

Oracle® Fusion Middleware
Securing Oracle Enterprise Data Quality

12c (12.1.3)

E51298-01

May 2014

Oracle Fusion Middleware Securing Oracle Enterprise Data Quality, 12c (12.1.3)

E51298-01

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... v
Conventions ... vi

1 Enterprise Data Quality Security Architecture

1.1 Client-Server Communication .. 1-1
1.2 Authentication .. 1-1
1.3 Storing Security Information .. 1-2
1.4 Data Segmentation ... 1-2

2 Integrating with LDAP

2.1 Overview of LDAP Support ... 2-1
2.2 Integrating LDAP Using OPSS on a WebLogic Server ... 2-2
2.3 Integrating LDAP Directly on Apache Tomcat .. 2-3
2.4 Configuring Global LDAP Settings .. 2-3
2.5 Configuring Realm Settings ... 2-5
2.6 Validating Credentials When Single Sign-On Is Not Used ... 2-7
2.7 LDAP Security .. 2-8
2.8 Example LDAP Configurations .. 2-8
2.8.1 Example of Oracle Internet Directory LDAP Configuration 2-8
2.8.2 Example of Microsoft Active Directory LDAP Configuration 2-9
2.8.3 Example of Open LDAP Configuration ... 2-10
2.8.4 Example of Novell eDirectory LDAP Configuration ... 2-10
2.9 Customizing Password Expiry Settings ... 2-12
2.9.1 Overview of the Variables .. 2-12
2.9.2 Customizing the Password Expired Message .. 2-12
2.9.3 Customizing the Password Expiring Message ... 2-12
2.9.4 Customizing the Expiry Time .. 2-12
2.10 Configuring Parent and Child Active Directory Domains ... 2-13
2.10.1 Example Settings for Parent and Child Domains ... 2-13
2.11 Kerberos Keytabs for Active Directory Accounts ... 2-15
2.11.1 What is a Keytab? ... 2-15
2.11.2 Creating Keytabs Using Existing Tools .. 2-17

iv

2.11.3 UNIX Kerberos Configuration ... 2-17
2.11.4 Managing LDAP Accounts .. 2-18
2.11.5 Configuring SSO .. 2-19

3 Filtering User Authorization Groups

3.1 Installing the Authorizations Plug-In ... 3-2
3.1.1 Filter Script .. 3-2
3.2 Configuring the Authorizations Plug-In .. 3-4
3.2.1 XML File Format .. 3-5
3.2.2 CSV File Format ... 3-5

4 Configuring SSL with Tomcat

4.1 Configuring SSL During Installation .. 4-1
4.2 Configuring SSL Client Authentication .. 4-2
4.2.1 Configuring Tomcat to Support Client Certificates ... 4-2
4.2.2 Assigning Personal Certificates and Key Combinations .. 4-3
4.2.3 Associating Certificates With a User .. 4-4
4.3 Using SSL With JMX .. 4-4
4.3.1 Enabling the SSL Settings for JMX ... 4-4
4.3.2 Using SSL with JMX Clients .. 4-5

5 Using the Audit Framework with Enterprise Data Quality

5.1 Enabling EDQ Audit Event Logging .. 5-1
5.2 Configuring the EDQ Events .. 5-1

6 Integrating EDQ with a Fusion Middleware Credential Store

6.1 Overview of the Credential Store ... 6-1
6.2 Configuring the Credential Store for EDQ ... 6-1
6.3 Specifying the EDQ Credential Key in Properties Files .. 6-2
6.4 Examples of Specifying a Key Name .. 6-3

v

Preface

This manual explains the Oracle Enterprise Data Quality security features and
administration.

Audience
The intended audience of this guide are experienced Java developers, administrators,
deployers, and application managers who want to ensure that EDQ meets Oracle
security standards.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Enterprise Data
Quality documentation set.

EDQ Documentation Library
The following publications are provided to help you install and use EDQ:

■ Oracle Fusion Middleware Release Notes for Enterprise Data Quality

■ Oracle Fusion Middleware Installing and Configuring Enterprise Data Quality

■ Oracle Fusion Middleware Administering Enterprise Data Quality

■ Oracle Fusion Middleware Understanding Enterprise Data Quality

■ Oracle Fusion Middleware Integrating Enterprise Data Quality With External Systems

■ Oracle Fusion Middleware Securing Oracle Enterprise Data Quality

vi

■ Oracle Enterprise Data Quality Address Verification Server Installation and Upgrade
Guide

■ Oracle Enterprise Data Quality Address Verification Server Release Notes

Find the latest version of these guides and all of the Oracle product documentation at

http://http://docs.oracle.com

Online Help
Online help is provided for all Oracle Enterprise Data Quality user applications. It is
accessed in each application by pressing the F1 key or by clicking the Help icons. The
main nodes in the Director project browser have integrated links to help pages. To
access them, either select a node and then press F1, or right-click on an object in the
Project Browser and then select Help. The EDQ processors in the Director Tool Palette
have integrated help topics, as well. To access them, right-click on a processor on the
canvas and then select Processor Help, or left-click on a processor on the canvas or
tool palette and then press F1.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Enterprise Data Quality Security Architecture 1-1

1Enterprise Data Quality Security Architecture

This chapter describes how security is incorporated in many aspects of the Oracle
Enterprise Data Quality (EDQ) architecture.

This chapter includes the following sections:

■ Section 1.1, "Client-Server Communication"

■ Section 1.2, "Authentication"

■ Section 1.3, "Storing Security Information"

■ Section 1.4, "Data Segmentation"

1.1 Client-Server Communication
The security of communication between the web application server and the client
applications is determined by the configuration of the Java Application Server hosting
EDQ. The Java Application Server can be configured to use either HTTP or HTTPS.

1.2 Authentication
EDQ authenticates user passwords against values held in the database repository or in
a Lightweight Directory Access Protocol (LDAP)-enabled user management server.
The passwords are held in a hashed form that the application cannot reverse. This
configuration is used by:

■ the client user applications

■ the EDQ web pages

The client user applications authenticate users using a proprietary protocol over HTTP
or HTTPS. Passwords are encrypted before being sent to the server.

The web pages are secured using forms-based authentication that communicates with
the server over HTTP or HTTPS.

Mandatory password strength enforcement can also be configured, encompassing the
following criteria:

■ Minimum length.

■ Minimum number of non-alphabetic characters.

■ Minimum number of numeric characters.

■ Prevention of recent password re-use.

■ Prevention of using the user name in the password.

Storing Security Information

1-2 Oracle Fusion Middleware Securing Enterprise Data Quality

Account security encompassing the following criteria can also be configured:

■ Password expiry.

■ Application behavior following failed login attempts.

1.3 Storing Security Information
EDQ stores security information in a number of places, depending on the nature of the
information

Connection details for databases that EDQ connects to in order to perform snapshots
and dynamic value lookups are stored in the configuration schema in the repository.
This includes user names, passwords, hosts names, and port numbers for the database
connections.

Passwords are stored in an encrypted form in the configuration schema or in a security
store on WebLogic platforms, and then they are decrypted by EDQ when it needs to
log into a database. A decrypted password is not shown to EDQ users or
administrators.

The encryption/decryption key for passwords is generated randomly for each
installation of EDQ. On WebLogic platforms, the key is retained in the security store.
On Tomcat platforms, it is stored in a file in the EDQ configuration directory. This
random key generation on a per-installation basis ensures that encrypted passwords
cannot be copied meaningfully between systems.

In installations where EDQ uses Java Naming and Directory Interface (JNDI)
connections to connect to the repository database, the authentication details to the
database are stored in the application server. EDQ uses the credentials by referencing
the JNDI names in a file (director.properties) in the EDQ base configuration
directory (oedq_home).

1.4 Data Segmentation
When EDQ is being used across multiple business lines, or when several businesses
are using the same system, it is important to be able to segment user access to data.
EDQ supports this segmentation by allowing users and projects to be allocated to
groups. Users can only access a project if they are members of the same group as the
project. The Director user application presents accessible projects to a given user, and
all other projects are invisible. The contents of any project (including reference data
and web services) are unavailable to unauthorized users.

Note: Since administrative users must be able to manage all the
projects in the system, any user with permission to create projects can
see all projects in the system regardless of project settings.

2

Integrating with LDAP 2-1

2Integrating with LDAP

This chapter describes how EDQ can be integrated with external user management
systems based on the LDAP standard, thus allowing Administrators to manage user
accounts externally to EDQ.

This chapter includes the following sections:

■ Section 2.1, "Overview of LDAP Support"

■ Section 2.2, "Integrating LDAP Using OPSS on a WebLogic Server"

■ Section 2.3, "Integrating LDAP Directly on Apache Tomcat"

■ Section 2.4, "Configuring Global LDAP Settings"

■ Section 2.5, "Configuring Realm Settings"

■ Section 2.6, "Validating Credentials When Single Sign-On Is Not Used"

■ Section 2.7, "LDAP Security"

■ Section 2.8, "Example LDAP Configurations"

■ Section 2.9, "Customizing Password Expiry Settings"

■ Section 2.10, "Configuring Parent and Child Active Directory Domains"

■ Section 2.11, "Kerberos Keytabs for Active Directory Accounts"

2.1 Overview of LDAP Support
EDQ can be integrated with LDAP servers in two ways:

1. Using Oracle Platform Security Services (OPSS), configured on Oracle WebLogic
Server

2. Directly, using connection settings configured in EDQ configuration files

Once EDQ is integrated with LDAP, external user management works in a consistent
way. You map groups of users that exist on the LDAP system ("External Groups") to
EDQ groups by using the Administration pages on the EDQ Launchpad. With these
mappings, you grant users in the external groups permissions to the EDQ server.

Currently, EDQ is certified for integration with the following LDAP server
technologies:

■ Oracle Internet Directory (OID) 11g.

■ Microsoft Active Directory (AD) for Windows Server 2000, 2003 and 2008.

■ Open LDAP 2.4.

