

Oracle® Fusion Middleware
Administering Data Service Integrator

Release 12c (12.1.3)

E47943-02

July 2016

Oracle Fusion Middleware Administering Data Service Integrator, Release 12c (12.1.3)

E47943-02

Copyright © 2008, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... ix

1 Overview of Oracle Data Service Integrator Administration

1.1 Administering Oracle Data Service Integrator ... 1-1
1.1.1 Securing Data ... 1-2
1.1.2 Caching Query Results ... 1-2
1.1.3 Viewing Metadata ... 1-2
1.2 Understanding Oracle Data Service Integrator-Enabled WebLogic Server Domains 1-3
1.2.1 Understanding the Relationship between Oracle Data Service Integrator and

WebLogic Domains 1-3
1.2.1.1 Creating a New Domain.. 1-3
1.2.1.2 Provisioning an Existing Domain for Oracle Data Service Integrator.................. 1-4
1.2.2 Understanding Console Users ... 1-5
1.2.3 Configuring SSO for Clients .. 1-5
1.3 Introducing the Oracle Data Service Integrator Administration Console.......................... 1-5
1.3.1 Oracle Data Service Integrator Administration Console Components 1-6
1.4 Server Classpath Settings... 1-7

2 Getting Started with Oracle Data Service Integrator Administration

2.1 Starting and Stopping WebLogic Server ... 2-2
2.1.1 Starting the Server ... 2-2
2.1.2 Stopping the Server ... 2-3
2.2 Launching Oracle Data Service Integrator Administration Console 2-4
2.3 Exploring Oracle Data Service Integrator Administration Console.................................... 2-5
2.3.1 Using the Navigation Pane... 2-6
2.3.1.1 Change Center and Configuration Locking ... 2-7
2.3.1.2 Pending Changelist .. 2-8
2.3.1.3 Navigation Tree and Category List.. 2-9
2.3.2 Using the Workspace Content Area.. 2-9

iv

3 Deploying Dataspaces

3.1 Introduction ... 3-1
3.2 Creating a New Dataspace .. 3-1
3.3 Deleting a Dataspace .. 3-4
3.4 Deploying Dataspaces on a Target Server... 3-4
3.4.1 Deploying a Dataspace ... 3-5
3.4.2 Deploying a Web Service Map on a Cluster .. 3-7
3.5 Importing Dataspace Artifacts .. 3-8
3.6 Exporting Dataspace Artifacts ... 3-10

4 Configuring Oracle Data Service Integrator Resources

4.1 Configuring the Cache and Log for a Dataspace ... 4-1
4.2 Using the Physical Sources Category... 4-2
4.2.1 Viewing Physical Data Source Locations ... 4-2
4.2.2 Modifying Data Source End Points... 4-3
4.2.3 Substituting SQL Statements.. 4-4
4.2.3.1 How SQL Statement Substitution Works.. 4-6
4.2.3.2 Requirements for SQL Statement Substitution .. 4-7
4.2.3.3 Creating Substitute SQL Query Statements.. 4-7
4.2.3.4 SQL Statement Substitution Example.. 4-9
4.3 Setting the Server Resources .. 4-11
4.4 Item-based Memory Management .. 4-13
4.5 Using Work Managers With Oracle Data Service Integrator .. 4-14
4.5.1 Creating and Configuring Work Managers.. 4-14
4.5.2 Sharing Work Manager Constraints .. 4-15
4.6 Using Administrative Properties .. 4-15
4.7 Monitoring Active Queries and Updates ... 4-17
4.8 Setting the Transaction Isolation Level... 4-18
4.9 Preloading Oracle Data Service Integrator Projects and Dataspaces 4-20

5 Securing Oracle Data Service Integrator Resources

5.1 Introduction to Oracle Data Service Integrator Security... 5-1
5.2 Understanding Runtime Security Policies .. 5-2
5.2.1 Definition of a Securable Resource.. 5-3
5.2.1.1 Allowing Anonymous Access .. 5-4
5.3 Creating and Applying Runtime Security Policies .. 5-5
5.4 Configuring Dataspace-Level Security .. 5-8
5.4.1 Specifying Runtime and WSDL Access Service Accounts... 5-9
5.4.1.1 Specifying Service Accounts .. 5-10
5.4.2 Working with XQuery Functions for Security.. 5-11
5.4.2.1 Creating an XQuery Function for Security .. 5-12
5.4.2.2 Applying an XQuery Function for Security .. 5-13
5.4.3 Data Redaction Options for Data Elements .. 5-15
5.4.3.1 Data Redaction Conditions .. 5-15
5.4.3.2 Specifying the Data Redaction Behavior.. 5-15
5.4.3.3 Encryption-Based Data Redaction Examples .. 5-16

v

5.4.4 Understanding and Using Service Accounts.. 5-19
5.4.4.1 Creating a Service Account .. 5-19
5.4.5 Exporting Access Control Resources ... 5-23
5.5 Configuring Data Service and Operation-Level Security .. 5-25
5.5.1 Creating Data Service Runtime Security Policies... 5-26
5.5.2 Cascading Element-Level Security to Child Elements .. 5-27
5.5.3 Creating and Configuring Security Policies for Operations....................................... 5-28
5.5.4 Configuring Data Element-level Security ... 5-29
5.5.4.1 Additional Data Element Security Considerations .. 5-30
5.5.5 Securing Native Web Services .. 5-30
5.5.6 Creating Security Policies for User-Defined Security Resources............................... 5-31
5.6 Working with Administrative Access Control Policies.. 5-31
5.6.1 Assigning Entitlements .. 5-33
5.6.1.1 Gaining Administrative Access After a System Lockout 5-35
5.6.2 Taking Lock and Edit Capability.. 5-35

6 Viewing Native Web Services

6.1 Viewing Native Web Service Artifacts .. 6-1
6.1.1 Using the General Tab... 6-2
6.1.1.1 Test the Generated Web Service... 6-2
6.1.1.2 View the WSDL... 6-3
6.1.1.3 Export the Static JAR File .. 6-4
6.1.2 Using the Operations Tab... 6-4
6.1.3 Using the Data Lineage Tab ... 6-4
6.2 Generating a Web Services Mediator Client JAR File ... 6-5
6.3 Generating a Mediator Client JAR File ... 6-6

7 Viewing Metadata Using the Service Explorer

7.1 Introducing Service Explorer .. 7-1
7.2 Using the Service Explorer .. 7-2
7.2.1 Web Browser Requirements for Data Lineage Graph.. 7-2
7.2.2 Analyzing and Viewing Data Services Metadata ... 7-3
7.2.2.1 Data Service Lineages .. 7-6
7.2.2.2 Data Lineage Viewing Options .. 7-7
7.2.3 Viewing Data Service Functions Metadata .. 7-7
7.2.3.1 Data Service Function Lineages.. 7-8
7.2.3.2 Cyclic Dependency .. 7-9
7.2.4 Viewing Web Service Metadata... 7-9
7.3 Searching Metadata ... 7-10
7.3.1 Search Guidelines ... 7-11
7.3.2 Performing a Basic Metadata Search ... 7-12
7.3.3 Performing an Advanced Metadata Search .. 7-12
7.3.4 Generating Reports... 7-14

8 Configuring Query Results Cache

8.1 Understanding Results Caching ... 8-1

vi

8.1.1 Caching API.. 8-2
8.2 Setting Up Caching ... 8-3
8.2.1 Step 1: (Optional) Run the SQL Script to Create the Cache Tables 8-4
8.2.1.1 Modifying the Cache Table Structure.. 8-4
8.2.2 Step 2: Create the JDBC Data Source for the Cache Database....................................... 8-5
8.2.3 Step 3: Specify the Cache Data Source and Table ... 8-5
8.2.4 Step 4: Enabling Caching by Function.. 8-6
8.2.4.1 Caching Identity Keys for Security .. 8-8
8.3 Monitoring and Purging Data Cache... 8-8
8.3.1 Purging Data Cache... 8-8
8.3.1.1 Purging the Cache for a Dataspace .. 8-9
8.3.1.2 Purging the Cache for a Function .. 8-9

9 Working With Audit and Log Information

9.1 Auditing ... 9-1
9.1.1 Audit Data Structure ... 9-1
9.1.2 Setting Global Audit Properties .. 9-2
9.1.2.1 Auditing Severity Levels ... 9-4
9.1.3 Setting Individual Auditing Properties ... 9-4
9.1.3.1 Admin Audit Properties .. 9-6
9.1.3.2 Common Audit Properties.. 9-7
9.1.3.3 Query Audit Properties ... 9-8
9.1.3.4 Update Audit Properties .. 9-14
9.1.4 Function-level Auditing .. 9-15
9.1.5 Retrieving Audit Information ... 9-16
9.1.5.1 WebLogic Server Security Framework... 9-17
9.1.5.2 Oracle Data Service Integrator Client API .. 9-18
9.1.5.2.1 Initializing the RequestConfig Class ... 9-18
9.1.5.2.2 Passing the RequestConfig Object .. 9-18
9.1.5.2.3 Filtering Audit Data .. 9-18
9.1.5.2.4 Retrieving Data Service Audit ... 9-18
9.1.5.2.5 Retrieving Audit Properties ... 9-18
9.2 Monitoring the Server Log ... 9-19
9.3 Monitoring a WebLogic Domain ... 9-19
9.4 Using Other Monitoring Tools... 9-19

10 Extending Database Support

10.1 Introduction .. 10-1
10.1.1 General Use Cases .. 10-2
10.1.2 Overview of the Extension Framework Architecture .. 10-2
10.1.3 Relational Providers Included With Oracle Data Service Integrator 10-4
10.1.4 Supported Features .. 10-5
10.1.5 Importing Relational Source Metadata.. 10-5
10.1.6 Related Reading .. 10-5
10.2 Sample Configurable Relational Provider File .. 10-6
10.3 Using the Configurable Relational Provider.. 10-9
10.3.1 Summary of Basic Configuration Steps... 10-9

vii

10.3.2 Deploying the Relational Provider... 10-10
10.3.2.1 Adding a Provider... 10-10
10.3.2.2 Removing a Provider .. 10-11
10.4 Configurable Relational Provider Format Description and Reference 10-11
10.4.1 Overview of Primary XML Elements .. 10-11
10.4.2 Overview of the <custom-rdb-provider> Element.. 10-12
10.4.3 Configurable Relational Provider Reference .. 10-14
10.5 Database Matching .. 10-22
10.5.1 Rules for Database Matching .. 10-23
10.5.2 JDBC Metadata Methods to XQuery Functions Mapping .. 10-23
10.5.3 Additional External XQuery Functions... 10-24
10.6 Specifying SQL Syntax for Functions.. 10-25
10.6.1 Syntax Overview... 10-25
10.6.2 Setting the infix Attribute .. 10-25
10.6.3 Using a Variable Length Placeholder .. 10-26
10.7 Default SQL Syntax for Functions ... 10-26
10.8 Translating Built-In XQuery Operators Into SQL ... 10-33
10.9 Standard and Oracle Data Service Integrator Namespaces for Functions and Types. 10-35
10.10 Function and Type Name Resolution Process ... 10-35
10.11 Abstract SQL Providers... 10-36
10.11.1 AbstractSQLProvider ... 10-36
10.11.2 AbstractSQL89Provider .. 10-37
10.11.3 AbstractSQL92Provider ... 10-38

viii

ix

Preface

This document describes how to administer the Oracle Data Service Integrator
software.

Audience
This document is intended for WebLogic Server and/or Oracle Data Service Integrator
administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Data Service
Integrator documentation set:

■ Oracle Fusion Middleware Using Data Service Integrator XQuery Engine

■ Oracle Fusion Middleware Developing Data Service Integrator Applications

■ Oracle Fusion Middleware Installing Data Service Integrator

■ Oracle Fusion Middleware Data Service Integrator Developer’s Guide

■ Oracle Fusion Middleware Data Services Java API for Oracle Data Integrator

Conventions
The following text conventions are used in this document:

x

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Overview of Oracle Data Service Integrator Administration 1-1

1Overview of Oracle Data Service Integrator
Administration

This chapter introduces Oracle Data Service Integrator administration. It explains the
concept of Oracle Data Service Integrator-Enabled WebLogic domains and introduces
the Oracle Data Service Integrator Administration Console components.

The primary audience for this document is WebLogic Server and/or Oracle Data
Service Integrator administrators.

The chapter contains the following sections:

■ Section 1.1, "Administering Oracle Data Service Integrator"

■ Section 1.2, "Understanding Oracle Data Service Integrator-Enabled WebLogic
Server Domains"

■ Section 1.3, "Introducing the Oracle Data Service Integrator Administration
Console"

■ Section 1.4, "Server Classpath Settings"

1.1 Administering Oracle Data Service Integrator
Oracle Data Service Integrator is integration software that unifies data programming
by using data services. You can deploy it to WebLogic Server and administer tasks
such as dataspace deployment, managing services accounts, controlling user access,
and configuring runtime security through the Oracle Data Service Integrator Console.

Some administrative tasks can be performed through WebLogic Server Administration
Console such as starting and stopping the server, configuring connection pools and
data sources, logging, and so forth. The WebLogic Platform provides extensive tools
and capabilities for configuring and maintaining a large-scale, production-level
integration platform.

This section introduces you to the general administration tasks that you can perform
using the Oracle Data Service Integrator Console. It includes the following topics:

■ Section 1.1.1, "Securing Data"

■ Section 1.1.2, "Caching Query Results"

■ Section 1.1.3, "Viewing Metadata"

Note: Oracle Data Service Integrator was previously named Liquid
Data. Some artifacts of the original name remain in the product,
installation path, and components.

Administering Oracle Data Service Integrator

1-2

For information on WebLogic administration, refer to System Administration for
Oracle WebLogic Server 10g Release 3 (10.3) at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/admin.html.

1.1.1 Securing Data
Oracle Data Service Integrator leverages the security model of the WebLogic Platform
to ensure data security. WebLogic uses security policies that control access to deployed
resources based on user credentials or other factors.

Oracle Data Service Integrator enables you to apply policies to its data resources at
various levels ranging from the dataspace to data elements. In addition, you can
secure resources based on data values (called instance-level security). For example,
you can secure objects if an element value exceeds a specific threshold.

For details, see Chapter 5, "Securing Oracle Data Service Integrator Resources."

1.1.2 Caching Query Results
Oracle Data Service Integrator can cache query results for data service functions to
enhance overall system performance. Caching data alleviates the burden on back-end
resource and improves data request response times from the client's perspective. If you
want to cache data service function results, you must explicitly enable results caching
in the Oracle Data Service Integrator Administration Console.

For more information, see Chapter 4, "Configuring Oracle Data Service Integrator
Resources."

1.1.3 Viewing Metadata
Traditionally, enterprises have lacked a universal mechanism for advertising
availability of data resources across source types, or for communicating information
about those resources. Oracle Data Service Integrator provides this capability through
dynamically generated metadata.

Data service metadata serves these primary purposes:

■ It helps developers create client applications that use the information made
available by Oracle Data Service Integrator by revealing what data is available and
how to use it.

■ It helps administrators maintain Oracle Data Service Integrator by providing a
mechanism to gauge effects of changes in underlying data sources upon a data
service deployment.

Metadata provides information on data services such as their public functions,
datatypes, data lineage, and more. It also provides where used information, showing
dependencies between data services.

For more information, see Chapter 7, "Viewing Metadata Using the Service Explorer."

Note: For information about securing a server see the WebLogic
Server 10gR3 document "Securing a Production Environment" at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/lockdown/intro.html.

Understanding Oracle Data Service Integrator-Enabled WebLogic Server Domains

Overview of Oracle Data Service Integrator Administration 1-3

1.2 Understanding Oracle Data Service Integrator-Enabled WebLogic
Server Domains

An Oracle Data Service Integrator domain is created and deployed on Oracle
WebLogic Server 10gR3 (10.3) and is a collection of resources managed as a single unit.
In case of Oracle Data Service Integrator, the WebLogic Server Administration Console
is used to create users and assign roles for a domain.

An Oracle Data Service Integrator domain may constitute one or more dataspaces
deployed on a WebLogic Server as well as clusters. It is also where you deploy the
Oracle Data Service Integrator dataspace for your domain.

The WebLogic Server Administration Console is a web-based interface for configuring
and monitoring a WebLogic domain. In cases when the domain has more than one
server, one of the servers is designated as the Administration Server for the domain. The
Administration Server then serves as the central point of control for an entire domain.

If there is only one server in a domain, then that server is the Administration Server in
addition to the other functions it provides. Any other servers in a domain are Managed
Servers.

This section describes Oracle Data Service Integrator domains, and includes the
following topics:

■ Section 1.2.1, "Understanding the Relationship between Oracle Data Service
Integrator and WebLogic Domains"

■ Section 1.2.2, "Understanding Console Users"

■ Section 1.2.3, "Configuring SSO for Clients"

■ Section 1.3.1, "Oracle Data Service Integrator Administration Console
Components"

For more information about domains, see "Understanding WebLogic Server Domains"
in Configuring and Managing WebLogic Server at
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/domain_
config/understand_domains.html.

1.2.1 Understanding the Relationship between Oracle Data Service Integrator and
WebLogic Domains

Oracle Data Service Integrator constitutes one or more dataspaces that have a set of
associated resources deployed on a WebLogic domain. To manage an Oracle Data
Service Integrator dataspace, start the WebLogic Server within the domain where an
Oracle Data Service Integrator dataspace is deployed, and then use the Oracle Data
Service Integrator Administration Console for that server to configure and manage
Oracle Data Service Integrator resources.

This section includes the following topics:

■ Section 1.2.1.1, "Creating a New Domain"

■ Section 1.2.1.2, "Provisioning an Existing Domain for Oracle Data Service
Integrator"

1.2.1.1 Creating a New Domain
A dataspace created in the Oracle Data Service Integrator development environment,
works with WebLogic domains that have been provisioned for Oracle Data Service

Understanding Oracle Data Service Integrator-Enabled WebLogic Server Domains

1-4

Integrator. You can use the Oracle WebLogic Configuration Wizard to create such
domains.

To create a new domain provisioned with Oracle Data Service Integrator:

1. On Windows systems, choose Programs > Oracle WebLogic > WebLogic Server >
Tools > Configuration Wizard.

2. In the wizard, select Oracle Data Service Integrator as the domain source as
shown in Figure 1–1.

Figure 1–1 Selecting Oracle Data Service Integrator as the Domain Source

This figure shows the Select Domain Source page. Generate a domain configured
automatically to support the following products option is selected. The Base this
domain on an existing template option is deselected.

3. Follow the on-screen instructions to complete the initial configuration of the
domain.

For more information on creating domains, see "Creating WebLogic Domains Using
the Configuration Wizard" in the WebLogic Platform documentation at
http://download.oracle.com/docs/cd/E12840_
01/common/docs103/confgwiz/index.html.

1.2.1.2 Provisioning an Existing Domain for Oracle Data Service Integrator
If you have an existing WebLogic Server domain and you want to setup an Oracle
Data Service Integrator project within that domain, you can provision the domain for
Oracle Data Service Integrator, using the Configuration Wizard:

1. Open the Configuration Wizard:

Start > All Programs > Oracle WebLogic > WebLogic Server 10gR3 > Tools >
Configuration Wizard

2. Select the option: Extend an existing WebLogic configuration.

3. Select the domain you wish to enable for Oracle Data Service Integrator (such
as: AL_HOME/samples/domains/portal).

Introducing the Oracle Data Service Integrator Administration Console

Overview of Oracle Data Service Integrator Administration 1-5

4. Select Oracle Data Service Integrator extension using the Extend my domain
automatically to support the following added Oracle Products option.

For information on selecting domain setting options see "Creating WebLogic Domains
Using the Configuration Wizard" at
http://download.oracle.com/docs/cd/E12840_
01/common/docs103/confgwiz/index.html.

Once a domain is provisioned with Oracle Data Service Integrator, you can deploy the
dataspace to WebLogic Server enabled for Oracle Data Service Integrator.

For additional information see Chapter 3, "Deploying Dataspaces."

1.2.2 Understanding Console Users
Oracle Data Service Integrator Administration Console provides different privileges to
different user entitlements. Oracle Data Service Integrator now has the domain, admin,
monitor, and browser entitlements. The domain level user is created by default and
can assign entitlements to a user.

The user privileges within Oracle Data Service Integrator Administration Console
depend on the entitlements. For example, the monitor or browser entitlements can
only view the configuration in the Oracle Data Service Integrator Administration
Console, whereas the admin entitlement allows a user to change the configuration.

For more information, see Chapter 5, "Securing Oracle Data Service Integrator
Resources."

1.2.3 Configuring SSO for Clients
Use the config.properties file in the <HOME>/config/ folder to provide logout
details (such as using a custom logout page) for OAM SSO. A sample file is included
with the base ODSI installation in odsi/oam/src.

The file should be formatted as follows:

logoutUrl=<logout_page_url>?end_url=<end_url>

Use the end_url property to specify the logout URL:

logoutUrl=/oamsso/logout.html?end_url=/odsiconsole

For additional information, see "Configuring Centralized Logout for OAM" in the
Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle
Security Token Service.

1.3 Introducing the Oracle Data Service Integrator Administration
Console

The Oracle Data Service Integrator Administration Console is a web-based user
interface to configure and administer an Oracle Data Service Integrator runtime server
or cluster.

You can use the Oracle Data Service Integrator Administration Console to set security
and caching policies for data services and configure Oracle Data Service Integrator
runtime settings such as thread usage and logging levels. In addition, you can deploy,
import, and export dataspaces using the console and view metadata that is required by
both developers and administrators.

For more information, see Chapter 7, "Viewing Metadata Using the Service Explorer."

Introducing the Oracle Data Service Integrator Administration Console

1-6

Figure 1–2 shows the main page of the Oracle Data Service Integrator Administration
Console.

Figure 1–2 Oracle Data Service Integrator Administration Console

This figure shows the Oracle Data Service Integrator Console. The Navigation Pane
and Workspace Content areas are shown. For more information about these areas, refer
to Section 1.3.1, "Oracle Data Service Integrator Administration Console Components".

1.3.1 Oracle Data Service Integrator Administration Console Components
The Oracle Data Service Integrator Administration Console constitutes the Navigation
Pane and the Workspace Content area as shown in Figure 1–2. The navigation pane
consists of the change center, navigation tree, and the category-based tabs. You can use
this pane to access the deployed dataspace, functions, and web services. In addition,
you can view and manage data in different categories such as the physical data
sources and administrative access control.

Table 1–1 briefly describes the functions of each component in Oracle Data Service
Integrator Administration Console:

Table 1–1 Functions of Oracle Data Service Integrator Administration Console
Components

Component Usage

Change Center The change center is used to acquire and release a lock for editing
the configuration within the console in a transactional manner.
For more information, refer to Section 2.3.1.1, "Change Center
and Configuration Locking."

Navigation Tree The navigation tree shows the artifacts stored on the server. The
artifacts displayed in the workspace content area depend on the
category you select from the list of category-based tabs. The
navigation tree is rooted to the Oracle Data Service Integrator
domain. For more information, refer to Section 2.3.1.3,
"Navigation Tree and Category List."

Server Classpath Settings

Overview of Oracle Data Service Integrator Administration 1-7

1.4 Server Classpath Settings
The following JAR files need to be added to the WebLogic classpath for servers
running Oracle Data Service Integrator.

■ <BEA_HOME>/modules/features/odsi.server.modules_10.3.0.0.jar

■ <ALDSP_HOME>/lib/ld-server-core.jar

Category List The category-based tabs or the category list provides specific
information about the deployed dataspace, web services, and
functions. Each tab in the list provides a set of artifacts for the
selected project, data service, or function. For more information,
refer to Section 2.3.1.3, "Navigation Tree and Category List."

Workspace Content Area The workspace content area displays the artifacts based on the
selection in the navigation tree and the category list. It allows you
to configure system administration tasks, import, export, and
deploy dataspaces, work with security configurations, manage
data caching, and auditing tasks.

For more information, refer to Section 2.3.2, "Using the
Workspace Content Area."

Table 1–1 (Cont.) Functions of Oracle Data Service Integrator Administration Console
Components

Component Usage

Server Classpath Settings

1-8

2

Getting Started with Oracle Data Service Integrator Administration 2-1

2Getting Started with Oracle Data Service
Integrator Administration

Before you start working with Oracle Data Service Integrator development
environment, you need to deploy your dataspace project on an Oracle WebLogic
domain enabled for Oracle Data Service Integrator. Using Oracle WebLogic Server 12c,
you can create users and groups for Oracle Data Service Integrator and manage their
permissions.

Most of the other administrations tasks for Oracle Data Service Integrator can be
performed through the Oracle Data Service Integrator Administration Console and
therefore you may not need to launch the WebLogic Server Administration Console
frequently.

Table 2–1 lists the tasks that you can perform using Oracle Data Service Integrator
Administration Console and the ones that you need to perform using Oracle WebLogic
Server Administration Console.

For more information about creating and configuring a new server for Oracle Data
Service Integrator, refer to Post-Installation Tasks in Oracle Data Service Integrator
Installation Guide at http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/install/post.html.

Table 2–1 Administration Tasks for Oracle Data Service Integrator Administration
Console and Oracle WebLogic Server Administration Console

Task Administered Through

Oracle Data Service Integrator Users and
Groups: Chapter 5, "Securing Oracle Data
Service Integrator Resources."

Also refer to WebLogic Server user and groups
at
http://download.oracle.com/docs/cd
/E12840_
01/wls/docs103/secwlres/secroles.h
tml.

Oracle WebLogic Server Administration
Console

Deployment: Chapter 3, "Deploying
Dataspaces."

Oracle Data Service Integrator
Administration Console

Security: Chapter 5, "Securing Oracle Data
Service Integrator Resources."

Oracle Data Service Integrator
Administration Console

Caching: Chapter 8, "Configuring Query
Results Cache."

Oracle Data Service Integrator
Administration Console

Auditing: Chapter 9, "Working With Audit and
Log Information."

Oracle Data Service Integrator
Administration Console

Starting and Stopping WebLogic Server

2-2 Release 12c (12.1.3)

This chapter describes the tasks that you can perform using the Oracle Data Service
Integrator Console and also provides steps to start and stop the WebLogic Server. It
contains the following sections:

■ Section 2.1, "Starting and Stopping WebLogic Server"

■ Section 2.2, "Launching Oracle Data Service Integrator Administration Console"

■ Section 2.3, "Exploring Oracle Data Service Integrator Administration Console"

2.1 Starting and Stopping WebLogic Server
To start working with the Oracle Data Service Integrator development environment
and to administer the WLS enabled for Oracle Data Service Integrator, you must first
start WebLogic Server. Although you may not need to stop WebLogic Server
frequently, it may be required in certain situations.

This section describes how to start and stop WebLogic Server in a standalone
WebLogic domain, after you have configured your Oracle WebLogic Server 10gR3.

This section includes the following topics:

■ Section 2.1.1, "Starting the Server"

■ Section 2.1.2, "Stopping the Server"

2.1.1 Starting the Server
1. At the command prompt, navigate to the domain directory.

The domain directory is <BEA_HOME>/user_projects/domain_name. An
example could be c:\bea\user_projects\domains\mydomain.

2. Run the server startup script: startWebLogic.cmd (Windows) or
startWebLogic.sh (UNIX).

The startup script displays a series of messages, finally displaying a message
similar to the following:

<Dec 8, 2004 3:50:42 PM PDT> <Notice> <WebLogicServer> <000360> <Server started
in RUNNING mode>

You can also start Oracle WebLogic Server through the Eclipse-based IDE for Oracle
Data Service Integrator. To start the server:

1. Open the IDE and click the Servers tab.

2. Right-click the server that you have configured and select Start, as shown in
Figure 2–1. If you want run the server in debug mode, select Debug. This starts
WebLogic Server.

Note: If you are already running an instance of WebLogic Server that
uses the same listener port as the one to be used by the server you are
starting, you must stop the first server before starting the second
server.

Starting and Stopping WebLogic Server

Getting Started with Oracle Data Service Integrator Administration 2-3

Figure 2–1 Oracle Data Service Integrator IDE: Starting Oracle WebLogic Server

This figure shows the Oracle Data Service Integrator IDE. The Servers tab on the IDE is
active. In the Server section, Oracle WebLogic Server v10.3 at localhost is selected. In
the drop-down menu, Start is selected.

2.1.2 Stopping the Server
To stop the WebLogic Server using the eclipse-based IDE, right-click the server listed
in the Servers tab, as shown in Figure 2–1 and select Stop.

Alternatively, you can stop a WebLogic Server instance that is running a dataspace
project from the WebLogic Server Administration Console.

1. Start the Oracle WebLogic Server Administration Console.

2. Acquire the lock by clicking Lock & Edit.

3. In the left pane, click to expand Environment and select Servers.

4. Select the server instance you need to stop.

5. Click the Control tab. The Start/Stop tab is displayed, as illustrated in Figure 2–2.

Launching Oracle Data Service Integrator Administration Console

2-4 Release 12c (12.1.3)

Figure 2–2 Graceful Shutdown of a Server

This figure shows the Control tab in the Settings for Admin Server page. The
Start/Stop tab is selected. The Graceful Shutdown Timeout and Startup Timeout
values are set to zero. The Server LifeCycle Timeout is set to 30. The table shows five
items: Start, Resume, Suspend list, Shutdown list, and Restart SSL. In the Server Status
table, AdminServer(admin) is selected.

6. Specify the graceful shutdown timeout limit in case you need to do a forced
shutdown after some time.

7. From Server Status table, click the Shutdown list.

8. Select the When work completes option.

9. Select Yes to confirm shutdown. This shuts down the selected server after all the
pending tasks are completed.

2.2 Launching Oracle Data Service Integrator Administration Console
The Oracle Data Service Integrator Administration Console is a web-based interface
that enables you to administer and manage dataspace projects, access metadata, and
configure security and caching policies.

Before you launch the Oracle Data Service Integrator Administration Console, make
sure that the WebLogic Server is started. For more information about starting
WebLogic Server, see Section 2.1.1, "Starting the Server." To launch Oracle Data Service
Integrator Administration Console:

Exploring Oracle Data Service Integrator Administration Console

Getting Started with Oracle Data Service Integrator Administration 2-5

1. Open the following URL:

http://hostname:port/odsiconsole

Where:

■ hostname is the machine name or IP address of the host server

■ port is the address of the port on which the host server is listening for requests
(7001 by default)

For example, to start the Oracle Data Service Integrator Administration Console
on a local instance of WebLogic Server (running on your computer), navigate to
the following URL:

http://localhost:7001/odsiconsole/

2. When the login page appears, enter the appropriate user name and password.

The default user name and password is weblogic/welcome1, respectively.

The discussion and examples in the following chapters of this book (Administration
Guide) assume that you have:

■ Installed the current version of Oracle Data Service Integrator.

■ Build at least one dataspace as described in the Data Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/index.html. Building a dataspace
automatically deploys it and any data services it contains on your currently
running Oracle WebLogic Server.

In case you need to launch the WebLogic Server Administration Console, click the
WLS Console link on the top-right corner of Oracle Data Service Integrator
Administration Console, as shown in Figure 2–3.

Figure 2–3 WLS Console Link in Oracle Data Service Integrator Administration Console

This figure shows the WLS Console link is selected in the Oracle Data Service
Integrator Administration Console.

For more information about starting the Oracle WebLogic Server Administration
Console, refer to Starting the Administration Console section in Introduction to Oracle
WebLogic Servers at http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/intro/console.html.

2.3 Exploring Oracle Data Service Integrator Administration Console
This section provides details about using different components of the Oracle Data
Service Integrator Administration Console. It includes the following topics:

■ Section 2.3.1, "Using the Navigation Pane"

■ Section 2.3.2, "Using the Workspace Content Area"

Exploring Oracle Data Service Integrator Administration Console

2-6 Release 12c (12.1.3)

2.3.1 Using the Navigation Pane
You can use the navigation pane to view the navigation tree and all the data services,
functions, and web services. The change center allows you lock and edit the
configuration settings within the console and then save or discard changes depending
on your requirement.

Using the category-based tabs from the category list, you can view and manage the
artifacts related to each tab, including the system administration tasks such as
deployment of data services, importing and exporting data service JAR files, and
auditing.You can also view metadata, manage caching, and configure security settings
using the category-list.

Figure 2–4 displays the components of the navigation pane.

Figure 2–4 Navigation Pane

This figure shows the Navigation Pane. There are three sections: the change center, the
navigation tree (under System Administration), and the category list. In the change
center, Lock and Edit is selected. In the category list, System Administration, Service
Explorer, Physical Sources, Operations, Security Configuration, and Administration
Access Control tabs are shown.

This section describes the functions of some of the components of the navigation pane
in detail. It includes the following topics:

■ Section 2.3.1.1, "Change Center and Configuration Locking"

■ Section 2.3.1.2, "Pending Changelist"

Exploring Oracle Data Service Integrator Administration Console

Getting Started with Oracle Data Service Integrator Administration 2-7

■ Section 2.3.1.3, "Navigation Tree and Category List"

2.3.1.1 Change Center and Configuration Locking
The change center feature in Oracle Data Service Integrator Administration Console is
similar to the WebLogic Server Administration Console. It enables you to acquire a
global lock over the console configuration, make one or more changes to the
configuration, if required, and then activate or discard the changes.

The configuration settings are edited in a transactional manner, therefore, only one
user can acquire the lock to the console.

To acquire the lock and then activate or discard changes:

1. Click Lock & Edit option from the change center. This enables you to make
changes to the workspace.

2. Save the changes in the Workspace Content Area by clicking Save. The message
"Settings updated successfully" is displayed in the workspace content area.

3. From the change center area, click Activate Changes or Undo All Changes, as
shown in Figure 2–5, to activate or discard the changes. If you click Activate
Changes, then the message "Changes activated successfully" is displayed in the
workspace content area and if you select Undo All Changes, then the "Changes
discarded successfully" message is displayed.

Figure 2–5 Activating/Deactivating Configuration Changes

This figure shows the Activate Changes button highlighted in the Oracle Data Service
Integrator Administration Console, in the Change Center. A message is displayed in
the Change Center: Pending changes exist. They must be activated to take effect. There
is a link: View Pending Changes. In the Workspace, in the Messages section, Settings
updated successfully is checked.

The change center feature is available only to the domain and admin entitlements for a
resource configured for security in Oracle Data Service Integrator. Other Oracle Data
Service Integrator entitlements cannot use the change center. For more information
about user entitlements, refer to the Administrative Access Control section in Chapter 5,
"Securing Oracle Data Service Integrator Resources."

You do not need to acquire a lock to edit the configuration within the administration
console in the following cases:

Exploring Oracle Data Service Integrator Administration Console

2-8 Release 12c (12.1.3)

■ To create and delete dataspaces, you do not need to explicitly acquire a lock
because the system acquires the lock by default. For more information about
creating and deleting dataspaces, refer to Chapter 3, "Deploying Dataspaces."

■ Security policies, in both runtime security and administrative access control
categories, do not require the change center lock. The policies are stored in a
separate repository, in WLS configuration, and therefore do not take part in the
Oracle Data Service Integrator configuration session. For more information, refer
to Chapter 5, "Securing Oracle Data Service Integrator Resources."

Based on the operations performed using the change center, the change center
behavior may differ. Table 2–3 lists and describes the change center behavior in
different situations:

For more information about using the change center, you can also refer to:
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103//intro/console.html.

2.3.1.2 Pending Changelist
The pending change list displays the difference between the current session values and
the core values. The dataspace artifacts that are created, updated, or deleted are
displayed in the pending changelist. Pending changes are shown in the tree view, as
shown in Figure 2–6, whereas the configuration changes are shown in the leaf node.

Figure 2–6 Pending Changelist

Table 2–2 Change Center Behavior

Condition Behavior

User does not have domain or admin entitlements
for any of the Oracle Data Service Integrator
resources such as a dataspace or data service.

User is denied access and the change
center is disabled.

Lock has not been acquired by any one and can be
acquired by the logged in user.

The user can acquire the lock to the
change center and perform
configuration changes.

Lock has been acquired by the logged in user and
changes are made.

The change center provides the option
to activate or discard changes. So, the
Activate Changes and Undo All
Changes options appear in the change
center area.

Lock has been acquired by some other user but the
logged in user being a domain user is allowed to
forcibly acquire the lock.

The change center displays the Take
Lock & Edit option if the user has
domain entitlements for the dataspace.

Exploring Oracle Data Service Integrator Administration Console

Getting Started with Oracle Data Service Integrator Administration 2-9

This figure shows the Pending Changelist, which shows the difference between the
current session values and the core values.

2.3.1.3 Navigation Tree and Category List
There are six categories in the Oracle Data Service Integrator Administration Console.
The artifacts displayed in the workspace content area for a data service, function, or
web service depend on the category-based tab that you select from the category list.

