
Oracle9 i

Application Developer’s Guide - XML

Release 1 (9.0.1)

June 2001

Part No.  A88894-01



Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)

Part No.  A88894-01

Copyright © 2001, Oracle Corporation. All rights reserved.

Primary Author: Shelley Higgins

Graphics:   Valerie Moore

Contributing Authors: Omar Alonso, Sandeepan Banerjee, Neerja Bhaat, Kishore Bhamidipati, Stefan
Buchta, Raghunath Chintalapati, Robert Dell’immagine, Brajesh Goyal, Robert Hall, Karun K, Stefan
Kiritzo,Vishu Krishnamurthy, Murali Krishnaprasad, Olivier LeDiouris, Janet Lee, Wesley Lin, Bryn
Llewellen, Colin McGregor, Ian Macky, Anjana Manian, Becca Martin, Shailendra Mishra, Steve Muench,
Bhagat Nainani, Paul Narth, Visar Nimani, Paul Nock, Ami Parekh, Rajesh Raheja, Carol Roston, Frank
Rovitto, Tomas Saulys, Mark Scardina, Flora Sun, Prabhu Thukkaram, Rodney Ward, Philipp Weckerle,
Manh-Kiet (Allen) Yap

Contributors:   Ari Adler, Omar Alonso, Cathy Baird, Phil Bates, Catherine Bauer, Mark Bauer, Ravinder
Booreddy, Steve Cave, Steve Corbett, Claire Dessaux, Roger Ford, William Gietz, Steven Leung, Anand
Manikutty, Narayan Mantravadi, Jack Melnic, Jitendra Pandey, Andy Page, Rahul Pathak, Padmini
Ranganathan, Den Raphaely, Jim Rawles, David Saslav, Chitra Sharma, Keith Swartz, Priya
Vennapusa,Melanie Watson, Jon Wilkinson, Vikram Yavagal, Tim Yu, Kongyi Zhou

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited. The information
contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation
If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice  Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065. The Programs are not intended for use in any nuclear,
aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's
responsibility to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the
safe use of such applications if the Programs are used for such purposes, and Oracle Corporation
disclaims liability for any damages caused by such use of the Programs. Oracle is a registered trademark,
and Oracle Press®, Oracle8i TM, Oracle9i TM, PL/SQL ™ , Pro*C ™ , Pro*C/C++ ™ , Pro*COBOL®,
SQL*Plus® , JDeveloper™, JServer™, Oracle® Business Components for Java (BC4J), Oracle‚ Reports,
Oracle® Portal,Oracle‚ Internet File System (9iFS), Oracle® XML Gateway,Oracle9i™ Dynamic Services,
OracleMobile™, Oracle® Discoverer™,SQL*Loader®, Oracle/2000 ™  are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners. Other
trademarks used in this manual are TEAMS™ of Artesia Technologies, Inc. and EPIC™ of Arbortext.



Contents

Send Us Your Comments .................................................................................................................. xli

Preface .......................................................................................................................................................... xliii

About this Guide................................................................................................................................. xliv
Audience ............................................................................................................................................... xlv
Feature Coverage and Availability ................................................................................................. xlvii
How this Manual is Organized........................................................................................................ xlvii
Related Documentation ....................................................................................................................... liv
How to Order this Manual ................................................................................................................... lv
Downloading Release Notes, Installation Guides, White Papers,................................................. lvi
How to Access this Manual On-Line ................................................................................................. lvi
Conventions.......................................................................................................................................... lvii
Documentation Accessibility .............................................................................................................. lix

What’s New in Oracle XML-Enabled Technology? ............................................................ lxi

XML Features Introduced with Oracle9i, Release 1 (9.0.1)............................................................. lxi
XML Features Introduced with Oracle8i Release 3 (8.1.7)........................................................... lxvii

Part I  Introducing Oracle XML-Enabled Technology

1  Oracle XML-Enabled Technology

What is XML ?...................................................................................................................................... 1-2
What are Oracle XML-Enabled Technologies?......................................................................... 1-2
Oracle XML Components ............................................................................................................ 1-2
iii



Storing and Retrieving XML Data from Oracle9i......................................................................... 1-6
XML Support in the Database .......................................................................................................... 1-7

XML and URI Data Types ........................................................................................................... 1-7
Extensibility and XML ................................................................................................................. 1-9
Oracle Text Searching................................................................................................................... 1-9

Oracle-Based XML Applications.................................................................................................... 1-10
When to Use Oracle XML Components: How They Work Together.................................. 1-11

Oracle XML-Enabled Technology Components and Features ................................................. 1-11
Indexing and Searching XML Documents with Oracle Text (interMedia Text) ................ 1-11
Messaging Hubs and Middle Tier Components .................................................................... 1-12
Back-End to Database to Front-End Integration Issues ........................................................ 1-13
Oracle XDKs Provide the Two Most Common APIs: DOM and SAX ................................ 1-14
Writing Custom XML Applications ......................................................................................... 1-14

