
Oracle® Fusion Middleware
Developer's Guide for Oracle SOA Core Extension

12c (12.1.3)

E37422-03

July 2015

Describes how to use SOA Core Extension to conceptualize
projects. Describes how to implement new services that extend
Process Integration Packs. Use the information in this guide to
help ensure that the solutions you develop can be upgraded
and supported.

Oracle Fusion Middleware Developer's Guide for Oracle SOA Core Extension, 12c (12.1.3)

E37422-03

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... xxv

Audience .. xxv

Oracle AIA Guides ... xxv

Related Guides .. xxv

Documentation Accessibility .. xxv

Conventions.. xxvi

1 Using SOA Core Extensions for AIA Development

AIA Development Using SOA Core Extension.. 1-1

Understanding AIA.. 1-2

AIA Foundation Pack .. 1-2

AIA Pre-built Integrations and Process Integration Packs (PIPs) ... 1-2

AIA Integration Types.. 1-2

AIA Integration Flows ... 1-2

How to Use this Developer's Guide... 1-3

2 Building AIA Integration Flows

Setting up Development and Test Environments .. 2-1

Getting a Quick Start on your AIA Development ... 2-1

How to Set Up AIA Workstation.. 2-1

AIA Artifacts in Various Integration Styles .. 2-11

Integration Through Native Application Interfaces Using the Oracle Applications

Technology Infrastructure ... 2-12

Understanding Integration Styles with Integration Framework... 2-12

Bulk Data Processing ... 2-17

Integration Style Choice Matrix ... 2-17

Development Tasks for AIA Artifacts.. 2-18

Identifying the EBO.. 2-19

Designing an Oracle AIA Integration Flow.. 2-19

Identifying and Creating the EBS... 2-21

Constructing the ABCSs .. 2-21

Enabling and Registering Participating Applications... 2-21

iii

Identifying and Creating the EBF .. 2-26

Testing an Oracle AIA Integration Flow.. 2-26

3 Implementing Direct Integrations

Understanding Direct Integrations .. 3-1

Using the Application Business Flow Design Pattern for Direct Integrations 3-2

Finding the Correct Granularity ... 3-2

Handling Transactions ... 3-3

Building an ABF as a Transactional Composite ... 3-3

Achieving Transactionality in the ABF ... 3-3

Enabling Outbound Interaction with Applications ... 3-4

Using JCA Adapters... 3-4

Using Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP)...................................... 3-4

Using JMS Queues.. 3-4

Using Adapters in a Composite or as a Separate Composite .. 3-4

Invoking an ABF ... 3-4

Handling Errors .. 3-5

Using Direct Integration Services... 3-5

Using the Fault Management Framework.. 3-5

Securing the Service.. 3-6

Security Recommendations for OWSM Policies for Authentication .. 3-6

Attaching OWSM Policies to the Composites.. 3-7

Using Cross References.. 3-7

Naming Conventions and Standards... 3-8

Additional Guidelines for Naming Services .. 3-8

Annotating Composites ... 3-9

Annotating WSDLs .. 3-11

Service Configuration... 3-12

Extending Direct Integrations ... 3-12

Extending XSLs... 3-12

Extending Services ... 3-13

Guidelines for Enabling Customizations.. 3-13

4 Developing and Deploying Custom XPath Functions

Implementing a Function in Java as a Java XPath Class ... 4-1

Naming Standards for Custom XPath Functions .. 4-2

Supported Data Types ... 4-3

Deploying the XPath/XSL Function in JDeveloper... 4-3

Deploying the XPath/XSL Function in the Application Server... 4-4

5 Designing and Developing Enterprise Business Services

Introduction to Enterprise Business Services ... 5-1

Understanding EBS Types... 5-2

iv

Working with the Enterprise Business Service Library .. 5-2

Designing the EBS... 5-3

Understanding Design Guidelines .. 5-3

Understanding Design Considerations... 5-3

Establishing the MEP of a New Process EBS.. 5-4

How to Establish the MEP for a New Process EBS.. 5-5

How to Handle Errors ... 5-5

How to Secure the EBS .. 5-6

How to Configure Transactions.. 5-6

How to Guarantee Delivery.. 5-6

How to Define the EBS Service Contract .. 5-6

Constructing the WSDL for the Process EBS .. 5-6

Introduction to WSDL Construction for the Activity Service EBS.. 5-6

How to Complete the <definitions> Section .. 5-7

How to Define Message Structures.. 5-7

How to Check for WS-I Basic Profile Conformance.. 5-8

Working with Message Routing ... 5-8

Creating Routing Rules ... 5-8

Routing at the EBS.. 5-10

Guidelines for EBS Routing Rules ... 5-11

How to Identify the Target System at EBS.. 5-11

Building EBS Using Oracle Mediator .. 5-12

How to Develop the Oracle Mediator Service ... 5-12

Implementing the Fire-and-Forget Message Exchange Pattern... 5-13

How to Implement Fire-and-Forget Pattern with EBS One-Way Calls 5-13

Creating EBS WSDLs ... 5-14

Creating Mediator Routing Services for Asynchronous Fire-and-Forget Patterns with a

One-Way Call EBS... 5-15

Asynchronous Fire-and-Forget MEP Error Handling Using Compensatory Operations ... 5-16

How to Invoke the Compensate Operation of EBS ... 5-16

How to Enable Routing Rules in Compensate Operation Routing Service........................... 5-17

Implementing the Synchronous Request-Response Message Exchange Pattern 5-18

How to Implement Synchronous Request-Reply Message Exchange Patterns in EBS........ 5-18

How to Create Mediator Projects for the Synchronous Request-Response MEP 5-18

How to Create Routing Services for the Synchronous Request-Response MEP................... 5-19

How to Implement Error Handling for the Synchronous Request-Response MEP 5-19

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern........ 5-19

How to Implement the Request-Delayed Response Pattern with the Two One-Way Calls

of the EBS ... 5-19

Creating Mediator Routing Services for Asynchronous Request-Delayed Response

Patterns with Two One-Way Call EBS ... 5-20

Asynchronous Request-Delayed Response MEP Error Handling .. 5-23

v

6 Designing Application Business Connector Services

Introduction to ABCS ... 6-1

ABCS Types ... 6-2

Designing ABCS - Key Tasks .. 6-3

Defining the ABCS Contract ... 6-4

Defining the Role of the ABCS ... 6-4

Constructing ABM Schemas ... 6-6

Analyzing the Participating Application Integration Capabilities ... 6-6

Identifying the MEP ... 6-7

Introduction to MEPs... 6-7

Choosing the Appropriate MEP... 6-8

Technology Options.. 6-11

Outbound Interaction with the Application... 6-11

Using BPEL for Building ABCS.. 6-12

7 Constructing the ABCS

Constructing an ABCS ... 7-1

Prerequisites .. 7-3

ABCS as a Composite Application .. 7-4

How Many Components Must Be Built .. 7-4

Constructing an ABCS Composite Using JDeveloper... 7-5

How to Construct the ABCS Composite Using JDeveloper... 7-5

Developing the BPEL Process... 7-6

How to Create References, Services, and Components .. 7-7

Moving Abstract Service WSDLs in MDS .. 7-7

Implementing the Fire-and-Forget MEP ... 7-8

When to Use Compensating Services.. 7-9

How to Invoke the Compensating Service ... 7-9

Additional Tasks Required in Provider ABCS to Implement This MEP................................ 7-10

How to Ensure Transactions ... 7-10

How to Handle Errors ... 7-10

Implementing the Asynchronous Request Delayed Response MEP .. 7-10

How to Populate the EBM Header for Asynchronous-Delayed Response............................ 7-11

Setting Correlation for the Asynchronous Request-Delayed Response MEP 7-13

Programming Models for Handling Error Response in the Asynchronous Request-

Delayed Response MEP ... 7-13

What Tasks Are Required in Provider ABCS to Implement This MEP 7-16

Implementing Provider ABCS in an Asynchronous Message Exchange Scenario 7-16

How to Implement the Asynchronous MEP .. 7-16

Using the Programming Models for the Request-Delayed Response Pattern 7-18

How to Ensure Transactions in Services ... 7-19

How to Handle Errors in the Asynchronous Request-Delayed Response MEP................... 7-19

vi

Implementing Synchronous Request-Response Message Exchange Scenario 7-19

How to Ensure Transactions in Services ... 7-20

How to Handle Errors in the Synchronous Request-Response MEP 7-20

How to Optimize the Services to Improve Response Time.. 7-20

Invoking Enterprise Business Services .. 7-20

Create ... 7-21

Update.. 7-22

Delete.. 7-24

Sync .. 7-25

Validate .. 7-26

Process.. 7-27

Query.. 7-28

Invoking the ABCS ... 7-36

How to Invoke an ABCS Directly from an Application ... 7-37

How to Invoke an ABCS Using Transport Adapters .. 7-37

When Does an Enterprise Business Service Invoke an ABCS.. 7-37

8 Completing ABCS Development

Developing Extensible ABCS.. 8-1

Introduction to Enabling Requester ABCS for Extension... 8-1

Introduction to Enabling Provider ABCS for Extension... 8-4

How to Design Extensions-Aware ABCS.. 8-7

Designing an ABCS Composite with Extension .. 8-9

Defining Service at Extension Points... 8-10

Defining a Service Using an Abstract WSDL ... 8-11

How to Specify a Concrete WSDL at Deployment Time .. 8-11

Designing Extension Points in the ABCS BPEL Process... 8-12

How to Set Up the Extension Point Pre-ProcessABM... 8-13

How to Set Up the Extension Point Pre-ProcessEBM ... 8-14

How to Test the Extensibility with Servlet as Sample Extension Service............................... 8-15

Handling Errors and Faults... 8-15

How to Handle Errors and Faults.. 8-16

Working with Adapters ... 8-16

Interfacing with Transport Adapters... 8-17

How to Develop Transport Adapters .. 8-18

How to Develop Portal DB Adapter.. 8-18

When to Put Adapters in a Single Composite.. 8-18

Planning Version Adapters ... 8-19

How to Configure a Version Adapter.. 8-19

Developing ABCS for CAVS Enablement ... 8-20

How to CAVS Enable Provider ABCS ... 8-20

How to CAVS Enable the Requester ABCS .. 8-25

Introduction to the CAVSEndpointURL Value Designation.. 8-26

vii

Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios.... 8-26

Securing the ABCS.. 8-27

How to Secure the ABCS... 8-28

Enabling Transactions .. 8-28

How to Ensure Transactions in AIA Services... 8-28

Transactions in Oracle Mediator .. 8-29

Transactions in BPEL.. 8-29

Developing ABCS to Participate in a Global Transaction... 8-30

How to Transaction-Enable AIA Services... 8-30

Guaranteed Message Delivery.. 8-34

Versioning ABCS... 8-34

Guidelines for Versioning.. 8-34

Resequencing in Oracle Mediator .. 8-35

Configuring the Oracle Mediator Service to Use its Resequencer Feature............................ 8-37

How to Configure the Resequencing Strategy... 8-37

Processing Multiple Groups Parallelly.. 8-40

Describing Oracle Mediator Resequencer Error Management ... 8-40

Tuning the Resequencer .. 8-41

Developing Layered Customizations .. 8-41

Deploying services after customizations .. 8-42

Customizing the Customer Version... 8-42

Applying patches after customization .. 8-42

9 Designing and Constructing Enterprise Business Flows

Introduction to Enterprise Business Flows ... 9-1

How to Define the Contract for an EBF... 9-3

How to Identify the Need for an EBF.. 9-3

How to Identify the Message Pattern for an EBF .. 9-4

How to Identify the Message Structure .. 9-4

How to Create the Contract for an EBF ... 9-5

Constructing the WSDL for the EBF.. 9-5

How to Implement the EBF as a BPEL Service... 9-5

10 Introduction to B2B Integration Using AIA

Overview of B2B Integration Using AIA... 10-1

Understanding B2B Document Flows ... 10-2

Describing Outbound B2B Document Flows Built Using AIA.. 10-2

Describing Inbound B2B Document Flows Built Using AIA... 10-4

Understanding the Oracle B2B Component of Oracle Fusion Middleware................................... 10-6

How AIA Complements Oracle Fusion Middleware Oracle B2B... 10-6

Understanding the SOA Core Extension Infrastructure for B2B ... 10-7

B2B Support in AIA Error Handling Framework.. 10-7

AIA B2B Interface ... 10-8

viii

11 Developing and Implementing Outbound B2B Integration Flows

Introduction to Developing and Implementing Outbound B2B Integration Flows 11-1

Step 1: Identifying the B2B Document and Analyzing Requirements.. 11-2

How to Identify the B2B Document Protocol... 11-3

How to Identify the B2B Document Type and Definition .. 11-3

How to Define the Document in Oracle B2B.. 11-4

How to Define the Document in AIA.. 11-4

How to Identify the EBO, EBS, and EBM to Be Used ... 11-6

How to Design Mappings for the B2B Document ... 11-7

How to Publish Mapping to Trading Partners... 11-8

Step 2: Developing a New Provider B2B Connector Service.. 11-8

Introduction to a Provider B2B Connector Service.. 11-8

How to Identify the Message Exchange Pattern.. 11-9

How to Develop a B2BCS Service Contract.. 11-10

How to Store a WSDL in the Oracle Metadata Repository .. 11-11

How to Develop a B2B Connector Service.. 11-12

How to Customize the AIA B2B Interface .. 11-15

How to Annotate B2B Connector Services ... 11-19

How to Support Trading Partner-Specific Variants... 11-21

How to Enable Error Handling .. 11-25

Step 3: Developing or Extending an Existing Enterprise Business Service.................................. 11-27

How to Route Based on Trading Partner B2B Preferences ... 11-28

Step 4: Developing or Extending an Existing Requester ABCS ... 11-30

What You Must Know About Message Exchange Patterns ... 11-31

What You Must Know About Transformations ... 11-31

Step 5: Configuring Oracle B2B and Defining Trading Partner Agreements............................... 11-32

Step 6: Deploying and Configuring AIA Services ... 11-33

Step 7: Testing and Verifying... 11-33

How to Test Using CAVS... 11-34

How to Test Using Dummy Trading Partner Endpoints .. 11-34

Step 8: Going Live and Monitoring.. 11-36

Monitoring Using Oracle B2B Reports .. 11-37

Monitoring Using Oracle Enterprise Manager Console ... 11-38

Monitoring Using Error Notifications... 11-38

12 Developing and Implementing Inbound B2B Integration Flows

Introduction to Developing and Implementing Inbound B2B Integration Flows......................... 12-1

Step 1: Identifying the B2B Document and Analyzing Requirements.. 12-2

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface.. 12-3

How to Add a New Routing Rule to the AIA B2B Interface.. 12-5

Step 3: Developing a New Requester B2B Connector Service.. 12-8

Introduction to Requester B2B Connector Services... 12-9

ix

How to Identify the Message Exchange Pattern.. 12-10

How to Develop a B2BCS Service Contract.. 12-10

How to Store a WSDL in Oracle Metadata Services Repository ... 12-11

How to Develop a B2B Connector Service.. 12-12

How to Annotate B2B Connector Services ... 12-14

How to Support Trading Partner-Specific Variants... 12-16

How to Enable Error Handling .. 12-16

Step 4: Developing or Extending an Existing Enterprise Business Service.................................. 12-18

Step 5: Developing or Extending an Existing Provider ABCS ... 12-19

What You Must Know About Transformations ... 12-20

Step 6: Configuring Oracle B2B and Defining Trading Partner Agreements............................... 12-20

Step 7: Deploying and Configuring AIA Services ... 12-21

Step 8: Testing and Verifying... 12-21

Step 9: Going Live and Monitoring.. 12-22

13 Describing the Event Aggregation Programming Model

Overview.. 13-1

Event Producer ... 13-2

Event Aggregator Service.. 13-2

Consumer Service... 13-2

Implementing the Event Aggregation Programming Model ... 13-3

Creating the Event Aggregation Service ... 13-3

Creating Consumer Service .. 13-5

Implementing Error Handling for the Event Aggregation Programming Model 13-6

14 Establishing Resource Connectivity

Introduction to Resource Connectivity.. 14-1

Inbound Connectivity.. 14-1

Outbound Connectivity... 14-2

Modes of Connectivity ... 14-3

Web Services with SOAP/HTTP.. 14-4

When to Use Web Services with SOAP/HTTP.. 14-5

Session Management for Web Services with SOAP/HTTP ... 14-6

Error Handling for Web Services with SOAP/HTTP ... 14-8

Security for Web Services with SOAP/HTTP .. 14-9

Message Propagation Using Queues or Topics.. 14-9

Ensuring Guaranteed Message Delivery .. 14-12

When to Use JCA Adapters .. 14-13

Siebel Application-Specific Connectivity Guidelines.. 14-14

Inbound: Siebel Application Interaction with AIA Services.. 14-14

Web Services with SOAP/HTTP.. 14-14

Developer Tasks in the Service Design and Construction Phase .. 14-15

Creating JMS Consumers to Consume Siebel Messages from JMS Queues/Topics 14-16

x

Developer Tasks in Service Design and Outline Construction Phase................................... 14-16

Outbound - Siebel Application Interaction with AIA Services ... 14-16

Web Services with SOAP/HTTP.. 14-16

Oracle E-Business Suite Application-Specific Connectivity Guidelines....................................... 14-17

Inbound: E-Business Suite Application Interaction with AIA Services 14-18

Concurrent Program Executable .. 14-18

Best Practices and Design Asynchronous Patterns ... 14-18

Business Event Subscription (JCA Connectivity Using OAPPS Adapter)........................... 14-19

Outbound: Oracle E-Business Suite Application Interaction with AIA Services................ 14-21

Design Guidelines... 14-22

15 Using Oracle Data Integrator for Bulk Processing

Introduction to Design Patterns for AIA-Oracle Data Integrator Architecture............................. 15-1

Initial Data Loads ... 15-2

How to Perform the Oracle Data Integrator Data Load ... 15-2

High Volume Transactions with Xref Table .. 15-3

Intermittent High Volume Transactions.. 15-3

High-Volume Transactions with Xref Table .. 15-4

Building Oracle Data Integrator Projects .. 15-5

How to Build Oracle Data Integrator Projects ... 15-5

Using the XREF Knowledge Module... 15-6

What You Must Know About Cross-Referencing.. 15-7

Working with Oracle Data Integrator .. 15-7

How to Define Variables (Source and Target Column Names) ... 15-8

How to Create the First Interface (Source to Target) ... 15-8

How to Create a Package for the First Interface .. 15-10

How to Define the XREF View in SOA ... 15-11

How to Create the Second Interface (Update Target Identifier in XREF) 15-12

Working with Domain Value Maps.. 15-16

Using Error Handling .. 15-24

Oracle Data Integrator Ref Functions .. 15-26

How to Publish the Package and Data Model as Web Service... 15-27

16 Working with Message Transformations

Introduction to Transformation Maps ... 16-1

Connecting Applications to Implement Business Processes.. 16-1

Using Tools and Technologies to Perform Message Transformations 16-2

Creating Transformation Maps... 16-3

Considerations for Creating Transformation Maps... 16-3

Handling Missing or Empty Elements.. 16-4

How to Map an Optional Source Node to an Optional Target Node 16-4

How to Load System IDs Dynamically... 16-5

Using XSLT Transformations on Large Payloads .. 16-5

xi

When to Populate the LanguageCode Attribute ... 16-5

How to Name Transformations.. 16-5

Making Transformation Maps Extension Aware ... 16-6

How to Make Transformation Maps Extension Aware .. 16-6

How to Make the Transformation Template Industry Extensible ... 16-7

Working with DVMs and Cross-References ... 16-7

Introduction to DVMs.. 16-7

When to Use DVMs.. 16-7

Using Cross-Referencing ... 16-8

How to Set Up Cross References.. 16-9

Mapping and Populating the Identification Type.. 16-9

How to Populate Values for corecom:Identification ... 16-12

Introducing EBM Header Concepts ... 16-12

Standard Elements ... 16-13

Sender... 16-15

Target.. 16-21

BusinessScope ... 16-22

Use Case: Request-Response .. 16-24

Use Case: Asynchronous Process... 16-25

Use Case: Synchronous Process with Spawning Child Processes... 16-25

EBMTracking... 16-29

Custom... 16-31

17 Configuring Oracle AIA Processes for Error Handling and Trace Logging

Overview of Oracle BPEL and Mediator Process Error Handling .. 17-1

Understanding Oracle BPEL Error Handling .. 17-2

Understanding Oracle Mediator Error Handling.. 17-2

Overview of AIA Error Handler Framework ... 17-3

Enabling AIA Processes for Fault Handling... 17-3

What You Must Know About Fault Policy Files .. 17-3

How to Implement Fault Handling in BPEL Processes .. 17-4

Implementing Error Handling for the Synchronous Message Exchange Pattern 17-5

Guidelines for Defining Fault Policies .. 17-6

Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response 17-7

Guidelines for Configuring Mediator for Handling Business Faults 17-10

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern

to Ensure Guaranteed Message Delivery .. 17-11

Overview ... 17-12

Configuring Milestones ... 17-13

Configuring Services Between Milestones ... 17-14

Guidelines for BPEL Catch and Catch-All Blocks ... 17-18

Guidelines for Defining Fault Policies .. 17-18

Configuring Fault Policies to Not Issue Rollback Messages.. 17-18

xii

Using the Message Resubmission Utility API.. 17-21

How to Configure AIA Services for Notification... 17-21

Defining Corrective Action Codes ... 17-21

Defining Error Message Codes... 17-22

Describing the Oracle AIA Fault Message Schema ... 17-22

Describing the EBMReference Element... 17-24

Describing the B2BMReference Element... 17-25

Describing the FaultNotification Element .. 17-26

Extending Fault Messages ... 17-29

Introduction to Extending Fault Messages... 17-29

Extending a Fault Message ... 17-30

Extending Error Handling... 17-32

Introduction to Extending Error Handling... 17-33

Implementing an Error Handling Extension.. 17-33

Configuring Oracle AIA Processes for Trace Logging .. 17-34

Describing Details of the isTraceLoggingEnabled Custom XPath Function 17-35

Describing Details of the logTraceMessage Custom XPath Function................................... 17-35

Describing the Trace Logging Java API... 17-36

18 Working with AIA Design Patterns

AIA Message Processing Patterns .. 18-1

Synchronous Request-Reply Pattern: How to get Synchronous Response in AIA 18-1

Asynchronous Fire-and-Forget Pattern... 18-3

Guaranteed Delivery Pattern: How to Ensure Guaranteed Delivery in AIA........................ 18-4

Service Routing Pattern: How to Route the Messages to Appropriate Service Provider in

AIA.. 18-6

Competing Consumers Pattern: How are Multiple Consumers used to Improve

Parallelism and Efficiency?.. 18-8

Asynchronous Delayed-Response Pattern: How does the Service Provider Communicate

with the Requester when Synchronous Communication is not Feasible?........................ 18-9

Asynchronous Request Response Pattern: How does the Service Provider Notify the

Requester Regarding the Errors?.. 18-10

AIA Assets Centralization Patterns ... 18-12

How to Avoid Redundant Data Model Representation in AIA .. 18-12

How to Avoid Redundant Service Contracts Representation in AIA 18-13

AIA Assets Extensibility Patterns... 18-13

Extending Existing Schemas in AIA.. 18-14

Extending AIA Services... 18-15

Extending Existing Transformations in AIA .. 18-16

Extending the Business Processes in AIA... 18-17

19 Working with Security

Introduction to Oracle AIA Remote Security ... 19-1

xiii

Securing Service to Service Interaction ... 19-1

Oracle AIA Recommendations for Securing Services... 19-2

Introduction to Web Service Security Using Oracle Web Services Manager 19-2

Implementing Security... 19-3

Enabling Security for AIA Services ... 19-3

Invoking Secured Application Services .. 19-4

Overriding Policies Using a Deployment Plan .. 19-4

Testing Secured Services using CAVS ... 19-4

Security for Applications ... 19-5

Enabling Security in Application Services.. 19-5

Invoking Secured AIA Services.. 19-5

Deploying Security Policies... 19-6

Oracle AIA Recommendations for Policies .. 19-6

Policy Naming Conventions ... 19-7

Naming Conventions for Global Policy Sets ... 19-7

Naming Conventions for Overriding Config Params... 19-8

How Does SOA Core Extension Help in Securing AIA Services?... 19-8

What Default Policies are Attached to a Service? .. 19-8

How Can the Global Policy be Overridden for an Individual Service? 19-9

AIA Security Configuration Properties .. 19-9

Application Security Context.. 19-11

Introduction to Application Security... 19-12

How To Exchange Security Context Between Participating Applications and ABCS 19-13

Mapping Application Security Context in ABCS To and From Standard Security Context 19-14

Using the AppContext Mapping Service .. 19-14

Understanding the Structure for Security Context.. 19-15

Using Attribute Names.. 19-18

Propagating Standard Security Context through EBS and EBF .. 19-19

Implementing Application Security Context ... 19-19

20 Best Practices for Designing and Building End-to-End Integration Flows

General Guidelines for Design, Development, and Management of AIA Processes.................... 20-1

Interpreting Empty Element Tags in XML Instance Document .. 20-1

Purging the Completed Composite Instances.. 20-2

Syntactic / Functional Validation of XML Messages .. 20-3

Provide Provision for Throttling Capability... 20-3

Artifacts Centralization ... 20-4

Separation of Concerns.. 20-4

Adapters Inside ABCS Composite OR as Separate Composite... 20-7

AIA Governance ... 20-8

Building Efficient BPEL Processes.. 20-8

Using BPEL as "Glue", Not as a Programming Language.. 20-8

Avoiding Global Variables Wherever Possible .. 20-9

xiv

Avoiding Large FlowN .. 20-10

Controlling the Persistence of Audit Details for a Synchronous BPEL Process.................. 20-10

Using Non-Idempotent Services Only When Absolutely Necessary 20-11

Defining the Scope of the Transaction... 20-11

Disabling the Audit for Synchronous BPEL Process Service Components 20-11

Including No Break-Point Activity in a Request-Response Flow ... 20-12

21 Oracle AIA Naming Standards for AIA Development

General Guidelines ... 21-1

XML Naming Standards.. 21-2

Composites .. 21-5

Composite Business Process.. 21-5

Enterprise Business Services ... 21-6

Enterprise Business Flows ... 21-7

Application Business Connector Service... 21-8

Requester Application Business Connector Service.. 21-8

Provider Application Business Connector Services .. 21-9

JMS and Adapters... 21-10

AQ JMS (Additional Attributes) .. 21-12

Adapter Services Naming ... 21-12

Participating Application Service .. 21-13

DVMs and Cross References ... 21-13

DVMs ... 21-13

Cross References ... 21-14

BPEL.. 21-15

BPEL Activities ... 21-15

Other BPEL Artifacts.. 21-20

Custom Java Classes... 21-21

Package Structure ... 21-21

Deployment Plans... 21-21

22 Editing Transformations Using Mapping Editor

Overview of Mapping Editor.. 22-1

Administering the Mapping Editor ... 22-1

Enabling the Mapping Editor ... 22-1

Deploying the AgileAPI.jar File as a Shared Library .. 22-2

Working with the Search For Mapping Page.. 22-3

Editing Transformations .. 22-5

Mapping Editor Page... 22-5

Building Mappings (Examples).. 22-10

Editing Rules for Mapping Editor.. 22-12

Definitions ... 22-12

Read-only Sentences .. 22-13

xv

Drag and Drop or Typing.. 22-13

Inserting a Row... 22-15

Deleting.. 22-15

Editing Rules for For-Each .. 22-16

Allowing Changing Execution Context .. 22-17

Adjusting Relative Paths when Execution Context Changes .. 22-18

Understanding Customization Layer .. 22-19

Deploying Edited Transformations.. 22-19

Removing Customizations .. 22-20

A Delivered Oracle AIA XPath Functions

aia:getSystemProperty()... A-1

Parameters ... A-1

Returns ... A-2

Usage.. A-2

aia:getSystemModuleProperty()... A-2

Parameters ... A-2

Returns ... A-2

Usage.. A-3

aia:getServiceProperty()... A-3

Parameters ... A-3

Returns ... A-3

Usage.. A-3

aia:getEBMHeaderSenderSystemNode() .. A-4

Parameters ... A-4

Returns ... A-4

Usage.. A-4

aia:getSystemType().. A-5

Parameters ... A-5

Returns ... A-6

Usage.. A-6

aia:getErrorMessage() .. A-6

Parameters ... A-6

Returns ... A-6

Usage.. A-7

aia:getCorrectiveAction()... A-7

Parameters ... A-7

Returns ... A-7

Usage.. A-8

aia:isTraceLoggingEnabled() ... A-8

Parameters ... A-8

Returns ... A-8

Usage.. A-8

xvi

aia:logErrorMessage() .. A-9

Parameters ... A-9

Returns ... A-9

Usage.. A-9

aia:logTraceMessage() .. A-9

Parameters ... A-10

Returns ... A-10

Usage.. A-10

aia:getNotificationRoles() .. A-10

Parameters ... A-11

Returns ... A-11

Usage.. A-11

aia:getAIALocalizedString().. A-11

Parameters ... A-12

Returns ... A-12

Usage.. A-12

aia:getConvertedDate() .. A-13

Parameters ... A-13

Returns ... A-13

Usage.. A-13

aia:getConvertedDateWithTZ() .. A-13

Parameters ... A-14

Returns ... A-14

Usage.. A-14

B XSL for Developing CAVS-Enabled Oracle AIA Services

AddTargetSystemID.xsl ... B-1

SetCAVSEndpoint.xsl ... B-3

xvii

xviii

List of Tables

2-1 AIA Artifacts for Integration Flows with Requester Application Services...................... 2-14
2-2 AIA Artifacts for Leveraging Provider Services... 2-15
2-3 AIA Artifacts for Integration Flows with Multiple Application Interactions.................. 2-17
2-4 AIA Service Design Summary .. 2-18
2-5 Systems Page Elements... 2-22
3-1 Security Recommendations for OWSM Policies... 3-7
4-1 Supported Data Types for XPath Functions.. 4-3
5-1 Routing Rule Clauses.. 5-9
5-2 Delivered Routing Rules.. 5-10
7-1 Summary of Tasks for Constructing an ABCS... 7-1
8-1 Service Operations for Requester ABCS-Specific Extensibility Points................................ 8-8
8-2 Service Operations for Provider ABCS-Specific Extensibility Points.................................. 8-8
11-1 B2BM_HEADER Variable Assignment Values... 11-13
11-2 <B2BDoc>B2BM_Var Assignment Values... 11-14
11-3 AIAB2BInterface Activity Invocation Parameters.. 11-14
11-4 B2BM Variable Information That Can Be Used to Provide Input to B2B Software....... 11-18
11-5 Service Annotation Elements in composite.xml... 11-19
11-6 AIA B2B Interface Utility Service Annotation Elements in composite.xml.................... 11-20
11-7 B2B-Specific Elements in the Fault Schema That Can Be Populated by

AIAAsyncErrorHandlingBPELProcess.. 11-26
11-8 EBM Header Elements that Must be Mapped to Enable Trading Partner-Specific

Routing in the EBS Layer.. 11-32
11-9 Oracle B2B Report Types.. 11-37
12-1 Values Used to Create the SOA Application and Project.. 12-13
12-2 Service Annotation Elements in composite.xml... 12-15
12-3 composite.xml Annotations Used to Reference the AIA EBS Invoked by the B2BCS . 12-16
12-4 B2B-Specific Elements in the Fault Schema That Can Be Populated by

AIAAsyncErrorHandlingBPELProcess.. 12-17
12-5 Sender and Receiver Trading Partner Fields in the EBM.. 12-20
15-1 Required Options in Customized Knowledge Module IKM SQL to SQL........................ 15-9
15-2 Oracle Data Integrator Ref Functions... 15-27
16-1 Cross Referencing Configuration.. 16-8
16-2 Identifiers in the Identification Type Structure... 16-10
16-3 Key Context Attributes... 16-10
16-4 Elements in the Sender Element... 16-16
16-5 Elements in the ESBHeaderExtension Element.. 16-19
16-6 Elements in the ObjectCrossReference Element... 16-20
17-1 Fault Elements... 17-24
17-2 EBMReference Elements.. 17-24
17-3 B2BMReference Elements.. 17-26
17-4 FaultNotification Elements.. 17-27
17-5 FaultMessage Elements.. 17-28
17-6 IntermediateMessageHop Elements.. 17-29
17-7 FaultingService Element... 17-29
20-1 Structure of AIA Components... 20-5
21-1 Namespace Prefixes.. 21-3
21-2 Short Names and Abbreviations for Participating Application Names............................ 21-4
21-3 Naming Standards for Composite Business Processes.. 21-5
21-4 Naming Standards for Enterprise Business Services... 21-6
21-5 Naming Standards for Enterprise Business Flows... 21-7
21-6 Naming Standards for Requester ABCS.. 21-8

xix

21-7 Naming Standards for Provider ABCS.. 21-9
21-8 Naming Standards for JMS and Adapters... 21-10
21-9 Naming Standards for AQ JMS Additional Attributes... 21-12
21-10 Naming Standards for Adapter Services... 21-12
21-11 Naming Standards for Participating Application Services... 21-13
21-12 Naming Standards for Deployment Plans... 21-22
22-1 Filters Area on the Search For Mapping Page... 22-4
22-2 Controls on the Search For Mapping Page.. 22-5
22-3 Drag and Drop or Typing... 22-13
22-4 Rules while Inserting a Row.. 22-15
22-5 Examples of Relative Path Getting Adjusted when Execution Context Changes......... 22-18

xx

List of Tables

2-1 AIA Artifacts for Integration Flows with Requester Application Services...................... 2-14
2-2 AIA Artifacts for Leveraging Provider Services... 2-15
2-3 AIA Artifacts for Integration Flows with Multiple Application Interactions.................. 2-17
2-4 AIA Service Design Summary .. 2-18
2-5 Systems Page Elements... 2-22
3-1 Security Recommendations for OWSM Policies... 3-7
4-1 Supported Data Types for XPath Functions.. 4-3
5-1 Routing Rule Clauses.. 5-9
5-2 Delivered Routing Rules.. 5-10
7-1 Summary of Tasks for Constructing an ABCS... 7-1
8-1 Service Operations for Requester ABCS-Specific Extensibility Points................................ 8-8
8-2 Service Operations for Provider ABCS-Specific Extensibility Points.................................. 8-8
11-1 B2BM_HEADER Variable Assignment Values... 11-13
11-2 <B2BDoc>B2BM_Var Assignment Values... 11-14
11-3 AIAB2BInterface Activity Invocation Parameters.. 11-14
11-4 B2BM Variable Information That Can Be Used to Provide Input to B2B Software....... 11-18
11-5 Service Annotation Elements in composite.xml... 11-19
11-6 AIA B2B Interface Utility Service Annotation Elements in composite.xml.................... 11-20
11-7 B2B-Specific Elements in the Fault Schema That Can Be Populated by

AIAAsyncErrorHandlingBPELProcess.. 11-26
11-8 EBM Header Elements that Must be Mapped to Enable Trading Partner-Specific

Routing in the EBS Layer.. 11-32
11-9 Oracle B2B Report Types.. 11-37
12-1 Values Used to Create the SOA Application and Project.. 12-13
12-2 Service Annotation Elements in composite.xml... 12-15
12-3 composite.xml Annotations Used to Reference the AIA EBS Invoked by the B2BCS . 12-16
12-4 B2B-Specific Elements in the Fault Schema That Can Be Populated by

AIAAsyncErrorHandlingBPELProcess.. 12-17
12-5 Sender and Receiver Trading Partner Fields in the EBM.. 12-20
15-1 Required Options in Customized Knowledge Module IKM SQL to SQL........................ 15-9
15-2 Oracle Data Integrator Ref Functions... 15-27
16-1 Cross Referencing Configuration.. 16-8
16-2 Identifiers in the Identification Type Structure... 16-10
16-3 Key Context Attributes... 16-10
16-4 Elements in the Sender Element... 16-16
16-5 Elements in the ESBHeaderExtension Element.. 16-19
16-6 Elements in the ObjectCrossReference Element... 16-20
17-1 Fault Elements... 17-24
17-2 EBMReference Elements.. 17-24
17-3 B2BMReference Elements.. 17-26
17-4 FaultNotification Elements.. 17-27
17-5 FaultMessage Elements.. 17-28
17-6 IntermediateMessageHop Elements.. 17-29
17-7 FaultingService Element... 17-29
20-1 Structure of AIA Components... 20-5
21-1 Namespace Prefixes.. 21-3
21-2 Short Names and Abbreviations for Participating Application Names............................ 21-4
21-3 Naming Standards for Composite Business Processes.. 21-5
21-4 Naming Standards for Enterprise Business Services... 21-6
21-5 Naming Standards for Enterprise Business Flows... 21-7
21-6 Naming Standards for Requester ABCS.. 21-8

xxi

21-7 Naming Standards for Provider ABCS.. 21-9
21-8 Naming Standards for JMS and Adapters... 21-10
21-9 Naming Standards for AQ JMS Additional Attributes... 21-12
21-10 Naming Standards for Adapter Services... 21-12
21-11 Naming Standards for Participating Application Services... 21-13
21-12 Naming Standards for Deployment Plans... 21-22
22-1 Filters Area on the Search For Mapping Page... 22-4
22-2 Controls on the Search For Mapping Page.. 22-5
22-3 Drag and Drop or Typing... 22-13
22-4 Rules while Inserting a Row.. 22-15
22-5 Examples of Relative Path Getting Adjusted when Execution Context Changes......... 22-18

xxii

List of Tables

2-1 AIA Artifacts for Integration Flows with Requester Application Services...................... 2-14
2-2 AIA Artifacts for Leveraging Provider Services... 2-15
2-3 AIA Artifacts for Integration Flows with Multiple Application Interactions.................. 2-17
2-4 AIA Service Design Summary .. 2-18
2-5 Systems Page Elements... 2-22
3-1 Security Recommendations for OWSM Policies... 3-7
4-1 Supported Data Types for XPath Functions.. 4-3
5-1 Routing Rule Clauses.. 5-9
5-2 Delivered Routing Rules.. 5-10
7-1 Summary of Tasks for Constructing an ABCS... 7-1
8-1 Service Operations for Requester ABCS-Specific Extensibility Points................................ 8-8
8-2 Service Operations for Provider ABCS-Specific Extensibility Points.................................. 8-8
11-1 B2BM_HEADER Variable Assignment Values... 11-13
11-2 <B2BDoc>B2BM_Var Assignment Values... 11-14
11-3 AIAB2BInterface Activity Invocation Parameters.. 11-14
11-4 B2BM Variable Information That Can Be Used to Provide Input to B2B Software....... 11-18
11-5 Service Annotation Elements in composite.xml... 11-19
11-6 AIA B2B Interface Utility Service Annotation Elements in composite.xml.................... 11-20
11-7 B2B-Specific Elements in the Fault Schema That Can Be Populated by

AIAAsyncErrorHandlingBPELProcess.. 11-26
11-8 EBM Header Elements that Must be Mapped to Enable Trading Partner-Specific

Routing in the EBS Layer.. 11-32
11-9 Oracle B2B Report Types.. 11-37
12-1 Values Used to Create the SOA Application and Project.. 12-13
12-2 Service Annotation Elements in composite.xml... 12-15
12-3 composite.xml Annotations Used to Reference the AIA EBS Invoked by the B2BCS . 12-16
12-4 B2B-Specific Elements in the Fault Schema That Can Be Populated by

AIAAsyncErrorHandlingBPELProcess.. 12-17
12-5 Sender and Receiver Trading Partner Fields in the EBM.. 12-20
15-1 Required Options in Customized Knowledge Module IKM SQL to SQL........................ 15-9
15-2 Oracle Data Integrator Ref Functions... 15-27
16-1 Cross Referencing Configuration.. 16-8
16-2 Identifiers in the Identification Type Structure... 16-10
16-3 Key Context Attributes... 16-10
16-4 Elements in the Sender Element... 16-16
16-5 Elements in the ESBHeaderExtension Element.. 16-19
16-6 Elements in the ObjectCrossReference Element... 16-20
17-1 Fault Elements... 17-24
17-2 EBMReference Elements.. 17-24
17-3 B2BMReference Elements.. 17-26
17-4 FaultNotification Elements.. 17-27
17-5 FaultMessage Elements.. 17-28
17-6 IntermediateMessageHop Elements.. 17-29
17-7 FaultingService Element... 17-29
20-1 Structure of AIA Components... 20-5
21-1 Namespace Prefixes.. 21-3
21-2 Short Names and Abbreviations for Participating Application Names............................ 21-4
21-3 Naming Standards for Composite Business Processes.. 21-5
21-4 Naming Standards for Enterprise Business Services... 21-6
21-5 Naming Standards for Enterprise Business Flows... 21-7
21-6 Naming Standards for Requester ABCS.. 21-8

xxiii

21-7 Naming Standards for Provider ABCS.. 21-9
21-8 Naming Standards for JMS and Adapters... 21-10
21-9 Naming Standards for AQ JMS Additional Attributes... 21-12
21-10 Naming Standards for Adapter Services... 21-12
21-11 Naming Standards for Participating Application Services... 21-13
21-12 Naming Standards for Deployment Plans... 21-22
22-1 Filters Area on the Search For Mapping Page... 22-4
22-2 Controls on the Search For Mapping Page.. 22-5
22-3 Drag and Drop or Typing... 22-13
22-4 Rules while Inserting a Row.. 22-15
22-5 Examples of Relative Path Getting Adjusted when Execution Context Changes......... 22-18

xxiv

Preface

Welcome to . This document describes how to use SOA Core Extension to
conceptualize AIA projects. Use the information in this guide to help ensure that the
AIA solutions you develop can be upgraded and supported.

Audience
This guide is intended for developers and provides information to help conceptualize
Oracle Application Integration Architecture (AIA) projects.

Following the guidance provided here helps ensure that your AIA solutions can follow
optimal upgrade, support, and maintenance paths.

Oracle AIA Guides
In addition to this Developer's Guide, we provide the following Oracle AIA guides for
this release:

• Concepts and Technologies Guide for Oracle Application Integration Architecture
Foundation Pack

• Infrastructure Components and Utilities User's Guide for Oracle Application Integration
Architecture Foundation Pack

Related Guides
The following guides are relevant to Oracle AIA development activities and are
provided as a part of the overall Oracle Fusion Middleware documentation library:

• Installing and Configuring Oracle SOA Suite and Business Process Management

• Administering Oracle SOA Suite and Oracle Business Process Management Suite

• Developing SOA Applications with Oracle SOA Suite

• Administering Web Services

•

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

xxv

http://docs.oracle.com/cd/E21764_01/doc.1111/e17363/toc.htm
http://docs.oracle.com/cd/E21764_01/doc.1111/e17363/toc.htm
http://docs.oracle.com/cd/E21764_01/doc.1111/e17363/toc.htm
http://docs.oracle.com/cd/E21764_01/doc.1111/e17363/toc.htm
http://docs.oracle.com/cd/E21764_01/doc.1111/e13925/install.htm
http://docs.oracle.com/cd/E28280_01/admin.1111/e10226/toc.htm
http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/toc.htm
http://docs.oracle.com/cd/E28280_01/dev.1111/e10224/toc.htm
http://docs.oracle.com/cd/E28280_01/doc.1111/e15746/toc.htm
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Using SOA Core Extensions for AIA

Development

This chapter provides an overview of usage and features of SOA Core Extension
technology for AIA development.

This chapter includes the following section

• Understanding AIA

• AIA Integration Types

• AIA Integration Flows

• AIA Development Using SOA Core Extension

• How to Use this Developer's Guide

AIA Development Using SOA Core Extension
SOA Core Extension (SCE) is a feature delivered with SOA 12c to provide the
necessary capability for Oracle Application Integration Architecture (AIA) based
integration projects to continue operating after an upgrade to SOA 12c.

Customers who have AIA style integrations running in 11g will want to select the SOA
Core Extension feature during the domain configuration/extension portion of their
upgrade to SOA 12c. Selecting this feature will provide the necessary frameworks and
features as required by deployed any AIA-style integrations.

SOA Core Extension provides the following features:

• AIA Composite Application Validation System (CAVS) - CAVS is a framework
that provides a structured approach to test integration of Oracle Application
Integration Architecture (Oracle AIA) services. The CAVS feature includes test
initiators that simulate web service invocations and simulators that simulate
service endpoints.

• AIA Error Handling Framework (AIA-EH) - The Oracle AIA Error Handling
Framework provides error handling and logging components to support the needs
of integration services operating in an Oracle Application Integration Architecture
(AIA) ecosystem.

• AIA Error Resubmission Utility - The AIA Message Resubmission Utility enables
users to resubmit error messages based on these integration milestones: Queue,
Topic, Resequencer, or AQ.

• AIA Administration Console - A web-based application for administrators to use
features such as CAVS.

Using SOA Core Extensions for AIA Development 1-1

Understanding AIA
Oracle Application Integration Architecture (AIA) is a framework consisting of pre-
built content, templates and methodologies for orchestrating agile user-centric
business processes across enterprise applications. Oracle enables best-in-class
applications-Oracle and non-Oracle-to work together, leveraging industry best
practices and open standards to reduce costs and increase business flexibility.

AIA Foundation Pack
Oracle Application Integration Architecture Foundation Packs provide a faster,
structured and repeatable approach to process composition. AIA Foundation Pack
provides the framework for Oracle's Pre-built integrations. The Oracle Application
Integration Architecture Foundation Pack 11g provided a Common Object and Shared
Service Library with supporting SOA programming model and best practice
implementation methodology. Using Oracle AIA Foundation Packs, Oracle customers
and partners can modernize their applications, consolidate systems, and both improve
and extend their business processes across Oracle and non-Oracle applications
following the same principles used by Oracle to deliver pre-built integrations.

AIA Pre-built Integrations and Process Integration Packs (PIPs)
Oracle Application Integration Architecture (AIA) delivers pre-built integrations as
either direct integrations or process integrations packs

• Direct Integrations (DI) - Pre-built integrations that manage data flows and data
synchronizations between Applications.

• Process Integration Packs (PIPs) - Pre-built integration accelerators combine one or
more of the integration styles such as data-centric integration, web services,
reference data query, and/or process-centric integrations. They leverage the design
patterns, methodologies and common objects and services as defined within Oracle
AIA Foundation Pack.

AIA Integration Types
AIA addresses two types of integrations:

• Functional integration

Functional integration weaves various functionalities of different participating
applications, exposed as services, as processes to accomplish tasks that span
multiple applications in any enterprise.

• Data integration

Data integration connects applications at the data level and makes the same data
available to multiple applications. This type of integration relies on database
technologies and is ideal when a minimum amount of business logic is reused and
large amounts of data transactions are involved across applications. This type of
integration is suitable for batch data uploads or bulk data sync requirements.

AIA Integration Flows
AIA provides reference architecture for a variety of situations. Depending on the size
and complexity of integration projects, the integration style adopted for implementing

Understanding AIA

1-2 Developer's Guide for Oracle SOA Core Extension

integration flows varies. The number of participating applications and their role in
integration flows contribute to the integration style adopted.

The integration flow as shown in Figure 1-1 represents the journey of a message from a
business event triggering source to one or more target milestones, after passing
through possible intermediary milestones. At each milestone, the message is stored in
a different state.

Figure 1-1 Illustration of the Integration Flow

The integration flow represents the run-time path of a message. It is not a design time
artifact.

AIA addresses the following integration styles:

• Integration through native application interfaces using the Oracle Applications
Technology Infrastructure.

• Integration styles with integration framework.

– Direct integration through application web services using Oracle SOA Suite.

– Integration through packaged canonical and standardized interfaces using
Oracle SOA Core Extension.

• Integration styles for bulk data processing.

– Real-time data integration flow.

– Batch data integration flow.

How to Use this Developer's Guide
The sales process provides detailed information about the value of AIA offerings. The
value presented is perceived in the context of a business problem for which a solution
is being sought.

The detailed analysis of the business problem and documenting of related business
requirements leads to a Functional Design Document, which provides:

• Detailed description of the business case

• Various use cases detailing the various usage scenarios including the exception
cases with expected actions by various actors

• Details about all the participating applications - commercial, off-the-shelf with
versions and homegrown

How to Use this Developer's Guide

Using SOA Core Extensions for AIA Development 1-3

• Details about the triggering business events

• Details about the functional flow

• Details about business objects to be used

• Actions to be performed on the various business objects

• Details about performance and scalability requirements

This Developer's Guide assumes:

• A Functional Design Document is available.

• Access to AIA software.

• Access to all AIA-provided documents.

• You have read the Oracle Fusion Middleware Concepts and Technologies Guide for
Oracle Application Integration Architecture Foundation Pack 11g, Release 1 (11.1.1.9.0).

This Developer's Guide provides:

• An overview of all tasks required to build an AIA integration flow.

• Details about how to develop various AIA artifacts.

• Descriptions of interactions between AIA artifacts and external artifacts.

• Discussion of various design patterns, best practices, and tuning for run-time
performance.

Start with Building AIA Integration Flows and proceed to relevant chapters in this
Developer's Guide as needed.

How to Use this Developer's Guide

1-4 Developer's Guide for Oracle SOA Core Extension

2
Building AIA Integration Flows

This chapter describes how to build AIA integration flows.

This chapter includes the following sections:

• Setting up Development and Test Environments

• AIA Artifacts in Various Integration Styles

• Development Tasks for AIA Artifacts

• Testing an Oracle AIA Integration Flow

Setting up Development and Test Environments
For AIA development and testing, the setup of development and test environments
consists of downloading the SOA Suite, and setting up your AIA environment.

Getting a Quick Start on your AIA Development
Start your AIA development by installing SOA Suite Quick Start and connecting to a
SOA server.

1. Download and install SOA Suite 12.1.3 Quick Start.

2. Create a connection to the SOA Suite server set up for AIA Development and test
using these details after Oracle Fusion Middleware is set up:

a. Connection name: <give a connection name for your application>.

b. Connection Type: use the default value - WebLogic 12.1.3

c. Provide the username and password of your WebLogic server.

WebLogic Host name: <your server host name>.

d. Port: <your server port number>.

e. SSl port: <your server ssl port>.

f. WLS Domain: <provide your domain name where SOA server is installed>.

How to Set Up AIA Workstation
AIA Workstation is a dedicated system set up to drive AIA development. Install the
SOA Core Extension on this system and set up the AIA Project Lifecycle Workbench
from the SOA Core Extension.

This section includes the following topics:

Building AIA Integration Flows 2-1

• Prerequisites

• Using MDS in AIA

• Content of $SOA_HOME/AIAMetaData

• Working with AIA Components Content in $SOA_HOME/AIAMetaData

• How to Change an Existing File

• How to Create File

• How to Work with AIAConfigurationProperties.xml in $SOA_HOME/
aia_instances/$INSTANCE_NAME/AIAMetaData/config

• How to Add a New Property to AIAConfigurationProperties.xml

• How to Work with AIAEHNotification.xml in $SOA_HOME/aia_instances/
$INSTANCE_NAME/AIAMetaData/config

• How to Work with Domain Value Maps in $SOA_HOME/AIAMetaData/dvm

• How to Work with Cross Reference (Xref) in $SOA_HOME/AIAMetaData/xref

• How to Work with Fault Policies in $SOA_HOME/AIAMetaData/faultPolicies/V1

• Updating MDS

Prerequisites

• Install 12.1.3 WebLogic Server with Oracle Application Development Framework.

• Install Oracle Database.

• Install SOA Suite Quick Start.

• Ensure you comply with the Supported Systems Configuration, as detailed on OTN
at, http://www.oracle.com/technetwork/middleware/fusion-
middleware/overview/index.html

Hardware should be at least 4 CPU and 32 GB of RAM with a supported Operating
System.

Using MDS in AIA

Oracle Metadata Services (MDS) repository contains metadata for deployed J2EE
applications, including SOA Suite on WLS.

Under a partition SOA-MDS created specifically for SOA, all SOA Composites
(including AIA composites) are also stored upon deployment.

Under the same partition, the contents of $SOA_HOME/AIAMetaData are uploaded
to SOA-MDS > apps/AIAMetaData.

The content and details of each set of metadata and how it is used by AIA is provided
below. Also described is the process of creating new content or changing existing
content.

For more information see Developing SOA Core Composite Applications on the OTN
network.

Setting up Development and Test Environments

2-2 Developer's Guide for Oracle SOA Core Extension

http://www.oracle.com/technetwork/middleware/fusion-middleware/overview/index.html
http://www.oracle.com/technetwork/middleware/fusion-middleware/overview/index.html

Content of $SOA_HOME/AIAMetaData

Note:

For new 12c customers you will have the utility objects and receive any other
objects through the appropriate pre-built integrations you choose to license.

AIA MetaData ($SOA_HOME/AIAMetaData) includes the following content:

AIAComponents - Presents the various schemas and WSDLs referred to by various
services. The structure is as follows:

• ApplicationConnectorServiceLibrary: Abstract WSDLs of various Application
Business Connector Services (ABCSs)

• ApplicationObjectLibrary: WSDLs of services exposed by applications and
schemas of application business objects

• B2BObjectLibrary: Business-to-business (B2B) schemas

• B2BServiceLibrary: Abstract WSDLs of various B2B Connector Services (B2BCSs)
and B2B Infrastructure Services

• BusinessProcessServiceLibrary: Abstract WSDLs of Enterprise Business Flows
(EBFs)

• EnterpriseBusinessServiceLibrary: Abstract WSDLs of Enterprise Business
Services (EBSs)

• EnterpriseObjectLibrary: Schemas of the Oracle AIA Canonical Model

• ExtensionServiceLibrary: Concrete WSDLs pointing to mirror servlet

• InfrastructureServiceLibrary: Abstract WSDLs of infrastructure services

• Transformations: XSLs shared among various services

• UtilityArtifacts: Utility schemas and WSDLs

config: AIAConfigurationProperties.xml and AIAEHNotification.xml

dvm: Domain Value Maps

faultPolicies: Default policies applicable to all the services

xref: Metadata for Cross References

Working with AIA Components Content in $SOA_HOME/AIAMetaData

The AIA Components consist of Schemas, WSDLs, and XSLs shared among various
AIA artifacts at runtime. Usage and purpose of each of these files is dealt with in detail
in AIA artifact-specific chapters of this guide.

AIA Components Folder Structure

All the abstract WSDLs of various application connector services and adapter services
are stored here. The folder structure convention followed is:
ApplicationConnectorServiceLibrary.

Setting up Development and Test Environments

Building AIA Integration Flows 2-3

AIAMetaData\AIAComponents\ApplicationConnectorServiceLibrary\<Application
Name>\<Version Number>\<Service Type>

• Possible values for <Version Number> are V1, V2, and so on.

• Possible values for <Service Type> are:

– RequesterABCS

– ProviderABCS

– AdapterServices

• Possible values for <Application Name> are:

– PeopleSoft

– BRM

– UCM

– SAP

– PIM

– OracleRetail

– Logistics

– JDEE1

– CRMOD

– Agile

– Ebiz

– Siebel

Note:

The <Application Name> specified here is used in AIA Project Lifecycle
Workbench in the definition of the bill of materials for deployment. It should
match the <productCode> list of values in the Workbench.

Examples:

AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/Siebel/V1/
RequestorABCS

AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/Siebel/V1/
ProviderABCS

ApplicationObjectLibrary

All the WSDLs of the services exposed by the participating applications and the
referenced schemas are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/ApplicationObjectLibrary

Setting up Development and Test Environments

2-4 Developer's Guide for Oracle SOA Core Extension

Applications consume AIA requester service WSDLs. To avoid any need for
transformation in the participating applications, the AIA requester services' WSDLs
are developed referencing the external facing business object schemas of the
participating applications. These schemas are also stored in:

$SOA_HOME/AIAMetaData/AIAComponents/ApplicationObjectLibrary.

The folder structure convention followed is:

ApplicationObjectLibrary/<Application Name>/<Version Number>/schemas

ApplicationObjectLibrary/<Application Name>/<Version Number>/wsdls

The possible values for <Application Name> and <Version Number> are as described
in the previous section.

Note:

The <Application Name> specified here is used in AIA Project Lifecycle
Workbench in the definition of the bill of materials for deployment.

Examples:

AIAMetaData/AIAComponents/ApplicationObjectLibrary/Siebel/V1/schemas

AIAMetaData/AIAComponents/ApplicationObjectLibrary/Siebel/V1/wsdls

B2BServiceLibrary

All of the abstract WSDLs of B2B Connector Services (B2BCSs) are stored in this
location.

Requester B2BCS WSDLs are stored under $SOA_HOME/AIAMetaData/
AIAComponents/B2BServiceLibrary/Connectors/wsdls.

The folder structure convention followed is: B2BServiceLibrary/Connectors/wsdls/
<B2BStandard>/RequesterB2BCS/<ConnectorVersion>/*.wsdl.

Provider B2BCS WSDLs are stored under $SOA_HOME/AIAMetaData/
AIAComponents/B2BServiceLibrary/Connectors/wsdls.

The folder structure convention followed is: B2BServiceLibrary/Connectors/wsdls/
<B2BStandard>/ProviderB2BCS/<ConnectorVersion>/*.wsdl.

Other abstract WSDLs of reusable infrastructure services are stored under
$SOA_HOME/AIAMetaData/AIAComponents/B2BServiceLibrary/Infrastructure/
<ServiceVersion>/.

BusinessProcessServiceLibrary

All the abstract WSDLs of Composite Business Processes and Enterprise Business
Flows are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/ BusinessProcessServiceLibrary

The folder structure convention followed is:

BusinessProcessServiceLibrary/<Service Type>

The possible values for <Service Type> are CBP and EBF.

Example:

AIAMetaData/AIAComponents/BusinessProcessServiceLibrary/CBP

Setting up Development and Test Environments

Building AIA Integration Flows 2-5

AIAMetaData/AIAComponents/BusinessProcessServiceLibrary/EBF

EnterpriseBusinessServiceLibrary

Part of Oracle AIA Canonical Model

All the abstract WSDLs of Enterprise Business Services are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/EnterpriseBusinessServiceLibrary

EnterpriseObjectLibrary

Part of Oracle AIA Canonical Model

All the schema modules of the Enterprise Object Library are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/EnterpriseObjectLibrary

ExtensionServiceLibrary

All the concrete WSDLs pointing to mirror servlet are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/ExtensionServiceLibrary

The folder structure convention followed is:

ExtensionServiceLibrary/<Application Name>

The possible values for <Application Name> are described in the Examples section.

Note:

The <Application Name> specified here is used in AIA Project Lifecycle
Workbench in the definition of the bill of materials for deployment.

Examples:

AIAMetaData/AIAComponents/ExtensionServiceLibrary/Siebel
InfrastructureServiceLibrary

All the abstract WSDLs of infrastructure services are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/InfrastructureServiceLibrary

The folder structure convention followed is:

InfrastructureServiceLibrary/<Version Number>

Example:

AIAMetaData/AIAComponents/InfrastructureServiceLibrary/V1

Transformations

All the XSLs shared among various AIA services are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/Transformations

The folder structure convention followed is:

Transformations/<Application Name>/<Version>

The possible values for <Application Name> and <Version Number> are described in
the section below:

Setting up Development and Test Environments

2-6 Developer's Guide for Oracle SOA Core Extension

Note:

The <Application Name> specified here is used in AIA Project Lifecycle
Workbench in the definition of the bill of materials for deployment.

Example:

AIAMetaData/AIAComponents/Transformations/Siebel/V1

UtilityArtifacts

All the Utility schemas and WSDLs are stored in:

$SOA_HOME/AIAMetaData/AIAComponents/UtilityArtifacts

The folder structure convention followed is:

UtilityArtifacts/schemas

UtilityArtifacts/wsdls

How to Change an Existing File

To change an existing file:

1. From JDeveloper, open the relevant file by browsing to AIAWorkstation/
$SOA_HOME/AIAMetaData/AIAComponents/<Path to file>

2. Make modifications. Review the upgrade safe extensibility guidelines provided in
AIA artifact-specific chapters of the guide.

3. Save.

4. Upload to SOA-MDS > apps/AIAMetaData/AIAComponents. Refer to Updating
MDS.

How to Create File

To create a file:

1. In JDeveloper, create a file following the design and development guidelines
provided in AIA artifact-specific chapters of the guide.

2. Copy the file to AIAWorkstation/$SOA_HOME/AIAMetaData/AIAComponents/
<Path to file>.

Note:

Place the file in this folder.

3. Upload to SOA-MDS > apps/AIAMetaData/AIAComponents. Refer to Updating
MDS.

Accessing the Files in the AIA Components Folder

Use the following protocol to access the AIA Components content from all the AIA
service artifacts at design time and runtime:

oramds:/apps/AIAMetaData/AIAComponents/<Resource Path Name>

Example:

Setting up Development and Test Environments

Building AIA Integration Flows 2-7

oramds:/apps/AIAMetaData/AIAComponents/ApplicationObjectLibrary/
SampleSEBL/schemas/CmuAccsyncAccountIo.xsd

Note:

All of the files in the AIA Components folder use relative paths to refer to
other files in the AIA Components folder, if needed.

The WSDLs in the Enterprise Business Service Library use relative paths to refer to
schemas in the Enterprise Object Library.

How to Work with AIAConfigurationProperties.xml in $SOA_HOME/aia_instances/
$INSTANCE_NAME/AIAMetaData/config

AIA provides external configuration properties to influence the run-time behavior of
system, infrastructure components, and services. These properties are provided as
name-value pairs at the system, module, and service levels in
AIAConfigurationProperties.xml.

The AIAConfigurationProperties.xml supports two types of configurations:

• System level, including module level

Contains system-level configuration name-value pairs and module-level
configuration name-value pairs within the system level.

• Service level

Contains service-specific configuration name-value pairs.

The following XPath functions are provided to access the configuration name-value
pairs in the AIAConfigurationProperties.xml:

• aiacfg:getSystemProperty (propertyName as string, needAnException as boolean)
returns propertyValue as string

• aiacfg:getSystemModuleProperty (moduleName as string, propertyName as string,
needAnException as boolean) returns propertyValue as string

• aiacfg:getServiceProperty (EBOName as string, serviceName as string, propertyName
as string, needAnException as boolean) returns propertyValue as string

"getSystemModuleProperty()" and "getServiceProperty()" functions first look for the
appropriate module and service property and if it is not found, they then look for a
system property with the same property name.

In all three functions, if a matching property is not found, the result depends upon the
value of the needAnException argument. If need AnException is true, then a
PropertyNotFound Exception is thrown; otherwise, an empty string is returned.

How to Add a New Property to AIAConfigurationProperties.xml

To add a new property to AIAConfigurationProperties.xml:

1. From JDeveloper, open the file AIAConfigurationProperties.xml by browsing to
AIAWorkstation/$SOA_HOME/aia_instances/$INSTANCE_NAME/
AIAMetaData/config.

2. Make modifications, as needed in AIA artifact development.

Setting up Development and Test Environments

2-8 Developer's Guide for Oracle SOA Core Extension

3. Save.

4. Upload to SOA-MDS > apps/AIAMetaData/config. Refer to Updating MDS.

5. From the AIA Home Page, click Go in the Setup area. Select the Configuration tab
to access the Configuration page. Click Reload to refresh the AIA Configuration
cache.

How to Work with AIAEHNotification.xml in $SOA_HOME/aia_instances/
$INSTANCE_NAME/AIAMetaData/config

This file is the template of the email notification sent as a part of the Error Handling
Framework.

To modify the AIAEHNotification.xml:

1. From JDeveloper, open the file AIAEHNotification.xml by browsing to
AIAWorkstation/$SOA_HOME/aia_instances/$INSTANCE_NAME/
AIAMetaData/config.

2. Modify as needed.

3. Save.

4. Upload to SOA-MDS > apps/AIAMetaData/config. Refer to Updating MDS.

How to Work with Domain Value Maps in $SOA_HOME/AIAMetaData/dvm

The Domain Value Maps utility is a feature of Oracle SOA Suite. It supports the
creation of static value maps and provides the custom XPath function:

dvm:lookupValue("oramds:/apps/AIAMetaData/dvm/<DVM Map Name>",<Source
Column>,<Source Column Value>,<Target Column>,"")

For more information about DVMs, see Working with DVMs and Cross-References.

The DVMs are used by all the AIA Pre-Built Integrations and are shipped as part of
SOA Core Extension. They are stored in $SOA_HOME/AIAMetaData/dvm.

To modify the Domain Value Maps:

1. From JDeveloper, open the DVM file by browsing to AIAWorkstation/
$SOA_HOME/AIAMetaData/dvm.

2. Modify as needed.

3. Save.

4. Upload to SOA-MDS > apps/AIAMetaData/dvm. Refer to Updating MDS.

How to Work with Cross Reference (Xref) in $SOA_HOME/AIAMetaData/xref

The Cross Reference utility is a feature of Oracle SOA Suite. It supports the creation of
dynamic values.

For more information about cross references, see "Working with Cross References" in
Developing SOA Applications with Oracle SOA Suite.

The Cross Reference meta information as used by all the AIA Process Integration
Packs are shipped as part of SOA Core Extension and are stored in $SOA_HOME/
AIAMetaData/xref.

Setting up Development and Test Environments

Building AIA Integration Flows 2-9

To modify the Cross Reference metadata:

1. From JDeveloper, open the Cross Reference file by browsing to AIAWorkstation/
$SOA_HOME/AIAMetaData/xref.

2. Modify as needed.

3. Save.

4. Upload to SOA-MDS > apps/AIAMetaData/xref. Refer to Updating MDS.

How to Work with Fault Policies in $SOA_HOME/AIAMetaData/faultPolicies/V1

The default fault policy file "fault-bindings.xml" is shipped as part of SOA Core
Extension and is stored in $SOA_HOME/AIAMetaData/faultPolicies/V1.

To modify the "fault-bindings.xml":

1. From JDeveloper, open the fault-bindings.xml file by browsing to AIAWorkstation/
$SOA_HOME/AIAMetaData/faultPolicies/V1.

2. Modify as needed.

3. Save.

4. Upload to SOA-MDS > apps/AIAMetaData/faultPolicies/V1. Refer to Updating
MDS.

Updating MDS

Note:

Repeat this procedure every time a file is added to MDS.

To update SOA-MDS > apps/AIAMetaData:

1. Browse to the folder at $SOA_HOME/aia_instances/$INSTANCE_NAME/bin.

2. Source the file aiaenv.sh by executing the following command:

source aiaenv.sh

3. Browse to the folder at $SOA_HOME/aia_instances/$INSTANCE_NAME/config
and open the deployment plan file, UpdateMetaDataDP.xml.

4. Update the file UpdateMetaDataDP.xml by inserting include tags for each
resource group that you want to add to the MDS:

a. To upload all the files under "AIAMetaData", add the following:

<include name ="**"/>

b. To upload the files copied to "AIAComponents/ApplicationObjectLibrary/
SEBL/schemas" folder, add the following:

<include name ="AIAComponents/ApplicationObjectLibrary/SEBL/schemas/**"/>

Setting up Development and Test Environments

2-10 Developer's Guide for Oracle SOA Core Extension

Note:

In the include tag, the folder path must be relative to the folder AIAMetaData.

5. Browse to SOA_HOME/Infrastructure/Install/config. Execute the script
UpdateMetaData.xml by typing the command:

ant -f UpdateMetaData.xml

Note:

MetaData gets deleted when you uninstall SOA Core Extension. For specific
instruction on how to clean the MDS after you uninstall SOA Core Extension,
see "Cleaning the MDS" in Installation and Upgrade Guide for Oracle Application
Integration Architecture Foundation Pack.

AIA Artifacts in Various Integration Styles
AIA Architecture recommends variety of integration styles and AIA patterns to enable
the flight of a message in an Integration Flow.

AIA implementation teams should evaluate the following points to choose an
integration style and methodology to follow when creating various AIA artifacts.

Business Scenario - The Functional Design Document (FDD) describes the Business
Scenario and provides:

• A detailed description of the business case.

• Various use cases detailing the various usage scenarios, including exception cases
with expected actions by various actors.

• Details about all the participating applications - commercial, off-the-shelf with
versions and homegrown.

• Details about the triggering business events.

• Details about the functional flow.

• Details about performance and scalability requirements.

• Details about business objects to be used.

• Actions to be performed on the various business objects.

• Oracle tools and technologies to be leveraged.

The AIA artifacts that are required for the collaboration between the applications or
functions are dependent on the integration style adopted for an integration flow. These
artifacts include ABCSs, EBSs, EBFs, CBPs, and various adapter services.

The AIA Project Lifecycle Workbench is used to define an AIA Project, which contains
definitions of all the artifacts to be designed, developed, tested, packaged, and
delivered.

AIA Artifacts in Various Integration Styles

Building AIA Integration Flows 2-11

Integration Through Native Application Interfaces Using the Oracle Applications
Technology Infrastructure

In this style, messages flow from the requester application to the providing
application. The mode of connectivity could be SOAP/HTTP, queues, topics, or native
adapters.

No middleware is involved in this integration.

The requester application must establish the connectivity with the provider
applications. The requester application is responsible for sending the request in the
format mandated by provider's API and interpreting the response sent by the
provider. Requester and provider applications are responsible for the authentication
and authorization of requests.

The integration flow consists of individual application functions interacting directly.
All capabilities required to make this interaction possible must be available or made
available in the individual applications.

Figure 2-1 illustrates how a requester application interacts directly with a provider
application.

Figure 2-1 Example of a Requester Application Interacting Directly with a Provider Application

In more complex situations, when the integration flow consists of multiple steps
involving interactions with multiple applications, leverage the workflow-like
capability in one or more applications.

No AIA artifacts are built in this case. Establish direct connectivity between
applications.

For more information about different modes of connectivity, see Establishing Resource
Connectivity.

Understanding Integration Styles with Integration Framework
In all the integration styles with integration framework, middleware technologies are
leveraged. The applications push the messages to the middleware, and the
middleware pushes the messages to the target applications.

These integration styles have integration framework:

• Integration flow leveraging provider services

AIA Artifacts in Various Integration Styles

2-12 Developer's Guide for Oracle SOA Core Extension

• Integration flow leveraging provider services with canonical model-based
virtualization

The AIA service artifacts needed for implementing an integration flow in any of the
integration styles with integration framework depends on:

• Complexity of data exchange

– No processing logic

– With processing logic

• Message exchange pattern

– Synchronous request-response

– Asynchronous one-way (fire-and-forget) - Need for guaranteed delivery
assumed

– Asynchronous request-delayed response - Need for guaranteed delivery and
correlation of response assumed

These AIA service artifacts are defined in AIA Architecture:

• CBP

• EBSs

• EBFs

• ABCSs

• Adapter Services

– JMS Producer and JMS Consumer

– JCA Adapter Service

For more information about different message exchange patterns, see Designing and
Developing Enterprise Business Services and Working with AIA Design Patterns.

For more information about different AIA service artifacts and Oracle SOA Suite
components used to implement them, see Concepts and Technologies Guide for Oracle
Application Integration Architecture Foundation Pack.

Note:

In the following sections, for each integration style with integration
framework, the AIA artifacts to be developed are recommended for a
combination of situations.

Integration Flow with Requester Application Services

The requester application invokes a single AIA service on the middleware. The request
presented by the requester application is fulfilled by the AIA service by invoking
suitable APIs in the provider applications. The AIA service can accept a message in the
requester application format. The AIA service presents the request to the provider
applications in the format mandated by the provider's API. The AIA service accepts

AIA Artifacts in Various Integration Styles

Building AIA Integration Flows 2-13

the response in the provider application format, if needed. The AIA service is
responsible for the authentication and authorization of the requests.

The integration flow consists of this single AIA service artifact deployed on the
middleware managing all interactions with all participating applications.

Figure 2-2 illustrates how a service deployed on the middleware enables integration
between the requester and the provider application.

Figure 2-2 Example of Integration Flow with Native Application Services

For more complex situations in which the integration flow consists of multiple steps
involving interactions with multiple applications, the AIA service implements a
workflow-like capability and manages all interactions with all the participating
applications.

The AIA service artifacts to be developed depend on the complexity of data exchange
and various message exchange patterns.

Table 2-1 lists suitable AIA artifacts for a combination of situations.

Table 2-1 AIA Artifacts for Integration Flows with Requester Application Services

Message Pattern No Processing Logic With Processing Logic

Synchronous Request
Response

EBS EBF

Asynchronous One-Way EBS EBF

Asynchronous Request-
Delayed Response

EBS - Request

EBS - Response

EBF

AIA Artifacts in Various Integration Styles

2-14 Developer's Guide for Oracle SOA Core Extension

Direct Integration Through Application Web Services

A provider application-specific AIA service, exposing a coarse-grained functionality of
the provider application leveraging one or more APIs, is created with a suitable
provider application-specific interface. Several business initiators can invoke this AIA
service. If the business initiators cannot present the request in the format understood
by the provider application-specific AIA service, a requester application-specific AIA
service is used to transform the business initiator request to the provider application
format. The requester application-specific AIA service is responsible for authenticating
and authorizing the requests. The provider application-specific AIA service
propagates the authentication and authorization information of the requests to the
provider application.

The integration flow would consist of a requester application-specific AIA service
artifact deployed on the middleware managing all interactions with all provider
application-specific AIA services.

Figure 2-3 illustrates how a service deployed on the middleware enables the
integration between the requester and the provider application.

Figure 2-3 Example of Integration Flow Leveraging Provider Services

For more complex situations in which the integration flow involves interactions with
multiple applications, the requester application-specific AIA service implements a
workflow-like capability and manages all interactions with all the provider
application-specific AIA services.

The AIA service artifacts to be developed depend on the complexity of data exchange
and various message exchange patterns.

Table 2-2 lists suitable AIA artifacts for a combination of situations.

Table 2-2 AIA Artifacts for Leveraging Provider Services

Message Pattern No Processing Logic With Processing Logic

Synchronous Request
Response

Requester ABCS

Provider ABCS

Requester ABCS

Provider ABCS

Asynchronous One-Way Requester ABCS

Provider ABCS

Requester ABCS

Provider ABCS

AIA Artifacts in Various Integration Styles

Building AIA Integration Flows 2-15

Message Pattern No Processing Logic With Processing Logic

Asynchronous Request-
Delayed Response

Requester ABCS

Provider ABCS

Requester ABCS

Provider ABCS

Integration Through Packaged Canonical and Standardized Interfaces

Loose coupling through a canonical (application-independent) model is a sign of a
true SOA. Participating applications in loosely coupled integrations communicate
through a virtualization layer. Instead of direct mappings between data models,
transformations are used to map to the canonical data model. While this allows for
greater reusability, the transformations both increase the message size and consume
more computing resources. For functional integrations, this integration pattern is ideal
since the reusability gained is worth the slight overhead cost.

In this case, an EBS based on the Enterprise Business Objects (EBOs) and Enterprise
Business Messages (EBMs) is created as a mediator service.

A provider service, exposing a coarse-grained functionality of the provider application
leveraging one or more APIs, is created with the same EBM interface as the EBS
operation interface.

If the business initiators cannot present the request in the format understood by the
EBS operation interface, a requester service is used to transform the business initiator
request into the provider service format.

Figure 2-4 illustrates how the request sent by the source application is processed by the
target application with the help of the EBS and a set of intermediary services. The
request and provider transport services are optional and are needed only in case of
non-SOAP-based transports.

Figure 2-4 Example Showing Canonical Model-based Virtualization

For more complex situations in which the integration flow involves interactions with
multiple applications, the requester application-specific AIA service presents its
request to the mediator AIA service. The mediator AIA service triggers an AIA
service, which implements a workflow-like capability and manages all interactions
with all the provider application-specific AIA services through mediator AIA services.
In this case, the mediator AIA service interface chosen is assumed to be accepted as
the common interface. Thus, all requester application-specific AIA services invoke this
mediator AIA service, and all the provider application-specific AIA services
implement this common interface. The AIA service artifacts to be developed depend
on the complexity of data exchange and various message exchange patterns.

Table 2-3 lists suitable AIA artifacts for a combination of situations.

AIA Artifacts in Various Integration Styles

2-16 Developer's Guide for Oracle SOA Core Extension

Table 2-3 AIA Artifacts for Integration Flows with Multiple Application Interactions

Message Pattern No Processing Logic With Processing Logic

Synchronous Request
Response

Requester ABCS

EBS

Provider ABCS

Requester ABCS

EBS

Provider ABCS

Asynchronous One-Way Requester ABCS

EBS

Provider ABCS

CBP

Requester ABCS

EBS

EBF

Provider ABCS

Asynchronous Request-
Delayed Response

Requester ABCS

EBS

Provider ABCS

CBP

Requester ABCS

EBS

EBF

Provider ABCS

Bulk Data Processing
Bulk data processing involves a large batch of discrete records or records with very
large data. The methodology is point-to-point integration specializing in the high-
performance movement of data with a trade-off of reusability.

Bulk data processing is about persistent data replicated across multiple applications.
The integrations fall into four styles:

• Initial data loads

• High-volume transactions with Xref table

• Intermittent high-volume transactions

• High-volume transactions without Xref table

For complete details about using bulk data processing with AIA, see Using Oracle
Data Integrator for Bulk Processing.

Integration Style Choice Matrix
In any AIA implementation, a variety of integration flows conforming to different
integration styles coexist. Integration flows represent processing of messages by AIA
services deployed to deliver the business functionality desired.

The choice of an integration style influences the design of AIA services. Conversely,
decisions about the design of AIA services lead to a particular integration style.

Various aspects of AIA service design are:

• Service Granularity

Decide on the functionality to be implemented in a service either based on the
business logic needed for a business activity or task (the result of business process
analysis) or based on the functions exposed by a provider application.

Service granularity is Coarse-Grained if the business logic conforms to the
requirements of a business activity or task (result of business process analysis of

AIA Artifacts in Various Integration Styles

Building AIA Integration Flows 2-17

AIA Reference Process Models). In this case, the service is implemented by
invoking multiple low APIs of the provider application.

Service granularity is Granular if the business logic conforms to the low-level
functions exposed by the provider application.

• Service Reusability

Service reuse is High for different Integration Flows if its design is modular and
built for the requirements of various business use cases. Conformance to the
requirements of a business activity or task (the result of business process analysis of
AIA Reference Process Models) leads to modular design.

If the service is built to meet the requirements of a particular business use case,
then the logic is monolithic and reuse is Low.

• Service Virtualization

This aspect provides for separation of concerns and independence of requester
applications and provider applications from changes. The choices are Yes or No.

• Service Interoperability

The capability of diverse service implementations to interoperate is dependent on
their conformance to WS-I standards, a common message meta model, and a robust
versioning strategy. The AIA EBS WSDLs and AIA EBOs and EBMs provide this
capability as delivered. For others, special effort is needed to ensure
interoperability.

Table 2-4 summarizes the granularity, reusability, virtualization, and interoperability
for the various integration styles.

Table 2-4 AIA Service Design Summary

Integration Styles Granularity Reusability Virtualization Interoperability

Integration Flow
with Native
Application APIs

No AIA services on
middleware; direct
Application to
Application
interaction

No AIA services on
middleware; direct
Application to
Application
interaction

No AIA services on
middleware; direct
Application to
Application
interaction

No AIA services on
middleware; direct
Application to
Application
interaction

Integration Flow
with Requester
Application Services

Coarse Grained with
High Performance
overhead

Low No Special Effort

Integration Flow
leveraging Provider
Services

Granular High No Special Effort

Integration Flow
leveraging Provider
Services with
Canonical-Model
based Virtualization

Coarse Grained High Yes As Delivered

Development Tasks for AIA Artifacts
This section discusses the development tasks for AIA artifacts and describes how to:

• Identify the EBO

Development Tasks for AIA Artifacts

2-18 Developer's Guide for Oracle SOA Core Extension

• Design an integration flow

• Identify and create the EBS

• Construct the ABCS

• Enable the participating applications

• Identify and create the EBF

Identifying the EBO
The FDD should discuss:

• The conceptual canonical model or EBOs to be used and the actions that must be
performed on this entity.

• Identification of the EBO from the SOA Core Extension or construction of EBO. The
EBO should incorporate all of the requirements needed by this integration.

• Identification of the EBM from the SOA Core Extension or construction of EBM, if
required.

For more information, see the Enterprise Object Library Extensibility Guide on My Oracle
Support in article ID 983958.1.

Designing an Oracle AIA Integration Flow
The design of an Integration Flow is detailed in a technical design document (TDD).
The criteria for completion of a TDD are dependent on the project and the
accompanying deliverables.

The TDD lays out complete details on the flow logic, integration artifacts, object/
element mapping, DVM types and values, error handling, and installation specifics. It
also includes an outline of the unit test plans that a developer uses to validate run-time
operation.

The Integration Flow is not a run-time executable artifact, so a message exchange
pattern cannot be attributed to the Integration Flow. The design of the AIA service
artifacts listed previously must include a careful analysis of the business scenario,
which leads to a decision on the message exchange patterns for each AIA service
artifact.

For more information about message exchange pattern decisions, see Establishing the
MEP of a New Process EBS, Identifying the MEP, and How to Identify the Message
Pattern for an EBF.

The tasks needed to enable the Oracle AIA service artifacts to participate in various
message exchange patterns are discussed in the chapters detailing the development of
these artifacts.

To design an Integration Flow:

1. Analyze the participating Application Business Messages (ABMs) and map them to
the EBM.

For more information, see "Understanding EBOs and EBMs" in Concepts and
Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

2. Identify the EBSs.

Development Tasks for AIA Artifacts

Building AIA Integration Flows 2-19

See Designing and Developing Enterprise Business Services.

3. Identify the EBFs.

See Designing and Constructing Enterprise Business Flows.

4. Identify the ABCSs.

See Designing Application Business Connector Services.

5. Identify and decide on the participating application connectivity methodology.

See Designing and Developing Enterprise Business Services.

For more information, see "Understanding Interaction Patterns" in Concepts and
Technologies Guide for Oracle Application Integration Architecture Foundation Pack.

6. Identify and decide on the security model.

See Working with Security.

For more information, see "Understanding Security" in Concepts and Technologies
Guide for Oracle Application Integration Architecture Foundation Pack.

7. Identify and decide on the performance and scalability needs.

8. Identify and decide on the deployment strategy.

Understanding Oracle AIA Integration

An Oracle AIA Integrating Scenario is a logical collection of AIA service artifacts,
including:

• EBSs

• EBFs

• ABCSs

Since an AIA service artifact can be part of multiple AIA integration flows, go through
the Oracle Enterprise Repository and identify any service artifact that can be reused.
The AIA service artifacts are built with reusability in mind.

For each of the artifacts, follow these reusability guidelines:

• Reusability guidelines for EBSs

• Reusability guidelines for EBFs

• Reusability guidelines for ABCSs

To develop an AIA Integration Flow:

1. Identify and create the EBS, if needed.

See Designing and Developing Enterprise Business Services.

2. Enable the participating applications.

See Enabling and Registering Participating Applications.

3. Construct the ABCS.

See Constructing the ABCS.

Development Tasks for AIA Artifacts

2-20 Developer's Guide for Oracle SOA Core Extension

4. Construct the EBF.

See Designing and Constructing Enterprise Business Flows.

For more information about standard naming conventions, see Oracle AIA
Naming Standards for AIA Development.

Identifying and Creating the EBS
Each EBO has an EBS to expose the “Create, Read, Update, Delete" (CRUD) operations
and any other supporting operations. Each action present in the associated EBM is
implemented as a service operation in EBS. Creation of the EBS and the
implementation of all of the service operations is a critical task in the implementation
of the end-to-end integration flow.

Note:

The operations in the entity EBS should only act on the relevant business
object and not any other business object. Operations that act on multiple
business object should reside in the process EBS.

When the EBS exists, check whether all of the actions necessary for acting on the EBO
pertaining to this Integration Flow were implemented as service operations. If they
were not, change the existing EBS to add the additional service operations.

This procedure lists the high-level tasks to construct an entity based EBS. Designing
and Developing Enterprise Business Services provides complete information on how
to complete each of these tasks:

To construct an entity-based EBS:

1. Define and create the contract for the EBS.

2. Construct the EBS.

3. Register relevant provider services for each of the operations.

4. Add routing rules for new or existing operations.

5. Enable each of the service operations for the CAVS.

For more information, see Designing and Developing Enterprise Business Services

Constructing the ABCSs
For more information, see Constructing the ABCS and Completing ABCS
Development.

Enabling and Registering Participating Applications
This section discusses the steps required to enable the participating applications in
your SOA Core Extension ecosystem. It also discusses the options available for
managing participating applications to the AIA registry.

Enabling Participating Applications

To enable participating applications:

Development Tasks for AIA Artifacts

Building AIA Integration Flows 2-21

1. Identify the service APIs that must be invoked.

2. Provide the WSDL to the participating applications.

3. Construct adapter services, if required.

Managing the Oracle AIA System Registry

This section discusses how to manage the Oracle Application Integration Architecture
(AIA) system registry.

Understanding the Oracle AIA System Registry

The purpose of the system registry is to identify and capture information about the
requester and provider systems that are participating in your Oracle AIA ecosystem.
The system registry captures system attributes that are relatively static.

While the system registry for your Oracle AIA ecosystem is initially loaded during the
Oracle AIA installation process, you can use the user interface to manage information
in the registry.

A benefit of storing a system registry is that certain system attributes can be easily
defaulted to enterprise business message headers. Requester and target systems may
have multiple instances, each with different attributes. The system registry enables
you to capture attributes for each instance so that they can be identified in subsequent
processing.

SOA Core Extension provides two ways to manage data in your system registry:

• Systems page

• SystemRegistration.xml configuration file

How to Manage the System Registry Using the Systems Page

Goal:

Use the Systems page to manage the participating applications stored in the Oracle
AIA system registry.

Actor:

System administrator (AIAApplicationUser role)

To manage your Oracle AIA system registry using the System page:

1. Access the AIA Home Page. Click Go in the Setup area.

2. Select the Systems tab.

3. Enter your search criteria and click Search to execute a search for a particular
participating application system.

4. Use the page elements listed in Table 2-5 to define participating application system
registry entries.

Table 2-5 Systems Page Elements

Page Element Description

Delete Select a system row and click Delete to execute the deletion.

Development Tasks for AIA Artifacts

2-22 Developer's Guide for Oracle SOA Core Extension

Page Element Description

Create Click to add a system row that you can use to add a
participating application to the system registry.

Save Click to save all entries on the page.

Internal Id System instance name assigned by an implementer, for example
ORCL 01. This value would be used in transformation and
domain value map column names to indicate a system instance.
For example, the value can be used in transformations to
identify the requester or provider system.

System Code This is a required value. This value populated to the Enterprise
Business Message (EBM) header.

System Description Long description of the requester or provider system instance
identified in the System Code field. This value populated to the
EBM header.

IP Address IP address of the participating application by which one can
access the participating application endpoint. This value is
populated to the EBM Header.

URL This is the host name and port combination specified in the
URL format by which one can access the participating
application. Typically, this is in the form of http://
hostname:port/. This value is populated to the EBM Header.
This URL is not used by process integrations to access the
participating application's web services, but rather this value is
stored for informational purposes. Process integration
developers determine which URL to use as the entry point for a
participating application.

System Type Provides the system type. For example, Oracle EBIZ. This is a
required value.

Application Type Application being run within the specified system. For
example, a system type of Oracle EBIZ may have an
application type value of FMS. This value populated to the EBM
header.

Version Provides the version of the application being run by the system.
This value populated to the EBM header.

Contact Name Provides the name of the contact responsible for the system.
This value populated to the EBM header.

Contact Phone Provides the phone number of the contact responsible for the
system. This value populated to the EBM header

Contact E-Mail Provides the email address of the contact responsible for the
system. This value is populated to the EBM header.

How to Manage the System Registry Using the SystemRegistration.xml Configuration File

Goal:

Development Tasks for AIA Artifacts

Building AIA Integration Flows 2-23

Create a systemRegistration.xml configuration file for a Project Lifecycle Workbench
process integration project. Create one systemRegistration.xml file per project.

For more information about the Systems page, see How to Manage the System
Registry Using the Systems Page.

Role:

Integration developer

To manage your Oracle AIA system registry using the SystemRegistration.xml
configuration file:

1. Create a systemRegistration.xml file for your process integration project.

2. To add participating application values to the system registry, use the <create>
element provided in the sample XML structure shown in Example 2-4.

The tokens you create in the <create> element should be based on the structure
of the AIAInstallProperties.xml file.

For example, the following token, $
{participatingapplications.SamplePortal.server.soaserverhostn
ame}, was derived from the structure in the AIAInstallProperties.xml file
shown in Example 2-5:

Actual values for the tokens in bold are derived from $AIA_INSTANCE/config/
AIAInstallProperties.xml during process integration installation using a
deployment plan.

3. To delete participating application values from the AIA application registry, use the
<delete> element provided in the sample XML structure shown in Example 2-6
and replace the system code values in bold with the system codes of the
participating applications.

4. Save the systemRegistration.xml file to $SOA_HOME/pips/
<projectCode>/DatabaseObjects/.

If you are using the Project Lifecycle Workbench in your development
methodology, the <projectCode> folder name is the project code value assigned
to your project in Project Lifecycle Workbench.

If you are not using the Project Lifecycle Workbench, assign your own project code
value to the folder name.

Example 2-1 SQL Content Extracted by AIA Deployment Driver

MERGE INTO AIA_SYSTEMS sysreg
USING dual
on (dual.dummy is not null and sysreg.SYSTEM_CODE='SampleSEBL')
WHEN NOT MATCHED THEN INSERT
(SYSTEM_ID,SYSTEM_INTERNAL_ID,SYSTEM_CODE,SYSTEM_DESC,SYSTEM_IP_ADDR,SYSTEM_
URL,SYSTEM_TYPE,APPLICATION_TYPE,APPLICATION_VERSION,CONTACT_NAME,CONTACT_
PHONE,CONTACT_EMAIL)
VALUES (AIA_SYSTEMS_S.nextval,'Siebel','SampleSEBL','Sample Siebel Instance
01','10.0.0.1','http://siebel.xy.example.com:7001/ecommunications_enu',
SIEBEL','CRM','1.0, 'Siebel contact','1234567891','Siebelcontact@Siebel.com')
/

Development Tasks for AIA Artifacts

2-24 Developer's Guide for Oracle SOA Core Extension

Example 2-2 Sample SQL Content Extracted by AIA Deployment Driver

<?xml version="1.0" encoding="UTF-8"?>
 <properties>
 <participatingapplications>
 <siebel>
 <http>
 <host>siebel.xy.example.com</host>
 <port>7001</port>
 </http>
 <internal>
 <id>Siebel</id>
 </internal>
 <version>1.0</version>
 <siebel>
 ...
 </participatingapplications>
 </properties>

Example 2-3 Sample SQL Content Extracted by AIA Deployment Driver

The AIA Deployment Driver reads the deployment plan, replaces the tokens from the
systemRegistration.xml with actual values from
AIAInstallProperties.xml, and executes the system registration SQL statement
to populate the system registry.

Example 2-1 shows the SQL content extracted by the AIA Deployment Driver:

If you are deploying multiple Project Lifecycle Workbench process integration projects,
multiple systemRegistration.xml files get added. Check whether participating
applications are added to system registry entries before deploying them. Duplicate
requests cause an SQL exception due to primary key and unique value constraints
enabled on the system registry table.

Check them by including the text in bold in the SQL content above. If a participating
application value is found to be a duplicate, it is not created. If it is unique, it is
created.

The AIA Deployment Driver extracted this example SQL content based on replacing
tokens from systemRegistration.xml with Example 2-2 data provided in
$AIA_INSTANCE/config/AIAInstallProperties.xml:

Example 2-4 Sample SQL Create Code

<AIASystemRegistration>
 <create>
 MERGE INTO AIA_SYSTEMS sysreg USING dual on (dual.dummy is
 not null and sysreg.SYSTEM_CODE='SampleSEBLDPT003') WHEN NOT
 MATCHED THEN INSERT (SYSTEM_ID,SYSTEM_INTERNAL_ID,SYSTEM_CODE,
SYSTEM_DESC,SYSTEM_IP_ADDR,SYSTEM_URL,SYSTEM_TYPE,APPLICATION_
TYPE,APPLICATION_VERSION,CONTACT_NAME,CONTACT_PHONE,CONTACT_
EMAIL) VALUES (AIA_SYSTEMS_S.nextval,'SampleSEBLDPT003','SampleSEBLDPT003',
'Sample Siebel Instance01','10.0.0.1','http://
${participatingapplications.SampleSiebel.server.
soaserverhostname}:${participatingapplications.SampleSiebel.
server.soaserverport}
/ecommunications_enu'
,'Sample SIEBEL','CRM','${pips.BaseSample.version}
','Siebel contact','1234567891','aiasamples_contact@aia.com')
 /
 MERGE INTO AIA_SYSTEMS sysreg USING dual on (dual.dummy is
 not null and sysreg.SYSTEM_CODE='SamplePortalDPT003')

Development Tasks for AIA Artifacts

Building AIA Integration Flows 2-25

WHEN NOT MATCHED THEN INSERT (SYSTEM_ID,SYSTEM_INTERNAL_
ID,SYSTEM_CODE,SYSTEM_DESC,SYSTEM_IP_ADDR,SYSTEM_URL,SYSTEM_
TYPE,APPLICATION_TYPE,APPLICATION_VERSION,CONTACT_NAME,CONTACT_
PHONE,CONTACT_EMAIL) VALUES (AIA_SYSTEMSS.nextval,
'SamplePortalDPT003','SamplePortalDPT003',
'Sample Portal Instance 01','10.0.0.1',
'http://${participatingapplications.SamplePortal.server.
soaserverhostname}:${participatingapplications.SamplePortal.
server.soaserverport}
','Sample Portal','BILLING','${pips.BaseSample.version}'
,'Portal contact','1234567892','aiasamples_contact@aia.com')
 /
 </create>
</AIASystemRegistration>

Example 2-5 Sample Participating Application Code

<properties>
 <participatingapplications>
 <SamplePortal>
 <server>
 <soaserverhostname>adc2180948.xy.example.com
 </soaserverhostname>
 </server>
 ...
 </participatingapplications>
</properties>

Example 2-6 Sample Delete Code

<AIASystemRegistration>
 <delete>
 delete from AIA_SYSTEMS where SYSTEM_CODE='SampleSEBLDPT005'
 /
 delete from AIA_SYSTEMS where SYSTEM_CODE='SamplePortalDPT005'
 /
 </delete>
</AIASystemRegistration>

Identifying and Creating the EBF
Each identified EBF has a corresponding business process EBS. The operations within
this EBS are the entry points to EBFs.

For more information, see Designing and Constructing Enterprise Business Flows.

Testing an Oracle AIA Integration Flow
The CAVS supports end-to-end testing by stubbing out the applications.

For more information about CAVS, see "Introduction to the Composite Application
Validation System" in Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture Foundation Pack.

Testing an Oracle AIA Integration Flow

2-26 Developer's Guide for Oracle SOA Core Extension

3
Implementing Direct Integrations

This chapter provides an overview of direct integrations and describes the procedure
for implementing direct integrations.

This chapter includes the following sections:

• Understanding Direct Integrations

• Using the Application Business Flow Design Pattern for Direct Integrations

• Finding the Correct Granularity

• Handling Transactions

• Enabling Outbound Interaction with Applications

• Invoking an ABF

• Handling Errors

• Securing the Service

• Using Cross References

• Naming Conventions and Standards

• Annotating Composites

• Service Configuration

• Extending Direct Integrations

Understanding Direct Integrations
Oracle SOA Core Extension helps organizations integrate their applications using
common information model known as canonical model. Canonical Enterprise Business
Objects (EBOs) work best in the integrations where integration flows involve
connectivity with multiple source and destination systems. Canonical-based interfaces
minimize close coupling between participating applications. This allows re-usability
and increases the speed of deployment when new applications are added to the
ecosystem.

However, every integration scenario does not require a canonical integration model.
SOA Core Extension components also provide support for application-to-application
(direct) integration.

You must consider direct integration when:

• There is only one application on each end of the integration.

Implementing Direct Integrations 3-1

• There is requirement for fewer mappings.

• The integration requires very low latency.

• The integration is transformation-intensive and requires very high throughput
(peaks at over 10,000 messages per hour - or 30 messages per second).

• The integration is process-centric rather than data-centric.

• The requester and the provider applications are not expected to change.

Using the Application Business Flow Design Pattern for Direct
Integrations

A simple mode of communication between a consumer and a provider application or
services is allowing them to interact directly with each other using the XML-based
data structures, as specified by the provider or service.

The Application Business Flow (ABF) manages the integration flow and implements
the following tasks necessary for integration:

1. The service receives the request from the client application and does data
enrichment, if required.

Data Enrichment can be described as retrieving additional details from the client
application.

2. The service makes calls to the provider using connectivity protocols.

The response received from the provider application is transformed into the client
application format before returning the response to the client application.

The interface for the integration service is defined by requester / client
application.

Note:

If you introduce any additional provider at a later time, you must add another
ABF.

Finding the Correct Granularity
You can implement end-to-end integration flows either using a single ABF composite
or multiple ABF composites, depending on your integration requirement. Consider the
following when you design your integration flow.

• Define and design reusable services if the functionality of the service could
potentially be reused multiple times.

• When some functionality, embedded in a service, is needed in multiple integration
scenarios, re-factor it a separate ABF and create a service to reference it.

• Optionally, use an ABF to invoke another ABF, as shown in Figure 3-1, if
functionality is available as a separate service.

Using the Application Business Flow Design Pattern for Direct Integrations

3-2 Developer's Guide for Oracle SOA Core Extension

Figure 3-1 ABF Invoking ABF

Handling Transactions
When an operation defined on an ABF service interface involves destructive writes to
two or more resources then Oracle advises you to perform these tasks in a single
transaction.

Building an ABF as a Transactional Composite
Design an ABF composite with transactional attributes set on it in the following
scenarios:

• Two different applications need to be updated and you want to avoid problems
that occur when only one update is successful leading to inconsistency.

• There is an existing global transaction context and the operations performed by
your integration process service must be part of the global transaction.

• An application has to send/receive a message and also has to do an update.

• A group of related messages have to be processed in a batch mode.

Achieving Transactionality in the ABF
Create a common transaction context using two-phase commit to achieve
transactionality.

The BPEL component creates a new transaction when a BPEL process is invoked. If a
transaction already exists, BPEL suspends it and creates a new one. Set the transaction
flag on the BPEL component to chain an execution into a single global transaction by
adding bpel.config.transaction in the source of composite editor with value as required
as shown inExample 3-1.

When the transaction flag is set, BPEL inherits the existing transaction. It creates a new
transaction only when no similar transaction exists.

When an ABF service is invoked by another SOA composite ensure a single-threaded
execution of the composite. You must implement this only when a one-way operation
is being exposed by your service. To accomplish a single threaded execution of the
composite, set a sync-type invocation of your composite by the caller composite by
setting the property for the BPEL component in your composite as shown below:

bpel.config.oneWayDeliveryPolicy=sync

Handling Transactions

Implementing Direct Integrations 3-3

Note:

Both the settings can be set while designing your service in JDeveloper.