The following list describes the function of each category tab:

■ System Administration: This is the default tab that is displayed when you log into
Oracle Data Service Integrator Administration Console. It provides functionality to
set the state and the target server for deployment, importing and exporting of
project JAR files, checking the administrative properties, and auditing.

■ Service Explorer: The service explorer provides metadata artifacts for the
deployed dataspace project, function, and web services including native web
services. For more information, refer to Chapter 7, "Viewing Metadata Using the
Service Explorer."

■ Physical Sources: This tab provides details about the different physical data
sources that are deployed on the server. The physical data sources can include
delimited files, java functions, relational databases, web services, and XML files.

■ Operations: This tab allows you monitor the active queries, data cache size, and
active updates for a dataspace.

■ Security Configuration: This tab allows you set runtime security policies for
securable resources such as dataspaces, data services, functions, and web services.
For more information, refer to Section 5.2, "Understanding Runtime Security
Policies" in Chapter 5, "Securing Oracle Data Service Integrator Resources."

■ Administrative Access Control: This tab enables you set the administrative access
control policies for different users who need to access Oracle Data Service
Integrator Administration Console. For more information, refer to the Section 5.6,
"Working with Administrative Access Control Policies" in Chapter 5, "Securing
Oracle Data Service Integrator Resources."

2.3.2 Using the Workspace Content Area
The workspace content area displays artifacts based on the tab selected in the category
list and the node selected from the navigation tree. It consists of various options that
enable you to view, search, configure, and audit Oracle Data Service Integrator
resources. Figure 2–7 displays the workspace content area that is displayed when you
log in to the console.

Exploring Oracle Data Service Integrator Administration Console

2-10 Release 12c (12.1.3)

Figure 2–7 Workspace Content Area

This figure shows the Workspace Content Area. The Banner Toobar, Breadcrumb Trail,
Search, Page Title, and Inline Help areas are shown.

As illustrated in this figure, the workspace content area constitutes the following:

■ Banner Toolbar: It shows the user name and the server that you are logged into.
The links on the right allow you to log into the WebLogic Server Administration
Console, logout of Oracle Data Service Integrator Administration Console, along
with help options.

■ Breadcrumb Trail: It displays the current category and the resource that you select
from the navigation tree. You can access the category or resource using the trail
links also.

■ Search: This field lets you search metadata. When you click Search, the system
starts a search across all artifacts on the server and displays the results in a search
result page. If you click Search without entering any value in the field, the
Advanced Search page is displayed. For more information, refer to Section 7.3,
"Searching Metadata."

■ Page Title: This displays the current artifact that you access on the Oracle Data
Service Integrator Administration Console.

■ Inline Help: This help is available on each page of the console and provides
guidance about using the options on the console.

■ Workspace Content: This area displays information about the resource depending
on the category you select from the category-list.

3

Deploying Dataspaces 3-1

3Deploying Dataspaces

This chapter describes how to deploy dataspaces to an Administration Server, a
Managed Server, and a cluster. It also describes how to migrate dataspaces from
development to production.

The chapter contains the following sections:

■ Section 3.1, "Introduction"

■ Section 3.2, "Creating a New Dataspace"

■ Section 3.3, "Deleting a Dataspace"

■ Section 3.4, "Deploying Dataspaces on a Target Server"

■ Section 3.5, "Importing Dataspace Artifacts"

■ Section 3.6, "Exporting Dataspace Artifacts"

3.1 Introduction
Oracle Data Service Integrator Administration Console provides you the ability to
deploy, export and import dataspaces. Using the console, you can export, import, and
delete dataspaces that are deployed on a WebLogic Server without interrupting other
running dataspaces. In addition, you can import artifacts to an existing dataspace
without interrupting existing requests running against that dataspace

During development, you can deploy dataspaces to a WebLogic Server directly from
the eclipse-based IDE. After development, you can deploy dataspaces to production
WebLogic Servers using the Oracle Data Service Integrator Administration Console or
the IDE.

3.2 Creating a New Dataspace
You can create a new dataspace using the Oracle Data Service Integrator
Administration Console and associate a JAR file with it. This enables you to create and
manage the dataspace on the server directly.

Only a domain user has the ability to create a new dataspace. For more information
about domain users, refer to Section 5.6, "Working with Administrative Access Control
Policies" in Chapter 5, "Securing Oracle Data Service Integrator Resources."

To create a new dataspace in the Oracle Data Service Integrator-enabled WebLogic
domain:

1. Click the System Administration category from the navigation pane.

2. Select the domain node.

Creating a New Dataspace

3-2 Release 12c (12.1.3)

3. From the workspace content area, click New as shown in Figure 3–1.

Figure 3–1 Creating a New Dataspace

This figure shows the Workspace Content area after the System Administration
category is selected. On the Dataspaces table in the workspace content area, buttons
for New and Delete are shown.

4. On the Create Dataspace page shown in Figure 3–2, specify the following:

■ Name: Name of the new dataspace that you want to create.

■ Description: An optional description of the dataspace.

■ Resource File: A JAR file that you want to import in the dataspace. This is
optional.

Figure 3–2 Specifying the New Dataspace Details

This figure shows the Create Dataspace page. Fields for entering a name, description
(optional), and resource file (optional) are shown.

5. Click Next. This displays details such as the file size and checksum information
about the resource file being imported as shown in Figure 3–3.

Creating a New Dataspace

Deploying Dataspaces 3-3

Figure 3–3 Resource File Details

This figure shows resource file details. The Jar File to be Imported, Jar File Size, and Jar
File MD5 Checksum are shown. The Filter Configuration checkbox is unchecked.

6. On this page, select the Filter Configuration checkbox if you do not want to import
the resource file configuration. To retain the resource file configurations, make sure
that you do not select the Filter Configuration checkbox.

Each dataspace contains one .space file that contains all the global dataspace
properties. For example, for a dataspace my_dspace_DS there is a corresponding
file named My_DSpace.space. The dataspace also contains one file, named My_
DSpace.sources, that contains all the properties pertaining the physical sources
used by the dataspace My_DSpace.

For each dataservice (.ds) file contained in the dataspace, there is a .service file
named after the dataservice and located within the same folder as the data service,
that carries the data service configuration properties.

Finally, a dataspace may contain one or more .xml files under the folder
DSP-INF/service-accounts, which carry service account information details.

7. Click Next. This displays the page where you can select the state and targets for
the dataspace as shown in Figure 3–4.

Figure 3–4 Selecting the State and Target Server for a Dataspace

This figure shows the state and targets for the dataspace. Possible State values are
Disabled, Administrative Access Only, and Full Access. In the Targets section,
AdminServer is shown as a target you can choose to deploy.

Deleting a Dataspace

3-4 Release 12c (12.1.3)

A deployed dataspace can be in one of the following states:

■ Disabled: The dataspace is not live and cannot be administered from the
console.

■ Administrative Access Only: The dataspace is accessible only to the
Administrator.

■ Full Access: This dataspace is accessible to all authorized users.

8. Specify the state and target server and click Finish to create and deploy the new
dataspace.

3.3 Deleting a Dataspace
Only a domain user can delete a deployed dataspace. To delete a dataspace:

1. Navigate to the ODSI Domain level.

2. Select the dataspace that you need to delete as shown in Figure 3–5.

Figure 3–5 Selecting the Dataspace to Delete

This figure shows, on the ODSI Domain level, a dataspace name in the Dataspaces
table is selected. There are New and Delete buttons above and below the table.

3. Click Delete. The next page confirms if you want to delete the dataspace. Select
Yes to delete the dataspace.

3.4 Deploying Dataspaces on a Target Server
Deployment is done through the System Administration category in the Oracle Data
Service Integrator Administration Console. Oracle Data Service Integrator dataspaces

Note: You may need to wait for sometime before the new dataspace
is deployed successfully depending on the size of the dataspace.

Note: If you delete the target Managed Server on which your
dataspace is deployed, the dataspace deletion will fail.

Deploying Dataspaces on a Target Server

Deploying Dataspaces 3-5

can only run in an Oracle Data Service Integrator-enabled WebLogic domain. You can
create a new WebLogic domain using the Configuration Wizard.

This chapter discusses how to deply dataspaces on a target server. It includes the
following topics:

■ Section 3.4.1, "Deploying a Dataspace"

■ Section 3.4.2, "Deploying a Web Service Map on a Cluster"

For more information about using the Configuration Wizard to set up an Oracle Data
Service Integrator-enabled WebLogic domain, refer to Section 1.2.1.1, "Creating a New
Domain" in Chapter 1, "Overview of Oracle Data Service Integrator Administration."

The Configuration Wizard automatically transfers the required items to the target
server. These include the Oracle Data Service Integrator dataspace artifacts, with the
corresponding configuration and binary files, as well as WebLogic components such as
data source connections and pools. When you move a dataspace from the
development to production, you need to make sure that these items are transferred to
the target production server.

An Administration Server is the central configuration repository for the set of
WebLogic Servers in a domain.

You can deploy a dataspace on multiple Managed Servers and clusters depending on
your requirement. To deploy dataspace artifacts on a Managed Server or a cluster, you
must first create a Managed Server or cluster using the Configuration Wizard.

If you need to deploy a Web Service Map on a cluster, then you need to specify the
cluster address. For details, refer to Section 3.4.2, "Deploying a Web Service Map on a
Cluster."

For more information about creating Managed Servers, refer to the Create Managed
Servers topic in WebLogic Server Administration Console Online Help at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/taskhelp/domainconfig/CreateManagedSe
rvers.html.

For more information about creating clusters, refer to the Create a Cluster topic in the
WebLogic Server Administration Console Online Help at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/taskhelp/clusters/CreateCluster.html.

This section includes the following topics:

■ Section 3.4.1, "Deploying a Dataspace"

■ Section 3.4.2, "Deploying a Web Service Map on a Cluster"

3.4.1 Deploying a Dataspace
To deploy a dataspace on WebLogic Server using Oracle Data Service Integrator
Administration Console:

1. Start the Oracle Data Service Integrator Administration Console.

Note: A target server can be an Administration Server, a Managed
Server, or a cluster. The steps to deploy dataspaces on any of these
targets are the same.

Deploying Dataspaces on a Target Server

3-6 Release 12c (12.1.3)

For more information, see Section 2.2, "Launching Oracle Data Service Integrator
Administration Console" in Chapter 2, "Getting Started with Oracle Data Service
Integrator Administration."

2. Select the System Administration category and then select the Targets tab from the
workspace content area as shown in Figure 3–6.

Figure 3–6 Deploying a Dataspace on a Target Server

This figure shows the AdminServer selected as the target on the Targets tab on the
workspace content page.

3. Select the target server on which you want to deploy the dataspace.

4. Click Save. This set the target server for your Oracle Data Service Integrator
dataspace.

5. To view or change the deployment status, click the Server Status tab as shown in
Figure 3–7.

Figure 3–7 Checking the Server Status

This figure shows the target name, target kind, and current status on the Server Status
tab. Start and Stop pull-down menus are shown.

The options to start and stop the target servers are mentioned in the following
table:

Deploying Dataspaces on a Target Server

Deploying Dataspaces 3-7

3.4.2 Deploying a Web Service Map on a Cluster
Before you deploy a web service map on a cluster you need to specify the cluster
address using the WebLogic Server Administration Console. If you do not specify the
cluster address then the WSDL creation for the web service map fails.

To specify the cluster address on WebLogic Server, specify the cluster address in the
Configuration > General tab for the cluster as shown in Figure 3–8.

Figure 3–8 Specifying Cluster Address on WebLogic Server

This figure shows the Configuration and General tabs selected on the Setting page.
This page allows you to define the general settings for this cluster. There are three
fields: Default Load Algorithm, Cluster Address, and Number of Servers in the Cluster

Table 3–1 Options for Starting and Stopping Server

State Option Description

Start Servicing Administration Requests Select this option when the dataspace is
accessible only at the Administration level.
This usually happens when the dataspace
project is deployed on the production
server and is yet to go live.

Start Servicing All Requests Select this option when the dataspace is
ready to service all client requests.

Stop Servicing Non-Administration
Requests

Select this option when you need to stop
servicing requests from clients but
continue servicing administration
requests.

Stop Servicing All Requests Select this option if you need to stop
servicing requests from all clients
including administration requests.

Importing Dataspace Artifacts

3-8 Release 12c (12.1.3)

Address. For the Default Load Algorithm, round-robin is selected from the drop-down
menu.

For detailed information about configuring clusters on WebLogic Server, refer to
Create and Configure Clusters at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/taskhelp/clusters/ClusterRoadmap.html
.

3.5 Importing Dataspace Artifacts
Oracle Data Service Integrator Administration Console allows you to perform
incremental and full deployment of resource JAR files. This section describes the steps
to perform incremental and full deployment through the Oracle Data Service
Integrator Administration Console.

To perform incremental or full deployment of resource files:

1. Acquire the lock by selecting Lock & Edit.

2. From the Navigation pane, select the System Administration category and then
select the dataspace in which you want import configuration or artifacts.

3. Click the Import tab as shown in Figure 3–9.

Figure 3–9 System Administration Category: Import Tab

This figure shows the contents of the Import Tab of the System Administration
Category. Use this page to import database resource JAR files to the current

Note: You can also import the data service configuration settings
from ALDSP 2.5. This enables you to use the same configurations that
you used in the ALDSP 2.5 environment, while continuing to work
with Oracle Data Service Integrator.

Importing Dataspace Artifacts

Deploying Dataspaces 3-9

workspace. You can browse to specify a Resource JAR file. The Full Deployment
checkbox is deselected. Next buttons are shown.

4. Browse and specify the resource file path in the Resource JAR File box.

5. If you want to perform full deployment, select the Full Deployment check box
from the Import Resource Jar section. If you select this option, then the system
deletes all the artifacts from the dataspace and then imports the new artifacts.

6. If you want perform incremental deployment, do not select the Full Deployment
check box. In case of incremental deployment, Oracle Data Service Integrator
updates only those dataspace artifacts that have changed and adds any new
artifacts.

As part of incremental deployment, if you need to delete any artifacts, you can
provide an additional delete.list file in the import JAR under the META-INF
folder. An example of a delete.list file is shown here:

<del:DeleteList xmlns:del='http://www.bea.com/dsp/management/deployment'>
 <Entry>test/RDBMS/RTL-ALL/CUSTOMER.ds</Entry>
 <Entry>test/RDBMS/RTL-ALL/schemas/CUSTOMER.xsd</Entry>
</del:DeleteList>

Each entry in the list is deleted from the dataspace.

7. Click Next to move to the page that displays the resource JAR file details, which
include file checksum details and file size as shown in Figure 3–10. In addition,
this page provides the following options:

a. Filter Configuration: Select this option if you do not want to import the
configurations of the resource file.

b. Preserve End Point Mappings: Select this option if you want import all the
configuration and the resources (artifacts) but keep the old endpoint
mappings intact.

This option is useful when you move configurations from the staging server to
a live production server. On the staging server, you configure and test the
configurations. If the testing is successful, move the configurations from the
staging to the production server.

However, the endpoints used during staging and production would not be the
same as you would not be testing directly on production server. So, when you
import mappings from the staging server, you may want to retain the
mappings that already exist in the production database. In that case, select the
Preserve Endpoint checkbox.

Exporting Dataspace Artifacts

3-10 Release 12c (12.1.3)

Figure 3–10 Resource File Details

This figure shows the resource JAR details on the Import tab. The Filter Configuration
and Preserve End Point Mappings checkboxes are deselected. The Import and Cancel
buttons are shown.

8. After selecting options on this page, click Import. When the import is completed,
the message "Import operation was successful" is displayed.

9. Click Activate Changes from the change center to activate the import.

3.6 Exporting Dataspace Artifacts
You can export dataspace artifacts with or without retaining the configuration settings.
To export dataspace artifacts:

1. Click the System Administration Category and the dataspace that you want to
export as a JAR.

2. Click the Export tab.

3. Select the Include configuration artifacts check box as shown in Figure 3–11, if you
want to export the configuration along with all the artifacts.

Note: Depending on the size of the files and the topology of your
domain, the import operation may take time, therefore you may need
to wait for import to complete.

Exporting Dataspace Artifacts

Deploying Dataspaces 3-11

Figure 3–11 Export Tab

This figure shows Include configuration with artifacts is deselected on the Export tab.
Export only the pending changes in this session is deselected. Export buttons are
shown.

4. If you are already in a session and want to export changes that have occurred
within that session then select the Export only the pending changes in this session
check box.

5. Click Export

6. Specify the location where you want to save the dataspace artifacts and the file is
saved as a JAR file at the specified location.

Note: The Export only the changes in this session check box is
enabled only when the lock is acquired.

Exporting Dataspace Artifacts

3-12 Release 12c (12.1.3)

4

Configuring Oracle Data Service Integrator Resources 4-1

4Configuring Oracle Data Service Integrator
Resources

This chapter describes how to configure an Oracle Data Service Integrator dataspace
including tasks such as creating administrative properties, managing memory, and
enabling cache. It contains the following sections:

■ Section 4.1, "Configuring the Cache and Log for a Dataspace"

■ Section 4.2, "Using the Physical Sources Category"

■ Section 4.3, "Setting the Server Resources"

■ Section 4.4, "Item-based Memory Management"

■ Section 4.5, "Using Work Managers With Oracle Data Service Integrator"

■ Section 4.6, "Using Administrative Properties"

■ Section 4.7, "Monitoring Active Queries and Updates"

■ Section 4.8, "Setting the Transaction Isolation Level"

■ Section 4.9, "Preloading Oracle Data Service Integrator Projects and Dataspaces"

4.1 Configuring the Cache and Log for a Dataspace
You can view and configure settings for a dataspace such as caching and logging using
the General tab in the System Administration category.

To configure general dataspace settings:

1. Select the System Administration category and then the dataspace from the
navigation tree. The General tab appears as shown in Figure 4–1.

Using the Physical Sources Category

4-2 Release 12c (12.1.3)

Figure 4–1 General Dataspace Settings Page

This figure shows the Enable Data Cache checkbox deselected on the General tab. This
tab enables caching and logging. Choose the Data source name from the drop-down
menu. Provide a Table name. Select a Logging level from the drop-down menu. The
INFORMATION logging level is shown.

2. Acquire the lock to make changes to the general configuration of the dataspace.

3. You can enable data caching and logging level details using this page. For more
information on data caching, refer to Chapter 8, "Configuring Query Results
Cache." For more information on logging, refer to Chapter 9, "Working With Audit
and Log Information."

4. Click Save > Activate Changes.

4.2 Using the Physical Sources Category
The Physical Sources category allows you to configure and modify the resource end
points, view the location of physical data sources, and create substitute SQL
statements.

This section provides details about configuring each of these features using the
Physical Sources category on the Oracle Data Service Integrator Administration
Console. It includes the following topics:

■ Section 4.2.1, "Viewing Physical Data Source Locations"

■ Section 4.2.2, "Modifying Data Source End Points"

■ Section 4.2.3, "Substituting SQL Statements"

4.2.1 Viewing Physical Data Source Locations
You can view a list of data services and function libraries that use the defined
relational databases. Click the Where Used tab to view the list of data services and the
corresponding paths (Figure 4–2).

Using the Physical Sources Category

Configuring Oracle Data Service Integrator Resources 4-3

Figure 4–2 Physical Data Services Relational Dependencies

This figure shows a datasource name and path on the Where Used tab, in the Resource
List. The Physical Sources are shown in a tree on the Navigation Pane.

You can select a data service from the Resource List to view the metadata about the
data service.

4.2.2 Modifying Data Source End Points
When you move dataspaces from development to production server, you may need to
change the location of data sources or names of other artifacts. For example, if you are
using sample data sources during development to protect confidential or otherwise
secured information, you need to substitute a new data source with the actual data for
the test version.

You can make these changes through the Physical Sources category as shown in
Figure 4–3.

Figure 4–3 Setting End Points for Relational Sources

This figure shows fields on the Physical Source Properties tab that let you override
physical source values. In the Relational Database table, the cgDataSource is the
original value. There is space for a new value. In the Nodes within Relational Database
table, POINTBASE is the original value. There is space for a new value. You can save
or reset to default values.

Using the Physical Sources Category

4-4 Release 12c (12.1.3)

By modifying the data source endpoints, you can change the name and location of a
data source as well as the target names of subordinate artifacts. In the case of relational
sources this includes names of catalogs, schemas, packages, tables, stored procedures,
views, and relational functions.

End point modifications are effective until they are further modified or reverted to the
original value.

To reset the original value to the end point name:

1. Acquire the lock by clicking Lock & Edit.

2. Click Reset to original value. This option will not revert the value to the previous
setting, instead it will directly revert it to the original name. If you assign some
intermediate target names and click Reset to original value, the values revert to
the same values as those in the Original Value column.

3. Click Save > Activate Changes.

Table 4–1 identifies the artifacts whose end point settings can be changed.

4.2.3 Substituting SQL Statements
Oracle Data Service Integrator uses SQL to access relational data sources. At
compilation time, the built-in query optimizer determines the best execution strategy

Note: If you change the end point for an artifact, some of the
properties for the artifact should match with the old source. For
example, the Vendor type and version properties for a relational data
source should be identical with the old source.

Table 4–1 Artifacts for which End Points can be Modified Through the Oracle Data
Service Integrator Administration Console

Data Source Type Artifact

Relational Data source name and location

Catalog

Schema

Package

Table

Views

Relational functions

Stored procedure

Web Service Web service name and location

Service

Port

Operation

XML Content Data source name and location

Delimited File Content Data source name and location

Using the Physical Sources Category

Configuring Oracle Data Service Integrator Resources 4-5

for backend sources. Then SQL queries are generated and submitted to underlying
databases.

SQL queries generated by the relational wrapper are specific to each underlying
database. While the SQL queries that are generated typically produce good results,
there are cases when further optimization of the generated queries is desirable. In most
RDBMS systems, such optimization is done through execution hints.

SQL statement substitution allows you to add hints to generated SQL queries by
providing edited SQL statements that will be executed instead of the query that is
generated by Oracle Data Service Integrator by default.

Substitute SQL statements are created and registered in the Oracle Data Service
Integrator Administration Console using the Substituted SQL Statements tab available
through the Physical Sources category as shown in Figure 4–4.

This section includes the following sections:

■ Section 4.2.3.1, "How SQL Statement Substitution Works"

■ Section 4.2.3.2, "Requirements for SQL Statement Substitution"

■ Section 4.2.3.3, "Creating Substitute SQL Query Statements"

■ Section 4.2.3.4, "SQL Statement Substitution Example"

Note: Unlike SQL statements generated by Oracle Data Service
Integrator, substituted SQL statements are passed to the underlying
database without validation. For this reason, users are strongly
advised against using this feature for any purpose other than
providing hints to the database. It is also recommended that prior to
deployment any substituted SQL statement be tested against its
generated counterpart to make sure that the expected performance
advantage is obtained.

Using the Physical Sources Category

4-6 Release 12c (12.1.3)

Figure 4–4 Substituted SQL Statement Dialog Box

This figure shows the Substituted SQL Statement tab on the page displayed by the
Physical Sources category.

4.2.3.1 How SQL Statement Substitution Works
Oracle Data Service Integrator server maintains a substitution table between the
original generated SQL queries and any replacement queries supplied by the user.
Only SQL queries specified by user will be substituted.

The Oracle Data Service Integrator administrator defines and maintains substitution
queries through the Oracle Data Service Integrator Administration Console.

The replacement query is executed instead of the original SQL query. The Oracle Data
Service Integrator runtime engine reads the SQL result set using type/column
information of the original query. Potential problems related to incorrect substitution,
which violates the conditions listed in Section 4.2.3.2, "Requirements for SQL
Statement Substitution" include the following problems:

■ Incorrect result returned by XQuery, for example, incorrect data, no result at all,
incorrect order of the result, are among the possible unwanted outcomes.

■ Error generated by the runtime engine during SQL statements execution, for
example, problems with parameter binding and reading the result.

Supporting Externalized End Points in Substituted Queries

Using the Physical Sources Category

Configuring Oracle Data Service Integrator Resources 4-7

In both the generated and substitute queries, a special syntax is used to support
externalized end points (see "Modifying Data Source End Points" on page 4-5 for
details). The following substituted queries show this syntax (emphasis added):

SELECT /*+ FIRST_ROWS (10)*/ t1."BILL_TO_ID" AS c1, t1."C_ID" AS c2, t1."DATE_INT"
AS c3, t1."ESTIMATED_SHIP_DT" AS c4,
t1."HANDLING_CHRG_AMT" AS c5, t1."ORDER_DT" AS c6, t1."ORDER_ID" AS c7, t1."SALE_
TAX_AMT" AS c8,
t1."SHIP_METHOD_DSC" AS c9, t1."SHIP_TO_ID" AS c10, t1."SHIP_TO_NM" AS c11,
t1."STATUS" AS c12,
t1."SUBTOTAL_AMT" AS c13, t1."TOTAL_ORDER_AMT" AS c14, t1."TRACKING_NO" AS c15
FROM {RTLAPPLOMS}.{CUSTOMER_ORDER} t1

For example:

SELECT t1.ID FROM CUSTOMER() WHERE $i/ID > 'a{bee}c' return $i/ID

is translated to:

SELECT t1.ID FROM {CUSTOMER} t1 WHERE t1.ID > 'a{{bee}c'

Depending on your requirement, specify replacement queries using the same name
placeholders as the original query. At the end of the SQL generation stage the original
names are replaced with the current end-point names. The original names are used if
no end-point setting is found.

4.2.3.2 Requirements for SQL Statement Substitution
There are several requirements regarding the substituted SQL query:

■ The query must return same data, with same number of columns and column
types.

■ Columns must be listed in the same order as the original query.

■ The query must have the same number of parameters, in the same order, as the
original query.

■ The expected parameter types must match that of the original query.

■ Alias column names must be exactly the same as in the original query.

■ If the original query contained an ORDER BY clause, the same ordering result
must be required.

4.2.3.3 Creating Substitute SQL Query Statements
To create a substitute SQL query:

1. Click Lock & Edit to acquire the lock.

Note: If you are adding SQL fragments (such as string literals) in
your substituted SQL statement, you also need to use the convention
of doubling opening curlie braces.

Note: For queries using sub-queries, the column aliases need to be
preserved by only the outermost subquery and not the inner
subqueries.

Using the Physical Sources Category

4-8 Release 12c (12.1.3)

2. Select the Physical Sources category from the category list and then select the
relational databases option from the navigation pane.

3. Navigate and select the relational data source for which you want to create the
substitute query and then select the Substituted SQL Statement tab.

4. Click New. This displays the page where you can specify the SQL statement
substitution rule as shown in Figure 4–5.

Figure 4–5 Rules for SQL Statement Substitution

This figure shows the Substituted SQL tab on the page displayed by the Physical
Sources category. This page displays a SQL statement substitution rule to add hints to
a generated statement. The substituted SQL expression must use the same parameters
and have the same semantics as the generated SQL. A name is required. Enabled is
selected. There is space for a creation date and last modified date. There is a pane for a
description. A generated SQL statement and substituted SQL statement are required.
You can save or cancel this page.

5. Specify the following details on this page:

■ Name of the substitute query

■ Enable the substitute query

■ An optional description of the query

■ The SQL statement generated by Oracle Data Service Integrator

■ The substituted SQL statement

Using the Physical Sources Category

Configuring Oracle Data Service Integrator Resources 4-9

The system automatically tracks creation and last modified dates. An example for
using the substitute query is available at Section 4.2.3.4, "SQL Statement Substitution
Example."

4.2.3.4 SQL Statement Substitution Example
The order in which SQL statement substitutions are established is not fixed. Therefore,
the example in this section and the steps involved are only one approach to creating
and testing SQL statement substitution.

1. Setup your environment with these actions:

■ Eclipse IDE is open with the Oracle Data Service Integrator perspective and
the dataspace has been successfully built and deployed.

■ Oracle WebLogic Server is running.

■ Your Oracle Data Service Integrator Administration Console is open. In the
sample dataspace the URI is:

http://localhost:7001/odsiconsole

■ Auditing is enabled. (For details on activating and using auditing see
Chapter 9, "Working With Audit and Log Information.")

2. Set the base SQL statement audit property to Always (Figure 4–6), which means
that the base SQL statement will always be returned. (See also Section 9.1.3,
"Setting Individual Auditing Properties.")

Figure 4–6 Setting the basesql Property to Always be Returned

This figure shows the Audit Properties tab. This page can be used to set or modify
individual audit properties. Audit Properties options allow for overriding general
audit settings for individual properties. A table for property selection is shown. There
are four columns: Node, Is Audited, Available to Client, and Description. You can
choose to select all properties, or pinpoint your choices. In the admin section, under
configuration, there are property and value selections. Under the dataspace section,
there are name, operation, and updatediff selections. In the common section, under
application, there are eventkind, exception, name, principals, server, transactionid, and
user selections.

Using the Physical Sources Category

4-10 Release 12c (12.1.3)

3. Select your relational data source in the Oracle Data Service Integrator
Administration Console (Figure 4–4).

4. Select the Substituted SQL statements option.

5. Click New and enter the following in the resulting dialog box:

■ Name you want to assign to your substitute query.

■ An optional description.

■ Enable (or disable) the substitution logic for the query you are about to create
using the Enabled checkbox

6. Click Save > Activate Changes.

7. In your Eclipse IDE dataspace, run your query (such as CUSTOMER) in Test.
Notice (Figure 4–7) that a basesql version of generated SQL statement is created.

Figure 4–7 Output from RTLApp CUSTOMER_ORDER() Query with basesql Result
Highlighted

This figure shows the Console tab displaying information that a basesql version of the
generated SQL statement has been created.

8. On the Console tab scroll down until you locate the basesql version of the query
you just generated (also shown in Figure 4–7). Copy this version of the query to
your clipboard. A sample query appears below:

SELECT t1."BIRTH_DAY" AS c1, t1."CUSTOMER_ID" AS c2,
 t1."CUSTOMER_SINCE" AS c3,
 t1."DEFAULT_SHIP_METHOD" AS c4, t1."EMAIL_ADDRESS" AS c5,
 t1."EMAIL_NOTIFICATION" AS c6,
 t1."FIRST_NAME" AS c7, t1."LAST_NAME" AS c8,
 t1."LOGIN_ID" AS c9, t1."NEWS_LETTTER" AS c10,
 t1."ONLINE_STATEMENT" AS c11, t1."SSN" AS c12,
 t1."TELEPHONE_NUMBER" AS c13
 FROM {RTLCUSTOMER}.{CUSTOMER} t1

9. Return to the Oracle Data Service Integrator Administration Console, Substituted
SQL Statements area and paste the basesql statement into the field labeled
Generated SQL Statement.

10. Paste the basesql statement into the field labeled Substituted SQL statement.

Setting the Server Resources

Configuring Oracle Data Service Integrator Resources 4-11

11. Edit the substituted statement based on supported hints provided by the
underlying database. A sample edited query restricting results to the first 10 rows
in an Oracle database (emphasis added) — appears below:

SELECT /*+ FIRST_ROWS (10)*/ t1."BIRTH_DAY" AS c1,
 t1."CUSTOMER_ID" AS c2, t1."CUSTOMER_SINCE" AS c3,
 t1."DEFAULT_SHIP_METHOD" AS c4, t1."EMAIL_ADDRESS" AS c5,
 t1."EMAIL_NOTIFICATION" AS c6,
 t1."FIRST_NAME" AS c7, t1."LAST_NAME" AS c8, t1."LOGIN_ID" AS c9,
 t1."NEWS_LETTTER" AS c10,
 t1."ONLINE_STATEMENT" AS c11, t1."SSN" AS c12,
 t1."TELEPHONE_NUMBER" AS c13
 FROM {RTLCUSTOMER}.{CUSTOMER} t1

12. Click Save > Activate Changes.

13. Return to the Eclipse IDE and re-run your query in Test mode. Notice in the
Output pane that your substitute query appears in the SQL Statement area.

14. Select the CUSTOMER () query from the Plan view. Click Show Query Plan.
Notice that the resulting plan contains the substituted SQL as well as the named of
the substituted SQL statement.

Figure 4–8 Query Plan Displaying Substituted SQL Query

This figure shows the resulting plan containing the substituted SQL and the name of
the substituted SQL statement.

4.3 Setting the Server Resources
Configuring server resources optimally depends on the physical resources of the
machine on which you deploy Oracle Data Service Integrator, the anticipated load,
and the type of dataspace you are deploying. Although the cached query plan count
accelerates processing, it also consumes memory.

Oracle Data Service Integrator Administration Console allows you to control server
resources using the following options:

■ Maximum number of query plans cached: The number of query plans that can be
stored in cache for faster access.

■ Maximum threads for one query: Restricts the maximum number of parallel web
service calls to the backend.

■ Enable memory management: Enables memory-managed operators.

Setting the Server Resources

4-12 Release 12c (12.1.3)

■ Maximum operators: The maximum number of concurrent memory-managed
operators per dataspace; if exceeded, the request is rejected.

■ Maximum items in memory per operator: The maximum number of items per
operator that can be in memory before temporary file system space is used.

■ Capacity: Limits active streaming result sessions. When this capacity is exhausted,
new requests are rejected immediately.

■ Age limit: The number of seconds a streaming result handle should be kept active.
Zero seconds means forever.

■ Idle limit: The number of seconds an idling streaming result handle should be kept
alive. Zero seconds means forever.

To set the server resources:

1. Select the Runtime tab from the System Administration category.

2. Acquire the lock.

3. In the Server Resources section, specify the value for the maximum number of
query plans cached and the maximum number of threads for a single query, as
shown in Figure 4–9.

4. In the Memory section, specify whether to enable memory-managed operators, set
the maximum number of operators, and specify the maximum number of items
per operator in memory.. For more information, see Section 4.4, "Item-based
Memory Management."

5. In the Streaming Result section, specify the capacity, the age limit (in seconds), and
the idle limit (in seconds) for streaming results.

Figure 4–9 Oracle Data Service Integrator Administration Console: Runtime Tab

Item-based Memory Management

Configuring Oracle Data Service Integrator Resources 4-13

This figure shows the Runtime tab of the Oracle Data Service Integrator
Administration Console. This page allows tuning of query engine performance and
resource consumption. In the Server Resources section, there are two fields for
entering information: Max number of query plan cached (set to 100) and Max Threads
for one Query (set to 5). In the Memory section, there are three fields for entering
information: Enable Memory Management (selected), Maximum Operators (set to 25),
and Maximum Items in Memory per Operator (set to 40000). In the Streaming Result
section, there are three fields for entering information: Capacity (set to 200), Age Limit
(set to 600), and Idle Limit (set to 0).

6. Click Save > Activate Changes.

For more information on tuning performance for WebLogic Server, refer to the
WebLogic Server Performance and Tuning guide at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/perform/index.html.

4.4 Item-based Memory Management
When memory management is enabled, Oracle Data Service Integrator uses
memory-managed sort and join operators. A memory-managed operator uses the disk
to limit memory consumption in the presence of large datasets.

Each operator is only allowed to have up to a set maximum number of items in
memory at a time. If the number of items to be processed exceeds the maximum then
the operator must use the disk to complete its task. Here "items" are things that are
being operated upon (joined or sorted).

For example, consider a query plan that contains two sort operators and three join
operators. Assume that the maximum number of items per operator is 40,000.
Regardless of the overall amount of data being processed by the query, this query plan
will result in at most (2 + 3) * 40,000 = 200,000 items being held in memory at a time.

The maximum number of operators refers to the overall number of operators that may
be concurrently running across all query plans being processed at a given time by the
Oracle Data Service Integrator-enabled server.

The maximum number of operators and the maximum number of items together
provide a means to control the overall memory consumption of the server and can
help guard against out-of-memory exceptions. When needed, these values should be
adjusted based on workload and data characteristics, as the item count is only a coarse

Note: The disk files are created in the
<tmpdir>/serverName>/<dataSpaceName> folder. The tmpdir is set
by the java.io.tmpdir system property, unless you overwrite this using
the aldsp.tmpdir system property. The
<tmpdir>/serverName>/<dataSpaceName> folder is deleted when
the dataspace is no longer active or when the dataspace is deleted.
Therefore, ensure that this folder is not shared by multiple Oracle
Data Service Integrator servers with same name and with the same
dataspaces.

Note: Different query workloads usually involve different size items.

Using Work Managers With Oracle Data Service Integrator

4-14 Release 12c (12.1.3)

metric for memory consumption because item sizes affect the actual memory used as
well.

To enable and configure memory management:

1. Click the Runtime tab from the System Administration category.

2. Acquire the lock.

3. From the Memory section (Figure 4–9), select Enable Memory Management.

4. Specify the limit for the maximum number of operators per dataspace using the
Maximum Operators box. This allows you to restrict the memory usage by
operators per dataspace.

5. Specify the limit for the maximum units that can be sorted or joined (items) by a
single operator in memory. If this limit exceeds, then the item is stored in the
temporary file system space.