Integrating LDAP Using OPSS on a WebLogic Server

2-2 Oracle Fusion Middleware Securing Enterprise Data Quality

■ Novell eDirectory 8.8.

In integrations with Active Directory, EDQ supports Single Sign-On (SSO). Authorized
users of the AD domain can access EDQ without the need to log in to the EDQ client
applications.

2.2 Integrating LDAP Using OPSS on a WebLogic Server
In a default installation of EDQ on WebLogic Server, EDQ is integrated with Oracle
Platform Security Services (OPSS) by default. EDQ users are managed by an OPSS
identity store that is configured in WebLogic Server.

The integration is controlled by a property in the login.properties file. This file is
installed in the security directory of the base configuration directory (oedq_
home/security).

A setting in login.properties specifies the default mapping of the LDAP
administrators group to the EDQ administrators group. The default mapping ensures
that a WebLogic Server Administrator can access the Administration application on
the EDQ Launchpad to map other external groups on LDAP to the appropriate
internal groups.

Provided the WebLogic Server identity store or a configured LDAP server has a group
with the name of Administrators, there is no need to adjust any of the settings in
login.properties. If the LDAP server does not contain a group with the name of
Administrators, you can do either of the following:

■ Create a group named Administrators on the LDAP server, and then restart the
server that manages EDQ in WebLogic Server.

■ Modify the default administrators group mapping. See "To adjust the default
Administrators group mapping" for instructions.

To adjust the default Administrators group mapping
This procedure creates a local login.properties file to override the base
login.properties file, and then adjusts the default Administrators group mapping
in the new file.

1. Create a subdirectory called security in the local configuration directory (oedq_
local_home/security).

2. Copy the login.properties file from the security directory of the base
configuration directory (oedq_home/security) to oedq_local_home/security.

3. Look for the following default mapping:

opss.xgmap = Administrators -> Administrators

4. Change the default mapping to map the name of the external administrators
group to the name of the EDQ administrators group.

opss.xgmap = name_of_external_group -> name_of_EDQ_admin_group

Note: If the name of the EDQ administrators group was changed to
something other than Administrators, the entry will appear similar to
the following:

opss.xgmap = Administrators -> name_of_EDQ_admin_group

Configuring Global LDAP Settings

Integrating with LDAP 2-3

5. Save the file.

6. Restart the application server.

2.3 Integrating LDAP Directly on Apache Tomcat
On an Apache Tomcat server, EDQ provides direct integration with LDAP servers, but
it is not enabled by default. To enable the integration, you use a template to create and
configure a login.properties file in the local configuration directory. The settings in
this file override those in the login.properties file in the base configuration directory.

To configure direct integration with an LDAP server
1. Navigate to the security directory in the EDQ local configuration directory

(oedq_local_home/security).

2. Open the login.properties.template file with a text editor. This template
contains sample settings that correspond to the different supported LDAP
providers.

3. Uncomment and edit the parameters that correspond with the LDAP server in the
EDQ installation environment. The profile associated with an LDAP configuration
provides information about the schema in the LDAP server that represents users
and groups. EDQ provides the following built-in profiles:

■ adsldap: Microsoft Active Directory

■ inetorgoidldap: Oracle Internet Directory (OID)

■ inetorgopenldap: OpenLDAP using inetOrgPerson style schemas

4. Save the file as login.properties in the same directory.

5. Restart the application server.

Other schemas can be supported by creating new profiles or extending existing
profiles.

2.4 Configuring Global LDAP Settings
EDQ supports integration with multiple realms. Each realm can use different LDAP
server technologies. For example, a single EDQ server may support external
authentication from both a Microsoft Active Directory (AD) realm and an Oracle
Internet Directory (OID) realm, if required. This section describes the
login.properties properties that are normally set globally (for all realms).

Note: The property accepts a delimited list of mappings. For
example, the following syntax is valid for mapping the "DQ Admins"
and "DQAdministrators" external groups to the EDQ "Administrators"
group:

opss.xgmap = DQAdministrators, DQ Admins -> Administrators.

Note: Properties of these built-in profiles can be overridden where
required by using options specified in the following format:
ldap.profile.propertyname.

Configuring Global LDAP Settings

2-4 Oracle Fusion Middleware Securing Enterprise Data Quality

Where noted, you can override the global settings at the realm level. Realm-level
settings are more specific and always override global settings. (See Section 2.5,
"Configuring Realm Settings."

Table 2–1 Global LDAP Settings

Property Description Example Value Mandatory?

realms A comma-separated list of
realm names, representing
active realm configurations.

The specified name of each
realm must correspond with
the realm-specific properties
later in the file, in the format
realm_name.property_name =
value.

A realm configuration may be
retained but disabled by
removing it from this list.

realm1, realm2 Yes.

keytab The path to a Kerberos keytab
file.

A single keytab must be
defined at the global level. A
single keytab can contain
entries for several realms.

/etc/krb5.keyta
b

If a specific path
is not specified,
the Operating
System default
path is used.

No. Only necessary
to enable SSO
(where users do
not need to log in
to EDQ user
applications) in
environments
where the EDQ
server is not itself
on the AD domain.

clientcreds If set to true, the server uses
the credentials of the local
machine to connect to the
LDAP servers. This is used to
enable SSO for AD
integrations where the EDQ
server is on the domain.

If set to false, and if SSO is
enabled, the server uses the
configured keytab.

May be overridden at the
realm level.

true No. If not set, the
default value is
false.

spn Specifies the Kerberos Service
Principal Name, used for SSO.

May be overridden at realm
level.

HTTP/hostname@E
XAMPLE.COM

No. If not set, the
default value is
HOST/hostname

x509 Enables the use of x509
certificates (client SSL
certificates) for client
authentication in EDQ. There
is a small performance cost
associated with setting this to
true.

May be overridden at realm
level.

true No

If not set, the
default is false.

Configuring Realm Settings

Integrating with LDAP 2-5

2.5 Configuring Realm Settings
This section provides details of the properties that are normally set at the realm level.
Realm settings may be specified with either of the following methods:

■ In the login.properties file by using the syntax realm_name.property_name =
value. This format enables you to specify settings for different realms within a
single file, each set of properties having a different realm_name prefix.

■ In a file named realm_name.properties in a realms subdirectory of the security
directory. This method requires a separate realm_name.properties file for each
realm that you want to configure. The realm_name prefix is not needed for
properties in the realm_name.properties file.

In a similar manner, profile settings and overrides can be specified in the
login.properties file by using the syntax profile_name.property_name = value or,
alternatively, in separate files named profile_name.properties in the
security/profiles folder.

ldap.prof.useprimar
ygroup

Defines whether or not to use
the primary group (for
example the "Domain Users"
group in AD).

May be overridden at realm
level

false No. This should be
set to false for
performance
purposes unless
the membership of
the primary group
has any relevance
for EDQ.

Table 2–2 Realm-Level LDAP Settings

Property Description Example Value Mandatory?

realm The LDAP (AD or Kerberos)
domain name.

EXAMPLE.COM Yes

ldap.profile Specifies the LDAP profile
name used to configure
parameters using shipped
built-in settings.

adsldap Yes

auth Specifies the user
authentication method, if SSO
is not used. Possible values are
ldap or jaas. All current
certified configurations use
ldap..

ldap Yes

auth.method If the auth property is set to
ldap, the auth.method
property specifies which
method is used to validate
user credentials. See
Section 2.6, "Validating
Credentials When Single
Sign-On Is Not Used" for
further information.

bind No.

Table 2–1 (Cont.) Global LDAP Settings

Property Description Example Value Mandatory?

Configuring Realm Settings

2-6 Oracle Fusion Middleware Securing Enterprise Data Quality

label Specifies an alternative
user-friendly label for the
realm to display in the dialog
when logging into user
applications.

myrealm No.

If not used, the
configured realm
name from the
realm property is
used.

gss Specifies whether or not the
realm supports
Kerberos/GSSAPI for SSO.
Possible values are true or
false.

false No.

If not set, defaults
to true.

ldap.server A comma or space separated
list of LDAP servers (either
names or IP addresses).

Each server listed can include
a specific port using the
syntax server:port.

192.168.1.0:389
, server2

No.

If not specified, a
DNS lookup is
used to look for
LDAP servers

ldap.basedn Base of LDAP hierarchy. dc=example,
dc=com

No.

In many servers
(including AD, this
can be found from
the RootDSE (the
Root Directory
Service Entry).

ldap.security Sets the security mode for
LDAP connection. Possible
values are ssl or tls.

tls No

tls should be used
where possible.

ldap.auth Sets the authentication mode
for LDAP connection.

Possible values are simple,
digest-md5 or gss.

digest-md5 No

If not specified,
this defaults to
gss.

ldap.user The LDAP username used to
authenticate EDQ with the
LDAP server.

This property must be set if
ldap.auth is not set to gss.

cn=user,
ou=users,
dc=example3,
dc=com

Yes, if
authentication
mode is simple.

No, if the mode is
digest-md5.

ldap.pw The password associated with
the LDAP username.

password Yes, if
authentication
mode is simple.

No, otherwise

ldap.clientcreds Specifies how the EDQ server
connects to the LDAP server.
If set, this parameter overrides
the clientcreds parameter in
the login.properties file. For
further information about this
parameter, see Section 2.4,
"Configuring Global LDAP
Settings."

true No. If not set, the
default value is the
one specified at the
Global level.

Table 2–2 (Cont.) Realm-Level LDAP Settings

Property Description Example Value Mandatory?

Validating Credentials When Single Sign-On Is Not Used

Integrating with LDAP 2-7

2.6 Validating Credentials When Single Sign-On Is Not Used
In installations where Single Sign-On (SSO) is not used and the auth realm property is
set to ldap, it is necessary to set the auth.method realm property to specify how user
credentials are validated. The possible values for this property are as follows. They are
described in the following sections.

auth.method = bind

auth.method = password

auth.method = compare

auth.method = bind
This setting directs the EDQ server to connect to the LDAP server to verify the user
credentials. This is the default setting.

