infringement, merchantability, or fitness for a
particular purpose. You are solely responsible for determining the
appropriateness of using and assume any risks. You may not redistribute.
#
This WLST script can be used as part of a continuous integration build process
before deploying a SCA composite, to create any necessary Java EE data sources
on the WebLogic Server.
#
In addition to creating the data source, this script will also update the
resource adapter and redeploy it.

import time

#
These are the parameters that you need to edit before running this script
#

admin server url
url = 't3://localhost:7001'
username to connect to the admin server
username = 'weblogic'
password to connect to the admin server
password = 'welcome1'
the name for the EIS - as defined in the DB Adapter wizard in JDEV
eisName = 'eis/db/myDS'
the admin or managed server to target where the DbAdapter is deployed
serverName = 'soa_server1'
the name for the data source
dsName = 'myDS'
the JNDI name for the data source
jndiName = 'jbdc/myDS'
the database url for the data source
dbUrl = 'jdbc:oracle:thin:@localhost:1521:orcl'
the database user
dbUser = 'mark'
the database password
dbPassword = 'welcome1'
the database driver to use
dbDriver = 'oracle.jdbc.xa.client.OracleXADataSource'
the host where node manager is running
nmHost = 'localhost'
the port to connect to node manager (5556 is default for plain mode)
nmPort = '5556'
the user to connect to node manager
nmUser = 'weblogic'
the password to connection to node manager
nmPassword = 'welcome1'
the name of the weblogic domain
domain = 'base_domain'

don't change these ones
uniqueString = ''
appName = 'DbAdapter'
moduleOverrideName = appName+'.rar'
moduleDescriptorName = 'META-INF/weblogic-ra.xml'

#
method definitions

What You May Need to Know About Deploying Composites

13-12 Oracle Fusion Middleware Developing Applications Using Continuous Integration

#
def makeDeploymentPlanVariable(wlstPlan, name, value, xpath, origin='planbased'):
 """Create a varaible in the Plan.
 This method is used to create the variables that are needed in the Plan in order
 to add an entry for the outbound connection pool for the new data source.
 """

 try:
 variableAssignment = wlstPlan.createVariableAssignment(name,
moduleOverrideName, moduleDescriptorName)
 variableAssignment.setXpath(xpath)
 variableAssignment.setOrigin(origin)
 wlstPlan.createVariable(name, value)

 except:
 print('--> was not able to create deployment plan variables successfully')

def main():

 print ' Copyright 2012, 2014 Oracle Corporation. '
 print ' All Rights Reserved. '
 print ''
 print ' Provided on an ''as is'' basis, without warranties or conditions of any
kind, '
 print ' either express or implied, including, without limitation, any warranties
or '
 print ' conditions of title, non-infringement, merchantability, or fitness for a
'
 print ' particular purpose. You are solely responsible for determining the '
 print ' appropriateness of using and assume any risks. You may not
redistribute.'
 print ''
 print ' This WLST script can be used as part of a continuous integration build
process'
 print ' before deploying a SCA composite, to create any necessary Java EE data
sources'
 print ' on the WebLogic Server.'
 print ''
 print ' In addition to creating the data source, this script will also update
the '
 print ' resource adapter and redeploy it.'
 print ''
 print ' !!! WARNING !!! WARNING !!! WARNING !!! WARNING !!! WARNING !!! WARNING
!!!'
 print ''
 print ' This script will make changes to your WebLogic domain. Make sure you
know '
 print ' what you are doing. There is no support for this script. If something
bad '
 print ' happens, you are on your own! You have been warned.'

 #
 # generate a unique string to use in the names
 #

 uniqueString = str(int(time.time()))

 #
 # Create a JDBC Data Source.

What You May Need to Know About Deploying Composites

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-13

 #
 try:
 print('--> about to connect to weblogic')
 connect(username, password, url)
 print('--> about to create a data source ' + dsName)
 edit()
 startEdit()
 cmo.createJDBCSystemResource(dsName)
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName)
 cmo.setName(dsName)
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName +
'/JDBCDataSourceParams/' + dsName)
 set('JNDINames',jarray.array([String(jndiName)], String))
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName +
'/JDBCDriverParams/' + dsName)
 cmo.setUrl(dbUrl)
 cmo.setDriverName(dbDriver)
 cmo.setPassword(dbPassword)
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName +
'/JDBCConnectionPoolParams/' + dsName)
 cmo.setTestTableName('DUAL')
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName +
'/JDBCDriverParams/' + dsName + '/Properties/' + dsName)
 cmo.createProperty('user')
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName +
'/JDBCDriverParams/' + dsName + '/Properties/' + dsName + '/Properties/user')
 cmo.setValue(dbUser)
 cd('/JDBCSystemResources/' + dsName + '/JDBCResource/' + dsName +
'/JDBCDataSourceParams/' + dsName)
 cmo.setGlobalTransactionsProtocol('TwoPhaseCommit')
 cd('/JDBCSystemResources/' + dsName)
 set('Targets',jarray.array([ObjectName('com.bea:Name=' + serverName +
',Type=Server')], ObjectName))
 save()
 print('--> activating changes')
 activate()
 print('--> done')

#
update the deployment plan
#
 print('--> about to update the deployment plan for the DbAdapter')
 startEdit()
 planPath = get('/AppDeployments/DbAdapter/PlanPath')
 appPath = get('/AppDeployments/DbAdapter/SourcePath')
 print('--> Using plan ' + planPath)
 plan = loadApplication(appPath, planPath)
 print('--> adding variables to plan')
 makeDeploymentPlanVariable(plan, 'ConnectionInstance_eis/DB/' + dsName + '_
JNDIName_' + uniqueString, eisName,
'/weblogic-connector/outbound-resource-adapter/connection-definition-group/[connec
tion-factory-interface="javax.resource.cci.ConnectionFactory"]/connection-instance
/[jndi-name="' + eisName + '"]/jndi-name')
 makeDeploymentPlanVariable(plan, 'ConfigProperty_xADataSourceName_Value_' +
uniqueString, eisName,
'/weblogic-connector/outbound-resource-adapter/connection-definition-group/[connec
tion-factory-interface="javax.resource.cci.ConnectionFactory"]/connection-instance
/[jndi-name="' + eisName +
'"]/connection-properties/properties/property/[name="xADataSourceName"]/value')
 print('--> saving plan')

What You May Need to Know About ADF Human Task User Interface Projects

13-14 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 plan.save();
 save();
 print('--> activating changes')
 activate(block='true');
 cd('/AppDeployments/DbAdapter/Targets');
 print('--> redeploying the DbAdapter')
 redeploy(appName, planPath, targets=cmo.getTargets());
 print('--> done')

 except:
 print('--> something went wrong, bailing out')
 stopEdit('y')
 raise SystemExit

 #
 # disconnect from the admin server
 #

 print('--> disconnecting from admin server now')
 disconnect()

#
this is the main entry point

main()

To execute this script during the pre-integration-test phase of your build, you
would include a plugin section similar to the following in your SOA Project POM:

<plugin>
 <groupId>com.oracle.weblogic</groupId>
 <artifactId>weblogic-maven-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <executions>
 <execution>
 <id>wlst-create-datasource</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>wlst</goal>
 </goals>
 <configuration>
 <middlewareHome>c:/wls1212</middlewareHome>
 <fileName>${project.basedir}/misc/create-datasource.py</fileName>
 </configuration>
 </execution>
 </executions>
</plugin>

13.10 What You May Need to Know About ADF Human Task User
Interface Projects

If you add an ADF Human Task User Interface project to your SOA Application in
JDeveloper, the application level POM is updated to add the new ADF project as a
"module" and some <plugin> definitions are added to the <build> section to build the
ADF project.

When you create an ADF Human Task project, some JDeveloper libraries are added to
the build path for that project in JDeveloper. Additionally, JDeveloper checks to see if
there are matching POMs for those libraries in your local Maven repository. If not, it

What You May Need to Know About ADF Human Task User Interface Projects

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-15

creates those POMs for you. These new library POMs (if any are needed) are created
with the Maven groupId = com.oracle.adf.library.

Note that the Maven repository used by JDeveloper can be specified in
Tools/Preferences/Maven/Repository; it may not be the default repository in
$HOME/.m2.

If you want to build these ADF Human Task projects on another machine, for example,
a build server, which is using a different Maven repository (local or remote), copy
these new POMs to that Maven repository.

Additionally, the server on which you build the ADF Human Task projects must have
access to a JDeveloper installation, because the ojdeploy Maven plug-in, which is used
to package the ADF project into an EAR file, depends on the JDeveloper Oracle Home
being present.