6. Click Save > Activate Changes.

4.5 Using Work Managers With Oracle Data Service Integrator
WebLogic Server prioritizes work and allocates threads based on
administrator-defined parameters and actual run-time performance and throughput.
Using Work Managers, you can configure scheduling guidelines and associate them
with one or more applications, or with particular application components. This
enables you to configure how an application prioritizes the execution of its work.

Using Oracle Data Service Integrator, you can similarly use a Work Manager
associated with a dataspace to specify scheduling guidelines. This enables you to
configure the minimum or maximum number of threads allocated to a dataspace, for
example.

You could also define a Work Manager to specify the request class which enables you
to ensure that high priority work is scheduled before less important work, even if the
lower priority work was submitted first.

This section includes the following topics:

■ Section 4.5.1, "Creating and Configuring Work Managers"

■ Section 4.5.2, "Sharing Work Manager Constraints"

4.5.1 Creating and Configuring Work Managers
You can create a custom Work Manager for an Oracle Data Service Integrator
dataspace project using the WebLogic Server Administration Console. When creating a
Work Manager, you must use the following format when assigning a name to the Work
Manager:

wm/dataspace_name-default-workmanager

where dataspace_name is the name of the Oracle Data Service Integrator dataspace
project.

It is recommended that you create and configure a custom Work Manager before
creating the associated dataspace project. If you create the dataspace project before
creating the Work Manager, you will need to restart WebLogic Server to have the
dataspace become associated with the custom Work Manager. You can then use the
WebLogic Server Administration Console to modify the parameters of the Work
Manager, as required.

Using Administrative Properties

Configuring Oracle Data Service Integrator Resources 4-15

WebLogic Server uses the global default Work Manager if a custom Work Manager
does not exist. For more information about using WebLogic Server Administration
Console to manage Work Managers and their associated constraints and request
classes, see Using Work Managers to Optimize Scheduled Work at
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/config_
wls/self_tuned.html.

4.5.2 Sharing Work Manager Constraints
Multiple Oracle Data Service Integrator dataspace projects cannot share the same
Work Manager, but you can create two or more Work Managers that share the same
underlying constraints. You might want to do this if you have two dataspace projects
that need to access a particular JDBC connection pool, for example, and you want to
prevent simultaneous access to the JDBC connection pool from exceeding the size of
the pool.

To share Work Manager constraints in this case, do the following:

1. Create a global max-threads-constraint associated with the JDBC connection pool.

2. Create a separate Work Manager for each dataspace project associated with the
max-threads-constraint.

3. Create the dataspace projects (or restart WebLogic Server if the dataspace projects
already exist).

4.6 Using Administrative Properties
An administrative property is a user-defined property that you can configure using
the Oracle Data Service Integrator Administration Console. The value of an
administrative property can be used in XQuery functions, either in data service
functions or XQuery functions for security.

For information on XQuery functions for security, see Chapter 5, "Securing Oracle Data
Service Integrator Resources."

An administrative property allows you to specify function parameters that can be
easily changed by the administrator, without modifying the body of either the data
service function or XQuery function for security.

Any data service within a dataspace can use the administrative property value. The
property value can be accessed using XQuery with the Oracle function
get-property(). The function takes the name of the property as an argument and
returns the value as a string. It also takes an argument that serves as the default value
for the parameter. This value is used if the property is not configured in the console.

The following example illustrates an XQuery Function Library function that uses an
administrative property:

declare function f1:getMaximumAccountViewable() as xsd:decimal {
 let $amount := fn-bea:get-property("maxAccountValue", "1000.00")
 cast as xsd:decimal
 return $amount
};

To manage administrative properties:

1. Click the name of the dataspace in the Navigation pane.

2. Click the Administrative Properties tab from the System Administration category.
The list of property names currently defined appears in the table, as illustrated in

Using Administrative Properties

4-16 Release 12c (12.1.3)

Figure 4–10.

Figure 4–10 Administrative Properties Tab

This figure shows the Administrative Properties tab. The currently defined properties
names are displayed in the Edit Administrative Property table.

3. Acquire the lock by selecting Lock & Edit.

4. To add a property, complete the following:

a. Enter a name for the property in the Property Name field of the Add
Administrative Property table.

The name must match the name property passed to the get-property()
function used to access the properties value. For example:

fn-bea:get-property("maxAccountValue", "1")

b. Optionally, enter an initial value for the property.

You can change this value later, if required.

c. Click Add Property.

The property appears in the Edit Administrative Property table.

5. To change a property value:

a. Acquire the lock.

b. Enter a new value in the Property Value field of the Edit Administrative
Property table.

c. Click Save > Activate Changes.

6. To delete a property:

Monitoring Active Queries and Updates

Configuring Oracle Data Service Integrator Resources 4-17

a. Acquire the lock and select the property from the Edit Administrative
Property table.

b. Click Delete.

c. Click Activate Changes to confirm deletion of the property.

4.7 Monitoring Active Queries and Updates
Using the Operations category in the console, you can monitor long-running active
queries and updates for a dataspace. The Operations category pertains to the runtime
monitoring of deployed artifacts. In other words, the Operations category depends on
the core (deployed) session. By contrast, other categories such as Service Explorer and
Security relate to the session in progress.

Figure 4–11 illustrates an active ad hoc query running on the server for the RTLApp
dataspace.

Figure 4–11 Monitoring the Status of Active Ad Hoc Queries

This figure shows the Monitor tab. In the Monitoring Information for Dataspace
section, active queries, active updates, and data cache size for an active ad hoc query
running on the server for the RTLApp dataspace are shown. Information about queries
or updates running for a long time is displayed in the Monitoring Information for
Dataspace table. To kill the XQuery function, click the checkbox in the function’s row,
then click the Kill Query button.

If an active query or an update is running for a long time on the server then the
information is displayed in the table. This table lists the XQuery functions under the
Function Name field.

If a query is taking longer than the expected time to retrieve data, you can also kill a
query by clicking Kill Query.

Note: The default value for the property is used in any
get-property() call using the deleted property.

Note: Active queries and updates can be monitored only at the
dataspace level.

Setting the Transaction Isolation Level

4-18 Release 12c (12.1.3)

In case of ad hoc queries, you can view the ad hoc query by clicking the function name
in the Function field. This allows you to view the ad hoc query that is running on the
server as shown in Figure 4–11.

Figure 4–12 Ad Hoc Query Displayed on Oracle Data Service Integrator Administration
Console

This figure shows the ad hoc query displayed on the Oracle Data Service Integrator
Administration Console when you click the function name in the Monitoring
Information for Dataspace table.

You can monitor active updates the same way as active queries.

4.8 Setting the Transaction Isolation Level
In some instances, Oracle Data Service Integrator may not be able to read data from a
database table because another dataspace has locked the table, causing queries issued
by Oracle Data Service Integrator to be queued until the dataspace releases the lock. To
prevent this, you can set the transaction isolation to read uncommitted in the JDBC
connection pool on your WebLogic Server.

To set the transaction isolation level:

1. Start the WebLogic Server Administration Console in a web browser by opening
the following URL:

http://<HostName>:<Port>/console

For example, to start the Administration Console for a local instance of WebLogic
Server (running on your own machine), type the following URL in a web browser
address field:

http://localhost:7001/console/

2. Expand Services > JDBC > Data Sources > <datasourcename>.

3. Select the Connection Pool tab as illustrated in Figure 4–13.

Setting the Transaction Isolation Level

Configuring Oracle Data Service Integrator Resources 4-19

Figure 4–13 WebLogic Server Administration Console Connections Tab

This figure shows how to use the WebLogic Server Administration Console
Connections tab to define the configuration for the data source’s connection pool.
There are ten fields: URL, Driver Class Name, Properties, Password, Confirm
Password, Initial Capacity, Maximum Capacity, Capacity Increment, Statement Cache
Type, and Statement Cache Size.

4. Expand the Advanced section. The page expands to include the Advanced
Options section.

Preloading Oracle Data Service Integrator Projects and Dataspaces

4-20 Release 12c (12.1.3)

5. Acquire the lock.

6. In the Init SQL field, enter the following:

SQL SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

7. Click Save > Activate Changes.

4.9 Preloading Oracle Data Service Integrator Projects and Dataspaces
You can preload Oracle Data Service Integrator projects and the dataspaces they
contain whenever an Oracle Data Service Integrator-enabled server is started by
adding a property to the setDomainEnv.cmd file. If you have many projects and/or
dataspaces, doing this can significantly improve initial Console performance.

To add this system property:

1. Stop the Oracle Data Service Integrator-enabled server if it is running.

2. Open the setDomainEnv.cmd file located in: <BEA_HOME>\user_
projects\domains\base_domain\bin

3. Add the following as a VM startup property:

-Dcom.bea.dsp.oam.console.common.warmupTree=true

4. Save and close this file.

5. Start or restart your server.

5

Securing Oracle Data Service Integrator Resources 5-1

5Securing Oracle Data Service Integrator
Resources

Oracle Data Service Integrator provides two types of security:

■Managing Security at Runtime: Runtime security enables you to define policies that
secure Oracle Data Service Integrator artifacts.

■Controlling Administrative Access: Access control policies enable restricting Oracle
Data Service Integrator Administration Console access based on user entitlements.
Entitlements are predefined in the console and define the actions that a user can
perform.

This chapter explains how you can configure and manage runtime security and access
control for different users through the Oracle Data Service Integrator Administration
Console. It contains the following sections:

■Section 5.1, "Introduction to Oracle Data Service Integrator Security"

■Section 5.2, "Understanding Runtime Security Policies"

■Section 5.3, "Creating and Applying Runtime Security Policies"

■Section 5.4, "Configuring Dataspace-Level Security"

■Section 5.5, "Configuring Data Service and Operation-Level Security"

■Section 5.6, "Working with Administrative Access Control Policies"

5.1 Introduction to Oracle Data Service Integrator Security
To work with Oracle Data Service Integrator security features, you must first define
and create users who will access the Oracle Data Service Integrator Administration
Console. For more information about creating users, refer to Create Users in WebLogic
Server Administration Console Online Help at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/taskhelp/security/DefineUsers.html.

To secure Oracle Data Service Integrator artifacts you can create runtime security
policies. Oracle Data Service Integrator artifacts or resources include dataspaces,
services, operations, library procedures, and data elements.

For more information on runtime security policies, refer to Section 5.2, "Understanding
Runtime Security Policies."

After creating users in an Oracle Data Service Integrator-enabled WebLogic Server
domain, you can control administrative access of these users by applying

Understanding Runtime Security Policies

5-2 Release 12c (12.1.3)

administrative access control policies. Access control on Oracle Data Service Integrator
Administration Console is based on user entitlements.

Entitlements are assigned to users by a domain user, who is a super user for a
particular domain. A domain user is created when you create an Oracle Data Service
Integrator domain and specify the user name and password for it.

For more information on administrative access control, refer to Section 5.6, "Working
with Administrative Access Control Policies."

5.2 Understanding Runtime Security Policies
The runtime security feature enables you to configure access to resources such as
dataspaces, data services, operations, and data elements. For a secured resource, a
requesting client must meet the condition of the runtime security policy applicable to
that resource, whether accessing the resource through the typed mediator API, an ad
hoc query, or any data access interface. Oracle Data Service Integrator exposes its
deployed artifacts as resources that can be secured through runtime security policies.

For example, you can control access to an entire Oracle Data Service Integrator
dataspace or just to a credit card number element within Customer_Order.ds.

When a request comes to a running Oracle Data Service Integrator instance for a
secured resource, Oracle Data Service Integrator passes an identifier for the resource to
WebLogic Server. WebLogic Server, in turn, passes the resource identifier, user name,
and other context information to the authorization provider, such as
XACMLAuthorizer. The provider evaluates the policy that applies to the resource. As
a result of the evaluation, access to the resource is either permitted or blocked.

If the user does not satisfy the requirements of an element-level policy, the element is
redacted from the result object, and therefore does not appear.

Figure 5–1 Data Redaction

This figure shows the process of data redaction, starting with a data service consumer
requesting resources. The request (shown with an arrow pointing to the left) goes to
the data service, shown to the left of the data service consumer. The data service asks
the WebLogic Server Sercurity (shown to the left) if it is an authorized user (shown
with an arrow pointing to the left). The WebLogic Server Security returns a value of
false to the data service (shown with an arrow pointing to the right). The secured
element in the data service is identified with a lock and key symbol. The result (shown
with an arrow pointing to the right) is the requested resources minus the secured
element.

Understanding Runtime Security Policies

Securing Oracle Data Service Integrator Resources 5-3

5.2.1 Definition of a Securable Resource
A securable resource is an Oracle Data Service Integrator artifact, such as a data
service, operation, or element, to which you can apply a runtime security policy. The
resources you can protect using runtime security include:

■Dataspace: The policies apply to all the resources in the dataspace. However, if there
are policies applied to a data service or operation, then the more specific policy
applies.

■Data Service: The policies apply to a data service and operations within that data
service. However, if an individual operation has a policy applied to it, then the
more specific policy applies.

■Operations: The policy applies to individual data service operations in a dataspace.
Data service operations include Oracle Data Service Integrator functions and
procedures.

■Data Elements: A policy can apply to individual elements within a data service
Return type, such as the salary property of a customer.

After you secure individual resources, you can enable or disable security for the
dataspace. Security policies are inherited. This means that security enabled at the
dataspace level applies to all data services, operations, and elements within the
dataspace.

However, if several policies apply to a particular resource, the more specific policy
prevails. For example, a policy on an element supercedes a policy for the data service.

The hierarchy of Oracle Data Service Integrator artifacts is as follows:

1.Dataspace

2.Data Service

3.Operations

4.Element

Figure 5–2 illustrates the securable resources in an Oracle Data Service Integrator
dataspace.

Note: By default, WebLogic Server security uses the XACML
Authorization Provider. Other authenticators can use any external
resource necessary to implement the policy evaluation.

Understanding Runtime Security Policies

5-4 Release 12c (12.1.3)

Figure 5–2 Securable Resources

This figure shows the securable resources in an Oracle Data Service Integrator
dataspace: database resources, operation resources, and element resources.

5.2.1.1 Allowing Anonymous Access
At the dataspace level, you can enable anonymous access by creating a policy. If you
apply this policy, all users, including unauthenticated users, can access resources by
default. For more information on creating runtime policies at the dataspace level, refer
to Section 5.4, "Configuring Dataspace-Level Security."

The anonymous access policy works only with the WebLogic Authorization provider.
The Oracle Data Service Integrator security policies are intended to work with the
default WebLogic Authorization provider. If you are using another authorization
provider, you will need to create policies using the facilities of the other provider.

For more information, see WebLogic Authorization Provider: Provider Specific in the
Administration Console Online Help at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/pagehelp/Securitysecurityprovidersaut
horizerproviderspecifictitle.html.

The Security Configurations tab on Oracle Data Service Integrator Administration
Console provides the configurable runtime security policies. Setting up runtime
security in Oracle Data Service Integrator Administration Console involves the
following tasks:

■Enabling Access Control

■Configuring security policies for dataspaces, data services, operations, and elements.

■Identifying data elements that you want to secure and then configure either security
policies or custom XQuery security functions for the elements.

Oracle Data Service Integrator directly supports runtime security policies for its
resources. The WebLogic Platform supports extensive security features that can be

Creating and Applying Runtime Security Policies

Securing Oracle Data Service Integrator Resources 5-5

applied to your implementation as well, including encryption-based, transport-level
security. For runtime security configuration, Oracle Data Service Integrator provides
the following policies, called predicates, in Oracle Data Service Integrator
Administration Console:

■Role

■Group

■User

■Access occurs on specified days of the week

■Access occurs between specified hours

■Context element's value is greater than a numeric constant

■Deny access to everyone

■Context element's value is equals a numeric constant

■Access occurs before

■Access occurs on the specified day of the month

■Context element's value equals a string constant

■Context element defined

■Allow access to everyone

■Access occurs after

■Access occurs before the specified day of the month

■Context element's value is less than the numeric constant

■Access occurs after the specified day of the month

■Server is in development mode

The security policies in the Oracle Data Service Integrator Administration Console are
similar to the conditions used by WebLogic Server security. For more information on
WebLogic Server security policies and conditions, refer to "Securing WebLogic
Resources Using Roles and Policies" in the WebLogic Server documentation at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/secwlres/sec_poly.html.

In addition to creating runtime security policies, you can create service accounts to
map security configurations of external data sources such as web services and Java
functions. This feature ensures secure storage of the credentials of external data
sources and allows runtime identity mapping.

5.3 Creating and Applying Runtime Security Policies
Before you start creating and applying runtime policies, make sure that the Enable
Access Control checkbox in the General tab is selected, as shown in Figure 5–3. This
activates the security policy configurations. If access control is not selected, then
security is not enabled for your dataspace. The General tab is available only at the
dataspace level.

Creating and Applying Runtime Security Policies

5-6 Release 12c (12.1.3)

Figure 5–3 General Tab

This figure shows the General tab. This page allows you to define configuration
properties of a dataspace. Under the Access Control section, there are two checkboxes:
Enable Access Control and Enable JDBC Metadata Access Control. Both are deselected.
The is an Export Access Control Resources button.

To enable access control:

1.Select the Security Configurations tab and the dataspace from the navigation pane.

2.Acquire the lock by clicking Lock & Edit.

3.Click the General tab.

4.Select Enable Access Control checkbox.

5.To enable JDBC metadata access, select Enable JDBC Metadata Access Control.

6.Click Save > Activate Changes.

The steps to create and apply runtime security policy for a dataspace, data service,
and operations are the same. However, you must make sure that you select the
Oracle Data Service Integrator resource from the navigation pane. To create and
apply the runtime security policy:

7.Select the Security Configuration category.

8.Click the Policy tab to start creating runtime policies for a dataspace, as shown in
Figure 5–4.

Creating and Applying Runtime Security Policies

Securing Oracle Data Service Integrator Resources 5-7

Figure 5–4 Security Configurations: Policy Tab

This figure shows the Policy tab. This page is used to edit the security policies of
various data service level artifacts. The resource name is displayed. In the Providers
section, there are authorization providers an administrator can select. An
authorization provider is displayed. There are two rows of buttons in the Policy
Conditions area. The items in the top row are conditions that determine the access
control to the given resource. Button names are Add Conditions, Combine,
Uncombine, Move Up, Move Down, Remove, and Negate. The bottom row is for No
Policy Specified. Button names are exactly the same as those in the top row. In the
Inherited Policy section, no policy is specified.

9.Click Add Conditions on the Policy tab. The Choose a Predicate page is displayed.

10.Select the predicate from the Predicate List drop down. For example, select User
and click Next.

11.The next page that appears, depends on the predicate you select. If you select User
predicate, the page show in Figure 5–5 is displayed.

12.Specify the user name in the User Argument Name field, for example User A, and
click Add. This adds the argument to the text box adjacent to the Remove button.

Note: If you select the User predicate, it implies that you are
allowing a particular user to access the dataspace. Make sure that this
user is authenticated by WebLogic Server.

Configuring Dataspace-Level Security

5-8 Release 12c (12.1.3)

Figure 5–5 User Predicate Arguments Page

This figure shows the User Predicate Arguments page. On this page, you will fill in the
arguments that pertain to the predicate you have chosen. There is a Role Argument
Name field, with an Add button beside it. There is a text field next to the Remove
button.

13.Click Finish. This adds the policy to the policy conditions applied to the dataspace.

5.4 Configuring Dataspace-Level Security
This section discusses how to configure dataspace-level security. It includes the
following topics.

■Section 5.4.1, "Specifying Runtime and WSDL Access Service Accounts"

■Section 5.4.2, "Working with XQuery Functions for Security"

■Section 5.4.3, "Data Redaction Options for Data Elements"

■Section 5.4.4, "Understanding and Using Service Accounts"

■Section 5.4.5, "Exporting Access Control Resources"

You can configure runtime policies that would ensure access to users who are
assigned entitlements to access the entire dataspace. At the dataspace level, the
Security Configuration tab provides the following tabs:

■General: This tab provides the options to enable secured access to Oracle Data Service
Integrator resources and also to JDBC metadata. To access these options, click Lock
& Edit to acquire the lock. It includes the following options:

–Enabling Access Control: Enabling access control activates checking security
policies throughout the dataspaces within the domain. It ensures that access to
any resource is determined by the policy on that resource.By default, access
control is not enabled.

–Enabling JDBC Metadata Access Control: You can control metadata accessed
through SQL by selecting the Enable JDBC Metadata Access Control option.
This option allows Oracle Data Service Integrator metadata access to users
based on their access rights at the JDBC driver level. Selecting this option
ensures that users are able to list only those tables and procedures that they
are authorized to use. By default, this option is not enabled.

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-9

–Export Access Control Resources: This feature allows you to export the securable
resource IDs within a dataspace to a text file format. However, it does not
export the console configurations while exporting the Oracle Data Service
Integrator resources. This is helpful in determining the dataspace structure
and defining policies on different systems, which may not be using the same
authorization provider or are working on different servers.

For more information, refer to Section 5.4.5, "Exporting Access Control Resources."

■Policy: This tab allows you to edit policies if the default authorization provider,
XACMLAuthorizer, is used. It provides the following information:

–Resource Name: The resource for which you need to add a runtime security
policy.

–Providers: The authorization provider that WebLogic Server uses.

–Policy Conditions: List of policies that have been applied to the resource.

–Overwritten Policy: Any policy

If a third-party authorization provider is used, then this tab displays a message as
follows:

"Policies for Oracle Data Service Integrator domain have to be defined in the configured
external policy provider."

For more information about creating and applying security policies, refer to
Section 5.3, "Creating and Applying Runtime Security Policies."

■XQuery Functions for Security: An XQuery function for security enables you to
specify custom security policies that can be applied to data elements. In particular,
security XQuery functions are useful for creating data-driven policies (policies
based on data values). For example, you can block access to an element if the order
amount exceeds a given threshold. For more information, refer to Section 5.4.2,
"Working with XQuery Functions for Security."

■Service Accounts Configuration: Service accounts represent a mapping of user
credentials between an Oracle Data Service Integrator user and the user of an
external data source, such as a web service or Java function. This mapping is
stored as a part of the dataspace configuration and ensures secure storage of
external identity credentials. You can associate service accounts with a number of
external data sources to perform runtime identity mapping. For more information,
refer to Section 5.4.4, "Understanding and Using Service Accounts."

5.4.1 Specifying Runtime and WSDL Access Service Accounts
Service accounts enable you to create a mapping between local WebLogic users and
remote external data source users. This enables you to use Oracle Data Service
Integrator to store user credentials to external data sources. You can create service
accounts using Oracle Data Service Integrator Console.

You can assign service accounts to physical sources such as delimited files, Java
functions, web services, and XML files using the Oracle Data Service Integrator
Console

Note: If an access policy is time-dependent or is changed and the
metadata access control option is enabled, you may not be able to
access the tables and procedures that had been listed.

Configuring Dataspace-Level Security

5-10 Release 12c (12.1.3)

You can use the Oracle Data Service Integrator Console to assign the following types of
service accounts to physical sources:

For a web service-based data source any of the following combinations are acceptable.
(The list is not exhaustive.)

■The same service account is used for runtime and WSDL access.

■Different service accounts are used for runtime and WSDL access.

■A service account is used for runtime but no service account is used for WSDL access.

■No service accounts are used.

5.4.1.1 Specifying Service Accounts
To specify the service account for a physical source:

1.Click the Physical Sources tab in the category list, select the dataspace in the
navigation tree, and click the Physical Source Properties in the workspace content
area.

You can specify service accounts for delimited files, Java functions, web services,
and XML files.

Note: You do not need to assign service accounts to physical sources
based on relational databases. Oracle Data Service Integrator uses
built-in support in WebLogic Server to provide JDBC identity
mapping between local WebLogic users and remote data source users.

Table 5–1 Services Accounts Assignable to Physical Sources

Type Description

Runtime Service Account The service account mapping to enable runtime access to the
physical source.

WSDL Access Service
Account

The service account mapping to use to access the WSDL file. This
option is only available with physical sources based on web
services.

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-11

Figure 5–6 Physical Source Properties Tab

This figure shows the Physical Source Properties tab. Use this page to override
physical source values. In the Web Service table the original value is given, and a field
where you can enter the new value is provided. In the Node within Web Service table,
the original value is given, and a field where you can enter a new value is provided.
There is a Runtime Service Account drop-down menu. There is a WSDL Access Service
Account drop-down menu. Two buttons let you save or reset to default values.

2.Click Lock & Edit to acquire the lock.

3.Choose the Runtime Service Account for the delimited file, Java function, or XML
file, using the drop-down list.

4.Choose the WSDL Service Account for the web service using the drop-down list.

5.Click Save > Activate Changes.

5.4.2 Working with XQuery Functions for Security
This section describes how to work with XQuery functions for security. It includes the
following topics:

■Section 5.4.2.1, "Creating an XQuery Function for Security"

■Section 5.4.2.2, "Applying an XQuery Function for Security"

XQuery security functions allow data-driven security of Oracle Data Service Integrator
resources. At the dataspace level, you can create and maintain XQuery functions to
ensure that data elements are returned only when the conditions are met. However, to
associate these functions to data service elements, go to the data service and specify
the element for which the function applies.

Configuring Dataspace-Level Security

5-12 Release 12c (12.1.3)

Applying data-driven security policies involves the following steps:

1.Identify the element as a secured element. (For more information, see Section 5.5.4,
"Configuring Data Element-level Security.")

2.Create a security XQuery function to define the data-level security. (For more
information, see Section 5.4.2.1, "Creating an XQuery Function for Security.")

3.Apply a security XQuery function to the data element. (For more information, see
Section 5.4.2.2, "Applying an XQuery Function for Security.")

5.4.2.1 Creating an XQuery Function for Security
You can create one or more XQuery functions to apply to data elements within a
dataspace.

To create an XQuery function for security:

1.Click Security Configurations tab and select the dataspace in the Navigation tree.

2.Click Lock & Edit to acquire the lock and then select the XQuery Functions for
Security tab.

Figure 5–7 Security XQuery Functions

This figure shows the XQuery Functions for Security tab. There is a text area for the
XQuery function body. Buttons let you compile and save the XQuery functions.

3.Add the XQuery function body in the text area of the tab, as shown in Figure 5–7.
The following code sample is used in this illustration:

import schema namespace t1 = 'ld:DataServices/CUSTOMER_ORDER' at
 'ld:DataServices/Schema/CUSTOMER_ORDER.xsd';
declare namespace f1 = "ld:CUSTOMER_ORDER";

Note: If both a standard security policy and an XQuery function
applies to a given data element, the results of both policy evaluations
must be true for access to be permitted (logical and is applied to the
results).

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-13

declare function f1:secureOrders($order as
 element(f1:CUSTOMER_ORDER)) as xs:boolean {
 if (fn-bea:is-access-allowed("CUSTOMER_ORDER/LimitAccess",
 "ld:CUSTOMER_ORDER.ds")) then
 fn:true()
 else if ($order/TotalOrderAmount lt
 (fn-bea:get-property("total_order_amount", "1000000") cast as
 xs:decimal)) then
 fn:true()
 else
 fn:false()
};

Notice that the function uses the Oracle extension XQuery function
is-access-allowed(). This function tests whether a user associated with the
current request context can access the specified resource, which is denoted by an
element name and a resource identifier.

Oracle Data Service Integrator provides the following additional convenience
functions for security purposes:

■is-user-in-group ($arg as xs:string) as xs:boolean

Checks whether the current user is in the specified group.

■is-user-in-role ($arg as xs:string) as xs:boolean

Convenience method that checks whether the current user is in the specified
role.

■userid() as xs:string

Returns the identifier of the user making the request for the protected
resource.

For details on creating XQuery functions, see the XQuery and XQSE Developer's
Guide at http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/xquery/index.html.

4.Click Compile and ensure that the function compiles successfully.

5.Click Save > Activate Changes to store the XQuery function.

A security XQuery function must be applied to a data element for it to take effect. For
more information, see Section 5.4.2.2, "Applying an XQuery Function for Security." The
functions are applied to elements by qualified function name. The only requirement
for the function is that it returns a Boolean value and that the name should be qualified
by a namespace URI.

5.4.2.2 Applying an XQuery Function for Security
You can use XQuery functions for security to control access to data elements. After
you define the XQuery function for security, as described in Section 5.4.2.1, "Creating
an XQuery Function for Security," you must apply the function to the corresponding
data element for it to take effect.

In addition, you define policies for securing the data elements, which provide
additional security along with the XQuery functions for security. For more
information, refer to Section 5.5.4, "Configuring Data Element-level Security."

To make any changes to the security configurations of a data element, you must first
acquire the lock by clicking Lock & Edit. To apply the XQuery function for security to
a data element:

Configuring Dataspace-Level Security

5-14 Release 12c (12.1.3)

1.Select the Security Configuration tab from the navigation pane and then click the
data service associated with the data element that you need to secure.

2.Click the Secured Elements tab and select the checkbox next to the data element to
which you want to apply a custom function.

3.Click Save and then click Activate Changes. This data element is now visible under
the data service in the navigation tree.

4.Select the data element from the navigation tree and click the Secured Elements
Configuration tab. This tab allows you to specify the qualified function name and
namespace URI for the XQuery function that you want to associate with the data
element, as shown in Figure 5–8.

Figure 5–8 Applying XQuery Functions for Security

This figure shows the Secured Elements Configuration tab. This tab allows you to
specify the qualified function name and namespace URI for the XQuery function that
you want to associate with the data element. The Resource Name is displayed. The
Use Default Value checkbox is selected. A Default Value is specified. In the XQuery
Security Functions table, a Namespace URI and Local Name are shown. Buttons let
you add or delete namespaces URIs.

5.If you want to specify a default value for the element or attribute, then select the
User Default Value checkbox and specify the default value in the Default Value
box.

This option allows you to assign a constant value for the element or attribute.
However, it supports only primitive types, so you cannot have a default value for
complex types.

6.Specify the namespace URI and local name of the XQuery function that you have
created.

7.Click Add > Save > Activate Changes. This completes the association of the data
element with the XQuery function for security.

Note: If you select this check box, then it is mandatory to specify the
default value for the resource.

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-15

5.4.3 Data Redaction Options for Data Elements
This section describes data redaction options for data elements. It includes the
following topics:

■Section 5.4.3.1, "Data Redaction Conditions"

■Section 5.4.3.2, "Specifying the Data Redaction Behavior"

■Section 5.4.3.3, "Encryption-Based Data Redaction Examples"

Data redaction is the process of obscuring or removing information from a data result
prior to displaying the result. Oracle Data Service Integrator offers the following forms
of data redaction for secured elements and attributes:

■Optional elements and attributes may be omitted from the result

■Simple-typed elements and attributes may have their values substituted by a fixed,
default value in the result

■String-valued elements and attributes may have their values encrypted using a
secure, identity-preserving transformation

The first two forms map originally distinct fields in multiple data instances to the same
redacted representation. This means that these methods are not suitable for certain
applications, such as data analytics, which require that fields maintain their identity so
that standard operations such as GroupBy or Join can be performed based on the
fields.

The third form, encrypting the data, preserves the identity of the field enabling you to
perform a wider range of operations on the data. Oracle Data Service Integrator offers
secure encryption-based data redaction that you can use to encrypt elements in the
results of read and navigate functions declared in entity data services.

5.4.3.1 Data Redaction Conditions
The following describes the conditions related to selecting a data redaction option:

5.4.3.2 Specifying the Data Redaction Behavior
You can specify the redaction behavior for data elements to secure information against
unauthorized access.

To specify the redaction behavior for a data element:

1.Click the Lock & Edit button.

2.Select the Security Configuration tab from the navigation pane and click the data
service associated with the data element that you need to secure.

Table 5–2 Data Redaction Conditions

Option Description Discussion

Remove element Omits the element or
attribute from the result.

Available if the element or attribute is
optional.

Use default value Uses the specified default
value instead of the
actual result.

Available if the element or attribute is a
leaf node (simple type).

Encrypt value using
the WebLogic Server
encryption service

Encrypts the result using
the WebLogic Server
encryption service.

Available if the element or attribute is of
type (or sub-type of) xs:string.

Configuring Dataspace-Level Security

5-16 Release 12c (12.1.3)

3.Click the Secured Elements tab and select the checkbox next to the data element for
which you want to specify the redaction behavior.

4.Click Save. This data element is now visible under the data service in the navigation
tree.

5.Select the data element from the navigation tree and click the Secured Elements
Configuration tab.

Figure 5–9 Secured Elements Configuration Tab

This figure shows the Secured Elements Configuration tab. Use this page to define
data redaction behavior on secured elements and XQuery security functions to
perform data driven security. The Resource Name is displayed. In the Redaction
Behavior section, there are three choices: Remove element (selected), Use default
value, and Encrypt value using the WebLogic Server encryption service.

6.Select the redaction behavior for the data element and set the default value if
necessary. Click Save > Activate Changes.

■To apply encryption-based data redaction to the element, select the Encrypt value
using the WebLogic Server encryption service button.

■To have the system omit the element or attribute, select the Remove element
button.

■To specify a default value for the element or attribute, select the Use default value
button and specify the default value. This assigns a constant value for the
element or attribute. For example, assigning "000-00-0000" as the default value
for an element named SSN causes this value to appear every time the SSN
element is returned. Note however that this feature supports only primitive
types, so you cannot specify a default value for complex types. Also, if you
select the Use default value button, you must specify a default value for the
resource.

5.4.3.3 Encryption-Based Data Redaction Examples
This section provides several examples showing how encryption-based data redaction
works when performing common operations.

Example Data Service Functions

The examples in this section make use of the following data services:

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-17

Entity data service CustomerDS—The data service returns information about a
customer conforming to the following schema:

CUSTOMER
 SSN: xs:string
 FIRST NAME: xs:string
 LAST NAME: xs:string
 CUSTOMER_SINCE: xs:date

The information is exposed through the public read function getCUSTOMERS(),
which returns data similar to the following:

<SSN>123-45-6789</SSN>
 <FIRST_NAME>John</FIRST_NAME>
 <LAST_NAME>Smith</LAST_NAME>
 <CUSTOMER_SINCE>2007-10-10</CUSTOMER_SINCE>
</CUSTOMER>

Entity Data Service OrderDS

The data service returns information about a customer order conforming to the
following schema:

ORDER
 ORDER_ID: xs:integer
 CUSTOMER_SSN: xs:string
 DATE: xs:date
 STATUS: xs:string

The information is exposed through the public read function getORDERS(), which
returns data similar to the following:

<ORDER>
 <ORDER_ID>1000</ORDER_ID >
 <CUSTOMER_SSN>123-45-6789</CUSTOMER_SSN>
 <DATE>2007-10-10</DATE>
 <STATUS>CLOSED</STATUS>
</ORDER>
<ORDER>
 <ORDER_ID>2000</ORDER_ID >
 <CUSTOMER_SSN>123-45-6789</CUSTOMER_SSN>
 <DATE>2007-11-11</DATE>
 <STATUS>OPEN</STATUS>
</ORDER>

Example Results

This section provides examples of encryption-based data redaction.

Projection of an Encrypted Field

Assuming that encryption-based data redaction has been configured for the SSN field
in data service CustomerDS, the direct function call getCUSTOMERS() returns the
following:

<CUSTOMER>
 <SSN>sjdlkggdlaklakskjfgk</SSN>
 <FIRST_NAME>John</FIRST_NAME>
 <LAST_NAME>Smith</LAST_NAME>
 <CUSTOMER_SINCE>2007-10-10</CUSTOMER_SINCE>
</CUSTOMER>

Note that the value of the SSN field is encrypted and unique for each distinct SSN.

Configuring Dataspace-Level Security

5-18 Release 12c (12.1.3)

Predicate Against an Encrypted Field

Assuming that encryption-based data redaction has been configured for the SSN field
in data service CustomerDS, the following XQuery query returns ():

for $x in p:getCUSTOMERS()
where $x/SSN eq "123-45-6789"
return $x

This is because a match is attempted between an unencrypted value and the encrypted
SSN value.

Outer Join on Encrypted Fields

Consider the following XQuery query that performs an outer join:

for $x in p:getCUSTOMERS()
return
<CUSTOMER>
 <SSN>{fn:data($x/SSN)}</SSN>
 {
 for $y in q:getORDERS()
 where $x/SSN eq $y/CUSTOMER_SSN
 return
 <ORDER_ID>{fn:data($y/ORDER_ID)}</ORDER_ID>
 }
</CUSTOMER>

Assuming that encryption-based data redaction has been configured for both the SSN
field in CustomerDS and the CUSTOMER_SSN field in OrderDS, the query returns the
following:

<CUSTOMER>
 <SSN>sjdlkggdlaklakskjfgk</SSN>
 <ORDER_ID>1000</ORDER_ID >
 <ORDER_ID>2000</ORDER_ID >
</CUSTOMER>

Notice that the outer join is performed as if encryption was not set. Note also that the
value of the secured element in the result is encrypted.