Example 3-1 Setting the transaction flag on the BPEL component

<component name="<BPELProcessName">
 <implementation.bpel src="<BPELProcessName" >.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

Enabling Outbound Interaction with Applications
This section describes how to enable outbound interactions with participating
applications.

Using JCA Adapters
If JCA Adapters are available, they should be your first choice to connect to
applications as they provide support for tasks associated with connection
management, transaction management, and scalability in combination with the
runtime environment.

Using Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP)
Most applications expose functionality in the form of a web service. The most common
transport used is SOAP over HTTP. However, some applications may expose direct
XML over HTTP. Participating applications making an outbound interaction in a
synchronous mode alone should send the requests using SOAP/HTTP.

Using JMS Queues
Use queues when the message submission is decoupled from processing of the
message. When JMS queues are used, access them using JMS Adapter. The message is
enqueued to the JMS queue by the ABF artifact and the application dequeues the
message

Using Adapters in a Composite or as a Separate Composite
Develop the adapter as separate service composite only when the same transport
adapter service could be used with multiple ABFs. If you do not foresee such
reusability include ABF and transport adapter in the same composite.

Invoking an ABF
Communication between an ABF and the application is governed by the application
capabilities. You can invoke an ABF in the following ways:

• Using standard web service interface where the client application makes a web
service call to the ABF.

• Using another ABF, when the required functionality is available as a separate ABF.

• Using appropriate bindings such as JCA/JMS inside the composite for service
endpoints if requester cannot make a web service call.

Enabling Outbound Interaction with Applications

3-4 Developer's Guide for Oracle SOA Core Extension

An ABF is built by including an adapter that can be invoked by the client
application.

• Using JMS queues when message submission needs to be decoupled from
processing of the message. JMS queues must be accessed using JMS Adapter. The
message is en-queued to the JMS queue by the application and ABF de-queues the
message. The JMS helps exchange of messages in a persistent manner for
guaranteed message delivery.

• Exposing a JMS producer composite if the requester application does not have a
capability to drop messages into a queue. Build a JMS consumer adapter into the
ABF composite. The JMS consumer adapter dequeues the message and invokes the
service provider application. The Asynchronous Queuing design pattern
establishes a central queue to allow services to overcome availability issues and
increase the overall robustness of asynchronous data exchange.

Handling Errors
This section describes how you can catch errors when implementing direct integration.

Using Direct Integration Services
Enable and configure direct integration services to catch and handle the runtime and
business faults. Include all the business faults that you can envisage while deciding
WSDL contracts and enable services to return the business fault to the caller of the
ABF service.

Oracle recommends that you create a separate catch block for all possible errors and
ensure that only unexpected errors go to catchAll block.

The best practice is to invoke a one-way error notification service for sending error
notification and error logging.

Using the Fault Management Framework
You can leverage Error Handling framework that comes with the SOA Core Extension
for exception capture and exception processing. Oracle recommends that you define a
service-specific fault policy file and define both runtime and business faults in it and
associate fault policies at composite level.

Use AIAAsyncErrorHandlerBPELProcess of AIA Error Handler framework with direct
integration but pass the input in the format that is required by it. Construct an XML
element representing an AIAFault element as string before you invoke the
AIAAsyncErrorHandlerBPELProcess for business fault handling and error
notification/logging.

To invoke the AIAAsyncErrorHanlderBPELProcess, follow the guidelines described in
Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response,
except for the step where you apply XSLT EBM_to_Fault.xsl. However, the input
message should have the following elements populated with data.

• Fault/FaultNotification/FaultMessage/Text

• Fault/FaultNotification/FaultingService/InstanceID

• Fault/FaultNotification/FaultingService/ECID

• Fault/FaultNotification/FaultingService/ImplementationCode

Handling Errors

Implementing Direct Integrations 3-5

• Fault/FaultNotification/FaultingService/ID

You can get all the necessary framework behavior including email notifications, and
also drill down into it using the EM console.

You cannot access the information that is part of the Fault Message which is derived
from the EBM_HEADER. However, the following elements can be derived by the AIA
fault handling framework for remote, binding and other faults that are configured in
the fault policy xml files.

• Fault Message Code

• Fault Message Text

• Severity

• Stack

• Faulting Service ID

• Faulting Service Implementation Code

• Faulting Service Instance ID

• Corrective Action

• Reporting Date Time

Enable routing of error information through the Notification Setup screen using error
code and service name.

Note:

Creation of EBM_Header variable in the BPEL process, which you use for fault
handing in canonical integrations, is not relevant in direct integrations.

There is no default support for message resubmission for this release.

Securing the Service
The processes for securing the direct integration services is similar to the way AIA
services are secured. The processes are:

• All the web service end points should be secured.

• Individual service components do not have to be secured.

• All services should be provided with authentication credentials.

• Applications invoking secured ABF services need to send required credentials.

Security Recommendations for OWSM Policies for Authentication
The Table 3-1 lists security recommendations for OWSM policies.

Securing the Service

3-6 Developer's Guide for Oracle SOA Core Extension

Table 3-1 Security Recommendations for OWSM Policies

Policy Recommendations

oracle/
aia_wss_saml_or_us
ername_token_servi
ce_policy_OPT_ON

This is a clone of oracle/wss_saml_or_username_token_service_policy
with Local Optimization set to ON. Attach this OWSM security policy
to the Service end point(s) of a composite. This policy is applied when
authenticating the incoming requests using credentials provided in
SAML tokens in the WS-Security SOAP header OR UsernameToken
WS-Security SOAP header.

oracle/
aia_wss10_saml_tok
en_client_policy_OP
T_ON

This is a clone of oracle/wss10_saml_token_client_policy with Local
Optimization set to ON. Attach this OWSM security policy to the
Reference end point(s) of a composite. This policy inserts SAML tokens
in outbound SOAP request messages.

Note:

The two custom OWSM policies are made available on the server when SOA
Core Extension is installed.

Further recommendations:

• Use appropriate client-specific policies for composites that invoke protected
application services.

• Use no_authentication_client_policy when invoking application services with no
protection.

• Do not have to attach policies for composites calling JCA based application
services.

Attaching OWSM Policies to the Composites
Services in direct integration can leverage global policy attachment support provided
by the SOA Core Extension. After deployment, SOA Core Extension tools
automatically attach global policies to services that have naming pattern ending with
ABF.

Services that do not use SOA Core Extension have to attach OWSM policy directly
(locally). Attach the policies in the composite.xml file at design time to Service and
Reference endpoints. You can also attach OWSM policies to SOA composites, after
deployment using EM console.

Using Cross References
Generate a custom database table for each cross reference entity. Oracle recommends
that you configure the XREF entity to store the cross references in the custom cross
reference table. This does not change the programming model. Wherever the cross
reference data is stored, whether it is in SOA infra – XREF_DATA or custom database
table, XREF look up and population are done using a single set of APIs.

The Cross Reference editor enables you to specify whether the custom database table
needs to be used. (Use the optimize option while defining cross reference artifact.) It
also generates the required DDL script. However, SOA does not create the table
automatically.

Using Cross References

Implementing Direct Integrations 3-7

For more information about using custom cross reference tables, see http://
www.oracle.com/technetwork/middleware/foundation-pack/learnmore/
aiaxref-524690.html.

Note:

The population of cross reference rows in the integration layer can be avoided
in situations where the source or target applications have capabilities to
manage cross references.

Naming Conventions and Standards
The ABF is modeled as a task-oriented service to capture the process logic. A practical
approach is to name services based on the processing and the entity context. Oracle
recommends that you use verbs and the entity in service names.

Because ABF is designed to integrate specific applications, use the names of
applications as part of the service name.

The template for the name of the ABF is [Verb][Entity][App1][App2] ABF[Vn if
version > 1], where App1 is source and App2 is target application.

For example, ProcessFulfillmentOrderEbizFusionABF.

You can also add the word To between participating source and target applications, if
required. For example, ProcessFulfillmentOrderEbizToFusionABF.

Additional Guidelines for Naming Services

1. Naming an ABF when invocations to enrichment services are involved

If integration interacts with an intermediary/utility application such as GOP, Tax
Computation and so on to get values to be used for integrating with target
application, include the names of these intermediary/utility applications in the
service names.

2. Naming an overarching ABF

An overarching orchestration process contains multiple tasks, wherein each task
may involve integration with another application. In such cases do not include all
the application names in the service name. Use only the source application name.

For example, ProcessFulfillmentOrderEbizABF creates an entry in FusionCRM,
updates BRM for billing and sends a shipment notification to an external TP
through B2BGateway and interface. Because the overarching process may be
dictated by source application, use only the source application name.

3. Operation name

Since the service name covers the broad context, you can have the verb followed
by entity in the service operation name.

4. Message name

The message name should be [name of the operation]Request/[name of the
operation]Response

5. Composite Namespace

Naming Conventions and Standards

3-8 Developer's Guide for Oracle SOA Core Extension

http://www.oracle.com/technetwork/middleware/foundation-pack/learnmore/aiaxref-524690.html
http://www.oracle.com/technetwork/middleware/foundation-pack/learnmore/aiaxref-524690.html
http://www.oracle.com/technetwork/middleware/foundation-pack/learnmore/aiaxref-524690.html

Composite namespace standard is http://xmlns.oracle.com/
ApplicationBusinessFlow/[Functional area or pre-built integration]/[composite
name minus the version]/V[n]

For example http://xmlns.oracle.com/ApplicationBusinessFlow/OrderToCash/
ProcessFulfillmentOrderFusionDOOToEbiz/V1

6. Namespaces for Messages

All namespaces must start with http://xmlns.oracle.com/followed by an entity
specific and domain specific identifier. For example core, Industry. If there are sub-
domains, specify them.

For example, http://xmlns.oracle.com/ABFMessage/Core/Invoice/V1

7. Namespaces for ABF (WSDL) Interface

http://xmlns.oracle.com/ApplicationBusinessFlow/\[Functional area or PIP]/
[composite name]/V[n]

For example, http://xmlns.oracle.com/ApplicationBusinessFlow/OrderToCash/
ProcessFulfillmentOrderFusionDOOEbizABF/V1

Annotating Composites
The meta information of ABF services is used in maintaining Oracle Enterprise
Repository (OER) assets. Oracle advises you to provide annotations in the composites
for the exposed services and for the referenced services. Adhere to the proposed
guidelines and insert these comments at development time.

Embed the annotations in the <svcdoc:AIA> element and place the <svcdoc:AIA>
element inside the xml comments tags <!-- and -- > as shown in the examples in this
section.

<svcdoc:ServiceSolutionComponentAssociation> must be the first
annotation element in every annotated composite.xml file as shown in Example 3-2

This element describes a globally unique identifier (GUID) used for artifacts
generation and must be placed under the root element <composite>. The value for this
element should be left blank. The GUID associates the solution service component
with the implemented business service composite. This association enables auto-
population into the Bill Of Material.

Annotate the Service and Reference elements of the composite.xml as shown in
Example 3-3 and Example 3-4.

In the previous examples the root of the annotation element of the composite is
<svcdoc:AIA>. Provide annotations for the Service and Reference elements of the
composite under xml comment tags using the annotation elements <svcdoc:Service>
and <svcdoc:Reference>, respectively as shown in Example 3-5 and Example 3-6.

<svcdoc:Service>
 <svcdoc:ImplementationDetails>
 <svcdoc:ApplicationName>Source Application</svcdoc:ApplicationName>
 ...
 <svcdoc:ArtifactType>ApplicationBusinessFlow</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 ..
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 <svcdoc:TransportDetails>
 <svcdoc:JMSAdapter>

Annotating Composites

Implementing Direct Integrations 3-9

 <svcdoc:ResourceProvider>WLSJMS</svcdoc:ResourceProvider>
 <svcdoc:ConnectionFactory>JNDINameOfConnectionFactory</
svcdoc:ConnectionFactory>
 <svcdoc:XAEnabled>true</svcdoc:XAEnabled>
 <svcdoc:ResourceTargetIdentifier>JMSUSER1</svcdoc:ResourceTargetIdentifier>
 <svcdoc:ResourceType>Queue</svcdoc:ResourceType>
 <svcdoc:ResourceName>JMSQueueName</svcdoc:ResourceName>
 <svcdoc:ResourceFileName></svcdoc:ResourceFileName>
 </svcdoc:JMSAdapter>
 </svcdoc:TransportDetails>
 </svcdoc:Service>

<svcdoc:Reference>
 <svcdoc:ArtifactType>TransportAdapter</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>GetSalesOrderLineShippingDetailsEbizAdapter</svcdoc:Name>
 </svcdoc:ServiceOperation>
 <svcdoc:TransportDetails>
 <svcdoc:ApplicationAdapter>
 <svcdoc:ResourceProvider>OracleDB</svcdoc:ResourceProvider>
 <svcdoc:BaseVersion>12.1.3</svcdoc:BaseVersion>
 <svcdoc:ConnectionFactory>eis/Apps/OracleAppsDataSource</
svcdoc:ConnectionFactory>
 <svcdoc:ApplicationName>ebiz</svcdoc:ApplicationName>
 <svcdoc:XAEnabled>true</svcdoc:XAEnabled>
 <svcdoc:ResourceTargetIdentifier></svcdoc:ResourceTargetIdentifier>
 <svcdoc:ResourceType>Procedure</svcdoc:ResourceType>
 <svcdoc:ResourceName></svcdoc:ResourceName>
 <svcdoc:ResourceFileName>XX_BPEL_GETSALESORDERLINESHIPP.sql</
svcdoc:ResourceFileName>
 </svcdoc:ApplicationAdapter>
 </svcdoc:TransportDetails>
</svcdoc:Reference>

Example 3-2 First Annotation Element for Every composite.xml File

<composite name="SamplesCreateCustomerPartyPortalBusinessService">
........................
<!--<svcdoc:AIA>
<svcdoc:ServiceSolutionComponentAssociation>
<svcdoc:GUID></svcdoc:GUID>
</svcdoc:ServiceSolutionComponentAssociation>
</svcdoc:AIA>-->
.....................................
</composite>

Example 3-3 A Skeletal Service Element in composite.xml with Annotations

<service ui:wsdlLocation>
<interface.wsdl />
<binding.ws />
<!-- <svcdoc:AIA>
<svcdoc:Service>
.
</svcdoc:Service>
</svcdoc:AIA> -->
</service>

Example 3-4 A Skeletal Reference Element in composite.xml with Annotations

<reference ui:wsdlLocation">
<interface.wsdl/>

Annotating Composites

3-10 Developer's Guide for Oracle SOA Core Extension

<binding.ws/>
<!-- <svcdoc:AIA>
<svcdoc:Reference>
.................
</svcdoc:Reference>
</svcdoc:AIA> -->
</reference>

Example 3-5 An Example of Service Annotation Element

<svcdoc:Service>
 <svcdoc:InterfaceDetails>
 <svcdoc:ServiceName>.....</svcdoc:ServiceName>
 <svcdoc:Namespace>.......</svcdoc:Namespace>
 <svcdoc:ArtifactType>ApplicationBusinessFlow</
svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>

 </svcdoc:ServiceOperation>
 </svcdoc:InterfaceDetails>
 <svcdoc:ImplementationDetails>
 <svcdoc:ApplicationName>Source Application</
svcdoc:ApplicationName>

 <svcdoc:ArtifactType>ApplicationBusinessFlow</
svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
..........
 </svcdoc:ServiceOperation>
 </svcdoc:ImplementationDetails>
 </svcdoc:Service>

Example 3-6 An Example of Service Annotation Element When It Has a Transport
Adapter

<svcdoc:Reference>
 <svcdoc:ArtifactType>UtilityService</svcdoc:ArtifactType>
 <svcdoc:ServiceOperation>
 <svcdoc:Name>initiate</svcdoc:Name>
 </svcdoc:ServiceOperation>
</svcdoc:Reference>

Annotating WSDLs
WSDL annotations are similar to an existing AIA service annotations. Look at Example
3-7.

Example 3-7 A Sample WSDL Annotation

<documentation>
<svcdoc:Service>
<svcdoc:Description></svcdoc:Description>
<svcdoc:ServiceType>ApplicationBusinessFlow</svcdoc:ServiceType>
<svcdoc:Version>2</svcdoc:Version>
</svcdoc:Service>
</documentation>

Annotating Composites

Implementing Direct Integrations 3-11

Service Configuration
Direct integrations services that use SOA Core Extension tools can use the existing
approach for setting up service level configuration properties in an XML file.
However, Oracle recommends that you use BPEL preferences by leveraging BPEL
preferences/properties feature of SOA for freshly built direct integration flows. In the
composite use the property and define the configurable preferences.

<property name="bpel.preference.myProperty">myValue</property>

Configuration updates to the defined properties such as add/delete/modify can be
made directly through EM console. If you use SOA BPEL preferences for service
configuration you do not require a separate UI for updating the properties.

There are limitations with this approach. This approach:

• Does not have support in XSL transformations

• Can be used only from BPEL. Does not have support in Mediator

• Has no support for Domain level configurations

• Has non-intuitive navigation in the EM console to the preferences

The AIA Service Configuration file can be used to configure runtime behavior of
services by the direct integration flow when SOA Core Extension is installed.

Extending Direct Integrations
This section discusses the extensibility patterns for Direct Integrations. This section
includes the following topics:

Extending XSLs
Develop the base transformation XSL file to provide extension capabilities using the
following guidelines.

• To make transformation maps extension aware, create an extension XSL file for
every transformation.

An example of a core transformation XSL file:
PurchaseOrder_to_PurchaseOrder.xsl

Every core XSL file name has one extension XSL file, for example:
PurchaseOrder_to_PurchaseOrder_Custom.xsl.

• Define empty named templates in the extension file for every component in the
message.

• Include the extension file in the core transformation file.

• Add a call-template for each component in core transformation.

• Enable the transformation to accommodate transformations for custom element as
shown in Example 3-8.

Service Configuration

3-12 Developer's Guide for Oracle SOA Core Extension

Example 3-8 Transformation Enabled to Accommodate Transformations for Custom
Element

<!-XSL template to transform Address-->
<xsl: template name="Core_AddressTemplate">
<xsl:param name = "context" select ="."/>
<xsl:param name = "contextType" select ="'CORE'"/>
<address1><xsl:value-of select="$context/address1"><address1>
<address2><xsl:value-of select="$context/address1"></address2>
<city><xsl:value-of select="$context/city"></city>
<state><xsl:value-of select="$context/state"></state>
<zip><xsl:value-of select="$context/zip"></zip>

 <xsl:if test="$contextType!='CORE'">
<xsl:call-template name="Vertical_AddressTemplate">
<xsl:with-param name="context" select="$context"/>
<xsl:with-param name="contextType" select="$contextType">
 </xsl:call-template>
</xsl:if>
</xsl: template>

Extending Services

• Mark your composite as customizable only if you have a specific customization use
case.

• Mark specific scopes in your BPEL process as customizable only if there is a specific
customization use case.

Guidelines for Enabling Customizations
The section discusses general guidelines for identifying the BPEL scope to be marked
as customizable.

The scope of the customizable scope activity should be made as narrow as possible.
For example, rather than marking the top level scope of the BPEL flow as
customizable, identify a specific scope where the logic can be added to meet
customization requirements.

• Avoid marking complex logic which could be partially deleted later as
customizable.

• If a composite is marked as customizable, do not unmark it once it is released. If
you unmark it, the customization will not survive patching.

• Do not make changes to the base version which, in a way, could cause conflict
when the customized composite is patched. For example, deleting components,
routing rules and activities in the customizable BPEL scope requires the customer
to manually resolve the merge conflict when customized item is deleted.

• Do not delete any component or routing rule from a customizable composite and
do not delete any activities in a BPEL scope marked as customizable once the
composite is released.

Extending Direct Integrations

Implementing Direct Integrations 3-13

Extending Direct Integrations

3-14 Developer's Guide for Oracle SOA Core Extension

4
Developing and Deploying Custom XPath

Functions

This chapter discusses how to implement a function in Java as a Java XPath Class,
deploy an XPath/XSL function in JDeveloper and deploy an XPath/XSL function in
application servers.

This chapter includes the following sections:

• Implementing a Function in Java as a Java XPath Class

• Deploying the XPath/XSL Function in JDeveloper

• Deploying the XPath/XSL Function in the Application Server

Implementing a Function in Java as a Java XPath Class
Since the custom function can be invoked either as an XPath or XSL function, the
implementation class must take care of both. For this reason, the hosting class must
have at least:

• A public static method with the same name as the function name.

This method is used by the XSL function invocation. Currently, optional parameters
on custom functions are not supported when registering with JDeveloper. For this
reason, it is recommended to avoid functions with optional parameters.

• A public static inner class which implements
oracle.fabric.common.xml.xpath.IXPathFunction

This interface has the method:

Object call (IXPathContext context, List args) throws XPathFunctionException that
gets called by service engines when the XPath function is invoked. When the
function is called, the runtime engine passes the XPathContext and list of
arguments passed to the function. IXPathContext enables you to get access to the
BPEL variable values within the execution context. The implementation of this
method should naturally delegate to the public static method representing the
function.

Example 4-1 illustrates a custom function implementation to get the current date.
The implementation takes care of supporting both XSL and XPath. The function
also has an optional parameter to show how overloaded methods are implemented:

Example 4-1 Custom Function Implementation to Get the Current Date

package oracle.apps.aia.core;•
import java.text.SimpleDateFormat;
import java.util.Date; import

Developing and Deploying Custom XPath Functions 4-1

java.util.List;
import oracle.fabric.common.xml.xpath.IXPathContext;
import oracle.fabric.common.xml.xpath.IXPathFunction;
import oracle.fabric.common.xml.xpath.XPathFunctionException;
public class DateUtils
{
public static class GetCurrentDateFunction implements IXPathFunction
{
public Object call(IXPathContext context, List args)
throws XPathFunctionException
{
if (args.size() == 1)
{
String mask = (String) args.get(0);
if(mask==null || mask.equals(""))
mask = "yyyy-MM-dd";
return getCurrentDate(mask);
}
throw new XPathFunctionException("must pass one argument.");
}
}
public static String getCurrentDate(String formatMask)
{
SimpleDateFormat df = new SimpleDateFormat(formatMask)
String s = df. format (new Date());
return s;
}
. . .
}

Naming Standards for Custom XPath Functions
These naming standards are enforced:

• Function name

• Function implementation class

• Function implementation method

• Function inner class

• Function namespace

• Function namespace prefix

Function Name

The function name must follow the standard Java method naming standards where
the name should be Lower-Camel-Case.

Example: getCurrentDate, getEBMHeaderValue, ...

Function Implementation Class

You can have one or more function implemented in the same class. The class name
must follow the Java class naming standard where it should be Upper-Camel-Case and
convey the functionality of the functions it implements.

Example: EBMHeaderUtils, RoutingUtils, ...

Implementing a Function in Java as a Java XPath Class

4-2 Developer's Guide for Oracle SOA Core Extension

Function Implementation Method

The implementation class will have a method for each XPath function. The method
should be named the same as the function name. The parameter's data types should
match the function parameter data types. If there are optional parameters in the
function, you should have a different overloaded method to handle the extra optional
parameters.

Example: getCurrentDate, getEBMHeaderValue, ...

Function Inner Class

There should be an inner-class for each XPath function named exactly as the Upper-
Camel-Case of the function with a 'Function' suffix. The inner class is only needed to
access the XPath function from BPEL. The inner class will have to implement the
com.oracle.bpel.xml.XPath.IXPathFunction interface.

Example: GetESBHeaderValueFunction, ...

Function Namespace

For the function to appear in both the BPEL expression builder wizard and the XSL
Mapper, the namespace must start with: http://www.oracle.com/XSL/Transform/
java/ then followed by the fully qualified name of the Java class, which implements
the function.

Example:

http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.ebmheader.EBMHeaderUtils

http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.order.route.RoutingUtils

Function Namespace Prefix

The namespace prefix must be a readable abbreviation based on functionality.

Example: ebh for GetEBMHeaderValueFunction.

Supported Data Types
The XPath 1.0 and XSL 1.0 data types are supported as return or input parameters to
the function, as shown in Table 4-1:

Table 4-1 Supported Data Types for XPath Functions

XPath 1.0/XSL 1.0 Java

Node-set XMLNodeList

Boolean boolean

String String

Number Int, float, double,...

Tree XMLDocumentFragment

Deploying the XPath/XSL Function in JDeveloper
Custom functions should be registered in JDeveloper to be able to show them with
BPEL expression builder and in the XSL Mapper. To do that, provide a User Defined

Deploying the XPath/XSL Function in JDeveloper

Developing and Deploying Custom XPath Functions 4-3

Extension Functions config file [ext-soa-xpath-functions-config.xml], as shown in
Example 4-2, and register it with JDeveloper through FilePreferencesXSL Map.

The implementation classes must be zipped/jared and dropped at:.
$SOA_HOME/soa/modules/oracle.soa.ext_11.x.x/classes folder. This way, these
classes will be placed in the classpath of WebLogic server.

Example 4-2 User Defined Extension Functions Config File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions xmlns=http://xmlns.oracle.com/soa/config/xpath
xmlns:utl="http://www.oracle.com/XSL/Transform/java/
oracle.apps.aia.core.DateUtils"
<function name="utl:getCurrentDate">
 <className>oracle.xpath.CustomFunction</className>
 <return type="string"/>
 <params>
 <param name="formatMask" type="string"/>
 <params>
</function>
<function ...>
 . . .
</function>
</functions>

Deploying the XPath/XSL Function in the Application Server
The Java XPath function should be registered with the application server. This is done
by adding an entry in the ext-soa-xpath-functions-config.xml file, which is found at:
$SOA_HOME/soa/modules/oracle.soa.ext_11.x.x/classes\META-INF. This file
contains the list and descriptions of all XPath functions defined in the system.

Each function entry in this file has this information:

• <function>: Has the name attribute that defines XPath function name.

• <classname>: Defines the XPath implementation class name. In this case, it is the
inner class name.

• <return>: Used to define return type.

• <params>:

– All the parameters required by the function.

– <param name="formatMask" type="string"/>

– For each of the parameter passed specify the name and the data type of the
input.

<function name="utl:getCurrentDate">
 <className>oracle.xpath.CustomFunction</className>
 <return type="string"/>
 <params>
 <param name="formatMask" type="string"/>
 <params>
</function>

Deploying the XPath/XSL Function in the Application Server

4-4 Developer's Guide for Oracle SOA Core Extension

The implementation classes must be dropped at: $SOA_HOME/soa/modules/
oracle.soa.ext_11.x.x/classes folder. This way, these classes will be placed in the
classpath of the SOA container and available to the classloader.

Deploying the XPath/XSL Function in the Application Server

Developing and Deploying Custom XPath Functions 4-5

Deploying the XPath/XSL Function in the Application Server

4-6 Developer's Guide for Oracle SOA Core Extension

5
Designing and Developing Enterprise

Business Services

This chapter provides an overview of Enterprise Business Services (EBS) and describes
how to design EBS, construct the WSDL for the process EBS, work with message
routing, build EBS using Oracle Mediator, implement the Fire-and Forget Message
Exchange Pattern, implement Synchronous Request-Response Message Exchange
Pattern, and implement the Asynchronous Request-Delayed Response Message
Exchange Pattern.

This chapter includes the following sections:

• Introduction to Enterprise Business Services

• Designing the EBS

• Constructing the WSDL for the Process EBS

• Working with Message Routing

• Building EBS Using Oracle Mediator

• Implementing the Fire-and-Forget Message Exchange Pattern

• Implementing the Synchronous Request-Response Message Exchange Pattern

• Implementing the Asynchronous Request-Delayed Response Message Exchange
Pattern

Introduction to Enterprise Business Services
EBSs are the foundation blocks in Oracle Application Integration Architecture (AIA).
An EBS represents the application or implementation-independent Web service
definition for performing a task, and the architecture facilitates distributed processing
using EBS. Since an EBS is self-contained, it can be used independently of any other
services. In addition, it can be used within another EBS.

For more information about EBS, see "Understanding Enterprise Business Services" in
the Concepts and Technologies Guide for Oracle Application Integration Architecture
Foundation Pack.

You must construct an EBS when the business process integration is between multiple
source applications and target applications using the canonical model.

The purpose of the EBS is to:

• Provide the mediation between the requesting services and providing services.

• Provide different operations invoked from a requester Application Business
Connector Service (ABCS), an EBS, or an Enterprise Business Flow (EBF).

Designing and Developing Enterprise Business Services 5-1

• Route an operation to a suitable EBS, EBF, or provider ABCS based on the
evaluation of the various routing rules for an operation.

Oracle AIA leverages Mediator technology available in Oracle SOA Suite to build the
EBS.

The EBS is implemented as a Mediator routing service. A Mediator service has an
elaborate mechanism to hold multiple operations of the EBS, create routing rules for
each operation, perform XSLT transformation, and define endpoints for each routing
rule.

For more information about using Oracle Mediator, see "Using the Oracle Mediator
Service Component" in Developing SOA Applications with Oracle SOA Suite.

You can model EBS operations either as synchronous or asynchronous message
exchange patterns (MEPs).

Understanding EBS Types
The types of EBS are:

• Business Activities

They represent an atomic business unit of work that has a set of steps involving
system-to-system interaction. They are exposed as mediator services with
implementations through ABCSs or EBFs.

• Tasks

They provide an aggregated, real-time view of enterprise data. They are primarily
Create, Read, Update, Delete (CRUD) operations acting on the Enterprise Business
Object (EBO) and its business components. They are exposed as mediator services
with implementations through ABCS. They eliminate point-to-point links at the
data level and direct dependency on data models of data sources.

For more information about EBS types, see "Understanding Enterprise Business
Services" in Concepts and Technologies Guide for Oracle Application Integration Architecture
Foundation Pack.

Working with the Enterprise Business Service Library
SOA Core Extension is shipped with an EBS library. The EBS library consists of the
service definitions delivered for the all of the EBOs present in the Enterprise Object
Library. These are shipped as WSDL files. The service operations present in the EBS
typically are the CRUD operations and some operations specific to entities.

All the operations of the EBS WSDLs, of type Data Services, in the Enterprise Business
Service Library are modeled as asynchronous one-way services. The only exceptions
are the Query operations and Validate operations. These are modeled as synchronous
request-response operations with a named fault.

• You can review the sample WSDLs provided in the SOA Core Extension under the
AIAComponents/EnterpriseServiceLibrary folder.

• Review each of the WSDLs, the operation's description, and the metadata before
deciding to create either a new service or an operation.

• Any new EBS that you create must be of type Activity Service, with operations put
in to meet the requirements of integration solution being developed.

Introduction to Enterprise Business Services

5-2 Developer's Guide for Oracle SOA Core Extension

• The new EBS should be put in a different WSDL and not added to the entity EBS
WSDLs.

Designing the EBS
This section includes the following topics:

• Understanding Design Guidelines

• Understanding Design Considerations

• Establishing the MEP of a New Process EBS

• How to Establish the MEP for a New Process EBS

• How to Handle Errors

• How to Secure the EBS

• How to Configure Transactions

• How to Guarantee Delivery

• How to Define the EBS Service Contract

Understanding Design Guidelines
The methodology for designing and implementing an EBS is a contract-first
methodology, that is, the contract is defined and created before the EBS is
implemented. The contract for an EBS is defined as a WSDL document.

For the task EBS, use the WSDLs from the Enterprise Service Library of the SOA Core
Extension.

Service operations supporting the synchronous request-response MEP are defined in
one port type. The operation should have input, output, and fault message defined.

Service operations supporting fire-and-forget MEP should be defined in one port type
and the operation must have an input message defined.

Service operations supporting an asynchronous request-delayed response pattern
should have two operations, one for sending the request message and another for
processing the response message. Each of these two operations must have an input
message. Two different portTypes exist, one for each operation. The service operation
for processing the response message should reside in a port type that has Response as
the suffix.

The EBS WSDLs should have two kinds of portTypes:

• A portType for all operations used for modeling synchronous request-response
operations and request-only operations. The name does not specify the Request.

• A portType for asynchronous response operations. The name specifies Response.

You should create two Mediator routing services for each of the portTypes.

Understanding Design Considerations
When designing EBS, consider the following:

• What is the service for?

Designing the EBS

Designing and Developing Enterprise Business Services 5-3

– Your enterprise should have only one EBS for a particular business function,
and it should be independent of any application.

– The service can implement multiple business operations defined in EBS WSDL.

– It should have implementations for all the business operations for a business
object.

– The service should also contain response operations, which are required for the
asynchronous request-response pattern.

• How will the service be invoked?

– The service is invoked using HTTP transport as a Web service.

– When the calling client is co-located with this service, then the call can be
configured to be a local invocation using optimized binding to improve
performance and propagate transactions.

• What invokes the service?

– The service can be invoked by an application if the application can send an
Enterprise Business Message (EBM) and can perform all the functions of
requester ABCS.

– When the application does not have the capability to invoke this service directly,
then the requester ABCS invokes this service.

– An EBF flow that orchestrates across multiple business objects can also invoke
this service.

• How do you interact with the application?

– If the application can receive the EBM message, the EBS can call the application
using HTTP as Web service call.

– If not, then you must create and call a provider ABCS.

• What type of interaction is between client and EBS?

– The client can call EBS using any of the three MEPs.

Establishing the MEP of a New Process EBS
Since the MEPs for the entity EBS WSDLs in the EBS library are predefined, you must
design the process EBS WSDLs. The EBS is modeled to have multiple operations. Each
operation leads to the execution of the EBS for a particular business scenario
requirement and is granular in nature. Thus, each operation can be modeled to
support a different interaction style or pattern.

Figure 5-1 illustrates the decision points in establishing the EBS pattern.

Designing the EBS

5-4 Developer's Guide for Oracle SOA Core Extension

Figure 5-1 Identifying the Interaction Pattern for EBS Operations

For more information about EBS types, see "Understanding Enterprise Business
Services" in Concepts and Technologies Guide for Oracle Application Integration Architecture
Foundation Pack.

How to Establish the MEP for a New Process EBS
To establish the MEP for a new process EBS:

1. Identify the triggering event for the EBS operation based on the understanding of
the business process requirement from the functional design.

2. If the control is to be blocked until a response is returned to the point of invocation,
then choose the EBS request-reply pattern.

This is a synchronous call. In this case, the EBS operation has input and output
messages with a named fault.

3. If, after the EBS is invoked, the triggering point does not wait for the response and
continues, this invocation of the EBS would be an asynchronous call.

4. Next, check whether the execution of the EBS results in a response.

Should the request and the response be correlated? If the answer is yes, then this is
a delayed response. Use the EBS request-delayed response pattern. In this case, the
EBS has two portTypes, each of which accepts an input message only and each of
them belongs to a different port.

If the answer is no, then choose the EBS fire-and-forget pattern. In this case, the EBS
operation has an input message only.

How to Handle Errors
The EBS should be configured to rethrow the errors back to the invoking client. Ensure
that the application error handling capabilities are in line with the integration platform
error handling capabilities.

Designing the EBS

Designing and Developing Enterprise Business Services 5-5

For more information about error handling, see Configuring Oracle AIA Processes for
Error Handling and Trace Logging.

How to Secure the EBS
When the invoking client (requester ABCS or application) is remote, the EBS must be
enabled with security as described in the security chapter.

For more information about security, see Working with Security.

For more information about EBS, see "Understanding Enterprise Business Services" in
Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation
Pack.

How to Configure Transactions
Based on the SOA transaction semantics in Oracle Fusion Middleware, you can design
and configure transactions across ABCS, EBS, and EBF.

For more information, see Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite and Oracle Business Process Management Suite.

How to Guarantee Delivery
For details about how to guarantee message delivery, see Guaranteed Message
Delivery.

How to Define the EBS Service Contract
To define the EBS service contract:

1. Identify the EBS and the operations it must support.

2. Identify the interaction patterns for each of the operations in EBS.

3. Identify the EBMs to be used for the requests and responses (if any) pertaining to
each of the operations.

Constructing the WSDL for the Process EBS
This section includes the following topics:

• Introduction to WSDL Construction for the Activity Service EBS

• How to Complete the <definitions> Section

• How to Define Message Structures

• How to Check for WS-I Basic Profile Conformance

These sections describe how to fill in sections of the WSDL.

Introduction to WSDL Construction for the Activity Service EBS
When constructing the WSDL, consider that:

• Oracle's JDeveloper and text editing tools can be used to create the WSDL.

• The EBM schema module for the EBO must be referenced in the WSDL.

Constructing the WSDL for the Process EBS

5-6 Developer's Guide for Oracle SOA Core Extension

• The WSDL should reference the schema modules hosted on the central location.

• You should adhere to the naming conventions for creating service, target
namespace, messages, operations, port type, and so on as described in Oracle AIA
Naming Standards for AIA Development.

How to Complete the <definitions> Section
To complete the <definitions> section:

1. Name

The service contains operations related to creation and maintenance, and actions to
be performed on an EBO.

2. Namespace

Mark this namespace as the target namespace.

3. Namespace prefixes

Define a namespace prefix for the newly identified namespace:

• wsdl is the namespace prefix for the default namespace.

• xsd is the namespace prefix for XMLSchema.

• soap is the namespace prefix for the SOAP namespace.

A namespace prefix must be defined for the EBO. The namespace prefix should be
the same as the EBS WSDL in the delivered EBOs.

How to Define Message Structures
To define message structures in the WSDL types section:

1. Import the appropriate schema that has all of the relevant EBMs defined.

2. Use xsd:import to import the elements from a schema.

Ensure that the namespace attribute for the xsd:import element is the same as the
target namespace for the schema document you import.

Also, ensure that the namespace prefix is declared for that namespace so that the
elements in the imported schema can be referenced using the namespace prefix.

3. The attribute targetNamespace for the xsd:schema element should be the same as
the targetNamespace for this WSDL.

Message Definitions

For every operation, you must create a message for sending requests and another
message (optionally) for receiving responses, depending on the pattern you selected.

• The message for sending the requests should be the same as the operation followed
by ReqMsg.

• The response message should be the same as the operation followed by RespMsg.

PortType Definition

Constructing the WSDL for the Process EBS

Designing and Developing Enterprise Business Services 5-7

You should define a portType name for each operation, and it should be the same as
the service name. You defined the message names specified for input and output
elements in the message definitions section based on the pattern. When services are
deployed, Mediator appends Service to the port type to form the service name that
goes under the service section in the concrete WSDL.

Annotating Service Interface

Sections of the WSDL allow documentation where the details of the sections can be
annotated. WSDL authors must annotate the sections thoroughly, and in a manner
similar to the way existing EBS WSDLs are annotated.

How to Check for WS-I Basic Profile Conformance
The WS-I Basic Profile consists of a set of nonproprietary Web services specifications,
along with clarifications, refinements, interpretations, and amplifications of those
specifications that promote interoperability.

Conformance to the Profile is defined by adherence to the set of requirements for a
specific target, within the scope of the Profile.

Working with Message Routing
This section includes the following topics:

• Creating Routing Rules

• Routing at the EBS

• Guidelines for EBS Routing Rules

• How to Identify the Target System at EBS

Creating Routing Rules
The routing rules in the EBS routing service operations are used to decide to which
target end point the incoming message should be routed.

Follow these guidelines when creating routing rules:

• Routing rules must first be defined functionally and always with a specific
integration topology in mind.

• In most cases, routing logic should be performed in the routing rules of the EBS.

However, all routing rules in the EBS should check for and respect existing target
system IDs that are stamped in the header. EBS rules should not assume the target
system ID is populated.

• Requester ABCS should not determine target systems or stamp target system IDs in
the EBM header.

• For any EBS operation, each possible target application system instance requires a
routing rule.

For example, if two Siebel provider application system instances exist, SEBL_01
and SEBL_02, then each must have a routing rule even though both rules target the
same Siebel provider ABCS.

Working with Message Routing

5-8 Developer's Guide for Oracle SOA Core Extension

Alternatively, if functional requirements dictate that only a single instance of the
application type can receive the message at runtime, then a single rule could be
used and an XSLT would be invoked to stamp the ID of the one instance to be used
at runtime.

When an EBS operation has multiple provider application system instances of the
same application type (such as SEBL_01 and SEBL_02), the routing rules for each
instance must have an XSLT to stamp the appropriate system instance ID in the
EBM header so that the provider ABCS that is shared between the multiple
instances can identify which instance to invoke and cross-reference.

• If an EBS operation is a synchronous request-reply pattern or asynchronous
request-delayed response pattern, then the routing rules must be mutually
exclusive given the actual topology of the Oracle AIA system.

• Routing rules are delivered with Pre-Built Integrations as part of Mediator routing
services.

These rules are designed to work for the delivered topology. If you implement any
changes to the delivered topology, such as adding an additional system instance,
then you must implement your own complete set of routing rules.

The standard routing rule clause structure is:

(cavs_check) and (ruleset_check) and ((target_system_identified_check) or
((target_system_absent_check) and (topology_specific_clauses))

Table 5-1 lists the routing rule clauses and the related XPath expressions.

Table 5-1 Routing Rule Clauses

Clause XPath expression

cavs_check) = MessageProcessingInstruction/EnvironmentCode='PRODUCTION'
or
 not(MessageProcessingInstruction/EnvironmentCode/text()))

ruleset_check) = TBD

target_system_iden
tified_check) =

EBMHeader/Target/ApplicationTypeCode='SIEBEL'

target_system_abse
nt_check) =

not(EBMHeader/Target/ID/text())

O2C2 OOTB
(topology_specific
_clauses) =

aia:getSystemType(EBMHeader/Sender/ID)!='SIEBEL'

Table 5-2 shows some routing rules delivered as part of the Integrated Supply Chain
Management Pre-Built Integration.

Working with Message Routing

Designing and Developing Enterprise Business Services 5-9

Table 5-2 Delivered Routing Rules

Target Siebel provider ABCS

XPath Filter: (MessageProcessingInstruction/
EnvironmentCode='PRODUCTION' or
not(MessageProcessingInstruction/EnvironmentCode/
text(
)))and (EBMHeader/Target/
ApplicationTypeCode='SIEBEL'
or (not(EBMHeader/Target/ID/text()) and
aia:getSystemType(EBMHeader/Sender/ID)!='SIEBEL'))

Transformation: None

Explanation: MessageProcessingInstruction/
EnvironmentCode='PRODUCTION' or is missing entirely and
either Target application type is specified as Siebel, or else no
Target is specified and the Sender application type is not Siebel.

Target: Oracle EBusiness provider ABCS

XPath Filter: (MessageProcessingInstruction/
EnvironmentCode='PRODUCTION' or
not(MessageProcessingInstruction/EnvironmentCode/
text())) and (EBMHeader/Target/
ApplicationTypeCode='EBIZ' or (
not(EBMHeader/Target/ID/text()) and
aia:getSystemType(EBMHeader/Sender/ID)!='EBIZ'))

Transformation: None

Explanation: MessageProcessingInstruction/
EnvironmentCode='PRODUCTION' or is missing entirely and
either Target application type is specified as EBiz, or else no
Target is specified and the Sender application type is not EBiz.

Target: CAVS

XPath Filter: MessageProcessingInstruction/EnvironmentCode='CAVS'

Transformation: None

Explanation: MessageProcessingInstruction/EnvironmentCode='CAVS'

Routing at the EBS
Routing rules are specified for each operation defined on EBS services. The system
uses routing rules to determine where to route the incoming EBM, either to an EBF,
EBS, ABCS, or the Composite Application Validation System (CAVS). Routing rules
are specified as XPath expressions in the filter of the Mediator routing rule.

Routing rules must be mutually exclusive since all the rules are evaluated and
messages are routed to an end point based on the rule evaluation.

Working with Message Routing

5-10 Developer's Guide for Oracle SOA Core Extension

Guidelines for EBS Routing Rules
At a minimum, each EBS operation should have these rules:

• One routing rule for CAVS enabling.

This rule should check whether the EBM Header > MessageProcessingInstruction >
EnvironmentCode is set to CAVS.

• One or more routing rules to connect to the provider ABCS or EBF.

The filter expression specified in these routing rules must ensure that the message
is not a test message.

For each ABCS or EBF, one routing rule exists. The conditions can be one of these:

• Target system ABCS populated in the EBM header

Example of a filter expression for a SalesOrderEBS routing rule for determining the
target system ABCS:

In this case, the filter has an expression to check whether the target system ABCS in
the EBM header was prepopulated and the Override Routing Indicator is set to
False.

/sordebo:QuerySalesOrderEBM/ns5:EBMHeader/ns5:Target/ns5:ID = "SEBL78_01" and
/sordebo: Query SalesOrderEBM/ns5:EBMHeader/ns5:Target/ns5: Override
RoutingIndicator = "false"

• Content-based routing

In this case, the content of the EBM is evaluated to determine the target system
ABCS. The filter expression should ensure that the target system information was
not prepopulated in the EBM header.

Example expression:

starts-with(/sordebo: CreateSalesOrderEBM
/sordebo: DataArea/sordebo: CreateSalesOrder/sordebo: SalesOrderLine
/sordebo:SalesOrderLineSchedule/ns5:ShipToPartyReference
/ns5:LocationReference
/ns5:Address/ns5:CountrySubDivisionCode,'9') and
/sordebo:CreateSalesOrderEBM/ns5:EBMHeader /ns5:Target/ns5:ID = ""

• Parallel Routing

EBS should use parallel routing when you want each target service to invoke in its
own transaction and retry the target service.

For more information, see Designing Application Business Connector Services.

• Enable error handling and logging

EBS should handle errors to allow clients or administrators to resubmit or retrigger
processes through a central error handler.

For more information, see Configuring Oracle AIA Processes for Error Handling
and Trace Logging.

How to Identify the Target System at EBS
The EBS can route the request from the Requester ABCS, an EBF, or another EBS to one
of the many provider ABCS available. The target system must be identified only for

Working with Message Routing

Designing and Developing Enterprise Business Services 5-11

Create operations. For all other operations, the Xref function
lookupPopulatedColumns is used to identify the systems in which the data
synchronization of entity has been done. A combination of steps listed below leads to
the correct ABCS.

To identify the target system at EBS:

1. Using content-based routing.

The routing rule in the EBS is based on the content of the message and is used to
decide the target ABCS. This is used only for the Create operation. This is the case
when the target system information in the EBM header is empty and has not been
set as yet.

After the target system is determined, it is set in the EBM header. This information
is used for all subsequent services - like other EBS or ABCS.

2. Using the target system information in the EBM header.

If the target system information is set in the EBM, this is used for routing to the
correct ABCS.

3. From the XREF for operations other than Create.

For all operations other than Create, the target system has been determined and
the cross-reference IDs have been set. In this case, use the XREF function
lookupPopulatedColumns to identify the systems in which the data
synchronization of the entity has been done.

Building EBS Using Oracle Mediator
You can use the Oracle Mediator component to build a component in an EBS
composite.

Although Oracle AIA allows any technology to be used for developing an EBS service,
use Mediator in most situations.

How to Develop the Oracle Mediator Service
To develop the Oracle Mediator Service:

1. In JDeveloper, create an SOA composite project.

2. Open the composite.xml in Design mode.

3. Add a Mediator component in the components swim lane.

4. Add a Web service as external reference service in the references swim lane.

This reference service could represent a provider ABCS.

You should use a concrete WSDL of the provider ABCS. That is, you should pre-
deploy the service that is being referred to as an external reference.

5. Wire the Mediator component to the external reference component created in step
4.

6. Open the Mediator component and configure routing rules.

7. Create an assign by copying the input variable to the output variable as shown in
Figure 5-2.

Building EBS Using Oracle Mediator

5-12 Developer's Guide for Oracle SOA Core Extension

Figure 5-2 Creating an Assign

Implementing the Fire-and-Forget Message Exchange Pattern
To implement both asynchronous MEPs (fire-and-forget and request-delayed
response), you must create EBS WSDLs and then create one or two Mediator routing
services, depending upon the MEP. Next, implement the requester and provider
services, adhering to the guidelines laid out for the respective MEPs.

The requesting service can be a requester ABCS (BPEL process), EBF (BPEL process),
or a participating application.

The providing service can be a provider ABCS (BPEL Process), EBF (BPEL process), or
a participating application.

This section includes the following topics:

• How to Implement Fire-and-Forget Pattern with EBS One-Way Calls

• Creating EBS WSDLs

• Creating Mediator Routing Services for Asynchronous Fire-and-Forget Patterns
with a One-Way Call EBS

• Asynchronous Fire-and-Forget MEP Error Handling Using Compensatory
Operations

• How to Invoke the Compensate Operation of EBS

• How to Enable Routing Rules in Compensate Operation Routing Service

How to Implement Fire-and-Forget Pattern with EBS One-Way Calls
The initiator for a fire-and-forget pattern is a requesting service not waiting for or
expecting a response. The requesting service can be a participating application, a
requester ABCS Impl, or an EBF. In each of these cases, the request payload must be an
EBM request.

Implementing the Fire-and-Forget Message Exchange Pattern

Designing and Developing Enterprise Business Services 5-13

For more information about enabling the ABCS (both requester and provider), see
Designing Application Business Connector Services, Constructing the ABCS,, and
Completing ABCS Development.

For more information about enabling the EBF, see Designing and Constructing
Enterprise Business Flows.

To implement fire-and-forget pattern with EBS one-way calls:

1. Create EBS WSDLs.

2. Create a Mediator routing service for asynchronous fire-and-forget patterns with
one-way call EBS.

3. Route the request from the requesting service to correct providing service in the
routing service of the one-way call operation of the request EBS.

4. Implement error handling for logging and notification based on fault policies.

Note:

These steps are in addition to the regular steps required for the requesting
service and the providing service.

Creating EBS WSDLs
For the entity EBS, use the WSDLs from the Enterprise Service Library of the SOA
Core Extension.

• Service operations supporting a synchronous request-response MEP must be
defined in one port type and the operation must have input, output, and fault
message defined.

• Service operations supporting a fire-and-forget MEP must be defined in one port
type and the operation must have an input message.

• Service operations supporting asynchronous request-response pattern must have
two operations, one operation for sending the request message and another
operation for processing the response message.

Each of these two operations must have an input message alone. You should have
two different portTypes, one for each operation. The service operation for
processing the response message must reside in a portType having Response as the
suffix.

• The EBS WSDLs must have two portTypes:

– PortType for all operations used for modeling synchronous request, response
operations and request-only operations. The name must not specify Request.

– PortType for asynchronous response operations. The name must specify
Response.

• Two Mediator routing services must be created for each of the portTypes.

Implementing the Fire-and-Forget Message Exchange Pattern

5-14 Developer's Guide for Oracle SOA Core Extension

Creating Mediator Routing Services for Asynchronous Fire-and-Forget Patterns with a
One-Way Call EBS

To create Mediator routing services for asynchronous fire-and-forget patterns with a
one-way call EBS:

1. Create Mediator projects.

2. Create routing services.

3. Create routing rules.

4. Implement error handling.

How to Create Mediator Projects for the Asynchronous Fire-and-Forget MEP

To create Mediator projects for the asynchronous fire-and-forget MEP:

1. Create two Mediator projects, one for each of the portTypes in the EBS WSDL.

If all of the service operations for an EBS have either a synchronous request-
response or fire-and-forget pattern, then all of these operations must reside in only
one portType so there would be only one Mediator routing service.

If the EBS has at least one asynchronous request-response operation, then there
should be two port types - two Mediator Routing Services and two Mediator
projects (one for each of the routing services).

2. Follow the naming conventions detailed in Appendix: Oracle AIA Naming
Standards.

Examples of typical names for the Mediator projects:

• CustomerPartyEBSV2 (This has a routing service with all operations for
synchronous request-response and request-only.)

• CustomerPartyEBSResponseV2 (This has a routing service with all operations
for asynchronous request-response.)

How to Create Routing Services for Asynchronous Fire-and-Forget MEP

To create routing services for asynchronous fire-and-forget MEP:

1. Put the EBS WSDL in the Mediator project folder.

2. Create a routing service and name according to the naming convention detailed in
Oracle AIA Naming Standards for AIA Development.

3. Select the WSDL.

The WSDL must be parsed and the portType name filled in the portType field of
the routing service.

4. Select the portType matching with the routing service. Save the routing service.

The routing service created for a portType must have all the operations specified in
that portType in the EBS WSDL.

Implementing the Fire-and-Forget Message Exchange Pattern

Designing and Developing Enterprise Business Services 5-15

How to Create Routing Rules for Asynchronous Fire-and-Forget MEP

The routing rules for the request EBS are the same as those for the synchronous
request-response section.

For more information, see How to Create Routing Services for the Synchronous
Request-Response MEP.

How to Implement Error Handling for Asynchronous Fire-and-Forget MEP

For more information, see Configuring Oracle AIA Processes for Error Handling and
Trace Logging.

Asynchronous Fire-and-Forget MEP Error Handling Using Compensatory Operations
To offset the effects of errors in the provider services, operations can be added to the
EBS to trigger compensation in the requesting services for one-way calls. This can be
achieved by having compensatory operations in the EBS.

Compensatory operations, modeled as one-way calls are separate operations. For each
request-only operation in the request portType, there must be an operation for
triggering compensation.

For example: CompensateCreateCustomer, CompensateCreateOrder.

Compensatory operations are invoked in cases where a business exception is likely to
result in a irrecoverable error. The conventional retry and resubmit is not possible and
the correction is required to be made in the requesting service.

In this situation, you must implement suitable compensatory taking advantage of the
participating applications compensatory action web services or APIs.

How to Invoke the Compensate Operation of EBS
In error handling, you must ensure that compensatory actions are taken for some
errors so the compensate operation of the EBS is invoked from the providing service.
The compensate operation of the EBS routes to the correct compensating service.

To invoke the compensate operation of the EBS:

1. For an error in the providing service, raise an exception and catch it in the catch
block.

2. In the catch block, construct the request EBM along with the fault component in the
EBM header.

3. Create a transform step and select the input variable representing the request EBM
and the compensate variable, also representing the request EBM.

4. When an exception is generated, put the exception details in a variable and pass
that as input to the compensation XSLT.

5. Map the following to the compensate variable:

• Standard EBM header content from the request EBM

• Data area from the request EBM

• Fault message

Implementing the Fire-and-Forget Message Exchange Pattern

5-16 Developer's Guide for Oracle SOA Core Extension

6. Set the InvokeCompensate step to invoke the corresponding compensate operation
in the request EBS routing service.

7. Route the compensate request to a suitable compensating service.

Figure 5-3 illustrates the fire-and-forget pattern with the compensation operation.

Figure 5-3 Fire-and-Forget Pattern with Compensation Operation

How to Enable Routing Rules in Compensate Operation Routing Service
There must be two routing rules.

To enable routing rules in compensate operation routing service:

1. Routing rule for the compensate operation of EBS.

The information populated in the <EBO Name>ResponseEBM
\corecom:EBMHeader\Sender\ WSAddress/ WSAddress/wsa:FaultTo/
wsa:ServiceName in the requesting service is used to route the request for
compensation to the correct compensating service in the compensate operation of
the EBS.

Put this routing rule in the compensate operation of the EBS:

<EBO Name>ResponseEBM\corecom:EBMHeader\Sender\ WSAddress/
WSAddress/wsa:FaultTo/wsa:ServiceName = <Compensating Service Name>

2. Routing rule for CAVS.

If the test case created in CAVS is of type asynchronous delayed-response, then
the response message can come to the CAVS endpoint and be correlated back to
make the test pass/fail. For this to happen, an explicit invoke to the CAVS system
endpoint must exist: http://host:port/AIAValidationSystemServlet/
asyncresponserecipient

Implementing the Fire-and-Forget Message Exchange Pattern

Designing and Developing Enterprise Business Services 5-17

Implementing the Synchronous Request-Response Message Exchange
Pattern

The initiator for a synchronous request-reply pattern is a requesting service waiting for
and expecting a response. The requesting service can be a participating application,
requester ABCS Impl, or an EBF. In each of these cases, the request payload would be
an EBM request and the response payload would be an EBM response.

This section includes the following topics:

• How to Implement Synchronous Request-Reply Message Exchange Patterns in EBS

• How to Create Mediator Projects for the Synchronous Request-Response MEP

• How to Create Routing Services for the Synchronous Request-Response MEP

• How to Implement Error Handling for the Synchronous Request-Response MEP

For more information about enabling the ABCS (both requester and provider), see
Designing Application Business Connector Services, Constructing the ABCS, and
Completing ABCS Development.

For more information about enabling the EBF, see Designing and Constructing
Enterprise Business Flows.

How to Implement Synchronous Request-Reply Message Exchange Patterns in EBS
To implement synchronous request-reply MEP in EBS:

1. Create Mediator projects with routing services.

2. Create routing rules to route the request from the requesting service to the correct
providing service in the routing service of the EBS.

3. Implement error handling for logging and notification based on fault policies.

How to Create Mediator Projects for the Synchronous Request-Response MEP
To create Mediator projects for the synchronous request-response MEP:

Follow these guidelines when creating Mediator projects:

1. Create two Mediator projects, one for each of the portTypes in the EBS WSDL.

If all of the services operations for an EBS have either synchronous request-
response or fire-and-forget pattern, then all of these operations must reside in only
one portType, so only one Mediator Routing Service should exist.

If the EBS has at least one asynchronous request-response operation, then two
portTypes should exist, two Mediator routing services and two Mediator projects
(one for each routing service).

2. Follow the naming convention detailed in Oracle AIA Naming Standards for AIA
Development.

Examples of typical names for the Mediator projects are:

• CustomerPartyEBSV2 (This example has a routing service with all operations for
synchronous request-response and request-only.)

Implementing the Synchronous Request-Response Message Exchange Pattern

5-18 Developer's Guide for Oracle SOA Core Extension

• CustomerPartyEBSResponseV2 (This example has a routing service with all
operations for asynchronous request-response.)

How to Create Routing Services for the Synchronous Request-Response MEP
To create routing services for the synchronous request-response MEP:

1. In JDeveloper, put the EBS WSDL in the Mediator project folder.

2. Create a routing service and name according to the naming convention detailed in
Oracle AIA Naming Standards for AIA Development.

3. Select the WSDL. The WSDL must be parsed and the portType name filled in the
portType field of the routing service.

4. Select the portType matching with the routing service. Save the routing service.

The routing service created for a portType must have all the operations specified in
that portType in the EBS WSDL.

How to Implement Error Handling for the Synchronous Request-Response MEP
For more information, see Configuring Oracle AIA Processes for Error Handling and
Trace Logging.

Implementing the Asynchronous Request-Delayed Response Message
Exchange Pattern

The initiator of the request-delayed response pattern is a requesting service that
invokes the request EBS and waits for a response. The requesting service can be a
participating application, requester ABCS Impl, or an EBF. In each of these cases, the
request payload is an EBM request and the response payload is an EBM response.

For an error in the providing service, a response message with error information is
constructed and returned to the requesting service for action.

This section includes the following topics:

• How to Implement the Request-Delayed Response Pattern with the Two One-Way
Calls of the EBS

• Creating Mediator Routing Services for Asynchronous Request-Delayed Response
Patterns with Two One-Way Call EBS

• Asynchronous Request-Delayed Response MEP Error Handling

For more information about enabling the ABCS (both requester and provider), see
Designing Application Business Connector Services, Constructing the ABCS, and
Completing ABCS Development.

For more information about enabling the EBF, see Designing and Constructing
Enterprise Business Flows.

How to Implement the Request-Delayed Response Pattern with the Two One-Way Calls
of the EBS

To implement the request-delayed response pattern with the two one-way calls of the
EBS:

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

Designing and Developing Enterprise Business Services 5-19

Note:

Perform these steps in addition to the regular steps required for the requesting
service and the providing service.

1. Create EBS WSDLs.

2. Create Mediator routing services for asynchronous request-delayed response
patterns with two one-way call EBSs.

3. Route the request from the requesting service to the correct providing service in the
routing service of the one-way call operation of the request EBS.

4. Implement error handling for logging and notification based on fault policies.

5. Route the response message in the EBS response to the correct requesting service.

Figure 5-4 illustrates the request-delayed response pattern:

Figure 5-4 Request-Delayed Response Pattern

Creating Mediator Routing Services for Asynchronous Request-Delayed Response
Patterns with Two One-Way Call EBS

To create Mediator routing services:

1. Create Mediator projects.

2. Create routing services.

3. Create routing rules.

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

5-20 Developer's Guide for Oracle SOA Core Extension

How to Create Mediator Projects for the Request-Delayed Response MEP

To create Mediator projects for the request-delayed response MEP:

1. Create two Mediator projects, one for each of the portTypes in the EBS WSDL.

If all of the services operations for an EBS have either synchronous request-
response or fire-and-forget pattern, then all of these operations must reside in only
one portType, so only one Mediator routing service is used.

If the EBS has at least one asynchronous request-response operation, then two
portTypes must exist, two Mediator Routing Services and two Mediator Projects
(one for each routing service).

2. Follow the naming convention detailed in Oracle AIA Naming Standards for AIA
Development.

Examples of typical names for the Mediator projects are:

• CustomerPartyEBSV2 (This example has a routing service with all operations for
synchronous request-response and request-only.)

• CustomerPartyEBSResponseV2 (This example has a routing service with all
operations for asynchronous request-response.)

How to Create Routing Services

To create routing services for the request-delayed response MEP:

1. Put the EBS WSDL created into the Mediator project folder.

2. Create a routing service and name according to the naming convention detailed in
Oracle AIA Naming Standards for AIA Development.

3. Select the WSDL.

The WSDL must be parsed and the portType name filled in the portType field of
the routing service.

4. Select the portType matching with the routing service. Save the routing service.

The routing service created for a portType must have all the operations, including
compensate operations, specified in that portType in the EBS WSDL.

Note:

These guidelines are in addition to the implementation of asynchronous
message exchanging patterns.

How to Create Routing Rules

For the asynchronous request-delayed response EBS, routing rules must be created for
both request and response.

Routing Rules for Request EBS

The routing rules for request EBS are the same as those explained in the synchronous
request-response section.

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

Designing and Developing Enterprise Business Services 5-21

For more information, see How to Create Routing Services for the Synchronous
Request-Response MEP.

Routing Rules for Response EBS

There must be two routing rules.

To create routing rules for the response EBS:

1. Routing to the correct requesting service.

When multiple requesting services from multiple participating applications are
invoking a request EBS and are waiting for a delayed response, then you must
route the response to the correct requesting service.

As illustrated in Figure 5-5, set the EBMHeader/Sender/WSAddress/
wsa:ReplyTo/wsa:ServiceName to the name of the requesting service name in
the requesting service-Application Business Message (ABM) to EBM
transformation-before invoking the request EBS.

Figure 5-5 Structure of the WSAddress Type Element

In the providing service, this information is transferred from the request EBM to
the response EBM. This information is used in the response EBS by putting a
routing rule in the filter as:

<EBO Name>ResponseEBM\corecom:EBMHeader\Sender\
WSAddress/wsa:ReplyTo/wsa:ServiceName = <Requesting Service Name>

The target endpoint for the evaluation of this rule should be set to the requesting
service.

For every requesting service of the request EBS that is waiting for a response EBS to
send back a response, specify a routing rule as shown above.

2. CAVS routing rule.

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

5-22 Developer's Guide for Oracle SOA Core Extension

The CAVS routing rules are the same as that explained in the Sync Request-
Response section.

For more information about enabling the ABCS (both requester and provider), see
Designing Application Business Connector Services, Constructing the ABCS, and
Completing ABCS Development.

Error Handling Implementation

For more information, see Implementing Error Handling and Recovery for the
Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery.

Asynchronous Request-Delayed Response MEP Error Handling
In the asynchronous request-delayed response MEP, the requesting service is in a
suspended mode, waiting for a response. If there is an error in the providing service,
the response to the requesting service includes the details of the error.

To handle errors in the asynchronous request-delayed response MEP:

1. In case of an error in the providing service, raise an exception and catch it in the
catch block.

2. In the catch block, construct the response EBM along with fault component in the
EBM header.

3. Create a transform step and select the input variable representing the request EBM
and the output variable representing the response EBM.

4. Pass the fault message generated from the exception as a variable into the 'input
variable to fault variable' XSLT.

5. Map to the output variable:

• Standard EBM header content from the request EBM including the correlation
information

• Fault message

6. Set the Invoke step to invoke the response operation in the response EBS routing
service.

7. Route the response from the providing service to the correct requesting service.

For more information about enabling the ABCS (both requester and provider), see
Designing Application Business Connector Services, Constructing the ABCS, and
Completing ABCS Development.

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

Designing and Developing Enterprise Business Services 5-23

Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern

5-24 Developer's Guide for Oracle SOA Core Extension

6
Designing Application Business Connector

Services

This chapter provides an overview of Application Business Connector Services (ABCS)
describes how to define the ABCS contract, identify the MEP and discusses technology
options for outbound interaction with the application and how to use BPEL for
building ABCS.

This chapter includes the following sections:

• Introduction to ABCS

• Defining the ABCS Contract

• Identifying the MEP

• Technology Options

Introduction to ABCS
The role of the ABCS is to expose the business functions provided by the participating
application in a representation that is agreeable to Enterprise Business Services (EBSs).
It can also play another role in which it serves as a glue to allow the participating
application to invoke the EBSs. Figure 6-1 illustrates a scenario in which the E-
Business Suite application is using an ABCS to invoke an EBS. In this scenario, the
ABCS is playing a requester role. The same diagram also illustrates how the EBS
invokes one of three ABCS to perform a specific task. Here, the three ABCS are playing
provider roles.

Designing Application Business Connector Services 6-1

Figure 6-1 ABCS in Oracle AIA Architecture

The ABCS enables participating applications to become service providers and service
consumers. It also enables applications having nonstandard connectivity to expose
their functionality as web services.

For more information about ABCS, see "Understanding Application Business
Connector Services" in Concepts and Technologies Guide for Oracle Application Integration
Architecture Foundation Pack.

ABCS Types
The two types of ABCSs are:

• Requester ABCS

• Provider ABCS

Requester ABCS

The requester ABCS is provided by the requesting application to interface with an EBS
for performing a single task. The service interfaces between Requesting/Source
application and EBS. The role of the requester ABCS is to enable the participating
application to invoke the EBS either to access data or to perform a transactional task.

Introduction to ABCS

6-2 Developer's Guide for Oracle SOA Core Extension

The requester ABCS is a service provided by the requesting application to invoke the
EBS. It receives the Application Business Message (ABM) as payload and optionally
returns the ABM as the response.

The ABM can be enriched by having additional conversations with the requester
application. The ABM is transformed into an Enterprise Business Message (EBM)
using XSL. Responses received from the EBS (EBM) are transformed into the ABM.

Non-SOAP payloads are handled by having transport adapters in between requester
application and requester ABCS. Requester applications must pass system information
for the ABCS to have subsequent conversations.

Provider ABCS

The provider ABCS is supplied by the provider application to interface with an EBS
for performing a single task. The service interfaces between the EBS and provider or
target application.

The provider ABCS:

• Is a service supplied by the provider application to interface with the provider
application

• Receives EBM as payload

• Optionally returns the EBM as the response

The EBM is transformed into an ABM using XSL. The ABM can be enriched by having
additional conversations with the provider application. Responses received from the
application (ABM) are transformed into the EBM.

Non-SOAP connectivity with the provider application is handled by having transport
adapters in between the provider ABCS and the provider application.

For more information about ABCS, see "Understanding Application Business
Connector Services" in Concepts and Technologies Guide for Oracle Application Integration
Architecture Foundation Pack.

Designing ABCS - Key Tasks
An ABCS architect or developer must perform the following tasks as part of the design
activity:

• Understand the ABCS role

• Identify the business events triggering the invocation of ABCS

• Identify the interactions between application and the ABCS and vice versa

• Identify the appropriate technologies to be used to facilitate the interaction

• Define the ABCS contract

The following sections discuss these tasks:

• Defining the ABCS Contract

• Identifying the MEP

• Technology Options

Introduction to ABCS

Designing Application Business Connector Services 6-3

Defining the ABCS Contract
The ABCS contract (WSDL) specifies how a caller interacts with its Business Connector
Service. The caller could either be a participating application or another service such
as EBS.

Figure 6-2 illustrates the decision flow for defining the contract (WSDL) for the ABCS.

Figure 6-2 Decision Flow for Defining the ABCS Contract

Defining the Role of the ABCS
This section discusses design decisions that you must make to enable the ABCS to
participate in either a requester or provider role.

Designing an ABCS to Participate in a Requester Role

To determine how to enable the ABCS to participate in a requester role:

1. Determine how the ABCS is invoked or triggered. This analysis tells you how the
ABCS is invoked by the application. Determine:

a. Whether the application can make a SOAP-based invocation of ABCS.

b. Whether the application service can invoke the ABCS using JCA adapter.

Defining the ABCS Contract

6-4 Developer's Guide for Oracle SOA Core Extension

c. Whether the ABCS must subscribe to messages published by the application
due to occurrence of business events.

2. Determine what interaction pattern is needed.

The following questions help the architect identify the optimal message exchange
pattern.

a. What business events cause the invocation of requester ABCS?

b. Is the application expecting a response from the requester ABCS?

c. Should the application wait until the response is received for performing the
next task?

d. Should the application wait until the request is fully processed by the
provider application?

For more information about choosing a MEP, see Choosing the Appropriate MEP.

3. Determine what Enterprise Business Services or operations must be invoked.

4. Does the message sent by the requester application have all the information
necessary for requester ABCS to construct the EBM?

a. If not, does it have to reach out to applications to get the additional
information?

b. If yes, what technologies are available? What application interfaces are to be
used to get the additional information?

For more information, see Technology Options.

5. Can the application possibly publish a message with incomplete information?

a. Should the ABCS wait until the message with complete information is
published?

In such a scenario, an aggregator should collect and store individual messages
until a complete set of related messages has been received

b. If yes, what is the application service and how does it communicate with it?

Designing an ABCS to Participate in a Provider Role

To determine how to enable the ABCS to participate in a provider role:

1. Decide whether the application can directly consume the information sent by EBS.

2. Determine how the ABCS interacts with provider applications.

See Establishing Resource Connectivity.

3. Define the tasks that must be done by this ABCS.

4. Determine what message exchange pattern (MEP) is used to communicate with the
application.

5. Determine whether data validation must be done on the EBM sent by the EBS
before sending the request to the provider application.

6. Decide whether you need guaranteed delivery of messages.

Defining the ABCS Contract

Designing Application Business Connector Services 6-5

7. Determine whether it is a single message containing data for multiple instances.

8. Decide whether the entire message should be processed as a unit of work.

9. Decide what must be done when a subset of instances present in that message
encounter failure.

Constructing ABM Schemas
The ABM schemas are created by the participating applications. Consider the
following points when defining the ABMs:

• Construct messages that are durable and long-lasting because frequent changing of
the ABM definition puts duress on ABCS development.

• Ensure reusability of business components across multiple ABMs to promote
reusability of transformation maps.

• Design ABMs to pass the following system data:

– System Instance - connection information that helps identify the system ID
registered in the system registry

– Locale - language code in which the request is sent

– Sender information - contextual details pertaining to the origination of the
message

• Design ABMs that are extensible.

Analyzing the Participating Application Integration Capabilities
To analyze the participating application integration capabilities:

After identifying the participating applications, you must analyze the integration
capabilities of each participating application and how each application exposes its
data.

1. Work with the application providers (developers) to decide the best way to interact
with the application to attain the needed functionality.

The interactions can be inbound or outbound. The interaction mechanism can be
one of these:

• Web Service using SOAP/HTTP

• Events/Queues

• JCA Adapter

• Database Adapter

For more information about various types of connectivity to different resources, see
Establishing Resource Connectivity.

2. Obtain relevant details from the applications in situations in which the interactions
between the participating applications and the ABCS happen through a message
queue adapter, database adapter, or JCA adapter.

These details are used in configuring the adapters. The configuration results in the
WSDL creation. Care must be taken to ensure that the environment-specific details

Defining the ABCS Contract

6-6 Developer's Guide for Oracle SOA Core Extension

are configured in relevant resource files on the server and not directly in the
WSDLs.

3. Identify the available functionality within the participating applications and the
mapping between EBMs and application business objects (map operations).

A one-to-one, one-to-many, or many-to-one mapping between the two may exist.

4. Tabulate the mapping between the Enterprise Business Object (EBO) attributes/
elements and the application objects attributes/elements in a spreadsheet.

Remember these points when creating the transformation maps:

5. For an ABM being mapped to an EBM, ensure that an attempt is made to populate
all of the data elements present in the ABM to the relevant elements in the EBM.

In situations in which the ABM does not have all of the content to supply all of the
data elements in the EBM, you must work with the respective requester application
teams to identify the application services that could be used to enter the content in
the EBM.

For example, a Siebel application invoking the CreateOrder ABCs might supply
only the Siebel Customer ID in the ABM that is being passed as the payload.
However, the EBM to be passed as a payload to the CreateOrder EBS operation
expects all the information regarding the Customer. So the CreateOrder ABCS is
responsible for invoking a Siebel service to retrieve complete Customer details from
the Siebel application and populate the EBM. Although the integration platform
provides support for this pattern, we highly recommend that you work with the
participating application to ensure that the payload being passed to the ABCS is as
close to the shape of the EBM as possible to minimize the chattiness.

Identifying the MEP
The possible interaction types between an ABCS and its client are:

• Synchronous request-response

• Asynchronous request only

• Asynchronous request-delayed response

MEPs vary in functionality and usage depending on the role of the ABCS.

For more information about MEPs, see "Understanding Interaction Patterns" in
Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation
Pack.

Introduction to MEPs
Synchronous Request-Response Pattern

• A requester sends a request to a provider, who processes the request and sends
back a response.

• The requester is in a suspended mode until the response is received from the
provider.

• Results are in real-time response or error feedback.

Asynchronous Request Only

Identifying the MEP

Designing Application Business Connector Services 6-7

• The message exchange is one-way, with a requester sending a request to a provider.
No response comes from provider to requester.

• The requester is free, after request submission, to resume normal execution.

Asynchronous Request - Delayed Response

• This involves two one-way invocations.

• First, a one-way message is sent from requester to provider. At a later time, another
one-way message is returned from the provider to the original requester.

• Two distinct one-way messages are correlated.

For more information about MEPs, see "Understanding Interaction Patterns" in
Concepts and Technologies Guide for Oracle Application Integration Architecture Foundation
Pack.

Choosing the Appropriate MEP

• Identify how the participating applications interact with the ABCS for inbound and
outbound interactions.

• Identify whether the requester application must be in a call-waiting state until it
has received the response from the provider application.

Waiting until the response is received from the provider application forces the
requester application to invoke the ABCS in a synchronous manner. For example, a
CRM application submitting a request to retrieve account details from a billing
application would fit this scenario. In this case, the requester cannot perform any
task until the response is received.

However, sending a request from the CRM application to create a customer in a
billing application can be done in an asynchronous manner. After publishing an
outbound request, the CRM application can move to the next activity without
having to wait until the provider application has successfully created a customer. In
this case, the CRM application invokes this outbound request in an asynchronous
manner.

Applications can leverage different kinds of integration technologies for synchronous
versus asynchronous invocations. You must select the most appropriate technology
based on the situation.

For more information about how AIA services interact with applications, see
Establishing Resource Connectivity.

In a single flow, even though the requester ABCS MEP is influenced by the MEP for
the EBS operation to be invoked, the requester application's interaction capabilities
influence the MEP for requester ABCS. For provider ABCS, the MEP is predominantly
influenced by the MEP of the EBS operation.

When to Use the Synchronous Request-Response MEP

Most of the cases involving Query and Validate need this pattern because the
participating application that initiated the request is waiting for the response. For all
the other cases, the suitability of this pattern is determined by the demands of the
response time and possibility of meeting those requirements based on the amount of
processing to be done.

Identifying the MEP

6-8 Developer's Guide for Oracle SOA Core Extension

The MEP between requester ABCS and EBS is synchronous. The MEP between
provider ABCS and participating application servicing the request can be either
synchronous or asynchronous.

For more information about Query, see Query.

For more information about Validate, see Validate.

Use Case

CRM Application requesting account details about a customer from the billing system

Figure 6-3 illustrates the two-way communication between AIA services, requester
ABCS, and CustomerPartyEBS.

Figure 6-3 GetAccountBalanceSummary Integration Scenario

When to Use the Asynchronous Request Only (Fire-and Forget) MEP

Use this pattern when:

• The requester ABCS receives the request message from the participating
application and ends with invoking of the EBS. In this case, no response comes
from the EBS to the requester ABCS and no response is made to the participating
application that initiated the request.

• The provider ABCS receives the request message from the EBS and ends with
invoking the provider participating application API. No response is made to the
EBS that initiated the request.

Use Case

A CRM application submitting a request to the BRM application to create
CustomerParty

From the perspective of the participating application, Siebel, a request message to the
BRM application to create a CustomerParty is enqueued for processing at a later time.

Identifying the MEP

Designing Application Business Connector Services 6-9

The Siebel application is free to resume its processing immediately. The request
message is dequeued from the queue and is processed in an asynchronous fashion.

Figure 6-4 illustrates the one-way invocation between AIA services, Requester ABCS,
and CustomerPartyEBS.

Figure 6-4 Example of One-Way Invocation

When to Use the Asynchronous Request Delayed Response MEP

Use this pattern when:

• The requester ABCS receives the request message, processes the message, and
finally updates the participating application that initiated the request by invoking
an API exposed by the participating application. The participating application is
not waiting for the response.

• The provider ABCS receives the request message from the EBS Request mediator
service, processes the message, and finally responds to the requesting service-
requester ABCS or Enterprise Business Flow (EBF)-by invoking the response
operation of the EBS Response mediator service. The EBS Mediator service is not
waiting for the response.

Identifying the MEP

6-10 Developer's Guide for Oracle SOA Core Extension

The MEP between requester ABCS and EBS can be synchronous or asynchronous, and
between the provider ABCS and the provider participating application can also be
synchronous or asynchronous.

Technology Options
This section discusses technology options for:

• Outbound Interaction with the Application

For inbound interactions see Invoking the ABCS.

• Using BPEL for Building ABCS

For more information about resource connectivity, see Establishing Resource
Connectivity.

Outbound Interaction with the Application
Communication between ABCSs and the application is governed by the application
capabilities.

Communication technologies include:

• JCA Adapters

• Standard web service interfaces

• Adapters

• JMS queues

When to Use JCA Adapters for Outbound Interactions

JCA Adapters, when available and authorized for use, should be the first choice for
developers to connect to applications.

JCA Adapters:

• Natively invoke participating applications in a co-located fashion.

• Standardize the programming interface.

• Standardize the quality of services (QoS) implementation.

• Provide support for tasks associated with connection management, transaction
management, and scalability in combination with the run-time environment.

For more information about establishing outbound connectivity, see Establishing
Resource Connectivity.

When to Use Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP) for Outbound
Interactions

This is the most common means of communicating with participating applications.

Most applications expose functionality in the form of a web service. The most common
transport used is SOAP over HTTP, however some applications may expose direct
XML over HTTP.

Technology Options

Designing Application Business Connector Services 6-11

When to Use JCA Adapters, (Database, File, JMS, or AQJMS), for Outbound
Interactions

In situations in which the message submission is decoupled from the processing of the
message, usage of queues is suggested. When JMS queues are used, they must be
accessed using JMS Adapter. The message is enqueued to the JMS queue by the ABCS
and the application would dequeue the message.

Tip:

AIA highly recommends that participating applications making an outbound
interaction in an asynchronous mode use message queues to publish the
requests. AIA recommends this approach because it allows for high scalability
and a better end-user experience. Similarly, the ABCS making an outbound
interaction to the applications must assess the tasks to be performed by the
application. Use of message queues to communicate with the applications in
situations in which applications need longer periods to perform the tasks.

Participating applications making an outbound interaction in a synchronous mode
alone should send the requests using SOAP/HTTP.

For more information about JMS Adapters, see Administering JMS Resources for Oracle
WebLogic Server.

Using BPEL for Building ABCS
AIA recommends using a BPEL component to build an ABCS composite.

BPEL is the most effective solution when:

• You have a long-lived process.

In scenarios in which you have a long-lived process that may take hours or even
days, BPEL is the best technology choice. In this case, BPEL persists (dehydrates)
the process at certain hook points and then bring the process to life when needed.

• You need complex orchestration capabilities.

In scenarios that require complex orchestration, parallel processing, and multiple
conversations with participating applications, and with integrated services such as
BPA, BAM, Workflow, and Rules Engine, BPEL is the most effective solution.

• You have content augmentation and validation that cannot be done using XSLT.

In cases in which the decision-making and validation is not simple enough to
perform using XSLT, other means are needed such as the standard BPEL procedural
constructs or even calling out to the Rules Engine. BPEL enables you to easily
perform fairly complicated decision trees and route the results to different partners.

• You need aggregation or disaggregation.

In scenarios in which the ABCS must make multiple calls to the application to
process a message or to collect data and then consolidate it in one message, BPEL is
the suitable technology. BPEL constructs enable you to split or consolidate
payloads and aggregate or disaggregate calls. The BPEL process is also responsible
for maintaining the state and handling transactions in between invocations.

• You must augment the participating application functionality.

For more information, see Developing SOA Applications with Oracle SOA Suite.

Technology Options

6-12 Developer's Guide for Oracle SOA Core Extension

7
Constructing the ABCS

This chapter describes how to construct an Application Business Connector Service
(ABCS). It lists the prerequisites that are necessary before you set out to construct an
ABCS and briefly introduces you to the concepts of SOA composite application.

Note:

Composite Business Processes (CBP) will be deprecated from next release.
Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

• Constructing an ABCS

• Constructing an ABCS Composite Using JDeveloper

• Implementing the Fire-and-Forget MEP

• Implementing the Asynchronous Request Delayed Response MEP

• Implementing Provider ABCS in an Asynchronous Message Exchange Scenario

• Implementing Synchronous Request-Response Message Exchange Scenario

• Invoking Enterprise Business Services

• Invoking the ABCS

Constructing an ABCS
Table 7-1 lists the common tasks for constructing an ABCS and provides links to
detailed information:

Table 7-1 Summary of Tasks for Constructing an ABCS

If Refer to

You are implementing
the Fire-and-Forget
Message Exchange
Pattern (MEP)

When to Use the Asynchronous Request Only (Fire-and Forget)
MEP

Implementing the Fire-and-Forget MEP

To implement the MEP in EBS, see Implementing the Fire-and-
Forget Message Exchange Pattern.

Constructing the ABCS 7-1

If Refer to

You are implementing
the Asynchronous
Request Delayed
Response MEP

When to Use the Asynchronous Request Delayed Response MEP

Implementing the Asynchronous Request Delayed Response MEP

To implement the MEP in EBS, see Implementing the
Asynchronous Request-Delayed Response Message Exchange
Pattern.

You are implementing
the Synchronous
Request - Response MEP

When to Use the Synchronous Request-Response MEP

Implementing Synchronous Request-Response Message Exchange
Scenario

To implement the MEP in EBS, see Implementing the Synchronous
Request-Response Message Exchange Pattern.

Your ABCS is invoking
an Enterprise Business
Service (EBS) operation

Designing and Developing Enterprise Business Services, for the
guidelines for working with operations of an EBS

You need details about
transforming a message
from one format to
another

Working with Message Transformations.

You need information
about how ABCS can be
connected with the
participating
applications both
inbound and outbound

Establishing Resource Connectivity.

You must know how
clients such as
applications and other
services can invoke the
ABCS you are
developing

Invoking the ABCS

You are securing an
ABCS

Securing the ABCS

You are enabling ABCS
to handle errors and
faults

Handling Errors and Faults

You want to allow ABCS
to be extended by
customers

Developing Extensible ABCS

You need guidelines on
Composite Application
Validation System
(CAVS)-enabling the
ABCS

Developing ABCS for CAVS Enablement

You want to deploy the
ABCS you are
developing using AIA
Installation Driver

Building AIA Integration Flows.

Constructing an ABCS

7-2 Developer's Guide for Oracle SOA Core Extension

If Refer to

You want to access AIA
Configuration Properties
from within an ABCS

How to Work with AIAConfigurationProperties.xml in
$SOA_HOME/aia_instances/$INSTANCE_NAME/
AIAMetaData/config.

Prerequisites
Before you begin constructing an ABCS, ensure that:

• The relevant development SOA server with a SOA Core Extension is installed and
running.

Refer to How to Set Up AIA Workstation.

• The application entities' schemas (Application Business Message [ABM] schemas)
are accessible from Metadata Service (MDS) repository. They should not be part of
each ABCS project.

Refer to Using MDS in AIA.

• Enterprise Object Library containing Enterprise Business Objects (EBOs) and
Enterprise Business Messages (EBMs) are accessible in the MDS Repository. EBOs
and EBMs should not be part of each ABCS project.

Refer to Using MDS in AIA.

• All the abstract WSDLs of EBS or participating applications should be accessible
from the MDS Repository.

Tip:

The abstract WSDL of an ABCS that is being developed should be accessed
from MDS. The exceptions to this rule are:

– The EBS references WSDLs that define PartnerLink types

– Participating applications reference WSDLs that define PartnerLink types

– The adapter WSDLs that are generated by JDeveloper

– Abstract WSDLs of the services defined at ABCS extension points

For more information, see Using MDS in AIA.

• Requester and provider participating applications have been identified.

• EBOs and EBMs have been identified.

• Functionality mapping between EBS and participating applications is complete.
This mapping should include:

– Data element spreadsheet mapping between the EBO and participating
application messages.

– Operations mapping between the EBS and participating applications.

• The style of interaction (MEP: request-response, fire and forget, asynchronous
request, and delayed response) is defined.

See Choosing the Appropriate MEP.

Constructing an ABCS

Constructing the ABCS 7-3

• The communication protocols with the participating applications are identified.

For more information about how an ABCS interacts with participating applications,
see Establishing Resource Connectivity.

• Any participating application-specific requirements such as error handling or
security have been identified.

ABCS as a Composite Application
AIA services (ABCSs and EBSs) can be developed as a composite application built
using SCA building blocks. Four SCA elements apply to these services:

• Service

Represents an entry point into the SCA component or a composite.

• Reference

Represents a pointer to an external service outside the scope of the given SCA
component.

• Implementation type

Defines the type of implementation code for a given SCA component that is used
for coding the business logic. Example implementation types include BPEL and
Mediator.

• Wire

Represents the mechanism by which two components can be connected to each
other. Usually a reference of one component is connected to a service exposed by
another component.

An SCA component may expose one or more services, may use one or more
references, may have one or more properties defining some specific characteristics,
and may be connected to one or more components using SCA wiring.

The building blocks of SCA can be combined and assembled to create composite
applications. A composite application can be thought of as a composition of related
SCA components that collectively provide a coarse-grained business function.

How Many Components Must Be Built
A composite application can be thought of as a composition of related SCA
components that collectively provide a coarse-grained business function. A composite
may contain certain components that might be required only for the internal
implementation of the composite and for which interfaces might not be required
outside the scope of the composite in context.

Components may exist that can be used just for the internal implementation of the
composite and are thus not required to expose services, references, or both.

A requester ABCS composite as shown in Figure 7-1 can be built using a single
component that is exposed as service.

The component can use one reference representing an EBS or more references
representing the outbound interactions with other applications.

Constructing an ABCS

7-4 Developer's Guide for Oracle SOA Core Extension

Figure 7-1 Example of a Requester ABCS Composite

Similarly, a Provider ABCS composite as shown in Figure 7-2 can be built using a
single component that is exposed as service.

The component can use one or more references representing the outbound interactions
with the applications.

Figure 7-2 Example of a Provider ABCS Composite

Constructing an ABCS Composite Using JDeveloper
This section provides a high-level overview of constructing the ABCS composite in
design mode, using JDeveloper.

The high-level tasks to be performed are:

• Configure JDeveloper to access MDS.

See Using MDS in AIA.

• Develop abstract WSDL for the ABCS.

See Designing Application Business Connector Services.

• Construct the ABCS composite using JDeveloper.

See How to Construct the ABCS Composite Using JDeveloper.

• Develop the BPEL process.

See Developing the BPEL Process.

How to Construct the ABCS Composite Using JDeveloper
To create an ABCS using JDeveloper:

Constructing an ABCS Composite Using JDeveloper

Constructing the ABCS 7-5

1. In JDeveloper, create an SOA composite project.

2. Open the composite.xml in design mode.

3. Add a BPEL component in the Components swim lane.

4. Add a web service as external reference service in the References swim lane.

This reference service could represent an EBS, an Adapter Service, or a
participating application. An abstract WSDL of the EBS, Adapter Service, or
participating application should be accessible from the MDS Repository.

5. Wire the BPEL component to the external reference component created in step 4.

6. Complete the following for handling the faults.

• Add a web service as external reference service in the References swim lane.
Provide the reference to the abstract WSDL of the
AIAAsyncErrorHandlingBPELProcess in the MDS repository.

• Wire the BPEL component to the AIAAsyncErrorHandlingBPELProcess service.

For more information about fault handling in AIA services, see Configuring Oracle
AIA Processes for Error Handling and Trace Logging.

Figure 7-3 illustrates a requester ABCS composite.

Figure 7-3 Example of a Requester ABCS Composite

Developing the BPEL Process
After you have developed the composite in design mode using JDeveloper, the ABCS
that is implemented as a BPEL process component should be constructed to its
completion.

In the ABCS, the following tasks are accomplished:

• Message enrichment

Constructing an ABCS Composite Using JDeveloper

7-6 Developer's Guide for Oracle SOA Core Extension

• Message header population

• Message content transformation

• Error handling and logging

• Extensibility

• CAVS enablement

• Security context implementation

For more information about completing ABCS development, see Completing ABCS
Development.

How to Create References, Services, and Components

• For each target, add a reference.

– The target can be a web service or adapter.

– If the target service requires transformation, create a mediator component in
between.

• For each interface, add a service.

– The service can be a web service or adapter.

– If the adapter interface requires transformation, create a mediator component in
between.

Moving Abstract Service WSDLs in MDS
SOA Suite 12c has introduced a central repository, Metadata Service (MDS), that
backs up your application (and hence your composites) at design time and runtime.
MDS is like a version management system, where you can store and use the shared
common artifacts at design and runtime.

AIA leverages the MDS repository to store common design time artifacts that are
shared with all developers. There is a common directory of abstract WSDLs in the
MDS, which is a centrally accessible endpoint.

The artifacts that are stored in the MDS include:

• Schemas: EBO schemas and ABM schemas

• WSDLs: Abstract WSDLs of EBS, ABCS, Adapter Services, CBPs and EBFs

All the abstract WSDLs of all AIA services are put in MDS. You build your consuming
AIA service composite application using the abstract WSDL of a referenced service.
No dependency exists on the order of deployment for composites.

Since there is no dependency on the referenced services during the deployment of the
composites, there is no dependency on the order of deployment for the composites. A
referenced service does not have to be deployed to be referenced by another service.
This also resolves the cases where there are cyclic references involved among the
services.

Constructing an ABCS Composite Using JDeveloper

Constructing the ABCS 7-7

Tip:

Always use the abstract WSDL to refer to the services that must be invoked.
The reference binding component should always use the abstract WSDL.

Do not use the concrete WSDLs directly in your consuming artifacts.

Do not reference the deployed concrete WSDL of a Service Provider

The following paragraphs describe how this can be accomplished.

To get a better understanding of why this is recommended, see Separation of
Concerns.

For details of how MDS is used in AIA, refer to Using MDS in AIA.

Tip:

Abstract WSDLs must be modified to access the required schemas from the
MDS and then moved to MDS.

Troubleshooting Tip:

You may see error messages indicating invalid SOA composites after a server
restart. This is caused by referring to concrete WSDLs where abstract WSDLs
should have been used.

You will not see the problem at the first deployment of a new composite X
when you reference the concrete WSDL of composite Y. Why? Composite Y is
up and running at the time of the deployment of composite X. The problem
starts when the server is restarted because there is no guarantee that the
composites will be activated in the right order to resolve any dependencies. If
service X is activated before composite Y, the reference cannot be resolved
because Y is still down, so X remains in status Invalid.

For ABCSs and Adapter services, the abstract WSDLs are to be located in MDS at:

AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/
<PRODUCT_CODE>/<Version Number>/<Service Type>

Possible values for <Service Type> are RequesterABCS, ProviderABCS, AdapterServices.

Possible values for <Version Number> are V1, V2.

The utility for moving artifacts to MDS is described in Using MDS in AIA.

Examples:

AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/Siebel/V1/
RequesterABCS
AIAMetaData/AIAComponents/ApplicationConnectorServiceLibrary/Siebel/V1/
ProviderABCS

Implementing the Fire-and-Forget MEP
If you are implementing the fire-and-forget MEP, this section provides the necessary
guidelines.

For more information about the scenarios for which this MEP is recommended, see
When to Use the Asynchronous Request Only (Fire-and Forget) MEP.

Implementing the Fire-and-Forget MEP

7-8 Developer's Guide for Oracle SOA Core Extension

In the fire-and-forget pattern, no response is sent back to the requester. In situations in
which the provider ABCS is not able to successfully complete the task, transactions
should be rolled back and error notifications should be sent.

For more information on how to model transactions, see Working with Message
Transformations.

For more information about how to handle faults, see Configuring Oracle AIA
Processes for Error Handling and Trace Logging.

In scenarios where the RequesterABCS is invoked by a JMS-based transport adapter,
the JMS destination can be thought of as a milestone. In these circumstances, it is
possible to configure the JMS consumer adapter and the requester ABCS for the
automatic message resubmission of the failed messages.

For more information about message resubmission, see "Using the Message
Resubmission Utility" in Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture Foundation Pack.

This section includes the following topics:

• When to Use Compensating Services

• How to Invoke the Compensating Service

• Additional Tasks Required in Provider ABCS to Implement This MEP

• How to Ensure Transactions

• How to Handle Errors

When to Use Compensating Services
Sometimes an automatic correction of data or a reversal of what has been done in
requester service is needed. The typical scenario is one in which an error occurs in the
transaction and the transactions cannot be rolled back.

In these situations, the requester application can implement the compensation service
operation and pass the name of the service operation to the provider ABCS. The
provider ABCS invokes this compensation service operation if there are errors. There
may be a requirement to implement a compensating service for the requesting service.

How to Invoke the Compensating Service
To invoke the correct compensating service from the providing service:

1. Populate the EBMHeader/Sender/WSAddress/wsa:FaultTo/wsa:ServiceName
with the name of the compensating service in the transformation used for
constructing the request EBM.

Example of the name of the compensation service:
CompensateCreateOrderSiebelReqABCSImpl

For more information about naming, see Oracle AIA Naming Standards for AIA
Development.

Figure 7-4 illustrates the structure of the WSAddressType.

Implementing the Fire-and-Forget MEP

Constructing the ABCS 7-9

Figure 7-4 Structure of the WSAddressType

This information is used in the compensate operation of the EBS to route the request
for compensation to the correct compensating service.

Additional Tasks Required in Provider ABCS to Implement This MEP
For information about implementing this MEP, see Implementing Provider ABCS in an
Asynchronous Message Exchange Scenario.

How to Ensure Transactions
For information about ensuring transactions, see How to Ensure Transactions in AIA
Services.

How to Handle Errors
For information about error handling, see Configuring Oracle AIA Processes for Error
Handling and Trace Logging.

Implementing the Asynchronous Request Delayed Response MEP
If you are implementing an asynchronous request-delayed response MEP, this section
provides the necessary guidelines.

For more information about the scenarios for which this MEP is recommended, see
When to Use the Asynchronous Request Delayed Response MEP.

Implementing the Asynchronous Request Delayed Response MEP

7-10 Developer's Guide for Oracle SOA Core Extension

This section discusses how to implement the asynchronous request-delayed response
MEP.

Implementing this MEP requires that:

• You have populated the EBM header for asynchronous delayed response.

• You have defined correlation sets and correlation IDs.

• You have used the appropriate programming model for Requester ABCS, EBS,
ProviderABCS and ResponseEBS for handling the scenario where error response
has to be sent back to either Requester ABCS or to a error handler service.

This section includes the following topics:

• How to Populate the EBM Header for Asynchronous-Delayed Response

• Setting Correlation for the Asynchronous Request-Delayed Response MEP

• Programming Models for Handling Error Response in the Asynchronous Request-
Delayed Response MEP

• What Tasks Are Required in Provider ABCS to Implement This MEP

How to Populate the EBM Header for Asynchronous-Delayed Response
To populate the EBM header for asynchronous delayed response:

1. Populate the EBMID.

This is used for correlation of the response to the correct requesting service
instance.

Figure 7-5 illustrates the structure of the CreateSalesOrderEBMType.

Figure 7-5 Structure of the CreateSalesOrderEBMType

Implementing the Asynchronous Request Delayed Response MEP

Constructing the ABCS 7-11

2. Set the EBMHeader/Sender/WSAddress/wsa:ReplyTo/wsa:ServiceName to the
name of the requesting service name in ABM to EBM transformation as shown in
Figure 7-6.

This is the name of the service that must be invoked by the EBS for processing the
response message. In most of the situations, it is the same requester ABCS that is
also be responsible for processing the response message coming from provider
ABCS.

Figure 7-6 Structure of the SWSAddressType

This information is used in the response operation of the EBS to route the response
from the providing service to the correct requesting service.

3. Set the responseCode attribute of the EBM verb.

The responseCode attribute of the EBM verb is set to indicate to the providing
service that the requesting service is expecting a response. This is evaluated in the
providing service to send back a response.

4. Set correlation information in the requesting service partner link.

The delayed response from the providing service routed by a response EBS would
be received by a Receive activity. After the Invoke step is performed in the
requesting service and the process moves to the Receive step, the BPEL process
instance is suspended and dehydrated. This restarts after the response is received.
To facilitate this behavior, a correlation set has to be specified on the partnerLink
for the Receive.

The requester ABCS process should look like the example in Figure 7-7. This is the
process for which you must set the correlation IDs.

Implementing the Asynchronous Request Delayed Response MEP

7-12 Developer's Guide for Oracle SOA Core Extension

Figure 7-7 Example of Requester ABCS Process

Setting Correlation for the Asynchronous Request-Delayed Response MEP
In the process described in How to Populate the EBM Header for Asynchronous-
Delayed Response you must set the correlation in two places:

• Correlation Set

Add a correlation ID and create a correlation set for the Invoke activity where the
process would go into the dehydration store

Add a correlation ID and create a correlation set for the Receive activity where the
process would be recalled from the dehydration store after getting a delayed
response from the provider/edge application.

• Correlation Property

Add a standard name-value pair for each partnerLink that is linked to the Invoke
or Receive activities where the correlation sets are defined as mentioned previously.
The property should always be defined as correlation = correlationSet.

Programming Models for Handling Error Response in the Asynchronous Request-
Delayed Response MEP

This section discusses programming models for:

• Using a separate service for error handling

• Using JMS queue as milestone between RequesterABCS and the EBS

• Using a parallel routing rule in the EBS

Implementing the Asynchronous Request Delayed Response MEP

Constructing the ABCS 7-13

Programming Model 1: Using a Separate Service for Error Handling

In this model, when a message is successfully processed, the response is sent back to
the same requester that initiated the process. However, when the message errors out
during the processing in the ProviderABCS, it is routed to a separate error handler
service using ResponseEBS.

