
[image: Oracle Corporation]




Oracle® Fusion Middleware

Administering Oracle HTTP Server

12c (12.1.3)

E48285-13

November 2016

This document describes how to configure and use Oracle HTTP Server as a framework for hosting static pages, dynamic pages, and applications over the Web.




Oracle Fusion Middleware Administering Oracle HTTP Server, 12c (12.1.3)

E48285-13

Copyright © 2014, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions


What's New in Oracle HTTP Server 12c (12.1.3)

	New and Changed Features in 12c (12.1.3)
	New and Changed Features in Release 12c (12.1.2)


Part I Understanding Oracle HTTP Server

1 Introduction to Oracle HTTP Server

	1.1 What is Oracle HTTP Server?
	1.2 Oracle HTTP Server 12c (12.1.3) Topologies
	1.3 Key Features of Oracle HTTP Server
	1.3.1 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	1.3.2 mod_plsql
	1.3.3 Security Features
	1.3.3.1 Oracle Secure Sockets Layer (mod_ossl)
	1.3.3.2 Security: Encryption with Secure Sockets Layer
	1.3.3.3 Security: Single Sign-On with WebGate



	1.3.4 URL Rewriting and Proxy Server Capabilities
	1.3.5 CGI and FastCGI



	1.4 Domain Types
	1.4.1 WebLogic Server Domain
	1.4.2 Standalone Domain



	1.5 Understanding Oracle HTTP Server Directory Structure
	1.6 Understanding Configuration Files
	1.6.1 Staging and Run-time Configuration Directories
	1.6.2 Configuration Files
	1.6.3 Modifying a Configuration File



	1.7 Oracle HTTP Server Support


2 Understanding Oracle HTTP Server Modules

	2.1 List of Included Modules
	2.2 mod_certheaders
	2.3 mod_context
	2.4 mod_dms
	2.5 mod_odl
	2.6 mod_ossl
	2.7 mod_perl
	2.7.1 Using mod_perl with a Database
	2.7.1.1 Using Perl to Access the Database
	2.7.1.2 Testing a Database Connection
	2.7.1.3 Using SQL NCHAR Data Types






	2.8 mod_plsql
	2.8.1 Additional Documentation
	2.8.2 Creating a DAD
	2.8.3 Configuration Files for mod_plsql
	2.8.3.1 plsql.conf
	2.8.3.2 dads.conf
	2.8.3.3 cache.conf



	2.8.4 Using Configuration Files and Parameters



	2.9 mod_webgate
	2.10 mod_wl_ohs


3 Understanding Oracle HTTP Server Management Tools

	3.1 Overview of Oracle HTTP Server Management
	3.2 Special Note on Oracle HTTP Server Mbeans
	3.3 Accessing Fusion Middleware Control
	3.4 Accessing the Oracle HTTP Server Home Page
	3.4.1 Navigating Within Fusion Middleware Control



	3.5 Using Fusion Middleware Control to Edit Configuration Files
	3.6 Using the WebLogic Scripting Tool
	3.6.1 Oracle HTTP Server-Specific WLST Commands
	3.6.2 Using WLST in a Standalone Environment
	3.6.3 Connecting to the Node Manager in a Collocated Environment
	3.6.4 Finding More Information on WLST Commands





Part II Managing Oracle HTTP Server

4 Running Oracle HTTP Server

	4.1 Before You Begin
	4.2 Creating an OHS Instance
	4.2.1 Creating a Managed Instance in a WebLogic Server Domain
	4.2.1.1 Creating an Instance by Using WLST
	4.2.1.2 Creating an Instance by Using Fusion Middleware Control
	4.2.1.3 Instance Provisioning



	4.2.2 Creating a Standalone Domain Instance
	4.2.3 Encountering Performance Issues with Instances Created on Shared File Systems



	4.3 Performing Basic OHS Tasks
	4.3.1 Understanding the PID File
	4.3.2 Starting Oracle HTTP Server Instances
	4.3.2.1 Starting Oracle HTTP Server Instances by Using Fusion Middleware Control
	4.3.2.2 Starting Oracle HTTP Server Instances by Using WLST
	4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line
	4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)



	4.3.3 Stopping Oracle HTTP Server Instances
	4.3.3.1 Stopping Oracle HTTP Server Instances by Using Fusion Middleware Control
	4.3.3.2 Stopping Oracle HTTP Server Instances by Using WLST
	4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line



	4.3.4 Restarting Oracle HTTP Server Instances
	4.3.4.1 Restarting Oracle HTTP Server Instances by Using Fusion Middleware Control
	4.3.4.2 Restarting Oracle HTTP Server Instances by Using WLST



	4.3.5 Checking the Status of a Running Oracle HTTP Server Instance
	4.3.5.1 Checking Server Status by Using Fusion Middleware Control
	4.3.5.2 Checking Server Status by Using WLST



	4.3.6 Deleting an Oracle HTTP Server Instance
	4.3.6.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
	4.3.6.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain






	4.4 Remotely Administering Oracle HTTP Server
	4.4.1 Setting Up a Remote Environment
	4.4.1.1 Host Requirements
	4.4.1.2 Task 1: Set Up an Expanded Domain on host1
	4.4.1.3 Task 2: Pack the Domain on host1
	4.4.1.4 Task 3: Unpack the Domain on host2



	4.4.2 Running Oracle HTTP Server Remotely





5 Working with Oracle HTTP Server

	5.1 Note on Editing Configuration Files
	5.2 Specifying Server Properties
	5.2.1 Specifying Server Properties by Using Fusion Middleware Control
	5.2.2 Editing the httpd.conf File to Specify Server Properties



	5.3 Configuring Oracle HTTP Server Instances
	5.3.1 Configuring Secure Sockets Layer
	5.3.2 Configuring Secure Sockets Layer in Standalone Mode
	5.3.2.1 Configure SSL
	5.3.2.2 Specify SSLVerifyClient on the Server Side
	5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server



	5.3.3 Configuring MIME Settings
	5.3.3.1 Configuring MIME Types
	5.3.3.2 Configuring MIME Encoding
	5.3.3.3 Configuring MIME Languages



	5.3.4 Configuring mod_perl
	5.3.4.1 Enable mod_perl by Using Fusion Middleware Control
	5.3.4.2 Enable mod_perl in a Standalone Domain



	5.3.5 Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	5.3.6 Removing Access to Unneeded Content
	5.3.6.1 Edit the cgi-bin Section
	5.3.6.2 Edit the Fancy Indexing Section
	5.3.6.3 Edit the Product Documentation Section



	5.3.7 Using the apxs Command to Install Extension Modules
	5.3.8 Disabling the Options Method
	5.3.9 Updating Oracle HTTP Server Component Configurations on a Shared Filesystem



	5.4 Configuring mod_security
	5.4.1 Enabling mod_security
	5.4.2 Configuring mod_security





6 Managing and Monitoring Server Processes

	6.1 Oracle HTTP Server Processing Model
	6.1.1 Request Process Model
	6.1.2 Single Unit Process Model



	6.2 Monitoring Oracle HTTP Server Performance
	6.2.1 Understanding Oracle HTTP Server Performance Metrics
	6.2.2 Viewing Oracle HTTP Server Performance Metrics
	6.2.2.1 Viewing Server Metrics Using Fusion Middleware Control
	6.2.2.2 Viewing Server Metrics Using WLST






	6.3 Configuring Oracle HTTP Server Performance Directives
	6.3.1 Using Fusion Middleware Control to Set the Request Configuration
	6.3.2 Using Fusion Middleware Control to Set the Connection Configuration
	6.3.3 Using Fusion Middleware Control to Set the Process Configuration



	6.4 Understanding Process Security


7 Managing Connectivity

	7.1 Default Listen Ports
	7.2 Defining the Admin Port
	7.3 Viewing Port Number Usage
	7.3.1 Using the Fusion Middleware Control to View Port Number Usage
	7.3.2 Using WLST to View Port Number Usage



	7.4 Managing Ports
	7.4.1 Using Fusion Middleware Control to Create Ports
	7.4.2 Using Fusion Middleware Control to Edit Ports
	7.4.3 Disabling a Listening Port in a Standalone Environment



	7.5 Configuring Virtual Hosts
	7.5.1 Using Fusion Middleware Control to Create Virtual Hosts
	7.5.2 Using Fusion Middleware Control to Configure Virtual Hosts





8 Managing Oracle HTTP Server Logs

	8.1 Overview of Server Logs
	8.1.1 About Error Logs
	8.1.2 About Access Logs
	8.1.3 Log Rotation



	8.2 Configuring Oracle HTTP Server Logs
	8.2.1 Using Fusion Middleware Control to Configure Error Logs
	8.2.1.1 Configuring the Error Log Format and Location
	8.2.1.2 Configuring the Error Log Level
	8.2.1.3 Configuring Error Log Rotation Policy



	8.2.2 Configuring Access Logs by Using Fusion Middleware Control
	8.2.2.1 Configuring the Access Log Format
	8.2.2.2 Configuring the Access Log File






