
[image: Oracle Corporation]

Oracle® Fusion Middleware

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server 12.1.3

12c (12.1.3)

E41881-02

August 2015

Documentation for developers that describes how to create JMX clients that monitor and modify WebLogic Server 12.1.3 resources.

Oracle Fusion Middleware Developing Custom Management Utilities Using JMX for Oracle WebLogic Server 12.1.3, 12c (12.1.3)

E41881-02

Copyright © 2007, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to this Document
	Related Documentation
	New and Changed Features in This Release

2 Understanding WebLogic Server MBeans

	Basic Organization of a WebLogic Server Domain
	Separate MBean Types for Monitoring and Configuring
	The Life Cycle of WebLogic Server MBeans
	WebLogic Server MBean Data Model
	Containment and Reference Relationships
	Containment Relationship
	Reference Relationship

	WebLogic Server MBean Object Names
	MBeanServerInvocationHandler

	MBean Servers
	Connecting to MBean Servers
	Local Connections to MBean Servers
	Remote Connections to MBean Servers

	Using the Platform MBean Server
	Service MBeans

	Security for WebLogic Server MBeans
	Additional Security Resources for Some Attributes and Operations

3 Overview of WebLogic Server Subsystem MBeans

	Domain and Server Logging Configuration
	JMS Server and JMS System Module Configuration
	JDBC Resource Configuration

4 Accessing WebLogic Server MBeans with JMX

	Set Up the Classpath for Remote Clients
	Make Remote Connections to an MBean Server
	Example: Connecting to the Domain Runtime MBean Server
	Best Practices: Choosing an MBean Server
	Remote Connections Using Only JDK Classes

	Make Local Connections to the Runtime MBean Server
	Make Local Connections to the Domain Runtime MBean Server
	Navigate MBean Hierarchies
	Example: Printing the Name and State of Servers
	Example: Monitoring Servlets

5 Managing a Domain's Configuration with JMX

	Editing MBean Attributes: Main Steps
	Start an Edit Session
	Change Attributes or Create New MBeans
	Save Changes to the Pending Configuration Files
	Activate Your Saved Changes
	Example: Changing the Administration Port
	Exception Types Thrown by Edit Operations

	Listing and Undoing Changes
	List Unsaved Changes
	List Unactivated Changes
	List Changes in the Current Activation Task
	Undoing Changes

	Tracking the Activation of Changes
	Listing the Status of the Current Activation Task
	Listing All Activation Tasks Stored in Memory
	Purging Completed Activation Tasks from Memory

	Managing Locks
	Best Practices: Recommended Pattern for Editing and Handling Exceptions
	Setting and Getting Encrypted Values
	Set the Value of an Encrypted Attribute (Recommended Technique)
	Set the Value of an Encrypted Attribute (Compatibility Technique)
	Back Up an Encrypted Value

6 Managing Security Realms with JMX

	Understanding the Hierarchy of Security MBeans
	Base Provider Types and Mix-In Interfaces
	Security MBeans

	Choosing an MBean Server to Manage Security Realms
	Working with Existing Security Providers
	Discovering Available Services
	Example: Adding Users to a Realm

	Modifying the Realm Configuration

7 Using Notifications and Monitor MBeans

	Best Practices: Listening Directly Compared to Monitoring
	Best Practices: Listening for WebLogic Server Events
	Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics
	Listening for Notifications from WebLogic Server MBeans: Main Steps
	Creating a Notification Listener
	Listening from a Remote JVM
	Best Practices: Creating a Notification Listener

	Configuring a Notification Filter
	Creating a Custom Filter

	Registering a Notification Listener and Filter
	Packaging and Deploying Listeners on WebLogic Server
	Example: Listening for The Registration of Configuration MBeans

	Using Monitor MBeans to Observe Changes: Main Steps
	Monitor MBean Types and Notification Types
	Errors and the MonitorNotification Type Property

	Creating a Notification Listener for a Monitor MBean
	Registering the Monitor and Listener
	Example: Registering a CounterMonitorMBean and Its Listener

8 Configuring WebLogic Server JMX Services

	Determining the JMX Services Available in a Domain
	Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

Preface

This preface describes the document accessibility features and conventions used in this guide—Developing Custom Management Utilities Using JMX for Oracle WebLogic Server 12.1.3.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction and Roadmap

This document describes creating JMX clients that monitor and modify WebLogic Server 12.1.3 resources. To integrate third-party management systems with the WebLogic Server management system, WebLogic Server provides standards-based interfaces that are fully compliant with the Java Management Extensions (JMX) specification. Software vendors can use these interfaces to monitor WebLogic Server MBeans, to change the configuration of a WebLogic Server domain, and to monitor the distribution (activation) of those changes to all server instances in the domain. While JMX clients can perform all WebLogic Server management functions without using Oracle's proprietary classes, Oracle recommends that remote JMX clients use WebLogic Server protocols (such as T3) to connect to WebLogic Server instances.

The following sections describe the contents and organization of this guide—Developing Custom Management Utilities with JMX.

	
Document Scope and Audience

	
Guide to this Document

	
Related Documentation

	
New and Changed Features in This Release

Document Scope and Audience

This document is a resource for software vendors who develop JMX-compatible management systems. It also contains information that is useful for business analysts and system architects who are evaluating WebLogic Server or considering the use of JMX for a particular application.

It is assumed that the reader is familiar with Java EE and general application management concepts. This document emphasizes a hands-on approach to developing a limited but useful set of JMX management services. For information on applying JMX to a broader set of management problems, refer to the JMX specification or other documents listed in Related Documentation.

Guide to this Document

	
This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization of this guide.

	
Chapter 2, "Understanding WebLogic Server MBeans," describes the JMX services that you use to monitor and manage WebLogic Server MBeans and introduces the data model that organizes WebLogic Server MBeans.

	
Chapter 3, "Overview of WebLogic Server Subsystem MBeans," introduces the MBeans that can be used to monitor and manage various subsystems of WebLogic Server.

	
Chapter 4, "Accessing WebLogic Server MBeans with JMX," provides instructions and examples for accessing WebLogic Server MBeans from a JMX client.

	
Chapter 5, "Managing a Domain's Configuration with JMX," provides instructions and examples for managing a WebLogic Server domain's configuration through JMX.

	
Chapter 6, "Managing Security Realms with JMX," describes the hierarchy of security MBeans, how to choose an MBean server to manage security realms, how to work with existing security providers, and how to modify realm configuration.

	
Chapter 7, "Using Notifications and Monitor MBeans," describes working with notifications and listeners to listen for changes in WebLogic Server MBean attributes.

	
Chapter 8, "Configuring WebLogic Server JMX Services," describes how to specify which JMX services are available in a domain.

Related Documentation

The Oracle Technology Network includes a Web site that provides links to books, white papers, and additional information on JMX: http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html.

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK on which it is running. To view the JMX 1.4 specification, download it from http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/

To view the JMX Remote API 1.0 specification, download it from http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html.

You can view the API reference for the javax.management* packages from: http://docs.oracle.com/javase/7/docs/api/overview-summary.html.

For guidelines on developing other types of management services for WebLogic Server applications, see the following documents:

	
Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server describes WebLogic support for internationalization and localization of log messages, and shows you how to use the templates and tools provided with WebLogic Server to create or edit message catalogs that are locale-specific.

	
Configuring and Using the Diagnostics Framework for Oracle WebLogic Server describes how system administrators can collect application monitoring data that has not been exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the following documents:

	
Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic Server applications.

	
Developing Manageable Applications Using JMX for Oracle WebLogic Server describes how to create and register custom MBeans.

New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

2 Understanding WebLogic Server MBeans

This chapter describes the MBeans that WebLogic Server 12.1.3 provides that you can use to configure, monitor, and manage WebLogic Server resources, and also explains how WebLogic Server distributes and maintains these MBeans.

This chapter includes the following sections:

	
Basic Organization of a WebLogic Server Domain

	
Separate MBean Types for Monitoring and Configuring

	
The Life Cycle of WebLogic Server MBeans

	
WebLogic Server MBean Data Model

	
MBean Servers

	
Security for WebLogic Server MBeans

The MBean Reference for Oracle WebLogic Server provides a detailed reference for all WebLogic Server MBeans.

Basic Organization of a WebLogic Server Domain

A WebLogic Server administration domain is a collection of one or more servers and the applications and resources that are configured to run on the servers. Each domain must include a special server instance that is designated as the Administration Server. The simplest domain contains a single server instance that acts as both Administration Server and host for applications and resources. This domain configuration is commonly used in development environments. Domains for production environments usually contain multiple server instances (Managed Servers) running independently or in groups called clusters. In such environments, the Administration Server does not host production applications. For more information about domains, refer to "Understanding Oracle WebLogic Server Domains" in Understanding Domain Configuration for Oracle WebLogic Server.

Separate MBean Types for Monitoring and Configuring

All WebLogic Server MBeans can be organized into one of the following general types based on whether the MBean monitors or configures servers and resources:

	
Run-time MBeans contain information about the run-time state of a server and its resources. They generally contain only data about the current state of a server or resource, and they do not persist this data. When you shut down a server instance, all run-time statistics and metrics from the run-time MBeans are destroyed.

	
Configuration MBeans contain information about the configuration of servers and resources. They represent the information that is stored in the domain's XML configuration documents.

	
Configuration MBeans for system modules contain information about the configuration of services such as JDBC data sources and JMS topics that have been targeted at the system level. Instead of targeting these services at the system level, you can include services as modules within an application. These application-level resources share the life cycle and scope of the parent application. However, WebLogic Server does not provide MBeans for application modules. See "Supported Deployment Units" in Deploying Applications to Oracle WebLogic Server.

The Life Cycle of WebLogic Server MBeans

The life cycle of a run-time MBean follows that of the resource for which it exposes run-time data. For example, when you start a server instance, the server instantiates a ServerRuntimeMBean and populates it with the current run-time data. Each resource updates the data in its run-time MBean as its state changes. The resource destroys its run-time MBeans when it is stopped.

For a configuration MBean, the life cycle is as follows:

	
Each server in the domain has its own copy of the domain's configuration documents (which consist of a config.xml file and subsidiary files). During a server's startup cycle, it contacts the Administration Server to update its configuration files with any changes that occurred while it was shut down. Then it instantiates configuration MBeans to represent the data in the configuration documents. (See Figure 2-1.)

	
Note:

By default, a Managed Server will start even if it cannot contact the Administration Server to update its configuration files. This default setting creates the possibility that Managed Servers across the domain might run with inconsistent configurations. For information about changing this default, see "Starting a Managed Server When the Administration Server Is Not Accessible" in Administering Server Startup and Shutdown for Oracle WebLogic Server.

Figure 2-1 Initializing Configuration MBeans on Administration Server

[image: Description of Figure 2-1 follows]

The configuration MBeans enable each server instance in the domain to have an identical in-memory representation of the domain's configuration.

	
To control changes to the domain's configuration, JMX clients have read-only access to these configuration MBeans.

The Administration Server maintains a separate, editable copy of the domain's configuration documents in the domain's config/pending directory. It uses the data in these pending documents to instantiate a set of configuration MBeans that JMX clients can modify. After a JMX client modifies one of these configuration MBeans, the client directs the Administration Server to save the modifications in the pending configuration documents. Then the client starts a transactional process that updates the read-only configuration documents and configuration MBeans for all server instances in the domain.

For more information, see "Managing Configuration Changes" in Understanding Domain Configuration for Oracle WebLogic Server.

	
Configuration MBeans are destroyed when you shut down the server instance that hosts them.

WebLogic Server MBean Data Model

The JMX specification does not impose a model for organizing MBeans. However, because the configuration of a WebLogic Server domain is specified in an XML document, WebLogic Server organizes its MBeans into a hierarchical model that reflects the XML document structure.

For example, the root of a domain's configuration document is <domain> and below the root are child elements such as <server> and <cluster>. Each domain maintains a single MBean of type DomainMBean to represent the <domain> root element. Within DomainMBean, JMX attributes provide access to the MBeans that represent child elements such as <server> and <cluster>.

The following sections describe the patterns that WebLogic Server MBeans use to model the underlying XML configuration:

	
Containment and Reference Relationships

	
WebLogic Server MBean Object Names

Containment and Reference Relationships

MBean attributes that provide access to other MBeans represent one of following types of relationships:

	
Containment, which reflects a parent-child relationship between the corresponding XML elements in the domain's configuration document.

	
Reference, which reflects a sibling or other non-ancestor, non-descendant relationship.

Containment Relationship

The XML excerpt in Example 2-1 illustrates a containment relationship between <domain> and <server> and <domain> and <cluster>.

Example 2-1 Containment Relationship in XML

<domain>
 <server>
 <name>MyServer</name>
 </server>
 <cluster>
 <name>MyCluster</name>
 </cluster>
</domain>

To reflect this relationship, DomainMBean has two attributes, Servers and Clusters. The value of the Servers attribute is an array of object names javax.management.ObjectName[]) for all ServerMBeans that have been created in the domain. The value of the Clusters attribute is an array of object names for all ClusterMBeans.

Another aspect of the containment relationship is expressed in a set of MBean operations that follow the design pattern for Java bean factory methods: for each contained (child) MBean, the parent MBean provides a createChild and destroyChild operation, where Child is the short name of the MBean's type. (The short name is the MBean's unqualified type name without the MBean suffix. For example, createServer).

	
Note:

JMX clients cannot use javax.management.MBeanServer.create() or register() to create and register instances of WebLogic Server MBeans because WebLogic Server does not make its MBean implementation classes publicly available.
If you create and register custom MBeans (MBeans you have created to manage your applications), you will have access to your own implementation files and you can use the standard MBeanServer.create() or register() methods. Custom MBeans are not part of the WebLogic Server data model and do not participate in its factory method model.

In some cases, an MBean's factory methods are not public because of dependencies within a server instance. In these cases the parent manages the life cycle of its children. For example, each ServerMBean must have one and only one child LogMBean to configure the server's local log file. The factory methods for LogMBean are not public, and ServerMBean maintains the life cycle of its LogMBean.

With a containment relationship, the parent MBean also contains a lookupChild operation. If you know the user-supplied name that was used to create a specific server or resource, you can use the lookup operation in the parent MBean to get the object name. For example, DomainMBean includes an operation named lookupServers(String name), which takes as a parameter the name that was used to create a server instance. If you named a server MS1, you could pass a String object that contains MS1 to the lookupServers method and the method would return the object name for MS1.

Reference Relationship

The XML excerpt in Example 2-2 illustrates a reference relationship between <server> and <cluster>.

Example 2-2 Reference Relationship in XML

<domain>
 <server>
 <name>MyServer</name>
 <cluster>MyCluster</cluster>
 </server>
 <cluster>
 <name>MyCluster</name>
 </cluster>
</domain>

While a server logically belongs to a cluster, the <server> and <cluster> elements in the domain's configuration file are siblings. To reflect this relationship, ServerMBean has a Cluster attribute whose value is the object name (javax.management.ObjectName) of the ClusterMBean to which the server belongs.

MBeans in a reference relationship do not provide factory methods.

WebLogic Server MBean Object Names

All MBeans must be registered in an MBean server under an object name of type javax.management.ObjectName. WebLogic Server follows a convention in which object names for child MBeans contain part of its parent MBean object name.

	
Note:

If you learn the WebLogic Server naming conventions, you can understand where an MBean instance resides in the data hierarchy by observing its object name. However, if you use containment attributes or lookup operations to get object names for WebLogic Server MBeans, your JMX applications do not need to construct or parse object names.

WebLogic Sever naming conventions encode its MBean object names as follows:

com.bea:Name=name,Type=type[,TypeOfParentMBean=NameOfParentMBean]
[,TypeOfParentMBean1=NameOfParentMBean1]...

In the preceding MBean object name convention:

	
com.bea: is the JMX domain name.

For WebLogic Server MBeans, the JMX domain is always com.bea. If you create custom MBeans for your applications, name them with your own JMX domain.

	
Name=name,Type=type[,TypeOfParentMBean=NameOfParentMBean] [,TypeOfParentMBean1=NameOfParentMBean1]... represents a set of JMX key properties.

The order of the key properties is not significant, but the name must begin with com.bea:.

Table 2-1 describes the key properties that WebLogic Server encodes in its MBean object names.

Table 2-1 WebLogic Server MBean Object Name Key Properties

	This Key Property	Specifies
	

Name=name

	
The string that you provided when you created the resource that the MBean represents. For example, when you create a server, you must provide a name for the server, such as MS1. The ServerMBean that represents MS1 uses Name=MS1 in its JMX object name.

If you create an MBean, you must specify a value for this Name component that is unique amongst all other MBeans in a domain.

	

Type=type

	
For configuration MBeans and run-time MBeans, the short name of the MBean's type. The short name is the unqualified type name without the MBean suffix. For example, for an MBean that is an instance of the ServerRuntimeMBean, use ServerRuntime.

For MBeans that manage services targeted at the system level, the fully qualified name of the MBean's type including any Bean or MBean suffix. For example, for an MBean that manages a system-level JDBC data source, use weblogic.j2ee.descriptor.wl.JDBCDataSourceBean.

	

TypeOfParentMBean=

NameOfParentMBean

	
To create a hierarchical namespace, WebLogic Server MBeans use one or more instances of this attribute in their object names. The levels of the hierarchy are used to indicate scope. For example, a LogMBean at the domain level of the hierarchy manages the domain-wide message log, while a LogMBean at a server level manages a server-specific message log.

WebLogic Server child MBeans with implicit creator methods use the same value for the Name property as the parent MBean. For example, the LogMBean that is a child of the MedRecServer Server MBean uses Name=MedRecServer in its object name:

medrec:Name=MedRecServer,Type=Log,Server=MedRecServer

WebLogic Server cannot follow this convention when a parent MBean has multiple children of the same type.

Some MBeans use multiple instances of this component to provide unique identification. For example, the following is the object name for an EJBComponentRuntime MBean in the MedRec sample application:

medrec:ApplicationRuntime=MedRecServer_MedRecEAR,
Name=MedRecServer_MedRecEAR_Session
EJB,ServerRuntime=MedRecServer,Type=EJBComponentRuntime

The ApplicationRuntime=MedRecServer_MedRecEAR key property indicates that the EJB instance is a module within the MedRec enterprise application and a child of the MedRecServer_MedRecEAR ApplicationRuntimeMBean. The ServerRuntime=MedRecServer key property indicates that the EJB instance is currently deployed on a server named MedRecServer and a child of the MedRecServer ServerRuntimeMBean.

	

Location=servername

	
When you access run-time MBeans or configuration MBeans through the Domain Runtime MBean Server, the MBean object names include a Location=servername key property which specifies the name of the server instance on which that MBean is located. See MBean Servers.

Singleton MBeans, such as DomainRuntimeMBean and ServerLifeCycleRuntimeMBean exist only on the Administration Server and do not need to include this key property.

MBeanServerInvocationHandler

If you use the MBeanServerInvocationHandler to create a proxy for the MBean, as shown here:

Intf proxy = (Intf)
 MBeanServerInvocationHandler.newProxyInstance(mbs,
 name,
 Intf.class,
 false);

you should include the WLS extension MBeanServerInvocationHandler instead of javax.management.MBeanServerInvocationHandler, as shown here:

import weblogic.management.jmx.MBeanServerInvocationHandler;

This ensures that return exceptions are handled correctly.

MBean Servers

At the core of any JMX agent is the MBean server, which acts as a container for MBeans.

The JVM for an Administration Server maintains three MBean servers provided by Oracle and optionally maintains the platform MBean server, which is provided by the JDK itself. The JVM for a Managed Server maintains only one Oracle MBean server and the optional platform MBean server.

Table 2-2 describes each MBean server.

Table 2-2 MBean Servers in a WebLogic Server Domain

	This MBean server	Creates, registers, and provides access to...
	
Domain Runtime MBean Server

	
MBeans for domain-wide services. This MBean server also acts as a single point of access for MBeans that reside on Managed Servers. You can register your own (custom) MBeans in this MBean server (see "Registering Custom MBeans in the Domain Runtime MBean Server" in Developing Manageable Applications Using JMX for Oracle WebLogic Server).