If you want to deploy the EAR file as part of the application build, you need to add a
new <plugin> section to invoke the weblogic-maven-plugin:deploy goal in the
appropriate phase of your build, most likely pre-integration-test. Note that the
EAR file is located in the appHome/deploy directory, not in the ADF project's directory.
This is due to the fact that a single EAR file may contain multiple ADF Human Task
project WAR files.

If you target the deployment to the SOA server (as shown in the following example),
the ADF URI is automatically registered in the appropriate MBean so that the SOA or
BPM Workspace application can find it.

<plugin>
 <groupId>com.oracle.weblogic</groupId>
 <artifactId>weblogic-maven-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <executions>
 <execution>
 <goals>
 <goal>deploy</goal>
 </goals>
 <phase>pre-integration-test</phase>
 <configuration>
 <adminurl>t3://localhost:7001</adminurl>
 <user>weblogic</user>
 <password>welcome1</password>
 <source>${project.basedir}/deploy/adf1.ear</source>
 <verbose>true</verbose>
 <name>${project.build.finalName}</name>
 <targets>soa_server1</targets>
 </configuration>
 </execution>
 </executions>
</plugin>

To be able to deploy the EAR file, you also need to set up the appropriate MDS
configuration in appHome/.adf/META-INF/adf-config.xml. This is most likely a
database-based MDS store, as shown in Section 13.6. For the build to work correctly,
and the deployed application to function correctly, this database must be accessible
from both the build server and the runtime server. This may not be practical in
production environments, so you may need to define multiple deployment profiles for
the ADF project.

Undeploying Your SOA Project

13-16 Oracle Fusion Middleware Developing Applications Using Continuous Integration

13.11 Undeploying Your SOA Project
You can undeploy your composite using the undeploy goal, which has the following
parameters:

To undeploy a SAR file, execute the following command, specifying the appropriate
values for your environment. This command should be entered on one line.

mvn com.oracle.soa.plugin:oracle-soa-plugin:undeploy
 -DserverURL=http://test.server:7001
 -Dcomposite.name=my-project
 -Dcomposite.revision=1.0
 -Dcomposite.partition=test
 -Duser=weblogic
 -Dpassword=welcome1

You should run the undeploy goal against a SOA Project, not a SOA Application.

13.12 What You May Need to Know About the SOA Parent POM
The SOA Parent POM is provided as a point of customization. It has Maven
coordinates com.oracle.soa:sar-common:12.1.3-0-0. If you want to set some
environment-wide defaults, for example, the URL, user name, and password for your
test server, then you can put these in the SOA Parent POM. Projects that are created
from the SOA archetypes automatically use values from the SOA Parent POM if you
do not override them.

The SOA Parent POM contains the following properties:

<properties>
 <!--
 These two properties are defined in com.oracle.maven:oracle-common, you can
overwrite them here.
 Users who do not want to add plain text password in their properties or pom
file, should use the userConfigFile
 and userKeyFile options for deployment.
 <oracleUsername>USERNAME</oracleUsername>
 <oraclePassword>PASSWORD</oraclePassword>
 -->

 <!-- Change the default values according to your environment -->
 <oracleServerUrl>http://localhost:8001</oracleServerUrl>
 <oracleServerName>soa_server1</oracleServerName>
 <oracleMiddlewareHome>/home/myhome/Oracle/Middleware</oracleMiddlewareHome>
</properties>

Parameter Purpose

serverURL The URL of the Administration Server in the SOA domain.

composite.name The name of the composite you want to undeploy.

composite.revision The revision of the composite you want to undeploy.

composite.partition The partition that holds the composite you want to undeploy.

user User name to be used for undeployment.

password Password to be used for undeployment.

What You May Need to Know About the SOA Parent POM

Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven 13-17

You can set these properties, or define any other properties that you want to have
available to SOA Projects. To refer to a property in your SOA Project POM, use the
syntax $propertyName, for example. $oracleServerName would be replaced with
soa_server1 in the previous example.

What You May Need to Know About the SOA Parent POM

13-18 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Building Oracle Service Bus Projects with Maven 14-1

14Building Oracle Service Bus Projects with
Maven

[14] This chapter provides details on how to use the Oracle Service Bus Maven
archetypes to create, build, and deploy Oracle Service Bus applications.

This chapter contains the following sections:

■ Introduction to Building Oracle Service Bus Projects with Maven

■ Creating an Oracle Service Bus Application from a Maven Archetype

■ Editing Your Application in Oracle JDeveloper

■ Creating an Oracle Service Bus Project from a Maven Archetype

■ Building Your Project with Maven

■ Deploying Your Project to the Oracle Service Bus Server with Maven

■ What You May Need to Know About the Oracle Service Bus Parent POM

For more information about using the Oracle Service Bus development plug-in with
Maven, see "Using the Oracle Service Bus Development Maven Plug-In" in Developing
Services with Oracle Service Bus.

14.1 Introduction to Building Oracle Service Bus Projects with Maven
A Maven plug-in and three archetypes are provided for Oracle Service Bus. The
Maven coordinates are described in Table 14–1.

The Oracle Service Bus plug-in supports the following goals:

Table 14–1 Maven Coordinates with Oracle Service Bus

Artifact groupId artifactId version

OSB plug-in com.oracle.servicebus oracle-servicebus-plugin 12.1.3-0-0

OSB Application archetype com.oracle.servicebus oracle-servicebus-application 12.1.3-0-0

OSB Project archetype com.oracle.servicebus oracle-servicebus-project 12.1.3-0-0

OSB System Resources
archetype

com.oracle.servicebus oracle-servicebus-system 12.1.3-0-0

Goal Purpose

package Creates a service bus archive (SBAR) file from the project.

Creating an Oracle Service Bus Application from a Maven Archetype

14-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

The custom packaging type sbar is defined, representing an Oracle Service Bus
archive.

14.2 Creating an Oracle Service Bus Application from a Maven Archetype
To create a new Oracle Service Bus application (containing an OSB Project and an OSB
System Resources project) using the OSB Application Maven archetype, execute a
command similar to the following:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.servicebus
 -DarchetypeArtifactId=oracle-servicebus-application
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-servicebus-application
 -Dversion=1.0-SNAPSHOT
 -DprojectName=my-project

This command runs Maven's archetype:generate goal which allows you to create a
new project from an archetype. Table 14–4 describes the parameters.

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

deploy Deploys the SBAR file to a runtime environment. Note that this goal is mapped
to the pre-integration-test phase in the default lifecycle, not the deploy phase,
as deployment to a runtime environment is usually done in the
pre-integration-test phase in Maven.

Table 14–2 Parameters for the Oracle Service Bus Project

Parameter Purpose

archetypeGroupId Identifies the groupId of the archetype that you want to use to
create the new project. This must be com.oracle.servicebus as
shown in the preceding example.

archetypeArtifactId Identifies the artifactId of the archetype that you want to use to
create the new project. This must be
oracle-servicebus-application as shown in the preceding
example.

archetypeVersion Identifies the version of the archetype that you want to use to
create the new project. This must be 12.1.3-0-0, as shown in the
preceding example.

groupId The groupId for your new project. This usually starts with your
organization's domain name in reverse format.

artifactId The artifactId for your new project. This is usually an identifier
for this project.

version The version for your new project. This is usually 1.0-SNAPSHOT
for a new project.

projectName The name for the OSB project to create inside the application.
This should be different from the name of the application (that
is, artifactId), and it cannot be System, which is reserved for
system resources.

Goal Purpose

Editing Your Application in Oracle JDeveloper

Building Oracle Service Bus Projects with Maven 14-3

mvn archetype:generate

After creating your application, it contains the following files:

Table 14–3 describes the files included in the project.

14.3 Editing Your Application in Oracle JDeveloper
You can edit your application in Oracle JDeveloper to define OSB resources. To open
the application:

1. Open the File menu, then select Import….

2. In the Import dialog box, select the Maven Project option and click OK.

The Import Maven Projects dialog appears, as shown in the following figure:

Table 14–3 Files Created for the Oracle Service Bus Project

File Purpose

pom.xml This is the Maven Project Object Model (POM) file that describes
your new application. It includes the Maven coordinates that
you specified for your application. This POM is used to group
all of the OSB projects that form part of this application.

my-project/pom.xml The Maven POM file that describes your new project. It includes
the Maven coordinates that you specified for your project, and
the appropriate plug-in definitions to use the Oracle Service Bus
Maven plug-in to build your project into an sbar file.

System/pom.xml This is a Maven Project Object Model (POM) file for building
OSB system resources into a sbar file.

pom.xml

pom.xml

my-servicebus-application

System

pom.xml

my-project

Creating an Oracle Service Bus Project from a Maven Archetype

14-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

3. In the Root Directory field, enter the path to the application you want to import
into JDeveloper.

4. In the Settings File field, enter the path to your Maven settings.xml file. The
default value is most likely correct unless you are using a non-standard location
for your Maven settings file.