	8.3 Log Directives for Oracle HTTP Server
	8.3.1 Oracle Diagnostic Logging Directives
	8.3.1.1 OraLogMode
	8.3.1.2 OraLogDir
	8.3.1.3 OraLogSeverity
	8.3.1.4 OraLogRotationParams



	8.3.2 Apache HTTP Server Log Directives
	8.3.2.1 ErrorLog
	8.3.2.2 LogLevel
	8.3.2.3 LogFormat
	8.3.2.4 CustomLog






	8.4 Viewing Oracle HTTP Server Logs
	8.4.1 Viewing Logs In Fusion Middleware Control
	8.4.2 Viewing Logs from the Command Line
	8.4.3 Viewing Logs in a Text Editor



	8.5 Recording ECID Information
	8.5.1 About ECID Information
	8.5.2 Configuring Error Logs for ECID Information
	8.5.3 Configuring Access Logs for ECID Information



	8.6 Terminating SSL Requests
	8.6.1 Terminating SSL Before Oracle HTTP Server
	8.6.2 Terminating SSL at Oracle HTTP Server





9 Managing Application Security

	9.1 About Oracle HTTP Server Security
	9.2 Classes of Users and Their Privileges
	9.3 Resources Protected
	9.4 Authentication, Authorization and Access Control
	9.4.1 Access Control
	9.4.2 User Authentication and Authorization
	9.4.2.1 Using Apache HTTP Server Modules to Authenticate Users
	9.4.2.2 Using WebGate to Authenticate Users



	9.4.3 Support for FMW Audit Framework



	9.5 Implementing SSL
	9.5.1 Additional SSL Features
	9.5.1.1 Global Server ID Support
	9.5.1.2 PKCS #11 Support



	9.5.2 SSL and Logging



	9.6 Using mod_security


Part III Appendixes and Glossary

A OHS Introspector Plug-in for OVAB

	A.1 Versions Supported
	A.2 Oracle HTTP Server Introspection Parameters
	A.3 Resulting Artifact Type
	A.4 Requirements
	A.5 Wiring
	A.6 Wiring Properties
	A.7 Oracle HTTP Server Appliance Properties
	A.8 Extensions of the Plug-in
	A.9 Supported Template Types
	A.10 Plug-in Limitations
	A.11 Related Documents


B Frequently Asked Questions

	B.1 How Do I Create Application-Specific Error Pages?
	B.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
	B.3 Can I Use Different Language and Character Set Versions of Document?
	B.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?
	B.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?
	B.6 Can I Compress Output From Oracle HTTP Server?
	B.7 How Do I Create a Namespace That Works Through Firewalls and Clusters?
	B.8 How Do I Protect the Website from Hackers?
	B.9 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?
	B.10 How can I hide information about the Web Server Vendor and Version
	B.11 Can I Start OHS by Using apachectl or Other Command-Line Tool?


C Troubleshooting Oracle HTTP Server

	C.1 Oracle HTTP Server Unable to Start Due to Port Conflict
	C.2 System Overloaded by Number of httpd Processes
	C.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
	C.4 Exception Thrown when Unsetting PerSetEnv and Removing Variable
	C.5 Using Log Files to Locate Errors
	C.5.1 Rewrite Log
	C.5.2 Script Log
	C.5.3 Error Log



	C.6 Recovering an OHS Instance on a Remote Host
	C.7 Oracle HTTP Server Performance Issues
	C.7.1 Special Runtime Files Reside on a Network File System
	C.7.2 UNIX Sockets on a Network File System
	C.7.3 DocumentRoot on a Slow File System



	C.8 Out of DMS Shared Memory
	C.9 Missing Libraries Might Cause HTTPD to Exit Without Notice
	C.10 Using AES Encrypted Wallet with SSLFIPS


D Configuration Files

	D.1 httpd.conf
	D.2 ssl.conf
	D.3 admin.conf
	D.4 mod_wl_ohs.conf
	D.5 moduleconf/*.conf
	D.6 disabled/*.conf
	D.7 mime.types
	D.8 ohs.plugins.nodemanager.properties
	D.9 magic
	D.10 keystores/<wallet-directory>
	D.11 auditconfig.xml
	D.12 component-logs.xml
	D.13 component_events.xml
	D.14 Additional Reference


E Property Files

	E.1 ohs_admin.properties
	E.2 ohs_nm.properties
	E.3 ohs.plugins.nodemanager.properties
	E.3.1 Cross-platform Properties
	E.3.2 Environment Variable Configuration Properties
	E.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX





F OHS Module Directives

	F.1 Note on mod_wl_ohs Module
	F.2 mod_certheaders Module
	F.2.1 AddCertHeader
	F.2.2 SimulateHttps



	F.3 mod_ossl Module
	F.3.1 SSLAccelerator
	F.3.2 SSLCARevocationFile
	F.3.3 SSLCARevocationPath
	F.3.4 SSLCipherSuite
	F.3.5 SSLEngine
	F.3.6 SSLFIPS
	F.3.7 SSLInsecureRenegotiation
	F.3.8 SSLMutex
	F.3.9 SSLTraceLogLevel
	F.3.10 SSLOptions
	F.3.11 SSLPassPhraseDialog
	F.3.12 SSLProtocol
	F.3.13 SSLProxyCipherSuite
	F.3.14 SSLProxyEngine
	F.3.15 SSLProxyProtocol
	F.3.16 SSLProxyWallet
	F.3.17 SSLRequire
	F.3.18 SSLRequireSSL
	F.3.19 SSLSessionCache
	F.3.20 SSLSessionCacheTimeout
	F.3.21 SSLVerifyClient
	F.3.22 SSLWallet



	F.4 mod_plsql Module
	F.4.1 plsql.conf
	F.4.1.1 PlsqlDMSEnable
	F.4.1.2 PlsqlLogEnable
	F.4.1.3 PlsqlLogDirectory
	F.4.1.4 PlsqlIdleSessionCleanupInterval



	F.4.2 dads.conf
	F.4.2.1 PlsqlAfterProcedure
	F.4.2.2 PlsqlAlwaysDescribeProcedure
	F.4.2.3 PlsqlAuthenticationMode
	F.4.2.4 PlsqlBeforeProcedure
	F.4.2.5 PlsqlBindBucketLengths
	F.4.2.6 PlsqlBindBucketWidths
	F.4.2.7 PlsqlCGIEnvironmentList
	F.4.2.8 PlsqlConnectionTimeout
	F.4.2.9 PlsqlConnectionValidation
	F.4.2.10 PlsqlDatabaseConnectString
	F.4.2.11 PlsqlDatabasePassword
	F.4.2.12 PlsqlDatabaseUserName
	F.4.2.13 PlsqlDefaultPage
	F.4.2.14 PlsqlDocumentPath
	F.4.2.15 PlsqlDocumentProcedure
	F.4.2.16 PlsqlDocumentTablename
	F.4.2.17 PlsqlErrorStyle
	F.4.2.18 PlsqlExclusionList
	F.4.2.19 PlsqlFetchBufferSize
	F.4.2.20 PlsqlInfoLogging
	F.4.2.21 PlsqlMaxRequestsPerSession
	F.4.2.22 PlsqlNLSLanguage
	F.4.2.23 PlsqlPathAlias
	F.4.2.24 PlsqlPathAliasProcedure
	F.4.2.25 PlsqlRequestValidationFunction
	F.4.2.26 PlsqlSessionCookieName
	F.4.2.27 PlsqlSessionStateManagement
	F.4.2.28 PlsqlTransferMode
	F.4.2.29 PlsqlUploadAsLongRaw



	F.4.3 cache.conf
	F.4.3.1 PlsqlCacheCleanupTime
	F.4.3.2 PlsqlCacheDirectory
	F.4.3.3 PlsqlCacheEnable
	F.4.3.4 PlsqlCacheMaxAge
	F.4.3.5 PlsqlCacheMaxSize
	F.4.3.6 PlsqlCacheTotalSize








Glossary

Index




Preface

This guide describes how to manage Oracle HTTP Server, including how to start and stop Oracle HTTP Server, how to manage network components, configure listening ports, and extend basic functionality using modules.


Audience

Administering Oracle HTTP Server is intended for application server administrators, security managers, and managers of databases used by application servers. This documentation is based on the assumption that readers are already familiar with Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion Middleware Control. It is assumed that readers are familiar with the key concepts of Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts Guide and the Administering Oracle Fusion Middleware.

For information about installing Oracle HTTP Server in standalone mode, see Installing and Configuring Oracle HTTP Server.





Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.


Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.





Related Documents

For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1) documentation set:

	
Understanding Oracle Fusion Middleware


	
Administering Oracle Fusion Middleware


	
High Availability Guide


	
Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3


	
Apache documentation included in this library







	
Note:

Readers using this guide in PDF or hard copy formats will be unable to access third-party documentation, which Oracle provides in HTML format only. To access the third-party documentation referenced in this guide, use the HTML version of this guide and click the hyperlinks.











Conventions

The following text conventions are used in this document:


	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.