If your JMX client accesses WebLogic Server MBeans in this MBean server by constructing object names, the client must add a Location=servername key property to the MBean object name. See WebLogic Server MBean Object Names.

Only the Administration Server hosts an instance of this MBean server.

	
Runtime MBean Server

	
MBeans that expose monitoring, run-time control, and the active configuration of a specific WebLogic Server instance. You can also register your own (custom) MBeans in this MBean server (see "Registering Custom MBeans in the Domain Runtime MBean Server" in Developing Manageable Applications Using JMX for Oracle WebLogic Server).

In this release, the WebLogic Server Runtime MBean Server is configured by default to be the platform MBean server. However, you can configure WebLogic Server to create a separate MBean Server and use it instead of the platform MBean Server. See Using the Platform MBean Server.

Each server in the domain hosts an instance of this MBean server.

	
Edit MBean Server

	
Pending configuration MBeans and operations that control the configuration of a WebLogic Server domain. It exposes a ConfigurationManagerMBean for locking, saving, and activating changes.

Only the Administration Server hosts an instance of this MBean server.

	
The JVM's platform MBean server

	
MBeans provided by the JDK that contain monitoring information for the JVM itself. You can register custom MBeans in this MBean server.

In this release, WebLogic Server uses the JVM's platform MBean server to contain the WebLogic run-time MBeans by default. As such, the platform MBean server provides access to platform MXBeans, WebLogic run-time MBeans, and WebLogic configuration MBeans that are on a single server instance. See Using the Platform MBean Server, and "Registering MBeans in the JVM Platform MBean Server" in Developing Manageable Applications Using JMX for Oracle WebLogic Server.

Connecting to MBean Servers

JMX enables both local and remote access to MBean servers, but JMX clients use different APIs for the two types of access and WebLogic Server MBean servers expose different capabilities to local clients and remote clients.

Local Connections to MBean Servers

JMX clients running within a WebLogic Server JVM can access the server's Runtime MBean Server or Domain Runtime MBean Server directly through JNDI, and authentication is required to access any MBeans that require roles. These are the only WebLogic Server MBean servers that allow local access. When accessed from a local client, the Runtime MBean Server or Domain Runtime MBean Server returns its javax.management.MBeanServer interface, which enables clients to access WebLogic Server MBeans and to create, register, and access custom MBeans. See Make Local Connections to the Runtime MBean Server, and Make Local Connections to the Domain Runtime MBean Server.

JMX clients can also access the local JVM's platform MBean server. Any local client can access the MBeans in this MBean server. See "Registering MBeans in the JVM Platform MBean Server" in Developing Manageable Applications Using JMX for Oracle WebLogic Server.

Remote Connections to MBean Servers

Remote JMX clients (clients running in a different JVM from the MBean server) can use the javax.management.remote APIs to access any WebLogic MBean server. Clients must authenticate through the WebLogic Server security framework to do so (see Security for WebLogic Server MBeans). When accessed from a remote client, a WebLogic Server MBean server returns its javax.management.MBeanServerConnection interface, which enables clients to only access MBeans; remote clients cannot create and register custom MBeans. See Make Remote Connections to an MBean Server.

You can enable remote access to the platform MBean server. See "Registering MBeans in the JVM Platform MBean Server" in Developing Manageable Applications Using JMX for Oracle WebLogic Server.

Using the Platform MBean Server

In this release of WebLogic Server, the WebLogic Server Runtime MBean Server is configured by default to contain the platform MXBeans for the corresponding server. The Domain Runtime MBean Server contains the platform MXBeans for all of the servers in the domain. The MBean object names for the platform MXBeans will be the same as those provided by the JVM except they will have the additional Location=servername key property.

The WLST script in Example 2-3 illustrates using platform MXBeans to monitor the resources of a running domain.

Example 2-3 Using Platform MXBeans

"""
 This WLST script demonstrates how to use the Platform MXBeans to monitor
 the resources of a running WLS domain. It uses the domainCustom command
 to retrieve the memory usage for 2 servers in the domain. For information
 on the available platform MXBeans, refer to the following link:
 http://docs.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
"""

connect()
domainCustom()
cd ("java.lang")
monitor heap and thread usage once a minute for 5 minutes
x = 0
while x < 5:
 # Admin Server
 cd ("java.lang:Location=AdminServer,type=Memory")
 huAdmin = get("HeapMemoryUsage")
 cd ("..")
 cd ("java.lang:Location=AdminServer,type=Threading")
 numThreadsAdmin = get("ThreadCount")
 print "Admin server memory usage = ", huAdmin.get("max"), " number threads: ", numThreadsAdmin
 cd ("..")
 # m1 server
 cd ("java.lang:Location=m1,type=Memory")
 huM1 = get("HeapMemoryUsage")
 cd ("..")
 cd ("java.lang:Location=m1,type=Threading")
 numThreadM1 = get("ThreadCount")
 cd ("..")
 print "M1 server memory usage = ", huM1.get("max"), " number threads: ", numThreadM1
 Thread.sleep(60000)
 x = x + 1

Using the platform MBean server for the Runtime MBean Server is controlled by the PlatformMBeanServerUsed attribute in the JMX MBean. In previous releases, the default value for the PlatformMBeanServerUsed attribute was false so the platform MBean server was not used unless explicitly enabled. In this release of WebLogic Server, the default value for the PlatformMBeanServerUsed attribute is true for domains that are at version 10.3.3.0 or higher. For more information, see PlatformMBeanServerEnabled in the MBean Reference for Oracle WebLogic Server.

If desired, you can configure WebLogic Server to create a separate MBean Server and use it instead of the platform MBean server by setting the PlatformMBeanServerEnabled attribute value to false using any of the administration tools listed in "Summary of Administration Tools and APIs" in Understanding Oracle WebLogic Server. Using the WebLogic Server Administration Console, navigate to the Domain > Configuration > General page > Advanced options and deselect the Platform MBean Server Used check box. In WLST, start an edit session, navigate to the JMX directory for the domain, use cmo.setPlatformMBeanServerUsed(false) to change the value, and then activate the changes.

For more information on the Platform MBean Server and Platform MXBean, see the following JAVA SDK documentation:

	
http://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

	
http://docs.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html

Service MBeans

Within each MBean server, WebLogic Server registers a service MBean under a simple object name. The attributes and operations in this MBean serve as your entry point into the WebLogic Server MBean hierarchies and enable JMX clients to navigate to all WebLogic Server MBeans in an MBean server after supplying only a single object name. See Table 2-3.

JMX clients that do not use the entry point (service) MBean must correctly construct an MBean's object name to get and set the MBean's attributes or invoke its operations. Because the object names must be unique, they are usually long and difficult to construct from a client.

Table 2-3 Service MBeans

	MBean Server	Service MBean	JMX object name:
	
The Domain Runtime MBean Server

	
DomainRuntimeServiceMBean

Provides access to MBeans for domain-wide services such as application deployment, JMS servers, and JDBC data sources. It also is a single point for accessing the hierarchies of all run-time MBeans and all active configuration MBeans for all servers in the domain.

See "DomainRuntimeServiceMBean" in MBean Reference for Oracle WebLogic Server.

	

com.bea:Name=DomainRuntimeService,Type=weblogic.
management.mbeanservers.
domainruntime.DomainRuntimeServiceMBean

	
Runtime MBean Servers

	
RuntimeServiceMBean

Provides access to run-time MBeans and active configuration MBeans for the current server.

See "RuntimeServiceMBean" in MBean Reference for Oracle WebLogic Server.

	

com.bea:Name=RuntimeService,
Type=weblogic.management.
mbeanservers.runtime.
RuntimeServiceMBean

	
The Edit MBean Server

	
EditServiceMBean

Provides the entry point for managing the configuration of the current WebLogic Server domain.

See "EditServiceMBean" in MBean Reference for Oracle WebLogic Server.

	

com.bea:Name=EditService,
Type=weblogic.management.
mbeanservers.edit.
EditServiceMBean

Security for WebLogic Server MBeans

To connect to a WebLogic Server MBean server, a JMX client must supply credentials for a user who has been defined in the WebLogic Server domain's security realm.

To further secure the MBeans that have been registered in an MBean server, WebLogic Server uses security roles and policies. A security role, like a security group, grants an identity to a user. Unlike a group, however, membership in a role can be based on a set of conditions that are evaluated at run time. A security policy is another set of run-time conditions that specify which users, groups, or roles can access a resource. Oracle provides a default set of roles and policies for WebLogic Server MBeans. (See "Default Security Policies for MBeans" in the MBean Reference for Oracle WebLogic Server.)

During the startup cycle for a WebLogic Server instance, the server creates a collection of weblogic.security.service.JMXResource objects, which are the in-memory representations of the MBean security policies. When a JMX client attempts to get or set an MBean attribute or invoke an operation, the MBean server asks the security realm if the user has sufficient permission. The security realm first determines which role the user is in. (Role assignments are determined at run time.) Then it uses the default policies and any other policies that you have created to determine if the role is allowed access.

You can use the WebLogic Server Administration Console to change the default access permissions. For example, you can create roles for specific applications and allow only specific roles to access the MBean instances that are associated with specific applications. See "Configure JMX Policies" in the Oracle WebLogic Server Administration Console Online Help.

Additional Security Resources for Some Attributes and Operations

For MBean attributes and operations that represent particularly sensitive data or actions, WebLogic Server provides additional security resource objects to limit which users can access the data or action. For example, the ServerLifeCycleRuntimeMBean's shutdown() operation is protected by a JMXResource object and a weblogic.security.service.ServerResource object. For a complete list of attributes and operations that are protected by multiple resources, see "Administrative Resources" and "Server Resources" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

The default configuration of roles and security policies for these attributes and operations work together to create a consistent security scheme. You can, however, make modifications that limit access in ways that you do not intend. See "Maintaining a Consistent Security Scheme" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

3 Overview of WebLogic Server Subsystem MBeans

This chapter describes the MBeans that can be used to manage various subsystems of WebLogic Server 12.1.3, including domain and server logging, JMS servers and JMS system module resources, and JDBC resources.

This chapter includes the following sections:

	
Domain and Server Logging Configuration

	
JMS Server and JMS System Module Configuration

	
JDBC Resource Configuration

In addition, for a description of MBeans that can be used to manage WebLogic Security, see Understanding the Hierarchy of Security MBeans.

Domain and Server Logging Configuration

Within a WebLogic Server domain, several MBeans configure logging services. Table 3-1 introduces the MBeans and Figure 3-1 illustrates where the MBeans are located in the configuration MBean hierarchy.

Table 3-1 MBeans for Domain and Server Logging

	This MBean...	Configures...
	

LogMBean

	
	
Threshold severity level and filter settings for logging output.

	
Whether the server logging is based on a Log4j implementation or the default Java Logging APIs.

	
Whether to redirect the JVM stdout and stderr output to the registered log destinations.

The Administration Server maintains an instance of LogMBean for the domain-wide message log, and each server instance maintains its own instance for its local server log.

See "LogMBean" in the MBean Reference for Oracle WebLogic Server.

	

LogFileMBean

	
Log file names and the location, file-rotation criteria, and number of files that a WebLogic Server instance uses to store log messages.

See "LogFileMBean" in the MBean Reference for Oracle WebLogic Server.

	

LogFilterMBean

	
A log filter which determines which messages a server instance sends to the registered log destinations. Each log filter is represented by its own instance of LogFilterMBean.

A log filter can be defined at the domain or server level.

See "LogFilterMBean" in the MBean Reference for Oracle WebLogic Server.

	

ServerMBean

	
Path prefix for the server's JTA transaction log files.

See "ServerMBean" in the MBean Reference for Oracle WebLogic Server.

	

WebServerMBean

	
Logging HTTP requests.

See "WebServerMBean" in the MBean Reference for Oracle WebLogic Server.

	

VirtualHostMBean

	
Logging HTTP requests for virtual hosts that you define.

See "VirtualHostMBean" in the MBean Reference for Oracle WebLogic Server.

	

JMSServerMBean

	
Message log file for this JMS Server.

See "JMSServerMBean" in the MBean Reference for Oracle WebLogic Server.

Figure 3-1 Logging MBeans

[image: Description of Figure 3-1 follows]

JMS Server and JMS System Module Configuration

Within a WebLogic Server domain, multiple MBeans configure JMS servers and JMS system module resources. JMS servers are persisted in the domain's config.xml file and multiple JMS servers can be configured on the various WebLogic Server instances in a cluster, as long as they are uniquely named. When a JMS system module is created using JMX, WebLogic Server creates a JMS system module descriptor file in the config\jms subdirectory of the domain directory, and adds a reference to the module in the domain's config.xml file as a JMSSystemResource element. This reference includes the path to the JMS system module file and a list of target servers and clusters on which the system module is deployed.

Table 3-2 introduces the MBeans and Figure 3-2 illustrates where the MBeans are located in the configuration MBean hierarchy.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

	This MBean...	Configures...
	

JMSServerMBean

	
A JMS server is configuration entity that acts as a management container for targeted destination resources (queues and topics) in a JMS system module. A JMS server's primary responsibility for its destinations is to maintain information on what persistent store is used for any persistent messages that arrive on the destinations, and to maintain the states of durable subscribers created on the destinations. As a container for targeted destinations, any configuration or run-time changes to a JMS server can affect all of its destinations.

See "JMSServerMBean" in the MBean Reference for Oracle WebLogic Server.

	

JMSSystemResourceMBean

	
A JMS system resource is a resource whose definition is part of the system configuration rather than an application. The descriptor for the resource is linked through the WebLogic configuration file, but resides in a separate descriptor file.

See "JMSSystemResourceMBean" in the MBean Reference for Oracle WebLogic Server.

	

SubDeploymentMBean

	
Subdeployments enable administrators to deploy some resources in a JMS module to a JMS server and other JMS resources to a server instance or cluster. Standalone queues or topics can only be targeted to a single JMS server. Whereas, connection factories, uniform distributed destinations (UDDs), and foreign servers can be targeted to one or more JMS servers, one or more server instances, or to a cluster. Therefore, standalone queues or topics cannot be associated with a subdeployment if other members of the subdeployment are targeted to multiple JMS servers. However, UDDs can be associated with such subdeployments since the purpose of UDDs is to distribute its members to multiple JMS servers in a domain.

See "SubDeploymentMBean" in the MBean Reference for Oracle WebLogic Server.

	

JMSBean

	
The top of the JMS module bean tree. JMS modules all have a JMSBean as their root bean (a bean with no parent).

See "JMSBean" in the MBean Reference for Oracle WebLogic Server.

	

DestinationKeyBean

	
Defines a unique sort order that destinations can apply to arriving messages. By default messages are sorted in FIFO (first-in, first-out) order, which sorts ascending based on each message's unique JMSMessageID. However, you can configure destination key to use a different sorting scheme for a destination, such as LIFO (last-in, first-out).

See "DestinationKeyBean" in the MBean Reference for Oracle WebLogic Server.

	

DistributedQueueBean

	
Defines a set of queues that are distributed on multiple JMS servers, but which are accessible as a single, logical topic to JMS clients. Distributed queues can help with load balancing and distribution, and have many of the same properties as standalone queues.

See "DistributedQueueBean" in the MBean Reference for Oracle WebLogic Server.

	

DistributedTopicBean

	
Defines a set of topics that are distributed on multiple JMS servers, but which are accessible as a single, logical topic to JMS clients. Distributed topics can help with load balancing and distribution, and have many of the same properties as standalone topics.

See "DistributedTopicBean" in the MBean Reference for Oracle WebLogic Server.

	

ForeignServerBean

	
Defines foreign messaging providers or remote WebLogic Server instances that are not part of the current domain. This is useful when integrating with another vendor's JMS product, or when referencing remote instances of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

See "ForeignServerBean" in the MBean Reference for Oracle WebLogic Server.

	

JMSConnectionFactoryBean

	
Defines a set of connection configuration parameters that are used to create connections for JMS clients. Connection factories can configure properties of the connections returned to the JMS client, and also provide configurable options for default delivery, transaction, and message flow control parameters.

See "JMSConnectionFactoryBean" in the MBean Reference for Oracle WebLogic Server.

	

QueueBean

	
Defines a point-to-point destination type, which are used for asynchronous peer communications. A message delivered to a queue is distributed to only one consumer. Several aspects of a queue's behavior can be configured, including thresholds, logging, delivery overrides, and delivery failure options.

See "QueueBean" in the MBean Reference for Oracle WebLogic Server.

	

QuotaBean

	
Controls the allotment of system resources available to destinations. For example, the number of bytes a destination is allowed to store can be configured with a Quota resource.

See "QuotaBean" in the MBean Reference for Oracle WebLogic Server.

	

SAFRemoteContextBean

	
Defines the URL of the remote server instance or cluster where a JMS destination is exported from. It also contains the security credentials to be authenticated and authorized in the remote cluster or server.

See "SAFRemoteContextBean" in the MBean Reference for Oracle WebLogic Server.

	

SAFErrorHandlingBean

	
Defines the action to take when the SAF service fails to forward messages to remote destinations. Configuration options include an Error Handling Policy (Redirect, Log, Discard, or Always-Forward), a Log Format, and sending Retry parameters.

See "SAFErrorHandlingBean" in the MBean Reference for Oracle WebLogic Server.

	

SAFImportedDestinationsBean

	
Defines a collection of imported store-and-forward (SAF) destinations. A SAF destination is a representation of a queue or topic in a remote server instance or cluster that is imported into the local cluster or server instance, so that the local server instance or cluster can send messages to the remote server instance or cluster. All JMS destinations are automatically exported by default, unless the Export SAF Destination parameter on a destination is explicitly disabled. Each collection of SAF imported destinations is associated with a remote SAF context resource, and, optionally, a SAF error handling resource.

See "SAFImportedDestinationsBean" in the MBean Reference for Oracle WebLogic Server.

	

TemplateBean

	
Defines a set of default configuration settings for multiple destinations. If a destination specifies a template and does not explicitly set the value of a parameter, then that parameter will take its value from the specified template.

See "TemplateBean" in the MBean Reference for Oracle WebLogic Server.

	

TopicBean

	
Defines a publish/subscribe destination type, which are used for asynchronous peer communications. A message delivered to a topic is distributed to all topic consumers. Several aspects of a topic's behavior can be configured, including thresholds, logging, delivery overrides, delivery failure, and multicasting parameters.

See "TopicBean" in the MBean Reference for Oracle WebLogic Server.

	

UniformDistributedQueueBean

	
Defines a uniformly configured distributed queue, whose members have a consistent configuration of all distributed queue parameters, particularly in regards to weighting, security, persistence, paging, and quotas. These uniform distributed queue members are created on JMS servers based on the targeting of the uniform distributed queue. Uniform distributed queues can help with message load balancing and distribution, and have many of the same properties as standalone queues, including thresholds, logging, delivery overrides, and delivery failure parameters.

See "UniformDistributedQueueBean" in the MBean Reference for Oracle WebLogic Server.

	

UniformDistributedTopicBean

	
Defines a uniformly configured distributed topic, whose members have a consistent configuration of all uniform distributed queue parameters, particularly in regards to weighting, security, persistence, paging, and quotas. These uniform distributed topic members are created on JMS servers based on the targeting of the uniform distributed topic. Uniform distributed topics can help with message load balancing and distribution, and have many of the same properties as standalone topics, including thresholds, logging, delivery overrides, and delivery failure parameters.

See "UniformDistributedTopicBean" in the MBean Reference for Oracle WebLogic Server.

Figure 3-2 JMS Server and JMS System Resource MBeans

[image: Description of Figure 3-2 follows]

JDBC Resource Configuration

When you create a JDBC resource (data source or multi-data source) using the WebLogic Server Administration Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a JDBC module in the config/jdbc subdirectory of the domain directory, and adds a reference to the module in the domain's configuration file (config.xml).

Table 3-3 introduces the MBeans and Figure 3-3 illustrates where the MBeans are located in the configuration MBean hierarchy.

Table 3-3 MBeans for JDBC Resources

	This MBean...	Configures...
	

JDBCSystemResourceMBean

	
A container for the JavaBeans created from a data source module. However, all JMX access for a JDBC data source is through the JDBCSystemResourceMBean. You cannot directly access the individual JavaBeans created from the data source module.

See "JDBCSystemResourceMBean" in the MBean Reference for Oracle WebLogic Server.