The Oracle Suite of Integrated Tools and Components ............................................................ 1-14
Oracle JDeveloper and Oracle Business Components for Java (BC4J)................................ 1-15
Oracle9i Internet File System (Oracle 9iFS or 9iFS) ............................................................... 1-15
Oracle Portal ................................................................................................................................ 1-16
Oracle Exchange.......................................................................................................................... 1-17
XML Gateway.............................................................................................................................. 1-17
Metadata API............................................................................................................................... 1-17
Other XML Initiatives ................................................................................................................ 1-18

Oracle XML Samples and Demos .................................................................................................. 1-18
What Is Needed to Run Oracle XML Components .................................................................... 1-18

Requirements for XDK............................................................................................................... 1-19
Which XML Components are Included with Oracle9i Database and Oracle9i Application

Server? 1-19
XML Technical Support ................................................................................................................... 1-20

2    Modeling and Design Issues for Oracle XML Applications

XML Data can be Stored as Generated XML or Composed XML.............................................. 2-2
Generated XML ................................................................................................................................... 2-2
Composed (Authored/Native) XML ................................................................................................ 2-3

Storing Composed XML Data in CLOBs or BFILEs................................................................. 2-3
Oracle Text (interMedia Text) Indexing Enables Fine Grain Searching of XML Element

Content 2-4
iv



Advantages of Using Composed (Authored) XML Storage .................................................. 2-4
Disadvantages of Using Composed XML Storage................................................................... 2-4

Using a Hybrid XML Storage Approach for Better Mapping Granularity.............................. 2-5
A Hybrid Approach Allows for User-Defined Storage Granularity..................................... 2-5
Hybrid Storage Advantages........................................................................................................ 2-6

Transforming Generated XML ......................................................................................................... 2-7
Combining XML Documents and Data Using Views ............................................................. 2-7
Indexing and Querying Transformations ................................................................................. 2-7
Indexing Approaches................................................................................................................... 2-8
XML Schemas and Mapping of Documents ............................................................................. 2-8
XMLSchema Example 1: Defining a Simple Data Type.......................................................... 2-9
XMLSchema Example 2: Using XMLSchema to Map Generated XML Documents to

Underlying Schema 2-9
General XML: Design Issues for Data Exchange Applications ............................................... 2-11

Generating a Web Form from XML Data Stored in the Database....................................... 2-11
Sending XML Data from a Web Form to the Database......................................................... 2-11

Sending XML Documents Applications-to-Application .......................................................... 2-12
Loading XML into a Database ........................................................................................................ 2-13

Using SQL*Loader...................................................................................................................... 2-13
Loading XML Documents Into LOBs With SQL*Loader...................................................... 2-14

Applications that Use Oracle XML -EnabledTechnology ......................................................... 2-17
Content and Document Management with Oracle XML-Enabled Technology.................... 2-17

Customizing Presentation of Data ........................................................................................... 2-17
Scenario 1. Content and Document Management: Publishing Composite Documents Using
XML-Enabled OracleTechnology................................................................................................... 2-19
Scenario 2. Content and Document Management: Delivering Personalized Information Using
Oracle XML Technology .................................................................................................................. 2-21
Scenario 3. Content Management: Using Oracle XML Technology to Customize Data Driven
Applications....................................................................................................................................... 2-24
Business-to-Business and Business-to-Consumer Messaging................................................. 2-25
Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML ...... 2-25
Scenario 5. B2B Messaging: Using Oracle XML Components and  Advanced Queueing for an
Online Inventory Application........................................................................................................ 2-27
Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for
Multi-Application Integration ....................................................................................................... 2-30
v



3 Oracle XML Developer Kits (XDKs) and Components: Overview and General
FAQs

Oracle XML Components: Overview .............................................................................................. 3-2
Development Tools and Other XML-Enabled Oracle9i Features .............................................. 3-3

XDK for Java.................................................................................................................................. 3-4
XDK for Java Beans....................................................................................................................... 3-5
XDK for C....................................................................................................................................... 3-5
XDK for C++.................................................................................................................................. 3-5
XDK for PL/SQL........................................................................................................................... 3-5

XML Parsers ......................................................................................................................................... 3-6
XSL Transformation (XSLT) Processor............................................................................................ 3-8
XML Class Generator ......................................................................................................................... 3-8
XML Transviewer Java Beans ........................................................................................................... 3-9
Oracle XSQL Page Processor and Servlet ..................................................................................... 3-10

Servlet Engines that Support XSQL Servlet ......................................................................... 3-11
JavaServer Pages Platforms that Support XSQL Servlet ....................................................... 3-11

Oracle XML SQL Utility (XSU) ...................................................................................................... 3-14
Generating XML from Query Results...................................................................................... 3-15
XML Document Structure: Columns Are Mapped to Elements .......................................... 3-15

Oracle Text .......................................................................................................................................... 3-16
Oracle XML Components: Generating XML Documents ......................................................... 3-17
Using Oracle XML Components to Generate XML Documents: Java .................................... 3-17
Using Oracle XML Components to Generate XML Documents: C ......................................... 3-20
Using Oracle XML Components to Generate XML Documents: C++ ................................... 3-22
Using Oracle XML Components to Generate XML Documents: PL/SQL ............................. 3-24
Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology.............................. 3-26
General XDK Questions .................................................................................................................. 3-26