5. Click Refresh to load a list of projects available at that location.

6. Select the projects that you want to import. Also select Update existing
JDeveloper Projects to synch with imported POM files.

7. Click OK to complete the import.

Your applications are opened in JDeveloper.

When you import an Oracle Service Bus application (or project) into JDeveloper, you
have the choice of creating a new application (or project) directory, or simply creating
the JDeveloper project files (jws and jpr files) in the existing location. If you select the
Also import source files into application option and provide a new directory in the
import dialog box, JDeveloper creates a new copy of the application (or project) in a
new directory. To create the JDeveloper files in the existing directory, do not select the
Also import source files into application option, and select the existing directory
when prompted for the project location.

14.4 Creating an Oracle Service Bus Project from a Maven Archetype
To create a new Oracle Service Bus Project inside an existing OSB application using the
OSB Project Maven archetype, execute a command similar to the following, from your
OSB Application root directory:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.servicebus
 -DarchetypeArtifactId=oracle-servicebus-project

Creating an Oracle Service Bus Project from a Maven Archetype

Building Oracle Service Bus Projects with Maven 14-5

 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-second-project
 -Dversion=1.0-SNAPSHOT

This command runs Maven's archetype:generate goal, which allows you to create a
new project from an archetype. The following table describes the parameters:

You can also run the command without any arguments, as shown in the following
example. In this case, Maven displays a list of available archetypes and prompts you to
enter the required information.

mvn archetype:generate

Note that OSB Projects must be located inside an OSB Application.

After creating your project, it contains the following files:

my-second-project/
|-- pom.xml

The following table describes the file included in the project,:

Maven also updates the OSB Application POM file to include this new project. If you
ran the preceding command in the application you created in Section 14.2, you would
see the following in your OSB Application POM:

<modules>
 <module>my-project</module>
 <module>my-servicebus-project</module>

Table 14–4 Parameters for the Oracle Service Bus Project from a Maven Archetype

Parameter Purpose

archetypeGroupId Identifies the groupId of the archetype that you want to use to
create the new project. This must be com.oracle.servicebus as
shown in the preceding example.

archetypeArtifactId Identifies the artifactId of the archetype that you want to use to
create the new project. This must be
oracle-servicebus-project as shown in the preceding
example.

archetypeVersion Identifies the version of the archetype that you want to use to
create the new project. This must be 12.1.3-0-0 as shown in the
preceding example.

groupId The groupId for your new project. This usually starts with your
organization's domain name in reverse format.

artifactId The artifactId for your new project. This is usually an identifier
for this project. It cannot be System, which is reserved for system
resources.

version The version for your new project. This usually is 1.0-SNAPSHOT
for a new project.

File Purpose

pom.xml This is the Maven Project Object Model (POM) file that describes your
new project, it includes the Maven coordinates that you specified for
your project, and it also includes the appropriate plug-in definitions to
use the OSB Maven Plug-in to build your project into a sbar file.

Building Your Project with Maven

14-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 <module>my-second-project</module>
</modules>

14.5 Building Your Project with Maven
After you have written your project code, you can use Maven to build the project.

To build the SBAR file, execute the following command:

mvn package -DoracleHome=/path/to/osbhome

The preceding command creates a SBAR file from your project and places it in:

project/.data/maven/sbconfig.sbar

The following parameter may be specified for the packaging. You can specify it either
in the POM file for the project or on the command line as shown in the preceding
example.

14.6 Deploying Your Project to the Oracle Service Bus Server with Maven
To deploy the SBAR file, execute the following command:

mvn pre-integration-test

You can specify the following parameters for the deployment. You can specify them
either in the POM file for the project or on the command line.

To specify the parameters on the command line, use the format -Dparameter=value, as
shown in this example (note that the whole command would be entered on one line):

mvn pre-integration-test
 -DoracleServerUrl=http://test.server:7001
 -DoracleUsername=weblogic
 -DoraclePassword=welcome1

To specify the parameters in your project POM file, add a plugin section as shown in
the following example:

<plugins>

 <plugin>
 <groupId>com.oracle.servicebus</groupId>
 <artifactId>oracle-servicebus-plugin</artifactId>
 <version>12.1.3-0-0</version>

Parameter Purpose

oracleHome The location of the Oracle Home for Oracle Fusion Middleware.

Parameter Purpose

oracleHome The location of the Oracle Fusion Middleware Oracle Home where
OSB is installed.

oracleServerUrl The URL of the server in the OSB domain.

customization (optional) The name of the OSB customization file to use, if any.

oracleUsername User name to be used for deployment.

oraclePassword Password to be used for deployment.

What You May Need to Know About the Oracle Service Bus Parent POM

Building Oracle Service Bus Projects with Maven 14-7

 <extensions>true</extensions>
 <configuration>
 <oracleHome>/u01/osbhome</oracleHome>
 <oracleServerUrl>http://test.server:7001</oracleServerUrl>
 <oracleUsername>weblogic</oracleUsername>
 <oraclePassword>welcome1</oraclePassword>
 </configuration>
 </plugin>
 </plugins>

14.7 What You May Need to Know About the Oracle Service Bus Parent
POM

The OSB Parent POM is provided as a point of customization. For example, to set
some environment-wide defaults, such as the URL, user name, and password for your
test server, then you may want to put these in the OSB Parent POM.

You can set these properties, or define any other properties that you want to have
available to OSB Projects. To refer to a property in your OSB Project POM, use the
syntax $propertyName. For example, $oracleServerName would be replaced with
osb_server1 in the following example.

Projects that are created from the OSB archetypes automatically use values from the
OSB Parent POM if you do not override them.

The following is an example of an OSB Parent POM which defines some properties:

<properties>
 <!--
 These two properties are defined in com.oracle.maven:oracle-common, you can
overwrite them here.
 Users who do not want to add plain text password in their properties or
 pom file, should use the userConfigFile and userKeyFile options for deployment.
 <oracleUsername>USERNAME</oracleUsername>
 <oraclePassword>PASSWORD</oraclePassword>
 -->

 <!-- Change the default values according to your environment -->
 <oracleServerUrl>t3://localhost:7001</oracleServerUrl>
 <oracleServerName>osb_server1</oracleServerName>
 <oracleHome>/u01/osbhome</oracleHome>
</properties>

What You May Need to Know About the Oracle Service Bus Parent POM

14-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

1

Building a Real Application with Maven 15-1

15Building a Real Application with Maven

[15] Many real world applications include modules that are targeted to be deployed on
different runtime environments. For example, you may have a web application that
uses data stored in a Coherence cache. This chapter describes how to build such a web
application.

This chapter contains the following sections:

■ Introducing the Example

■ Multi-Module Maven Projects

■ Building a Maven Project

15.1 Introducing the Example
The example application that you build in this chapter displays a list of people, with
their names and age, on a web page. It also allows you to add a new person. The
details of the people are stored in a Coherence cache. This application contains the
following parts:

■ A Coherence GAR project, which contains a Person POJO which you need to build
into a Portable Object, a utility class to access the cache, and Coherence cache
definitions.

■ A Java EE web application, which you need to build into a WAR, which contains a
servlet and a deployment descriptor.

■ A project to assemble the GAR and WAR into an EAR and deploy that EAR to
WebLogic Server.

In this example, you can see how to build a multi-module Maven project, with
dependencies between modules, and how to assemble our application components
into a deployable EAR file that contains the whole application.

The aim of this chapter is to show how to use Maven to build whole applications, not
to demonstrate how to write web or Coherence applications, so the content of the
example itself, in terms of the servlet and the coherence code, is quite basic. For more
information, refer to Chapter 10 and Chapter 11.

15.2 Multi-Module Maven Projects
Maven lets you create projects with multiple modules. Each module is in effect another
Maven project. At the highest level, you have a POM file that tells Maven about the
modules and lets you build the whole application with one Maven command.

Building a Maven Project

15-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

Each of the modules are placed in a subdirectory of the root of the top level project. In
the example, the top level project is called my-real-app and the three modules are
my-real-app-gar, my-real-app-war and my-real-app-ear. The Maven coordinates of
the projects are as follows:

The following are the files that make up the application:

pom.xml

my-real-app-gar/pom.xml
my-real-app-gar/src/main/resources/META-INF/pof-config.xml
my-real-app-gar/src/main/resources/META-INF/coherence-application.xml
my-real-app-gar/src/main/resources/META-INF/cache-config.xml
my-real-app-gar/src/main/java/org/mycompany/CacheWrapper.java
my-real-app-gar/src/main/java/org/mycompany/Person.java

my-real-app-war/pom.xml
my-real-app-war/src/main/webapp/WEB-INF/web.xml
my-real-app-war/src/main/java/org/mycompany/servlets/MyServlet.java

my-real-app-ear/pom.xml
my-real-app-ear/src/main/application/META-INF/weblogic-application.xml

At the highest level, the POM file points to the three modules.