	

JDBCDataSourceBean

	
The top of the JDBC data source bean tree. JDBC data sources all have a JDBCDataSourceBean as their root bean (a bean with no parent).

See "JDBCDataSourceBean" in the MBean Reference for Oracle WebLogic Server.

	

JDBCDriverParamsBean

	
Contains the driver parameters of a data source. Configuration parameters for the JDBC Driver used by a data source are specified using a driver parameters bean.

See "JDBCDriverParamsBean" in the MBean Reference for Oracle WebLogic Server.

	

JDBCConnectionPoolParamsBean

	
Contains the connection pool parameters of a data source. Configuration parameters for a data source's connection pool are specified using the connection pool parameters bean.

See "JDBCConnectionPoolBean" in the MBean Reference for Oracle WebLogic Server.

	

JDBCDataSourceParamsBean

	
Contains the basic usage parameters of a data source. Configuration parameters for the basic usage of a data source are specified using a data source parameters bean.

See "JDBCDataSourceParamsBean" in the MBean Reference for Oracle WebLogic Server.

	

JDBCXAParamsBean

	
Contains the XA-related parameters of a data source. Configuration parameters for a data source's XA-related behavior are specified using a XA parameters bean.

See "JDBCXAParamsBean" in the MBean Reference for Oracle WebLogic Server.

Figure 3-3 JDBC Resource MBeans

[image: Description of Figure 3-3 follows]

4 Accessing WebLogic Server MBeans with JMX

This chapter describes how to access WebLogic Server 12.1.3 MBeans from a JMX client. It explains how to set up the classpath for remote clients; how to make local and remote connections to MBean servers; and how to navigate MBean hierarchies.

This chapter includes the following sections:

	
Set Up the Classpath for Remote Clients

	
Make Remote Connections to an MBean Server

	
Make Local Connections to the Runtime MBean Server

	
Make Local Connections to the Domain Runtime MBean Server

	
Navigate MBean Hierarchies

	
Example: Printing the Name and State of Servers

	
Example: Monitoring Servlets

Set Up the Classpath for Remote Clients

If your JMX client runs in its own JVM (that is, a JVM that is not a WebLogic Server instance), include the following JAR file in the client's classpath:

WL_HOME\server\lib\wljmxclient.jar

In the preceding path, WL_HOME represents the directory in which you installed WebLogic Server.

This JAR contains Oracle's implementation of the HTTP and IIOP protocols. With Oracle's implementation, JMX clients send login credentials with their connection request and the WebLogic Server security framework authenticates the clients. Only authenticated clients can access MBeans that are registered in a WebLogic Server MBean server.

	
Note:

While Oracle recommends that you use its implementation of the HTTP and IIOP protocols, JMX clients can use the IIOP protocol that is defined in the standard JDK. See Remote Connections Using Only JDK Classes. If T3 protocol is specified, it is automatically converted by the client to use IIOP.

Make Remote Connections to an MBean Server

Each WebLogic Server domain includes three types of MBean servers, each of which provides access to different MBean hierarchies. See MBean Servers.

To connect to a WebLogic MBean server:

	
Describe the address of the MBean server by constructing a javax.management.remote.JMXServiceURL object.

Pass the following parameter values to the constructor (see JMXServiceURL in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/remote/JMXServiceURL.html):

	
One of the following values as the protocol for communicating with the MBean server:

t3, t3s, http, https, iiop, iiops

	
Listen address of the WebLogic Server instance that hosts the MBean server

	
Listen port of the WebLogic Server instance

	
Absolute JNDI name of the MBean server. The JNDI name must start with /jndi/ and be followed by one of the JNDI names described in Table 4-1.

Table 4-1 JNDI Names for WebLogic MBean Servers

	MBean Server	JNDI Name
	
Domain Runtime MBean Server

	

weblogic.management.mbeanservers.domainruntime

	
Runtime MBean Server

	

weblogic.management.mbeanservers.runtime

	
Edit MBean Server

	

weblogic.management.mbeanservers.edit

	
Construct a javax.management.remote.JMXConnector object. This object contains methods that JMX clients use to connect to MBean servers.

The constructor method for JMXConnector is:

javax.management.remote.JMXConnectorFactory.
connector(JMXServiceURL serviceURL, Map<String,?> environment)

Pass the following parameter values to the constructor (see JMXConnectorFactory in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/remote/JMXConnectorFactory.html):

	
The JMXServiceURL object you created in the previous step.

	
A hash map that contains the following name-value pairs:

javax.naming.Context.SECURITY_PRINCIPAL, admin-user-name

javax.naming.Context.SECURITY_CREDENTIALS, admin-user-password

javax.management.remote.JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote"

The weblogic.management.remote package defines the protocols that can be used to connect to the WebLogic MBean servers. Remote JMX clients must include the classes in this package on their classpath. See Set Up the Classpath for Remote Clients.

Optionally include the following name-value pair in the hash map:

jmx.remote.x.request.waiting.timeout, milliseconds

where milliseconds is a java.lang.Long object that contains the number of milliseconds that your JMX client waits for the invocation of an MBean-server method to return. If a method does not return by the end of the timeout period, the client moves to its next set of instructions. By default, a client waits indefinitely for a method to return; if the MBean server is unable to complete an invocation, the JMX client will hang indefinitely.

	
Connect to the WebLogic MBean server by invoking the JMXConnector.getMBeanServerConnection() method.

The method returns an object of type javax.management.MBeanServerConnection.

The MBeanServerConnection object is your connection to the WebLogic MBean server. You can use it for local and remote connections. See MBeanServerConnection in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServerConnection.html.

	
Oracle recommends that when your client finishes its work, close the connection to the MBean server by invoking the JMXConnector.close() method.

Example: Connecting to the Domain Runtime MBean Server

Note the following about the code in Example 4-1:

	
The class uses global variables, connection and connector, to represent the connection to the MBean server. The initConnection() method, which assigns the value to the connection and connector variables, should be called only once per class instance to establish a single connection that can be reused within the class.

	
The initConnection() method takes the username and password (along with the server's listen address and listen port) as arguments that are passed when the class is instantiated. Oracle recommends this approach because it prevents your code from containing unencrypted user credentials. The String objects that contain the arguments will be destroyed and removed from memory by the JVM's garbage collection routine.

	
Because the client sets the jmx.remote.x.request.waiting.timeout environment parameter to 10000, all of its invocations of MBean server methods will time out if the method does not return within 10000 milliseconds of being invoked.

	
When the class finishes its work, it invokes JMXConnector.close() to close the connection to the MBean server. (See JMXConnector in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/remote/JMXConnector.html.)

Example 4-1 Connecting to the Domain Runtime MBean Server

public class MyConnection {

 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;
 /*
 * Initialize connection to the Domain Runtime MBean Server.
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {

 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);

 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 h.put("jmx.remote.x.request.waiting.timeout", new Long(10000));
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 MyConnection c= new MyConnection();
 initConnection(hostname, portString, username, password);
...
 connector.close();
 }
}

Best Practices: Choosing an MBean Server

A WebLogic Server domain maintains three types of MBean servers, each of which fulfills a specific function. Access MBeans through the MBean server that supports the task you are trying to complete:

	
To modify the configuration of the domain, use the Edit MBean Server.

	
To monitor changes to the pending hierarchy of configuration MBeans, use the Edit MBean Server.

	
To monitor only active configuration MBeans (and not run-time MBeans), use a Runtime MBean Server.

Monitoring through a Runtime MBean Server requires less memory and network traffic than monitoring through the Domain Runtime MBean Server. (WebLogic Server does not initialize the Domain Runtime MBean Server until a client requests a connection to it.)

In most cases, all server instances in the domain have the same set of configuration data and it therefore does not matter whether you monitor the Runtime MBean Server on the Administration Server or on a Managed Server. However, if you make a change that a server cannot consume until it is restarted, the server will no longer accept any changes and its configuration data could become outdated. In this case, monitoring this server's Runtime MBean Server indicates only the configuration for the specific server instance. To understand the process of changing a WebLogic Server domain and activating the changes, see "Managing Configuration Changes" in Understanding Domain Configuration for Oracle WebLogic Server.

	
If your client monitors run-time MBeans for multiple servers, or if your client runs in a separate JVM, Oracle recommends that you connect to the Domain Runtime MBean Server on the Administration Server instead of connecting separately to each Runtime MBean Server on each server instance in the domain.

If you register a JMX listener and filter with an MBean in the Domain Runtime MBean Server, the JMX filter runs in the same JVM as the MBean it monitors. For example, if you register a filter with an MBean on a Managed Server, the filter runs on the Managed Server and forwards only messages that satisfy the filter criteria to the listener.

In general, code that uses the Domain Runtime MBean Server is easier to maintain and is more secure for the following reasons:

	
Your code only needs to construct a single URL for connecting to the Domain Runtime MBean Server on the Administration Server. Thereafter, the code can look up values for all server instances and optionally filter the results.

	
If your code uses the Runtime MBean Server to read MBean values on multiple server instances, it must construct a URL for each server instance, each of which has a unique listen address/listen port combination.

	
You can route all administrative traffic in a WebLogic Server domain through the Administration Server's secured administration port, and you can use a firewall to prevent connections to Managed Server administration ports from outside the firewall.

The trade off for directing all JMX requests through the Domain Runtime MBean Server is a slight degradation in performance due to network latency and increased memory usage. Connecting directly to each Managed Servers's Runtime MBean Server to read MBean values eliminates the network hop that the Domain Runtime MBean Server makes to retrieve a value from a Managed Server. However, for most network topologies and performance requirements, the simplified code maintenance and enhanced security that the Domain Runtime MBean Server enables is preferable.

	
Note:

When JMX notifications are added to MBeans, the Domain Runtime MBean Server can consume large amounts of memory. When JMX notifications are used, two cases exist that cause the Administration Server to keep copies of all JMX object names registered in all Runtime MBean Servers running in all Managed Servers in the domain:
	
At the WebLogic Server level, to simulate the unregister MBean notifications when a Managed Server shuts down.

	
At the JDK JMX client notification layer.

The likelihood of encountering this issue grows when both of the following conditions exist:

	
EM Fusion Middleware Control is being used to manage large domains, as it adds notification listeners to the Domain Runtime MBean Server.

	
Fusion Middleware products that significantly increase the number of JMX runtime MBeans are included in the domain. This would include any product with MBeans that are registered in WebLogic Server Runtime MBean Server instances running in the domain; that is, in the Administration Server as well as all Managed Servers. (These products include Coherence, SOA Suite, OSB, and so on.)

To eliminate this particular scaling issue, disable the managed-server-notifications-enabled attribute. This configuration attribute disables the ability to define notifications on MBeans that are contained in the Managed Servers Runtime MBean Servers (these MBeans contain a Location=key in the ObjectName).

If Managed Server notifications are disabled, then the two sets of ObjectNames for MBeans contained in the WebLogic Server and JDK components will not be kept. Notifications listeners can still be defined on the MBeanServerDelegate and on MBeans contained in the local Domain Runtime MBean Server. However, notifications listeners cannot be added to the non-local MBeans.

The managed-server-notifications-enabled attribute can be set using WLST as follows:

edit()
startEdit()
cd("JMX/domain-name")
cmo.setManagedServerNotificationsEnabled(false)
activate()

Figure 4-1 Domain Runtime MBean Server versus Runtime MBean Server

[image: Description of Figure 4-1 follows]

Remote Connections Using Only JDK Classes

Oracle recommends that you use WebLogic Server classes to connect from remote JMX clients. However, it is possible for remote JMX clients to connect to a WebLogic Server JMX agent using only the classes in the JDK. To do so:

	
If wljmxclient.jar and wlclient.jar are not in the client classpath:

	
Enable the IIOP protocol for the WebLogic Server instance that hosts your MBeans.

	
Configure the default IIOP user to be a WebLogic Server user with Administrator privileges.

See "Enable and Configure IIOP" in Oracle WebLogic Server Administration Console Online Help.

If wljmxclient.jar and wlclient.jar are in the client classpath, there is no need to enable the default IIOP user. Go to Step 2.

	
Notes:

wlclient.jar is included in wljmxclient.jar's MANIFEST ClassPath entry, so wlclient.jar and wljmxclient.jar need to be in the same directory, or both jars need to be specified on the classpath.
Ensure that weblogic.jar or wlfullclient.jar is not included in the classpath if wljmxclient.jar is included. Only the thin client wljmxclient.jar/wlclient.jar or the thick client wlfullclient.jar should be used, but not a combination of both.

	
In your JMX client, construct a javax.management.JMXConnector object as follows:

String hostname = "WLS-host"
int port = WLS-port
String protocol = "iiop";
String jndiroot= new String("/jndi/iiop://" + hostname + ":" +
 port + "/");
String mserver = "MBean-server-JNDI-name";
JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);
Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
connector = JMXConnectorFactory.connect(serviceURL, h);

where WLS-host and WLS-port are the listen address and listen port of a WebLogic Server instance and MBean-server-JNDI-name is one of the values listed in Table 4-1.

Note that the hash table you create does not include the name of a protocol package. By leaving this value as null, the JMX client uses the protocol definitions from the com.sun.jmx.remote.protocol package, which is in the JDK.

Make Local Connections to the Runtime MBean Server

Local clients can access a WebLogic Server instance's Runtime MBean Server through the JNDI tree instead of constructing a JMXServiceURL object.

	
Note:

Local clients can also access a WebLogic Server's Domain Runtime MBean Server through the JNDI tree, as described in Make Local Connections to the Domain Runtime MBean Server.

When accessed from JNDI, the Runtime MBean Server returns its javax.management.MBeanServer interface. This interface contains all of the methods in the MBeanServerConnection interface plus additional methods such as registerMBean(), which a local process can use to register custom MBeans. (See MBeanServer in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServer.html.)

If the classes for the JMX client are located in a Java EE module, such as an EJB or Web application, then the JNDI name for the Runtime MBeanServer is:

java:comp/env/jmx/runtime

For example:

InitialContext ctx = new InitialContext();
server = (MBeanServer)ctx.lookup("java:comp/env/jmx/runtime");

If the classes for the JMX client are not part of a Java EE module, then the JNDI name for the Runtime MBean Server is:

java:comp/jmx/runtime

Make Local Connections to the Domain Runtime MBean Server

Local clients can also access a WebLogic Server instance's Domain Runtime MBean Server through the JNDI tree instead of constructing a JMXServiceURL object.

When accessed from JNDI, the Domain Runtime MBean Server returns its javax.management.MBeanServer interface. This interface contains all of the methods in the MBeanServerConnection interface plus additional methods such as registerMBean(), which a local process can use to register custom MBeans, and other methods such as getMBeanCount(), instatiate(), and getClassLoader(). (See MBeanServer in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServer.html.)

	
Note:

As a best practice, Oracle recommends that you use the Domain Runtime MBean Server only for MBeans that perform domain-wide operations. You should ensure that any MBean processing and network activity do not slow down the Administration Server and prevent it from processing administration operations.

If the classes for the JMX client are located in a Java EE module, such as an EJB or Web application, then the JNDI name for the Domain Runtime MBeanServer is:

java:comp/env/jmx/domainRuntime

For example:

InitialContext ctx = new InitialContext();
server = (MBeanServer)ctx.lookup("java:comp/env/jmx/domainRuntime");

If the classes for the JMX client are not part of a Java EE module, then the JNDI name for the Domain Runtime MBean Server is:

java:comp/jmx/domainRuntime

The Domain Runtime MBean Server is present only on the Administration Server. Because the ctx.lookup() call returns a reference to the local MBeanServer, the lookup method can only be called when running on the Administration Server. If called when running on a Managed Server, a NameNotFound exception is thrown.

Navigate MBean Hierarchies

WebLogic Server organizes its MBeans in a hierarchical data model. (See WebLogic Server MBean Data Model.) In this model, all parent MBeans include attributes that contain the object names of their children. You use the child's object name in standard JMX APIs to get or set values of the child MBean's attributes or invoke its methods.

To navigate the WebLogic Server MBean hierarchy:

	
Initiate a connection to an MBean server.

See the previous section, Make Remote Connections to an MBean Server.

Initiating the connection returns an object of type

javax.management.MBeanServerConnection

	
Obtain the object name for an MBean at the root of an MBean hierarchy by invoking the MBeanServerConnection.getAttribute(ObjectName object-name, String attribute) method where:

	
object-name represents the object name of the service MBean that is registered in the MBean server. (See Service MBeans.)

Table 2-3 describes the type of service MBeans that are available in each type of MBean server.

	
attribute represents the name of a service MBean attribute that contains the root MBean.

	
Successively invoke code similar to the following:

ObjectName on =
MBeanServerConnection.getAttribute(object-name, attribute)

In the preceding syntax:

	
object-name represents the object name of the current node (MBean) in the MBean hierarchy.

	
attribute represents the name of an attribute in the current MBean that contains one or more instances of a child MBean. If the attribute contains multiple children, assign the output to an object name array, ObjectName[].

To determine an MBean's location in an MBean hierarchy, refer to the MBean's description in MBean Reference for Oracle WebLogic Server. For each MBean, the MBean Reference for Oracle WebLogic Server lists the parent MBean that contains the current MBean's factory methods. For an MBean whose factory methods are not public, the MBean Reference for Oracle WebLogic Server lists other MBeans from which you can access the current MBean.

Example: Printing the Name and State of Servers

The code example in Example 4-2 connects to the Domain Runtime MBean Server and uses the DomainRuntimeServiceMBean to get the object name for each ServerRuntimeMBean in the domain. Then it retrieves and prints the value of each server's ServerRuntimeMBean Name and State attributes.

Note the following about the code in Example 4-2:

	
In addition to the connection and connector global variables, the class assigns the object name for the WebLogic Server service MBean to a global variable. Methods within the class will use this object name frequently, and once it is defined it does not need to change.

	
The printServerRuntimes() method gets the value of the DomainRuntimeServiceMBean ServerRuntimes attribute, which contains an array of all ServerRuntimeMBean instances in the domain. (See "DomainRuntimeServiceMBean" in MBean Reference for Oracle WebLogic Server.)

Example 4-2 Example: Print the Name and State of Servers

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class PrintServerState {

 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;

 // Initializing the object name for DomainRuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(
 "com.bea:Name=DomainRuntimeService,Type=weblogic.management.
 mbeanservers.domainruntime.DomainRuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Domain Runtime MBean Server
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname,
 port, jndiroot + mserver);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 /*
 * Print an array of ServerRuntimeMBeans.
 * This MBean is the root of the runtime MBean hierarchy, and
 * each server in the domain hosts its own instance.
 */
 public static ObjectName[] getServerRuntimes() throws Exception {
 return (ObjectName[]) connection.getAttribute(service,
 "ServerRuntimes");
 }

 /*
 * Iterate through ServerRuntimeMBeans and get the name and state
 */
 public void printNameAndState() throws Exception {
 ObjectName[] serverRT = getServerRuntimes();
 System.out.println("got server runtimes");
 int length = (int) serverRT.length;
 for (int i = 0; i < length; i++) {
 String name = (String) connection.getAttribute(serverRT[i],
 "Name");
 String state = (String) connection.getAttribute(serverRT[i],
 "State");
 System.out.println("Server name: " + name + ". Server state: "
 + state);
 }
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 PrintServerState s = new PrintServerState();
 initConnection(hostname, portString, username, password);
 s.printNameAndState();
 connector.close();
 }
}

Example: Monitoring Servlets

Each servlet in a Web application provides instance of ServletRuntimeMBean which contains information about the servlet's run-time state. (See "ServletRuntimeMBean" in MBean Reference for Oracle WebLogic Server.)

In the WebLogic Server data model, the path to a ServletRuntimeMBean is as follows:

	
The Domain Runtime MBean Server (for all servlets on all servers in the domain), or the Runtime MBean Server on a specific server instance.

	
DomainRuntimeServiceMBean or RuntimeServiceMBean, ServerRuntimes attribute.

	
ServerRuntimeMBean, ApplicationRuntimes attribute.

	
ApplicationRuntimeMBean, ComponentRuntimes attribute.

The ComponentRuntimes attribute contains many types of component run-time MBeans, one of which is WebAppComponentRuntimeMBean. When you get the value of this attribute, you use the child MBean's Type attribute to get a specific type of component run-time MBean.