What's New in Oracle HTTP Server 12c (12.1.3)

The following topics introduce the new and changed features, and other significant changes for the current release of Oracle HTTP Server. For more information, see these sections:

	
New and Changed Features in 12c (12.1.3)


	
New and Changed Features in Release 12c (12.1.2)





New and Changed Features in 12c (12.1.3)

This section contains the following information:

	
New Features in 12c (12.1.3)


	
Significant Updates in 12c (12.1.3)





New Features in 12c (12.1.3)

The Oracle WebLogic Server Proxy Plug-In now supports the Websocket protocol. This support adds a new optional directive for the plug-in, WLMaxWebSocketClients. This directive indicates the maximum number of active websocket connections. A connection for regular requests is upgraded to a websocket connection upon client request and is dedicated to websocket processing until the connection is closed. By default, this value is half the total number of configured connections for Oracle HTTP Server.





Significant Updates in 12c (12.1.3)

This section describes features that have been significantly updated from earlier versions of Oracle HTTP Server. These updates include:

	
Modules Deprecated


	
Support for SSL Protocol Version 3 Removed


	
SSL FIPS Mode Can Be Configured as a SSLFIPS Directive





Modules Deprecated

The following plug-in modules have been deprecated:

	
mod_perl: Allows administrators to run Perl scripts within Oracle HTTP Server.


	
mod_fastcgi: Allows administrators to efficiently execute traditional CGI scripts within Oracle HTTP Server.

Oracle is deprecating only the current implementation, the Oracle HTTP Server module (mod_fastcgi) of the FastCGI protocol. Oracle HTTP Server 12.x continues to support the FastCGI protocol by using an alternate implementation, and customers can continue to execute CGI and FastCGI scripts in Oracle HTTP Server 12.x.


	
mod_plsql: This module allows administrators to create dynamic web pages from PL/SQL packages and stored procedures.




For more information, visit http://support.oracle.com and search for Oracle Web Tier - Statement of Direction (Doc ID 1576588.1).





Support for SSL Protocol Version 3 Removed

Support for SSL Protocol Version 3 has been removed. Its use is no longer recommended for secure communication.





SSL FIPS Mode Can Be Configured as a SSLFIPS Directive

In Oracle HTTP Server 12c (12.1.3), you can configure SSL FIPS mode with a SSLFIPS directive, just like Apache open source. For more information on Oracle HTTP Server support for the SSL FIPS mode, see OHS Release 12c (12.1.2) Supports FIPS 140 and Section F.3.6, "SSLFIPS".

Note: For more information on the SSL FIPS 140-2 standard for Oracle HTTP Server 12.1.3, visit https://support.oracle.com and search for Doc ID 2160983.1.









New and Changed Features in Release 12c (12.1.2)

This section contains the following information:

	
New Features in Release 12c (12.1.2)


	
Significant Updates in Release 12c (12.1.2)





New Features in Release 12c (12.1.2)

This section describes new features in this version of Oracle HTTP Server. These features include:

	
Release 12c (12.1.2) Introduces the WebLogic Management Framework


	
OHS Release 12c (12.1.2) Supports FIPS 140


	
Search Capability on mod_wl_ohs Configuration Page


	
AutoFill Capability on mod_wl_ohs Configuration Page





Release 12c (12.1.2) Introduces the WebLogic Management Framework

This version of Oracle HTTP Server introduces the WebLogic Management Framework, a set of tools that leverage Oracle WebLogic Release 12c (12.1.2) interfaces to provide a simple, consistent and distributed framework for managing Oracle. For more information on the WebLogic Management Framework, see "What is the WebLogic Management Framework?" in Understanding Oracle Fusion Middleware.

The following changes are a result of the new framework:

	
Configuration is a post-installation task that begins with creating a domain, primarily by using Configuration Wizard. For more information, see Installing and Configuring Oracle HTTP Server.


	
Support for remote management of OHS instances cannot be added after creation. The necessary domain type (WebLogic Server or standalone) should be chosen before installation (see Section 1.4, "Domain Types"). This is different from Oracle HTTP Server 11g where you could register an Oracle instance with a WebLogic domain at a later time to manage it by using the non-J2EE management tool.


	
Configuration files for instances that are part of a WebLogic Server domain are maintained on the administration server node, not on the managed server.


	
Changes made to configuration files on the managed server are not preserved when updates are made on the administration server, for example, by using Fusion Middleware Control.


	
Command support for managing Oracle HTTP Server is provided primarily within WLST, instead of from the operating system shell. Existing WLST commands and new commands added in this release are applicable to Oracle HTTP Server (see Section 3.6, "Using the WebLogic Scripting Tool").


	
Server-specific configuration previously maintained in opmn.xml is now configured in ohs.plugins.nodemanager.properties within the Oracle HTTP Server configuration directory.


	
When starting or stopping Oracle HTTP Server, console output is now written to the log instead a special console log file.


	
Server configuration directories no longer include product code, such as Apache HTTP Server documentation, FastCGI programming libraries, or icon files used by content generated by Oracle HTTP Server. This code resides only in the product directory.


	
The administration port, previously referred to as the Proxy MBean or Admin Port, is now used whether the instance is managed as part of a WebLogic Server domain. The port should now be limited to the loopback interface. In the previous release, the administration server would connect to the port.


	
The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware Control or WLST, are provided for the use of Oracle management tools. The interfaces are not supported for other use and are subject to change without notice.








OHS Release 12c (12.1.2) Supports FIPS 140

Oracle HTTP Server Release 12c (12.1.2) now complies with the Federal Information Processing Standard publication 140 (FIPS 140). Although the modules used in this version of Oracle HTTP Server are still undergoing their FIPS 140 validation, it uses a version of the underlying SSL libraries that has gone through formal FIPS certification.

As part of Oracle HTTP Server's FIPS 140 compliance, the mod_ossl plug-in now includes the SSLFIPS directive. This directive enables FIPS from Oracle HTTP Server configuration files by toggling the SSL library FIPS_mode flag on or off. SSLFIPS must be set in the global server context and cannot be configured with conflicting settings (for example, SSLFIPS on followed by SSLFIPS off or similar). The mode applies to all SSL library operations.




	
Note:

Note the following restrictions on SSLFIPS:
	
Enabling SSLFIPS mode in Oracle HTTP Server requires a wallet created with AES encrypted (compat_v12) headers. To create a new wallet or to convert an existing wallet with AES encryption, see these sections in "orapki" in Administering Oracle Fusion Middleware:

	
"Creating and Viewing Oracle Wallets with orapki"


	
"Creating an Oracle Wallet with AES Encryption"


	
"Converting an Existing Wallet to Use AES Encryption"















For more information on SSLFIPS, see Section F.3.6, "SSLFIPS".





Search Capability on mod_wl_ohs Configuration Page

When configuring mod_wl_ohs by using Fusion Middleware Control, you can see a list of clusters or servers available to the selected Oracle HTTP Server instance by clicking the Search icon:

[image: Description of search_icon.gif follows]




Selecting this tool displays a selection dialog box, from which you can select the cluster or server you want to use.





AutoFill Capability on mod_wl_ohs Configuration Page

You can now easily add valid WebLogic Server and endpoint locations for a specified Base URL to the Locations table on the mod_wl_ohs Configuration screen by clicking the AutoFill button. Data for any location of the same name will be updated and any new locations will be added to the table.







Significant Updates in Release 12c (12.1.2)

This section describes features that have been significantly updated from earlier versions of Oracle HTTP Server. These updates include:

	
WLS Plug-in Logs Are Now Part of the Web Server Logs


	
sqlnet.ora NZ Trace Logging Mechanism is No Longer Supported


	
Privileged Ports on UNIX Have Different Support Implementation


	
ECID Information


	
Terminate SSL Requests





WLS Plug-in Logs Are Now Part of the Web Server Logs

The WebLogic Server plug-in logs are now part of the Oracle HTTP Server error log and are prefixed with weblogic: to easily identify them. Hence the directives WLLogFile and Debug are deprecated. If the configuration still uses any of these directives, the following note will appear in the console log file:


The WLLogFile directive is ignored. The web server log file is used instead.
The Debug directive is ignored. The web server log level is used instead.





sqlnet.ora NZ Trace Logging Mechanism is No Longer Supported

Oracle HTTP Server no longer supports the sqlnet.ora NZ trace logging mechanism. As of version Release 12c (12.1.2), you should use the new SSLNZTraceLogLevel directive to enable NZ trace logging using ssl.conf file. For more information, see Section F.3.9, "SSLTraceLogLevel".





Privileged Ports on UNIX Have Different Support Implementation

Support for listening on privileged ports on UNIX has a different implementation that does not require running any Oracle HTTP Server code as root. The User and Group directives no longer have to be configured.





ECID Information

In this release of Oracle HTTP Server, you can configure the server to record Execution Context ID (ECID) information in error logs and access logs.





Terminate SSL Requests

In this release of Oracle HTTP Server, you can terminate SSL before or within Oracle HTTP Server. Whether you terminate SSL before the request reaches Oracle HTTP Server or when the request is in the server, depends on your topology.