The my-real-app-gar directory contains the Coherence GAR project. It contains its
own POM, the Coherence configuration files, a POJO/POF class definition
(Person.java) and a utility class that is needed to access the cache
(CacheWrapper.java).

The my-real-app-war directory contains the web application. It contains its own POM,
a Servlet and a deployment descriptor. This project depends on the my-real-app-gar
project.

The my-real-app-ear directory contains the deployment descriptor for the EAR file
and a POM file to build and deploy the EAR.

15.3 Building a Maven Project
This section describes how to build the example project. It includes the following
sections:

■ Creating a Directory for the Projects

■ Creating the GAR Project

■ Creating the WAR project

■ Creating the EAR project

■ Creating the Top-Level POM

■ Building the Application Using Maven

GroupId ArtifactId Version Packaging

org.mycompany my-real-app 1.0-SNAPSHOT pom

org.mycompany my-real-app-gar 1.0-SNAPSHOT gar

org.mycompany my-real-app-war 1.0-SNAPSHOT war

org.mycompany my-real-app-ear 1.0-SNAPSHOT ear

Building a Maven Project

Building a Real Application with Maven 15-3

15.3.1 Creating a Directory for the Projects
Create a directory to hold the projects, using the following command:

mkdir my-real-app

Throughout the rest of this chapter, paths relative to this directory are given.

15.3.2 Creating the GAR Project
You can create the GAR project either using an archetype, as described in Section 11.2,
or you can create the directories and files manually.

To use the archetype, run the following command:

mvn archetype:generate
 -DarchetypeGroupId=com.oracle.coherence
 -DarchetypeArtifactId=maven-gar-archetype
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-real-app-gar
 -Dversion=1.0-SNAPSHOT

To create the project manually, use the following commands to create the necessary
directories:

mkdir -p my-real-app-gar/src/main/resources/META-INF
mkdir -p my-real-app-gar/src/main/java/org/mycompany

This section includes the following topics:

■ Creating or Modifying the POM File

■ Creating or Modifying the Coherence Configuration Files

■ Creating the Portable Objects

■ Creating a Wrapper Class to Access the Cache

15.3.2.1 Creating or Modifying the POM File
If you use the archetype, you already have a POM file. You should modify that file to
match the following example. If you create the project manually, you should create the
POM file (my-real-app-gar/pom.xml) with the following contents:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>gar</packaging>
 <parent>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <dependencies>
 <dependency>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>coherence</artifactId>

Building a Maven Project

15-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 <version>12.1.3-0-0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>maven-gar-plugin</artifactId>
 <version>${coherence.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </pluginManagement>
 <plugins>
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>maven-gar-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <generatePof>true</generatePof>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Examine the POM file to understand what each part stands for. The Maven
coordinates for this project are set:

 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>gar</packaging>

Notice that the packaging is gar because we use the Coherence Maven plug-in to build
this project into a Coherence GAR file.

The coordinates of the parent project are set. These coordinates point back to the top
level project. You need to create the POM for the top level project in a later step.

 <parent>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

The dependencies section identifies any dependencies that this project has. In this
case, you depend only on the Coherence library, that is,
com.oracle.coherence:coherence:12.1.3-0-0. The scope provided means that this
library is just for compilation and does not need to be packaged in the artifact that you
build (the GAR file) as it is already provided in the runtime environment.

 <dependencies>
 <dependency>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>coherence</artifactId>
 <version>12.1.3-0-0</version>
 <scope>provided</scope>
 </dependency>

Building a Maven Project

Building a Real Application with Maven 15-5

 </dependencies>

The pluginManagement section tells Maven to enable extensions for this plug-in. This
is necessary to allow Maven to recognize GAR files as a target artefact type.

 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>maven-gar-plugin</artifactId>
 <version>${coherence.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </pluginManagement>

The plug-ins section includes any information that you must pass to the Coherence
GAR plug-in. In this case, you must set generatePof to true so that the plug-in looks
for POJOs with POF annotations and generate the necessary artifacts.

 <plugins>
 <plugin>
 <groupId>com.oracle.coherence</groupId>
 <artifactId>maven-gar-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <generatePof>true</generatePof>
 </configuration>
 </plugin>
 </plugins>

15.3.2.2 Creating or Modifying the Coherence Configuration Files
There are three Coherence configuration files that you need in your GAR project. If
you use the archetype, the files already exist, but you need to modify them to match
the following examples. If you create the project manually, you should create these
files in the locations indicated:

my-real-app-gar/src/main/resources/META-INF/pof-config.xml
my-real-app-gar/src/main/resources/META-INF/coherence-application.xml
my-real-app-gar/src/main/resources/META-INF/cache-config.xml

The following are the contents for the pof-config.xml file:

<?xml version="1.0"?>
<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof
-config coherence-pof-config.xsd">
<user-type-list>
 <!-- by default just include coherence POF user types -->
 <include>coherence-pof-config.xml</include>
</user-type-list>
</pof-config>

The following are the contents for the coherence-application.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<coherence-application
xmlns="http://xmlns.oracle.com/weblogic/coherence-application">
 <cache-configuration-ref>META-INF/cache-config.xml</cache-configuration-ref>
 <pof-configuration-ref>META-INF/pof-config.xml</pof-configuration-ref>

Building a Maven Project

15-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

</coherence-application>

Both of these files require little or no modification if you created them with the
archetype.

The cache-config.xml file must be updated if you have used the archetype.

In this file, create a cache named People, with a caching scheme named
real-distributed-gar and a service name of RealDistributedCache, which uses the local
backing scheme and is automatically started. If you are not familiar with these terms,
see Chapter 11.

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"

xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">

<caching-scheme-mapping>
 <cache-mapping>
 <cache-name>People</cache-name>
 <scheme-name>real-distributed-gar</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

<caching-schemes>
 <distributed-scheme>
 <scheme-name>real-distributed-gar</scheme-name>
 <service-name>RealDistributedCache</service-name>
 <backing-map-scheme>
 <local-scheme/>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 </caching-schemes>
</cache-config>

15.3.2.3 Creating the Portable Objects
Create the Person object, which will store information in the cache. Create a new Java
class in the following location:

my-real-app-gar/src/main/java/org/mycompany/Person.java

The following is the content for this class:

package org.mycompany;

import com.tangosol.io.pof.annotation.Portable;
import com.tangosol.io.pof.annotation.PortableProperty;

@Portable
public class Person {
 @PortableProperty(0)
 public String name;
 @PortableProperty(1)
 public int age;

 public Person() {}

 public Person(String name, int age) {

Building a Maven Project

Building a Real Application with Maven 15-7

 this.name = name;
 this.age = age;
 }

 public String getName() { return this.name; }
 public int getAge() { return this.age; }
}

This POJO tells Coherence what to do with the class. The focus of this chapter is on
building applications with Maven, it does not go into the details of writing Coherence
applications. For more information on Coherence, refer to Chapter 11.

15.3.2.4 Creating a Wrapper Class to Access the Cache
Create a small wrapper class that you can use to access the cache. Create another Java
class in this location:

my-real-app-gar/src/main/java/org/mycompany/CacheWrapper.java

The following is the content for this class:

package org.mycompany;

import org.mycompany.Person;
import com.tangosol.net.CacheFactory;
import java.util.Set;

public class CacheWrapper {
 private static CacheWrapper INSTANCE;

 public Set getPeople() {
 return CacheFactory.getCache("People").entrySet();
 }

 public void addPerson(int personid, String name, int age) {
 CacheFactory.getCache("People").put(personid, new Person(name, age));
 }

 public static final CacheWrapper getInstance() {
 if(INSTANCE == null) INSTANCE = new CacheWrapper();
 return INSTANCE;
 }
}

Later, you can use this class in a Servlet to get data from the cache and to add new data
to the cache.

15.3.3 Creating the WAR project
You can create the WAR project either using an archetype as described in Chapter 10,
or you can create the directories and files manually.

To use the archetype, run the following command:

mvn archetype:generate
 -DarchetypeArtifactId=basic-webapp
 -DarchetypeVersion=12.1.3-0-0
 -DgroupId=org.mycompany
 -DartifactId=my-real-app-war
 -Dversion=1.0-SNAPSHOT

Building a Maven Project

15-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

If you use the archetype, you must remove any unnecessary files included in the
project.