Join Encrypted Field With Non-Encrypted Field

Assuming that encryption-based data redaction has been configured for the SSN field
in data service CustomerDS but not on data service OrderDS, consider the following
XQuery query that joins an encrypted field with a non-encrypted field:

for $x in p:getCUSTOMERS()
return
<CUSTOMER>
 <SSN>
 {fn:data($x/SSN)}
 </SSN>
 {
 for $y in q:getORDERS()
 where $x/SSN eq $y/CUSTOMER_SSN
 return
 <ORDER_ID>
 {fn:data($y/ORDER_ID)}
 </ORDER_ID>
 }
</CUSTOMER>

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-19

The query returns ().

Note that the outer join fails to return any results because the encrypted value of SSN
does not match the non-encrypted value of CUSTOMER_SSN.

Group by an Encrypted Field

Consider the following SQL query that includes a group by clause:

SELECT CUSTOMER_SSN, COUNT(*y)
FROM ORDERS
GROUP BY CUSTOMER_SSN

Assuming that encryption-based data redaction has been configured for the
CUSTOMER_SSN field in data service OrderDS and the getOrders() function has been
mapped to the SQL table ORDERS, the SQL query returns the following:

(sjdlkggdlaklakskjfgk, 2)

Notice that the group by clause performs as if encryption was not set. Note also that
the value of the secured column in the result is encrypted.

5.4.4 Understanding and Using Service Accounts
Service accounts provide the option to store user credentials for external data sources.
It provides a mapping between the local WebLogic user and a remote external data
source user by configuring the user credentials within the Oracle Data Service
Integrator Administration Console.

You can configure service accounts for web services and Java functions. For JDBC
identity mapping, Oracle Data Service Integrator depends on Oracle WebLogic Server
built-in support.

Service accounts provide different types of mappings, which include:

■Static: This mapping option enables you to map all Oracle Data Service Integrator
users, including unauthenticated users, to a single external data source user.

■Mapping: This option enables you to create a mapping of an Oracle Data Service
Integrator user to an external data source user. You can also map multiple Oracle
Data Service Integrator users to a single external data source user. For
unauthenticated users you may define a mapping, otherwise an error will occur
when the unauthenticated user tries to access Oracle Data Service Integrator.

■Identity Mapping: This option enables you to create a mapping between external
data source users and identically-named authenticated Oracle Data Service
Integrator users, supplying the passwords of only the external data source users.

5.4.4.1 Creating a Service Account
To create a service account:

1.Click the Security Configurations tab in the category list, select the dataspace in the
navigation tree, and click the Service Accounts tab in the workspace content area.

2.Click Lock & Edit to acquire the lock.

Note: After you create and define the type of a service account, you
cannot change it. If you have to change a service account type, delete
the account and create a new one.

Configuring Dataspace-Level Security

5-20 Release 12c (12.1.3)

3.Click New. This opens the Create a New Service Account page, as shown in
Figure 5–10.

4.On this page, specify the following details:

■Resource Name: Name of the service account.

■Resource Description: A description of the service account. This is optional.

■Resource Type: Select the type of the service account from the list of available
options including Static, Mapping, and Identity Mapping.

Figure 5–10 Create a New Service Account Page

This figure shows the Service Accounts tab. There is a Resource Name field. For
Resource Description, there is a text box. For Resource Type, the choices are Static,
Mapping, and Identity Mapping.

5.If you select the resource type as Static:

a.Click Next.

b.On the next page, specify the user name and password for that account and click
Finish, as shown in Figure 5–11.

Note: Based on the selected resource type, the Next button is
enabled.

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-21

Figure 5–11 Creating a Static Service Account

This figure shows the Service Accounts page for creating a static service account. There
are three fields: User Name, Password, and Confirm Password.

6.If you select the resource type as Mapping and click Next, a new page is displayed,
as shown in Figure 5–12.

Figure 5–12 Creating a Service Account of the Mapping Type

This figure shows the Service Accounts page for creating a service account of the
mapping type. In the Enter Authorized Remote User table, there are three fields:
Remote User Name, Password, and Confirm Password. There are two Options: Add
and Clear. In the Remote Users table, there are two columns: Remote User Name and
Remote Pasword. There is one option: Edit. There is a checkbox next to the Remote
User Name and a Delete button above and below.

On this page, you can define the remote (external data source) users.

a.Specify the remote user name and password in the Remote User Name and
Password fields, respectively, of the Enter Authorized Remote User table.

Configuring Dataspace-Level Security

5-22 Release 12c (12.1.3)

b.Click Add. This adds the users to the Remote Users table. Using the Remote
Users table you can edit the password or delete a user, as required.

c.Click Next after adding the remote users. The next page enables you map the
local users to remote users, as shown in Figure 5–13.

Figure 5–13 Local User to Remote Mapping

This figure shows a new Service Accounts page for local user to remote mapping. In
the Enter Authorized Local User table, there is a Local User Name field and a Remote
User Name drop-down menu. There are two Options: Add and Clear. In the Local
User Mappings table, the Local User Name and Remote User Name are displayed. The
Option column has an Edit button. There is a checkbox next to the row shown. In the
Map Anonymous Requests section, there is a Select Remote User drop-down list and a
checkbox. In the Map Other Authenticated Requests section, there is a Select Remote
User drop-down list and a checkbox.

d.Specify the local user name in the Local User Name field and select the
corresponding remote user from the Remote User Name list.

e.Click Add. This creates the local to remote user mapping.

f.To map all unauthenticated (anonymous) users to a particular remote user, click
the Map Anonymous Requests checkbox and then choose the remote user
from the drop-down list.

g.In case you want to provide a default mapping for all authenticated user that do
not have an explicit mapping to the remote user, click the Map Other
Authenticated Requests checkbox and choose the remote user from the
drop-down list.

h.Click Finish.

Configuring Dataspace-Level Security

Securing Oracle Data Service Integrator Resources 5-23

7.If you select the resource type as Identity Mapping and click Next, a page is
displayed, as shown in Figure 5–13. This page is identical to the page displayed
when you select Mapping as the resource type.

On this page, you can define the authorized remote (external data source) users,
and add them as authenticated external data source users.

a.Specify the remote user name and password in the Remote User Name and
Password fields, respectively, of the Enter Authorized Remote User table.

b.Click Add. This adds the users to the Remote Users table. Using the Remote
Users table you can edit the password or delete a user, as required.

c.Click Next after adding the remote users. The next page enables you to map
anonymous requests or other authenticated requests to remote users.

d.To map all unauthenticated (anonymous) users to a particular remote user, click
the Map Anonymous Requests checkbox and then choose the remote user
from the drop-down list.

e.In case you want to provide a default mapping for all authenticated users that do
not have an explicit mapping to the remote user, click the Map Other
Authenticated Requests checkbox and choose the remote user from the
drop-down list.

f.Click Finish. This creates a mapping between the defined external data source
users and the identically-named authenticated Oracle Data Service Integrator
users.

Figure 5–14 Mapping Anonymous Requests or Other Authenticated Requests

This figure shows the Service Accounts page for mapping anonymous requests or
other authenticated requests. In the Map Anonymous Requests table, there is a Select
Remote User drop-down list and a checkbox. In the Map Other Authenticated
Requests table, there is a Select Remote User drop-down list and a checkbox.

8.Click Activate Changes.

5.4.5 Exporting Access Control Resources
Authorization is the process whereby the interaction between users and resources are
limited to ensure integrity, confidentiality, and availability. WebLogic uses resource
identifiers to identify deployed Oracle Data Service Integrator artifacts, such as

Configuring Dataspace-Level Security

5-24 Release 12c (12.1.3)

dataspaces, data services, and operations. This identifier is used to associate a client
request to any security policies configured for the requested resource.

Resource identifiers are managed for you when you use the default WebLogic
Authorization provider and the Oracle Data Service Integrator Administration
Console to configure your policies. In particular, resource identifiers already exist for
Oracle Data Service Integrator dataspaces, data services, and data service operations.
In addition, when you choose elements to be secured in the console, an identifier is
generated for the element.

However, when using a custom authorizer, you must know the resource identifiers for
your deployment and configure policies for the resources in the form expected by the
other authorization module. This means that you need to identify the element
resources that need to be protected.

The WebLogic security documentation provides details on how to connect another
security authenticator to WebLogic Server. For more information, see WebLogic
Authorization Provider in the Administration Console Online Help at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/pagehelp/Securitysecurityprovidersaut
horizerconfigcommontitle.html.

You can view the list of resource identifiers by exporting the access control resources
from the Oracle Data Service Integrator Administration Console.

To export the file:

1.Select the dataspace in the navigation pane and select the General tab from the
Security Configuration category.

2.Click Lock & Edit and then click Export Access Control Resources if you want to
export the current session values of the dataspace.

3.If you want to export the core values, then click Export Access Control Resources
without acquiring the lock.

4.Save the text file.

An example of a portion of the file follows:

<ld type="admin"><app>DOMAIN</app></ld>
<ld type="admin"><app>ADMIN</app></ld>
<ld type="admin"><app>MONITOR</app></ld>
<ld type="admin"><app>BROWSER</app></ld>
<ld type="admin"><app>ADMIN</app><ds>DSP_TEST</ds></ld>
<ld type="admin"><app>MONITOR</app><ds>DSP_TEST</ds></ld>
<ld type="admin"><app>BROWSER</app><ds>DSP_TEST</ds></ld>
<ld type="app"><app>DSP_TEST</app></ld>
<ld type="service"><app>DSP_TEST</app><ds>ld:CREDIT_CARD.ds</ds></ld>
<ld type="function"><app>DSP_TEST</app><ds>ld:CREDIT_
CARD.ds</ds><res>{ld:CREDIT_CARD}CREDIT_CARD:0</res></ld>
<ld type="function"><app>DSP_TEST</app><ds>ld:CREDIT_
CARD.ds</ds><res>{ld:CREDIT_CARD}createCREDIT_CARD:1</res></ld>
<ld type="function"><app>DSP_TEST</app><ds>ld:CREDIT_
CARD.ds</ds><res>{ld:CREDIT_CARD}deleteCREDIT_CARD:1</res></ld>
<ld type="function"><app>DSP_TEST</app><ds>ld:CREDIT_
CARD.ds</ds><res>{ld:CREDIT_CARD}updateCREDIT_CARD:1</res></ld>
<ld type="service"><app>DSP_TEST</app><ds>ld:CUSTOMER.ds</ds></ld>

The format of a resource identifier is shown in Figure 5–15.

Configuring Data Service and Operation-Level Security

Securing Oracle Data Service Integrator Resources 5-25

Figure 5–15 Resource Identifier Format

This figure shows the the Resource Identifier Format, which has four parts: OSDI ID,
Reference Identifier Type, Dataspace, and Qualified Data Service Name.

The type can be admin, service, or function. The resource can be any of the following:

■Function: A data service function, for example,

{ld:DataServices/ElectronicsWS/getProductList}getProductList:1

■User-defined or administrative entity: A custom entity, such as a protected element
or an arbitrary label defined in a data service that is used with
fn-bea:is-access-allowed operation.

These are generated when you select an element in the Secured Element tab of the
Oracle Data Service Integrator Administration Console.

5.5 Configuring Data Service and Operation-Level Security
This section discusses how to configure data service and operation-level security. It
includes the following topics:

■Section 5.5.1, "Creating Data Service Runtime Security Policies"

■Section 5.5.2, "Cascading Element-Level Security to Child Elements"

■Section 5.5.3, "Creating and Configuring Security Policies for Operations"

■Section 5.5.4, "Configuring Data Element-level Security"

■Section 5.5.5, "Securing Native Web Services"

■Section 5.5.6, "Creating Security Policies for User-Defined Security Resources"

A data service has several operations, including one or more read, create, update,
delete, navigation, and library operations. The security policies that you apply at the
data service level apply to data service operations and data elements. You can also
select the data elements that you want to secure at the data service level.

Operation-level security policies enable you to control:

■User access to data service operations. It enables you to set stricter controls on the
ability to change data, for example, compared to the ability to read data.

■Access time of data service operations. Enables you to control the time when a
particular operation can or cannot be accessed.

Make sure that you configure policies on the data service resources that are accessed
directly by the user. Security policies on data services that are used by other data
services are not inherited by the calling data service. This means that if a data service
with a secured resource is accessed through another data service, the policy is not
evaluated against the caller. For more information, refer to Section 5.5.3, "Creating and
Configuring Security Policies for Operations."

Configuring Data Service and Operation-Level Security

5-26 Release 12c (12.1.3)

Data service operations are identified by name and number of parameters for setting
security configurations. If you modify the number of parameters, you will need to
reconfigure the security settings for the operation.

5.5.1 Creating Data Service Runtime Security Policies
The steps to create the security policy at the data service and operation level are the
same as the dataspace level. Refer to Section 5.3, "Creating and Applying Runtime
Security Policies" for details.

At the data service level, you can select all the data elements in a data service by
selecting the top-level element (Customers in Figure 5–16) or individual data elements
that you want to secure using the Secured Elements tab.

For example, if you create an XQuery function for security and you want to associate it
with a data element, you can select the data element from the Secured Elements tab
and then configure the data-element level security. (For more information about
XQuery function for security, refer to Section 5.4.2, "Working with XQuery Functions
for Security.")

To select the data element to be secured:

1.Acquire the lock and select the data service.

2.Select the Secured Elements tab, as shown in Figure 5–16.

3.Select the data element that you want to configure for security.

4.Click Save > Activate Changes. Notice that the selected element is now included in
the navigation tree under the data service, as shown in Figure 5–16.

Note: You should only secure the root element of a data service if
you are confident that none of the elements used by read functions in
the service must return a value. Since a secured element does not
return a value, a schema which requires that one or more values be
returned will fail with a runtime error. Alternatively, you can modify
the schema so that elements are optionally returned.

Configuring Data Service and Operation-Level Security

Securing Oracle Data Service Integrator Resources 5-27

Figure 5–16 Secured Data Element in the Navigation Tree

This figure shows the secured data element in the navigation tree. The Secured
Element tab shows the return type of a data service. You can define the element level
security here. The element selected in the navigation tree is now included in the
navigation tree under the data service.

To apply security policy to the data element, select the element from the navigation
tree. You can also select the secured element using the Secured Elements tab. For more
information, refer to Section 5.5.4, "Configuring Data Element-level Security."

5.5.2 Cascading Element-Level Security to Child Elements
Using the Oracle Data Service Integrator Administration Console, you can select the
data elements that you want to secure at the data service level. When selecting a
complex node, Oracle Data Service Integrator further enables you to optionally
cascade the selection to all child elements and attributes of the complex node.

To select a complex node and cascade the selection:

1.Acquire the lock and select the data service.

2.Select the Secured Elements tab

Configuring Data Service and Operation-Level Security

5-28 Release 12c (12.1.3)

Figure 5–17 Securing Data Elements at the Data Service Level

This figure shows the Secured Elements tab for securing data elements at the data
service level. The Cascade selection to children nodes checkbox is selected. A data
elements tree is displayed and all elements are selected.

3.Select the Cascade selection to children nodes check box.

4.Select the data element that you want to configure for security.

5.Click Save > Activate Changes.

5.5.3 Creating and Configuring Security Policies for Operations
To set runtime security policy for an operation:

1.Select the operation from the navigation tree and click the Function Configuration
tab.

2.Select the Always Secured checkbox and click Save as shown in Figure 5–18.

Note: The cascade functionality is just a user interface usability
feature. All the elements secured in this way are still independent of
the parent element. You will have to configure security policies,
redaction modes for all of them separately.

Configuring Data Service and Operation-Level Security

Securing Oracle Data Service Integrator Resources 5-29

Figure 5–18 Function Configuration Tab

This figure shows the Function Configuration tab. Always Secured is selected.

This setting ensures that every time this operation is accessed, the runtime policy is
adhered to. Consider the following example:

■Operation 1 (fn1) has a runtime policy to allow access to user1 or user2.

■Operation 2 (fn2) has a runtime policy to allow access to user2 only and the operation
configuration is set to Always Secured.

■fn1 invokes fn2.

In this scenario, if you access fn1 using user1, then access will be denied because the
runtime security policy configuration does not allow user1 to access fn2.

If you do not select the Always Secured check box for fn2, then you will be able to
access fn1 if using either user1 or user2 because the system will check the security
policy for fn1 only and not fn2.

5.5.4 Configuring Data Element-level Security
Element-level security associates a security policy with a data element for the Return
type within a data service. If the policy condition is not met, the corresponding data is
not included in the result.

When configuring element-level security, you first identify the element as a securable
resource, then set a policy on the resource.

The data element security policy can be configured using the steps described in
Section 5.3, "Creating and Applying Runtime Security Policies."

To associate an XQuery function for security with a corresponding data element, select
the Secured Elements Configuration tab and follow the steps mentioned in
Section 5.4.2.2, "Applying an XQuery Function for Security."

■The data is being delivered across the "client-server boundary".

■The security is applied to a data service that is directly accessed by a valid client
process. In other words, element-level security policies are not "inherited" from
underlying or invoked data services.

■The element being secured is accessed from a client using a read or navigation
operation or an ad hoc query.

Note: Element-level security is only applied when all of the
following conditions are met:

Configuring Data Service and Operation-Level Security

5-30 Release 12c (12.1.3)

5.5.4.1 Additional Data Element Security Considerations
To ensure the security of elements, you need to manage and layer data services
properly. This means being careful not to create insecure holes in the layers and not
depending on security settings for data services which are not being directly invoked
by the client.

5.5.5 Securing Native Web Services
You can set the security policies for native web services using the Basic Auth Required
property in the Eclipse IDE. You can create runtime security policies for a native web
service and then set this property to true. This applies the security policy for the native
web service. For more information about the Basic Auth Required property, refer to
the Add Security Resources to Data Services topic in the Designing Logical Data
Services section of the Data Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/Designing Logical Data Services.html.

The Service Explorer in Oracle Data Service Integrator Administration Console allows
you to check if the Basic Auth Required property is set to true or false.

To view information about this property in the Service Explorer:

1.Click the Service Explorer category. The General tab is displayed as shown in
Figure 5–19.

Figure 5–19 Basic Auth Required Property Information in Service Explorer

This figure shows the General tab in the Service Explorer. This page shows the general
configuration of a web service map. There are three links: Test Web Service, View
WSDL Definition, and Export Static Client Jar. There is a Properties table with five
entries: Target Namespace, SOAP Version, ADO.net Enabled, Transport Type, and
HTTP Basic Auth Required, which is set to true.

2.Select the native web service from the navigation tree. In this case, the Basic Auth
Required property is set to true. This implies that some security policy is applied
to SERVICE_CASE.ws, which the native web service.

Note: Secured elements, in general, should never offer public read or
navigate functions that accept a secured element value as an input
argument as this can permit guessing-style attacks to reveal otherwise
secure data.

Working with Administrative Access Control Policies

Securing Oracle Data Service Integrator Resources 5-31

5.5.6 Creating Security Policies for User-Defined Security Resources
User-defined security resources are created in the Eclipse IDE Property Editor, as
shown in Figure 5–20.

Figure 5–20 Oracle Data Service Integrator IDE Property Editor: User-Defined Security
Resources

This figure shows the Eclipse IDE Property Editor. There are four Security Resources:
Add New, Delete Security Resources, Security Resource (1), and Security Resource (2).
Security Resource (1) is set to a value of ordertime.

For more information about setting the security resource values, refer to Declare a
Security Resource in Data Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/index.html.

After you assign a value to the security resource, you can create runtime security
policies for the user-defined security resource. In the preceding figure, ordertime is the
value of the security resource. After you deploy the dataspace, this resource is
displayed in Oracle Data Service Integrator Administration Console.

You can create a runtime security policy for the ordertime security resource using the
console.

5.6 Working with Administrative Access Control Policies
This section describes how to work with administrative access control policies. It
includes the following topics:

■Section 5.6.1, "Assigning Entitlements"

■Section 5.6.2, "Taking Lock and Edit Capability"

Administrative roles require entitlements to access Oracle Data Service Integrator
Administration Console. These entitlements can be assigned through the
Administrative Access Control category, as shown in Figure 5–21.

Working with Administrative Access Control Policies

5-32 Release 12c (12.1.3)

Figure 5–21 Administrative Access Control Tab

This figure shows the Administrative Access Control category on the Oracle Data
Service Integrator Administration Console. On the Navigation Pane, the
Administrative Access Control category is selected and the Admin, Monitor, and
Browser entitlements are shown. On the Policy tab, the Admin role appears in the
Policy Conditions section.

A domain user, who is the super user for the console, assigns entitlements to users. In
addition to the domain entitlement, other predefined entitlements are admin, monitor,
and browser, which allow access to information for different categories and resources.
The hierarchical structure of the entitlements is as follows:

1.Domain

2.Admin

3.Monitor

4.Browser

This hierarchy implies that the domain entitlement allows you to perform all the tasks
on Oracle Data Service Integrator Administration Console, depending on whether the
domain entitlement is for all the dataspaces within a domain or a particular dataspace.
However, other entitlements cannot perform all the tasks that can be performed by a
user with domain entitlement.

For example, you can set the administrative access control policies only if you have
domain entitlement. Similarly, the admin entitlement allows you to perform more
tasks on a dataspace than monitor or browser entitlements.

A default domain user is created on WebLogic Server when you create the Oracle Data
Service Integrator domain. There can be more than one domain user for the console
and one domain user can create other domain users.

Note: Entitlements can be assigned at the dataspace level or for all
the dataspaces. For example, for User A, you can assign admin
entitlement for DS1, monitor entitlement for DS2, and browser
entitlement for DS3. Alternatively, you can assign the Admin
entitlement for all the dataspaces within the domain to User A. For
more information, refer to Assigning Entitlements.

Working with Administrative Access Control Policies

Securing Oracle Data Service Integrator Resources 5-33

Table 5–3 lists the tasks that can be performed by a user for each entitlement.

5.6.1 Assigning Entitlements
Entitlements are created for users that are created on WebLogic Server 10gR3 and can
be managed through the WebLogic Server Administration Console.

To assign an entitlement:

Note: By default, an Admin role is created for a domain user in
Oracle Data Service Integrator Administration Console which is
mapped from WebLogic Server Administrator role, as shown in
Figure 5–21.

Table 5–3 Tasks Allowed for Entitlements

Entitlement Categories and Resources Available

Domain The domain user for a dataspace can perform all the tasks on the
Oracle Data Service Integrator Administration Console. Some of
the most important tasks that a domain user can perform include
the following:

■ Creating, deploying, and deleting dataspaces

■ Creating users with domain, admin, monitor, browser
entitlements

■ Editing and updating configurations

■ Acquiring lock from a user forcibly

■ Viewing all tabs in the category list, including the
Administrative Access Control tab

■ Configuring auditing options

■ Manage data cache

Note: Only a domain user can acquire a lock forcibly from
another user, regardless of the user entitlement. This means that
the one domain user can forcibly acquire the lock from another
domain user also.

Admin Most of the information available to an admin user for a
dataspace is the same as the domain user. However, an admin
user cannot create or delete dataspaces and cannot assign
entitlements. Therefore, when you log into the console with
admin entitlement, then the Administrative Access Control tab
will not be available.

Monitor A monitor for a dataspace cannot make any changes in the Oracle
Data Service Integrator Administration Console. Therefore, the
change center is disabled for the dataspace for which the user has
monitor entitlements. The System Administration tab for a
monitor user does not provide any options. A monitor user can
view the following on the console:

■ Data cache, queries and updates available through the
Operations category

■ For the dataspace, a monitor user can export the static
mediator client jar file using the General tab.

Browser A browser user has the least control over the Oracle Data Service
Integrator Administration Console. This user entitlement can
only browse through the console. The change center is disabled
for this user. However, like a monitor user, a browser user can
also export the static mediator client JAR file.

Working with Administrative Access Control Policies

5-34 Release 12c (12.1.3)

1.Log into the Oracle Data Service Integrator Administration Console using the
domain user name and password.

2.Select the Administrative Access Control category.

3.If you want to assign entitlement for a specific dataspace, then from the navigation
tree, select the dataspace listed under the entitlement. For example, if you want to
assign admin entitlement for dataspace DS1, then select DS1 listed under the
Admin entitlement, as shown in Figure 5–22.

Figure 5–22 Assigning Entitlement for a Dataspace

This figure shows the navigation tree for the Administrative Access Control category.
At the Admin level, myDataspace and newDataspace appear.

You can also assign an entitlement to a user for all dataspaces within the domain.
For example, if you want to assign the Admin entitlement for dataspaces DS1,
DS2, and DS3 to a user, then select the Admin entitlement option. Similarly, you
can assign, monitor and browser entitlements to a user for all dataspaces by
selecting the Monitor or Browser option from the navigation tree.

4.Click Add Conditions on the Policy tab.

5.Select the predicate as User and click Next.

You can also select other options from the list of predicates. For more information,
refer to Section 5.2, "Understanding Runtime Security Policies."

6.Specify the user name for which you want to assign the admin entitlement and click
Finish. This creates a user who has Admin entitlement for dataspace DS1.

A user views the category-list based on the entitlement assigned to that user for that
dataspace. For example, User A with admin entitlement for DS1 can view the Security
Configurations tab, however, if User A has monitor entitlement for DS2, then the
Security Configuration tab for DS2 will not appear for User A.

Note: In this case, the Admin entitlement is selected for the
dataspace DS1.

Working with Administrative Access Control Policies

Securing Oracle Data Service Integrator Resources 5-35

5.6.1.1 Gaining Administrative Access After a System Lockout
Security policies configured for assigning Admin entitlement to a user may get deleted
inadvertently. If that is the only Admin user entitlement for Oracle Data Service
Integrator Administration Console, then the Admin user is locked out of the console.

In this case, you can configure the com.bea.dsp.security.admin.bootstrap
system property for WebLogic Server. This property allows you to specify a user name,
who gains domain access rights. However, this property should only be used if the
Oracle Data Service Integrator Administration Console is locked due to some policy
editing.

To configure this system property:

1.Stop WebLogic Server.

2.Open the setDomainEnv.cmd file located in: <BEA_HOME>\user_
projects\domains\base_domain\bin

3.Edit this file to include the com.bea.dsp.security.admin.bootstrap system
property. For example:

set JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES%
 -Dwlw.iterativeDev=%iterativeDevFlag%
 -Dwlw.testConsole=%testConsoleFlag%
 -Dwlw.logErrorsToConsole=%logErrorsToConsoleFlag%
 -Dcom.bea.dsp.security.admin.bootstrap=<username>

where <username> is the place to specify the Admin user for Oracle Data Service
Integrator Administration Console.

4.Save and close this file.

5.Restart WebLogic Server.

6.Log in to Oracle Data Service Integrator Administration Console using this user
name and then re-configure the Admin entitlement policies.

5.6.2 Taking Lock and Edit Capability
A domain user can take back the control of the lock from Oracle Data Service
Integrator Administration Console. The lock may need to be taken back from a user in
cases where a user, such as an admin user, has acquired the lock but has not released it
for a long period and another admin user needs to acquire the lock to modify
configurations. One domain user can acquire the lock from another domain user also.

When lock is acquired by a user, the Take Lock & Edit option is enabled for the domain
user as shown in Figure 5–23.

Figure 5–23 Take Lock & Edit Enabled in the Change Center

Note: The user name specified in the
com.bea.dsp.security.admin.bootstrap system property should be a
user that has already been created using the WebLogic Server
Administration Console.

Working with Administrative Access Control Policies

5-36 Release 12c (12.1.3)

This figure shows the Lock and Edit button on the Change Center.

The domain user can click the Take Lock & Edit option from the change center to
acquire the lock. In this case, the user whose lock is acquired will see the core
configuration values on the console and the domain user or the other admin user will
be able to view all the changes made by the other user using the pending changelist.
For more information about pending changelist, refer to Section 2.3.1.2, "Pending
Changelist."

6

Viewing Native Web Services 6-1

6Viewing Native Web Services

A native web service is a data service that is exposed as a web service through Oracle
Data Service Integrator. It allows a direct mapping from the data service to the web
service and updates configurations at runtime.

To generate a native web service the system requires a web service map file, which is
used to generate the WSDL for the web service. A web service map file describes the
mapping between the data services, functions, and WSDL operations.

■ For more information about creating a native web service, refer to "How To
Generate a Web Service Map from a Data Service" in the Data Services Developer's
Guide.

■ For information about consuming a native web service, refer to "Invoking Data
Services Through Web Services" in the Application Developer's Guide.

Oracle Data Service Integrator Administration Console displays the web service map
artifacts in the dataspace through the Service Explorer.

This chapter describes the steps to view the artifacts for the web service and the WSDL
definition, and export it using Oracle Data Service Integrator Administration Console.

This chapter contains the following sections:

■ Section 6.1, "Viewing Native Web Service Artifacts"

■ Section 6.2, "Generating a Web Services Mediator Client JAR File"

■ Section 6.3, "Generating a Mediator Client JAR File"

6.1 Viewing Native Web Service Artifacts
This section describes how to view native web service artifacts. It includes the
following topics:

■ Section 6.1.1, "Using the General Tab"

■ Section 6.1.2, "Using the Operations Tab"

■ Section 6.1.3, "Using the Data Lineage Tab"

When you click the Service Explorer category for a web service, the following tabs are
displayed in the workspace content area, as shown in Figure 6–1.

For more information about using the Service Explorer, refer to Chapter 7, "Viewing
Metadata Using the Service Explorer."

Viewing Native Web Service Artifacts

6-2 Release 12c (12.1.3)

6.1.1 Using the General Tab
This tab displays general configuration information about the web service, such as the
target namespace, SOAP version, the status of the ADO.NET control. In addition, it
provides the option to select basic authorization for the web service. Figure 6–1
displays the General tab page for the ADDRESS.ws.

Figure 6–1 Native Web Service: General Tab

This figure shows the Web Service Map General tab. There are three links: Test Web
Service, View WSDL Definition, and Export Static Client Jar. In the Properties table,
there are five properties: Target Namespace, SOAP Version, ADO.net Enabled,
Transport Type, and HTTP Basic Auth Required (set to true).

You can set security policies for a native web service using the Basic Auth Required
property. For more information, refer to Section 5.5.5, "Securing Native Web Services"
in Chapter 5, "Securing Oracle Data Service Integrator Resources."

Using the General tab, you can also perform the following functions:

■ Section 6.1.1.1, "Test the Generated Web Service"

■ Section 6.1.1.2, "View the WSDL"

■ Section 6.1.1.3, "Export the Static JAR File"

6.1.1.1 Test the Generated Web Service
Click the Test Web Service link on the General tab. This displays the WebLogic Test
Client, which allows you to test the web service as shown in Figure 6–2.

Viewing Native Web Service Artifacts

Viewing Native Web Services 6-3

Figure 6–2 WebLogic Test Client

This figure shows the WebLogic Test Client. There are four sections: createSERVICE_
CASE, deleteSERVICE_CASE, updateSERVICE_CASE, and updateSERVICE_CASE.

6.1.1.2 View the WSDL
Click the View WSDL Definition link to open the WSDL definition for the web service.
A sample WSDL definition looks similar to the displayed in Figure 6–3.

Figure 6–3 WSDL Definition

Viewing Native Web Service Artifacts

6-4 Release 12c (12.1.3)

This figure shows the WSDL definition displayed in a console window.

6.1.1.3 Export the Static JAR File
Click the Export Static Client Jar link (Figure 6–1) to export the web service artifacts.
This option is useful when a client needs to consume the data service as a static web
service.

6.1.2 Using the Operations Tab
This tab displays information about underlying data service and data service functions
associated with the web service as shown in Figure 6–4.

Figure 6–4 Native Web Service: Operations Tab

This figure shows the Operations tab. This page shows the operations of the web
service map. There are four columns: Number, Data Service Operation, Data Service,
and Data Service Function. There are four rows: createSERVICE_CASE,
deleteSERVICE_CASE, SERVICE_CASE, and updateSERVICE_CASE.

6.1.3 Using the Data Lineage Tab
This tab displays the dependencies and where used information for the web service.
The information is same as the data lineage for the referenced data service as shown in
Figure 6–5.

Figure 6–5 Native Web Service Data Lineage

This figure shows the Data Lineage tab. This page shows the dependencies and where
used for a data service. There is a Dependencies List table, with columns for the Name,

Generating a Web Services Mediator Client JAR File

Viewing Native Web Services 6-5

Path, and Type. There is a Where Used List, with columns for the Name, Path, and
Type.

6.2 Generating a Web Services Mediator Client JAR File
To use the Static Mediator API in a web services-enabled client application, you must
generate a Web Services Mediator Client JAR file. This JAR file contains the Static
Mediator API interfaces, plus all the necessary SDO-compiled schemas for a data
space. This section explains how to generate a Web Services Mediator Client JAR file
using the Administration Console.

For information on the Static Mediator API and on writing web services-enabled
clients, see the Client Application Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/appdev/index.html.

1. Start the Oracle Data Service Integrator Administration Console. See the Oracle
Data Service Integrator Administration Guide for instructions at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/admin/index.html.

2. Select the Service Explorer category, as shown in Figure 6–6.

Figure 6–6 Selecting the Service Explorer Category

This figure shows the Service Explorer category in the Oracle Data Service Integrator
Administation Console. The myDataspace node is displayed.

3. In the explorer, click the Data Space node that you wish to export. In Figure 6–6,
the node is called myDataspace.

4. In the Data Space pane, select the General tab.

5. Select Export Webservice Map Static Mediator Client Jar, as shown in Figure 6–7.
The mediator JAR file is saved to your local file system.

Generating a Mediator Client JAR File

6-6 Release 12c (12.1.3)

Figure 6–7 Exporting the Client JAR File

This figure shows the General tab of the Data Space pane. This page displays the
general metadata information about a dataspace. The Export Webservice Map Static
Mediator Client Jar link is shown.

6.3 Generating a Mediator Client JAR File
To use the Static Mediator API in a web services-enabled client application, you must
generate a Mediator Client JAR file. This JAR file contains the Static Mediator API
interfaces, plus all the necessary SDO-compiled schemas for a data space. This section
explains how to generate a Mediator Client JAR file using the Administration Console.

For information on the Static Mediator API and on writing web services-enabled
clients, see the Client Application Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/appdev/index.html.

1. Start the Oracle Data Service Integrator Administration Console. See the Oracle
Data Service Integrator Administration Guide for instructions at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/admin/index.html.

2. Select the Service Explorer category, as shown in Figure 6–8.

Figure 6–8 Selecting the Service Explorer Category

This figure shows the Service Explorer category selected in the Administration
Console. The myDataSpace node is shown in the navigation tree.

Generating a Mediator Client JAR File

Viewing Native Web Services 6-7

3. In the explorer, click the Data Space node that you wish to export. In Figure 6–8,
the node is called myDataSpace.

4. In the Data Space pane, select the General tab.

5. Select Export Static Mediator Client Jar, as shown in Figure 6–9.

Figure 6–9 Exporting the Client JAR File

This figure shows the General tab in the Data Space pane. The Export Webservice Map
Static Mediator Client Jar link is shown.

Generating a Mediator Client JAR File

6-8 Release 12c (12.1.3)

7

Viewing Metadata Using the Service Explorer 7-1

7Viewing Metadata Using the Service Explorer

In Oracle Data Service Integrator Administration Console, Service Explorer enables
you to view metadata information on data services, their functions, and their
dependencies in the active Oracle WebLogic Server.

This chapter describes how to view and analyze metadata for data services, functions,
and Web services using the Service Explorer. It includes the following sections:

■ Section 7.1, "Introducing Service Explorer"

■ Section 7.2, "Using the Service Explorer"

■ Section 7.3, "Searching Metadata"

7.1 Introducing Service Explorer
The Service Explorer enables you to view metadata related to a data space project
deployed on the server. The metadata in Oracle Data Service Integrator includes
metadata documents that the data model represents, which consist of information
about the data services, their functions and return types, and dependencies between
data services. Figure 7–1 displays the Service Explorer tab and the metadata for the
corresponding data service in the Detail Book (right pane).

Figure 7–1 Service Explorer

Using the Service Explorer

7-2 Release 12c (12.1.3)

This figure shows the Resource list view tab on the Dataspace pane. This page displays
the data services and folders in the dataspace. In the Resource List, there is a Path table
with three columns: Name, Type, and Description.

Oracle Data Service Integrator metadata is mainly used by:

■ Oracle Data Service Integrator administrators to monitor the effects of changes to
underlying data sources.

■ Developers of data services client applications to determine the data services that
are available and their calling conventions.

7.2 Using the Service Explorer
This chapter describes how to use the service explorer. It includes the following topics:

■ Section 7.2.1, "Web Browser Requirements for Data Lineage Graph"

■ Section 7.2.2, "Analyzing and Viewing Data Services Metadata"

■ Section 7.2.3, "Viewing Data Service Functions Metadata"

■ Section 7.2.4, "Viewing Web Service Metadata"

The Service Explorer enables you to access metadata in the following ways:

■ View metadata for data services. For more information, see Section 7.2.2,
"Analyzing and Viewing Data Services Metadata."