Features Removed from Release 12c (12.1.2)

The following features were removed from Release 12c (12.1.2):

	
Integration with Oracle Web Cache


	
mod_oradav


	
mod_osso


	
SSO Plug-ins for Third-party Web Servers


	
Oracle WebLogic Server Proxy Plug-Ins for Third-party Web Servers


	
SSL Protocol Version 2 and Export Ciphers





Integration with Oracle Web Cache

Oracle Web Cache is no longer included in Fusion Middleware 12c. Oracle HTTP Server support for integration with Oracle Web Cache has been removed.





mod_oradav

The mod_oradav module is no longer included with Oracle HTTP Server. Customers who require DAV support in Oracle HTTP Server must use a third-party solution, such as the open source module mod_dav.





mod_osso

The mod_osso module is no longer included with Oracle HTTP Server. Oracle WebGate is the recommended replacement. WebGate is now installed with Oracle HTTP Server.





SSO Plug-ins for Third-party Web Servers

The OracleAS Single Sign-On (SSO) plug-ins for IIS and iPlanet are no longer included with Oracle HTTP Server. Oracle WebGate is the recommended replacement.





Oracle WebLogic Server Proxy Plug-Ins for Third-party Web Servers

The proxy plug-ins for IIS and iPlanet are no longer included with Oracle HTTP Server. Customers who require proxy support for those web servers can use any proxy support bundled with the web server or use third-party solutions.





SSL Protocol Version 2 and Export Ciphers

Support for SSL Protocol Version 2 and export ciphers has been removed. Their use is no longer recommended for secure communication.











Part I



Understanding Oracle HTTP Server

This part presents introductory and conceptual information about Oracle HTTP Server. It contains the following chapters:

	
Chapter 1, "Introduction to Oracle HTTP Server"


	
Chapter 2, "Understanding Oracle HTTP Server Modules"


	
Chapter 3, "Understanding Oracle HTTP Server Management Tools"






 
1 Introduction to Oracle HTTP Server


This chapter serves as an introduction to the Oracle HTTP Server (OHS). It describes key features of OHS and its place within the Oracle Fusion Middleware Web Tier and also provides information on the OHS directory structure, the OHS configuration files, and how to obtain OHS support.

Oracle HTTP Server is the web server component for Oracle Fusion Middleware. It provides a listener for Oracle WebLogic Server and the framework for hosting static pages, dynamic pages, and applications over the Web.

This chapter includes the following sections:

	
Section 1.1, "What is Oracle HTTP Server?"


	
Section 1.2, "Oracle HTTP Server 12c (12.1.3) Topologies"


	
Section 1.3, "Key Features of Oracle HTTP Server"


	
Section 1.4, "Domain Types"


	
Section 1.5, "Understanding Oracle HTTP Server Directory Structure"


	
Section 1.6, "Understanding Configuration Files"


	
Section 1.7, "Oracle HTTP Server Support"






1.1 What is Oracle HTTP Server?

Oracle HTTP Server 12c (12.1.3) is based on Apache HTTP Server 2.2.22 infrastructure (with critical bug fixes from higher versions) and includes modules developed specifically by Oracle. The features of single sign-on, clustered deployment, and high availability enhance the operation of the Oracle HTTP Server. Oracle HTTP Server has the following components to handle client requests:

	
HTTP listener, to handle incoming requests and route them to the appropriate processing utility.


	
Modules (mods), to implement and extend the basic functionality of Oracle HTTP Server. Many of the standard Apache HTTP Server modules are included with Oracle HTTP Server. Oracle also includes several modules that are specific to Oracle Fusion Middleware to support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.


	
Perl interpreter, a persistent Perl runtime environment embedded in Oracle HTTP Server through mod_perl.




Oracle HTTP Server enables developers to program their site in a variety of languages and technologies, such as:

	
Perl (through mod_perl, CGI and FastCGI)


	
C and C++ (through CGI and FastCGI)


	
PHP, Ruby and Python (through CGI and FastCGI)


	
Oracle PL/SQL




Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse proxy enables content served by different servers to appear as if coming from one server.




	
Note:

For more information about Fusion Middleware concepts, see Understanding Oracle Fusion Middleware.












1.2 Oracle HTTP Server 12c (12.1.3) Topologies

Oracle HTTP Server leverages the WebLogic Management Framework to provide a simple, consistent and distributed environment for administering Oracle HTTP Server, Oracle WebLogic Server, and the rest of the Fusion Middleware stack. It acts as the HTTP front-end by hosting the static content from within and by leveraging its built-in Oracle WebLogic Server Proxy Plug-In 12.1.3 to route dynamic content requests to WebLogic-managed servers. In such cases, there are multiple ways of implementing Oracle HTTP Server, depending on your requirements. Table 1-1 describes the major implementations, or "topologies".


Table 1-1 Oracle HTTP Server Topologies

	Topology	Description	For More Information
	
Standard Installation Topology for Oracle HTTP Server in a WebLogic Server Domain

	
This topology provides enhanced management capabilities through the Fusion Middleware Control and WebLogic Management Framework. A WebLogic Server domain can be scaled out to multiple physical machines and be centrally managed by the administration server. This topology is depicted in Figure 1-1.

	
See "Standard Installation Topology for Oracle HTTP Server in a WebLogic Server Domain" in Installing and Configuring Oracle HTTP Server.


	
Standard Installation Topology for Oracle HTTP Server in a Standalone Domain

	
This topology is similar to an Oracle WebLogic Server Domain topology, but does not provide an administration server or managed servers. It is useful when you do not want your Oracle HTTP Server implementation to front a Fusion Middleware domain and do not need the management functionality provided by Fusion Middleware Control. This topology is depicted in Figure 1-2.

	
See "Standard Installation Topology for Oracle HTTP Server in a Standalone Domain" in Installing and Configuring Oracle HTTP Server.


	
High availability implementation, with two separate hosts for Oracle HTTP Server on a Web Tier, managed by FMW Control

	
This topology provides a highly available Oracle Fusion Middleware deployment where each pair of components (Oracle HTTP Server and Web Logic Managed Servers) exist on different host computers. You access the system from the client tier and requests are routed, by using a load balancer, to Web servers running Oracle HTTP Servers in the web tier. This topology is depicted in Figure 1-1.

	
See "Understanding the Oracle Fusion Middleware Standard HA Topology" in the High Availability Guide.


	
Managed Oracle HTTP Server Test Domain

	
This topology provides a single machine WebLogic Server Domain with an Oracle HTTP Server instance and is geared toward testing. It provides all the administrative capabilities of a full production domain but does not require an external database. The test domain cannot be scaled out to other machines and is not certified to be used in production.

	
See "createOHSTestDomain()" in the WLST Command Reference for Infrastructure Components.









Figure 1-1 Standard Installation Topology for OHS in a WebLogic Server Domain

[image: Description of Figure 1-1 follows]







Figure 1-2 Standard Installation Topology for OHS in a Standalone Domain

[image: Description of Figure 1-2 follows]










1.3 Key Features of Oracle HTTP Server

The following sections describe some of the key features of Oracle HTTP Server:

	
Section 1.3.1, "Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)"


	
Section 1.3.2, "mod_plsql"


	
Section 1.3.3, "Security Features":

	
Oracle Secure Sockets Layer (mod_ossl)


	
Security: Encryption with Secure Sockets Layer


	
Security: Single Sign-On with WebGate





	
Section 1.3.4, "URL Rewriting and Proxy Server Capabilities"


	
Section 1.3.5, "CGI and FastCGI"






1.3.1 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

The Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) enables requests to be proxied from Oracle HTTP Server 12c (12.1.3) to Oracle WebLogic Server. This plug-in enhances an Oracle HTTP server installation by allowing Oracle WebLogic Server to handle requests that require dynamic functionality. In other words, you typically use a plug-in where the HTTP server serves static pages such as HTML pages, while Oracle WebLogic Server serves dynamic pages such as HTTP Servlets and Java Server Pages (JSPs).

For more information on the Oracle WebLogic Server Proxy Plug-In, see "Configuring the Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3






1.3.2 mod_plsql

mod_plsql connects Oracle HTTP Server to an Oracle database, enabling you to create Web applications by using Oracle stored procedures. For more information on mod_plsql, see Section 2.8, "mod_plsql".






1.3.3 Security Features

Oracle HTTP Server employs many security features. Key among them are:

	
Oracle Secure Sockets Layer (mod_ossl)


	
Security: Encryption with Secure Sockets Layer


	
Security: Single Sign-On with WebGate






1.3.3.1 Oracle Secure Sockets Layer (mod_ossl)

mod_ossl, the Oracle Secure Sockets Layer (SSL) implementation in use with the Oracle database, enables strong cryptography for Oracle HTTP Server. It is a plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar to the OpenSSL module, mod_ssl. mod_ossl supports TLS version 1.1 and 1.2..






1.3.3.2 Security: Encryption with Secure Sockets Layer

Secure Sockets Layer (SSL) is required to run any website securely. Oracle HTTP Server supports SSL encryption based on patented, industry standard, algorithms. SSL works seamlessly with commonly-supported Internet browsers. Security features include the following:

	
SSL hardware acceleration support uses dedicated hardware for SSL. Hardware encryption is faster than software encryption.