To create the project manually, use the following commands to create the necessary
directories:

mkdir -p my-real-app-war/src/main/webapp/WEB-INF
mkdir -p my-real-app-war/src/main/java/org/mycompany/servlets

This section includes the following topics:

■ Creating or Modifying the POM File

■ Creating the Deployment Descriptor

■ Creating the Servlet

15.3.3.1 Creating or Modifying the POM File
If you use the archetype, the POM file already exists. You should modify that file to
match the following example. If you created the project manually, you should create
the POM file (my-real-app-war/pom.xml) with the following contents:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-war</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 <parent>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <name>my-real-app-war</name>
 <dependencies>
 <dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

Let's review what is included in the POM file. First, you must set the coordinates for
this project. Notice that the packaging for this project is war.

 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-war</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>

Then, define the parent, as you did in the GAR project:

 <parent>
 <groupId>org.mycompany</groupId>

Building a Maven Project

Building a Real Application with Maven 15-9

 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

Finally, list the dependencies for this project. In this case, there are two dependencies:
the GAR project to access the POJO and utility classes you defined there and the
Servlet API. This sets the display-name for the web application.

 <dependencies>
 <dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

15.3.3.2 Creating the Deployment Descriptor
The web application has a simple Java EE deployment descriptor, located at this
location:

my-real-app-war/src/main/webapp/WEB-INF/web.xml

The following are the contents of this file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" id="WebApp_ID" version="2.5">

 <display-name>my-real-app-war</display-name>

</web-app>

This sets the display-name for the web application.

15.3.3.3 Creating the Servlet
To create the servlet, locate the MyServlet.java file:

my-real-app-war/src/main/java/org/mycompany/servlets/MyServlet.java

The servlet displays a list of people that are currently in the cache and allows you to
add a new person to the cache. The aim of the section is to learn how to build these
types of applications with Maven, not to learn how to write Java EE web applications,
hence the use of a simplistic servlet.

The following is the content for the servlet class:

package org.mycompany.servlets;

import org.mycompany.Person;

Building a Maven Project

15-10 Oracle Fusion Middleware Developing Applications Using Continuous Integration

import org.mycompany.CacheWrapper;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Map;
import java.util.Set;
import java.util.Iterator;

@WebServlet(name = "MyServlet", urlPatterns = "MyServlet")
public class MyServlet extends HttpServlet {
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String id = request.getParameter("id");
 String name = request.getParameter("name");
 String age = request.getParameter("age");
 if (name == null || name.isEmpty()
 || age == null || age.isEmpty()
 || id == null || id.isEmpty()) {
 // no need to add a new entry
 } else {
 // we have a new entry - so add it
 CacheWrapper.getInstance().addPerson(Integer.parseInt(id), name,
Integer.parseInt(age));
 }
 renderPage(request, response);
 }

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 renderPage(request, response);
 }

 private void renderPage(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 // get the data
 Set people = CacheWrapper.getInstance().getPeople();
 PrintWriter out = response.getWriter();
 out.write("<html><head><title>MyServlet</title></head><body>");
 out.write("<h2>Add a new person</h2>");
 out.write("<form name=\"myform\" method=\"POST\">");
 out.write("ID:<input type=\"text\" name=\"id\"/>
");
 out.write("Name:<input type=\"text\" name=\"name\"/>
");
 out.write("Age:<input type=\"text\" name=\"age\"/>
");
 out.write("<input type=\"submit\" name=\"submit\" value=\"add\"/>");
 out.write("</form>");
 out.write("<h2>People in the cache now</h2>");
 out.write("<table><tr><th>ID</th><th>Name</th><th>Age</th></tr>");
 // for each person in data
 if (people != null) {
 Iterator i = people.iterator();
 while (i.hasNext()) {
 Map.Entry entry = (Map.Entry)i.next();
 out.write("<tr><td>"
 + entry.getKey()

Building a Maven Project

Building a Real Application with Maven 15-11

 + "</td><td>"
 + ((Person)entry.getValue()).getName()
 + "</td><td>"
 + ((Person)entry.getValue()).getAge()
 + "</td></tr>");
 }
 }
 out.write("</table></body></html>");
 }
}

Check if the user has entered any data in the form. If so, add a new person to the cache
using that data. Note that this application has fairly minimal error handling. To add
the new person to the cache, use the addPerson() method in the CacheWrapper class
that you created in your GAR project.

Print out the contents of the cache in a table. In this example, assume that the cache
has a reasonably small number of entries, and read them all using the getPeople()
method in the CacheWrapper class.

15.3.4 Creating the EAR project
The EAR project manages assembling the WAR and the GAR into an EAR. Create this
project manually using the following command:

mkdir -p my-real-app-ear/src/main/application/META-INF

There are two files in this project: a POM file and a deployment descriptor:

my-real-app-ear/pom.xml
my-real-app-ear/src/main/application/META-INF/weblogic-application.xml

This section includes the following topics:

■ The POM File

■ Deployment Descriptor

15.3.4.1 The POM File
The following are the contents of the POM file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-ear</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>ear</packaging>
 <parent>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>
 <name>ear assembly</name>
 <dependencies>
 <dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>

Building a Maven Project

15-12 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 <type>gar</type>
 <scope>optional</scope>
 </dependency>
 <dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-war</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>war</type>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-ear-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 <artifactTypeMappings>
 <artifactTypeMapping type="gar" mapping="jar"/>
 </artifactTypeMappings>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-gar-locally</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>gar</type>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.oracle.weblogic</groupId>
 <artifactId>weblogic-maven-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <executions>
 <!--Deploy the application to the server-->
 <execution>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 <configuration>

Building a Maven Project

Building a Real Application with Maven 15-13

 <adminurl>t3://127.0.0.1:7001</adminurl>
 <user>weblogic</user>
 <password>welcome1</password>
 <middlewareHome>/home/mark/space/maven/wls030213</middlewareHome>
 <!--The location of the file or directory to be deployed-->

<source>${project.build.directory}/${project.build.finalName}.${project.packaging}
</source>
 <!--The target servers where the application is deployed-->
 <targets>AdminServer</targets>
 <verbose>true</verbose>
 <name>${project.build.finalName}</name>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

 Set the Maven coordinates for this project, and point to the parent:

 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-ear</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>ear</packaging>
 <parent>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

Next, there are the dependencies on the WAR and GAR projects:

 <dependencies>
 <dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>gar</type>
 <scope>optional</scope>
 </dependency>
 <dependency>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-war</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>war</type>
 </dependency>
 </dependencies>

There are three separate plug-in configurations. The first of these is for the
maven-ear-plugin. You need to tell it to treat a gar file like a jar file by adding an
artifactTypeMapping, as in the following example:

 <plugin>
 <artifactId>maven-ear-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>

Building a Maven Project

15-14 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 </archive>
 <artifactTypeMappings>
 <artifactTypeMapping type="gar" mapping="jar"/>
 </artifactTypeMappings>
 </configuration>
 </plugin>

Configure the maven-dependency-plugin to copy the GAR file from the
my-real-app-gar project's output (target) directory into the EAR project:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-gar-locally</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>copy</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app-gar</artifactId>
 <version>1.0-SNAPSHOT</version>
 <type>gar</type>
 </artifactItem>
 </artifactItems>
 </configuration>
 </execution>
 </executions>
 </plugin>

And finally, tell the weblogic-maven-plugin how to deploy the resulting EAR file. In
this section, you must update the adminurl, user, password, and target parameters to
match your environment. For details on these parameters, see Table 10–1.

 <plugin>
 <groupId>com.oracle.weblogic</groupId>
 <artifactId>weblogic-maven-plugin</artifactId>
 <version>12.1.3-0-0</version>
 <executions>
 <!--Deploy the application to the server-->
 <execution>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>deploy</goal>
 </goals>
 <configuration>
 <adminurl>t3://127.0.0.1:7001</adminurl>
 <user>weblogic</user>
 <password>welcome1</password>
 <!--The location of the file or directory to be deployed-->

<source>${project.build.directory}/${project.build.finalName}.${project.packaging}
</source>
 <!--The target servers where the application is deployed-->
 <targets>AdminServer</targets>
 <verbose>true</verbose>
 <name>${project.build.finalName}</name>

Building a Maven Project

Building a Real Application with Maven 15-15

 </configuration>
 </execution>
 </executions>
 </plugin>

Once you have completed the POM project, add a deployment descriptor.

15.3.4.2 Deployment Descriptor
The WebLogic deployment descriptor for the EAR file is located in this file:

my-real-app-ear/src/main/application/META-INF/weblogic-application.xml

The following are the contents:

<weblogic-application>
 <module>
 <name>GAR</name>
 <type>GAR</type>
 <path>my-real-app-gar-1.0-SNAPSHOT.gar</path>
 </module>
</weblogic-application>

This deployment descriptor provides the details for where in the EAR file the GAR file
should be placed, and what it should be called.