Where the bind method is used, set the following additional properties:

■ auth.binddn: Specifies the actual user name that is used in the connection attempt.
If omitted, a value in the form username@realmname is submitted. Otherwise, the
value should be in the form search: attr, which searches for users by a specific
attribute in their user record.

■ auth.bindmethod: Specifies the authentication method that is used to connect to
the LDAP server. The possible values are simple or digest-md5. The digest-md5
value encrypts the password on the network and is the recommended setting.

auth.method = password
This setting directs the EDQ server to look up the user record on the LDAP server and
then compare the submitted password to the stored password.

ldap.prof.defaultus
ergroup

Name of the default group
that contains all EDQ users,
used for display of users in
issue, alert, and case
assignment lists.

edqusers Recommended

If not set, this
defaults to Domain
Users on
Windows, which
may be too large
and cause display
and memory
issues.

ldap.prof.groupsear
chfilter

Additional filter for groups;
an LDAP search filter.

cn=edq

This will include
all groups with a
name beginning
with edq.

Recommended

If not set, no filter
is used and all
groups will be
displayed on the
External Groups
configuration
page.

Note: If auth.bindmethod is set to digest-md5 for an EDQ
installation that is integrated with Active Directory, the auth.binddn
property must be set to search: sAMAccountName.

Table 2–2 (Cont.) Realm-Level LDAP Settings

Property Description Example Value Mandatory?

LDAP Security

2-8 Oracle Fusion Middleware Securing Enterprise Data Quality

The LDAP attribute that stores the password must be specified with the following
property:

auth.password = search: attr

where: attr is the LDAP attribute.

auth.method = compare
This setting uses the LDAP compare method to validate the password. This method is
more secure than auth.method = bind because a session is not created in the LDAP
server.

The LDAP attribute that stores the password is specified with the auth.attribute
property, which has a default value of userPassword. This default is the correct value
for Oracle Internet Directory LDAP integrations.

2.7 LDAP Security
By default, data transmitted over LDAP is unencrypted. Either Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) can be used to provide encryption.

LDAP over SSL (LDAPS) employs a properly formatted certificate. If used, the server
certificate must define a valid host name and must be trusted by the Java Runtime
Environment (JRE) that is running EDQ.

TLS uses the startTLS LDAP extension. In TLS implementations, "relaxed checks" are
performed on the LDAP server certificate, meaning that the LDAP server does not
need to be trusted by the JRE that is running EDQ.

2.8 Example LDAP Configurations
This section provides the following example configurations for the following LDAP
technologies:

■ Section 2.8.1, "Example of Oracle Internet Directory LDAP Configuration"

■ Section 2.8.2, "Example of Microsoft Active Directory LDAP Configuration"

■ Section 2.8.3, "Example of Open LDAP Configuration"

■ Section 2.8.4, "Example of Novell eDirectory LDAP Configuration"

2.8.1 Example of Oracle Internet Directory LDAP Configuration
This section describes typical login.properties settings required to integrate EDQ
with an Oracle Internet Directory LDAP server.

In this example, the LDAP user and password are transmitted in the clear
(unencrypted) over the network. Oracle recommends the use of SSL

Note: This method cannot be used with Active Directory servers.

Note: The settings shown in these examples are included in the
login.properties.template file with an additional # character at the
beginning of each line. Remove this character to uncomment each
property to make it active.

Example LDAP Configurations

Integrating with LDAP 2-9

(example3.ldap.security = ssl) or TLS (example3.ldap.security.tls) to encrypt
LDAP traffic.

Oracle Internet Directory Example
realms = example3
Map the realm to a domain name
example3.realm = EXAMPLE3.COM
Disable GSS
example3.gss = false
Authorize user by using LDAP bind to server
example3.auth = ldap
 # Use distinguished name for authentication
example3.auth.binddn = search: dn
The LDAP server
example3.ldap.server = server3
example3.ldap.auth = simple
The OID user credentials to be used by EDQ (user.name@example3.com)
example3.ldap.user = cn=intuser,cn=users,dc=example3,dc=com
example3.ldap.pw = password
The base distinguished name is example3.com
example3.ldap.basedn = dc=example3,dc=com
Use InetOrgPerson Style LDAP schema
example3.ldap.profile = inetorgoidldap
The name of the user group containing all EDQ users
example3.ldap.prof.defaultusergroup = group3
example3.ldap.security = ssl

2.8.2 Example of Microsoft Active Directory LDAP Configuration
This section describes typical login.properties settings required to integrate EDQ
with a Microsoft Active Directory LDAP server.

In an AD environment, EDQ can be configured to permit SSO by users in the same
domain. This example does not configure SSO, because it does not include the
clientcreds=true property and setting.

Active Directory Example
realms = example1
Map the realm to a domain name
example1.realm = EXAMPLE1.COM
Authorize user by using LDAP bind to server;
for Active Directory it must be ldap
example1.auth = ldap
The authentication to use, in this case digest-md5 using
the plain account name (example1.auth.binddn).
example1.auth.bindmethod = digest-md5
example1.auth.binddn = search: sAMAccountName
Use Transport Layer Security. Requires a X.509 certificate to be
installed on the domain controller.
example1.ldap.security = tls
The LDAP Schema to use. For Active Directory adsldap is the
standard schema to use
example1.ldap.profile = adsldap
The name of the user group containing all EDQ users.
example1.ldap.prof.defaultusergroup = group1

Example LDAP Configurations

2-10 Oracle Fusion Middleware Securing Enterprise Data Quality

2.8.3 Example of Open LDAP Configuration
This section describes typical login.properties settings required to integrate EDQ
with an Open LDAP server.

The path to the keytab (specified by the example2.keytab property in the example)
can either be an absolute path or simply the file name. If the file name is provided, the
system assumes the file is found in the security directory in the base configuration
directory (oedq_home/security).

If the inetOrgPerson schema is used, the example2.ldap.profile property in the
example should be set to inetorgopenldap.

OpenLDAP Example
realms = example 2
Map the realm to a domain name
example2.realm = EXAMPLE2.COM
Do not use local machine credentials to connect to the LDAP server
example2.clientcreds = false
Specify the Service Principal Name to use
example2.spn = host/host2.example2.com@EXAMPLE2.COM
The keytab where the SPN can be found.
example2.keytab = kerberos.ktab
Authorize user by using LDAP bind to server
example2.auth = ldap
Use simple authentication, using the distinguished name
example2.auth.bindmethod = simple
example2.auth.binddn = search: dn
Specify the LDAP server
example2.ldap.server = ldapserver.example2.com
Specify the base distinguished name.
example2.ldap.basedn = dc=example2,dc=com
Use the LDAP schema based on RFC2307, user are assumed to have
the posixAccount object class
example2.ldap.profile = rfc2307ldap
Use Transport Layer Security
example2.ldap.security = tls
The name of the user group containing all EDQ users
example2.ldap.prof.defaultusergroup = group2

2.8.4 Example of Novell eDirectory LDAP Configuration
This section describes typical login.properties settings required to integrate EDQ
with a Novell eDirectory LDAP server and what to do if a novell.properties file is
required.

Section 2.8.4.1, "Example Settings for login.properties"

Section 2.8.4.2, "Creating a novell.properties File"

2.8.4.1 Example Settings for login.properties
The following are typical settings for integrating EDQ with Novell eDirectory.

Novell eDirectory Example
Map the realm to a domain name
example4.realm = EXAMPLE4.COM
The base distinguished name is example4.com
example4.ldap.basedn = o=example4
Authorize user by using LDAP bind to server
example4.auth = ldap

Example LDAP Configurations

Integrating with LDAP 2-11

Use distinguished name for authentication
example4.auth.binddn = search: dn
The LDAP server
example4.ldap.server = server4
example4.ldap.auth = simple
Use Novell Style LDAP schema
example4.ldap.profile = novell
The name of the user group containing all EDQ users
example4.ldap.prof.defaultusergroup = group4
Use Transport Layer Security
example4.ldap.security = tls
The eDirectory user credentials to be used by EDQ
example4.ldap.user = cn=intuser,ou=users,o=example4
example4.ldap.pw = password

2.8.4.2 Creating a novell.properties File
The EDQ installation does not come with a preconfigured profile for integrating with
Novell eDirectory LDAP. If required, a novell.properties file must be created and
saved in the security/profiles directory in the local configuration directory (oedq_
local_home). The following is an example of this file.

Simple LDAP profile for the Novell eDirectory server
--

idmatch = (.*)@${realm:.*}

userattributes = uid givenName sn mail telephoneNumber
usersearch = (objectClass=inetOrgPerson)
userfilter = +(uid={1})
userkey = GUID
userfind = +(GUID={0})
username = uid

group lookup

groupsearch = (&(objectClass=groupOfNames)(cn=*))
groupkey = GUID
groupfind = +(GUID={0})
groupnamefind = +(cn={0})

secondary user/group relationships

memberattr = member
membertarget = dn

certificate support

certuserfilter = +(userCertificate={der})

vcard

vcard.fn = fullName cn
vcard.org = o
vcard.tel.work = telephoneNumber
vcard.email.pref = mail

support attributes

binaryattrs = GUID

Customizing Password Expiry Settings

2-12 Oracle Fusion Middleware Securing Enterprise Data Quality

2.9 Customizing Password Expiry Settings
You can customize the message that is presented to users if their password expires or
is about to expire. By default, a standard dialog is displayed. This feature is available
for users of Active Directory and any other LDAP server that supports the standard
LDAP password policy response control.

To customize the mesage, you add variables to the login.properties file in the
security directory of the local configuration directory (oedq_local_home/security).

2.9.1 Overview of the Variables
The following variables can be used in the password messages:

■ {0} - The standard pre-configured Password Expired message.

■ {1} - The name of the user.

■ {2} - The number of days left before the password expires.

The realm name for each value is also displayed using the standard global realms
property. The displayed realm name may be overridden using the realm_name.label
property.