	
Variable security per directory allows individual directories to be protected by different strength encryption.


	
Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP protocol to provide both encryption and authentication. You can also enable HTTP tunneling for the T3 or IIOP protocols to provide non-browser clients access to WebLogic Server services.







	
See Also:

Securing Applications with Oracle Platform Security Services












1.3.3.3 Security: Single Sign-On with WebGate

WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines incoming requests and determines whether the requested resource is protected, and if so, retrieves the session information for the user. Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On, and to make user identities available to web applications accessed through Oracle HTTP Server.




	
See Also:

Securing Applications with Oracle Platform Security Services














1.3.4 URL Rewriting and Proxy Server Capabilities

Active websites usually update their web pages and directory contents often, and possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the changes by including an engine that supports URL rewriting so end users do not have to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make content served by different servers to appear from one single server.






1.3.5 CGI and FastCGI

CGI programs are commonly used to program Web applications. Oracle HTTP Server enhances the programs by providing a mechanism to keep them active beyond the request lifecycle.








1.4 Domain Types

You can install Oracle HTTP Server either collocated with Oracle WebLogic Server, called a WebLogic Server Domain or as a standalone domain. You can select which environment you want to use during server configuration. Be aware that certain functionality will not be available to standalone domains.


1.4.1 WebLogic Server Domain

A WebLogic Server Domain is one configured with an administration server and managed servers. A WebLogic Server Domain contains a WebLogic Administration Server, zero or more WebLogic Managed Servers, and zero or more System Component Instances (for example, an Oracle HTTP Server instance). This type of domain provides enhanced management capabilities through the Fusion Middleware Control and WebLogic Management Framework present throughout the system. A WebLogic Server Domain can span multiple physical machines, and it is centrally managed by the administration server. Because of these properties, a WebLogic Server Domain provides the best integration between your System Components and Java EE Components.

WebLogic Server Domains support all WebLogic Management Framework tools.

Because Fusion Middleware Control provides advanced management capabilities, Oracle recommends using WebLogic Server Domain, which requires installing a complete Fusion Middleware infrastructure before you install Oracle HTTP Server.

	
For more information on installing a WebLogic Server Domain, see Installing and Configuring the Oracle Fusion Middleware Infrastructure.


	
For information on installing Oracle HTTP Server either as part of a Fusion Middleware infrastructure or as standalone component, see Installing and Configuring Oracle HTTP Server.








1.4.2 Standalone Domain

A standalone domain is a container for system components, such as Oracle HTTP Server. It has a directory structure similar to an Oracle WebLogic Server Domain, but it does not contain an Administration Server or Managed Servers. It can contain one or more instances of system components of the same type, such as Oracle HTTP Server, or a mix of system component types.

For standalone domains, the WebLogic Management Framework supports these tools:

	
Node Manager


	
The WebLogic Scripting Tool (WLST) commands, including:

	
nmStart(), nmStop(), nmSoftRestart(), and nmKill() that start and stop Oracle HTTP Server instance


	
nmConnect() to connect to the node manager


	
nmLog() to get the node manager log information




For a complete list of supported WLST Node Manager commands, see "Node Manager Commands" in "WLST Command Reference for WebLogic Server".




	
Note:

If you have a remote Oracle HTTP Server in a managed mode and another in standalone with the remote administration mode enabled, you can use WLST to perform management tasks such as SSL configuration. A vanilla Oracle HTTP Server in a standalone domain can be used only as a WebLogic Server Node Manager and for Oracle HTTP Server start/stop purposes. You can also do this by using a command-line script.








	
Config Wizard


	
Pack/Unpack




Generally, you would use a standalone domain when you do not want your Oracle HTTP Server implementation installed with a WebLogic Server domain and do not need the management functionality provided by Fusion Middleware Control. Nor would you use it when you want to keep Oracle HTTP Server in a "demilitarized zone" (DMZ; that is, the zone between the internal and external firewalls) and you do not want to open management ports used by Node Manager.








1.5 Understanding Oracle HTTP Server Directory Structure

As described in Section 1.4, "Domain Types", Oracle HTTP Server domains can be either WebLogic Server or standalone. When installed, each domain has its own directory structure that contains files necessary to implement the domain type. For a complete file structure topology, see Appendix A "Understanding the Oracle HTTP Server Directory Structures" in Installing and Configuring Oracle HTTP Server.






1.6 Understanding Configuration Files

The Oracle HTTP Server configuration is specified through configuration files of several types, notably .conf files, similar to those used in Apache HTTP Server. This section explains the layout of the configuration file directories, mechanisms for editing the files, and more about the files themselves.

This section contains the following topics:

	
Staging and Run-time Configuration Directories


	
Configuration Files


	
Modifying a Configuration File






1.6.1 Staging and Run-time Configuration Directories

Two configuration directories exist for each Oracle HTTP Server instance:

	
Staging directory

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName


	
Run-time directory

DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName




Each of the configuration directories will contain the complete OHS configuration -- httpd.conf, admin.conf, auditconfig.xml, and so on.

Modifications to the configuration are made in the staging directory. These modifications are automatically propagated to the run-time directory during the following operations:




	
Warning:

Before making any changes to files in the staging directory, stop the Administration Server.







	
Oracle HTTP Server instances which are part of a WebLogic Server Domain

Modifications are replicated to the run-time directory on the node with the managed OHS instance after changes are activated from within Fusion Middleware Control, or when the administration server initializes and prior changes need to be replicated. If communication with node manager is broken at the time of the action, replication will occur at a later time when communication has been restored.


	
Standalone Oracle HTTP Server instances

Modifications are synchronized with the run-time directory when a start, restart, or stop action is initiated. Some changes might be written to the run-time directory during domain update, but the changes will be finalized during synchronization.




Any modifications to the configuration within the run-time directory will be lost during replication or synchronization.




	
Note:

When a standalone instance is created, the keystores directory containing a demo wallet is created only in the run-time directory.
Before creating the first new wallet for the instance, you must create a keystores directory within the staging directory.

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/keystores

Wallets must then be created within that keystores directory.














1.6.2 Configuration Files

The default Oracle HTTP Server configuration contains the files described in Appendix D, "Configuration Files".

Additional files can be added to the configuration and included in the top-level .conf file httpd.conf using the Include directive. For information on how to use this directive, see the Include directive documentation, at:

http://httpd.apache.org/docs/2.2/mod/core.html#include)

The default configuration provides an Include directive which includes all .conf files in the moduleconf/ directory within the configuration.

An Include directive should be added to an existing .conf file, usually httpd.conf, for .conf files which are not stored in the moduleconf/ directory. This may be required if the new .conf file must be included at a different configuration scope, such as within an existing virtual host definition.






1.6.3 Modifying a Configuration File




	
Note:

Fusion Middleware Control and other Oracle software that manage the Oracle HTTP Server configuration might save these files in a different, equivalent format. After using the software to make a configuration change, multiple configuration files might be rewritten.







For instances that are part of a WebLogic Server Domain, Fusion Middleware Control and the management infrastructure manages the Oracle HTTP Server configuration. Direct editing of the configuration in the staging directory is subject to being overwritten after subsequent management operations, including modifying the configuration in Fusion Middleware Control. For such instances, direct editing should only be performed when the administration server is stopped. When the administration server is subsequently started (and with started), the results of any manual edits will be replicated to the run-time directory on the node of the managed instance.

For standalone instances, the configuration can be edited directly within the staging directory at any time. The configuration will be activated during start, restart, or stop. As with a WebLogic domain, whenever you modify a file that resides in the staging directory, you must first stop the administration server.

To modify an Oracle HTTP Server configuration file by using Fusion Middleware Control, do the following:

	
Select Administration from the HTTP Server menu.


	
Select Advanced Configuration from the Administration menu item. The Advanced Server Configuration page appears.


	
Select the configuration file from the list, such as the httpd.conf file.


	
Edit the file, as needed.


	
Review the settings. If the settings are correct, click Apply to apply the changes. If the settings are incorrect, or you decide to not apply the changes, click Revert to return to the original settings.


	
Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP Server Instances".




The file is saved and shown on the Advanced Server Configuration page.




	
See Also:

Section 1.6, "Understanding Configuration Files"














1.7 Oracle HTTP Server Support

Oracle provides technical support for the following Oracle HTTP Server features and conditions:

	
Modules included in the Oracle distribution. Oracle does not support modules obtained from any other source, including the Apache Software Foundation. Oracle HTTP Server will still be supported when non-Oracle-provided modules are included. If non-Oracle-provided modules are suspect of contributing to reported problems, customers may be requested to reproduce the problems without including those modules.


	
Problems that can be reproduced within an Oracle HTTP Server configuration consisting only of supported Oracle HTTP Server modules.


	
Use of the included Perl interpreter with the supported Oracle HTTP Server configuration.