An inbound message reaching the Requester ABCS is passed to the EBS which invokes
the Provider ABCS, for the message processing.

After the message is processed, the Provider ABCS pushes the message into a JMS
Queue.

If an error occurring during the processing of the message, an error response message
should be constructed and the EBM response header should indicate that the response
is indeed an error message.

In a successful scenario, the response EBS routes the response message to the initiating
requesterABS.

In a failure scenario, the response EBS should route the message to an error handler
service.

Note:

Publish the messages to JMS Queue from Provider ABCS in both Success and
Error scenarios, if the Provider ABCS is required to send the response or the
error message.

This model has two transactions as shown in Figure 7-8.

Transaction 1 starts with de-queuing message by the requesterABCS or the external
application directly calling the RequesterABCS. This transaction ends when the
provider ABCS publishes either the reply or error message, as the case may be, to the
JMS Queue.

Figure 7-8 Programming Model 1: Using a Separate Service for Error Handling

Implementing the Asynchronous Request Delayed Response MEP

7-14 Developer's Guide for Oracle SOA Core Extension

Programming Model 2: Using JMS Queue as a Milestone Between Requester ABCS
and the EBS

In this model, shown in Figure 7-9, the requester ABCS publishes the inbound
message to a JMS milestone. The transaction starts with de-queueing of the message
by the requester ABCS or the external application directly calling the requester ABCS.
The transaction ends with requester ABCS publishing the message to the JMS queue.

A second transaction starts with de-queueing the message from the JMS queue and
invoking EBS. The EBS routes the inbound message to the ProviderABCS for the
processing.

In the case of a successful message processing, the provider ABCS invokes the
response EBS, using a native binding call, in the existing transaction.

If an error occurs during the message processing, the provider ABCS publishes the
errored-out message into another JMS queue. The response EBS picks up the message
and invokes the fault handler service

Figure 7-9 Programming Model 2: Using JMS Queue as a Milestone Between Requester ABCS and
the EBS

Tip:

Use this Queue in the Provider ABCS Reference component ONLY for an Error
scenario.

Programming Model 3: Using a Parallel Routing Rule in the EBS

An inbound message reaching the Requester ABCS is passed to the EBS. The EBS
routes the message to the Provider ABCS for the message processing, using a parallel
routing rule. The transaction starts with de-queuing of the message by the requester
ABCS or the external application directly calling the requester ABCS. The transaction
ends when the EBS persists the inbound message for a queued execution.

Figure 7-10 illustrates this programming model.

A second transaction starts with de-queuing message from EBS. In case of a successful
message processing, provider ABCS making a native binding call to the response EBS
in the existing transaction. The response EBS routes the response to the requester
ABCS by invoking another receive activity. In case of errors, the Provider ABCS makes

Implementing the Asynchronous Request Delayed Response MEP

Constructing the ABCS 7-15

a web service call to invoke the Response EBS thereby causing a new transaction to
start. In this transaction, the Response EBS is responsible for sending the error
message back to the application using either Requester ABCS or directly.

Figure 7-10 Programming Model 3: Using a Parallel Routing Rule in the EBS

What Tasks Are Required in Provider ABCS to Implement This MEP
For details about the tasks see Implementing Provider ABCS in an Asynchronous
Message Exchange Scenario.

Implementing Provider ABCS in an Asynchronous Message Exchange
Scenario

If you are implementing asynchronous MEP in the provider ABCS, this section
provides the necessary guidelines.

For more information about the scenarios for which this MEP is recommended, see
When to Use the Asynchronous Request Delayed Response MEP.

The provider ABCS is implemented to either behave as a one-way service call pattern
or request-delayed response pattern.

In the request-delayed response pattern, the provider ABCS receives the request
message from the EBS request routing service, processes the message, and finally
responds to the requesting service (requester ABCS or Enterprise Business Flow [EBF])
by invoking the response operation of the EBS response routing service. In some
scenarios, the provider ABCS can also publish the response and/or the error message
to a JMS queue. The EBS request routing service is not waiting for the response.

See Programming Model 1: Using a Separate Service for Error Handling.

All the provider ABCSs (and EBFs) should have the capability to invoke the callback
operation, but should have a switch case to do it only if the requester wants a callback.
Evaluate the responseCode attribute on the verb element of the EBM to determine
whether the requesting service is expecting a response.

How to Implement the Asynchronous MEP
To implement the asynchronous MEP in the provider ABCS:

1. Populate the EBM header of the request message in the providing service with fault
information.

If an error occurs in the provider service before evaluation of the requirement of a
response and an exception is issued, enter the fault information in the request

Implementing Provider ABCS in an Asynchronous Message Exchange Scenario

7-16 Developer's Guide for Oracle SOA Core Extension

message EBM header. This facilitates passing the entire request EBM along with the
fault message to the catch block for processing.

2. Implement Error Handling in the providing service.

If a particular error needs compensation service to be invoked, then the compensate
operation of the EBS is invoked for routing the request to the compensation service.

For more information, see Configuring Oracle AIA Processes for Error Handling
and Trace Logging.

3. Enter the correlation information in the EBM header in the providing service.

Use the EBMID in the EBM header for correlation of the response message to the
correct requesting service instance. To facilitate correlation, the EBMID in the EBM
header of the request message must be copied to the RequestEBMID in the EBM
header of the response message in the ABM to EBM transformation of the
providing service as shown in Figure 7-11.

Figure 7-11 Structure of CreateSalesOrderResponseEBMType Element

For information about the technique of passing the EBMHeader of the request
message in a variable into the ABM to EBM XSLT, see Working with Message
Transformations.

This is required to copy the relevant information from the EBM header of the
Request EBM to the EBM header of the Response EBM.

4. Populate the EBM header of response message in the providing service with fault
information.

If an error occurs in the provider service after evaluation of the requirement of a
response, you must populate the fault information in the response message EBM
header fault component. This facilitates passing the response EBM along with fault
message to the catch block for processing.

Implementing Provider ABCS in an Asynchronous Message Exchange Scenario

Constructing the ABCS 7-17

The requesting service receives a response with fault elements populated.

Using the Programming Models for the Request-Delayed Response Pattern
If you use the programming models found in Programming Models for Handling
Error Response in the Asynchronous Request-Delayed Response MEP for the request-
delayed response pattern, follow these guidelines.

Programming Model 1: Using a Separate Service for Error Handling

The provider ABCS should publish the messages to JMS Queue in both successful
message processing and error scenarios, if the provider ABCS is required to send the
response or the error message.

Note:

A new transaction is started with de-queuing of the message from JMS.

Programming Model 2: Using JMS Queue as a Milestone Between the Requester ABCS
and the EBS

In the case of successful message processing, the provider ABCS invokes the response
EBS, using a native binding call, in the existing transaction.

If an error occurs during the message processing, the provider ABCS publishes the
errored-out message into another JMS queue. The response EBS picks up the message
and invokes the fault handler service

Programming Model 3: Using a Parallel Routing Rule in the EBS

The provider ABCS has two references to the response EBS composite. Follow the
naming conventions to name the provider ABCS 's second reference to the EBS.

For details on naming conventions, see Oracle AIA Naming Standards for AIA
Development.

Figure 7-12 illustrates the asynchronous provider ABCS composite with a second
reference to the ResponseEBS. The label for the second reference is
<EBSName>ErrorResponseEBS.

Implementing Provider ABCS in an Asynchronous Message Exchange Scenario

7-18 Developer's Guide for Oracle SOA Core Extension

Figure 7-12 Async Provider ABCS Composite with a Second Reference to
ResponseEBS

When the message is processed successfully, the provider ABCS invokes the callback
operation on the response EBS. The response EBS routes the response to the requester
ABCS by invoking another receive activity. When en error occurs during the
processing of the message, the provider ABCS invokes the response EBS through its
second reference to the response EBS. In this case, the responseEBS is invoked using a
SOAP call, not a native call. This is achieved by having the following property set on
the second reference to the response EBS, in the composite of the provider ABCS.

<binding.ws port="<port>" location="<url>"/>
 <property name="oracle.webservices.local.optimization
type="xs:boolean">false</property>
 </binding.ws>

Note:

Use this property in the provider ABCS reference component ONLY for the
error scenario.

How to Ensure Transactions in Services
For more information about ensuring transactions, see How to Ensure Transactions in
AIA Services.

How to Handle Errors in the Asynchronous Request-Delayed Response MEP
See Configuring Oracle AIA Processes for Error Handling and Trace Logging.

Implementing Synchronous Request-Response Message Exchange
Scenario

If you are implementing synchronous request-response MEP, this section provides the
necessary guidelines.

Implementing Synchronous Request-Response Message Exchange Scenario

Constructing the ABCS 7-19

For more information about the scenarios for which this MEP is recommended, see
When to Use the Synchronous Request-Response MEP.

In this scenario, requester ABCS synchronously invokes the EBS. The EBS invokes the
Provider ABCS and waits for a response. Synchronicity should manifest in the WSDLs
of requester ABCS, EBS, and provider ABCS. All of the WSDLs should have the
operation defined with input and output message.

How to Ensure Transactions in Services
This MEP need not support transactions. No break points such as midprocess Receive,
wait, Pick, onMessage activities should be in any of the BPEL processes participating
in implementation of this MEP.

For more information about ensuring transactions, see How to Ensure Transactions in
AIA Services.

How to Handle Errors in the Synchronous Request-Response MEP
See Configuring Oracle AIA Processes for Error Handling and Trace Logging.

How to Optimize the Services to Improve Response Time
Because this MEP involves implementation of transient services (no break point
activities and hence, no dehydration in the middle), Oracle AIA highly recommends
that the audit details for BPEL services are persisted only for faulted instances. The
service instances associated with the successfully completed integration flows are not
visible using Oracle Enterprise Manager. This approach significantly improves the
response time.

auditLevel property sets the audit trail logging level. This configuration property is
applicable to both durable and transient processes. This property controls the amount
of audit events that are logged by a process. Audit events result in more database
inserts into the audit_level and audit_details tables, which may impact performance.
Audit information is used only for viewing the state of the process from Oracle
Enterprise Manager Console. Use the Off value if you do not want to store any audit
information. Always choose the audit level according to your business requirements
and use cases.

For synchronous BPEL processes, AIA recommends nonpersistence of instance details
for successfully completed instances. For this, set the auditLevel property to off at the
service component level. This general guideline could be overridden for individual
services based on use cases.

Invoking Enterprise Business Services
This section discusses the guidelines for invoking an EBS from an ABCS and for
working with operations of an EBS. This content is provided from the perspective of
invoking an EBS operation and also helps in understanding EBS operations from an
implementation perspective.

This section includes the following topics:

• Create

• Update

• Delete

Invoking Enterprise Business Services

7-20 Developer's Guide for Oracle SOA Core Extension

• Sync

• Validate

• Process

• Query

These sections present a detailed view of each of the verbs in the context of:

• When the verb should be used

• What should be the content payload when the verb is used

• What are the attributes of the verb, if any

• What is the corresponding response verb, if any

• What is the content payload for the response verb

Create
The Create verb indicates a request to create a business object using the information
provided in the payload of the Create message. It is used in operations that are
intended to create an instance of a business object.

When to Use the Create Verb

If both the service requester and service provider have the same object, then Sync
would be a more appropriate verb to use. However, the usage of Sync is conditional on
the service provider having an implementation of a Sync operation.

A typical use of a Create operation is a front-end customer management system that
could take service requests from customers and based on the information provided,
request a work order system to create a work order for servicing the customer.

The Create verb is not used for composite operations; it always involves the creation of
one (or more for List) instance of a business object.

Content Payload

The payload of an operation that uses a Create verb is typically a complete business
object, and in general every business object has only two messages with a Create
operation (Single and List).

Verb Attributes

The Create verb has an optional ResponseCode attribute that communicates the
payload that is expected in the response message to the Create request. The possible
values for the ResponseCode are restricted to either ID (response payload is expected
to be the Identifier of the object that was created) or OBJECT (response payload is
expected to be the entire object that was created).

Corresponding Response Verb

The Create verb has a paired CreateResponse verb that is used in the response
message for each Create EBM. The response is expected to be provided by the target
application only if the original request message explicitly requests a response by
setting the ResponseCode attribute in the Create message.

Response Content Payload

Invoking Enterprise Business Services

Constructing the ABCS 7-21

The payload type of the response verb is always based on the payload type of the
Create Request operation. It is implemented as a different type to support user
customization if needed.

Update
The Update verb indicates a request to a service provider to update an object using the
payload provided in the Update message. It is used in operations that are intended for
updating one or more properties of a business object or array of business objects.

Operations that use the Update verb must create or update content and should not be
an orchestration of other operations.

When to Use the Update Verb

Similar to Create, a business process invokes an Update operation mainly in cases in
which the source event that triggers the invocation is not the updating of the object in
the requesting system. If both the service requester and service provider have the same
object, then Sync would be a more appropriate verb to use. However, use of Sync
would be conditional to the service provider having an implementation of a Sync
operation.

An example of an Update operation is a receiving system updating a purchase order
line with the quantity of items received, or an order capture system updating the
customer record with customer address and other information.

The content included in the business payload of an EBM using the Update verb is
assumed to be only the fields that must be updated in the target application. The
Update verb uses the ActionCode property of the business components and common
components to communicate processing instructions to the target system. This is
necessary for hierarchical, multilevel objects when the update happens at a child level.

The ActionCode property exists in an EBO for all components that have a multiple
cardinality relationship with its parent. The possible values for the ActionCode are
Create, Update, and Delete. It is intended for use only with the Update verb to
communicate the processing action to be applied to that business component. Ensure
that the ActionCode applies only if the object has child business components-if not, an
ActionCode is not needed and the verb alone is sufficient to convey this information.

A use case for ActionCode is a case in which a requisition is updated in a self-service
requisitioning system, and this updated information must be communicated to the
Purchasing system, which also maintains a copy of the requisition.

Assume that a user updates a requisition and does the following actions (in a single
transaction):

• Updates the description in the requisition header

• Adds a new requisition line (line number 4)

• Modifies the item on a requisition line (line number 3)

• Deletes a requisition line (line 2)

• Modifies the accounting distribution of a requisition line, and adds a new
accounting distribution (line 1)

The content of the DataArea business payload in the instance XML document that
communicates the preceding changes is shown in Example 7-1.

Content Payload

Invoking Enterprise Business Services

7-22 Developer's Guide for Oracle SOA Core Extension

The payload of an operation that uses an Update verb is typically the entire EBO and
in general every business object has only two messages with an Update operation
(single and list).

Situations may occur in which subsets of an EBO must be updated, in which case
multiple update messages may possibly exist, each with a distinct payload. An
example is a possible UpdateSalesOrderLineEBM message with a payload that
contains only SalesOrderLine.

Verb Attributes

The Update verb has an optional ResponseCode attribute that is intended to
communicate the payload that is expected in the response message to the Update
request. The possible values for the ResponseCode are restricted to either ID (response
payload is expected to be the Identifier of the object that was created) or OBJECT
(response payload is expected to be the entire object that was created).

Corresponding Response Verb

The Update verb has a paired UpdateResponse verb that is used in the response
message for each Update EBM. The response is expected to be provided by the target
application only if the original request message explicitly requests a response by
setting the ResponseCode attribute in the Update message. The payload of the
response is either the ID or the entire object that was updated, depending on the
ResponseCode specified in the Update request.

Response Content Payload

The payload type of the response verb is always based on the payload type of the
Update Request operation. It is implemented as a different type to support user
customization if needed.

Example 7-1 Update

<UpdateRequisition actionCode="Update"> Root Action Code not processed
 <Description>New Description</Description>
 <RequisitionLine actionCode="Update"> Indicates that some property or
association of this line is being updated. In this example, the accounting
distribution Percentage has been updated for Line 1, and a new
AccountingDistribution line has been added
 <Identification>
 <ID>1</ID>
 </Identification>
 < RequisitionAccountingDistribution actionCode="UPDATE">
 <Identification>
 <ID>1</ID>
 </Identification>
 <AccountingDistribution>
 <Percentage>15</Percentage>
 </AccountingDistribution>
 < /RequisitionAccountingDistribution>
 < RequisitionAccountingDistribution actionCode="ADD">
 <Identification>
 <ID>3</ID>
 </Identification>
 <AccountingDistribution>
 <Percentage>15</Percentage>
 </AccountingDistribution>
 < /RequisitionAccountingDistribution>
 </RequisitionLine>
 <RequisitionLine actionCode="DELETE"> Indicates this line has been deleted
 <Identification>

Invoking Enterprise Business Services

Constructing the ABCS 7-23

 <ID>2</ID>
 </Identification>
 </RequisitionLine>
 <RequisitionLine actionCode="UPDATE">
 <Identification>
 <ID>3</ID>
 </Identification>
<ItemReference>
<Identification>
 <ID>1001</ID>
 </Identification>
</ItemReference>
 </RequisitionLine>
 </RequisitionLine>
 <RequisitionLine actionCode="ADD"> Indicates this line has been added
 <Identification>
 <ID>4</ID>
 </Identification>
<ItemReference>
<Identification>
 <ID>1005</ID>
 </Identification>
</ItemReference>
 </RequisitionLine>
</UpdateRequisition>

Delete
The Delete verb is a request to a service provider to delete the business object
identified using the object Identification provided in the payload of the Delete
message.

When to Use the Delete Verb

The Delete verb is used for operations that are intended to delete a business object.

Operations that use the Delete verb must delete content and should not be an
orchestration of other operations.

Note:

Currently, AIA does not support using Delete for components of a business
object, that is, Delete Purchase Order Line is allowed

Content Payload

The payload of the Delete verb must be only an identification element that uniquely
identifies the business object to be deleted.

Verb Attributes

The Delete verb has an optional ResponseCode attribute that is intended to
communicate the payload that is expected in the response message to the Update
request. The only possible value for the ResponseCode for Delete is ID (response
payload is expected to be the Identifier of the object that was created).

Corresponding Response Verb

The Delete verb has a paired DeleteResponse verb that is used in the response
message for each Delete EBM. The Response is expected to be provided by the target

Invoking Enterprise Business Services

7-24 Developer's Guide for Oracle SOA Core Extension

application only if the original request message explicitly requests a response by
setting the ResponseCode attribute in the Delete message. The only allowed value for
the ResponseCode is ID.

Sync
The Sync verb indicates a request to a service provider to synchronize information
about an object using the payload provided in the Sync message.

When to Use the Sync Verb

The Sync verb is used in situations in which applications provide operations that can
accept the payload of the operation and create or update business objects as necessary.

Operations that use the Sync verb must create or update content and should not be an
orchestration of other operations.

The primary usage scenario for Sync is generally batch transactions in which the
current state of an object is known, but what has changed between the previous sync
and the current sync is not known. Sync can also be used to synchronize individual
instances of objects. The initiator of Sync is generally the system that owns the data to
be synchronized.

Using the Sync operation implies that the object exists in both the source and the target
system, and the result of Sync is that both the source and target have the same content.
Sync is different from the other verbs in that it assumes a dual processing instruction-
Sync can both create and update existing content.

The content of the Sync reflects the current state of the object in the system generating
the message. In this mode, a single Sync message can contain multiple instances of
nouns, with none of them having any specific change indicator. The source system
generates the message, and all systems that subscribe to the message are expected to
synchronize their data to reflect the message content.

Sync is probably the most practical approach for master data management scenarios in
which change is not frequent, and it may not be practical or necessary from an
operational point of view to synchronize data on a real-time basis.

The Sync verb has an optional syncActionCode attribute that can be used to further
instruct the recipient of a Sync message about the expected processing behavior. The
possible values for the syncActionCode are:

• CREATE_REPLACE:

This is the default behavior of Sync when no syncActionCode is specified. The
target system that receives a Sync message with no syncActionCode attribute, or
with a syncActionCode attribute value of NULL or CREATE_REPLACE, is
expected to create the object if it does not exist in the target system, or if it does
exist, the entire object is to be replaced with the definition that has been provided in
the Sync message.

• CREATE_UPDATE:

A Sync message with the value of syncActionCode as CREATE_UPDATE is
expected to be processed as follows: create the object if it does not exist in the target
system, or if it does exist, update the object with the content that has been provided
in the Sync message.

Content Payload

Generally speaking, there is only one Sync message per EBO (with a single and list
implementation) and the payload of the message is the entire EBO.

Invoking Enterprise Business Services

Constructing the ABCS 7-25

Sync should always be used to synchronize the entire business object. Multiple Sync
messages may exist in cases in which different named views of the business object
exist, but never for synchronizing a specific component of a business object.

Tip:

Unlike the OAGIS implementation of Sync, Oracle AIA has opted not to have
specific attributes in Sync to indicate Add, Change, Replace, and Delete. The
Enterprise Object Library (EOL) implementation of Sync is a verb that is
intended to change the target object to exactly what is specified in the message
payload. Sync cannot be used for deleting content-an explicit delete operation
must be used in this case.

Verb Attributes

The Sync verb has an optional ResponseCode attribute that is intended to
communicate the payload that is expected in the response message to the Sync request.
The possible values for the ResponseCode for Sync is restricted to OBJECT (response
payload is expected to be the entire object that was created or updated) and ID
(response is only the ID of the object that was created or updated)

Corresponding Response Verb

The Sync verb has a paired SyncResponse verb that is used in the response message
for each Sync EBM. The response is expected to be provided by the target application
only if the original request message explicitly requests a response by setting the
ResponseCode attribute in the Sync message.

Note:

The design intent is to avoid having two verbs with the same objective. The
Sync verb also supports the creation of an object, but is intended for use
primarily in the scenario in which the object exists in both the source and the
target systems. That is, the semantics of usage of Sync as a verb communicates
to the recipient application the fact that the object being synchronized exists in
both the source and target, whereas the usage of Create or Update is intended
to communicate the fact that the object being created or updated does not exist
in the source system.

Response Verb Content Payload

The payload type of the response verb is always based on the payload type of the Sync
Request operation. It is implemented as a different type to support user customization
if needed.

Validate
The Validate verb is a request to a service provider to validate the content provided in
the payload of the message. It is used for operations that are intended to verify the
validity of data.

When to Use the Validate Verb

Operations that use the Validate verb do not create or update business objects, and can
internally be implemented as an orchestration of other operations. For example,
validating a purchase order for approval may involve validating whether a budget is

Invoking Enterprise Business Services

7-26 Developer's Guide for Oracle SOA Core Extension

available, if the supplier is still active, if the requisitions that need the items on the line
are still valid, and so on.

Content Payload

The payload of any operation that falls in the Validate category can be a business
object, a business component of a business object, or any other user-defined payload.

Verb Attributes

Not applicable.

Corresponding Response Verb

The Validate verb has a paired ValidateResponse verb that is used in the response
message for each Validate EBM. The Validate verb is always implemented
synchronously.

Response Content Payload

The response payload of a Validate operation is user-definable.

Process
The Process verb is a request to a service provider to perform the corresponding
operation on the business object associated with the service. It is generally used for
operations that orchestrate multiple other operations, are intended to achieve a
specific business result, or both.

When to Use the Process Verb

Process is used as a single verb to categorize all business operations that result in
content updates but do not fall in the Create/Update/Delete category to avoid a
proliferation of verbs for specific business object actions.

Operations that use the Process verb must always result in creation or updating of one
or more business objects and may represent an orchestration of other operations.

The Process verb can also be used for operations that act on a single business object,
but have specific business semantics that cannot be communicated using an Update
operation. In general, such actions are implemented in applications with distinct
access control, and specific business rules that are applicable when the action is
performed. Examples of such actions are state changes, updating meter readings on
equipment, and so on.

Because multiple operations can be performed by the Process verb, potentially
multiple Process verbs can be used in any given EBS.

Tip:

Operations that implement the Process verb can be implemented as
synchronous or asynchronous. This is a deviation from the other verbs for
which a consistent implementation pattern applies across all operations that
use them.

Content Payload

The nature of the operation performed by a Process verb may require properties and
values that are not part of the business object on which the operation is being
performed, but are required by the business rules that are implemented by the
operation. For example, approval of a sales order can record a comment as part of the
approval, but the comment in itself may not be a property of the sales order.

Invoking Enterprise Business Services

Constructing the ABCS 7-27

In general, the request and response payload of operations that use the Process verb
need the ability to reflect the method signature of the application, without a restriction
that the content that forms the payload must come from the business object to which
the service operation is associated.

To support the preceding, the payload of each Process operation is not restricted to
content from the EBO definition. This is unlike all the other EBOs for which the EBM
business content must be the same as or a subset of the EBO content.

Note:

Currently, AIA does not support assembling Process EBM payloads using
content from other business components. So a Process operation for credit
verification that is defined for a customer party cannot include content from
Sales Order EBO to build its message payload.

The List pattern used in the other generic verbs is also applicable here, but does not
apply generically; that is, in an EBS, both a single and List implementation of a Process
operation may exist, or just one or the other. Unlike the other generic verbs for which
single and list are both consistently created for all EBOs, Process is driven by the
requirements of the corresponding operation.

Verb Attributes

Not applicable.

Corresponding Response Verb

The Process verb has a paired ProcessResponse verb that is used in the response
message for each Process EBM.

Response Verb Payload

The payload of the response verb is specific to each process operation and is
determined by the objective of the operation. Similar to the Process verb payload,
there is no restriction that the content of the response is restricted to the content of the
EBO.

Query
The Query verb is a request to a service provider to perform a query on a business
object using the content provided in the payload of the Query message, and return the
query result using the corresponding response message associated with the query. The
requester can optionally request a specific subset of the response payload.

When to Use the Query Verb

Similar to the other verbs, the Single and the List pattern apply to queries also. The use
of Query for each of these patterns has been listed separately in the following sections.

Tip:

The same verb applies to both the patterns, but the implementation and
attributes applicable are completely different.

Single Object Query Intended to Return One and Only One Instance

The Single Object Query operation is a simple get by ID operation that enables callers
to look up an EBO by its identifier. It is intended to request a single instance of a

Invoking Enterprise Business Services

7-28 Developer's Guide for Oracle SOA Core Extension

business object by specifying the ID of the object and optionally a QueryCode and
ResponseCode with a set of parameters and their values. The identifier of the object is
specified in the DataArea of the Query EBM.

The single object query does not support any other query criteria to minimize the
possibility of the query returning multiple objects, and the response payload for the
simple query is restricted to a single instance of the object being queried.

The Single Object Query contains the following elements:

• QueryCode within the Query element (optional)

The QueryCode in a single object Query is used mainly as a supplement to the
Identification element provided in the DataArea of the Query. The Query Code can
be used for a single object query for cases in which there is a need to communicate
more than the ID to the query service provider to successfully run the query. The
code could be used to either refine the query, or to select the object to be queried
based on the Query Code.

Tip:

For this to happen, the service provider should implement the processing of
such a code. Currently, Oracle AIA does not predefine any generic Query
Codes as part of the EOL.

• ResponseCode within the Query Element (optional)

The ResponseCode is a predefined code that instructs a query service provider to
filter the response content of the EBO to a specific subset of the response object.

The return payload for a generic Query is always the entire EBO; that is, by default,
the response payload for a QuerySalesOrder operation is always the entire
SalesOrder with lines, shipment, and so on. If the requester wants the service
provider to provide only the SalesOrder header with none of the child components,
then the ResponseCode can be used as an instruction to the service provider to
build the response payload accordingly.

Tip:

For this to happen, the service provider should implement the processing of
such a code. Currently, Oracle AIA does not predefine any generic Request or
Response Codes as part of the EOL.

Content Payload

The payload of a single object query is always the ID of the object to be queried. This is
specified within the Identification element of the DataArea as shown in Example 7-2.

Verb Attributes

The simple Query can have an optional getAllTranslationsIndicator to indicate
whether the service provider is expected to provide all translations to be populated in
the response for all translatable elements. The default is to bring back data in the
language of the request only.

Based on the preceding, there are ways in which in which a simple query can be
constructed:

• Simple Query with just ID:

An example of querying for a single object would be querying Purchase Order with
ID="3006". No other code or parameters are needed in this example.

Invoking Enterprise Business Services

Constructing the ABCS 7-29

• Simple Query with QueryCode:

As an example, consider an application that maintains a distinction between a
person as a customer versus an organization as a customer. A single Customer
Query service exists, but to successfully run the query, the service provider must be
told whether the ID to be queried belongs to an organization or to a person. In this
case, the QueryCode can be used to communicate the Person/Organization
information.

List Query That Can Return Multiple Instances

The single object query does not support any search criteria beyond a simple search by
identification, and can return only one instance of an object. All other queries are
treated as List queries.

A List Query may return multiple records in response to the query and supports the
ability to build complex queries.

The List Query is implemented using the following elements:

QueryCode within the Query element (optional)

The QueryCode in a List Query serves as a means for a service provider to limit the
possible queries that can be built using a List Query. In the absence of a QueryCode, a
service provider should be able to generically support all possible queries that can be
communicated using the QueryCriteria element explained subsequently.

For this to happen, the service provider should implement the processing of such a
code. Currently, Oracle AIA does not predefine any generic Query Codes as part of the
EOL.

ResponseCode within the Query Element (optional)

The ResponseCode is a predefined code that instructs a query service provider to filter
the response content of the EBO to a specific subset of the response object. For list
queries, this can serve as an alternate mechanism instead of specifying the
ResponseFilter element of a Query.

The return payload for a generic Query is always the entire EBO. For example, by
default, the response payload for a QuerySalesOrder operation is always the entire
SalesOrder with lines, shipment, and so on. If the requester wants the service provider
to provide only the SalesOrder header with none of the child components, then the
ResponseCode can be used as an instruction to the service provider to build the
response payload accordingly.

For this to happen, the service provider should implement the processing of such a
code. Currently, Oracle AIA does not predefine any generic Request or Response
Codes as part of the EOL.

QueryCriteria (1 to n instances)

The QueryCriteria element enables a user to build a complex query statement on a
specific node of the object being queried. At least one QueryCriteria element must be
specified for a List Query.

Multiple QueryCriteria elements can be present in a Query if the query spans multiple
nodes of the object being queried. Multiple Query criteria is similar to a subselect in
that the result set of one Query Criteria is filtered by the second to arrive at a smaller
subset of records.

Each QueryCriteria element consists of:

• QualifiedElementPath (0 or 1 instance):

Invoking Enterprise Business Services

7-30 Developer's Guide for Oracle SOA Core Extension

This enables the user to specify the node on which the QueryCriteria applies. If the
element is not included in the Query, or if it is included with no value or a NULL
value, or if it has a value of /, the query criteria applies to the root element of the
object.

QueryExpression (exactly 1 instance, with optional nesting of other
QueryExpressions within it): This element is the container for the actual query.
The QueryExpression is a nested construct that enables you to define complex
queries. Each QueryExpression consists:

– A logicalOperatorCode attribute that can have a value of either AND or OR.
These attributes can be specified to indicate the logical operation to be
performed on the content (nested multiple QueryExpressions or list of
ValueExpressions) within the QueryExpression.

– A choice of one or more QueryExpressions or one or more ValueExpressions.

◆ A QueryExpression may contain other QueryExpressions when you must
combine multiple AND or OR operations in a query.

◆ If the Query can be expressed with a single AND or OR operator, then it can
be built using multiple ValueExpressions within an outer QueryExpression.

• ValueExpression (1 or more instances):

Each ValueExpression represents an assignment of a value to a specific node within
the node represented by the QualifiedElementPath (or the root node if the
QualifiedElementPath is not present). The ValueExpression is specified using:

– An ElementPath element that represents either a node (expressed as a
simpleXPath expression) to which the query value is being assigned, or a Code
in case the element cannot be found in the document. For example, /
SalesOrderLine/Status/Code or just StatusCode. No explicit way is available to
indicate whether the ElementPath contains a code or an Xpath expression.

– Value element that contains the value assigned to the ElementPath, for example,
Approved.

– A queryOperatorCode attribute that specifies the operator applicable to the
Value assigned to the ElementPath. The possible operators are EQUALS,
NOT_EQUALS, GREATER_THAN, GREATER_THAN_EQUALS, LESS_THAN,
LESS_THAN_EQUALS, CONTAINS, DOES_NOT_CONTAIN, LIKE,
NOT_LIKE, LIKE_IGNORE_CASE, NOT_LIKE_IGNORE_CASE, IS_BLANK,
IS_NOT_BLANK, BETWEEN, NOT_BETWEEN, IN, NOT_IN

• SortElement (0 or more instances):

Each QueryCriteria can have one or more SortElements defined, as shown in
Example 7-4. A SortElement is used to request the Query result set to be sorted
using the criteria specified in the SortElement. Each SortElement has an optional
sortDirectionCode attribute that identifies the order of sorting-ASC (ascending) or
DESC (descending).

In Example 7-4, the result set of the QueryExpression is to be sorted in descending
order of OrderDateTime and ascending order of Description.

If multiple QueryCriteria exist, then each can have its own SortElement, as shown
in Example 7-5. The result set of one QueryCriteria is sorted, and then after the next

Invoking Enterprise Business Services

Constructing the ABCS 7-31

QueryCriteria filter is applied, the resultant subset is sorted using the SortElement
specified for that QueryCriteria.

In Example 7-5, the SalesOrder root query is sorted by OrderDateTime and
Description, while the child node SalesOrderLine is sorted by price.

QueryCriteria Examples

Query with a Single QueryCriteria Element and Single Query Expression
Example 7-3 is an example of a query with a single QueryCriteria element and a
single QueryExpression element that contains only ValueExpression elements. The
query to be run is Query SalesOrder, in which "SalesOrder/CurrencyCode = "USD"
AND "SalesOrder/OrderDateTime = "2003-12-04". The query expression is defined
for the root node; hence, the QualifiedElementPath is not present (optional).

This is modeled as two ValueExpressions nested within a QueryExpression. The
logicalOperatorCode on the QueryExpression indicates the operation (AND) to be
performed across the two ValueExpressions.

Query with a Single QueryCriteria and Nested QueryExpressions
Figure 7-13 is an example of a Query with a single QueryCriteria but with nested
QueryExpressions. The query to be run is Query SalesOrders, in which SalesOrder/
CurrencyCode=USD AND SalesOrder/OrderDateTime<2003-12-04 OR SalesOrder/
Description CONTAINS "BMW 520i". Both the query expressions are defined for the
root node; hence, the QualifiedElementPath is not present (optional).

Note: When nested QueryExpressions exist, they are all on the same
QualifiedElementPath.

This is modeled as two QueryExpressions nested within an outer QueryExpression.

The outer QueryExpression identifies the operand to be applied to the two inner
QueryExpressions (OR). The ValueExpressions contain the actual query data with the
query operator to be applied to the data element as shown in Figure 7-13.

Invoking Enterprise Business Services

7-32 Developer's Guide for Oracle SOA Core Extension

Figure 7-13 Example of Query with Nested Query Expressions

Query with Multiple QueryCriteria
Example 7-6 is an example of a Query with multiple QueryCriteria. When multiple
QueryCriteria exist, no logical operation is present that is applicable across them-they
are the equivalent of running the query specified in the first QueryCriteria element,
then applying the second QueryCriteria to the result of the first.

The query to be executed is: Query CustomerParty where Type = GOLD and filter the
result set to only accounts whose status is "ACTIVE".

This is implemented as two QueryCriteria. The first is to query the CustomerParty
and retrieve all Customers of TYPE-"GOLD". This query is run on the CustomerParty
root node.

The result set of this query is then filtered by applying the second Query Criteria. This
queries the CustomerParty/Account node to get all CustomerParty Accounts that
have STATUS = "ACTIVE".

ResponseFilter (0 to 1 instance)

The ResponseFilter enables a requester to indicate which child nodes he or she is
interested or not interested in. The excluded child nodes are not populated by the
application when the response to the query is being built. If supported by
participating applications, this feature improves performance by not querying the
nodes that are excluded from the query.

Request for Single Return to QueryInvoice Message
Example 7-7 illustrates requesting only the InvoiceLine to be returned in response to a
QueryInvoice message.

Request for Specific Message Return to QueryInvoice Message
Example 7-8 is an example of returning all QueryInvoice message content except for
Charge and PaymentTerm.

Invoking Enterprise Business Services

Constructing the ABCS 7-33

Tip:
In the absence of a very comprehensive framework for processing queries,
this option is difficult to implement practically, because in theory infinite
ways are available by which the query can be built, and the service provider
would not be able to process all possible ways in which the QueryCriteria is
specified.

Content Payload

No content payload for a List Query is available-the query is defined entirely within
the Verb element of the DataArea.

Verb Attributes

• getAllTranslationsIndicator(optional):

A Query can have an optional getAllTranslationsIndicator to indicate whether the
service provider is expected to provide all translations to be populated in the
response for all translatable elements. The default is to bring back data in the
language of the request only.

• recordSetStart(optional):

This is an instruction to the query service provider to return a subset of records
from a query result set, with the index of the first record being the number
specified in this attribute.

As an example, consider a query that returns 200 records in the result set. The
requester can invoke the query with a recordSetStart parameter set to "101", in
which case the service provider is expected to process this value and build a result
set that contains the 101st to the 200th record of the result set.

• recordSetCount(optional):

The presence of this attribute is an instruction to the service provider to return the
same attribute with the count of the number of records in the response to the
Query. Absence of this attribute indicates that a record set count is not expected in
the response to the query.

• maxItems(optional):

This is an instruction to the query service provider that the maximum number of
records returned in the query response should not exceed the value specified for
this attribute.

The result set of a query may result in multiple records that meet the query criteria,
but the query service Requester may be able to process only a specific number of
records at a time. For example, a query might result in a result set of a 1000 records,
but the query Requester can process only 100 records at a time. The service
Requester can use the maxItems attribute to instruct the service provider to return
only 100 records in the response.

Corresponding Response Verb

The Query Verb has a paired QueryResponse verb that is used in the response
message for each Query EBM.

Response Verb Payload

The payload of the response verb is typically the entire business object.

Invoking Enterprise Business Services

7-34 Developer's Guide for Oracle SOA Core Extension

Example 7-2 Content Payload of a Single Object Query

<QueryAccountBalanceAdjustmentEBM>
<corecom:EBMHeader>

 </corecom:EBMHeader>
 <DataArea>
 <Query>
 </Query>
 <QueryAccountBalanceAdjustment>
 <corecom:Identification>
 <corecom:ID>1005</corecom:ID>

 </corecom:Identification>
 <Custom/>
 </QueryAccountBalanceAdjustment>
 </DataArea>
</QueryAccountBalanceAdjustmentEBM>

Example 7-3 Defining SortElements for Single QueryCriteria

<Query>
<QueryCriteria>
 <QueryExpression logicalOperatorCode="AND">
 <ValueExpression queryOperatorCode="EQUALS">
 <ElementPath>/SalesOrderBase/CurrencyCode</ElementPath>
 <Value>USD</Value>
 </ValueExpression>
 <ValueExpression queryOperatorCode="GREATER_THAN_EQUALS">
 <ElementPath>/SalesOrderBase/OrderDateTime</ElementPath>
 <Value>2003-12-04</Value>
 </ValueExpression>
 </QueryExpression>
 </QueryCriteria>
</Query>

Example 7-4 Defining SortElements for Multiple QueryCriteria

<QueryCriteria>
<QueryExpression>
 <ValueExpression>

 </ValueExpression>
 </QueryExpression>
 <SortElement sortDirection="DESC">/OrderDateTime</SortElement>
 <SortElement sortDirection="ASC">/Description</SortElement>
</QueryCriteria>

Example 7-5 Example of Query with Single QueryCriteria Element and Single
QueryExpression

<QueryCriteria>
<QueryExpression>
 <ValueExpression>

 </ValueExpression>
 </QueryExpression>
 <SortElement sortDirection="DESC">/OrderDateTime</SortElement>
 <SortElement sortDirection="ASC">/Description</SortElement>
</QueryCriteria>
<QueryCriteria>
 <QualifiedElementPath>/SalesOrderLine/SalesOrderLineBase</

Invoking Enterprise Business Services

Constructing the ABCS 7-35

QualifiedElementPath>
 <QueryExpression>
 ...
 </QueryExpression>
 <SortElement>/SalesOrderLine/SalesOrderLineBase/ListPrice</SortElement>
</QueryCriteria>

Example 7-6 Example of Query with Multiple QueryCriteria

<Query>
<QueryCriteria>
 <QueryExpression>
 <ValueExpression queryOperatorCode="EQUALS">
 <ElementPath>/Type</ElementPath>
 <Value>GOLD</Value>
 </ValueExpression>
 </QueryExpression>
 <SortElement>/LastName</SortElement>
 </QueryCriteria>
 <QueryCriteria>
 <QualifiedElementPath>/CustomerAccount</QualifiedElementPath>
 <QueryExpression>
 <ValueExpression queryOperatorCode="EQUALS">
 <ElementPath>/CustomerAccount/Status/Code</ElementPath>
 <Value>ACTIVE</Value>
 </ValueExpression>
 </QueryExpression>
 </QueryCriteria>
</Query>

Example 7-7 Requesting a Single Return to QueryInvoice Message

<Query>
<QueryCriteria>

 </QueryCriteria>
 <ResponseFilter>
 <ChildComponentPath>InvoiceLine</ChildComponentPath>
 </ResponseFilter>
</Query>

Example 7-8 Requesting Specific Message Return to QueryInvoice Message

<Query>
<QueryCriteria>

 </QueryCriteria>
 <ResponseFilter>
 <ExclusionIndicator>true</ExclusionIndicator>
 <ElementPath>Charge</ElementPath>
 <ElementPath>PaymentTerm</ElementPath>
 </ResponseFilter>
</Query>

Invoking the ABCS
This section assumes that you have completed the ABCS construction. The different
ways in which your ABCS can be invoked are discussed here.

Invoking the ABCS

7-36 Developer's Guide for Oracle SOA Core Extension

An ABCS can be invoked by an application or by another service. The service, if it
happens to be an AIA artifact, could be either a transport adapter or an EBS. This
section describes what must be done in each of the three scenarios.

This section includes the following topics:

• How to Invoke an ABCS Directly from an Application

• How to Invoke an ABCS Using Transport Adapters

• When Does an Enterprise Business Service Invoke an ABCS

How to Invoke an ABCS Directly from an Application
For the inbound interactions of applications with the ABCS:

1. Start with identifying the participating applications.

2. Analyze the integration capabilities of each participating application.

3. Work with the application providers (developers) to decide the best way to
interact with the application to achieve the needed functionality.

The interaction mechanism can be one of the following:

• SOAP WebService

• Events/Queues

• JCA

4. Obtain relevant details from the applications in situations in which the
interactions between the participating applications and the ABCS happen through
a message queue adapter or a JCA Adapter.

These details are used in configuring the adapters. The configuration results in the
WSDL creation. Care must be taken to ensure that the environment-specific details
are configured in relevant resource files on the server and not directly in the
WSDLs.

How to Invoke an ABCS Using Transport Adapters
When the Requester ABCS is invoked by the transport adapters, the interaction
between ABCS and the transport adapters is using either SOAP Web Service or native
binding.

More details are specified in Interfacing with Transport Adapters.

The details on establishing the inbound connectivity between adapters and the ABCS
are given in Establishing Resource Connectivity.

When Does an Enterprise Business Service Invoke an ABCS
An EBS invokes:

• A provider ABCS, which implements an EBS operation. This is true because an EBS
provides the mediation between the requesting services and providing services.

• A requester ABCS to send the response to it. In scenarios in which a requesting
service is waiting for a delayed response, the delayed response from the providing
service can be routed by a Response EBS to the waiting Requester ABCS.

Invoking the ABCS

Constructing the ABCS 7-37

Invoking the ABCS

7-38 Developer's Guide for Oracle SOA Core Extension

8
Completing ABCS Development

This chapter describes how to develop Application Business Connector Services
(ABCS), handle errors and faults, work with adapters, develop ABCS for CAVS
enablement, secure ABCS, enable transactions, enable message delivery and version
ABCS, enable resequencing in Oracle Mediator and Layered Customizations.

This chapter includes the following sections:

• Developing Extensible ABCS

• Handling Errors and Faults

• Working with Adapters

• Developing ABCS for CAVS Enablement

• Securing the ABCS

• Enabling Transactions

• Guaranteed Message Delivery

• Versioning ABCS

• Resequencing in Oracle Mediator

• Developing Layered Customizations

Developing Extensible ABCS
An ABCS, regardless of whether it is requester or provider specific, can invoke custom
code a minimum of either two or four times during its execution. These serve as
extensibility points.

The ABCS supporting request-response pattern in either synchronous or asynchronous
mode has four extensibility points. An ABCS supporting fire-and-forget patterns has
two extensibility points. You can develop "add-ins" and have them hooked to these
extensibility points. These "add-ins" - customer-developed services- behave as an
extension to the delivered ABCS. Each extension point allows one hook so only a
single customer extension can be plugged in.

This section describes the mechanism for creating ABCSs with extensible services,
which enables you to have service implementations that require no modifications to
the delivered ABCS.

Introduction to Enabling Requester ABCS for Extension
For request/response Requester ABCS, you can hook your custom code to four
extensibility points:

Completing ABCS Development 8-1

1. Just before the execution of transformation of application business message
(ABM) to Enterprise Business Message (EBM). Use this configuration property
name: ABCSExtension.PreXformABMtoEBM.

2. Just before the invocation of the enterprise business service (EBS). Use this
configuration property name: ABCSExtension.PreInvokeEBS.

3. Just before the execution of transformation of EBM to ABM and after invoking the
EBS. Use this configuration property name: ABCSExtension.PostInvokeEBS.

4. Just before the invocation of callback service or response return and transforming
EBM to ABM. Use this configuration property name:
ABCSExtension.PostXformEBMtoABM.

The third and fourth extension points are available only in ABCS implementing
request-response pattern.

For Fire and Forget Requester ABCS, you can hook your custom code to two
extensibility points:

1. Just before the execution of transformation of application business message
(ABM) to EBM. Use this configuration property name:
ABCSExtension.PreXformABMtoEBM.

2. Just before the invocation of the enterprise business service (EBS). Use this
configuration property name: ABCSExtension.PreInvokeEBS.

For more information about configuration parameters, see Configuration Parameters.

Figure 8-1 depicts the high-level flow of activities in a requester-specific ABCS. The
diagram assumes that the EBS with which it is interacting employs a request-response
interaction style. The steps for executing the customer extension to do additional tasks
are optional.

Developing Extensible ABCS

8-2 Developer's Guide for Oracle SOA Core Extension

Figure 8-1 Extending the Request-Response Interaction Style

Figure 8-2 shows the high-level flow of activities in a requester-specific ABCS. The
diagram assumes that the EBS with which it is interacting employs a fire-and-forget
interaction style. The steps for executing the customer extension to do additional tasks
are optional.

Developing Extensible ABCS

Completing ABCS Development 8-3

Figure 8-2 Requester-Specific ABCS Using Fire-and-Forget Interaction Style

The first extensibility point made available to the implementers of the requester ABCS
can be used to perform custom message inspection. This extensibility point can be
used to inject code to perform tasks such as custom validation, message alteration,
message filtering and so on. The custom code has access to the ABM that is about to be
transformed and can return either an enhanced ABM or raise a fault.

The second extensibility point can be used to perform custom message augmentation.
The extensibility point can be used to inject code to perform tasks such as EBM
enhancement, custom validation and so on. The custom code has access to EBM that is
about to be used for invocation of EBS and can return either an enhanced EBM or raise
a fault.

The third extensibility point can be used to inject code to perform tasks such as custom
validation, message alteration, message filtering and so on. The custom code has
access to EBM that is about to be transformed to ABM. The custom code can return
either an altered EBM or raise a fault.

The fourth extensibility point can be used to inject code to perform tasks such as ABM
enhancement, custom validation and so on. The custom code has access to ABM that is
about to be used for invocation of callback services. The custom code can return either
an altered ABM or raise a fault

Introduction to Enabling Provider ABCS for Extension
For request/response Requester ABCS, you can hook your custom code to four
extensibility points:

1. Customer extension just before the execution of the EBM to ABM transformation.
Use this configuration property name: ABCSExtension.PreXformEBMtoABM.

Developing Extensible ABCS

8-4 Developer's Guide for Oracle SOA Core Extension

2. Customer extension just before the invocation of application service. Use this
configuration property name: ABCSExtension.PreInvokeABS.

3. Customer extension just before the execution of the ABM to EBM transformation
and after invoking Application Service. Use this configuration property name:
ABCSExtension.PostInvokeABS.

4. Customer extension just before the invocation of Enterprise Business Service and
after transforming Application Message to Enterprise Business Message. Use this
configuration property name: ABCSExtension.PostXformABMtoEBM.

The third and fourth extension points are available only in the ABCS implementing
request-response pattern.

For Fire and Forget Requester ABCS, you can hook your custom code to two
extensibility points:

1. Customer extension just before the execution of the EBM to ABM transformation.
Use this configuration property name: ABCSExtension.PreXformEBMtoABM.

2. Customer extension just before the invocation of application service. Use this
configuration property name: ABCSExtension.PreInvokeABS.

For more information about configuration parameters, see Configuration Parameters.

Figure 8-3 depicts the high-level flow of activities in a provider-specific ABCS. The
diagram assumes that the EBS with which it is interacting employs a request-response
interaction style.

Developing Extensible ABCS

Completing ABCS Development 8-5

Figure 8-3 Provider-Specific ABCS Using Request-Response Interaction Style

Figure 8-4 depicts the high-level flow of activities in a provider-specific ABCS. The
diagram assumes that the EBS with which it is interacting employs a fire-and-forget
interaction style.

Developing Extensible ABCS

8-6 Developer's Guide for Oracle SOA Core Extension

Figure 8-4 Provider-Specific ABCS Using Fire-and-Forget Interaction Style

The first extensibility point made available to the implementers of the Provider ABCS
can be used to inject code to perform tasks such as custom validation, message
alteration, message filtering and so on. The custom code has access to EBM that is
about to be transformed. The custom code can return either an enhanced EBM or raise
a fault.

The second extensibility point can be used to perform custom message augmentation.
The extensibility point can be used to inject code to perform tasks such as ABM
enhancement, custom validation and so on. The custom code has access to ABM that is
about to be used for invocation of application service. The custom code can return
either an enhanced ABM or raise a fault.

The third extensibility point can be used to inject code to perform tasks such as custom
validation, message alteration, message filtering and so on. The custom code has
access to ABM that is about to be transformed to EBM. The custom code can return
either an altered ABM or raise a fault.

The fourth extensibility point can be used to perform custom message augmentation.
The extensibility point can be used to inject code to perform tasks such as EBM
enhancement, custom validation and so on. The custom code has access to EBM that is
about to be used for invocation of callback services. The custom code can return either
an altered EBM or raise a fault.

How to Design Extensions-Aware ABCS
Each of the extensibility points is modeled as a service operation having a well-defined
interface. ABCS authors define these interfaces. The extensibility interfaces consist of
service operations that the ABCS invokes to execute the custom message enrichment
or transformation or validations specific code implemented by the customer.

Developing Extensible ABCS

Completing ABCS Development 8-7

Each ABCS is accompanied by a corresponding customer extension service. A request-
response ABCS has four extensibility points, therefore, the ABCS extension service has
four service operations. For a fire-and-forget ABCS, the corresponding ABCS extension
service has two service operations.

As delivered, the implementation of these service operations for all of the ABCS
extension services invokes the same piece of code that always returns the same
message. This piece of code has been implemented as a Servlet.

The ABCS is developed to invoke the appropriate service operation at each of the
extensibility points. To minimize overhead, a check is made to ensure that the service
for the relevant extensibility interface has been implemented. Oracle AIA
Configuration properties have one property for each extensibility point. Setting the
property to 'Yes' indicates that there is a custom implementation for the extensibility
point. The default value for these properties is No, therefore, the ABCS never invokes
the implementations of these extensions as they were delivered.

Table 8-1 lists the service operations for the requester ABCS-specific extensibility
points:

Table 8-1 Service Operations for Requester ABCS-Specific Extensibility Points

Extensibility Point Service Operation Name

Just before the execution of transformation of
ABM to EBM

Pre-ProcessABM

Just before the invocation of the EBS Pre-ProcessEBM

Just before the execution of transformation of
EBM to ABM

Post-ProcessEBM

Just before the invocation of callback service
or response return

Post-ProcessEBM

Table 8-2 lists the service operations for the provider ABCS-specific extensibility
points:

Table 8-2 Service Operations for Provider ABCS-Specific Extensibility Points

Extensibility Point Service Operation Name

Just before the execution of transformation of
EBM to ABM

Pre-ProcessEBM

Just before the invocation of Application
Service

Pre-ProcessABM

Just before the execution of transformation of
ABM to EBM

Post-ProcessABM

Just before the invocation of callback EBS or
response return

Post-ProcessEBM

AIA recommends that the ABCS and that the customer extension services be co-
located. In SOA 11g, when the services are deployed on the same server, the SOA 11g
runtime uses native invocation.

AIA recommends that the extension service should be enlisted as part of the ABCS
transaction. When the extension service is implemented using SOA 11g technology,
then set the transaction property bpel.config.transaction to 'required' on the extension
service to enlist itself in the ABCS transaction.

Developing Extensible ABCS

8-8 Developer's Guide for Oracle SOA Core Extension

For more information, see How to Ensure Transactions in AIA Services.

Configuration Parameters

Operations at the extension points are invoked based on the values of the specific
parameters in the file AIAConfigurationProperties.xml. Each service configuration
section specific to an ABCS requires that these parameters be specified. The
parameters for each of the four extension points are:

• ABCSExtension.PreXformABMtoEBM

• ABCSExtension.PreInvokeEBS

• ABCSExtension.PostInvokeEBS

• ABCSExtension.PostXformEBMtoABM

• ABCSExtension.PreXformEBMtoABM

• ABCSExtension.PreInvokeABS

• ABCSExtension.PostInvokeABS

• ABCSExtension.PostXformABMtoEBM

These parameters must be configured with value 'true' for a service invocation. When
these parameters are not specified in the configuration section for an ABCS, the value
considered by default is 'false'.

The intent of this section is to provide developers with a set of guidelines on how to
create and leverage these configuration properties to optimize extensibility. The
service operation names and extension configuration properties provided in this
section are recommendations only

Also, it is not within the scope of this discussion to provide guidelines for extension
points for every one of the invocations. The number of parameters for any particular
ABCS could be different. Product management and engineering teams are best
equipped to identify the additional extension points where additional extensibility is
required.

IT organizations developing services that could potentially be extended by the
departmental teams or by their partners will find a need for ABCS to made extension
aware. Given this use case, if a customer has to develop ABCS with additional
extension points than the recommended, they can come up with appropriate names by
following the appropriate naming conventions for service operation names and
configuration properties similar to the currently proposed properties.

Designing an ABCS Composite with Extension
When an ABCS composite is developed as an extension-enabled service:

• The ABCS is implemented as a component (using BPEL technology) in the
composite.

• The extension service is referred to by the ABCS composite as an external Web
service.

The service at the extension point is developed in a separate composite if it is
developed over an Oracle Fusion Middleware platform.

Developing Extensible ABCS

Completing ABCS Development 8-9

When different external extension services are referred to by the ABCS composite,
multiple hooks exist from the ABCS composite to the External Service. That is, when
an ABCS invokes two different services at two of its extension points, the composite
must be designed to have two distinct external references, as shown in Figure 8-5:

Figure 8-5 Example of Composite with Two Distinct External References

However, when an ABCS composite invokes two distinct operations that are exposed
on the same external service, then the ABCS composite has only one external
reference, as shown in Figure 8-6:

Figure 8-6 Example of Composite with One External Reference

Defining Service at Extension Points
At the extension points, partner links are defined to set up the conversational
relationship between two services by specifying the roles played by each service in the
conversation and specifying the port type provided by each service to receive
messages within the context of the conversation.

This is accomplished with the help of a Web Services Description Language (WSDL)
file that describes the services the partner link offers. The WSDL is an XML document
that describes all the Service Provider contracts to the service consumers.

The WSDL separates the service contract into two distinct parts, the Abstract WSDL
and the Concrete WSDL:

• The Abstract WSDL includes elements such as types, messages that define the
structure of the parameters (input and output types), fault types, and the port type,
which is known as the interface.

• The Concrete WSDL includes bindings to protocols, concrete address locations,
and service elements.

Developing Extensible ABCS

8-10 Developer's Guide for Oracle SOA Core Extension

Defining a Service Using an Abstract WSDL
An abstract WSDL defines the external reference service at design time. This WSDL
provides interfaces to the operations to be invoked at the extension points. It should
also include or import the schemas for the application business object (ABO) and
Enterprise Business Object (EBO). It is devoid of communication transport protocols,
network address locations, and so on.

The abstract WSDL used to define the extension point service should be placed in the
project folder. Do not push this into MDS, unlike other abstract WSDLs of the AIA
services.

Note: An abstract WSDL may be used temporarily for design-time modeling only. At
the time the composite is deployed, the binding should be specified.

When you use JDeveloper, follow these high-level steps to design the composite:

To design the composite to extension-enable ABCS:

1. In JDeveloper, open a SOA composite project.

2. Open the composite.xml in design mode.

3. To reference an extension point service, add a Web service as an external reference
service in the References swim lane. Use the Abstract WSDL for design time
modeling.

Tip:

This abstract WDSL will not be in the MDS. It is associated with the project
and is in the project folder.

4. Wire the BPEL component to the external reference component created in the
previous step.

When the composite is opened in the source mode, you see code similar to the
Example 8-1.

This code example was reproduced from the composite.xml, where the extension
service is defined using an abstract WSDL:

Example 8-1 Wiring the BPEL Component to the External Reference Component

<reference name="SamplesCreateCustomerSiebelReqABCSImplExtExtension"
ui:wsdlLocation="SamplesCreateCustomerSiebelReqABCSImplExtExtensionAbstract.wsdl"
>
 <interface.wsdl
interface="http://xmlns.oracle.com/ABCSImpl/Siebel/Samples/CreateCustomerSiebelR
eqABCSImplExtExtension/V1#wsdl.interface(SamplesCreateCustomerSiebelReqABCSImpl
ExtExtensionService)"/>
 <binding.ws port="" location=""/>
 </reference>

How to Specify a Concrete WSDL at Deployment Time
A concrete WSDL is a copy of the abstract WSDL used for defining the extension
service. The concrete WSDL also defines the binding element that provides
information about the transport protocol and the service element that combines all
ports and provides an endpoint for the consumer to interact with the service provider.

Developing Extensible ABCS

Completing ABCS Development 8-11

Initially, at the time of development, the concrete WSDL points to the sample
extension service, which is a Servlet. The Servlet is named MirrorServlet and is
shipped with the SOA Core Extension.

You should push the concrete WSDL into the MDS repository to the folder
'ExtensionServiceLibrary'.

Populating the binding.ws Element in the composite.xml

To invoke the external reference service, a run-time WSDL with concrete bindings
must be specified in the ABCS composite.xml. The Port type in the WSDL should have
a concrete binding. That is, in the composite, the attributes of the element, binding.ws,
cannot be empty.

Note:

Populating the 'location' attribute of the element binding.ws with the URL of a
run-timeWSDL, does not amount to violating the principle of 'designing the
service using only abstract WSDLs'. The reason is that this concrete WSDL is
not accessed either at composite's design time or at composite's deploy time.
This WSDL is only accessed at composite's runtime.

To deploy the composite that references an external Web service, which is defined
using an abstract WSDL, the attributes of the element binding.ws must be populated, as
shown below:

<binding.ws port="[namespace of the ABCS Extension Service as
defined in the WSDL]/V1#wsdl.endpoint(<Name of the ABCS Service
as given in the WSDL>/<Name of the Porttype as given in the
WSDL>" location="[location of the concrete WSDL in the MDS]"
xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>

The name of the ABCS Service is the value of the attribute definitions/name in the
abstract WSDL.

This follows from naming conventions for the Service name in the ABCS composite.
According to naming conventions, the name of the service is <name of the composite>,
which in turn is the value of the attribute 'name' of the 'definitions' element in the
WSDL.

At the time when the service at the extension point is developed and deployed by the
customer,

• Customer can replace the sample concrete WSDL in the MDS with the concrete
WSDL that is developed for the extension service and redeploy the ABCS.

• Customer can change binding.ws.location to point to the concrete WSDL of the
deployed service and redeploy the ABCS.

For more information, see Using MDS in AIA.

Designing Extension Points in the ABCS BPEL Process
The following section details the steps to be completed to provide extension points in a
Requester ABCS with a one-way invocation call.

In a Requester ABCS with a request-only call to a service, two possible extension
points exist. The first extension point is just before the transformation from ABM to the

Developing Extensible ABCS

8-12 Developer's Guide for Oracle SOA Core Extension

EBM, and second extension point is just before the invocation of the service. The
service operations at these extension points are defined as Pre-ProcessABM and Pre-
ProcessEBM, respectively. The service operation at the extension points is an
invocation to Servlet that only returns the payload.

How to Set Up the Extension Point Pre-ProcessABM
The Requester ABCS requires the following process activities in the order specified:

1. Switch

The Switch activity determines if the service invocation at the extension point is to
be made or not. This is achieved by checking the value of the property variable in
the file AIAConfigurationProperties.xml. The name of the configuration
parameter is 'ABCSExtension.PreProcessABM '. Check this parameter for a value
of 'true'. This is achieved by using an appropriate 'AIAXPathFunction' in the
switch expression.

2. Assign-Invoke-Assign

The Assign-Invoke-Assign subsequence of process activities is embedded in the
Switch activity.

• Assign

The Assign activity assigns the value of the input variable of the 'receive' step
to the input variable of the 'invoke' step that follows.

• Invoke

The Invoke activity makes the service-call on the partner-link. The
programming model for the ABCS extension points sets up a contract on the
service to return the same payload that it receives.

• Assign

The Assign activity assigns the value of the response payload from the service
invocation to the variable of the process activity that follows.

Figure 8-7 illustrates the sequence:

Developing Extensible ABCS

Completing ABCS Development 8-13

Figure 8-7 Setting up the Extension Point Pre-ProcessABM

How to Set Up the Extension Point Pre-ProcessEBM
The Requester ABCS requires the following process activities in the order specified:

1. Switch

The Switch activity determines if the service invocation at the extension point is to
be made or not. This is achieved by checking the value of the property variable in
the file AIAConfigurationProperties.xml. The name of the configuration parameter
is 'ABCSExtension.PreProcessEBM'. Check the parameter for a value of 'true'. This
is achieved by using an appropriate 'AIAXPathFunction' in the switch expression.

2. Assign-Invoke-Assign

The Assign-Invoke-Assign subsequence of process activities is embedded in the
Switch activity.

• Assign

The Assign activity assigns the value of EBM to the input variable of the 'invoke'
step that follows.

• Invoke

The Invoke activity makes the service-call on the partner-link. The
programming model for the ABCS extension points sets up a contract on the
service to return the same payload that it receives.

• Assign

The Assign activity assigns the value of the response payload from the service
invocation to variable of the process activity that follows.

Figure 8-8 illustrates the sequence:

Developing Extensible ABCS

8-14 Developer's Guide for Oracle SOA Core Extension

Figure 8-8 Setting up the Extension Point Pre-process EBM

How to Test the Extensibility with Servlet as Sample Extension Service
The sample extension service used in the document is a java servlet that mirrors the
input payload back. The Servlet (shown in Example 8-2) as the endpoint has the
advantage that it can be used as a partner-link service to test any extension. This is
useful when you must test any extension-aware ABCS that have PartnerLink services
defined using Abstract WSDL.

The implementations for the methods PreProcessABM are not required; the SOAP
request is treated as the Servlet payload, and the Servlet outputs back the entire
payload. The SOAPAction element is also rendered a dummy since it is not used at the
Servlet-side.

The test Servlet is a java file with name Mirror.java. When deployed, it is accessible at:
http://[hostname].com:[portno]/Mirror/mirror

Example 8-2 Servlet to Test Extension

<service name="CreateCustomerSiebelReqABCSImplExt">
<port name="CreateCustomerSiebelReqABCSImplExt"
binding="tns:CreateCustomerSiebelReqABCSImplExt_Binding">
 <soap:address
location="http://{host}:{port}/MirrorServlet/mirror"/>
 </port>
 </service>

Handling Errors and Faults
To determine how faults are handled and passed by a participating application, you
must make sure the application error handling capabilities are in line with the
integration platform's error handling capabilities.

Handling Errors and Faults

Completing ABCS Development 8-15

How to Handle Errors and Faults

• In synchronous request-response message exchange patterns (MEPs), the
requesting services are waiting for response.

Whenever an error occurs in the provider services, an exception is raised and the
fault message is propagated back to the requesting service.

• In asynchronous fire-and-forget MEPs, the requesting service does not expect a
response.

If an error occurs in the providing service, compensation may be needed. In such
situations, the compensatory operations in EBS must be used for triggering
compensations.

• In asynchronous request-delayed response MEPs, the requesting service is in a
suspended mode, waiting for a response.

If an error occurs in the providing service, the response to the requesting service
includes details about the error.

For details on implementing the ABCS and EBS services in this scenario, see
Implementing the Asynchronous Request Delayed Response MEP.

For more information about implementing error handling in BPEL and Mediator
processes in each of the MEPs, see Configuring Oracle AIA Processes for Error
Handling and Trace Logging.

• In an asynchronous MEP, the message initiated from a sender is persisted until it is
successfully delivered to and acknowledged by the receiver, if an acknowledgment
is expected.

The sender and receiver are not necessarily the participating applications. Rather,
they can be logical milestones in an Oracle AIA integration scenario. Each
persistence store represents a milestone and may be a database, file system, or JMS
persistence. Multiple milestones may be configured in an integration scenario to
ensure the movement of messages from one persistence point to another.

For more information about configuring milestones for Guaranteed Message
Delivery in an Integration flow, see Configuring Oracle AIA Processes for Error
Handling and Trace Logging.

Working with Adapters
This section discusses working with transport and version adapters.

This section includes the following topics:

• Interfacing with Transport Adapters

• How to Develop Transport Adapters

• When to Put Adapters in a Single Composite

• Planning Version Adapters

• How to Configure a Version Adapter

Working with Adapters

8-16 Developer's Guide for Oracle SOA Core Extension

Interfacing with Transport Adapters
Use transport adapters to interface with the ABCS in these scenarios:

• For packaged applications, such as Siebel, PeopleSoft, J.D. Edwards, and SAP, the
preferred route is to use the respective packaged-application adapters. These
adapters can be deployed as JCA resource adapters. This solution is better than
using the conventional SOAP interface.

• In situations for which the participating applications do not expose their business
logic as Web services, interactions with these applications must occur using
technology adapters such as database adapters, JMS adapters, and so forth.

Transport adapters allow connectivity to the systems/applications that were not
originally developed using Web services technologies. Some examples of applications
that can use adapters are:

• Systems that use non-xml for communication

• Packaged software

• Database systems

• Data sources or persistent stores such as JMS, and so on

Investigate whether the services exposed by the participating applications provide
support for proprietary message formats, technologies, and standards. If the
applications that implement the functionality do not have inherent support for
standards and technologies such as XML, SOAP, and JMS, then the transformations
must happen in the ABCS.

For example, the application might be able to receive and send messages only using
files, and EDI is the only format it recognizes. In this case, the ABCS is responsible for
integrating with the application using a file adapter, translating the EDI-based
message into XML format, exposing the message as a SOAP message.

When to Use Adapters for Message Aggregation

In some situations, you must combine responses to a request that originated from
multiple sources. For example, for convergent billing in the telecommunication
solution, the Application Business Connector Service for the getBillDetails EBS might
have to retrieve details from multiple participating applications.

For more information about the Message Aggregation design pattern, see Working
with AIA Design Patterns.

When to Use Adapters for Event Aggregation

The Event Aggregation model provides a comprehensive methodology for the
business use case in which events, entity, or message aggregation is needed. In such
scenarios, multiple events are raised before the completion of a business message, and
all such fine-grained message events are consolidated into a single coarse-grained
event.

In such use cases, a requester ABCS is invoked by an event consumer adapter service,
which feeds the requester ABCS with an aggregated event message.

For more information about the event aggregation design pattern, see Working with
AIA Design Patterns.

Working with Adapters

Completing ABCS Development 8-17

How to Develop Transport Adapters
Here are the high-level steps from the ABCS perspective.

To develop JMS Consumer Adapter:

1. Add JMS adapter in the Exposed Services swim lane.

2. Configure the JMS adapter service with the help of Adapter Configuration wizard.

3. Add a BPEL component in the Components swim lane.

4. Wire the BPEL component to the JMS adapter service.

5. Wire the BPEL component to the Referenced Service.

6. Open the BPEL component in design mode and add 'invoke activity' to invoke the
JMS adapter partner link.

7. Complete the coding for the BPEL process.

For more information about JMS Adapters, see Administering JMS Resources for Oracle
WebLogic Server.

How to Develop Portal DB Adapter
To develop Portal DB Adapter:

1. Add a BPEL component in the Components swim lane.

2. Add DB adapter as external reference service in the References swim lane.

3. Configure the adapter service with the help of Adapter Configuration wizard.

4. Wire the BPEL component to the db adapter service.

5. Open the BPEL component in design mode and add 'invoke activity' to invoke the
db adapter partner link.

6. Complete the coding for the BPEL process.

When to Put Adapters in a Single Composite
In principle, an ABCS composite is a component implemented along with other
components and wires between those components. For example, you can implement a
Requester ABCS composite using:

• A BPEL process component representing the ABCS process flow.

• BPEL or Mediator-based adapter components representing the adapters used or
required by the process component.

• Both the process component and the adapter components promoted as Services of
the composite in which they are defined.

An ABCS and a TransportAdapter service can be in the same composite and when
they are, the composite name is the same as that of the ABCS. Alternatively, you can
develop an ABCS service and a TransportAdapter service as separate composites.

Working with Adapters

8-18 Developer's Guide for Oracle SOA Core Extension

AIA recommends that you put adapters that are interfaced with ABCS in a different
composite from that of ABCS when the same transport adapter service could be used
with multiple ABCSs.

Planning Version Adapters
When service providers release a new version of an application service, you must have
multiple versions of it running concurrently when the consumer code is migrated.

The version adapter allows the client request and response to consume a different
release of a service and routes requests to the appropriate service endpoint based on
the content.

Examples:

• For assets, the view definition being used in integration is different between Oracle
11.5.10 and R12.

• For payment authorization, the API name is different in Oracle 11.5.10 and R12.

Changes such as these between different versions of applications require a new
adapter service to be created for each application version.

When the changes between different versions of applications are minor, introduce a
version adapter, based on a Mediator component, between the existing connector
service and the provider application, as shown in Figure 8-9:

Figure 8-9 Introducing a Version Adapter

This approach ensures that the connector service remains agnostic of the version of the
applications. This option should be considered when no transformations are needed or
when input and output transformations in the version adapter are simple and do not
involve extensive logic affecting the performance.

How to Configure a Version Adapter
To configure a version adapter:

The version adapter service is a mediator-based component that sits between the
provider ABCS implementation service and the actual participating applications.

The mediator-based version adapter service should have references to all the
application adapters:

1. Configure the routing rules in the version adapter to route to corresponding
adapter services of the applications.

Working with Adapters

Completing ABCS Development 8-19

2. For each of the connecting application's adapters, two routing rules should exist to
enable both content-based routing and property-based (from AIAConfiguration
file) routing.

3. When the changes between different application versions are minor with regard to
the content to be passed and the content is available in the transformed ABM, use a
transformation map to transform the input of the version adapter to the
corresponding adapter service of the provider application.

4. Map the response from the different adapters to the schema that the connector
service is expecting.

Developing ABCS for CAVS Enablement
This section provides instructions on how to develop Oracle AIA services that are
ready to work with the Composite Application Validation System (CAVS). This section
includes the following topics:

• How to CAVS Enable Provider ABCS

• How to CAVS Enable the Requester ABCS

• Introduction to the CAVSEndpointURL Value Designation

• Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test
Scenarios

Tip:

CAVS configurations are only required when simulators are a part of the
testing scenario. These configurations lay the foundation for allowing services
to route messages to simulators.

For more information about using the CAVS, see "Introduction to the Composite
Application Validation System" in Infrastructure Components and Utilities User's Guide
for Oracle Application Integration Architecture Foundation Pack.

How to CAVS Enable Provider ABCS
Provider ABCSs that are asynchronous and invoke a callback to a ResponseEBS service
must also CAVS-enable that invocation.

Developers must populate a value for the property:
Routing.<PartnerLinkName>.<TargetSystemID>.EndpointURI as shown below.

You must provide the above property in the service configuration file if the value for
the property Routing.<PartnerLink>.RouteToCAVS is given as 'false'.

To code a provider ABCS for dynamic CAVS-enabled PartnerLinks for invoking target
participating application Web services:

1. Define the following service-level configuration properties for the provider ABCS
as shown in Example 8-3:

The CAVSEndPointURL value is set at design time.

For more information about the design-time designation of the
CAVSEndPointURL, see Introduction to the CAVSEndpointURL Value
Designation.

Developing ABCS for CAVS Enablement

8-20 Developer's Guide for Oracle SOA Core Extension

2. Ensure that you have the following namespace prefixes defined in your BPEL
process as shown in Example 8-4:

3. Add this variable to your global variables section:

<variable name="SystemID" type="xsd:string"/>

4. Add an attachment named AddTargetSystemID.xsl to your BPEL project in the 'xsl'
directory. Be sure to replace the [ABCServiceNamespace] and
[ABCServiceName] tokens in the file appropriately.

5. Add the assignment shown in Example 8-5 as the first step in the BPEL process.
Be sure to replace the tokens appropriately:

6. Add the following <scope> as shown in Example 8-6 once for each PartnerLink
before its invoke activity:

a. Replace the tokens in the AssignDynamicPartnerlinkVariables assignment
activity to set the variables appropriately.

b. Update the PartnerLink name token in the
AssignPartnerlinkEndpointReference assignment activity.

c. Updating the embedded Java code should not be necessary.

Example 8-3 Defining Service-Level Configuration Properties for the Provider
ABCS

<Property name="Default.SystemID">[DefaultTargetSystemID]</Property>
<Property name="Routing.[PartnerlinkName].RouteToCAVS">[true|false]</Property>
<Property
name="Routing.[PartnerlinkName].[TargetSystemID].EndpointURI">[AppEndpointURL]<
/Property>
<Property name="Routing.[PartnerlinkName].CAVS.EndpointURI">[CAVSEndpointURL]</
Property>

Example 8-4 Defining Namespace Prefixes in the BPEL Process

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsa=http://schemas.xmlsoap.org/ws/2003/03/addressing
xmlns:corecom=http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2

Example 8-5 Adding an Assignment

<assign name="GetTargetSystemID">
 <copy>
 <from expression="ora:processXSLT('AddTargetSystemID.xsl',
bpws:getVariableData('[RequestEBMVariableName]', '[RequestEBMPartName]'))"/>
 <to variable="[RequestEBMVariableName]"
 part="[RequestEBMPartName]"/>
 </copy>
 <copy>
 <from variable="[RequestEBMVariableName]"
 part="[RequestEBMPartName]"
 query="/[NamespacePrefixedEBMName]/corecom:EBMHeader/corecom:
 Target/corecom:ID"/>
 <to variable="SystemID"/>
 </copy>
</assign>

Developing ABCS for CAVS Enablement

Completing ABCS Development 8-21

Example 8-6 Adding for Each PartnerLink

<scope name="SetDynamicPartnerlinkScope">
 <variables>
 <variable name="TargetEndpointLocation" type="xsd:string"/>
 <variable name="EndpointReference" element="wsa:EndpointReference"/>
 <variable name="ServiceName" type="xsd:string"/>
 <variable name="PartnerLinkName" type="xsd:string"/>
 <variable name="EBMMsgBpelVariableName" type="xsd:string"/>
 <variable name="EBMMsgPartName" type="xsd:string"/>
 </variables>
 <sequence name="SetDynamicPartnerlinkSequence">
 <assign name="AssignDynamicPartnerlinkVariables">
 <copy>
 <from expression="'{[ABCServiceNamespace]}[ABCServiceName]
 '"/>
 <to variable="ServiceName"/>
 </copy>
 <copy>
 <from expression="'[PartnerlinkName]'"/>
 <to variable="PartnerLinkName"/>
 </copy>
 <copy>
 <from expression="'[RequestEBMVariableName]'"/>
 <to variable="EBMMsgBpelVariableName"/>
 </copy>
 <copy>
 <from expression="'[RequestEBMPartName]'"/>
 <to variable="EBMMsgPartName"/>
 </copy>
 </assign>
 <bpelx:exec name="GetTargetEndpointLocation" language="java"
 version="1.5">
 <![CDATA[/*--
This code snippet will derive the dynamic endpoint URI for a partnerlink.
---*/

java.lang.String serviceName = (java.lang.String)getVariableData("ServiceName");
java.lang.String partnerLinkName =
(java.lang.String)getVariableData("PartnerLinkName");
java.lang.String cavsEndpointPropertyName =
"Routing."+partnerLinkName+".CAVS.EndpointURI";
java.lang.String ebmMsgBpelVariableName =
(java.lang.String)getVariableData("EBMMsgBpelVariableName");
java.lang.String ebmMsgPartName =
(java.lang.String)getVariableData("EBMMsgPartName");
java.lang.String systemIdBpelVariableName = "SystemID";
java.lang.String targetEndpointLocationBpelVariableName =
"TargetEndpointLocation";
java.lang.String routeToCavsPropertyName =
"Routing."+partnerLinkName+".RouteToCAVS";
java.lang.String defaultSystemIdPropertyName = "Default.SystemID";
java.lang.String targetEndpointLocation = null;
java.lang.String targetID = null;
boolean addAudits = false;

if (addAudits) addAuditTrailEntry("Partnerlink = " + partnerLinkName);

// check configuration for CAVS routing flag
try {
 boolean routeToCAVS =

Developing ABCS for CAVS Enablement

8-22 Developer's Guide for Oracle SOA Core Extension

java.lang.Boolean.parseBoolean(oracle.apps.aia.core.config.Configuration.
getServiceProperty(serviceName, routeToCavsPropertyName));
 if (addAudits) addAuditTrailEntry("RouteToCAVS = " + routeToCAVS);
 if (routeToCAVS) {
 targetEndpointLocation = oracle.apps.aia.core.config.Configuration.
 getServiceProperty(serviceName, cavsEndpointPropertyName);
 if (addAudits) addAuditTrailEntry("Endpoint = '" + targetEndpoint
 Location + "' selected from configuration property " +
cavsEndpointPropertyName);
 }
}
catch (oracle.apps.aia.core.config.PropertyNotFoundException e) {
 if (addAudits) addAuditTrailEntry("Configuration property " + cavs
EndpointPropertyName + " not found!");
}

if (targetEndpointLocation==null || targetEndpointLocation=="") {

 // check bpel variable for already retrieved target system Id
 try {
 targetID = (java.lang.String)getVariableData(systemIdBpel
 VariableName);
 if (addAudits && targetID!=null) addAuditTrailEntry("Using previously
stored Target System ID = '" + targetID + "'");
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 }

 if (targetID==null || targetID=="") {
 // try to get Target system ID from EBM Header
 try {
oracle.xml.parser.v2.XMLElement targetIdElement =
 (oracle.xml.parser.v2.XMLElement)
getVariableData(ebmMsgBpelVariableName,
ebmMsgPartName, "/*/corecom:EBMHeader[1]/corecom:Target/corecom:ID
[text()!='']");
 targetID = targetIdElement.getText();
 if (addAudits) addAuditTrailEntry("Target System ID = '" + targetID
+ "', selected from EBM header");
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 if (addAudits) addAuditTrailEntry("Unable to retrieve Target System
ID from message header");
 }
 try {
 if (targetID!=null && targetID!="")
setVariableData(systemIdBpelVariableName, targetID);
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 }
 }

 if (targetID==null || targetID=="") {
 // try to get Target system ID from configuration
 try {
 targetID = oracle.apps.aia.core.config.Configuration.getService
 Property(serviceName, defaultSystemIdPropertyName);
 if (addAudits) addAuditTrailEntry("Target System ID = '" + targetID
+ "', selected from configuration property " + defaultSystemIdPropertyName);
 }
 catch (oracle.apps.aia.core.config.PropertyNotFoundException e) {

Developing ABCS for CAVS Enablement

Completing ABCS Development 8-23

 if (addAudits) addAuditTrailEntry("Configuration property "
+ defaultSystemIdPropertyName + " not found!");
 }
 try {
 if (targetID!=null && targetID!="") setVariableData(systemIdBpel
 VariableName, targetID);
 }
 catch (com.oracle.bpel.client.BPELFault e) {
 }
 }

 if (targetID!=null || targetID!="") {
 // try to get EndpointLocation from Configuration
 java.lang.String endpointPropertyName = "Routing."+partnerLinkName+
 "."+targetID+".EndpointURI";
 try {
 targetEndpointLocation =
oracle.apps.aia.core.config.Configuration.getServiceProperty(serviceName,
endpointPropertyName);
 if (addAudits) addAuditTrailEntry("Endpoint = '" +
targetEndpointLocation + "' selected from configuration property " +
endpointPropertyName);
 }
 catch (oracle.apps.aia.core.config.PropertyNotFoundException e) {
 if (addAudits) addAuditTrailEntry("Configuration property " +
endpointPropertyName + " not found!");
 }
 }
}

try {
 setVariableData(targetEndpointLocationBpelVariableName, targetEndpoint
 Location);
}
catch (com.oracle.bpel.client.BPELFault e) {
}]]>
 </bpelx:exec>
 <switch name="Switch_SetEndpoint">
 <case condition="string-length(bpws:getVariableData('Target
 EndpointLocation'))>0">
 <assign name="AssignPartnerlinkEndpointReference">
 <copy>
 <from>
 <wsa:EndpointReference xmlns:wsa="http://schemas.
 xmlsoap.org/ws/2003/03/addressing">
 <wsa:Address/>
 </wsa:EndpointReference>
 </from>
 <to variable="EndpointReference"/>
 </copy>
 <copy>
 <from variable="TargetEndpointLocation"/>
 <to variable="EndpointReference"
 query="/wsa:EndpointReference/wsa:Address"/>
 </copy>
 <copy>
 <from variable="EndpointReference"/>
 <to partnerLink="[PartnerlinkName]"/>
 </copy>
 </assign>
 </case>

Developing ABCS for CAVS Enablement

8-24 Developer's Guide for Oracle SOA Core Extension

 <otherwise>
 <empty name="Empty_NoSetEndpoint"/>
 </otherwise>
 </switch>
 </sequence>
</scope>

How to CAVS Enable the Requester ABCS
The general programming model concept is similar to how the endpoint URI is
dynamically computed in the provider ABCS to achieve dynamic target invocation.

To code a requester ABCS for CAVS-enabled invocation of an Enterprise Business
Service that is implemented as mediator service:

1. In the BPEL artifact, add a switch activity.

2. The condition expression in the 'case' tests for the nonzero value in the element
EBMHeader/MessageProcessingInstruction/DefinitionID.

3. Populate the wsa:EndpointReference element with the value of the element
EBMHeader/MessageProcessingInstruction/DefinitionID as shown in Example
8-7.

Tip:

Some requester ABCSs must communicate back directly with the calling
participating application. For this type of partnerlink, the requester ABCS acts
similarly to a provider ABCS because it is invoking a participating application
Web service.

Example 8-7 Populating the wsa:EndpointReference Element

<switch name="Switch_CAVSEnablement">
<case condition="string-length(bpws:getVariableData('CreateCustomerPartyList_
InputVariable','CreateCustomerPartyListEBM','/custpartyebo:CreateCustomerPartyLis
tEBM/corecom:EBMHeader/corecom:MessageProcessingInstruction/corecom:DefinitionID'
))>0">
 <bpelx:annotation>
 <bpelx:pattern>Is_CAVS_DefinitionID</bpelx:pattern>
 </bpelx:annotation>
 <sequence>
 <assign name="Assign_TargetEndpointLocation">
 <copy>
 <from variable="CreateCustomerPartyList_
InputVariable"
 part="CreateCustomerPartyListEBM"
 query="/
corepartyebo:CreateCustomerPartyListEBM/corecom:EBMHeader/corecom:Message
ProcessingInstruction/corecom:DefinitionID"/>
 <to variable="TargetEndpointLocation"/>
 </copy>
 </assign>
 <assign name="AssignPartnerlinkEndpointReference">
 <copy>
 <from>
 <wsa:EndpointReference>
 <wsa:Address/>
 </wsa:EndpointReference>
 </from>
 <to variable="EndpointReference"/>

Developing ABCS for CAVS Enablement

Completing ABCS Development 8-25

 </copy>
 <copy>
 <from variable="TargetEndpointLocation"/>
 <to variable="EndpointReference"
 query="/wsa:EndpointReference/wsa:Address"/>
 </copy>
 <copy>
 <from variable="EndpointReference"/>
 <to partnerLink="SamplesCustomerPartyEBS"/>
 </copy>
 </assign>
 </sequence>
 </case>
 <otherwise> <empty name="Empty_NoSetEndpoint"/> </otherwise>
 </switch>

Introduction to the CAVSEndpointURL Value Designation
The CAVSEndPointURL value is set at design time as follows:

• If the ABCS or Enterprise Business Flow (EBF) is invoking a synchronous service,
then the CAVSEndPointURL value in the AIAConfigurationProperties.xml file is
set to a default value of: http://<host>:<port>/AIAValidationSystemServlet/
syncresponsesimulator

• If the ABCS or EBF is invoking an asynchronous one-way service, then the
CAVSEndPointURL value in the AIAConfigurationProperties.xml file is set to a
default value of: http://<host>:<port>/AIAValidationSystemServlet/
asyncrequestrecipient

• If the ABCS or EBF is invoking an asynchronous request-delayed response service,
then the CAVSEndPointURL value in the AIAConfigurationProperties.xml file is
set to a default value of: http://<host>:<port>/AIAValidationSystemServlet/
asyncresponsesimulator

• If the ABCS or EBF is invoking a Response EBS, then the CAVSEndPointURL value
in the AIAConfigurationProperties.xml file is set to a default value of: http://
<host>:<port>/AIAValidationSystemServlet/asyncresponserecipient

Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios
When a participating application is involved in a CAVS testing flow, execution of tests
can potentially modify data in a participating application. Therefore, consecutive
running of the same test may not generate the same results. The CAVS is not designed
to prevent this kind of data tampering because it supports the user's intention to
include a real participating application in the flow. The CAVS has no control over
modifications that are performed in participating applications.

However, this issue does not apply if your CAVS test scenario uses test definitions and
simulator definitions to replace all participating applications and other dependencies.
In this case, all cross-reference data is purged after the test scenario has been executed.
This enables rerunning of the test scenario.

This purge is accomplished as follows:

1. Pre-Built Integrations that are delivered to work with Oracle SOA Core Extension
are delivered with cross-reference systems in place. They are named CAVS_<XYZ>,
where <XYZ> is the participating application system. For example, for systems

Developing ABCS for CAVS Enablement

8-26 Developer's Guide for Oracle SOA Core Extension

EBIZ and SEBL, the Pre-Built Integration is delivered with cross-reference systems
CAVS_EBIZ and CAVS_SEBL.

2. For every system type defined on the System - Application Registry page for which
you want to make test scenarios rerunnable (<XYZ>), create a related CAVS system
(CAVS_<XYZ>). The System Type field value for the CAVS-related entry should
match the name of the system for which it is created. To access the System -
Application Registry page, access the AIA Home Page, click Go in the Setup area,
and select the System tab. Figure 8-10 illustrates the system and CAVS-related
entries.

Figure 8-10 System and CAVS-related System Entries on the System-Application Registry Page

3. When testing a provider ABCS in isolation, the EBM is passed from the CAVS to
the provider ABCS with the NamespacePrefixedEBMName/EBMHeader/
Target/ID element set as CAVS_<XYZ>.

4. When testing a requester ABCS in isolation, the element in the Application
Business Message (ABM) that normally contains the Internal ID value now contains
the CAVS-specific Internal ID value set for the system on the System - Application
Registry page.

5. When testing an entire flow (requester ABCS-to-EBS-to-provider ABCS), you must
set the Default.SystemID property of the provider ABCS to CAVS_<XYZ>, where
<XYZ> is the system.

To do this, edit the Default.SystemID property value in the
AIAConfigurationProperties.xml file in the $AIA_HOME/aia_instances/
$INSTANCE_NAME/AIAMetaData/config directory.

Access the Configuration page and click Reload to load the edit.

You can now begin testing the entire flow.

Note:

If the test scenario is an entire flow that includes multiple instances of the
same system, then the approach described previously does not work. In this
case, data created in the cross-reference remains, making the same test case
incapable of being rerun.

Securing the ABCS
The participating applications are developed during different times with different
concepts and implementation of authentication and authorization. When applications
are integrated, you must pass authentication and authorization information between
applications.

Securing the ABCS

Completing ABCS Development 8-27

The information related to security is exchanged between participating applications
and ABCS. The AIA application security context standardizes the exchange of
participating applications' authentication and authorization information between
various applications so that any application can be integrated with any other
application.

How to Secure the ABCS
You should answer the following questions:

• Does the application need the security credentials to authenticate?

If yes, can you use a generic account or should you use the requester's credentials,
as specified in the message?

• How are these credentials transmitted? Are they adopting a WS-Security scheme or
a custom mechanism?

If a custom mechanism, is it through the header or as part of the payload?

Refer to Working with Security for details about how to:

• Transform application security context into standard format in ABCS.

• Propagate the standard security context from ABCS to ABCS through EBS and EBF.

• Transform standard security context to application security context.

Enabling Transactions
When SOA is used to encapsulate and integrate cross-enterprise workflows, multiple
services may take part in transactions spanning system boundaries. End-to-end
business transactions that cross application boundaries involve multiple applications.
Creating robust integration solutions requires more than simply exchanging messages.

An important consideration is that the Web services participating in an end-end
message flow are often asynchronous, stateless, distributed, and opaque. You must
understand the mechanics of transaction management.

How to Ensure Transactions in AIA Services
Business requirements drive transactional requirements. Transaction considerations
must start during the design phase. You cannot postpone them until construction time.
You must:

• Identify all the ABCS services and the EBFs that comprise a business activity.

• Organize these activities into meaningful groups to have an overall unifying
purpose.

• Indicate transaction demarcation points.

The grouping of activities provides the starting point for transaction demarcation so
that the relevant business operations are performed in the context of a transaction.

In the asynchronous fire-and-forget pattern, where no milestones are configured, the
requester, EBS, and provider ABCS must participate in the same global transaction,
including cross-references in Oracle XA.

Enabling Transactions

8-28 Developer's Guide for Oracle SOA Core Extension

In an asynchronous MEP, where JMS queues are set up and the participating
applications interact with the queues, the JMS consumer adapters must also
participate in the global transaction, as do the requester ABCS, EBS, and provider
ABCS.

In such a case, when an undergoing transaction is aborted before the message is
persisted at a milestone, the message is rolled back into the JMS queue.

In other words, the transaction demarcation begins with the JMS consumer adapter
picking up the message from the queue and ends when the message is delivered to the
consumer application or when the message is persisted at a configured milestone.

In a SOA-based integration, long-running business transactions often involve
incompatible trust domains, asynchrony, and periods of inactivity, which present
challenges to traditional ACID-style transaction processing. You must predefine the
transaction boundaries based on technical or business criteria. Pre-Built Integration
designers/architects should divide the whole transaction into parts by setting
transaction boundaries using JMS interface at logical points.

Non-retryable application services must have corresponding compensatory services.

ABCS invoking non-retryable application services should invoke compensatory
services in case of roll-back.

Application services implemented using JCA adapters can leverage session
management to facilitate transaction coordination.

Transactions in Oracle Mediator
If a transaction is present, Oracle Mediator participates in that existing transaction. If a
transaction is not present, Oracle Mediator starts a transaction. In the case of
sequential routing rules, all rules are executed in the same transaction and, if an error
occurs, a rollback is issued.

Transactions in BPEL
The BPEL component, by default, creates a new transaction on the basis of a request.
That is, when a BPEL process is invoked, a new transaction begins by default. If a
transaction exists, then it is suspended and a new one created. To chain an execution
into a single global transaction, you must set the transaction flag on the provider
process (callee BPEL component).

Impact of BPEL Activities on Transaction Scope

BPEL engine ends its local transaction when it reaches the end of flow or hits a
breakpoint activity, for example, receive, onMessage, onWait, and Alarm.

Transaction design considerations are also governed by:

• Invocation patterns employed across the AIA integration

ABCS -- EBS - ABCS

• Technology pattern: BPEL -- MEDIATOR-BPEL

ABCS - EBS - EBF - EBS -- ABCS

• Technology Pattern: BPEL - MEDIATOR- BPEL - MEDIATOR- BPEL

Based on the transaction semantics in FMW, you must design and configure
transactions across ABCS, EBS and Enterprise Business Flows.

Enabling Transactions

Completing ABCS Development 8-29

• Participating applications

Participating applications should be able to support transactions using their
application services. However, the reality is that many application services are able
to do this, so compensatory services are needed in case of rollback (orchestrated by
AIA layer).

Design integration logic and transaction boundaries in the AIA layer to account
specifically for the peculiarities of the participating application services, SCA
Composite transaction semantics, and business requirements.

Developing ABCS to Participate in a Global Transaction
In SOA 11g, you need not set up any configuration properties on the calling
(consuming) process to chain an execution into a single global transaction.

You only must set the appropriate transaction flag on the Callee BPEL component.
You can do this in the composite editor's source by adding bpel.config.transaction
into a BPEL component, with value as 'required' as shown in Example 8-8:

With the transaction flag set as shown, BPEL inherits the transaction that is there,
started by the parent process. If the parent process has not started a transaction, BPEL
creates a new one. For a global transaction, the transaction is committed when the
initiator commits.

If BPEL has an inbound interface with an adapter, you must set the appropriate
transaction flag in the composite of the adapter.

Example 8-9 shows how transaction properties should be set on the BPEL adapter
interface:

In the case of BPEL invoking Mediator, the Mediator participates in the existing
transaction if a transaction is present. If a transaction is not present, then Mediator
starts a transaction.

Example 8-8 Populating the wsa:EndpointReference Element

<component name="SamplesCreateCustomerSiebelReqABCSImplProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelReqABCSImplProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

Example 8-9 Populating the PEL Endpoint Element

<component name="SamplesCreateCustomerSiebelJMSConsumerProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelJMSConsumerProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

How to Transaction-Enable AIA Services
The following sections provide details on how to transaction enable AIA services in
different scenarios:

• Synchronous Request-Response Scenarios

• AIA Services in Asynchronous MEP

Enabling Transactions

8-30 Developer's Guide for Oracle SOA Core Extension

• Asynchronous Operation from an ABCS in the Same Thread but in a Different
Transaction

Synchronous Request-Response Scenarios

Invoking a synchronous BPEL process results in creation of BPEL instance within its
local transaction by default. This transaction can be enlisted to a global transaction
given proper configurations.

Hence, the transaction settings in the ABCS services should be as shown in Example
8-10:

This setting ensures that the caller's transaction is joined, if there is one, or a new
transaction is created when there is not one.The EBS inherits the transaction initiated
by the Requester ABCS.

A Mediator always enlists itself into the global transaction propagated through the
thread that is processing the incoming message.

Figure 8-11 illustrates the transaction boundary.

Figure 8-11 Transaction Boundary

Example 8-10 Transaction Settings for Asynchronous MEP

<component name="SamplesCreateCustomerSiebelJMSConsumerProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelReqABCSImplProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
</component>

Enabling Transactions

Completing ABCS Development 8-31

AIA Services in Asynchronous MEP

Invoking an asynchronous BPEL process results in persistence of invocation message
in invoke message table within part of the caller's transaction. The Caller's transaction
ends. The asynchronous BPEL executes in its own local transaction. For the Callee to
be executed within the Caller's transaction, the transaction flag must be set to required,
as shown below, for the BPEL component, in the Callee's composite.

bpel.config.transaction=required

To ensure a single threaded execution of the Callee, a case of a one-way operation, you
must have a sync-type call. Set the property for the BPEL component in the Callee's
composite as shown below:

bpel.config.oneWayDeliveryPolicy=sync

Therefore, the transaction settings in the ABCS services should be as shown in
Example 8-11:

If the Requester ABCS has an inbound interface with an adapter, then in the adapter's
composite, set the property at the BPEL component level, that is,
bpel.config.oneWayDeliveryPolicy=sync.

Example 8-12 shows how transaction properties are set on the adapter component:

Figure 8-12 illustrates the transaction boundary.

Enabling Transactions

8-32 Developer's Guide for Oracle SOA Core Extension

Figure 8-12 Transaction Boundary in Asynchronous MEP

Example 8-11 Transaction Settings for Asynchronous MEP

<component name="SamplesCreateCustomerSiebelReqABCSImplProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelReqABCSImplProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
 <property name=bpel.config.oneWayDeliveryPolicy">sync</property>

Example 8-12 Transaction Properties Set on Adapter Component

<component name="SamplesCreateCustomerSiebelJMSConsumerProcess">
 <implementation.bpel
src="SamplesCreateCustomerSiebelJMSConsumerProcess.bpel"/>
 <property name="bpel.config.transaction">required</property>
 <property name=bpel.config.oneWayDeliveryPolicy">sync</property>
</component>

Enabling Transactions

Completing ABCS Development 8-33

Asynchronous Operation from an ABCS in the Same Thread but in a Different
Transaction

When an ABCS has to invoke an asynchronous operation on a process, which must be
executed in the same thread as that of ABCS but in a different transaction, set the
following configuration in the called BPEL composite:

<property name="bpel.config.oneWayDeliveryPolicy">sync</property>

In this case, the transaction configuration, bpel.config.transaction, need not be set in
the called BPEL composite because the called BPEL should be executed in a
transaction different from that of the Caller.

Guaranteed Message Delivery
Guaranteed message delivery means that a message being sent from a producer to a
consumer is not lost in the event of an error.

AIA uses queues for asynchronous and reliable delivery of messages. For example,

• PeopleSoft CRM, upon occurrence of a business event, can either push the message
directly into a queue or send a SOAP message over HTTP to a JMS message
producer (a JMS transport adapter) that is responsible for entering the message in
the queue.

PeopleSoft CRM can consider the message as sent as soon as the message is
dropped into the queue. With this mechanism, the PeopleSoft CRM application can
keep sending new messages regardless of whether the CRM on Premises is
available or not.

• A JMS consumer (another JMS transport adapter) is responsible for dequeuing the
messages and invoking PeopleSoft CRM ABCSs.

Having the PeopleSoft CRM ABCSs, the EBS, the CRM on Premises ABCS and the
Web services as part of the transaction initiated by JMS message producer ensures
that the message is removed from the queue only after the successful completion of
the task in the CRM on-premise application.

Versioning ABCS
Versioning of a service means:

• A new service with Version suffix in the name of the Composite and name of the
Service Component.