2.9.2 Customizing the Password Expired Message
Do either of the following to configure the Password Expired message.

■ To use the standard Password Expired message, enter the following value in the
login.properties file:

realm_name.extra.pwexpired.message = {0}

■ To enter a custom Password Expired message, with a link to a specific URL for
changing the password, use the following code in the login.properties file. The
message text, formatting and URL in this code are included as examples for you to
edit as required. The HTML formatting is optional.

realm name.extra.pwexpired.message = <html>Dear
{1}<p>Your password has expired. Click here to set a new password.</p></html>

2.9.3 Customizing the Password Expiring Message
Use the following property in the login.properties file to create a custom Password
Expiring message. Substitute the correct realm name and message text. The HTML
formatting is optional.

realm_name.extra.pwexpiring.message = <html>Dear
{1}<p>Your password will expire {2,choice,0#today|1#tomorrow|1<in
{2} days}.<p>Click here to manage your password
settings.</p></html>

If you do not set a Password Expiring message, users will see the normal login screen
if their password is about to expire.

2.9.4 Customizing the Expiry Time
By default, EDQ inherits the password expiry time from the LDAP server. By default,
the number of days before the expiry time that users see the Password Expiring
message is set to seven days. If required, you can set a custom expiry time and

Configuring Parent and Child Active Directory Domains

Integrating with LDAP 2-13

warning threshold in the login.properties file to override the settings in the LDAP
server.

■ To set a custom password expiry time, add the following value to the
login.properties file:

realm_name.ldap.prof.passwordhandler.passwordage = Number_of_
days/hours/seconds

■ To set a custom warning threshold, add the following value:

realm_name.ldap.prof.passwordhandler.passwordwarning = Number_of_
days/hours/seconds

For each value, you can specify a number of days, hours or seconds. For example:

■ For 30 days set the value to 30 or 30d.

■ For 240 hours enter 240h.

■ For 3000 seconds enter 3000s.

2.10 Configuring Parent and Child Active Directory Domains
Parent and child domains in Active Directory can be defined in the login.properties
file by defining separate realms for each domain. However, if these domains have full
trust relationships, it is possible to define only the parent domain as a realm, as shown
in the following examples.

2.10.1 Example Settings for Parent and Child Domains
The following example assumes there is a parent domain EXAMPLE.COM and a child
domain CHILD.EXAMPLE.COM. It provides example settings that illustrate how to
configure login.properties for parent and child domains with only the parent
domain configured as a realm. An explanation of this example follows the code
segment.

Global settings
clientcreds = true
realms = internal, parent
ldap.prof.useprimarygroup = false
Realm settings
Update match pattern to allow child domain components
child.ldap.prof.idmatch = (?i)(.*)@(?:.*\\.)?${realm:.*}
parent.realm = EXAMPLE.COM
parent.auth = ldap
parent.auth.bindmethod = simple
parent.auth.binddn = search: dn
parent.ldap.security = tls
parent.ldap.profile = adsldap
parent.ldap.prof.defaultusergroup = edqusers
parent.ldap.referral = follow

The settings for the parent domain are mostly the same as for a single AD domain. The
significant differences are the following entries in the code.

parent.ldap.referral = follow
This property and its follow setting enable LDAP referrals. In a referral, when a search
completes on the parent domain, it issues a referral reply that causes the search to

Configuring Parent and Child Active Directory Domains

2-14 Oracle Fusion Middleware Securing Enterprise Data Quality

continue in the child domain(s). For example, a single search can return all the groups
in the parent and child domains.

parent.ldap.prof.idmatch = (?i)(.*)@(?:.*\\.)?${realm:.*}
This setting uses the idmatch property to select the realm based on the identity of a
user. After a Kerberos/SSO handshake, the server obtains the identity of the client
from the handshake and then determines which realm is associated with the user. The
property is a regular expression, where ${realm_name:.*} is replaced with the realm_
name from login.properties. The default value for single-domain AD is:

(?i)(.*)@${realm_name:.*}

In this case, the value expands to:

(?i)(.*)@EXAMPLE.COM

The value will match any user in the domain, such as john.doe@EXAMPLE.COM. The
updated version adds the optional child domain component and would also match
names like jane.doe@CHILD.EXAMPLE.COM.

parent.auth.bindmethod = simple
parent.auth.binddn = search: dn
A username and password are authenticated against AD by attempting a bind as that
user. With parent and child domains, a user from the child domain can connect to the
parent domain controller. However, the common DIGEST-MD5 bind method does not
work across domains, so set the bind method to simple and specify that the bind user
name is the Distinguished Name (DN) of the user. For example:

CN=John Doe,OU=testusers,DC=parent,DC=com or CN=Jane
Doe,OU=localusers,DC=child,DC=parent,DC=com

parent.ldap.prof.defaultusergroup = edqusers
The default user group is used to find all the users who may need to use the EDQ
applications. Users in this group appear in issue and case assignment lists, among
other places in the EDQ user interface. The default group can be in either domain but
must have Universal Scope, allowing it to contain members from both domains.

Groups that are used to assign EDQ permissions can be created as Universal and
contain members from both domains, or they can be created as Global in each domain
and contain users from the same domain.

The list shown on the Administration > External Groups configuration page
contains groups from both domains. If no filter was set up, the page displays two of
each of the standard groups (two Domain Users, two Backup Operators, and so forth).
If you create EDQ-related groups in both domains, give them different names in each
domain so that you can distinguish them in the list.

When only the parent domain is configured as a specific realm, EDQ treats both parent
and child domains as a single realm. In EDQ the identity of a user is user@REALM.
Given an identity of user@EXAMPLE.COM, for example, users from both domains will
appear with @EXAMPLE.COM in assignment lists and in the user lists from the System
Information Data Store.

The format of the display name of the user is configurable. You can set it to the
userPrincipalName attribute of each user, for example, by using the following line:

parent.ldap.prof.userdisplayname = userPrincipalName

Kerberos Keytabs for Active Directory Accounts

Integrating with LDAP 2-15

2.11 Kerberos Keytabs for Active Directory Accounts
When EDQ is installed on a UNIX (Solaris, Linux, AIX, or HP-UX) server, you can
configure it to use AD for user authentication by making LDAP connections to the AD
server and performing user lookups.

In a basic configuration, the connection to AD is made with a user name and password
configured in login.properties. The connection can be protected using SSL or TLS if
necessary. SSO, in which the user logs into Windows and then does not need to log
again into EDQ, is not available in this configuration since the EDQ server is not on
the AD domain.

To enable SSO, the EDQ server must be set up to enable Kerberos authentication from
the client PC. This authentication is achieved using the standard GSSAPI token
exchange mechanism (RFC 4121) as follows:

1. The client contacts the Domain Controller (DC) to request access to a service
provided by the server application.

2. The response from the DC is encoded into a token sent to the server by the client.

3. The server validates this token and generates another token to send to the client.

4. The token exchange can continue until client and server have established a secure
context.

In practice, this exchange never requires more than one token in either direction.

At startup the server application sets up accept credentials, which it uses to initialize
its half of the security context. When the server is running as the local system account
on Windows, these credentials are obtained from the account's login context.

If the server is running on UNIX, it must use an account in AD to set up these
credentials. It validates the request using the encrypted account password read from a
Kerberos key table (keytab). Setting up a valid keytab is an essential step in
configuring SSO on UNIX.

2.11.1 What is a Keytab?
A Kerberos key table, or keytab, contains encrypted passwords for one or more
Kerberos principals. The DC normally supports a number of different encryption
algorithms (DES3, AES, RC4 etc) and the entry for a principal will include keys for
each of these algorithms. The client will pick the best algorithm available for
communication with the DC.

The service requested using GSSAPI is identified by a Service Principal Name (SPN).
Normally this will be a reference to a particular service type at a machine hostname.
Examples of service types are HOST (for general access, such as SSH), HTTP (for SSO
from browsers) and LDAP (for LDAP servers such as AD domain controllers). An SPN
is usually displayed in the format service/hostname; for example:

HOST/testserver.example.com

Each entry in a keytab also includes a Key Version Number (KVNO). This is
incremented whenever the password for the principal is changed in the DC. The
keytab must contain the correct KVNO for authentication to succeed.

On most UNIX systems, the default location of the system keytab is:

/etc/krb5.keytab

In the EDQ login.properties configuration file, the location of the keytab may be set
by the following property:

Kerberos Keytabs for Active Directory Accounts

2-16 Oracle Fusion Middleware Securing Enterprise Data Quality

keytab = Path to keytab

If the path is not absolute, it is relative to the security folder containing
login.properties.

The klist command can be used to list the contents of a keytab:

klist -k [file]

klist -ke [file]

klist -keK [file]

A file name can be provided if the keytab is not in the default location. The first form
only lists the principals; the second also includes the encryption algorithms, and the
third also includes the key values in hexadecimal.

Following is sample output using klist:

Keytab name: WRFILE:/etc/krb5.keytab
KVNO Principal
 --
 2 host/testserver.example.com@EXAMPLE.COM (DES cbc mode with CRC-32)
 2 host/testserver.example.com@EXAMPLE.COM (DES cbc mode with RSA-MD5)
 2 host/testserver.example.com@EXAMPLE.COM (ArcFour with HMAC/md5)
 2 host/testserver@EXAMPLE.COM (DES cbc mode with CRC-32)
 2 host/testserver@EXAMPLE.COM (DES cbc mode with RSA-MD5)
 2 host/testserver@EXAMPLE.COM (ArcFour with HMAC/md5)
 2 TESTSERVER$@EXAMPLE.COM (DES cbc mode with CRC-32)
 2 TESTSERVER$@EXAMPLE.COM (DES cbc mode with RSA-MD5)
 2 TESTSERVER$@EXAMPLE.COM (ArcFour with HMAC/md5)
 2 HTTP/testserver.example.com@EXAMPLE.COM (DES cbc mode with CRC-32)
 2 HTTP/testserver.example.com@EXAMPLE.COM (DES cbc mode with RSA-MD5)
 2 HTTP/testserver.example.com@EXAMPLE.COM (ArcFour with HMAC/md5)
 2 HTTP/testserver@EXAMPLE.COM (DES cbc mode with CRC-32)
 2 HTTP/testserver@EXAMPLE.COM (DES cbc mode with RSA-MD5)
 2 HTTP/testserver@EXAMPLE.COM (ArcFour with HMAC/md5)

GSSAPI requires that an SPN has a service component (before the /), though there is
no requirement that the rest is a valid host name or that the service is meaningful. An
SPN in the following form is equally valid:

hello/alpha.beta

In a normal Kerberos system using a standard Kerberos Domain Controller (KDC)
each SPN is a separate principal with a different password. In AD, SPNs are essentially
aliases of a single account, stored as values of the AD servicePrincipalName LDAP
attribute. When a computer account is created in AD, SPNs for the HOST service are
created automatically. If additional services such as IIS or SQLserver are installed on
the server, additional SPNs will be added to the account.