■ View metadata for data service functions. For more information, see Section 7.2.3,
"Viewing Data Service Functions Metadata."

■ View metadata for web services. For more information, see Section 7.2.4, "Viewing
Web Service Metadata."

■ Search for metadata in a data space project. You can perform basic or advanced
search on metadata. For more information, see Section 7.3, "Searching Metadata."

7.2.1 Web Browser Requirements for Data Lineage Graph
You need to install the Adobe® SVG Viewer plugin for Internet Explorer and Netscape
Web browser to view the data lineage feature. It can be downloaded from:

http://www.adobe.com/svg/viewer/install/main.html

Table 7–1 outlines the other web browser requirements to view the data lineage graph.
If your system does not meet the requirements stated in the table, revert to the tabular
view of the Service Explorer.

Table 7–1 Browser Support Information for Viewing Data Lineage Graph

Browser
(Version) SVG Viewer Information Additional Information

Internet Explorer
(6.0 and above)

Can auto-detect SVG viewer.
If SVG viewer is not installed,
a message is displayed with
the URL to download the
viewer. Install the viewer and
the data lineage graph will be
visible instantly.

On Windows platform only.

Using the Service Explorer

Viewing Metadata Using the Service Explorer 7-3

7.2.2 Analyzing and Viewing Data Services Metadata
This section includes the following topics:

■ Section 7.2.2.1, "Data Service Lineages"

■ Section 7.2.2.2, "Data Lineage Viewing Options"

There are two kinds of data services in Oracle Data Service Integrator, entity and
library. Entity and library data services can be either physical or logical type.

■ Physical data services represent a single data source, typically a relational
database table, stored procedure, or a web service.

■ Logical data services can be composed from multiple data sources and represent a
view of data which is typically not available from any single data source.

The metadata that is available through the Service Explorer varies depending on
whether a data service is physical or logical. Logical data services always have
dependencies while the physical data services always have dependents.

Figure 7–2 illustrates a tabular view of dependencies and the where used information
of a logical data service.

Netscape (7.x and
8.x)

Can auto-detect SVG viewer.
If SVG viewer is not installed,
a message is displayed with
the URL to download the
viewer. Install the viewer and
the data lineage graph will be
visible instantly.

Netscape 8.x is available on Windows
platform only.

Netscape 7.1 is available on Windows and
Linux platforms. However, the data
lineage graphical view is not available.

You need to add the URL to the list of
trusted sites to view the data lineage
graph. Perform the following steps:

1. Click the Open Site Controls icon on
the browser tab when you log in to the
Administration Console.

2. In the pop-up dialog box, select the I
trust this site radio button.

3. Click Done to save your preference.

This will enable you to view the data
lineage graph.

Netscape 9.0 Has native SVG viewer. On Windows platform only.

Table 7–1 (Cont.) Browser Support Information for Viewing Data Lineage Graph

Browser
(Version) SVG Viewer Information Additional Information

Using the Service Explorer

7-4 Release 12c (12.1.3)

Figure 7–2 Logical Data Service Dependencies and Where Used

This figure shows the Data Lineage tab. This page shows the dependencies and where
used for Customer data service. There are two tables: Dependencies List nd Where
Used List. In each table, there and three columns: Name, Path, and Type. In this case,
information for the Customer data service appears in the Dependencies List table.

For a logical data service, the return type displays the schema of the data from
multiple data sources, according to the design of the data service, as illustrated in
Figure 7–3.

Figure 7–3 Return Type for a Logical Data Service

This figure shows the Return Type tab. This is the return type for the Customer data
service. The return type displays the schema of the data from multiple data sources.

For more information about the data service model, refer to "Designing Logical Data
Services" in the Data Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/Designing Logical Data Services.html.

You can browse entity data service metadata including general information about a
specific data service, its data lineage, its read function and return type, relationships,
and dependencies.

Using the Service Explorer

Viewing Metadata Using the Service Explorer 7-5

To view data service metadata:

1. Select the Service Explorer tab in the Navigation pane.

2. Select the data service for which you need to view the metadata. By default, the
General tab is displayed (Figure 7–4), which provides information such as owner,
creation date, and return type for the data service.

Figure 7–4 Data Service Metadata

This figure shows the General tab for data service metadata. This page shows the
properties of the ADDRESS.ds data service.

Table 7–2 describes the data service metadata information accessible through various
tabs.

Table 7–2 Metadata Information

Tab Description

General Provides general configuration information about the data service,
including the following:

■ Name: The name of the data service.

■ Description: A user-supplied description.

■ Owner: The owner of the service.

■ Creation Date: The date when the data service was created.

■ Last Modified Date: The date on which the data service was
last changed.

■ Return Type: The type returned by the data service.

■ Data Service Type: Either physical or logical. For more
information about data service types, see Section 7.2.3, "Viewing
Data Service Functions Metadata."

■ Data Service Kind: Either library or entity data service. For
more information about data service kinds, refer to Section 7.2.3,
"Viewing Data Service Functions Metadata."

■ Data Source Type: The type of the data source such a relational
or web service.

Using the Service Explorer

7-6 Release 12c (12.1.3)

7.2.2.1 Data Service Lineages
Data service lineages can be viewed in graphical or tabular format and all kinds of
data services are traceable. The graphical view is ideal for getting a visual
understanding of the lineage associated with a particular data service. In the tabular
view, there are two ways for viewing a data service lineage:

■ Where used view: This view displays the currently selected data service and other
data services, which use this data service. This is the downstream view.

■ Dependency view. This view displays the currently selected data service and the
data services it is dependent upon. This is the upstream view.

In case of navigation functions, references to other data services through a
navigation function are not considered as dependencies. This is because
navigation functions can be created automatically during the import metadata
process. For details see Creating and Updating Physical Data Services, in the Data
Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/Creating and Updating Physical
Data Services.html.

Functions Displays a table of read, create, update, and delete functions. In
addition, it provides the following information:

■ Function Name: Name of the function.

■ Type: Type of the function, which can be read, create, update,
navigate, delete. In addition, it lists library functions and
procedures also.

■ Visibility: The value can be public, protected, or private.

■ isPrimary: The value is boolean and can be either true or false.

■ Parameter Types: The parameters for each function listed in the
table

■ Return Type: The return type for each function listed in the
table

Return Type Displays the content of the schema associated with the return type of
the data service. This tab does not appear in case of library data
services.

Relationships Displays a table of related navigation functions. The table also lists
the parameter names, if any, and return type for each function.

Properties Lists any user-defined properties assigned to the data service.

Data Lineage Provides a visual representation of the lineage between the currently
selected data service. Relationships can be displayed in one of the
two possible directions:

■ Dependencies

■ Where used

Each entry includes name and path information. You can view data
lineage in graphical or tabular views.

Table 7–2 (Cont.) Metadata Information

Tab Description

Using the Service Explorer

Viewing Metadata Using the Service Explorer 7-7

Figure 7–5 Customer Data Service and Its Dependents

This figure shows the dependency view for a customer data service and its
dependents. This view displays the currently selected data service and the data service
it is dependent upon. In this case, dependencies for the Customer data service are
shown.

7.2.2.2 Data Lineage Viewing Options
Once visual rendering appears, several options become available:

■ Panning (Alt + Click, then drag). Allows you to move through the lineage
representation in any direction.

■ Zoom out (Ctrl + Shift + Click). Allows you to zoom out, providing information
on data services that are further removed from your current selection.

■ Zoom in (Ctrl + Click). Allows you to zoom in on a set of data services.

■ Expanding/Contracting. You can use the +/- sign adjacent to the object to expand
or collapse that node.

You can navigate to a new data service simply by double-clicking it in the lineage
diagram.

7.2.3 Viewing Data Service Functions Metadata
This section includes the following topics:

■ Section 7.2.3.1, "Data Service Function Lineages"

■ Section 7.2.3.2, "Cyclic Dependency"

You can browse metadata associated with a function.

To display function metadata:

1. Select a function in the Navigation pane.

The console displays the General metadata associated with the function.

2. Click the corresponding tab to display general information, function
dependencies, where used information, properties, and the return type.

Figure 7–6 illustrates the function metadata displayed.

Note: Panning and Zooming operations work only with the Adobe
SVG Viewer.

Using the Service Explorer

7-8 Release 12c (12.1.3)

Figure 7–6 Function Metadata

This figure shows the General tab for function metadata. This page shows general
information of the CUSTOMER data service funtion. There are five categories of
information: Function Name, Data Service, Description, Return Type, and Function
Kind. Three other tabs are shown: Return Type, Properties, and Data Lineage.

Table 7–3 describes the function metadata available.

7.2.3.1 Data Service Function Lineages
Data service function lineages can be viewed in graphical or tabular format. The
graphical view includes all functions that directly or indirectly call your selected
function, or are called by your selected function. In tabular view, there are two ways to
view a data service function lineage:

■ Dependency view. The currently selected data service function and any functions
that it calls (said another way, it depends upon).

■ Where used view. The currently selected data service function and any functions
that make use of it (said in another way, depend on it).

To view the function lineage

1. Select a data service from the Navigation pane.

Table 7–3 Function Metadata

Function Metadata Description

General General metadata information for the function, which includes the
following:

■ Function name: The name of the function.

■ Data Service: The containing data service.

■ Description: A user-supplied description of the function.

■ Return Type: The type returned by the function.

■ Function Kind: The type of function such as read, create,
update, delete, navigate, and library.

Return Type Displays the content of the schema associated with the return type of
the function. This tab does not appear in case of library functions.

Properties Displays any user-defined properties associated with the function.

Data Lineage Provides a visual representation of the relationships between the
currently selected data service read, navigation, or private function.
Lineage can be displayed in one of the two possible directions:

■ Dependencies

■ Where used

Each entry includes name and path information.

Using the Service Explorer

Viewing Metadata Using the Service Explorer 7-9

2. Click the data service and then select the list of available functions.

For data lineage viewing options, refer to Section 7.2.2.2, "Data Lineage Viewing
Options."

7.2.3.2 Cyclic Dependency
Cyclic dependency can be observed in a graphical view of both data service lineages
and data service function lineages. If a data service is used more than once, each
instance of the data service in the graphical view is indicated in a dark blue color.

Similarly, if a data service function is used more than once, each instance of the data
service function in the graphical view is indicated in a dark blue color. Cyclic
redundancy is applicable only when the duplicating nodes are part of the same
branch.

Figure 7–7 shows the cyclic dependency of a data service. The text <<recursive>> is
specific to a data service and is displayed only in the case where a data service is used
more than once in the same cycle.

Figure 7–7 Cyclic Dependency of Data Services in a Graphical View

This figure shows the graphical representation of a data lineage. The GetOrder data
service is shown in dark blue and is marked with the text <<recursive>>.

7.2.4 Viewing Web Service Metadata
In Oracle Data Service Integrator, data services can be mapped as a web service and
you can view the metadata using the Service Explorer. The Oracle Data Service
Integrator Administration Console displays web service maps as artifacts in the data
space.

The Service Explorer shows the web service map artifacts in the navigation tree. The
contents of the map artifact are shown in the General, Operations, and Data Lineage

Searching Metadata

7-10 Release 12c (12.1.3)

tabs, as shown in Figure 7–8. These tabs do not have any editable components and are
only used for viewing and navigation.

Figure 7–8 Web Service Metadata: General Tab

This figure shows the Service Explorer. There are three tabs, General, Operations, and
Data Lineage. Information on these tabs is not editable and are use to viewing and
navigation only.

Table 7–4 explains the information displayed for each of these tabs.

7.3 Searching Metadata
This section includes the following topics:

■ Section 7.3.1, "Search Guidelines"

■ Section 7.3.2, "Performing a Basic Metadata Search"

■ Section 7.3.3, "Performing an Advanced Metadata Search"

■ Section 7.3.4, "Generating Reports"

Table 7–4 Web Service Metadata

Web Service Metadata Description

General The general properties of the web service map and links to the test
web page of the web service stack as well as the WSDL definition. In
addition, it displays the properties of the web service, which include:

■ Target Namespace: The namespace defined for the web service.

■ SOAP Version: The current SOAP version of the web service, for
example SOAP_11.

■ ADO.net Enabled: The status of this plug-in, which can either be
true or false.

■ Transport Type: The protocol used for the transport.

■ HTTP Basic Auth Required: The status of the basic auth
required property, which can be either true or false.

Operations The Operations tab displays all operations of the web service maps
and links to the underlying data service and data service functions.

Data Lineage The Data Lineage Tab shows the data lineage to the referenced data
services, which is identical to data services data lineage. You can
view the data lineage in tabular as well as graphical format like data
services data lineage. For more information on data services data
lineage refer to Section 7.2.2.1, "Data Service Lineages."

Searching Metadata

Viewing Metadata Using the Service Explorer 7-11

The Oracle Data Service Integrator Console provides both basic and advanced search
facility. You can use the search capabilities to locate data services based on metadata
associated with the services. You can then generate a report using the results from
either of the search modes.

Search algorithms that include wildcards are based on standards governing regular
expression syntax. For detailed information on regular expression syntax see the
following currently available Web site:

■ http://en.wikipedia.org/wiki/Regular_expression

Alternatively, any other standardized regular expression reference can be consulted.

The following topics are covered in this section:

■ Section 7.3.1, "Search Guidelines"

■ Section 7.3.2, "Performing a Basic Metadata Search"

■ Section 7.3.3, "Performing an Advanced Metadata Search"

■ Section 7.3.4, "Generating Reports"

7.3.1 Search Guidelines
Oracle Data Service Integrator Administration Console uses inherent Java regular
expressions or regex patterns to implement text search. Following are the features that
you can use to perform search operations on the console:

■ All text entries in search boxes (basic or advanced) can have Java regex patterns.

■ .* is used to map zero or more of any char values.

■ .? is used to optionally map any char values.

■ Search is case insensitive.

■ Java regex pattern needs to match the entire string for a successful search. For
example, if a data service name is customer, the following matches are displayed
after the search is complete:

■ "*mer"

■ "cus*"

■ "customer"

■ "Customer"

■ "*to*"

■ "cus*mer"

The following will not match

■ "cus"

■ "mer"

Note: Search patterns may be heavy for the server to process, which
may cause server slowdown. Therefore, it is advised that you provide
correct and specific details to make search successful and less costly.
For example, an asterisk (*) in the beginning of a pattern makes the
search operation less time consuming and costly than one at the end.

Searching Metadata

7-12 Release 12c (12.1.3)

7.3.2 Performing a Basic Metadata Search
You can search for data services based on the data service name, function name, or
return type.

To perform a basic search enter the name of the data service, function, or return type in
the Search box and click Search, as shown in Figure 7–9. You can also use regular
expressions to search for data services. For example, to search for the CREDIT_
CARD.ds, you can specify the search option as Credit*.

Figure 7–9 Basic Search

This figure shows the Search box.

Information about the corresponding data service is displayed. The information
includes the data service name with links to navigate through the data service, path,
and type of the data service as shown in Figure 7–10.

Figure 7–10 Basic Search Facility

This figure shows the results of the search. There is a table containing four columns:
Number, Data Service Name, Path, and Type. The Search box reappears, with a link for
Advanced Search.

1. To create a summarized or detailed report, click Summary or Detail options. For
more information about generating reports, see Section 7.3.4, "Generating
Reports."

To perform an Advanced Search with additional search criteria, you can select the
Advanced Search option. For more information, see Section 7.3.3, "Performing an
Advanced Metadata Search."

7.3.3 Performing an Advanced Metadata Search
You can use the advanced search facility to narrow your search criteria in cases when a
basic search produces a large number of results. Using the advanced search option,
you can specify criteria such as creation date, last modified date, owner, comments,
and user-defined properties.

Note: All searches are case sensitive.

Searching Metadata

Viewing Metadata Using the Service Explorer 7-13

To perform an advanced search:

1. Click the Search button on the top-right corner of the console. This displays the
Advanced Search screen as shown in Figure 7–11. The Search box should be empty
when you click Search otherwise basic search is performed.

Figure 7–11 Advanced Search Screen

This figure shows the Advanced Search screen. There is a list of options: Search In, Full
Text Search, Data Service Name, Function Name, Return Type, Description, Authors,
Creation Date (and field to enter the date), Last Modified Date (and field to enter the
date), User Defined Property, Name, and Value.

2. Enter the search criteria, as appropriate, and click Search. Table 7–5 describes the
criteria you can specify using the advanced search facility.

Table 7–5 Advanced Search Criteria

Search Options Description

Search In The name of the folder you want to search.

Full Text Search The equivalent of basic search, which can be combined with other
advanced search criteria to get the matching results.

Data Service Name The name of the data service.

Data Service Description The user-supplied description of the data service.

Function Name The name of the function appearing as part of the data service.

Return Type The return type of the data service.

Searching Metadata

7-14 Release 12c (12.1.3)

The search results appear in the Search Results pane. The information displayed in
the search results includes the name of the data service, the path for identifying
the data service, and the of the data service, which can either physical or logical.
For more information about the type of data services, refer to Section 7.2.3,
"Viewing Data Service Functions Metadata."

3. Click the Summary or Detail option to generate a report from the search results.
For more information about generating reports, see Section 7.3.4, "Generating
Reports."

7.3.4 Generating Reports
You can generate summarized or detailed reports for both basic or advanced search
results. To generate a report:

1. To generate a summarized report, click Summary from the Search Results page, as
shown in Figure 7–12.

Creation Date The date the data service was created. You can select a relational
operator when specifying the date from among the following:

■ = (On this date). Matches the date specified.

■ < (Earlier than). Matches dates earlier than the specified date.

■ <= (On this date or earlier). Matches the specified date or
earlier dates.

■ >= (On this date or later). Matches the specified date or later
dates.

■ > (Later than). Matches dates later than the specified date.

Last Modified Date The date the data service was last modified. You can select a
relational operator when specifying the date.

Owner The owner of the data service.

Comment The comment associated with the data service.

User Defined Property:
Name

The name of a user-defined property.

User Defined Property:
Value

The value associated with a user-defined property.

Note: All the search options in an advanced search can use regular
expressions except the user defined properties: name and value.

Note: The information in the Search Results for basic and advanced
search are the same.

Table 7–5 (Cont.) Advanced Search Criteria

Search Options Description

Searching Metadata

Viewing Metadata Using the Service Explorer 7-15

Figure 7–12 Generating Reports

This figure shows the Seach Results page. In the Create Report section, there are three
choices: Summary, Detail, and Generate Report.

The summary report is generated as shown in Figure 7–13.

Figure 7–13 Summary Report

This figure shows a Summary Report. For the CREDIT_CARD data service, there is
general information: Locator, Type, Description, Allows Updates, Data Source Type,
Data Source Name, Owner, Comment, Date Created, and Last Modified.

2. To generate a detailed report, click Detail on the Search Results page. This displays
a detailed report of the data service, as shown in Figure 7–14.

Figure 7–14 Detailed Report

Searching Metadata

7-16 Release 12c (12.1.3)

This figure shows a Detailed Report. Three sections are shown: General Information,
Return Type, and Read Functions.

8

Configuring Query Results Cache 8-1

8Configuring Query Results Cache

This chapter describes how to set up and manage caching for data services in Oracle
Data Service Integrator. It contains the following sections:

■ Section 8.1, "Understanding Results Caching"

■ Section 8.2, "Setting Up Caching"

■ Section 8.3, "Monitoring and Purging Data Cache"

8.1 Understanding Results Caching
By caching data returned by data service functions, you can improve response times
for clients and reduce the processing burden on back-end systems.

To use results caching, a database that is certified for Oracle Data Service Integrator
caching support should be installed and running. Such DBMS systems are identified in
the Supported Configurations at
http://download.oracle.com/docs/cd/E13196_
01/platform/suppconfigs/index.html.

You can specify if you want to enable caching for functions in the Workshop for
WebLogic Overview mode. When you run the function the first time, the query results
for the function are saved to a local query results cache. The next time the function is
run with the same parameters, Oracle Data Service Integrator checks the cache
configuration and, if the results have not expired, retrieves the results from the cache
rather than from the external source.

A cache entry exists for the results of each function invocation with distinct
parameters. In cases when a cache-enabled function is invoked twice with two
different parameters, two cache entries will be created.

By default caching is disabled. If you enable it, you can configure the cache and its
time-to-live (TTL) for individual data service functions through the Oracle Data
Service Integrator Administration Console.

To enable caching for data service functions, you need to:

Note: Caching is not available for ad-hoc queries and XQuery
functions for security.

Note: When results sets are cached, there are chances of using stale
data instead of the updated information.

Understanding Results Caching

8-2 Release 12c (12.1.3)

■ Enable caching at the dataspace level and set the cache data source and table
names.

■ Enable caching of data service functions, and set the cache time-to-live (which
determines how long results are stored in cache).

■ Monitor and clear the cache, as required.

The TTL setting is set individually for each data service function. In general, the more
dynamic the underlying data, the more frequently the cache should be set to expire.

In some cases, caching should not be used at all. Here are two examples:

■ If the data changes frequently and real-time access to it is critical cache should not
be enabled. On the other hand, for functions that return static data, you can
configure the results cache so that it never expires. If the cache policy expires for a
particular function, Oracle Data Service Integrator flushes the cache result
automatically on the next invocation.

■ Cache should never be set for functions without parameters. Every physical data
service function based around a relational table, for example, falls into this
category. Caching such a function can have a very negative impact of performance
unless the table itself has very few records.

If an Oracle Data Service Integrator-enabled server shutdown occurs, the contents of
the results cache are retained. When the server restarts, it resumes caching as before.
On first invocation of a cache-enabled function, the Oracle Data Service
Integrator-enabled server checks the results cache to determine whether the cached
results for this function are valid or have expired, and then proceeds accordingly.

8.1.1 Caching API
Oracle Data Service Integrator provides an API allowing client applications to bypass
any existing cached results in favor of the physical data source. This API provides
automatic client-side cache refresh of the affected function. For details about forcing
data cache update and read-through, refer to "Forcing Data Cache Read-through and
Update" in the Invoking Data Services from Java Clients chapter in the Application
Developer's Guide at http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/appdev/ejbclt.html.

Oracle Data Service Integrator can set up the cache table in the data source for you (if
the server is in development mode), or you can create it yourself as described in the
following section. Note that it is recommended that the dataspace not share cache
tables. There should be separate tables for each dataspace.

Note: Cached data is valid until the TTL limit goes past the time at
which it is cached regardless of other changes in the configuration
between that time.

Note: Caching is particularly effective in cases when significant
processing has been applied against large data sets, producing filtered
results. For optimal performance, it is recommended that you not
enable caching on functions that simply return large data sets directly
from a relational database data source.

Setting Up Caching

Configuring Query Results Cache 8-3

8.2 Setting Up Caching
The steps for setting up cache depend on several factors, including whether you are in
development or production mode and whether you need to customize the cache table
schema. Figure 8–1 shows the steps for setting up caching.

Figure 8–1 Cache Setup Steps

This figure shows how to set up caching. The figure is shown in flow chart form.

The steps illustrated in Figure 8–1 are described in the following sections:

■ Section 8.2.1, "Step 1: (Optional) Run the SQL Script to Create the Cache Tables"

■ Section 8.2.2, "Step 2: Create the JDBC Data Source for the Cache Database"

Note: To prevent unauthorized access to sensitive data in the cache,
it is important to maintain access control over the cache database.
Also, make sure that the JDBC data source used for caching is not be
used for other purposes.

Setting Up Caching

8-4 Release 12c (12.1.3)

■ Section 8.2.3, "Step 3: Specify the Cache Data Source and Table"

■ Section 8.2.4, "Step 4: Enabling Caching by Function"

8.2.1 Step 1: (Optional) Run the SQL Script to Create the Cache Tables
For a WebLogic server that is in development mode, you can set up the cache table
automatically from the Oracle Data Service Integrator Administration Console using
the data source you choose. For production environments, or if you want to customize
the cache schema, you will need to run the SQL scripts manually.

You can create the cache table using SQL scripts in the subdirectory corresponding to a
particular DBMS at the following location:

<ALDSP_HOME>/dbscripts/

For example:

<ALDSP_HOME>/dbscripts/oracle/dsp_cache.sql

To create the cache table:

1. Open the script from the subdirectory that corresponds to your DBMS and modify
the name of the created table so that it is unique for the dataspace.

It is recommended that you store the cached data for each dataspace in its own
cache table. For example, you can name the table <dsname>_CACHE.

2. Make any other schema changes, as required.

You should not change the column names or otherwise modify the structure of the
schema tables (except in specific cases, as noted in Section 8.2.1.1, "Modifying the
Cache Table Structure"). See Table 8–1 for information about the cache table
schema.

3. Run the script.

4. Index the table based on the CHASH column (for retrieval) and the CUID column
(for record updates).

When the table is created automatically by Oracle Data Service Integrator (as
described in Section 8.2.3, "Step 3: Specify the Cache Data Source and Table"), an
index for CHASH is created. The automatically created name is the table name
with "_INDEX" appended to it.

8.2.1.1 Modifying the Cache Table Structure
Oracle Data Service Integrator requires that its cache tables have a specific schema.
Therefore, you should generally not modify the structure of the cache table. In some
cases, however, the default column sizes may need to be adjusted based on the
deployment. This may be a requirement in cases when you have data services that
frequently serve result sets that are larger than the content columns in the default
database tables and you are using DB2 as your DBMS.

For DB2, the scripts create the CINVKEY and CCONTENT columns (which store the
results data) with a specific size, as shown in Table 8–1. If any serialized keys or
content need to be larger than that size, the table schema should be adjusted
accordingly before running the script.

Note: On DB2, the name is truncated to a maximum of 18 characters.

Setting Up Caching

Configuring Query Results Cache 8-5

Before attempting to implement customizations to the cache table, you should be
familiar with the schema as shown in Table 8–1.

8.2.2 Step 2: Create the JDBC Data Source for the Cache Database
After creating the cache table, you can use the WebLogic Server Administration
Console to create a JDBC data source on the WebLogic Server that points to the
database that you have set up for the Oracle Data Service Integrator cache.

Once created, you can enable the result cache as described in the following section.

8.2.3 Step 3: Specify the Cache Data Source and Table
After configuring the table that you want to use for caching as a JDBC data source in
the WebLogic Server Administration Console, you can set up the cache tables using
the Oracle Data Service Integrator Administration Console.

To specify the cache database and enable caching:

1. Select the dataspace node in the Navigation pane. The General tab appears, as
shown in Figure 8–2.

Table 8–1 Cache Table Schema

Column Description

CUID Unique numeric identifier for the cache entry.

CHASH Hash value of the key (CINVKEY) as a 64-bit integer. This field enables fast
searches, since searching by the key itself is inefficient as the key is stored as a
binary object. (In fact, searching by the key itself is impossible for any DBMS
for which the scripts create the CINVKEY as a BLOB type.)

CEXPIRE Timestamp value indicating when the record expires. This value is computed
during record insertion as current time plus the TTL value defined for the
function.

CFID Serialized name of the function. When the table is created automatically,
VARCHAR(512) type is used. The value should be adjusted to a lower or
higher size if names of all functions in a dataspace are smaller or if some
names are larger then 512 characters.

CFARITY The number of arguments the function accepts. This is used to differentiate
functions in case of function overloading (not currently used).

CINVKEY The serialized invocation identifier consisting of the function and its
arguments (created with a size of 50 kilobytes on a Pointbase DBMS).

CCONTENT Binary data constituting the cached results. (Created with size of 1 gigabyte
for DB2 and 200K for a Pointbase DBMS.)

Note: If using Oracle as your cache database, you must set the
Honor Global Transactions setting to FALSE (it is set to TRUE by
default). When you create the Oracle JDBC data source in the
WebLogic Server Administration Console, you must uncheck the
Honor Global Transactions box.

Setting Up Caching

8-6 Release 12c (12.1.3)

Figure 8–2 Enabling Results Caching for a Dataspace

This figure shows the General tab for enabling results caching for a dataspace. This
page allows you to define configuration properties of a dataspace. In the Data Cache
section, there are three fields: Enable Data Cache (checkbox selected), Data source
name, and Table name. In the Logging section, there is a drop-down list: Logging level.
In order to log standard output, WebLogic Server Console server logging settings must
be enabled with a matching severity threshold. There are eight other tabs shown:
Targets, Server Status, Import, Export, Runtime, Administrative Properties, Audit, and
Audit Properties.

2. Click Lock & Edit to acquire the lock.

3. In the Data Cache section of the General tab, click Enable Cache.

4. Specify the JNDI name of the data source you configured for the cache table in the
Data source name list box.

If you did not create a cache table, choose the data source in which you want
Oracle Data Service Integrator to create the cache table.

5. If you created a custom cache table for the dataspace, enter its name in the Cache
table name field.

Otherwise, either enter another name for Oracle Data Service Integrator to use
when creating the table or leave the field blank, in which case the default name,
<dsName>_CACHE, will be used.

6. Click Save > Activate Changes.

Once caching is enabled, you need to configure results caching for each function.

8.2.4 Step 4: Enabling Caching by Function
After enabling Cache settings for the dataspace, you can configure data service
function caching. For each function, you can specify whether caching should be
enabled, and set the time-to-live (in seconds) for cache entries.

To enable caching by function:

1. Make sure that the System Administration category is selected.

2. Click the data service name in the Navigation pane.

The Data Cache page appears, as illustrated in Figure 8–3.

Setting Up Caching

Configuring Query Results Cache 8-7

Figure 8–3 Enabling Caching by Function

This figure shows the Data Cache page for enabling caching by function. This page
shows a list of data service functions. You can enable data caching of the data service
functions here and you can set the Time To Live (TTL) for each function. In the table,
there are four columns: Name, Enable Data Cache (checkboxes), TTL (numeric fields
with default 0)), and Add Identity Key in Cache (checkboxes).

3. Click Lock & Edit to acquire the lock.

4. Select the Enable Data Cache checkbox for each function for which you want to
enable caching.

Make sure that you set the Allow Data Caching property for the function to true in
Oracle Data Service Integrator IDE, before enabling data caching on the console.
For example, to enable caching for ADDRESS(), set Allows Data Caching property
to true in Oracle Data Service Integrator IDE, as shown in Figure 8–4.

Figure 8–4 Configuring the Allow Data Caching Property in Oracle Data Service
Integrator IDE

This figure shows Allow Data Caching set to true in the Properties tab on the Oracle
Data Service Integrator IDE.

5. Enter a time-to-live (TTL) value, in seconds, for each cache-enabled function.

The more dynamic the underlying data, the more frequently the cache should be
set to expire.

Monitoring and Purging Data Cache

8-8 Release 12c (12.1.3)

6. Select the Add Identity Key in Cache if you want to store the caching information
of the identity keys of Oracle Data Service Integrator resources. This enables
securing the data cache values that depend on other environmental variables. For
more information about this feature, refer to Section 8.2.4.1, "Caching Identity
Keys for Security."

7. Click Save > Activate to save your changes.

8.2.4.1 Caching Identity Keys for Security
This features provides the ability to filter cached entries based on user profile. When
you select the Add Identity Keys in Cache checkbox, the data cache values become
user-specific, which ensures that relevant data cache entries are available to the
corresponding user. For example, if two users, User A and User B, are accessing the
cached values for functions, then User A will be able to view values specific to User
A's transactions and User B will be able to view cached values for transactions done by
User B.

This feature is especially useful when an external data source is mapped and managed
through Oracle Data Service Integrator Administration Console.

8.3 Monitoring and Purging Data Cache
You can manage function-level data caching using the Operations category. Selecting
the Operation category displays the Monitor tab as shown in Figure 8–5.

Figure 8–5 Monitoring Data Cache Values

This figure shows the Monitor tab. This page displays the runtime cache statistics for
each of the functions in a data service. The table has three columns: Name, Number of
Data Cache Entries, and Purge Data Cache (icon).

This tab provides runtime cache statistics for functions and allows you purge the
cache.

The Number of Data Cache Entries field displays the number of results that have
been cached in the data cache.

8.3.1 Purging Data Cache
Purging the cache removes cached entries from the cache database. When the cache is
purged, each function executes against its data sources until it is cached again.

Note: The Operations category pertains to the runtime monitoring of
deployed artifacts. In other words, the Operations category depends
on the core (deployed) session. By contrast, other categories such as
Service Explorer and Security relate to the session in progress.

Monitoring and Purging Data Cache

Configuring Query Results Cache 8-9

Oracle Data Service Integrator flushes the cached query result for a given stored query
whenever any of the following events occur:

■ The data service function is modified or deleted

■ Caching is disabled on the server

Oracle Data Service Integrator flushes the cached function result on the next
invocation whenever any of the following events occur:

■ The function results have expired per the cache policy

■ The cache policy for a function is updated or deleted

You can also purge the cache manually, either for the entire dataspace at once, or for
individual functions, as described in the following sections.

8.3.1.1 Purging the Cache for a Dataspace
To purge the cache for a dataspace:

1. Select the dataspace from the navigation pane.

2. Click the Operations category.

Figure 8–6 Purging the Cache for a Dataspace

This figure shows the Monitor tab. In the Monitoring information for Dataspace
section, there are three rows: Active Queries, Active Updates, and Data Cache Size.
There is a Purge Data Cache button.

3. Click Purge Data Cache in the Monitor tab.

8.3.1.2 Purging the Cache for a Function
You can purge the cache for individual functions using the Monitor tab in the
Operations category, as illustrated in Figure 8–5.

To purge cache by function:

1. From the navigation tree, select the data service for which you want to purge
cache by function.

2. Click the Trash icon in the Purge Data Cache field to purge cache for the function.

Monitoring and Purging Data Cache

8-10 Release 12c (12.1.3)

9

Working With Audit and Log Information 9-1

9Working With Audit and Log Information

This chapter describes the auditing framework, performance profiling, and logging
capabilities provided with the Oracle Data Service Integrator. It contains the following
sections:

■ Section 9.1, "Auditing"

■ Section 9.2, "Monitoring the Server Log"

■ Section 9.3, "Monitoring a WebLogic Domain"

■ Section 9.4, "Using Other Monitoring Tools"

9.1 Auditing
The auditing framework is used to collect auxiliary runtime data using a normal
XQuery operation in an Oracle Data Service Integrator dataspace. This information
may be used for security auditing, performance profiling, and other purposes.

This section includes the following topics:

■ Section 9.1.1, "Audit Data Structure"

■ Section 9.1.2, "Setting Global Audit Properties"

■ Section 9.1.3, "Setting Individual Auditing Properties"

■ Section 9.1.4, "Function-level Auditing"

■ Section 9.1.5, "Retrieving Audit Information"

9.1.1 Audit Data Structure
The data structure comprises a sequence of audit records containing an unordered
collection of audit properties. Each audit record contains properties of a specific type,
usually identified using a hierarchal name. Each audit record corresponds to an
operation performed by Oracle Data Service Integrator. For example, access to a
relational data source may generate a record of "evaluation/wrappers/relational" type
that includes the following audit properties: sql, datasource, returnedRows,
evaluationTime, parameters, message, and exception.

Any individual property may be configured to be collected. Each property has an
individual intrinsic severity level that can be used to configure an overall threshold of
what properties to collect. In certain cases, like when an exception occurs, some
properties may be added to the record even if they are not configured to be collected.
Typically, this information would be identifiers for a failed data source or update
operation.

Auditing

9-2 Release 12c (12.1.3)

On the other hand, a property configured for collection may not be collected. This
might be attributed to one of the following reasons:

■ Data might be unavailable due to internal implementation logic.

■ A property is collected by an audit based on the need to record internal conditions,
for external analysis.

■ If an exception is encountered. This will result in an alternate execution path and
impact the information being collected.

Collected elements of the data structure can be individually configured to be:

■ Submitted to the Oracle WebLogic Server auditing framework and processed by
an auditing provider.

■ Written to an application server or system logging stream.

■ Transferred to a client application.

Use the System Administration category in Oracle Data Service Integrator
Administration Console to configure audits such as setting the global audit severity
level and overriding audit settings for individual properties that you may need to
monitor.

9.1.2 Setting Global Audit Properties
There are some global auditing options that inherently apply to every aspect of the
auditing process. To set these properties:

1. Acquire the lock.

2. Select the System Administration category and then the Audit tab shown in
Figure 9–1, which allows you to configure these options.

By default, the audit report generation utility is turned off. Before you start generating
audit reports, you need to enable auditing.

Note: Auditing occurs whenever the engine is invoked and the
Auditing option is enabled. Timestamps and other collected data
enable you to match auditing information with particular query
operations.

Note: With auditing enabled, performance may be affected,
depending on the audit levels and the number of properties being
audited.