• The target namespace of the WSDL of the Service Component indicates a new
version.

For more information about AIA naming standards, see Oracle AIA Naming
Standards for AIA Development.

Guidelines for Versioning
During the preparatory phase, be aware of the following guidelines:

• An ABCS is used across multiple Pre-Built Integrations. It is not Pre-Built
Integration specific.

Guaranteed Message Delivery

8-34 Developer's Guide for Oracle SOA Core Extension

For example, EBizRequesterCreateItemABCS is used by ISCM Pre-Built Integration
and Agile PLM - Ebiz Integration Pre-Built Integration.

• Use the Oracle Enterprise Repository to discover the existence of a service.

Service definition annotations are persisted in Oracle Enterprise Repository. Oracle
Enterprise Repository documents the various conceptual and physical assets
depicting the Pre-Built Integration and constituting services.

• Inline changes made to ABCS without changing the version suffix should be
backward compatible.

• Multiple versions for a service with semantically and technically incompatible
contracts among versions are not acceptable.

It is not permissible to version an existing ABCS when the contract is totally
different, even though the operation to be performed or the verb is same.

• ABCS is versioned independently of an application version.

ABCS is not bound to a specific application version. So, when an application
undergoes a version change, it is not binding on ABCS to undergo a similar version
change. Thus, ABCS is designed to be agnostic of version changes of the
application.

• Avoid concurrent multiple versions of an ABCS.

For example, Team A owns Version 1; Team B does not like the contract and creates
Version 2 with a different MEP/Contract. Now Team A is creating Version 3 with a
contract that contradicts the previous one.

• The system does not allow multiple services for an application to perform a single
business activity using a specific role (Requester/Provider).

• Do not have multiple services with same logic but different names, either a
different name for composite, for service, or having a different portType in the
WSDL.

• Do not have multiple services with different logic but the same names.

The operation defined on the EBS determines the implementing ABCS.

The operation defined on an EBS is dictated by the business activity/task.

Variations of business activity, task, or both are possible. These are passed in the form
of context and implemented by different ABCSs.

Multiple teams involved in producing, consuming, or both producing and consuming
an ABCS for a specific application and a business activity must reach consensus
regarding the contracts.

Resequencing in Oracle Mediator
This section provides an overview of the Requencing feature in Oracle Mediator and
discusses how to set up and use it in the Oracle AIA Asynchronous message exchange
pattern.

In the Oracle AIA asynchronous message exchange pattern, participating applications
push messages to the Oracle AIA layer where they are processed in a store-and-
forward fashion.

Resequencing in Oracle Mediator

Completing ABCS Development 8-35

In this message exchange pattern, there is a need to process messages pertaining to the
same object instance in the same sequence in which they are generated. The
Resequencer in Oracle Mediator helps to maintain correct processing sequence.

A Resequencer is used to rearrange a stream of related but out-of-sequence messages
back into order. It sequences the incoming messages that arrive in a random order and
then send them to the target services in an orderly manner.

The sequence of messages is maintained until the next persistence point. If the next
persistence point is not an application, then the messages must be resequenced again.

Consider an integration scenario where in the Siebel application is sending
CreateOrder/UpdateOrder messages which are enqueued in JMS queue. These
messages are de-queued by a JMS consumer adapter service and sent down stream for
processing. When incoming messages arrive at JMS queue, they may be in a random
order owing to different reasons such as network latency, downtime of server and so
on. The resequencer orders the messages based on sequential or chronological
information, and then sends the message to the target services in an orderly manner.

The Figure 8-13 depicts an usecase where an incoming stream of messages from Siebel
application which are persisted in a JMS destination are processed in a correct
sequence.

Figure 8-13 Message Sequencing Using the Oracle Mediator's Resequencing
Feature

The sequencing is done based on the sequencing strategy selected. The mediator
provides us with three types of resequencers:

• Standard Resequencer

• FIFO Resequencer

• BestEffort Resequencer

Resequencing in Oracle Mediator

8-36 Developer's Guide for Oracle SOA Core Extension

For more information about the Oracle Mediator Resequencer feature, see
"Resequencing in Oracle Mediator" in Developing SOA Applications with Oracle SOA
Suite.

Configuring the Oracle Mediator Service to Use its Resequencer Feature
As this is a feature of the Oracle Mediator, a Mediator service must be in place for it to
work as designed.

This section discusses how to configure the Oracle Mediator service to use its re-
sequencing feature.

• Open the Mplan file of the Mediator component in the design mode.

• Select the 'Resequence Level' as 'operations'

Note:

Mediator allows us to select the Resequence Level as either 'operations' or
'component'. For Mediator components which only have a single operation, it
does not matter whether you select Resequence Level as either 'operations' or
'component'. For a Mediator that has multiple operations defined on it,
selecting the 'component' option means resequencing is applied to all
operations in it.

In AIA, for the mediator, it is recommended to select the 'Resequence Level' as
'operations'. Figure 8-14 is the screen shot of a composite mplan where the Resequence
level is selected at operation level.

Figure 8-14 Resequence Level is Selected at Operation Level

For the resequencer to work, have one or both of following values in the source
payload depending on the resequencing strategy employed.

The first one is a sequenceID, and the next one is a groupID. The sequenceID is used as
identifier for the message itself. The groupID is used to group the messages in which
the resequencer rearranges the messages based on the sequenceID.

How to Configure the Resequencing Strategy

1. Determine and set the Resequence type from the following three options:

• Standard: Use when the incoming message has an integer as a sequence ID
with a known increment and the starting sequence number.

Resequencing in Oracle Mediator

Completing ABCS Development 8-37

• BestEffort: Use when the incoming message has a timestamp as a sequence ID.

• First in First out (FIFO): Use in all other cases.

Figure 8-15 is the screenshot that shows Resequence types.

Figure 8-15 Resequence Types

2. Set resequence options.

a. Determine and set the Group

The group ID is a parameter (field or attribute) on the incoming message that
uniquely identifies the group of messages to be sequenced.

For example, CustomerId, OrderId, ProductId, Account ID and so forth.

The group ID is configured by setting the 'Resequence Options' called 'Group'
with an XPath expression that points to the field in the payload which the
resequencer uses to group incoming messages. This ensures that the messages
belonging to a specific group are processed in a sequential order.

For example, SyncCustomerPartyListEBM/ns0:SyncCustomerPartyListEBM/
ns0:DataArea/ns0:SyncCustomerPartyList/ns0:CustomerPartyAccount/
corecom:Identification/corecom:ApplicationObjectKey/
corecom:ID[@schemeID='AccountId'].

Figure 8-16 is the screenshot that shows XPath expression in the Group field.

Figure 8-16 Resequence Options

Resequencing in Oracle Mediator

8-38 Developer's Guide for Oracle SOA Core Extension

b. Determine and set the ID

The ID is a parameter (field or attribute) on the incoming message that
indicates the position of the message in the sequence.

The ID is declared by an XPath expression that points to the field in the
incoming message on which the resequencing is done.

For example, $in.SyncCustomerPartyAccountListEBM/
ns0:SyncCustomerPartyAccountListEBM/ns0:DataArea/
ns0:SyncCustomerPartyAccountList/ns0:CustomerPartyAccount/
corecom:Identification/corecom:ApplicationObjectKey/corecom:ID /@schemeID

Figure 8-17 is the screenshot that shows XPath expression in the ID field.

Figure 8-17 Setting the ID Parameter

c. Set the Resequence Options for Best Effort Resequence Mode. The incoming
messages cannot provide information to the resequencer about the identifier
to use for sequencing. Typically, the identifier used for sequencing in such
scenarios is of a dateTime type or numeric type. Using the dateTime field as
the sequence ID XPath enables you to control the sequencing.

Figure 8-18 is the screenshot that shows the option dateTime selected.

Figure 8-18 Resequence Options for Best Effort Resequence Mode

When a resequencer mediator service is placed between the JMS Consumer adapter
service and the Requester ABCS, the message is removed from the JMS queue when it
goes into resequencer so that transaction boundary is shifted to resequencer store.

Resequencing in Oracle Mediator

Completing ABCS Development 8-39

Processing Multiple Groups Parallelly
The messages that arrive for resequencing are split into groups and the messages
within a group are sequenced according to the ID selected resequencing strategy.
Sequencing within a group is independent of the sequencing of messages in any other
group. Groups in themselves are not dependent on each other and can be processed
independently of each other.

For example, when the 'accountID' in Update Order message is used as group ID, the
incoming Update Order messages that have the specific account ID are processed as a
group independent of the Update Order messages that have a different account ID.

Resequencer helps maintain correct processing sequence up to the point that directly
receives message from resequencer. The sequence is not guaranteed if a-synchronicity
is introduced in the process that receives the re-sequenced messages. In other words,
the sequence of messages is maintained till the next persistence point. After that the
messages must be resequenced again.

Describing Oracle Mediator Resequencer Error Management
When a message for a group fails, message processing for that group is stopped and
pending messages are held back. Error messages are placed in the Error Hospital for
fixing and resubmission for all the errors that can be retried.

As all messages of same group id are processed by a single thread in different
transactions. If a message fails to get processed, the rest of the messages for that group
are suspended. So resubmit the message that has error. Processing resumes from next
sequence only after you either retry or abort the message.

The processing of messages for other groups continues without interruption.

If a new message arrives for the group that has error, the messages get stored in the
Resequencer store so that they not lost. When failed messages are resubmitted from
the Oracle Enterprise Manager (OEM) Console or another tool, the associated group
that has error is unlocked and normal processing resumes for that group.

Resubmitting Messages that have Errors

When a message cannot be delivered to a service or component in the flow of a global
transaction, the message is rolled back to the appropriate source milestone. This source
milestone corresponds to a Queue or topic or Resequencer. It is here that the message
is persisted until it can be resubmitted for delivery to the service or component.

For Message Resubmission Utility to resubmit messages that have errors, the incoming
messages must be first populated using Message resubmission parameters when they
are de-queued from the source milestone using the JMS consumer.

For more details on how to populate these values in the incoming message, see
Populating Message Resubmission Values.

Using the Message Resubmission Utility API

The Message Resubmission Utility API enables external programs to enable a message
that is in error state to be consumed for a transaction. This utility is typically run to fix
the problem that caused the message to end in error.

For more information about the Resubmission Utility, see "Resequencer Based
Resubmission" in Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture Foundation Pack.

Resequencing in Oracle Mediator

8-40 Developer's Guide for Oracle SOA Core Extension

The message that generates an error is moved to the error hospital. The group is
moved to an error state and is not picked up by the worker thread. You can resubmit
the error-generating message using the error hospital. After you resubmit the message,
the group is moved to a normal state, so that it can be picked up by the worker thread.

Tuning the Resequencer
The following parameters help you with turning the resequencer.

ResequencerWorkerThreadCount: The number of threads used by resequencers.

ResequencerMaxGroupsLocked: The maximum number of groups that can be locked
by a thread.

The sleep interval: If your message frequency is high, set the sleep interval to low. It is
desirable to set the number of groups locked to a value greater than the worker thread
count so that worker threads are not idle. By default, the value of
ResequencerMaxGroupsLocked and ResequencerWorkerThreadCount are set to same.

Note:

You cannot turn off the resequencer at runtime after you turn it on for a
composite.

Developing Layered Customizations
Oracle application composites are created for specific industry needs. Oracle also
provides options to further customize these components for business specific needs of
individual organizations. Customization refers to modification of delivered artifacts to
produce new behavior. You can use this option to customize the out-of-box composites
delivered by Oracle and also and deploy them in place of original composites. When
you customize a few composites, you create a specific solution for your organization.

However, these customizations can be overwritten when you apply a patch or
upgrade when there is a new version. To ensure customization at a higher layer is not
lost during an upgrade the customized layer and the base process are kept in their
own metadata files. This externalization of customizations away from the base
composite is possible only when the base version has been enabled for customization.
Only when you want to deploy a solution the layers are merged with the base process
for creating a single executable process.

For more information about layered customizations, see "Customizing SOA
Composite Applications" in Developing SOA Applications with Oracle SOA Suite.

Can all the composites be customized?

For the services that are delivered in the certain set of Out of the Box Prebuilt
Integration, customizable scopes have been added in the BPEL flow. Refer to your pre-
built integration implementation guide to check whether your pre-built integration
allows customization of services. You can add the custom logic in these scopes when
you open the BPEL in JDeveloper using customization developer role. These
customizations are kept separate from the base definition. The advantage of adding
the custom logic in these scopes is that, the customization is safe when you upgrade.
When you uptake the subsequent patches or new releases, they can merge these
customizations on top of the new base definition and deploy the BPEL.

Pre-built integrations that do not have services containing customizable scopes cannot
be customized.

Developing Layered Customizations

Completing ABCS Development 8-41

Adhere to following guidelines while doing the customizations:

• Customizations are allowed only for BPEL based AIA artifacts that have
customizable scopes. Inline customizations done to any other artifacts are
overwritten when you apply a patch or upgrade to a newer.

• Do not customize a composite which is not marked as customizable because they
encounter merge conflicts when the composite is patched at a later point in time.

• Do not modify the out of the box defined variables or messages as these variables
may have been used in the section following customized code resulting in adverse
impact on the behavior of the BPEL flow.

Deploying services after customizations
To deploy a service after customization:

1. Right click the customized composite in JDeveloper tree.

2. Select Make<customized composite name>.jar to compile the changes.

3. Open the CustomizeApp folder from the Jdeveloper work location.

You can see the folder named merged that contains Out of the box code and
Customized Code.

4. Copy this merged folder to your server and deploy the composite using
Application Deployment Driver.

Customizing the Customer Version
If you want to customize customer version of the SOA composite application, see
"Customizing the Customer Version" in Developing SOA Applications with Oracle SOA
Suite.

Applying patches after customization
To apply patches after you have customized, see "Upgrading the Composite" in
Developing SOA Applications with Oracle SOA Suite. Instructions here help you to apply
layers to the new base composite.

Developing Layered Customizations

8-42 Developer's Guide for Oracle SOA Core Extension

9
Designing and Constructing Enterprise

Business Flows

This chapter provides an overview of Enterprise Business Flows (EBF) describes how
to define and implement EBFs.

Note:

Composite Business Processes (CBP) will be deprecated from next release.
Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

• Introduction to Enterprise Business Flows

• How to Define the Contract for an EBF

• How to Create the Contract for an EBF

• How to Implement the EBF as a BPEL Service

Introduction to Enterprise Business Flows
The EBF is used for implementing a business activity or a task that involves leveraging
capabilities available in multiple applications. The EBF is about stringing a set of
capabilities available in applications to implement a coarse-grained business activity
or task and composing a new service leveraging existing capabilities. The EBF involves
only system-to-system or service-to-service interaction. The EBF has no activity that
needs human intervention.

In a canonical integration, the EBF is an implementation of an Enterprise Business
Service (EBS) operation and calls other EBSs. It never calls an Application Business
Connector Service (ABCS) or the applications directly. In other integration styles, the
caller invoking the EBF can be either an application or any other service.

Figure 9-1 and Figure 9-2 illustrate how some EBFs in the Order to Cash Process
Integration Pack Pre-Built Integration are implemented to leverage existing
capabilities.

Figure 9-1 shows that the EBF is orchestrating a flow for syncing customers between
the source application and the target application. When the sync operation is invoked
from the source application, the EBF first checks whether the customer exists in the
target application. If so, it updates the customer in the target application; otherwise, it
creates the customer in the target application.

Designing and Constructing Enterprise Business Flows 9-1

Figure 9-1 Example of EBF Orchestrating a Flow from Source to Target

Figure 9-2 demonstrates a flow that is receiving the sales order and orchestrating
across customer creation, fulfillment, and update back in the source application with
response.

Introduction to Enterprise Business Flows

9-2 Developer's Guide for Oracle SOA Core Extension

Figure 9-2 Example of Sales Order Flow

How to Define the Contract for an EBF
The Oracle Application Integration Architecture (AIA) methodology for designing and
implementing an EBF is contract first methodology. Hence, the contract must be
defined and created before the implementation of the EBF.

To define the contract:

1. Identify the EBF.

2. Identify the pattern for the EBF.

3. Identify the Enterprise Business Message (EBM) to be used for the requests and
responses (if any).

How to Identify the Need for an EBF
The first task involved in designing a new service is to verify whether it is necessary.

How to Define the Contract for an EBF

Designing and Constructing Enterprise Business Flows 9-3

• Situations may occur in which other services exist that are providing some or all of
the features identified. Each of the services and the operation's description and any
metadata should be reviewed before you decide to create either a new service or an
operation.

• An EBF is needed when an EBS operation must be implemented with a set of tasks
and involves invoking of multiple services.

• In a canonical based integration, an EBF can invoke only another EBS.

How to Identify the Message Pattern for an EBF
The Enterprise Business Flow is modeled to implement a single operation.

To identify the message exchange pattern (MEP) for an EBF:

1. Based on the understanding of the business process requirement from the
Functional Design Document (FDD), identify the triggering event for the EBF. See
Example 9-1.

a. If the control is to be blocked until a response is returned to the point of
invocation, choose EBF Request-Reply pattern. This would be a synchronous
call.

b. If after the EBF is invoked the triggering point does not wait for the response
and continues on, this invocation of the EBF would be an asynchronous call.

Check whether the processing of the EBF results in a response.

Is there a need to correlate the request and the response?

If the answer is yes, this is a case of delayed response. Use the EBF request-
delayed response pattern. If the answer is no, then choose the EBF fire-and-
forget pattern.

Any EBF operation invoked because of a subscription to a publish event
should use the EBS subscribe pattern.

Example 9-1 Example of Message Exchange Pattern Identification for EBF

<operation name="InterfaceSalesOrderToCustomer">
<documentation>
 <svcdoc:Operation>
 <svcdoc:Description>This operation is used to interface
 sales order to customer</
svcdoc:Description>
 <svcdoc:MEP>ASYNC_REQ_RESPONSE</svcdoc:MEP>
 <svcdoc:DisplayName>InterfaceSalesOrderToCustomer</
svcdoc:DisplayName>
 <svcdoc:LifecycleStatus>Active</svcdoc:LifecycleStatus>
 <svcdoc:Scope>Public</svcdoc:Scope>
 </svcdoc:Operation>
 </documentation>
 <input message="client:InterfaceSalesOrderToCustomerReqMsg"/>
 </operation>

How to Identify the Message Structure
To identify the message structure:

How to Define the Contract for an EBF

9-4 Developer's Guide for Oracle SOA Core Extension

1. A CBP is implemented by orchestrating calls to external services. The event
triggering the CBP indicates the business object with which the CBP will be
dealing.

2. Depending on the integration style, the message structure is decided as described
below:

a. If the business object is available in the existing Enterprise Business Message
(EBM), use it.

b. If the business object is not available in the existing EBM but can be
assembled from the existing Enterprise Business Object (EBO) Library,
construct it.

c. If the business object is not available in the EBO Library, identify a payload
suitable for capturing all relevant information and processing in the CBP.

How to Create the Contract for an EBF
To create the contract for an EBF:

1. Identify the EBM.

2. Construct the WSDL for the EBF.

3. Annotate the service interface.

4. Ensure WS-1 basic profile conformance.

Constructing the WSDL for the EBF
Because the EBF development starts with constructing a WSDL, the result of the
technical design process is an EBF WSDL.

How to Implement the EBF as a BPEL Service
To implement the EBF:

1. Create a WSDL.

Create a WSDL for the EBF following the EBF naming standards and the WSDL
templates provided.

2. Implement the EBF as a synchronous or asynchronous BPEL process.

For more information about the details of creating BPEL projects in Oracle
JDeveloper, see "Getting Started with Oracle BPEL Process Manager" in Developing
SOA Applications with Oracle SOA Suite.

Follow Implementing the Asynchronous Request Delayed Response MEP for
details on how to use BPEL to implement asynchronous request-delayed response
pattern. The difference is that the EBF deals with EBMs.

3. Enable error handling and logging.

EBSs should handle errors to enable clients or administrators to resubmit or
retrigger processes. This is done through a central error handler.

For more information, see Configuring Oracle AIA Processes for Error Handling
and Trace Logging.

How to Create the Contract for an EBF

Designing and Constructing Enterprise Business Flows 9-5

4. Enable extensibility points in the EBF.

How to Implement the EBF as a BPEL Service

9-6 Developer's Guide for Oracle SOA Core Extension

10
Introduction to B2B Integration Using AIA

Business-to-business (B2B) integration requires the ability to exchange business
information with trading partners using a choice of B2B document protocols. This
chapter provides an overview of B2B integration using AIA, B2B document flows, B2B
component of Oracle Fusion Middleware and SOA Core Extension infrastructure for
B2B.

This chapter includes the following sections:

• Overview of B2B Integration Using AIA

• Understanding B2B Document Flows

• Understanding the Oracle B2B Component of Oracle Fusion Middleware

• Understanding the SOA Core Extension Infrastructure for B2B

Overview of B2B Integration Using AIA
The Oracle Application Integration Architecture (AIA) B2B solution consists of the
following key features:

• A flexible integration architecture that can be used to rapidly build support for new
B2B document protocols.

• Infrastructure components that can be used to build end-to-end B2B flows using
AIA and Oracle Fusion Middleware.

• Prebuilt support for popular B2B document protocols.

• Support for customization of shipped B2B integration artifacts.

Figure 10-1 illustrates how the canonical-based integration architecture of AIA can be
applied to meet the B2B integration needs of large enterprises.

Introduction to B2B Integration Using AIA 10-1

Figure 10-1 Schematic Overview of the B2B Architecture of AIA

Following are some key benefits of using AIA for B2B integrations:

• AIA decouples participating applications from the B2B integration layer.

Participating applications no longer required to track the varying B2B integration
needs of trading partners. In addition, customers can add support for new B2B
protocols and trading partner requirements without any impact to participating
application code.

• B2B document flows are often a subset of tasks that comprise complex business
processes, such as Order Capture.

By building B2B functionality as a layer on top of SOA Core Extension, the
functionality is made available for reuse by multiple applications and business
processes.

• Existing AIA Enterprise Business Objects (EBOs) such as Customer, Supplier, Item,
Purchase Order, Shipment, Invoice, and Catalog Address map to most of the
commonly used B2B documents.

Usage of these readily available EBOs, along with prebuilt B2B connector services
(B2BCSs) for these EBOs, result in significant time and cost savings for B2B
integrations.

Understanding B2B Document Flows
This section includes the following topics:

• Describing Outbound B2B Document Flows Built Using AIA

• Describing Inbound B2B Document Flows Built Using AIA

Describing Outbound B2B Document Flows Built Using AIA
Figure 10-2 illustrates a sample outbound B2B flow implemented using AIA:

Understanding B2B Document Flows

10-2 Developer's Guide for Oracle SOA Core Extension

Figure 10-2 Outbound B2B Document Flow

Following are the key steps in an outbound B2B document flow:

1. Participating applications trigger requester Application Business Connector
Services (ABCS) with Application Business Messages (ABMs) as their payloads.

A best-practice recommendation is to use queue-based communication between
the application and the requester ABCS while modeling fire-and-forget flows. This
ensures that request messages are persisted, thereby guaranteeing their
processing.

2. Requester ABCSs transform ABMs into Enterprise Business Messages (EBMs) and
then invoke the Enterprise Business Service (EBS) implementation.

3. The EBS introspects the EBM and routes it to the correct provider B2BCS based on
the trading partner's B2B document preference.

Understanding B2B Document Flows

Introduction to B2B Integration Using AIA 10-3

4. Provider B2BCSs transform the EBM into an industry-standard B2B format and
invoke the AIA B2B interface service.

5. The AIA B2B interface service populates the required header parameters and
invokes the Oracle Fusion Middleware B2B component, passing the B2B payload
as input.

6. Oracle B2B looks up the trading partner agreement corresponding to the trading
partners and document type and securely transports the B2B document to the
remote trading partner

7. In the case of non-XML format-based protocols such as Electronic Data
Interchange (EDI), the translation feature in Oracle B2B can be used to transform
the intermediate XML generated by AIA layer to the non-XML B2B document
format.

Describing Inbound B2B Document Flows Built Using AIA
Figure 10-3 illustrates a sample inbound B2B flow implemented using AIA:

Understanding B2B Document Flows

10-4 Developer's Guide for Oracle SOA Core Extension

Figure 10-3 Inbound B2B Document Flow

Following are the key steps in an inbound B2B document flow:

1. Oracle B2B receives B2B documents from trading partners and identifies the
sending trading partner and B2B document type.

2. In case of EDI other non-XML formats, Oracle B2B translates the inbound payload
into an intermediate XML format.

3. The message is queued into a JMS B2B inbound queue. Along with the B2B
document payload, the following key metadata about the B2B document are also
passed along to the AIA and SOA composite layer:

Understanding B2B Document Flows

Introduction to B2B Integration Using AIA 10-5

• From Trading Partner

• To Trading Partner

• Document Type

• Document Type Revision

4. The AIA B2B interface receives the B2B document and header information from
Oracle B2B and routes it to the correct requester B2BCS based on the Document
Type parameter.

5. The requester B2BCS transforms the B2B document to the EBM and invokes the
EBS.

6. The EBS introspects the EBM and routes it to the correct provider ABCSs.

7. The provider ABCSs transform the EBM to ABM formats and invoke participating
application APIs or web services.

Understanding the Oracle B2B Component of Oracle Fusion Middleware
Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of
business documents between an enterprise and its trading partners. Oracle B2B
supports B2B document standards, security, transports, messaging services, and
trading partner management. The Oracle SOA Suite platform, of which Oracle B2B is a
binding component, enables the implementation of e-commerce business processes.

This section includes the following topic: How AIA Complements Oracle Fusion
Middleware Oracle B2B.

How AIA Complements Oracle Fusion Middleware Oracle B2B
As described in the previous section, AIA leverages the capabilities of the Oracle B2B
component to build end-to-end B2B integration solutions. Note especially the key
distinctions between the capabilities of Oracle B2B and AIA in the area of B2B
integration.

At a high level, Oracle B2B provides B2B support by contributing the following
functionality:

• Transport of B2B document payloads to remote trading partner systems.

• Support of secure integrations through encryption, digital signatures, and
nonrepudiation.

• Support of industry-standard message-packaging protocols, such as Applicability
Statement 2 (AS2) and RosettaNet Implementation Framework (RNIF).

• Transparent, configuration-based translation between non-XML formats, such as
EDI and positional or delimiter-separated flat files, and XML.

• Support of a single, enterprise B2B information gateway, including auditing and
reporting.

At a high level, AIA provides B2B support by contributing the following functionality:

• Prebuilt transformation between AIA canonical objects and B2B standard
document formats.

Understanding the Oracle B2B Component of Oracle Fusion Middleware

10-6 Developer's Guide for Oracle SOA Core Extension

• Canonical enterprise object library and services, reference architecture,
infrastructure, and developer tools that can be used to build custom B2B
integrations.

• Business process orchestration of B2B flows using SOA integration best practices.

For more information about Oracle B2B, see User's Guide for Oracle B2B.

Understanding the SOA Core Extension Infrastructure for B2B
This section includes the following topics:

• B2B Support in AIA Error Handling Framework

• AIA B2B Interface

Along with the architecture and programming model, additional infrastructure
components are delivered with SOA Core Extension in support of B2B integrations.

This section provides a high-level description of the B2B infrastructure delivered with
SOA Core Extension. Developing and Implementing Outbound B2B Integration Flows
and Developing and Implementing Inbound B2B Integration Flows provide more
details on how to use the infrastructure components shown in Figure 10-4 when you
develop and implement B2B flows using AIA.

Figure 10-4 SOA Core Extension B2B Infrastructure Components

B2B Support in AIA Error Handling Framework
The AIA Error Handling Framework includes support for error scenarios in B2B
integration flows.

1. The AIA B2B Error Handling Interface composite listens for errors that occur in
the Oracle Fusion Middleware B2B component.

2. Errors that occur in Oracle B2B are dequeued from the B2B queues and
transformed into the canonical AIA fault structure.

3. The AIA Error Handling Framework is then triggered with this fault message as
input.

4. After the AIA Error Handling Framework has been triggered, its delivered error-
handling capabilities can be leveraged for error resolution.

Some key capabilities of the AIA Error Handling Framework include:

Understanding the SOA Core Extension Infrastructure for B2B

Introduction to B2B Integration Using AIA 10-7

• Transformation of all errors to a canonical fault message and queuing of the error to
the AIA Error Topic.

• Logging of error information.

• Option to use the Oracle BPM Worklist application to track error resolution tasks.

• Option to issue error notifications to preconfigured roles.

• Ability to launch custom error handling and compensation processes.

These ready-to-use error-handling capabilities reduce duplication of error-handling
code across integration code.

For more information about the functionality and uptake of the Error Handling
Framework, see "Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure
Components and Utilities User's Guide for Oracle Application Integration Architecture SOA
Core Extension.

AIA B2B Interface
The AIA B2B interface is a reusable mediator-based SOA composite that acts as an
abstraction layer between B2BCSs and the Oracle B2B component in Oracle Fusion
Middleware. The AIA B2B interface shields B2BCSs from the choice of internal
delivery channel employed to connect to Oracle B2B.

Upon installation, the Oracle AIA Installer configures the AIA B2B interface to connect
to Oracle B2B using JMS-based queues. However, based on specific integration needs,
an implementation may require the use of any of the other available internal delivery
channels, such as Oracle Advanced Queuing, File Delivery Channel, and B2B adapter
to integrate AIA with Oracle B2B. The AIA B2B interface composite can be modified to
replace the use of JMS with any of these internal delivery channels without having to
modify every B2BCS.

For more information about the B2B adaptor, see "Getting Started with Oracle B2B" in
User's Guide for Oracle B2B.

Understanding the SOA Core Extension Infrastructure for B2B

10-8 Developer's Guide for Oracle SOA Core Extension

11
Developing and Implementing Outbound

B2B Integration Flows

This chapter provides an overview of developing and implementing outbound B2B
integration flows and describes how to identify the B2B document and analyze
requirements, develop new provider B2B connector service, develop or extend an
existing Enterprise Business Service, develop or extend an existing requester ABCS,
configure Oracle B2B and define trading partner agreements, deploy and configure
AIA services and finally how to test and go live.

This chapter includes the following sections:

• Introduction to Developing and Implementing Outbound B2B Integration Flows

• Step 1: Identifying the B2B Document and Analyzing Requirements

• Step 2: Developing a New Provider B2B Connector Service

• Step 3: Developing or Extending an Existing Enterprise Business Service

• Step 4: Developing or Extending an Existing Requester ABCS

• Step 5: Configuring Oracle B2B and Defining Trading Partner Agreements

• Step 6: Deploying and Configuring AIA Services

• Step 7: Testing and Verifying

• Step 8: Going Live and Monitoring

Introduction to Developing and Implementing Outbound B2B Integration
Flows

Figure 11-1 shows the high-level steps involved in developing a simple outbound
business-to-business (B2B) flow from an application to trading partners using Oracle
Application Integration Architecture (AIA).

Developing and Implementing Outbound B2B Integration Flows 11-1

Figure 11-1 High-Level Steps to Develop and Implement a Simple Outbound B2B
Flow

Each of the steps listed in this diagram are described in detail in the following sections.

Step 1: Identifying the B2B Document and Analyzing Requirements
This section includes the following topics:

• How to Identify the B2B Document Protocol

• How to Identify the B2B Document Type and Definition

• How to Define the Document in Oracle B2B

• How to Define the Document in AIA

• How to Identify the EBO_ EBS_ and EBM to Be Used

• How to Design Mappings for the B2B Document

• How to Publish Mapping to Trading Partners

The first step in building an outbound B2B flow is to identify the B2B document that
must be generated by the flow. As a part of this step, as shown in Figure 11-2, you
must also analyze the requirements for the AIA services that must be built or extended
to support the flow.

Figure 11-2 Step 1: Identifying B2B Document and Analyzing Service Requirements

As a part of this step, the integration development team performs the following tasks:

• Identify the B2B document protocol to be used.

• Identify the B2B document type to be used.

• Define the B2B document in Oracle B2B.

• Define the B2B document in AIA.

Step 1: Identifying the B2B Document and Analyzing Requirements

11-2 Developer's Guide for Oracle SOA Core Extension

• Identify the AIA Enterprise Business Object (EBO), Enterprise Business Message
(EBM), and Enterprise Business Service (EBS) to be used.

• Identify the message exchange pattern.

• Map the EBM, B2B document, and Application Business Message (ABM).

• Document and publish the mapping.

How to Identify the B2B Document Protocol
To develop a B2B flow, you first identify the B2B document to be used. Often, the
choice of B2B document is influenced by the capabilities of the trading partners or e-
commerce hub that must be integrated with your applications.

However, if you have the choice to choose a B2B document definition to be used for a
particular integration use case, several industry-standard e-commerce standards exist
today that vary in popularity in different geographies and industries.

Examples of B2B document protocols are Open Applications Group Integration
Specification (OAGIS), Electronic Data Interchange (EDI) X12, Electronic Data
Interchange For Administration, Commerce and Transport (EDIFACT), Health
Insurance Portability and Accountability Act (HIPAA), EANCOM, RosettaNet,
Universal Business Language (UBL), Health Level 7 (HL7), and 1SYNC.

Consider the following questions when choosing a B2B document protocol to integrate
with your trading partners:

• Does the document protocol have the list of documents to support your integration
needs?

• Does the document protocol have adequate support for your industry?

• Is the document protocol supported by your key trading partners?

• Is the document protocol popular in your geography?

• Is the document protocol based on open standards such as XML and XML Schema?

• Is the protocol support by your vendor, for example, Oracle?

Along with the B2B document protocol, the version of the B2B document must also be
determined. Similar considerations as listed previously can be used to determine the
B2B document protocol version.

How to Identify the B2B Document Type and Definition
After you have selected the B2B document protocol, the next task is to identify the B2B
document that meets the specific B2B integration need. Each document protocol
supports a list of B2B documents or document types. Refer to the protocol
documentation and document usage guidelines to identify the specific document that
is best-suited to support your specific business flow. Document usage can vary by
industry and geography.

For example, you must implement a B2B flow to send purchase orders electronically to
your supplier as part of your procurement business flow. The EDI X12 is chosen as the
B2B document protocol based on your integration needs. The EDI X12 document
protocol recommends that the 850 (Order) document be used for this integration
requirement.

Step 1: Identifying the B2B Document and Analyzing Requirements

Developing and Implementing Outbound B2B Integration Flows 11-3

After the B2B protocol, document, and version are identified, you must obtain official
versions of the following artifacts related to the document:

• Documentation and usage guidelines, which describe the B2B document in detail,
including individual elements.

• Sample XML instances, which illustrate the usage of the B2B document.

• XML Schema definition of the B2B document.

For XML-based B2B document protocols, internet resources pertaining to the standard
can be used as the source for downloads of the official user documentation, XML
schemas, and sample document instances. For example, the OAGIS website
(www.oagi.org) provides all of this information for every major release of the OAG
document standards.

You can also obtain the official artifacts listed previously as a part of the B2B
Document Editor software, which is part of Oracle Fusion Middleware.

For more information about creating guideline files, see "Creating Guideline Files" in
Oracle Fusion Middleware User's Guide for Oracle B2B.

For non-XML protocols such as EDI and flat-file, Oracle B2B provides translation
capabilities to convert the documents from non-XML formats to XML. However, this
XML is an intermediate XML definition of the B2B document, which still must be
transformed to the AIA EBM. You can export the B2B document in Oracle B2B
Integration format using the B2B Document Editor to obtain the XML schema
representation of this intermediate XML for use with the AIA B2B Connector Service
(B2BCS).

Supporting Document Variations

As an integration best practice, AIA recommends that the standard B2B document
definition be used as-is for B2B integration. Frequently, however, the B2B document
definition must be modified to accommodate additional elements to meet custom
integration requirements.

If such variations to the published standard are required, then the B2B document
guideline and schemas obtained in the previous step must be modified to include
these additional details.

How to Define the Document in Oracle B2B
After you have identified the B2B document type and definition, you must define the
document in Oracle B2B. This is a prerequisite to using these documents in trading
partner agreements.

For more information about creating document definitions, see "Creating Document
Definitions" in Oracle Fusion Middleware User's Guide for Oracle B2B.

How to Define the Document in AIA
Per AIA integration best-practice recommendations, all reusable SOA artifacts, such as
XML Schema and WSDL files, are hosted centrally in the SOA metadata store.
Centrally hosting reusable artifacts and referencing them from the AIA services helps
improve the performance and ease-of-maintenance of AIA services. The SOA
metadata store provides caching and clustering capabilities that are also leveraged
when you use it as the central store.

Step 1: Identifying the B2B Document and Analyzing Requirements

11-4 Developer's Guide for Oracle SOA Core Extension

The XML schema definitions of B2B documents that are used by the B2B connector
services are also hosted in the metadata store.

To deploy the B2B documents to the metadata store:

1. Create a directory that corresponds to the B2B standard in the B2BObjectLibrary.

2. Copy the XML schema files and directories that define the B2B document types to
this location.

The B2BObjectLibrary directory is a child directory of $AIA_HOME/MetaData/
AIAMetaData/AIAComponents.

For example, as shown in Figure 11-3, create directory OAGIS to which to copy
OAG business object definitions.

Figure 11-3 OAGIS Directory Created to Store OAG Business Object Definitions

3. Copy the XML schema files that correspond to the B2B document type under this
folder.

For example, as shown in Figure 11-4, copy the OAGIS ProcessPurchaseOrder.xsd
file and all of its supporting schemas to this folder location, while also preserving
the relative directory structure.

Step 1: Identifying the B2B Document and Analyzing Requirements

Developing and Implementing Outbound B2B Integration Flows 11-5

Figure 11-4 Corresponding XML Schema Files Stored in the OAGIS Directory

4. Deploy the new contents of the B2B Object Library to the SOA metadata store. To
do this:

a. Edit the $AIA_HOME/config/UpdateMetaDataDeploymentPlan.xml file, as
shown in Figure 11-5, to specify that the directory B2BObjectLibrary has to be
updated in Oracle Metadata Services (MDS).

Figure 11-5 UpdateMetaDataDeploymentPlan.xml Edited to Update the
B2BObjectLibrary in Oracle Metadata Services

b. Source the file aiaenv.sh located under $AIA_HOME/bin. For example:
$source /slot/ems5813/oracle/AIA3_HOME/bin/aiaenv.sh

c. Change the directory to $AIA_HOME/Infrastructure/Install/config. For
example: $cd $AIA_HOME/Infrastructure/Install/config.

d. Issue the AIA command to deploy the metadata. For example: $ant -f
UpdateMetadata.xml.

e. Verify that the command was successful and that no errors occurred.

How to Identify the EBO, EBS, and EBM to Be Used
To be able to integrate the B2B documents using AIA, the next step is to identify the
AIA EBO, EBM, and EBS to be used. Select the AIA EBO and EBM for which the
description most closely matches the B2B document to which you must integrate.

For example, to develop an outbound B2B integration flow in which EDI 850 (Order)
documents must be communicated to a supplier by a procurement application, you
can use the following EBO, EBM, and EBS:

• EBO: PurchaseOrderEBO

• EBM: CreatePurchaseOrderEBM

Step 1: Identifying the B2B Document and Analyzing Requirements

11-6 Developer's Guide for Oracle SOA Core Extension

• EBS operation: CreatePurchaseOrder

How to Design Mappings for the B2B Document
The next step is to analyze your business requirements and map the ABM to the EBM
and the EBM to the B2B document.

Consider the following guidelines while developing mappings for B2B documents:

• ABCSExtension.PreInvokeABS

• ABCSExtension.PostInvokeABS

• ABCSExtension.PostXformABMtoEBM

Consider the following guidelines while mapping identification and reference
components in the B2B documents:

• Map universal identifiers if available and supported by your application. For
example, map UPC codes for identifying Items and UDEX codes for identifying
Item Categories.

• Map all available external identifiers used by your trading partners. For example,
map the Vendor Part Number in outbound B2B documents that must be sent to
your vendors.

• Map free-form attributes such as Description, Notes, Attachments, and so forth to
enable users to communicate and provide more information to trading partners.

• While mapping reference components, map content from the referenced entity and
not just the identification. For example, if a Ship To Location has to be mapped in
an outbound Purchase Order document being sent to a supplier, in addition to the
location identifiers, map the actual postal address and contact details of the Ship To
Location.

• While mapping Identification type components, you can directly map the actual
application IDs to the B2B document. This is unlike the application-to-application
(A2A) use case in which an XREF is used to store the mapping between the
participating application identifiers and the AIA identifiers.

For example, assume that you are working with a SyncItem from an Inventory
system to a trading partner. Assume that ITEM_001 is the item identifier in the
source ABM. This value can be directly mapped as-is to the Identification element.
Using an XREF has little additional value because the ID generated in the trading
partner application because of the sync flow is not captured in the XREF. A direct
mapping is preferable instead.

• Map ahead of current requirements. Even if your current integration use case may
require that only a few elements be mapped, a best-practice recommendation is to
map all the available fields that can be processed by your application. This allows
the connectors to be reused for multiple use cases.

• Extend EBOs, if required. If the target B2B document contains attributes that must
be mapped, but that are not available in the EBO, extend the EBO to include the
target elements and map them.

• Capture the mapping in an easy-to-understand spreadsheet and keep it current
when any changes must be made.

Step 1: Identifying the B2B Document and Analyzing Requirements

Developing and Implementing Outbound B2B Integration Flows 11-7

How to Publish Mapping to Trading Partners
The next step is to share the mapping document with trading partners. This enables
your trading partners to make any changes needed in their internal system to process
outbound B2B documents received from you. Also, any feedback received from your
trading partners can be used to revise the mapping design.

Step 2: Developing a New Provider B2B Connector Service
This section includes the following topics:

• Introduction to a Provider B2B Connector Service

• How to Identify the Message Exchange Pattern

• How to Develop a B2BCS Service Contract

• How to Store a WSDL in the Oracle Metadata Repository

• How to Develop a B2B Connector Service

• How to Customize the AIA B2B Interface

• How to Annotate B2B Connector Services

• How to Support Trading Partner-Specific Variants

• How to Enable Error Handling

The next step, as shown in Figure 11-6, is to develop the provider B2BCS to support
the outbound B2B integration flow.

Figure 11-6 Step 2: Developing a New Provider B2B Connector Service

The provider B2BCS is very similar to a provider Application Business Connector
Service (ABCS), with the only difference being that it integrates with trading partners
through Oracle B2B instead of integrating with an application. Hence, AIA
recommends that you familiarize yourself with the design and development of ABCS
(requester and provider) as well.

Introduction to a Provider B2B Connector Service
The key functionality provided by a provider B2BCS is to enable outbound B2B
document integration by performing the following tasks:

Step 2: Developing a New Provider B2B Connector Service

11-8 Developer's Guide for Oracle SOA Core Extension

• Transforming AIA EBMs into B2B documents.

• Invoking Oracle B2B to send these B2B documents to trading partners.

Figure 11-7 illustrates the processing that takes place in a simple fire-and-forget
message exchange pattern-based provider B2BCS.

Figure 11-7 Processing Flow for a Fire-and-Forget Provider B2BCS

Step-by-step instructions for developing B2BCSs are provided in the following
sections.

How to Identify the Message Exchange Pattern
Most B2B document flows can be modeled as asynchronous one-way calls.

For example, consider a use case in which a purchase order created in a Procurement
application must be sent to a supplier using an outbound B2B document flow. Upon
receipt of this Purchase Order document, the supplier processes it and sends back a
Purchase Order Acknowledgment B2B document.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-9

In this use case, even if a response is expected from the supplier in the form of the
Purchase Order Acknowledgment document, the Procurement application can
continue with its processing, which involves the purchase order being communicated
to and processed by the vendor.

The Procurement application also generally can correlate the Purchase Order
Acknowledgment document to the original purchase order because the Vendor is
expected to provide the same purchase order identification used in the request in the
Acknowledgment message. In this way, the request and response can be modeled as
two asynchronous one-way flows.

However, a similar analysis must be performed for each B2B document flow being
designed.

For more information about identifying message exchange patterns, see Identifying
the MEP.

How to Develop a B2BCS Service Contract
First, define the service contract (WSDL) of the provider B2BCS. The service contract of
the provider B2BCS specifies how it is invoked by an AIA flow. The service contract
specifies the EBS operation being implemented, the input request type, and the
message exchange pattern supported by the B2BCS.

For more information about creating WSDLs for ABCSs, see Defining the ABCS
Contract.

Here are the recommended naming conventions for use in B2BCS WSDL definitions.

• WSDL File Name:

– Naming guideline: <B2BStandard><Verb><EBO>ProvB2BCSImpl.wsdl

– Example: X12UpdateSalesOrderProvB2BCSImpl.wsdl

• Service Namespace:

– Naming guideline: http://xmlns.oracle.com/B2BCSImpl/{Core|Industry/
<IndustryName>}/<B2BStandard><Verb><EBO>ProvB2BCSImpl/
<ABCSVersion>

– Example: http://xmlns.oracle.com/B2BCSImpl/Core/
X12UpdateSalesOrderProvB2BCSImpl/V1

Ensure that the ABCS Service version is independent of the B2B document/
standard version.

For more information about recommendations on versioning AIA services, see
Versioning ABCS.

• Service Name:

– Naming guideline: <B2BStandard><Verb><EBO>ProvB2BCSImpl

– Example: X12UpdateSalesOrderProvB2BCSImpl

• Port Type Name:

– Naming guidelines: <B2BStandard><Verb><EBO>ProvB2BCSImplService

– Example: X12UpdateSalesOrderProvB2BCSImplService

Step 2: Developing a New Provider B2B Connector Service

11-10 Developer's Guide for Oracle SOA Core Extension

• Operation Name:

– Naming guideline: <Verb><EBO>

– Example: UpdateSalesOrder

• Request Message Name:

– Naming guideline: <Verb><EBO>ReqMsg

– Example: UpdateSalesOrderReqMsg

• Request Message WSDL part element:

– Naming guideline: <EBM>

– Example: <wsdl:part name="UpdateSalesOrderEBMelement=" salesordebo:
UpdateSalesOrderEBM"/>

• Imported Schemas:

– Naming guideline:

oramds:/apps/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/
Core/Common/V2/Meta.xsd

oramds:/apps/AIAMetaData/AIAComponents /B2BObjectLibrary/
<B2BMessageSchema>

oramds:/apps/AIAMetaData/AIAComponents /EnterpriseObjectLibrary/
<EBM Schema>

– Example:

oramds:/apps/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/
Core/Common/V2/Meta.xsd

oramds:/apps/AIAMetaData/AIAComponents/EnterpriseObjectLibrary/
Core/EBO/SalesOrder/V2/SalesOrderEBM.xsd

oramds:/apps/AIAMetaData /AIAComponents/B2BObjectLibrary/
X12/4010/Oracle/855_4010.xsd

• Imported WSDLs:

– Naming guideline: oramds:/apps/AIAMetaData/AIAComponents/
UtilityArtifacts/RuntimeFault.wsdl

– Example: oramds:/apps/AIAMetaData/AIAComponents/UtilityArtifacts/
RuntimeFault.wsdl

How to Store a WSDL in the Oracle Metadata Repository
As a SOA best practice, AIA recommends that all shared service artifacts, such as
WSDL and XSD files, be stored in a central location that can be accessed by multiple
services.

All of the AIA-shared artifacts are stored in Oracle Metadata Services (MDS). Storage
of shared artifacts in MDS not only makes them globally accessible, but also enables
AIA to leverage features in MDS that support caching and clustering.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-11

Provider B2BCS WSDLs are stored in the following location in MDS: /apps/
AIAMetaData/AIAComponents/B2BServiceLibrary/Connectors/wsdls/
<B2B_STANDARD> /ProviderB2BCS/ <VERSION> / <B2B_STANADRD> <VERB>
<OBJECT> ReqB2BCSImpl.wsdl

To store a WSDL in MDS:

1. Copy the handcrafted WSDL to the following location under AIA_HOME:
$AIA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/
AIAComponents/B2BServiceLibrary/Connectors/wsdls/ <B2B_STANDARD> /
ProviderB2BCS/ <VERSION> / <wsdl file> .wsdl

2. Run the UpdateMetaDataDP.xml present at $AIA_HOME/aia_instances/
$INSTANCE_NAME/config/UpdateMetaDataDP.xml.

3. Using a SOA-MDS server connection to the MDS, verify that the AIAMetadata has
been populated, as shown in Figure 11-8.

Figure 11-8 AIA Metadata in MDS

4. You can now access the WSDL using a URL similar to the following: oramds:/
apps/AIAMetaData/AIAComponents/B2BServiceLibrary/Connectors/wsdls/
EDI_X12/ProviderB2BCS/V1/ X12UpdateSalesOrderProvB2BCSImpl.wsdl

How to Develop a B2B Connector Service
The next step in the process is to develop the B2BCS. The provider B2BCS WSDL
created in the previous step is used as the interface while you are developing the
concrete B2BCS.

Because the Service Constructor does not support the autogeneration of B2B services,
use Oracle JDeveloper to develop the B2BCS. Develop a composite with a BPEL
process based on the abstract WSDL created in the previous step.

Following are the key activities that must be developed in the B2BCS implementation
BPEL.

To develop a B2BCS:

Step 2: Developing a New Provider B2B Connector Service

11-12 Developer's Guide for Oracle SOA Core Extension

1. Define variable <EBM>_Var.

This is the input variable to the BPEL process and is used in the receive activity.

2. Define variable EBM_HEADER of type corecom:EBMHeader.

This variable is used to store the AIA process context information and is used by
the fault handling mechanism.

3. Define variable B2BM_HEADER of type corecom:B2BMHeader.

This variable is used to store the B2B-specific AIA process context information and
is used by the fault handling mechanism.

4. Define variable <B2BDoc>B2BM_Var of type corecom:B2BM.

This variable is used as input to the AIAB2BInterface to send the outbound B2B
document to Oracle B2B.

5. Define variable <B2BDoc>_Var using the external B2BDocument definition.

This is used as the target of the transformation from EBM. This variable is then
assigned to the <B2BDoc>B2BM_Var/Payload.

6. Define the partner link to the AIAB2BInterface.

This service is invoked to send the B2B document to trading partners through
Oracle B2B. The abstract WSDL to the AIAB2BInterface can be referenced from
oramds:/apps/AIAMetaData/AIAComponents/B2BServiceLibrary/
Infrastructure/wsdls/V1/B2BInterfaceV1.wsdl.

7. Assign the EBM_HEADER variable.

Assign values of the EBM_HEADER local variable by copying all the values from
the <input>EBM/EBMHeader element.

8. Assign the B2BM_HEADER variable.

Assign the values as shown in Table 11-1.

Table 11-1 B2BM_HEADER Variable Assignment Values

Element Value Example

B2BMHeader/B2BMID Map value from the
EBMHeader/EBMID to the
field.

111A1CD2121

B2BMHeader/
B2BDocumentType/
TypeCode

Populate with the B2B
document type as defined in
Oracle B2B.

X12_850

B2BMHeader/
B2BDocumentType/Version

Populate with the B2B
document revision
configured in Oracle B2B.

4010

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-13

Element Value Example

B2BMHeader/
SenderTradingPartner/
TradingPartnerID

Populate with value from
the input EBM. / <XXX>
EBM/EBMHeader/
B2BProfile/
SenderTradingPartner/
TradingPartnerID

Acme

B2BMHeader/
ReceiverTradingPartner/
TradingPartnerID

Populate with value from
input EBM. / <XXX> EBM/
EBMHeader/B2BProfile/
ReceiverTradingPartner/
TradingPartnerID

GlobalChips

9. Transform the EBM into the B2B document.

Use a transform activity to transform the EBM into the B2B Document format.
Invoke an XSLT developed per the mapping created in the previous step.

10. Assign <B2BDoc>B2BM_Var.

Assign values to the <B2BDoc>B2BM_Var as shown in Table 11-2.

Table 11-2 <B2BDoc>B2BM_Var Assignment Values

Element Value

<B2BDoc>B2BM_Var//B2BMHeader Contents of B2BM_HEADER variable

<B2BDoc>B2BM_Var//Payload Contents of B2B Document variable:
<B2BDoc>_Var

11. Invoke AIAB2BInterface.

Invoke the AIAB2BInterface to send the document to trading partners. Use the
<B2BDoc>B2BM_Var assigned in the previous step as input to the
AIAB2BInterface.

Invoke activity parameters as shown in Table 11-3.

Table 11-3 AIAB2BInterface Activity Invocation Parameters

Activity Name InvokeAIAB2BInterface

Input <B2BDoc>_B2BMVar

Partner Link AIAB2BInterface

Port Type B2BInterface

Operation SendB2BMessage

12. Compile the BPEL process and ensure that no errors occur. You can use JDeveloper
to deploy the BPEL process to a development server that is installed with SOA
Core Extension.

13. Test the service by using sample EBM payloads as input.

Step 2: Developing a New Provider B2B Connector Service

11-14 Developer's Guide for Oracle SOA Core Extension

How to Customize the AIA B2B Interface
As described previously in this document, the AIA B2B Interface is a reusable
composite that can be used to integrate the B2B Connector Services with Oracle B2B.
The AIA B2B Interface uses JMS-based internal delivery channels to integrate with
Oracle B2B.

The AIA B2B Interface is a unified interface between the AIA and Oracle B2B layers for
all B2BCSs. It supports operations to send B2B documents to Oracle B2B and receive
B2B documents from Oracle B2B. The benefits of using the AIA B2B Interface to
integrate with Oracle B2B are as follows.

If the choice of internal delivery channel to be used for communication between B2B
and AIA/SOA has to be changed at a later stage in the implementation, the B2BCS
code need not be modified.

If you are using legacy or third-party B2B software, the AIA B2B Interface can be
customized to add routing rules to send B2B documents to this legacy software. The
B2BM_Var//B2BMHeader/GatewayID can be used as a filter expression to choose
between Oracle B2B and third-party B2B software as the target for outbound
documents. This allows the B2BCS to be shielded from change irrespective of the
choice of B2B software.

Because this service is invoked by all outbound B2B document flows, you can
customize this composite to support any common outbound functionality, such as
audit logging, Oracle Business Activity Monitoring (BAM) instrumentation, and so
forth.

This figure illustrates the use of the AIA B2B Interface to support custom internal
delivery channels (file) and legacy B2B connectivity.

Figure 11-9 AIA B2B Interface Support for Custom Internal Delivery Channels and
Legacy B2B Connectivity

For example, you might have outbound Order documents being routed to a Fusion
Middleware Oracle B2B component, and outbound Invoice documents being routed to
an older B2B instance. To support this use case, define two routing rules: one for JMS
invocation of Oracle B2B and another for Oracle Advanced Queuing invocation of the
older B2B instance.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-15

A given B2B document instance is likely to be routed to B2B using one of the multiple
routing rules in the ProcessB2BDocument.mplan. In the highly unlikely event that a
B2B document generated by the AIA layer must be routed to multiple B2B software
instances, the routing rules in the ProcessB2BDocument.mplan mediator should be
configured for sequential invocation.

To make customizations to the AIA B2B Interface:

1. Open the SOA application, $AIA_HOME/Infrastructure/B2B/src/
AIAB2BInterfaceApp, using Oracle JDeveloper.

2. Edit the AIAB2BInterface/composite.xml file using the Composite Editor, as shown
in Figure 2.

Figure 11-10 AIAB2BInterface/composite.xml in the Composite Editor

3. Add a new adapter or web-service call required to interface to the third-party B2B
software, as shown in Figure 3.

Figure 11-11 Addition of New Web Service Call to Interface with Third-Party B2B
Software

4. Modify the AIAB2BInterface/ProcessB2BDocument.mplan file to add custom
routing rules to route outbound B2B documents to third-party B2B software, as
shown in Figure 4 and 5.

Step 2: Developing a New Provider B2B Connector Service

11-16 Developer's Guide for Oracle SOA Core Extension

Figure 11-12 AIAB2BInterface/ProcessB2BDocument.mplan in the Composite
Editor

Figure 11-13 Addition of Custom Routing Rules to AIAB2BInterface/
ProcessB2BDocument.mplan

5. Use a condition expression, as shown in example code below on the GatewayID
element to identify which B2B documents must be routed to the third-party B2B
software.

<condition language="xpath">
 <expression>$in.SendB2BM/corecom:B2BM/corecom:B2BMHeader/corecom:GatewayID
=
 'MyB2BSoftware'</expression>
</condition>

6. Use a transformation step, assign step, or both, as required to provide input to the
B2B software based on the input B2BM variable, ($in), as shown in figure below.
Support for Oracle B2B is prebuilt and does not require any modifications.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-17

Figure 11-14 Transformation Step to Provide Input to B2B Software

7. The input B2BM variable is received from the provider B2BCSs. This table provides
the information from the B2BM variable that can be used to provide input to the
B2B software.

Table 11-4 B2BM Variable Information That Can Be Used to Provide Input to B2B
Software

Input Element Description Usage While Integrating
with Oracle B2B

$in.B2BM/B2BMHeader/
SenderTradingPartner/
TradingPartnerID

Sending trading partner in
outbound flow.

Map to:
JMSProperty.FROM_PARTY

$in.B2BM/B2BMHeader/
ReceiverTradingPartner/
TradingPartnerID

Receiving trading partner in
outbound flow.

Map to:
JMSProperty.TO_PARTY

$in.B2BM/B2BMHeader/
B2BDocumentType/
TypeCode

B2B Document Type used in
the outbound flow. For
example, 850.

Map to: JMSProperty.
DOCTYPE_NAME

$in.B2BM/B2BMHeader/
B2BDocumentType/Version

B2B Document Type version
used in the outbound flow.
For example, 4010.

Map to: JMSProperty.
DOCTYPE_REVISION

$in.B2BM/B2BMHeader/
B2BDocumentType/
TypeCode/ listAgencyID

B2B standard used in the
outbound flow. For
example, X12.

Not used.

$in.B2BM/B2BMHeader/
B2BMID

Unique B2B document
identifier. Unique across all
trading partners.

Map to:
JMSProperty.MSG_ID

$in.B2BM/B2BMHeader/
Payload

Actual payload being sent to
trading partners.

JMS text payload

8. The B2BCS is responsible for supplying the value of the GatewayID element to
ensure that the desired value of the GatewayID is supplied before the AIAB2B
Interface is invoked.

9. Save changes. Compile, test, and redeploy the AIA B2B Interface.

Step 2: Developing a New Provider B2B Connector Service

11-18 Developer's Guide for Oracle SOA Core Extension

How to Annotate B2B Connector Services
To make key metadata about the B2BCS available to the Project Lifecycle Workbench
and Oracle Enterprise Repository, the composite.xml file of the B2BCS Implementation
SOA composite must be annotated in a specific manner.

To annotate B2B Connector Services:

1. Table 11-5 lists the annotation elements that must be added to the service element
composite.xml, as described subsequently.

Table 11-5 Service Annotation Elements in composite.xml

Annotation Element Description Example

AIA/Service/InterfaceDetails/
ServiceName

Name of EBS implemented by this
provider B2BCS Impl

SalesOrderEBS

AIA/Service/InterfaceDetails/
Namespace

Namespace of EBS implemented by
this provider B2BCS Impl

http://xmlns.oracle.com/
EnterpriseServices/Core/
SalesOrder/V2

AIA/Service/InterfaceDetails/
ArtifactType

EnterpriseBusinessService EnterpriseBusinessService

AIA/Service/InterfaceDetails/
Service Operation

<Verb><EBOName> UpdateSalesOrder

AIA/Service/
ImplementationDetails/
ArtifactType

ProviderB2BCSImplementation ProviderB2BCSImplementation

AIA/Service/
ImplementationDetails/
ServiceOperation/Name

<Verb><EBOName> UpdateSalesOrder

AIA/Service/
ImplementationDetails/
B2BDocument

Target B2B Document Type of this
B2BCS

855

AIA/Service/
ImplementationDetails/
B2BDocumentVersion

Target B2B Document Version of
this B2BCS

4010

AIA/Service/
ImplementationDetails/
B2BStandard

Target B2B Standard of this B2BCS X12

AIA/Service/
ImplementationDetails/
B2BStandardVersion

Target B2B Standard Version of this
B2BCS

4010

The following XML snippet, as shown in Figure 11-15, is an example of an
annotated B2BCS called X12ProcessSalesOrderReqB2BCSImpl composite.xml.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-19

Figure 11-15 Example Snippet of an Annotated B2BCS Called
X12ProcessSalesOrderReqB2BCSImpl composite.xml

2. Table 11-6 lists AIA B2B interface utility service annotation elements in
composite.xml.

Table 11-6 AIA B2B Interface Utility Service Annotation Elements in
composite.xml

Annotation Element Description

AIA/Reference/ArtifactType Enter value UtilityService

AIA/Reference/ServiceOperation/
Name

Enter value ProcessB2BDocument

The reference to the AIA B2B Interface utility service should be annotated in the
composite.xml, as shown in Figure 11-16.

Figure 11-16 AIA B2B Interface Utility Service Annotation Elements in
composite.xml Snippet

3. The $AIA_HOME/Infrastructure/B2B/src/B2BConnectors/EDIX12B2BCSApp/
X12Update SalesOrder ProvB2BCSImpl/composite.xml file has sample provider
B2BCS Impl annotations for your reference.

Step 2: Developing a New Provider B2B Connector Service

11-20 Developer's Guide for Oracle SOA Core Extension

How to Support Trading Partner-Specific Variants
This section includes the following topics:

• Supporting Trading Partner-Specific Custom Extensions

• Supporting Trading Partner-Specific XSLTs

• Supporting Trading Partner-Specific Document Types and Versions

Frequently, in B2B implementations different trading partners must support different
versions or mapping guidelines for the same B2B document. If a given B2B document
must be sent to multiple trading partners, based on the version and mapping
guideline determined for that trading partner, the B2BCS of the document can be built
to support this trading partner-specific transformation logic. Multiple ways are
available by which this can be achieved, as described in the following section.

Supporting Trading Partner-Specific Custom Extensions

If the trading partner-specific mappings are an addition to a common core mapping
that remains unchanged, explore the possibility of using the custom XSLT template
calls to have partner-specific mappings.

For more information about support for XSLT extension using callouts to custom XSLT
templates, see Developing Extensible ABCS.

In short, at the end of every business component mapped in the XSLT file, an
invocation to a custom XSLT template is made from the shipped B2BCSs, as shown in
Figure 11-17.

Figure 11-17 Business Component Mapped in the XSLT, Including an invocation
from the Shipped B2BCS to a Custom XSLT Template

The custom XSLT templates are defined in a custom XSLT file, as shown in Figure
11-18, which is included in the main XSLT.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-21

Figure 11-18 Custom XSLT Templates Defined in a Custom XSLT File

During implementation, you can add additional mappings to this custom XSLT file.
The trading partner ID can be passed as an input to the custom XSLT template call and
can be used to conditionally map to target B2B elements, as shown in Figure 11-19.

Figure 11-19 Trading Partner ID Passed as an Input to the Custom XSLT Template
Call

Supporting Trading Partner-Specific XSLTs

If the trading partner-specific mappings conflict with each other or if the partner-
specific mappings must be added at arbitrary locations in the XML document and not
just at the end of each mapping template, the previous approach of using the custom
XSLT templates to define partner-specific mappings does not meet requirements.

To meet such requirements, you can decide to develop one XSLT file for each trading
partner that needs custom mappings. You can make a copy of a shipped XSLT file, edit
it to include partner-specific mapping logic, and save it by using a partner prefix in the
filename, as shown in Figure 11-20.

Step 2: Developing a New Provider B2B Connector Service

11-22 Developer's Guide for Oracle SOA Core Extension

Figure 11-20 Copies of Shipped XSLT Files Edited to Include Partner-Specific
Mapping Logic and Saved Using a Partner Prefix in the Filename

Next, you can define a configuration file that contains information about which XSLT
file has to be used for each trading partner. For example, you can use a domain value
mapping (DVM) file to store this configuration information, as shown in Figure 11-21.

Figure 11-21 DVM File Used to Map Trading Partners to XSLT Files

In the provider B2BCS Impl BPEL process, as shown in Figure 11-22, you can do a
lookup on this DVM file, as shown in Figure 11-23, to obtain the XSLT filename, as
shown in Figure 11-24.

Figure 11-22 Provider B2BCS Implementation BPEL Process Requiring Trading
Partner-Specific XSLT

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-23

Figure 11-23 DVM Lookup to Obtain XSLT Filename

Figure 11-24 Retrieval of XSLT Filename

Supporting Trading Partner-Specific Document Types and Versions

Along with the need for trading partner-specific XSLTs, a different Document Type
may possibly be used in Oracle B2B for defining the trading partner agreements for
the same external B2B document.

For example, trading partner Global might need the 5010 version of the X12 855 B2B
document and trading partner ABC Corp might need the 4010 version of the same
document.

Using the approach described in the previous section, you can use the same provider
B2BCS Implementation to generate B2B documents for both the trading partners.

However, while the AIA B2B Interface is being invoked based on the trading partner
involved for the specific instance of the service, the corresponding B2B document
version must be specified, 4010 for Global and 5010 for ABC Corp, for example.

To support these requirements, use a DVM file similar to the one used in the previous
approach to store the B2B Document Type and Document Revision information for
each trading partner, as shown in Figure 11-25. This information can be looked up by
the BPEL process to populate the /B2BMHeader/B2BDocumentType/TypeCode
and /B2BMHeader/B2BDocumentType/Version attributes.

Figure 11-25 DVM Used to Store Trading Partner B2B Document Type and
Document Revision Information

While the configuration files described previously can be created and stored locally
within the Oracle JDeveloper project, a best-practice recommendation is to externalize

Step 2: Developing a New Provider B2B Connector Service

11-24 Developer's Guide for Oracle SOA Core Extension

these files, store them in MDS, and refer to them from your B2BCS Implementation
BPEL project using oramds lookup.

Though this approach of using DVM files to store the B2B document preference and
trading partner-specific transformation information works, the Trading Partner
information between the application and these DVM files must be kept synchronized.

Each time a new trading partner is defined in the application, a corresponding record
should be created in this DVM to store the B2B document preference of the trading
partner. A well-established administrative process to manage these changes should be
available.

How to Enable Error Handling
For more information about how to enable AIA services for error handling and
recovery, see "Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure
Components and Utilities User's Guide for Oracle Application Integration Architecture SOA
Core Extension.

In short, the following steps must be taken:

• Associate a fault-policy.xml with the B2BCS composite.

• Invoke the AIAAsyncErrorHandlingBPELProcess for business faults, as shown in
Figure 11-26 and Figure 11-27.

Figure 11-26 B2BCS Composite Defined to Invoke
AIAAsyncErrorHandlingBPELProcess

Figure 11-27 Invocation of the AIAAsyncEHService

While invoking the AIAAsyncErrorHandlingBPELProcess, the following B2B-specific
elements in the fault schema can be populated as described in Table 11-7.

Step 2: Developing a New Provider B2B Connector Service

Developing and Implementing Outbound B2B Integration Flows 11-25

Table 11-7 B2B-Specific Elements in the Fault Schema That Can Be Populated by
AIAAsyncErrorHandlingBPELProcess

Fault Element Schema Description Example

Fault/B2BMReference/
B2BMID

Unique identifier of the B2B
document

13232325

Fault/B2BMReference/
B2BDocumentType/
TypeCode

Document type of the B2B
document being generated by
the provider B2BCS

855

Fault/B2BMReference/
B2BDocumentType/Version

Document version of the B2B
document being generated by
the provider B2BCS

4010

Fault/B2BMReference/
B2BDocumentType/
TypeCode/@listAgencyID

Standard of the B2B
document being generated by
the provider B2BCS

X12

Fault/B2BMReference/
GatewayID

Name of the B2B software
being used

Oracle B2B

Fault/B2BMReference/
SenderTradingPartner/
TradingPartnerID

Sender trading partner,
mapped from the
EBMHeader

MyCompany

Fault/B2BMReference/
ReceiverTradingPartner/
TradingPartnerID

Receiver trading partner,
mapped from the
EBMHeader

Global

Figure 11-28 provides the B2B-specific elements in the corecom:Fault.

Step 2: Developing a New Provider B2B Connector Service

11-26 Developer's Guide for Oracle SOA Core Extension

Figure 11-28 B2B-Specific Elements in the corecom:Fault

The B2B details of the failed AIA service that are available in the fault instance are
logged and available for debugging the failed flow.

Step 3: Developing or Extending an Existing Enterprise Business Service
The next step, as shown in Figure 11-29, is to develop a new EBS or extend an existing
EBS to invoke the provider B2BCS developed in the previous step. For example, the
UpdateSalesOrderEBS has to be developed or modified to invoke the
X12UpdateSalesOrderProvB2BCSImpl process.

Step 3: Developing or Extending an Existing Enterprise Business Service

Developing and Implementing Outbound B2B Integration Flows 11-27

Figure 11-29 Step 3: Developing or Extending an Existing Enterprise Business
Service

For more information about creating a new EBS, see Designing and Developing
Enterprise Business Services.

How to Route Based on Trading Partner B2B Preferences
A B2B implementation may possibly exist in which different trading partners may
require that the same EBM information be sent using different B2B document
protocols.

For example, suppliers XLS Inc., New Networks, and Office Systems may require that
new purchase orders be sent using the OAG Process Purchase Order document
format, while suppliers ABC Inc. and Global may require that new purchase orders be
sent using the X12 850 document format.

To support the needs of this implementation, two B2BCSs must be developed, as
shown in Figure 11-30:

• OAGCreatePurchaseOrderB2BCSImpl, which transforms the
CreatePurchaseOrderEBM into an OAG Process Purchase Order B2B document.

• X12CreatePurchaseOrderB2BCSImpl, which transforms the
CreatePurchaseOrderEBM into an X12 850 B2B document.

The CreatePurchaseOrderEBM implementation must include routing rules to invoke
both of these B2BCSs.

Figure 11-30 B2B Implementation in which Trading Partners Need the Same EBM Data Sent Using
Different B2B Document Protocols

Step 3: Developing or Extending an Existing Enterprise Business Service

11-28 Developer's Guide for Oracle SOA Core Extension

If a small number of trading partners are involved, the filter expression in the EBS
routing rules to each of the B2BCSs can be used to route the EBM based on the trading
partner involved, as shown in Figure 11-31.

Figure 11-31 Filter Expression in the EBS Routing Rule to Each B2BCS Used to Route the EBM
Based on the Trading Partner

However, if a large number of trading partners are involved, the trading partner's B2B
preferences can be stored in an external configuration file, for example, in a DVM file,
as shown in Figure 11-32.

Figure 11-32 DVM Used to Store Trading Partner B2B Preferences

This configuration can be looked up during runtime by the EBS implementation to
determine the target provider B2BCS to be invoked, as shown in Figure 11-33.

Step 3: Developing or Extending an Existing Enterprise Business Service

Developing and Implementing Outbound B2B Integration Flows 11-29

Figure 11-33 EBS Implementation Lookup to Determine the Target Provider B2BCS
to be Invoked

Though this approach works, a need exists to keep the trading partner information
between the application and these DVM files synchronized.

Each time a new trading partner is defined in the application, a corresponding record
should be created in this DVM to store the B2B document preference of the trading
partner. A well-established administrative process to manage these changes should
exist.

Step 4: Developing or Extending an Existing Requester ABCS
This section includes the following topics:

• What You Must Know About Message Exchange Patterns

• What You Must Know About Transformations

The next step, as shown in Figure 11-34, is to develop a new requester ABCS or extend
an existing requester ABCS.

Step 4: Developing or Extending an Existing Requester ABCS

11-30 Developer's Guide for Oracle SOA Core Extension

Figure 11-34 Step 4: Developing or Extending an Existing Requester ABCS

The requester ABCS is the AIA service that is triggered from an application UI action
or business event and is the first step in the outbound B2B flow. The requester ABCS
acts on behalf of the triggering application in the AIA layer and invokes the AIA EBS.

For more information about how to design and construct a requester ABCS, see
Designing Application Business Connector Services and Constructing the ABCS.

The requester ABCS always invokes an EBS implementation and hence can be used in
both A2A and B2B integration scenarios. It is a best-practice recommendation to
anticipate that the requester ABCSs can be potentially used both in A2A and B2B
integration scenarios.

Consider the following information when developing requester ABCSs to be used in
B2B integration flows.

What You Must Know About Message Exchange Patterns
B2B integration flows are primarily processed asynchronously. Thus, while evaluating
the message exchange pattern for developing new requester ABCSs, you should
consider the possibility of their being used in B2B flows.

What You Must Know About Transformations
One of the key tasks of the requester ABCS is to transform the ABM into the canonical
EBM and use the EBM as input to invoke the AIA EBS.

While developing this transformation from ABM to EBM, remember that the
transformation should support the generation of an EBM payload that can be routed to
and used by a B2BCS. The B2B mapping guidelines described in Step 1: Identifying the
B2B Document and Analyzing Requirements should be considered to identify the
fields in the EBM that are required by the B2BCS to create the B2B documents.

A few other considerations include the following points:

• Follow the AIA recommendation to always map all available fields, instead of just
a subset of fields required for a specific integration scenario.

• External global identifiers such as UPC Product Codes and DUNS should be
mapped along with application internal identifiers.

• Reference components in the EBM should be fully mapped. For example, you
should map not just a Location Identifier, but also the actual address details,
because a remote trading partner may not be able to resolve the location identifier
to an actual location.

Step 4: Developing or Extending an Existing Requester ABCS

Developing and Implementing Outbound B2B Integration Flows 11-31

• Table 11-8 provides the fields in the EBM header must be mapped so that they can
be used to perform trading partner-specific routing in the EBS layer, as described in
the previous section.

Table 11-8 EBM Header Elements that Must be Mapped to Enable Trading Partner-
Specific Routing in the EBS Layer

EBM Header Element Description Example Value

/EBMHeader/B2BProfile/
SenderTradingPartner/
TradingPartnerID

ID of the sending trading
partner as defined in Oracle
B2B. For outbound flows, this
is the host" trading partner.

MyCompany

/EBMHeader/B2BProfile/
ReceiverTradingPartner/
TradingPartnerID

ID of the receiving trading
partner as defined in Oracle
B2B. For outbound flows, this
is the remote trading partner.

Globe Inc

At the end of this step, all of the required AIA services for developing an outbound
B2B integration flow are ready.

Step 5: Configuring Oracle B2B and Defining Trading Partner Agreements
The next step, as shown in Figure 11-35, is to create trading partner agreements in
Oracle B2B.

Figure 11-35 Step 5: Configuring Oracle B2B and Defining Trading Partner
Agreements

For more information about how to define trading partners and associate B2B
capabilities with them, see "Configuring Trading Partners" in Oracle Fusion Middleware
User's Guide for Oracle B2B.

In addition, for EDI-based outbound B2B flows, Oracle B2B can be configured for
batching outbound documents. Parameters such as the batch size and time-out can be
configured in Oracle B2B without any changes to the AIA layer.

The values used for naming trading partners in Oracle B2B should match the values
that are sent from the requester ABCS using the following fields:

• /EBMHeader/B2BProfile/SenderTradingPartner/TradingPartnerID (for Host
Trading Partner Name)

• /EBMHeader/B2BProfile/ReceiverTradingPartner/TradingPartnerID (for Remote
Trading Partner Name)

Step 5: Configuring Oracle B2B and Defining Trading Partner Agreements

11-32 Developer's Guide for Oracle SOA Core Extension

If the values provided by the source application for these fields and the trading
partner names in Oracle B2B do not match, you can maintain a DVM file that contains
the mapping between the source application's trading partner IDs and trading partner
names of Oracle B2B.

This DVM can be looked up during the transform from the ABM to the EBM in the
requester ABCS to populate the SenderTradingPartner/TradingPartnerID and
ReceiverTradingPartner/TradingPartnerID fields.

Step 6: Deploying and Configuring AIA Services
The next step, as shown in Figure 11-36, is to deploy the AIA services. You can deploy
the services to a target Oracle SOA server using Oracle JDeveloper.

Figure 11-36 Step 6: Deploying and Configuring AIA Services

If any DVM and configuration files are used by the AIA services required for the
outbound integration, you must enter data corresponding to your B2B configuration.

You can also use the Project Lifecycle Workbench application to create a bill of material
XML file for the AIA project, which can be used to autogenerate a deployment plan.
This deployment plan can be used to deploy the AIA services and resources that form
the integration project in multiple development, test, and production environments.

In addition, configure the AIA Error Handling framework and set up appropriate roles
to be notified of errors in AIA flows.

For more information about error handling, see "Setting Up Error Handling" in Oracle
Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture SOA Core Extension.

Step 7: Testing and Verifying
This section includes the following topics:

• How to Test Using CAVS

• How to Test Using Dummy Trading Partner Endpoints

The next step, as shown in Figure 11-37, is to test your newly developed or deployed
AIA services that constitute the B2B integration flow.

Step 6: Deploying and Configuring AIA Services

Developing and Implementing Outbound B2B Integration Flows 11-33

Figure 11-37 Step 7: Testing and Verifying

Before you go live with your B2B integration flows with your trading partners, AIA
recommends that you complete the following sequence of tests.

How to Test Using CAVS
If your AIA services are Composite Application Validation System (CAVS)-enabled,
you can test your AIA services using a test simulator.

Using a CAVS simulator, you can simulate the behavior of your trading partners by
sending messages to and receiving messages from a test harness, instead of your
actual trading partners. This testing can take place without any knowledge of your
trading partners.

The objective of this testing, as shown in Figure 11-38, is to verify that the AIA services
are properly developed, deployed, and configured.

Figure 11-38 B2B Integration Flow Test Using CAVS

How to Test Using Dummy Trading Partner Endpoints
This section includes the following topics:

• How to Test Using the Production Code Value Set to "Test"

• How to Test Using Dummy Business Data

Step 7: Testing and Verifying

11-34 Developer's Guide for Oracle SOA Core Extension

Another common approach to testing is to create dummy delivery channels in your
trading partner setup, as shown in Figure 11-39. For example, instead of configuring
your trading partner agreement to send outbound documents to the remote trading
partner's server, you can configure the agreement to create the outbound B2B files in a
temporary B2B file location on the server.

Figure 11-39 B2B Integration Flow Test Using Dummy Trading Partner Endpoints

In this case, if you test an outbound B2B flow, all of the components involved in the
flow are invoked, but the generated B2B document is copied to a temporary file
directory. You can review the B2B document for completeness and correctness and also
share it for review with your trading partners.

• The objective of this testing is to verify the integration between AIA services, the
application, and B2B and to verify that the configuration across these layers is
consistent.

• This testing can also take place without any knowledge of your trading partners.

How to Test Using the Production Code Value Set to "Test"

Certain B2B document protocols support a protocol envelope-level flag that can be
used to specify whether the B2B document is being sent in test or production mode.
The trading partner agreements in Oracle B2B can be configured to set this indicator to
Test mode.

Now when you trigger an outbound B2B flow, the document is sent across to your
trading partners, but the trading partner system recognizes the inbound document as
a test instance and does not pass it on to the back-end application, as shown in Figure
11-40.

Step 7: Testing and Verifying

Developing and Implementing Outbound B2B Integration Flows 11-35

Figure 11-40 B2B Integration Flow Test Using the Product code Value Set to "Test"

The objective of this testing is to verify the handshake between your B2B server and
the trading partner's B2B server. Setup of transport and messaging features such as
acknowledgment, encryption, packaging, partner and document identification, and so
forth are verified.

This approach requires that this test mechanism be discussed and agreed upon with
each of your trading partners.

How to Test Using Dummy Business Data

Finally, you can test integration from your production systems to your remote trading
partner's production systems by using dummy business data in the B2B documents
being exchanged. For example, to test end-to-end outbound Purchase Order
integration from your (buyer) system to your trading partner's (vendor) system, which
are integrated by an outbound EDI X12 850 B2B flow, place orders either using an EDI
test item created for the trading partner or by using a price of one cent for the items
being ordered.

The order request is received and processed successfully by the trading partner's
business application, as shown in Figure 11-41, however, the trading partner's business
users or rules discard the order request.

Figure 11-41 B2B Integration Flow Test Using Dummy Business Data

This approach also requires that the test mechanism be discussed and agreed upon
with each of your trading partners.

Step 8: Going Live and Monitoring
This section includes the following topics:

• Monitoring Using Oracle B2B Reports

• Monitoring Using Oracle Enterprise Manager Console

• Monitoring Using Error Notifications

Step 8: Going Live and Monitoring

11-36 Developer's Guide for Oracle SOA Core Extension

The final step, as shown in Figure 11-42, is to go live with your trading partner for the
outbound B2B document flow. The AIA and Oracle B2B deployments are duplicated in
the product servers and rolled out to the end users.

Figure 11-42 Step 8: Going Live and Monitoring

Monitoring Using Oracle B2B Reports
Oracle B2B's built-in reporting allows for the creation of the reports listed in Table 11-9.
These reports query the run-time transactions in Oracle B2B and can be used to
monitor individual transactions with trading partners.

Oracle B2B allows reports to be created and saved as report definitions, which can be
used to generate reports for specific criteria, such as View Purchase Orders exchanged
with trading partner Global, for example. You can also create ad hoc reports.

Table 11-9 Oracle B2B Report Types

Report Type Description Example Report

Business Message Report These reports provide
business messages based on
specified search criteria.

View all Purchase Order
documents received from
trading partner "Global"

Wire Message Status Report These reports enable you to
query for wire messages in
the native data formats sent
to and received from trading
partners. Wire message
reports contain transport and
protocol-related information
in addition to the business
data.

View all messages sent to
trading partner ABC Corp
including the HTTP headers.

Collaboration Status Reports These reports help you group
related individual
transactions that together
perform a task.

This report is supported only
for the RosettaNet document
protocol.

View all RosettaNet 3A4
collaborations.

Error Reports These reports help you
monitor all failed
transactions in Oracle B2B

View all messages received
from trading partner Global
that failed in Oracle B2B due
to any error.

Step 8: Going Live and Monitoring

Developing and Implementing Outbound B2B Integration Flows 11-37

For more information about how to use the reporting functionality in B2B, see
"Creating Reports" in Oracle Fusion Middleware User's Guide for Oracle B2B.

Monitoring Using Oracle Enterprise Manager Console
Oracle Enterprise Manager Console can be used to monitor the AIA flows. To monitor
the outbound B2B integration flows, you can log in to the Oracle Enterprise Manager
Console and look for instances of the requester ABCS that triggered the B2B flows.

The status of the ABCS instance, payload, and child processes can all be monitored
from the Oracle Enterprise Manager Console.

By looking up the instances of the composite AIAB2BInterface[1.0], for example, you
can view the JMS payload being passed to Oracle B2B, including the various B2B
header parameters.

Monitoring Using Error Notifications
In the case of failures in either the AIA layer or Oracle B2B, the AIA Error Handler gets
triggered. The AIA Fault Message contains the error text and description. In addition,
B2B information pertaining to the failed transaction, such as Sender, Receiver Trading
Partner, Document Type, and so forth, are also supplied in the AIA Fault.

For more information about error notifications, see "Using Error Notifications" in
Infrastructure Components and Utilities User's Guide for Oracle Application Integration
Architecture Foundation Pack.

Step 8: Going Live and Monitoring

11-38 Developer's Guide for Oracle SOA Core Extension

12
Developing and Implementing Inbound B2B

Integration Flows

This chapter provides an overview of developing and implementing inbound B2B
integration flows and describes how to identify the B2B document and analyze
requirements, add inbound routing rules to an AIA B2B interface, develop new
requester B2B connector service, develop or extend an existing Enterprise Business
Service, develop or extend an existing requester ABCS, configure Oracle B2B and
define trading partner agreements, deploy and configure AIA services and finally how
to test and go live.

This chapter discusses the following topics:

• Introduction to Developing and Implementing Inbound B2B Integration Flows

• Step 1: Identifying the B2B Document and Analyzing Requirements

• Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

• Step 3: Developing a New Requester B2B Connector Service

• Step 4: Developing or Extending an Existing Enterprise Business Service

• Step 5: Developing or Extending an Existing Provider ABCS

• Step 6: Configuring Oracle B2B and Defining Trading Partner Agreements

• Step 7: Deploying and Configuring AIA Services

• Step 8: Testing and Verifying

• Step 9: Going Live and Monitoring

Introduction to Developing and Implementing Inbound B2B Integration
Flows

Figure 12-1 shows the high-level steps involved in developing a simple inbound
business-to-business (B2B) flow from an application to trading partners using Oracle
Application Integration Architecture (AIA).

Developing and Implementing Inbound B2B Integration Flows 12-1

Figure 12-1 High-Level Steps to Develop and Implement a Simple Inbound B2B
Flow

Most of the preceding steps are described inDeveloping and Implementing Outbound
B2B Integration Flows. This chapter is referred to whenever applicable.

Step 1: Identifying the B2B Document and Analyzing Requirements
The first step in building an inbound B2B flow, as shown in Figure 12-2, is to identify
the B2B document that must be generated by the flow. As a part of this step, you must
also analyze the requirements for the AIA services that must be built or extended to
support the flow.

Figure 12-2 Step 1: Identifying B2B Document and Analyzing Service Requirements

The only differences in this step for the outbound B2B document flows and the steps
for the inbound B2B document flows are as follows:

Step 1: Identifying the B2B Document and Analyzing Requirements

12-2 Developer's Guide for Oracle SOA Core Extension

1. The source and targets in the mapping are reversed. The B2B document received
from trading partners is the source of the mapping. The AIA Enterprise Business
Message (EBM) is the target of the mapping.

2. At the end of this step:

a. The B2B document is defined in Oracle B2B.

b. The XML schema of the B2B document is uploaded in the AIA Metadata
Repository.

c. The Enterprise Business Object (EBO) and the EBM to be used in the
integration are identified.

d. Functional mapping between the B2B document and the AIA EBM is
complete.

For more information about identifying the B2B document and analyzing
requirements, see Step 1: Identifying the B2B Document and Analyzing Requirements.

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface
The next step in building an inbound B2B flow, as shown in Figure 12-3, is to add
routing rules to the AIAB2BInterface Infrastructure service.

Figure 12-3 Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

In inbound B2B document flows, the AIAB2BInterface service listens for new B2B
documents received by Oracle B2B and routes them to the requester B2B services, as
shown in Figure 12-4.

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

Developing and Implementing Inbound B2B Integration Flows 12-3

Figure 12-4 Oracle B2B Routing New B2B Documents to Requester B2B Services

The AIA B2B Interface composite has a JMS adapter to listen for new inbound B2B
documents processed by Oracle B2B. The trading partner agreement in Oracle B2B is
configured to route inbound B2B documents to the AIA_B2B_IN_QUEUE JMS queue.

The AIA B2B Interface identifies the B2B document type of the inbound B2B document
and routes the document to the requester B2B Connector Service (B2BCS)
Implementation that is responsible for processing the B2B document.

For example, if the B2B document type is OAG_Process Invoice, then the AIA B2B
Interface routes the document to the OAGProcessInvoiceRequesterB2BCSImpl service.

The input to the requester B2BCS Implementation is the B2BM element. The B2BM
element is defined in the AIAComponents/EnterpriseObjectLibrary/
Infrastructure/V1/Meta.xsd file.

The AIA B2B Interface constructs the B2BM element from the B2B document received
from Oracle B2B as described here:

• /corecom:B2BM /corecom:B2BMHeader /corecom:B2BMID

– Mapped from: B2B document JMS header property MSG_ID

– Description: The unique identifier generated by Oracle B2B for the inbound B2B
document.

This field is to correlate the AIA flow with the corresponding transaction in
Oracle B2B.

– Example: 5602359000000

• /corecom:B2BM /corecom:B2BMHeader /corecom:B2BDocumentType /
corecom:TypeCode

– Mapped from: DOCTYPE_NAME

– Description: The document type of the inbound document as identified by
Oracle B2B.

– Example: OAG_PROCESS_INVOICE

• /corecom:B2BM /corecom:B2BMHeader /corecom:B2BDocumentType /
corecom:Version

– Mapped from: DOCTYPE_REVISION

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

12-4 Developer's Guide for Oracle SOA Core Extension

– Description: The document revision of the inbound document as identified by
Oracle B2B.

– Example: 9.0

• /corecom:B2BM /corecom:B2BMHeader /corecom:SenderTradingPartner /
corecom:TradingPartnerID

– Mapped from: FROM_PARTY

– Description: The source (from) trading partner of the B2B document.

The value is the trading partner name as defined in Oracle B2B.

– Example: GlobalChips

• /corecom:B2BM /corecom:B2BMHeader /corecom:ReceiverTradingPartner /
corecom:TradingPartnerID

– Mapped from: TO_PARTY

– Description: The destination (to) trading partner to whom the inbound B2B
document was sent.

The value is the trading partner name as defined in Oracle B2B.

– Example: Acme

• /corecom:B2BM /corecom:Payload

– Mapped from: JMS payload

– Description: The actual JMS text payload that contains the B2B document sent
by the trading partner.

– Example: <?xml version="1.0"?> <PROCESS_INVOICE_002>
<CONTROLAREA>…

How to Add a New Routing Rule to the AIA B2B Interface
To add a new routing rule to the AIA B2B Interface:

1. Open the $AIA_HOME/Infrastructure/B2B/AIAB2BInterfaceApp/
AIAB2BInterfaceApp.jws application using Oracle JDeveloper.

2. Open the composite.xml file using Oracle JDeveloper, as shown in Figure 12-5.

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

Developing and Implementing Inbound B2B Integration Flows 12-5

Figure 12-5 composite.xml in Oracle JDeveloper

3. Add a new service reference to the requester B2BCS that processes the new
inbound B2B document type as shown in Figure 12-6. The next section of this
document explains how to develop requester B2BCSs.

Figure 12-6 New Service Reference Added to the Requester B2BCS that
Processes the New Inbound B2B Document Type

4. Add a wiring to the newly added service from the Receive B2BM Mediator
component in the composite as shown in Figure 12-7.

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

12-6 Developer's Guide for Oracle SOA Core Extension

Figure 12-7 Wiring Added to the Newly Added Service from the Receive B2BM
Mediator Component in the Composite

5. Choose the Mediator operation ReceiveB2BMessage as the source of the wiring
and the target as the operation exposed by the target requester B2BCS. Save your
changes.

6. Open the file ProcessInbound.mplan as shown in Figure 12-8.

Figure 12-8 ProcessInbound.mplan

7. Add a new routing rule to invoke the requester B2BCS using the service reference
added to the file composite.xml, as shown in Figure 12-9.

Step 2: Adding Inbound Routing Rules to an AIA B2B Interface

Developing and Implementing Inbound B2B Integration Flows 12-7

Figure 12-9 New Routing Rule to Invoke the Requester B2BCS

8. Add a new routing rule to the ReceiveB2BMessage operation.

9. Edit the filter operation for the newly added routing rule. Define the filter based
on the B2B document type. For example, the routing filter in Figure 12-10 ensures
that the EDI X12 Process Sales Order documents are routed to the X12
ProcessSalesOrder B2BCS Implementation.

Figure 12-10 Routing Filter Ensuring that EDI X12 Process Sales Order
Documents are Routed to ProcessSalesOrder B2BCS Implementation

10. Save your changes.

11. Deploy the modified SOA composite application.

Step 3: Developing a New Requester B2B Connector Service
This section includes the following topics:

• Introduction to Requester B2B Connector Services

• How to Identify the Message Exchange Pattern

• How to Develop a B2BCS Service Contract

• How to Store a WSDL in Oracle Metadata Services Repository

• How to Develop a B2B Connector Service

Step 3: Developing a New Requester B2B Connector Service

12-8 Developer's Guide for Oracle SOA Core Extension

• How to Annotate B2B Connector Services

• How to Support Trading Partner-Specific Variants

• How to Enable Error Handling

The next step, as shown in Figure 12-11, is to develop the requester B2BCS to support
the outbound B2B integration flow.

Figure 12-11 Step 3: Developing a New Requester B2B Connector Service

The requester B2BCS is very similar to a requester Application Business Connector
Service (ABCS), with the only difference being that it integrates with trading partners
through Oracle B2B instead of integrating with an application. Hence, AIA
recommends that you familiarize yourself with the design and development of ABCSs
(requester and provider).

For more information about developing ABCSs, see Constructing the ABCS.

Introduction to Requester B2B Connector Services
The key function provided by a requester B2BCS is to enable inbound B2B document
integration by performing the following tasks:

• Receive B2B documents sent by trading partners from Oracle B2B.

• Transform B2B documents into AIA EBMs.

• Use EBMs as request payloads to invoke AIA Enterprise Business Services (EBSs).

Figure 12-12 illustrates the processing that takes place in a simple fire-and-forget
message exchange pattern-based provider B2BCS.

Step 3: Developing a New Requester B2B Connector Service

Developing and Implementing Inbound B2B Integration Flows 12-9

Figure 12-12 Process Flow of a Simple Fire-and-Forget Message Exchange Pattern-
Based Provider B2BCS

Step-by-step instructions for developing B2BCSs are provided in the following
sections.

How to Identify the Message Exchange Pattern
Similar to outbound B2B flows, most inbound B2B flows can be modeled using the
fire-and-forget message exchange pattern.

Responses to be sent to trading partners can be modeled using separate outbound fire-
and-forget flows.

Also, depending on the protocol involved, Oracle B2B can be configured to
automatically send a confirmation or acknowledgment message to trading partners.

For more information, see How to Identify the Message Exchange Pattern.

For more information about identifying message exchange patterns, see Identifying
the MEP.

How to Develop a B2BCS Service Contract
First, define the service contract (WSDL) of the requester B2BCS. The service contract
of the provider B2BCS specifies how it is invoked by an AIA flow. The service contract

Step 3: Developing a New Requester B2B Connector Service

12-10 Developer's Guide for Oracle SOA Core Extension

specifies the B2B operation being implemented and the B2B document type that it is
capable of processing as the input request message.

For more information about creating WSDLs for ABCSs, see Defining the ABCS
Contract.

Following are the naming conventions recommended for use in the B2BCS WSDL
definitions:

• WSDL File Name:

– Naming guideline: <B2BStandard><Verb><EBO>ReqB2BCSImpl.wsdl

– Example: X12ProcessSalesOrderReqB2BCSImpl.wsdl

• Service Namespace:

– http://xmlns.oracle.com/B2BCSImpl/{Core|Industry/<IndustryName> }/
<B2BStandard><Verb><EBO>ReqB2BCSImpl/<ABCSVersion>

– Example: http://xmlns.oracle.com/B2BCSImpl/Core/
X12ProcessSalesOrderProvB2BCSImpl/V1

The ABCS Service version is independent of the B2B document/standard
version.

For more information about recommendations on versioning AIA services, see
Versioning ABCS.

• Service Name:

– Naming guideline: <B2BStandard><Verb><EBO>ReqB2BCSImpl

– Example: X12ProcessSalesOrderProvB2BCSImpl

• Port Type Name:

– Naming guideline: <B2BStandard><Verb><EBO> ReqB2BCSImplService

– Example: X12ProcessSalesOrderProvB2BCSImplService

• Operation Name:

– <Verb><EBO>

– ProcessSalesOrder

• Request Message Name:

– <Verb><EBO>ReqMsg

– ProcessSalesOrderReqMsg

How to Store a WSDL in Oracle Metadata Services Repository
As a SOA best practice, AIA recommends that all shared service artifacts, such as
WSDL and XSD files, be stored in a central location that can be accessed by multiple
services.

All of the AIA-shared artifacts are stored in the Oracle Metadata Services (MDS)
repository. Storage of shared artifacts in the MDS not only makes them globally

Step 3: Developing a New Requester B2B Connector Service

Developing and Implementing Inbound B2B Integration Flows 12-11

accessible, but also enables AIA to leverage features in MDS that support caching and
clustering.

Provider B2BCS WSDLs are stored at the following location in the MDS: /apps/
AIAMetaData/AIAComponents/B2BServiceLibrary/Connectors/wsdls/
<B2B_STANDARD> /ProviderB2BCS/ <VERSION> / <B2B_STANDARD> <VERB>
<OBJECT> ReqB2BCSImpl.wsdl

To store a WSDL in MDS:

1. Copy the handcrafted WSDL to the following location: $AIA_HOME/
aia_instances/$INSTANCE_

NAME/AIAMetaData/AIAComponents/B2BServiceLibrary

/Connectors/wsdls/<B2B_STANDARD>/RequesterB2BCS

/<VERSION>/<wsdl file>.wsdl

2. Run the UpdateMetaDataDP.xml file present in $AIA_HOME/aia_instances/
$INSTANCE_NAME/config/.

3. Using a SOA-MDS server connection to MDS, verify that AIA Metadata has been
supplied, as shown in Figure 12-13.

Figure 12-13 AIA Metadata in the MDS

4. The WSDL can now be accessed using a URL similar to the following: oramds:/
apps/AIAMetaData/AIAComponents/B2BServiceLibrary/ Connectors/wsdls/
EDI_X12/RequesterB2BCS/V1/ X12ProcessSalesOrderProvB2BCSImpl.wsdl

How to Develop a B2B Connector Service
The next step in the process is to develop the B2BCS. The requester B2BCS WSDL
created in the previous step is used as the interface while you are developing the
concrete B2BCS.

You should use Oracle JDeveloper to develop your B2BCS. Develop a composite with
a BPEL process based on the abstract WSDL created in the previous step.

Step 3: Developing a New Requester B2B Connector Service

12-12 Developer's Guide for Oracle SOA Core Extension

Following are the key activities that must be developed in the B2BCS implementation
BPEL.

To develop a B2B connector service:

1. Create a SOA Composite application containing a SOA project with a BPEL
component.

2. Choose the WSDL created in the previous step as the interface for the SOA
composite.

3. The values to be used for creating the SOA application and project are listed in
Table 12-1.

Table 12-1 Values Used to Create the SOA Application and Project

Activity Value

Application Name <B2BStandard> <Verb> <EBO> ReqB2BCSApp

Project Name <B2BStandard> <Verb> <EBO> ReqB2BCSImpl

Project Namespace http://xmlns.oracle.com/B2BCSImpl/Core/
<Standard> <Verb> <Object> ReqB2BCSImpl/V1

(Same as B2BCS WSDL namespace)

Composite Name <B2BStandard> <Verb> <EBO> ReqB2BCSImpl

Composite
Template

Composite with BPEL

BPEL Process
Name

<B2BStandard> <Verb> <EBO> ReqB2BCSImpl

Namespace http://xmlns.oracle.com/B2BCSImpl/Core/
<Standard> <Verb> <Object> ReqB2BCSImpl/V1

(Same as B2BCS WSDL namespace)

Template Base on WSDL

WSDL URL URL of B2BCS service WSDL referred from MDS

4. Define variable <B2BM>_Var.

This is the input variable to the BPEL process and is used in the receive activity.

Define the variable based on the corecom:B2BM global element defined in the
Meta.xsd.

5. Define variable EBM_HEADER of type corecom:EBMHeader.

This variable is used to store the AIA process context information and is used by
the fault-handling mechanism.

Define the variable based on the corecom:B2BM global element defined in the
Meta.xsd.