	
WebAppComponentRuntimeMBean, ServletRuntimes attribute.

The code in Example 4-3 navigates the hierarchy described in the previous paragraphs and gets values of ServletRuntimeMBean attributes.

Example 4-3 Monitoring Servlets

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class MonitorServlets {
 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;

 // Initializing the object name for DomainRuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(
 "com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanser
 vers.domainruntime.DomainRuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Domain Runtime MBean Server
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";

 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname,
 port, jndiroot + mserver);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 /*
 * Get an array of ServerRuntimeMBeans
 */
 public static ObjectName[] getServerRuntimes() throws Exception {
 return (ObjectName[]) connection.getAttribute(service,
 "ServerRuntimes");
 }

 /*
 * Get an array of WebAppComponentRuntimeMBeans
 */
 public void getServletData() throws Exception {
 ObjectName[] serverRT = getServerRuntimes();
 int length = (int) serverRT.length;
 for (int i = 0; i < length; i++) {
 ObjectName[] appRT =
 (ObjectName[]) connection.getAttribute(serverRT[i],
 "ApplicationRuntimes");
 int appLength = (int) appRT.length;
 for (int x = 0; x < appLength; x++) {
 System.out.println("Application name: " +
 (String)connection.getAttribute(appRT[x], "Name"));
 ObjectName[] compRT =
 (ObjectName[]) connection.getAttribute(appRT[x],
 "ComponentRuntimes");
 int compLength = (int) compRT.length;
 for (int y = 0; y < compLength; y++) {
 System.out.println(" Component name: " +
 (String)connection.getAttribute(compRT[y], "Name"));
 String componentType =
 (String) connection.getAttribute(compRT[y], "Type");
 System.out.println(componentType.toString());
 if (componentType.toString().equals("WebAppComponentRuntime")){
 ObjectName[] servletRTs = (ObjectName[])
 connection.getAttribute(compRT[y], "Servlets");
 int servletLength = (int) servletRTs.length;
 for (int z = 0; z < servletLength; z++) {
 System.out.println(" Servlet name: " +
 (String)connection.getAttribute(servletRTs[z],
 "Name"));
 System.out.println(" Servlet context path: " +
 (String)connection.getAttribute(servletRTs[z],
 "ContextPath"));
 System.out.println(" Invocation Total Count : " +
 (Object)connection.getAttribute(servletRTs[z],
 "InvocationTotalCount"));
 }
 }
 }
 }
 }
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 MonitorServlets s = new MonitorServlets();
 initConnection(hostname, portString, username, password);
 s.getServletData();
 connector.close();
 }
}

5 Managing a Domain's Configuration with JMX

This chapter describes how to use JMX to manage a WebLogic Server 12.1.3 domain's configuration. It explains how to edit MBean attributes; how to list and undo changes; how to track the activation of changes; and how to set and get encrypted MBean attribute values. It also includes best practices for editing and handling exceptions.

This chapter includes the following sections:

	
Editing MBean Attributes: Main Steps

	
Listing and Undoing Changes

	
Tracking the Activation of Changes

	
Managing Locks

	
Best Practices: Recommended Pattern for Editing and Handling Exceptions

	
Setting and Getting Encrypted Values

To understand the process of changing a WebLogic Server domain and activating the changes, see "Managing Configuration Changes" in Understanding Domain Configuration for Oracle WebLogic Server.

Editing MBean Attributes: Main Steps

To edit MBean attributes:

	
Start an Edit Session.

All edits to MBean attributes occur within the context of an edit session, and within each WebLogic Server domain only one edit session can be active at a time. Once a user has started an edit session, WebLogic Server locks other users from accessing the pending configuration MBean hierarchy. See Managing Locks.

	
Change Attributes or Create New MBeans.

Changing an MBean attribute or creating a new MBean updates the in-memory hierarchy of pending configuration MBeans. If you end your edit session before saving these changes, the unsaved changes will be discarded.

	
Save Changes to the Pending Configuration Files.

When you are satisfied with your changes to the in-memory hierarchy, save them to the domain's pending configuration files. Any changes that you save remain in the pending configuration files until they have been activated or explicitly reverted. If you end your edit session before activating the saved changes, you or someone else can activate them in a subsequent edit session.

You can iteratively make changes and save changes before activating them. For example, you can create and save a server. Then you can configure the new server's listen port and listen address and save those changes. Organizing your code in this way can facilitate correcting any validation errors.

	
Activate Your Saved Changes.

When you activate your changes, WebLogic Server copies the saved, pending configuration files to all servers in the domain. Each server evaluates the changes and indicates whether it can consume them. If it can, then it updates its active configuration files and in-memory hierarchy of configuration MBeans.

	
Restart any server instances that have been updated with changes that require a server restart.

For an example of editing MBeans and activating the edits, see Example: Changing the Administration Port.

Start an Edit Session

To start an edit session:

	
Initiate a connection to the Edit MBean Server.

The connection returns an object of type java.management.MBeanServerConnection.

See Make Remote Connections to an MBean Server.

	
Get the object name for ConfigurationManagerMBean.

ConfigurationManagerMBean provides methods to start and stop edit sessions, and save, undo, and activate configuration changes. (See "ConfigurationManagerMBean" in MBean Reference for Oracle WebLogic Server.)

Each domain has only one instance of ConfigurationManagerMBean and it is contained in the EditServiceMBean ConfigurationManager attribute. EditServiceMBean is your entry point for all edit operations. It has a simple, fixed object name and contains attributes and operations for accessing all other MBeans in the Edit MBean Server.

To get the ConfigurationManagerMBean object name, use the following method:

MBeanServerConnection.getAttribute(
 ObjectName object-name, String attribute)

In the preceding method syntax:

	
object-name represents the literal "com.bea:Name=EditService,Type=weblogic.management.mbeanservers.edit.EditServiceMBean", which is the object name of EditServiceMBean.

	
attribute represents the literal "ConfigurationManager", which is the name of the attribute in EditServiceMBean that contains ConfigurationManagerMBean.

	
Start an edit session.

To start an edit session, invoke the ConfigurationManagerMBean startEdit(int waitTime, int timeout) operation, where:

	
waitTime represents the number of milliseconds ConfigurationManagerMBean waits to establish a lock on the edit MBean hierarchy. You cannot establish a lock if other edits are in progress unless you have administrator privileges (see Managing Locks).

	
timeout represents the number of milliseconds you have to complete your edit session. If the time expires before you save or activate your edits, all of your unsaved changes are discarded.

The startEdit operation returns either of the following:

	
If it cannot establish a lock on the edit tree within the amount of time that you specified, it throws weblogic.management.mbeanservers.edit.EditTimedOutException.

	
If it successfully locks the edit tree, it returns an object name for DomainMBean, which is the root of the edit MBean hierarchy.

Change Attributes or Create New MBeans

To change the attribute values of existing MBeans, create new MBeans, or delete MBeans:

	
Navigate the hierarchy of the edit tree and retrieve an object name for the MBean that you want to edit. To create or delete MBeans, retrieve an object name for the MBean that contains the appropriate factory methods.

See Make Remote Connections to an MBean Server.

	
To change the value of an MBean attribute, invoke the MBeanServerConnection.setAttribute(object-name, attribute) method, where:

	
object-name represents the object name of the MBean that you want to edit.

	
attribute represents a javax.management.Attribute object, which contains the name of the MBean attribute that you want to change and its new value.

To create an MBean, invoke the MBean's create method. For example, the factory method to create an instance of ServerMBean is createServer(String name) in DomainMBean. In MBean Reference for Oracle WebLogic Server, each MBean describes the location of its factory methods. (See "ServerMBean".)

	
(Optional) If you organize your edits into multiple steps, consider validating your changes after each step by invoking the ConfigurationManagerMBean validate() operation.

The validate method verifies that all unsaved changes satisfy dependencies between MBean attributes and makes other checks that cannot be made at the time that you set the value of a single attribute.

If it finds validation errors, the validate() operation throws an exception of type weblogic.management.mbeanservers.edit.ValidationException. See Exception Types Thrown by Edit Operations.

Validating is optional because the save() operation also validates changes before saving.

Save Changes to the Pending Configuration Files

Save your changes by invoking the ConfigurationManagerMBean save() operation.

Activate Your Saved Changes

To activate your saved changes throughout the domain:

	
Invoke the ConfigurationManagerMBean activate(long timeout) operation where timeout specifies how many milliseconds the operation has to complete.

The activate operation returns an object name for an instance of ActivationTaskMBean, which contains information about the activation request. See Listing and Undoing Changes.

When the activate operation succeeds or times out, it releases your lock on the editable MBean hierarchy.

	
Close your connection to the MBean server by invoking JMXConnector.close().

Example: Changing the Administration Port

The code example in Example 5-1 changes the context path that you use to access the WebLogic Server Administration Console for a domain. This behavior is defined by the DomainMBean ConsoleContextPath attribute.

Note the following about the code example:

	
For information on how the class connects to the Edit MBean Server, see Make Remote Connections to an MBean Server.

	
To simplify the code for learning purposes, exception handling in Example 5-1 is minimal. See Best Practices: Recommended Pattern for Editing and Handling Exceptions.

Example 5-1 Example: Changing the Administration Console's Context Path

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

import javax.management.Attribute;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class EditWLSMBeans {
 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;

 // Initializing the object name for EditServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(
 "com.bea:Name=EditService,Type=weblogic.management.mbeanservers.
 edit.EditServiceMBean");
 } catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /**
 * --
 * Methods to start an edit session.
 * NOTE: Error handling is minimal to help you see the
 * main steps in editing MBeans. Your code should
 * include logic to catch and process exceptions.
 * --
 */

 /*
 * Initialize connection to the Edit MBean Server.
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {

 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.edit";

 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);

 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 /**
 * Start an edit session.
 */
 public ObjectName startEditSession() throws Exception {
 // Get the object name for ConfigurationManagerMBean.
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");

 // Instruct MBeanServerConnection to invoke
 // ConfigurationManager.startEdit(int waitTime int timeout).
 // The startEdit operation returns a handle to DomainMBean, which is
 // the root of the edit hierarchy.
 ObjectName domainConfigRoot = (ObjectName)
 connection.invoke(cfgMgr,"startEdit",
 new Object[] { new Integer(60000),
 new Integer(120000) }, new String[] { "java.lang.Integer",
 "java.lang.Integer" });
 if (domainConfigRoot == null) {
 // Couldn't get the lock
 throw new Exception("Somebody else is editing already");
 }
 return domainConfigRoot;

 /**
 * --
 * Methods to change MBean attributes.
 * --
 */

 /**
 * Modify the DomainMBean's ConsoleContextPath attribute.
 */
 public void editConsoleContextPath(ObjectName cfgRoot) throws Exception {
 // The calling method passes in the object name for DomainMBean.
 // This method only needs to set the value of an attribute
 // in DomainMBean.
 Attribute adminport = new Attribute("ConsoleContextPath", new String(
 "secureConsoleContext"));
 connection.setAttribute(cfgRoot, adminport);
 System.out.println("Changed the Administration Console context path to " +
 "secureConsoleContext");
 }

 /**
 * --
 * Method to activate edits.
 * --
 */
 public ObjectName activate() throws Exception {
 // Get the object name for ConfigurationManagerMBean.
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 // Instruct MBeanServerConnection to invoke
 // ConfigurationManager.activate(long timeout).
 // The activate operation returns an ActivationTaskMBean.
 // You can use the ActivationTaskMBean to track the progress
 // of activating changes in the domain.
 ObjectName task = (ObjectName) connection.invoke(cfgMgr, "activate",
 new Object[] { new Long(120000) }, new String[] { "java.lang.Long" });
 return task;
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 EditWLSMBeans ewb = new EditWLSMBeans();

 // Initialize a connection with the MBean server.
 initConnection(hostname, portString, username, password);

 // Get an object name for the Configuration Manager.
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");

 // Start an edit session.
 ObjectName cfgRoot = ewb.startEditSession();
 // Edit the server log MBeans.
 ewb.editConsoleContextPath(cfgRoot);

 // Save and activate.
 connection.invoke(cfgMgr, "save", null, null);
 ewb.activate();

 // Close the connection with the MBean server.
 connector.close();
 }
}

Exception Types Thrown by Edit Operations

Table 5-1 describes all of the exception types that WebLogic Server can throw during edit operations. When WebLogic Server throws such an exception, the MBean server wraps the exception in javax.management.MBeanException. (See MBeanException in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanException.html.)

Table 5-1 Exception Types Thrown by Edit Operations

	Exception Type	Thrown When
	

EditTimedOutException

	
The request to start an edit session times out.

	

NotEditorException

	
You attempt to edit MBeans without having a lock or when an administrative user cancels your lock and starts an edit session.

	

ValidationException

	
You set an MBean attribute's value to the wrong data type, outside an allowed range, not one of a specified set of values, or incompatible with dependencies in other attributes.

Listing and Undoing Changes

The following sections describe working with changes that you have made during an edit session:

	
List Unsaved Changes

	
List Unactivated Changes

	
List Changes in the Current Activation Task

	
Undoing Changes

WebLogic Server describes changes in a Change object, which is of type javax.management.openmbean.CompositeType. See CompositeType in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/CompositeType.html.

Through JMX, you can access information about the changes to a domain's configuration that have occurred during the current server session only. WebLogic Server maintains an archive of configuration files, but the archived data and comparisons of archive versions is not available through JMX.

List Unsaved Changes

For each change that you make to an MBean attribute, WebLogic Server creates a Change object which contains information about the change. You can access these objects from the ConfigurationManagerMBean Changes attribute until you save the changes. See "ConfigurationManagerMBean" in MBean Reference for Oracle WebLogic Server.

Any unsaved changes are discarded when your edit session ends.

To list unsaved changes:

	
Start an edit session and change at least one MBean attribute.

	
Get the value of the ConfigurationManagerMBean Changes attribute and assign the output to a variable of type Object[].

	
For each object in the array, invoke Object.toString() to output a description of the change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast each item in the array as a CompositeType and invoke CompositeType methods on the change. See CompositeType in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/CompositeType.html.

The code in Example 5-2 creates a method that lists unsaved changes. It assumes that the calling method has already established a connection to the Edit MBean Server.

Example 5-2 Example Method that Lists Unsaved Changes

public void listUnsaved() throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 Object[] list = (Object[])connection.getAttribute(cfgMgr, "Changes");
 int length = (int) list.length;
 for (int i = 0; i < length; i++) {
 System.out.println("Unsaved change: " + list[i].toString());
 }
}

List Unactivated Changes

When anyone saves changes, WebLogic Server persists the changes in the pending configuration files. The changes remain in these files, even across multiple editing sessions, unless a user who has started an edit session invokes the ConfigurationManagerMBean undoUnactivatedChanges() operation, which reverts all unactivated changes from the pending files.

The ConfigurationManagerMBean UnactivatedChanges attribute contains Change objects for both unsaved changes and changes that have been saved but not activated. (There is no attribute that contains only saved but unactivated changes.) See "ConfigurationManagerMBean Unactivated Changes" in MBean Reference for Oracle WebLogic Server.

To list changes that you have saved in the current editing session but not activated, or changes that your or others have saved in previous editing sessions but not activated:

	
Start an edit session and change at least one MBean attribute.

	
Get the value of the ConfigurationManagerMBean UnactivatedChanges attribute and assign the output to a variable of type Object[].

	
For each object in the array, invoke Object.toString() to output a description of the change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast each item in the array as a CompositeType and invoke CompositeType methods on the change. See CompositeType in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/CompositeType.html.

The code in Example 5-3 creates a method that lists unactivated changes. It assumes that the calling method has already established a connection to the Edit MBean Server.

Example 5-3 Example Method that Lists Unactivated Changes

public void listUnactivated() throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 Object[] list = (Object[])connection.getAttribute(cfgMgr,
 "UnactivatedChanges");
 int length = (int) list.length;
 for (int i = 0; i < length; i++) {
 System.out.println("Unactivated changes: " + list[i].toString());
 }
}

List Changes in the Current Activation Task

When you activate changes, WebLogic Server creates an instance of ActivationTaskMBean, which contains one Change object for each change that is being activated. You can access these ActivationTaskMBeans from either of the following:

	
The ConfigurationManagerMBean activate() method returns an object name for the ActivationTaskMBean that describes the current activation task.

	
The ConfigurationManagerMBean CompletedActivationTasks attribute can potentially contain a list of all ActivationTaskMBean instances that have been created during the current Administration Server instantiation. See Listing All Activation Tasks Stored in Memory.

To list changes in the current activation task only:

	
Start an edit session.

	
Assign the output of the activate operation to an instance variable of type javax.management.ObjectName.

	
Get the value of the ActivationTaskMBean Changes attribute. and assign the output to a variable of type Object[].

	
For each object in the array, invoke Object.toString() to output a description of the change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast each item in the array as a CompositeType and invoke CompositeType methods on the change. See CompositeType in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/CompositeType.html.

The code in Example 5-4 creates a method that lists all changes activated in the current editing session. It assumes that the calling method has already established a connection to the Edit MBean Server.

Example 5-4 Example Method that Lists Changes in the Current Activation Task

public void activateAndList()
 throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 ObjectName task = (ObjectName) connection.invoke(cfgMgr, "activate",
 new Object[] { new Long(120000) }, new String[] { "java.lang.Long" });
 Object[] changes = (Object[])connection.getAttribute(task, "Changes");
 int i = (int) changes.length;
 for (int i = 0; i< i; i++) {
 System.out.println("Changes activated: " + changes[i].toString());
 }
}

Undoing Changes

ConfigurationManagerMBean provides two operations for undoing changes made during an editing session:

	
undo

Reverts unsaved changes.

	
undoUnactivatedChanges

Reverts all changes, saved or unsaved, that have not yet been activated. If other users have saved changes in a previous editing session but not activated those changes, invoking the ConfigurationManagerMBean undoUnactivatedChanges() operation reverts those changes as well.

After you invoke this method, the pending configuration files are identical to the working configuration files that the active servers use.

To undo changes, start an edit session and invoke the ConfigurationManagerMBean undo or undoUnactivatedChanges operation.

For example:

connection.invoke(cfgMgr, "undo", null, null);

Tracking the Activation of Changes

In addition to maintaining a list of changes, each ActivationTaskMBean that WebLogic Server creates when you invoke the activate operation describes which user activated the changes, the status of the activation task, and the time at which the changes were activated.

The Administration Server maintains instances of ActivationTaskMBean in memory only; they are not persisted and are destroyed when you shut down the Administration Server. Because the ActivationTaskMBean instances contain a list of Change objects (each of which describes a single change to an MBean attribute), they use a significant amount of memory. To save memory, by default the Administration Server maintains only a few of the most recent ActivationTaskMBean instances in memory. To change the default, increase the value of the ConfigurationManagerMBean CompletedActivationTasksCount attribute.

The following sections describe working with instances of ActivationTaskMBean:

	
Listing the Status of the Current Activation Task

	
Listing All Activation Tasks Stored in Memory

	
Purging Completed Activation Tasks from Memory

Listing the Status of the Current Activation Task

When you invoke the activate operation, WebLogic Server returns an ActivationTaskMBean instance to represent the activation task.

The ActivationTaskMBean State attribute describes the status of the activation task. This attribute stores an int value and ActivationTaskMBean defines constants for each of the int values. See "ActivationTaskMBean" in MBean Reference for Oracle WebLogic Server.

To list the status of the current activation task:

	
Start an edit session and change at least one MBean attribute.

	
Invoke the ConfigurationManagerMBean activate(long timeout) operation and assign the output to a variable of type ActivationTaskMBean.

	
Get the value of the ActivationTaskMBean State attribute.

Listing All Activation Tasks Stored in Memory

The ActivationTaskMBean that the activate operation returns describes only a single activation task. The Administration Server keeps this ActivationTaskMBean in memory until you purge it (see Purging Completed Activation Tasks from Memory) or the number of activation tasks exceeds the value of the ConfigurationManagerMBean CompletedActivationTasksCount attribute.

To access all ActivationTaskMBean instances that are currently stored in memory (see Example 5-5):

	
Connect to the Edit MBean Server. (You do not need to start an edit session.)