The Windows setspn command can be run on an AD server to manage the SPNs for
an account. For example:

setspn -A HTTP/testserver.example.com testserver$

setspn -A hello/alpha.beta alpha.beta

The first command adds an HTTP SPN to the machine account for testserver; the
second adds an SPN to a normal user account.

The Apache Directory Studio LDAP browser can be used to check on the SPNs
associated with an account. If a connection to AD can be made with administrator

Kerberos Keytabs for Active Directory Accounts

Integrating with LDAP 2-17

privileges, it can also be used to add servicePrincipalName values. For more
information, see Section 2.11.4.2, "Apache Directory Studio."

2.11.2 Creating Keytabs Using Existing Tools
In a normal Kerberos system, keytab entries are created using the ktadd subcommand
of the Kerberos administration tool, kadmin. AD does not provide a Kerberos
administration server so other approaches are required.

The keytab contains the encrypted password for the account so for each method either
the password for the account must be known in advance, or it must be run with
privileges to change the account password.

The method to use depends on the system configuration. Existing options include:

■ Samba: If the system has been registered with AD using the Samba suite, the net
ads keytab command can be used to create and update the keytab. This works
because Samba has set the password for the account and stored it in a secret
location.

■ ktpass: The Windows ktpass command can run by an AD administrator to
generate keytab entries. Unless there is no other alternative, do not use this
command. It is complex and very difficult to use reliably. It will update the
password of the account, thus rendering any previous keytab useless.

■ msktutil: This is an open source application for UNIX which can be used to
manage keytabs.

2.11.3 UNIX Kerberos Configuration
The Kerberos configuration (as used by commands such as kinit and the JRE) is read
from a global configuration file, normally stored in the /etc/krb5.conf directory. This
contains references to the Domain Controllers and mappings between DNS and
Kerberos domains.

This is a simple example of such a configuration file for the domain EXAMPLE.COM:

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = EXAMPLE.COM
dns_lookup_realm =false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = yes

[realms]
EXAMPLE.COM = {
kdc = adsrvr01.example.com:88
kdc = adsrvr02.example.com:88
}

[domain_realm]
.example.com = EXAMPLE.COM
example.com = EXAMPLE.COM

Kerberos Keytabs for Active Directory Accounts

2-18 Oracle Fusion Middleware Securing Enterprise Data Quality

The [realms] section lists the KDCs by host or IP for each domain; the [domain_
realm] section maps DNS host names to Kerberos domains.

The krb5.conf file must be checked and adjusted for the configuration of the target
domain. If it is not possible to update a file in /etc, the file can be stored elsewhere
and a system property can be used to inform the JRE where it is. To do this, edit (or
create, if it does not yet exist) the jvm.properties file in the EDQ configuration
directory and add the line:

java.security.krb5.conf = absolute path to modified krb5.conf file

2.11.4 Managing LDAP Accounts
There are two tools that can be used to examine and update LDAP accounts: Oracle
Directory Services Manager (ODSM) and Apache Directory Studio.

2.11.4.1 Oracle Directory Services Manager
ODSM is bundled with OID. For further information on how to use this tool for
managing LDAP accounts, refer to the OID server administrators.

2.11.4.2 Apache Directory Studio
The Apache Directory Studio LDAP browser is a useful tool for examining and
updating LDAP accounts.

To create a new account, use the following procedure:

1. Launch the browser and close the Welcome window.

2. Select New Connection... in the LDAP menu to create a new connection.

3. Enter a name for the connection and the host name of an AD server.

4. If the server supports TLS, select Use StartTLS Extension under Encryption
Method.

5. In the Authentication window, enter an AD user name (in the format user@DOMAIN
or SHORTDOMAIN\user) and password. The AD directory tree is then visible in the
LDAP browser area

If connected as an account with Administrator-level privileges, other AD accounts can
be updated. For example, to add an SPN to a normal user account, follow these steps:

1. Locate the user in the directory tree and click to see the user's LDAP attributes.
Perform a search to find the user if there are a large number of objects.

2. Right-click the Attributes window and select New Attribute....

3. Select servicePrincipalName as the Attribute type and click Finish.

4. The new attribute will appear in the list. Enter the required SPN as the value and
press Enter.

Note: If this is attempted using an account that does not have
Administrator privileges, it will fail at the final step when changes are
committed to AD. Therefore, it is possible to practice this procedure
using a normal user account without making changes.

Kerberos Keytabs for Active Directory Accounts

Integrating with LDAP 2-19

2.11.5 Configuring SSO
For a EDQ server configured for SSO integration with AD, a typical basic
configuration of login.properties is as follows:

clientcreds = false
keytab = /etc/krb5.keytab
realms = internal, ad
ldap.prof.useprimarygroup = false
Realm details
ad.realm = DOMAIN
ad.auth = ldap
ad.auth.bindmethod = digest-md5
ad.auth.binddn = search: sAMAccountName
ad.ldap.security = tls
ad.ldap.profile = adsldap
ad.ldap.auth = simple
ad.ldap.user = user@DOMAIN
ad.ldap.pw = password
ad.ldap.prof.defaultusergroup = groupname

If the SPN used for SSO between client and server is not the default for the machine
(HOST/machinename.domain@DOMAIN) then add a line like:

spn = hello/john.smith@EXAMPLE.COM

The SPN must be listed in the keytab.

If the keytab contains an entry for the internal machine or user account name (for
example, without a service or prefix), then it is possible to use SASL and GSSAPI
authentication between EDQ and the AD server. You would amend the realm details
section in login.properties to:

Realm details
ad.realm = DOMAIN
ad.auth = ldapad.auth.bindmethod = digest-md5
ad.auth.binddn = search: sAMAccountName
ad.ldap.security = tls
ad.ldap.profile = adsldap
ad.ldap.spn = "accountname"
ad.ldap.prof.defaultusergroup = groupname

The account name is machinename$ for a machine account or the login name for a user
account.

If the keytab contains HTTP service entries for the machine, then it is also possible to
use SSO for browser-based logins (administration application, dashboard, etc). To
enable this, add the line:

http.gss = true

Typically, you this should set this only if all the client machines will be part of the
domain. If SSO is not possible, the behavior of browsers varies. For example, Internet
Explorer will show a login dialog in a pop-up window while Firefox will revert to the
normal EDQ login pages.

Kerberos Keytabs for Active Directory Accounts

2-20 Oracle Fusion Middleware Securing Enterprise Data Quality

3

Filtering User Authorization Groups 3-1

3Filtering User Authorization Groups

This chapter describes a sample EDQ plug-in script that performs custom, run-time
filtering of user authorization groups based on the user's location as determined by IP
address.

This chapter includes the following sections:

■ Section 3.1, "Installing the Authorizations Plug-In"

■ Section 3.2, "Configuring the Authorizations Plug-In"

The sample Authorizations Filter plug-in is designed to address legislative
requirements that state that some data must not be taken out of a particular country. In
particular, a user logging on from a different country must not be able to view or
access the restricted data, even if they would normally have sufficient privileges to do
so.

Project access in EDQ is normally controlled by assigning users and projects to groups.
Both users and projects may have multiple groups. A user has access to a project if
they are a member of at least one of the project's groups as assigned to the project in
Director. The plug-in described here operates at run-time to filter the groups assigned
to a user, based on the user's IP address at the time they log on.

For this plug-in to work as intended, projects should be assigned to groups based
upon their data access restrictions. That is, all projects that may only be accessed from
within country A should be assigned to one group, projects that may only be accessed
from country B should be assigned to a second group. Any projects with no
country-based access restrictions can be made available to all groups. Users can then
be granted access to each group as usual, and the plug-in script will provide
per-session, IP address-based filtering of the groups actually available to a user.

This script can be configured to filter user authorizations based on either IPv4 or IPv6
addresses. It is not possible to filter on both IPv4 and IPv6 addresses at the same time.

Note: Users with the Add Project permission (usually administrators
and power users) always have access to all projects. This bypasses the
group system and is unaffected by this plug-in. By default, the
Administrators and Project Owners user groups have this permission.
It is possible to circumvent this issue by removing the Add Project
permission from all users once all the system has been fully
configured. If it is necessary to create further projects in the future, a
user can be granted the Add Project permission as a temporary
measure.

Installing the Authorizations Plug-In

3-2 Oracle Fusion Middleware Securing Enterprise Data Quality

The Authorizations plug-in is a JavaScript plug-in script and configuration data that
can be provided either as an Extensible Markup Language (XML) file or as a
comma-separated list. You can activate the plug-in and select which type of
configuration file is to be used by editing the security.properties file in the EDQ
server configuration directory.

3.1 Installing the Authorizations Plug-In
The plug-in is installed by adding files to, and editing files in, the oedq.local.home
configuration directory. The location of this directory is determined during
installation. On a typical WebLogic platform, the path is usually as follows:

/middleware/user_projects/domains/your domain/edq/oedq.local.home

To install the plug-in:

1. Create a new script file, userfilter.js, in the oedq.local.home configuration
directory.

2. Place the JavaScript code from Section 3.1.1, "Filter Script" into userfilter.js.

3. Create a new file to hold the IP address filtering rules in your configuration
directory. Filter rules can be expressed either in comma-separated values (CSV)
format, in which case your rules file should be named ipranges.csv, or in XML
format, in which case your rules file should be named ipranges.xml. You will add
data to these files in the configuration step, described in Section 3.2, "Configuring
the Authorizations Plug-In."