6. Define variable B2BM_HEADER of type corecom:B2BMHeader.

This variable is used to store the B2B-specific AIA process context information and
is used by the fault-handling mechanism.

Step 3: Developing a New Requester B2B Connector Service

Developing and Implementing Inbound B2B Integration Flows 12-13

Define the variable based on the corecom:B2BMHeader global element defined in
the Meta.xsd.

7. Define variable <B2BDoc>_Var using the external B2BDocument definition.

This is used as the source of the transformation from EBM. This variable is then
assigned to the <B2BDoc>B2BM_Var/Payload.

8. Define a partner link to the EBS.

This is the AIA EBS that is invoked by the requester B2BCS.

The abstract EBS WSDL can be referenced from: oramds:/apps/AIAMetaData/
AIAComponents/EnterpriseBusinessServiceLibrary/Core/<EBO>/V<x>/
<EBOName>.wsdl.

9. Transform the EBM to the B2B Document.

Use a transform activity to transform the EBM to the B2B Document format.
Invoke an XSLT developed per the mapping created in the previous step.

10. Assign B2B-specific EBMHeader variables as shown here:

• Element: corecom:EBMHeader/corecom:B2BProfile/
corecom:SenderTradingPartner/corecom:TradingPartnerID

Source B2BM XPATH: corecom:B2BM/corecom:B2BMHeader/
corecom:SenderTradingPartner/corecom:TradingPartnerID

• Element: corecom:EBMHeader/corecom:B2BProfile/
corecom:ReceiverTradingPartner/corecom:TradingPartnerID

Source B2BM XPATH: corecom:B2BM/corecom:B2BMHeader/
corecom:ReceiverTradingPartner/corecom:TradingPartnerID

This way, the sender and receiver trading-partner information identified by Oracle
B2B is passed on to the EBM.

11. Invoke the EBS.

Invoke the AIA EBS to process the EBM.

12. Compile the BPEL process and ensure that no errors occurred. You can use Oracle
JDeveloper to deploy the BPEL process to a development server that has SOA
Core Extension installed.

How to Annotate B2B Connector Services
To make key metadata about the B2BCS available to the Project Lifecycle Workbench
and Oracle Enterprise Repository, the composite.xml file of the B2BCS Implementation
SOA composite must be annotated in a specific manner.

To annotate requester B2B Connector Services:

1. Table 12-2 lists the annotation elements that must be added to the service element
composite.xml, as described subsequently.

Step 3: Developing a New Requester B2B Connector Service

12-14 Developer's Guide for Oracle SOA Core Extension

Table 12-2 Service Annotation Elements in composite.xml

Annotation Element Description Example

AIA/Service/
InterfaceDetails/Service
Operation

<Verb><EBOName> ProcessSalesOrder

AIA/Service/
ImplementationDetails/
ArtifactType

RequesterB2BCSImplement
ation

RequesterB2BCSImplement
ation

AIA/Service/
ImplementationDetails/
ServiceOperation/Name

<Verb><EBOName> ProcessSalesOrder

AIA/Service/
ImplementationDetails/
B2BDocument

B2B Document Type
processed by this B2BCS

850

AIA/Service/
ImplementationDetails/
B2BDocumentVersion

B2B Document Version
processed by this B2BCS

4010

AIA/Service/
ImplementationDetails/
B2BStandard

B2B Standard processed by
this B2BCS

X12

AIA/Service/
ImplementationDetails/
B2BStandardVersion

B2B Standard Version
processed by this B2BCS

4010

The following XML snippet, as shown in Figure 12-14, is an example of an
annotated B2BCS called X12ProcessSalesOrderReqB2BCSImpl composite.xml.

Figure 12-14 Example Snippet of an Annotated B2BCS Called
X12ProcessSalesOrderReqB2BCSImpl composite.xml

2. The reference to the AIA EBS invoked by this B2BCS should also be annotated in
the composite.xml. Annotation elements are listed in Table 12-3.

Step 3: Developing a New Requester B2B Connector Service

Developing and Implementing Inbound B2B Integration Flows 12-15

Table 12-3 composite.xml Annotations Used to Reference the AIA EBS Invoked
by the B2BCS

Annotation Element Description Example

AIA/Reference/
ArtifactType

Enter value
"EnterpriseBusinessService"

EnterpriseBusinessService

AIA/Reference/
ServiceOperation/Name

EBS operation name ProcessSalesOrder

Annotations as they appear in composite.xml are shown in Figure 12-15.

Figure 12-15 Reference to the AIA EBS Invoked by the B2BCS Annotated in the
composite.xml

For your reference, the $AIA_HOME/Infrastructure/B2B/src/B2BConnectors/
EDIX12B2BCSApp/X12Process SalesOrder ReqB2BCSImpl/composite.xml file
contains sample Requester B2BCS Impl annotations.

How to Support Trading Partner-Specific Variants
Support for Trading Partner-specific processing can be built into the requester B2BCS
in a manner similar to the way they are built into the provider B2BCS.

For more information about how to build trading partner-specific support in B2BCSs,
see How to Support Trading Partner-Specific Variants.

How to Enable Error Handling
For more information about how to enable AIA services for error handling and
recovery, see "Setting Up Error Handling" in Infrastructure Components and Utilities
User's Guide for Oracle Application Integration Architecture Foundation Pack.

In short, the following steps must be taken:

• Associate a fault-policy.xml with the B2BCS composite.

• Invoke the AIAAsyncErrorHandlingBPELProcess for business faults, as shown in
Figure 12-16 and Figure 12-17.

Step 3: Developing a New Requester B2B Connector Service

12-16 Developer's Guide for Oracle SOA Core Extension

Figure 12-16 B2BCS Composite Defined to Invoke
AIAAsyncErrorHandlingBPELProcess

Figure 12-17 Invocation of the AIAAsyncEHService

While invoking the AIAAsyncErrorHandlingBPELProcess, the B2B-specific elements
in the fault schema can be populated as shown in Table 12-4.

Table 12-4 B2B-Specific Elements in the Fault Schema That Can Be Populated by
AIAAsyncErrorHandlingBPELProcess

Fault Element Schema Description Example

Fault/B2BMReference/
B2BMID

Unique identifier of the B2B
document

13232325

Fault/B2BMReference/
B2BDocumentType/
TypeCode

Document type of the B2B
document being processed by
the requester B2BCS

855

Fault/B2BMReference/
B2BDocumentType/Version

Document version of the B2B
document being processed by
the Requester B2BCS

4010

Fault/B2BMReference/
B2BDocumentType/
TypeCode/@listAgencyID

Standard of the B2B
document being processed by
the Requester B2BCS

X12

Fault/B2BMReference/
GatewayID

Name of the B2B software
being used.

Oracle B2B

Fault/B2BMReference/
SenderTradingPartner/
TradingPartnerID

Sender trading partner,
mapped from the B2BM

MyCompany

Step 3: Developing a New Requester B2B Connector Service

Developing and Implementing Inbound B2B Integration Flows 12-17

Fault Element Schema Description Example

Fault/B2BMReference/
ReceiverTradingPartner/
TradingPartnerID

Receiver trading partner,
mapped from the B2BM

Global

Figure 12-18 provides the B2B-specific elements in the corecom:Fault.

Figure 12-18 B2B-Specific Elements in corecom:Fault

The B2B details of the failed AIA service that are available in the fault instance are
logged and available for debugging the failed flow.

Step 4: Developing or Extending an Existing Enterprise Business Service
The next step, as shown in Figure 12-19, is to develop a new EBS or use an existing
EBS that is invoked by the requester B2BCS.

Step 4: Developing or Extending an Existing Enterprise Business Service

12-18 Developer's Guide for Oracle SOA Core Extension

Figure 12-19 Step 4: Developing or Extending an Existing Enterprise Business
Service

For more information about creating a new EBS, see Designing and Developing
Enterprise Business Services.

Step 5: Developing or Extending an Existing Provider ABCS
The next step, as shown in Figure 12-20, is to develop a new or extend an existing
provider ABCS. The provider ABCS processes the AIA EBM by invoking application
APIs or web-services.

Figure 12-20 Step 5: Developing or Extending an Existing Provider ABCS

For more information about how to design and construct a provider ABCS, see
Designing Application Business Connector Services and Constructing the ABCS.

Step 5: Developing or Extending an Existing Provider ABCS

Developing and Implementing Inbound B2B Integration Flows 12-19

What You Must Know About Transformations
While you are developing this transformation from EBM to ABM, the Sender and
Receiver Trading Partner information can be mapped to appropriate fields in the ABM
to capture the source and target of the B2B message, as shown in Table 12-5.

Table 12-5 Sender and Receiver Trading Partner Fields in the EBM

EBM Header Element Description Example Value

/EBMHeader/B2BProfile/
SenderTradingPartner/
TradingPartnerID

ID of the sending trading
partner as defined in Oracle
B2B. For inbound flows, this
is the remote trading partner.

GlobalChips

/EBMHeader/B2BProfile/
ReceiverTradingPartner/
TradingPartnerID

ID of the receiving trading
partner as defined in Oracle
B2B. For inbound flows, this
is the host trading partner.

Acme

At the end of this step, all of the required AIA services for developing an outbound
B2B integration flow are ready.

Step 6: Configuring Oracle B2B and Defining Trading Partner Agreements
The next step, as shown in Figure 12-21, is to create trading partner agreements in
Oracle B2B.

Figure 12-21 Step 6: Configuring Oracle B2B and Defining Trading Partner
Agreements

For more information about how to define trading partners and associate B2B
capabilities with them, see "Configuring Trading Partners" in User's Guide for Oracle
B2B.

In addition, for EDI-based outbound B2B flows, Oracle B2B can be configured for
batch processing of outbound documents. Parameters such as the batch size and time-

Step 6: Configuring Oracle B2B and Defining Trading Partner Agreements

12-20 Developer's Guide for Oracle SOA Core Extension

out can be configured in Oracle B2B without having to make any changes to the AIA
layer.

Step 7: Deploying and Configuring AIA Services
The next step, as shown in Figure 12-22, is to deploy the AIA services. You can deploy
the services to a target Oracle SOA server using Oracle JDeveloper.

Figure 12-22 Step 7: Deploying and Configuring AIA Services

If any domain value mapping (DVM) and configuration files are used by the AIA
services required for the outbound integration, you must enter data corresponding to
your B2B configuration.

You can also use the Project Lifecycle Workbench application to create a bill of material
XML file for the AIA project, which can be used to autogenerate a deployment plan.
This deployment plan can be used to deploy the AIA services and resources that
constitute the integration project in multiple development, test, and production
environments.

For more information about generating bills of material, see Implementing Direct
Integrations.

For more information about generating deployment plans, see Implementing Direct
Integrations.

In addition, configure the AIA Error Handling framework and set up appropriate roles
to be notified of errors in AIA flows.

For more information about error handling, see "Setting Up Error Handling" in
Infrastructure Components and Utilities User's Guide for Oracle Application Integration
Architecture Foundation Pack.

Step 8: Testing and Verifying
The next step, as shown in Figure 12-23, is to test and verify. Before you go live with
your B2B integration flows with your trading partners, Oracle AIA recommends that
you complete a sequence of tests for your newly developed or deployed AIA services,
which constitute the B2B integration flow.

Step 7: Deploying and Configuring AIA Services

Developing and Implementing Inbound B2B Integration Flows 12-21

Figure 12-23 Step 8: Testing and Verifying

For more information, see Step 7: Testing and Verifying.

Step 9: Going Live and Monitoring
The final step, as shown in Figure 12-24, is to go live with your trading partner for the
outbound B2B document flow. The AIA and Oracle B2B deployments are duplicated in
the product servers and rolled out to the end users.

Figure 12-24 Step 9: Going Live and Monitoring

For more information, see Step 8: Going Live and Monitoring.

Step 9: Going Live and Monitoring

12-22 Developer's Guide for Oracle SOA Core Extension

13
Describing the Event Aggregation

Programming Model

This chapter provides an overview of the Event Aggregation programming model and
discusses how to implement it.

This chapter includes the following sections:

• Overview

• Implementing the Event Aggregation Programming Model

Overview
The Event Aggregation programming model provides a comprehensive methodology
for business use cases in which event, entity, and message aggregation is necessary.

For example, Event Aggregation may be needed in a case in which multiple events are
being raised before the completion of a business message, and each incomplete
message triggers an event, which causes a business event in the integration layer.

The Event Aggregation programming model helps to create a coarse-grained message
(event) from fine-grained messages (events) generated at discrete intervals. The
messages, which are generated at certain intervals, may be incomplete or duplicates.

The Event Aggregation programming model can be used for relationship- and time-
based aggregation.

The Event Aggregation programming model provides:

• Synchronization of an entity, providing a single, holistic view of the entity.

• Consolidation of several fine-grained events into a single coarse-grained event.

• Merging of duplicates of the same event.

• Increased performance.

Parallel simulations of fine-grained applications usually generate a large number of
messages. The overhead for sending these messages over a network can dramatically
limit the speed of a parallel simulation. In this case, event aggregation can increase the
granularity of the application and reduce the communication overhead.

The Figure 13-1 illustrates how Event Aggregation can be achieved in a business
integration scenario. Create Customer is a coarse-grained event and Create Contact,
Create Account, and Create Address are the fine-grained events that are produced by
the Event Producer. The Event Aggregator service can be used to consolidate all of
them and raise a single coarse-grained event.

Describing the Event Aggregation Programming Model 13-1

Figure 13-1 Event Aggregation Service Raising a Single Coarse-Grained Event
from Multiple Fine-Grained Events

Event Producer
The Event Producer produces the messages that are aggregated. The messages
produced could be incomplete and related to or dependent on other messages.

For example, the Event Producer could be a Siebel CRM system in which a new
Account object is created, triggering an associated event. This Account entity may
have a Contact entity as a child object, which may raise another fine-grained event
when it is created along with the Account entity.

Event Aggregator Service
The Event Aggregator Service consolidates fine-grained events and then raises a single
coarse-grained event. Implement the relationship between the Contact, Account, and
Address events using Java or PL/SQL.

There are two parts to the Event Aggregator Service.

The first part implements the actual programming logic to maintain the aggregation
and relationship between the entities.

The second part is the service wrapper that invokes this programming logic from the
external client. If the programming logic is developed using PL/SQL, then these
database objects can be exposed using a database adapter interface. If the
programming logic is developed in Java, then the Java object can be exposed using the
Web Services Invocation Framework (WSIF) interface.

Oracle recommends the use of BPEL to serve as the front end of the Event Aggregator
Service. When the Java or PL/SQL object is invoked, it may fail for various reasons, in
which case they must be handled by notifying the Event Producer. BPEL provides
fault and exception handling functionality that makes it a good choice for this
scenario.

Oracle recommends the use of Java to implement the programming logic that
maintains the relationships between entities. This is because extensibility, modularity,
and exception handling are comfortable with Java.

Consumer Service
The real event aggregation happens in the database. This is a time-based aggregation,
which means that the Consumer Service spawns a thread to poll the table object with

Overview

13-2 Developer's Guide for Oracle SOA Core Extension

the help of the database adapter and looks for the messages pushed into the table. The
polling occurs based on a configurable time interval. The Consumer Service fetches all
messages that fall into that particular time interval and passes them to the requestor
application business connector (ABC) service.

After the messages are fetched from the database, the Consumer Service deletes them.

Implementing the Event Aggregation Programming Model
Implementing the Event Aggregation programming model involves creating an Event
Aggregation Service and a Consumer Service, and implementing error handling.

Using this approach, the aggregation occurs in the database layer with the help of a
single self- referencing table and stored procedures. The self-referencing aggregation
table structure supports multilevel relationships between entities.

The stored procedures help populate the aggregation table upon appropriate event
generation. This also helps to eliminate duplicate records for first-level objects. The
stored procedure obtains an optimistic lock before updating records in the aggregation
table.

Use Case: Customer Master Data Management, with Siebel CRM

This implementation discussion is based on this use case.

In the Oracle Customer Master Data Management (MDM) Customer process
integration flows, the Siebel CRM application has create and update triggers defined
at the business layer level. Any update or create action can potentially lead to multiple
events being raised for integration. Therefore, aggregate these events and process
them in batches, instead of processing each fine-grained event individually.

These events may be raised on these business entities: Account, Contact, and Address.

These relationships between the Account, Contact, and Address entities must be
maintained throughout the aggregation:

• An Account can have one or more Contacts and Addresses attached to it.

• A Contact can have one or more Addresses attached to it.

• A Contact and Address can be shared across multiple Accounts.

Creating the Event Aggregation Service
This section discusses the creation of the Event Aggregation service, including how to:

• Create the PL/SQL objects.

• Create the database service and aggregate service.

Creating the PL/SQL objects

To create PL/SQL objects:

1. Create a table object "AIA_AGGREGATED_ENTITIES" in the database as
illustrated in Figure 13-2.

Implementing the Event Aggregation Programming Model

Describing the Event Aggregation Programming Model 13-3

Figure 13-2 Example for Creating Table Object

2. Create a stored procedure object "AIA_AGGREGATOR_PUB," which contains the
programming logic to maintain the relationships between the Contact, Account,
and Address events in the table object created in step 1 as illustrated in Figure 13-3.

Figure 13-3 Example for Creating a Stored Procedure Object

Create the Database Service and Aggregate Service

To create the database services and aggregate service:

1. Create a BPEL project to invoke the database services created in the previous
procedure as illustrated in Figure 13-4.

Implementing the Event Aggregation Programming Model

13-4 Developer's Guide for Oracle SOA Core Extension

Figure 13-4 BPEL Project to Invoke the Database Services

In case of an unavailable database, failure of a stored procedure, or any other error at
the service level, this service should implement error handling to gracefully notify the
client service.

For more information, see Implementing Error Handling for the Event Aggregation
Programming Model.

The external client invokes this BPEL service for Event Aggregation.

Oracle recommends that external clients (Siebel CRM, for example) post messages to a
persistent queue from which the Event Aggregator Service can pick up messages for
event aggregation. If implementation of this recommendation is not possible, the
Event Aggregator Service can be invoked directly from the external client.

Creating Consumer Service
To create the Consumer Service:

1. Create a consumer service with mediator composite.

Oracle recommends that you implement the Consumer Service using mediator,
unless you must perform data enrichment. Use database adapter functionality to
purge records from the database upon successful processing. Figure 13-5 illustrates
how to implement Consumer Service using Mediator Composite.

Implementing the Event Aggregation Programming Model

Describing the Event Aggregation Programming Model 13-5

Figure 13-5 Consumer Service with Mediator Composite

2. Configure the time interval for polling on the consumer service.

The real aggregation occurs based on this time interval set on the Consumer
Service. The Consumer Service fetches messages that fall into a particular time
interval and all records in the interval are processed as a batch. Figure 13-6
illustrates how to configure time interval for polling on the consumer service.

Figure 13-6 Configure the Time Interval for Polling on the Consumer Service

For information on how to configure polling interval and other configurable
properties, see "Configuring PollingInterval, MaxTransactionSize, and
ActivationInstances" in Understanding Technology Adapters.

Implementing Error Handling for the Event Aggregation Programming Model
Error handling for the Event Aggregation programming model should follow Oracle
Application Integration Architecture (AIA) error handling recommendations.

For more information about the Error Handling framework, see "Setting Up Error
Handling" in Infrastructure Components and Utilities User's Guide for Oracle Application
Integration Architecture Foundation Pack.

Implementing the Event Aggregation Programming Model

13-6 Developer's Guide for Oracle SOA Core Extension

When the Event Aggregator Service errors out, whether it is due to an unavailable
resource or an application error, the error should be handled in the Event Aggregator
Service layer and propagated to the Producer Service. If the event generated by the
Event Producer is unable to participate in the aggregation, the Event Producer should
be notified.

Oracle recommends using BPEL for the implementation of the Event Aggregator
Service layer. BPEL helps that the user has greater control over error handling.
Regardless of the programming language in which this layer is implemented, it must
be able to handle application exceptions.

If the Event Aggregator Service is implemented in PL/SQL, it should provision to
propagate the OUT parameter to the Event Producer. Defining proper OUT variables
for exception handling can be as simple as providing a reply consisting of either a
SUCCESS or FAILURE message to the Procedure Service.

If the Event Aggregator Service is implemented in Java, it should provision to
propagate the exception using the WSIF interface. Define proper exception objects to
be used in the WSIF interface.

Implementing the Event Aggregation Programming Model

Describing the Event Aggregation Programming Model 13-7

Implementing the Event Aggregation Programming Model

13-8 Developer's Guide for Oracle SOA Core Extension

14
Establishing Resource Connectivity

This chapter describes how Oracle Application Integration Architecture (AIA) services
interact with external resources and discusses inbound and outbound connectivity.
The final sections describe specific guidelines for establishing connectivity with Siebel
applications and Oracle E-Business Suite.

This chapter includes the following sections:

• Introduction to Resource Connectivity

• Modes of Connectivity

• Siebel Application-Specific Connectivity Guidelines

• Oracle E-Business Suite Application-Specific Connectivity Guidelines

• Design Guidelines

Introduction to Resource Connectivity
Participating applications drive the business processes. They are either initiators of the
business process or play roles in one or more steps in the business process. The
interactions of the participating applications with the business process can be either
outbound or inbound from the AIA layer perspective.

A business process is a combination of outbound and inbound interactions with
various participating applications.

Inbound Connectivity
Inbound means inbound into the AIA layer, as shown in Figure 14-1.

Figure 14-1 illustrates how an inbound interaction to the business process is made by a
participating application. Clicking the submit button in the order capture module
within a CRM application results in the initiation of the Order Fulfillment business
process.

• Services exposed by AIA services are invoked by proxies created by applications.
Inbound interactions with AIA might occur due to the notification or broadcast of
an event by the participating application or for retrieval of information from
external sources. For example - clicking of the 'Get Account Balance' button in a
CRM application module could result in invocation of an AIA service by sending a
SOAP message over HTTP.

• Applications push messages to JMS queues and topics. JMS servers trigger
registered JMS adapter agents and JMS adapter agents trigger AIA services. For
example, creation of a customer or submission of an order within CRM modules
could trigger the broadcast of these events to AIA in the form of messages to JMS
queues and topics.

Establishing Resource Connectivity 14-1

Figure 14-1 Example of Inbound Connectivity

Outbound Connectivity
Outbound means outbound from the AIA layer, as shown in Figure 14-2.

• AIA services invoke services exposed by applications. AIA services could invoke
the application services or the external services to retrieve additional information,
to send business events, or to request a task be done. An example is the creation of
a customer in billing application when an order is created in the CRM module or an
order is submitted for an existing customer in CRM module, but that customer
profile is not available in the billing application. Most manufacturing systems
publish an event when an item is added however these events contain minimal
information about the item. The AIA service consuming the event must invoke an
application service to get complete information about the item.

• AIA services interact with applications using JCA adapters and push messages to
JMS queues/topics. JMS servers trigger JMS adapter agents registered by
applications.

Figure 14-2 illustrates how an outbound interaction is made by the business process. A
step within that business process could result in invocation of CRM Order Capture
application to send the order status updates.

Introduction to Resource Connectivity

14-2 Developer's Guide for Oracle SOA Core Extension

Figure 14-2 Example of Outbound Connectivity

Modes of Connectivity
Participating applications use different types of mechanisms for inbound and
outbound interactions.

The following sections discuss guidelines and recommendations for participating
applications to interact with the AIA architecture.

This section includes the following topics:

• Web Services with SOAP/HTTP

• When to Use Web Services with SOAP/HTTP

• Session Management for Web Services with SOAP/HTTP

• Error Handling for Web Services with SOAP/HTTP

• Security for Web Services with SOAP/HTTP

• Message Propagation Using Queues or Topics

• Ensuring Guaranteed Message Delivery

• When to Use JCA Adapters

Modes of Connectivity

Establishing Resource Connectivity 14-3

Note:

The contents of this section are general guidelines and recommendations only.
Programming methodologies for AIA services can vary based on a
participating application's capabilities and currently, some participating
applications may not have the capabilities discussed in this section. Refer to
the relevant application-specific guides for the facilities provided.

Web Services with SOAP/HTTP
For inbound interaction, the participating application invokes the Application
Business Connector Services (ABCS) provided by AIA as Web services. The
participating application uses the ABCS WSDL for invoking the ABCS Web services.
The ABCS WSDLs are consumed by the participating application to create stubs or
proxies. These are internally invoked in the participating application leading to the
invocation of the ABCS.

AIA recommends that participating applications leverage Web services transport, as
shown in Figure 14-3, for invoking AIA services only to fetch information residing in
external systems. For example, querying the account balance details of a customer
from billing application using CRM application by a CSR or a self-service application
screen.

Figure 14-3 Illustration of Using Web Services with SOAP/ HTTP

In other types of interactions, like create customer, submit order, and so on, AIA
recommends that you use either JCA or JMS transports to ensure the interaction is
reliable and transactional. If the participating application does not have the capability
to use either JMS or JCA transports to publish events to the AIA layer, then you can
use the Web services transport, which can help in publishing the events to a queue in
the AIA layer for further processing.

Since the ABCS is developed using the schemas from the participating applications,
the outbound message format and the ABCS message format are the same.

Inbound Interaction

Inbound messages should have the following attributes:

Modes of Connectivity

14-4 Developer's Guide for Oracle SOA Core Extension

• Message ID

The Message ID is the unique identifier for a message generated by the application
and stamped on the message. For example, a customer ID or an order ID would be
unique in the payload.

• Message payload name

The name of the business object should be passed.

• Participating application instance

A unique identifier for the application instance is needed to set the cross reference
for the entity IDs, so this is also expected in the payload.

• Event session locale

The locale information from the client session provides context to the request being
made by the application. This helps in ensuring the response is in the same locale
context. The locale specific headers should be negotiated with the application
teams to decide upon the ABM header attributes. Setting and retrieving the locale
specific information is a factor in the ABCS implementation during the request and
response transformation steps done on ABM.

Outbound Interaction

For outbound interactions, the ABCS invokes the participating application APIs
exposed as Web services. The WSDLs of the participating application Web services are
consumed by the ABCS.

When to Use Web Services with SOAP/HTTP
You can leverage Web services with SOAP/HTTP to fetch information from the
applications and provide it to the requesters. They are useful when the requirement for
interaction reliability is low and operations are limited to querying the information
stores.

The message format is XML (Extensible Markup Language).

This mode of connectivity is used in AIA for:

• Request-response

• Request only

Request-Response

The SOAP client uses an HTTP GET method to request a representation of a specified
resource. The SOAP server triggers the executable and responds back with the output.
This is an idempotent action, meaning that multiple identical requests should have the
same effect as a single request.

For example, a Customer Sales Representative queries the Customer Master Data
Management system for existence of a customer record before creating a new customer
in the system.

Request Only

The SOAP client uses an HTTP POST to submit data to be processed (for example,
from an HTML form) to the identified resource. The data is included in the body of the
request. This may result in the creation of a new resource or the updates of existing

Modes of Connectivity

Establishing Resource Connectivity 14-5

resources or both. This is a non-idempotent action; therefore sending an identical
POST request multiple times may further affect state or cause further side effects.

For example, a Customer submits an order for processing from a Composite
Application UI.

Advantages of Using Web Services with SOAP/HTTP

Web services with SOAP/HTTP are:

• Platform independent

• Language independent

Disadvantages of Using Web Services with SOAP/HTTP

XML format of message processing is slower; therefore, messages must be smaller or
must leverage compression techniques.

Inherently, HTTP is stateless (retains no data between invocations); therefore, it needs
an explicit login for every call, leading to performance overhead.

The notion of atomic transactions with state management is not supported;
workarounds are session state management, where a connection can be reused for
multiple requests as discussed in Session Management for Web Services with SOAP/
HTTP.

Important Considerations for Using Web Services with SOAP/HTTP

AIA requires that the developed and deployed Web services conform to published
WS-I profiles to foster interoperability.

• Leverage WS-Security to secure message exchanges using XML Encryption and
XML Signature in SOAP; alternative is using secure HTTP (HTTPS).

• Leverage WS-Addressing to insert address in the SOAP header.

• Leverage WS-ReliableMessaging to reliably deliver messages between distributed
applications in the presence of software component, system, or network failures.

Session Management for Web Services with SOAP/HTTP
To overcome the disadvantage of HTTP being stateless and unable to support atomic
transactions, session management is needed. This section includes the following
topics:

• Session Types

• SessionToken

• Session Pool Manager

Session Types

The three types of sessions are:

• None

A new session is opened for each request and then closed after a response is sent
out.

Modes of Connectivity

14-6 Developer's Guide for Oracle SOA Core Extension

• Stateless

A new session is opened for an initial request, and the session remains open for
subsequent requests. Re-login occurs automatically (transparent to the user) if the
session is closed. UsernameToken and PasswordText must be included as SOAP
headers in the initial request to open a stateless session.

• Stateful

A new session is opened for an initial request, and the session remains open for
subsequent requests. Re-login does not occur automatically if the session is closed.
UsernameToken and PasswordText must be included as SOAP headers in the
initial request to open a stateful session.

For Stateless or Stateful modes, Web services are expected to return a SessionToken in
the SOAP: HEADER. This depends on the application implementation.

SessionToken

A SessionToken is the encryption of the Session ID, UserToken, plus PasswordText.

For each Stateless or Stateful call, an updated SessionToken is returned. This is as a
safety measure against replay attacks.

The process of updating the SessionToken does not close the session. Therefore, for the
next call with the updated session token there is no re-login. The session remains open.
The Session is closed when a call is posted with a Session Type set to None or a
timeout occurs. After a second call you have two Session Tokens: the one returned on
first call and the updated one from the second call. At this point either of these
SessionTokens can be sent for a third call (which returns a third SessionToken). Posting
a call with Session Type set to None terminates the Session ID, so all these Session
Tokens become invalid.

URL and SOAP Header for the Siebel Application Examples

Example 14-1, Example 14-2, and Example 14-3 provide the URL and SOAP header for
the Siebel application examples.

The SOAP header looks like this:

The response looks like this:

Example 14-1 URL for Calling the Siebel Application and Passing Login Information
in the SOAP Header

http://sdcp1952i028.corp.siebel.com/eai_enu/start.swe?SWEExtSource=
SecureWebService&SWEExtCmd=Execute&WSSOAP=1

Example 14-2 SOAP Header

<soapenv:Header>
<UsernameToken xmlns="http://siebel.com/webservices">rreddy</UsernameToken>
<PasswordText xmlns="http://siebel.com/webservices">rreddy</PasswordText>
<SessionType xmlns="http://siebel.com/webservices">Stateless</SessionType></
soapenv:Header>

Example 14-3 Response to SOAP Header

<SOAP-ENV:Header>
<siebel-header:SessionToken
xmlns:siebel-header="http://siebel.com/webservices">0f2cnvf0Ii5qsp-zk-
SEyjl2p0JD-QdYLt1LYvARXQMZfAL9YL.THekJHI1cVjZbBGQckQN.

Modes of Connectivity

Establishing Resource Connectivity 14-7

cIfOGPKWKwUd6E0D4LD.VS.CKWsXw...</siebel-header:SessionToken>
</SOAP-ENV:Header>

Session Pool Manager

For business integration flows that require a high number of concurrent request-
response calls to applications, AIA recommends that you send and receive session
token information rather than sending user credentials on each call.

• The Session Pool Manager is a service that manages a pool of session tokens to be
reused for subsequent requests.

• The sessions are persisted either in memory or in a database.

• The login credentials and URLs are configured by an administrator in the Session
Pool Manager.

The implementation of the Session Pool Manager is application-specific, taking into
consideration the Web service framework implementations.

Error Handling for Web Services with SOAP/HTTP
This section discusses error handling for Web services with SOAP/HTTP:

• For Inbound Connectivity

• For Outbound Connectivity

• Request-Response and Request-Only System Errors

• Request-Response Business Errors

For Inbound Connectivity

Participating applications should have the capability to consume WSDLs with fault
messages defined.

The WSDLs provided to participating applications are generated for the coarse-
grained request-response services created using BPEL (ABCS). The input and output
payloads for these services are schemas provided by the participating applications.
Fault schemas provided by applications aid in incorporating them in the definitions of
the services (WSDLs).

For Outbound Connectivity

The WSDLs of the participating application services are consumed by the AIA
services. The error handling depends on the message exchange pattern.

Request-Response and Request-Only System Errors

• Call from the participating application not successful

The AIA layer returns HTTP 4xx Client Error and the participating applications
must have the mechanism to resubmit manually or automatically.

Example: FMW is down and AIA service is not accessible.

• Call from the participating application successful but system resource not
accessible

Modes of Connectivity

14-8 Developer's Guide for Oracle SOA Core Extension

The AIA layer returns 5xx Server Error and the participating applications must
have the mechanism to resubmit manually or automatically.

Example: From the AIA service execution, the cross-reference database is not
accessible.

Request-Response Business Errors

• WSDL of the participation application service has named fault

In this case, the WSDL has a named fault with a specified fault message format.
The AIA service, on encountering a business error, puts the error information in the
fault message and reply back to the calling service. The participating application
takes action accordingly.

Example: An order with invalid options is pushed by CRM application to ERP
application and fails validation in the ERP application. Upon receiving the fault,
the AIA service constructs an appropriate error message, transforms it to the fault
schema of the CRM application, and sends it back as a named fault.

• WSDL of the participation application service has no named fault

This case has two possibilities:

– WSDL response message has component and elements for specifying error

In this case, the AIA service, on encountering a business error, would put the
error information in the response message fault component and elements and
reply back to the calling service. The participating application takes action
accordingly.

– WSDL specifies no valid way for receiving fault information

Two options:

◆ Send back the fault as a SOAP fault if the FMW component used for the AIA
service supports it.

◆ Model the interaction as Request-Only and make provisions for a separate
participating application Web service to receive the result.

Security for Web Services with SOAP/HTTP
The participating applications should receive authentication information in WS
Security username token profile format. They should be able to design and decrypt the
request and sign and encrypt the response. They should preferably receive
authorization information in xacml format inside SOAP headers.

Message Propagation Using Queues or Topics
Participating applications can enqueue messages to queues (JMS, AQ, MQ, MSMQ,
and so on) for inbound interactions. The participating applications construct messages
for various events raised and enqueue the messages into named queues. The AIA
services subscribing to these queues are triggered. These are asynchronous in nature.
Publishing of a message into a queue should be part of the same transaction that
occurred within the application.

Participating applications also can dequeue messages from queues (JMS, AQ, MQ,
MSMQ, and so on) for outbound interactions. AIA services construct messages for
various events raised and enqueue the messages into named queues. The participating

Modes of Connectivity

Establishing Resource Connectivity 14-9

applications subscribing to these queues de-queue and process the messages. These
are asynchronous in nature. Publishing of a message into a queue should be part of
same transaction that occurred within the AIA service.

The queuing mechanisms are asynchronous in nature. They consist of one-way calls.

Event Notification Without Payloads

For event notifications without payloads, the ABCS adapter that is subscribing to or
polling the events pulls out the message from the participating application. A series of
events are triggered, but there is no guarantee that the snapshot of the updated entity
pulled from the participating application corresponds to the event. AIA suggests that
events be user-triggered so that the data integrity is not compromised. Message
sequencing is not possible in this case.

To ensure the guaranteed delivery of the event notifications, these notifications should
be able to receive an acknowledgment from AIA layer and the participating
applications should be able to resend or do proper error handling of these event
notifications. All these events should be preserved and aggregated based on the ID or
timestamp in the AIA layer and further processing should be done at regular intervals
to ensure the data integrity.

Events Leading to Message Queuing

When messages are queued because of events raised, the messages capture the
snapshot of the entity state. If there are a series of operations on an entity in close
succession, a series of messages for the same entity with different states arrive at the
queue. Due to network latencies or errors in messages being processed, the ordering of
messages in such a situation cannot be guaranteed.

AIA services can process the messages in the correct sequence if some requirements
are fulfilled.

• Requirements for sequencing of messages

For the messages to be sequenced, there should be a defined set of messages that
must be sequenced. In addition, every message should be identifiable as a part of a
sequence.

• Identifier for the set of messages to be sequenced

A named parameter like a Group ID is defined. All the messages having a common
value are part of the same group or set of messages to be sequenced.

• Identifier for the message to be sequenced

A named parameter like a Sequence ID is defined. The value for this parameter
can be a number or date-time. This value determines the position of each message
in a sequence.

When to Use Message Propagation Using Queues or Topics

Meeting either of these two criteria leads to using message propagation using queues/
topics:

• Must break processes into atomic transactions

• Event triggering system cannot wait till the message is processed

Modes of Connectivity

14-10 Developer's Guide for Oracle SOA Core Extension

Types of Queues

The two types are:

• Queues

• Topics

Queues

A Queue is a persistent storing mechanism designed for holding elements before
processing.

Points to note:

• Queues are point-to-point.

• Only one consumer gets the message.

• The producer does not have to be running at the time the consumer consumes the
message, nor does the consumer have to be running at the time the message is sent.

• Every message successfully processed is acknowledged by the consumer.

Considerations for Using Queues

When using queues, consider the following:

• AIA recommends that you use WLSJMS Queues for inbound and outbound
interactions with participating applications.

• If the application is not compatible or does not have the ability to send or receive
messages to and from AIA using WLSJMS, then any other supporting messaging
should be used. For example, AQJMS or TIBCOJMS, and the required foreign JMS
server setup should be done on native WLSJMS to interact with the applications.

• AIA recommends that you configure a file-based persistent store for WLSJMS
queues. If you must use the database persistence for bulk messages, or for policy or
business requirements, configure database persistence. Configuring the persistent
store as file-based or database-based can be decided during deployment time.

• The SOA Core Extension installation driver automatically creates the error queues
for each queue.

• To generate the error queue name, the SOA Core Extension deployment plan
generator scripts use the resource name from annotations to get the queue or topic
name and then append "_ErrorQ" as suffix. For example, for the
"AIASalesOrderQueue", the generated error queue would be
"AIASalesOrderQueue_ErrorQ".

• The SOA Core Extension installation driver uses the deployment plans to ensure
creating, configuring, or assigning the generated error queue name for each JMS
queue that it creates on WLS.

• SOA Core Extension creates one generic "non-XA" connection factory for
connecting to all the error queues from the error resubmission utility. The name of
the generic connection factory is "AIAErrorQueueConnectionFactory".

Modes of Connectivity

Establishing Resource Connectivity 14-11

• The generic error connection factory is created during the SOA Core Extension
install. The error queues generation happens during the Pre-Built Integration
installation based on the annotations.

• For the integration flow milestones, AIA recommends that you use the WLSJMS
Queues with file-based persistent store.

Topics

A topic is a persistent storing mechanism designed for holding elements before
processing. For processing, messages are delivered to multiple subscribers.

Points to note:

• Multiple consumers can get the message.

• A timing dependency exists between publishers and subscribers. The publisher has
to create a subscription in order for clients to be able to subscribe. The subscriber
has to remain continuously active to receive messages, unless it has established a
durable subscription. In that case, messages published while the subscriber is not
connected are redistributed whenever it reconnects.

• For the publish-subscribe model, AIA recommends that you use WLSJMS topics.

Ensuring Guaranteed Message Delivery
Guaranteed message delivery means a message initiated from the sender system is
persisted until it is successfully delivered to and acknowledged by the receiver, if
acknowledgment is expected. This delivery method ensures that messages are not lost
under any circumstance.

The sender and receiver are not necessarily the participating applications. Rather, they
are logical milestones in a business process. Multiple milestones may exist, as
illustrated in Figure 14-4 and Figure 14-5.

Figure 14-4 Example of Multiple Milestones in a Business Process (1 of 2)

Modes of Connectivity

14-12 Developer's Guide for Oracle SOA Core Extension

Figure 14-5 Example of Multiple Milestones in a Business Process (2 of 2)

• Temporary unavailability of any hardware or software service does not result in a
lost message or a delivery failure, ensuring that the message is delivered.

• The Error Handling framework provides a way for the message to be persisted
until the hardware or software service becomes available for retry, and to reprocess
the message after correction or initiate a new message after discarding the existing
message.

• Message delivery is ensured by treating the message processing between any two
integration milestones as a unit of work and binding it in a single global
transaction.

When to Use Transaction Boundaries

Use transaction boundaries when:

• Different components are involved in the processing of messages. They can be JMS
consumer adapter services, BPEL processes, Mediator services, cross reference calls,
and JMS Producer adapter services.

• Global transactions are enabled across all the components, and the transaction
boundary is established between the integration milestones, which ensures that the
messages are persisted in the source milestone until delivered to the target
milestone.

When to Use JCA Adapters
Use JCA adapters when the application has the implementation of an adapter based
on the Oracle FMW-supported JCA specifications. These adapters can be purchased
from Oracle certified third-party vendors if they support the required JCA
specifications.

JCA adapters should be transactions enabled. To ensure guaranteed delivery and get
the participating application to enlist in the XA transactions, the JCA adapter and the
application should build the capabilities which are required for building the AIA
composite business processes.

The JCA adapter can be a queue or topic adapter for AQ or JMS. Also, the JCA adapter
can expose the business object APIs of a particular application. The granularity of the
API demands chatty conversations with the participating application. AIA
recommends that an application should expose the coarse-grained API (though it

Modes of Connectivity

Establishing Resource Connectivity 14-13

might call multiple fine-grained APIs in the application's implementation). This
exposure avoids chatty conversations and improves the overall performance for a
business transaction.

For more information about JMS Adapters, see Administering JMS Resources for Oracle
WebLogic Server.

Siebel Application-Specific Connectivity Guidelines
The following sections discuss how to establish inbound and outbound connectivity
with Siebel applications:

• Inbound: Siebel Application Interaction with AIA Services

• Web Services with SOAP/HTTP

• Creating JMS Consumers to Consume Siebel Messages from JMS Queues/Topics

• Outbound - Siebel Application Interaction with AIA Services

• Web Services with SOAP/HTTP

Inbound: Siebel Application Interaction with AIA Services
Siebel applications present requests to AIA services when the Siebel application is the
driving application initiating business processes, business activities, and tasks. The
Siebel application can either invoke AIA services exposed as Web services or push
messages directly to JMS queues triggering AIA JMS consumers.

The format of the requesting messages can either be native to Siebel or conform to the
AIA Enterprise Business Objects (EBO).

If the format is native, Siebel Tools generate schemas for the Siebel Integration Objects
and provide for creating AIA services.

For more information, see Integration Platform Technologies: Siebel Enterprise Application
Integration.

Web Services with SOAP/HTTP
Siebel Tools (Siebel IDE) needs AIA service WSDLs. Siebel Tools introspects the
WSDLs and generates proxies to invoke AIA services at runtime. Siebel Tools
generates schemas for the Siebel Integration Objects, and these are used to develop
AIA requester ABCS.

Perform the following tasks as part of the AIA Project Management Lifecycle for the
Service Conception and Definition phase and the Service Design and Construction
phase.

Tasks for Solution Architects in the Service Conception and Definition phase:

1. Identify the requester ABCS for the Siebel application and add them to the AIA
project definition.

2. For new services, work with business analysts to capture the requirements in
detail.

3. For existing services, work with business analysts to capture details of changes to
be carried out.

Siebel Application-Specific Connectivity Guidelines

14-14 Developer's Guide for Oracle SOA Core Extension

4. Work with developers and drive the design of the services.

5. Finalize the format of the message.

6. Finalize the WSDL of the AIA requester ABCS.

7. Ensure the metadata of the service is captured in the Oracle Enterprise Repository.

8. Add the service to the deployment plan of the AIA project definition.

Developer Tasks in the Service Design and Construction Phase
Tasks for Developers in the Service Design and Construction phase:

1. Analyze the Siebel requester Application Business Service definition provided by
the Solution Architect.

2. Work with Siebel Application development and discuss the possible design.

3. Finalize the content of the message from Siebel.

4. Get the schema of the message from Siebel and ensure the following:

a. TargetNameSpace - If higher than version 0, must have suffix V<N> where V
is abbreviation for version and N is the version number. If there is no version
number, it is considered to be version 0. Example 14-4 provides an example of
version 1.

b. Custom Attributes - Attributes in Example 14-5 are required:

A sample of custom attributes is provided in Example 14-6.

5. Construct a requester ABCS.

6. Provide the WSDL from this service to the Siebel Application development team.

Example 14-4 Example of a Version 1 TargetNameSpace

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema targetNamespace="
http://siebel.com/asi/V1" xmlns:xsd=http://www.siebel.com/xml/SWICustomerPartyIO

Example 14-5 Required Custom Attributes

<xsd:attribute name="Language" type="xsd:string"/>
<xsd:attribute name="Locale" type="xsd:string"/>
<xsd:attribute name="MessageId" type="xsd:string"/>
<xsd:attribute name="EnterpriseServerName" type="xsd:string"/>

Example 14-6 Sample Custom Attributes

<xsd:complexType name="ListOfSwicustomerpartyio">
<xsd:sequence> <xsd:element name="Contact" type="xsdLocal:Contact" minOccurs=
"0" maxOccurs="unbounded"/></xsd:sequence>
 <xsd:attribute name="Language" type="xsd:string"/>
 <xsd:attribute name="Locale" type="xsd:string"/>
 <xsd:attribute name="MessageId" type="xsd:string"/>
 <xsd:attribute name="EnterpriseServerName" type="xsd:string"/
</xsd:complexType>

Siebel Application-Specific Connectivity Guidelines

Establishing Resource Connectivity 14-15

Creating JMS Consumers to Consume Siebel Messages from JMS Queues/Topics
Siebel Tools generates schemas for the Siebel Integration Objects, and these are used to
develop AIA requester ABCS.

Perform the following tasks as part of the AIA Project Management Lifecycle, during
the Service Conception and Definition phase and the Service Design and Construction
phase.

Tasks for Solution Architects in the Service Conception and Definition phase:

1. Analyze the message to be pushed by the Siebel application.

Since the Siebel application pushes the message using the Siebel Web Service
framework, it is wrapped in the <SiebelMessage/> envelope. This must be stripped
off in the JMS consumer.

2. Create the definition of JMS consumer solution component in the AIA Lifecycle
Workbench and mark it as of suitable asset type.

Developer Tasks in Service Design and Outline Construction Phase
Tasks for Developers in Service Design and Outline Construction phase:

1. Create a JMS Consumer Service Composite to be triggered by the message in the
JMS queue and invoke the above ABCS.

2. Identify the name of the Queue.

3. Use the SOA Mediator component to create the adapter composite.

4. Annotate the composite.xml.

For more information, see Implementing the Event Aggregation Programming
Model.

5. Harvest to Oracle Enterprise Repository.

For more information, see Implementing Direct Integrations.

Outbound - Siebel Application Interaction with AIA Services
Siebel applications accept requests from AIA services when an action or event in the
Siebel application is part of business processes, business activities, or tasks. AIA
services can either invoke the Siebel application exposed Web services or push
messages directly to JMS queues triggering Siebel JMS consumers.

The format of the accepting messages can either be native to Siebel or conform to the
AIA Enterprise Business Objects (EBO). If the format is native, Siebel Tools generates
WSDLs for the Siebel Web services and provides for consumption by AIA services.

Web Services with SOAP/HTTP
Siebel Tools (Siebel IDE) generates Web Service WSDLs that are used to develop AIA
Provider ABCS.

Perform the following tasks as part of the AIA Project Management Lifecycle for the
Service Design and Construction phase:

Tasks for Developers in Service Design and Construction phase:

Siebel Application-Specific Connectivity Guidelines

14-16 Developer's Guide for Oracle SOA Core Extension

1. Analyze the Siebel Provider ABCS definition provided by Solution Architect.

2. Work with Siebel Application development and discuss the possible design of the
needed Web services.

3. Finalize the content of the message to Siebel.

4. Get the WSDL of the Web Service and the accompanying schema from Siebel
application team.

5. Put them in relevant folders in the MDS under AIAMetaData/
ApplicationObjectLibrary.

6. Complete development of the Siebel provider ABCS.

Session Management

Siebel Web Service Framework supports Non and Stateless type sessions. To have a
different session type, you must add SessionType in the SOAP Header.

Siebel Authentication and Session Management SOAP headers can be used to send
and receive user credentials and session information. Username and password can be
sent for login that invokes one of the following sessions:

• One that closes after the outbound response is sent.

• One that remains open after the response is sent.

For more information, see:

• Integration Platform Technologies: Siebel Enterprise Application Integration, "Web
Services," Examples of Invoking Web Services

• Integration Platform Technologies: Siebel Enterprise Application Integration, "Web
Services," Mapping the xsd:any Tag in the XML Schema Wizard

• Oracle Application Integration Architecture Pre-Built Integrations: Utilities Guide,
"Session Pool Manager"

Use the Stateless type for session management. Stateless keeps the Siebel
session persistent.

Siebel Web Service Framework Stateless Session is independent of the Web server.

Every response has a new SessionToken that must be used in the next request.

Oracle E-Business Suite Application-Specific Connectivity Guidelines
The following sections discuss how you can establish inbound and outbound
connectivity with Oracle E-Business Suite (E-Business Suite) applications:

• Inbound: E-Business Suite Application Interaction with AIA Services

• Concurrent Program Executable

• Business Event Subscription (JCA Connectivity Using OAPPS Adapter)

• Outbound: Oracle E-Business Suite Application Interaction with AIA Services

Oracle E-Business Suite Application-Specific Connectivity Guidelines

Establishing Resource Connectivity 14-17

Inbound: E-Business Suite Application Interaction with AIA Services
The E-Business Suite application sends requests to AIA services when E-Business Suite
is a driving application initiating business processes, business activities, or tasks. E-
Business Suite can either invoke AIA services exposed as Web services with the help of
concurrent program executable or raise business events to the AIA layer through JCA
Adapter (Oracle Apps Adapter). JCA Adapter should be configured to subscribe for a
particular business event.

The format of the requesting messages can either be native to E-Business Suite
Application Business Message (ABM) or conform to the AIA Enterprise Business
Message (EBM).

Concurrent Program Executable
E-Business Suite needs AIA service WSDLs. E-Business Suite should generate proxies
and use them in the concurrent program executable to invoke AIA Services at runtime.
E-Business Suite should generate the schemas (ABMs) which are used to define the
contracts (WSDLs) between AIA and E-Business Suite and to develop AIA requester
ABCS.

Perform the following tasks as part of the AIA Project Management Lifecycle for the
Service Conception and Definition phase and the Service Design and Construction
phase:

Tasks for Solution Architects in Service Conception and Definition Phase:

1. Identify the requester ABCS for E-Business Suite and add them to the AIA project
definition.

2. For new ABCS, work with business analysts to capture the requirements in detail.

3. For existing ABCS, work with business analysts to capture details of extensions to
be carried out.

4. Work with developers and drive the design of the ABCS.

5. Choose the right connectivity based on the E-Business Suite capability to
communicate the required ABM to AIA based on the business requirements: Select
Concurrent Program Executable or Business Event Subscription.

6. Finalize the format of the message (E-Business Suite ABM).

7. Finalize the contract between E-Business Suite and AIA, that is, define the WSDL of
the AIA requester ABCS.

8. Define and finalize the error or fault handling message format between E-Business
Suite and AIA.

9. Define the error handling mechanism and the style of AIA errors to be displayed
and logged for the E-Business Suite application user.

10. Finalize on the MEP between E-Business Suite and AIA.

Best Practices and Design Asynchronous Patterns
Follow Best Practices and Design Asynchronous Patterns to Avoid Long Running
Transactions

Oracle E-Business Suite Application-Specific Connectivity Guidelines

14-18 Developer's Guide for Oracle SOA Core Extension

1. Finalize on the type of acknowledgment for asynchronous operations.

2. Ensure the metadata of the service is captured in the Oracle Enterprise Repository.

3. Add the service to the deployment plan of the AIA project definition.

Tasks for Developers in Service Design and Construction phase:

4. Analyze the E-Business Suite requester ABS definition provided by solution
architect.

5. Work with E-Business Suite development and discuss the possible design.

6. Finalize the content of the message from E-Business Suite.

7. Get the schema of the message from E-Business Suite and ensure the following:

TargetNameSpace - If higher than version 0, must have suffix V<N> where V is
abbreviation for version and N is the version number. If there is no version
number, it is considered to be version 0. Example 14-7 provides an example of
version 0.

8. Construct a requester ABCS.

Provide the WSDL from this service to the E-Business Suite development team.

Example 14-7 Example of a Version 0 TargetNameSpace

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xmlns.oracle.com/ebiz/CurrencyExchange"
xmlns:db="http://xmlns.oracle.com/ebiz/CurrencyExchange"
elementFormDefault="qualified">
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/db/top/CreatePayable
InvoiceListEbizDBAdapterV1"
xmlns=http://xmlns.oracle.com/pcbpel/adapter/db/top/CreatePayableInvoiceList
EbizDBAdapterV1

Business Event Subscription (JCA Connectivity Using OAPPS Adapter)
Subscription for Enterprise Business Service (EBS) Workflow business events can be
achieved by having the Business Event Adapter (OAPPS adapter) available in Oracle
JDeveloper as a plug-in, which can be used to invoke any service to raise a business
event in E-Business Suite. A WF_BPEL_Q queue gets created as a subscription to the
event and the adapter reads the events from the WF_BPEL_Q as and when a message
arrives in the queue it triggers the adapter service.

E-Business Suite should generate the schemas (ABMs), which are used to define the
contracts (WSDLs) between AIA and E-Business Suite and to develop AIA requester
ABCS.

For some business objects, the ABMs generated have only event information. In such
situations, the business object ID is extracted from the event information published
and E-Business Suite is queried to get the whole object.

Perform the following tasks as part of the AIA Project Management Lifecycle for the
Service Conception and Definition phase and the Service Design and Construction
phase:

Tasks for Solution Architects in Service Conception and Definition Phase:

Oracle E-Business Suite Application-Specific Connectivity Guidelines

Establishing Resource Connectivity 14-19

1. Identify the requester ABCS for E-Business Suite and add them to the AIA project
definition.

2. For new ABCS, work with business analysts to capture the requirements in detail.

3. For existing ABCS, work with business analysts to capture details of extensions to
be carried out.

4. Work with developers and drive the design of the ABCS.

a. Choose the best connectivity based on the E-Business Suite capability to
communicate the required ABM to AIA based on the business requirements:
Select Concurrent Program Executable or Business Event Subscription.

b. Finalize the format of the message (ABM).

c. Finalize the contract between E-Business Suite and AIA. Define the WSDL of
the AIA requester ABCS.

d. Define and finalize the error or fault handling message format between E-
Business Suite and AIA.

e. Define the error handling mechanism and the style of AIA errors to be
displayed/logged/alert mechanism to E-Business Suite user.

f. Finalize on the MEP between E-Business Suite and AIA.

g. Follow the best practices and design asynchronous patterns to avoid long
running transactions.

h. Finalize on the type of acknowledgment for asynchronous operations.

5. Ensure the metadata of the service is captured in the Oracle Enterprise Repository.

6. Add the service to the deployment plan of the AIA project definition.

Tasks for Developers in Service Design and Construction Phase:

1. Analyze the E-Business Suite requester ABCS definition provided by the solution
architect.

2. Work with E-Business Suite development and discuss the possible design.

3. Finalize the content of the message from E-Business Suite.

4. Get the schema of the message from E-Business Suite and ensure the following:

TargetNameSpace - If higher than version 0, must have suffix V<N> where V is
abbreviation for version and N is the version number. If there is no version
number, it is considered to be version 0. Example 14-8 provides an example of
version 1:

5. Construct a requester ABCS.

6. Provide the WSDL from this service to the E-Business Suite development team.

7. Create an E-Business Suite Adapter Service Composite to be triggered by the
business event in E-Business Suite and invoke the JMS producer service.

8. Identify the connection factory name and the JNDI reference.

Oracle E-Business Suite Application-Specific Connectivity Guidelines

14-20 Developer's Guide for Oracle SOA Core Extension

9. Identify the business event to be subscribed.

10. Identify the schema to be confirmed for the incoming message or business event.

11. Use the SOA Mediator component to create the adapter composite.

12. Identify the target queue name, connection factory name, and the JNDI reference.

13. Annotate the composite.xml.

For more information, see Implementing the Event Aggregation Programming
Model.

14. Harvest to Oracle Enterprise Repository.

For more information, see Implementing Direct Integrations.

Example 14-8 Example of a Version 1 TargetNameSpace

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xmlns.oracle.com/ebiz/CurrencyExchange"
xmlns:db="http://xmlns.oracle.com/ebiz/CurrencyExchange"
elementFormDefault="qualified">
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/db/top/CreatePayable
InvoiceListEbizDBAdapterV1"
xmlns=http://xmlns.oracle.com/pcbpel/adapter/db/top/CreatePayableInvoiceList
EbizDBAdapterV1

Outbound: Oracle E-Business Suite Application Interaction with AIA Services
The E-Business Suite application accepts requests from AIA services when AIA
service, composite business process, or Enterprise Business Flow is initiating a request
to E-Business Suite. AIA can invoke E-Business Suite in one of the following ways:

• A PL/SQL procedure or function can be invoked using database or Oracle Apps
Adapter. These adapters are available as plug-ins in Oracle JDeveloper. Oracle
Apps Adapter is a wrapper over DB Adapter where it sets the FND Apps context
before invoking the PL/SQL procedure/function.

• Invoke a JAVA based Web Service exposed using Business Service Objects (BSO).In
Oracle- E-Business Suite, there is no direct way to expose a JAVA API as a service
hosted on Oracle- E-Business Suite application server. However, it is possible to
expose Oracle Application Development Framework Application Modules as
services using the BSO feature provided by Oracle Applications tech-stack. These
services come up in Integration Repository (IRep) and can be invoked as service
from remote applications.

For more information about BSO, see Developing Fusion Web Applications with Oracle
Application Development Framework.

• Loading data into Interface tables and calling a concurrent program to process the
data. AIA can populate data into EBS interface tables using DB/Apps adapter and
then call a concurrent program or post-processing APIs using DB/Apps adapter to
process this data.

• A DB adapter can be made to poll from Oracle- E-Business Suite tables to initiate
integration services thereof. A DB adapter must be configured with the help of the
JDeveloper wizard by selecting the appropriate BusinessEvents or API. JDeveloper

Oracle E-Business Suite Application-Specific Connectivity Guidelines

Establishing Resource Connectivity 14-21

creates .sql files which must be executed on the Ebiz database to create
subscriptions for listening to the events.

The format of the outgoing messages should be in the native format to E-Business
Application Business Message (ABM).

The development and design tasks are similar to the inbound connectivity as
discussed above. The architect or designer should identify how the business
functionality is exposed in E-Business and identify the available path from the four
ways listed above to connect to E-Business. Based on the general guidelines for each
transport, the architect or designer should decide which transport would be suitable
for the given business requirement.

Design Guidelines
AIA services are leveraged to implement tasks, business activities, and business
processes.

These common design and development guidelines are applicable to all interactions
using different resources and are applicable to both inbound and outbound
interactions.

The following points should be considered depending on the type of pattern:

• Push event notifications without message

– Event notification with guaranteed delivery requirement - leverage JCA
Adapter, if available, otherwise use queues.

– Event notification for non-critical situations - use Web services.

• Push events with message

– Request event soliciting information and waiting for information - leverage JCA
Adapter, if available, or use Web services.

– Request event propagating state change - leverage JCA Adapter, if available,
otherwise use queues.

For more information, see Working with AIA Design Patterns.

Design Guidelines

14-22 Developer's Guide for Oracle SOA Core Extension

15
Using Oracle Data Integrator for Bulk

Processing

Bulk data processing is the processing of a batch of discrete records between
participating applications. Oracle AIA uses Oracle Data Integrator (ODI), a component
of Oracle Fusion Middleware SOA Suite to perform bulk data integrations. This
chapter provides an overview of design patterns for AIA ODI architecture and
describes how to handle high volume transactions with Xref table, build ODI projects,
use XREF knowledge module, work with ODI, work with Domain Value Maps, use
Error Handling, use ODI Ref functions and how to publish the Package and Data
Model as Web Service.

This chapter includes the following sections:

• Introduction to Design Patterns for AIA-Oracle Data Integrator Architecture

• High-Volume Transactions with Xref Table

• Building Oracle Data Integrator Projects

• Using the XREF Knowledge Module

• Working with Oracle Data Integrator

• Working with Domain Value Maps

• Using Error Handling

• Oracle Data Integrator Ref Functions

• How to Publish the Package and Data Model as Web Service

For information about using Oracle Data Integrator, see Developing Integration Projects
with Oracle Data Integrator.

Introduction to Design Patterns for AIA-Oracle Data Integrator
Architecture

Since Oracle Data Integrator data transfer is always point-to-point, the source and
target systems must be capable of processing batch loads of data. An integration
project should not adopt Oracle Data Integrator as a solution if there is a limitation in
the number of rows that can be processed either on the source side or on the target-
side application.

This section describes AIA-approved design patterns for using Oracle Data Integrator
with AIA architecture. Design patterns approved by AIA are:

• Initial Data Loads

Using Oracle Data Integrator for Bulk Processing 15-1

• High Volume Transactions with Xref Table

• Intermittent High Volume Transactions

Initial Data Loads
In this design pattern, shown in Figure 15-1, the initial set of data of a particular object
is loaded from the source database to the target database; for example, loading
Customer Account information or loading Invoice information into a new application
database from an existing source application database. In the process, Xref data may or
may not get established depending on the integration requirement.

The Oracle Data Integrator package that is developed for a specific integration cannot
be reused for loading data into another participating application.

Figure 15-1 Initial Data Loads

How to Perform the Oracle Data Integrator Data Load
To perform the Oracle Data Integrator Data load:

Note:

The following sample steps describe how you perform the initial data load
from ERP Application 1 to ERP Application 2 as shown in Figure 15-1.

1. The source application ERP APP1 populates the interface table using its native
technology.

Some applications can choose other strategies such as views or base tables as
opposed to interface tables.

2. A job scheduler invokes the source side Oracle Data Integrator package.

Introduction to Design Patterns for AIA-Oracle Data Integrator Architecture

15-2 Developer's Guide for Oracle SOA Core Extension

3. Oracle Data Integrator extracts the data from Source Interface table and populates
the Target Interface table.

4. After populating the Target interface table, you can choose to have Oracle Data
Integrator populate the Xref table with App 1 ID and generate common ID.

This step is optional.

5. Oracle Data Integrator either deletes or updates the rows that were processed from
the Source interface table to indicate that the rows are processed.

6. In the target application ERP APP2, the native application extracts data from the
target interface table and populates the target database, thereby generating ERP
Application 2 ID.

7. A job scheduler on the target application invokes the Oracle Data Integrator
package to populate the Application 2 ID onto the Xref table matching on the
Common ID.

For more information about Oracle Data Integrator, see Developing SOA Applications
with Oracle SOA Suite.

High Volume Transactions with Xref Table
Whenever a need exists for a high-volume data transfer, AIA recommends using the
Oracle Data Integrator solution for data transfer between applications. Using this
approach, the Oracle Data Integrator package transfers data from source to target
system on a regular basis.

For details about how to load data, see How to Perform the Oracle Data Integrator
Data Load.

AIA recommends that the interface tables on the source side have a mechanism to
indicate processed rows.

Intermittent High Volume Transactions
If you have a requirement that batch loading co-exists with regular online transactions,
AIA recommends the approach illustrated in Figure 15-2.

Introduction to Design Patterns for AIA-Oracle Data Integrator Architecture

Using Oracle Data Integrator for Bulk Processing 15-3

Figure 15-2 Intermittent High-Volume Transactions

In this scenario, two different flows send data from the source to the target application,
one using the AIA Oracle Data Integrator approach, and the other using the standard
AIA approach. The responsibility for ensuring data integrity lies with the participating
applications. AIA recommends that only new records should be loaded using the AIA
Oracle Data Integrator architecture approach.

For details about how to send data from source to target using AIA-Oracle Data
Integrator architecture, see How to Perform the Oracle Data Integrator Data Load.

Create operations should be performed using the AIA Oracle Data Integrator approach
while all other operations should be performed using AIA.

In this design pattern, do not use the AIA Oracle Data Integrator approach as an
alternate route to send data when Oracle Fusion Middleware is unavailable. Instead,
messages should be queued using an appropriate message queuing technology such
as JMSQ, and handled using the guaranteed message technology recommended by
AIA.

For more information about guaranteed messages, see Guaranteed Message Delivery.

High-Volume Transactions with Xref Table
For situations in which storing Xref data for high-volume transactions does not make
sense, AIA recommends using point-to-point integration using Oracle Data Integrator,
as shown in Figure 15-3.

High-Volume Transactions with Xref Table

15-4 Developer's Guide for Oracle SOA Core Extension

Figure 15-3 High-Volume Transactions

For example, the headquarters of a retail store chain receives data from individual
retail stores every day at the close of business. In this scenario, you need not store Xref
data between each individual local store with HQ because there are not any DML
operations on those data sets.

For details about how to load data, see How to Perform the Oracle Data Integrator
Data Load.

There is no AIA component in this architecture. Local ERP applications load their
interface table and invoke an Oracle Data Integrator package to send data to the HQ
Interface table. After the data is processed, Oracle Data Integrator updates the local
ERP application's Interface table with a Transferred or Processed status for each row.

Building Oracle Data Integrator Projects
The Bulk Data processing strategy for AIA using Oracle Data Integrator is about
building point-to-point solutions, taking into account the need to set up data in the
Xref, using DVM, and ensuring that the processed data can participate in AIA services
at runtime.

How to Build Oracle Data Integrator Projects
To build Oracle Data Integrator projects:

1. Define data servers.

The source and target data server that is defined is a logical entity referring to the
physical database schema chosen for bulk data processing.

Link each data server you define to the physical data base schemas.

For more information, see Developing SOA Applications with Oracle SOA Suite.

2. Reverse engineer data servers.

Reverse engineer the data server to generate the various models along with the
data stores.

Building Oracle Data Integrator Projects

Using Oracle Data Integrator for Bulk Processing 15-5

3. Define interfaces.

Create interfaces for each of the data stores, as required.

In the process of creating interfaces, you specify the mapping between the source
and target fields.

4. Define packages.

The packages are the steps in which the interfaces created are run along with some
intermediate steps involving the Xref and also usage of DVM. If the package
chooses to implement Xref, it must use a special integration knowledge module
(IKM).

The package also has steps to clean up the source tables if you choose to do so.

Using the XREF Knowledge Module
In Oracle Data Integrator, the creation of XREF data is a two-step process. Each step is
an interface. The overall process is illustrated in Figure 15-4.

• In the first interface, the user's source table is the source in Oracle Data Integrator
and the user's target table is the target in Oracle Data Integrator.

While transporting data from source to target table, create XREF data for the source
and common rows. In this process, if you want to populate any column of the
target with the COMMON identifier, the Oracle Data Integrator knowledge module
takes care of that too.

Note:

If the target interface table does not contain the placeholder for common data,
you may have to either populate the source identifier or ask the application to
identify a placeholder for the common value for each source row.

• In the final step, after data is posted from the interface table to the base table, the
target application must identify a data store where the mapping between target
identifier and common (or source) identifier that you have sent during previous
interface processing is available.

A second interface must be run in which this data store is the source in Oracle Data
Integrator and the XREF table is the target. This creates the appropriate target
columns in the XREF table.

Using the XREF Knowledge Module

15-6 Developer's Guide for Oracle SOA Core Extension

Figure 15-4 Using the XREF Knowledge Module

What You Must Know About Cross-Referencing
Cross-referencing is an Oracle Fusion Middleware function, available through the
Mediator component, and leveraged typically by any loosely coupled integration that
is built on the Service Oriented Architecture (SOA) principles. It is used to manage the
run-time correlation between the various participating applications of the integration.

While loading data from source tables to a target table, you must establish the cross-
reference data in the SOA database just as it is done in the trickle feed architecture.
While standard APIs are available in the SOA suite to populate the cross-reference
tables, those APIs cannot be used in Oracle Data Integrator because that may lead to
row-by-row processing as opposed to set-based processing.

The following sections describe how to load source table data to the target table and, at
the same time, populate the cross-reference.

For more information about cross-referencing, see Working with DVMs and Cross-
References.

Working with Oracle Data Integrator
Before working with Oracle Data Integrator, complete these prerequisites:

1. Define the master and work repository.

2. Define all topology parameters.

a. Physical architecture (for source, target, and XREF_DATA)

Working with Oracle Data Integrator

Using Oracle Data Integrator for Bulk Processing 15-7

b. Logical architecture

c. Contexts

3. Define your data models.

4. Create a project.

5. Import the following Knowledge Modules into your project.

a. KM_LKM SQL to SQL (Mediator XREF) or KM_LKM SQL to Oracle
(Mediator XREF)

b. CKM Oracle (delivered)

c. KM_IKM SQL Control Append (Mediator XREF)

For complete details on how to set up ODI, seeDeveloping Integration Projects with
Oracle Data Integrator.

How to Define Variables (Source and Target Column Names)
Because XREF column names cannot be hardcoded, two variables must be defined to
hold the source and target column names. Normally, these column names are derived
from the AIAConfiguration file. This section does not describe how to get that from
the XML but rather it describes how to refresh this from a SQL select statement.

For complete details on variables, see "Working with Variables" in Developing
Integration Projects with Oracle Data Integrator.

To define the source and target column names:

1. Create a variable GetSourceColumnName.

This variable is used to determine the column name of the XREF_DATA table. The
Refreshing tab, as shown in Figure 15-5, has the appropriate SQL to get the value
from the source, depending on the implementation.

Figure 15-5 Variable: GetSourceColumnName Page

2. Create a variable GetTargetColumnName.

This variable is used to determine the column name of the XREF_DATA table. The
Refreshing tab has the appropriate SQL to get the value from the source
depending on the implementation.

How to Create the First Interface (Source to Target)
To create the first interface:

1. Create an interface.

Working with Oracle Data Integrator

15-8 Developer's Guide for Oracle SOA Core Extension

a. The source table in your data model should be dropped in Sources (in this
example, IM_FINANCIALS_STAGE)

b. The target table (in this example, PS_VCHR_HDR_STG) appears in the target
data store.

2. Provide mapping for each field, as shown in Figure 15-6.

Figure 15-6 Interface Diagram Page

3. Go to the Flow tab.

4. Select LKM as the customized KM_LKM SQL to SQL (ESB XREF).

This has an option called SOURCE_PK_EXPRESSION. Pass the expression that
represents the source key value in the XREF table in this option. If the source table
has just one column defined as key, simply mention that column name (in this
example SEQ_NO) for this option. If the source key has multiple columns, use the
expression to derive the key value.

For example, if two key columns are in the table and you want to store the
concatenated value of those columns as your source value in XREF table, put this
expression, SEQ_NO|DOC_DATE, in the options value. This option is mandatory.

If you are using update/delete along with XREF, then update the other options in
the LKM. If you are not using update/delete, set the option
SRC_UPDATE_DELETE_ACTION as None.

5. In the IKM, choose the customized knowledge module IKM SQL to SQL (ESB
Xref).

In this module, you must define the options listed in Table 15-1:

Table 15-1 Required Options in Customized Knowledge Module IKM SQL to
SQL

Term Description

XREF_TABLE_NAME Name of your XREF table.

Working with Oracle Data Integrator

Using Oracle Data Integrator for Bulk Processing 15-9

Term Description

XREF_COLUMN_NAME Name of the source column in the XREF
table. Enter the variable name that you
defined earlier (#GetSourceColumnName)
in this option.

XREF_SYS_GUID_EXPRESSION Select whether you want to use GUID or a
sequence for the common identifier. For
GUID, use SYS_GUID. For sequence, use
the sequence name for this value.

XREF_ROWNUMBER_EXPRESSION The value that goes into the
ROWNUMBER column of the
XREF_DATA table. Use the default value of
GUID unless you require a sequence.

6. Choose CKM Oracle on the Controls tab when you select Knowledge Module.

If you need not send the common value to the target table, ignore this step.

If the target table does not have any placeholder for the common identifier and
you are planning to supply the source identifier in one of the target table columns,
you must use the standard mapping rules of Oracle Data Integrator to indicate
what source identifier to populate in which column. This integration knowledge
module does not do any work for you in that case.

If the target column that you want to hold the common identifier is a unique key
of the target table, then put a dummy mapping on that column. This is due to an
Oracle Data Integrator limitation; otherwise, the key is not shown next time you
open the interface. At runtime, this dummy mapping is overwritten with the
generated common identifier by the integration knowledge module. Mark the
UD1 column to indicate which target column the column value goes in.

7. Validate and save the interface.

How to Create a Package for the First Interface
To create a package for the first interface:

1. Create a package to run the interfaces, as shown in Figure 15-7.

Working with Oracle Data Integrator

15-10 Developer's Guide for Oracle SOA Core Extension

Figure 15-7 Package to Run the Interfaces

This should contain at least two steps.

a. Refresh the variable that holds the source column name.

b. Run the interface.

Note:

Every implementation adds its own error-handling steps in the package.

2. Validate and save the package.

3. Run the package.

Most likely, this package runs as soon as the data arrives in the source table. You
can achieve this by using the Oracle Data Integrator changed data capture.

How to run a package when the data arrives in a source table is described in the
following sections.

How to Define the XREF View in SOA
To define the XREF view in SOA:

Create an XREF View in the XREF Database as shown in Example 15-1.

Note:

Construct this view for each implementation.

Working with Oracle Data Integrator

Using Oracle Data Integrator for Bulk Processing 15-11

Example 15-1 Creation of an XREF View in the XREF Database

CREATE OR REPLACE FORCE VIEW "ORAESB"."INVOICE_XREF_VW" ("ROW_NUMBER",
"XREF_TABLE_NAME", "RETL_01", "COMMON", "PSFT_01") AS
 select row_number, XREF_TABLE_NAME,
 max(decode(XREF_COLUMN_NAME, 'RETL_01', VALUE,null)) RETL_01,
 max(decode(XREF_COLUMN_NAME, 'COMMON', VALUE,null)) COMMON,
 max(decode(XREF_COLUMN_NAME, 'PSFT_01', VALUE,null)) PSFT_01
 from XREF_DATA
GROUP BY row_number, XREF_TABLE_NAME;

How to Create the Second Interface (Update Target Identifier in XREF)
After the data is moved to target base tables and the target identifier is created, the
data must get back to the XREF database corresponding to the source identifier to
complete the loop. In the previous step, the common (or source) identifier was passed
to the target system. Now the target system must provide a map between that
common (or source) identifier and the target base identifier. This may come in the
same interface table or it may come in a separate table. This mapping data store is
used in this interface in the source. This interface is packaged and finally a separate
process from target system runs that package.

To create the second interface:

1. Create an interface for data transport.

In the sources section, drop the XREF_VW view and the mapping data store (in
this example, the same interface table in PeopleSoft PS_VCHR_HDR_STG). In the
target data section, select the XREF_DATA table.

2. Apply a filter for XREF_VW with a WHERE clause to filter data from your table
name only, as shown in Figure 15-8. For example,
XREF_VW.XREF_TABLE_NAME='INVOICE',if you are using this for INVOICE.

Working with Oracle Data Integrator

15-12 Developer's Guide for Oracle SOA Core Extension

Figure 15-8 Filter for XREF_VW with a WHERE Clause to Filter Data from Your Table Name Only

3. Join the mapping data store and XREF_VW with the columns that store the
common (or source) identifier, as shown in Figure 15-9.

In this example, the column of the PeopleSoft interface table that stores common
data is VOUCHER_ID_RELATED.

Working with Oracle Data Integrator

Using Oracle Data Integrator for Bulk Processing 15-13

Figure 15-9 Mapping Data Store and XREF_VW Joined with Columns that Store the Common ID

4. The XREF_TABLE_NAME map should be the XREF_TABLE name of the
implementation.

5. XREF_COLUMN_NAME map should be #GetTargetColumnName (pointing to
the variable that was created earlier).

6. Map ROW_NUMBER to the ROW_NUMBER of the XREF_VW.

7. The map for the VALUE field is the column that stores the target identifier in the
mapping data store (in this example, the INVOICE_ID column of the
PS_VCHR_HDR_STG).

8. The map for IS_DELETED is set to N

9. The map for LAST_MODIFIED and LAST_ACCESSED is different for each
implementation.

10. Mark XREF_TABLE_NAME, XREF_COLUMN_NAME and VALUE as Key, as
shown in Figure 15-10.

Working with Oracle Data Integrator

15-14 Developer's Guide for Oracle SOA Core Extension

Figure 15-10 XREF_TABLE_NAME, XREF_COLUMN_NAME and VALUE Marked
as Keys

11. On the Flow tab, use the load knowledge module, LKM SQL to Oracle.

12. Use the integration knowledge module, IKM Oracle incremental update.

13. On the Controls tab, use the check knowledge module, CKM Oracle.

14. Validate and save the interface.

How to Create a Package for the Second Interface

To create a package for the second interface:

1. Create a package to run the interface, as shown in Figure 15-11.

Working with Oracle Data Integrator

Using Oracle Data Integrator for Bulk Processing 15-15

Figure 15-11 Package Created to Run the Interface

This should contain at least two steps:

a. Refresh the variable that holds the target column name.

b. Run the first interface.

Note:

Every implementation adds its own error-handling steps in the package.

2. Validate and save the package.

3. Run the package.

Most likely, this package runs as soon as the data arrives in the target mapping
data store. This can be achieved by using the Oracle Data Integrator changed data
capture.

Working with Domain Value Maps
The Domain Value Maps (DVM) are available as XML files and can be used as
delivered.

To use the DVM:

1. Reverse-engineer the DVM and it results in multiple relational tables.

Here is how the DVM XML is converted after reverse-engineering. We have used
the XML itself in the JDBC description for the data server and not any schema for
reverse engineering, as shown in Figure 15-12.

Working with Domain Value Maps

15-16 Developer's Guide for Oracle SOA Core Extension

Figure 15-12 XML Used in the JDBC Description for the Data Server

The DVM XML turns into six tables after the reverse-engineering, as shown in
Figure 15-13.

Figure 15-13 DVM XML Results in Six Tables Following Reverse-Engineering

2. Join those multiple tables to derive the corresponding mapping in the interface.

3. Join IM_FINANCIALS_STAGE with the CELL table, as shown in Figure 15-14.

Use the column in your main source table for DVM in the join.

Working with Domain Value Maps

Using Oracle Data Integrator for Bulk Processing 15-17

Figure 15-14 Join of IM_FINANCIALS_STAGE with the CELL Table

4. Join the CELL table with COLUMN table, as shown in Figure 15-15.

Working with Domain Value Maps

15-18 Developer's Guide for Oracle SOA Core Extension

Figure 15-15 Join of the CELL Table with the COLUMN Table

5. Add a filter for the COLUMN table (to determine the source column name), as
shown in Figure 15-16. This filter can use a variable that holds the source column
name.

Working with Domain Value Maps

Using Oracle Data Integrator for Bulk Processing 15-19

Figure 15-16 Filter Added to the COLUMN Table

6. Drop the CELL table and COLUMN table once more in the interface. They can be
renamed, but for now settle with CELL1 and COLUMN1. These duplicate sets fetch
the target values.

7. Join CELL1 with COLUMN1 table, as shown in Figure 15-17.

Working with Domain Value Maps

15-20 Developer's Guide for Oracle SOA Core Extension

Figure 15-17 Join of CELL1 with the COLUMN1 Table

8. Add a filter on the COLUMN1 table (to determine the target column name), as
shown in Figure 15-18.

This filter can use a variable that holds the source column name.

Working with Domain Value Maps

Using Oracle Data Integrator for Bulk Processing 15-21

Figure 15-18 Filter Added on the COLUMN1 Table

9. Finally, self-join the CELL table with another CELL (CELL1) table, as shown in
Figure 15-19.

Working with Domain Value Maps

15-22 Developer's Guide for Oracle SOA Core Extension

Figure 15-19 Self-Join of the CELL Table with Another CELL (CELL1) Table

10. Use this second CELL data (CELL1 table's data) in the target interface mapping, as
shown in Figure 15-20.

Working with Domain Value Maps

Using Oracle Data Integrator for Bulk Processing 15-23

Figure 15-20 Second CELL Data in the Target Interface Mapping

Note:

You must repeat all joins for each DVM-centric column.

Using Error Handling
To use error handling for the Oracle Data Integrator flows:

The package shown in Figure 15-21 is a sample interface that invokes the
AIAAsyncErrorHandlingBPELProcess when it ends in error.

Using Error Handling

15-24 Developer's Guide for Oracle SOA Core Extension

Figure 15-21 Sample Interface that Invokes AIAAsyncErrorHandlingBPELProcess When it Ends in
Error

The XML Request Input for this process is provided in Example 15-2.

Example 15-2 XML Request Input for AIAAsyncErrorHandlingBPELProcess

<initiateRequest>
<Fault>
<EBMReference>
<EBMID/>
<EBMName/>
<EBOName/>
<VerbCode/>
<BusinessScopeReference>
<ID/>
<InstanceID>[End to End Process Name, Hard code, every developer must know

Using Error Handling

Using Oracle Data Integrator for Bulk Processing 15-25

this process name]</InstanceID>
<EnterpriseServiceName/>
<EnterpriseServiceOperationName/>
</BusinessScopeReference>
<SenderReference>
<ID>[Sender Reference ID - Hard code the system id of the source system]</ID>
<SenderMessageID/>
<TransactionCode/>
<ObjectCrossReference>
<SenderObjectIdentification>
<BusinessComponentID/>
<ID/>
<ContextID/>
<ApplicationObjectKey>
<ID/>
<ContextID/>
</ApplicationObjectKey>
<AlternateObjectKey>
<ID/>
<ContextID/>
</AlternateObjectKey>
</SenderObjectIdentification>
<EBOID/>
</ObjectCrossReference>
<Application>
<ID/>
<Version/>
</Application>
</SenderReference>
</EBMReference>
<FaultNotification>
<ReportingDateTime><%=odiRef.getPrevStepLog("BEGIN")%></ReportingDateTime>
<CorrectiveAction>[ODI does not have it, leave this element null]</
CorrectiveAction >
<FaultMessage>
<Code>[ODI Error return code to be passed here. Must find the ODI system
variable to get the return code]</Code>
<Text><%=odiRef.getPrevStepLog("CONTEXT_NAME")%>/<%=odiRef.getSession("SESS_
NAME")%>/<%=odiRef.getPrevStepLog("STEP_
NAME")%>:<![CDATA[<%=odiRef.getPrevStepLog("MESSAGE")%>]]></Text>
<Severity>[ODI does not have it, hard code it to 1]</Severity>
<Stack/>
</FaultMessage>
<FaultingService>
<ID>[Hard code a meaningful name of the Process, For example,
CustomerInitialLoad (this
could be same as package name)] </ID>
<ImplementationCode>ODI</ImplementationCode>
<InstanceID><%=odiRef.getPrevStepLog("SESS_NO")%></InstanceID>
</FaultingService>
</FaultNotification>
</Fault>
</initiateRequest>

Oracle Data Integrator Ref Functions
Table 15-2 lists the Oracle Data Integrator Ref functions with a description of each.

Oracle Data Integrator Ref Functions

15-26 Developer's Guide for Oracle SOA Core Extension

Table 15-2 Oracle Data Integrator Ref Functions

Ref Function Description

<%=odiRef.getPrevStepLog("BEGIN")
%>

The date and time when the step that ended
in error began

<
%=odiRef.getPrevStepLog("MESSAGE"
)%>

The error message returned by the previous
step, if any. It is a blank string if no error
occurred.

<
%=odiRef.getPrevStepLog("SESS_NO"
)%>

The number of the session

<
%=odiRef.getPrevStepLog("CONTEXT_
NAME")%>

The name of the context in which the step
was performed.

<%=odiRef.getSession("SESS_NAME")
%>

The name of the session.

<
%=odiRef.getPrevStepLog("STEP_NAM
E")%>

The name of the step.

How to Publish the Package and Data Model as Web Service
To publish the package and data model as a Web service:

1. Install Axis2 as a standalone server.

a. Set an environment variable JAVA_HOME to the path name of the directory
in which you installed the JDK release.

b. Download Apache Axis2 Version 1.2 (http://axis.apache.org/axis2/
java/core/download.cgi) and unpack the Axis2 Standard Binary
Distribution into a convenient location so that the distribution resides in its
own directory. Set an environment variable AXIS2_HOME to the path name
of the extracted directory of Axis2 (for example, /opt/axis2-1.2).

c. Start the Standalone Axis2 server by running the following command:
$AXIS2_HOME\bin\axis2server.bat (Windows)

After startup, the default web services that are included with Axis2 are
available by visiting http://localhost:8080/axis2/services/

d. Download the axis2.war from http://axis.apache.org/axis2/
java/core/download.cgi.

2. Deploy axis2.war on the OC4J Application Server.

a. Deploy the axis2.war on the OC4J Application Server (http://
www.oracle.com/technetwork/middleware/ias/downloads/
utilsoft-090603.html) or OC4J Server of the SOA Suite can also be used.
Go to http://<Host:port> and launch the application server that takes
you to OC4J home. Click the Application tab and then click the Deploy tab. It
asks you the location of the file. Browse and point to the Axis2.war file and
then deploy.

How to Publish the Package and Data Model as Web Service

Using Oracle Data Integrator for Bulk Processing 15-27

http://axis.apache.org/axis2/java/core/download.cgi
http://axis.apache.org/axis2/java/core/download.cgi
http://axis.apache.org/axis2/java/core/download.cgi
http://axis.apache.org/axis2/java/core/download.cgi
http://www.oracle.com/technetwork/middleware/ias/downloads/utilsoft-090603.html
http://www.oracle.com/technetwork/middleware/ias/downloads/utilsoft-090603.html
http://www.oracle.com/technetwork/middleware/ias/downloads/utilsoft-090603.html

b. After the WAR is successfully deployed, test it by pointing the web browser
to http://<host:port>/axis2. This opens the Axis2 Web Application
Home Page.

c. Click Validate to ensure that the procedure ended successfully.

3. Install the Oracle Data Integrator Public Web Services on Axis2.

In Axis2, go to the Administration page.

a. Select the Upload Service link.

b. Browse for the Oracle Data Integrator Web Services .aar file.

It is located in the /tools/web_services/ subdirectory in the Oracle Data
Integrator installation directory.

c. Click the Upload button.

Axis2 uploads the Oracle Data Integrator Web Services. You can now see Data
Integrator Public Web Services in the Axis2 services list.

d. The services and the operations of successfully installed services appear on
the available services page (http://<Host>:<HTTP port>/axis2/
services/listServices), where you can see OdiInvoke

4. Environment setup for Data Services

a. The database drivers (http://www.oracle.com/technetwork/
database/enterprise-edition/jdbc9201-092698.html) must be
installed in the appropriate directory. ORACLE_HOME/j2ee/home/applib
for OC4J.

b. Create the JDBC Datasource pointing to the data server:

• Connect to OC4J administration interface.

• On the Administration tab, in Services | JDBC Resources, click Go to task.

• Click the Create button in the Connection Pools section.

• Select the Axis2 application, select New Connection Pool, then Continue.

• Fill in the fields for the JDBC data source and click Finish.

• Click the Create button in the Data Sources section.

• Select the Axis2 application, select Managed Datasource, then Continue.

c. META-INF/context.xml and WEB-INF/web.xml is updated in the iAxis
directories.

Update application.xml in the given folder ORACLE_HOME\j2ee\home
\applications\axis2\META-INF as shown in Example 15-3.

d. Set an environment variable ODI_JAVA_HOME to the path name of the
directory into which you installed the JDK release.

5. Configure the topology, as shown in Figure 15-22.

a. In Topology Manager's Physical Architecture view, select the Axis2
technology. Right-click and select Insert Dataserver. If you are using a

How to Publish the Package and Data Model as Web Service

15-28 Developer's Guide for Oracle SOA Core Extension

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc9201-092698.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc9201-092698.html

different Web Services container, then choose the appropriate technology
instead.

b. Complete the following fields on the Definition tab:

• Name: Name of the dataserver as it appears in Oracle Data Integrator.

• Base URL for published services: http://<Host>:<HTTP port>/
axis2/services.

• Select the option corresponding to the chosen method of deployment.

• Web Service Upload: Specify the root URL for the Axis2 application,
typically http://<Host>:<HTTP port>/axis2/axis2-admin/, and
the user name (admin) and password (axis2) of the Axis2 administrator.

c. Click OK. A window opens to enable you to create a physical schema.

d. Go to the Context tab, and define one logical schema for each context in
which to deploy the Data Services.

e. Click OK.

Figure 15-22 Topology Configuration

6. Set up the Data Model to access the data of the table using a web service.

a. Open the model and go to the Services tab as shown in Figure 15-23.

b. From the Application Server list, select the Web Services container that you
set up earlier.

c. Enter the Namespace to be used in the generated WSDL.

How to Publish the Package and Data Model as Web Service

Using Oracle Data Integrator for Bulk Processing 15-29

d. Specify the Package name used to name the generated Java package that
contains your Web Service. Generally, this is of the form com.<company
name>.<project name>.

e. In the Name of the data source field, copy and paste the name of the data
source that you defined for the server when setting up the data sources.
(Provide the JNDI location of the data source.)

f. Define the Data Service Name.

g. Select a service knowledge module (SKM Oracle) from the list, and set its
options.

h. Go to the Deployed Datastores tab.

i. Select every data store needed to expose as a Web Service. For each one,
specify a Data Service Name and the name of the Published Entity.

j. Click OK to save your changes.

k. Click the Generate and Deploy tab to deploy it on the OC4J server.

l. The deployed data store can be viewed at http://<Host>:<HTTP port>/
axis2/services/listServices along with all the available operations.

m. The generated data service can be tested using OdiInvokeWebService tool
provided in the package.

How to Publish the Package and Data Model as Web Service

15-30 Developer's Guide for Oracle SOA Core Extension

Figure 15-23 Services - Data Services Page

7. Run a scenario using a Web Service.

OdiInvoke web service is used to run a scenario using a web service. The WSDL is
http://<Host>:<HTTP port>/axis2/services/OdiInvoke?wsdl. The
port to use is called invokeScenario.

This web service commands an agent to connect a given work repository and to
start a specific scenario. Parameters are similar to the ones used when running a
scenario from an OS command. Example 15-4 is a sample SOAP request for this
web service.

The scenario execution returns a SOAP response as shown in Example 15-5.

Example 15-3 Update application.xml in ORACLE_HOME\j2ee\home\applications
\axis2\META-INF

<Context >
<Resource
name="jdbc/TestDS"
type="javax.sql.DataSource"
driverClassName="oracle.jdbc.OracleDriver"
url="jdbc:oracle:thin:@abijayku-idc:1522:orcl1"
username="master"
password="master"

How to Publish the Package and Data Model as Web Service

Using Oracle Data Integrator for Bulk Processing 15-31

maxIdle="2"
maxWait="-1"
maxActive="4"/>
</Context>
(Resource name will be reused in the web.xml file and in the Model in Designer.)
(driverClassName, url, username and password will explicitly point to the
data source.)
Update the web.xml file with the resource name of the context.xml file
(here res-ref-name) in the given folder ORACLE_
HOME\j2ee\home\applications\axis2\axis2\WEB-INF as follows:
<resource-ref>
<description>Data Integrator Data Services on
Oracle_SRV1</description>
<res-ref-name>jdbc/TestDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

Example 15-4 Sample SOAP Request for the OdiInvoke Web Service

<invokeScenarioRequest>
<invokeScenarioRequest>
<RepositoryConnection>
<JdbcDriver>oracle.jdbc.driver.OracleDriver</JdbcDriver>
<JdbcUrl>jdbc:oracle:thin:@sbijayku-idc:1522:orcl1</JdbcUrl>
<JdbcUser>MASTER_FINPROJ</JdbcUser>
<JdbcPassword>master</JdbcPassword>
<OdiUser>SUPERVISOR</OdiUser>
<OdiPassword>SUNOPSIS</OdiPassword>
<WorkRepository>WORK</WorkRepository>
</RepositoryConnection>
<Command>
<ScenName>ABC</ScenName>
<ScenVersion>001</ScenVersion>
<Context>RETL_TO_PSFT</Context>
<LogLevel>5</LogLevel>
<SyncMode>1</SyncMode>
</Command>
<Agent>
<Host>sbijayku-idc</Host>
<Port>20910</Port>
</Agent>
</invokeScenarioRequest>
</invokeScenarioRequest>

Example 15-5 SOAP Response Returned by the Scenario Execution

<odi:invokeScenarioResponse xmlns:odi="xmlns.oracle.com/odi/OdiInvoke">
<odi:CommandResultType>
<odi:Ok>true</odi:Ok>
<odi:SessionNumber>1148001</odi:SessionNumber>
</odi:CommandResultType>
</odi:invokeScenarioResponse>

How to Publish the Package and Data Model as Web Service

15-32 Developer's Guide for Oracle SOA Core Extension

16
Working with Message Transformations

This chapter provides an overview of Transformation Maps and describes how to
create transformation maps, work with domain value maps (DVMs) and cross-
references, and populate Enterprise Business Message (EBM) headers.

This chapter includes the following sections:

• Introduction to Transformation Maps

• Creating Transformation Maps

• Making Transformation Maps Extension Aware

• Working with DVMs and Cross-References

• Mapping and Populating the Identification Type

• Introducing EBM Header Concepts

Introduction to Transformation Maps
Use transformation maps when the document expected by a source or target
application varies from the document generated by a source or target application in
terms of data shape and semantics. Transformation maps resolve these structural and
semantic differences.

Connecting Applications to Implement Business Processes
Oracle Application Integration Architecture (AIA) leverages canonical patterns and
direct patterns to connect applications for implementing business processes.

Canonical Patterns

AIA introduces a set of generic data structures called Enterprise Business Objects
(EBOs). An EBO represents a common object definition for business concepts such as
Account, Sales Order, Item and so on. The business integration processes work only on
messages that are either a complete EBO or a subset of an EBO. This approach allows
the cross-industry application processes to be independent of participating
applications. EBOs contain components that satisfy the requirements of business
objects from the target application data models. Transformations map the application
business-specific message to the EBM which is AIA canonical data model.

Figure 16-1 illustrates how a canonical pattern is implemented in AIA.

Working with Message Transformations 16-1

Figure 16-1 Canonical Pattern Implemented in AIA

When to Use Direct Integrations

When data integration involves either a large batch of records, or very large data, you
can choose to implement a direct integration specializing on the movement of data
with high performance with a trade-off of reusability. Direct integrations can
encompass bulk processing and trickle feeds which focus only on implementation
decoupling and not data decoupling.

For bulk processing, the ETL tool is used and transformations are done at the data
layer using the tool. Although application agnostic objects are not used in trickle feed
implementations, the requester application still must transform the content that is
produced into the data shape expected by the provider application.

For more information, see Using Oracle Data Integrator for Bulk Processing.

Using Tools and Technologies to Perform Message Transformations
AIA recommends the use of XSLT vocabulary for constructing the transformation
maps.

The XSLT Mapper in JDeveloper enables you to create data transformations between
source schema elements and target schema elements within the context of services
developed using either Oracle BPEL Process Manager or Oracle Mediator.

You use the XSLT Mapper transformation tool to create the contents of a map file.
Figure 16-2 shows the layout of the XSLT Mapper.

Introduction to Transformation Maps

16-2 Developer's Guide for Oracle SOA Core Extension

Figure 16-2 Layout of the XSLT Mapper

For more information about the XSLT Mapper, see "Creating Transformations with the
XSLT Mapper" in Developing SOA Applications with Oracle SOA Suite.

Creating Transformation Maps
One of the steps in configuring the integration objects for your integration process is to
map the components and fields in your internal integration object to the message
elements in the external integration object. You use these maps to move the data from
one integration object to another.

Considerations for Creating Transformation Maps
When creating transformation maps, consider the following guidelines:

• Do not make unnecessary or redundant AIAConfigurationProperties.xml lookup
calls.

Retrieve static configuration properties once in the very beginning of
transformation.

To externalize configuration for deployment time using
AIAConfigurationProperties.xml, refer to How to Work with
AIAConfigurationProperties.xml in $SOA_HOME/aia_instances/
$INSTANCE_NAME/AIAMetaData/config.

• Ensure that your design does not include infinite loops.

• Develop transformation maps for each component.

You should build reusable component-specific transformation maps that can be
used across applications.

• Create transformation templates for every custom element.

• Keep the transformation maps clutter free.

Creating Transformation Maps

Working with Message Transformations 16-3

• Use domain value maps only for static lookups, not for storing configuration or
setup data.

Example 16-1 illustrates the domain value map lookup call to fetch Currency Code.
The domain value maps should be used only for static lookup calls such as
Currency Codes, Location Codes, and so on.

Example 16-1 Domain Value Map Lookup Call to Fetch Currency Code

<corecom:PreferredFunctionalCurrencyCode>

<xsl:value-of select="dvm:lookupValue('oramds:/apps/AIAMetaData/dvm/CURRENCY_
CODE.dvm',$SenderSystemId,/xsdLocal:ListOfCmuAccsyncAccountIo/xsdLocal:Account/
xsdLocal:CurrencyCode,$TargetSystemId,'')"/>

</corecom:PreferredFunctionalCurrencyCode>

Handling Missing or Empty Elements
Transformation logic and xpath should be designed with the possibility of missing or
empty elements, as shown in Example 16-2.

In this example, an if condition exists to check the empty elements. You should adopt
such transformation logic to avoid transporting empty elements across the wire.

Example 16-2 Sample Code Illustrating Logic Designed to Handle Missing or Empty
Elements

<xsl:iftest="normalize-
space="/xsdLocal:ListOfCmuAccsyncAccountIo/xsdLocal:Account/xsdLocal:AccountId/
text())">
<corecom:ApplicationObjectKey>
 <corecom:ID>
 <xsl:value-of
select="/xsdLocal:ListOfCmuAccsyncAccountIo/xsdLocal:Account/xsdLocal:
AccountId"/>
 </corecom:ID>
</corecom:ApplicationObjectKey>
 </xsl:if>

How to Map an Optional Source Node to an Optional Target Node
When mapping an optional source node to an optional target node, you should
surround the mapping with an xsl:if statement that tests for the existence of the
source node. If you do not do this, as shown in Example 16-3, and the source node
does not exist in the input document, then an empty node is created in the target
document.

If the PHONE field is optional in both the source and target and the
WorkContactNumber does not exist in the source document, then an empty PHONE
element is created in the target document. To avoid this situation, add an if statement
to test for the existence of the source node before the target node is created, as shown
in Example 16-4.

Example 16-3 Statement Without xsl:If

<portal:PHONE>
 <xsl:value-of
select="corecom:Contact/corecom:ContactPhoneCommunication[1]/corecom:

Creating Transformation Maps

16-4 Developer's Guide for Oracle SOA Core Extension

PhoneCommunication/corecom: WorkContactNumber"/>
 </portal:PHONE>

Example 16-4 Statement With xsl:If

<xsl:if
test="corecom:Contact/corecom:ContactPhoneCommunication[1]/corecom:
PhoneCommunication/corecom:WorkContactNumber">
 <portal:PHONE>
 <xsl:value-of
select="corecom:Contact/corecom:ContactPhoneCommunication[1]/corecom:
PhoneCommunication/corecom:WorkContactNumber"/>
 </portal:PHONE>
 </xsl:if>

How to Load System IDs Dynamically
ABCS and XSL scripts should not be hard-coded to work against one specific logical
application instance, as shown in Example 16-5. No hard-coded system IDs should
exist in XSL Scripts and ABCS.