	
Get the value of the ConfigurationManagerMBean CompletedActivationTasks attribute and assign the output to a variable of type Object[].

	
(Optional) For each object in the array, get and print the value of ActivationTaskMBean attributes such as User and State.

See "ActivationTaskMBean" in MBean Reference for Oracle WebLogic Server.

	
(Optional) For each object in the array, get the value of the Changes attribute. Invoke Object.toString() to output the value of the Change object.

Example 5-5 Example Method that Lists All Activation Tasks in Memory

public void listActivated() throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 ObjectName[] list = (ObjectName[])connection.getAttribute(cfgMgr,
 "CompletedActivationTasks");
 System.out.println("Listing completed activation tasks.");
 int length = (int) list.length;
 for (int i = 0; i < length; i++) {
 System.out.println("Activation task " + i);
 System.out.println("User who started activation: " +
 connection.getAttribute(list[i], "User"));
 System.out.println("Task state: " + connection.getAttribute(list[i],
 "State"));
 System.out.println("Start time: " + connection.getAttribute(list[i],
 "StartTime"));

 Object[] changes = (Object[])connection.getAttribute(list[i], "Changes");
 int l = (int) changes.length;
 for (int y = 0; y < l; y++) {
 System.out.println("Changes activated: " + changes[y].toString());
 }
 }
}

Purging Completed Activation Tasks from Memory

Because the ActivationTaskMBean instances contain a list of Change objects (each of which describes a single change to an MBean attribute), they use a significant amount of memory.

If the Administration Server is running out of memory, you can purge completed activation tasks from memory. Then decrease the value of the ConfigurationManagerMBean CompletedActivationTasksCount attribute.

To purge completed activation tasks from memory, connect to the Edit MBean Server and invoke the ConfigurationManagerMBean purgeCompletedActivationTasks operation.

For example:

connection.invoke(cfgMgr, "purgeCompletedActivationTasks", null, null);

Managing Locks

To prevent changes that could leave the pending configuration MBean hierarchy in an inconsistent state, only one user at a time can edit MBeans. When a user invokes the ConfigurationManagerMBean startEdit operation, the ConfigurationManagerMBean prevents other users (locks) from starting edit sessions.

The following actions remove the lock:

	
The ConfigurationManagerMBean activate operation succeeds or times out.

You can use the ActivationTaskMBean waitForTaskCompletion operation to block until the activation process is complete.

	
The ConfigurationManagerMBean stopEdit operation succeeds.

	
A user with administrator privileges invokes the ConfigurationManagerMBean cancelEdit operation while another user has the lock.

For example, connection.invoke(cfgMgr, "cancelEdit", null, null);

	
An edit session has been started under a user identity and another process starts an edit session under the same user identity.

For example, if you use the WebLogic Server Administration Console to start an edit session and shortly afterwards use the WebLogic Scripting Tool (WLST) to start an edit session under the same user identity, the WLST session will remove the lock from your WebLogic Server Administration Console session.

To prevent another process from starting an edit session under your user identity, get an exclusive lock by passing a boolean of value true to the startEdit operation. See "startEdit(waitTimeInMillis, timeOutInMillis, exclusive)" in the MBean Reference for Oracle WebLogic Server.

All unsaved changes are lost when the lock is removed.

Best Practices: Recommended Pattern for Editing and Handling Exceptions

Oracle recommends that you organize your editing code into several try-catch blocks. Such an organization will enable you to catch specific types of errors and respond appropriately. For example, instead of abandoning the entire edit session if a change is invalid, your code can save the changes, throw an exception and exit without attempting to activate invalid changes.

JMX agents wrap all exceptions in a generic exception of type javax.management.MBeanException. A JMX client can use the MBeanException.getTargetException() to unwrap the wrapped exception.

Consider using the following structure (see the pseudo-code in Example 5-6):

	
A try block that connects to the Edit MBean Server, starts an edit session, and makes and saves changes.

After this try block, one catch block for each of the following types of exception wrapped within MBeanException:

	
EditTimedOutException

This exception is thrown if the ConfigurationManagerMBean startEdit() operation cannot get a lock within the amount of time that you specify.

	
NotEditorException

This exception is thrown if the edit session times out or an administrator cancels your edit session. (See Managing Locks.)

	
ValidationException

This exception is thrown if you set a value in an MBean that is the wrong data type, outside an allowed range, not one of a specified set of values, or incompatible with dependencies in other attributes.

Within the code that handles ValidationException, include a try block that either attempts to correct the validation error or stops the edit session by invoking the ConfigurationManagerMBean stopEdit() operation. If the try block stops the edit session, its catch block should ignore the NotEditorException. This exception indicates that you no longer have a lock on the pending configuration MBean hierarchy; however, because you want to abandon changes and release your lock anyway, it is not an error condition for this exception to be thrown.

	
A try block that activates the changes that have been saved.

The ConfigurationManager activate(long timeout) operation returns an instance of ActivationTaskMBean, which contains information about the activation task. Oracle recommends that you set the timeout period for activate() to a minute and then check the value of the ActivationTaskMBean State attribute.

If State contains the constant STATE_COMMITTED, then your changes have been successfully activated in the domain. You can use a return statement at this point to end your editing work. The lock that you created with startEdit() releases after the activation task succeeds.

If State contains a different value, the activation has not succeeded in the timeout period that you specified in activate(long timeout). You can get the value of the ActivationTaskMBean Error attribute to find out why.

After this try block, one catch block to catch the following type of wrapped exception:

NotEditorException

If this exception is thrown while trying to activate changes, your changes were not activated because your edit session timed out or was cancelled by an administrator.

	
(Optional) A try block that undoes the saved changes.

If your class does not return in the activation try block, then your activation task was not successful. If you do not want these saved changes to be activated by a future attempt to activate changes, then invoke the ConfigurationManagerMBean undoUnactivatedChanges() operation.

Otherwise, the pending configuration files retain your saved changes. The next time any user attempts to activate saved changes, WebLogic Server will attempt to activate your saved changes along with any other saved changes.

After this try block, one catch block to ignore the following type of wrapped exception:

NotEditorException

	
A try block to stop the edit session.

If your activation attempt fails and you are ready to abandon changes, there is no need to wait until your original timeout period to expire. You can stop editing immediately.

After this try block, one catch block to ignore the following type of exception:

NotEditorException

	
Throw the exception that is stored in the ActivationTaskMBean Error attribute.

Example 5-6 Code Outline for Editing and Exception Handling

try {
 //Initialize the connection and start the edit session
...
 ObjectName domainConfigRoot = (ObjectName) connection.invoke(cfgMgr,
 "startEdit",
 new Object[] { new Integer(30000), new Integer(300000) },
 new String[] { "java.lang.Integer", "java.lang.Integer" });

 // Modify the domain
 ...
 // Save your changes
 connection.invoke(cfgMgr, "save", null, null);

} catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof EditTimedOutException) {
 // Could not get the lock. Notify user
 ...
 throw new MyAppCouldNotStartEditException(e);
 }
 if (targetException instanceof NotEditorException) {
 ...
 throw new MyAppEditSessionFailed(e);
 }
 if (targetException instanceof ValidationException) {
 ...
 try {
 connection.invoke(cfgMgr, "stopEdit", null, null);
 // A wrapped NotEditorException here indicates that you no longer have a
 // lock on the pending configuration MBean hierarchy; however,
 // because you want to abandon changes and release your lock anyway,
 // it is not an error condition for this exception to be thrown
 // and you can safely ignore it.
 } catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof NotEditorException) {
 //ignore
 }
 }
 throw new MyAppEditChangesInvalid(e);
 }
 else {
 throw MBeanException (e);
 }
}

// Changes have been saved, now activate them
try {
 // Activate the changes
 ActivationTaskMBean task = (ObjectName) connection.invoke(cfgMgr,
 "activate",
 new Object[] { new Long(60000) },
 new String[] { "java.lang.Long" });
 // Everything worked, just return.
 String status = (String) connection.getAttribute(task, "State");
 if (status.equals("4"))
 return;
 // If there is an activation error, use ActivationTaskMBean.getError
 // to get information about the error
 failure = connection.getAttribute(task, "Error");
// If you catch a wrapped NotEditorException, your changes were not activated
// because your edit session ended or was cancelled by an administrator.
// Throw the wrapped exception.
} catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof NotEditorException) {
 ...
 throw new MyAppEditSessionFailed(e);
 }
}

// If your class executes the remaining lines, it is because activating your
// saved changes failed.
// Optional: You can undo the saved changes that failed to activate. If you
// do not undo your saved changes, they will be activated the next time
// someone attempts to activate changes.
// try {
// {
// connection.invoke(cfgMgr, "undoUnactivatedChanges", null, null);
// catch(MBeanException e) {
// Exception targetException = e.getTargetException();
// if (targetException instanceof NotEditorException) {
// ...
// throw new MyAppEditSessionFailed(e);
// }
// }

// Stop the edit session
try {
 connection.invoke(cfgMgr, "stopEdit", null, null);
 // If your activation attempt fails and you are ready to abandon
 // changes, there is no need to wait until your original timeout
 // period to expire. You can stop editing immediately
 // and you can safely ignore any wrapped NotEditorException.
} catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof NotEditorException) {
 //ignore
 }
}
...
// Output the information about the error that caused the activation to
// fail.
throw new MyAppEditSessionFailed(connection.getAttribute(task, "Error"));

Setting and Getting Encrypted Values

To prevent unauthorized access to sensitive data such as passwords, some attributes in WebLogic Server configuration MBeans are encrypted. The attributes persist their values in the domain's config.xml file as an encrypted string and represent the in-memory value in the form of an encrypted byte array. The names of encrypted attributes end with Encrypted. For example, the ServerMBean exposes the password that is used to secure access through the IIOP protocol in an attribute named DefaultIIOPPasswordEncrypted. To support backwards compatibility, and to enable remote JMX clients to set passwords for WebLogic Server MBeans, each encrypted attribute provides a less secure means to encrypt and set its value.

The following sections describe how to work with encrypted attributes:

	
Set the Value of an Encrypted Attribute (Recommended Technique)

	
Set the Value of an Encrypted Attribute (Compatibility Technique)

	
Back Up an Encrypted Value

Set the Value of an Encrypted Attribute (Recommended Technique)

To use this technique (see Example 5-7):

	
In the same WebLogic Server JVM that hosts the MBean attribute, write a value to a byte array.

	
Pass the byte array to the weblogic.management.EncryptionHelper.encrypt(byte[]) method and pass its return value to the MBeanServerConnection.setAttribute method.

Avoid assigning the encrypted byte array to a variable because this causes the unencrypted byte array to remain in memory until it is garbage collected and the memory is reallocated.

	
Clear the original byte array using the weblogic.management.EncryptionHelper.clear() method.

Example 5-7 Example: Set the Value of an Encrypted Attribute (Recommended Technique)

public void editDefaultIIOPPassword(ObjectName cfgRoot) throws Exception {
 // Get the ServerMBean from the DomainMBean
 ObjectName server = (ObjectName) connection.invoke(cfgRoot,
 "lookupServer", new Object[] { "myserver" },
 new String[] { "java.lang.String" });
 // Get new password from standard in. Assign it to a byte array.
 System.out.println("Enter new password and press enter: ");
 byte userinput[] = new byte[10];
 System.in.read(userinput);
 // Encrypt the byte array and set it as the encrypted
 // attribute value.
 Attribute newpassword = new Attribute("DefaultIIOPPasswordEncrypted",
 weblogic.management.EncryptionHelper.encrypt(userinput));
 connection.setAttribute(server, newpassword);
 System.out.println("New password is set to: " +
 connection.getAttribute(server, "DefaultIIOPPasswordEncrypted"));
 // Clear the byte array.
 weblogic.management.EncryptionHelper.clear(userinput);
 }

Set the Value of an Encrypted Attribute (Compatibility Technique)

Prior to 9.0, JMX clients used a different technique for setting encrypted values. JMX clients can continue to use this compatibility technique, and if you want to set encrypted values from a remote JMX client, this is the only technique available. The compatibility technique is less secure because it creates a String that contains your unencrypted password. Even though WebLogic Server converts the String to an encrypted byte array, the String will remain in memory until it is garbage collected and the memory is reallocated.

To use the compatibility technique:

	
Write a value to a String.

	
Pass the String as a parameter to the MBeanServerConnection.setAttribute method, but instead of setting the value of the encrypted attribute, set the value for the corresponding non-encrypted attribute.

WebLogic Server converts the String to an encrypted byte array and sets it as CustomIdentityKeyStorePassPhraseEncrypted. (It does not set a value for CustomIdentityKeyStorePassPhrase).

For example, to set the CustomIdentityKeyStorePassPhraseEncrypted from a remote JMX client, invoke the MBeanServerConnection.setAttribute for an attribute named CustomIdentityKeyStorePassPhrase.

For example:

public void editDefaultIIOPPassword(ObjectName cfgRoot, String password)
 throws Exception {
 // Get the ServerMBean from the DomainMBean
 ObjectName server = (ObjectName) connection.invoke(cfgRoot, "lookupServer",
 new Object[]{"myserver"},new String[]{"java.lang.String"});
 Attribute newpassword = new Attribute("DefaultIIOPPassword",
 "mypassword");
 connection.setAttribute(server, newpassword);
}

Back Up an Encrypted Value

To make a backup copy of a password, use the getter method of the MBean's encrypted value to retrieve the encrypted byte array. Then write the value of the byte array to a file. WebLogic Server does not provide APIs or other utilities for decrypting values that it has encrypted.

If you need to restore the password value, you can load the saved value into a byte array and pass it as a parameter to the MBeanServerConnection.setAttribute method (see Set the Value of an Encrypted Attribute (Recommended Technique)).

	
Note:

Because each WebLogic Sever domain uses its own encryption algorithm, you must back up and restore passwords separately for each domain even if the unencrypted value for the password is the same for all domains.
Instead of backing up the same encrypted password for each domain, you can use the getter method of an MBean's corresponding unencrypted value. This getter unencrypts the password and copies into a String. The String will not be erased from memory until it is garbage collected and the memory is reallocated.

6 Managing Security Realms with JMX

This chapter describes how to use JMX to manage security realms, which comprise the mechanisms for protecting WebLogic resources in WebLogic Server 12.1.3. Each security realm consists of a set of configured security providers, which are modular components that handle specific aspects of security. You can create a JMX client that uses the providers in a realm to add or remove security data such as users and groups. You can also create a client that adds or removes providers and makes other changes to the realm configuration.

This chapter includes the following sections:

	
Understanding the Hierarchy of Security MBeans

	
Choosing an MBean Server to Manage Security Realms

	
Working with Existing Security Providers

	
Modifying the Realm Configuration

For more information about WebLogic Security, see Understanding Security for Oracle WebLogic Server.

Understanding the Hierarchy of Security MBeans

Like other subsystems, the WebLogic Server security framework organizes its MBeans in a hierarchy that JMX clients can navigate without constructing JMX object names. However, the set of MBean types that are available in a security realm depends on which security providers you have installed in the realm, and the set of services that each security provider enables depends on how the provider was created.

The root of the security realm hierarchy is the RealmMBean. It contains all of the providers that have been configured for the realm. For example, its Authorizers attribute contains all authorization providers that have been configured for the realm. WebLogic Server installs a default set of security providers; therefore, by default the RealmMBean Authorizers attribute contains a DefaultAuthorizerMBean. However, you can uninstall these default providers and replace them with any number of your own providers or third-party providers. For information about the default security providers, see "Configuring WebLogic Security Providers" and "Configuring Authorization Providers" in Administering Security for Oracle WebLogic Server.

Base Provider Types and Mix-In Interfaces

Each security provider must extend a base provider type. For example, DefaultAuthorizerMBean extends AuthorizerMBean, and any custom or third-party authorization provider also extends AuthorizerMBean. If a JMX client gets the value of the RealmMBean Authorizers attribute, the MBean server returns all MBeans in the realm that extend AuthorizerMBean. The JMX client can iterate through the list of providers and select one based on the value of its Name attribute or other criteria.

Base provider types can be enhanced by extending a set of optional mix-in interfaces. For example, if an authentication provider extends the UserEditorMBean, then the provider can add users to the realm.

Security MBeans

WebLogic Server's Security MBeans configure security providers in a security realm. The following tables describe the MBeans that configure different types of security providers.

	
Table 6-1 describes the MBeans that configure Authentication security providers, as well as the abstract MBean classes that Authentication providers must extend. In addition to the MBeans in this table, WebLogic Server includes configuration MBeans for each out-of-the-box Authentication provider.

	
Table 6-2 describes the MBeans that configure security providers, other than Authentication security providers.

	
Table 6-3 describes optional MBean mixin interfaces that security providers can support for management and utility purposes.

For more information about configuring WebLogic security providers, see "Configuring WebLogic Security Providers" and "Configuring Authorization Providers" in Administering Security for Oracle WebLogic Server. Figure 6-1 illustrates where the MBeans are located in the configuration MBean hierarchy.

Table 6-1 MBeans for Authentication Security Providers

	This MBean...	Configures...
	

AuthenticationProviderMBean

	
The base MBean for all MBean implementations that manage Authentication providers. If your Authentication provider uses the WebLogic Security SSPI to provide login services, then your MBean must extend weblogic.management.security.authentication.Authenticator. If your Authentication provider uses the WebLogic Security SPI to provide identity-assertion services, then your MBean must extend weblogic.management.security.authentication.IdentityAsserter.

See "AuthenticationProviderMBean" in the MBean Reference for Oracle WebLogic Server.

	

AuthenticatorMBean

	
The SSPI MBean that all Authentication providers with login services must extend. This MBean provides a ControlFlag to determine whether the Authentication provider is a REQUIRED, REQUISITE, SUFFICENT, or OPTIONAL part of the login sequence.

See "AuthenticatorMBean" in the MBean Reference for Oracle WebLogic Server.

	

IdentityAsserterMBean

	
The SSPI MBean that all Identity Assertion providers must extend. This MBean enables an Identity Assertion provider to specify the token types for which it is capable of asserting identity.

See "IdentityAsserterMBean" in the MBean Reference for Oracle WebLogic Server.

	

ServletAuthenticationFilterMBean

	
The SSPI MBean that all Servlet Authentication Filter providers must extend. This MBean is just a marker interface. It has no methods on it.

See "ServletAuthenticationFilterMBean" in the MBean Reference for Oracle WebLogic Server.

Table 6-2 MBeans for Other Security Providers

	This MBean...	Configures...
	

AdjudicatorMBean

	
The SSPI MBean that all Adjudication providers must extend.

See "AdjudicatorMBean" in the MBean Reference for Oracle WebLogic Server.

	

DefaultAdjudicatorMBean

	
Configuration attributes for the WebLogic Adjudication provider.

See "DefaultAdjudicatorMBean" in the MBean Reference for Oracle WebLogic Server.

	

AuditorMBean

	
The SSPI MBean that all Auditing providers must extend.

See "AuditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

DefaultAuditorMBean

	
Configuration attributes for the WebLogic Auditing provider.

See "DefaultAuditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

AuthorizerMBean

	
The SSPI MBean that all Authorization providers must extend.

See "AuthorizerMBean" in the MBean Reference for Oracle WebLogic Server.

	

DeployableAuthorizerMBean

	
The SSPI MBean that must be extended by all Authorization providers that can store policies created while deploying a Web application or EJB.

See "DeployableAuthorizerMBean" in the MBean Reference for Oracle WebLogic Server.

	

DefaultAuthorizerMBean

	
Configuration attributes for the WebLogic Authorization provider.

See "DefaultAuthorizerMBean" in the MBean Reference for Oracle WebLogic Server.

	

CredentialMapperMBean

	
The SSPI MBean that all Credential Mapping providers must extend.

See "CredentialMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

DeployableCredentialMapperMBean

	
The SSPI MBean that must be extended by all Credential Mapper providers that can store credential maps created while deploying a component.

See "DeployableCredentialMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

DefaultCredentialMapperMBean

	
Configuration attributes for the WebLogic Credential Mapping provider, a username/password Credential Mapping provider.

See "DefaultCredentialMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

PKICredentialMapperMBean

	
Configuration attributes for the PKI Credential Mapping provider, a key pair Credential Mapping provider.