2 Understanding Oracle HTTP Server Modules


This chapter provides a high-level description of the Oracle-developed modules, or "plug-ins," used by the Oracle HTTP Server (OHS). It also provides a list of all other Apache- and third party-developed modules for OHS.

Modules (mods) extend the basic functionality of Oracle HTTP Server and support integration between Oracle HTTP Server and other Oracle Fusion Middleware components.

This chapter discusses the modules developed specifically by Oracle for Oracle HTTP Server. It includes the following sections:

	
Section 2.1, "List of Included Modules"


	
Section 2.2, "mod_certheaders"


	
Section 2.3, "mod_context"


	
Section 2.4, "mod_dms"


	
Section 2.5, "mod_odl"


	
Section 2.6, "mod_ossl"


	
Section 2.7, "mod_perl"


	
Section 2.8, "mod_plsql"


	
Section 2.9, "mod_webgate"


	
Section 2.10, "mod_wl_ohs"






2.1 List of Included Modules

This section lists all of the modules bundled with Oracle HTTP Server.


Oracle-developed Modules for Oracle HTTP Server

The following modules have been developed specifically by Oracle for Oracle HTTP Server:

	
mod_certheaders


	
mod_context


	
mod_dms


	
mod_odl


	
mod_ossl


	
mod_plsql


	
mod_webgate


	
mod_wl_ohs





Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Oracle HTTP Server also includes out-of-the-box the Apache HTTP Server and third-party modules listed in Table 2-1. These modules are not developed by Oracle.


Table 2-1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

	Module	For more information, see:
	
mod_actions

	
http://httpd.apache.org/docs/2.2/mod/mod_actions.html


	
mod_alias

	
http://httpd.apache.org/docs/2.2/mod/mod_alias.html


	
mod_asis

	
http://httpd.apache.org/docs/2.2/mod/mod_asis.html


	
mod_auth_basic

	
http://httpd.apache.org/docs/2.2/mod/mod_auth_basic.html


	
mod_authn_alias

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_alias.html


	
mod_authn_anon

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_anon.html


	
mod_authn_default

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_default.html


	
mod_authn_file

	
http://httpd.apache.org/docs/2.2/mod/mod_authn_file.html


	
mod_authz_default

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_default.html


	
mod_authz_groupfile

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_groupfile.html


	
mod_authz_host

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html


	
mod_authz_user

	
http://httpd.apache.org/docs/2.2/mod/mod_authz_user.html


	
mod_autoindex

	
http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html


	
mod_cern_meta

	
http://httpd.apache.org/docs/2.2/mod/mod_cern_meta.html


	
mod_cgi

	
http://httpd.apache.org/docs/2.2/mod/mod_cgi.html


	
mod_cgid (UNIX only)

	
http://httpd.apache.org/docs/2.2/mod/mod_cgid.html


	
mod_deflate

	
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html


	
mod_dir

	
http://httpd.apache.org/docs/2.2/mod/mod_dir.html


	
mod_dumpio

	
http://httpd.apache.org/docs/2.2/mod/mod_dumpio.html


	
mod_env

	
http://httpd.apache.org/docs/2.2/mod/mod_env.html


	
mod_expires

	
http://httpd.apache.org/docs/2.2/mod/mod_expires.html


	
mod_fastcgi

(Deprecated)

	
http://www.fastcgi.com/drupal/node/6


	
mod_file_cache

	
http://httpd.apache.org/docs/2.2/mod/mod_file_cache.html


	
mod_filter

	
http://httpd.apache.org/docs/2.2/mod/mod_filter.html


	
mod_headers

	
http://httpd.apache.org/docs/2.2/mod/mod_headers.html


	
mod_imagemap

	
http://httpd.apache.org/docs/2.2/mod/mod_imagemap.html


	
mod_include

	
http://httpd.apache.org/docs/2.2/mod/mod_include.html


	
mod_info

	
http://httpd.apache.org/docs/2.2/mod/mod_info.html


	
mod_log_config

	
http://httpd.apache.org/docs/2.2/mod/mod_log_config.html


	
mod_logio

	
http://httpd.apache.org/docs/2.2/mod/mod_logio.html


	
mod_mime

	
http://httpd.apache.org/docs/2.2/mod/mod_mime.html


	
mod_mime_magic

	
http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html


	
mod_negotiation

	
http://httpd.apache.org/docs/2.2/mod/mod_negotiation.html


	
mod_perl

(Deprecated)

	
http://perl.apache.org/


	
mod_proxy

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html


	
mod_proxy_balancer

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html


	
mod_proxy_connect

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_connect.html


	
mod_proxy_ftp

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_ftp.html


	
mod_proxy_http

	
http://httpd.apache.org/docs/2.2/mod/mod_proxy_http.html


	
mod_reqtimeout

	
http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html


	
mod_rewrite

	
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html


	
mod_security2

	
http://www.modsecurity.org/documentation/

Also, for Oracle HTTP Server-specific information regarding mod_security, see Appendix P, "Configuring mod_security".


	
mod_setenvif

	
http://httpd.apache.org/docs/2.2/mod/mod_setenvif.html


	
mod_speling

	
http://httpd.apache.org/docs/2.2/mod/mod_speling.html


	
mod_status

	
http://httpd.apache.org/docs/2.2/mod/mod_status.html


	
mod_substitute

	
http://httpd.apache.org/docs/2.2/mod/mod_substitute.html


	
mod_unique_id

	
http://httpd.apache.org/docs/2.2/mod/mod_unique_id.html


	
mod_userdir

	
http://httpd.apache.org/docs/2.2/mod/mod_userdir.html


	
mod_usertrack

	
http://httpd.apache.org/docs/2.2/mod/mod_usertrack.html


	
mod_vhost_alias

	
http://httpd.apache.org/docs/2.2/mod/mod_vhost_alias.html












2.2 mod_certheaders

The mod_certheaders module enables reverse proxies that terminate Secure Sockets Layer (SSL) connections in front of Oracle HTTP Server to transfer information regarding the SSL connection, such as SSL client certificate information, to Oracle HTTP Server and the applications running behind Oracle HTTP Server. This information is transferred from the reverse proxy to Oracle HTTP Server using HTTP headers. The information is then transferred from the headers to the standard CGI environment variable. The mod_ossl module or the mod_ssl module populate the variable if the SSL connection is terminated by Oracle HTTP Server.

The mod_certheaders module also enables certain requests to be treated as HTTPS requests even though they are received through HTTP. This is done using the SimulateHttps directive.

SimulateHttps takes the container it is contained within, such as <VirtualHost> or <Location>, and treats all requests received for this container as if they were received through HTTPS, regardless of the real protocol used by the request.

See Section F.2, "mod_certheaders Module" for a list and description of the directives accepted by mod_certheaders.






2.3 mod_context

mod_context creates or propagates Execution Context IDs, or ECIDs, for requests handled by Oracle HTTP Server. If an ECID has been created for the request execution flow before it reaches Oracle HTTP Server, mod_context will make the ECID available for logging within Oracle HTTP Server and for propagation to other Fusion Middleware components, such as WebLogic Server. If an ECID has not been created when the request reaches Oracle HTTP Server, mod_context will create one.

mod_context is not configurable. It is enabled by loading it into the server with the LoadModule directive, and disabled by removing or commenting out the LoadModule directive corresponding to this module. It should always be enabled to aid with problem diagnosis.






2.4 mod_dms

mod_dms provides FMW infrastructure access to the OHS Oracle Dynamic Monitoring Service (DMS) data.






2.5 mod_odl

The mod_odl module allows Oracle HTTP Server to access Oracle Diagnostic Logging (ODL). ODL generates log messages in text or XML-formatted logs, in a format which complies with Oracle standards for generating error log messages. Oracle HTTP Server uses ODL by default.

ODL provides the following benefits:

	
The capability to limit the total amount of diagnostic information saved. You can set the level of information saved and you can specify the maximum size of the log file and the log file directory.


	
When you reach the specified size, older segment files are removed and newer segment files are saved in chronological fashion.


	
Components can remain active, and do not need to be shutdown, when older diagnostic logging files are deleted.




You can view log files using Fusion Middleware Control or with WLST commands, or you can download log files to your local client and view them using another tool (for example, a text edit or another file viewing utility)

For more information on using ODL with Oracle HTTP Server, see Chapter 8, "Managing Oracle HTTP Server Logs."




	
See Also:

"Managing Log Files and Diagnostic Data" in Administering Oracle Fusion Middleware.












2.6 mod_ossl

mod_ossl, the Oracle Secure Sockets Layer (SSL) implementation in use with the Oracle database, enables strong cryptography for Oracle HTTP Server. It is a plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar to the OpenSSL module, mod_ssl. mod_ossl supports TLS version 1.0, 1.1, and 1.2, and is based on Certicom and RSA Security technology.

Oracle HTTP Server complies with the Federal Information Processing Standard publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has gone through formal FIPS certification. As part of Oracle HTTP Server's FIPS 140 compliance, the mod_ossl plug-in now includes the SSLFIPS directive. For more information, see Section F.3.6, "SSLFIPS."