4. Edit the security.properties file in the oedq.local.home configuration directory,
or create it if it does not already exist, and add the line:

user.filter.scriptfile = userfilter.js

5. Add one of the two following lines to security.properties. If you want to use
the XML version of the configuration file, add:

user.filter.xfile = ipranges.xml

If you want to use the CSV version of the configuration file, add:

user.filter.cfile = ipranges.csv

6. Restart your application server so that the new settings from the properties files
are retrieved and set.

3.1.1 Filter Script
The filter script is as follows:

// User filter test which reads CSV or XML
// =======================================
addLibrary("logging");
addLibrary("io");

// Main filtering function for the script
// ======================================
function filter(user, ip)
{
logger.log(Level.INFO,
"Filtering user {0} from IP {1}",user.getUserName(), ip);
var xprop = props["user.filter.xfile"];
var cprop = props["user.filter.cfile"];

Installing the Authorizations Plug-In

Filtering User Authorization Groups 3-3

var cfile = cprop == null ? null : findFile(cprop);
var xfile = xprop == null ? null : findFile(xprop);

if (cfile == null && xfile == null)
{
logger.log(Level.INFO, "No IP range files available");
return true;
}

// Process CSV file
// ================
if (cfile != null)
{
// CSV file has group name and IP start/end on each line; a group
// matches if the IP is in any of the ranges
var hash= new Object();
var rdr= IO.createCSVReader(cfile);
var arr;

while ((arr = rdr.read()) != null)
{
// Ignore lines with too few fields
if (arr.length >= 3)
{
// Store group in hash once only
var grp= trim(arr[0]);
var start = trim(arr[1]);
var end= trim(arr[2]);
if (hash[grp] == null)
{
hash[grp] = false;
}

if (ipInRange(ip, start, end))
{
hash[grp] = true;
}
}
}

// Now reject any groups which did not match
for (var g in hash)
{
if (!hash[g])
{
user.removeGroupByName(g);
}
}
}

// Process XML file
// XML schema is:
//
//<ipranges>
//<group name="name">
//<iprange start="x" end="y"/>
//...
//</group>
//...
// </ipranges>

Configuring the Authorizations Plug-In

3-4 Oracle Fusion Middleware Securing Enterprise Data Quality

//
// The purifyXML call here removes the <?xml ..?> header
// which E4X does not like
// ================
if (xfile != null) {
var xml= new
XML(XMLTransformer.purifyXML(IO.load(xfile)));
var grps= xml.group;
var ng= grps.length();
for (var i = 0; i < ng; i++)
{
var grp = grps[i];
var ranges = grp.iprange;
var ok= false;

for (var j = 0; j < ranges.length(); j++)
{
var range = ranges[j];
if (ipInRange(ip, range.@start, range.@end))
{
ok = true;
break;
}
}

if (!ok)
{
user.removeGroupByName(grp.@name);
}
}
}
return true;
}

// Trim function
// =============
function trim(a)
{
return a.replace(/ /g, '');
}

3.2 Configuring the Authorizations Plug-In
This plug-in can accept configuration data either in XML or CSV format. In either case,
the configuration data maps a group to one or more IP ranges that correspond to
permitted access locations. If a user logs on to the system from an IP address outside
the permitted ranges, the associated group will be blocked from the user for the
duration of the session.

The data in these files can be edited to modify the location-based filtering of project
access. When editing the data (for either file format), you should consider the
following points:

■ If a group is not mentioned in the configuration file, no location-based filtering
will be applied to it.

■ The IP address ranges in the files are those that are allowed to access projects in
the associated groups. To allow access to a group from more locations, add an IP
range or widen the scope of an existing IP range. To disallow access to a group

Configuring the Authorizations Plug-In

Filtering User Authorization Groups 3-5

from some locations, remove the corresponding IP address range, or narrow the
scope of the relevant range.

3.2.1 XML File Format
The XML configuration file has the following structure:

<ipranges>
<group name="name">
<iprange start="x" end="y"/>
...
</group>
...
</ipranges>

The configuration data consists of one or more <group> elements, where each group is
identified by name. Each group specifies one or more IP address ranges that are
permitted access to the projects in that group. An address range is specified as an
<iprange> element, with a start and an end attribute defining the limits of the address
range. In this way, multiple valid IP address ranges can be configured for each group.

All the group/IP range mapping data in the file must be contained within the
<ipranges> tag.

For example, suppose an XML configuration file contains the following data:

<ipranges>
<group name="group1">
<iprange start="1.1.1.0" end="1.1.1.20" />
<iprange start="10.1.0.0" end="10.1.0.255" />
</group>
<group name="group2">
<iprange start="10.8.1.0" end="10.8.1.125" />
</group>
</ipranges>

This configuration data means that:

■ Projects that belong to group1 can only be accessed by logging on from an IP
address that is either in the range 1.1.1.0 to 1.1.1.20 or in the range 10.1.0.0 to
10.1.0.225.

■ Projects that belong to group2 can only be accessed by logging on from an IP
address in the range 10.8.1.0 to 10.8.1.125.

If a group is not specified in the configuration file, access to projects in that group will
not be controlled by IP address. For example, user access to projects belonging to a
third group named group3 will be unaffected by this script and configuration data.

3.2.2 CSV File Format
The CSV configuration file format specifies one group and address range mapping per
line. Each line is consists of three comma-separated fields, as follows:

group name, start of address range, end of address range

For example, suppose a CSV configuration file contains the following data:

group1, 1.1.1.0, 1.1.1.20

group2, 10.8.1.0, 10.8.1.125

group1, 10.1.0.0, 10.1.0.255

Configuring the Authorizations Plug-In

3-6 Oracle Fusion Middleware Securing Enterprise Data Quality

This configuration file is functionally identical the sample XML file in Section 3.2.1,
"XML File Format." That is:

■ Projects that belong to group1 can only be accessed by logging on from an IP
address that is either in the range 1.1.1.0 to 1.1.1.20 or in the range 10.1.0.0 to
10.1.0.225.

■ Projects that belong to group2 can only be accessed by logging on from an IP
address in the range 10.8.1.0 to 10.8.1.125.

It is not necessary for all the valid IP address ranges for a group to be specified on
adjacent lines. Again, if a group is not present within the file, no IP address filtering
will be performed for that group.

4

Configuring SSL with Tomcat 4-1

4Configuring SSL with Tomcat

This chapter provides instructions for setting up Secure Sockets Layer (SSL) on an
Oracle Enterprise Data Quality (EDQ) running on Tomcat application server.

This chapter includes the following sections:

■ Section 4.1, "Configuring SSL During Installation"

■ Section 4.2, "Configuring SSL Client Authentication"

■ Section 4.3, "Using SSL With JMX"

EDQ user applications (such as Director) always encrypt user passwords, so SSL is not
required.

4.1 Configuring SSL During Installation
When installing Tomcat on Windows or any other platform, the HTTPS connector
must be configured using the following procedure:

1. Locate the server.xml file for the Tomcat installation. Typically it contains the
following:

<!-- Define a SSL HTTP/1.1 Connector on port 8443
This connector uses the JSSE configuration, when using APR, the
connector should be using the OpenSSL style configuration
described in the APR documentation -->
<!--
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS" />
-->

2. Enable the Connector element by removing the comment characters around it.

3. Set the port value for HTTPS. The default is 8443, so if a different value is used
also change the redirectPort value in the HTTP connector to match.

4. Generate the server certificate.

Note: For other application servers (such as Oracle WebLogic Server
or IBM Websphere), consult the standard server documentation.

Configuring SSL Client Authentication

4-2 Oracle Fusion Middleware Securing Enterprise Data Quality

5. Update the connector element as follows:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
sslProtocol="TLS"
keystoreFile="pathtokeystorefile"
keystorePass="keystorepassword"
keystoreType="keystoretype"
/>

6. Set the keystoreType value to JKS or PKCS12 as required. If the key store contains
multiple certificates, use the keyAlias attribute to set the alias.

7. Some Tomcat distributions include the Apache Portable Runtime (APR) native
library. If this is the case, the certificate must be configured using mod_ssl style
attributes. For example:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
SSLCertificateFile="pathtocrtfile"
SSLCertificateKeyFile="pathtokeyfile" />

For additional Tomcat information, see Apache Tomcat Configuration Reference at

http://tomcat.apache.org/tomcat-7.0-doc/config/http.html

For additional mod_ssl information, see Apache Module mod_ssl at

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

4.2 Configuring SSL Client Authentication
EDQ can support authentication using SSL client certificates.

There are three stages to configuring SSL client certificates:

1. Configure the server to request client certificates.

2. Assign a personal certificate and associated private key to each user.

3. Associate each certificate with an internal EDQ user or an entry in an external
LDAP server.

4.2.1 Configuring Tomcat to Support Client Certificates
1. Locate the HTTPS connector and add the following settings:

clientauth="true"
truststoreFile="pathtotruststore"
truststorePass="truststorepassword"
truststoreType="truststoretype"

a. Set the clientauth attribute to true (valid client certificate required for a
connection to succeed) or want (use a certificate if available, but still connect if
no certificate is available).

Note: The certificate is supplied in a Java keystore, either in the
default JKS format or as a PKCS#12 file. The latter may be preferred in
certain instances, as there are many tools available for working with
PKCS#12 files.

Configuring SSL Client Authentication

Configuring SSL with Tomcat 4-3

b. Add the location of the trust file containing the certificate issuers for trusted
client certificates.

c. Set truststoreType to JKS or PKCS12.