See "PKICredentialMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

SAMLCredentialMapperMBean

	
Configuration attributes for the SAML Credential Mapping provider, a Security Assertion Markup Language Credential Mapping provider.

See "SAMLCredentialMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

CertPathProviderMBean

	
The base MBean for all certification path providers.

See "CertPathProviderMBean" in the MBean Reference for Oracle WebLogic Server.

	

CertPathBuilderMBean

	
The SSPI MBean that all certification path providers with CertPathBuilder services must extend.

See "CertPathBuilderMBean" in the MBean Reference for Oracle WebLogic Server.

	

CertPathValidatorMBean

	
The SSPI MBean that all certification path providers with CertPathValidator services must extend.

See "CertPathValidatorMBean" in the MBean Reference for Oracle WebLogic Server.

	

CertificateRegistryMBean

	
Configures and manages the certificate registry. It is both a builder and a validator. It supports building from the end certificate, the end certificate's subject DN, the end certificate's issuer DN and serial number, and the end certificate's subject key identifier.

See "CertificateRegistryMBean" in the MBean Reference for Oracle WebLogic Server.

	

WebLogicCertPathProviderMBean

	
The SSPI MBean that all certification path providers with CertPathBuilder services must extend.

See "WebLogicCertPathProviderMBean" in the MBean Reference for Oracle WebLogic Server.

	

RoleMapperMBean

	
The base MBean for Role Mapping providers. A Role Mapping provider for a non-deployable module must extend this MBean directly. A Role Mapping provider for a deployable module must extend the DeployableRoleMapperMBean.

See "RoleMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

DeployableRoleMapperMBean

	
The SSPI MBean that must be extended by Role Mapping providers that can store roles created while deploying a Web application or EJB.

See "DeployableRoleMapperMBean" in the MBean Reference for Oracle WebLogic Server.

	

DefaultRoleMapperMBean

	
Configuration attributes for the WebLogic Role Mapping provider.

See "DefaultRoleMapperMBean" in the MBean Reference for Oracle WebLogic Server.

Table 6-3 MBean Mixin Interfaces for Security Providers

	This MBean...	Configures...
	

ContextHandlerMBean

	
Provides a set of attributes for ContextHandler support. An Auditor provider MBean can optionally implement this MBean.

See "ContextHandlerMBean" in the MBean Reference for Oracle WebLogic Server.

	

GroupEditorMBean

	
Provides a set of methods for creating, editing, and removing groups. An Authentication provider MBean can optionally implement this MBean.

See "GroupEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

GroupMemberListerMBean

	
Provides a method for listing a group's members. An Authentication provider MBean can optionally implement this MBean.

See "GroupMemberListerMBean" in the MBean Reference for Oracle WebLogic Server.

	

GroupMembershipHierarchyCacheMBean

	
Provides configuration attributes that are required to support the Group Membership Hierarchy Cache. An Authentication provider MBean can optionally implement this MBean.

See "GroupMembershipHierarchyCacheMBean" in the MBean Reference for Oracle WebLogic Server.

	

GroupReaderMBean

	
Provides a set of methods for reading data about groups. An Authentication provider MBean can optionally implement this MBean.

See "GroupReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

MemberGroupListerMBean

	
Provides a method for listing the groups that contain a member. An Authentication provider MBean can optionally implement this MBean.

See "MemberGroupListerMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserEditorMBean

	
Provides a set of methods for creating, editing, and removing users. An Authentication provider MBean can optionally implement this MBean.

See "UserEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserLockoutManagerMBean

	
Lists and manages lockouts on user accounts. An Authentication provider MBean can optionally implement this MBean.

See "UserLockoutManagerMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserPasswordEditorMBean

	
Provides two methods for changing a user's password. An Authentication provider MBean can optionally implement this MBean.

See "UserPasswordEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserReaderMBean

	
Provides a set of methods for reading data about users. An Authentication provider MBean can optionally implement this MBean.

See "UserReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserRemoverMBean

	
Provides a method for removing users. An Authentication provider MBean can optionally implement this MBean.

See "UserRemoverMBean" in the MBean Reference for Oracle WebLogic Server.

	

RoleEditorMBean

	
Provides a set of methods for creating, editing, and removing roles. A Role Mapping provider MBean can optionally implement this MBean.

See "RoleEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

RoleListerMBean

	
Provides a set of methods for listing data about roles. A Role Mapping provider MBean can optionally implement this MBean.

See "RoleListerMBean" in the MBean Reference for Oracle WebLogic Server.

	

RoleReaderMBean

	
Provides a set of methods for reading roles. A Role Mapping provider MBean can optionally implement this MBean.

See "RoleReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

PolicyEditorMBean

	
Provides a set of methods for creating, editing, and removing policies. An Authorization provider MBean can optionally implement this MBean.

See "PolicyEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

PolicyListerMBean

	
Provides a set of methods for listing data about policies. An Authorization provider MBean can optionally implement this MBean.

See "PolicyListerMBean" in the MBean Reference for Oracle WebLogic Server.

	

PolicyReaderMBean

	
Provides a set of methods for reading policies. An Authorization provider MBean can optionally implement this MBean.

See "PolicyReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

PKICredentialMapEditorMBean

	
Provides a set of methods for creating, editing, and removing a credential map that matches users, resources and credential action to keystore aliases and the corresponding passwords. A PKICredentialMapping provider MBean can optionally implement this MBean.

See "PKICredentialMapEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

PKICredentialMapReaderMBean

	
Provides a set of methods for reading a credential map that matches users and resources to keystore aliases and their corresponding passwords that can then be used to retrieve key information or public certificate information from the configured keystores. A PKICredentialMapping provider MBean can optionally implement this MBean.

See "PKICredentialMapReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserPasswordCredentialMapEditorMBean

	
Provides a set of methods for creating, editing, and removing a credential map that matches WebLogic users to remote usernames and their corresponding passwords. A Credential Mapping provider MBean can optionally extend this MBean.

See "UserPasswordCredentialMapEditorMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserPasswordCredentialMapExtendedReaderMBean

	
Provides a set of methods for reading credentials and credential mappings. Credential mappings match WebLogic users to remote usernames and passwords. A Credential Mapping provider MBean can optionally extend this MBean.

See "UserPasswordCredentialMapExtendedReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

UserPasswordCredentialMapReaderMBean

	
Provides a set of methods for reading credentials and credential mappings. Credential mappings match WebLogic users to remote usernames and passwords. A Credential Mapping provider MBean can optionally extend this MBean.

See "UserPasswordCredentialMapReaderMBean" in the MBean Reference for Oracle WebLogic Server.

	

ImportMBean

	
Provides a set of methods for importing provider specific data. An optional mixin interface that any security provider may extend.

See "ImportMBean" in the MBean Reference for Oracle WebLogic Server

	

ExportMBean

	
Provides a set of methods for exporting provider specific data. An optional mixin interface that any security provider may extend.

See "ExportMBean" in the MBean Reference for Oracle WebLogic Server

	

ListerMBean

	
Provides a general mechanism for returning lists. Derived MBeans extend this interface to add methods that access the data of the current object in the list. An optional mixin interface that any security provider may extend.

See "ListerMBean" in the MBean Reference for Oracle WebLogic Server

	

NameListerMBean

	
Defines a method used to return lists of names. An optional mixin interface that any security provider may extend.

See "NameListerMBean" in the MBean Reference for Oracle WebLogic Server

	

LDAPServerMBean

	
Provides methods to get configuration parameters needed for connecting to an external LDAP server. An optional mixin interface that any security provider may extend.

See "LDAPServerMBean" in the MBean Reference for Oracle WebLogic Server

	

ApplicationVersionerMBean

	
The SSPI MBean that security providers extend to indicate that the provider supports versionable applications. An optional mixin interface that a RoleMapper, Authorizer, or CredentialMapper provider MBean may extend.

See "ApplicationerVersionMBean" in the MBean Reference for Oracle WebLogic Server

Figure 6-1 Security MBeans

[image: Description of Figure 6-1 follows]

Choosing an MBean Server to Manage Security Realms

When using JMX to manage security realms, you must use two different MBean servers depending on your task:

	
To set the value of a security MBean attribute, you must use the Edit MBean Server.

	
To add users, groups, roles, and policies, or to invoke other operations in a security provider MBean, you must use a Runtime MBean Server or the Domain Runtime MBean Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke operations in security provider MBeans if your client or another JMX client has an edit session currently active.

For example, the value of the MinimumPasswordLength attribute in DefaultAuthenticatorMBean is stored in the domain's configuration document. Because all modifications to this document are controlled by WebLogic Server, to change the value of this attribute you must use the Edit MBean Server and acquire a lock on the domain's configuration. The createUser operation in DefaultAuthenticatorMBean adds data to an LDAP server, which is not controlled by WebLogic Server. To prevent incompatible changes between the DefaultAuthenticatorMBean's configuration and the data that it uses in the LDAP server, you cannot invoke the createUser operation if you or other users are in the process of modifying the MinimumPasswordLength attribute. In addition, because changing this attribute requires you to restart WebLogic Server, you cannot invoke the createUser operation until you have restarted the server.

Working with Existing Security Providers

Because security providers can extend optional mix-in interfaces, not all security providers can perform all tasks. This flexibility enables your organization's security architect to design a realm for your security needs. The flexibility also makes the design of your JMX clients dependent upon the design and configuration of each realm.

For example, some realms might contain three types of Authentication providers:

	
One that extends UserEditorMBean to save administrative users to an LDAP server

	
One that extends UserEditorMBean to save customers to a database management system

	
One that does not extend UserEditorMBean and is used only to authenticate existing users

To work with the Authentication providers in this realm, your JMX client must be able to determine which one can add users to the appropriate repository.

Table 6-4 discusses techniques for finding a security provider that is appropriate for your task.

Table 6-4 Finding a Provider in the Realm

	Technique	Description
	
Find by name

	
Each security provider instance is assigned a short name when an administrator configures it for the realm. Your JMX client can look up all providers of a specific type (such as all Authentication providers) and choose the one that matches a name.

If you use this technique, consider saving the name of the security provider in a configuration file instead of hard-coding it in your JMX client. The configuration file enables system administrators to change the providers in the realm and update the properties file instead of requiring you to update and recompile the JMX client.

	
Find by MBean type

	
If the system administrator always wants to use the same type of provider for a task, then your JMX client can find the provider MBean that is of the specified type.

For example, if the system administrator always wants to use a SQLAuthenticatorMBean to add customers to a realm, your JMX client can find an instance of SQLAuthenticatorMBean.

While this technique requires no user input, it assumes:

	
There will always be an instance of SQLAuthenticatorMBean in the realm and this one instance extends UserEditorMBean.

	
If there are multiple instances of SQLAuthenticatorMBean, all of them extend UserEditorMBean and it does not matter which instance is used.

See Discovering Available Services.

	
Use any provider that extends the mix-in interface you need

	
You can create a JMX client that learns about the class hierarchy for each provider MBean instance and chooses an instance that extends the mix-in interface you need for your task. For example, your client can discover which Authentication provider extends UserEditorMBean. See Discovering Available Services.

Use this technique if you know that your security realm will contain only one MBean that extends the needed mix-in interface, or if it does not matter which one you use.

Discovering Available Services

To create a JMX client that finds MBeans by type or mix-in interface:

	
Connect to a WebLogic Server Runtime MBean Server. See Make Remote Connections to an MBean Server.

All WebLogic Server instances maintain their own Runtime MBean Server, and you can connect to any server's Runtime MBean Server.

	
Get all security provider MBeans of a specific type in the realm (for example, get all Authentication provider MBeans):

	
Use either the RuntimeServiceMBean or DomainRuntimeServiceMBean to navigate the following path through the WebLogic Server MBean hierarchy:

	
DomainMBean to SecurityConfigurationMBean to RealmMBean.

See Make Remote Connections to an MBean Server.

	
Get the value of the RealmMBean attribute that contains instances of the security provider type.

For example, to get all Authentication providers, get the value of the RealmMBean AuthenticationProviders attribute.

	
For each security provider MBean in the RealmMBean attribute, get the name of the MBean's class (see Example 6-1):

	
Get the provider MBean's javax.management.ModelMBeanInfo object.

Use MBeanServerConnection.getMBeanInfo(Provider-MBean)

where Provider-MBean is a provider MBean that you retrieved from RealmMBean.

	
Get the MBean info's javax.management.Descriptor object, and then get the value of the Descriptor's interfaceClassName field.

	
Use the WebLogic Server MBean type service to find all security provider MBean classes that extend a particular base type or mix-in interface (see Example 6-1):

	
Determine the fully-qualified interface name of the base type or mix-in interface.

Each entry in the MBean Reference for Oracle WebLogic Server lists the fully-qualified interface name of WebLogic Server provider MBeans. If you use a third-party provider, refer to the third-party documentation for this information.

For example, the fully-qualified interface name of the UserEditorMBean mix-in interface is weblogic.management.security.authentication.UserEditorMBean. (See "UserEditorMBean" in the MBean Reference for Oracle WebLogic Server.)

	
Construct the MBeanTypeService MBean's object name.

The MBeanTypeService MBean is always registered under the following javax.management.ObjectName:

com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.MBeanTypeService

	
Invoke the MBeanTypeService MBean's getSubtypes(java.lang.String beanInterface) operation, where beanInterface represents the fully-qualified interface name that you determined in Step 1.

The operation returns an array of java.lang.String objects.

	
Compare the output of the MBean type service with the class name of each provider MBean instance (see Example 6-1).

	
If the provider MBean's class implements or extends the interface from step 4a, invoke operations on the provider MBean.

Example 6-1 Example: Determine If a Provider MBean Instance Extends UserEditorMBean Mix-In Interface

ObjectName MBTservice = new ObjectName(
 "com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.
 MBeanTypeService");

for (int p = 0; atnProviders != null && p < atnProviders.length; p++) {
 ModelMBeanInfo info = (ModelMBeanInfo)
 mBeanServerConnection.getMBeanInfo(atnProviders[p]);
 Descriptor desc = info.getMBeanDescriptor();
 String className = (String)desc.getFieldValue("interfaceClassName");
 String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,
 "getSubtypes", new Object[] {
 "weblogic.management.security.authentication.UserEditorMBean" },
 new String[] { "java.lang.String" });
 boolean isEditor = false;
 for (int i = 0; i < mba.length; i++) {
 if (mba[i].equals(className)){
 userEditor = atnProviders[p];
 isEditor = true;
 break;
 }
 if (isEditor = true) break;
 }
}

Example: Adding Users to a Realm

The code example in Example 6-2 adds a user to a security realm and adds the user to the Administrators group by searching through all of the authentication providers in the realm and using the first one that extends UserEditorMBean.

Note the following about the code example:

	
The user name and password come from a JavaBean that was created from an Apache Struts action.

	
The code does not need to lock the domain's configuration because it is not modifying the configuration of the security MBean itself. Instead, it is invoking an operation in the default Authorization provider which saves security data in an LDAP server.

Example 6-2 Example: Adding Users to a Realm

public ActionForward createNewAdmin(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ClientException, Exception {
 logger.info("Create New Admin");
 CreateAdminBean user = (CreateAdminBean) form;
 logger.debug(user.toString());

 MBeanServerConnection mBeanServerConnection =
 this.getDomainMBeanServerConnection(request);
 ObjectName service = new
 ObjectName("com.bea:Name=DomainRuntimeService,"+
 "Type=weblogic.management.mbeanservers.domainruntime.
 DomainRuntimeServiceMBean");
 ObjectName domainMBean =
 (ObjectName) mBeanServerConnection.getAttribute(service,
 "DomainConfiguration");
 ObjectName securityConfiguration =
 (ObjectName) mBeanServerConnection.getAttribute(domainMBean,
 "SecurityConfiguration");
 ObjectName defaultRealm =
 (ObjectName) mBeanServerConnection.
 getAttribute(securityConfiguration, "DefaultRealm");
 ObjectName[] atnProviders =
 (ObjectName[]) mBeanServerConnection.getAttribute(defaultRealm,
 "AuthenticationProviders");

 ObjectName userEditor = null;
 ObjectName MBTservice = new ObjectName(
 "com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.
 MBeanTypeService");

 for (int p = 0; atnProviders != null && p < atnProviders.length; p++) {
 ModelMBeanInfo info = (ModelMBeanInfo)
 mBeanServerConnection.getMBeanInfo(atnProviders[p]);
 Descriptor desc = info.getMBeanDescriptor();
 String className = (String)desc.getFieldValue("interfaceClassName");
 String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,
 "getSubtypes", new Object[] {
 "weblogic.management.security.authentication.UserEditorMBean" },
 new String[] { "java.lang.String" });
 boolean isEditor = false;
 for (int i = 0; i < mba.length; i++) {
 if (mba[i].equals(className)){
 userEditor = atnProviders[p];
 isEditor = true;
 break;
 }
 if (isEditor = true) break;
 }
 }

 try {
 mBeanServerConnection.invoke(
 userEditor, "createUser",
 new Object[] {user.getUsername(), user.getPassword(),
 "MedRec Admininistator"},
 new String[] {"java.lang.String", "java.lang.String",
 "java.lang.String"}
);
 } catch (MBeanException ex) {
 Exception e = ex.getTargetException();
 if (e instanceof AlreadyExistsException) {
 logger.info("User, " + user.getUsername() + ", already exists.");
 ActionErrors errors = new ActionErrors();
 errors.add("invalidUserName",
 new ActionError("invalid.username.already.exists"));
 saveErrors(request, errors);
 return mapping.findForward("create.new.admin");
 } else {
 logger.debug(e);
 return mapping.findForward("create.new.admin");
 }
 }

 try {
 mBeanServerConnection.invoke(
 userEditor, "addMemberToGroup",
 new Object[] {"Administrators", user.getUsername()},
 new String [] {"java.lang.String", "java.lang.String"}
);

 mBeanServerConnection.invoke(
 userEditor, "addMemberToGroup",
 new Object[] {"MedRecAdmins", user.getUsername()},
 new String [] {"java.lang.String", "java.lang.String"}
);
 } catch (MBeanException ex) {
 Exception e = ex.getTargetException();
 if (e instanceof NameNotFoundException) {
 logger.info("Invalid Group Name.");
 ex.printStackTrace();
 return mapping.findForward("create.new.admin");
 } else {
 logger.debug(e);
 return mapping.findForward("create.new.admin");
 }
 }
 logger.info("MedRec Administrator successfully created.");
 return mapping.findForward("create.new.admin.successful");
}

Modifying the Realm Configuration

While security provider MBeans handle specific aspects of security, such as authentication and authorization, two other MBeans handle general, realm-wide and domain-wide aspects of security:

	
RealmMBean represents a security realm. JMX clients can use it to add or remove security providers and to specify such behaviors as whether Web and EJB containers call the security framework on every access or only when security is set in the deployment descriptors.

	
SecurityConfigurationMBean specifies domain-wide security settings such as connection filters and URL-pattern matching behavior for security constraints, servlets, filters, and virtual-hosts in the WebApp container and external security policies.

These two MBeans persist their data in WebLogic Server configuration files. Therefore, to modify attribute values in RealmMBean or SecurityConfigurationMBean, you must use the Edit MBean Server and ConfigurationManagerMBean as described in Chapter 5, "Managing a Domain's Configuration with JMX."

7 Using Notifications and Monitor MBeans

This chapter describes how to use JMX to monitor MBeans. JMX provides two ways to monitor MBeans: MBeans can emit notifications when specific events occur (such as a change in an attribute value), or a special type of MBean called a monitor MBean can poll another MBean and periodically emit notifications to describe an attribute value. You create Java classes called listeners that listen for these notifications and respond appropriately. For example, your management utility can include a listener that receives notifications when applications are deployed, undeployed, or redeployed. All WebLogic Server 12.1.3 configuration MBeans emit notifications when attribute values change, and some run-time MBeans do.