Auditing

Working With Audit and Log Information 9-3

Figure 9–1 Audit Options

This figure shows the Audit tab. This page can be used to set or modify general audit
settings. Note that performance is affected when auditing is enabled. There are eight
settings: Enable Auditing, Audit Queries, Audit Administrative Actions, Audit
Updates, Severity Level, Send Audit Events Asynchronously, Enable Logging of Audit
Events, and Incremental Audit Dispatch.

Table 9–1 describes available global auditing options. Select the respective check box in
the Oracle Data Service Integrator Console to implement the required audit options.

Table 9–1 Oracle Data Service Integrator Global Auditing Options

Options Description

Enable Auditing Determines whether the auditing is activated or not.

Note: When auditing is enabled, performance can be affected to a
degree, depending on the audit level and the number of items being
tracked.

Audit Queries Determines whether the auditing is activated or not, during a query
evaluation.

Audit
Administrative
Actions

Collects audit data during dataspace deployment and configuration.

Audit Updates Determines whether auditing is activated or not during update
operations.

Severity Level Determines the level of information to be captured by the auditing
process. See Section 9.1.2.1, "Auditing Severity Levels" for more
information.

Send Audit Events
Asynchronously

Determines whether the events are processed synchronously or
asynchronously.

Enable Logging of
Audit Events

Determines whether the auditing information is to be included in the
application server log file.

Note: If you enable this option (logging), ensure that the Log Level
value in the General tab is set to either Info or Debug. Any other value
will result in the log file not accepting any information.

Auditing

9-4 Release 12c (12.1.3)

9.1.2.1 Auditing Severity Levels
You can set the severity levels using the Severity Level drop down list in the Audit tab
(Figure 9–1). Severity levels are similar to those provided with Oracle WebLogic Server
security. For WebLogic Server details, see Message Severity at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/logging/logging_services.html#wp1181596.

9.1.3 Setting Individual Auditing Properties
This section includes the following topics:

■ Section 9.1.3.1, "Admin Audit Properties"

■ Section 9.1.3.2, "Common Audit Properties"

■ Section 9.1.3.3, "Query Audit Properties"

■ Section 9.1.3.4, "Update Audit Properties"

This section describes the individual auditing properties that you can audit and to
what level. To configure these auditing properties:

1. Acquire the lock.

2. Select the System Administration category

3. Click the Audit Properties tab as shown in Figure 9–2.

Incremental Audit
Dispatch

Determines if the audit records are to be dispatched partially or
completely every time there is a new record.

Table 9–2 Oracle Data Service Integrator Audit Severity Levels

Level Description

Debug This setting is often referred to as "verbose". Any audit property that can be
added to the audit report is collected.

Information Properties with information or higher conditions are collected for the audit
report.

Warning Properties with warning or higher conditions are collected for the audit
report.

Failure Properties with error or more higher conditions are collected for the audit
report.

Table 9–1 (Cont.) Oracle Data Service Integrator Global Auditing Options

Options Description

Auditing

Working With Audit and Log Information 9-5

Figure 9–2 Audit Properties Tab

This figure shows the Audit Properties tab. This page can be used to set or modify
individual audit properties. Audit properties options allow for overriding general
audit settings for individual properties. There are four property groups: admin,
common, query, and update.

4. After configuring audit properties, click Save > Activate Changes to implement
the audit settings.

Audit properties can be configured at different levels and you can select the level
using the Is Audited drop-down list. Table 9–3 lists the audit levels that you can set for
each property. All levels listed in the table are not applicable to all the properties.
Typically, each property has only three levels to choose from.

Note: Click Default Settings to rearrange the auditing properties to
the default values.

Note: If you want the property-specific audit information to be
returned to a client, then select the Available to Client check box.

Table 9–3 Setting Individual Audit Properties

Level Description

Always In this setting, the audit information of the property is always
collected.

Never In this setting, the audit information of the property is always ignored.

At Default Level This setting configures the property at the default level.

Note: This option is available only for the Select All Properties audit
property.

At Info Level In this setting, the audit information is collected if the global threshold
level is Information or lower.

Auditing

9-6 Release 12c (12.1.3)

Oracle Data Service Integrator Administration Console provides you with the option
to select all audit properties to be audited using the Select All Properties node. You can
set this property at the following levels:

■ Always

■ At Default Level

■ Never

All other individual properties are categorized into the following overall types
depending on the corresponding operation that generates the audit data:

■ Section 9.1.3.1, "Admin Audit Properties"

■ Section 9.1.3.2, "Common Audit Properties"

■ Section 9.1.3.3, "Query Audit Properties"

■ Section 9.1.3.4, "Update Audit Properties"

9.1.3.1 Admin Audit Properties
The audit information in this section pertains to the information exchanged while
performing administration tasks such as configuration and application deployment.
Only changes to the application made in the Oracle Data Service Integrator
Administration Console are collected during audit.

At Warning Level In this setting, the audit information is collected if the global threshold
level is Warning or lower.

At Failure Level In this setting, the audit information is collected if the global threshold
level is Failure or lower.

At Debug Level In this setting, the audit information is collected if the global threshold
level is Debug.

Note: After you set and apply individual auditing property settings,
any changes you make on the individual properties will override the
initial settings for that property only.

Table 9–4 Administrator Properties

Property Description

Configuration The configuration properties.

notification Records notification of deployed access control resource. For
example:

notification: jmx.attribute.change
property: MAXNUMBEROFQUERYPLANCACHED
value: 101

property Records any instance of the property that was changed in the Oracle
Data Service Integrator Console. For example:

notification: jmx.attribute.change

value Records a new value instance, for example:

value: 101

Table 9–3 (Cont.) Setting Individual Audit Properties

Level Description

Auditing

Working With Audit and Log Information 9-7

9.1.3.2 Common Audit Properties
The common audit information provides the generic transaction related information. It
includes generic information on the event, such as event type, application name, user
id, user access rights, date, and time.

Dataspace This information is displayed in the audit log by default. You cannot
change the audit level for this property.

name Records the name of the dataspace

operation Records create, modify, delete operations for a dataspace

updatediff Records changes from the last configuration update.

Table 9–5 Common Properties (Application)

Property Description

eventkind Records the type of event or operation, it could be a query or an update
and so on. For example:

eventkind: evaluation

exception Records the exception message, if one occurred. For example:

exception:
ld:DataServices/ApparelDB/CUSTOMER_ORDER_LINE_ITEM.ds,
line 77, column 7: {err}FORG0005: expected exactly one item,
got 0 items

name Records the deployed application name. For example:

name: RTLApp

principals Records the groups to which the user belongs. For example:

principals:
 weblogic
 Administrators
 IntegrationAdministrators
 PortalSystemAdministrators

server Records the application server's unique id. For example:

server: cgServer

transactionid Records the unique transaction id for the event or operation.

user Records the user id, for example:

user: weblogic

Table 9–6 Common Properties (Resouces)

Property Description

createtime Records the time and date when the file was created.

deletetime Records the time and date when the file was deleted.

file Records the name of the temporary file where the data is stored.

size Records the size of the temporary file (in bytes), before it is deleted.

source Records information about the operator because of which the data was
spilled.

Table 9–4 (Cont.) Administrator Properties

Property Description

Auditing

9-8 Release 12c (12.1.3)

9.1.3.3 Query Audit Properties
The audit information in this section pertains to all the information collected during
query evaluation. The information includes the query itself, its result, the execution
time, and details on the data source queried.

Table 9–7 Common Properties (Security)

Property Description

decision Records the security access settings for the application, for example:

decision: PERMIT

resource Records the request for resource identifier. For example:

resource: <ld
type="function"><app>RTLApp</app><ds>ld:DataServices/CustomerD
B/ADDRESS.ds</ds><res>{ld:DataServices/CustomerDB/ADDRESS}
ADDRESS:0</res></ld>

resourcetype Records the type of resource used, such as dataservice, application,
submit and so on. For example:

resourcetype: function

Table 9–8 Common Properties (Session query invocation)

Property Description

blocksize Records the size of the returned serialized data block, in bytes

duration Records the duration or the time required to compute the next block of
the result, in milliseconds.

time Records the time of call for the next data block.

Table 9–9 Common Properties (Session SQL invocation)

Property Description

time Records the date and time of the call to the next () method on the server
side of the JDBC driver.

duration Records the duration or the time required to compute the next block of
the result, in milliseconds.

blocksize Records the size of the returned serialized data block, in bytes.

Time The time common properties.

duration Records the time used to complete the audit event, in milliseconds.
Calculates the time difference from initiation of the audit to its
completion. For example:

duration: 2834

timestamp Records the time when the audit event was initiated, for example:

timestamp: Tue Feb 14 09:21:02 IST 2006

Note: When using the streaming APIs, or when using the
RequestConfig.OUTPUT_FILENAME feature, the results of the query
are not audited because they are presumed to be very large. This
means the AuditEvent dispatched to the audit provider, as well as the
DataServiceAudit returned to the client, will not contain a value for
the audit property Query/Service/results.

Auditing

Working With Audit and Log Information 9-9

Table 9–10 Query Properties (Adhoc)

Property Description

query Records the query that was executed.

result Records the results obtained after execution of the query.

variablenames Records names of the variables passed to the query.

variables Records the external parameters or variables passed to the query.

Table 9–11 Query Properties (Cache Data)

Property Description

forcedrefresh Boolean value where TRUE indicates the data is from a current data
source or FALSE if it is from a cache.

functionid Records the name of the function.

remainttl Indicates the time remaining, in seconds, before the query cache is
refreshed.

retrieved Indicates whether the data was obtained from the query cache or not.

time Indicates the duration of the cache retrieval operation.

Table 9–12 Query Properties (Queryplan)

Property Description

Queryplan Queryplan audit properties are not collected when a function is
executed from the Test view. This is because the function cache is not
utilized for functions executed in the Test view.

flushed True and set when the query plan was flushed

found Indicates whether the query plan cache has been located or not.

inserted Indicates whether the query plan cache has been inserted or not.

type Indicates the type of the query plan such as XQUERY_PLAN_CACHE,
SQL_PLAN_CACHE, or STORED_PROC_CACHE.

Table 9–13 Query Properties (Failover)

Property Description

exception In the event of a failover, this records the exception that caused it.

function Records the function name which can be either fn:bea:timeout or
fn:bea:fail-over. For example:

function:
{http://www.bea.com/xquery/xquery-fncts}timeout-with-lbl

label Records the user-defined label, if any. For example:

label: lab

sourcecolumn Records the source column of the function call. For example:

sourcecolumn: 2

sourcefile Records the source file of the function call. For example:

sourcefile: [ad-hoc]

Auditing

9-10 Release 12c (12.1.3)

sourceline Records the source line of the function call. For example:

sourceline: 4

timeout Records the time-out that was exceeded, if applicable. For example:

timeout: 0

Table 9–14 Query Properties (Function)

Property Description

Function Function audit properties are collected only when the individual
functions of a data service are selected for auditing. See Section 9.1.4,
"Function-level Auditing" for more information.

name Records the name of the audited function. For example:

name: {ld:DataServices/CustomerDB/CUSTOMER}getCustomer

parameters Records the parameters passed through the audited function. For
example:

parameters: CUSTOMER1

result Records the result after executing the audited function. For example:

result: <ns0:CUSTOMER

Table 9–15 Query Properties (Performance)

Property Description

compiletime Records the query compilation time, in milliseconds. For example:

compiletime: 19

The query/performance/compiletime audit property does not include
compilation time of any XQuery function or XQuery inline declaration.
Rather it simple reports the cost of XQSEStatement.prepare.

evaltime Records the query evaluation time, in milliseconds. For example:

evaltime: 90

Table 9–16 Query Properties (Service)

Property Description

arity Records the number of arguments for the invoked function.

dataservice Records the name of the data service, for example:

dataservice: ld:DataServices/RTLServices/ApplOrder.ds

function Records the function name of the data service, for example:

function: getCustomer

parameters Records the parameters passed through the query, for example:

parameters:

1

foo

Table 9–13 (Cont.) Query Properties (Failover)

Property Description

Auditing

Working With Audit and Log Information 9-11

query Records the complete text of the executed query on the data service, for
example:

query:

 import schema namespace t1 = "urn:retailerType" at
"ld:DataServices/RTLServices/schemas/ApplOrder.xsd";
declare namespace
ns0="ld:DataServices/RTLServices/ApplOrder";

result Records the results of the executed query, for example:

ORDER_10_0
CUSTOMER0
2001-10-01
GROUND

Table 9–17 Query Properties (SQL Procedure)

Property Description

name Records the name of the SQL procedure.

parameters Records the parameters associated with the SQL procedure.

parametertypes Records the types of the parameters.

Table 9–18 Query Properties (SQL Statement)

Property Description

parameters Records the parameters of the query.

parametertypes Records the parameter types of the query.

query Records the text of the query.

Table 9–19 Query Properties (Wrappers File)

Property Description

exception Records an exception, if any, when a function invoked belongs to a data
service created over a File data source. For example:

exception: com.bea.ld.wrappers.df.exceptions.DFException:
{bea-err}DF0004: [ld:DataServices/Demo/Valuation.csv]:
Expected end of line at (row:2, column:3).

name Records the unique function name. For example:

name: ld:DataServices/Demo/Valuation.csv

time Records the time taken to query, in milliseconds. For example:

time: 20000

Table 9–16 (Cont.) Query Properties (Service)

Property Description

Auditing

9-12 Release 12c (12.1.3)

Table 9–20 Query Properties (Java)

Property Description

exception Records an exception, if any, when a function invoked belongs to a data
service created over a Java class. For example:

exception: {ld:DataServices/Demo/Java/Physical/PRODUCTS}
getFirstProduct:0, line 4, column 5: {bea-err}JFW0401:
Class or Method not found exception :
{ld:DataServices/Demo/Java/Physical/PRODUCTS}getFirstProduct

name Records the name of the service. It is always recorded if an exception
property was added. For example:

name: public static int
Demo.Java.JavaSource4West.echoInt(int)

parameters Records the external parameters passed to the service. For example:

parameters: 11

result Records the results of the executed query. For example:

result: 11

time Records the time taken to execute the query, in milliseconds. For
example:

time: 20000

Table 9–21 Query Properties (Procedure)

Property Description

datasource Records the name of the data source, for example:

datasource: newDS

exception Records an exception, if any, when a function invoked belongs to a data
service created over a stored procedure. For example:

exception: weblogic.xml.query.exceptions.XQueryDynException:

{err}XP0021: "-ss": can not cast to
{http://www.w3.org/2001/XMLSchema}decimal}

name Records the procedure identifier. It is always recorded if an exception
property was added. For example:

name: WIRELESS.SIDEEFFECT_REG_PACKAGE.READ2

parameters Records the external parameters passed to the data service method. For
example:

parameters: s 2.2 22.0 ss

rows Records the number of rows returned after execution of the procedure,
for example:

rows: 0

time Records the time taken to execute the procedure, in milliseconds. For
example:

time: 170

Table 9–22 Query Properties (Relational)

Property Description

basesql Records the base SQL statement text.

Auditing

Working With Audit and Log Information 9-13

exception Records the relational database query exception, if any. For example:

exception:
com.bea.ld.wrappers.rdb.exceptions.RDBWrapperException:...

parameters Records the external parameters passed through to the data service
method, for example:

parameters:
 ORDER_10_0
 ORDER_10_1

rows Records the number of rows returned from the relational database, for
example:

rows: 60

source Records the database source name. It is always recorded if an exception
property was added. For example:

source: cgDataSource1

sql Records the SQL statement used for the query, for example:

sql:
 SELECT '1' AS c15, t2."LINE_ID" AS c16, t2.
 FROM "RTLAPPLOMS"."CUSTOMER_ORDER_LINE_ITEM" t2
 WHERE ((? = t2."ORDER_ID") OR (? = t2."ORDER_ID")

substitutionname Records the name of the substituted SQL, if used.

time Records the time spent executing the query, in milliseconds. For
example:

time: 5000

Table 9–23 Query Properties (WS)

Property Description

exception Records an exception, if any, when a function invoked belongs to a data
service created over a web service. For example:

exception: {bea-err}WSW0101: Unable to create Call :
{ld:DataServices/ElectronicsWS/getCustomerOrderResponse}
getCustomerOrder

operation Records the data service method that is executed. For example:

operation: getCustomerOrder

parameters Records the parameters passed through to the data service method. For
example:

parameters: <ns0:getCustomerOrder
xmlns:ns0="http://www.openuri.org/">

result Records the result returned after the query is executed. For example:

result: <ns:getCustomerOrderResponse
xmlns:ns="http://www.openuri.org/">
<CustOrders
xmlns="http://temp.openuri.org/SampleApp/CustOrder.xsd">
<ORDER>
<ORDER_ID>ORDER_1_0</ORDER_ID>
<CUSTOMER_ID>CUSTOMER1</CUSTOMER_ID>

Table 9–22 (Cont.) Query Properties (Relational)

Property Description

Auditing

9-14 Release 12c (12.1.3)

9.1.3.4 Update Audit Properties
The audit information in this section pertains to all the information related to
performing an update function. It includes information on the time taken to update
the source, when it was started, the unique transaction id and so on.

time Records the time spent executing the query, in milliseconds. For
example:

time: 50000

wsdl Records the web service description. For example:

wsdl: http://localhost:7001/ElWS/cntrls/ElDBTest.jws?WSDL

Table 9–24 Update Properties (Error Fault)

Property Description

exception Records the value of the tostring() of the update exception.

exceptionobject Records the exception object for dataspace audit update error.

status Records the status of the update.

updateid Records the globally-unique update identifier.

Table 9–25 Update Properties (Error Procedure)

Property Description

arity The arity of the update procedure.

dataservice The data service of the update procedure.

id The index of the update procedure invocation.

name The name of the update procedure.

parameters The parameters of the update procedure invocation.

result The result of the update procedure invocation.

status Status of the procedure executed by this update.

xid The xid of the update procedure invocation.

Table 9–26 Update Properties (Extension)

Property Description

id Records the id of the source being updated.

time Records the time spent, in milliseconds, for the update.

Table 9–27 Update Properties (Procedure)

Property Description

name Records the name of the audit procedure.

parameters Records the parameters passed to the audited procedure.

result Records the results of update procedure execution.

Table 9–23 (Cont.) Query Properties (WS)

Property Description

Auditing

Working With Audit and Log Information 9-15

9.1.4 Function-level Auditing
By default, auditing for all directly invoked functions can be enabled through the
/query/service record for the dataspace using the Audit tab. However, to limit
auditing to specific functions, set all properties of the /query/service record to
NEVER and then enable audit for individual functions. To do so:

1. Acquire the lock and select the System Administration category.

2. Navigate to the data service level.

3. Select the Audit tab as shown in Figure 9–3.

Table 9–28 Update Properties (Relational)

Property Description

exception Records the update exception, if any.

parameters Records the parameters passed during the update of the relational
database.

rowsmodified Records the number of rows updated in the relational database, on
successful completion.

source Records the data source name. It is always recorded if an exception
property was added.

sql Records the SQL statement used during the update of the relational
database.

time Records the time spend, in milliseconds, in updating the relational
database.

Table 9–29 Update Properties (Service)

Property Description

arity Records the number of arguments associated with the invoked
function.

dataservice Records the data service used for the update.

parameters Records the parameters passed to the update procedure.

procedure Records the data service fully qualified procedure name.

result Records the results of the update.

script Records the complete text of the executed script.

sdocount Records the number of top level SDOs that were submitted for the
update.

time Records the total execution time, in milliseconds, for the update.

Auditing

9-16 Release 12c (12.1.3)

Figure 9–3 Enabling Auditing for Individual Functions

This figure shows the Audit tab for enabling auding for individual functions. In the
table, there are three columns: Name, Enable Audit, and Enable Audit of Indirect calls.
The latter two consist of checkboxes to enable or disable auditing.

If auditing for a function is enabled, all external calls to this function are audited. If the
Enable Audit of Indirect Calls check box is selected, all calls originating from other
data services are also audited.

9.1.5 Retrieving Audit Information
This section includes the following topics:

■ Section 9.1.5.1, "WebLogic Server Security Framework"

■ Section 9.1.5.2, "Oracle Data Service Integrator Client API"

You can record the audit information collected in the following ways.

■ WebLogic Server Security Framework. Each audit event is by default reported to
the WebLogic Server Security Framework.

■ Oracle Data Service Integrator Client API. You can create an Oracle Data Service
Integrator client API to record the information collected during audit.

■ Oracle Data Service Integrator Performance Profiling. You can use the Oracle
Data Service Integrator audit provider for performance profiling by recording
audit events generated by a dataspace.

Values of the audit properties are represented as Java objects of types: String, Integer,
java.util.Date, Boolean, or String [].

Note: Enabling audit of indirect calls may disable query
optimization for that function, and decrease performance.

Auditing

Working With Audit and Log Information 9-17

9.1.5.1 WebLogic Server Security Framework
Each audit event is sent to the WebLogic Server Security Framework as an instance of
the weblogic.security.spi.AuditEvent interface. Table 9–30 describes each
event.

Depending on the configuration, each event can be sent to the WebLogic Server audit
API asynchronously and buffered by the Oracle Data Service Integrator application.

The weblogic.security.spi.AuditEvent interface is implemented in the
ld.server.audit.DSPAuditEvent interface, which collects all the information in the form
of a list, where each entry is an instance of com.bea.dsp.DSPAuditEvent.

DSPAuditEvent adds the interface described in Table 9–31.

com.bea.ld.DSPAuditRecord has the interface shown in Table 9–32.

A sample security services audit provider is included that demonstrates use of this
API.

Table 9–30 WebLogic Server Audit Events

Event Description

getEventType() Returns the event type, in this case DSPaudit.

getFailureException() Returns the exception type, if one is encountered.

getSeverity() Returns the event severity level.

toString() Returns the audit event details in an XML formatted
representation.

Table 9–31 Oracle Data Service Integrator AuditEvent API

AuditEvent API Description

getAllRecords() Returns all records as a list of com.bea.ld.DSPAuditRecord.

getRecords(String
recordType)

Returns all records of a particular type as a list of
com.bea.ld.DSPAuditRecord.

getProperty(String
propertyId)

Returns all values for a particular property, across multiple
records.

getApplication() Returns the Oracle Data Service Integrator application identifier.

getUser() Returns the user name of the application server user.

getTimeStamp() Returns the time when the event was created.

getEventKind() Returns the event type, which can be EVALUATION_EVENT,
CONFIGURATION_EVENT or UPDATE_EVENT.

getVersion() Returns the event version, for example 10.3 for the Oracle Data
Service Integrator 10gR3 release.

Table 9–32 Oracle Data Service Integrator AuditRecord API

AuditRecord API Description

getRecordType() Returns the type of record, for example common/time/duration.

getAuditProperties() Returns all properties in the record. Maps from String identifier to
Object value.

Auditing

9-18 Release 12c (12.1.3)

9.1.5.2 Oracle Data Service Integrator Client API
You can use the com.bea.ld.DataServiceAudit client side instance as part of the
com.bea.dsp.RequestConfig class, to collect the audit information from the client
API. This class collects the audit information and returns it when the operation is
successful. If the operation fails for any reason, the com.bea.ld.QueryException
class can be used to collect the information as part of the exception thrown.

Following are the four steps, with code examples, that need to be performed in order
to retrieve audit information.

9.1.5.2.1 Initializing the RequestConfig Class You need to initialize the RequestConfig
class as shown in the following code example:

RequestConfig requestCfg = new RequestConfig();
requestCfg.enableFeature(RequestConfig.RETURN_DATA_SERVICE_AUDIT);
requestCfg.enableFeature(RequestConfig.RETURN_AUDIT_PROPERTIES);
requestCfg.setStringArrayAttribute(RequestConfig.RETURN_AUDIT_PROPERTIES, new
String[]
{"query/service/dataservice"});

9.1.5.2.2 Passing the RequestConfig Object You need to pass the RequestConfig object to
the invoked operation. The code example below uses getCustomer as the invoked
operation.

CUSTOMERDocument [] custDocRoot1 = (CUSTOMERDocument
[])custDS.invoke("getCustomer", params, requestCfg);

9.1.5.2.3 Filtering Audit Data You need to filter the data and ensure there is no
unsecured access to it. Only those audit properties that are configured in the Oracle
Data Service Integrator Administration Console to be allowed to return to the client,
will be returned to the client application.

9.1.5.2.4 Retrieving Data Service Audit You need to retrieve the data service audit from
the RequestConfig object, as shown in the code example below:

DataServiceAudit query = requestCfg.retrieveDataServiceAudit();

9.1.5.2.5 Retrieving Audit Properties RequestConfig.RETURN_AUDIT_PROPERTIES is
an array of string identifiers for audit properties. If you set this request attribute those
specified properties will be collected for this particular evaluation even if they are not
configured to be collected through the administration console. They will be returned
only if it is allowed. If the RETURN_DATA_SERVICE_AUDIT request attribute is not
enabled, only those properties will be returned.

RequestConfig.RETURN_DATA_SERVICE_AUDIT configures all collected audit
information (that is allowed to be returned to the client application) to be returned.

Note: When using Streaming APIs, auditing will not be complete
until the returned XMLInputStream has its close() method called. This
means that the AuditEvent will not be dispatched to the audit
provider by the server, and the RequestConfig.getDataServiceAudit()
method will return null, until close() is called.

Using Other Monitoring Tools

Working With Audit and Log Information 9-19

9.2 Monitoring the Server Log
Server log files contain information about the time spent to compile and execute a
query. The log is in the following location:

<BEA_HOME>\user_projects\domains\domainName\serverName\server.log

For more information about WebLogic Server logs, see Viewing the WebLogic Server
Logs at http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/taskhelp/logging/ViewServerLogsFromTh
eConsole.html.

You can configure the log levels, by application, using the General application
configuration page. For more information, see Section 4.1, "Configuring the Cache and
Log for a Dataspace." The log levels include:

■ Error. Runtime exceptions.

■ Notice. Possible errors that do not affect runtime operation, as well as error level
events.

■ Information. Start/stop events, unsuccessful access attempts, query execute times,
and so on, as well as error and notice level events.

Debug logging occurs by default for any server in development mode. Client
applications can contribute to the server log through the WebLogic Logger facility. For
more information, see Using WebLogic Logging Services at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/i18n/app_logging.html.

Query strings are echoed in the server log as a debug-level log message when the log
level is set to Information in the Oracle Data Service Integrator Console and the
WebLogic Administration Console is set to log debug messages to stdout.

9.3 Monitoring a WebLogic Domain
You can use the WebLogic Server Administration Console to monitor the health and
performance of the domain in which WebLogic is deployed, including resources such
as servers, JDBC connection pools, JCA, HTTP, the JTA subsystem, JNDI, and
Enterprise Java Beans (EJB).

The domain log is located in the following directory:

<BEA_HOME>\user_projects\domains\domainName\domainName.log

For more information, see "Monitoring a WebLogic Server Domain" in Configuring and
Managing WebLogic Server at http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/ConsoleHelp/pagehelp/Corecoredomaindomainmonitors
erverstitle.html.

9.4 Using Other Monitoring Tools
You can use performance monitoring tools, such as the OptimizeIt and JProbe
profilers, to identify Oracle Data Service Integrator application "hot spots" that result
in either high CPU utilization or high contention for shared resources.

For more information, see "Tuning WebLogic Server Applications" at
http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/perform/WLSTuning.html. For a complete list of performance
monitoring resources, see "Related Reading" in WebLogic Server Performance and Tuning

Using Other Monitoring Tools

9-20 Release 12c (12.1.3)

at http://download.oracle.com/docs/cd/E12840_
01/wls/docs103/perform/appa_reading.html.

10

Extending Database Support 10-1

10Extending Database Support

This chapter explains how to extend the database support of Oracle Data Service
Integrator. Extensions let you provide immediate, dynamic support for unsupported
databases and new versions of supported databases. This chapter explains how to
extend database support using a feature called the Configurable Relational Provider.

This chapter assumes that you are familiar with XQuery and SQL, especially for more
advanced use cases. For suggested background on these subjects with respect to
Oracle Data Service Integrator, see Section 10.1.6, "Related Reading."

This chapter includes these topics:

■ Section 10.1, "Introduction"

■ Section 10.2, "Sample Configurable Relational Provider File"

■ Section 10.3, "Using the Configurable Relational Provider"

■ Section 10.4, "Configurable Relational Provider Format Description and Reference"

■ Section 10.5, "Database Matching"

■ Section 10.6, "Specifying SQL Syntax for Functions"

■ Section 10.7, "Default SQL Syntax for Functions"

■ Section 10.8, "Translating Built-In XQuery Operators Into SQL"

■ Section 10.9, "Standard and Oracle Data Service Integrator Namespaces for
Functions and Types"

■ Section 10.10, "Function and Type Name Resolution Process"

■ Section 10.11, "Abstract SQL Providers"

10.1 Introduction
The Configurable Relational Provider lets you extend the database support and
functionality of Oracle Data Service Integrator. The Configurable Relational Provider
lets you add or modify database support by configuring an XML file, called a
"provider." You can configure the XML provider to extend database support for all but
a few advanced cases. See Section 10.3, "Using the Configurable Relational Provider"

Note: A sample Configurable Relational Provider file is provided in
this chapter. You can copy the sample and use it as a starting point for
creating your own customized provider. See "Sample Configurable
Relational Provider File" on page 10-6 for the complete listing.

Introduction

10-2 Release 12c (12.1.3)

for details.

This section describes the overall framework for extending Oracle Data Service
Integrator database support, defines general terms, and lists several use cases for the
extension framework.

This section includes these topics:

■ Section 10.1.1, "General Use Cases"

■ Section 10.1.2, "Overview of the Extension Framework Architecture"

■ Section 10.1.3, "Relational Providers Included With Oracle Data Service Integrator"

■ Section 10.1.4, "Supported Features"

■ Section 10.1.5, "Importing Relational Source Metadata"

■ Section 10.1.6, "Related Reading"

10.1.1 General Use Cases
This section explains cases where you might consider extending database support
using the Configurable Relational Provider.

■ Case 1: Adding extended RDMBS support for your database or, if extended
support is provided, customizing or extending that support further.

If you are using Oracle Data Service Integrator with base platform database
support (see Section 10.1.3, "Relational Providers Included With Oracle Data
Service Integrator"), it is possible that the database itself can handle more complex
constructs, such as expressions and clauses, than are generated by the base
platform provider. In this case, users might experience reduced performance. To
solve this problem, you can configure an Configurable Relational Provider.

■ Case 2: Adding support for a new version of a core database.

If a new version of a core database is released, Oracle Data Service Integrator by
default treats it the same as the previously supported version. Obviously, with a
new release, there may be features that you want to use, such as improved SQL
pushdown. In this case, you can update the database support by extending the
relational provider for the core database using the Configurable Relational
Provider to add the new pushdown features.

■ Case 3: Adding support for a new database that has fewer capabilities than the
base platform or is not supported by the core databases.

It is possible that you require access to a database that is not supported by Oracle
Data Service Integrator core database set (see Table 10–1) and that cannot consume
SQL generated by the base platform provider. In this case, you can use the
Configurable Relational Provider and either disable unsupported features or add
new features as desired.

10.1.2 Overview of the Extension Framework Architecture
The Relational Wrapper Extension Framework lets you add or modify relational
database support for Oracle Data Service Integrator. This framework supports the
Configurable Relational Provider, which lets you extend database support by editing a
configuration file. Figure 10–1 illustrates the architecture of the Relational Wrapper

Note: This use case is uncommon.

Introduction

Extending Database Support 10-3

Extension Framework.

Figure 10–1 Database Extension Framework Architecture

This figure shows the architecture of the Relational Wrapper Extension Framework.
There is an RDB Provider Registry contained within the Relational Wrapper. Relational
Providers are chained to Abstract SQL Providers, and data stored in the databases.

This framework includes a component called a Relational Wrapper that exposes
XQuery views of relational sources and executes queries against them. The Relational
Wrapper includes the Relational Database Provider Registry, which manages chains of
components called relational providers.

The Configurable Relational Provider, which is discussed in detail in this chapter, is an
example of a relational provider that you can easily configure and deploy by editing a
file. The Configurable Relational Provider is the primary means by which you can
extend database support.

■ Defines the SQL and runtime capabilities of a specific database.

■ Allows Oracle Data Service Integrator to handle different databases and their SQL
dialects.

■ Returns information about runtime and SQL generation capabilities of the
database supported by the provider.

■ Can be extended to add support for new databases and customize support for
existing ones.

Inside the provider registry, relational providers are organized into chains. These
chains delegate to one another and allow method invocations to be intercepted and
processed along the way. Each provider either answers a request or delegates the
request to its parent provider. A provider's parent is specified by the <parent>
element of the provider's deployment descriptor (see Section 10.4, "Configurable
Relational Provider Format Description and Reference").

As shown in Figure 10–1, the first chain is assembled from three providers: provider_
1, provider_2 and provider_3. When the relational wrapper calls this chain, provider_
1 first receives the call and has a choice of either answering it or delegating to its
parent provider (provider_2). If provider_1 delegates to provider_2 then it is the
responsibility of provider_2 to handle the request. In turn, provider_2 can decide to
delegate processing to provider_3. This chain architecture increases system flexibility
by supporting modular provider definitions and facilitating easy assembly.

Introduction

10-4 Release 12c (12.1.3)

Typically, when you create a provider using the Configurable Relational Provider, you
specify a parent provider. The parent provides some features that the child provider
can either accept by default or override.

The child provider inherits the features of the parent; however, you can also add
features to the child provider that are not implemented in the parent. Usually, one of
the abstract providers serves as the parent of the first provider in a chain. See
Section 10.11, "Abstract SQL Providers."

By default, the Relational Wrapper Extension Framework supports a core set of
databases. See Section 10.1.3, "Relational Providers Included With Oracle Data Service
Integrator" for a complete list. Extensibility allows for full support of databases that
are not in the core set and allows for support of new versions of the core databases.

For example, a new version of a core database might provide new pushdown
capabilities that are not currently recognized by Oracle Data Service Integrator. You
can use the extension framework to add the required database support immediately by
editing and deploying a Configurable Relational Provider.

10.1.3 Relational Providers Included With Oracle Data Service Integrator
Table 10–1 lists the set of standard relational providers that are included with Oracle
Data Service Integrator. Standard providers are implemented using the Relational
Wrapper Extension Framework and are registered by default. You can use these
providers as a basis for configuring the Configurable Relational Provider.

Table 10–1 Relational Providers Included With Oracle Data Service Integrator

Provider ID
Supported Database Type and
Version(s)

Base Database Version
(Decimal)

Oracle-8 Oracle >= 8 8

Oracle-9 Oracle >= 9 9

Oracle-11 Oracle >= 11 11

Oracle-12 Oracle >= 12 12

MSSQL-2000 Microsoft SQL Server >= 2000 8

Version 8 is the product version
returned by the JDBC drivers
for SQL Server 2000.

DB2-8 IBM DB2 >= 8 8

Sybase-12.5.2 Sybase >= 12.5.2 12.52

Derby Derby >= 10.6 10.6

Access Microsoft Access 2003

Microsoft Access support is
implemented using the
Configurable Relational Provider
described in Section 10.3, "Using the
Configurable Relational Provider."

4

AbstractSQL,
AbstractSQL89,
AbstractSQL92

These abstract providers provide
base functionality to the
Configurable Relational Provider.
See Section 10.4, "Configurable
Relational Provider Format
Description and Reference" for
details. See also Section 10.11,
"Abstract SQL Providers."

Not applicable.

The abstract providers do not
match any databases, and
therefore do no return a base
version.

Introduction

Extending Database Support 10-5

The Base Database Version is calculated by the framework. This value specifies the
minimum version of a database that a provider can handle. Matching rules are used to
determine the value when you pick a provider that best matches your database. For
more information on this calculation, see Section 10.5, "Database Matching."

10.1.4 Supported Features
The Configurable Relational Provider supports the following features found in the
core relational providers:

■ Database matching

■ Standard JDBC type mapping

■ Join pushdown specification

■ Clause pushdown specification

■ Function and operator pushdown

■ Cast pushdown

■ Auto-generation of fields (usually keys)

■ Stored procedure configuration

■ A subset of runtime properties

Some features defined by the Relational Wrapper Extension Framework are not
supported by the Configurable Relational Provider. In such cases, the Configurable
Relational Provider delegates the request to its parent provider, which answers it.

The unsupported features include:

■ Data type mapping

■ Data type based matching when pushing down functions and cast operations

■ SQL expression kind matching when pushing down functions and cast operations

10.1.5 Importing Relational Source Metadata
You can import metadata on the data sources needed by your application using the
Oracle Data Service Integrator Metadata Import wizard. This wizard introspects
available data sources and identifies data objects that can be rendered as data services
and functions. The relational provider registry returns a list of providers that best
match the database. You can then pick one of these providers (typically, the best match
or one close to the best match) from a drop down menu.