2. If the Tomcat installation includes Apache Portable Runtime (APR), then the
equivalent mod_ssl settings are used:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
SSLCertificateFile="pathtocrtfile"
SSLCertificateKeyFile="pathtokeyfile"
SSLCACertificateFile="pathtocabundlefile"
SSLVerifyClient="require" />

3. Locate the EDQ login.properties file in the security subdirectory of the
configuration directory. If the file does not exist, create it by copying the
login.properties file from oedg.home.

4. Add the following line to the login.properties file to enable authentication for
all realms using X.509 certificates:

x509 = true

5. If required, enable certificate authentication for web pages in all contexts by
adding the following setting:

http.x509 = true

Alternatively, to enable selectively for different contexts, add the context as a suffix
to the setting; for example:

http.x509.admin = true
http.x509.formws = true
http.x509.ws = true
http.x509.dashboard = true

4.2.2 Assigning Personal Certificates and Key Combinations
When SSL client authentication is enabled on a server, each user must have a
certificate and associated private key available on the client. The certificate is not
sensitive and can be distributed freely, but the private key must be stored and
distributed securely.

Each certificate and key combination user can be stored in a number of ways:

■ In the operating system certificate store. For example, Internet Options, Content,
and Certificates on a Windows platform.

■ A smart card.

■ A USB dongle.

Certificate and key combinations can either be generated and distributed to users or
created by a certificate authority website, allowing users to apply for one as required.

Note: To enable X.509 certificate for specific realms, add a line of
code for each realm, including the realm name as a prefix. For
example, for the dn realm, add the following line:

dn.x509 = true

Using SSL With JMX

4-4 Oracle Fusion Middleware Securing Enterprise Data Quality

The latter approach is preferable, because the private key is generated on the system of
the user and therefore is not transmitted.

On Windows platforms, Java Web Start uses the operating system certificate store in
addition to the internal Java store. If a certificate has been created in Internet Explorer
(or Google Chrome), it is stored in the system store and will be used by Web Start.
Mozilla Firefox has an internal certificate store; certificates generated in Firefox must
be added manually to the system or Java store before use with Java Web Start.

4.2.3 Associating Certificates With a User
Once a user has a certificate, it must be associated with an EDQ user account to enable
automatic authentication. This association provides an alternative way of performing
pass-through authentication, or single sign-on (SSO), whereby users do not need to log
in to EDQ applications.

4.2.3.1 Internal Users
A Java Management Extensions (JMX) interface and associated script can be used to
store the certificate in the user record:

java –jar jshell.jar setcert.groovy –server SERVER:JMXPORT
[-username adminusername -pw password]
[-cert certfile] -for username

■ SERVER is the host name of the EDQ server and JMXPORT is the port used with
jconsole.

■ adminusername and password are for an EDQ administrator (they can be omitted if
SSO is enabled and jshell is run from the tools directory).

■ certfile is the file containing the certificate, in PEM or DER format. If -cert is
omitted, any existing certificate is removed from the user record.

■ username is the internal user being updated.

4.2.3.2 External Users
The certificate is stored in an attribute for the user in the external LDAP server. For
example, in Active Directory the userCertificate attribute is used.

4.3 Using SSL With JMX
EDQ supports the use of SSL to connect to JMX. Because the connector for JMX is
created within EDQ, the configuration of SSL is performed by editing the
director.properties file and not by altering the configuration of the application
server.

4.3.1 Enabling the SSL Settings for JMX
Use the following steps to enable SSL for use with JMX:

1. To enable SSL for JMX add the following line to the director.properties file:

management.ssl.port = portnumber

■ Replace portnumber with the required port number.

■ The key and certificate for the connection can be specified in separate files or
in a Java keystore.

Using SSL With JMX

Configuring SSL with Tomcat 4-5

2. To use separate crt and key files in Privacy-enhanced Electronic Mail (PEM) or
Distinguished Encoding Rules (DER) format, add these settings:

management.ssl.km.crt = crtfile
management.ssl.km.key = keyfile

3. If the key is encrypted, add the following setting to set the key password:

management.ssl.km.keypw = password

However, if the certificate is in a Java keystore, use these settings:

management.ssl.km.keystore = keystorefile
management.ssl.km.storetype = storetype
management.ssl.km.storepw = storepassword
management.ssl.km.alias = alias
management.ssl.km.keypw = keypassword

■ The alias property can be omitted if the key store contains a single entry;
otherwise it is the alias of the certificate and key entry in the store.

■ The store type defaults to JKS.

■ The keypw can be omitted if the password for the key is the same as the
password for the store (this is typically the case).

4. To enable SSL client authentication for JMX, add the following setting:

management.ssl.clientauth = required

Replace required with optional to use a certificate if available, but to successfully
connect if it is not.

5. To configure the issuer certificates for valid client certificates, add the following
setting to accept any client certificate:

management.ssl.tm.any = true

Alternatively, add the following setting to specify a certificate bundle file
(containing a series of concatenated PEM certificates):

management.ssl.tm.bundle = bundlefile

Or add the following settings to specify a keystore:

management.ssl.tm.keystore = keystorefile
management.ssl.tm.storetype = keystoretype
management.ssl.tm.storepw = keystorepassword

4.3.2 Using SSL with JMX Clients
If SSL has been enabled for JMX and SSL client authentication is not enabled, no
special configuration is required if the server certificate is issued by an authority
trusted by the Java Runtime Environment (JRE).

If the issuer is not currently trusted, the Certification Authority (CA) certificate can be
added to the JRE cacerts store using the keytool command supplied with the JRE.

Note: The default keystore type is JKS, which does not require the
keystorepassword setting.

Using SSL With JMX

4-6 Oracle Fusion Middleware Securing Enterprise Data Quality

Alternatively, a keystore containing the CA certificate can be supplied using the
standard Java SSL properties.

For example:

jconsole -J-Djavax.net.ssl.trustStore=trustkeystorefile

If SSL client authentication has been enabled, key store properties are also required:

Notice the parallel with server configuration. The client trust store is used to trust the
certificate in the server key store; the client key store contains the certificate that is
trusted by the server trust store (or certificate bundle).

jconsole -J-Djavax.net.ssl.trustStore=trustkeystorefile
-J-Djavax.net.ssl.keyStore=keystorefile
-J-Djavax.net.ssl.keyStoreType=keystoretype
-J-Djavax.net.ssl.keyStorePassword=keystorepassword

See the JRE documentation for details of the java.net.ssl property set.

The JMX command line tools (and the jshell script interpreter) also support setting
SSL configuration with environment variables and/or command line arguments. Not
all JMX scripts support SSL options; if not available, use the environment variables.

If SSL client authentication is not enabled, use the EDQ_SSL_TRUST environment
variable or -ssltrust command line option to specify a Java keystore containing the
CA certificate for the server (this is analogous to the first jconsole example in this
section).

If SSL client authentication has been enabled, use the EDQ_SSL_PROPS environment
variable or -sslprops command line argument to specify a properties file containing
key and trust store settings. The property format is identical to the server
configuration in director.properties except that the management.prefix is not used.

For example, to specify trust for the server certificate using a Java keystore, and the
client certificate and key as separate crt and key files the properties file would contain:

tm.keystore = trustkeystorefile
km.crt = crtfile
km.key = keyfile

Key and store password, and other properties can be added as necessary.

The property file contents can be specified directly in the environment or on the
command line by enclosing the property settings in {..} and separating property
values with commas. For example, the preceding property file would be specified as:

{tm.keystore=trustkeystorefile, km.crt=crtfile, km.key=keyfile}

4.3.2.1 Command Examples
This section contains examples of some of the commands described in the previous
section:

java –jar jmxtools.jar runjob –job x –project z –sslprops c:\tmp\ssl.properties
localhost:9005

To specify SSL trust and key information in a properties file, using the command line
option, you could use the following:

set EDQ_SSL_TRUST=c:\tmp\trust.jks
java –jar jshell.jar scripts\system\sysreport.groovy –user dnadmin –pw password
–server localhost:9005

Using SSL With JMX

Configuring SSL with Tomcat 4-7

To run a system report specifying a trust store using an environment variable. In
UNIX, for example, the command might be:

EDQ_SSL_TRUST=/tmp/trust.jks
export EDQ_SSL_TRUST
java –jar jshell.jar scripts/system/sysreport.groovy –user dnadmin –pw password
–server localhost:9005

To use a client certificate with in line properties, the command might be:

EDQ_SSL_PROPS="{tm.keystore=/tmp/trust.jks,km.crt=/tmp/me.crt,km.key=/tmp/me.key}"
export EDQ_SSL_PROPS
java –jar jshell.jar scripts/system/sysreport.groovy –server localhost:9005

Using SSL With JMX

4-8 Oracle Fusion Middleware Securing Enterprise Data Quality

5

Using the Audit Framework with Enterprise Data Quality 5-1

5Using the Audit Framework with Enterprise
Data Quality

This chapter explains how to enable and configure EDQ to log events with the Oracle
Fusion Middleware Audit Framework.

This chapter includes the following sections:

■ Section 5.1, "Enabling EDQ Audit Event Logging"

■ Section 5.2, "Configuring the EDQ Events"

When you install EDQ to operate in an Oracle WebLogic Server domain, you integrate
it to log events in the Oracle Fusion Middleware Audit Framework. This auditing
provides a measure of accountability and answers the "who has done what and when"
types of questions. For detailed information about this auditing service, see
"Introduction to Oracle Fusion Middleware Audit Service" in Oracle Fusion Middleware
Securing Applications with Oracle Platform Security Services 12c (12.1.3).

5.1 Enabling EDQ Audit Event Logging
To enable audit event logging, use the following procedure:

1. Open the Enterprise Manager 11g Fusion Middleware Control application.

2. Navigate to the EDQ domain in the Target Navigation Tree on the left of the
window.

3. Right-click the domain and select Security > Audit Policy.

4. Select "EDQ" in the Audit Component Name field.

5. Select "Custom" in the Audit Level field.

6. Select the categories to log, and the events within those categories.

7. Click Apply, or Revert to abandon the changes.

5.2 Configuring the EDQ Events
The EDQ event categories and types are as follows:

Event
Category Event Types

User
Management

Login, Logout, Password Change, Password Expire, User Blocked, User
Blocked Temporarily, User Unblocked, User Created, User Updated, User
Deleted, Security Configuration Updated.