This chapter includes the following sections:

	
Best Practices: Listening Directly Compared to Monitoring

	
Best Practices: Listening for WebLogic Server Events

	
Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics

	
Listening for Notifications from WebLogic Server MBeans: Main Steps

	
Using Monitor MBeans to Observe Changes: Main Steps

Best Practices: Listening Directly Compared to Monitoring

If the MBean that you want to monitor emits notifications, you can choose whether to create a listener object that listens for changes in the MBean or a monitor MBean that periodically polls the MBean and emits notifications only when its attributes change in specific ways. The technique that you choose depends mostly on the complexity of the situations in which you want to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the preferred technique because the MBean pushes its notifications to your listener and you are notified of a change almost immediately. However, the base classes that you implement for a listener and optional filter (javax.management.NotificationListener and NotificationFilter) provide few facilities for comparing values with thresholds and other values. (See the javax.management package in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/package-summary.html.)

If your notification requirements are sufficiently complex, or if you want to monitor a group of changes that are not directly associated with a single change in the value of an MBean attribute, use a monitor MBean. (See the javax.management.monitor package in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/monitor/package-summary.html.) The monitor MBeans provide a rich set of tools for comparing data and sending notifications only under specific circumstances. However, the monitor periodically polls the observed MBean for changes in attribute value and you are notified of a change only as frequently as the polling interval that you specify.

Best Practices: Listening for WebLogic Server Events

The WebLogic Server JMX agent and WebLogic Server MBeans emit different types of notification objects for different types of events. Many event types trigger multiple MBeans to emit notifications at different points within the event process. Table 7-1 describes common event types and recommends the MBean with which a JMX monitoring application should register to listen for notifications.

	
Note:

Each JMX notification object contains an attribute named Type, which contains a dot-delimited string. Do not confuse discussions of this Type attribute with a notification's object type.
The Type attribute offers a way to categorize and filter notifications. For example, if your custom MBeans emit notifications, JMX conventions suggest that you set your notification object's Type attribute to a string that starts with your company name: mycompany.myapp.valueIncreased.

All JMX notification objects extend the javax.management.Notification object type. JMX and WebLogic Server define additional notification object types, such as javax.management.AttributeChangeNotification. The additional object types contain specialized sets of information that are appropriate for different types of events. (See the list of Notification subclasses for javax.management.Notification in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/Notification.html. Also see "weblogic.management.logging.WebLogicLogNotification" in the Java API Reference for Oracle WebLogic Server.)

Table 7-1 Events and Notification Objects

	Event	Listening Recommendation
	
A WebLogic Server instance starts or stops

	
To receive a notification when a server starts or stops, register a listener with each server's ServerLifeCycleRuntimeMBean in the Domain Runtime MBean Server and configure an AttributeChangeNotificationFilter.

Each server in a domain provides its own ServerLifeCycleRuntimeMBean, which is available through the Domain Runtime MBean Server even if the server itself is not active. When you start a server instance, the server's ServerLifeCycleRuntimeMBean updates the value of its State attribute and emits an AttributeChangeNotification.

For an example of such a listener and filter, see Listening for Notifications from WebLogic Server MBeans: Main Steps.

Note: This recommendation assumes that you start a domain's Administration Server before starting Managed Servers. If a Managed Server starts before the Administration Server, a listener in the Domain Runtime MBean Server (which runs only on the Administration Server) will not be initialized at the time the Managed Server's ServerLifeCycleRuntimeMBean changes its state to RUNNING. If you cannot guarantee that the Administration Server starts first, use the JMX timer service to periodically query the Domain Runtime MBean Server for MBeans whose object name contains the Type=ServerRuntime key property. An MBean that matches this query is a ServerRuntimeMBean, which each server instance creates as part of its startup process. If the query finds a newly created ServerRuntimeMBean, you know that a new server instance has been started. See MBeanServerConnection queryNames (see http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServerConnection.html#queryNames%28javax.management.ObjectName,%20javax.management.QueryExp%29.

	
A WebLogic Server resource is created or destroyed

	
When you create a resource such as a server or a JDBC data source, WebLogic Server registers the resource's configuration MBean in the MBean server. When you delete a resource, WebLogic Server unregisters the configuration MBean.

To listen for the registration and unregistration of MBeans, register a listener with javax.management.MBeanServerDelegate, which emits notifications of type javax.management.MBeanServerNotification

when MBeans are registered or unregistered.

If you register a listener with MBeanServerDelegate in the Edit MBean Server, you receive notifications when someone modifies the pending MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain Runtime MBean Server, you receive notifications only when pending changes have been successfully activated in the domain. If you are interested solely in monitoring configuration data (and are not interested in monitoring run-time statistics), register your listener in only one Runtime MBean Server. See Best Practices: Choosing an MBean Server.

See Example: Listening for The Registration of Configuration MBeans.

	
The configuration of a WebLogic Server resource is modified

	
All configuration MBeans emit notifications of type AttributeChangeNotification when their attribute values change.

To receive this notification, register a listener with the MBean that is in the Domain Runtime MBean Server or Runtime MBean Server (see Best Practices: Choosing an MBean Server).

If you register an MBean in the Edit MBean Server, you receive notifications when someone modifies the pending MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain Runtime MBean Server, you receive notifications only when pending changes have been successfully activated in the domain. If you are interested solely in monitoring configuration data (and are not interested in monitoring run-time statistics), register your listener in only one Runtime MBean Server. See Best Practices: Choosing an MBean Server.

	
The run-time state of a WebLogic Server resource changes

	
Some run-time MBeans emit notifications of type AttributeChangeNotification when their attribute values change. To receive this notification, register a listener with the MBean in the Domain Runtime MBean Server.

If a run-time MBean does not emit notifications, you can create a monitor MBean that polls the run-time MBean. See Using Monitor MBeans to Observe Changes: Main Steps.

	
A WebLogic Server resource emits a log message

	
When a WebLogic Server resource generates a log message, the server's weblogic.management.runtime.LogBroadcasterRuntimeMBean emits a notification of type weblogic.management.logging.WebLogicLogNotification, which can be cast as the standard javax.management.Notification class.

To listen for log message notifications, register a listener with LogBroadcasterRuntimeMBean. You can listen for the standard JMX notifications, or if you want to retrieve detailed information about the log messages, listen for WebLogicLogNotifications, which contains methods that you can use to retrieve detailed information. Listening for WebLogicLogNotifications requires you to import this WebLogic Server class into your listener class.

To see a list of error messages that WebLogic Server resources generate, refer to Error Messages.

For more information, see WebLogicLogNotification in the Java API Reference for Oracle WebLogic Server.

Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics

WebLogic Server MBeans provide detailed statistics on the run-time state of its services and resources. The statistics in Table 7-2 provide a general overview of the performance of WebLogic Server. You can listen for changes to these statistics by creating a listener and registering it directly with the MBeans that contain the attributes or you can configure monitor MBeans to periodically poll and report only the statistics that you consider to be significant. (See Registering a Notification Listener and Filter, and Registering the Monitor and Listener.)

Table 7-2 Commonly Monitored WebLogic Server Runtime Statistics

	To track this statistic...	Listen or monitor this MBean attribute...
	
The current state of server.

	
MBean Type: ServerLifeCycleRuntimeMBean

Attribute Name: State

	
Activity on the server's listen ports.

	
MBean Type: ServerRuntimeMBean

Attribute Name: OpenSocketsCurrentCount

MBean Type: ServerMBean

Attribute Name: AcceptBacklog

Use these two attributes together to compare the current activity on the server's listen ports to the total number of requests that can be backlogged on the ports.

	
Memory and thread use.

	
MBean Type: ThreadPoolRuntimeMBean

Attribute Name: ExecuteThreadIdleCount

Indicates the number of threads in a server's execute queue that are taking up memory space but are not being used to process data.

	
Memory and thread use

	
MBean Type: ThreadPoolRuntimeMBean

Attribute Name: PendingUserRequestCount

Indicates the number of user requests waiting in a server's execute queue.

	
Memory and thread use

	
MBean Type: JVMRuntimeMBean

Attribute Name: HeapSizeCurrent

Indicates the amount of memory (in bytes) that is currently available in the server's JVM heap.

	
Database connections

	
MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ActiveConnectionsCurrentCount

Indicates the current number of active connections in a JDBC connection pool.

	
Database connections

	
MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ActiveConnectionsHighCount

The high water mark of active connections in a JDBC connection pool. The count starts at zero each time the connection pool is instantiated.

	
Database connections

	
MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: LeakedConnectionCount

Indicates the total number of leaked connections. Leaked connections are connections that have been checked out but never returned to the connection pool via a close() call; it is important to monitor the total number of leaked connections, as a leaked connection cannot be used to fulfill later connection requests.

	
Database connections

	
MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ConnectionDelayTime

Indicates the average time to connect to a connection pool.

	
Database connections

	
MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: FailuresToReconnectCount

Indicates when the connection pool fails to reconnect to its data store. Applications may notify a listener when this attribute increments, or when the attribute reaches a threshold, depending on the level of acceptable downtime.

Listening for Notifications from WebLogic Server MBeans: Main Steps

To listen directly for the notifications that an MBean emits:

	
Create a listener class in your application. See Creating a Notification Listener.

	
Create an additional class that registers your listener and an optional filter with the MBean whose notifications you want to receive. See Configuring a Notification Filter, and Registering a Notification Listener and Filter.

	
Package and deploy the listener and registration class. See Packaging and Deploying Listeners on WebLogic Server.

Creating a Notification Listener

To create a notification listener:

	
Create a class that implements javax.management.NotificationListener.

See NotificationListener in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/NotificationListener.html.

	
Within the class, add a NotificationListener.handleNotification(Notification notification, java.lang.Object handback) method.

	
Note:

Your implementation of this method should return as soon as possible to avoid blocking its notification broadcaster.

	
(Optional) In most listening situations, you want to know more than the simple fact that an MBean has emitted a notification object. For example, you might want to know the value of the notification object's Type attribute, which is used to classify the type of event that caused the notification to be emitted.

To retrieve information from a notification object, within your handleNotification method invoke the object's methods. Because all notification types extend javax.management.Notification, the following Notification methods are available for all notifications:

	
getMessage()

	
getSequenceNumber()

	
getTimeStamp()

	
getType()

	
getUserData()

See Notification in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/Notification.html.

Most notification types provide additional methods for retrieving data that is specific to the notification. For example, javax.management.AttributeChangeNotification provides getNewValue() and getOldValue(), which you can use to determine how the attribute value has changed.

Example 7-1 is a simple listener that uses AttributeChangeNotification methods to retrieve the name of an attribute with a changed value, and the old and new values.

Example 7-1 Notification Listener

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import javax.management.AttributeChangeNotification;

public class MyListener implements NotificationListener {

 public void handleNotification(Notification notification, Object obj) {

 if(notification instanceof AttributeChangeNotification) {
 AttributeChangeNotification attributeChange =
 (AttributeChangeNotification) notification;
 System.out.println("This notification is an
 AttributeChangeNotification");
 System.out.println("Observed Attribute: " +
 attributeChange.getAttributeName());
 System.out.println("Old Value: " + attributeChange.getOldValue());
 System.out.println("New Value: " + attributeChange.getNewValue());
 }
 }
}

Listening from a Remote JVM

As of JMX 1.2, there are no special requirements for programming a listener that runs in a different JVM from the MBean to which it is listening.

Once you establish a connection to the remote JMX agent (using javax.management.MBeanServerConnection), JMX takes care of sharing data between the JVMs. See Registering a Notification Listener and Filter, for instructions on establishing a connection from a remote JVM.

Best Practices: Creating a Notification Listener

Consider the following recommendations while creating your NotificationListener class:

	
Unless you use a notification filter, your listener receives all notifications (of all notification types) from the MBeans with which it is registered.

Instead of using one listener for all possible notifications that an MBean emits, the best practice is to use a combination of filters and listeners. While having multiple listeners adds to the amount of time for initializing the JVM, the trade-off is ease of code maintenance.

	
If your WebLogic Server environment contains multiple instances of MBean types that you want to monitor, you can create one notification listener and then create as many registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC data sources, you can create one listener class that listens for AttributeChangeNotifications. Then, you create three registration classes. Each registration class registers the listener with a specific instance of JDBCDataSourceRuntimeMBean.

	
While the handleNotification method signature includes an argument for a handback object, your listener does not need to retrieve data from or otherwise manipulate the handback object. It is an opaque object that helps the listener to associate information regarding the MBean emitter.

	
Your implementation of the handleNotification method should return as soon as possible to avoid blocking its notification broadcaster.

	
If you invoke a method from a specialized notification type, wrap the method calls in an if statement to prevent your listener from invoking the method on notification objects of all types.

Configuring a Notification Filter

As of JDK 1.5, the JDK includes two simple filter classes that you can configure to forward notifications that match criteria that you specify. To configure one of the JDK's filter classes:

	
In the class that registers your listener with an MBean create an instance of javax.management.NotificationFilterSupport or AttributeChangeNotificationFilter.

	
Invoke a filter class method to specify filter criteria.

See NotificationFilterSupport (http://docs.oracle.com/javase/7/docs/api/javax/management/NotificationFilterSupport.html) or AttributeChangeNotificationFilter (http://docs.oracle.com/javase/7/docs/api/javax/management/AttributeChangeNotificationFilter.html) in the Java SE 7 API Specification.

For example, the following lines of code configure an AttributeChangeNotificationFilter that forwards only attribute change notifications and only if there is a change in an attribute named State:

AttributeChangeNotificationFilter filter =
 new AttributeChangeNotificationFilter();
filter.enableAttribute("State");

Creating a Custom Filter

If the JDK's filter class is too simplistic for your needs, you can create more sophisticated, custom filter classes. (See NotificationFilter in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/NotificationFilter.html.) However, Oracle recommends that you use the JDK filter classes whenever possible: using a custom filter complicates the packaging and deployment of your listener and filter. See Packaging and Deploying Listeners on WebLogic Server.

Registering a Notification Listener and Filter

After you implement a notification listener class, you create an additional class that registers your listener (and optionally configures and registers a filter) with an MBean instance.

To register a notification listener and filter with an MBean:

	
Initialize a connection to a Runtime MBean Server or the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

	
To register with a WebLogic Server MBean, navigate the MBean hierarchy and retrieve an object name for the MBean that you want to listen to. See Make Remote Connections to an MBean Server.

To register with a custom MBean, create an ObjectName that contains the MBean's JMX object name. See javax.management.ObjectName in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html.

	
Instantiate the listener class that you created.

	
(Optional) Instantiate and configure one of the JDK's filter classes or instantiate a custom class.

	
Register the listener and filter by passing the MBean's object name, listener class, and filter class to the MBeanServerConnection.addNotificationListener (ObjectName name, ObjectName listener, NotificationFilter filter,Object handback) method.

The example class registers the listener from Example 7-1 and the JDK's AttributeChangeNotificationFilter with all ServerLifeCycleRuntimeMBeans in a domain. The class does not pass a handback object.

In the example, weblogic is a user who has permission to view and modify MBean attributes. For information about permissions to view and modify MBeans, refer to "Users, Groups, and Security Roles" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

The example class also includes some code that keeps the RegisterListener class active and not exit the main program. Usually this code is not necessary because a listener class runs in the context of some larger application that is responsible for invoking the class and keeping it active. It is included here so you can easily compile and see the example working.

Example 7-2 Registering a Listener with ServerLifeCycleRuntimeMBean

import java.util.Hashtable;
import java.io.IOException;
import java.net.MalformedURLException;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import javax.management.AttributeChangeNotificationFilter;

public class RegisterListener {
 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;
 // Initializing the object name for DomainRuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(
 "com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanserv
 ers.domainruntime.DomainRuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Domain Runtime MBean Server
 * each server in the domain hosts its own instance.
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 /*
 * Get an array of ServerLifeCycleRuntimeMBeans
 */
 public static ObjectName[] getServerLCRuntimes() throws Exception {
 ObjectName domainRT = (ObjectName) connection.getAttribute(service,
 "DomainRuntime");
 return (ObjectName[]) connection.getAttribute(domainRT,
 "ServerLifecycleRuntimes");
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];
 try {
 //Instantiating your listener class.
 MyListener listener = new MyListener();
 AttributeChangeNotificationFilter filter =
 new AttributeChangeNotificationFilter();
 filter.enableAttribute("State");

 initConnection(hostname, portString, username, password);
 //Passing the name of the MBeans and your listener class to the
 //addNotificationListener method of MBeanServer.
 ObjectName[] serverLCRT = getServerLCRuntimes();
 int length= (int) serverLCRT.length;
 for (int i=0; i < length; i++) {
 connection.addNotificationListener(serverLCRT[i], listener,
 filter, null);
 System.out.println("\n[myListener]: Listener registered with"
 +serverLCRT[i]);
 }

 //Keeping the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

Packaging and Deploying Listeners on WebLogic Server

You can package and deploy a JMX listener as a remote application, a WebLogic Server startup class (which makes the listener available as soon as a server boots), or within one of your other applications that you deploy on WebLogic Server.

If you use a filter from the JDK, you do not need to package the filter class. It is always available through the JDK.

Table 7-3 describes how to package and deploy your listeners and any custom filters.

Table 7-3 Packaging and Deploying Listeners and Custom Filters

	If you deploy the listener...	Do this for the listener...	Do this for a custom filter...
	
As a remote application

	
Make the listener's class available on the remote client's classpath.

	
Make the filter's class available on the remote client's classpath.

Also add the filter class to the classpath of each server instance that hosts the monitored MBeans by archiving the class in a JAR file and copying the JAR in each server's lib directory. See "Domain Directory Contents" in Understanding Domain Configuration for Oracle WebLogic Server.

	
As a WebLogic Server startup class

	
Add the listener class to the server's classpath by archiving the class in a JAR file and copying the JAR in the server's lib directory.

	
Add the filter class to the server's classpath by archiving the class in a JAR file and copying the JAR in the server's lib directory. See "Domain Directory Contents" in Understanding Domain Configuration for Oracle WebLogic Server.

	
As part of an application that you deploy on WebLogic Server

	
Package the listener class with the application.

	
Package the listener class with the application.

Also add the filter class to the classpath of each server instance that hosts the monitored MBeans by doing one of the following:

	
Archiving the class in a JAR file and copying the JAR in each server's lib directory. See "Domain Directory Contents" in Understanding Domain Configuration for Oracle WebLogic Server.

	
Using the JMX MLet service to make the filter class available to the MBean server. See javax.management.loading.MLet in the Java SE 7 API Specification (http://docs.oracle.com/javase/7/docs/api/javax/management/loading/MLet.html) and the JMX 1.4 specification, which you can download from http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/.

Example: Listening for The Registration of Configuration MBeans

When you create a WebLogic Server resource, such as a server or a JDBC data source, WebLogic Server creates a configuration MBean and registers it in the Domain Runtime MBean Server.

To listen for these events, register a listener with javax.management.MBeanServerDelegate, which emits a notification of type

javax.management.MBeanServerNotification each time an MBean is registered or unregistered. See MBeanServerDelegate in the Java SE 7 API Specification (http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServerDelegateMBean.html)

Note the following about the example listener in Example 7-3:

	
To provide information about which type of WebLogic Server MBean has been registered, the listener looks at the object name of the registered MBean. All WebLogic Server MBean object names contain a key property whose name is "Type" and whose value indicates the type of MBean. For example, instances of ServerRuntimeMBean contain the Type=ServerRuntime key property in their object names.

	
All JMX notifications contain a Type attribute, whose value offers a way to categorize and filter notifications. The Type attribute in MBeanServerNotification contains only one of two possible strings: "JMX.mbean.registered" or "JMX.mbean.unregistered". JMX notifications also contain a getType method that returns the value of the Type attribute.

The listener in Example 7-3 invokes different lines of code depending on the value of the Type attribute.

	
If a JDBCDataSourceRuntimeMBean has been registered, the listener passes the MBeans' object name to a custom method. The custom method registers a listener and configures a filter for the JDBCDataSourceRuntimeMBean; this MBean listener emits messages when the MBean's Enabled attribute changes.

The implementation of the custom method is located in the registration class (not the filter class) so that the method can reuse registration class's connection to the MBean server. Such reuse is an efficient use of resources and eliminates the need to store credentials and URLs in multiple classes.