The best match appears at the top of the drop down menu. Once created, physical data
services become the building-blocks for queries and logical data services. For detailed
information on using the Metadata Import wizard, see Creating and Updating
Physical Data Services in the Data Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/Creating and Updating Physical Data
Services.html. For information on how matching is performed, see Section 10.5.1,
"Rules for Database Matching."

10.1.6 Related Reading
Refer to the following Oracle Data Service Integrator documentation for more
information on Oracle Data Service Integrator database, XQuery, and SQL support:

Sample Configurable Relational Provider File

10-6 Release 12c (12.1.3)

■ "XQuery Engine and SQL" in the XQuery and XQSE Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/xquery/sql_pushdown.html.

■ "XQuery-SQL Mapping Reference" in the XQuery and XQSE Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/xquery/xquery_sql_mapping_reference.html.

■ "Supported Relational Database Management Systems" in Oracle Data Service
Integrator Supported Configurations at
http://download.oracle.com/docs/cd/E13196_
01/platform/suppconfigs/index.html.

10.2 Sample Configurable Relational Provider File
Example 10–1 shows a sample Configurable Relational Provider file. This sample
demonstrates a possible way to configure a custom Microsoft Access provider. You can
also find the sample Microsoft Access provider in your Oracle Data Service Integrator
installation here:

<ALDSP_HOME>/samples/RelationalAdapter/MS-Access

Copy this sample provider to use as a starting point for creating your own customized
provider. Reference information in this chapter explains all of the configurable
elements of this XML file. To get started, see Section 10.3, "Using the Configurable
Relational Provider."

Example 10–1 Sample Configurable Relational Provider File for a Microsoft Access
Database

<?xml version="1.0"?>
<aldsp-rdb-extension xmlns="http://www.bea.com/ns/aldsp/rdb/extension">

 <name>MS Access XML Provider</name>
 <vendor>Oracle</vendor>
 <implementation-version>1.0</implementation-version>
 <description> MS Access Relational Wrapper Extension </description>

 <rdb-provider>
 <id>MS-Access-2003</id>
 <description>XMLProvider MS Access 2003</description>
 <parent>AbstractSQL</parent>
 <factory
class="com.bea.dsp.wrappers.rdb.providers.custom.XMLCustomizableProviderFactory>
 <custom-rdb-provider
 xmlns="http://www.bea.com/ns/aldsp/rdb/extension/custom"
 xmlns:fn="http://www.w3.org/2004/07/xpath-functions"
 xmlns:fn-bea="http://www.bea.com/xquery/xquery-functions"
 xmlns:op-bea="http://www.bea.com/xquery/xquery-operators"
 xmlns:op="http://www.w3.org/2004/07/xpath-operators"
 xmlns:xdt="http://www.w3.org/2004/07/xpath-datatypes"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <database-kind>
 <match-database>
 <![CDATA[
 (jdbc:getDatabaseProductName() eq "ACCESS") and
 (jdbc:getDatabaseMajorVersion() ge 4)
]]>

Sample Configurable Relational Provider File

Extending Database Support 10-7

 </match-database>
 <base-version>4</base-version>
 </database-kind>

 <database-objects>
 <catalog quote=""" separator="." />
 <schema quote=""" separator="." />
 <table quote=""" qualified-name-parts="catalog schema table" />
 </database-objects>

 <joins inner-join="true" outer-join="true">
 <sql92 right-trees="true">
 <inner-join-syntax>
 {0} INNER JOIN {1} ON {2}
 </inner-join-syntax>
 </sql92>
 </joins>

 <orderby column="true" expression="true" aggregate="true" null-order="low"/>

 <groupby column="true" expression="true" constant="true"/>

 <subqueries in-from="true" in-where="true" />

 <case supported="false" />

 <functions>

 <!-- String Functions -->
 <function name="fn:concat" supported="true" infix="true" >&</function>
 <function name="fn:string-length" arity="1">LEN({0})</function>
 <function name="fn:lower-case"
 arity="1">IIF(ISNULL(LCASE({0})),'',LCASE({0}))</function>
 <function name="fn:upper-case" supported="true" >
 IIF(ISNULL(UCASE({0})),'',UCASE({0}))</function>
 <function name="fn:substring" arity="2" >
 IIF(ISNULL(MID({0},{1})),'',MID({0},{1}))</function>
 <function name="fn:substring" arity="3" >
 IIF(ISNULL(MID({0},{1},{2})),'',MID({0},{1},{2}))</function>

 <function name="fn-bea:left" >LEFT({0},{1})</function>
 <function name="fn-bea:right" >RIGHT({0},{1})</function>
 <function name="fn-bea:repeat" supported="false" />
 <function name="fn-bea:trim" arity="1" >TRIM({0})</function>
 <function name="fn-bea:trim-left" arity="1" >LTRIM({0})</function>
 <function name="fn-bea:trim-right" >RTRIM({0})</function>
 <function name="fn-bea:sql-like" arity="2" >({0} LIKE {1})</function>
 <function name="fn-bea:sql-like" arity="3" supported="false" />
 <function name="fn:starts-with" supported="false" />
 <function name="fn:ends-with" supported="false" />
 <function name="fn:contains" supported="false" />
 <function name="op-bea:string-not-equal" arity="2" >({0} <>
 {1})</function>

 <!-- Numeric Functions -->
 <function name="fn:abs" supported="true" arity="1" >ABS({0})</function>
 <function name="fn:ceiling" supported="false" />
 <function name="fn:floor" supported="false" />
 <function name="fn:round" >ROUND ({0})</function>

Sample Configurable Relational Provider File

10-8 Release 12c (12.1.3)

 <!-- Aggregate Functions -->
 <function name="fn:count" supported="true" arity="1" >COUNT({0})</function>
 <function name="fn:avg" >AVG({0})</function>
 <function name="fn:min" arity="1" >MIN({0})</function>
 <function name="fn:max" supported="true" arity="1" >MAX({0})</function>
 <function name="fn:sum" arity="1" >
 IIF(ISNULL(SUM({0})),0,SUM({0}))</function>

 <!-- DateTime Functions -->
 <function name="fn:day-from-date" arity="1" >DAY({0})</function>
 <function name="fn:month-from-date" >MONTH({0})</function>
 <function name="fn:year-from-date" >YEAR({0})</function>
 <function name="fn:day-from-dateTime" arity="1" >DAY({0})</function>
 <function name="fn:month-from-dateTime" >MONTH({0})</function>
 <function name="fn:year-from-dateTime" >YEAR({0})</function>
 <function name="fn:hours-from-dateTime" >HOUR({0})</function>
 <function name="fn:minutes-from-dateTime" arity="1" >MINUTE({0})</function>
 <function name="fn:seconds-from-dateTime" >SECOND({0})</function>
 <function name="fn:current-date" supported="false"/>
 <function name="fn:current-time" supported="false"/>
 <function name="fn:current-dateTime" supported="false"/>

 </functions>

 <casts>
 <cast from="xs:string" from-subtypes="true" to="xs:int">
 CINT({0})
 </cast>
 <cast from="xs:double" from-subtypes="true" to="xs:int">
 CINT({0})
 </cast>
 <cast from="xs:float" from-subtypes="true" to="xs:int">
 CINT({0})
 </cast>
 <cast from="xs:decimal" from-subtypes="true" to="xs:int">
 CINT({0})
 </cast>

 <cast from="xs:string" from-subtypes="true" to="xs:double">
 CDBL({0})
 </cast>
 <cast from="xs:decimal" from-subtypes="true" to="xs:double">
 CDBL({0})
 </cast>
 <cast from="xs:string" from-subtypes="true" to="xs:float">
 CDBL({0})
 </cast>
 <cast from="xs:decimal" from-subtypes="true" to="xs:float">
 CDBL({0})
 </cast>

 <cast from="xs:string" from-subtypes="true" to="xs:dateTime">
 CDATE({0})
 </cast>

 <cast from="xs:float" from-subtypes="true" to="xs:string" >
 CSTR({0})
 </cast>
 <cast from="xs:double" from-subtypes="true" to="xs:string" >

Using the Configurable Relational Provider

Extending Database Support 10-9

 CSTR({0})
 </cast>
 <cast from="xs:decimal" from-subtypes="true" to="xs:string" >
 CSTR({0})
 </cast>
 <cast from="xs:boolean" from-subtypes="true" to="xs:string" >
 CSTR({0})
 </cast>
 <cast from="xs:dateTime" from-subtypes="false" to="xs:string" >
 CSTR({0})
 </cast>
 </casts>

 <limit>
 <select-top />
 </limit>

 <insert>
 <auto-column-generator kind="sql-post" >
 select @@identity
 </auto-column-generator>
 </insert>

 <properties
 supports-multiple-active-queries-per-connection="false"
 supports-cancel-query="false"
 supports-query-timeout="false" />

 </custom-rdb-provider>
 </factory>
 </rdb-provider>

</aldsp-rdb-extension>

10.3 Using the Configurable Relational Provider
This section explains how to use the Configurable Relational Provider. The
Configurable Relational Provider lets you configure a new relational provider by
editing an XML configuration file.

This section includes the following topics:

■ Section 10.3.1, "Summary of Basic Configuration Steps"

■ Section 10.3.2, "Deploying the Relational Provider"

10.3.1 Summary of Basic Configuration Steps
This section lists the basic steps required to develop and deploy an Configurable
Relational Provider. The basic process of creating a new provider is also shown in
Figure 10–2.

Note: Be sure to review the section "Introduction" on page 10-2
before continuing.

Using the Configurable Relational Provider

10-10 Release 12c (12.1.3)

Figure 10–2 Custom Provider Development Process

This figure shows a diagram of the custom provider development process. Step 1 is to
choose a base provider. Step 2 is configure XML provider(s). Step 3 is to deploy the
provider. Step 4 is to test the provider, then loop back to Step 2.

1. Choose a base parent provider, such as one of the Abstract providers discussed in
Section 10.11, "Abstract SQL Providers." The base provider represents the first
provider in a provider chain. Subsequent providers in the chain can extend or
override features of a parent provider. See Section 10.1.2, "Overview of the
Extension Framework Architecture" for information about provider chains.

2. Configure one or more Configurable Relational Providers. Configurable Relational
Providers are configured in an XML file in which you specify all of the properties
of the Configurable Relational Provider(s). See Section 10.2, "Sample Configurable
Relational Provider File." The sample is a good starting point for developing your
own customized provider.

3. Deploy the provider. A command line script is provided to deploy your
customized provider. See Section 10.3.2, "Deploying the Relational Provider."

4. Test the provider.

10.3.2 Deploying the Relational Provider
A command-line deployment tool, described in this section, is provided with Oracle
Data Service Integrator. Use this tool to add and remove relational providers. To use
this deployment tool, your provider's deployment descriptor must be packaged in a
JAR file.

10.3.2.1 Adding a Provider
The command syntax for adding a provider is:

<ALDSP_HOME>/bin/update-providers.[cmd/sh] -add <provider.jar>

The fully-qualified path to the provider relational wrapper extension JAR file is
required. When a new provider is added, it is copied into the <ALDSP_
HOME>/providers directory.

Note: When Oracle Data Service Integrator loads an extension, the
deployment descriptor is read and validated. If a provider section of
the description is determined to be invalid, it is ignored.

Configurable Relational Provider Format Description and Reference

Extending Database Support 10-11

10.3.2.2 Removing a Provider
The command syntax for removing a provider is:

<ALDSP_HOME>/bin/update-providers.[cmd/sh] -remove <provider.jar>

Specify the filename of the provider JAR file located in the <ALDSP_
HOME>/providers directory. When an existing provider is removed, it is deleted
from the <ALDSP_HOME>/providers directory.

10.4 Configurable Relational Provider Format Description and Reference
This section describes the format, elements, and configurable properties of an
Configurable Relational Provider.

This section includes:

■ Section 10.4.1, "Overview of Primary XML Elements" – This section provides an
overview of the top-level elements of the Configurable Relational Provider.

■ Section 10.4.2, "Overview of the <custom-rdb-provider> Element" – This section
provides an overview of the <custom-rdb-provider> element. This element
contains all of the sub-elements and properties that define a Configurable
Relational Provider.

■ Section 10.4.3, "Configurable Relational Provider Reference" – This section
describes all of the elements of the <custom-rdb-provider> element.

A complete provider example is listed in Section 10.2, "Sample Configurable Relational
Provider File."

10.4.1 Overview of Primary XML Elements
This section describes each of the primary elements in an Configurable Relational
Provider file. This file is a deployment descriptor that is used to specify the properties
of the relational provider extension.

The following list describes the primary elements of a relational provider deployment
descriptor.

■ <name> – The name of the provider.

■ <vendor> – (Optional) The name of the vendor of the provider.

■ <implementation-version> – (Optional) A version number for the provider.

Note: Adding or removing a provider requires that you restart the
IDE or the server.

Note: Adding or removing a provider requires that you restart the
IDE or the server.

Note: The file must be packaged and deployed in a JAR file. The JAR
must only contain one deployment descriptor; however, the descriptor
can define and configure one or more providers. See Section 10.3.2,
"Deploying the Relational Provider."

Configurable Relational Provider Format Description and Reference

10-12 Release 12c (12.1.3)

■ <description> – (Optional) A brief description of the extension.

■ <id> – The provider ID. This ID is used to register the provider in the provider
registry.

■ <description> – (Optional) A brief description of the provider.

■ <parent> – (Optional) The <id> element of a parent provider.

In the sample file in Section 10.2, "Sample Configurable Relational Provider File", the
class specified by the <parent> element is AbstractSQL. See Section 10.11, "Abstract
SQL Providers" for detailed information on this abstract provider parent class.

■ <modifier> – (Optional) Either abstract or final. If set to abstract, the provider
cannot be referred to by any data service; however, an abstract provider can be
extended (be the parent of another provider). If set to final, the provider cannot be
extended by any other providers.

■ <factory> – (Optional) This element specifies a factory class that instantiates the
provider. The Configurable Relational Provider uses the default factory class,
,XMLCustomizableProviderFactory.

In the sample file in Section 10.2, "Sample Configurable Relational Provider File",
the <factory> element explicitly specifies the default factory class,
XMLCustomizableProviderFactory.

■ <custom-rdb-provider> – A sub-element that specifies the namespace of the
Configurable Relational Provider and its full configuration. The default
namespace is: http://www.bea.com/ns/aldsp/rdb/extension/custom.

For details on configuring the <custom-rdb-provider> element, see
Section 10.2, "Sample Configurable Relational Provider File" and Section 10.4,
"Configurable Relational Provider Format Description and Reference."

10.4.2 Overview of the <custom-rdb-provider> Element
Example 10–2 shows the basic configuration of the <custom-rdb-provider>
element in an Configurable Relational Provider. This configuration is based on a
schema file that is provided with Oracle Data Service Integrator.

Each of the properties are described in greater detail in Section 10.4.3, "Configurable
Relational Provider Reference." For a complete example, see Section 10.2, "Sample
Configurable Relational Provider File."

Example 10–2 Overview of the <custom-rdb-provider> Element

<custom-rdb-provider xmlns="http://www.bea.com/ns/aldsp/rdb/extension/custom">

 <database-kind>
 <match-database>
 XQuery expression that uses a predefined external function to
 Access JDBC metadata. Result type: boolean

Note: You must name the deployment descriptor file
aldsp-rdb-extension.xml.

Note: When Oracle Data Service Integrator loads an extension, the
deployment descriptor is read and validated. If a provider section of
the description is determined to be invalid, it is ignored.

Configurable Relational Provider Format Description and Reference

Extending Database Support 10-13

 </match-database>
 <base-version>
 Base database version supported by this provider (decimal)
 </base-version>
 <matched-version>
 XQuery expression returning matched version. Result type: decimal
 </matched-version>
 </database-kind>

 <database-objects>
 <catalog quote?="string" separator?="string"/>
 <schema quote?="string" separator?="string" />
 <table quote?="string" separator?="string"
 qualified-name-parts="string*"/>
 <column quote?="string" />
 <procedure quote?="string" qualified-name-parts="string*"/>
 </database-objects>

 <joins inner-join="boolean" outer-join="boolean">
 <sql92 right-trees="boolean(:=true)" /> or
 <sql89 outer-join-kind?="columnModifier|tableModifier"
 outer-join-modifier?="string" />
 </joins>

 <orderby column?="boolean" expression?="boolean" aggregate?="boolean"
 null-order?="low|high|first|last|undefined"
 style?="ordering-expression|ordering-expression-with-projection|
 position-in-project-list" />

 <groupby column?="boolean" constant?="boolean" expression?="boolean" />

 <subqueries in-from?="boolean" in-where?="boolean" />

 <case supported?="boolean(:=true)" />

 <functions default-syntax-for-empty-input="lax|strict|strict-coalesce">
 <function name="QName" arity?="integer" supported?="boolean(:=true)"
 infix?="boolean(:=false)">
 SQL expression which uses {0},{1},…{n} for input expressions
 (string)
 </function>
 </functions>

 <casts>
 <cast from="QName" from-subtypes?="boolean(:=false)" to="QName"
 supported?="boolean(:=true)">
 SQL expression which uses {0} for input expression
 </cast>
 </casts>

 <limit supported?="boolean(:=true)">
 <top parameter="true|false" composable="true|false"/> or
 <rownum kind="project_first|filter_first">
 ROWNUM
 </rownum>
 </limit>

 <insert>
 <key-gen kind?="jdbc|sql-pre|sql-post">
 SQL statement

Configurable Relational Provider Format Description and Reference

10-14 Release 12c (12.1.3)

 </key-gen>
 </insert>

 <properties
 supports-query-timeout = "boolean"
 supports-cancel-query = "boolean"
 supports-multiple-active-queries-per-connection = "boolean"
 />

</custom-rdb-provider>

10.4.3 Configurable Relational Provider Reference
Table 10–2 describes each of the sub-elements and properties of the
<custom-rdb-provider> element of an XML Customization Provider
configuration file.

For a summary of the file format, see Section 10.4.2, "Overview of the
<custom-rdb-provider> Element." For a complete example, see Section 10.2, "Sample
Configurable Relational Provider File."

Most of the settings listed in Table 10–2 are optional. Any settings that are specified in
the configuration file override default settings provided by the parent provider. The
parent provider is specified with the <parent> element of the descriptor.

If no setting is provided for an attribute, then the request is delegated to the parent
provider. See Section 10.1.2, "Overview of the Extension Framework Architecture" for a
description of the way in which providers delegate to parent providers in a "chains."

Table 10–2 Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

<match-database>

<matched-version>

These elements contain XQuery expressions
that can access JDBC database metadata
through predefined external functions. See
Section 10.5, "Database Matching."

There are no default values for these
elements. Default values are inherited from
the parent provider.

<database-objects> Sub-elements of this element specify various
properties of database object identifiers in the
generated SQL.

<database-objects>

<catalog>

<schema>

<table>

<column>

<procedure>

quote The quote attribute specifies the identifier
quote for the corresponding database object.

Example: <catalog quote="'" />

To specify open and close quotes, specify first
the open quote, then the close quote.

Example: <table quote="[]" />

The general rule is: if the number of
characters in the specified quote string is
even – then it is assumed that open and close
quotes are different. The first half of the
specified string is the open quote; the second
half is the close quote. If the number of
characters in the specified string is odd then
it is assumed that the open and close quotes
are the same and equal to the whole string.

Configurable Relational Provider Format Description and Reference

Extending Database Support 10-15

<database-objects>

<catalog>

<schema>

<table>

<procedure>

separator The separator attribute specifies the separator
character between object identifiers in the
fully qualified object name.

Example: <schema separator="."/>

If this attribute is not specified, the parent
provider's value is used by default.

<table>

<procedure>

qualified-name-parts The qualified-name-parts attribute specifies a
list of object kinds that specify how a fully
qualified name is constructed for this
database object.

Note: Object kinds in the list must be
separated by a space character.

Example: <table
qualified-name-parts="catalog schema table"
/>

Example: <procedure
qualified-name-parts="schema procedure"/>

If this attribute is not specified, the parent
provider's value is used by default.

<joins> inner-join

outer-join

These attributes are booleans that specify
whether the database supports inner and
outer joins respectively.

The exact join syntax is defined by the sql92
and sql89 child elements of the joins element.

Example: <joins inner-join="true"
outer-join="true">

If these attributes are not specified, the parent
provider's values are used by default.

<joins>

<sql92>

The sql92 sub-element specifies that the
database uses SQL-92 syntax for joins. For
example: SELECT ... FROM a INNER JOIN |
LEFT OUTER JOIN b ON ...

<joins>

<sql92>

right-trees This attribute is a boolean that determines
whether parenthesis can be used to control
the order of joins in the join clause.

Default: true

<joins>

<sql92>

inner-join-syntax (Optional) Defines the syntax for an inner
join. {0} is used for the left branch source, {1}
for the right branch source, and {2} for a join
condition expression.

Example: {0} JOIN {1} ON {2}

<joins>

<sql92>

outer-join-syntax (Optional) Defines the syntax for a left outer
join. {0} is used for the left branch source, {1}
for the right branch source, and {2} for the
join condition expression.

Example: {0} LEFT OUTER JOIN {1} ON {2}

<joins>

<sql89>

The sql89 sub-element specifies that the
database uses SQL-89 syntax for joins. For
example: SELECT ... FROM a,b WHERE ...

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Configurable Relational Provider Format Description and Reference

10-16 Release 12c (12.1.3)

<joins>

<sql89>

inner-join-syntax (Optional) Defines the syntax for a left inner
join. {0} is used for the left branch source, {1}
for the right branch source.

Default: {0}, {1}

<joins>

<sql89>

outer-join-syntax (Optional) Defines the syntax for a left outer
join. {0} is used for the left branch source, {1}
for the right branch source.

Example: {0}, OUTER {1}

Default: empty (left outer join is not
supported)

<joins>

<sql89>

outer-join-right-branch-
column-modifier

(Optional) Specifies the transformation to be
applied to the columns on the right side of a
left outer join. {0} is used to specify the
right-side column.

Example: {0}(+)

Default: empty (no transformation is
required)

<orderby> column

expression

This boolean attribute specifies whether the
database supports orderby column and other
expressions.

If these attributes are not specified, the parent
provider's values are used by default.

<orderby> aggregate This boolean attribute specifies whether the
database supports orderby aggregate.

<orderby> null-order This attribute specifies one of the following
values:

■ low – NULL values are sorted low.

■ high – NULL values are sorted high.

■ first – NULL values are sorted at the
start regardless of sort order.

■ last – NULL values are sorted at the end
regardless of sort order.

■ undefined – NULL values are sorted by
Oracle Data Service Integrator ("order
by" is not pushed to the database in this
case).

If this attribute is not specified, the parent
provider's values are used by default.

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Configurable Relational Provider Format Description and Reference

Extending Database Support 10-17

<orderby> style Style of the orderby expressions that will be
generated:

■ position-in-project-list – Generates
ORDER BY n, where 'n' is a position of
the ordering expression in the SELECT
clause. The ordering expression is
automatically added to the SELECT
clause if necessary.

■ ordering-expression-with-projection –
Generates ORDER BY <expr> where
<expr> is automatically added to the
SELECT clause if necessary.

■ ordering-expression – Generates ORDER
BY <expr> where <expr> is not
automatically added to the SELECT
clause.

There is no default value for this attribute.
The parent provider's value is used if not
specified.

<groupby> column

constant

expression

These boolean attributes specify whether the
group by clause can operate on columns,
constants, and expression.

If these attributes are not specified, the parent
provider's values are used by default.

<subqueries> in-from

in-where

These boolean attributes specify whether
subqueries are supported in FROM and
WHERE clauses. Oracle Data Service
Integrator generates only a subquery in the
WHERE clause only when translating a
semi-join.

Example: "WHERE EXITS(...))")

If these attributes are not specified, the parent
provider's values are used by default.

<case> supported This boolean attribute specifies whether the
CASE expression is supported.

Default: true

<functions> This element defines SQL syntaxes for
functions.

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Configurable Relational Provider Format Description and Reference

10-18 Release 12c (12.1.3)

<functions> default-syntax-for-empt
y-input

An enumeration of strings that define which
default syntax to use in the presence of NULL
input. NULL (an empty sequence in XQuery)
input is usually handled differently by SQL
and XQuery functions. In SQL, NULL is
usually propagate to the output of a function.
For example: f(NULL)=NULL). In XQuery,
however, NULL is usually replaced with a
value. For string functions, such as f(()) = "",
sum(())=0, and so on. This setting specifies
how to deal with such situations when
choosing default SQL syntax for a function.

This attribute must specify one of the
following values:

■ strict – Follow XQuery semantics. Do not
push down if the input can be empty.

■ strict–coalesce – (Default) Follow
XQuery semantics. Push down with the
help of the COALESCE function in SQL.
Only use this value if the database
supports the COALESCE function.

■ lax – Do not follow XQuery semantics.
Generate SQL without the COALESCE
function, such that f(NULL) -> NULL.

See Section 10.7, "Default SQL Syntax for
Functions."

Default: strict-coalesce

<functions>

<function>

This sub-element defines the translation of an
XQuery function(operator) into SQL.

The contents of this sub-element is a SQL
expression that must be generated for the
named function. Parameters are specified as
{0}, {1}, … {n}.

A variable number of parameters is
supported. See Section 10.6, "Specifying SQL
Syntax for Functions" for more information
on the format.

This element is not required if the supported
attribute is set to false.

The contents of this element can be empty. In
this case, the default syntax for this function
is used for SQL generation. A list of default
syntaxes is provided in Section 10.7, "Default
SQL Syntax for Functions."

For examples, see Section 10.2, "Sample
Configurable Relational Provider File."

<functions>

<function>

name (Required) Specifies the QName of a
function. See Section 10.10, "Function and
Type Name Resolution Process."

<functions>

<function>

arity Specifies the arity of the named function. Can
be omitted if function name is
non-ambiguous.

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Configurable Relational Provider Format Description and Reference

Extending Database Support 10-19

<functions>

<function>

supported (Boolean) specifies whether the function
pushdown is supported or not. Disables the
pushdown of a function defined by the
parent provider.

Default: true

<functions>

<function>

infix (Boolean) Specifies whether or not to use
infix formatting style for this function. A SQL
expression in the sub-element contents
specifies the only infix operation in this case.
Parameters are processed automatically.

<casts> This element defines cast operations for push
down.

<casts>

<cast>

Defines translation for cast operations to SQL
for a particular combination of types.

The content of this element is the SQL
expression that must be generated for this
cast operation. The parameter is specified as
{0}.

This element is not required if the supported
attribute is false.

For examples, see Section 10.2, "Sample
Configurable Relational Provider File."

<casts>

<cast>

to

from

These attributes specify the QNames of input
and target XQuery types. If only a local name
is specified, Oracle Data Service Integrator
searches for the type in well-known
namespaces.

For examples, see Section 10.2, "Sample
Configurable Relational Provider File." See
also Section 10.9, "Standard and Oracle Data
Service Integrator Namespaces for Functions
and Types."

<casts>

<cast>

from-subtypes (Boolean) Specifies whether the matching
input type must also match its subtypes
(according to XQuery type hierarchy).

Default: false.

For examples, see Section 10.2, "Sample
Configurable Relational Provider File."

<casts>

<cast>

supported (Boolean) Specifies whether this cast
operation is supported. Intended usage is to
disable cast pushdown of the parent
provider.

Default: true

<limit> This element defines the pushdown of
fn:subsequence(). This element must have
one child element specified. To disable
pushdown of this function, set supported to
false.

<limit> supported (Boolean) Specifies whether the database
supports fn:subsequence() pushdown.

Default: true

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Configurable Relational Provider Format Description and Reference

10-20 Release 12c (12.1.3)

<limit>

<select-top>

Specifies that fn:subsequence() must be
pushed down using the TOP modifier of the
SELECT clause. For example: SELECT TOP n
FROM ...

The content of the select-top element defines
SQL syntax for the select clause modifier. {0}
is bound to the length expression.

Default content value: TOP {0}

<limit>

<select-top>

parameter (Boolean) Specifies whether the TOP value
can be a parameter. For example, whether
SELECT TOP ? FROM ... is supported by the
database.

Default: false

<limit>

<select-top>

composable If set to true, specifies whether to stop SQL
generation after processing fn:subsequence().
If set to false, continues by creating a
subquery for a SELECT TOP ... statement.

Default: false

<limit>

<row-number-functi
on>

Specifies that the fn:subsequence() is a
pushdown using a ROWNUM-like function.

The content of this element defines the SQL
syntax for ROWNUM-like functions
supported by the database. The content
portion is optional.

Default content: ROW_NUMBER() Over(...)

<limit>

<row-number-functi
on>

explicit-order-by (Boolean) Determines whether ORDER BY
ordering expressions will be passed as
arguments to the ROW_NUMBER function.

<limit>

<row-number-functi
on>

split-range-filter (Boolean) Determines whether the range test
should be split between subqueries. (Oracle
ROWNUM pattern)

Default: false

<limit>

<limit-clause>

Specifies that fn:subsequence() should be
translated into SQL as a LIMIT-like clause
added at the end of a SQL query.

Content of the <limit-clause> element defines
SQL syntax for this clause, where {0} and {1}
placeholder bindings depend on the @style
attribute (see below).

Content value is optional.

Default content value: LIMIT {0} OFFSET {1}

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Configurable Relational Provider Format Description and Reference

Extending Database Support 10-21

<limit>

<limit-clause>

kind Defines kind of the accepted subsequence()
function:

■ Range - default - both start and length
expression are used. In this case limit
clause syntax has {0} parameter bound to
the start expression and {1} to the length
expression

■ Top - only top-like subsequence() is
accepted for pushdown. start expression
has to be constant 1. In this case limit
clause syntax has only {0} parameter
which is bound to the length expression

Default value: range

<limit>

<limit-clause>

parameter (Boolean) Specifies whether SQL parameters
can be used in limit clause (as start and/or
length expressions)

Default value: true

<limit>

<limit-clause>

composable (Boolean) Specifies whether SQL generation
should stop after processing fn:subsequence()
(when set to false), or can continue by
creating subquery for SELECT … LIMIT
statement (when set to true).

Default: false

<limit>

<limit-clause>

start-base Integer. 0 or 1. Defines whether start
expression is 0 or 1 - based. Only applicable
when @style = range

Default: 0

<insert>

<auto-column-gener
ator>

Defines a strategy to access auto-generated
columns when inserting data into the
database.

Strategy kind is defined by the kind attribute.

The content of this element is a SQL
expression for certain kinds and empty for
others.

Example:

<insert> <auto-column-generator
kind="sql-post">

SELECT LAST_INSERT_ID()

</auto-column-generator></insert>

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Database Matching

10-22 Release 12c (12.1.3)

10.5 Database Matching
This section describes how Oracle Data Service Integrator determines the best
database match for a given provider. Database matching logic is specified as an
XQuery expression that can access JDBC database metadata through predefined
XQuery external functions.

Matching expressions are specified in the Configurable Relational Provider elements
(Table 10–2) and are evaluated by the Oracle Data Service Integrator XQuery engine.
Expressions can use standard XQuery functions supported by the Oracle Data Service
Integrator XQuery engine as well as additional functions defined by the Configurable
Relational Provider. Database matching XQuery expressions return an xs:boolean
value.

Another use of matching XQuery expressions is to compute the matched database
version (in this case the result must be xs:decimal).

<insert>

<auto-column-gener
ator>

kind A string constant (enumeration) that defines
the key generation strategy. This attribute
must specify one of the following values:

■ jdbc – (Default) Defines the key
generation strategy through the JDBC
API. Content of the key-gen element
must be empty in this case.

■ sql-pre – Run a specified SQL statement
to get the auto-generated key before
issuing an INSERT statement. For
example, use this attribute to get a key
from a sequence-like database object. In
this case, the content of the key-gen
element is the SQL statement that can
use {0} as a placeholder for the sequence
object name (specified by the
dataservice's annotation).

■ sql-post – Run a specified SQL statement
to get the auto-generated key after an
INSERT statement. The content of the
key-gen element is the SQL statement
that must be executed.

properties The attributes of this element contain various
SQL generation and execution properties.
These properties do not have default values;
the parent's value is used if a property is not
set.

<properties> multiple-active-queries
per-connection-support
ed

(Boolean) Specifies whether the database
supports multiple active statements open on
the same connection.

<properties> cancel-query-supported (Boolean) Specifies whether the
jdbc.sql.Statement.cancel() method is
supported by the database and driver.

<properties> query-timeout-supporte
d

(Boolean) Specifies whether the
jdbc.sql.Statement.setQueryTimeout()
method is supported by the database and
driver.

Table 10–2 (Cont.) Configuration Elements and Attributes Description

Element(s) and
Sub-element(s) Attribute(s) Description of Element or Attribute

Database Matching

Extending Database Support 10-23

This section includes these topics:

■ Section 10.5.1, "Rules for Database Matching"

■ Section 10.5.2, "JDBC Metadata Methods to XQuery Functions Mapping"

■ Section 10.5.3, "Additional External XQuery Functions"

10.5.1 Rules for Database Matching
The framework employs matching rules to determine if a given provider is compatible
with a database. During the metadata import process (see Section 10.1.5, "Importing
Relational Source Metadata") the relational provider registry determines which
providers support the database being imported. For successful matches, the base
version offset is also obtained. The base version offset is calculated as:

Base version offset (decimal) = (matched db version – base db version returned by the
provider)

Base version decimals for the standard providers are listed in Table 10–2 in the section
Section 10.1.3, "Relational Providers Included With Oracle Data Service Integrator."

The Datasource Import Wizard uses the base version offset to display providers when
there are multiple matches. The wizard's drop down menu contains providers with the
minimum base version offset (that is, the closest version to the database). The best
match appears at the top of the drop down menu.

For information on the Datasource Import Wizard, see Creating and Updating Physical
Data Services in the Data Services Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/datasrvc/Creating and Updating Physical Data
Services.html.

For example, consider the standard DB2 relational provider. This provider matches all
DB2 versions starting from 8. Its base version is 8. Assume that a new DB2 provider is
created with the Configurable Relational Provider that matches DB2 9 with base
version 9.

During metadata import of a table from the DB2 9 instance, both providers will match
the database. However, for the first provider, the base version offset is 1, but the
second one is be 0. Therefore, the second provider will be preferred over the first one.

10.5.2 JDBC Metadata Methods to XQuery Functions Mapping
This section describes the mapping of a java.sql.DatabaseMetaData instance to a set of
XQuery functions that can be used by a database matching expression.

Mapped interface: java.sql.DatabaseMetaData

Function namespace:

■ prefix = jdbc

■ uri =
http://www.bea.com/ns/aldsp/extensions/rdb/providers/custom/j
dbc

Requirements for mapped methods:

■ No parameters

■ Return type of: boolean, string, or int

Database Matching

10-24 Release 12c (12.1.3)

Table 10–3 lists the java.sql.DatabaseMetaData methods that satisfy these requirements
and their corresponding JDBC methods and XQuery functions.

Exception handling:

■ SQLException, RuntimeException – Rethrows the exception.

■ LinkageError – Returns an empty sequence. This exception occurs if the driver is
compiled against older version of JDBC API.

10.5.3 Additional External XQuery Functions
This section describes additional functions that are available in the database matching
expression, but are not directly mapped from the jdbc.sql.DatabaseMetaData interface.

Function namespace:

■ prefix = cxp

■ uri =
http://www.bea.com/ns/aldsp/extensions/rdb/providers/custom/

Table 10–4 lists and describes the function signatures.

Table 10–3 Java Method to XQuery Function Mapping

Java Method XQuery Function

int getDatabaseMajorVersion() jdbc:getDatabaseMajorVersion() as xs:int?

int getDatabaseMinorVersion() jdbc:getDatabaseMinorVersion() as xs:int?

String getDatabaseProductName() jdbc:getDatabaseProductName() as xs:string?

String getDatabaseProductVersion() jdbc:getDatabaseProductVersion() as xs:string?

int getDriverMajorVersion() jdbc:getDriverMajorVersion() as xs:int?

int getDriverMinorVersion() jdbc:getDriverMinorVersion() as xs:int?

String getDriverName() jdbc:getDriverName() as xs:string?

String getDriverVersion() jdbc:getDriverVersion() as xs:string?

String getURL() jdbc:getURL()as xs:string?

Table 10–4 Function Signatures

Function signature Description

cxp:getDatabaseVersion() as xs:decimal Returns the database version as xs:decimal. The
version is computed based on
java.sql.DatabaseMetaData as follows:

1. Try to detect the version from the string
returned by the
getDatabaseProductVersion() method.
Search for a format: n1.n2.n3. n1, n2, n3 must
be non-negative integers and n3 is optional.
The resulting decimal version is
n1+max(n2,99)*0.01+max(n3,999)*0.00001

2. If Step 1 fails and if
getDatabaseMajorVersion(),
getDatabaseMinorVersion() are
implemented by the driver, then the result is:
major + max(minor,99)*0.01

Specifying SQL Syntax for Functions

Extending Database Support 10-25

10.6 Specifying SQL Syntax for Functions
This section discusses the SQL syntax for functions specified in the Configurable
Relational Provider deployment descriptor. See also Section 10.4.3, "Configurable
Relational Provider Reference" and the example descriptor in Section 10.2, "Sample
Configurable Relational Provider File."