Oracle no longer supports mod_ssl. A tool is provided to enable you to migrate from mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.

mod_ossl provides:

	
Encrypted communication between client and server, using RSA or DES encryption standards.


	
Integrity checking of client/server communication using MD5 or SHA checksum algorithms.


	
Certificate management with Oracle wallets.


	
Authorization of clients with multiple access checks, exactly as performed in mod_ssl.





mod_ossl Directives

See Section F.3 for a list and descriptions of directives accepted by mod_ossl.




	
See Also:

For more information, see the "Configuring SSL for the Web Tier" section of the Administering Oracle Fusion Middleware.












2.7 mod_perl

The mod_perl module embeds the Perl interpreter into Oracle HTTP Server. This eliminates start-up overhead and enables you to write modules in Perl. Oracle Fusion Middleware uses Perl version 5.10.

The module is disabled, by default. To enable mod_perl, follow the instructions in Section 5.3.4, "Configuring mod_perl".




	
See Also:

mod_perl documentation at http://perl.apache.org/docs/index.html








2.7.1 Using mod_perl with a Database

This section provides information for mod_perl users working with databases. It explains how to test a local database connection and set character forms.


2.7.1.1 Using Perl to Access the Database

Perl scripts access databases using the DBI/DBD driver for Oracle. The DBI/DBD driver is part of Oracle Fusion Middleware. It calls Oracle Call Interface (OCI) to access the databases.

Once mod_perl is enabled, DBI must be enabled in the mod_perl.conf file to function. To enable DBI, perform the following steps:




	
Note:

The following steps assume you are using Fusion Middleware Control and a managed server. For general information on editing a configuration file, see Section 1.6.3, "Modifying a Configuration File".







	
Edit the mod_perl.conf file:

	
In Fusion Middleware Control, navigate to the Oracle HTTP Server Advanced Server Configuration page.


	
Select the mod_perl.conf file from the menu and click Go.


	
Add the following line to the mod_perl.conf file:

PerlModule Apache::DBI





	
Click Apply to save the file.


	
Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP Server Instances."




Place the Perl scripts that you want to run in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName/cgi-bin.


Example 2-1 Using a Perl Script to Access a Database


#!ORACLE_HOME/perl/bin/perl -w 
  use DBI; 
  my $dataSource = "host=hostname.domain;sid=orclsid;port=1521";
  my $userName = "userid";
  my $password = "password";
  my $dbhandle = DBI->connect("dbi:Oracle:$dataSource", $userName, $password)
    or die "Can't connect to the Oracle Database: $DBI::errstr\n";
  print "Content-type: text/plain\n\n";
  print "Database connection successful.\n";
  ### Now disconnect from the database
  $dbhandle->disconnect
    or warn "Database disconnect failed; $DBI::errstr\n";
  exit;


To run the DBI scripts, the URLs would look like the following:


http://hostname.domain:port/cgi-bin/scriptname
http://hostname.domain:port/perl/scriptname


If a script specifies "use Apache::DBI" instead of "use DBI", then it can only run from the URL http://hostname.domain:port/perl/scriptname.







2.7.1.2 Testing a Database Connection

Example 2-2 shows a sample Perl script for testing a database connection. Replace the instance name, user ID, and password in the connect statement with proper values for the target database.


Example 2-2 Sample Perl Script For Testing Connection for Local Seed Database


use DBI;
print "Content-type: text/plain\n\n"; 
$dbh = DBI->connect("dbi:Oracle:instance_name", userid/password, "") ||
            die $DBI::errstr;
$stmt = $dbh->prepare("select * from emp order by empno")|| die $DBI::errstr;
$rc = $stmt->execute() || die $DBI::errstr;
while (($empno, $name) = $stmt->fetchrow()) {
   print "$empno $name\n";
}
warn $DBI::errstr if $DBI::err;
die "fetch error: " . $DBI::errstr if $DBI::err;
$stmt->finish() || die "can't close cursor";
$dbh->disconnect() || die "can't log off Oracle";







2.7.1.3 Using SQL NCHAR Data Types

SQL NCHAR data types (NCHAR, NVARCHAR2 and NCLOB) are reliable Unicode data types. SQL NCHAR data types enable you to store Unicode characters regardless of the database character set. The character set for those data types is specified by the national character set, which is either AL16UTF16 or UTF8.

Example 2-3 shows an example of accessing SQL NCHAR data.


Example 2-3 Sample Script to Access SQL NCHAR Data


# declare to use the constants for character forms
use DBD::Oracle qw(:ora_forms);
# connect to the database and get the database handle
$dbh = DBI->connect( ... );

# prepare the statement and get the statement handle
$sth = $dbh->prepare( 'SELECT * FROM TABLE_N WHERE NCOL1 = :nchar1' );

# bind the parameter of a NCHAR type
$sth->bind_param( ':nchar1', $param_1 );
# set the character form to NCHAR
$sth->func( { ':nchar1' => ORA_NCHAR } , 'set_form' );

$sth->execute;




As shown in Example 2-3, the set_form function is provided as a private function that you can invoke with the standard DBI func method. The set_form function takes an anonymous hash that enables you to set the character form for parameters.

The valid values of character form are either ORA_IMPLICIT or ORA_NCHAR. Setting the character form to ORA_IMPLICIT causes the application's bound data to be converted to the database character set, and ORA_NCHAR to the national character set. The default is ORA_IMPLICIT.

The constants are available as ora_forms in DBD::Oracle.

set_default_form sets the default character form for a database handle. The following example shows its syntax:


# specify the default form to be NCHAR
$dbh->func( ORA_NCHAR, 'set_default_form' );


This syntax causes the form of all parameters to be ORA_NCHAR, unless otherwise specified with set_form calls. Unlike the set_form function, the set_default_form functions on the database handle, so every statement from the database handle has the form of your choice.


Example 2-4 Sample for set_form


# a declaration example for the constants ORA_IMPLICIT and ORA_NCHAR
use DBD::Oracle qw(:ora_forms);

# set the character form for the placeholder :nchar1 to NCHAR
$sth->func( { ':nchar1' => ORA_NCHAR } , 'set_form' );

# set the character form using the positional index
$sth->func( { 2 => ORA_NCHAR } , 'set_form' );

# set the character form for multiple placeholders at once
$sth->func( { 1 => ORA_NCHAR, 2 => ORA_NCHAR } , 'set_form' );












2.8 mod_plsql




	
Note:

mod_plsql is deprecated as of Oracle HTTP Server 12c (12.1.3).







mod_plsql connects Oracle HTTP Server to an Oracle database, enabling you to create Web applications using Oracle stored procedures.

To access a Web-enabled PL/SQL application, configure a PL/SQL database access descriptor (DAD) for the mod_plsql module. A DAD is a set of values that specifies how the module connects to a database server to fulfill an HTTP request. Besides the connection details, a DAD contains important configuration parameters for various operations in the database and for the mod_plsql module in general. Any Web-enabled PL/SQL application which uses the PL/SQL Web ToolKit must create a DAD to invoke the application.

This section contains the following topics:

	
Section 2.8.1, "Additional Documentation"


	
Section 2.8.2, "Creating a DAD"


	
Section 2.8.3, "Configuration Files for mod_plsql"


	
Section 2.8.4, "Using Configuration Files and Parameters"





mod_plsql Directives

See Section F.4.1 for a list and descriptions of directives accepted by mod_plsql.



2.8.1 Additional Documentation

Before working with mod_plsql, you should familiarize yourself with this directive and how it works with Oracle HTTP Server. The following documents provide the relevant information:

	
Oracle® Fusion Middleware User's Guide for mod_plsql


	
Oracle® Fusion Middleware PL/SQL Web Toolkit Reference









2.8.2 Creating a DAD




	
Note:

The file you must modify to create a DAD resides in the staging directory (DOMAIN_HOME/config/fmwconfig/components/OHS/ohs1; see Section 1.6.3, "Modifying a Configuration File"). To ensure that these modifications automatically propagate to the run-time directory, stop the Administration Server.







To create a DAD, perform the following steps:

	
Open the dads.conf configuration file either in a text editor or from the Oracle HTTP Server Advanced Server Configuration page in Oracle Fusion Middleware Control (for details on this latter technique, see Section 1.6.3, "Modifying a Configuration File").

For the locations of mod_plsql configuration files, see Table 2-2.


	
Add the following:

	
The <Location> element, which defines a virtual path used to access the PL/SQL Web Application. This directive groups a set of directives that apply to the named Location.

For example, the following directive defines a virtual path called /myapp that will be used to invoke a PL/SQL Web application through a URL such as http://host:port/myapp/.


<Location /myapp>





	
Note:

Earlier releases of the mod_plsql module were always mounted on a virtual path with a prefix of /pls. This restriction is removed in later releases but might still be a restriction imposed by some of the earlier PL/SQL applications.