15.3.5 Creating the Top-Level POM
Create the top-level POM. This is located in the pom.xml file in the root directory of
your application and contains the following:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.mycompany</groupId>
 <artifactId>my-real-app</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>my-real-app</name>
 <modules>
 <module>my-real-app-war</module>
 <module>my-real-app-gar</module>
 <module>my-real-app-ear</module>
 </modules>
 <properties>
 <coherence.version>12.1.3-0-0</coherence.version>
 </properties>
</project>

Set the coordinates for the project. These match the parent coordinates you specified in
each of the three projects. Note that the packaging is pom. This tells Maven that this
project is an assembly of a set of sub-projects, as named in the modules section.

There are one module entry for each of the three sub-projects.

Since this POM is the parent of the other three, and since POM's inherit from their
parents, you can add any common properties to this POM and they will be available in
all the three sub-projects. In this case, you are adding the property
coherence.version.

Building a Maven Project

15-16 Oracle Fusion Middleware Developing Applications Using Continuous Integration

15.3.6 Building the Application Using Maven
You can now build the application using Maven by using one or more of the following
commands (in the top level directory my-real-app):

mvn compile
mvn package
mvn verify

Maven executes all of the phases up to the one named. These commands have the
following effect:

Command Details

mvn compile Compile the Java source into target class files.

mvn package 1. Compile the Java source into target class files.

2. Create the archive (WAR, GAR, and so on) containing compiled files
and resources (deployment descriptors, configuration files, and so
on).

mvn verify 1. Compile the Java source into target Class files.

2. Create the archive (WAR, GAR, and so on) containing compiled files
and resources (deployment descriptors, configuration files, and so
on).

3. Deploy the EAR file to the WebLogic Server environment.

1

From Build Automation to Continuous Integration 16-1

16From Build Automation to Continuous
Integration

[16] This chapter provides a quick overview of some of the important considerations that
you need to think about when you move from a simple build automation to a
continuous integration environment.

If you have been following the examples in this book, you would have seen how to use
Maven to manage the build process for projects which are targeted for deployment on
Oracle Fusion Middleware environments.

The next logical step is to move towards a continuous integration approach, so that the
builds of all of your projects can be triggered, managed and monitored in one central
place.

The advantage of continuous integration comes from componentization of an
application and constant integration of those components as they are independently
modified, often by different groups of developers. Maven projects are used to
represent these components and their relationships to each other. Since Hudson
understands Maven's project relationship model, it can automatically rebuild and
retest affected components in the order that they should be built in. When Hudson
detects the changes to the code-base, the affected components are built and
reintegrated in correct order to ensure proper function of the entire application.

This chapter includes some of the important things to consider while moving to a
continuous integration environment with Hudson. This chapter includes the following
sections:

■ Dependency Management

■ Maven Configuration to Support Continuous Integration Deployment

■ Automating the Build with Hudson

■ Monitoring the Build

16.1 Dependency Management
Dependency management is a key feature of Maven and something that distinguishes
it from other build automation technologies, like ANT, which Fusion Middleware has
supported for some time. This section explores some important dependency
management topics.

It includes the following topics:

■ Using SNAPSHOT

■ Dependency Transitivity

Dependency Management

16-2 Oracle Fusion Middleware Developing Applications Using Continuous Integration

■ Dependency Scope

■ Multiple Module Support

16.1.1 Using SNAPSHOT
Snapshot versioning is covered more extensively in Chapter 8. Using snapshots for
components that are under development is required for the automated continuous
integration system to work properly. Note that a fixed version, non-snapshot
versioned artifact should not be modified and replaced. The best practice is that you
should not update artifacts after they are released. This is a core assumption of the
Maven approach. However, it is worth noting that often this assumption is not correct
in enterprise software development, where vendors and end users do sometimes
update "finished" artifacts without changing the version number, for example through
patching them in place. Even though it is possible to violate this rule, every attempt
should be made to comply to ensure integration stability.

16.1.2 Dependency Transitivity
Most projects have dependencies on other artifacts. At build time, Maven obtains these
artifacts from the configured artifact repositories and use them to resolve compilation,
runtime and test dependencies.

Dependencies explicitly listed in the POM may also have dependencies of their own.
These are commonly referred to as transitive dependencies. Based on dependency
attributes such as scope and version, Maven uses rules to determine which
dependencies the build should utilize. An important part of this resolution process has
to do with version conflicts. It is possible that a project may have transitive
dependencies on multiple versions of the same artifact (identical groupId and
artifactId). In such a case, Maven uses the nearest definition which means that it
uses the version of the closest dependency to your project in the tree of dependencies.
You can always guarantee a particular version by declaring it explicitly in your
project's POM.

16.1.3 Dependency Scope
Dependencies may optionally specify a scope. In addition to determining whether or
not a dependency is made available to the classpath during a particular build phase,
scope affects how transitive dependency is propagated to the classpath.

There are six scopes available.

■ Compile: This is the default scope, used if no scope is specified. Compile
dependencies are available in all classpaths of a project. Furthermore, these
dependencies are propagated to dependent projects.

■ Provided: This is much like compile, but indicates you expect the JDK or a
container to provide the dependency at runtime. For example, when building a
web application for the Java Enterprise Edition, you can set the dependency on the
servlet API and related Java EE APIs to scope provided because the web container
provides those classes. This scope is only available on the compilation and test
classpath, and is not transitive.

Note: If two dependency versions are at the same depth in the
dependency tree, until Maven 2.0.8 it was not defined which one
would win, but since Maven 2.0.9 it is the order in the declaration that
counts. Hence, the first declaration wins.

Maven Configuration to Support Continuous Integration Deployment

From Build Automation to Continuous Integration 16-3

■ Runtime: This scope indicates that the dependency is not required for
compilation, but is for execution. It is in the runtime and test classpaths, but not
the compile classpath.

■ Test: This scope indicates that the dependency is not required for normal use of
the application, and is only available for the test compilation and execution
phases.

■ System: This scope is similar to Provided except that you have to provide the JAR
which contains it explicitly. The artifact is always available and is not looked up in
a repository.

■ Import: (only available in Maven 2.0.9 or higher) This scope is only used on a
dependency of type POM. It indicates that the specified POM should be replaced
with the dependencies in that POMs. Since they are replaced, dependencies with a
scope of import do not actually participate in limiting the transitivity of a
dependency.

16.1.4 Multiple Module Support
A series of interdependent projects, such as an application, can be aggregated by a
multi-module POM. This should not be confused with a parent POM which provides
inherited configuration. A multi-module POM may also be an inheritance parent to
sub-module projects. When a Maven build is executed upon a multi module POM,
Maven examines the tree of sub-projects and calculates the correct order of
dependency to build the modules.

Multiple module POMs can be useful for organizing multiple component builds in
Hudson.

16.2 Maven Configuration to Support Continuous Integration Deployment
This section describes some aspects of Maven that you should consider while moving
to a continuous integration environment.

This section contains the following topics:

■ Distribution Management

■ Snapshot Repository Settings

16.2.1 Distribution Management
Every project that is part of continuous integration must specify a
distributionManagement section in its POM. This section tells Maven where the
artifacts are going to be deployed at the end of the build process, that is, which
repository (local or remote). The examples used in this book use the Archiva
repository. Deploying artifacts to a repository makes them available for other projects
to use as dependencies.

You must define a distributionManagement section that describes which repository to
deploy snapshots and releases to. It is recommended that the
distributionManagement configuration be placed at a common inherited POM that is
shared among all projects such as the oracle-common POM, as described in Chapter 9.

The following shows an example of a distributionManagement configuration:

<distributionManagement>
 <repository>
 <uniqueVersion>false</uniqueVersion>

Maven Configuration to Support Continuous Integration Deployment

16-4 Oracle Fusion Middleware Developing Applications Using Continuous Integration

 <id>releases</id>
 <name>Releases</name>
 <url>http://server:port/archiva/repository/releases/</url>
 <layout>default</layout>
 </repository>
 <snapshotRepository>
 <uniqueVersion>true</uniqueVersion>
 <id>snapshots</id>
 <name>Snapshots</name>
 <url>http://server:port/archiva/repository/snapshots</url>
 <layout>default</layout>
 </snapshotRepository>
 </distributionManagement>

16.2.2 Snapshot Repository Settings
There are some important settings that govern how and when Maven accesses
repositories:

■ Update Policy: This controls how often Maven checks with a remote repository for
updates to an artifact that it already has in its local repository. Configure your
snapshot repository in your settings.xml in Hudson to use updatePolicy as
always. The effect of updatePolicy is on your development systems. The default
value is daily. If you want to integrate the changes as they occur in Hudson, you
should change their updatePolicy accordingly. Dependencies may change
suddenly and without warning. While the continuous integration system should
have sufficient tests in place to reduce the occurrence of regressions, you can still
run into issues depending on up-to-the-minute snapshots while developing. One
such example is the API changes.