The recommended approach is to load the system IDs dynamically, as shown in
Example 16-6.

Example 16-5 Sample Code Showing Hard-Coded System IDs - Not Recommended

<corecom:PreferredFunctionalCurrencyCode>
 <xsl:value-of
select="dvm:lookupValue('oramds:/apps/AIAMetaData/dvm/CURRENCY_CODES.
dvm','SEBL_01',
/xsdLocal:ListOfCmuAccsyncAccountIo/xsdLocal:Account/xsdLocal:CurrencyCode,
'COMMON','")"/>
</corecom:PreferredFunctionalCurrencyCode>

Example 16-6 Sample Code Showing Use of Variables Instead of Hard-Coded
System IDs - Recommended

<corecom:PreferredFunctionalCurrencyCode>
<xsl:value-of select="dvm:lookupValue('oramds:/apps/AIAMetaData/dvm/CURRENCY_
CODES.dvm',$SenderSystemId,/xsdLocal:ListOfCmuAccsyncAccountIo/xsdLocal:
Account/xsdLocal:CurrencyCode,$TargetSystemId'")"/>
</corecom:PreferredFunctionalCurrencyCode>

Using XSLT Transformations on Large Payloads
For BPEL and Oracle Mediator, Oracle recommends that you do not apply the XSLT
transformation on large payloads because it results in out-of-memory errors when
XSLT must traverse the entire document.

When to Populate the LanguageCode Attribute
Every EBM should populate the languagecode element, which specifies the locale in
which the request has to be sent. Language sensitive data elements must have the
languageCode attribute populated if it is different from the one set at EBM root
element. The languageCode specified in the DataArea takes precedence.

How to Name Transformations
Place each transformation type in a separate core XSL file.

Creating Transformation Maps

Working with Message Transformations 16-5

The file name should follow this convention:

<Source Schema Type>_to_<Destination Schema Type>.xsl

Example: CreateOrderEBM_to_CreateOrderSiebelABO.xsl

Making Transformation Maps Extension Aware
Every component in the EBM, including the EBM header, contains a custom area that
can be configured to add the necessary elements. You should develop the core
transformation XSL file to provide extension capabilities using the guidelines in the
following section.

For more information about the EBM header, see Introducing EBM Header Concepts.

How to Make Transformation Maps Extension Aware
To make transformation maps extension aware:

1. Create an extension XSL file for every transformation.

An example of a core transformation XSL file:
PurchaseOrder_to_PurchaseOrder.xsl

Every core XSL file name has one extension XSL file, for example:
PurchaseOrder_to_PurchaseOrder_Custom.xsl.

2. Define empty named templates in the extension file for every component in the
message.

3. Include the extension file in the core transformation file.

4. Add a call-template for each component in core transformation.

5. Enable the transformation to accommodate transformations for custom element as
shown in Example 16-7.

Example 16-7 Transformation Enabled to Accommodate Transformations for
Custom Element

<!-XSL template to transform Address-->
<xsl: template name="Core_AddressTemplate">
<xsl:param name = "context" select ="."/>
<xsl:param name = "contextType" select ="'CORE'"/>
<address1><xsl:value-of select="$context/address1"><address1>
<address2><xsl:value-of select="$context/address1"></address2>
<city><xsl:value-of select="$context/city"></city>
<state><xsl:value-of select="$context/state"></state>
<zip><xsl:value-of select="$context/zip"></zip>

 <xsl:if test="$contextType!='CORE'">
<xsl:call-template name="Vertical_AddressTemplate">
<xsl:with-param name="context" select="$context"/>
<xsl:with-param name="contextType" select="$contextType">
 </xsl:call-template>
</xsl:if>
</xsl: template>

Making Transformation Maps Extension Aware

16-6 Developer's Guide for Oracle SOA Core Extension

How to Make the Transformation Template Industry Extensible
Mapping rules pertaining to customer-specific schema extensions are defined in these
xsl extension templates.

To make the transformation template industry extensible:

1. Put the extension templates into a separate transformation file.

2. Import from the main transformation file. Example 16-8 shows the industry
extensible transformation template.

Example 16-8 Industry Extensible Transformation Template

<xsl: template name="Core_AddressTemplate">
<xsl:param name = "context" select ="."/>
<xsl:param name = "contextType" select ="'CORE'"/>
<address1><xsl:value-of select="$context/address1"><address1>
<address2><xsl:value-of select="$context/address1"></address2>
<city><xsl:value-of select="$context/city"></city>
<state><xsl:value-of select="$context/state"></state>
<zip><xsl:value-of select="$context/zip"></zip>
 <xsl:if test="$contextType!='CORE'">
 <xsl:call-template name="Vertical_AddressTemplate">
<xsl:with-param name="context" select="$context"/>
<xsl:with-param name="contextType" select="$contextType">
</xsl:call-template>
</xsl:if>
</xsl: template>

Working with DVMs and Cross-References
This section discusses DVMs, cross-references, and naming standards, and when to
use them.

Introduction to DVMs
Use domain values only for static lookups. Do not use them to store configuration or
setup data. A separate facility is provided to store and retrieve parameterized
configuration information.

To access the DVM at runtime, use the lookup-dvm XSL function found in the
JDeveloper XSL Mapper.

DVMs are stored in the MDS repository, which uses the database persistence, and are
managed using tools provided by JDeveloper or SOA Core Extension.

For more information about naming standards, see Oracle AIA Naming Standards for
AIA Development.

When to Use DVMs
DVMs can be categorized into three groups:

• 100 percent of the possible values are seeded, and you are not permitted to define
any more.

Since logic is added to these values and they are defined by the participating
applications, you cannot add values.

Working with DVMs and Cross-References

Working with Message Transformations 16-7

• All or a few samples are seeded based on the seeded values found in the
participating applications.

You can add more to the participating applications and can add more to the DVMs
in the middle to accommodate.

Typically, logic is not added to these values; a match gets the value and passes it on
to the receiving application. You must enhance the list to include all possible values
that you have defined in your participating applications.

• Customized.

A naming convention is provided for you to define your own DVM types and
values in case you have added a column that depends on it. These types or values
are not affected during an upgrade.

When creating cross-reference virtual tables in the cross-reference tables, follow the
naming standards described in the following section.

Using Cross-Referencing
One of the core design tasks of ABCS is maintaining cross references for unique
identifiers from the loosely coupled applications.

AIA does not support hierarchical cross-references. Child object common keys are
unique on their own without being under the parent's context. The child objects have
their own entry within the cross-references table with a GUID used for the common
ID.

The Cross References API does not support multi-part keys. In cases where the
application does not have a single unique key, AIA recommends key concatenation:

{Key1}::{Key2}::Key3

Most requester ABCSs use the following logic in the transformations:

1. Look up in Xref for an existing common ID corresponding to the application ID.

2. If common ID is not found, then generate a new ID and populate the Xref table
with the new ID.

3. Use the found or new common ID in the transformation.

Cross referencing is achieved using EBM Object identification elements and the cross
referencing APIs (Populate Xref, Lookup Xref, Delete Xref) provided by Oracle
Mediator.

Table 16-1 lists a cross referencing configuration implemented in the Product
synchronization scenario between the Portal BRM and Siebel CRM systems

Table 16-1 Cross Referencing Configuration

Entity Siebel CRM ID Common ID Oracle BRM ID

Item ID Product ID Auto Generated
GUID

Product ID

Price Line ID Price Line ID Auto Generated
GUID

Product ID

ITEM_ID cross-references the BRM (Portal) ProductID and the Siebel ProductID.

PRICELINE _ID cross-references the BRM (Portal) Product ID to Siebel PriceLineID.

Working with DVMs and Cross-References

16-8 Developer's Guide for Oracle SOA Core Extension

How to Set Up Cross References
Oracle SOA Suite provides a cross-reference infrastructure that consists of these
components:

• A single Xref database table that contains virtual tables for the different cross-
reference object types and command line utilities to import/export data.

• XPath functions to query, add, and delete cross-references.

For more information about naming standards, see Oracle AIA Naming Standards for
AIA Development.

For more information about cross-references, see "Working with Cross References" in
Developing SOA Applications with Oracle SOA Suite.

Mapping and Populating the Identification Type
Each of the EBMs has at least one element to hold an object's instance identifying
information. An EBM containing details about multiple objects might have elements
dedicated to holding object instance identifying details for each one of them. In the
EBM, there is a scheme to uniquely identify the top-level object's instance and the
child and the grandchild instances of the business components embedded within the
overall object. The identification scheme is the same regardless of whether the
identification is for the top-level instance (for example - Order Instance Identification)
or for a grandchild instance (for example - Schedule Line Item Identification).

The commonly practice is to adopt the identification theme as defined in the data type
Identification Type that is made available in the Common Components schema
module. Each of the objects can have representations in various applications and at the
integration layer. Each of the representations is uniquely identified using identifying
keys. For example, Order Number can uniquely identify either an Order ID or an
Order instance in a Siebel application; whereas in a PeopleSoft application, the order
instance is uniquely identified with the combination of Business Unit and Order ID.

As you can see in the example, the identifying keys of these representations found
across various applications and systems are quite different. The Identification Type
enables you to capture the identifying keys of these representations for a single object
instance. Figure 16-3 illustrates the schema definition for Identification Type.

Figure 16-3 Structure of the Identification Type Element

Mapping and Populating the Identification Type

Working with Message Transformations 16-9

The Identification Type structure enables you to capture three specific identifiers plus
one more general identifier for a single object. Table 16-2 describes each of the
identifiers:

Table 16-2 Identifiers in the Identification Type Structure

Name Purpose Details

BusinessComponentID Unique Key for the
application-agnostic
representation of the object
instance

Business documents
generated by Oracle AIA
applications have the
BusinessComponentID
populated.

The BusinessComponentID is
generated using the API
provided by Oracle AIA
infrastructure.

ID Business friendly identifier
found in the participating
application for this object
instance

Business documents
generated by Oracle AIA
applications have these
populated wherever they are
applicable.

PO Number and Order
Number are examples.

ContextID Optional element to identify
additional qualifiers for the
ID. Used for multi-part keys -
for example if an Item is
unique within a set, then the
Item Number would be the
ID and the SetID value would
be a ContextID value

Business documents
generated by Oracle AIA
applications have these
populated wherever they are
applicable.

SetID within a set is an
example

ApplicationObjectKey Participating application
specific internally generated
unique identifier for this
object instance

Business documents
generated by Oracle AIA
applications populate this
information.

This represents the primary
key of the object at the
participating application.

AlternateObjectKey One or more ways of
additionally identifying the
object's instance.

Optional

Use this element to capture
additional identifying details
if necessary.

To define the context in which an identifier is valid, a set of attributes that describes
the context of the key is supported in addition to the actual key value.

Table 16-3 describes the purpose of each of the attributes.

Table 16-3 Key Context Attributes

Name Type Description

BusinessComponentID/ID

ApplicationObjectKey/ID

AlternateObjectKey/ID

Element The element is used to store
the actual object ID.

Mapping and Populating the Identification Type

16-10 Developer's Guide for Oracle SOA Core Extension

Name Type Description

schemeID Optional attribute Identification scheme of the
identifier.

Attribute schemeID provides
information about the object
type identified by the ID, for
example ItemGUID for the
GUID of an item and
PartyGUID for the GUID of a
party.

For the
BusinessComponentID, the
schemeID is set to the name
of the object followed by '
GUID. For the ID, the
schemeID is set to the name
of the element as known in
the participating application.

scheme VersionID Optional attribute Version of the identification
scheme.

schemeAgencyID Optional attribute ID of the agency that
manages the identification
scheme of the identifier.

The GUIDs generated by
Oracle AIA have AIA 01
populated in this attribute.
For identifiers generated by
participating applications,
the short code for that of the
participating application is
stored in this attribute.

Figure 16-4 illustrates the Business Component ID:

Figure 16-4 Structure of the Business Component ID

Mapping and Populating the Identification Type

Working with Message Transformations 16-11

Example 16-9 provides an example of how the BusinessComponentID is populated in
the EBM.

Example 16-9 BusinessComponentID Populated by the EBM

<telcoitem:Identification>
<corecom:BusinessComponentID
mlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V1"
schemeID="ITEM_ID_COMMON" schemeAgencyID="AIA_
20">31303838373539343330313937393531
</corecom:BusinessComponentID>
<corecom:ID
xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V1"
schemeID="ItemNumber" schemeAgencyID="PORTAL">0.0.0.1 /product
349330 1</corecom:ID>
<corecom:ApplicationObjectKey xmlns:corecom="http://xmlns.oracle.com/Enterpriser
Objects/Core/Common/V1">
<corecom:ID schemeID="PortalPoid" schemeAgencyID="PORTAL">0.0.0.1 /product
349330 1</corecom:ID>
 </corecom:ApplicationObjectKey>
</telcoitem:Identification>

How to Populate Values for corecom:Identification
Follow these guidelines for corecom:Identification or any of its derivations.

• SchemeAgencyID for Common is COMMON.

• SchemeAgencyID for ID/ContextID/ApplicationObjectKey is the same as
exsl:node-set ($senderNodeVariable)/ID, which is also used as Column Name for
lookupXref and lookupDVM.

• Scheme ID for BusinessComponentID is the same as XrefTableName in
lookupXref/populateXref.

Introducing EBM Header Concepts
Every EBM that is processed by ABCS and Enterprise Business Service (EBS) contains
an EBM header in addition to object-specific information. The objective of the EBM
header is to carry information that can be used to:

• Track important information

• Audit

• Indicate source and target systems

• Handle errors and traces

Figure 16-5 illustrates the components of an EBM header:

Introducing EBM Header Concepts

16-12 Developer's Guide for Oracle SOA Core Extension

Figure 16-5 EBM Header Components

The following sections provide details about each of the components.

Standard Elements
This section discusses the standard elements in a message header.

EBMID

This element contains a GUID to uniquely identify the EBM, as shown in Example
16-10. The GUID is generated using a provided standard XPath function.

XPath function to generate GUID: orcl:generate-guid()

Example 16-10 EBMID

<EBMHeader>
<EBMID>33303331343032313534393138393830</EBMID>
. . .
</EBMHeader>

EBOName

This element contains the fully qualified name of the EBO in the notation:
{namespaceURI}localpart, as shown in Example 16-11.

Example 16-11 EBO Name

<EBMHeader>
<EBOName>{http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/Invoice/V1}Query
Invoice</EBOName>
. . .
</EBMHeader>

RequestEBMID

This element contains the originating request GUID that uniquely identifies the
originating request ID, as shown in Example 16-12. The EBS populates this field in the
response message by extracting it from the request message.

Introducing EBM Header Concepts

Working with Message Transformations 16-13

Example 16-12 RequestEBMID

<EBMHeader>
<RequestEBMID>33303331343032313534393138393830</RequestEBMID>
. . .
</EBMHeader>

CreationDateTime

This element contains a timestamp that reflects when the EBM was created, as shown
in Example 16-13. The timestamp should be presented in UTC, which can be presented
in current datetime and GMT offset as:

yyyy '-' mm '-' dd 'T' hh ':' mm ':' ss ('.' s +)? (zzzzzz)?
XPath function to generate CreationDateTime:
xp20:current-dateTime()

Example 16-13 CreationDateTime

<EBMHeader>
<CreationDateTime>200 7-04-2 7T12:22:17-08:00</CreationDateTime>
. . .
</EBMHeader>

VerbCode

This element contains the verb represented by the EBM, as shown in Example 16-14.

Example 16-14 VerbCode

<EBMHeader>
<VerbCode >Query</VerbCode>
. . .
</EBMHeader>

MessageProcessingInstruction

This element contains instructions on how the message should be processed. This
section indicates if the EBM is a production system-level message that should go
through its standard path, or if it is a testing-level message that should go through the
testing or simulation path.

MessageProcessingInstruction contains two fields:

• EnvironmentCode:

Can be set to either CAVS or PRODUCTION. The default is PRODUCTION. Setting the
value to PRODUCTION indicates that the request must be sent to a concrete
endpoint. Setting the value to CAVS indicates that the request must be sent to CAVS
Simulator.

• DefinitionID:

Specifies the test definition ID.

It should be populated with the value of the property "Routing.
[PartnerlinkName].CAVS.EndpointURI" from
AIAConfigurationProperties.xml when the "Routing.
[PartnerlinkName].RouteToCAVS" property is set to true in
AIAConfigurationProperties.xml.

Introducing EBM Header Concepts

16-14 Developer's Guide for Oracle SOA Core Extension

When to Populate Standard Header Fields

The standard header elements should be populated whenever a message is created.
This occurs when:

• Transforming an application request ABM into an EBM in a requester ABC
implementation service.

• Transforming an application response ABM into an EBM in a provider ABC
implementation service.

How to Populate the Message Processing Instruction

To populate the message processing instruction

1. Add instructions to indicate how a message is to be processed.

This instruction is normally used to tell the system to run the message in
production mode or in simulation/testing mode, as shown in Example 16-15.

2. These fields are currently populated by the CAVS.

Usually, the fields are populated in the SOAP Header before initiating a testing
request.

Example 16-15 Message Processing Instruction Population

<corecom:MessageProcessingInstruction>
 <corecom:EnvironmentCode>
 <xsl:text disable-output-escaping="no">Production</xsl:text>
 </corecom:EnvironmentCode >
</corecom:MessageProcessingInstruction>

Sender
The Sender contains information about the originating application system, as shown in
Figure 16-6.

Introducing EBM Header Concepts

Working with Message Transformations 16-15

Figure 16-6 Structure of the Sender Element

Table 16-4 provides details about each element in the Sender element.

Table 16-4 Elements in the Sender Element

Element Description

ID Contains the sender system identifier code.
This is a mandatory element. This element
represents the unique identifier of each
source system. ReqABCSImpl should call the
API detailed in Example 16-16 to populate
this value.

Description This is the long description of the Sender
System. ReqABCSImpl should call the API
detailed in Example 16-16 to populate this
value.

IPAddress Represents the IP address of the sender
system. ReqABCSImpl can call the API
detailed below to populate this value.

SenderMessageID This is the ID that can uniquely identify the
message sent by the sender system.
ReqABCSImpl may have this information
and that information can be used to populate
this element.

Transaction Code This is the task code in the sender system that
is used to generate this message.
ReqABCSImpl has this information and
should use that while preparing the EBM.

Introducing EBM Header Concepts

16-16 Developer's Guide for Oracle SOA Core Extension

Element Description

CallingServiceName Name for the calling ABCS. Populated by
source ABCS.

Application Holds information about the originating
application.

Application/ID The sender system can designate the
originating application code in this element.
ReqABCSImpl should call the API detailed in
Example 16-16 to populate this value.

Application/Version The sender system can designate the version
of the originating application in this element.
ReqABCSImpl should call the API detailed in
Example 16-16 to populate this value.

Example 16-16 Sender Element Code Sample

<corecom:Sender>
<corecom:ID>SEBL_01</corecom:ID>
<corecom:Description/>
<corecom:IPAddress/>
<corecom:SenderMessageID>33303331343032313534393138393830</corecom:
SenderMessageID>
<corecom:CallingServiceName>{http://xmlns.oracle.com/SampleSiebelApp}
CreateCustomerSiebelInputFileReader</corecom:CallingServiceName>
<corecom:Application>
<corecom:ID/>
<corecom:Version>1.0</corecom:Version>
</corecom:Application>
<corecom:ContactName/>
<corecom:ContactEmail/>
<corecom:ContactPhoneNumber/>
</corecom:Sender>

SenderMessageID

This element uniquely identifies the message that originated in the source application.
Inbound request message is one of the potential sources for this element. The
Application Business Message (ABM) (payload sent by the source application) can
either have SenderMessageID populated in the payload or stored in ABM Header.
Populated during the inbound message transformation from ABM into EBM in the
ReqABCSImpl.

This information could subsequently be used by downstream services that are
planning to send a message to the same sender application to establish the context.

When to Populate Sender System Information

The Sender System information should be populated whenever an EBM is created.
This occurs when:

• Transforming a request ABM into an EBM in a requester ABC implementation
service.

• Transforming a response ABM into an EBM in a provider ABC implementation
service.

Introducing EBM Header Concepts

Working with Message Transformations 16-17

How to Populate Sender System Information

To populate sender system information:

1. Use the following XPath function to retrieve the Sender System information from
AIA System Registration Repository based on the system ID/Code and then
return the data as an XML Node-Set:

ebh:getEBMHeaderSenderSystemNode(senderSystemCode as string,
senderSystemID as string,
) return senderSystem as node-set

2. Pass either the senderSystemCode or the senderSystemID.

The function locates the system information in AIA System Registration
Repository based on either the code or the ID.

TransactionCode

The TransactionCode is used to identify the operation in the sender system that
generated the sender message.

The inbound request message is one of the potential sources for this element.

To preserve the context, the value of this element is used when constructing the
'AIAFaultMessage' in the catch of a fault handler.

This information could subsequently be used by downstream services that are
planning to send a message to the same sender application to establish the context.

ContactName

This element is the name of the contact of the sender system. The value is retrieved
from AIA System Registration Repository by doing a lookup. ReqABCSImpl should
call the API detailed in Example 16-16 to populate this value. This information can be
made available in the fault message or in the request message to be sent to external
businesses by the downstream services.

ContactEmail

This element is the email of the contact of the sender system. The value is retrieved
from AIA System Registration Repository by doing a lookup. ReqABCSImpl should
call the API to populate this value. This information can be made available in the fault
message or in the request message to be sent to external businesses by the downstream
services.

ContactPhoneNumber

This element is the phone number of the contact of the sender system. The value is
retrieved from AIA System Registration Repository by doing a lookup. ReqABCSImpl
should call the API to populate this value. This information can be made available in
the fault message or in the request message to be sent to external businesses by the
downstream services.

ESBHeaderExtension

This element, shown in Figure 16-7, accommodates the transmission of additional
information from the source application. Some data passed from the sender system
must be transported through the EBM message life cycle and is needed for identifying
and processing the target system. The target Application Business Message (ABM)

Introducing EBM Header Concepts

16-18 Developer's Guide for Oracle SOA Core Extension

may not have a placeholder for those kinds of data. Since they cannot be forced to
provide a placeholder for every such element, this Enterprise Service Bus (ESB) header
is used to hold that information. ESB has name and value pair and this component can
have as many of those elements as required.

Figure 16-7 Structure of the ESBHeaderExtension Element

Table 16-5 describes the elements in the ESBHeaderExtension element.

Table 16-5 Elements in the ESBHeaderExtension Element

Element Description

ESBHeaderExtension/Name ESB Header element name is the same as the
ID. Even though it allows multiple names for
EBM header scenarios there is only one value
that is same as the ID.

Any transformation in the life cycle of the
EBM header can populate this field.

ESBHeaderExtension/DataTypeCode ESB Header element data type is populated
by source ABCS.

ESBHeaderExtension/Value ESB Header element value is populated by
source ABCS. Even though it allows different
placeholders for different data types, for
simplicity only this element is populated.

Any transformation in the life cycle of the
EBM header can populate this field.

Figure 16-8 illustrates the structure of the ESBHeaderExtension element.

Figure 16-8 Structure of the ESBHeaderExtension Element

ObjectCrossReference

This component stores the identifier information of the sender objects and the
corresponding cross-reference identifier, as shown in Figure 16-9. Since the EBM can
be used for bulk processing this element can be repeated as well. This data may be
repeated in the data area but to maintain uniform XPath location information about
them, they are maintained here as well. ReqABCSImpl populates this value.

Introducing EBM Header Concepts

Working with Message Transformations 16-19

Figure 16-9 Structure of the ObjectCrossReference Element

Table 16-6 describes the elements in the ObjectCrossReference element.

Table 16-6 Elements in the ObjectCrossReference Element

Element Description

ObjectCrossReference/
SenderObjectIdentification

Contains all the key field names and key field
values for the object. The data is provided by
the sender system.

ReqABCSImpl has this information and
populates this value.

ObjectCrossReference/
SenderObjectIdentification/ID

Identifies the object type of the sender system
for example ORDER ReqABCSImpl has this
information and populates this value

ObjectCrossReference/
SenderObjectIdentification/Name

This identifies the description of the sender
system, for example, Purchase Order.

ReqABCSImpl has this information and
populates this value.

ObjectCrossReference/
SenderObjectIdentification /ContextID

This identifies the sender system's object
identifiers. If the sender's object has multiple
values then repeat this as many times. Use
the attribute schemeID to set the Key Name
and the Key value should be stored in the
element itself. ReqABCSImpl has this
information and populates this value.

ObjectCrossReference/EBOID This is the corresponding cross-reference
identifier stored in the integration layer.

ReqABCSImpl has this information and
populates this value.

How to Add Object Cross Reference information in the Sender System Information

To add a cross-reference entry in the sender system's ObjectCrossReference:

You must add the identifier information of the sender objects and the corresponding
cross-reference identifier.

• EBOID - Provide the corresponding cross-reference identifier in the integration
layer. ReqABCSImpl has this information and populates this value.

• SenderObjectIdentification - Populate the key field name and key field values for
the object. The data is provided by the Sender System.

Introducing EBM Header Concepts

16-20 Developer's Guide for Oracle SOA Core Extension

– ID - Identifies the object type of the sender system, for example, Order.
ReqABCSImpl has this information and populates this value

– NAME - Identifies the description of the sender system, for example, Purchase
Order. ReqABCSImpl has this information and populates this value.

– ContextID - Identifies the sender system's object identifiers. If the sender's object
has multiple values then repeat this as many times. Use the attribute SchemeID
to set the key name and store the key value in the element itself. ReqABCSImpl
has this value and populates the value.

WS Address

This element holds all WS-Addressing elements and transports WS-Addressing
elements and exchanges WS-Addressing elements between the requester and target
system. A local version of WS-Address schema is stored in a specified directory and
ReqABCSImpl populates this. This element must be populated in the request EBM
only when the provider application sends the response in an asynchronous mode. The
provider application sending an asynchronous response leverages the value of this
element to identify the callback address.

Custom

This element is the complex type that you can extend to add your own elements.

For more information about specific usage of this element, see Implementing the Fire-
and-Forget Message Exchange Pattern.

Target
The Target section is populated only when there is a need to override the routing rules
for the target system defined in Oracle Mediator. For bulk processing it is assumed
that all objects reach the same target system defined in a routing rule. In that scenario
define the appropriate target system information in this element to override the
routing rule. The overriding target system information is applicable to all the objects in
the data area. The requester ABCS should never populate the target system. The
Enterprise Business Flow (EBF) or an EBS alone can populate the details.

The Target element contains information regarding the target or receiving system and
has the elements shown in Figure 16-10.

Figure 16-10 Structure of the Target Element

Introducing EBM Header Concepts

Working with Message Transformations 16-21

ID

Use this element, shown in Example 16-17, to identify target systems to route to when
the routing rules are overridden. It is populated by the EBS when the target system
must be overridden with the value of the participating application instance code.

ApplicationTypeCode

This element identifies the type of application. An identifier for the application type
where multiple instances of the same application type may be registered in the
integration platform. The application type may contain the version number of the
application if multiple versions are supported on the system.

This field, as seen in Example 16-17, should be populated at the same time as the
Target/ID field is populated in the EBS (or in an EBF), usually in the ABCS. The value
of this field should come from the function aia:getSystemType(<ID>), where ID
is the system ID value that is populated in Target/ID. EBS routing rules almost always
check this field for a value or lack of value when determining the routing target.

Custom

This is the complex type that you can extend to add your own elements when needed.

Example 16-17 shows an example of target element code.

Example 16-17 Target Element Code Sample

<corecom:Target>
<corecom:ID>PORTAL_01</corecom:ID>
<corecom:ApplicationTypeCode>PORTAL_01</corecom:ApplicationTypeCode>
</corecom:Target>

BusinessScope
This section captures business scope specification related information defined in UN/
CEFACT Standard business definition header.

Every EBM must contain at least two rows for these elements.

• One row with type Business Scope describes the end-to-end business process that
the message is part of.

• The second row describes the main message associated in the flow (for example,
order message in ProcessOrder flow).

For most of the cases, each end-to-end process has one message only. However in
complex business scenarios there could be multiple messages spawned or forked from
the process. In that case each spawned message must be a row in this section. Figure
16-11 describes how this works.

Introducing EBM Header Concepts

16-22 Developer's Guide for Oracle SOA Core Extension

Figure 16-11 Structure of the BusinessScope Element

ID

An optional identifier that identifies the contract this instance relates to. ReqABCSImpl
populates this value. This is the name of the process or message given by the
applications.

InstanceID

A unique identifier that references the instance of the scope (for example, process
execution instance of document instance). This is an alpha numeric code assigned by
the application team concatenated with a GUID. For message type business scope
section use the same EBMID as used in the top section.

BusinessScopeTypeCode

This element indicates the kind of business scope. Values are:

• BusinessScope (UMM)

• BusinessService (for ebXML)

• Message

ReqABCSImpl populates this value.

EnterpriseServiceName

Name of the EBS where this message belongs. Known to the message creator, be it
ABCS or EBS. ReqABCSImpl populates this value.

EnterpriseServiceOperationName

Name of the action of the EBS this message belongs. Known to the message creator, be
it ABCS or EBS. ReqABCSImpl populates this value.

Custom

A complex type for you to extend to add extra elements.

How to Add Business Process Information

Every EBM must contain at least two rows for these elements:

Introducing EBM Header Concepts

Working with Message Transformations 16-23

• One row with type Business Process describes the end-to-end business process the
message is part of.

• The second row describes the main message associated in the flow, for example, the
order message in ProcessOrder flow.

In most cases, each end-to-end process has only one message. However in complex
business scenarios there could be multiple messages spawned or forked from the
process. In that case each spawned message must be a row in this section.

The use case example below describes how this works. To keep things simple the
example limits the messages to the immediate child of the process and the subsequent
chaining of messages is not taken into account.

Use Case: Request-Response
GetAccountBalance: Sends a request message with account number as input and
receives account balance as response, as shown in Figure 16-12.

Figure 16-12 Use Case: Request-Response

Request EBM

Example 16-18 shows two rows: one for the Process and one for the Request EBM
Message involved in the process.

Example 16-18 Request EBM for Request-Response Use Case

<BusinessScope>
<ID>Siebel- Portal-Get -Account-Balance</ID>
<InstanceID>GETACCTBAL/1001</InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>GetAccountBalance</
EnterpriseServiceOperationName>
 <BusinessScope>
 <BusinessScope>
<ID> AccountBalanceReqMessage </ID>
<InstanceID> ACCTBALMSG/9001[the EBMID in the top element to be used here]
</InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>GetAccountBalance
</EnterpriseServiceOperationName>
</BusinessScope>

Response EBM

Example 16-19 shows two rows: one for the process and one for the Response EBM
Message involved in the process.

Example 16-19 Response EBM for Request-Response Use Case

<BusinessScope>
<ID>Siebel- Portal-Get -Account-Balance</ID>
<InstanceID>GETACCTBAL/10 01</InstanceID>

Introducing EBM Header Concepts

16-24 Developer's Guide for Oracle SOA Core Extension

<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>GetAccountBalance
</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID>] AccountBalanceResMessage </ID>
<InstanceID> ACCTBALMSG/9002[the EBMID in the top element to be used here
</InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>GetAccountBalance</
EnterpriseServiceOperationName>
</BusinessScope>

Use Case: Asynchronous Process
SyncProduct: Portal sends an async message to Siebel to sync the product details, as
shown in Figure 16-13.

Figure 16-13 Use Case: Asynchronous Process

Request EBM

Example 16-20 shows two rows: one for the process and one for the Request EBM
Message involved in the process.

Example 16-20 Request EBM for Request-Response Use Case

<BusinessScope>
<ID>Portal-Siebel-Product-Sync</ID>
<InstanceID>PRODSYNC/1003</InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>ProductEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>SyncProduct</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> ProductSyncReqMessage </ID>
<InstanceID> PRODSYNCREQ/9003 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>ProductEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>SyncProduct</EnterpriseServiceOperationName>
</BusinessScope

Use Case: Synchronous Process with Spawning Child Processes
ProcessOrder: Siebel sends an order. It first spawns CreateAccount in the portal, and
then it processes the order in the portal, as shown in Figure 16-14.

Introducing EBM Header Concepts

Working with Message Transformations 16-25

Figure 16-14 Synchronous Process with Spawning Child Processes

Figure 16-15 illustrates the ProcessOrder flow.

Figure 16-15 ProcessOrder flow

Message 1: Create Account Request EBM

Example 16-21 shows four rows:

• One for the process

• One for the Create Account Request Message in the process

• One for the create customer request message in the process (spawned immediate
child)

• One for the create customer response message in the process (spawned immediate
child)

Message 2: Create Account Response EBM

Example 16-22 shows two rows:

• One for the process

• One for the Create Account Response Message in the process

Message 3: Create Customer Request EBM

Example 16-23 shows two rows:

• One for the process

• One for the Create Customer request message in the process

Message 4: Create Customer Response EBM

Introducing EBM Header Concepts

16-26 Developer's Guide for Oracle SOA Core Extension

Example 16-24 shows two rows:

• One for the process

• One for the Create Customer response message in the process

Message 5: ProcessOrder Request EBM

Example 16-25 shows four rows:

• One for the process

• One for the Process Order Request Message in the process

• One for the create account request message in the process (spawned immediate
child)

• One for the create account response message in the process (spawned immediate
child)

Message 6: Process Order Response EBM

Example 16-26 shows two rows:

• One for the process

• One for the Process Order Response in the process

Example 16-21 Create Account Request EBM

<BusinessScope>
<ID> Portal-Account-Creation </ID>
<InstanceID> CREATEACCT/1008 </InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateAccount</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Account-Request-Message </ID>
<InstanceID> CREATEACCTREQMSG/9008 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateAccount</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Customer-Request-Message </ID>
<InstanceID> CREATECUSTREQMSG/9009 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>CustomerEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateCustomer</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Customer-Response-Message </ID>
<InstanceID> CREATECUSTRESPMSG/9021 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>CustomerEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateCustomer</EnterpriseServiceOperationName>
</BusinessInstruction>

Example 16-22 Create Account Response EBM

<BusinessScope>
<ID> Portal-Account-Creation-Response </ID>

Introducing EBM Header Concepts

Working with Message Transformations 16-27

<InstanceID> CREATEACCTRESP/1008 </InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateAccount</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Account-Response-Message </ID>
<InstanceID> CREATEACCTRESPMSG/9020 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateAccount</EnterpriseServiceOperationName>
</BusinessScope>

Example 16-23 Create Account Response EBM

<BusinessScope>
<ID> Oracle-Customer-Create </ID>
<InstanceID> CREATECUST/1009 </InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>CustomerEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateCustomer</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Customer-Request-Message </ID>
<InstanceID> CREATECUSTREQMSG/9009 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>CustomerEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateCustomer</EnterpriseServiceOperationName>
</BusinessScope>

Example 16-24 Create Customer Request EBM

<BusinessScope>
<ID> Oracle-Customer-Create-Response </ID>
<InstanceID> CREATECUSTRESP/10 09 </InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>CustomerEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateCustomer</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Customer-Response-Message </ID>
<InstanceID> CREATECUSTREQMSG/9021 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>CustomerEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateCustomer</EnterpriseServiceOperationName>
</BusinessScope>

Example 16-25 ProcessOrder Request EBM

<BusinessScope>
<ID>End-to-End-Order-Processing </ID>
<InstanceID> ORDPROCESSING/1004 </InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>OrderEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>ProcessOrder</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Process-Order-Request-Message </ID>
<InstanceID> PROCESSORDERREQMSG /9004 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>OrderEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>ProcessOrder</EnterpriseServiceOperationName>

Introducing EBM Header Concepts

16-28 Developer's Guide for Oracle SOA Core Extension

</BusinessScope>
<BusinessScope>
<ID>Create-Account-Request-Message </ID>
<InstanceID> CREATEACCTREQMSG /9005 </InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateAccount</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Create-Account-Response-Message </ID>
<InstanceID> CREATEACCTRESPMSG /9020</InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>AccountEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>CreateAccount</EnterpriseServiceOperationName>
</BusinessScope>

Example 16-26 Process Order Response EBM

<BusinessScope>
<ID>End-to-End-Order-Processing </ID>
<InstanceID> ORDPROCESSING/1004 </InstanceID>
<BusinessScopeTypeCode>BusinessScope</BusinessScopeTypeCode>
<EnterpriseServiceName>OrderEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>ProcessOrder</EnterpriseServiceOperationName>
</BusinessScope>
<BusinessScope>
<ID> Process-Order-Response-Message</ID>
<InstanceID> PROCESSORDERRESPMSG /9019</InstanceID>
<BusinessScopeTypeCode>Message</BusinessScopeTypeCode>
<EnterpriseServiceName>OrderEBS</EnterpriseServiceName>
<EnterpriseServiceOperationName>ProcessOrder</EnterpriseServiceOperationName>
</BusinessScope>

EBMTracking
EBMTracking contains tracking information about each node that the EBM has been
through, a shown in Figure 16-16. EBMTracking may appear multiple times, once for
each execution unit it passes through.

Figure 16-16 Structure of the EBMTracking element

SequenceNumber

This element contains the sequence number of the node the EBM has been through.

Introducing EBM Header Concepts

Working with Message Transformations 16-29

ExecutionUnitID

This element contains the ID of the execution unit, node, or process ID.

ExecutionUnitName

This element contains the fully qualified name of the execution unit, node, or process
ID.

ImplementationCode

This element contains the category of the execution unit, which indicates the type of
the execution unit such as BPEL, Mediator, or Java Service.

ActivityDateTime

This element contains the timestamp indicating when the EBM was processed by the
execution unit. The timestamp should be presented in UTC, which can be presented in
current datetime, and GMT offset as: yyyy '-' mm '-' dd 'T' hh ':' mm ':'
ss ('.' s+)? (zzzzzz)?

When to Populate EBM Tracking Information

Add an EBMTracking entry, as shown in Example 16-27, to the EBM header whenever
a message is processed by a service.

This section should be populated when:

• Transforming a request ABM into an EBM in a requester ABC implementation
service.

• Transforming a response ABM into an EBM is a provider ABC implementation
service.

• The message passes through a BPEL process.

Example 16-27 Populating EBM Tracking Information

<EBMTracking>
<SequenceNumber>1</SequenceNumber>
<ExecutionUnitID>6 8 56 8</ExecutionUnitID>
<ExecutionUnitName>{http://xmlns.oracle.com/ABCSImpl/Siebel/Invoice/v0}
QueryInvoiceSiebelReqABCSImpl</ExecutionUnitName>
<CategoryCode>BPEL</CategoryCode>
<ActivityDateTime>2 001-12-17T09:30:47-05:00</ActivityDateTime>
</EBMTracking>
<EBMTracking>
<SequenceNumber>2</SequenceNumber>
<ExecutionUnitID>4435</ExecutionUnitID>
<ExecutionUnitName>OrderEBS</ExecutionUnitName>
<ExecutionUnitName>{http://xmlns.oracle.com/EnterpriseServices/Core/Invoice/v0}
QueryInvoiceEBS</ExecutionUnitName>
<CategoryCode>ESB</CategoryCode>
<ActivityDateTime>2 001-12-17T09:30:47-05:00</ActivityDateTime>
</EBMTracking>
<EBMTracking>
<SequenceNumber>3</SequenceNumber>
<ExecutionUnitID>6 8 594</ExecutionUnitID>
<ExecutionUnitName>{http://xmlns.oracle.com/ABCSImpl/Portal/Invoice/v0}Query
InvoicePortalProvABCSImpl</ExecutionUnitName>

Introducing EBM Header Concepts

16-30 Developer's Guide for Oracle SOA Core Extension

<CategoryCode>BPEL</CategoryCode>
<Activity DateTime>2 001-12-17T09:30:47-05:00</ActivityDateTime>
</EBMTracking>

Custom
You can extend the custom types to add any extra elements or attributes you may
need. You can also take advantage of the XSLT file extensibility features to add the
necessary code to either populate or read values or both from the custom section.

Introducing EBM Header Concepts

Working with Message Transformations 16-31

Introducing EBM Header Concepts

16-32 Developer's Guide for Oracle SOA Core Extension

17
Configuring Oracle AIA Processes for Error

Handling and Trace Logging

This chapter provides an overview of Oracle BPEL and Mediator Process Error
Handling and AIA Error Handler Framework and describes how to enable AIA
Processes for Fault Handling, implement Error Handling for the Synchronous Message
Exchange Pattern, implement Error Handling and Recovery for the Asynchronous
Message Exchange Pattern to ensure guaranteed message delivery, configure AIA
Services for notification, describe the FaultNotification Element, extend fault
messages, extend error handling and how to configure Oracle AIA Processes for Trace
Logging.

This chapter includes the following sections:

• Overview of Oracle BPEL and Mediator Process Error Handling

• Overview of AIA Error Handler Framework

• Enabling AIA Processes for Fault Handling

• Implementing Error Handling for the Synchronous Message Exchange Pattern

• Implementing Error Handling and Recovery for the Asynchronous Message
Exchange Pattern to Ensure Guaranteed Message Delivery

• How to Configure AIA Services for Notification

• Describing the Oracle AIA Fault Message Schema

• Extending Fault Messages

• Extending Error Handling

• Configuring Oracle AIA Processes for Trace Logging

For more information about Oracle AIA B2B error handling, see Introduction to B2B
Integration Using AIA.

Overview of Oracle BPEL and Mediator Process Error Handling
This section includes the following topics:

• Understanding Oracle BPEL Error Handling

• Understanding Oracle Mediator Error Handling

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-1

Understanding Oracle BPEL Error Handling
The Oracle Application Integration Architecture (AIA) Error Handling Framework
groups BPEL process errors into two categories:

• Run-time faults

• Business faults

Run-time Faults

A run-time fault can occur in one of two scenarios:

• The partner link invocation fails.

• The partner link receives a named fault indicating that it is a run-time fault.

These faults are not user-defined and are issued by the system. Some situations in
which a BPEL process can encounter a run-time fault include the following:

• The process tries to use a value incorrectly.

• A logic error occurs.

• A SOAP fault occurs in a SOAP call.

• An exception is issued by the server, and so forth.

AIA Services built as BPEL processes should be enabled and configured to catch and
handle the run-time faults.

Business Faults

A business fault can occur in one of two scenarios:

• A BPEL process runs a throw activity after evaluating a condition as a fault.

• An Invoke activity receives a named fault indicating that it is a business fault.

Business faults are the application-specific faults that are generated when erroneous
conditions take place when the message is being processed. These faults are specified
by the BPEL process component and are defined in the WSDL.

AIA Services built as BPEL processes should be enabled and configured to catch and
handle the run-time, and business faults.

Understanding Oracle Mediator Error Handling
A Mediator component can handle both run-time faults and business faults.

Run-time Faults

These are faults that occur because of some problem in the underlying system, such as
the network not being available.

Business Faults

These are exceptions that are returned by called Web services. These are application-
specific and are explicitly defined in the service's WSDL file.

AIA Services built as Mediator components should be configured to catch and handle
the business faults.

Overview of Oracle BPEL and Mediator Process Error Handling

17-2 Developer's Guide for Oracle SOA Core Extension

However, fault policies are applicable to parallel routing rules only. For sequential
routing rules, the fault goes back to the caller and it is the responsibility of the caller to
handle the fault.

AIA recommends the usage of sequential routing rules only.

For more information about configuring the Mediator to handle business faults arising
from synchronous invocations using sequential routing rules, see Guidelines for
Configuring Mediator for Handling Business Faults.

Overview of AIA Error Handler Framework
For more information about the Error Handling Framework and its features, see
"Setting Up Error Handling" in Oracle Fusion Middleware Infrastructure Components and
Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack,
Release 11.1.1.9.

Enabling AIA Processes for Fault Handling
This section includes the following topics:

• What You Must Know About Fault Policy Files

• How to Implement Fault Handling in BPEL Processes

What You Must Know About Fault Policy Files
A fault policy bindings file associates the policies defined in a fault policy file with the
SOA composite application (or the service component or reference binding
component). The fault policy bindings file must be named fault-bindings.xml. This
conforms to the fault-bindings.xsd schema file.

Fault policy file names are not restricted to one specific name. However, AIA
recommends a naming convention to be followed for the fault policy files. All fault
policy files should be named using the convention <ServiceName>FaultPolicy.xml.
They must conform to the fault-policy.xsd schema file.

For more information about naming conventions, see Oracle AIA Naming Standards
for AIA Development.

AIA recommends that the fault policy bindings file should be defined to associate the
policies defined in a fault policy file with the SOA composite application.

SOA Core Extension comes with a default fault policy, which is stored in Oracle
Metadata Services (MDS), in the AIAMetaData/faultPolicies/V1 folder. When default
fault policies are to be used, then the composite.xml file should have the elements
shown in Example 17-1 added to it.

If a developer chooses to have a customized, service-specific fault policy file for her
AIA Service, then, AIA recommends that the fault policy file and fault policy bindings
file (fault-bindings.xml) be placed in the same directory as the composite.xml file of
the SOA composite application.

For more information, see "Schema Definition File for Fault-policies.xml" and "Schema
Definition File for Fault-bindings.xml" in Developing SOA Applications with Oracle SOA
Suite.

Overview of AIA Error Handler Framework

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-3

http://docs.oracle.com/cd/E21764_01/doc.1111/e17366/toc.htm
http://docs.oracle.com/cd/E23943_01/dev.1111/e10224/toc.htm
http://docs.oracle.com/cd/E23943_01/dev.1111/e10224/toc.htm

Example 17-1 Elements to be Added to composite.xml

<property name="oracle.composite.faultPolicyFile">[pointer to the fault policy
 xml file in the MDS]</property>
<property name="oracle.composite.faultBindingFile">[pointer to the fault policy
 bindings file fault-bindings.xml in the MDS]</property>

Associating a Fault Policy File with Fault Policy Bindings File

The following example shows how to associate a fault policy defined in a sample fault-
policy file with a fault-policy binding.xml file.

Consider a sample fault policy file,
SamplesQueryCustomerPartyPortalProvABCSImplFaultPolicy.xml, with the fault
policies defined as shown in Example 17-2.

Associate the policies defined in the preceding fault policy file with the level of fault
policy binding that you are using-either a SOA composite application or a component
(BPEL process or Oracle Mediator service component).

In the fault-bindings.xml file, the association is done as shown in Example 17-3.

Note:

In this example, the association is made at the level of the SOA composite
application.

AIA recommends that the fault policy binding level be a SOA composite application
by default because this conforms with our recommendation that a composite must be
built with a single component in it.

Example 17-2 Sample Fault Policy File with Fault Policies Defined

<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
 <faultPolicy version="2.0.1"
 id="SamplesQueryCustomerPartyPortalProvABCSImplFaultPolicy">
 </faultPolicy>
</faultPolicies>

Example 17-3 Association in fault-bindings.xml

<faultPolicyBindings version="2.0.1"xmlns="http://schemas.oracle.com/bpel/
 faultpolicy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <compositefaultPolicy="SamplesQueryCustomerPartyPortalProvABCSImpl
 FaultPolicy"/>
</faultPolicyBindings>

How to Implement Fault Handling in BPEL Processes
To implement fault handling in a BPEL process:

1. Define an EBM HEADER variable in the BPEL process and populate it as the first
step.

The Error Handling Framework uses this variable to populate the fault message
with contextual details from the Enterprise Business Message (EBM) header. If the
BPEL process is an Application Business Connector Service (ABCS), then input is
an Application Business Message (ABM), and the EBM HEADER variable should
be populated as soon as the ABM is converted to an EBM. This way, if the error

Enabling AIA Processes for Fault Handling

17-4 Developer's Guide for Oracle SOA Core Extension

occurs on a partner link after this transformation step, the Error Handling
Framework accesses and uses the EBM header details.

2. Define a fault policy for the BPEL process and bind the process with this policy in
fault-bindings.xml.

When you are using a service-specific fault policy file, always use the
CompositeJavaAction, oracle.apps.aia.core.eh.CompositeJavaAction, as specified
in the default policy. Including this CompositeJavaAction accounts for error
notifications and error logging.

For more information about how to define a fault policy XML file to handle
business faults, see Handling Business Faults.

For more information about how to define a fault policy XML file to handle run-
time faults in the synchronous message exchange pattern (MEP), see
Implementing Error Handling for the Synchronous Message Exchange Pattern.

For more information about how to define a fault policy XML file to handle run-
time faults in the asynchronous MEP, see Implementing Error Handling and
Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed
Message Delivery.

3. Define the catch blocks.

The default behavior of the fault policy after the CompositeJavaAction is to do a
rethrow. This returns the execution control to the catch or catch-all block specified
in the BPEL process.

In a way, interception of faults using a fault policy is transparent to you because
the CompositeJavaAction rethrows the same fault that has been intercepted by it.
So in BPEL, you must catch the fault, such as a binding or remote fault, which is
expected out of the invoke activity.

Hence, define a catch block for each business fault and run-time fault that can be
expected at design time.

4. Define a catch-all block.

This assists in catching any unexpected errors that may occur while you are
running the process.

For more information about defining BPEL catch and catch-all blocks for the
synchronous request-response MEP, see Guidelines for BPEL Catch and Catch-All
Blocks in Synchronous Request-Response.

For more information about defining BPEL catch and catch-all blocks for the
asynchronous MEP, see Guidelines for BPEL Catch and Catch-All Blocks.

Implementing Error Handling for the Synchronous Message Exchange
Pattern

This section includes the following topics:

• Guidelines for Defining Fault Policies

• Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response

• Guidelines for Configuring Mediator for Handling Business Faults

Implementing Error Handling for the Synchronous Message Exchange Pattern

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-5

Guidelines for Defining Fault Policies
This section includes the following topics:

• Defining a Fault Policy XML File for Handling Run-time Faults

• Defining a Fault Policy XML File for Handling Business Faults

Defining a Fault Policy XML File for Handling Run-time Faults

Define faults in the fault policy XML file per guidelines illustrated in the following
code snippet. In the fault policy, define a section under Conditions as shown in
Example 17-4.

Though AIA recommends that by default, remote and binding faults should be
defined, as shown previously, other run-time faults can be handled in the same way if
required per the functionality of the service.

For example, if you are required to handle the subLanguageExecutionFault fault, then
define the section as shown in Example 17-5.

However, all the run-time faults that are defined in the fault policy file must be caught
in the BPEL process in a catch block, which is specific to the fault.

For more information about defining BPEL catch and catch-all blocks for the
synchronous request-response MEP, see Guidelines for BPEL Catch and Catch-All
Blocks in Synchronous Request-Response.

Example 17-4 Fault Definition in the Fault Policy XML File

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"name="bpelx:
 remoteFault">
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension" name="bpelx:
 bindingFault">
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
</faultName>

Example 17-5 subLanguageExecutionFault Fault Handling

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"name="bpelx:
 subLanguageExecutionFault">
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
</faultName>

Defining a Fault Policy XML File for Handling Business Faults

The Fault Management Framework is used to handle the business faults that are for an
invoke activity. In other words, only business faults thrown by external services and
applications when invoked using the invoke activity are intercepted by the Oracle
Fusion Middleware Fault Management Framework, according to the definitions
specified in the fault policy file.

Implementing Error Handling for the Synchronous Message Exchange Pattern

17-6 Developer's Guide for Oracle SOA Core Extension

The business faults that are internal to the BPEL, business faults thrown by a throw
activity, for example, are not intercepted by the Fault Management Framework.

To define a fault policy to intercept Oracle AIA faults:

1. Examine your partner link WSDL and check to determine whether it is throwing
any Oracle AIA faults.

2. If it is throwing Oracle AIA faults, look for the partner link namespace and name of
the fault in the partner link WSDL.

3. In the fault policy, define a section under Conditions as shown below:

<Conditions>
 <faultName xmlns:corecustomerpartyebs="http://xmlns.oracle.com/Enterprise
 Services/Core/CustomerParty/V2" name="corecustomerpartyebs:fault">
 <condition>
 <test>[XPath expression to be evaluated for the fault variable
 available in the fault]</test>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
</Conditions>

Note:

To avoid unnecessary processing, ensure that you specify retry options only
when explicitly required.

4. Configure the default condition to call the aia-ora-java action, as shown below:

<Conditions>
 <faultName xmlns:corecustomerpartyebs="http://xmlns.oracle.com/Enterprise
 Services/Core/CustomerParty/V2" name="corecustomerpartyebs:fault">
 <condition>
 <test>[XPath expression to be evaluated for the fault variable
 available in the fault]</test>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
 <faultName>
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
</Conditions>

5. All business faults defined in the fault policy file must be caught in the BPEL
process in a catch-block that is specific to the business fault.

For more information, see Guidelines for BPEL Catch and Catch-All Blocks in
Synchronous Request-Response.

Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response
Each BPEL process should have explicit catch blocks for remote faults, binding faults,
business faults (Oracle AIA faults), and any other fault expected on a partner link at
design time. Use these guidelines for defining these catch blocks.

Implementing Error Handling for the Synchronous Message Exchange Pattern

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-7

Handling Business Faults

To handle an internal business fault:

1. In the case of a BPEL process carrying out a throw activity, construct a business
fault message (Oracle AIA fault message) and populate the AIA Fault message
with the ECID, as shown in Example 17-6.

Note:

Ensure that in EBM_to_Fault.xsl, the <corecom:ExecutionContextID/>
element is injected under the <corecom:FaultingService> element.

2. Catch the preceding fault message in the catch block. In the catch block:

• Send the AIA Fault Message as a reply.

Invoke the AIAAsyncErrorHandlingBPELProcess with this Oracle AIA fault
message as input.

• Throw the AIA Fault Message that has been caught. This rethrow enables the
process to appear as faulted in the Enterprise Manager Console.

To handle an external business fault:

In the case of an Invoke activity in the BPEL receiving an AIA fault message as a
response, catch the AIA fault message in the catch block. In the catch block:

• Send the AIA Fault Message as reply.

• Throw the AIA Fault Message that has been caught. This rethrow enables the
process to appear as faulted in the Oracle Enterprise Manager Console.

Note:

In this case, AIA does not invoke the AIAAsyncErrorHandlingBPELProcess
because the business fault is handled by the Oracle Fusion Middleware Fault
Management Framework, according to the fault polices defined in the
associated fault policy file.

Example 17-6 Business Fault Message

<sequence name="SequenceBusinessFault">
 <assign name="AssignBusinessFault">
 <copy>
 <from expression="ora:processXSLT('xsl/EBM_to_Fault.xsl',bpws:
 getVariableData('EBM_HEADER'))"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault"/>
 </copy>
 <copy>
 <from expression="'invalid account id'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Text"/>
 </copy>
 <copy>
 <from expression="'invalid account id'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/

Implementing Error Handling for the Synchronous Message Exchange Pattern

17-8 Developer's Guide for Oracle SOA Core Extension

 corecom:FaultNotification/corecom:FaultMessage/corecom:Stack"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeInstanceId()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultingService/corecom:
 InstanceID"/>
 </copy>
 <copy>
 <from expression="'BPEL'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ImplementationCode"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeName()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultingService/corecom:ID"/>
 </copy>
 <copy>
 <from expression="ora:getECID()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ExecutionContextID"/>
 </assign>
 <throw name="Throw_custom_business_fault" faultName="client:fault"
 faultVariable="AIAFaultMessage"/>
</sequence>

Handling Run-time Faults Defined in the Fault Policy File

For each of the run-time faults that has been defined in the fault policy xml file, have a
catch block in the BPEL.

To handle run-time faults defined in the fault policy file:

1. In the catch block, construct an Oracle AIA fault message.

2. Send this Oracle AIA fault message as the reply.

3. Rethrow the fault that has been caught. This enables the process to appear as
faulted in the Oracle BPEL Console.

Handling Run-time Faults Not Defined in the Fault Policy File

Each BPEL process should also have a catch-all block to process run-time faults that
are not caught in catch-blocks and not defined in the fault policy file.

To define the catch-all block:

1. Construct an Oracle AIA fault message. Populate the AIA Fault message with ECID
as shown in Example 17-7.

Note:

Ensure that in EBM_to_Fault.xsl, the <corecom:ExecutionContextID/>
element is injected under the <corecom:FaultingService> element.

2. Invoke the AIAAsyncErrorHandlingBPELProcess with this Oracle AIA fault
message as input.

Implementing Error Handling for the Synchronous Message Exchange Pattern

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-9

3. Send this Oracle AIA fault message as the reply.

4. Throw AIA fault message. This enables the process to appear as faulted in the
Oracle Enterprise Manager Console.

5. Unless otherwise required, these catch and catch-all blocks can be defined at the
top-level scope and are not required to be defined at the scope for each partner link.

For more information about the Fault Management Framework, see "Using the Fault
Management Framework" in Developing SOA Applications with Oracle SOA Suite.

Example 17-7 Catch-All Block Construction

<sequence name="SequenceCatchAll">
 <assign name="AssignFault">
 <copy>
 <from expression="ora:processXSLT('xsl/EBM_to_Fault.xsl',bpws:
 getVariableData('EBM_HEADER'))"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault"/>
 </copy>
 <copy>
 <from expression="ora:getFaultAsString()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Text"/>
 </copy>
 <copy>
 <from expression="ora:getFaultAsString()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultMessage/corecom:Stack"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeInstanceId()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 InstanceID"/>
 </copy>
 <copy>
 <from expression="'BPEL'"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ImplementationCode"/>
 </copy>
 <copy>
 <from expression="ora:getCompositeName()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:ID"/>
 </copy>
 <copy>
 <from expression="ora:getECID()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:FaultingService/corecom:
 ExecutionContextID"/>
 </assign>
</sequence>

Guidelines for Configuring Mediator for Handling Business Faults
Oracle Mediator provides fault policy-based error handling for business faults.
However, fault policies are applicable to parallel routing rules only. For sequential

Implementing Error Handling for the Synchronous Message Exchange Pattern

17-10 Developer's Guide for Oracle SOA Core Extension

routing rules, the fault goes back to the caller (that has invoked the mediator) and it is
the responsibility of the caller to handle the fault.

AIA recommends using only sequential routing rules.

When a service invoked by the mediator throws a business fault, this fault must be
propagated up to the service that has invoked the mediator.

This section discusses how to configure the mediator to handle business exceptions
returned by the services invoked by the mediator.

Here are some points to consider:

• When the mediator invokes a service, the invoked service can throw any of the
business faults that are defined in its WSDL.

• The fault that is thrown by the invoked service is propagated back to the mediator.

To configure the mediator to handle business exceptions returned by the services
invoked by the mediator:

1. Open the mediator in design-mode using Oracle JDeveloper.

2. Using the Static Routing panel, assign the inbound fault reaching the mediator to
the outbound fault, which is now propagated by the mediator to the service that
invoked it, as shown in Figure 17-1.

Figure 17-1 Assignment of the Faults in the Mediator

3. As shown in the preceding diagram, assign the inbound fault from the target
service's WSDL operation to the outbound fault that is propagated by the mediator
to its invoker service.

For more information about how to assign faults, see "How to Handle Faults" in
Developing SOA Applications with Oracle SOA Suite.

Implementing Error Handling and Recovery for the Asynchronous
Message Exchange Pattern to Ensure Guaranteed Message Delivery

This section includes the following topics:

• Overview

• Configuring Milestones

• Configuring Services Between Milestones

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-11

• Guidelines for BPEL Catch and Catch-All Blocks

• Guidelines for Defining Fault Policies

• Configuring Fault Policies to Not Issue Rollback Messages

• Using the Message Resubmission Utility API

Overview
In the context of AIA, guaranteed message delivery for the asynchronous MEP means
that the message initiated from a sender is persisted until it is successfully delivered to
and acknowledged by the receiver, if acknowledgment is expected.

The sender and receiver are not necessarily the participating applications. Rather, they
are logical milestones in an Oracle AIA integration flow. Multiple milestones could be
in an Oracle AIA integration scenario.

Temporary unavailability of any hardware or software service in an asynchronous
message flow does not result in a lost message or a delivery failure. The Error
Handling framework provides a way for the message to be persisted until the
hardware or software service becomes available.

After an integration administrator has been notified of the unavailable resource by the
Error Console, she can address the resource issue. The integration administrator can
then use the Message Resubmission Utility to resubmit the persisted message into the
integration scenario from the appropriate transaction milestone point, enabling its
delivery to the next component or milestone.

For more information about running the Message Resubmission Utility, see "Using the
Message Resubmission Utility" in Oracle Fusion Middleware Infrastructure Components
and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack,
Release 11.1.1.9.

These points summarize primary aspects of an implementation of the guaranteed
message delivery programming model for the asynchronous MEP.

• Message persistence milestones

Messages are picked from a persistence store (source), processed, and pushed to the
next persistence store (target). The message is not removed from the source until it
has been successfully processed and delivered to the target. The source and target
may be applications. Each persistence store represents a milestone and may be a
database, file system, JMS queue, or JMS topic.

For more information about configuring milestones, see Configuring Milestones.

• Global transaction

These tasks must be accomplished as a part of the global transaction:

– Picking up the message from the source.

– Processing the message by one or more services.

– Delivering the message to the target.

– The initiation of a service from the source with an input message initiates a
transaction. All the services invoked downstream participate in this global
transaction. This global transaction ends or is committed when the message is
successfully delivered to the target and removed from the source.

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

17-12 Developer's Guide for Oracle SOA Core Extension

In the case of an error, an exception is raised and the transaction initiated is
rolled back with the message safe in the source. The message is either in the
source or target and is not lost.

For more information about configuring the global transaction, see Configuring
Services Between Milestones.

• Error handling and recovery

Any exceptions due to system or business errors must generate a rollback of all
preceding services and trigger a single error notification to the Integration
Administrator. This requires marking the message in the source as faulted,
preventing it from being processed until the error condition is removed.

For more information about configuring error rollback, see Configuring Fault
Policies to Not Issue Rollback Messages.

In case of system errors, after the exception condition has been removed, the faulted
messages in the source must be reset. This enables them to be resubmitted. The
Message Resubmission Utility can be used to resubmit the messages for reprocessing
by the correct source.

In case of business errors, the faulted messages in the source must be removed and
sent to fallout management for further action. Fallout management is a custom
implementation in which the messages encountering business errors are segregated
and processed separately.

For example, suppose that orders submitted for processing encounter a business error.
As a part of an Order Fallout Management implementation, the Order message and
error message are routed to an application that introspects the error messages and
raises a trouble ticket that provides an explanation of the error and the suggested
remedial action. After the remedial action is taken, the order is reprocessed.

Error handling and recovery for the asynchronous MEP are implemented as follows to
ensure guaranteed message delivery:

1. Ensure that each message has a unique message identifier.

2. Populate the EBM header with the source milestone identifier.

3. Ensure that the fault notification contains the message identifier and source
milestone identifier of the faulted message.

4. Use the Message Resubmission Utility to recover and resubmit a faulted message.

For more information about how to implement these configurations, see Configuring
Milestones and Configuring Services Between Milestones.

For more information about using the Message Resubmission Utility, see "Using the
Message Resubmission Utility" in Oracle Fusion Middleware Infrastructure Components
and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack,
Release 11.1.1.9.

For more information about the Message Resubmission Utility API, see Using the
Message Resubmission Utility API.

Configuring Milestones
As a part of implementing error handling and recovery for the asynchronous MEP to
ensure guaranteed message delivery, messages must be persisted at milestones. The
movement of messages between milestones must be guaranteed.

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-13

A milestone can be a JMS queue or a JMS topic.

Figure 17-2 and Figure 17-3 illustrate a few possible milestone locations across an
integration flow.

Figure 17-2 Integration Flow in Which the Receiver Target Milestone is the Target
Participating Application

Figure 17-3 Integration Flow in Which the Receiver Target Milestone is Within the Global Transaction
Space

Configuring Services Between Milestones
This section includes the following topics:

• Populating Message Resubmission Values

• Configuring All Services to Participate in a Single Global Transaction

Completing these activities ensures that the services between milestones are
configured to provide error handling and recovery for the asynchronous MEP to
ensure guaranteed message delivery.

Populating Message Resubmission Values

These parameters in the EBM header must be populated in the JMS consumer service
transformation:

• SenderResourceTypeCode

Indicates the type of resource or system in which the rolled-back message is stored,
whether Queue or Topic.

• SenderResourceID

Identification of the resource/system of type SenderResourceTypeCode.

• SenderMessageID

Identification of the message persisted in the resource/system associated with type
SenderResourceTypeCode.

Scenario 1

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

17-14 Developer's Guide for Oracle SOA Core Extension

When an ABM in the JMS Queue or Topic is triggering the JMS Consumer Service,
then the preceding information must be passed to the requester ABCS as a part of the
ABM header.

For more information, see Populating the ABM with Message Resubmission Values in
JMSConsumerAdapter.

In the JMS Consumer Service, this information must be configured to be sent to the
ABM header. In the requester ABCS, this information is extracted from the ABM
header and sent to the EBM header in the transformation.

For more information, see Populating the EBM Header with Resubmission Values in
the Requester ABCS.

Scenario 2

When an EBM in the JMS Queue or Topic is triggering the JMS consumer service, use
an EBM-to-EBM transformation and populate (overwrite) the resubmission values in
the EBM message. The following values in the EBM header fields of the inbound
message should be overwritten with the new values for the ResourceType, Resource
Name, and JMS Message ID pertaining to the current milestone.

• <corecom:SenderResourceTypeCode>

• <corecom:SenderResourceID>

• <corecom:SenderMessageID>

Example 17-8 provides sample code snippet from the EBM-to-EBM XSL.

Example 17-8 EBM-to-EBM XSL Code Example

<corecom:IntermediateMessageHop>
 <corecom:SenderResourceTypeCode>
 <xsl:value-of select="/custebo:CreateCustomerPartyListEBM/corecom:
 EBMHeader/corecom:FaultNotification/corecom:FaultMessage/corecom:
 IntermediateMessageHop/corecom:SenderResourceTypeCode"/>
 </corecom:SenderResourceTypeCode>
 <corecom:SenderResourceID>
 <xsl:value-of select="/custebo:CreateCustomerPartyListEBM/corecom:
 EBMHeader/corecom:FaultNotification/corecom:FaultMessage/corecom:
 IntermediateMessageHop/corecom:SenderResourceID"/>
 </corecom:SenderResourceID>
 <corecom:SenderMessageID>
 <xsl:value-of select='mhdr:getProperty("in.property.jca.jms.
 JMSMessageID")'/>
 </corecom:SenderMessageID>
</corecom:IntermediateMessageHop>

Populating the ABM with Message Resubmission Values in JMSConsumerAdapter

Ensure that the ABM is enriched with the following content:

• The unique Message ID. The JMSMessageID in the JMS header is used as the value.

• The resource name. This is the JMS Queue/Topic name. This is the same as the
<svcdoc: ResourceName> value in the JMSConsumerAdapter's composite.xml.

• The type of the resource. The possible values are Queue or Topic.

Use specifically designated fields in the ABM for this purpose. These fields are
identified at the time of design.

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-15

Within the mediator-based JMSConsumerAdapter:

• Use the transformation step in the mediator routing rule.

• In the XSL used by the transformation, assign the values of the JMS Message ID,
Resource Name, and Resource Type to the specifically designated fields of the
ABM.

Example 17-9 illustrates how to assign the JMS Message ID to the ABM.

Example 17-9 Example of How to Assign the JMS Message ID to the ABM

<xsl:attribute name="MessageId">
 <xsl:value-of select='mhdr:getProperty("in.property.jca.jms.JMSMessageID")'/>
</xsl:attribute>

In this example, the assumption is that the ABM has a specific attribute, MessageId, to
which the JMS Message ID is assigned.

In some cases, only one designated field may be available in the ABM. In such
scenarios, concatenate the values of the JMS Message ID, Resource Name, and
Resource Type and assign the value to the specific designated field of the ABM. While
concatenating these values, AIA recommends using :: as the separator.

For example, consider a Siebel Customer ABM, ListOfCmuAccsyncAccountIo. In this
ABM, assume that the MessageId attribute of the ListOfCmuAccsyncAccountIo
element is designated to hold the information about JMS Message ID, Resource Name,
and Resource Type at design time. Example 17-10 illustrates how to concatenate the
data and assign it to the ABM.

Example 17-10 Example of How to Concatenate Data and Assign it to the ABM

<xsl:attribute name="MessageId">
 <xsl:value-of select='concat(mhdr:getProperty("in.property.jca.jms.
 JMSMessageID"),":: SampleQueue","::Queue")'/>
</xsl:attribute>

Populating the EBM Header with Resubmission Values in the Requester ABCS

When the ABM arrives at the requester ABCS, it contains the JMS Message ID,
Resource Name, and Resource Type values because these values were made available
in the designated fields of the ABM.

Tip:

Ensure that the <corecom: FaultNotification/> element is inserted
into the EBM header when transforming the ABM to the EBM.

Extract these values from the ABM and enter the following elements in the EBM
header within the <corecom:IntermediateMessageHop> element:

• <corecom:SenderResourceTypeCode>: Populate it with the Resource Type
value

• <corecom:SenderResourceID>: Populate it with the Resource Name value

• <corecom:SenderMessageID>: Populate it with the JMS Message ID value

The XSL that performs the ABM-to-EBM transformation should accomplish this task.
The task is straightforward when three different ABM fields are designated for
holding the three resubmission values, as shown in Example 17-11.

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

17-16 Developer's Guide for Oracle SOA Core Extension

Example 17-11 Example Illustrating Three ABM Fields Used to Hold Three
Resubmission Values

<corecom:IntermediateMessageHop>
 <corecom:SenderResourceTypeCode>
 <xsl:value-of select="[xpath to the ABM field holding the ResourceType]"/>
 </corecom:SenderResourceTypeCode>
 <corecom:SenderResourceID>
 <xsl:value-of select="[xpath to the ABM field holding the
 Resource Name]"/>
 </corecom:SenderResourceID>
 <corecom:SenderMessageID>
 <xsl:value-of select="[xpath to the ABM field holding the Message Id]"/>
 </corecom:SenderMessageID>
</corecom:IntermediateMessageHop>

The following content discusses how resubmission values are extracted from the ABM
and assigned to the EBM header when all three resubmission values are concatenated
and assigned to a single designated field in the ABM.

For example, consider a Siebel Customer ABM, ListOfCmuAccsyncAccountIo. In this
ABM, assume that the MessageId attribute of the ListOfCmuAccsyncAccountIo
element has been designated to hold the information about the JMS Message ID,
Resource Name, and Resource Type, concatenated using :: as a separator. See the
previous section for more information.

Example 17-12 provides a code snippet that extracts the resubmission values and
assign them to EBM header elements.

Example 17-12 Code Used to Extract Resubmission Values and Assign Them to
EBM Header Element

<xsl:variable name="MsgId">
 <xsl:value-of select="substring-after(/seblcustabo:ListOfCmuAccsyncAccountIo/
 @MessageId,'::')"/>
</xsl:variable>
<corecom:IntermediateMessageHop>
 <corecom:SenderResourceTypeCode>
 <xsl:value-of select="substring-after($MsgId,'::')"/>
 </corecom:SenderResourceTypeCode>
 <corecom:SenderResourceID>
 <xsl:value-of select="substring-before($MsgId,':: ')"/>
 </corecom:SenderResourceID>
 <corecom:SenderMessageID>
 <xsl:value-of select="substring-before(/seblcustabo:ListOfCmuAccsync
 AccountIo/@MessageId,'::')"/>
 </corecom:SenderMessageID>
</corecom:IntermediateMessageHop>

The XSL that performs the ABM-to-EBM transformation should accomplish this task.

For more information about resubmitting messages, see "Using the Message
Resubmission Utility" in Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture Foundation Pack.

Configuring All Services to Participate in a Single Global Transaction

Configure a single global transaction as follows:

• Ensure that no commit points are between two milestones.

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-17

• Ensure that the work done between two milestones is one logical unit of work.

For more information about configuring the global transaction, see Designing and
Developing Enterprise Business Services, Designing Application Business Connector
Services, Constructing the ABCS, and Designing and Constructing Enterprise Business
Flows.

Guidelines for BPEL Catch and Catch-All Blocks
This section includes the following topics:

• Handling Run-time Faults Defined in the Fault Policy File

• Handling Run-time Faults Not Defined in the Fault Policy File

Handling Run-time Faults Defined in the Fault Policy File

For each of the run-time faults that has been defined in the fault policy xml file, have a
catch block in the BPEL. In the catch block, rethrow the fault that has been caught. This
enables the process to appear as faulted in the Oracle Enterprise Manager Console.

Handling Run-time Faults Not Defined in the Fault Policy File

Each BPEL process should also have a catch-all block to process run-time faults that
are not caught in catch-blocks and not defined in the fault policy file.

To define the catch-all block:

1. Construct an Oracle AIA fault message. Populate the AIA Fault message with
ECID as shown in Example 17-13.

2. Invoke the AIAAsyncErrorHandlingBPELProcess with this Oracle AIA fault
message as input.

3. Throw the AIA fault message. This enables the process to appear as faulted in the
Oracle Enterprise Manager Console.

4. Unless otherwise required, these catch and catch-all blocks can be defined at the
top-level scope and are not required to be defined at the scope for each partner
link.

For more information, see Developing SOA Applications with Oracle SOA Suite.

Example 17-13 AIA Fault Message with an ECID Defined

<copy>
 <from expression="ora:getECID()"/>
 <to variable="AIAFaultMessage" part="AIAFault" query="/corecom:Fault/corecom:
 FaultNotification/corecom:FaultingService/corecom:ExecutionContextID"/>
</copy>

Guidelines for Defining Fault Policies
For more information, see Defining a Fault Policy XML File for Handling Run-time
Faults.

Configuring Fault Policies to Not Issue Rollback Messages
According to the guaranteed message delivery programming model, when a message
cannot be delivered to a service or component in the flow of a global transaction, the

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

17-18 Developer's Guide for Oracle SOA Core Extension

message is rolled back to the appropriate source milestone. This source milestone
corresponds to an Oracle Advanced Queue, JMS Topic, or Mediator Resequencer Store.
The message is persisted here until it can be resubmitted for delivery to the service or
component.

The BPEL processes along the transaction rollback path issue fault messages and
should be configured to not issue rollback messages as well. The configuration
deciphers a rollback transaction so that services in the rollback path do not issue
unnecessary notifications.

Without this configuration to suppress rollback messages, these processes issue
unnecessary notifications. For example, in the transaction rollback flow illustrated in
Figure 17-4, redundant rollback notifications would be sent out by the Requester
ABCS, in addition to the one sent out by the Provider ABCS, which is the only one that
should be issued.

Figure 17-4 Transaction Rollback Flow

To suppress unnecessary notifications for a rollback transaction:

• Use bpelx:rollback instead of throw in the catch blocks: <throw
name="ThrowEBSFault" faultName="bpelx:rollback"/>

• Use a Java snippet to invoke the Oracle AIA Error Handler, as shown in Example
17-15.

• Add an empty no-op action to the fault policies of Mediator and BPEL processes
along the transaction rollback flow. This empty no-op action is aia-no-action.

When a Mediator or BPEL process receives a rollback message, the control is directed
to the class oracle.apps.aia.core.eh.CompositeJavaNoAction, which is implemented
against the aia-no-action action.

The oracle.apps.aia.core.eh.CompositeJavaNoAction class is an empty operation,
meaning that it does nothing, and thus suppresses further notifications in the rollback
flow.

These sample BPEL and Mediator fault policies illustrate the way in which these
conditions should be defined in impacted fault policy files.

The aia-no-action fault policy contains a filter expression to perform no action in
the case of the rollback fault ORABPEL-02180. An example is illustrated in Example
17-14.

Example 17-14 Java Snippet to Invoke the Oracle AIA Error Handler

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicy version="2.0.1" id="SamplesCreateCustomerPartyPortal
 ProvABCSImplFaultPolicy" xmlns:env="http://schemas.xmlsoap.org/soap/
 envelope/" xmlns:xs="http://www.w3.org/2001/XMLSchema"xmlns="http://schemas.

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-19

 oracle.com/bpel/faultpolicy"xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance">
 <Conditions>
 <faultNamexmlns:plmfault="http://xmlns.oracle.com/EnterpriseServices
 /Core/CustomerParty/V2" name="plmfault:fault">
 <condition>
 <test>$fault.summary/summary[contains(., "ORABPEL-02180")]</test>
 <action ref="aia-do-nothing"/>
 </condition>
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
 <faultName>
 <condition>
 <test>$fault.summary/summary[contains(., "ORABPEL-02180")]</test>
 <action ref="aia-do-nothing"/>
 </condition>
 <condition>
 <action ref="aia-ora-java"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <!-- This action will attempt 8 retries at increasing intervals of
 2, 4, 8, 16, 32, 64, 128, and 256 seconds. -->
 <Action id="aia-ora-retry">
 <retry>
 <retryCount>1</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="aia-ora-java"/>
 <retrySuccessAction ref="aia-ora-java"/>
 </retry>
 </Action>
 <!-- This is an action will cause a replay scope fault -->
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <!-- This is an action will bubble up the fault -->
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <!-- This is an action will mark the work item to be "pending recovery
 from console" -->
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>
 <!-- This action will cause the instance to terminate -->
 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="aia-do-nothing">
 <javaAction className="oracle.apps.aia.core.eh.CompositeJavaNo
 Action" defaultAction="ora-rethrow-fault">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="aia-ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>

Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message
Delivery

17-20 Developer's Guide for Oracle SOA Core Extension

 </Action>
 <Action id="aia-ora-java">
 <javaAction className="oracle.apps.aia.core.eh.CompositeJava
 Action" defaultAction="ora-rethrow-fault">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="aia-ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
</faultPolicy>

Example 17-15 Sample Fault Policy Using the aia-no-action No-op Action

<bpelx:exec name="Java_Embedding_1" language="java" version="1.5">
 <![CDATA[oracle.apps.aia.core.eh.InvokeBusinessErrorHandler.process
 ((oracle.xml.parser.v2.XMLElement)getVariableData("inputVariable",
 "FaultMessage","/ns1:Fault"));]]>
</bpelx:exec>

Using the Message Resubmission Utility API
The Message Resubmission Utility API enables external programs to use the
functionality of enabling a message that is in error state to be ready again to be
consumed for a transaction. This utility would typically be run after the associated
problem that caused the message to end in error is fixed.

How to Configure AIA Services for Notification
This section discusses the standard configuration steps that must be performed when
you are handling a BPEL fault.

This section includes the following topics:

• Defining Corrective Action Codes

• Defining Error Message Codes

For more information about how to define notification roles, see "Setting Up Error
Handling" in Oracle Fusion Middleware Infrastructure Components and Utilities User's
Guide for Oracle Application Integration Architecture Foundation Pack, Release 11.1.1.9.

Defining Corrective Action Codes
For custom or business faults (business faults thrown by a throw activity), define
corrective action codes by adding it to AIAMessages.properties file located under
<MW_HOME>/soa/modules/oracle.soa.ext_11.1.1/classes folder and restart the
server. Ensure that the translated string in the language-appropriate properties file for
that language is located in the same directory.

This custom XPath function is available to get details from this resource bundle in a
localized format: Signature: aia:getCorrectiveAction (String key,
String locale, String delimiter)

Parameter details include:

• Key

How to Configure AIA Services for Notification

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-21

The corrective action code.

• Locale

A concatenated string of language code, country code, and variant. For example,
en-US.

• Delimiter

The delimiter used in Locale parameter, such as -.

Defining Error Message Codes
For custom or business faults (business faults thrown by a throw activity), define
corrective action codes by adding it to AIAMessages.properties file located under
<MW_HOME>/soa/modules/oracle.soa.ext_11.1.1/classes folder and restart the
server. Ensure that the translated string in the language-appropriate properties file for
that language is located in the same directory.

This custom XPath function is available to get details from this resource bundle in a
localized format: Signature: aia:getErrorMessage (String key, String
locale, String delimiter)

Parameter details include:

• Key

The corrective action code.

• Locale

A concatenated string of language code, country code, and variant, for example,
en-US.

• Delimiter

The delimiter used in Locale parameter, such as -.

Describing the Oracle AIA Fault Message Schema
This section includes the following topics:

• Describing the EBMReference Element

• Describing the B2BMReference Element

• Describing the FaultNotification Element

The top-level element of this schema is Fault. It has three elements: EBMReference,
B2BMReference, and FaultNotification, as shown in Figure 17-5 and Figure
17-6. Fault elements are described in Table 17-1.

Describing the Oracle AIA Fault Message Schema

17-22 Developer's Guide for Oracle SOA Core Extension

Figure 17-5 Fault Element and Its Child Elements (1 of 2)

Figure 17-6 Fault Element and Its Child Elements (2 of 2)

Describing the Oracle AIA Fault Message Schema

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-23

Table 17-1 Fault Elements

Name Purpose Details

EBMReference Provides contextual information
about the fault instance. All
values are taken from the EBM
header of the EBM in a faulted
service instance.

For more information, see
Describing the EBMReference
Element.

B2BMReference Provides business-to-business
(B2B)-specific details when an
error is in a B2B flow from
Oracle AIA.

For more information, see
Describing the B2BMReference
Element.

FaultNotification Provides actual details of the
fault.

For more information, see
Describing the FaultNotification
Element.

Describing the EBMReference Element
This section provides details about the EBMReference element in the Oracle AIA
fault message schema, as shown in Figure 17-7. EBM Reference elements are discussed
in Table 17-2.

Figure 17-7 EBMReference Element and Its Child Elements

Table 17-2 EBMReference Elements

Name Purpose

EBMID Provides the EBMID in the message.

Describing the Oracle AIA Fault Message Schema

17-24 Developer's Guide for Oracle SOA Core Extension

Name Purpose

EBMName Provides the EBMName in the message.

EBOName Provides the EBOName in the message.

VerbCode Provides the VerbCode in the message.

BusinessScopeReference Provides the BusinessScopeReference in the
message.

Provides details about the end-to-end
scenario in which the faulted service instance
was participating.

This is the instance of the
BusinessScopeReference in which
BusinessScopeTypeCode equals
BusinessProcess.

SenderReference Provides the SenderReference in the message.

For more information about these elements, see Introducing EBM Header Concepts.

Describing the B2BMReference Element
This section provides details about the B2BMReference element in the Oracle AIA
fault message schema, as shown in Figure 17-8. B2BM reference elements are discussed
in Table 17-3.

Figure 17-8 B2BMReference Element and Its Child Elements

Describing the Oracle AIA Fault Message Schema

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-25

Table 17-3 B2BMReference Elements

Name Purpose Details

B2BMID Provides the message ID used
to identify the transaction in
Oracle B2B.

A user can use this message ID to
query for a failed business message in
Oracle B2B and retry the failed
transaction.

For more information, see
Introduction to B2B Integration Using
AIA.

CollaborationID Provides the collaboration ID
that is common across
multiple request-and-
response messages related to
the same business
transaction.

For more information, see
Introduction to B2B Integration Using
AIA.

ReplyToMessageID Provides the ID of the reply-
to message.

For more information, see
Introduction to B2B Integration Using
AIA.

B2BDocumentType/
TypeCode

Provides the document type
of the failed transaction in
Oracle B2B.

This information from the fault can be
used to define document-type-specific
error processing. For example, you
could assign errors resulting from
different document types to different
users for resolution.

For more information, see
Introduction to B2B Integration Using
AIA.

B2BDocumentType/
Version

Provides the document type
version of the failed
transaction in Oracle B2B.

For more information, see
Introduction to B2B Integration Using
AIA.

SenderTradingPartn
er/TradingPartnerID

Provides the name of the
sending trading partner in
the B2B flow.

For more information, see
Introduction to B2B Integration Using
AIA.

ReceiverTradingPart
ner/
TradingPartnerID

Provides the name of the
receiving trading partner in
the B2B flow.

For more information, see
Introduction to B2B Integration Using
AIA.

GatewayID Provides the name of the B2B
software used to initiate the
flow, for example, Oracle
B2B.

For more information, see
Introduction to B2B Integration Using
AIA.

Describing the FaultNotification Element
This section includes the following topics:

• FaultMessage Element

• IntermediateMessageHop Elements

• FaultingService Element

Describing the Oracle AIA Fault Message Schema

17-26 Developer's Guide for Oracle SOA Core Extension

This section provides details about the FaultNotification element in the Oracle
AIA fault message schema, as shown in Figure 17-9. Fault notification elements are
discussed in Table 17-4.

Figure 17-9 FaultNotification Element and Its Child Elements

Table 17-4 FaultNotification Elements

Name Purpose Details

BusinessComponent
ID

Unique key for the
application.

Provides an agnostic representation of
the object instance.

ReportingDateTime Provides the date and time
at which the service faulted.

The date and time at which the service
faulted.

CorrectiveAction Provides the possible
corrective action for the
fault.

The corrective action for the fault.

FaultMessage Provides details of the actual
fault message.

For more information see
FaultMessage Element.

FaultingService Provides details of the
faulting service.

For more information see
FaultMessage Element.

FaultMessage Element

Table 17-5 discusses fault message elements.

Describing the Oracle AIA Fault Message Schema

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-27

Table 17-5 FaultMessage Elements

Name Purpose Details

Code Provides the error code. This is the fault code that was
received.

Text Provides error details. This describes the details of the fault.

Severity Provides the severity of
the error.

This is the severity of the fault
expressed as an integer.

Stack Provides the error stack. This is the complete fault stack.

ApplicationFaultData Enables the fault message
to be extended to accept
any kind of XML input.

Enables a fault message to be extended
to include any kind of XML input, as
decided by the implementation
scenario.

For more information about extending
fault messages, see Extending Fault
Messages.

IntermediateMessageH
op

Captures properties
specific to a message in a
multi-hop transaction.

Properties that are captured here can
be used to support use cases
implementing guaranteed message
delivery and message recovery.

For more information about
implementing guaranteed message
delivery and message recovery, see
Implementing Error Handling and
Recovery for the Asynchronous
Message Exchange Pattern to Ensure
Guaranteed Message Delivery.

IntermediateMessageHop Elements

Figure 17-10 illustrates IntermediateMessageHop elements. Intermediate message
hop elements are discussed in Table 17-6.

Figure 17-10 IntermediateMessageHop Elements

Describing the Oracle AIA Fault Message Schema

17-28 Developer's Guide for Oracle SOA Core Extension

Table 17-6 IntermediateMessageHop Elements

Name Purpose Details

SenderResourceType
Code

Used for storing the type of
resource or system that is
the sender of this message in
the multi-hopping
messaging layer.

Example values of this element are
Queue, Topic, or Resequence Store.

SenderResourceID Provides identification of the
resource or system
associated with the
SenderResourceTypeCode.

Identification of the resource or system
associated with the
SenderResourceTypeCode.

SenderMessageID Provides message
identification in the context
of the resource or system
associated with the
SenderResourceTypeCode.

Message identification in the context of
the resource or system associated with
the SenderResourceTypeCode.

FaultingService Element

Table 17-7 discusses the FaultingService element.

Table 17-7 FaultingService Element

Name Purpose Details

ID Provides the date and time
at which the service faulted.

This is the name of the faulting service.

ImplementationCod
e

Provides the possible
corrective action for the
fault.

This is a string describing the type of
service that faulted. Possible values are
BPEL, JAVA, and OTHER.

InstanceID Provides the details of the
actual fault message.

This is the instance ID of the faulted
service. If the service is a BPEL process,
this is the BPEL instance ID.

ExecutionContextID Provides the value for the
ECID.

This is an ID generated for a group of
service invocations/executions.

Extending Fault Messages
This section includes the following topics:

• Introduction to Extending Fault Messages

• Extending a Fault Message

Introduction to Extending Fault Messages
When an error occurs within an integration flow, within a Mediator service or BPEL
process, the Error Handling framework captures the error within a fault message. The
fault message is made available in the error details within the Oracle BPM Worklist.

Fault message content is defined by the FaultType message schema definition in
Meta.xsd, which is located in \EnterpriseObjectLibrary\Infrastructure\V1\Meta.xsd.
If your fault message requirements are not met by the default elements of the schema,

Extending Fault Messages

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-29

you can use the ApplicationFaultMessage element included in the schema to extend
the scope of the fault details captured in the message.

For more information about the fault message schema, see Describing the Oracle AIA
Fault Message Schema.

Extending fault details can add functionally rich information to the fault message to
help the integration flow consumer better understand the context of the fault, leading
to more effective error resolution. These additional fault details can be used to enable
extended error handling functionality as well.

For more information about extending error handling, see Extending Error Handling.

For example, you can enrich the fault message with Order Number and Fulfillment
System values, which are required to perform extended error handling tasks that
update Order tables and create new service requests in an Order Fallout Management
application.

Extending a Fault Message
Extending a fault message uses the ApplicationFaultData element, highlighted in
Figure 17-11, of type xsd:anyType in the FaultType message schema definition in
Meta.xsd.

Figure 17-11 ApplicationFaultData Element Highlighted in Meta.xsd

The ApplicationFaultData element is populated by a fault extension handler that you
will configure to be invoked by the Error Handling Framework at runtime in the case
of BPEL faults.

The input to the fault extension handler is the default fault message. The fault
extension handler enriches the fault message with additional content defined by the
ApplicationFaultData element. Control of the enriched fault message is passed from
the fault extension handler to the Error Handling Framework, which then passes the
fault message on to the Oracle AIA common error handler for further processing.

To extend a fault message:

1. Create a fault extension handler that will be invoked to enrich the fault message.

Extending Fault Messages

17-30 Developer's Guide for Oracle SOA Core Extension

2. In the Error Extension Handler field on the Error Notifications page, enter the
name of the error extension handler that will be invoked to extend the fault
message. For example, enter ORDERFOEH_EXT for an Order Fallout error
extension handler.

Based on the combination of error code, system code, service name, and process
name parameters, the Error Handling framework checks to determine whether the
error extension handler has a nondefault parameter defined.

If so, the framework locates the full classpath for the parameter in the
AIAConfigurationProperties.xml file and makes a call out to that handler with the
base fault message as input.

Within this error extension handler, the fault message will be enriched to
accommodate custom content. It will then be sent back to the Error Handling
framework for further processing.

For more information about the Error Notifications page, see "How to Set Up AIA
Error Handling Configuration Details" in Oracle Fusion Middleware Infrastructure
Components and Utilities User's Guide for Oracle Application Integration Architecture
Foundation Pack, Release 11.1.1.9.

3. Access the AIAConfigurationProperties.xml file in $AIA_HOME/aia_instances/
$INSTANCE_NAME/AIAMetaData/config. Define a property name that matches
the error extension handler name that you defined in step 2, as shown in Figure
17-12. The value for this property is the fully qualified class path of the handler.

Figure 17-12 Example Error Extension Handler Property and Value in
AIAConfigurationProperties.xml

It is through this class that the extension; Order Number and Fulfillment System
values, for example; are added to the fault message using xsd:anyType in the
ApplicationFaultData element in Meta.xsd.

4. Implement the IAIAErrorHandlerExtension interface in your error extension
handler class registered in AIAConfigurationProperties.xml. Implement these
methods:

• handleCompositeSystemError for BPEL system errors

• handleBusinessError for BPEL custom errors

Example 17-16 and Example 17-17 illustrate the interface structure.

You can view extended field values in the error logs accessed in Oracle Enterprise
Manager.

You should also be able to view them in email notifications if they have been
configured appropriately.

Example 17-16 IAIAErrorHandler Interface Class

public interface IAIAErrorHandler
{

Extending Fault Messages

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-31

 /**
 *
 * @param ebmHeader
 * @param faultMessage
 */
 public void logErrorMessage(Element ebmHeader, String faultMessage);

 /**
 *
 * @param XMLELfaultMessage
 */
 public void logErrorMessage(XMLElement XMLELfaultMessage);

 /**
 *
 * @param ebmHeader
 * @param faultMessage
 */
 public void logErrorMessage(Node ebmHeader, String faultMessage);

 /**
 * @since FP 2.3
 * @param faultMessage
 * @param jmsCorrelationID
 */
 public void sendNotification(String faultMessage, String jmsCorrelationID,
 HashMap compositeDetailsHM);
}

Example 17-17 IAIAErrorHandlerExtension Interface Class

package oracle.apps.aia.core.eh;
public interface IAIAErrorHandlerExtension
{
 /**
 *
 * @param iFaultRecoveryContext
 * @param faultMessageConstructed
 * @param componentType
 * @return
 */
 public String handleCompositeSystemError(IFaultRecoveryContext
iFaultRecoveryContext,
 String faultMessageConstructed,
 String componentType);

 /**
 *
 * @param faultMessageConstructed
 * @return
 */
 public String handleBusinessError(String faultMessageConstructed);
}

Extending Error Handling
This section includes the following topics:

• Introduction to Extending Error Handling

Extending Error Handling

17-32 Developer's Guide for Oracle SOA Core Extension

• Implementing an Error Handling Extension

This section provides an overview of error handling extension and discusses how to
implement an error handling extension.

Introduction to Extending Error Handling
The default error handling behavior for BPEL and Mediator errors is to route fault
messages to the Oracle AIA common error handler, which logs the error and delivers
the fault messages to the Oracle AIA error topic. The default Oracle AIA error listener
subscribes to this Oracle AIA error topic, picks up the fault message, and calls the
error notification process, which issues a notification to the Oracle BPM Worklist if
configured to do so.

You can extend the Error Handling Framework to perform actions beyond these
default behaviors.

For example, you may want a particular error to trigger default error-handling
behavior, in addition to extended error handling behavior, such as updating a table
and creating a new request in an application.

To implement an error-handling extension, extend fault messages to provide
additional values.

For more information about extending fault messages, see Extending Fault Messages.

Implementing an Error Handling Extension
To implement an error handling extension:

1. On the Error Notifications page, enter an Error Type field value for an error code,
system code, process name, and service name value combination.

The Error Handling Framework uses the Error Type value to stamp the
JMSCorrelationID JMS header. The JMSCorrelationID is used by the custom error
listener to identify fault messages that require its custom error handling.

2. Implement an error extension listener to subscribe to the Oracle AIA error topic.

Configure an error extension listener to filter fault messages based on the JMS
Header - JMSCorrelationID value defined by the error type you created in step 1.

For example, you can create an Order Fallout error extension listener that picks up
fault messages with the JMSCorrelationID value of ORDER_FO. For this example the
Error Type field value defined on the Error Notifications page in step 1 should be
ORDER_FO.

The Order Fallout error extension listener can then extract values from the fault
message, extended to include Order Number and Fulfillment System values, for
example. The error extension listener can then pass those values to an Order Fallout
Management application, for example, which can use those values to update Order
tables and create new service requests.

The extended error handling flow is illustrated in Figure 17-13.

Extending Error Handling

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-33

Figure 17-13 Sample Extended Error Handling Flow Alongside a Default Error
Handling Flow

Configuring Oracle AIA Processes for Trace Logging
This section includes the following topics:

• Describing Details of the isTraceLoggingEnabled Custom XPath Function

• Describing Details of the logTraceMessage Custom XPath Function

• Describing the Trace Logging Java API

These custom XPath trace logging functions are available to BPEL and Mediator
services operating in an Oracle AIA ecosystem.

• aia:isTraceLoggingEnabled(String logLevel, String
processName)

Determines whether trace logging is enabled for the service or at the overall system
level.

• aia:logTraceMessage(String level, Element ebmHeader, String
message)

Generates the actual trace log.

When developing a BPEL or Mediator process, always call the
aia:isTraceLoggingEnabled() function first. If it returns a true result, then have
the process call the aia:logTraceMessage() function.

Configuring Oracle AIA Processes for Trace Logging

17-34 Developer's Guide for Oracle SOA Core Extension

These log files are stored in the <aia.home>/logs/ directory.

In addition to these custom XPath functions, a Java API is also available so that any
application developer can use it to log trace messages.

For more information about using trace logs, see "Using Trace and Error Logs" in
Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle
Application Integration Architecture Foundation Pack, Release 11.1.1.9.

Describing Details of the isTraceLoggingEnabled Custom XPath Function
The isLoggingEnabled custom XPath function is a utility function that returns a
Boolean result. The function signature is: aia:isTraceLoggingEnabled (String
logLevel, String processName)

These are the parameter details:

• logLevel

Possible values include:

– Severe

– Warning

– Info

– Config

– Fine

– Finer

– Finest

• processName

Name of the Oracle AIA service using this function.

Describing Details of the logTraceMessage Custom XPath Function
The logTraceMessage custom XPath function generates a trace message, which
contains the details of the message to be included in the trace log.

This function accepts the EBM header and the verbose logging message as parameters.
Various elements from the EBM header are used to populate supplemental attributes
to the log message. If the EBM header is not passed, these supplemental attributes are
set as empty strings.

The function signature is aia:logTraceMessage (String level, Element
ebmHeader, String message). These are the parameter details:

• level

Possible values include:

– Severe

– Warning

– Info

Configuring Oracle AIA Processes for Trace Logging

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-35

– Config

– Fine

– Finer

– Finest

• ebmHeader

EBM header.

• message

Verbose text message to be logged.

Describing the Trace Logging Java API
In addition to the isTraceLoggingEnabled and logTraceMessage custom XPath
functions, a trace Logging Java API is also available so that any application developer
can log trace messages. These functions are available through the trace logging Java
API.

One of the function signatures is AIALogger.isTraceLoggingEnabled (String
logLevel, String processName). This function determines whether trace
logging is enabled for the service or at the overall system level. These are the
parameter details:

• logLevel

Possible values include:

– Severe

– Warning

– Info

– Config

– Fine

– Finer

– Finest

• processName

Name of the Oracle AIA service using this function.

Another function signature is AIALogger.logTraceMessage (String level,
Element ebmHeader, String message). This function generates the actual trace
log. These are the parameter details:

• level

Possible values include:

– Severe

– Warning

– Info

Configuring Oracle AIA Processes for Trace Logging

17-36 Developer's Guide for Oracle SOA Core Extension

– Config

– Fine

– Finer

– Finest

• ebmHeader

EBM header.

• message

Verbose text message to be logged.

Configuring Oracle AIA Processes for Trace Logging

Configuring Oracle AIA Processes for Error Handling and Trace Logging 17-37

Configuring Oracle AIA Processes for Trace Logging

17-38 Developer's Guide for Oracle SOA Core Extension

18
Working with AIA Design Patterns

This chapter provides an overview of AIA message processing patterns, AIA assets
centralization patterns, AIA assets extensibility patterns.

Note:

Composite Business Processes (CBP) will be deprecated from next release.
Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

• AIA Message Processing Patterns

• AIA Assets Centralization Patterns

• AIA Assets Extensibility Patterns

AIA Message Processing Patterns
This section discusses AIA message processing patterns and provides solutions to
specific problems that you may encounter.