	
The SetHandler directive, which directs Oracle HTTP Server to enable the mod_plsql module to handle the request for the virtual path defined by the named Location:


SetHandler pls_handler


	
Additional Oracle HTTP Server directives that are allowed in a <Location> directive. Typically, the following directives are used:


Order deny,allow
Allow from all


	
One or more specific mod_plsql directives. For example:


PlsqlDatabaseUsername        scott
PlsqlDatabasePassword        tiger
PlsqlDatabaseConnectString   orcl
PlsqlAuthenticationMode      Basic


	
The </Location> tag to close the <Location> element.





	
Save the edits.


	
Obfuscate the DAD password by running the dadTool.pl script located in the ORACLE_HOME/ohs/bin directory.




	
See Also:

"PlsqlDatabasePassword" for instructions on performing the obfuscation.








	
Restart Oracle HTTP Server as described in Section 4.3.4, "Restarting Oracle HTTP Server Instances."




You can create additional DADs by defining other uniquely named <Location> elements in dads.conf.


Example DADs

The following DAD connects as a specific user and has a default home page:


<Location /pls/mydad>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseUsername scott
PlsqlDatabasePassword tiger
PlsqlDatabaseConnectString prod_db
PlsqlDefaultPage scott.myapp.home
</Location>


The following DAD uses HTTP Basic Authentication and supports document upload/download operations:


<Location /pls/mydad2>
SetHandler pls_handler
Order allow,deny
Allow from All
PlsqlDatabaseConnectString prod_db2
PlsqlDefaultPage scott.myapp.my_home
PlsqlDocumentTablename scott.my_documents
PlsqlDocumentPath docs
PlsqlDocumentProcedure scott.docpkg.process_download
</Location>






2.8.3 Configuration Files for mod_plsql

The mod_plsql configuration parameters reside in the configuration files that are located in the configuration directory (typically, DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/), as described in Table 2-2.


Table 2-2 mod_plsql Configuration Files In a System Component Instance

	Directory Name	Contents
	
CONFIG_DIR/moduleconf

	
plsql.conf


	
CONFIG_DIR/mod_plsql

	
dads.conf and cache.conf








For information on editing these .conf files, see Section 1.6.3, "Modifying a Configuration File".

These sections describe the mod_plsql configuration parameters:

	
Section 2.8.3.1, "plsql.conf"


	
Section 2.8.3.2, "dads.conf"


	
Section 2.8.3.3, "cache.conf"






2.8.3.1 plsql.conf

The plsql.conf file resides in the CONFIG_DIR/moduleconf directory and Oracle HTTP Server automatically loads all .conf files under this location. The plsql.conf file contains the LoadModule directive to load the mod_plsql module into Oracle HTTP Server, any global settings for the mod_plsql module, and include directives for dads.conf and cache.conf.


mod_plsql Directives in plsql.conf

See Section F.4.1 for a list and description of the directives used in plsql.conf.




	
See Also:

The plsql.README file, located in ORACLE_HOME/ohs/mod_plsql, for a detailed description of plsql.conf.












2.8.3.2 dads.conf

The dads.conf file contains the configuration parameters for the PL/SQL database access descriptor. (See Table 2-2 for the file location.) A DAD is a set of values that specifies how the mod_plsql module connects to a database server to fulfill a HTTP request.


mod_plsql Directives in dads.conf

See Section F.4.2 for a list and description of the directives used in dads.conf






2.8.3.3 cache.conf

The cache.conf file contains the configuration settings for the file system caching functionality implemented in the mod_plsql module. This configuration file is relevant only if PL/SQL applications use the OWA_CACHE package to cache dynamically generated content in the file system.


mod_plsql Directives in cache.conf

See Appendix F for a list and description of the directives used in cache.conf








2.8.4 Using Configuration Files and Parameters

While specifying a value for a configuration parameter, follow Oracle HTTP Server conventions for specifying values. For instance, if a value has white spaces in it, enclose the value with double quotes. For example:


PlsqlNLSLanguage "TRADITIONAL CHINESE_TAIWAN.UTF8"


Multi-line directives enable you to specify same directive multiple times in a DAD.








2.9 mod_webgate

The mod_webgate module enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines incoming requests and determines whether the requested resource is protected, and if so, retrieves the session information for the user.

For more information, see Section 9.4.2.2, "Using WebGate to Authenticate Users" and Section 1.3.3.3, "Security: Single Sign-On with WebGate." For information on configuring WebGate, see "Configuring Oracle HTTP Server WebGate for Oracle Access Manager" in Installing and Configuring Oracle HTTP Server.




	
See Also:

Securing Applications with Oracle Platform Security Services












2.10 mod_wl_ohs

The mod_wl_ohs module is a key feature of Oracle HTTP Server that enables requests to be proxied from Oracle HTTP Server 12c (12.1.3) to Oracle WebLogic Server. This module is generally referred to as the Oracle WebLogic Server Proxy Plug-In. This plug-in enhances an Oracle HTTP server installation by allowing Oracle WebLogic Server to handle requests that require dynamic functionality. In other words, you typically use a plug-in where the HTTP server serves static pages such as HTML pages, while Oracle WebLogic Server serves dynamic pages such as HTTP Servlets and Java Server Pages (JSPs).

For information about the prerequisites and procedure for configuring mod_wl_ohs, see "Configuring the Plug-In for Oracle HTTP Server" in Using Oracle WebLogic Server Proxy Plug-Ins 12.1.3. Directives for this module are listed in "Parameters for Web Server Plug-Ins" in that document.




	
Note:

mod_wl_ohs is similar to the mod_wl plug-in, which you can use to proxy requests from Apache HTTP Server to Oracle WebLogic server. However, while the mod_wl plug-in for Apache HTTP Server should be downloaded and installed separately, the mod_wl_ohs plug-in is bundled with Oracle HTTP Server.














3  Understanding Oracle HTTP Server Management Tools


This chapter describes the management tools available with the Oracle HTTP Server (OHS). It includes information on OHS management, how to access Fusion Middleware Control, how to access the OHS home page, and how to use the WebLogic Scripting Tool (WLST).

Oracle provides the following management tools for Oracle HTTP Server:

	
The Configuration Wizard, which enables you to create and delete Oracle HTTP Server instances. For more information, see Installing and Configuring Oracle HTTP Server.


	
Fusion Middleware Control, which is a browser-based management tool. For more information, see Administering Oracle Fusion Middleware.


	
The WebLogic Scripting Tool, which is a command-driven scripting tool. For more information, see Understanding the WebLogic Scripting Tool.







	
Note:

The management tools available to your Oracle HTTP Server implementation depend on whether you have configured it in a WebLogic Server domain (with FMW Infrastructure) or in a standalone domain. For details, see Section 1.4, "Domain Types".







This chapter includes the following sections:

	
Section 3.1, "Overview of Oracle HTTP Server Management"


	
Section 3.2, "Special Note on Oracle HTTP Server Mbeans"


	
Section 3.3, "Accessing Fusion Middleware Control"


	
Section 3.4, "Accessing the Oracle HTTP Server Home Page"


	
Section 3.5, "Using Fusion Middleware Control to Edit Configuration Files"


	
Section 3.6, "Using the WebLogic Scripting Tool"






3.1 Overview of Oracle HTTP Server Management

The main tool for managing Oracle HTTP Server is Fusion Middleware Control, which is a browser-based tool for administering and monitoring the Oracle Fusion Middleware environment.




	
See Also:

Administering Oracle Fusion Middleware












3.2 Special Note on Oracle HTTP Server Mbeans

The Oracle HTTP Server MBeans, which might be visible in Fusion Middleware Control or the WebLogic Scripting Tool (WLST) are provided for the use of Oracle management tools. The interfaces are not supported for other use and are subject to change without notice.






3.3 Accessing Fusion Middleware Control

To display Fusion Middleware Control, you enter the Fusion Middleware Control URL, which includes the name of the WebLogic Administration Server host and the port number assigned to Fusion Middleware Control during the installation. The following shows the format of the URL:


http://hostname.domain:port/em


If you saved the installation information by clicking Save on the last installation screen, the URL for Fusion Middleware Control is included in the file that is written to disk.

	
Display Fusion Middleware Control by entering the URL in your Web browser. For example:


http://host1.example.com:7001/em


The Welcome page appears.


	
Enter the Fusion Middleware Control administrator user name and password and click Login.

The default user name for the administrator user is weblogic. This is the account you can use to log in to the Fusion Middleware Control for the first time. The weblogic password is the one you supplied during the installation of Fusion Middleware Control.









3.4 Accessing the Oracle HTTP Server Home Page

The Oracle HTTP Server Home page in Fusion Middleware Control contains menus and regions that enable you to manage the server. Use the menus for monitoring, managing, routing, and viewing general information.


3.4.1 Navigating Within Fusion Middleware Control

When you select a target, such as a WebLogic Managed Server or a component, such as Oracle HTTP Server, the target's home page is displayed in the content pane and that target's menu is displayed at the top of the page, in the context pane. For example, if you select an Oracle HTTP Server instance from the Web Tier folder, the Oracle HTTP Server menu is displayed. You can also view the menu for a target by right-clicking the target in the navigation pane.

Figure 3-1 shows the target navigation pane and the home page of Oracle HTTP Server.


Figure 3-1 Oracle HTTP Server Home i