You should get all project snapshot dependencies up-to-date so that their local
build reflects the current state of the deployed code-base prior to check-in.

■ Server credentials: This tells Maven the credentials that are needed to access a
remote repository; typically Maven repositories require you to authenticate before
you are allowed to make changes to the repository, for example, publishing a new
artifact). Unless you have given the Archiva guest user global upload privileges,
which is not recommended, you must specify correct credentials for the snapshot
repository in the servers section. You should have a unique Hudson user with
snapshot repository upload permissions. See Chapter 4 for details about user and
role configuration.

 Use Maven's password encryption for the password value. The Maven guide to
password encryption can be found here:

 http://maven.apache.org/guides/mini/guide-encryption.html.

The following shows a sample settings.xml configuration for the Hudson user:

<settings>
...
 <servers>
...
 <server>
 <id>snapshots</id>
 <username>hudson</username>
 <password>{COQLCE6DU6GtcS5P=}</password>
 </server>
...
 </servers>
...

Automating the Build with Hudson

From Build Automation to Continuous Integration 16-5

</settings>

16.3 Automating the Build with Hudson
This section discusses how to set up your build jobs in Hudson. There are various
options available to build Maven projects. This section describes the approach
recommended by Oracle.

Before proceeding, ensure that you have configured Hudson, as described in
Chapter 7.

This section contains the following topics:

■ Creating a Hudson Job to Build a Maven Project

■ Triggering Hudson Builds

■ Managing a Multi-Module Maven Build with Hudson

16.3.1 Creating a Hudson Job to Build a Maven Project
To create a basic Maven Hudson job:

1. Open the Hudson web interface and log in. if necessary.

2. Create a new job:

a. Select New Job from the right-hand menu.

b. Provide a unique name and select Build a free-style software project.

c. Click OK.

3. Configure the source code management.

Ensure that you complete configuring the Subversion server, including the SSH
public and private key configuration.

a. Under Source Code Management, select Subversion.

b. Provide the repository URL for your project directory. For example,
svn+ssh://subversion-server/ciroot/subversion/repository/trunk/proj
ects/my-project

Automating the Build with Hudson

16-6 Oracle Fusion Middleware Developing Applications Using Continuous Integration

4. Add a Maven build step:

a. Under the Build section, select Invoke Maven 3 from the Add Build Step
drop-down menu.

b. Select Maven 3 home. Add necessary goals and properties in the appropriate
text fields.

c. If you have a SNAPSHOT continuous integration build environment, then
configure the goals to perform a clean deploy.

d. If necessary, open the Advanced settings and ensure that the Settings entry
points to the Maven settings that you created in the Hudson web interface,
while configuring Hudson.

5. Save the configuration

Click Save at the bottom of the page.

16.3.2 Triggering Hudson Builds
Hudson provides number of ways to manage a continuous integration build's triggers
in Hudson. These include manual and automated triggers. The option to manually
start a build is always available for any job. When choosing an automated trigger, you
may consider factors like the structure of the project, the location of the source code,
the presence of any branches, and so on.

This section contains the following topics:

■ Manual Build Triggering

■ Subversion Repository Triggering

■ Schedule Based Triggering

■ Trigger on Hudson Dependency Changes

■ Maven SNAPSHOT Changes

Regardless of how the build is triggered, the job is added to the pending job queue and
completed when the resources become available.

Note: In this example we are using a svn+ssh URL, which accesses
Subversion using SSH. If you are using a different protocol, the steps
that are necessary to configure it may vary slightly.

Hudson attempts to verify the URL and may respond with an error
message like the following:

Unable to access
svn+ssh://hostname/ciroot/subversion/repository/trunk :
svn: E200015: authentication cancelled(show details)
(Maybe you need to enter credential?)

If you get this error message, do the following:

1. From the message, click enter credentials.

2. Select SSH public key authentication (svn+ssh).

3. Enter the user name.

4. Enter the SSH private-key passphrase if required.

5. Select the private-key file from the Hudson file system. It should be in a
~/.ssh/id_rsa format.

Automating the Build with Hudson

From Build Automation to Continuous Integration 16-7

16.3.2.1 Manual Build Triggering
All jobs can be started from the user interface with the Build Now link.

16.3.2.2 Subversion Repository Triggering
This type of build trigger is vital to establishing a healthy continuous integration
build. As changes are committed to project source, Hudson triggers builds of the
associated Hudson jobs. The trigger does this by periodically checking the associated
Subversion URL for changes.

To enable this trigger, select the Poll SCM option. You must then provide a cron
expression to determine the schedule Hudson uses to poll the repository.

16.3.2.3 Schedule Based Triggering
For some job types, you can trigger them on a schedule. Long running system
integration tests are an example of a build that you might want to run periodically as
opposed to every time the test source is modified.

Schedule based triggers are configured with cron expressions exactly like the Poll SCM
trigger.

16.3.2.4 Trigger on Hudson Dependency Changes
Trivial projects may contain multiple builds that produce unique artifacts that have
dependencies on each other. If Hudson rebuilds an artifact as the result of any trigger
type, it must also build and test dependent artifacts to ensure integration is still valid.
When dependencies that are also built on this Hudson server are successfully
completed, Hudson recognizes these relationships automatically and triggers the
build. In order for this trigger to work, the dependencies must also enable the
post-build action Notify that Maven dependencies have been updated by Maven 3
integration.

16.3.2.5 Maven SNAPSHOT Changes
If there are dependencies that are undergoing concurrent development and being
managed as snapshots in your common Maven repository, then they should be
managed by your Hudson instance. If this is not practical, then you can use the
SNAPSHOT dependency trigger to monitor the Maven repository for changes in such
dependencies. When an updated SNAPSHOT dependency has been detected, the
build triggers and downloads the new dependency for integration.

This trigger also uses a cron expression to configure the polling interval.

16.3.3 Managing a Multi-Module Maven Build with Hudson
To manage your build dependencies correctly, you may add each project as a separate
Hudson build and configure the dependency triggers manually, or you can configure a
multi-module Maven POM as a parent Hudson job. The multi-module solution
reduces the possibility of making mistakes wiring the dependencies manually. It also
automatically stays up-to-date as the dependencies are changed in the Maven
configuration.

Configuration of a multi-module build is identical to configuration for regular
projects. To examine the results of component project builds, Hudson provides a tab in
the build results page in the Maven 3 Build Information link. At the top of the page,
the Modules tab summarizes the component build results.

Monitoring the Build

16-8 Oracle Fusion Middleware Developing Applications Using Continuous Integration

To examine the log for any of the sub-project builds, use the Console Log link. All
project and sub-project builds are logged in their sequence of execution.

16.4 Monitoring the Build
Hudson should be configured to send notifications to the correct parties when the
build breaks. The continuous integration system must ensure that their changes do not
break the build and test process. If this does happen, they need to be notified of the
breakage and must address the issue as soon as possible. Hudson should have each
user registered as a unique user. The Hudson user name must match the Subversion
user name that they ordinarily commit under. Hudson relies on this name to look up
the proper contact email to send notification to.

General email notification configuration can be found under Manage Hudson ->
Configure System -> E-mail Notification.

You must also make sure some form of user management is enabled. You can do this
by selecting Enable Security from the Configure System panel. There are a number of
choices for user management and additional third-party plug-ins to support most
other popular solutions, such as LDAP. The best option is to use Hudson's own user
database. Select this choice from the Access Control section. There are additional
options for limiting permissions to particular users and groups.

To add a new user, the user simply needs to follow the sign up link at the top of the
Hudson home page and fill out the necessary information. The user name must match
the corresponding Subversion user name.

16.4.1 Following Up on the Triggered Builds
Normally, automated notification is sufficient to ensure the continuous build system is
kept healthy and produces effective results. However, there are conditions that can
require additional monitoring and coordination to get the system back to an
operational state. It is a good policy to designate a build coordinator to track down
such problems, coordinate solutions for broad problems and perform troubleshooting
when the system itself is suspect.