This section includes the following topics:

• Synchronous Request-Reply Pattern: How to get Synchronous Response in AIA

• Asynchronous Fire-and-Forget Pattern

• Guaranteed Delivery Pattern: How to Ensure Guaranteed Delivery in AIA

• Service Routing Pattern: How to Route the Messages to Appropriate Service
Provider in AIA

• Competing Consumers Pattern: How are Multiple Consumers used to Improve
Parallelism and Efficiency?

• Asynchronous Delayed-Response Pattern: How does the Service Provider
Communicate with the Requester when Synchronous Communication is not
Feasible?

• Asynchronous Request Response Pattern: How does the Service Provider Notify
the Requester Regarding the Errors?

Synchronous Request-Reply Pattern: How to get Synchronous Response in AIA
Problem

Working with AIA Design Patterns 18-1

Many use cases warrant consumers to send requests synchronously to service
providers and get immediate responses to each of their requests. These use cases need
the consumers to wait until the responses are received before proceeding to their next
tasks.

For example, Customer Relationship Management (CRM) applications may provide
features such as allowing customer service representatives and systems to send
requests to providers for performing tasks such as account balance retrieval, credit
check, ATP (advanced time to promise) calculation, and so on. Since CRM applications
expect the responses to be used in the subsequent tasks, this precludes the users from
performing other tasks until the responses are received.

Solution

AIA recommends using the synchronous request and response service interface in all
the composites involved in processing or connecting the back-end systems. There
should not be any singleton service in the services involved in the query processing.
The general recommendation is for all of the intermediary services and the service
exposed by the provider application to implement a request-response based interface -
a two-way operation. Even though it is technically possible to design all services but
the initial caller to implement two one-way requests, this implementation technique
should be avoided if possible.

Implementation should strive to ensure that no persistence of state information
(dehydration) or audit details is done by any of the intermediary services or by the
ultimate service provider. These techniques help keep the latency as low as possible.

AIA also recommends that the intermediary services are co-located to eliminate the
overheads normally caused by marshalling and un-marshalling of SOAP documents.

Figure 18-1 illustrates how a task implemented as an Enterprise Business Service (EBS)
is invoked synchronously by the requester application.

Figure 18-1 Invoking an EBS Synchronously by the Requester Application

Impact

• All the resources are locked in until the response from service provider goes back to
the originating system or user.

• Either a transaction timeout or an increased latency may result if any of the services
or the participating application takes more time for processing.

• Service providers must be always available and ready to fulfill the service requests.

• Service providers doing real-time retrieval and collation of data from multiple
back-end systems to generate a response message could put an enormous toll on
the overall resources and increase the latency. The synchronous request-response
design pattern should not be used to implement tasks that involve real-time
complex processing. Off loading of work must be done; the design must be
modified to accommodate the staging of quasi-prepared data so that the real-time
processing can be made as light as possible.

AIA Message Processing Patterns

18-2 Developer's Guide for Oracle SOA Core Extension

• Services involved in implementing synchronous request-response pattern should
refrain themselves from doing work for each of the repeatable child nodes present
in the request message. A high number of child nodes in the payload in a
production environment can have an adverse impact on the system.

Asynchronous Fire-and-Forget Pattern
Problem

The requester application should be able to continue its processing after submitting a
request regardless of whether the service providers needed to perform the tasks are
immediately available or not. Besides that, the user initiating the request does not have
a functional need to wait until the request is fully processed. The bottom line is, the
service requesters and service providers must have the capability to produce and
consume messages at their own pace without directly depending upon each other to
be present.

Also, the composite business processes should be able to support the infrastructure
services like error handling and business activity monitoring services in a decoupled
fashion without depending on the participating application or the AIA functional
process flows.

For example, order capture applications should be able to keep taking orders
regardless of whether the back end systems such as order fulfillment systems are
available at that time. You do not want the order capturing capability to be stopped
because of non-availability of any of the services or applications participating in the
execution of order fulfillment process.

Solution

AIA recommends the fire-and-forget pattern using queuing technology with a
database or file as a persistence store to decouple the participating application from
the integration layer. The queue acts as a staging area allowing the requester
applications to place the request messages. The request messages are subsequently
forwarded to service providers on behalf of requester as and when the service
providers are ready to process them.

It is highly recommended that the enqueueing of the request message into the queue is
within the same transaction initiated by the requester application to perform its work.
This ensures that the request message is enqueued into the queue only when the
participating application's transaction is successful. The request message is not
enqueued in situations where the transaction is not successful. Care must be taken to
ensure that the services residing between two consecutive milestones are enlisting
themselves into a single global transaction.

Refer to Implementing Error Handling and Recovery for the Asynchronous Message
Exchange Pattern to Ensure Guaranteed Message Delivery to understand how
milestones are used as intermediate reliability artifacts to ensure the guaranteed
delivery of messages.

AIA recommends having a queue per business object. All requests emanating from a
requester application for a business object use the same queue.

Figure 18-2 shows how JMS queues are used to decouple the source application from
the integration layer processing. The source application submits the message to the
JMS queue and continues with its other processing without waiting for a response
from the integration layer.

AIA Message Processing Patterns

Working with AIA Design Patterns 18-3

The AIA composite business process may not be up and running while the application
continues to produce the messages in the JMS queue. When the AIA composite
business process comes up, it starts consuming the messages and processes them.

Figure 18-2 also shows how the monitoring services can be decoupled from the main
AIA functional flows with the help of the JMS queue. All the AIA services and the
participating applications can fire a monitoring message into the queue and forget
about how it is processed by the downstream applications. In this pattern the services
or participating applications do not expect any response. Similarly, the AIA
infrastructure services capture the system or business errors from the composite
business processes and publish them to an AIA error topic, which is used by the error
handling framework for further processing (resubmission, notification, logging, and so
on).

Figure 18-2 Fire-and-Forget Pattern Using Queuing Technology

Impact

The default implementation does not have inherent support for notifying the requester
application of success or the failure of messages. Even though the middleware systems
provide the ability to monitor and administer the flow of in-flight message
transmissions, there will be use cases where requester applications either want to be
notified or have a logical reversal of work done programmatically.

For more information about how compensation handlers can be implemented for this
message exchange pattern, see Designing Application Business Connector Services
and Constructing the ABCS.

Guaranteed Delivery Pattern: How to Ensure Guaranteed Delivery in AIA
Problem

Message delivery cannot be guaranteed when the participating systems and the
services integrating those systems interact in an unreliable fashion.

For example, the Order Capture system might submit an order fulfillment request that
triggers a business process, which in turn invokes the services provided by multiple

AIA Message Processing Patterns

18-4 Developer's Guide for Oracle SOA Core Extension

disparate systems to fulfill the request. Expecting all of the service providers to be
always available might be unrealistic.

Solution

A milestone is a message checkpoint where the enriched message is preserved after
completing a certain amount of business functionality at this logical point or is
submitted to the participating application for further processing of that message in an
end-to-end composite business process. A milestone helps to commit the business
transactions done to that logical point and also releases the resources used in the AIA
services and the participating application.

AIA recommends introducing milestones at appropriate logical points in an end-to-
end integration having the composite business processes, business activity services, or
data services designed and implemented for integrating disparate systems to address
a business requirement. Queues with database or file as persistence store are used to
implement milestones.

Figure 18-3 shows how to ensure guaranteed delivery with the help of milestones for a
simple use case where the customer service representative updates the billing profile
on the source application and the updated profile is reflected in the back-end billing
systems.

Figure 18-3 Ensuring Guaranteed Delivery Using Milestones

AIA recommends that the source application push the billing profile information to
Milestone -1 (JMS Queue) in a transactional mode to ensure the guaranteed delivery of
the message. This transaction is outside the AIA transaction boundaries and is not
shown in the diagram. After the billing profile information is stored in Milestone-1, the
source application resources can be released because AIA ensures the guaranteed
delivery of that message to the target application.

The implementation service has the message enrichment logic (if needed) and the
Enterprise Business Service (EBS) routes the enriched message to appropriate
providers or Milestone-2 (optional for very simple and straightforward use cases such
as no enrichment or processing requirements for implementation service).

All the enriched messages would either be transferred to Milestone-2 or rolled back to
Milestone - 1 for corrective action or resubmission. To achieve this, all the services
present between Milestone-1 and Milestone-2 must enlist themselves in a single global
transaction. After the messages are transferred to Milestone-2, all the Milestone-1
implementation service instances are released to accommodate new requests.

The provider implementation service picks up the billing profile information and
ensures the message is delivered to the target application. The target application may
or may not have the capability of participating in the transaction between Milestone-2
and Milestone-3 so the implementation service should be designed to take care of the
compensatory transactions.

AIA recommends that the target application build the XA capability to ensure
guaranteed delivery. If the target application does not have the XA capability, the

AIA Message Processing Patterns

Working with AIA Design Patterns 18-5

implementation service should be designed for manual compensations or semi-
automatic or automatic compensations based on the target system's capability to
acknowledge the business message delivered from AIA.

Figure 18-4 shows the usage of milestones to ensure guaranteed delivery for a complex
use case where the source system submits an order provisioning request to AIA.

Figure 18-4 Using Milestones to Ensure Guaranteed Delivery in a Complex Use Case

Impact

Introducing a milestone adds processing overhead and could impact the performance
of composite business processes, business activity services, or data services. So
selecting the number of milestones is a challenge for the designers. However,
minimizing the milestones, thereby adding more work to a single transaction, could
also have a detrimental effect.

Ensuring reliable messaging between the "milestones" and the "application and
milestone" to achieve the guaranteed delivery adds transactional overheads. This
could impact the performance at runtime in some situations (if the amount of work to
be done between two milestones is too large) and may also require additional process
design requirements for compensation.

Service Routing Pattern: How to Route the Messages to Appropriate Service Provider in
AIA

Problem

Requester applications should build tightly coupled services if they must send
information to a specific target system. The logic to identify the service provider, and
in some cases the service provider instance (when you have multiple application
instances for the same provider) has to be embedded within the logic of caller service.
The decision logic in the caller service has to be constantly undergoing changes as and

AIA Message Processing Patterns

18-6 Developer's Guide for Oracle SOA Core Extension

when either a new service provider is added into the mix or an existing service
provider is retired from that mix.

For example, a customer might have three billing system implementations-two
instances of vendor A's billing system, one dedicated to customers who reside in
North America and the second dedicated to the customers residing in Asia-Pacific; one
instance of vendor B's billing system dedicated to customers residing in other parts of
the world. The requester service must have the decision logic to discern to whom to
delegate the request.

Solution

AIA recommends content-based service routing to appropriate target service
implementations to further process this message and send it to the target applications.
AIA recommends externalizing the decision logic to determine the right service
provider from the actual requester application or service. This decision logic is
incorporated in the routing service. This allows for declaratively changing the message
path when unforeseen conditions occur. The Enterprise Business Service acts as a
routing service. This facilitates one-to-many message routing based on the content-
based filtering. A message originating from a requester can go to all the targets, some
targets, or just one target based on the business rules or content filters.

The routing service evaluates the rule and deciphers the actual service provider that
must be used for processing a specific message. Using this approach, the clients or
service requesters are totally unaware of the actual service providers. Similarly, the
underlying service providers are oblivious to the client applications that made the
request. This enables you to introduce new providers and retire existing providers
without making any changes to the actual requester service.

Figure 18-5 illustrates how a request sent by Req Impl Service (requester service) is
sent to either one of two target applications or to a trading partner (B2B) using context
based routing by routing service.

Figure 18-5 Content-Based Service Instance Routing

AIA Message Processing Patterns

Working with AIA Design Patterns 18-7

Impact

For the requester service to be loosely coupled with the actual service providers, the
routing service should act as the abstraction layer; therefore, its service interface has to
be carefully designed. Its interface can emulate the actual service provider's interface if
only one unique service provider exists or it can have a canonical interface.

Even though Mediator technologies allow for routing rules to be added in a
declarative way, validation of different routing paths must be tested before deploying
them in production.

Managing the decision logic locally in each of the routing services can lead to
duplication and conflict so having them managed in a centralized rule management
system such as Oracle Business Rules Engine is an option to be considered.

Competing Consumers Pattern: How are Multiple Consumers used to Improve
Parallelism and Efficiency?

Problem

When the requester application produces a huge number of business messages which
should be handled and sent to the target application, consuming all the messages to
meet the expected throughput is a challenge. This becomes much more profound
when the processing of each message involves interacting with a multitude of systems
thereby resulting in blocking for a significant period waiting for them to complete
their work.

For example, the order capture application submits orders in the order processing
queue for the fulfillment of orders. Each of the order fulfillment requests must be
picked from the queue and handed over to the order orchestration engine for
decomposition. Only upon the acknowledgment can the next message be picked up
from the order processing queue. Unplanned outages of the order orchestration
platform can result in a large accumulation of order fulfillment requests and serial
processing of these requests upon availability of platform can cause an inordinate
amount of delay.

Solution

AIA recommends setting up multiple consumers or listeners connected to the source
queue. AIA assumes that the requester application has published messages into the
source queue.

Refer to Asynchronous Fire-and-Forget Pattern for more details.

Figure 18-6 shows that setting up multiple listeners triggers consumption of multiple
messages in parallel. Even though multiple consumers are created to receive the
message from a single queue (Point-to-Point Channel), only one of the consumers can
receive the message upon the delivery by JMS. Even though all of the consumers
compete with each other to be the receiver, only one of them ends up receiving the
message. Based on the business requirements, this pattern can be used across the
nodes with each consumer set up on each node in an HA environment, or on a cluster
to improve the scalability, or within the AIA artifact.

AIA Message Processing Patterns

18-8 Developer's Guide for Oracle SOA Core Extension

Figure 18-6 Setting Up Multiple Consumers or Listeners Connected to the Source Queue

Impact

This solution only works for the queue and cannot be used with the Topic (Publish-
Subscribe channel). In the case of Topic, each of the consumers receives a copy of the
message.

Since multiple consumers are processing the messages in parallel, the messages are not
processed in a specific order. If they must be processed in sequence without
compromising parallelism and efficiency for a functional reason, then you must
introduce a staging area to hold these messages until a contiguous sequence is
received before delivering them to the ultimate receivers.

Asynchronous Delayed-Response Pattern: How does the Service Provider
Communicate with the Requester when Synchronous Communication is not Feasible?

Problem

When a service provider has to take a large amount of time to process a request, how
can the requester receive the outcome without keeping the requester in a suspended
mode during the entire processing?

For example, the order capture application submits a request for fulfillment of an
order. The order fulfillment process itself could take anywhere from several minutes to
several days depending upon the complexity of tasks involved. Even though the order
capture application would like to know the outcome of the fulfillment request, it
cannot afford to wait idly until the process is completed to know the outcome.

Solution

AIA recommends using the asynchronous delayed response pattern where the
requester submits a request to the integration layer and sets up a callback response
address by populating the metadata section in the request message (WSA Headers).
The callback response address points to the end point location of the original caller's
service that is contacted by service provider after the completion. Since multiple
intermediary services are involved before sending the message to the ultimate receiver,
sending the callback address using the metadata section in the message is needed. In

AIA Message Processing Patterns

Working with AIA Design Patterns 18-9

addition to the callback address, the requester is expected to send correlation details
that allow the service provider to send this information in future conversations so that
the requesters are able to associate the response messages with the original requests.

Since a request-delayed response pattern is asynchronous in nature, the requester does
wait for the response after sending the request message. In the flow implementing this
pattern as shown in Figure 18-7, it is recommended that all of the services involved
have two one-way operations. A separate thread must be invoked to initiate the
response message. When the AIA provider service processes the message after getting
a reply from the provider participating application, it creates a response thread by
invoking the response EBS. The response EBS uses the WSA headers to identify the
requesting service and processes the response to invoke the callback address given by
the requesting application. The EBS has a pair of operations to support two one-way
calls - one for sending the request and another for receiving the response. Both the
operations are independent and atomic. A correlation mechanism is used to establish
the application or caller's context.

Figure 18-7 Example of the Asynchronous Delayed Response Pattern

Impact

Provider applications must have the capability to persist the correlation details and the
callback address sent by the requester application and need these details populated in
the response message.

Asynchronous Request Response Pattern: How does the Service Provider Notify the
Requester Regarding the Errors?

Problem

Integration architects should understand the transactional requirements, the
participating applications' capability of participating in a global transaction, and the
concept of milestones before deciding upon the asynchronous request-response
pattern implementation. The following sections present implementation solution
guidelines for three different scenarios.

Solution: Success scenario calls the same requester but separate service for the Error
Handling

In this solution, the interaction is divided into two transactions; that is, the error
handling part is separated from the requester ABCS implementation. A new service
should be constructed to accept the error message from the response EBS and the error
response service should forward it to the source participating application.

Figure 18-8 shows that if the request is processed successfully, then it is routed back to
the requester ABCS to complete the remaining process activities. If there is any error
while processing the response, it follows the normal error handling mechanism and a
notification is sent back to the source participating application. If the error is sent back

AIA Message Processing Patterns

18-10 Developer's Guide for Oracle SOA Core Extension

to the caller, then a web service call to the error response service should be made in the
error handling block of the requester ABCS implementation.

Figure 18-8 Example of Interaction Divided into Two Transactions: Error Handling and Requester
ABCS

Solution: Using JMS Queue as a milestone

In this solution, the interaction is divided into three transactions. The JMS queue /
milestone should be used to enable the transaction boundaries. Figure 18-9 depicts the
error scenario. The success scenario will not have the "JMS-2" queue. Instead the
provider ABCS directly invokes the response EBS. So, for the success scenario, the
whole interaction is completed in two transactions.

Figure 18-9 Error Scenario when Using JMS Queue as a Milestone

Solution: Using parallel routing rule and Web Service call

In this solution, the interaction is divided into three transactions. Figure 18-10 depicts
the error scenario. The parallel routing rule in the mediator (EBS) and a web service

AIA Message Processing Patterns

Working with AIA Design Patterns 18-11

call from the provider ABCS reference to response EBS should be used to enable the
transaction boundaries. The success scenario directly calls the response EBS using an
optimized reference component binding. So, there would be only two transaction
boundaries for the success case.

Figure 18-10 Error Scenario Using Parallel Routing Rule and Web Service Call

AIA Assets Centralization Patterns
This section describes how to avoid redundant data model representation and service
contract representation in AIA.

This section includes the following topics:

• How to Avoid Redundant Data Model Representation in AIA

• How to Avoid Redundant Service Contracts Representation in AIA

How to Avoid Redundant Data Model Representation in AIA
Problem

The service contracts between the applications and AIA interfaces must use similar
business documents or data sets which results in the redundant data models
representation. A change in the data model is very difficult to apply and it is very
difficult to govern.

Solution

AIA recommends separation of the data model or schemas physically from the service
contracts or the implementations. These schemas should be centralized at a location
which could be referenced easily during design or runtime.

AIA Assets Centralization Patterns

18-12 Developer's Guide for Oracle SOA Core Extension

All the EBOs (Enterprise Business Objects), ABOs (Application Business Objects), and
any other utility schemas should be maintained at a central location in a structured
way.

As the EBO schemas are used for various business processes in common, a thorough
analysis should be done before coming up with a canonical data model.

Impact

• A change in the data model or schema should be treated very carefully because
multiple dependent service contracts could be impacted with a small change.

• Versioning policies should be clearly defined, otherwise redundant service
implementations for a minor change may occur.

• Governance is a challenge to manage the shared data models or common assets.

How to Avoid Redundant Service Contracts Representation in AIA
Problem

The granularity of the service contract can be at the operation level or at the entity
level. The entity level definition can have various operations defined in the same
service contract but the implementation can be at operation level which results in
creating multiple implementation artifacts using the same service contract. This causes
redundant service contracts representation in various implementations.

Solution

AIA recommends that the service contracts (WSDL) be separated physically from the
implementations. These service contracts should be centralized at a location which can
be referenced easily during design or runtime.

All the EBS (Enterprise Business Service), ABCS (Application Business Connector
Service), and any other utility service contracts should be maintained at a central
location in a structured way.

Impact

• A change in the service contract should be treated very carefully because multiple
dependent service implementations could be impacted with a small change.

• Governance is a challenge to manage the shared service contracts or common
assets.

AIA Assets Extensibility Patterns
This section discusses the extensibility patterns for AIA assets and describes the
problems and solutions for extending AIA artifacts.

This section includes the following topics:

• Extending Existing Schemas in AIA

• Extending AIA Services

• Extending Existing Transformations in AIA

• Extending the Business Processes in AIA

AIA Assets Extensibility Patterns

Working with AIA Design Patterns 18-13

Extending Existing Schemas in AIA
Problem

The delivered schemas may not be sufficient for some of your specific business
operations, so you may want to add elements to the existing schemas in an upgrade
safe manner. This wouldn't be possible by just adding the customer-specific elements
in an existing schema, and the schema extension model is needed.

Solution

To allow you to extend the EBO or Enterprise Business Message (EBM) schemas in a
nonintrusive manner, the complex type defined for every business component and the
common component present in each of the EBO or EBM schemas has an extension
placeholder element called Custom at the end. The data type for this custom element is
defined in the schema modules allocated for holding customer extensions in the
custom EBO schema files.

In Example 18-1 the custom element added at the end of the complex type in the
"Schema-A" acts as a place holder to bring the customer extensions added in the
"Custom Schema-A".

Here the Schema- A is "AIAComponents\EnterpriseObjectLibrary\Industry\Telco
\EBO\ CustomerParty\V2\CustomerPartyEBO.xsd"

Example 18-2 shows the Custom Schema - A: "AIAComponents
\EnterpriseObjectLibrary\Industry\Telco\Custom\ EBO\CustomerParty
\V2\CustomCustomerPartyEBO.xsd"

Example 18-1 Custom Element Acting as Placeholder

<xsd:complexType name="CustomerPartyAccountContactCreditCardType">
 <xsd:sequence>
 <xsd:element ref="corecom:Identification" minOccurs="0"/>
 <xsd:element ref="corecom:CreditCard" minOccurs="0"/>

<xsd:element name="Custom"
type="corecustomerpartycust:CustomCustomerPartyAccountContactCreditCardType"
minOccurs="0"/>

 </xsd:sequence>
 <xsd:attribute name="actionCode" type="corecom:ActionCodeType"
use="optional"/>
</xsd:complexType>

Example 18-2 Adding an Extension to EBO or EBM Schemas

<!-- == -->
 <!-- ============== CustomerParty Custom Components ================ -->
<!-- == -->
 <xsd:complexType name="CustomCustomerPartyAccountAttachmentType"/>
 <xsd:complexType name="CustomCustomerPartyAccountContactType"/>
<xsd:complexType name="CustomCustomerPartyAccountContactCreditCardType">

<!-- CUSTOMERS CAN ADD EXTENSIONS HERE ...>
</xsd:complexType>
<xsd:complexType name="CustomCustomerPartyAccountContactUsageType"/>

AIA Assets Extensibility Patterns

18-14 Developer's Guide for Oracle SOA Core Extension

Extending AIA Services
Problem

The delivered services may not be sufficient to address some of your specific business
functionality. You may want to add some validation logic, enrich the existing content
in the service, or add some processing logic in between the existing service
implementation. Adding this logic in the existing service code would not ensure
upgrade safety because the upgrade process would overwrite the existing service code
with new functionality added as part of the upgrade. So, there is a need for a service
extension model.

Solution

AIA recommends introducing various extension points at logical points during the
service implementation. Figure 18-11 illustrates that there are four logical extension
points identified in the ABCS to perform customer-specific validations, content
enrichment or message alteration, and any additional logic that you would like to
implement with the given payload at that extension point. Typically there are two pre-
processing and two post-processing extension points identified: pre-processing ABM,
post-processing ABM, pre-processing EBM and post-processing EBM.

The number of extension points may be more or less than four depending on the type
of service implementation and the type of message exchange pattern used by that
service.

These extension points can be enabled or disabled based on whether you want to
implement those custom extension points.

AIA Assets Extensibility Patterns

Working with AIA Design Patterns 18-15

Figure 18-11 Extending AIA Services

Extending Existing Transformations in AIA
Problem

The delivered transformations with existing schemas may not be sufficient for some of
your specific business operations. You may want to add elements to the existing
schemas and then add transformation maps for the newly added elements to transfer
the information from one application to the other in an upgrade safe manner. This
would not be possible by just adding the customer-specific transformations in an
existing XSL files so the transformations extension model is needed.

Solution

To extend the transformations in a nonintrusive manner, the call template statement is
defined for every business component mapping present in each of the XSL
transformation files which calls the "Custom Template" defined in the custom XSL
transformation.

Example 18-3 is the example to add new transformations for the custom elements
added by the customer:

AIA Assets Extensibility Patterns

18-16 Developer's Guide for Oracle SOA Core Extension

The main XSL mapping
"XformListOfCmuAccsyncAccountIoToCreateCustomerPartyListEBM.xsl" would
import the custom XSL file and have call template statement to the extension template
for each complex type or business component like this:

Example 18-4 shows the custom XSL file that has the template definition where you
can add your custom mappings for the newly added custom elements or existing
elements which are not mapped in the main transformation.

Example 18-3 Adding New Transformations for Customer-defined Custom
Elements

<?xml version = '1.0' encoding = 'UTF-8'?>
..………………………………………..
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue">
 <xsl:import href="XformListOfCmuAccsyncAccountIoToCreateCustomerPartyListEBM_
Custom.xsl"/>
..………………………………………..
 <xsl:value-of select="aia:getServiceProperty($ConfigServiceName,
'Routing.CustomerPartyEBS.CreateCustomerPartyList.CAVS.EndpointURI', false())"/>
 </corecom:DefinitionID>
 </xsl:if>
<xsl:call-template name="MessageProcessingInstructionType_ext">
 <xsl:with-param name="currentNode" select="."/>
</xsl:call-template>
 </corecom:MessageProcessingInstruction>

Example 18-4 Custom XSL Template Definition

<!-- HEADER CUSTOMIZATION -->
<xsl:template name="MessageProcessingInstructionType_ext">
 <xsl:template name="EBMHeaderType_ext">
 <xsl:param name="currentNode"/>
 <!-- Customers add transformations here -->
 </xsl:template>

<xsl:param name="currentNode"/>
 <!-- Customers add transformations here -->
 </xsl:template>

 <!-- DATA AREA CUSTOMIZATION -->
 <xsl:template name="ContactType_ext">
 <xsl:param name="currentNode"/>
 <!-- Customers add transformations here -->
 </xsl:template>

Extending the Business Processes in AIA
Problem

The delivered composite business processes or Enterprise Business Flows may not be
sufficient to address some of your specific business functionality. You may want to add
more processing steps, message alteration, or additional processing logic between the
existing composite business process implementation. Adding this logic in the existing
process orchestration would not ensure upgrade safety so you need a process
extension model.

Solution

AIA Assets Extensibility Patterns

Working with AIA Design Patterns 18-17

AIA recommends introducing extension points at logical points during the service
implementation. There are no fixed logical extension points identified for the
Composite Business Processes (CBP) or Enterprise Business Flows (EBF). The number
of extension points depends on the complexity of the business process and the number
of message types that the process is handling in the implementation.

It is recommended to have one pre-processing and one post-processing extension
point for each message type at various logical points in CBP or EBF implementation.
The extension process should always be a synchronous process using the same
message payload for request and response for that extension point.

These extension points can be enabled or disabled based on whether you want to
implement those custom extension points.

AIA Assets Extensibility Patterns

18-18 Developer's Guide for Oracle SOA Core Extension

19
Working with Security

This chapter describes how to secure service endpoints for remote communication and
application security context which is used for passing authorization context from the
source application to the target application through the AIA layer.

This chapter includes the following sections:

• Introduction to Oracle AIA Remote Security

• Implementing Security

• Security for Applications

• Deploying Security Policies

• Policy Naming Conventions

• How Does SOA Core Extension Help in Securing AIA Services?

• Application Security Context

Introduction to Oracle AIA Remote Security
By default all Oracle AIA services are secured. All adapter based services are security
enabled using JNDI. All composite service and references using SOAP over http are
secured using Oracle Web Services Manager (WSM).

You can override the security if the delivered security is not sufficient for your usecase.

Securing Service to Service Interaction
By securing service to service interaction, you:

• Identify clients through authentication.

• Secure messages through encryption.

• Avoid message tampering with digital signatures.

• Encrypt the channel through SSL.

Figure 19-1 illustrates the high-level security structure for AIA.

Working with Security 19-1

Figure 19-1 High-level Security Architecture

AIA recommends using Oracle WSM to configure Web service security in Oracle AIA.
To enable security on an AIA service you use Oracle WSM to assign the appropriate
service policy. To call a secured service, you assign the appropriate client side policy.

Oracle AIA Recommendations for Securing Services
AIA makes the following recommendations for securing services:

• All Web Services must be secured. This includes:

– AIA services such as Application Business Connector Services (ABCS),
Enterprise Business Services (EBS), and Transport Adapter Services.

– Other application services hosted on Oracle Fusion Middleware.

• The standard installation should deploy the services with security policies applied.

• In this release, the minimum protection provided by AIA services is authentication.

• You should further harden the services with message protection in the production
environment.

Introduction to Web Service Security Using Oracle Web Services Manager
Oracle Web Services Manager (WSM) security and management is integrated into the
Oracle WebLogic Server.

For more information about Oracle Web Services Manager, see Administering Web
Services

AIA recommends decoupling security logic from service development by configuring
Web service security declaratively using Oracle WSM during deployment. You should
use Web service security rather than SSL unless you have a compelling reason, such as
participating applications that do not support it.

In AIA, Oracle WSM is installed as part of SOA Suite, and there are delivered policies
for most commonly used security use cases. Oracle WSM has policies for adding a
particular security function as a standalone or in combination with other security
functions.

The policies are globally attached to services with varying degree of granularity such
as:

Introduction to Oracle AIA Remote Security

19-2 Developer's Guide for Oracle SOA Core Extension

• Domain - all services in a domain

• Instance - all services in a WLS server instance

• Based on SOA Composite name - all services in a composite

For a list of the delivered policies, see "Predefined Policies" in Administering Web
Services

Implementing Security
This section includes the following topics:

• Enabling Security for AIA Services

• Invoking Secured Application Services

• Overriding Policies Using a Deployment Plan

• Testing Secured Services using CAVS.

Enabling Security for AIA Services
To enable security in AIA services:

1. Determine what type of security is needed.

AIA recommends using WS-security for authentication, encryption and integrity.

2. Check if the global security policy is sufficient for the web service.

3. Find the WS-policy with the appropriate combination of features.

For example, if you need encryption and integrity, then you must find the policy
which does both encryption and integrity.

4. Attach policy to service to enable security for a service.

For more information about how to attach policies, see "Attaching Policies to Web
Services" in Administering Web Services.

5. Configure policies.

You may perform additional configurations for each policy.

For more information about how to configure each policy, see "Configuring
Policies" in Administering Web Services.

6. Diagnose problems.

For more information about how to diagnose problems, see "Diagnosing
Problems" in Administering Web Services.

Should You Secure All AIA Services?

Security can have a negative impact in terms of performance so it must be carefully
used. AIA mandates securing services whose interaction with other services cross
organizational boundaries. Any AIA service that is being called from clients outside
corporate network must be secured. For A2A integration where all the services are
within the same organization and inside the firewall, you may decide it is not
necessary to secure all the services.

Implementing Security

Working with Security 19-3

All AIA services out of the box are secured, so if you think security is not needed for
your deployment, you must disable.

Invoking Secured Application Services
To invoke a secured web service:

1. Determine what type of security is needed.

AIA recommends using WS-security for authentication, encryption and integrity.

2. Check if the global security policy is sufficient for the web service.

3. Find the WS-policy with the appropriate combination of features.

For example, if you need encryption and integrity, then you must find the policy
which does both encryption and integrity.

4. Attach policy to service to enable security for a service.

For more information about how to attach policies, see "Attaching Policies to Web
Services" in Administering Web Services.

5. Configure policies.

You may perform additional configurations for each policy.

In the case of WS-Security client side basic authentication policy, you must do the
following:

a. Configure credential store.

b. Add the UserID and password associating with a key into the store.

c. Use the key in the policy.

For more information about how to configure each policy, see "Configuring
Policies" in Administering Web Services.

6. Diagnose problems.

For more information about how to diagnose problems, see "Diagnosing
Problems" in Administering Web Services.

Overriding Policies Using a Deployment Plan
SOA Core Extension provides infrastructure to override the global policies in a
declarative way. To override the policy, service developers must:

1. Create service configuration file as described in section AIA Security
Configuration Properties .

2. Place it in the project folder.

Testing Secured Services using CAVS
To test secured services using CAVS, the element <cavs:CAVSRequestInput_1> should
have the element shown in Example 19-1 under the <soap:Envelope>.

If you are using a default user in the Identity store, then [user name] = weblogic and
[pwd] = weblogic#1.

Implementing Security

19-4 Developer's Guide for Oracle SOA Core Extension

Example 19-1 <soap:Envelop> Content

<soapenv:Header>
 <wsse:Security
xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken>
 <Username>[user name]</Username>
 <Password>[pwd]</Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>

Security for Applications
This section contains the following topics:

• Enabling Security in Application Services

• Invoking Secured AIA Services

Enabling Security in Application Services
You can use the built-in capabilities of participating applications to enable security for
services. To choose a product for enabling security, check if Oracle WSM has agent
support for the application, and if it has, use Oracle WSM.

If the applications can enable any kind of security, use Web service security for
authentication, encryption, and integrity. Otherwise, you can use SSL to secure the
connection.

Invoking Secured AIA Services
When interacting with an AIA service that is enabled for WS-security, you must add a
security header in the SOAP header with all the information needed for security
functions on AIA service. Based on the security of the AIA service, you must add
information for any combination of authentication, encryption and integrity.

Example 19-2 is a sample of a security header for authentication.

If the AIA service requires SSL, then the application should configure SSL for both one
way and two-way SSL.

Example 19-2 Security Header for Authentication

<wsse:Security env:mustUnderstand="1">
<wsse:UsernameToken wsu:Id="UsernameToken-dXtD14011QZUTlfIaSrMhw22">
<wsse:Username>weblogic</wsse:Username>
<wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">weblogic1</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>

Security for Applications

Working with Security 19-5

Deploying Security Policies
AIA recommends applying policies globally rather than constraining policy
attachment at the individual service level. The global policies are applied when the
SOA Core Extension is installed.

In some cases, it is imperative to override the globally attached client policies with
directly attached local policies. General guidelines are given below.

• Global Authentication Policies are delivered.

– Eliminates the need to define policies at the composite level.

– Global Service Policy applied: oracle/
aia_wss_saml_or_username_token_service_policy_OPT_ON.

This is a cloned copy of oracle/wss_saml_or_username_token_service_policy
with Local Optimization set to ON.

– Global Service Client Policy applied: oracle/
aia_wss10_saml_token_client_policy_OPT_ON

This is a cloned copy of oracle/wss10_saml_token_client_policy with Local
Optimization set to ON.

• Assess your individual flow needs and harden the services if necessary.

Further hardening can be done by associating local policies.

• Applications invoking secured AIA Web Services must send credentials.

• Inter-AIA communication is handled by the Global Service Client Policy.

Oracle AIA Recommendations for Policies
In general, determining which policies to use depends on the basic requirements of
your organization's security policy. The following questions help determine which
policies can be used.

• Is there a need only to authenticate users?

• Is there a need for message protection?

• Will the token be inserted in the transport layer or in a SOAP header?

• Should you use a particular type of token?

The following policies should be attached globally to the AIA Services:

• oracle/aia_wss_saml_or_username_token_service_policy_OPT_ON

• aia_wss_saml_or_username_or_http_token_service_policy_OPT_ON

• oracle/aia_wss10_saml_token_client_policy_OPT_ON

oracle/aia_wss_saml_or_username_token_service_policy_OPT_ON

This is a cloned copy of oracle/wss_saml_or_username_token_service_policy with
Local Optimization set to ON. This is needed for local optimization to work when both
client and service composite are co-located.

Deploying Security Policies

19-6 Developer's Guide for Oracle SOA Core Extension

This policy authenticates users using credentials provided either in SAML tokens in
the WS-Security SOAP header or in the UsernameToken WS-Security SOAP header.
The credentials in a SAML token are authenticated against a SAML login module,
while the credentials in a UsernameToken are authenticated against the configured
identity store. Only plain text mechanism is supported for the UsernameToken. This
policy can be applied to any SOAP-based endpoint.

aia_wss_saml_or_username_or_http_token_service_policy_OPT_ON

This is a cloned copy of oracle/wss_saml_or_username_token_service_policy with
Local Optimization set to ON and http basic authentication added as an additional
option. Clients such as ODI that do not have the infrastructure to use webservices
security can call this service using http basic authentication.

This is only attached to AIAAsyncErrorHandlerBPEL service.

oracle/aia_wss10_saml_token_client_policy_OPT_ON

This is a cloned copy of oracle/wss10_saml_token_client_policy with Local
Optimization set to ON. This is needed for local optimization to work when both client
and service composite are co-located.

This policy includes SAML tokens in outbound SOAP request messages.

Policy Naming Conventions
This section includes the following topics:

• Naming Conventions for Global Policy Sets

• Naming Conventions for Overriding Config Params

Naming Conventions for Global Policy Sets
Naming convention for service-specific global policy sets

• AIA_[ServiceType]_WSServicePolicySet

• Possible values for Service Type:

– ABCS

– EBS

– EBF

– Adapter

– Producer

– Consumer

• Example: AIA_ABCS_WSServicePolicySet

Naming convention for client-specific global policy sets

• AIA_[ServiceType]_WSClientPolicySet

• Possible values for Service Type:

– ABCS

Policy Naming Conventions

Working with Security 19-7

– EBS

– EBF

– Adapter

– Producer

– Consumer

• Example: AIA_ABCS_WSClientPolicySet

Naming Conventions for Overriding Config Params
Naming convention for config param - csf key

• AIA_APPSHORTNAME_ServiceName_PortTypeName

– APPSHORTNAME: Application short name as defined in the service registry.

– ServiceName: Value of the attribute 'name' of the element 'service' in the WSDL
of the External Web Service.

– PortTypeName: Value of the attribute 'name' of the element 'portType' in the
WSDL of the External Web Service.

How Does SOA Core Extension Help in Securing AIA Services?
SOA Core Extension automatically:

• Creates the recommended global policy sets.

• Attaches the local policies for the composites when required.

This section includes the following topics:

• What Default Policies are Attached to a Service?

• How Can the Global Policy be Overridden for an Individual Service?

• AIA Security Configuration Properties

What Default Policies are Attached to a Service?
The deployment of global policies is handled during the SOA Core Extension
installation. A set of global services and client policies are attached to the WLS domain
at the time of SOA Core Extension installation. The result is automatic securing of all
services (matching the pattern) deployed on that server.

SOA Core Extension installer creates both service-specific and client-specific global
policy sets for the composite name patterns:

• ABCS

• EBS

• EBF

• Adapter

How Does SOA Core Extension Help in Securing AIA Services?

19-8 Developer's Guide for Oracle SOA Core Extension

• Producer

• Consumer

SOA Core Extension Installer creates the following policy sets:

• Global PolicySets attached to Composite Services

– AIA_ABCS_WSServicePolicySet

– AIA_EBS_WSServicePolicySet

– AIA_EBF_WSServicePolicySet

– AIA_Adapter_WSServicePolicySet

– AIA_Consumer_WSServicePolicySet

– AIA_Producer_WSServicePolicySet

• Global PolicySets attached to Composite References

– AIA_ABCS_WSClientPolicySet

– AIA_EBS_WSClientPolicySet

– AIA_EBF_WSClientPolicySet

– AIA_Adapter_WSClientPolicySet

– AIA_Consumer_WSClientPolicySet

– AIA_Producer_WSClientPolicySet

How Can the Global Policy be Overridden for an Individual Service?
Composites that must interact with protected application services needing a different
security policy, have local policies attached, overriding the global polices at the time of
deployment.

Similarly, the NoClientAuthenticationPolicy is attached, overriding the global policy
sets for composites that must interact with non-protected application services.

The AIA Deployment Driver provides support, in general, for attaching any
overriding local security policy, but supports configuration-overriding only for saml-
token and username-token client policies.

When a different client (local) policy is used, the AIA Deployment Driver attaches the
policy but its configuration is a manual task.

The structure of the XML file is shown in Example 19-3.

AIA Security Configuration Properties
Composites that require local policies attached to either service endpoints or reference
endpoints or both, must furnish the information to the SOA Core Extension tool. These
composites must have an associated xml-based security configuration file. This file is
named AIASecurityConfigurationProperties.xml.

The SOA Core Extension tool needs the following information:

• Name of the composite

How Does SOA Core Extension Help in Securing AIA Services?

Working with Security 19-9

• Name of all service endpoints that require local policies

• Name of all reference endpoints that require local policies

• Name of the policies that must be locally attached

The associated AIASecurityConfigurationProperties.xml of the composite that requires
a local policy attachment must furnish listed above. This file is placed along with the
project artifacts in the same folder as the composite.xml.

This file should be source-controlled.

When a composite does not require a local policy attachment, then it is not necessary
to have this xml file defined for that composite.

Example 19-3 shows a sample AIASecurityConfigurationProperties.xml.

Tip:

In the composite.xml, for the binding.ws of the 'reference' element, the
attribute 'port' takes value of the following form.

<binding.ws port="[namespace of the service as defined in the wsdl]/
V1#wsdl.endpoint(<Service>/<Port>"

Ensure that the PortName provided by you here, is the same as <Port> in the
composite.xml.

Points to note for a composite:

• If no service endpoint requires a direct policy attachment, but a reference endpoint
requires one, then the AIASecurityConfigurationProperties.xml need not have a
'service' element.

• If no reference endpoint requires a direct policy attachment, but a service endpoint
requires one, then the AIASecurityConfigurationProperties.xml need not have a
'reference' element.

• If there are two or more service endpoints, but only one of them requires a direct
policy to be attached, then only one 'service' element must be present in the
AIASecurityConfigurationProperties.xml.

• If there are two or more reference endpoints, but only one of them requires a direct
policy to be attached, then only one 'reference' element must be present in the
AIASecurityConfigurationProperties.xml.

Example 19-3 Sample AIASecurityConfigurationProperties.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--Note: the attribute 'compositeName' is the name of the AIA Service
composite preprended by {namespace of the AIA service as defined
in its wsdl} -->
<SecurityConfiguration xmlns="http://xmlns.oracle.com/fp/core/security/V1"
version="1.0"
compositeName="{http://xmlns.oracle.com/ABCSImpl/Siebel/Samples/
SamplesCreateCustomerSiebelReqABCSImpl/V1}SamplesCreateCustomerSiebel
ReqABCSImpl">
<!-- the following element is repeated for each service end point of this
Composite ,which requires a direct (local) policy attachement -->
<Service resourceType='SOA-Service' >
<!-- It is the service endpoint. It should be same as attribute 'name' of
element 'service' in composite.xml -->

How Does SOA Core Extension Help in Securing AIA Services?

19-10 Developer's Guide for Oracle SOA Core Extension

<Name>SamplesCreateCustomerSiebelReqABCSImpl</Name>
<!-- This is the port name. For BPEL-based references, its value is Name of the
Porttype as given in the WSDL of this AIA service
For Mediator-based reference, this is [Name of the Porttype element as given in
the WSDL]_pt This example assumes a scenario when services and wsdls are coded
by following the AIA naming conventions.In other scenarios, the value might be
slightly different. Look at the hint below to come up with the correct value
for the element PortName.-->
<PortName>SamplesCreateCustomerSiebelReqABCSImpl</PortName>
<WSPolicies>
<WSPolicyName policyType ="authentication">oracle/wss_username_token_service_
policy</WSPolicyName>
</WSPolicies>
</Service>
<!-- the following element is repeated for each reference end point of this
Composite ,which requires a direct (local) policy attachement -->
<Reference resourceType = 'SOA-Reference'>
<!-- should be same as attribute 'name' of element 'reference' in
composite.xml -->
<Name>SamplesCustomerPartyEBS</Name>
<!-- port name.
For BPEL-based references, its value is name of the Porttype element as given
in the WSDL of this AIA service.
For Mediator-based reference, the value is [Name ofthe Porttype element as
given in the WSDL]_pt
-->
"This example assumes a scenario when services and wsdls are coded by following
the AIA naming conventions. In other scenarios, the value might be slightly
different. Look at the hint below to come up with the correct value for the
element PortName. Hint: In the composite.xml, for the binding.ws of the
'service' element, the attribute 'port' takes value of the following form.
<binding.ws port="[namespace of the service as defined in the
wsdl]/V1#wsdl.endpoint(<Service>/<Port>" Make sure that the PortName provided
by you here, is same as <Port> in the composite.xml"
<PortName>CustomerPartyEBS_pt</PortName>
<WSPolicies>
<WSPolicyName policyType ="authentication">oracle/wss_username_token_client_
policy</WSPolicyName>
<ConfigParams>
 <!-- Param could be a repeating element- Future use only -->

 <!-- APPSHORTNAME should be same as application's short name -->

 <!-- ServiceName and PortTypeName are as given in the APP's web service WSDL
-->
 <Param paramName="csf-key">APPSHORTNAME_ServiceName_PortTypeName</Param>

</ConfigParams>
</WSPolicies>
</Reference>
</SecurityConfiguration>

Application Security Context
This section includes the following topics:

• Introduction to Application Security

• How To Exchange Security Context Between Participating Applications and ABCS

Application Security Context

Working with Security 19-11

• Mapping Application Security Context in ABCS To and From Standard Security
Context

• Using the AppContext Mapping Service

• Understanding the Structure for Security Context

• Using Attribute Names

• Propagating Standard Security Context through EBS and EBF

• Implementing Application Security Context

Introduction to Application Security
The Oracle AIA application security model allows AIA to integrate participating
applications with different security representations in a standard way by eliminating
point-to-point security.

The participating applications are developed at different times with different concepts
and implementations of authentication and authorization. When applications are
integrated, you must pass authentication and authorization information between
applications. AIA application security context standardizes the exchange of
participating applications' authentication and authorization information between
various applications so that any application can be integrated with any other
application.

Figure 19-2 illustrates the high-level security functional flow.

Figure 19-2 Security Functional Flow

Application Security Context

19-12 Developer's Guide for Oracle SOA Core Extension

How To Exchange Security Context Between Participating Applications and ABCS
App Context is any information that must be sent to the provider application to
process the message sent from requester application or vice versa. This includes, but is
not limited to, authentication and authorization information. AIA addresses the
exchange of authorization information in app context, but the design supports adding
other context information.

AIA determined XACML Context Request as the best standard to represent
authorization information. XACML is an OASIS standard for managing access control
policy. Released in 2003 and based on XML, XACML is designed to become a universal
standard for describing who has access to which resources. XACML includes a policy
language and a query language that results in a Permit, Deny, Intermediate (error in
query), or Not Applicable response. The query language is expressed in XACML
context that is recommended by AIA for exchanging authorization information.

Requester Applications

The preferred approach is to let the requester application send application context
information as an XACML request to the Requester ABCS. If the applications are not
capable of formulating context information in an XACML request, then the
participating application send application context information in a SOAP header or as
part of business message content.

AIA recommends the use of a protocol specific adapter if the participating application
does not use a SOAP interface. In that scenario, the adapter receives the application
context in a custom way, prepares the participating application specific XACML
request, and sends it to the ABCS.

Figure 19-3 illustrates the requester application flow.

Figure 19-3 Requester Application Flow

Provider Applications

The preferred approach is to let the provider ABCS send the application context as an
XACML request to the provider application. If the provider application cannot receive
an XACML request, but has a SOAP interface, then the provider ABCS sends the
application security context in a custom XML format inside a SOAP header or as part
of a business document. If the provider application does not support a SOAP interface,
then the provider ABCS sends the application context in an XACML request format to

Application Security Context

Working with Security 19-13

the adapter service that sets the appropriate security context needed for the security
mechanism in use.

Figure 19-4 illustrates the provider application flow.

Figure 19-4 Provider Application Flow

Mapping Application Security Context in ABCS To and From Standard Security Context
The requester ABCS either receives the application security context in XACML format
or converts it into XACML format. The requester ABCS calls an external service to
map application security context to standard security context. The ABCS passes the
application security context in XACML format and receives application neutral
security context in XACML format.

Using the AppContext Mapping Service
AIA recommends using one external service per application. This service is also
responsible for populating additional values needed in the standard or application
context that is returned. This service can be implemented as XPath functions or web
service with these names:

• Request TransformToAppContext (EBMHeader)

• Request TransformToAppNeutralContext (Request)

Example 19-4 shows a sample of the AppContextMappingService.

This service is implemented for the participating application and meets any
integration scenario using that application.

AIA recommends using BPEL with co-location to implement this service. ABCS
should call this service using a dynamic partner link so that you can plug in other
implementations of this service.

TransformAppContextService is the property used to load the service implementation
from AIAConfig property file. By default this property is not configured and the
default implementation is used.

The default implementation of this service is based on DVM and cross-reference.
Whenever a new application or integration scenario is added, new DVM values must
be populated but the service need not be changed.

Example 19-4 Example of AppContext Mapping Service

<definitions
targetNamespace="http://www.oracle.com/AIA/AppContextTransformService"

Application Security Context

19-14 Developer's Guide for Oracle SOA Core Extension

xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:xacml-context="http://docs.oasis-open.org/xacml/access_
control-xacml-2.0-context-schema-cd-04.xsd"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tacs="http://www.oracle.com/AIA/AppContextTransformService"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types>
 <xsd:schema
targetNamespace="http://www.oracle.com/AIA/AppContextTransformService"
elementFormDefault="qualified">
<xsd:import namespace="http://docs.oasis-open.org/xacml/access_
control-xacml-2.0-context-schema-cd-04.xsd"
schemaLocation="http://[HOST:PORT]/AIAComponents/EnterpriseObjectLibrary/Release2
/Core/Common/V2/access_control-xacml-2.0-context-schema-cd-04.xsd" />
<xsd:import namespace="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
schemaLocation="http://[HOST:PORT]/AIAComponents/EnterpriseObjectLibrary/Release2
/Core/Common/V2/Meta.xsd" />
</xsd:schema>
 </types>
 <message name="Request">
 <part name="Request" element="xacml-context:Request"/>
 </message>
 <message name="EBMHeader">
 <part name="EBMHeader" element="corecom:EBMHeader"/>
 </message>
 <portType name="TransformAppContext">
 <operation name="TransformToAppContext">
 <input message="EBMHeader" name="EBMHeader"/>
 <output message="Request"/>
 </operation>
 <operation name="TransformToAppNeutralContext">
 <input message="Request" name="Request"/>
 <output message="Request"/>
 </operation>
 </portType>
 </definitions>

Understanding the Structure for Security Context
The XACML Request element is used as the parameter to the app context structure.
This request element carries participating application information and calling service
information in addition to authorization information.

Figure 19-5 illustrates the structure of XACML Request.

Application Security Context

Working with Security 19-15

Figure 19-5 Structure of XACML Request

Figure 19-6 illustrates the structure of XACML Subject.

Figure 19-6 Structure of XACML Subject

Figure 19-7 illustrates the structure of XACML Resource.

Application Security Context

19-16 Developer's Guide for Oracle SOA Core Extension

Figure 19-7 Structure of XACML Resource

Figure 19-8 illustrates the structure of XACML Action.

Figure 19-8 Structure of XACML Action

Figure 19-9 illustrates the structure of XACML Environment.

Application Security Context

Working with Security 19-17

Figure 19-9 Structure of XACML Environment

Example 19-5 shows the SEBL AppContext information that is sent to the security
service.

Example 19-5 Example of SEBL AppContext information Sent to the Security
Service

<AIAAppContext xmlns=http://www.oracle.com/AIA/AppContext>
 <ServiceInfo>
 <ServiceName>O2C2SeibelABCS</ServiceName>
 </ServiceInfo>
 <ParticipatingAppInfo>
 <Name>Siebel</Name>
 <Version>8.0</Version>
 </ParticipatingAppInfo>
 <Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
urn:oasis:names:tc:xacml:2.0:context:schema:cd:04
http://docs.oasis-open.org/xacml/access_
control-xacml-2.0-context-schema-cd-04.xsd">
 <Subject>
 <Attribute AttributeId="siebel:user" DataType="xs:string">
 <AttributeValue>SAdmin</AttributeValue>
 </Attribute>
 <Attribute AttributeId="siebel:org" DataType="xs:string">
 <AttributeValue>siebl1</AttributeValue>
 </Attribute>
 </Subject>
 <Resource>
 </Resource>
 <Action>
 </Action>
 <Environment/>
 </Request>
</AIAAppContext>

Using Attribute Names
Use these guidelines for attribute names:

• Service information attributes:

AIA:Service:Name - Name of the service calling the transform service

Application Security Context

19-18 Developer's Guide for Oracle SOA Core Extension

• Participating application information attributes:

AIA:ParticipatingApp:Name - Name of the participating application

AIA:ParticipatingApp:Version - Version of the participating application

AIA:ParticipatingApp:SystemID - unique identifier of participating application

• Application attributes:

AIA recommends using this convention for naming the attributes for all the
applications: Application name: attribute name.

• Application neutral attributes:

AIA recommends using AIA as prefix for all the application neutral attributes.
These are the application neutral attributes identified so far:

User: to represent user

BusinessUnit: to represent organization or operating unit

Propagating Standard Security Context through EBS and EBF
The standard security context is inserted into the Enterprise Business Message (EBM).
As an EBM is propagated through various EBSs and EBFs to the destination ABCS, the
security context is propagated along with the EBM to the target ABCS where it is used
to propagate to the target application

Implementing Application Security Context
The following section provides the high level steps for implementing application
security context on both the requester side and the provider side.

How to Implement Requester-Side Application Security Context

To implement requester-side application security context:

1. If an adapter is used, convert application security context information into XACML
format in the adapter service.

2. If the application is sending information in data directly to the requester ABCS,
convert the application's security context information to XACML format.

3. If new standard attributes are needed, work with internal architecture team.

4. Implement application context mapping service.

5. In the Requester ABCS, call the application mapping service to convert application
specific app context information to application neutral app context information.

6. Call EBS.

How to Implement Provider-Side Application Security Context

To implement provider-side application security context:

1. Implement application context mapping service.

2. In the Provider ABCS, call application context mapping service to convert
application neutral app context information to application specific app context
information.

Application Security Context

Working with Security 19-19

3. To send information in data directly to provider application, convert applications
security context information from XACML data to required form.

4. If an adapter is used, convert application security context information from
XACML format to the required form in the adapter service.

Application Security Context

19-20 Developer's Guide for Oracle SOA Core Extension

20
Best Practices for Designing and Building

End-to-End Integration Flows

This chapter discusses best practices and recommendations for designing and building
end-to-end integration flows.

Note:

Composite Business Processes (CBP) will be deprecated from next release.
Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

• General Guidelines for Design_ Development_ and Management of AIA Processes

• Building Efficient BPEL Processes

General Guidelines for Design, Development, and Management of AIA
Processes

This section includes the following topics:

• Interpreting Empty Element Tags in XML Instance Document

• Purging the Completed Composite Instances

• Syntactic / Functional Validation of XML Messages

• Provide Provision for Throttling Capability

• Artifacts Centralization

• Separation of Concerns

• Adapters Inside ABCS Composite OR as Separate Composite

• AIA Governance

Interpreting Empty Element Tags in XML Instance Document
The XML Instance document should have empty element tags only when the sender
intends to have the consumer nullify the values for the elements. Otherwise, these tags
should not be present. Having these nonsignificant tags can have a huge impact on
memory consumption and hence scalability of the application.

AIA recommends that Enterprise Business Messages (EBMs) have only significant
elements.

Best Practices for Designing and Building End-to-End Integration Flows 20-1

Some applications can inspect the content and produce an XML document having only
the significant tags, whereas the rest do not. Because the ABCS is intimate with the
application, it can choose the appropriate style based on the application's behavior. In
situations in which the applications produce Application Business Messages (ABM)
containing all of the elements regardless of whether the elements underwent change or
not, the requester connector services should assume that the empty elements in ABM
are not significant; and should ignore them when producing EBM. The first code
example shown in Example 20-1 illustrates how this could be done. In situations in
which ABMs contain only elements that underwent a change in value, the connector
services should treat the presence of an empty element as the sender's intent to have
the consumer nullify the values for that element. Example 20-2 illustrates this use case.
With service requesters producing EBM in the preceding manner, the job of the
consumer becomes straightforward. It can assume that every element is a significant
one-hence, the ABCS consuming the EBM should not skip the empty element.
Example 20-3 illustrates how a message containing significant elements can be
processed.

Use the construct in Example 20-1 when the source application's ABM contains all the
elements defined in its schema regardless of whether all those elements underwent
any change in value. In this situation, in the interest of conserving memory, AIA
makes the assumption that an empty element is NOT a significant element and ignores
it.

Use the construct in Example 20-2 when the source application's ABM contains only
those elements that underwent a change in value. In this situation, the presence of an
empty element can be considered significant and so AIA does not ignore it.

If the above rules have been followed, then we can assume that any empty element in
the EBM is a significant one, and therefore should not be ignored when transforming
from EBM to ABM. So use the construct in Example 20-3.

Example 20-1 ABM -> EBM Transformation

~--> <xsl:if test="ABMSourceElement/text()"> <EBMTargetElement> <xsl:value-of
select="ABMSourceElement"/> </EBMTargetElement> </xsl:if>

Example 20-2 ABM -> EBM Transformation

~--> <xsl:if test="ABMSourceElement/text()"> <EBMTargetElement> <xsl:value-of
select="ABMSourceElement"/> </EBMTargetElement> </xsl:if>

Example 20-3 EBM -> ABM Transformation

~--> <xsl:if test="EBMSourceElement"> <ABMTargetElement> <xsl:value-of
select="EBMSourceElement"/> </ABMTargetElement> </xsl:if>

Purging the Completed Composite Instances
AIA highly recommends having a process in place to archive and clean up the
completed composite instances after a specified period.

• Synchronous request -response-based completed composite instances should be
purged from SOA dehydration data store after a month.

• Data synchronization-related composite instances should be purged three to four
months after their completion.

• Composite Business Processes should be purged one to two years after their
completion.

General Guidelines for Design, Development, and Management of AIA Processes

20-2 Developer's Guide for Oracle SOA Core Extension

Even though this duration is subject to change based on your company policies,
attempts should be made to do the purging at the earliest time. Purging must be
preceded by archiving of the instance data.

For more information, see "Managing Database Growth" in Administering Oracle SOA
Suite and Oracle Business Process Management Suite.

Syntactic / Functional Validation of XML Messages
This section discusses:

• Syntactic Validation

• Data / Functional Validation

Syntactic Validation

With document style, a web service endpoint can use the capabilities of a validating
parser and the runtime to perform syntactic validation on business documents against
their schema definitions.

A schema specifies the data shape of the payload that could be sent to the web service
operation. When a SOAP message is received by the web-services handler, the schema
pertaining to the operation being called is used to validate the content of the SOAP
message.

Because this validation has a performance impact, it should be used judiciously in a
production environment. AIA recommends enabling the schema validation only for
the service-receiving message from a requester outside its boundary. Even though the
requester could be an internal application, the syntactic validation is normally applied
at runtime only for messages coming from an external source. AIA highly
recommends that you turn off schema validation for the intermediary services residing
in AIA layer.

In a development environment, AIA highly recommends that you turn on schema
validation for all services during certain testing phases to ensure that messages
produced by services are syntactically valid.

For more information about how to enable schema validation, see Developing SOA
Applications with Oracle SOA Suite.

Data / Functional Validation

AIA highly recommends that the validation be done by the service provider. It could
be done either by the provider ABCS or by the application itself.

Provide Provision for Throttling Capability
The implementation of cross-functional business processes often requires integrating
endpoint systems having divergent nonfunctional characteristics such as availability
and concurrent processing capability. Occasionally, the endpoints become unavailable
due to planned or unplanned outages and many systems may not be able to handle
large volumes of concurrent messages. Overwhelming these systems with a high-
volume of requests may result in the failure of target endpoints, which in turn has a
cascading impact on the overall integration. AIA recommends implementing store and
forward capability using queues in most of the situations while interacting either with
the requester or provider application. This gives opportunities for customers to
implement throttling that helps impose a limit on the rate at which message requests
are handed over to a specific endpoint.

General Guidelines for Design, Development, and Management of AIA Processes

Best Practices for Designing and Building End-to-End Integration Flows 20-3

For more information, see AIA Message Processing Patterns.

Artifacts Centralization
To facilitate the governance of shared artifacts such as Enterprise Business Objects,
Enterprise Business Service WSDLs, Application Business Message Schemas, ABCS
WSDLs, Domain Value Maps, and Cross-Reference Meta data, AIA highly
recommends designing and implementing these artifacts independently from the
service capabilities that use them. AIA strongly discourages the management and
persistence of these artifacts as part of individual services. AIA's programming model
recommends the use of MDS to persist these artifacts.

For more information about how MDS is used for centralization of these assets, see
Using MDS in AIA.

Separation of Concerns
Separation of concerns is a core principle of SOA. It helps you introduce loose
coupling in the integration flow where it is required. However, it must be applied not
only at the architectural level, but at the implementation level as well.

Managing dependencies between services at development and runtime is a
challenging task when developers implement requester and provider ABC services.
One of the approaches is to make them de-coupled. Using this approach, the cross-
dependencies in the code that handle each concern of the service can be minimized.

You may see error messages indicating invalid SOA composites after a server restart.
This is caused by referring to concrete WSDLs where abstract WSDLs should have
been used.

You will not see the problem at the first deployment of a new composite X when you
reference the concrete WSDL of composite Y. Why? Composite Y is up and running at
the time of the deployment of composite X. The problem starts when the server is
restarted because there is no guarantee that the composites will be activated in the
right order to resolve any dependencies. If service X is activated before composite Y,
the reference cannot be resolved because Y is still down, so X remains in status Invalid.

You can begin with separating the interface from implementation.

• Do not use the concrete WSDLs directly in your consuming artifacts. If the Service
Provider (not as in ProviderABCS) changes, then you must redeploy the consumer.

• Do not reference the deployed concrete WSDL of a Service Provider. If Provider is
unavailable, then consumer cannot be compiled or be deployed.

For example, assume you are building a Provider ABCS that consumes an adapter
service, You have directly referenced the concrete WSDL of the adapter service and
developed your consuming Provider ABCS. Now, when the adapter service is not
available or not deployed as yet, when you are compiling or deploying your
Provider ABCS, you hit a road block.

• Introduce a common directory of abstract WSDLs of your services and store these
abstract WSDL s on a centrally accessible endpoint.

SOA provides ways to fully de-couple services at design time. AIA advocates always
using abstract WSDLs when composites refer to others. Ensure that abstract WSDLs
fully describe a service's interface, which is all that is needed at design time. The
concrete WSDLs are only needed later at execution time to provide the binding details,
that is the information on how the deployed composite can be invoked.

General Guidelines for Design, Development, and Management of AIA Processes

20-4 Developer's Guide for Oracle SOA Core Extension

Figure 20-1 illustrates that references between SOA composites actually consist of two
parts: an abstract WSDL (design time) and a concrete WSDL (runtime).

Figure 20-1 References Between SOA Composites

AIA uses Metadata Services (MDS) for storing each service's abstract WSDL. Thus
MDS becomes the source of truth for all service interfaces and the composites should
not have any redundant copies.

Using MDS as the Central Storage for Abstract WSDLs, and Other Shared Artifacts

SOA Suite 11g has introduced a central repository, Metadata Service (MDS), that backs
your application (and hence your composites) at design time and runtime. MDS is like
a version management system, where you can store and use the shared common
artifacts at design and runtime.

AIA leverages the MDS repository to store common design time artifacts that are
shared with all developers. AIA has introduced a common directory of abstract wsdls
in the MDS, which is a centrally accessible endpoint.

The artifacts that are stored in the MDS include:

• Schemas - EBO schemas and ABM schemas

• WSDLs - Abstract WSDLs of EBS, ABCS, Adapter Services, CBPs, and EBFs

• DVMs and XREFs

AIAComponents presents the various schemas and WSDLs referred to by various
services. The structure is shown in Table 20-1:

Table 20-1 Structure of AIA Components

Location Artifacts

ApplicationConnectorServi
ceLibrary

Abstract WSDLs of various Application Business Connector
Services (ABCSs)

ApplicationObjectLibrary WSDLs of services exposed by applications and schemas of
application business objects

B2BObjectLibrary Business-to-business (B2B) schemas

General Guidelines for Design, Development, and Management of AIA Processes

Best Practices for Designing and Building End-to-End Integration Flows 20-5

Location Artifacts

B2BServiceLibrary Abstract WSDLs of various B2B Connector Services (B2BCSs)
and B2B Infrastructure Services

BusinessProcessServiceLibr
ary

Abstract WSDLs of Composite Business Processes (CBPs) and
Enterprise Business Flows (EBFs)

EnterpriseBusinessServiceL
ibrary

Abstract WSDLs of Enterprise Business Services (EBSs)

EnterpriseObjectLibrary Schemas of the Oracle AIA Canonical Model

InfrastructureServiceLibrar
y

Abstract WSDLs of infrastructure services

Transformations XSLs shared among various services

UtilityArtifacts Utility schemas and WSDLs

config AIAConfigurationProperties.xml and AIAEHNotification.xml

dvm Domain Value Maps

faultPolicies Default policies applicable to all the services

xref Metadata for Cross References

For more details on how to upload these artifacts into MDS, and how to update them
in the MDS, see Using MDS in AIA.

The abstract WSDLs of all AIA services are stored in the MDS. You build your
consumer AIA service composite application using the abstract WSDL of a referenced
service.

So where is your MDS located, and how does an application know how to reference it?

You configure your developer environment to point to the MDS. The configuration file
is available in $application_home/.adf/META-INF/adf-config.xml and by default it
points to your local - JDeveloper file system based MDS. You must configure it to point
to the MDS on your managed SOA server.

For details, see Getting a Quick Start on your AIA Development.

In a composite, a referenced service is defined by its abstract WSDL.

As an example, we will use the scenario which is described earlier in this section.

You build a Provider ABCS that consumes an adapter service, by referencing the
abstract WSDL of the adapter service.

What does it bring to the table?

First, there is no dependency on the referenced services during the deployment of the
composites. Hence there is no dependency on the order of deployment for the
composites. A referenced service does not need to be deployed first, in order for it to
be referenced by another service. This also resolves the cases where there are cyclic
references involved among the services.

After a composite has been designed, you must perform a few tasks. Since you have
used an abstract WSDL to reference an external service, the run-time bindings are not
generated in the composite. For the referenced service you must open the composite in

General Guidelines for Design, Development, and Management of AIA Processes

20-6 Developer's Guide for Oracle SOA Core Extension

the source mode and provide this binding information - the values for element
binding.ws.

For details about how to populate the binding.ws.port and binding.ws.location
elements of your composite, refer to Populating the binding.ws Element in the
composite.xml.

Adapters Inside ABCS Composite OR as Separate Composite
The most common and recommended approach to migrate an existing application is to
migrate it 1-on-1. This makes every component in the old application an SCA
composite. The next step is to use the benefits of SCA; combine multiple SCA
composites into a single composite. But do you always gain an advantage by
combining composites?

An architectural decision should be made on how you build the SCA. With SOA/SCA
it is all about re-usability. Think about this - are you designing your SCA based on the
business flow or are you designing our SCA from technical point of view? The answer
lies in finding the correct balance.

You might want to design a service once and reuse it many times. From that point of
view you would build small SCAs. But you could also choose large SCAs with
multiple services that are exposed to the outside world. In that case, since the SCA is
relatively large, it increases the maintainability.

What you want is to define and design services and create composites that reference
these services.As a result the service is designed once and reused many times.

Going back to the question of whether the adapters should be inside the ABCS
composite or should be developed as a separate composite, as a best practice, AIA
recommends that you put adapters that are interfaced with ABCS in a different
composite. as shown in Figure 20-2. This is also the preferred way when the same
transport adapter service could be used with multiple ABCS.

Figure 20-2 Example of Adapters Interfaced with ABCS in a Different Composite

However, if no such reusability is foreseen, then there is nothing wrong in using the
alternative design where an ABCS and a Transport Adapter service can be in the same
composite as shown in Figure 20-3.

General Guidelines for Design, Development, and Management of AIA Processes

Best Practices for Designing and Building End-to-End Integration Flows 20-7

Figure 20-3 Example of ABCS and Transport Adapter Service in the Same Composite

AIA Governance
After developed, built and deployed, AIA artifacts must be capable of being governed.

To allow for the governance of shared artifacts such as EBOs, EBS WSDLs, ABM
schemas, ABCS WSDLS, DVMs, and XREFs, AIA recommends designing and
implementing these artifacts independent of the service's capabilities that use them.
They are not to be treated as service artifacts and should be managed and persisted in
a central location.

As mentioned in earlier sections, AIA uses MDS to persist these artifacts.

Annotations are injected during the development phase in the composite XML file,
apart from annotations in the WSDL file. The annotations in composite files provide
detailed information about:

• AIA artifacts and their relationship to other AIA artifacts.

• Composite-level descriptor properties, that are used to configure the component at
deployment and runtime.

Building Efficient BPEL Processes
This section provides some recommendations on how to keep the BPEL-based
processes as lean as possible.

The section includes the following topics:

• Using BPEL as "Glue"_ Not as a Programming Language

• Avoiding Global Variables Wherever Possible

• Avoiding Large FlowN

• Controlling the Persistence of Audit Details for a Synchronous BPEL Process

• Using Non-Idempotent Services Only When Absolutely Necessary

• Defining the Scope of the Transaction

• Disabling the Audit for Synchronous BPEL Process Service Components

• Including No Break-Point Activity in a Request-Response Flow

Using BPEL as "Glue", Not as a Programming Language
Since BPEL is an orchestration language, it should be used primarily as a glue to
orchestrate a set of services exposed by the application systems. Even though BPEL

Building Efficient BPEL Processes

20-8 Developer's Guide for Oracle SOA Core Extension

does support a wide array of programming constructs, they are not meant for building
a complex programming logic within the BPEL process.

Keep the Number of BPEL Activities as Minimal as Possible

Use XSL instead of Assign

Avoid the use of multiple assign activities to populate various elements in an XML
message. Consider using XSL to do the transformations. Because the invocation of XSL
script comes with a cost, usage of XSL for populating the message should be
considered only when more than seven to ten assignments must be done.

Use XPath expressions to constrain the data set

Programming scenarios exist in which you must loop through a given array of data
(A), and operate on a specific subset of the array (using condition C). So the simple
way of doing this is to have a while loop for A, and then a switch condition C inside
the while loop. In this approach, you invariably end up looping through all the lines,
leading to inefficiency. A better way to approach this situation is to use multi-indexes.
So instead of accessing A as A[i] and then checking the condition, you can access A as
A[C][i], where you loop through all those elements of A(using i), where condition C is
satisfied. This way, you reduce the number of BPEL activities.

Avoid Large While Loop

A typical usage pattern is the usage of the while loop to process:

• Multiple repeating child instances in an XML message

• Large number of discrete object instances in an XML message

In situations in which the while loop is being used to process repeating child instances
(maxOccurences is unbounded) in an XML message, the BPEL activities in the while
loop have to be designed keeping the possibility of large number of iterations in mind.
For example, having 50 activities to process a single instance in a while loop suddenly
results in creation of 5000 activities at runtime when an instance document having 100
repeating instances is processed.

Avoiding Global Variables Wherever Possible
Within the assign activity in BPEL, local variables should be used instead of process
variables wherever possible. Local variables are limited to the scope in the BPEL
process. These get deleted from memory and from the database after you close the
scope. However, the life cycle of a global or process variable is tied to the instance life
cycle. These variables stay in memory or disk until the instance finishes. Thus, local
variables are preferred to process or global variables. However, if the same variable is
being used either in every iteration in the while loop or throughout the entire process,
creating one global variable and having that accessed by all iterations would be better.

The BPEL fragment in Example 20-4 illustrates the use of local variables.

Example 20-4 Using Local Variables

<scope name="Scope_1">
<variables> <variable name="Invoke_CallprocessBillingMove_InputVariable"
 messageType=

"sordmovsubabcs:ProcessFulfillmentOrderBillingBRMCommsMoveAddSubProcessRequest
Message"/>
 <variable

Building Efficient BPEL Processes

Best Practices for Designing and Building End-to-End Integration Flows 20-9

name="Invoke_CallprocessBillingMove_OutputVariable"
 messageType=

"sordmovsubabcs:ProcessFulfillmentOrderBillingBRMCommsMoveAddSubProcessResponse
Message"/>
 </variables>
 <sequence name="Sequence_MoveAdd_SubProcess">
 <assign name="Assign_Variable_Invoke_CallMoveAdd">
 <copy>
 <from variable="inputSubProcess"

query="/sordsubebo:ProcessFulfillmentOrderBillingBRMCommsSubprocessMessage"/
>
<to variable="Invoke_CallprocessBillingMove_InputVariable"

part="payload"
query="/sordsubebo:ProcessFulfillmentOrderBillingBRMCommsSubprocessMessage"/
>
</copy>
 </assign>
 <invoke name="Invoke_CallMove-
Add_Subprocess"
partnerLink="ProcessFulfillmentOrderBillingBRMCommsMoveAddSubProcess"

portType="sordmovsubabcs:ProcessFulfillmentOrderBillingBRMCommsMoveAddSubProcess"

operation="processBillingMove"
 inputVariable="Invoke_CallprocessBillingMove_
InputVariable"
 outputVariable="Invoke_CallprocessBillingMove_
OutputVariable"/>
 </sequence>
</scope>

Avoiding Large FlowN
Careful consideration must be given during design of the BPEL process having FlowN
activity. You must have a good understanding of the upper limit of N. Depending on
the type of activities performed in a flow, you must strongly consider the option of
running the flows in an asynchronous mode by setting nonBlockingInvoke property
in composite.xml to true.

Controlling the Persistence of Audit Details for a Synchronous BPEL Process
auditLevel property sets the audit trail logging level. This configuration property is
applicable to both durable and transient processes. This property controls the number
of audit events logged by a process. Audit events result in more database inserts into
the audit_level and audit_details tables, which may impact performance. Audit
information is used only for viewing the state of the process from Oracle Enterprise
Manager Console.

Use the Off value if you do not want to store any audit information. Always choose the
audit level according to your business requirements and use cases.

For synchronous BPEL processes, AIA recommends non persistence of instance
details. For this, set the auditLevel property to Off at the service component level. This
general guideline can be overridden for individual services based on use cases.

Building Efficient BPEL Processes

20-10 Developer's Guide for Oracle SOA Core Extension

Using Non-Idempotent Services Only When Absolutely Necessary
Idempotent services are retryable. They reproduce the same results regardless of the
number of times the service is invoked. They have absolutely no side effects.

The default value for idempotent property is true. Setting the idempotent property to
false results in dehydration of the process after running the partnerlink. The decision
about the configuration of idempotent property must be done at the design and
development time by the developer.

For more information about idempotent property, see Developing SOA Applications with
Oracle SOA Suite

Defining the Scope of the Transaction
A transaction tends to grow big when it encompasses a set of activities to process each
repeating node in an XML message and when the number of repeating nodes is quite
large.

The default value for the dspMaxThreadDepth property is set to 600. If the number of
BPEL activities run in a transaction exceeds this value, the BPEL engine issues an
automatic implicit commit to end the transaction. This might not be in alignment with
the application transaction semantics. This could be eliminated by setting this property
to an arbitrarily high value. This approach anticipates that the global transaction as
defined by the integration developer ends much before BPEL reaches the new
threshold. In most of the situations, setting the property to a very high value helps the
transaction to get completed. However, it has the potential to impact the overall
scalability of the application. Hence, attempts should be made to keep the scope of the
transaction as small as possible.

Disabling the Audit for Synchronous BPEL Process Service Components
AIA recommends turning off the audit completely for synchronous BPEL-based
services that have no midprocess breakpoint activities.

auditLevel

This property sets the audit trail logging level and controls the number of audit events
that are logged by a process. The value set at the BPEL process service component
level overrides the value specified at the SOA Infrastructure, BPEL Process Service
Engine, and Composite Application levels. Override the value only for synchronous
BPEL processes that have no midprocess breakpoint activities.

AIA recommends the following value to be set to this property.

Off: The BPEL service engine does not capture the payload. The payload details are
not available in the flow audit trails. Payload details for other BPEL activities are
collected, except for assign activities. This level is optimal for most normal operations
and testing.

Example 20-5 shows how to set the bpel.config.auditLevel property to an appropriate
value in the composite.xml file of your SOA project.

Example 20-5 Setting the bpel.config.auditLevel Property in the composite.xml

<component name="BPELProcess">
<implementation.bpel src="graphics/BPELProcess.bpel" />
<property name="bpel.config.auditLevel">Off</property>
</component>

Building Efficient BPEL Processes

Best Practices for Designing and Building End-to-End Integration Flows 20-11

Including No Break-Point Activity in a Request-Response Flow
AIA highly recommends that a BPEL service implementing the synchronous request-
response message exchange pattern has no break-point activity such as midprocess
receive, wait, onMessage, onAlarm.

Similarly, a mediator service implementing synchronous request-response message
exchange pattern should have no parallel routing rules. The ESB routing service
implementing the request-response message exchange pattern should have no target
services invoked in asynchronous mode.

Building Efficient BPEL Processes

20-12 Developer's Guide for Oracle SOA Core Extension

21
Oracle AIA Naming Standards for AIA

Development

This chapter provides an overview of guidelines for naming standards for various AIA
components for AIA development.

Note:

Composite Business Processes (CBP) will be deprecated from next release.
Oracle advises you to use BPM for modeling human/system interactions.

This chapter includes the following sections:

• General Guidelines

• Composites

• Composite Business Process

• Enterprise Business Services

• Enterprise Business Flows

• Application Business Connector Service

• JMS and Adapters

• DVMs and Cross References

• BPEL

• Custom Java Classes

• Package Structure

• Deployment Plans

General Guidelines
The goal is to ensure that the intent of each artifact is clear, and that the text associated
with the artifact conveys as much information as possible given the space constraints.
The following should be applied whenever applicable:

• Avoid abbreviations.

Abbreviations may be ambiguous. The names used must be spelled out. Do not
abbreviate unless the object name becomes too long.

Oracle AIA Naming Standards for AIA Development 21-1

• Artifact names must be alphanumeric.

Names must be composed only of alphanumeric character with these rules:

Word comprising a name should be concatenated without spaces in an upper
camel-case fashion.

Example: Purchase Order

Avoid using numeric characters in the name unless it is required to convey some
business meaning.

No special characters such as spaces, '-', '_', '.', '$', '%', '#', []

• Indicate artifact type in the name to reduce ambiguity.

When the same name is used for different artifact types, append a suffix to indicate
its type. It makes it easier to distinguish these artifacts by identifying their types:

<Artifact Name><Type Suffix>

Example: InvoiceEBO, InvoiceEBOType, InvoiceEBM, InvoiceEBMType.

• The total path length to a named artifact must not exceed 17000 characters.

Some operating systems such as Windows have a limit of 255 characters for file
names. Some room is left for prefixing with complete network directory or URL.

XML Naming Standards
The following standards are based on UN/CEFACT - XML Naming and Design Rules.

General Naming Standards

Follow these general naming standards:

• Lower-Camel-case must be used for naming attributes.

Example: <xsd:attribute name="unitCode"/>

• Upper-Camel-case must be used for naming elements and types.

Example: <xsd:element name="UnitOfMeasure"/> <xsd:complexType
name="InvoiceEBOType"/>

• Names must be singular unless the concept itself is plural.

For example repeating elements must have a singular name.

• Names must not contain special characters such as: space, '-', '_', '.', '$', '%', '#',

• Avoid having numeric characters in the name.

There are cases were using a numeric character is required to convey some
significance.

• Complex type names should end with the 'Type' suffix to help recognize types from
elements.

Example: <xsd:complexType name="InvoiceEBOType"/>

• The name of a simple type definition should be the name of the root element with
the 'ContentType' suffix.

Example: <xsd:simpleType name="PhoneNumberContentType">

General Guidelines

21-2 Developer's Guide for Oracle SOA Core Extension

General Namespace Naming Standards

These are the general namespace naming rules. More detailed rules are described in
the following sections, especially naming rules for EBS and ABCS.

• All namespaces must start with http://xmlns.oracle.com/.

• Namespaces used by Enterprise Business Objects (EBOs) and Enterprise Business
Messages (EBMs) start with http://xmlns.oracle.com/EnterpriseObjects/.

Example: http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/Invoice/V1

• Namespaces used for externally facing services must start with http://
xmlns.oracle.com/EnterpriseServices/.

Examples: http://xmlns.oracle.com/EnterpriseServices/Core/Invoice/V1 http://
xmlns.oracle.com /EnterpriseServices/Industry/Telco/Invoice/V1

• Namespaces for versioned artifacts must have the major version number as a suffix
with 'V' as an abbreviation for 'version'.

Example: http://xmlns.oracle.com/ EnterpriseObjects/Core/EBO/Invoice/V1

• The namespace structure should closely map to the taxonomy of the types it
encapsulates.

Example: Horizontal: http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/Invoice/V1.

Telco: http://xmlns.oracle.com/EnterpriseObjects/Industry/Telco/EBO/Invoice/V1.

• Namespaces for artifacts generated within ABCSs must start with: http://
xmlns.oracle.com/ABCS/.

• When importing or including schema in a schema file, the schema location must
always use relative path.

Example: <xsd:importnamespace="http://xmlns.oracle.com/EnterpriseObjects/Core/EBO/
Invoice/V1" schemaLocation="../../../../Core/EBO/Invoice/InvoiceEBO .xsd"/>

• Namespace prefixes must be a minimum of six (6) lowercase characters
abbreviation of the namespace.

The abbreviation must be descriptive and unambiguous within the context where it
is being used.

• Namespace prefixes for EBOs and EBMs must adhere to the following standard
wherever used regardless of the applications or technology used.

Auto-generated prefixes such as ns1, ns2 must not be used. Auto-generated
prefixes for standard namespaces such as xsd, xsi are acceptable.

Table 21-1 provides details on the namespace patterns and files associated with
namespace prefixes.

Table 21-1 Namespace Prefixes

Prefixes Namespace Pattern Files

corecomcust http://xmlns.oracle.com/
EnterpriseObjects/Core/
Custom/Common/V1

CustomCommonComponents,
CustomReferenceComponents

General Guidelines

Oracle AIA Naming Standards for AIA Development 21-3

Prefixes Namespace Pattern Files

coreinvcust http://xmlns.oracle.com/
EnterpriseObjects/Core/
Custom/EBO /Invoice/V1

CustomInvoiceEBO

corecom http://xmlns.oracle.com/
EnterpriseObjects/Core/
Common/V1

CommonComponents. Reference
Components

coreinv http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/
Invoice/V1

InvoiceEBO

coreinv http://xmlns.oracle.com/
EnterpriseObjects/Core/EBO/
Invoice/V1

InvoiceEBM

telcocomcust http://xmlns.oracle.com/
EnterpriseObjects/Industry/
Telco/Custom/Common/V1

CustomCommonComponents,
CustomReferenceComponents

telcoinvcust http://xmlns.oracle.com/
EnterpriseObjects/Industry/
Telco/Custom/EBO/
Invoice/V1

CustomInvoiceEBO

telcocom http://xmlns.oracle.com/
EnterpriseObjects/Industry/
Telco/Common/V1

CommonComponents. Reference
Components

telcoinv http://xmlns.oracle.com/
EnterpriseObjects/Industry/
Telco/EBO/Invoice/V1

InvoiceEBO

telcoinv http://xmlns.oracle.com/
EnterpriseObjects/Industry/
Telco/EBO/Invoice/V1

InvoiceEBM

Participating Applications Names

When participating application names are part of an artifact name, upper-camel-case
short names should be used. For cases where an abbreviation is needed, an upper-case
abbreviation should be used.

Table 21-2 provides a list of short names and abbreviations used for participating
applications.

Table 21-2 Short Names and Abbreviations for Participating Application Names

Application Short Name Abbreviation

Oracle E-Business
Suite

Ebiz EBIZ

Oracle Siebel Siebel SEBL

Oracle PeopleSoft PeopleSoft PSFT

Oracle JD Edwards
Enterprise One

JDEOne JDE1

General Guidelines

21-4 Developer's Guide for Oracle SOA Core Extension

Application Short Name Abbreviation

Oracle JD Edwards
World

JDEWorld JDEW

Oracle
Transportation
Management Suite

Logistics LOGIS

Oracle Telephony
@Work

Telephony TELE

Oracle Demantra Demantra DMTR

Oracle
Communications
Billing and Revenue
Management

Portal PORTAL

Oracle Retail
Applications

Retek RETEK

Composites
A composite is unit of deployment for SCA and contains service components.

The name of the composite is the same as the name of the Oracle Application
Integration Architecture (AIA) artifact.

The composites are created for the following AIA artifacts:

• Composite Business Process

• Enterprise Business Flow

• Enterprise Business Service

• Application Business Connector Service

• Utility Services

Examples: SalesOrderOrchestrationProcess, InterfaceCustomerToFulfillmentEBF,
CreateCustomerEBS, CreateOrderSiebelReqABCSImpl, AsyncErrorHandlerService

Composite Business Process
Composite business processes are long running SOA BPEL orchestration processes.

Table 21-3 provides details about the naming standards for composite business
processes.

Table 21-3 Naming Standards for Composite Business Processes

Artifact Name Example

Service Name (in the
WSDL)

[Optional Industry] [Verb]
[EBO Name]CBP

OrchestrateSalesOrderCBP,
TelcoResolveComplaintCBP

Composites

Oracle AIA Naming Standards for AIA Development 21-5

Artifact Name Example

Namespace http://xmlns.oracle.com/
CompositeProcess/{Core/
or Industry/[Industry
Name]}/{EBO name}/
V{VersionNumber}

http://xmlns.oracle.com/
CompositeProcess /Core/
SalesOrder/V1

http://xmlns.oracle.com/
CompositeProcess /Industry/Telco/
SalesOrder/V1

Namespace Prefix Follow the namespace prefix
standard.

coreordprocess, telordprocess, …

WSDL [Service Name].wsdl OrchestrateSalesOrderCBP.wsdl

TelcoResolveComplaintCBP.wsdl

WSDL Message Request message: [Verb]
[EBO Name]ReqMsg
Response message: [Verb]
[EBO Name]RespMsg

OrchestrateSalesOrderReqMsg,
OrchestrateSalesOrderRespMsg

WSDL Port Type [Service Name]Service OrchestrateSalesOrderCBPService,
TelcoResolveComplaintCBPService

WSDL Port Type
Operations

[Verb][EBO Name] OrchestrateSalesOrder

BPEL Flow Name [Service Name]V[Version
Number]

ProcessSalesOrderCBP,
TelcoVerifyCustomerCBPV2

Enterprise Business Services
Enterprise Business Services (EBS) are SOA Mediator Routing Services with routing
rules to invoke the appropriate composite business processes, Enterprise Business
Flows, and Application Business Connector Services.

Table 21-4 provides details about the naming standards for Enterprise Business
Services.

Table 21-4 Naming Standards for Enterprise Business Services

Artifact Name Example

Service Name [in the
WSDL]

[Optional Industry Name][EBO
Name]EBS

OrderEBS, CustomerEBS,
TelcoInvoiceEBS

Namespace http://xmlns.oracle.com/
EnterpriseServices/{Core/ or
Industry/[Industry Name]}/{EBO
name}/V{VersionNumber}

http://xmlns.oracle.com/
EnterpriseServices/Industry/
Telco/Invoice/V1

http://xmlns.oracle.com/
EnterpriseServices/Core/
Invoice/V2

Namespace Prefix Follow the namespace prefix
standard.

coreinv, telcoinv, …

WSDL [Service Name].wsdl CreateOrderEBS.wsdl,
UpdateCustomerEBS.wsdl,
TelcoProcessInvoiceEBS.wsdl

Enterprise Business Services

21-6 Developer's Guide for Oracle SOA Core Extension

Artifact Name Example

WSDL Message Request message: [Verb][EBO
Name]ReqMsg

Response message: [Verb][EBO
Name]RespMsg

CreateOrderReqMsg
CreateOrderRespMsg

WSDL Port Type Request - Response EBS or
Request Only EBS: [Industry
name][ServiceName][version
number]

Response EBS in one-way call:
[industry name][Service
Name]Response[Version number]

CreateOrderEBS,
CreateOrderEBSResponse,
TelcoProcessInvoiceEBS,
TelcoProcessInvoiceEBSResponse

WSDL Port Type
Operations

Request - Response EBS or
Request Only EBS: [Verb][EBO
Name]

Response EBS in one-way call:
[Verb][EBO Name]Response

CreateOrder,
CreateOrderResponse

Mediator Routing
Service Name

[Service Name]V[Version
Number]

CreateOrderEBS,
CreateOrderEBSV2,
UpdateCustomerEBSV2,
TelcoProcessInvoiceEBSV2

Enterprise Business Flows
Table 21-5 provides details about the naming standards for BPEL flows used primarily
to interact with multiple Enterprise Business Services.

Table 21-5 Naming Standards for Enterprise Business Flows

Artifact Name Example

Service Name (in the
WSDL)

[Optional Industry] [Verb][EBO
Name]EBF

ProcessOrderEBF,
TelcoVerifyCustomerEBF

Namespace http://xmlns.oracle.com/
EnterpriseFlows/{Core/ or
Industry/[Industry Name]}/
{EBO name}/V{VersionNumber}

http://xmlns.oracle.com/
EnterpriseFlows /Core/Order/V1

http://xmlns.oracle.com/
EnterpriseFlows /Industry/Telco/
Order/V1

Namespace Prefix Follow the namespace prefix
standard.

coreordflow, telordflow, …

WSDL [Service Name].wsdl ProcessOrderEBF.wsdl,
TelcoVerifyCustomerEBF.wsdl

WSDL Message Request message: [Verb][EBO
Name]ReqMsg

Response message: [Verb][EBO
Name]RespMsg

ProcessOrderReqMsg,
ProcessOrderRespMsg

WSDL Port Type [Service Name]Service ProcessOrderEBFService,
VerifyAccountEBFService

Enterprise Business Flows

Oracle AIA Naming Standards for AIA Development 21-7

Artifact Name Example

WSDL Port Type
Operations

[Verb][EBO Name] ProcessOrder

BPEL Flow Name [Service Name]V[Version
Number]

ProcessOrderEBF,
TelcoVerifyCustomerEBFV2

Application Business Connector Service
Application Business Connector Services are of two categories: Requester and
Provider.

Requester Application Business Connector Service
Requester ABCS are the services that serve requests coming from client applications
and process these requests and delegate them to the EBSs.

Table 21-6 provides details about the naming standards for requester ABCS.

Table 21-6 Naming Standards for Requester ABCS

Artifact Name Example

Service Name (in the
wsdl)

[Verb][App Entity Name]
[Short Application Name]
[Optional
Industry]ReqABCSImpl

CreateOrderSiebelReqABCSImpl
UpdateOrderSiebelTelcoReqABCSImpl
CreateCustomerPortalTelcoReqABCSImpl

Namespace http://
xmlns.oracle.com/
ABCSImpl/{Participating
Application Name}/
{Core/ or Industry/
[Industry Name]}/{App
Entity Name}/V{version}

http://xmlns.oracle.com/ABCSImpl/
Siebel/Core/Order/V1 http://
xmlns.oracle.com/ABCSImpl/Portal/
Industry/Telco/ Customer/V2

Namespace Prefix Follow the namespace
prefix standard.

abcsimplsieblelinv, abcsimplportalprod,
…

WSDL [Service Name].wsdl CreateOrderSiebelReqABCSImpl.wsdl
UpdateOrderSiebelTelcoReqABCSImpl.w
sdl
CreateCustomerPortalTelcoReqABCSImpl
.wsdl

WSDL Message Request message:
Verb[ABO Name]ReqMsg

Response message:
Verb[ABO
Name]RespMsg

CreateOrderReqMsg,
CreateOrderRespMsg
UpdateOrderLinesReqMsg,
UpdateOrderLinesRespMsg

WSDL Port Type BPEL: [Service
Name]Service

Mediator: [Service Name]

CreateOrderSiebelReqABCSImplService
UpdateOrderSiebelReqABCSImpl

Application Business Connector Service

21-8 Developer's Guide for Oracle SOA Core Extension

Artifact Name Example

WSDL Port Type
Operations

Verb[ABO Name]

Should be self-describing
to reflect the functionality
needed by the
application.

UpdateOrder, GetOrderLines, …

BPEL Flow Name/
Mediator Routing
Service Name

[Service Name]V[Version
Number]

CreateOrderSiebelReqABCSImplV2Proces
s

UpdateOrderSiebelTelcoReqABCSImplPr
ocess
CreateCustomerPortalTelcoReqABCSImpl
Process

Provider Application Business Connector Services
Provider ABCS are the implementation of Enterprise Business Services.

Table 21-7 provides details about the naming standards for provider ABCS.

Table 21-7 Naming Standards for Provider ABCS

Artifact Name Example

Service Name (in the
WSDL)

[Verb][App Entity Name]
[Short Application
Name][Optional
Industry]ProvABCSImpl

CreateOrderSiebelProvABCSImpl
UpdateOrderSiebelTelcoProvABCSImpl
CreateCustomerPartyTelcoPortalProvABC
SImpl

Namespace http://
xmlns.oracle.com/
ABCSImpl/
{Participating
Application Name}/
{Core/ or Industry/
[Industry Name]}/{App
Entity Name}/V{version}

http://xmlns.oracle.com/ABCSImpl/
Siebel/Core/Order/V1 http://
xmlns.oracle.com/ABCSImpl/Portal/
Industry/Telco/ CustomerParty/V2

Namespace Prefix Follow the namespace
prefix standard.

abcsimplsieblelinv, abcsimplportalprod, …

WSDL [Service Name].wsdl CreateOrderSiebelProvABCSImpl.wsdl
UpdateOrderSiebelTelcoProvABCSImpl.w
sdl
CreateCustomerPartyTelcoPortalProvABC
SImpl.wsdl

WSDL Message Request message: [Verb]
[ABO Name]ReqMsg

Response message:
[Verb][ABO
Name]RespMsg

CreateOrderReqMsg,
CreateOrderRespMsg

WSDL Port Type BPEL: [Service
Name]Service

Mediator: [Service
Name]

CreateOrderSiebelProvABCSImplService
UpdateOrderSiebelProvABCSImpl

Application Business Connector Service

Oracle AIA Naming Standards for AIA Development 21-9

Artifact Name Example

WSDL Port Type
Operations

[Verb][ABO

Has one operation which
should match the
operations exposed by
the corresponding EBS.

UpdateOrder, getOrderLines, …

BPEL Flow Name/
Mediator Routing
Service Name

[Service Name]V[Version
Number]

CreateOrderSiebelProvABCSImplV2Proce
ss

UpdateOrderSiebelTelcoProvABCSImplPr
ocess
CreateCustomerPortalTelcoProvABCSImpl
Process

JMS and Adapters
Table 21-8 provides details about the naming standards for JMS and Adapters.

Table 21-8 Naming Standards for JMS and Adapters

Artifact Name Example

JMS Store, JMS
Server, JMS Module

Use the default
configuration created by
SOA Core Extension

N/A

JNDI Name for
Queue or Topic
Connection Factory

eis/wlsjms/
AIA<Application
Name>CFOReis/wlsjms/
AIACommonCF (For
common queues or topics
used as milestones before/
after EBS or EBF)For XA
connection factory, follow
the below convention:eis/
wlsjms/AIA<Application
Name>XACF

eis/wlsjms/AIAPeopleSoftCFFor XA:
eis/wlsjms/AIAPeopleSoftXACFOracle
SOA Core Extension creates the JMS
module level connection factory
automatically by appending "jms/aia"
to the given connection factory name.
Example:jms/aia/AIAPeopleSoftCF

JMS and Adapters

21-10 Developer's Guide for Oracle SOA Core Extension

Artifact Name Example

Queue or Topic
Name

AIA_<ApplicationName>
<EBO / ABO
Name><Optional
Industry>JMSQueueV<Ver
sion Number
>AIA_<ApplicationName>
<EBO / ABO
Name><Optional
Industry>JMSTopicV<Versi
on Number >

AIA_PeopleSoftCurrencyExchangeJMS
Queue

AIA_SiebelCustomerPartyJMSTopicV1

Notes:

• Here the "JMSQueue" indicates
"WLS JMS Queue" by default. For
other JMS providers, a prefix should
be added like AqJMSQueue,
TibJMSQueue...and so on.

• While coming up with the queue/
topic names, you could use the
meaningful short names or
abbreviations in the following use
cases:

Long Application/Industry
name.Long EBO/ABO name.

JMS provider having a restriction on
the number of characters. For
example: AQ JMS provider has 24
characters limitation on queue name.

• Use short form "JMSQ" instead of
"JMSQueue" and "JMST" in the
above cases. Based on the JMS
provider's maximum characters
limitation on their queue name, it is
recommended to come up with a
suitable & meaningful queue or
topic name by following short
names or abbreviations of
application/industry and EBO/ABO
names. Example:
AIA_PSFTCurExchangeJMSQ,
AIA_SEBLCustPartyJMSTV1

• Oracle SOA Core Extension creates
the JNDI names for queue or topic
under JMS module during
deployment by appending "jms/
aia". Example: jms/aia/
AIA_SiebelCustomerPartyJMSTopic
V1

Error Queues <Queue Name>_ErrorQ FP scripts use the resource name from
annotations to get the queue/topic
name and then append "_ErrorQ" as
suffix.

Example:- For "AIASalesOrderQueue",
FP generates
"AIASalesOrderQueue_ErrorQ"

Table Name for
AQJMS provider

AIA_<App><ABO/
EBO><optional
industry>JMSQTABV[Versi
on Number]

AIA_SiebelCustomerProvJMSQTAB

AIA_EbizOrderProvJMSQTABV2

JMS and Adapters

Oracle AIA Naming Standards for AIA Development 21-11

AQ JMS (Additional Attributes)
Table 21-9 provides details about the naming standards for AQ JMS additional
attributes.

Table 21-9 Naming Standards for AQ JMS Additional Attributes

Artifact Name Example

Database User/
Schema for queues
and queue tables
creation in AQJMS
provider

JMSUSER N/A

Table Name for
AQJMS provider

AIA_<App><ABO/
EBO><optional
industry>JMSQTABV[Versi
on Number]

AIA_SiebelCustomerProvJMSQTAB

AIA_EbizOrderProvJMSQTABV2

Adapter Services Naming
Table 21-10 provides details about the naming standards for adapter services.