This section includes these topics:

■ Section 10.6.1, "Syntax Overview"

■ Section 10.6.2, "Setting the infix Attribute"

■ Section 10.6.3, "Using a Variable Length Placeholder"

10.6.1 Syntax Overview
Function SQL syntax is specified as a string with placeholders for each parameter. The
syntax defines a SQL fragment to be generated by the relational wrapper when
translating the corresponding XQuery function into SQL. It is specified as the content
of the <function> element.

Example:

<function name="fn:lower">LOWER({0})</functions>

Parameter placeholders start with 0. There can be more than one placeholder with the
same index which means that the argument must be replicated in the generated SQL.

Example:

<function name="fn:substring" arity="2">SUBSTR({0}, {1}, LENGTH({0})-{1}+1)
</function>

Functions with a variable number of arguments can be specified in two different ways:

■ By setting the infix attribute and specifying only a delimiter as the function
syntax

■ By using a variable length placeholder: {...}

These methods are described in the next two sections.

10.6.2 Setting the infix Attribute
The infix attribute of the function element is set as follows:

<function name="fn:concat" infix="true">||</function>

The generated SQL for this example is:

arg1 || arg2 || arg3 || ... || argN

cxp:getDriverVersion() as xs:decimal Same as approach 1, but uses the following
functions from jdbc.sql.DatabaseMetaData:
getDriverVersion(),
getDriverMajorVersion(),
getDriverMinorVersion().

Table 10–4 (Cont.) Function Signatures

Function signature Description

Default SQL Syntax for Functions

10-26 Release 12c (12.1.3)

10.6.3 Using a Variable Length Placeholder
During SQL generation the variable length placeholder {...} is replaced with the
remaining arguments separated by commas.

<function name="fn:concat">CONCAT({...})</function>

The generated SQL is:

CONCAT(arg1,arg2,arg3,….,argN)

If another delimiter is required, it must be specified inside the variable length
placeholder as follows:

{...DELIMITER}

For example:

<function name="fn:concat">COALESCE({... || }, "")</function>

The generated SQL is:

COALESCE(arg1 || arg2 || arg3 || … || argN, "")

10.7 Default SQL Syntax for Functions
The default syntax for a function is used when the function is specified in the
<functions> section of the Configurable Relational Provider configuration file
(Table 10–2), but its syntax is not provided by the user (the <function> element
content is empty). For some functions in this case, the relational provider chooses
default syntax based on the default-syntax-for-empty-input attribute. See
Section 10.4.3, "Configurable Relational Provider Reference" for information on the
default-syntax-for-empty-input attribute.

This section lists the default syntaxes used for the three possible values of the
default-syntax-for-empty-input attribute.

Functions for which the default SQL syntax depends on the
default-syntax-for-empty-input attribute are denoted with an asterisk (*) in
Table 10–6, Table 10–7, and Table 10–8.

These functions are:

■ fn:concat

■ fn:substring with 2 parameters

■ fn:substring with 3 parameters

■ fn:string-length

Note: In this case the delimiter is "|| ".

Table 10–5 default-syntax-for-empty-input Attribute

Attribute Described In

strict Table 10–6

strict-coalesce Table 10–7

lax Table 10–8

Default SQL Syntax for Functions

Extending Database Support 10-27

■ fn:lower-case

■ fn:upper-case

■ fn:sum

If default syntax is not defined for a function, then you must specify the syntax of the
function when you use it. Otherwise, it is an error.

Table 10–6 default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

op:numeric-add {0} + {1}

op:numeric-multiply {0} * {1}

op:numeric-divide {0} / {1}

op:numeric-mod MOD({0}, {1})

fn:abs ABS({0})

fn:ceiling CEILING({0})

fn:floor FLOOR({0})

fn:round FLOOR({0} + 0.5)

fn-bea:sql-round ROUND({0})

* fn:concat COALESCE({0} || {1} || … || {n},
'')

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Arguments are not of type
CLOB or LONG
VARCHAR.

* fn:substring ($str, $pos) if $pos is a subtype of xs:integer

COALESCE(SUBSTRING({0}
FROM {1}), '')

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER)), '')

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

First argument is not of type
CLOB or LONG
VARCHAR.

* fn:substring($str, $pos,
$len)

if $pos and $len are subtypes of
xs:integer

COALESCE(SUBSTRING({0}
FROM {1} FOR {2}), '')

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER) FOR CAST({2}+0.5 AS
INTEGER)), '')

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

First argument is not of type
CLOB or LONG
VARCHAR.

Default SQL Syntax for Functions

10-28 Release 12c (12.1.3)

* fn:string-length COALESCE(CHAR_LENGTH({0}),
0)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Argument is not of type
CLOB or LONG
VARCHAR.

* fn:lower-case COALESCE(LOWER({0}), '')

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Argument is not of type
CLOB or LONG
VARCHAR.

* fn:upper-case COALESCE(UPPER({0}), '')

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

Argument is not of type
CLOB or LONG
VARCHAR.

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with the ESCAPE clause and
'|' as the escape character.

The first argument is not of
type CLOB or LONG
VARCHAR.

The second argument is
SQL constant or parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM {0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM {0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM {0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM {0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND FROM
{0}) AS DECIMAL)

op:hexBinary-equal {0} = {1}

op-bea:hexBinary-not-equa
l

{0} != {1}

fn:empty {0} IS NULL

fn:exists {0} IS NOT NULL

(or as EXISTS if subqueries in the
WHERE clause are supported)

fn:count COUNT (with COUNT DISTINCT
support)

* fn:sum COALESCE(SUM({0}), 0)

COALESCE is not used if at
compile-time it is determined that
input can never be empty (NULL).

fn:min MIN({0})

fn:max MAX({0})

Table 10–6 (Cont.) default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

Default SQL Syntax for Functions

Extending Database Support 10-29

fn:avg AVG({0})

fn-bea:sql-like($str,
$pattern)

{0} LIKE {1} Arguments are not of type
CLOB or LONG
VARCHAR.

fn-bea:sql-like($str,
$pattern, $escape)

{0} LIKE {1} ESCAPE {2} Arguments are not of type
CLOB or LONG
VARCHAR.

fn-bea:left LEFT({0}, {1}) First argument is not of type
CLOB or LONG
VARCHAR.

fn-bea:right RIGHT({0}, {1}) First argument is not of type
CLOB or LONG
VARCHAR.

fn-bea:trim LTRIM(RTRIM({0})) Argument is not of type
CLOB or LONG
VARCHAR.

fn-bea:trim-left LTRIM({0}) Argument is not of type
CLOB or LONG
VARCHAR.

fn-bea:trim-right RTRIM({0}) Argument is not of type
CLOB or LONG
VARCHAR.

fn-bea:repeat REPEAT({0}) Argument is not of type
CLOB or LONG
VARCHAR.

Table 10–7 default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

op:numeric-add {0} + {1}

op:numeric-multiply {0} * {1}

op:numeric-divide {0} / {1}

op:numeric-mod MOD({0}, {1})

fn:abs ABS({0})

fn:ceiling CEILING({0})

fn:floor FLOOR({0})

fn:round FLOOR({0} + 0.5)

fn-bea:sql-round ROUND({0})

* fn:concat {0} || {1} || … || {n} Arguments are not of type CLOB
or LONG VARCHAR.

Arguments must be non–nullable
(as detected by the compiler).

Table 10–6 (Cont.) default-syntax-for-empty-input = strict-coalesce

XQuery function Default SQL syntax Pushdown requirements

Default SQL Syntax for Functions

10-30 Release 12c (12.1.3)

* fn:substring ($str, $pos) if $pos is a subtype of
xs:integer

SUBSTRING({0} FROM {1})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS
INTEGER))

First argument is not of type CLOB
or LONG VARCHAR.

First argument must be
non–nullable (as detected by the
compiler).

* fn:substring($str, $pos,
$len)

if $pos and $len are
subtypes of xs:integer

SUBSTRING({0} FROM {1}
FOR {2})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS
INTEGER) FOR
CAST({2}+0.5 AS
INTEGER))

First argument is not of type CLOB
or LONG VARCHAR.

First argument must be
non–nullable (as detected by the
compiler).

* fn:string-length CHAR_LENGTH({0}) Argument is not of type CLOB or
LONG VARCHAR.

Argument must be non–nullable
(as detected by the compiler).

* fn:lower-case LOWER({0}) Argument is not of type CLOB or
LONG VARCHAR

Argument must be non–nullable
(as detected by the compiler).

* fn:upper-case UPPER({0}) Argument is not of type CLOB or
LONG VARCHAR

Argument must be non–nullable
(as detected by the compiler).

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with the ESCAPE
clause and '|' as escape
character.

The first argument is not of type
CLOB or LONG VARCHAR.

The second argument is SQL
constant or parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM
{0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM
{0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM
{0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM
{0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND
FROM {0}) AS DECIMAL)

op:hexBinary-equal {0} = {1}

Table 10–7 (Cont.) default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

Default SQL Syntax for Functions

Extending Database Support 10-31

op-bea:hexBinary-not-equal {0} != {1}

fn:empty {0} IS NULL

fn:exists {0} IS NOT NULL

(or as EXISTS if subqueries
in the WHERE clause are
supported)

fn:count COUNT (with COUNT
DISTINCT support)

* fn:sum SUM({0}) Argument must be non–nullable
(as detected by the compiler).

fn:min MIN({0})

fn:max MAX({0})

fn:avg AVG({0})

fn-bea:sql-like($str,
$pattern)

{0} LIKE {1} Arguments are not of type CLOB
or LONG VARCHAR.

fn-bea:sql-like($str,
$pattern, $escape)

{0} LIKE {1} ESCAPE {2} Arguments are not of type CLOB
or LONG VARCHAR.

fn-bea:left LEFT({0}, {1}) First argument is not of type CLOB
or LONG VARCHAR.

fn-bea:right RIGHT({0}, {1}) First argument is not of type CLOB
or LONG VARCHAR.

fn-bea:trim LTRIM(RTRIM({0})) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-left LTRIM({0}) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-right RTRIM({0}) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:repeat REPEAT({0}) Argument is not of type CLOB or
LONG VARCHAR.

Table 10–8 default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

op:numeric-add {0} + {1}

op:numeric-multiply {0} * {1}

op:numeric-divide {0} / {1}

op:numeric-mod MOD({0}, {1})

fn:abs ABS({0})

fn:ceiling CEILING({0})

fn:floor FLOOR({0})

fn:round FLOOR({0} + 0.5)

fn-bea:sql-round ROUND({0})

Table 10–7 (Cont.) default-syntax-for-empty-input = strict

XQuery function Default SQL syntax Pushdown requirements

Default SQL Syntax for Functions

10-32 Release 12c (12.1.3)

* fn:concat {0} || {1} || … || {n} Arguments are not of type CLOB
or LONG VARCHAR.

* fn:substring ($str, $pos) if $pos is a subtype of
xs:integer

SUBSTRING({0} FROM {1})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS
INTEGER))

First argument is not of type
CLOB or LONG VARCHAR.

* fn:substring($str, $pos,
$len)

if $pos and $len are
subtypes of xs:integer

SUBSTRING({0} FROM {1}
FOR {2})

else

SUBSTRING({0} FROM
CAST({1}+0.5 AS INTEGER)
FOR CAST({2}+0.5 AS
INTEGER))

First argument is not of type
CLOB or LONG VARCHAR.

* fn:string-length CHAR_LENGTH({0}) Argument is not of type CLOB or
LONG VARCHAR.

* fn:lower-case LOWER({0}) Argument is not of type CLOB or
LONG VARCHAR.

* fn:upper-case UPPER({0}) Argument is not of type CLOB or
LONG VARCHAR.

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with ESCAPE clause
and '|' as escape character

The first argument is not of type
CLOB or LONG VARCHAR.

The second argument is SQL
constant or parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM {0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM
{0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM
{0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM
{0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND
FROM {0}) AS DECIMAL)

op:hexBinary-equal {0} = {1}

op-bea:hexBinary-not-equal {0} != {1}

fn:empty {0} IS NULL

Table 10–8 (Cont.) default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

Translating Built-In XQuery Operators Into SQL

Extending Database Support 10-33

10.8 Translating Built-In XQuery Operators Into SQL
The XQuery Functions and Operators specification defines built-in operators into
which arithmetic and comparison operations are translated. For some operations,
Oracle Data Service Integrator defines additional operators that it uses for evaluation.
These additional operators can also be used for specifying XQuery to SQL translation.

For each of the following arithmetic operations, Oracle Data Service Integrator defines
more specific operations for the following types: integer, decimal, double, float. These
specific operations can be used to specify a better type match when defining a SQL
generation rule.

■ op:numeric-add

■ op:numeric-subtract

fn:exists {0} IS NOT NULL

(or as EXISTS if subqueries
in the WHERE clause are
supported)

fn:count COUNT (with COUNT
distinct support)

* fn:sum SUM({0})

fn:min MIN({0})

fn:max MAX({0})

fn:avg AVG({0})

fn-bea:sql-like($str,
$pattern)

{0} LIKE {1} Arguments are not of type CLOB
or LONG VARCHAR.

fn-bea:sql-like($str,
$pattern, $escape)

{0} LIKE {1} ESCAPE {2} Arguments are not of type CLOB
or LONG VARCHAR.

fn-bea:left LEFT({0}, {1}) First argument is not of type
CLOB or LONG VARCHAR.

fn-bea:right RIGHT({0}, {1}) First argument is not of type
CLOB or LONG VARCHAR.

fn-bea:trim LTRIM(RTRIM({0})) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-left LTRIM({0}) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:trim-right RTRIM({0}) Argument is not of type CLOB or
LONG VARCHAR.

fn-bea:repeat REPEAT({0}) Argument is not of type CLOB or
LONG VARCHAR.

Note: For references to the XQuery specifications, see Supported
XQuery Specifications in the XQuery and XQSE Developer's Guide at
http://download.oracle.com/docs/cd/E13162_
01/odsi/docs10gr3/xquery/intro.html#wp1109723.

Table 10–8 (Cont.) default-syntax-for-empty-input = lax

XQuery function Default SQL syntax Pushdown requirements

Translating Built-In XQuery Operators Into SQL

10-34 Release 12c (12.1.3)

■ op:numeric-multiply

■ op:numeric-divide

■ op:numeric-integer-divide

■ op:numeric-mod

For example, the following four operations are defined for op:numeric-add:

■ op-bea:integer-add

■ op-bea:decimal-add

■ op-bea:float-add

■ op-bea:double-add

Comparison operations in the XQuery are defined by three operators:

■ op:<type>-equals

■ op:<type>-less-than

■ op:<type>-greater-than

Oracle Data Service Integrator adds three more operations for each type:

■ op-bea:<type>-not-equals

■ op-bea:<type>-less-than-or-equals

■ op-bea:<type>-greater-than-or-equals

For numeric types, each operator op-bea:numeric-<comparison_op> is further expanded
into four numeric types:

op-bea:integer-<comparison_op>, op-bea:decimal-<comparison_op>,
op-bea:double-<comparison_op>, op-bea:float-<comparison_op>.

Additional numeric comparisons added by Oracle Data Service Integrator follow the
same pattern. For example

op-bea:numeric-not-equals is expanded into:

■ op-bea:integer-not-equals

■ op-bea:decimal-not-equals

■ op-bea:double-not-equals

■ op-bea:float-not-equals

All six string comparison operators are defined as Oracle Data Service Integrator
specific operators:

■ op-bea:string-equals

■ op-bea:string-less-than

■ op-bea:string-greater-than

■ op-bea:string-not-equals

Note: The function operation prefixes used in the expanded
operations (such as op-bea) are discussed in "Standard and Oracle
Data Service Integrator Namespaces for Functions and Types" on page
-35.

Function and Type Name Resolution Process

Extending Database Support 10-35

■ op-bea:string-less-than-or-equals

■ op-bea:string-greater-than-or-equals

10.9 Standard and Oracle Data Service Integrator Namespaces for
Functions and Types

Table 10–9 lists the standard and Oracle Data Service Integrator namespaces for
functions and types. Table 10–10 lists and describes each of the type namespaces.

10.10 Function and Type Name Resolution Process
The Relational Wrapper Extension Framework looks up functions, operators, and
types by name as follows:

1. Attempt a lookup using the specified QName. If the object is found, return it.

2. If the namespace is empty or the prefix is not specified, loop through all
commonly used namespaces for this object kind (see Section 10.9, "Standard and
Oracle Data Service Integrator Namespaces for Functions and Types") and try to
find the object in each of these namespaces.

For example, suppose the following function definition exists:

<function name="round">ROUND({0})</function>

First, that name is resolved to a QName in the default element namespace and looked
up. Suppose then that the XQuery function with this name is not found (for example,
if there was no default namespace used in the XML document).

Then the system will try start searching for the following functions (in this order):
fn:round, op:round, fn-bea:round, op-bea:round. The system will find fn:round and
register it with the specified SQL syntax.

Table 10–9 Function and operators namespaces

Prefix Namespace Description

fn http://www.w3.org/2004/07/xpath-functions Standard XQuery functions

op http://www.w3.org/2004/07/xpath-operators Standard XQuery operators

fn-bea http://www.bea.com/xquery/xquery-functions Oracle Data Service
Integrator extension
functions

op-bea http://www.bea.com/xquery/xquery-operators Oracle Data Service
Integrator extension
operators

Table 10–10 Type namespaces

Prefix Namespace Description

xs http://www.w3.org/2001/XMLSchema XML Schema types

xdt http://www.w3.org/2004/07/xpath-datatypes Additional XQuery types

dt-bea http://www.bea.com/xquery/xquery-datatypes Additional Oracle Data
Service Integrator types.
Currently only one:
dt-bea:numeric (common
numeric type)

Abstract SQL Providers

10-36 Release 12c (12.1.3)

A similar lookup process is applied for types when reading cast operation definitions.
For types, the system automatically searches in xs, xdt and dt-bea namespaces.

Note that the arity attribute is also optional and only required to disambiguate
between functions with the same name, for example, a substring with 2 and 3
arguments.

10.11 Abstract SQL Providers
Oracle Data Service Integrator provides a group of three abstract base classes that
provide functionality to the Configurable Relational Provider. The
AbstractSQLProvider class is the default parent class of the Configurable Relational
Provider.

You can specify an abstract provider class in the Configurable Relational Provider's
deployment descriptor with the parent element. See Section 10.3, "Using the
Configurable Relational Provider."

This section discusses the abstract relational provider classes, and contains these
sections:

■ Section 10.11.1, "AbstractSQLProvider"

■ Section 10.11.2, "AbstractSQL89Provider"

■ Section 10.11.3, "AbstractSQL92Provider"

10.11.1 AbstractSQLProvider
AbstractSQLProvider is an abstract base class. All other abstract and concrete
relational provider classes extend this class. This class is used as a parent provider
when the parent is not specified in the deployment descriptor of a provider; therefore,
this class is not explicitly registered in the provider registry.

Table 10–11 summarizes the level of SQL support provided by AbstractSQLProvider:

Table 10–12 lists the supported functions and operators for AbstractSQLProvider.

Table 10–11 AbstractSQLProvider Features

Feature Status

Standard JDBC datatypes Supported

Trivial select-project queries (for example:
select ... from ... where)

Supported

Joins, group by, and order by Not supported

Catalogs and schemas when addressing tables Not supported

Catalog, schema, and table quotes Set to "empty string"

Catalog and schema separator Set to '.' (although
separators are not used
for queries generated by
this provider)

Runtime properties All set to false.

Abstract SQL Providers

Extending Database Support 10-37

10.11.2 AbstractSQL89Provider
AbstractSQL89Provider extends AbstractSQLProvider (see Section 10.11.1,
"AbstractSQLProvider"). This class adds support for additional clauses, functions, and
updates. The AbstractSQL89Provider class includes these features:

■ Supports SQL89-style inner joins (for example, select … from A,B where
A.<x> = B.<x>).

Table 10–12 Supported Functions and Operators for AbstractSQLProvider

XQuery function SQL Syntax
Pushdown Requirements /
Comments

and, or, fn:not AND, OR, NOT None.

op:numeric-equal

op:numeric-less-than

op:numeric-greater-than

op-bea:numeric-less-than-or-equal

op-bea:numeric-greater-than-or-equal

op-bea:numeric-not-equal

=, <, >, <=, >=, !=

op-bea:string-equal

op-bea:string-less-than

op-bea:string-greater-than

op-bea:string-less-than-or-equal

op-bea:string-greater-then-or-equal

op-bea:string-not-equal

=, <, >, <=, >=, != Both arguments are not
CLOB or LONG VARCHAR

op:dateTime-equal

op:dateTime-less-than

op:dateTime-greater-than

op-bea:dateTime-less-than-or-equal

op-bea:dateTime-greater-than-or-equal

op-bea:dateTime-not-equal

=, <, >, <=, >=, != None.

op:date-equal

op:date-less-than

op:date-greater-than

op-bea:date-less-than-or-equal

op-bea:date-greater-than-or-equal

op-bea:date-not-equal

=, <, >, <=, >=, != None.

op:time-equal

op:time-less-than

op:time-greater-than

op-bea:time-less-than-or-equal

op-bea:time-greater-than-or-equal

op-bea:time-not-equal

=, <, >, <=, >=, != None.

op:hexBinary-equal

op-bea:hexBinary-not-equal

=, != Only if both arguments are
BINARY or VARBINARY.

Abstract SQL Providers

10-38 Release 12c (12.1.3)

■ Supports order by column (null order is assumed to be 'low').

■ Supports group by column (and aggregate functions).

■ Schemas are used for table addressing (using dot as a separator).

■ Supports subqueries in where clause.

Table 10–13 lists the supported functions and operators for AbstractSQL89Provider.
These functions and operators are in addition to the ones provided by the parent class,
AbstractSQLProvider.

10.11.3 AbstractSQL92Provider
AbstractSQL92Provider extends AbstractSQL89Provider (see Section 10.11.2,
"AbstractSQL89Provider"). This class adds support for SQL92-style joins (inner and
outer), subqueries, and other features. The AbstractSQL92Provider class supports:

■ Inner and outer-joins

■ Subqueries in from clause

Table 10–13 Supported Functions and Operators for AbstractSQL89Provider

XQuery function SQL Syntax
Pushdown Requirements /
Comments

op:numeric-add

op:numeric-subtract

op:numeric-multiply

op:numeric-divide (except
op-bea:integer-divide)

+, -, *, / None.

fn:exists {0} IS NOT NULL

(EXISTS in the WHERE
clause is not supported)

None.

fn:empty {0} IS NULL None.

fn:count COUNT (with COUNT
DISTINCT support)

None.

fn:sum SUM({0}) Note that this function does not
match XQuery semantics. For empty
(NULL) input, the function returns
empty (NULL) instead of 0.

XQuery specifies that SUM(())=0;
where () is an empty sequence. This
provider translates the function to
SQL as SUM(...). However, in SQL,
SUM(NULL)=NULL, which is
equivalent to () in XQuery.

fn:min MIN({0}) None.

fn:max MAX({0}) None.

fn:avg AVG({0}) None.

fn-bea:sql-like($str, $pattern) {0} LIKE {1} First argument is not CLOB or LONG
VARCHAR.

Second (and third) arguments are a
SQL constant or parameter.

fn-bea:sql-like($str, $pattern,
$escape)

{0} LIKE {1} ESCAPE {2} None.

Abstract SQL Providers

Extending Database Support 10-39

■ Order by and group by expression

■ Case expressions

■ Updates (update/identity-fetch – JDBC kind)

Table 10–14 lists the supported functions and operators for AbstractSQL92Provider.
These functions and operators are in addition to the ones provided by the parent class,
AbtractSQL89Provider.

Table 10–14 Supported Functions and Operators for AbstractSQL92Provider

XQuery function SQL Syntax
Pushdown Requirements /
Comments

fn:concat COALESCE({0} || {1} || …
|| {n}, '')

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Arguments are not of type
CLOB or LONG VARCHAR.

fn:upper-case COALESCE(UPPER({0},'')

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Argument is not of type CLOB
or LONG VARCHAR.

fn:lower-case COALESCE(LOWER({0},'')

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Argument is not of type CLOB
or LONG VARCHAR.

fn:substring ($str, $pos) if $pos is a subtype of
xs:integer

COALESCE(SUBSTRING({0}
FROM {1}), '')

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER)), '')

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

First argument is not of type
CLOB or LONG VARCHAR.

fn:substring($str, $pos, $len) if $pos and $len are subtypes
of xs:integer

COALESCE(SUBSTRING({0}
FROM {1} FOR {2}), '')

else

COALESCE(SUBSTRING({0}
FROM CAST({1}+0.5 AS
INTEGER) FOR CAST({2}+0.5
AS INTEGER)), '')

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

First argument is not of type
CLOB or LONG VARCHAR.

Abstract SQL Providers

10-40 Release 12c (12.1.3)

fn:string-length COALESCE(CHAR_
LENGTH({0}), 0)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

Argument is not of type CLOB
or LONG VARCHAR.

fn:contains,

fn:starts-with,

fn:ends-with

LIKE with ESCAPE clause and
'|' as escape character

The first argument is not of
type CLOB or LONG
VARCHAR.

The second argument is SQL
constant or parameter.

fn:year-from-dateTime,

fn:year-from-date

EXTRACT(YEAR FROM {0})

fn:month-from-dateTime

fn:month-from-date

EXTRACT(MONTH FROM
{0})

fn:day-from-dateTime

fn:day-from-date

EXTRACT(DAY FROM {0})

fn:hours-from-dateTime,

fn:hours-from-time

EXTRACT(HOUR FROM {0})

fn:minutes-from-dateTime,

fn:minutes-from-time

EXTRACT(MINUTE FROM
{0})

fn:seconds-from-dateTime,

fn:seconds-from-time

CAST(EXTRACT(SECOND
FROM {0}) AS DECIMAL)

fn:sum COALESCE(SUM({0}), 0)

COALESCE is not used if at
compile-time it is determined
that input can never be empty
(NULL).

SUM(DISTINCT …) is
supported

fn:min MIN(DISTINCT …) supported

fn:max MAX(DISTINCT …)
supported

fn:avg AVG(DISTINCT …)
supported

fn-bea:left SUBSTRING({0} FROM 1 FOR
{1})

Argument is not of type CLOB
or LONG VARCHAR.

fn-bea:trim TRIM (BOTH ' ' FROM {0}) Argument is not of type CLOB
or LONG VARCHAR.

fn-bea:trim-left TRIM(LEADING ' ' FROM {0}) Argument is not of type CLOB
or LONG VARCHAR.

fn-bea:trim-right TRIM(TRAILING' ' FROM {0}) Argument is not of type CLOB
or LONG VARCHAR.

fn-bea:date-from-dateTime CAST({0} AS DATE)

Table 10–14 (Cont.) Supported Functions and Operators for AbstractSQL92Provider

XQuery function SQL Syntax
Pushdown Requirements /
Comments

Abstract SQL Providers

Extending Database Support 10-41

Table 10–15 lists the cast operations that are pushed down by AbstractSQL92Provider.

Table 10–15 Supported Cast Operations for AbstractSQL92Provider

Source Type Target Type SQL Syntax Comments

subtypes of xs:int xs:string CAST({0} AS
VARCHAR(11))

xs:string xs:double CAST({0} AS DOUBLE
PRECISION)

Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:double

xs:string xs:float CAST({0} AS REAL) Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:float

xs:string xs:int CAST({0} AS INT) Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:int

xs:string xs:short CAST({0} AS
SMALLINT)

Argument is not of type
CLOB or LONG
VARCHAR.

subtypes of numeric xs:short

xs:dateTime xs:date CAST({0} AS DATE)

Abstract SQL Providers

10-42 Release 12c (12.1.3)

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Oracle Data Service Integrator Administration
	1.1 Administering Oracle Data Service Integrator
	1.1.1 Securing Data
	1.1.2 Caching Query Results
	1.1.3 Viewing Metadata

	1.2 Understanding Oracle Data Service Integrator-Enabled WebLogic Server Domains
	1.2.1 Understanding the Relationship between Oracle Data Service Integrator and WebLogic Domains
	1.2.1.1 Creating a New Domain
	1.2.1.2 Provisioning an Existing Domain for Oracle Data Service Integrator

	1.2.2 Understanding Console Users
	1.2.3 Configuring SSO for Clients

	1.3 Introducing the Oracle Data Service Integrator Administration Console
	1.3.1 Oracle Data Service Integrator Administration Console Components

	1.4 Server Classpath Settings

	2 Getting Started with Oracle Data Service Integrator Administration
	2.1 Starting and Stopping WebLogic Server
	2.1.1 Starting the Server
	2.1.2 Stopping the Server

	2.2 Launching Oracle Data Service Integrator Administration Console
	2.3 Exploring Oracle Data Service Integrator Administration Console
	2.3.1 Using the Navigation Pane
	2.3.1.1 Change Center and Configuration Locking
	2.3.1.2 Pending Changelist
	2.3.1.3 Navigation Tree and Category List

	2.3.2 Using the Workspace Content Area

	3 Deploying Dataspaces
	3.1 Introduction
	3.2 Creating a New Dataspace
	3.3 Deleting a Dataspace
	3.4 Deploying Dataspaces on a Target Server
	3.4.1 Deploying a Dataspace
	3.4.2 Deploying a Web Service Map on a Cluster

	3.5 Importing Dataspace Artifacts
	3.6 Exporting Dataspace Artifacts

	4 Configuring Oracle Data Service Integrator Resources
	4.1 Configuring the Cache and Log for a Dataspace
	4.2 Using the Physical Sources Category
	4.2.1 Viewing Physical Data Source Locations
	4.2.2 Modifying Data Source End Points
	4.2.3 Substituting SQL Statements
	4.2.3.1 How SQL Statement Substitution Works
	4.2.3.2 Requirements for SQL Statement Substitution
	4.2.3.3 Creating Substitute SQL Query Statements
	4.2.3.4 SQL Statement Substitution Example

	4.3 Setting the Server Resources
	4.4 Item-based Memory Management
	4.5 Using Work Managers With Oracle Data Service Integrator
	4.5.1 Creating and Configuring Work Managers
	4.5.2 Sharing Work Manager Constraints

	4.6 Using Administrative Properties
	4.7 Monitoring Active Queries and Updates
	4.8 Setting the Transaction Isolation Level
	4.9 Preloading Oracle Data Service Integrator Projects and Dataspaces

	5 Securing Oracle Data Service Integrator Resources
	5.1 Introduction to Oracle Data Service Integrator Security
	5.2 Understanding Runtime Security Policies
	5.2.1 Definition of a Securable Resource
	5.2.1.1 Allowing Anonymous Access

	5.3 Creating and Applying Runtime Security Policies
	5.4 Configuring Dataspace-Level Security
	5.4.1 Specifying Runtime and WSDL Access Service Accounts
	5.4.1.1 Specifying Service Accounts

	5.4.2 Working with XQuery Functions for Security
	5.4.2.1 Creating an XQuery Function for Security
	5.4.2.2 Applying an XQuery Function for Security

	5.4.3 Data Redaction Options for Data Elements
	5.4.3.1 Data Redaction Conditions
	5.4.3.2 Specifying the Data Redaction Behavior
	5.4.3.3 Encryption-Based Data Redaction Examples

	5.4.4 Understanding and Using Service Accounts
	5.4.4.1 Creating a Service Account

	5.4.5 Exporting Access Control Resources

	5.5 Configuring Data Service and Operation-Level Security
	5.5.1 Creating Data Service Runtime Security Policies
	5.5.2 Cascading Element-Level Security to Child Elements
	5.5.3 Creating and Configuring Security Policies for Operations
	5.5.4 Configuring Data Element-level Security
	5.5.4.1 Additional Data Element Security Considerations

	5.5.5 Securing Native Web Services
	5.5.6 Creating Security Policies for User-Defined Security Resources

	5.6 Working with Administrative Access Control Policies
	5.6.1 Assigning Entitlements
	5.6.1.1 Gaining Administrative Access After a System Lockout

	5.6.2 Taking Lock and Edit Capability

	6 Viewing Native Web Services
	6.1 Viewing Native Web Service Artifacts
	6.1.1 Using the General Tab
	6.1.1.1 Test the Generated Web Service
	6.1.1.2 View the WSDL
	6.1.1.3 Export the Static JAR File

	6.1.2 Using the Operations Tab
	6.1.3 Using the Data Lineage Tab

	6.2 Generating a Web Services Mediator Client JAR File
	6.3 Generating a Mediator Client JAR File

	7 Viewing Metadata Using the Service Explorer
	7.1 Introducing Service Explorer
	7.2 Using the Service Explorer
	7.2.1 Web Browser Requirements for Data Lineage Graph
	7.2.2 Analyzing and Viewing Data Services Metadata
	7.2.2.1 Data Service Lineages
	7.2.2.2 Data Lineage Viewing Options

	7.2.3 Viewing Data Service Functions Metadata
	7.2.3.1 Data Service Function Lineages
	7.2.3.2 Cyclic Dependency

	7.2.4 Viewing Web Service Metadata

	7.3 Searching Metadata
	7.3.1 Search Guidelines
	7.3.2 Performing a Basic Metadata Search
	7.3.3 Performing an Advanced Metadata Search
	7.3.4 Generating Reports

	8 Configuring Query Results Cache
	8.1 Understanding Results Caching
	8.1.1 Caching API

	8.2 Setting Up Caching
	8.2.1 Step 1: (Optional) Run the SQL Script to Create the Cache Tables
	8.2.1.1 Modifying the Cache Table Structure

	8.2.2 Step 2: Create the JDBC Data Source for the Cache Database
	8.2.3 Step 3: Specify the Cache Data Source and Table
	8.2.4 Step 4: Enabling Caching by Function
	8.2.4.1 Caching Identity Keys for Security

	8.3 Monitoring and Purging Data Cache
	8.3.1 Purging Data Cache
	8.3.1.1 Purging the Cache for a Dataspace
	8.3.1.2 Purging the Cache for a Function

	9 Working With Audit and Log Information
	9.1 Auditing
	9.1.1 Audit Data Structure
	9.1.2 Setting Global Audit Properties
	9.1.2.1 Auditing Severity Levels

	9.1.3 Setting Individual Auditing Properties
	9.1.3.1 Admin Audit Properties
	9.1.3.2 Common Audit Properties
	9.1.3.3 Query Audit Properties
	9.1.3.4 Update Audit Properties

	9.1.4 Function-level Auditing
	9.1.5 Retrieving Audit Information
	9.1.5.1 WebLogic Server Security Framework
	9.1.5.2 Oracle Data Service Integrator Client API
	9.1.5.2.1 Initializing the RequestConfig Class
	9.1.5.2.2 Passing the RequestConfig Object
	9.1.5.2.3 Filtering Audit Data
	9.1.5.2.4 Retrieving Data Service Audit
	9.1.5.2.5 Retrieving Audit Properties

	9.2 Monitoring the Server Log
	9.3 Monitoring a WebLogic Domain
	9.4 Using Other Monitoring Tools

	10 Extending Database Support
	10.1 Introduction
	10.1.1 General Use Cases
	10.1.2 Overview of the Extension Framework Architecture
	10.1.3 Relational Providers Included With Oracle Data Service Integrator
	10.1.4 Supported Features
	10.1.5 Importing Relational Source Metadata
	10.1.6 Related Reading

	10.2 Sample Configurable Relational Provider File
	10.3 Using the Configurable Relational Provider
	10.3.1 Summary of Basic Configuration Steps
	10.3.2 Deploying the Relational Provider
	10.3.2.1 Adding a Provider
	10.3.2.2 Removing a Provider

	10.4 Configurable Relational Provider Format Description and Reference
	10.4.1 Overview of Primary XML Elements
	10.4.2 Overview of the <custom-rdb-provider> Element
	10.4.3 Configurable Relational Provider Reference

	10.5 Database Matching
	10.5.1 Rules for Database Matching
	10.5.2 JDBC Metadata Methods to XQuery Functions Mapping
	10.5.3 Additional External XQuery Functions

	10.6 Specifying SQL Syntax for Functions
	10.6.1 Syntax Overview
	10.6.2 Setting the infix Attribute
	10.6.3 Using a Variable Length Placeholder

	10.7 Default SQL Syntax for Functions
	10.8 Translating Built-In XQuery Operators Into SQL
	10.9 Standard and Oracle Data Service Integrator Namespaces for Functions and Types
	10.10 Function and Type Name Resolution Process
	10.11 Abstract SQL Providers
	10.11.1 AbstractSQLProvider
	10.11.2 AbstractSQL89Provider
	10.11.3 AbstractSQL92Provider