Configuring the EDQ Events

5-2 Oracle Fusion Middleware Securing Enterprise Data Quality

The attributes that can be logged by event are listed in the following table. Note that
not every attribute is available to each event type.

Once enabled, EDQ audits events by calling the central Oracle Fusion Middleware
Audit Framework APIs. The audit events can then be stored either as files or in a
database for compliance reporting purposes. For more information on how to store
and report on the results of auditing, see Oracle Fusion Middleware Securing Applications
with Oracle Platform Security Services 12c (12.1.3).

Object
Management

Create, Update, Delete.

Group
Permission
Management

Join group, Leave group, Leave all groups, Create group, Delete group,
Change permissions.

Note: Object Management logs changes made to objects in the
Project Browser of the Director application only, such as projects or
processes.

It does not cover changes to objects made in other applications, such
as Case Management.

Event
Attribute Description

Affected user The name of the user for the logged event.

Login
application

The name of the application that has been logged into.

Project Name The name of the project containing the affected object. This attribute is left
blank for system-level objects.

Item Type The type of object created, modified or deleted.

Item Name The name of the object created, modified or deleted.

Affected user The name of the user affected by changes made by an administrator.

Affected group The name of the group affected by changes made by an administrator.

Added
Permissions

List of permissions added to a group.

Removed
Permissions

List of permissions removed from a group.

Event
Category Event Types

6

Integrating EDQ with a Fusion Middleware Credential Store 6-1

6Integrating EDQ with a Fusion Middleware
Credential Store

This chapter describes how to use an Oracle Fusion Middleware credential store with
EDQ.

This chapter contains the following sections:

■ Section 6.1, "Overview of the Credential Store"

■ Section 6.2, "Configuring the Credential Store for EDQ"

■ Section 6.3, "Specifying the EDQ Credential Key in Properties Files"

■ Section 6.4, "Examples of Specifying a Key Name"

6.1 Overview of the Credential Store
EDQ supports the use of the Oracle Fusion Middleware credential store to hide user
names and passwords that are used by EDQ to connect to protected resources, such as
a JMS broker or LDAP server. These credentials otherwise would be exposed as
clear-text in the EDQ properties files. When a credential store is used, a user name and
password are replaced by a key name that serves as an alias for the credential
whenever a login is required.

Using a credential store with EDQ comprises the following steps:

Configuring the Credential Store for EDQ

Specifying the EDQ Credential Key in Properties Files

6.2 Configuring the Credential Store for EDQ
To configure a credential store, use Oracle Enterprise Manager Fusion Middleware
Control. For more information about using this browser-based console, see
Administering Oracle Fusion Middleware.

In a credential store, a credential is identified by a credential map. The credential map
consists of a map and one or more keys. In EDQ, the default map name is edq. The key
name is specified by the person who is creating the credential map and serves as the
“alias” for the credential in the properties files. The person who creates the credential
map must be an Oracle Fusion Middleware administrator.

To Configure a Credential Store for EDQ
1. Log in to Oracle Enterprise Manager Fusion Middleware Control as an

administrator.

Specifying the EDQ Credential Key in Properties Files

6-2 Oracle Fusion Middleware Securing Enterprise Data Quality

2. Navigate to Domain > Security > Credentials to display the Credentials page.

3. Click Create Map to display the Create Map dialog. Once you create a map, you
can create multiple keys for it at the same time, or you can add more keys at a later
date.

4. Create a map named edq, and then click OK. The edq map name is displayed in
the table.

5. Click Create Key to display the Create Key dialog.

6. Select the following in this dialog:

■ Select the edq map from the Select Map pull-down menu.

■ Enter a name for the key in the Key text box. This is the key name that will be
entered in the properties files to replace the credential.

■ Select Password from the Type pull-down menu.

■ Enter the user name for the EDQ user in the User Name field and enter the
password for that user in the Password field. Confirm the password in the
Confirm Password field.

■ Optionally, you can add a description of this credential.

7. Click OK to return to the Credentials page. The new key is displayed under the
edq map icon.

6.3 Specifying the EDQ Credential Key in Properties Files
Once you have configured an EDQ credential map in Fusion Middleware Control, use
the .cred.key property to specify the key name in place of the credential in properties
files.

The syntax is this:

prefix.cred.key = keyname

It replaces the standard, non-secured username and password entries:

prefix.username = username
prefix.password = password

The following shows an entry for a credential for user “myuser”, followed by an entry
for the same credential as represented by its key name.

Non-secured Credential in director.properties
This example shows the regular way of using the username and password properties to
specify the actual user name and password.

sccs.vcs.username = myuser
sccs.vcs.password = mypassword1234

Secured Credential in director.properties
This example uses the cred.key property to specify a key name from the credential
store in place of the login credential.

sccs.vcs.cred.key = mykey1

Examples of Specifying a Key Name

Integrating EDQ with a Fusion Middleware Credential Store 6-3

Secured Password-Only Entry
In cases where only a password is required, for example if creating a keystore for JMX
over SSL, append the .cred.key property to the property name. The following is an
example:

management.ssl.km.storepw.cred.key = mykey1

6.4 Examples of Specifying a Key Name
These examples show additional ways to specify credentials by means of a key name.

Connection to a JMS Broker
This example shows a realtime bucket definition in which a credential is required to
connect to a JMS broker.

The following is the unsecured way of specifying the credential:

<messengerconfig>
 …
 username = myuser
 password = mypassword1234
 …
</messengerconfig>
…

The following is the secure specification using the key name:

…
<messengerconfig>
 …
 cred.key = mykey1
 …
</messengerconfig>
…

Connection to a JNDI Store
This example uses a credential to connect to a JNDI store.

The following is the unsecured way of specifying the credential:

…
<messengerconfig>
 …
 java.naming.security.principal = myuser
 java.naming.security.credentials = mypassword1234
 …
</messengerconfig>
…

The following is the secure specification using the key name. In this case, the jndi
prefix is required, so the .cred.key is appended to it.

…
<messengerconfig>
 …
 jndi.cred.key = mykey1
 …
</messengerconfig>
…

Examples of Specifying a Key Name

6-4 Oracle Fusion Middleware Securing Enterprise Data Quality

Connecting to an LDAP Server
This example shows the correct syntax for specifying a connection to an LDAP server
in the login.properties file.

Non-secured entry:

myrealm.ldap.user = myuser
myrealm.ldap.pw = mypassword

Secured entry with credential store key:

myrealm.ldap.cred.key = mykey1

	1 Enterprise Data Quality Security Architecture
	2 Integrating with LDAP
	3 Filtering User Authorization Groups
	4 Configuring SSL with Tomcat
	5 Using the Audit Framework with Enterprise Data Quality
	6 Integrating EDQ with a Fusion Middleware Credential Store
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Enterprise Data Quality Security Architecture
	1.1 Client-Server Communication
	1.2 Authentication
	1.3 Storing Security Information
	1.4 Data Segmentation

	2 Integrating with LDAP
	2.1 Overview of LDAP Support
	2.2 Integrating LDAP Using OPSS on a WebLogic Server
	2.3 Integrating LDAP Directly on Apache Tomcat
	2.4 Configuring Global LDAP Settings
	2.5 Configuring Realm Settings
	2.6 Validating Credentials When Single Sign-On Is Not Used
	2.7 LDAP Security
	2.8 Example LDAP Configurations
	2.8.1 Example of Oracle Internet Directory LDAP Configuration
	2.8.2 Example of Microsoft Active Directory LDAP Configuration
	2.8.3 Example of Open LDAP Configuration
	2.8.4 Example of Novell eDirectory LDAP Configuration
	2.8.4.1 Example Settings for login.properties
	2.8.4.2 Creating a novell.properties File

	2.9 Customizing Password Expiry Settings
	2.9.1 Overview of the Variables
	2.9.2 Customizing the Password Expired Message
	2.9.3 Customizing the Password Expiring Message
	2.9.4 Customizing the Expiry Time

	2.10 Configuring Parent and Child Active Directory Domains
	2.10.1 Example Settings for Parent and Child Domains

	2.11 Kerberos Keytabs for Active Directory Accounts
	2.11.1 What is a Keytab?
	2.11.2 Creating Keytabs Using Existing Tools
	2.11.3 UNIX Kerberos Configuration
	2.11.4 Managing LDAP Accounts
	2.11.4.1 Oracle Directory Services Manager
	2.11.4.2 Apache Directory Studio

	2.11.5 Configuring SSO

	3 Filtering User Authorization Groups
	3.1 Installing the Authorizations Plug-In
	3.1.1 Filter Script

	3.2 Configuring the Authorizations Plug-In
	3.2.1 XML File Format
	3.2.2 CSV File Format

	4 Configuring SSL with Tomcat
	4.1 Configuring SSL During Installation
	4.2 Configuring SSL Client Authentication
	4.2.1 Configuring Tomcat to Support Client Certificates
	4.2.2 Assigning Personal Certificates and Key Combinations
	4.2.3 Associating Certificates With a User
	4.2.3.1 Internal Users
	4.2.3.2 External Users

	4.3 Using SSL With JMX
	4.3.1 Enabling the SSL Settings for JMX
	4.3.2 Using SSL with JMX Clients
	4.3.2.1 Command Examples

	5 Using the Audit Framework with Enterprise Data Quality
	5.1 Enabling EDQ Audit Event Logging
	5.2 Configuring the EDQ Events

	6 Integrating EDQ with a Fusion Middleware Credential Store
	6.1 Overview of the Credential Store
	6.2 Configuring the Credential Store for EDQ
	6.3 Specifying the EDQ Credential Key in Properties Files
	6.4 Examples of Specifying a Key Name