Table 21-10 Naming Standards for Adapter Services

Artifact Name Example

Transport adapter services
(File/FTP)

<Optional Application Short
Name><optional
verb><EBO/ABO
Name><Optional
Industry><Resource
Provider><Operation>V<Ver
sion Number>

E1PurchaseOrderFileReadAd
apter

E1PurchaseOrderFileWriteAd
apterV1

CRMODPOFtpGetAdapter

CRMODPOFtpPutAdapterV1

AQJMS /WLSJMS Consumer
Adapter Service

<Optional Application Short
Name><optional
verb><EBO/ABO
Name><Optional
Industry><Resource
Provider><Operation>V<Ver
sion Number>

PSFTupdateCurrencyExchan
ge

AQJMSCons

SiebelCustomerPartyJMSCon
sumerV1

AQJMS /WLSJMS Producer
Adapter Service

<Optional Application Short
Name><optional
verb><EBO/ABO
Name><Optional
Industry><Resource
Provider><Operation>V<Ver
sion Number>

PSFTupdateCurrencyExchan
ge

AQJMSProd

SiebelCustomerPartyJMSPro
ducerV1

Apps/DB Adapter <optional verb><EBO/ABO
Name><Optional
Industry><Application Short
Name><Resource
Provider>V<Version
Number>

SyncCurrencyExchangeListE
Biz

DBAdapter

CreateCustomerEBizAppAda
pterV1

UpdatePriceListEBizEventAd
apter

JMS and Adapters

21-12 Developer's Guide for Oracle SOA Core Extension

Participating Application Service
Table 21-11 provides details about the naming standards for participating application
services.

Table 21-11 Naming Standards for Participating Application Services

Artifact Name

Name Registered in Mediator with the same name
as exposed by the application. For example,
BRMCUSTService, Account_BS

Namespace Follows the namespace used by the
application.

Namespace Prefix Follow the namespace prefix standard.

WSDL Follows the WSDL name as exposed by the
application.

WSDL Message Follows the message names exposed in the
application WSDL.

WSDL Port Type Follows the port types exposed in the
application WSDL.

WSDL Port Type Operations Follows the operation names exposed in the
application WSDL

WSDL Binding Follows the WSDL

WSDL Service Follows the service name exposed in the
application WSDL

DVMs and Cross References
This section includes the naming standards for:

• DVMs

• Cross References

DVMs
When creating DVMs, the following naming standards should be followed:

Map Name

Map names:

• Must start with the object name.

This enables you to identify maps that belong to a certain object. The object name
should be equivalent to the EBO name.

• Should be followed by the element name that needs domain value mapping.

• Must be uppercase.

Pattern: {Object Name}_{Element Name}

DVMs and Cross References

Oracle AIA Naming Standards for AIA Development 21-13

Examples: CUSTOMERPARTY_ACCOUNTTYPECODE, INVOICE_REJECT_REASON,
SALESORDER_CARRIER_TYPECODE

DVM File Name Examples: CUSTOMERPARTY95ACCOUNTTYPECODE,
INVOICE95REJECT95REASON, SALESORDER95CARRIER95TYPECODE

Map Column Names

Map column names:

• Must be set to the participating application instance name abbreviation that the
column value represents. This name can be the application name and its version, or
an instance name in case two similar applications of the same version are
integrated. The name must be a unique identifier for the application instance across
the integration platform in the form: {Application Abbreviated Name}_{Sequence
Number}. The sequence number uniquely identifies multiple instances of the same
application.

• Must be uppercase.

• A column named COMMON must be always added. This column contains the
values used in the EBOs within the platform.

Examples: COMMON, EBIZ_01, PSFT_01, SEBL_02, SEBL_03, PORTAL_01, IFLEX_01

Cross References
When creating cross-reference virtual tables in the cross reference tables, the following
naming standard should be followed:

Table Name

Table names:

• Must not exceed 48 characters.

• Must start with the object name.

This enables you to identify cross-references that belong to a certain object. The
object name should be equivalent to the EBO name.

• Must be followed by the element name that needs cross-referencing.

If exceeds 48 characters, it should be properly abbreviated.

• Must be uppercase.

Pattern: {Object Name}_{Element Name}

Examples: ORDER ORDERID, INVOICE INVOICEID, CUSTOMER ID

Column Names

Column names:

• Must not exceed 48 characters.

• Must be set to the participating application instance name abbreviation that the
column value represents.

The name must be a unique identifier for the application instance across the
integration platform in the form: {Application Abbreviated Name}_{Sequence

DVMs and Cross References

21-14 Developer's Guide for Oracle SOA Core Extension

Number}. The sequence number uniquely identifies multiple instances of the same
application.

• Must be uppercase.

• Must have a column named COMMON added.

This column contains the values used in the EBOs within the platform.

Examples: COMMON, EBIZ_01, PSFT_01, SEBL_02, SEBL_03, PORTAL_01, IFLEX_01

BPEL
This section discusses naming standards for:

• BPEL Activities

• Other BPEL Artifacts

BPEL Activities
This section provides naming standards for the following BPEL activities:

• Assign

• Compensate

• Flow

• FlowN

• Invoke

• Java Embedding

• Pick

• Receive

• Scope

• Sequence

• Switch

• Case

• Terminate

• Throw

• Transform

• Wait

• While

BPEL Process Name and Namespace

The BPEL process JDeveloper project name should match the BPEL process name (use
default project setting).

BPEL

Oracle AIA Naming Standards for AIA Development 21-15

Name standards

• The name should follow the general standard naming standards depending on
whether it is being used for EBS, ABCS Impl, or Adapter Service.

• The name should clearly describe the process and action/verb being performed.

Namespace standards:

• The namespace should follow the general namespace standards depending on
whether it is being used for EBS, ABCS Impl, or Adapter Service.

• The namespace must reflect the taxonomy of the process.

• The namespace must include the major version number where appropriate.

• BPEL composite's reference component name should follow the general naming
standards based on the type of AIA artifacts it is calling.

Assign

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the Assign prefix.

• Followed by a name describing what is being assigned. If what is assigned is a
message, then use the message name.

• In case there are multiple assignments, provide a name that describes the group of
assignments if possible.

Pattern: Assign<Name of what is being assigned>

Example: AssignPaymentEBM, AssignOrderInitialValues

Compensate

Follow these guidelines:

• The name should follow the general standard naming standards.

• Start with the Compensate prefix.

• Followed by the scope encapsulating the tasks to be compensated.

Pattern: Compensate<scope name>

Example: CompensateProcessCreditCheckMilestone, Compensate TranseferFundsScope

Flow

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts by a name describing the tasks being run concurrently.

• Ends with the Flow suffix.

Pattern: <Name describing concurrent tasks>Flow

Example: CallManufacturersFlow, GetQuotesFlow

BPEL

21-16 Developer's Guide for Oracle SOA Core Extension

FlowN

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts by a name describing the dynamic tasks being run concurrently.

• Ends with the FlowN suffix.

• The index variable name should be the flow name with Index as suffix.

Pattern: name = <Name describing concurrent tasks>FlowN, index variable =
<Name describing concurrent tasks>FlowNIndex

Example: ActivateUsersFlowN (ActivateUsersFlowNIndex), CheckSuppliersFlowN
(CheckSuppliersFlowNIndex)

Invoke

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the Invoke prefix.

• Followed by the partner link to be invoked.

• Followed by Call if synchronous invocation or Start if asynchronous invocation.

• Followed by the operation name within the partner link.

Pattern: Invoke<Partner Link Name>{Call/Start}<Operation>

Example: InvokeCustomerServiceCallGetCustomer,
InvokeNotificationServiceStartNotifyByEmail

Java Embedding

Follow these guidelines:

• The name should follow the general standard naming standards.

• The name should be similar to a Java method Name with lower-camel-case.

Pattern: <A name describing the functionality>

Example: getDiscountPrice

Pick

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the Pick prefix.

• Followed by a name describing as accurate as possible all branches (onMessage
and onAlarm) within the pick activity.

Pattern: Pick<Name describing the branches to pick from>

Example: PickOrderAckOrTimeout, PickFirstQuote

BPEL

Oracle AIA Naming Standards for AIA Development 21-17

Receive

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the Receive prefix.

• Contains the name of the message it is receiving.

Pattern: Receive<Message Name>

Example: ReceiveUpdateInvoiceEBM

Scope

Follow these guidelines:

• The name should follow the general standard naming standards.

• Including brief information about transaction type may be appropriate.

• Use Milestone as the suffix if the scope is a candidate for end-user monitor.

• If it is not intended for the end-user monitor, use Scope as the suffix.

Pattern: <Name describing the Scoped Tasks>{Scope |Milestone}

Examples: GetCreditRatingScope, GetLoanOfferScope, ProcessCreditCheckMilestone

Sequence

Follow these guidelines:

• The name should follow the general standard naming standards.

• The sequence name should describe the steps performed in the sequence.

• The sequence name should end with Sequence suffix.

Pattern: <Name describing the Sequenced Tasks>Sequence

Example: GetCustomerInfoSequence

Switch

Follow these guidelines:

• The name should follow the general standard naming standards.

• Start with the Switch prefix.

• Followed by what is being evaluated.

Pattern: Switch<Name of what is being evaluated>

Example: SwitchCreditRating

Case

Follow these guidelines:

• The name should follow the general standard naming standards.

BPEL

21-18 Developer's Guide for Oracle SOA Core Extension

• Start with the Case prefix.

• Followed by the evaluated value.

Pattern: Case<Name evaluated value>

Example: CaseBadCredit, CaseApprovalRequired

Terminate

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the Terminate prefix.

• Followed by a name describing the termination reason.

Pattern: Terminate<reason of termination>

Example: TerminateTimeout, TerminateEndOfProcess

Throw

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the Throw prefix.

• Followed by the fault name.

• The fault variable name is typically named the same as the fault name.

Pattern: Throw<fault name>

Example: ThrowExceededMaxAmount, which uses ExceededMaxAmount variable.

Note:

When defining a Catch in the Scope activity, the displayed catch name is the
fault name.

Transform

Follow these guidelines:

The name should follow the general standard naming standards.

• Starts with the Xform prefix.

• Followed by the source name.

• Followed by To.

• Followed by the destination name.

Pattern: Xform<source>To<destination>

Example: XformBillToPortal80Bill

BPEL

Oracle AIA Naming Standards for AIA Development 21-19

Wait

Follow these guidelines:

The name should follow the general standard naming standards.

• Starts with the Wait prefix.

• Followed by a name describing the reason for waiting.

Pattern: Wait<Name describing the waiting reason>

Example: WaitOrderAcknowledgeTimeout, WaitWarmUpTime

While

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with the While prefix.

• Followed by a name describing the loop condition.

Pattern: While<Name describing the loop condition>

Example: WhileAllMsgsSent

Other BPEL Artifacts
Follow these guidelines for other BPEL artifacts:

Variables

Follow these guidelines:

• The name should follow the general standard naming standards.

• Use lower-camel-case for variable names.

• The data type must not be part of the variable name.

Example: accountBalance, invoiceAmount.

Properties

Property names follow the general BPEL variables naming standards.

Correlation Sets

Follow these guidelines:

• The name should follow the general standard naming standards.

• Starts with a name describing the correlation set.

• Ends with CorSet suffix.

Pattern: <Name describing the correlation>CorSet

Example: PurchaseOrderCorSet

BPEL

21-20 Developer's Guide for Oracle SOA Core Extension

Correlation Set Properties

The correlation set property names follows the general BPEL variables naming
standards.

Custom Java Classes
Custom Java classes must follow the standard Java coding practices. The Java code
components names types must conform to the Oracle Corporate Java Coding
Standards: http://bali.xy.example.com/bali/ojcs/front.html.

All of AIA custom java code must exist in a sub-package:

oracle.apps.aia.<lba>... where lba stands for logical business area.

Externally facing services implemented in Java must have the version number part of
the package to be in line with our namespace naming standards. This also enables you
to publish the same service under different versions at the same time.

oracle.apps.aia.<lba>... v<version> where lba stands for logical business area.

Tip:

To avoid collisions, 'aia' must be defined as an application in the Fusion
Application.

Examples:

• oracle.apps.aia.util.logging: contains util java classes used for logging.

• oracle.apps.aia.security.siebel.login: contains java modules to login into Siebel.

• oracle.apps.aia.order.siebel.V1: contains an order query service implemented in Java.

• oracle.apps.aia.item.pricediscount.v3: contains a Java Service price discount engine.

Package Structure
The complete source control and package structure related information is described in
the Oracle Fusion Middleware Installation and Upgrade Guide for Oracle Application
Integration Architecture Foundation Pack.

Deployment Plans
Table 21-12 provides details about the naming standards for Deployment Plans.

Custom Java Classes

Oracle AIA Naming Standards for AIA Development 21-21

Table 21-12 Naming Standards for Deployment Plans

Artifact
Name

Artifact File
Name

Purpose Mandatory /
Optional

Details

Deployment
Plan holding
customer
extensions

<PIP
Code>CustomD
P.xml

Deployment
instructions for
the artifacts
created by the
customer

"<ProjectCo
de>Custom
DP.xml :re-
generated
deployment
plan on
customer
sites using
PLW and
DPG. It
contains
only native
artifacts

This is similar to the
main deployment plan
with all the Preinstall,
Configurations,
Deployments and
PostInstall section.

Deployment
Plan holding
non-native
artifacts

<PIP
Code>Supplem
entaryDP.xml

Deployment
instructions for
non-native
artifacts (J2EE
application, java
class, web
services and
every other
artifact that
could not be
harvested)

Pre-Built
Integrations
having non-
native
artifacts
alone
should
deliver this
plan

This is similar to the
main deployment plan
with all the Preinstall,
Configurations,
Deployments and
PostInstall section.

Deployment Plans

21-22 Developer's Guide for Oracle SOA Core Extension

22
Editing Transformations Using Mapping

Editor

This chapter discusses the process for editing transformations using the Mapping
Editor.

This chapter includes the following sections:

• Overview of Mapping Editor

• Administering the Mapping Editor

• Working with the Search For Mapping Page

• Editing Transformations

• Editing Rules for Mapping Editor

• Understanding Customization Layer

• Deploying Edited Transformations

• Removing Customizations

Overview of Mapping Editor
The Mapping Editor is a browser-based application that enables you to customize
prebuilt integration mappings. Changes are saved as layered customizations, which
protects them from being overridden when applying patches or upgrades. The
application also enables you to merge the customizations and deploy the impacted
composite services to the runtime environment.

Administering the Mapping Editor
This section discusses the following Mapping Editor administration tasks:

• Enabling the Mapping Editor

• Deploying the AgileAPI.jar File as a Shared Library

Enabling the Mapping Editor
To enable the Mapping Editor, the AIAMappingCustomizer Enterprise Role must be
assigned to the appropriate user(s).

The Oracle WebLogic Administrator must enable the role to the users.

The AIAMappingCustomizer Enterprise Role becomes available in the Oracle
WebLogic console after the AIAHome application is deployed.

Editing Transformations Using Mapping Editor 22-1

To assign the AIAMappingCustomizer Enterprise Role to a user:

1. Open Oracle WebLogic Server Administration Console.

2. Navigate to Security Realms, myrealm, Users and Groups and select the user.

3. In the Settings for <User> screen, select Groups tab.

4. Move AIAMappingCustomizer from Available to Chosen.

5. Click the Save button.

The Mapping Editor panel becomes available in the Oracle SOA Core Extension
console for that user.

Deploying the AgileAPI.jar File as a Shared Library
Deploy the AgileAPI.jar as a shared library to enable users to retrieve user-defined
names for Agile flexfields and display them for editing on the Mapping Editor page as
described in Show Flexfield Names in Table 22-2.

The Mapping Editor uses the AgileAPI.jar file to retrieve the flexfield names for
transformations whose source or target system is Agile.

Out-of-the-box, a stub version of the AgileAPI.jar file is deployed on the SOA
server under the AgileAPI 1.0, 0.0 shared library. However, at this point, if you try to
edit an Agile XSLT file in Mapping Editor, the Warning on Flexfield Names error
displays, as shown in Figure 22-1.

Figure 22-1 Warning on Flexfield Names Error

Select the Don't display this warning again option if you don't want this error to
display again during the current session for the system(s) listed in the Warning on
Flexfield Names dialog.

To enable flexfield name functionality, you must deploy the AgileAPI.jar file as a
shared library to the WebLogic server. The AgileAPI.jar file uses the
wlsauth.jar and crypto.jar files. These three JAR files must be available at
runtime. In addition, the wlsauth.jar and crypto.jar files must be a part of the
classpath when you start the SOA server.

Administering the Mapping Editor

22-2 Developer's Guide for Oracle SOA Core Extension

You can access the AgileAPI.jar, wlsauth.jar, and crypto.jar files from the
following locations on the Agile server:

• <AGILE_HOME>/integration/sdk/lib/AgileAPI.jar

• <AGILE_HOME>/<AGILE_DOMAIN>/lib/wlsauth.jar

• <AGILE_HOME>/<AGILE_DOMAIN>/lib/crypto.jar

The location of <AGILE_HOME> depends on your installation.

The Mapping Editor supports only AgileAPI.jar file versions that are binary-
compatible with Agile 9.3.1.2, 9.3.2, and 9.3.3 versions.

For more information about using Agile APIs, see the SDK Developer Guide - Using
Agile APIs available in the Agile PLM 9 Documentation library.

To deploy the AgileAPI.jar file as a shared library:

1. Deploy the AgileAPI.jar file as a shared library in the WebLogic server.

The deployment sequence can be 370. The deployment sequence must be prior to
505.

For information about how to deploy a shared library, see "Deploying Shared Java
EE Libraries and Dependent Applications" in Oracle Fusion Middleware Developing
Applications for Oracle WebLogic Server.

2. Redeploy the AIAHomeApp.ear file.

3. To make the wlsauth.jar and crypto.jar a part of the classpath used by the
SOA server at runtime, access the setDomainEnv.sh file located in your Fusion
Middleware domain: <FMW_HOME>/user_projects/domains/soainfa/bin.

Search for the declaration of the PRE_CLASSPATH variable. Append the absolute
paths to the wslauth.jar and crypto.jar files to the PRE_CLASSPATH.

For your reference, this is the default PRE_CLASSPATH configuration:
PRE_CLASSPATH="${SOA_ORACLE_HOME}/soa/modules/user-patch.jar$
{CLASSPATHSEP}${SOA_ORACLE_HOME}/soa/modules/soa-startup.jar$
{CLASSPATHSEP}${PRE_CLASSPATH}"

4. Save the setDomainEnv.sh file.

5. Restart the SOA server.

Users can now view user-defined flexfield names for Agile transformations on the
Search For Mapping Page, as well as edit Agile transformations on the Mapping Editor
page.

Working with the Search For Mapping Page
To launch the Search For Mapping page, navigate to the Oracle SOA Core Extension
console and click the Go button in AIA Mapping Editor section.

The Search For Mapping page is displayed as illustrated in Figure 22-2. This page has
two sections. The top section enables you to enter search criteria. The bottom section
lists transformation files (.xsl) that are available to customize. Transformation files
contain the individual mappings that convert data from the source to target in the
integration. The list shown is derived from the MapperConfiguration.xml file.

Working with the Search For Mapping Page

Editing Transformations Using Mapping Editor 22-3

Figure 22-2 Search For Mapping Page

Use the filters provided in the Filter area to help you locate the transformation file you
want to customize. Table 22-1 lists the filters and their descriptions.

Table 22-1 Filters Area on the Search For Mapping Page

Field Description

Match Enables you to retrieve transformations based on All or Any of
the search parameters.

Transformation Name Name of the transformation file (.xsl) in the file system.

Service Solution
Component

Name of the Service Solution Component in Project Lifecycle
Workbench.

Source System The originating application system.

Business Task Name of the Business Task in Project Lifecycle Workbench.

Target System The receiving application system.

PIP Name of the Process Integration Pack (prebuilt integration
provided by Oracle) in Project Lifecycle Workbench.

Customized Filters transformations based on whether they have been
customized or not.

Enter search parameters in any of the Filter fields and click Search.

Use the controls describes in Table 22-2 to act upon mapping search results.

Working with the Search For Mapping Page

22-4 Developer's Guide for Oracle SOA Core Extension

Table 22-2 Controls on the Search For Mapping Page

Control Description

Edit Click to edit the selected transformation to apply custom
mappings.

Show Flexfield Names Used in combination with the Edit button. When selected, the
system dynamically queries the source or target application
metadata to retrieve user-defined names for flexfields and
display them as the business alias on the Mapping Editor page.

Note: E-Business Suite and Agile are the supported applications
in this release.

If you get a Warning on Flexfield Names message when
editing Agile mappings, see Deploying the AgileAPI.jar File as
a Shared Library.

If you get a warning message when editing E-Business Suite
mappings, then you should troubleshoot using the warning
message content and SOA server logs.

Deploy After you customize the mappings, click to merge the
customization layer with the base file and deploy the impacted
composite services to the runtime server.

Remove Customizations Click to remove all customized mappings from the selected
transformation.

Editing Transformations
To edit the transformations:

1. Select a transformation.

2. Optionally, if the source or target system is E-Business Suite or Agile, check the
Show Flexfield Names option to view user-defined names for flexfields.

Note:

When you select this option, loading the mappings may take longer.

3. Click the Edit button.

The Mapping Editor page is displayed.

Mapping Editor Page
The Mapping Editor page, as shown in Figure 22-3, enables you to view existing
mappings and extend them. The Mapping Editor is preloaded with existing mappings
from the selected Transformation. It enables you to add, change, and delete individual
mappings. The Mapping Editor page is divided into multiple frames.

Editing Transformations

Editing Transformations Using Mapping Editor 22-5

Figure 22-3 Mapping Editor Page

Page Header

• Displays the name of the transformation file (.xsl) being edited.

• Save and Close: This button saves mapping changes to the customization layer,
and returns to the Search for Mapping page.

• Cancel: This button returns you to the Search for Mapping page without saving
mapping changes.

Target Frame

The first frame you see on the top left is the Target frame. It has target schema name
and displays target schema elements. The Mapping Editor is designed to enable you to
build the output document. The page is arranged this way so that you select target
elements on the left and drag and drop elements to build the mapping from the right.

• Target elements are displayed in tree structure. Elements whose children are only
attributes are not initially expanded. Expand them to view attribute elements. The
tree is initially expanded up to the sixth child. If the sixth child has children
underneath it, those children are no longer expanded. The MaxDepth value can be
configured in the MapperConfiguration.xml file.

• Search for Element enables you to search for an element in the tree. Type the name
of the element to search and press Enter or click the icon to initiate the search. The
next element that contains the entered text is retrieved. Keep pressing Enter or click
the icon multiple times to find the next matching elements.

• All Items, Mapped and Not Mapped options enable you to filter elements.

– All Items: Displays all the elements of the Target schema.

Editing Transformations

22-6 Developer's Guide for Oracle SOA Core Extension

– Mapped: Filters the tree to display only those Target elements that are mapped.
When a child element is mapped, its parent is displayed to keep the Target
schema structure intact.

– Not Mapped: Filters the tree to display only those Target elements that are not
currently mapped. When a child element is unmapped, its parent is displayed to
keep the Target schema structure intact even if the parent is mapped.

• Right click on any element to Show as Top, Collapse All, or Expand All.

• This frame is divided into two columns. They are Node Name and Mapping
Summary.

– Mapping Summary column is the summary of what has been mapped to the
target element. It displays Source elements, Variables, Text and Functions. When
a Function is used in mapping, it normally contains a few parameters which
involve a combination of Source elements, Variables, Texts, Operators and so on.
Since the Mapping Summary column has a limited length which cannot
accommodate all the different combinations used in a function, an abbreviated
format is displayed to convey that a function was used and the parameters
passed to it.

– Target Elements with customized mappings are marked with a blue dot
indicator.

– When you select the target element, the complete expression is displayed in
Mapping section of Mapping Builder frame.

Source Frame

This frame on the right displays three sections inside an accordion control: Source
Schema, Mapping Components and Variables. All the three sections in the frame
have search fields.

• Source Schema

– Source elements are displayed in tree structure. Elements whose children are
only attributes are not initially expanded. You can expand to view attribute
elements under them. The tree is initially expanded up to the sixth child. If the
sixth child has children underneath it, those children are no longer expanded.
The MaxDepth value can be configured in the MapperConfiguration.xml file.

– Source elements have check marks to indicate that those elements have already
been mapped to target.

– Search for Element enables you to search for an element in the tree. After typing
the name of the element to search, press Enter or click on the icon to initiate the
search. The next element which contains the entered text is retrieved. Keep
pressing Enter or click the icon multiple times to find the next matching
elements.

– You can drag and drop Source elements to an unmapped Target element or into
the Mapping builder. Alternatively, you can click the Add To Mapping button to
insert the selected source element into the Mapping builder.

Editing Transformations

Editing Transformations Using Mapping Editor 22-7

Note:

When Source elements are inserted into a mapping, the appropriate relative or
absolute path is automatically calculated for you based on the current
execution context.

• Mapping Components: Mapping Components consist of XSL Elements, Functions
and Operators.

• XSL Elements are a subset of the most frequently used elements in the XSL
language. All Mapping Statements must start with an XSL Element. The following
elements are supported:

– Attribute: Use this when an attribute is needed to complete the mapping. For
example while setting the nil attribute to true.

– Choose: Use this to specify a condition with multiple cases. The When element is
automatically inserted along with Choose.

– For-each: Use this to map a repeating source element to a repeating target
element. For-each statements change the execution context, which may result in
automatic adjustment of the relative paths of Source and Variables inside child
statements.

– If: Use this to specify a condition with a single case.

– Otherwise: Use this statement to specify the final condition under a Choose
statement.

– Text: Use this to specify literal values.

– Value-of: Use this primary statement to perform the actual mapping
assignment.

– When: Use this to specify a condition under a Choose statement. If Choose is
not already a parent statement, than it is automatically inserted along with
When.

• Functions consist of standard XPATH functions such as Date functions, advanced
functions, string functions, and so on. There are also frequently used AIA functions
such as DVM, XREF and so on.

• Operators consist of Addition, And, Division, Greater Than, Less Than and so on.

• The Mapping Component section also supports Search and Add To Mapping.

• Variables: Displays variables that can be used for a selected Target element.
Variables are context sensitive.

– When a Target element is first selected, any applicable variable is displayed only
if the Target element has not been mapped. It can be dragged and dropped to
the Target element as a value-of select statement.

– Variables are also displayed when a row has been selected in the Mapping
panel. As long as the variable is applicable for the selected Mapping row, it is
displayed.

Editing Transformations

22-8 Developer's Guide for Oracle SOA Core Extension

– Certain Variables can have a tree structure. You can expand these Variables to
see its children and continue expanding until it reaches a leaf node.

Note:

When variables elements are inserted into a mapping, the appropriate relative
or absolute path is automatically calculated for you based on the current
execution context.

– The Variables section also supports Search and Add To Mapping.

Mapping Builder Frame

This frame provides a mapping building utility that enables users to create and edit
complex mappings. This frame is on the bottom left. This frame has the following
sections.

Mapping Builder Header

• Target Element: Displays the full path to the selected target element (above in the
target frame).

• Save: Saves the changes made in the Mapping Builder to an internal document in
memory. Changes must be saved in one target element before selecting another
target element.

• Cancel: Discards the changes made in the Mapping Builder. The target mapping
reverts back to its previous state.

Clear Mapping: Erases all the mappings made on the Target element.

Context:

Displays relevant contextual information to help the user understand under which
conditions and code paths the currently selected target element shall be mapped.
Context is not editable. The execution context may include apply templates, match
templates, call templates, for-each, choose/when/otherwise and if statements that
must be satisfied for the mapping to be executed. This pane is initially collapsed. Click
the Restore Pane icon for it to display its content.

Mapping

Displays the complete collection of statements used in the mapping of a Target
element. The mapping includes the mapping assignment itself as well as conditional
statements which affect the target. Users can insert, edit or delete statements using the
following toolbar options:

• Insert: Provides options to Insert Parent, Insert Sibling Before,
Insert Sibling After and Insert Child statements in the Mapping pane.
These options are also available in a context menu when a user right clicks on a
statement in the pane.

• Edit: Enables the user to expand the selected statement to display subcomponents
that make up the statement. Once expanded, these subcomponents can then be
edited. This button and the Edit option in the context menu are only enabled for
statements that can be edited. For example value-of select, if, when and so on.
Editable statements in the pane are preceded with the pencil icon.

Editing Transformations

Editing Transformations Using Mapping Editor 22-9

• Done Editing: This option is enabled after the Edit button is clicked and the
selected statement is expanded. After you complete making changes to any of the
subcomponents, click this button to complete the change and collapse the
statement. Clicking the Save button automatically clicks the Done Editing button.

• Input Literal: This option is enabled when an expanded subcomponent contains an
expression that can be modified to a literal.

• Delete: This option is enabled when a selected statement or expression is eligible
for deletion.

Building Mappings (Examples)
This section, using simple examples, shows you how to use the Mapping Editor page.

Building Simple Mappings

You can do simple mapping when no complex conditions are required. For example,
you need to map a product ID in source system to a product ID in target system and
no conditions are involved, do the simple mapping.

Figure 22-4 Mapping Expression Builder Screen

To do a simple mapping of elements:

1. Select the element in target frame that need to be mapped.

2. Select the element you want to map in the source frame.

3. Drag the source element into the target element row that needs to be mapped.

Mapping summary column of that row gets refreshed with the source element and
the row is highlighted with a blue dot indicating that the element is customized.

Mapping Builder frame is refreshed with the complete mapping statement for the
simple mapping just created. The value-of statement, which is the XSL
equivalent of a simple assignment, is automatically added for you.

You can also map a Variable into the target this way. However, Mapping
Components can only be mapped using the Mapping builder.

Editing Transformations

22-10 Developer's Guide for Oracle SOA Core Extension

Note:

To remove the mapping that you have just made, select the element in the
target frame and click the Clear Mappings button.

Building Complex Mappings

To do more complex mapping that requires conditions, functions, and so on, use
Mapping builder.

To create mapping using Mapping Builder:

1. Select the element in the Target frame.

• If the selected element is unmapped, an empty row in the Mapping section is
added with the text Drag and Drop or Type here.

• If the selected element is mapped, the complete set of mapping statements for
that target is displayed in the Mapping section. You can create an empty row
and add a new statement or edit an existing statement before continuing. For
more information, see To add a new mapping statement row below.

2. Select and drag the source element and drop it into the empty row in the Mapping
section.

• The value-of statement, which is the XSL equivalent of a simple assignment,
is added for you.

• Alternatively you can select a source element and click the Add to Mapping
Expression button.

3. Click the Done Editing button once you are done with changes.

4. Click Save.

Adding a New Mapping Statement Row

To edit a mapping statement row:

1. Select the row you want to edit in the Mapping section.

2. Click Edit and make necessary changes.

This statement is expanded to display its subcomponents. Edit existing
subcomponents by inserting Source, Function, Operator, or Variables onto the
existing subcomponent row.

3. Click Done Editing button once you are done with changes.

4. Click Save.

To save all mapping changes:

Once you are done with all the edits, click Save and Close button. This takes you back
to Transformations search page. This page helps you deploy the customized
transformations.

To discard all mapping changes, click the Cancel button.

Refer to Editing Rules for Mapping Editor section before you proceed with editing
expressions.

Editing Transformations

Editing Transformations Using Mapping Editor 22-11

Editing a Mapping Statement Row

To add a new mapping statement row:

1. Click the Insert button and choose either a parent, sibling before, sibling after, or
child row.

An empty row is inserted in the desired position with the text Drag and Drop
or Type here.

2. From the Mapping Components section, drag and drop an XSL Element onto the
new row. For example, select if.

3. This statement is expanded to display the following required subcomponents.

• A child row for Test which is a required attribute of the if XSL Element.

• A new empty child row under Test has been defaulted for you with the text
Drag and Drop or Type here… for Test.

4. Complete the new XSL Element by inserting a valid Source, Function, Operator, or
Variable onto the new empty child row. If a Function/Operator is inserted, it is
once again expanded to display its required subcomponents. Complete them too.

5. Click the Done Editing button once you are done with changes.

6. Click Save.

Editing Rules for Mapping Editor
This section discusses rules for editing transformations. This section also discusses in
detail editing rules for each field.

Definitions

• Empty Row: A row without a Target Tag, Source element, Mapping Component,
Variable or Literal in it. Empty row says “-- Available for D&D or Type ..."

• Target tag: XML sentence defining the tag for a Target Element.

• Attribute-Value Template Mapping: The expressions shown in the Expression
Builder window for an Attribute-Value Template.

• Regular Mapping: A mapping that is not for Attribute-Value Template.

• Mapping Component: A component listed under Mapping Components accordion
panel.

• Sentence: An XML Element or an XML complete sentence.

• Ancestor Sentence: Parent, grand parent or grand-grand parent or so on sentence
excluding shared sentences.

• Sub-component: Part of a sentence or part of a subcomponent.

• Shared Sentence: An XSLT sentence which has two or more sibling target elements
under its scope.

• OOTB: Out Of The Box.

Editing Rules for Mapping Editor

22-12 Developer's Guide for Oracle SOA Core Extension

Read-only Sentences
The following sentences are read-only:

• xsl:copy

• xsl:copy-of

• xsl:element

• xsl:attribute

• xsl:for-each

• Target tag with attribute-value template

• An OOTB sentence with a function or operation not listed on the Mapping
Components panel

Drag and Drop or Typing
Table 22-3 lists various Drag and Drop (D & D) or typing activities that you can do
while editing transformations.

Table 22-3 Drag and Drop or Typing

D&D D&D D&D D&D D&D D&D Type

Mapping
Type

Parent Destinati
on

Source
Element

XSLT
Element

XSLT
Attribute

Function Operator Variable Literal

N/A N/A Unmapp
ed Target
Element
In Target
Tree

Yes No No No No Yes No

N/A N/A Mapped
Target
Element
In Target
Tree

No No No No No No No

Regular Target
tag

Empty
Row

Yes Yes No No No Yes Yes

Regular XSLT
Element

Empty
Row

No Yes Yes No No No (1) Yes

Regular XSLT
Attribute

Empty
Row

Yes No No Yes Yes Yes Yes

Regular Function Empty
Row

Yes No No Yes Yes Yes Yes

Regular Operator Empty
Row

Yes No No Yes Yes Yes Yes

Regular Literal Empty
Row

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

Editing Rules for Mapping Editor

Editing Transformations Using Mapping Editor 22-13

D&D D&D D&D D&D D&D D&D Type

Mapping
Type

Parent Destinati
on

Source
Element

XSLT
Element

XSLT
Attribute

Function Operator Variable Literal

Attribute
-Value
Template

Any Empty
Row

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

Any Any Target
Tag

No No No No No No No

Regular Any Source
Element

Yes No No Yes Yes Yes Yes

Attribute
-Value-
Template

Attribute Source
Element

Yes No No No No Yes Yes

Regular Any Variable Yes No No Yes Yes Yes Yes

Attribute
-Value-
Template

Attribute Variable Yes No No No No Yes Yes

Regular Any XSLT
Element

No No No No No No No

Regular Any XSLT
Attribute

No No No No No No No

Regular Any Function Yes Yes Yes Yes Yes Yes Yes

Regular Any Operator Yes Yes Yes Yes Yes Yes Yes

Regular Target Literal No No No No No No Yes

Regular Text XSL
Element

Literal No No No No No No Yes

Regular Select
attribute
of value-
of XSL
Element

Literal Yes No No Yes Yes Yes Yes

Attribute
-Value-
Template

Any Function (2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

Attribute
-Value-
Template

Any Operator (2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

Attribute
-Value-
Template

Any Literal (2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

(2)Not
possible

Any Any Any
Read
Only

No No No No No No No

Editing Rules for Mapping Editor

22-14 Developer's Guide for Oracle SOA Core Extension

(1) Yes: Valid for <xsl:text>. Other xslt sentences will error at runtime

(2) Not Possible: User cannot create an empty row for that parent

Note:

When you add more than one child element with different attributes, the
Mapping Editor saves both the child elements. When you add two child
elements with the same attribute, the Mapping Editor saves only one attribute.
This is the expected behavior.

Inserting a Row
The Table 22-4 discusses situations when a new row can be inserted.

Table 22-4 Rules while Inserting a Row

Insert as Insert as Insert as Insert as

Mapping Type Parent of a
Selected Row

Selected Row Parent Child Sibling
Before

Sibling After

Regular None Any Yes Yes No No

Regular Any Target tag Yes Yes Yes Yes

Regular Any XSLT Element Yes Yes Yes Yes

Regular XSLT Element XSLT
Attribute

No (1) Yes Yes Yes

Regular Any Function No Yes No No

Regular Any Operator No Yes No No

Regular Sub-
component

Literal as
subcomponen
t

No No No No

Regular XML
Sentence

Literal as
value of a
XML
Sentence

Yes No No No

Regular Any Source
Element

No No No No

Regular Any Variable No No No No

Attribute-
Value
Template

Any Any No No No No

(1) Yes: Valid for <xsl:text>. Other xslt sentences will error at runtime

Deleting
This section discusses rules while deleting transformations.

Editing Rules for Mapping Editor

Editing Transformations Using Mapping Editor 22-15

Deleting all Mapping rules (Remove All)

• When the target element is a leaf element, target tag and all child sentences are
deleted including variable declarations.

• When the target element is a parent element, mapping editor does not allow the
parent to be deleted until all child target mappings are deleted. You must delete
child first and then parent.

• When the Expressions UI shows sentences which are ancestors of the target
element tag, the ancestor sentences are not shared with other target and that is the
reason they are shown. These ancestor sentences are along with ancestor variables
are deleted too.

Deleting an individual saved sentence

• Individual saved sentences excludes sentences for “Attribute-Value Template
sentences".

• Deleting whole mappings have precedence over deleting individual sentences.

• A sentence that is created but not saved can be deleted. No rules apply for these.

• If a sentence to be deleted defines the source execution context (for example, for
each), it will be temporally flagged read only, so cannot be deleted.

Deleting Sentences in Target Element Tag

• If the target tag sentence is a Parent Target tag, and the Child Target(s) have
mapping(s) then it cannot be deleted.

• If the target tag sentence has children sentences it cannot be deleted.

• If the target tag has ancestor sentences, it cannot be deleted.

Target tag should be the only sentences without any child, parent or ancestor to be
deleted.

Deleting Attribute-Value Templates

Example of a Attribute-Value template: deleting action="CREATE" of
<changeEBO:CreateEngineeringChangeOrderList actionCode="CREATE"> sentence.

Attribute-Value template can be deleted as a whole mapping. Individual rows cannot
be deleted.

Deleting Sub-Components

• Deleting an Attribute, Parameter, Operand: Only optional sub-components can be
deleted. Required subcomponents cannot be deleted.

• Deleting a Function, Operator, Literal, Source Xpath, Variable Xpath: They can be
deleted.

Editing Rules for For-Each
This section discusses editing rules for for-each.

Editing Rules for Mapping Editor

22-16 Developer's Guide for Oracle SOA Core Extension

Definitions

• Execution Content: Execution context is a scope concept. When an execution
context is defined, each child XSL sentence inherits the execution context. The
execution context is mainly defined by the following XSLT sentences:

– <xsl:template match='xxxx'>

– <xsl:apply-template select='xxx'/>

– <xsl:for-each select='xxx'/>

“xxx" is the XPath expression defining the execution context.

• Execution Context Definer: An XSL sentence that defines an execution context.

• Execution context based on the Payload or a Variable: An execution context can be
defined with a path (relative/absolute) to the payload (source) or to a Variable. The
XPath expressions with relative paths access the information from the current
execution context. In other words, when the execution context is based on a
variable, the relative paths access the variable content and not the payload content.

• Execution Context Dependent (ECD) sentence: An ECD sentence is a sentence
with an XPath which has any relative paths.

Attribute-Value Template is not XSLT. However, for this document they are
considered as ECD sentence if the value assigned to the attribute uses a relative
path.

• Unknown Execution Context: It happens when a sentence which defines the
Execution Context (for-each, apply-template and so on.) has an invalid XPath or a
valid XPath but is using a complex XPath which the mapper cannot decipher. The
Execution Context is flagged as Unknown for that sentence and its scope.

• Not Editable Sentence: A sentence which is either not displayed on the Expression
builder, like:

– Variable declarations

– Template invocations

– Template declarations

– A ReadOnly sentence

– A sentence with wildcard XPath (//xxx)

Allowing Changing Execution Context

• Out of the Box (OOTB) for-each: If the OOTB for-each scope involves Not Editable
ECD sentences, the <xsl:for-each> sentence is set as ReadOnly.

If the OOTB for-each has an Unknown Execution Context, the <xsl:for-each>
sentence is set as ReadOnly.

• OOTB Unknown Execution Context: When a context definer sentence defines an
Unknown Execution Context, all ECD child sentences are set as Read Only.

Editing Rules for Mapping Editor

Editing Transformations Using Mapping Editor 22-17

• Drag and Drop <xsl:for-each> or Editing an existing <xsl:for-each>: A <xsl:for-
each> can be dragged and dropped or edited as long as:

– There is no Not Editable ECD sentence under the scope of the new for each. If
there is any Not Editable ECD sentence, an error pops-up.

When inserting a <xsl:for-each> as an ancestor sentence of the tag sentence of a
Parent Target, then the mapping sentences for the target's child mappings are
within the scope of the new for-each. Those sentences are also evaluated as Not
Editable ECD sentence.

– There is no child sentence in edit mode. If a child sentence is in edit mode, an
error pops-up.

• Removing< xsl:for-each>: An xsl:for-each can be removed except when:

– It is Read Only.

– The <xsl-for-each> scope involves Not Editable ECD sentences.

Adjusting Relative Paths when Execution Context Changes
When a <xsl:for-each> is added, changed or deleted the execution context is changed.

When the Execution Context changes the ECD child sentences (sentences under the
new <xsl:for-each> scope> are adjusted to keep accessing the same data as before the
new context was introduced. Mapper will try to keep relative paths as much as
possible.

When the new execution context changes from payload to a variable (or backwards) or
from a variable to another variable, the ECD child sentences are adjusted to use
absolute paths in order to keep them accessing the same data as before the execution
context change.

When the new execution context changes from one location to another within the same
payload or variable, the ECD child sentences are adjusted keeping relativity paths.
This is done by using the XPath navigation commands (“../", “.", “/")

Sentences with absolute paths are not adjusted on an execution context change.

For ECD sentences displayed on the Expression Builder, a user sees the relative paths
adjusted immediately. The ECD child sentences for child target mappings are auto-
adjusted when the Save button is clicked.

The Table 22-5 lists a few examples of relative path getting adjusted when execution
context changes.

Table 22-5 Examples of Relative Path Getting Adjusted when Execution Context
Changes

Execution Context changed from -> to (next
row)

XPath to employee first name is adjusted
from -> to (next row)

/company/employee/employee/name first_name

/company/employees/employee name/first_name

$department /company/employee/employee/name/
first_name

Editing Rules for Mapping Editor

22-18 Developer's Guide for Oracle SOA Core Extension

/company/employees/employee /company/employee/employee/name/
first_name

Execution Context changed from -> to (next
row)

XPath to Company's phone number name is
adjusted from -> to (next row)

/company/employee/employee/name ../../../phone_number

/company/employees/employee ../../phone_number

$department /company/phone_number

/company /company/phone_number

Execution Context changed from -> to (next
row)

Absolute XPath to Company's city address.
It is not adjusted.

/company/employee/employee/name /company/address/city

/company/employees/employee /company/address/city

$department /company/address/city

Execution Context changed from -> to (next
row)

XPath to Department Name from the
variable $department. It is not adjusted
because it is an absolute path.

/company/employee/employee/name $department/name

/company/employees/employee $department/name

$department $department/name

Understanding Customization Layer
• There is no need to put custom code in the _Custom.xsl which was recommended

previously as the Mapping Editor leverages MDS Layered Customizations.

• Using the Mapping Editor, you can now modify the existing transformation and
changes are saved in the new mdssys folder.

• The mdssys folder contains subfolders with mapperui. This subfolder contains an
xml file whose name matches the xsl that was modified. For example,
AgileCreateEngineeringChangeOrderListABM_to_CreateEngineeringChangeOrder
ListEBM.xsl.xml.

• The xml file contains the mapping changes made to the original xsl file. These
mapping changes are marked with unique xml:id="mapperui_xxx. The mappings
in this file are merged with the out-of-the-box and displayed accordingly in the
Mapping Editor.

• The mappings in the Customized Layer are not affected during pre-built
integration upgrade or while applying patches.

Deploying Edited Transformations
The transformations that are customized have a mark in the customized column. To
deploy the customized transformation, select the transformation and click the Deploy
button.

Understanding Customization Layer

Editing Transformations Using Mapping Editor 22-19

The system does the following when you click the Deploy button:

1. Merges the Customization Layer with the base XSL file to create a Merged file.

2. Generates a custom Deployment Plan for the selected composite services.

3. Runs the custom Deployment Plan using the SOA Core Extension AID utility,
which redeploys the selected composite(s) to the runtime server.

Removing Customizations
To undo the customization that you have done to the transformation, select the
customized transformation and click the Remove Customizations button.

Removing Customizations

22-20 Developer's Guide for Oracle SOA Core Extension

A
Delivered Oracle AIA XPath Functions

This appendix provides details about the XPath functions that are delivered with the
Oracle SOA Core Extension for use in your integration flows.

This appendix includes the following sections:

• aia:getSystemProperty()

• aia:getSystemModuleProperty()

• aia:getServiceProperty()

• aia:getEBMHeaderSenderSystemNode()

• aia:getSystemType()

• aia:getErrorMessage()

• aia:getCorrectiveAction()

• aia:isTraceLoggingEnabled()

• aia:logErrorMessage()

• aia:logTraceMessage()

• aia:getNotificationRoles()

• aia:getAIALocalizedString()

• aia:getConvertedDate()

• aia:getConvertedDateWithTZ()

Note:

These functions can be called from BPEL and XSLT, and Mediator routing rule
filters.

aia:getSystemProperty()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getSystemProperty (string propertyName, boolean needAnException)

Parameters

• propertyName

Delivered Oracle AIA XPath Functions A-1

Name of the system property for which to retrieve the value.

• needAnException

Used to specify whether to throw an exception if the property is not found,
otherwise return empty string.

Returns
Returns the string value of the system property identified by propertyName. If the
property is not found, either an exception is thrown or an empty string is returned,
depending on the value of the needAnException parameter.

Usage

• XSLT example:

<xsl:variable name="activeRuleset" select="aia:getSystemProperty('Routing.
 ActiveRuleset',true())"/>

• BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression="aia:getSystemProperty('Routing. ActiveRuleset',
 true())"/>
 <to variable="ActiveRuleset"/>
 </copy>
</assign>

aia:getSystemModuleProperty()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getSystemModuleProperty (string moduleName, string propertyName,
 boolean needAnException)

Parameters

• moduleName

Module for which to retrieve the property.

• propertyName

Name of the property for which to retrieve the value.

• needAnException

Used to specify whether to throw an exception if the property is not found,
otherwise return empty string.

Returns
Returns the string value of the module property identified by moduleName and
propertyName. If the module property is not found, then the system property of the
same name is returned. If the system property with the same name is not found, then
either an exception is thrown or an empty string is returned, depending on the value
of the needAnException parameter.

aia:getSystemModuleProperty()

A-2 Developer's Guide for Oracle SOA Core Extension

Usage

• XSLT example:

<xsl:variable name="errHdlrImpl" select="aia:getSystemModuleProperty
 ('ErrorHandler','COMMON.ERRORHANDLER.IMPL',true())"/>

• BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression="aia:getSystemModuleProperty('ErrorHandler',
 'COMMON.ERRORHANDLER.IMPL',true())"/>
 <to variable="ErrorHandler"/>
 </copy>
</assign>

aia:getServiceProperty()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getServiceProperty (string serviceName, string propertyName,
 boolean needAnException)

Parameters

• serviceName

Service for which to retrieve the property.

• propertyName

Name of the property for which to retrieve the value.

• needAnException

Used to specify whether to throw an exception if the property is not found,
otherwise return empty string.

Returns
Returns the string value of the service property identified by serviceName and
propertyName. If the service property is not found, then the system property of the
same name is returned. If the system property with the same name is not found, then
either an exception is thrown or an empty string is returned, depending on the value
of the needAnException parameter.

Usage

• XSLT example:

<xsl:variable name="defaultSystemID" select="aia:getServiceProperty
 ('{http://xmlns.oracle.com/ABCSImpl/Siebel/Core/UpdateCustomerParty
 SiebelReqABCSImpl/V2}UpdateCustomerPartySiebelReqABCSImplV2','Default.
 SystemID',true())"/>

• BPEL example:

aia:getServiceProperty()

Delivered Oracle AIA XPath Functions A-3

<assign name="AssignVar">
 <copy>
 <from expression= "aia:getServiceProperty('{http://xmlns.oracle.com
 /ABCSImpl/Siebel/Core/UpdateCustomerPartySiebelReqABCSImpl/V2}
 UpdateCustomerPartySiebelReqABCSImplV2','Default.SystemID',true())"/>
 <to variable="DefaultSystemID"/>
 </copy>
</assign>

aia:getEBMHeaderSenderSystemNode()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
node-set aia:getEBMHeaderSenderSystemNode (string senderSystemCode, string
 senderSystemID)

Parameters

• senderSystemCode

System Code as defined in the Oracle AIA system registry.

• senderSystemID

System Internal ID as defined in the Oracle AIA system registry.

For information about maintaining the Oracle AIA system registry, see Managing the
Oracle AIA System Registry.

Returns
Returns a node set of system information, entered in the Oracle AIA system registry
for the given System Code or Internal ID.

Usage
Given the set up on the Systems page shown in Figure A-1, both
aia:getEBMHeaderSenderSystemNode('SEBL_01', '') and
aia:getEBMHeaderSenderSystemNode('', 'siebel') would return the node set provided
in Example A-1.

Figure A-1 Systems Page Entry and aia:getEBMHeaderSenderSystemNode()

Example A-1 Node Set Returned for aia:getEBMHeaderSenderSystemNode()

 <ID xmlns="">SEBL_01</ID>
 <Description xmlns="">Siebel Instance 01</Description>
 <IPAddress xmlns="">xxxxx.siebel.com</IPAddress>
 <ContactName xmlns="">Siebel contact</ContactName>
 <ContactPhone xmlns="">1234567891</ContactPhone>

aia:getEBMHeaderSenderSystemNode()

A-4 Developer's Guide for Oracle SOA Core Extension

 <ContactEmail xmlns="">Siebelcontact@Siebel.com</ContactEmail>
 <Url xmlns="">http://xxxxx.siebel.com:80/ecommunications_enu</Url>
 <Application xmlns="">
 <ID>CRM</ID>
 <Version>8.0</Version>
</Application>

An XSLT example for aia:getEBMHeaderSenderSystemNode() is provided in Example
A-2.

Tip:

This example requires <xsl:stylesheet version="2.0" ...>

Example A-2 XSLT Example for aia:getEBMHeaderSenderSystemNode()

<xsl:variable name="senderNodeVariable">
</xsl:variable>

<corecom:Sender>
 <corecom:ID>
 <xsl:value-of select="$RequestTargetSystemID"/>
 </corecom:ID>
 <corecom:Description>
 <xsl:value-of select="$senderNodeVariable/Description"/>
 </corecom:Description>
 <corecom:IPAddress>
 <xsl:value-of select="$senderNodeVariable/IPAddress"/>
 </corecom:IPAddress>
 <corecom:CallingServiceName> ...
 </corecom:CallingServiceName>
 <corecom:Application>
 <corecom:ID>
 <xsl:value-of select="$senderNodeVariable/Application/ID"/>
 </corecom:ID>
 <corecom:Version>
 <xsl:value-of select="$senderNodeVariable/Application/Version"/>
 </corecom:Version>
 </corecom:Application>
 <corecom:ContactName>
 <xsl:value-of select="$senderNodeVariable/ContactName"/>
 </corecom:ContactName>
 <corecom:ContactEmail>
 <xsl:value-of select="$senderNodeVariable/ContactEmail"/>
 </corecom:ContactEmail>
 <corecom:ContactPhoneNumber>
 <xsl:value-of select="$senderNodeVariable/ContactPhone"/>
 </corecom:ContactPhoneNumber>
...
</corecom:Sender>

aia:getSystemType()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:getSystemType (string systemCode)

Parameters
systemCode: System code as entered in the Oracle AIA system registry.

aia:getSystemType()

Delivered Oracle AIA XPath Functions A-5

For information about maintaining the Oracle AIA system registry, see Managing the
Oracle AIA System Registry.

Returns
Returns the System Type associated with a System Code as entered in the Oracle AIA
system registry.

Usage
Given the set up on the Systems page shown in Figure A-2, the result of
aia:getSystemType('SEBL_01') would be the string SIEBEL.

Figure A-2 Systems Page Entry and aia:getSystemType()

• XSLT example:

<xsl:variable name="systemType" select="aia:getSystemType('SEBL_01')"/>

• BPEL example:

<assign name="AssignVar">
 <copy>
 <from expression= "aia:getSystemType('SEBL_01')"/>
 <to variable="SystemType"/>
 </copy>
</assign>

aia:getErrorMessage()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions"
string aia:getErrorMessage (string errorCode, string localeString, string
 delimiter)

Parameters

• errorCode

Error code.

• localeString

Delimited locale string.

• Delimiter

Delimiter used in the localeString.

Returns
This function looks up the error message resource bundle and return a localized string
for the input errorCode. The localeString is a concatenated string of LanguageCode,
CountryCode, and Variant delimited by the delimiter specified. If no locale is found
with the input parameters, the system default locale is used.

aia:getErrorMessage()

A-6 Developer's Guide for Oracle SOA Core Extension

For more information, see java.util.Locale documentation: http://
download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/
Locale.html.

Usage

• XSLT example:

<xsl:variable name="errMsg" select="aia:getErrorMessage('AIA_ERR_AIAO2C2_
 1007','','')"/>

• BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="'AIA_ERR_AIAO2C2_1007'"/>
 <to variable="AIAFaultMsg" part="AIAFault"query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultMessage/corecom:Code"/>
 </copy>
 <copy>
 <from expression="aia:getErrorMessage('AIA_ERR_AIAO2C2_1007','','')"/>
 <to variable="AIAFaultMsg" part="AIAFault"query="/corecom:
 Fault/corecom:FaultNotification/corecom:FaultMessage/corecom:Text"/>
 </copy>
</assign>

aia:getCorrectiveAction()
namespace aia="g aia:getCorrectiveAction (string correctiveActionCode,
 string localeString, string delimiter)

Parameters

• correctiveActionCode

Corrective action code.

• localeString

Delimited locale string.

• Delimiter

Delimiter used in the localeString.

Returns
This function looks up the Corrective Action Code resource bundle and returns a
localized string for the input correctiveActionCode.

The localeString is a concatenated string of LanguageCode, CountryCode, and Variant
delimited by the delimiter specified. If no locale is found with the input parameters,
the system default locale is used.

For more information, see java.util.Locale documentation: http://
download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/
Locale.html.

aia:getCorrectiveAction()

Delivered Oracle AIA XPath Functions A-7

http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/class-use/Locale.html

Usage

• XSLT example:

<xsl:variable name="corrAction" select="aia:getCorrectiveAction('SAMPLECODE'
 ,'','')"/>

• BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:getCorrectiveAction('SAMPLECODE','','')"/>
 <to variable="AIAFaultMsg" part="AIAFault" query="/corecom:Fault/
 corecom:FaultNotification/corecom:CorrectiveAction"/>
 </copy>
</assign>

aia:isTraceLoggingEnabled()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:isTraceLoggingEnabled (string logLevel, string processName)

Parameters

• logLevel

Log level that you wish to log.

• processName

Name of the process.

Returns
Boolean indicating whether the specified logLevel is enabled for the specified process.

This function does two things:

1. Checks whether logging is enabled or disabled for the input process name from
the AIAConfigurationProperties.xml file.

2. Checks if the trace logger log level is set to log the input log level.

This function returns true only when both the above conditions return true, otherwise
it returns false. If the logLevel parameter is null or if it is incorrectly specified, this
function returns false. If processName is null or empty strings, this function returns
null.

Usage

• XSLT example:

<xsl:variable name="testVal" select="aia:isTraceLoggingEnabled('INFO',
 'SamplesCreateCustomerSiebelReqABCSImpl')" />

• BPEL example:

<assign name="Assign_Fault">
 <copy>

aia:isTraceLoggingEnabled()

A-8 Developer's Guide for Oracle SOA Core Extension

 <from expression="aia:isTraceLoggingEnabled('INFO',
 'SamplesCreateCustomerSiebelReqABCSImpl')"/>
 <to variable="isTraceLoggingEnabledVal"/>
 </copy>
</assign>

aia:logErrorMessage()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:logErrorMessage (node-set ebmHeader, string message)

This function logs an error message. If the ebmHeader parameter is null or not passed,
the message is logged without any supplemental attributes. An error message is
always logged with the level SEVERE.

Parameters

• ebmHeader

The Enterprise Business Message (EBM) header providing context for the error
message.

• Message

Message to log.

Returns
Returns an empty string.

Usage

• XSLT example:

<xsl:variable name="testVal" select="aia:logErrorMessage
 (oraext:parseEscapedXML('<test></test>'),'LogError:: Your Error message
 goes here................................')"/>

• BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:logErrorMessage(oraext:parseEscapedXML
 ('<test></test>'),'LogError from XSL::Your Error Message goes
 here...........')"/>
 <to variable="testXpathVal"/>
 </copy>
</assign>

aia:logTraceMessage()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string aia:logTraceMessage (string level, node-set ebmHeader, string message)

This function logs a trace message.

If the ebmHeader parameter is null or not passed, the message is logged without any
supplemental attributes.

aia:logErrorMessage()

Delivered Oracle AIA XPath Functions A-9

If the level parameter is null or if it is incorrectly specified, a message is logged with
level INFO. The level should be java.util.logging.Level.

The levels in descending order are:

• SEVERE (highest value)

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST (lowest value)

Parameters

• Level

Level of the trace message.

• ebmHeader

The EBM Header providing context for the trace message.

• Message

Message to log.

Returns
Returns an empty string.

Usage

• XSLT example:

<xsl:variable name="testVal" select="aia:logTraceMessage('ERROR',
 oraext:parseEscapedXML('<test></test>'),'LogTrace :: Your Trace message
 goes her................')" />

• BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:logTraceMessage
 ('ERROR',ora:parseEscapedXML('<test></test>'),'LogTraceError::
 Your trace message goes here..........')"/>
 <to variable="testXpathVal"/>
 </copy>
</assign>

aia:getNotificationRoles()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"

aia:getNotificationRoles()

A-10 Developer's Guide for Oracle SOA Core Extension

node-set aia:getNotificationRoles (string systemId, string errorCode,
 string serviceName, string processName)

Parameters

• systemId

System ID.

• errorCode

Error code.

• serviceName

Name of the errored service.

• processName

Name of end-to-end process.

Returns
This function queries the Oracle AIA system registry with input values and returns a
node-set containing the actor role and the FYI role corresponding to the input
errorCode.

For example:

<actor>seblAdmin</actor>
<fyi>seblCSR</fyi>

If serviceName is null or empty strings or if no value is found from in Oracle AIA
system registry, this function returns the default roles specified in the
AIAConfigurationProperties.xml file.

For information about maintaining the Oracle AIA system registry, see Managing the
Oracle AIA System Registry.

Usage

• XSLT example:

<xsl:variable name="testVal" select="aia:getNotificationRoles
 ('AIADEMO','AIADEMO_ORDER_FALLOUT','AIADemoProcessSalesOrderCBP',
 'AIADemoProcessSalesOrderCBP')" />

• BPEL example:

<assign name="Assign_Fault">
 <copy>
 <from expression="aia:getNotificationRoles('AIADEMO','AIADEMO_ORDER_
 FALLOUT','AIADemoProcessSalesOrderCBP','AIADemoProcessSalesOrderCBP')
 "/>
 <to variable="testXpathVal"/><to variable="NotificationRole"/>
 </copy>
</assign>

aia:getAIALocalizedString()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"

aia:getAIALocalizedString()

Delivered Oracle AIA XPath Functions A-11

string aia:getAIALocalizedString (string resourceBundleId, string key,
 node params)
string aia:getAIALocalizedString (string resourceBundleId, string key,
 string language, string country, node params)

Parameters

• resourceBundleId

Identifies the AIA resource bundle from which to retrieve the localized string.

• key

The key whose value has to be picked up from the resource bundle.

• language

Language, according to java.util.Locale, for which to retrieve the localized string.

• Country

Country, according to java.util.Locale, for which to retrieve the localized string.

• Params

Node supplying the values for any bind variables within the localized string.

The AIAConfigurationProperties.xml file contains a set of module configuration
properties that provide the mapping of resourceBundleId values to resource bundle
class names, as shown in Example A-3.

This mapping is used at runtime to determine which resource bundle class to use for
looking up the localized string.

Example A-3 Module Configuration Properties

<ModuleConfiguration moduleName="ResourceBundle">
 <property name="Telco/BillingManagement">oracle.apps.aia.core.
 i18n.AIAListResourceBundle</property>
 <property name="Telco/ProductLifeCycle">oracle.apps.aia.core.
 i18n.AIAListResourceBundle</property>
 <property name="Telco/SalesOrder">oracle.apps.aia.core.i18n.
 AIAListResourceBundle</property>
 <property name="Telco/CustomerParty">oracle.apps.aia.core.i18n.
 AIAListResourceBundle</property>
</ModuleConfiguration>

Returns
This function returns the localized string for the passed key from an AIA resource
bundle, identified by resourceBundleId. If language and country are omitted, the
default locale is assumed.

Usage
Example A-4 provides a BPEL usage example for aia:getAIALocalizedString().

Example A-4 BPEL Usage Example for aia:getAIALocalizedString()

<assign name="Assign_1">
 <copy>
 <from variable="inputVariable" part="payload" query="/sordabo:

aia:getAIALocalizedString()

A-12 Developer's Guide for Oracle SOA Core Extension

 ListOfSWIOrderIO/sordabo:SWIOrder/sordabo:OrderNumber"/>
 <to variable="localizedStringParams" query="/bpelcom:parameters/
 bpelcom:item/bpelcom:value"/>
 </copy>
 <copy>
 <from expression="aia:getAIALocalizedString ('Telco/SalesOrder','ORDER_
 NUMBER_MESSAGE',bpws:getVariableData("localizedStringParams"))
 "/>
 <to variable="internationalizedstring"/>
 </copy>
</assign>

aia:getConvertedDate()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"
string getConvertedDate(String dateTimeTz, String timeZone, boolean
 needAnException)

Parameters

• dateTimeTz

DateTime as String, in standard W3C and RFC date format. For example: yyyy-
MM-dd'T'HH:mm:ss.SSSZ.

• timeZone

Target time zone, as 3 characters code. For example, IST or as GMT offset +05:30.

• needAnException

Boolean flag: true throws exception for any Parse error and false returns the
input date.

Returns
This function returns the converted date as string without time zone in yyyy-MM-
dd'T'HH:mm:ss.SSS format.

Usage

• XSLT example:

<xsl:value-of select="aia:getConvertedDate(ns0:
 CreateEngineeringChangeOrderList/ns0:ImplementationDate,$ebizTimeZone,false
 ())"/>

• BPEL example:

<copy>
 <from expression="aia:getConvertedDate("2010-04-26T16:25:00+05:30",
 "-08:00", false()) "/>
 <to variable="getConvertedDateVal"/>
</copy>

aia:getConvertedDateWithTZ()
namespace aia="http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.
 core.xpath.AIAFunctions"

aia:getConvertedDate()

Delivered Oracle AIA XPath Functions A-13

string getConvertedDateWithTZ(String dateTimeTz, String timeZone,
 boolean needAnException)

Parameters

• dateTimeTz

DateTime as String, in standard W3C and RFC date format. For example: yyyy-
MM-dd'T'HH:mm:ss.SSSZ

• timeZone

Target time zone, as 3 characters code. For example, IST or as GMT offset +05:30.

• needAnException

Boolean flag: true throws exception for any Parse error and false returns the
input date.

Returns
This function returns the converted date as string without time zone in the input date
format.

Usage

• XSLT example:

<xsl:value-of select="aia:getConvertedDateWithTZ(ns0:
 CreateEngineeringChangeOrderList/ns0:ImplementationDate,$ebizTimeZone,
 false())"/>

• BPEL example:

<copy>
 <from expression="aia:getConvertedDateWithTZ('2010-04-26T14:30:00
 +00:00','+05:30', false())"/>
 <to variable="getConvertedDateWithTZVal"/>
</copy>

aia:getConvertedDateWithTZ()

A-14 Developer's Guide for Oracle SOA Core Extension

B
XSL for Developing CAVS-Enabled Oracle

AIA Services

This appendix provides XSL text that should be used in developing Composite
Application Validation System (CAVS)-enabled Oracle Application Integration
Architecture (AIA) services.

This appendix includes the following sections:

• AddTargetSystemID.xsl

• SetCAVSEndpoint.xsl

AddTargetSystemID.xsl
Example B-1 provides XSL text that should be used to develop CAVS-enabled provider
Application Business Connector Services (ABCSs).

For more information about how to use this XSL, see Developing ABCS for CAVS
Enablement.

Example B-1 AddTargetSystemID.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
 headers.ESBHeaderFunctions"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.Xpath20"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.
 XRefXPathFunctions"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.ExtFunc"
 xmlns:corecom="http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2"
 xmlns:aia=http://www.oracle.com/XSL/Transform/java/oracle.apps.aia.core.
 xpath.AIAFunctions exclude-result-prefixes="xsl plnk coresalesorder ns0 ns3
 ns5 ns1 client corecustcom ns4 corecom bpws ehdr aia hwf xp20 xref ora ids
 orcl">
 <xsl:param name="ConfigServiceName">{[ABCServiceNamespace]}[ABCServiceName]
 </xsl:param>
 <xsl:param name="ConfigPropertyName">Default.SystemID</xsl:param>

 <xsl:template match="/*">
 <xsl:copy>

XSL for Developing CAVS-Enabled Oracle AIA Services B-1

 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="corecom:EBMHeader">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="corecom:EBMHeader/corecom:Sender">
 <xsl:copy-of select="."/>
 <xsl:if test="not(following-sibling::corecom:Target)">
 <corecom:Target>
 <xsl:variable name="TargetID" select="aia:getServiceProperty
 ($ConfigServiceName,$ConfigPropertyName,true())"/>
 <corecom:ID>
 <xsl:value-of select="$TargetID"/>
 </corecom:ID>
 <corecom:ApplicationTypeCode>
 <xsl:value-of select="aia:getSystemType($TargetID)"/>
 </corecom:ApplicationTypeCode>
 </corecom:Target>
 </xsl:if>
 </xsl:template>

 <xsl:template match="corecom:EBMHeader/corecom:Target">
 <corecom:Target>
 <xsl:copy-of select="@*"/>
 <xsl:variable name="TargetID">
 <xsl:choose>
 <xsl:when test="corecom:ID/text()">
 <xsl:value-of select="corecom:ID/text()"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="aia:getServiceProperty
 ($ConfigServiceName,$ConfigPropertyName,true())"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <corecom:ID>
 <xsl:copy-of select="corecom:ID/@*"/>
 <xsl:value-of select="$TargetID"/>
 </corecom:ID>
 <xsl:copy-of select="corecom:OverrideRoutingIndicator"/>
 <xsl:copy-of select="corecom:ServiceName"/>
 <corecom:ApplicationTypeCode>
 <xsl:copy-of select="corecom:ApplicationTypeCode/@*"/>
 <xsl:choose>
 <xsl:when test="corecom:ApplicationTypeCode/text()">
 <xsl:value-of select="corecom:ApplicationTypeCode/text()"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="aia:getSystemType($TargetID)"/>
 </xsl:otherwise>
 </xsl:choose>
 </corecom:ApplicationTypeCode>
 <xsl:copy-of select="corecom:EndPointURI"/>
 <xsl:copy-of select="corecom:Custom"/>
 </corecom:Target>
 </xsl:template>

AddTargetSystemID.xsl

B-2 Developer's Guide for Oracle SOA Core Extension

 <xsl:template match="@*|node()">
 <xsl:copy-of select="."/>
 </xsl:template>

</xsl:stylesheet>

SetCAVSEndpoint.xsl
Example B-2 provides XSL text that should be used to develop CAVS-enabled
requester ABCSs.

For more information about how to use this XSL, see Developing ABCS for CAVS
Enablement.

Example B-2 SetCAVSEndpoint.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
 headers.ESBHeaderFunctions" xmlns:jhdr="http://xmlns.oracle.com/esb"
 xmlns:corecom=http://xmlns.oracle.com/EnterpriseObjects/Core/Common/V2
 exclude-result-prefixes="xsl corecom ehdr jhdr">
 <xsl:template match="/">
 <xsl:copy-of select="/*"/>
 <xsl:variablename="Endpoint"select="/*/corecom:EBMHeader/corecom:Message
 ProcessingInstruction/corecom:DefinitionID"/>
 <xsl:if test="$Endpoint!=''">
 <xsl:variable name="SetEndpoint"select="ehdr:setOutboundHeader
 ('/jhdr:ESBHeader/jhdr:location',$Endpoint,'jhdr=http://xmlns.
 oracle.com/esb;')"/>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

SetCAVSEndpoint.xsl

XSL for Developing CAVS-Enabled Oracle AIA Services B-3

SetCAVSEndpoint.xsl

B-4 Developer's Guide for Oracle SOA Core Extension

	Contents
	List of Tables
	List of Tables
	List of Tables
	Preface
	Audience
	Oracle AIA Guides
	Related Guides
	Documentation Accessibility
	Conventions

	1 Using SOA Core Extensions for AIA Development
	 AIA Development Using SOA Core Extension
	Understanding AIA
	AIA Foundation Pack
	AIA Pre-built Integrations and Process Integration Packs (PIPs)

	AIA Integration Types
	AIA Integration Flows
	How to Use this Developer's Guide

	2 Building AIA Integration Flows
	Setting up Development and Test Environments
	Getting a Quick Start on your AIA Development
	How to Set Up AIA Workstation
	Prerequisites
	Using MDS in AIA
	Content of $SOA_HOME/AIAMetaData
	Working with AIA Components Content in $SOA_HOME/AIAMetaData
	How to Change an Existing File
	How to Create File
	How to Work with AIAConfigurationProperties.xml in $SOA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config
	How to Add a New Property to AIAConfigurationProperties.xml
	How to Work with AIAEHNotification.xml in $SOA_HOME/aia_instances/$INSTANCE_NAME/AIAMetaData/config
	How to Work with Domain Value Maps in $SOA_HOME/AIAMetaData/dvm
	How to Work with Cross Reference (Xref) in $SOA_HOME/AIAMetaData/xref
	How to Work with Fault Policies in $SOA_HOME/AIAMetaData/faultPolicies/V1
	Updating MDS

	AIA Artifacts in Various Integration Styles
	Integration Through Native Application Interfaces Using the Oracle Applications Technology Infrastructure
	Understanding Integration Styles with Integration Framework
	Integration Flow with Requester Application Services
	Direct Integration Through Application Web Services
	Integration Through Packaged Canonical and Standardized Interfaces

	Bulk Data Processing
	Integration Style Choice Matrix

	Development Tasks for AIA Artifacts
	Identifying the EBO
	Designing an Oracle AIA Integration Flow
	Understanding Oracle AIA Integration

	Identifying and Creating the EBS
	Constructing the ABCSs
	Enabling and Registering Participating Applications
	Enabling Participating Applications
	Managing the Oracle AIA System Registry
	Understanding the Oracle AIA System Registry
	How to Manage the System Registry Using the Systems Page
	How to Manage the System Registry Using the SystemRegistration.xml Configuration File

	Identifying and Creating the EBF

	Testing an Oracle AIA Integration Flow

	3 Implementing Direct Integrations
	Understanding Direct Integrations
	Using the Application Business Flow Design Pattern for Direct Integrations
	Finding the Correct Granularity
	Handling Transactions
	Building an ABF as a Transactional Composite
	Achieving Transactionality in the ABF

	Enabling Outbound Interaction with Applications
	Using JCA Adapters
	Using Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP)
	Using JMS Queues
	Using Adapters in a Composite or as a Separate Composite

	Invoking an ABF
	Handling Errors
	Using Direct Integration Services
	Using the Fault Management Framework

	Securing the Service
	Security Recommendations for OWSM Policies for Authentication
	Attaching OWSM Policies to the Composites

	Using Cross References
	Naming Conventions and Standards
	Additional Guidelines for Naming Services

	Annotating Composites
	Annotating WSDLs

	Service Configuration
	Extending Direct Integrations
	Extending XSLs
	Extending Services
	Guidelines for Enabling Customizations

	4 Developing and Deploying Custom XPath Functions
	Implementing a Function in Java as a Java XPath Class
	Naming Standards for Custom XPath Functions
	Function Name
	Function Implementation Class
	Function Implementation Method
	Function Inner Class
	Function Namespace
	Function Namespace Prefix

	Supported Data Types

	Deploying the XPath/XSL Function in JDeveloper
	Deploying the XPath/XSL Function in the Application Server

	5 Designing and Developing Enterprise Business Services
	Introduction to Enterprise Business Services
	Understanding EBS Types
	Working with the Enterprise Business Service Library

	Designing the EBS
	Understanding Design Guidelines
	Understanding Design Considerations
	Establishing the MEP of a New Process EBS
	How to Establish the MEP for a New Process EBS
	How to Handle Errors
	How to Secure the EBS
	How to Configure Transactions
	How to Guarantee Delivery
	How to Define the EBS Service Contract

	Constructing the WSDL for the Process EBS
	Introduction to WSDL Construction for the Activity Service EBS
	How to Complete the <definitions> Section
	How to Define Message Structures
	How to Check for WS-I Basic Profile Conformance

	Working with Message Routing
	Creating Routing Rules
	Routing at the EBS
	Guidelines for EBS Routing Rules
	How to Identify the Target System at EBS

	Building EBS Using Oracle Mediator
	How to Develop the Oracle Mediator Service

	Implementing the Fire-and-Forget Message Exchange Pattern
	How to Implement Fire-and-Forget Pattern with EBS One-Way Calls
	Creating EBS WSDLs
	Creating Mediator Routing Services for Asynchronous Fire-and-Forget Patterns with a One-Way Call EBS
	How to Create Mediator Projects for the Asynchronous Fire-and-Forget MEP
	How to Create Routing Services for Asynchronous Fire-and-Forget MEP
	How to Create Routing Rules for Asynchronous Fire-and-Forget MEP
	How to Implement Error Handling for Asynchronous Fire-and-Forget MEP

	Asynchronous Fire-and-Forget MEP Error Handling Using Compensatory Operations
	How to Invoke the Compensate Operation of EBS
	How to Enable Routing Rules in Compensate Operation Routing Service

	Implementing the Synchronous Request-Response Message Exchange Pattern
	How to Implement Synchronous Request-Reply Message Exchange Patterns in EBS
	How to Create Mediator Projects for the Synchronous Request-Response MEP
	How to Create Routing Services for the Synchronous Request-Response MEP
	How to Implement Error Handling for the Synchronous Request-Response MEP

	Implementing the Asynchronous Request-Delayed Response Message Exchange Pattern
	How to Implement the Request-Delayed Response Pattern with the Two One-Way Calls of the EBS
	Creating Mediator Routing Services for Asynchronous Request-Delayed Response Patterns with Two One-Way Call EBS
	How to Create Mediator Projects for the Request-Delayed Response MEP
	How to Create Routing Services
	How to Create Routing Rules

	Asynchronous Request-Delayed Response MEP Error Handling

	6 Designing Application Business Connector Services
	Introduction to ABCS
	ABCS Types
	Requester ABCS
	Provider ABCS

	Designing ABCS - Key Tasks

	Defining the ABCS Contract
	Defining the Role of the ABCS
	Designing an ABCS to Participate in a Requester Role
	Designing an ABCS to Participate in a Provider Role

	Constructing ABM Schemas
	Analyzing the Participating Application Integration Capabilities

	Identifying the MEP
	Introduction to MEPs
	Choosing the Appropriate MEP
	When to Use the Synchronous Request-Response MEP
	When to Use the Asynchronous Request Only (Fire-and Forget) MEP
	When to Use the Asynchronous Request Delayed Response MEP

	Technology Options
	Outbound Interaction with the Application
	When to Use JCA Adapters for Outbound Interactions
	When to Use Standard Web Service Interfaces (SOAP/HTTP, XML/HTTP) for Outbound Interactions
	When to Use JCA Adapters, (Database, File, JMS, or AQJMS), for Outbound Interactions

	Using BPEL for Building ABCS

	7 Constructing the ABCS
	Constructing an ABCS
	Prerequisites
	ABCS as a Composite Application
	How Many Components Must Be Built

	Constructing an ABCS Composite Using JDeveloper
	How to Construct the ABCS Composite Using JDeveloper
	Developing the BPEL Process
	How to Create References, Services, and Components
	Moving Abstract Service WSDLs in MDS

	Implementing the Fire-and-Forget MEP
	When to Use Compensating Services
	How to Invoke the Compensating Service
	Additional Tasks Required in Provider ABCS to Implement This MEP
	How to Ensure Transactions
	How to Handle Errors

	Implementing the Asynchronous Request Delayed Response MEP
	How to Populate the EBM Header for Asynchronous-Delayed Response
	Setting Correlation for the Asynchronous Request-Delayed Response MEP
	Programming Models for Handling Error Response in the Asynchronous Request-Delayed Response MEP
	Programming Model 1: Using a Separate Service for Error Handling
	Programming Model 2: Using JMS Queue as a Milestone Between Requester ABCS and the EBS
	Programming Model 3: Using a Parallel Routing Rule in the EBS

	What Tasks Are Required in Provider ABCS to Implement This MEP

	Implementing Provider ABCS in an Asynchronous Message Exchange Scenario
	How to Implement the Asynchronous MEP
	Using the Programming Models for the Request-Delayed Response Pattern
	How to Ensure Transactions in Services
	How to Handle Errors in the Asynchronous Request-Delayed Response MEP

	Implementing Synchronous Request-Response Message Exchange Scenario
	How to Ensure Transactions in Services
	How to Handle Errors in the Synchronous Request-Response MEP
	How to Optimize the Services to Improve Response Time

	Invoking Enterprise Business Services
	Create
	Update
	Delete
	Sync
	Validate
	Process
	Query

	Invoking the ABCS
	How to Invoke an ABCS Directly from an Application
	How to Invoke an ABCS Using Transport Adapters
	When Does an Enterprise Business Service Invoke an ABCS

	8 Completing ABCS Development
	Developing Extensible ABCS
	Introduction to Enabling Requester ABCS for Extension
	Introduction to Enabling Provider ABCS for Extension
	How to Design Extensions-Aware ABCS
	Configuration Parameters

	Designing an ABCS Composite with Extension
	Defining Service at Extension Points
	Defining a Service Using an Abstract WSDL
	How to Specify a Concrete WSDL at Deployment Time
	Populating the binding.ws Element in the composite.xml

	Designing Extension Points in the ABCS BPEL Process
	How to Set Up the Extension Point Pre-ProcessABM
	How to Set Up the Extension Point Pre-ProcessEBM
	How to Test the Extensibility with Servlet as Sample Extension Service

	Handling Errors and Faults
	How to Handle Errors and Faults

	Working with Adapters
	Interfacing with Transport Adapters
	How to Develop Transport Adapters
	How to Develop Portal DB Adapter
	When to Put Adapters in a Single Composite
	Planning Version Adapters
	How to Configure a Version Adapter

	Developing ABCS for CAVS Enablement
	How to CAVS Enable Provider ABCS
	How to CAVS Enable the Requester ABCS
	Introduction to the CAVSEndpointURL Value Designation
	Purging CAVS-Related Cross-Reference Entries to Enable Rerunning of Test Scenarios

	Securing the ABCS
	How to Secure the ABCS

	Enabling Transactions
	How to Ensure Transactions in AIA Services
	Transactions in Oracle Mediator
	Transactions in BPEL
	Impact of BPEL Activities on Transaction Scope

	Developing ABCS to Participate in a Global Transaction
	How to Transaction-Enable AIA Services
	Synchronous Request-Response Scenarios
	AIA Services in Asynchronous MEP
	Asynchronous Operation from an ABCS in the Same Thread but in a Different Transaction

	Guaranteed Message Delivery
	Versioning ABCS
	Guidelines for Versioning

	Resequencing in Oracle Mediator
	Configuring the Oracle Mediator Service to Use its Resequencer Feature
	How to Configure the Resequencing Strategy
	Processing Multiple Groups Parallelly
	Describing Oracle Mediator Resequencer Error Management
	Resubmitting Messages that have Errors
	Using the Message Resubmission Utility API

	Tuning the Resequencer

	Developing Layered Customizations
	Deploying services after customizations
	Customizing the Customer Version
	Applying patches after customization

	9 Designing and Constructing Enterprise Business Flows
	Introduction to Enterprise Business Flows
	How to Define the Contract for an EBF
	How to Identify the Need for an EBF
	How to Identify the Message Pattern for an EBF
	How to Identify the Message Structure

	How to Create the Contract for an EBF
	Constructing the WSDL for the EBF

	How to Implement the EBF as a BPEL Service

	10 Introduction to B2B Integration Using AIA
	Overview of B2B Integration Using AIA
	Understanding B2B Document Flows
	Describing Outbound B2B Document Flows Built Using AIA
	Describing Inbound B2B Document Flows Built Using AIA

	Understanding the Oracle B2B Component of Oracle Fusion Middleware
	How AIA Complements Oracle Fusion Middleware Oracle B2B

	Understanding the SOA Core Extension Infrastructure for B2B
	B2B Support in AIA Error Handling Framework
	AIA B2B Interface

	11 Developing and Implementing Outbound B2B Integration Flows
	Introduction to Developing and Implementing Outbound B2B Integration Flows
	Step 1: Identifying the B2B Document and Analyzing Requirements
	How to Identify the B2B Document Protocol
	How to Identify the B2B Document Type and Definition
	How to Define the Document in Oracle B2B
	How to Define the Document in AIA
	How to Identify the EBO, EBS, and EBM to Be Used
	How to Design Mappings for the B2B Document
	How to Publish Mapping to Trading Partners

	Step 2: Developing a New Provider B2B Connector Service
	Introduction to a Provider B2B Connector Service
	How to Identify the Message Exchange Pattern
	How to Develop a B2BCS Service Contract
	How to Store a WSDL in the Oracle Metadata Repository
	How to Develop a B2B Connector Service
	How to Customize the AIA B2B Interface
	How to Annotate B2B Connector Services
	How to Support Trading Partner-Specific Variants
	Supporting Trading Partner-Specific Custom Extensions
	Supporting Trading Partner-Specific XSLTs
	Supporting Trading Partner-Specific Document Types and Versions

	How to Enable Error Handling

	Step 3: Developing or Extending an Existing Enterprise Business Service
	How to Route Based on Trading Partner B2B Preferences

	Step 4: Developing or Extending an Existing Requester ABCS
	What You Must Know About Message Exchange Patterns
	What You Must Know About Transformations

	Step 5: Configuring Oracle B2B and Defining Trading Partner Agreements
	Step 6: Deploying and Configuring AIA Services
	Step 7: Testing and Verifying
	How to Test Using CAVS
	How to Test Using Dummy Trading Partner Endpoints
	How to Test Using the Production Code Value Set to "Test"
	How to Test Using Dummy Business Data

	Step 8: Going Live and Monitoring
	Monitoring Using Oracle B2B Reports
	Monitoring Using Oracle Enterprise Manager Console
	Monitoring Using Error Notifications

	12 Developing and Implementing Inbound B2B Integration Flows
	Introduction to Developing and Implementing Inbound B2B Integration Flows
	Step 1: Identifying the B2B Document and Analyzing Requirements
	Step 2: Adding Inbound Routing Rules to an AIA B2B Interface
	How to Add a New Routing Rule to the AIA B2B Interface

	Step 3: Developing a New Requester B2B Connector Service
	Introduction to Requester B2B Connector Services
	How to Identify the Message Exchange Pattern
	How to Develop a B2BCS Service Contract
	How to Store a WSDL in Oracle Metadata Services Repository
	How to Develop a B2B Connector Service
	How to Annotate B2B Connector Services
	How to Support Trading Partner-Specific Variants
	How to Enable Error Handling

	Step 4: Developing or Extending an Existing Enterprise Business Service
	Step 5: Developing or Extending an Existing Provider ABCS
	What You Must Know About Transformations

	Step 6: Configuring Oracle B2B and Defining Trading Partner Agreements
	Step 7: Deploying and Configuring AIA Services
	Step 8: Testing and Verifying
	Step 9: Going Live and Monitoring

	13 Describing the Event Aggregation Programming Model
	Overview
	Event Producer
	Event Aggregator Service
	Consumer Service

	Implementing the Event Aggregation Programming Model
	Creating the Event Aggregation Service
	Creating the PL/SQL objects
	Create the Database Service and Aggregate Service

	Creating Consumer Service
	Implementing Error Handling for the Event Aggregation Programming Model

	14 Establishing Resource Connectivity
	Introduction to Resource Connectivity
	Inbound Connectivity
	Outbound Connectivity

	Modes of Connectivity
	Web Services with SOAP/HTTP
	When to Use Web Services with SOAP/HTTP
	Request-Response
	Request Only
	Advantages of Using Web Services with SOAP/HTTP
	Disadvantages of Using Web Services with SOAP/HTTP
	Important Considerations for Using Web Services with SOAP/HTTP

	Session Management for Web Services with SOAP/HTTP
	Session Types
	SessionToken
	Session Pool Manager

	Error Handling for Web Services with SOAP/HTTP
	For Inbound Connectivity
	For Outbound Connectivity
	Request-Response and Request-Only System Errors
	Request-Response Business Errors

	Security for Web Services with SOAP/HTTP
	Message Propagation Using Queues or Topics
	Event Notification Without Payloads
	Events Leading to Message Queuing
	When to Use Message Propagation Using Queues or Topics
	Types of Queues

	Ensuring Guaranteed Message Delivery
	When to Use Transaction Boundaries

	When to Use JCA Adapters

	Siebel Application-Specific Connectivity Guidelines
	Inbound: Siebel Application Interaction with AIA Services
	Web Services with SOAP/HTTP
	Developer Tasks in the Service Design and Construction Phase
	Creating JMS Consumers to Consume Siebel Messages from JMS Queues/Topics
	Developer Tasks in Service Design and Outline Construction Phase
	Outbound - Siebel Application Interaction with AIA Services
	Web Services with SOAP/HTTP
	Session Management

	Oracle E-Business Suite Application-Specific Connectivity Guidelines
	Inbound: E-Business Suite Application Interaction with AIA Services
	Concurrent Program Executable
	Best Practices and Design Asynchronous Patterns
	Business Event Subscription (JCA Connectivity Using OAPPS Adapter)
	Outbound: Oracle E-Business Suite Application Interaction with AIA Services

	Design Guidelines

	15 Using Oracle Data Integrator for Bulk Processing
	Introduction to Design Patterns for AIA-Oracle Data Integrator Architecture
	Initial Data Loads
	How to Perform the Oracle Data Integrator Data Load
	High Volume Transactions with Xref Table
	Intermittent High Volume Transactions

	High-Volume Transactions with Xref Table
	Building Oracle Data Integrator Projects
	How to Build Oracle Data Integrator Projects

	Using the XREF Knowledge Module
	What You Must Know About Cross-Referencing

	Working with Oracle Data Integrator
	How to Define Variables (Source and Target Column Names)
	How to Create the First Interface (Source to Target)
	How to Create a Package for the First Interface
	How to Define the XREF View in SOA
	How to Create the Second Interface (Update Target Identifier in XREF)
	How to Create a Package for the Second Interface

	Working with Domain Value Maps
	Using Error Handling
	Oracle Data Integrator Ref Functions
	How to Publish the Package and Data Model as Web Service

	16 Working with Message Transformations
	Introduction to Transformation Maps
	Connecting Applications to Implement Business Processes
	Canonical Patterns
	When to Use Direct Integrations

	Using Tools and Technologies to Perform Message Transformations

	Creating Transformation Maps
	Considerations for Creating Transformation Maps
	Handling Missing or Empty Elements
	How to Map an Optional Source Node to an Optional Target Node
	How to Load System IDs Dynamically
	Using XSLT Transformations on Large Payloads
	When to Populate the LanguageCode Attribute
	How to Name Transformations

	Making Transformation Maps Extension Aware
	How to Make Transformation Maps Extension Aware
	How to Make the Transformation Template Industry Extensible

	Working with DVMs and Cross-References
	Introduction to DVMs
	When to Use DVMs
	Using Cross-Referencing
	How to Set Up Cross References

	Mapping and Populating the Identification Type
	How to Populate Values for corecom:Identification

	Introducing EBM Header Concepts
	Standard Elements
	EBMID
	EBOName
	RequestEBMID
	CreationDateTime
	VerbCode
	MessageProcessingInstruction
	When to Populate Standard Header Fields
	How to Populate the Message Processing Instruction

	Sender
	SenderMessageID
	When to Populate Sender System Information
	How to Populate Sender System Information
	TransactionCode
	ContactName
	ContactEmail
	ContactPhoneNumber
	ESBHeaderExtension
	ObjectCrossReference
	How to Add Object Cross Reference information in the Sender System Information
	WS Address
	Custom

	Target
	ID
	ApplicationTypeCode
	Custom

	BusinessScope
	ID
	InstanceID
	BusinessScopeTypeCode
	EnterpriseServiceName
	EnterpriseServiceOperationName
	Custom
	How to Add Business Process Information

	Use Case: Request-Response
	Request EBM
	Response EBM

	Use Case: Asynchronous Process
	Request EBM

	Use Case: Synchronous Process with Spawning Child Processes
	EBMTracking
	SequenceNumber
	ExecutionUnitID
	ExecutionUnitName
	ImplementationCode
	ActivityDateTime
	When to Populate EBM Tracking Information

	Custom

	17 Configuring Oracle AIA Processes for Error Handling and Trace Logging
	Overview of Oracle BPEL and Mediator Process Error Handling
	Understanding Oracle BPEL Error Handling
	Understanding Oracle Mediator Error Handling

	Overview of AIA Error Handler Framework
	Enabling AIA Processes for Fault Handling
	What You Must Know About Fault Policy Files
	Associating a Fault Policy File with Fault Policy Bindings File

	How to Implement Fault Handling in BPEL Processes

	Implementing Error Handling for the Synchronous Message Exchange Pattern
	Guidelines for Defining Fault Policies
	Defining a Fault Policy XML File for Handling Run-time Faults
	Defining a Fault Policy XML File for Handling Business Faults

	Guidelines for BPEL Catch and Catch-All Blocks in Synchronous Request-Response
	Handling Business Faults
	Handling Run-time Faults Defined in the Fault Policy File
	Handling Run-time Faults Not Defined in the Fault Policy File

	Guidelines for Configuring Mediator for Handling Business Faults

	Implementing Error Handling and Recovery for the Asynchronous Message Exchange Pattern to Ensure Guaranteed Message Delivery
	Overview
	Configuring Milestones
	Configuring Services Between Milestones
	Populating Message Resubmission Values
	Populating the ABM with Message Resubmission Values in JMSConsumerAdapter
	Populating the EBM Header with Resubmission Values in the Requester ABCS

	Configuring All Services to Participate in a Single Global Transaction

	Guidelines for BPEL Catch and Catch-All Blocks
	Handling Run-time Faults Defined in the Fault Policy File
	Handling Run-time Faults Not Defined in the Fault Policy File

	Guidelines for Defining Fault Policies
	Configuring Fault Policies to Not Issue Rollback Messages
	Using the Message Resubmission Utility API

	How to Configure AIA Services for Notification
	Defining Corrective Action Codes
	Defining Error Message Codes

	Describing the Oracle AIA Fault Message Schema
	Describing the EBMReference Element
	Describing the B2BMReference Element
	Describing the FaultNotification Element
	FaultMessage Element
	IntermediateMessageHop Elements
	FaultingService Element

	Extending Fault Messages
	Introduction to Extending Fault Messages
	Extending a Fault Message

	Extending Error Handling
	Introduction to Extending Error Handling
	Implementing an Error Handling Extension

	Configuring Oracle AIA Processes for Trace Logging
	Describing Details of the isTraceLoggingEnabled Custom XPath Function
	Describing Details of the logTraceMessage Custom XPath Function
	Describing the Trace Logging Java API

	18 Working with AIA Design Patterns
	AIA Message Processing Patterns
	Synchronous Request-Reply Pattern: How to get Synchronous Response in AIA
	Asynchronous Fire-and-Forget Pattern
	Guaranteed Delivery Pattern: How to Ensure Guaranteed Delivery in AIA
	Service Routing Pattern: How to Route the Messages to Appropriate Service Provider in AIA
	Competing Consumers Pattern: How are Multiple Consumers used to Improve Parallelism and Efficiency?
	Asynchronous Delayed-Response Pattern: How does the Service Provider Communicate with the Requester when Synchronous Communication is not Feasible?
	Asynchronous Request Response Pattern: How does the Service Provider Notify the Requester Regarding the Errors?

	AIA Assets Centralization Patterns
	How to Avoid Redundant Data Model Representation in AIA
	How to Avoid Redundant Service Contracts Representation in AIA

	AIA Assets Extensibility Patterns
	Extending Existing Schemas in AIA
	Extending AIA Services
	Extending Existing Transformations in AIA
	Extending the Business Processes in AIA

	19 Working with Security
	Introduction to Oracle AIA Remote Security
	Securing Service to Service Interaction
	Oracle AIA Recommendations for Securing Services
	Introduction to Web Service Security Using Oracle Web Services Manager

	Implementing Security
	Enabling Security for AIA Services
	Should You Secure All AIA Services?

	Invoking Secured Application Services
	Overriding Policies Using a Deployment Plan
	Testing Secured Services using CAVS

	Security for Applications
	Enabling Security in Application Services
	Invoking Secured AIA Services

	Deploying Security Policies
	Oracle AIA Recommendations for Policies

	Policy Naming Conventions
	Naming Conventions for Global Policy Sets
	Naming Conventions for Overriding Config Params

	How Does SOA Core Extension Help in Securing AIA Services?
	What Default Policies are Attached to a Service?
	How Can the Global Policy be Overridden for an Individual Service?
	AIA Security Configuration Properties

	Application Security Context
	Introduction to Application Security
	How To Exchange Security Context Between Participating Applications and ABCS
	Requester Applications
	Provider Applications

	Mapping Application Security Context in ABCS To and From Standard Security Context
	Using the AppContext Mapping Service
	Understanding the Structure for Security Context
	Using Attribute Names
	Propagating Standard Security Context through EBS and EBF
	Implementing Application Security Context
	How to Implement Requester-Side Application Security Context
	How to Implement Provider-Side Application Security Context

	20 Best Practices for Designing and Building End-to-End Integration Flows
	General Guidelines for Design, Development, and Management of AIA Processes
	Interpreting Empty Element Tags in XML Instance Document
	Purging the Completed Composite Instances
	Syntactic / Functional Validation of XML Messages
	Syntactic Validation
	Data / Functional Validation

	Provide Provision for Throttling Capability
	Artifacts Centralization
	Separation of Concerns
	Using MDS as the Central Storage for Abstract WSDLs, and Other Shared Artifacts

	Adapters Inside ABCS Composite OR as Separate Composite
	AIA Governance

	Building Efficient BPEL Processes
	Using BPEL as "Glue", Not as a Programming Language
	Keep the Number of BPEL Activities as Minimal as Possible
	Avoid Large While Loop

	Avoiding Global Variables Wherever Possible
	Avoiding Large FlowN
	Controlling the Persistence of Audit Details for a Synchronous BPEL Process
	Using Non-Idempotent Services Only When Absolutely Necessary
	Defining the Scope of the Transaction
	Disabling the Audit for Synchronous BPEL Process Service Components
	Including No Break-Point Activity in a Request-Response Flow

	21 Oracle AIA Naming Standards for AIA Development
	General Guidelines
	XML Naming Standards
	General Naming Standards
	General Namespace Naming Standards
	Participating Applications Names

	Composites
	Composite Business Process
	Enterprise Business Services
	Enterprise Business Flows
	Application Business Connector Service
	Requester Application Business Connector Service
	Provider Application Business Connector Services

	JMS and Adapters
	AQ JMS (Additional Attributes)
	Adapter Services Naming
	Participating Application Service

	DVMs and Cross References
	DVMs
	Map Name
	Map Column Names

	Cross References
	Table Name
	Column Names

	BPEL
	BPEL Activities
	BPEL Process Name and Namespace
	Assign
	Compensate
	Flow
	FlowN
	Invoke
	Java Embedding
	Pick
	Receive
	Scope
	Sequence
	Switch
	Case
	Terminate
	Throw
	Transform
	Wait
	While

	Other BPEL Artifacts
	Variables
	Properties
	Correlation Sets
	Correlation Set Properties

	Custom Java Classes
	Package Structure
	Deployment Plans

	22 Editing Transformations Using Mapping Editor
	Overview of Mapping Editor
	Administering the Mapping Editor
	Enabling the Mapping Editor
	Deploying the AgileAPI.jar File as a Shared Library

	Working with the Search For Mapping Page
	Editing Transformations
	Mapping Editor Page
	Page Header
	Target Frame
	Source Frame
	Mapping Builder Frame

	Building Mappings (Examples)
	Building Simple Mappings
	Building Complex Mappings
	Adding a New Mapping Statement Row
	Editing a Mapping Statement Row

	Editing Rules for Mapping Editor
	Definitions
	Read-only Sentences
	Drag and Drop or Typing
	Inserting a Row
	Deleting
	Deleting all Mapping rules (Remove All)
	Deleting an individual saved sentence
	Deleting Sentences in Target Element Tag
	Deleting Attribute-Value Templates
	Deleting Sub-Components

	Editing Rules for For-Each
	Definitions

	Allowing Changing Execution Context
	Adjusting Relative Paths when Execution Context Changes

	Understanding Customization Layer
	Deploying Edited Transformations
	Removing Customizations

	A Delivered Oracle AIA XPath Functions
	aia:getSystemProperty()
	Parameters
	Returns
	Usage

	aia:getSystemModuleProperty()
	Parameters
	Returns
	Usage

	aia:getServiceProperty()
	Parameters
	Returns
	Usage

	aia:getEBMHeaderSenderSystemNode()
	Parameters
	Returns
	Usage

	aia:getSystemType()
	Parameters
	Returns
	Usage

	aia:getErrorMessage()
	Parameters
	Returns
	Usage

	aia:getCorrectiveAction()
	Parameters
	Returns
	Usage

	aia:isTraceLoggingEnabled()
	Parameters
	Returns
	Usage

	aia:logErrorMessage()
	Parameters
	Returns
	Usage

	aia:logTraceMessage()
	Parameters
	Returns
	Usage

	aia:getNotificationRoles()
	Parameters
	Returns
	Usage

	aia:getAIALocalizedString()
	Parameters
	Returns
	Usage

	aia:getConvertedDate()
	Parameters
	Returns
	Usage

	aia:getConvertedDateWithTZ()
	Parameters
	Returns
	Usage

	B XSL for Developing CAVS-Enabled Oracle AIA Services
	AddTargetSystemID.xsl
	SetCAVSEndpoint.xsl