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Continuous Integration
	1.1 Introducing Continuous Integration for Oracle Fusion Middleware
	1.2 Version Control with Subversion
	1.3 Build Automation and Dependency Management with Maven
	1.4 About the Oracle Maven Repository
	1.5 Repository Management with Archiva
	1.6 Continuous Integration with Hudson
	1.7 Summary

	2 Roadmap for Continuous Integration
	2.1 Roadmap
	2.2 Overview of the Reference Continuous Integration Environment
	2.3 Shared Disk Layout

	3 Installing and Configuring Subversion for Version Control
	3.1 Downloading Subversion
	3.2 Installing Subversion
	3.3 Configuring the Subversion Server as a Service
	3.4 Setting Up a Repository
	3.4.1 Creating a Repository
	3.4.2 Subversion Layout
	3.4.3 Importing Existing Projects

	3.5 Understanding SVN Workflow
	3.6 Considerations for Tagging and Branching
	3.7 Subversion Clients
	3.7.1 WebSVN
	3.7.2 TortoiseSVN

	3.8 More Information About Subversion

	4 Installing and Configuring the Archiva Maven Repository Manager
	4.1 Overview of Archiva
	4.2 Downloading Archiva
	4.3 Installing Archiva
	4.4 Configuring Archiva
	4.4.1 Configuring the Server
	4.4.2 Starting the Server
	4.4.3 Creating an Administrator User
	4.4.4 Internal and Snapshot Repositories
	4.4.5 Proxy Repository
	4.4.6 Configuring Mirror Repositories
	4.4.7 Creating Development, Production, Quality Assurance, and Test Repositories
	4.4.8 Creating a Deployment Capable User

	4.5 More Information About Archiva
	4.6 Maven Repository Manager Administration
	4.6.1 Snapshot Cleanup
	4.6.1.1 Setting Retention Options
	4.6.1.2 Deleting Released Snapshots

	4.6.2 Advanced User Management
	4.6.3 Backing Up Archiva
	4.6.4 Archiva and Failover

	5 Installing and Configuring Maven for Build Automation and Dependency Management
	5.1 Setting Up the Maven Distribution
	5.2 Customizing Maven Settings
	5.3 Populating the Maven Repository Manager
	5.3.1 Introduction to the Maven Synchronization Plug-In
	5.3.2 Installing Oracle Maven Synchronization Plug-In
	5.3.3 Running the Oracle Maven Synchronization Plug-In
	5.3.4 Things to Know About Replacing Artifacts
	5.3.5 Populating Your Maven Repository
	5.3.5.1 Populating a Local Repository
	5.3.5.2 Populating a Remote Repository

	5.3.6 Running the Push Goal
	5.3.7 Running the Push Goal on an Existing Maven Repository
	5.3.8 Things to Know About Patching
	5.3.8.1 Oracle's Approach to Patching
	5.3.8.2 Maintain One Maven Repository for Each Environment
	5.3.8.3 Run the Oracle Maven Synchronization Plug-In Push Goal After Patching

	5.3.9 Considerations for Archetype Catalogs
	5.3.10 Example settings.xml file
	5.3.11 Deploying a Single Artifact

	6 Configuring the Oracle Maven Repository
	6.1 Accessing the Oracle Maven Repository
	6.2 Artifacts Provided
	6.3 Adding the Oracle Maven Repository to Your Project POM
	6.4 Configure Maven to Use a Compatible HTTP Wagon
	6.5 Configuring the HTTP Wagon
	6.6 Considerations for Using the Oracle Maven Repository with Maven Without a POM
	6.7 Accessing the Oracle Maven Repository from an Automated Build Tool

	7 Installing and Configuring Hudson for Continuous Integration
	7.1 Prerequisites for Installing and Configuring Hudson
	7.2 Downloading Hudson
	7.3 Installing Hudson
	7.3.1 Installing Hudson on Linux
	7.3.2 Installing Hudson on Windows

	7.4 Configuring the HTTP Port
	7.5 Starting Hudson
	7.6 Configuring Maven After Startup
	7.6.1 First Time Startup
	7.6.2 Configuring the JDK
	7.6.3 Specifying the Maven Home
	7.6.4 Setting Up Maven for Use by Hudson
	7.6.5 Installing Hudson Plug-Ins
	7.6.6 Integrating the Repository
	7.6.7 Monitoring Subversion

	7.7 More Information About Hudson

	8 Understanding Maven Version Numbers
	8.1 How Version Numbers Work in Maven
	8.2 The SNAPSHOT Qualifier
	8.3 Version Range References
	8.4 Understanding Maven Version Numbers in Oracle Provided Artifacts
	8.4.1 Understanding Version Numbers in Maven Coordinates
	8.4.2 Understanding Version Number Ranges in Dependencies

	9 Customizing the Build Process with Maven POM Inheritance
	10 Building Java EE Projects for WebLogic Server with Maven
	10.1 Introduction to Building Java EE Project with Maven
	10.2 Using the Basic WebApp Maven Archetype
	10.2.1 Customizing the Project Object Model File to Suit Your Environment
	10.2.2 Compiling Your Project
	10.2.3 Packaging Your Project
	10.2.4 Deploying Your Project to the WebLogic Server Using Maven
	10.2.5 Deploying Your Project to the WebLogic Server Using Different Options
	10.2.6 Testing Your Basic WebApp Project

	10.3 Using the Basic WebApp with EJB Maven Archetype
	10.4 Using the Basic WebService Maven Archetype
	10.5 Using the Basic MDB Maven Archetype

	11 Building Oracle Coherence Projects with Maven
	11.1 Introduction to Building Oracle Coherence Projects with Maven
	11.2 Creating a Project from a Maven Archetype
	11.3 Building Your Project with Maven
	11.4 Deploying Your Project to the WebLogic Server Coherence Container with Maven
	11.5 Building a More Complete Example

	12 Building ADF Projects with Maven
	12.1 Introduction to Building Oracle ADF Projects with Maven
	12.2 Creating an ADF Application Using the Maven Archetype
	12.3 Building Your Project with Maven

	13 Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven
	13.1 Introduction to Building Oracle SOA Suite and Oracle Business Process Management Projects with Maven
	13.2 Creating a New SOA Application and Project from a Maven Archetype
	13.3 Creating a SOA Project in an Existing SOA Application from a Maven Archetype
	13.4 Editing Your Application in Oracle JDeveloper
	13.5 Building Your Project with Maven
	13.6 What You May Need to Know About Building Projects
	13.7 Deploying Your Project to the SOA Server with Maven
	13.8 Running SCA Test Suites with Maven
	13.9 What You May Need to Know About Deploying Composites
	13.10 What You May Need to Know About ADF Human Task User Interface Projects
	13.11 Undeploying Your SOA Project
	13.12 What You May Need to Know About the SOA Parent POM

	14 Building Oracle Service Bus Projects with Maven
	14.1 Introduction to Building Oracle Service Bus Projects with Maven
	14.2 Creating an Oracle Service Bus Application from a Maven Archetype
	14.3 Editing Your Application in Oracle JDeveloper
	14.4 Creating an Oracle Service Bus Project from a Maven Archetype
	14.5 Building Your Project with Maven
	14.6 Deploying Your Project to the Oracle Service Bus Server with Maven
	14.7 What You May Need to Know About the Oracle Service Bus Parent POM

	15 Building a Real Application with Maven
	15.1 Introducing the Example
	15.2 Multi-Module Maven Projects
	15.3 Building a Maven Project
	15.3.1 Creating a Directory for the Projects
	15.3.2 Creating the GAR Project
	15.3.2.1 Creating or Modifying the POM File
	15.3.2.2 Creating or Modifying the Coherence Configuration Files
	15.3.2.3 Creating the Portable Objects
	15.3.2.4 Creating a Wrapper Class to Access the Cache

	15.3.3 Creating the WAR project
	15.3.3.1 Creating or Modifying the POM File
	15.3.3.2 Creating the Deployment Descriptor
	15.3.3.3 Creating the Servlet

	15.3.4 Creating the EAR project
	15.3.4.1 The POM File
	15.3.4.2 Deployment Descriptor

	15.3.5 Creating the Top-Level POM
	15.3.6 Building the Application Using Maven

	16 From Build Automation to Continuous Integration
	16.1 Dependency Management
	16.1.1 Using SNAPSHOT
	16.1.2 Dependency Transitivity
	16.1.3 Dependency Scope
	16.1.4 Multiple Module Support

	16.2 Maven Configuration to Support Continuous Integration Deployment
	16.2.1 Distribution Management
	16.2.2 Snapshot Repository Settings

	16.3 Automating the Build with Hudson
	16.3.1 Creating a Hudson Job to Build a Maven Project
	16.3.2 Triggering Hudson Builds
	16.3.2.1 Manual Build Triggering
	16.3.2.2 Subversion Repository Triggering
	16.3.2.3 Schedule Based Triggering
	16.3.2.4 Trigger on Hudson Dependency Changes
	16.3.2.5 Maven SNAPSHOT Changes

	16.3.3 Managing a Multi-Module Maven Build with Hudson

	16.4 Monitoring the Build
	16.4.1 Following Up on the Triggered Builds