Example 7-3 Example: Listening for MBeans Being Registered and Unregistered

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.MBeanServerNotification;
import javax.management.ObjectName;

public class DelegateListener implements NotificationListener {
 public void handleNotification(Notification notification, Object obj) {
 if (notification instanceof MBeanServerNotification) {
 MBeanServerNotification msnotification =
 (MBeanServerNotification) notification;

 // Get the value of the MBeanServerNotification
 // Type attribute, which contains either
 // "JMX.mbean.registered" or "JMX.mbean.unregistered"
 String nType = msnotification.getType();

 // Get the object name of the MBean that was registered or
 // unregistered
 ObjectName mbn = msnotification.getMBeanName();

 // Object names for WebLogic Server MBeans always contain
 // a "Type" key property, which indicates the
 // MBean's type (such as ServerRuntime or Log)
 String key = mbn.getKeyProperty("Type");

 if (nType.equals("JMX.mbean.registered")) {
 System.out.println("A " + key + " has been created.");

 System.out.println("Full MBean name: " + mbn);
 System.out.println("Time: " + msnotification.getTimeStamp());
 if (key.equals("JDBCDataSourceRuntime")) {
 // Registers a listener with a ServerRuntimeMBean.
 // By defining the "registerwithServerRuntime" method
 // in the "ListenToDelegate" class, you can reuse the
 // connection that "ListenToDelegate" established;
 // in addition to being an efficient way to use resources,
 // it eliminates the need to store credentials and URLs in
 // multiple classes.
 ListenToDelegate.registerwithJDBCDataSourceRuntime(mbn);
 }
 }
 if (nType.equals("JMX.mbean.unregistered")) {
 System.out.println("An MBean has been unregistered");
 System.out.println("Server name: " +
 mbn.getKeyProperty("Name"));
 System.out.println("Time: " + msnotification.getTimeStamp());
 System.out.println("Full MBean name: "
 + msnotification.getMBeanName());
 }
 }
 }
}

Example 7-4 shows methods from a registration class. Note the following:

	
The JMX object name for MBeanServerDelegate is always "JMImplementation:type=MBeanServerDelegate".

	
The main method configures an instance of javax.management.NotificationFilterSupport to forward notifications only if value of the notification's Type attribute starts with "JMX.mbean.registered" or "JMX.mbean.unregistered".

	
The registerwithJDBCDataSourceRuntime method registers the listener in Example 7-1 with the specified JDBCDataSourceRuntimeMBean instance. The method also configures a javax.management.AttributeChangeNotificationFilter, which forwards only AttributeChangeNotifications that describe changes to an attribute named Enabled.

To compile and run these methods, use the supporting custom methods from Example 7-2 and run the resulting class as a remote JMX client.

Example 7-4 Example: Registering a Listener with MBeanServerDelegate

public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];
 ObjectName delegate = new ObjectName(
 "JMImplementation:type=MBeanServerDelegate");

 try {
 //Instantiating your listener class.
 StartStopListener slistener = new StartStopListener();
 NotificationFilterSupport filter = new NotificationFilterSupport();
 filter.enableType("JMX.mbean.registered");
 filter.enableType("JMX.mbean.unregistered");

 /* Invoke a custom method that establishes a connection to the
 * Domain Runtime MBean Server and uses an instance of
 * MBeanServerConnection to represents the connection. The custom
 * method assigns the MBeanServerConnection to a class-wide, static
 * variable named "connection".
 */
 initConnection(hostname, portString, username, password);

 //Passing the name of the MBeans and your listener class to the
 //addNotificationListener method of MBeanServer.
 connection.addNotificationListener(delegate, slistener, filter,
 null);

 System.out.println("\n[myListener]: Listener registered ...");
 //Keeping the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch (Exception e) {
 System.out.println("Exception: " + e);
 }
}

// Called by the listener if it receives notification of a
// JDBCDataSourceRuntimeMBean being registered.
public static void registerwithJDBCDataSourceRuntime(ObjectName mbname) {
 try {
 MyListener mylistener = new MyListener();
 AttributeChangeNotificationFilter filter =
 new AttributeChangeNotificationFilter();
 filter.enableAttribute("Enabled");

 connection.addNotificationListener(mbname, mylistener,
 filter, null);
 } catch (Exception e) {
 System.out.println("Exception: " + e);
 }
}

Using Monitor MBeans to Observe Changes: Main Steps

To configure and use monitor MBeans:

	
Choose the type of monitor MBean type that supports your monitoring needs. See Monitor MBean Types and Notification Types.

	
Create a listener class that can listen for notifications from monitor MBeans. See Creating a Notification Listener for a Monitor MBean.

	
Create a class that creates, registers and configures a monitor MBean, registers your listener class with the monitor MBean, and then starts the monitor MBean. See Registering the Monitor and Listener.

Monitor MBean Types and Notification Types

JMX provides monitor MBeans that are specialized to observe specific types of changes:

	
StringMonitorMBean observes attributes whose value is a String.

Use this monitor to periodically observe attributes such as ServerLifeCycleRuntimeMBean State.

See javax.management.monitor.StringMonitor in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/monitor/StringMonitor.html, which implements StringMonitorMBean.

	
GaugeMonitorMBean observes attributes whose value is a Number.

Use this monitor to observe an attribute whose value fluctuates as a result of normal operations. Configure the gauge monitor to emit a notification if the value of the attribute fluctuates outside a specific range. For example, you can use it to monitor the ThreadPoolRuntimeMBean StandbyThreadCount attribute to verify that the number of unused but available threads in a server falls within an acceptable range.

See javax.management.monitor.GaugeMonitor in the Java SE 7 API Specification (see http://docs.oracle.com/javase/7/docs/api/javax/management/monitor/GaugeMonitor.html), which implements GaugeMonitorMBean.

	
CounterMonitorMBean observes attributes whose value is a Number.

Use this monitor to observe an attribute whose value only increases as a result of normal operation. Configure the counter monitor to emit a notification if the value of the attribute crosses an upper threshold. You can also configure the counter monitor to increase the threshold and then reset the threshold at a specified point.

For example, to track the overall number of hits on a server and to be notified each time 100 additional hits have accumulated, use a counter monitor that observes the ServerRuntimeMBean SocketsOpenedTotalCount attribute.

See javax.management.monitor.CounterMonitor in the Java SE 7 API Specification (see http://docs.oracle.com/javase/7/docs/api/javax/management/monitor/CounterMonitor.html), which implements CounterMonitorMBean.

All monitor MBeans emit notifications of type javax.management.monitor.MonitorNotification. When a monitor MBean generates a notification, it describes the event that generated the notification by writing a specific value into the notification's Type property. Table 7-4 describes the value of the Type property that the different types of monitor MBeans encode. A filter or listener can use the notification's getType() method to retrieve the String in the Type property.

Table 7-4 Monitor MBeans and the MonitorNotification Type Property

	A Monitor MBean of This Type	Encodes This String in the MonitorNotification's Type Property
	

CounterMonitor

	
jmx.monitor.counter.threshold when the value of the counter reaches or exceeds a threshold known as the comparison level.

	

GaugeMonitor

	
jmx.monitor.gauge.high if the observed attribute value is increasing and becomes equal to or greater than the high threshold value. Subsequent crossings of the high threshold value do not cause further notifications unless the attribute value becomes equal to or less than the low threshold value.

jmx.monitor.gauge.low if the observed attribute value is decreasing and becomes equal to or less than the low threshold value. Subsequent crossings of the low threshold value do not cause further notifications unless the attribute value becomes equal to or greater than the high threshold value.

	

StringMonitor

	
jmx.monitor.string.matches if the observed attribute value matches the string to compare value. Subsequent matches of the string to compare values do not cause further notifications unless the attribute value differs from the string to compare value.

jmx.monitor.string.differs if the attribute value differs from the string to compare value. Subsequent differences from the string to compare value do not cause further notifications unless the attribute value matches the string to compare value.

Errors and the MonitorNotification Type Property

If an error occurs, all monitors encode one of the following values in the notification's Type property:

	
jmx.monitor.error.mbean, which indicates that the observed MBean is not registered in the MBean Server. The observed object name is provided in the notification.

	
jmx.monitor.error.attribute, which indicates that the observed attribute does not exist in the observed object. The observed object name and observed attribute name are provided in the notification.

	
jmx.monitor.error.type, which indicates that the object instance of the observed attribute value is null or not of the appropriate type for the given monitor. The observed object name and observed attribute name are provided in the notification.

	
jmx.monitor.error.runtime, which contains exceptions that are thrown while trying to get the value of the observed attribute (for reasons other than the cases described above).

The counter and the gauge monitors can also encode jmx.monitor.error.threshold into the Type property under the following circumstances:

	
For a counter monitor, when the threshold, the offset, or the modulus is not of the same type as the observed counter attribute.

	
For a gauge monitor, when the low threshold or high threshold is not of the same type as the observed gauge attribute.

Creating a Notification Listener for a Monitor MBean

When an observed attributes meets the criteria that you specify, a monitor MBean emits a notification. There are no special requirements for creating a listener for a MonitorNotification. The steps are the same as those described in Creating a Notification Listener, except:

	
You listen for notifications of type MonitorNotification.

	
Optionally, you can import the javax.management.monitor.MonitorNotification class and invoke its methods to retrieve additional information about the event that generated the notification.

See Example 7-5.

Example 7-5 Listener for Monitor Notifications

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.monitor.MonitorNotification;
public class MonitorListener implements NotificationListener {
 public void handleNotification(Notification notification, Object obj) {
 if(notification instanceof Notification) {
 Notification notif = (Notification) notification;
 System.out.println("Notification type" + notif.getType());
 System.out.println("Message: " + notif.getMessage());
 }
 if (notification instanceof MonitorNotification) {
 MonitorNotification mn = (MonitorNotification) notification;
 System.out.println("Observed Attribute: " +
 mn.getObservedAttribute());
 System.out.println("Trigger: " + mn.getTrigger());
 }
 }
}

Registering the Monitor and Listener

Recall that to use a monitor MBean, you first must create and register an instance of the monitor MBean in the MBean server. Then you register a listener with the monitor MBean that you created. You can do all of this in a single class.

To register a monitor MBean, register your listener, and start the monitor MBean:

	
Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

	
Create an ObjectName for your monitor MBean instance.

See javax.management.ObjectName in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html.

Oracle recommends that your object name starts with the name of your organization and includes key properties that clearly identifies the purpose of the monitor MBean instance.

For example, mycompany:Name=SocketMonitor,Type=CounterMonitor

	
Create and register one of the monitor MBeans.

Use javax.management.MBeanServerConnection.createMBean(String classname ObjectName name) method, where:

	
classname represents one of the following values:

	
javax.management.monitor.CounterMonitor

	
javax.management.monitor.GaugeMonitor

	
javax.management.monitor.StringMonitor

	
name represents the object name that you created for the monitor MBean instance.

	
Configure the monitor MBean by setting the value of its attributes.

For guidelines on which attributes to set, see the javax.management.monitoring package in the Java SE 7 API Specification at http://docs.oracle.com/javase/7/docs/api/javax/management/monitor/package-summary.html.

	
To specify the MBean that your monitor MBean monitors (the observed MBean), invoke the monitor MBean's addObservedObject(ObjectName objectname) and addObservedAttribute(String attributename) operations where.

	
objectname is the ObjectName of the observed MBean

	
attributename is the name of the attribute in the observed MBean that you want to monitor

A single instance of a monitor MBean can monitor multiple MBeans. Invoke the addObservedObject and addObservedAttribute operation for each MBean instance that you want to monitor.

	
Instantiate the listener object that you created in Creating a Notification Listener for a Monitor MBean.

	
Optionally instantiate and configure a filter.

	
Register the listener and optional filter with the monitor MBean. Do not register the listener with the observed MBean.

Invoke the monitor MBean's addNotificationListener(NotificationListener listener, NotificationFilter filter, Object handback) method.

	
Start the monitor by invoking the monitor MBean's start() operation.

Example: Registering a CounterMonitorMBean and Its Listener

Example 7-6 shows the main() method of a class that creates and configures a CounterMonitorMBean to observe the SocketsOpenedTotalCount attribute in each ServerRuntimeMBean instance in a domain. (See "SocketsOpenedTotalCount" in MBean Reference for Oracle WebLogic Server.)

The code example connects to the Domain Runtime MBean Server so that it can monitor multiple instances of ServerRuntimeMBean. Note the following:

	
Only one instance of CounterMonitorMBean monitors all instances of ServerRuntimeMBean. The Domain Runtime MBean Server gives the CounterMonitorMBean federated access to instances of ServerRuntimeMBean that are running in a different JVM.

	
Only one instance of your listener class and the filter class listens and filters notifications from the CounterMonitorMBean.

To compile and run this main method, use the supporting custom methods from Example 7-2 and run the resulting class as a remote JMX client.

Example 7-6 Example: Registering a CounterMonitorMBean and Its Listener

public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 try {
 /* Invokes a custom method that establishes a connection to the
 * Domain Runtime MBean Server and uses an instance of
 * MBeanServerConnection to represents the connection. The custom
 * method assigns the MBeanServerConnection to a class-wide, static
 * variable named "connection".
 */
 initConnection(hostname, portString, username, password);
 //Creates and registers the monitor MBean.
 ObjectName monitorON =
 new ObjectName("mycompany:Name=mySocketMonitor,Type=CounterMonitor");
 String classname = "javax.management.monitor.CounterMonitor";
 System.out.println("===> create mbean "+monitorON);
 connection.createMBean(classname, monitorON);

 //Configure the monitor MBean.
 Number initThreshold = new Long(2);
 Number offset = new Long(1);
 connection.setAttribute(monitorON,
 new Attribute("InitThreshold", initThreshold));
 connection.setAttribute(monitorON, new Attribute("Offset", offset));
 connection.setAttribute(monitorON,
 new Attribute("Notify", new Boolean(true)));

 //Gets the object names of the MBeans that you want to monitor.
 ObjectName[] serverRT = getServerRuntimes();
 int length= (int) serverRT.length;
 for (int i=0; i < length; i++) {
 //Sets each instance of ServerRuntime MBean as a monitored MBean.
 System.out.println("===> add observed mbean "+serverRT[i]);
 connection.invoke(monitorON, "addObservedObject",
 new Object[] { serverRT[i] },
 new String[] { "javax.management.ObjectName" });

 Attribute attr = new Attribute("ObservedAttribute",
 "SocketsOpenedTotalCount");
 connection.setAttribute(monitorON, attr);
 }

 // Instantiates your listener class and configures a filter to
 // forward only counter monitor messages.
 MonitorListener listener = new MonitorListener();
 NotificationFilterSupport filter = new NotificationFilterSupport();
 filter.enableType("jmx.monitor.counter");
 filter.enableType("jmx.monitor.error");

 //Uses the MBean server's addNotificationListener method to
 //register the listener and filter with the monitor MBean.
 System.out.println("===> ADD NOTIFICATION LISTENER TO "+monitorON);
 connection.addNotificationListener(monitorON, listener, filter, null);
 System.out.println("\n[myListener]: Listener registered ...");

 //Starts the monitor.
 connection.invoke(monitorON, "start", new Object[] { }, new String[] { });

 //Keeps the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);
 e.printStackTrace();
 }
}

8 Configuring WebLogic Server JMX Services

This chapter describes how to establish and configure the specific set of JMX services that are to be available within a WebLogic Server 12.1.3 domain. For example, in a production environment you can disable the WebLogic Server editing service and therefore prevent most run-time changes to the domain.

This chapter includes the following sections:

	
Determining the JMX Services Available in a Domain

	
Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

Determining the JMX Services Available in a Domain

Within a WebLogic domain, you can specify which JMX services are available.

The following attributes of JMXMBean determine which JMX services are available in a domain (see "JMXMBean" in MBean Reference for Oracle WebLogic Server):

	
EditMBeanServerEnabled controls whether JMX clients, including utilities such as the WebLogic Server Administration Console and the WebLogic Scripting Tool, can modify a domain's configuration.

	
DomainMBeanServerEnabled controls whether JMX clients can access all run-time MBeans and read-only configuration MBeans through a single connection to the Domain Runtime MBean Server.

	
RuntimeMBeanServerEnabled controls whether JMX clients can access a specific server's run-time MBeans and read-only configuration MBeans through the server's Runtime MBean Server.

	
PlatformMBeanServerEnabled controls whether all WebLogic Server instances initialize the JDK platform MBean server. PlatformMBeanServerUsed controls whether all WebLogic server instances start their Runtime MBean Servers as the JDK platform MBean server. This makes it possible to access WebLogic Server MBeans and the JVM platform MBeans from a single MBean server.

	
CompatibilityMBeanServerEnabled enables JMX clients to use the deprecated weblogic.management.MBeanHome interface to access WebLogic Server MBeans.

	
ManagementEJBEnabled controls whether the current WebLogic Server domain supports the Java EE Management APIs.

Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

The following example uses the WebLogic Scripting Tool (WLST) to set the JMXMBean EditMBeanServerEnabled attribute to false. It assumes that you are running WLST on a Windows computer, that you created a domain under c:\mydomain, and that you have not deleted the scripts that WebLogic Server creates along with your domain.

	
Note:

The following steps prevent JMX clients (including the WebLogic Server Administration Console and the WebLogic Scripting Tool in online mode) from modifying the domain's configuration. You can still modify the domain configuration through the offline editing feature of WebLogic Scripting Tool.
These steps do not prevent JMX clients from deploying or undeploying modules because the WebLogic Server deployment service does not use JMX.

	
Start the domain's Administration Server.

	
In a command prompt, set up the required environment by running the following script:

c:\mydomain\setDomainEnv.cmd

	
In the same command prompt, enter the following commands:

	
java weblogic.WLST

	
connect('weblogic','weblogic')

	
edit()

	
startEdit()

	
cd('JMX/mydomain')

	
set('EditMBeanServerEnabled','false')

	
activate()

	
exit()

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2013, Oracle and/or its affiliates. All rights reserved.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
[image: Oracle Logo]
OEBPS/img/security_mbeans.gif
DomainMBean SecurityConfigurationMBean

RealmMBean

ionProviderMB ean

AuthorizerMB ean AuthenticatorMB ean

AuditorMBean IdentityAss erterMB ean

CertPathPro

eiMBean (—|

alMapperMB ean KeyStoreMBean

RoleMapperMBean UserLockoutManagerMBean

OEBPS/img/jdbc_resource_mbeans.gif
DomainMBean

B

JDBCSystemResourceMBean

JDBCDataSourceBean

JDBCDriverParamsBean

[—|JDBCConnectionPoolParamsBean|

— JDBCDriverParamsBean

— JDBCDriverParamsBean

OEBPS/img/jms_resource_mbeans.gif
DomainMBean

ClusterVBean
ServerlBean
JMsServerMBean
JMSSystemResourceMBean
JVSBaan SubdeploymentMBean
Quessbem DestindtonkeyBean
: T
TopieBaan Temptsteean
T T
T ——— Quetagean
T T
Distibutedd ueueBen Foregnsanverdean
T T
OitibutedTopiedaan P ——
T T
Unitamb stributedQueusean | | SAFEnoriandingBean
T T
Unformb stributedTapicBean | [sAFmporedd estnstinsBean

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing Custom
Management Utilities Using JMX for
Oracle Weblogic Server 12.1.3, 12¢
(12.1.3)

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Developing Custom
Management Utilities Using JMX for
Oracle Weblogic Server 12.1.3, 12¢
(12.1.3)

OEBPS/img/domain_vs_runtime.gif
(notrecormmended = ~ — _

MheanserverConmection] | MBeanServerComestio

Dormain Runtime WBean Server

3
HEeanServer Comection
ar

(_Managed server 7
Runtime MBean Server /’

Managed Server
Runfime MBean Server

OEBPS/img/init_config_mbeans.gif
contig. wal H

<domain>

<nanerMedRecserver </name>
<listen-porc>
7011

WebLogic Server Instance

ServertBean

</listen-pore>
</servars

</aonain>

—— |

MedRecserver®

OEBPS/dcommon/oracle.gif

OEBPS/img/logging_mbeans.gif
DomainMBean

LogMBean

LogFilterMBean

DomainLogBroadcastFilterMBean

LogFileFilterMBean

ServerMBean
MemoryBufferFilterMBean
LogMBean
[StdoutFilterMBean
WebServerMBean
L{ WebServerLogMBean
VirtualHostMBean
WebServerLogMBean

JMSServerMBean

' JMSMessageLogFileMBean