What XML Components Do I Need to Install?....................................................................... 3-26
Building an XML Application: What Software Is Needed?.................................................. 3-27
DTD to Database Schema .......................................................................................................... 3-27
Schema Map to XML .................................................................................................................. 3-28
Are There XDK Utilities That Translate From Other Formats to XML?............................. 3-28
Can Oracle Generate a Database Schema From a Rational Rose Generated XML File? .. 3-29
Does Oracle Offer Any Tools to Create and Edit XML Documents? .................................. 3-29
How Can I Format XML Documents as PDF?........................................................................ 3-29
vi



How Do I Load a Large XML Document Into the Database? .............................................. 3-30
Portability and XML Support in Older Oracle Releases........................................................... 3-32

Can I Use Parsers from Different Vendors?............................................................................ 3-32
Is There XML Support in Oracle 8.0.x?.................................................................................... 3-33
Oracle 7.3.4: Data Transfers to Other Vendors Using XML ................................................. 3-33
If I Use Versions Prior to Oracle8i Can I use Oracle XML Tools? ....................................... 3-33

Browsers that Support XML ........................................................................................................... 3-34
Which Browsers Support XML? ............................................................................................... 3-34

Standards ............................................................................................................................................ 3-34
Are there Advantages of XML Over EDI? .............................................................................. 3-34
What B2B Standards and Development Tools Does Oracle Support?................................ 3-35
What is Oracle Corporation’s Direction Regarding XML?................................................... 3-36
Are There Standard DTDs that We Can Use for Orders, Shipments, and So On? ........... 3-37

XML, CLOBs, and BLOBs ............................................................................................................... 3-37
Is There Support for XML Messages in BLOBs? .................................................................... 3-37

Maximum FileSizes .......................................................................................................................... 3-37
What is the Maximum XML File Size When Stored in CLOBs? .......................................... 3-37
XML File Size Limitations ......................................................................................................... 3-38
Maximum Size for an XML Document.................................................................................... 3-38

Inserting XML Data Into Tables..................................................................................................... 3-38
What Do I Need to Insert Data Into Tables Using XML? ..................................................... 3-38

XML in the Database: Performance............................................................................................... 3-39
Where Can I Find Information about the Performance of XML and Oracle?.................... 3-39
How Can I Speed Up the Record Retrieval in XML Documents? ....................................... 3-39

Using XML With Different Languages......................................................................................... 3-39
Further References............................................................................................................................ 3-40

Other XML Frequently Asked Questions ............................................................................... 3-40
Recommended XML and XSL Books....................................................................................... 3-40

4  Using XSL and XSLT

Introducing XSL .................................................................................................................................. 4-2
The W3C XSL Specification......................................................................................................... 4-2
Namespaces in XML .................................................................................................................... 4-3
XSL Stylesheet Architecture........................................................................................................ 4-3

XSL Transformation (XSLT) .............................................................................................................. 4-4
vii



XSLT 1.1 Specification .................................................................................................................. 4-4
XML Path Language (Xpath) ............................................................................................................. 4-5
CSS Versus XSL ................................................................................................................................... 4-5
XSL References .................................................................................................................................... 4-6
Frequently Asked Questions: XSL and XSLT................................................................................ 4-6

How Do I Write an IF Statement in XSL That Tests for Values Within Tags?..................... 4-6
In an XSL Document,  How Can We Select Specific Attributes? ........................................... 4-7
When Converting XML to HTML, Why Do I get "Unexpected EOF"?................................. 4-7
Whitespace: Why are my Resulting Values Multiplied by 2?................................................ 4-9
How Can I Specify a NULL Indicator in XSL? ....................................................................... 4-10
How Can Transfer Tag Names in XSLT? ................................................................................ 4-11
How Do I Convert A String to a Nodeset in XSL?................................................................. 4-13
In XSL, How Can I Correctly Convert an XML Document Tag to a Link in HTML?....... 4-16
Am I Using the Correct XSL Headers for my WML Transformation? ............................... 4-18
In an XSL Transformation, How Do I Ensure that the DTD File Can be Located?........... 4-18
In XSL, How Do I Prevent the Namespace Definition from Being Repeated For Each

Element? 4-19
How Do I Pass a Parameter from a Java Program to an XSL Stylesheet? .......................... 4-20
How Can I Resolve the Error XSL-1009 Attribute ’XSL Version’ Not Found in HTML? 4-21
What XPath Expression Will Retrieve Only Terminal Child Elements? ............................ 4-22
Child Attributes are Not Returned After Applying XSL Stylesheet ................................... 4-23

Part II Storing and Retrieving XML From the Database

5  Database Support for XML

What are the Oracle9i Native XML Database Features?.............................................................. 5-2
XMLType Datatype ............................................................................................................................. 5-3

How to use XMLType .................................................................................................................. 5-4
Guidelines for using XMLType Columns ................................................................................. 5-6

Benefits of XMLType .......................................................................................................................... 5-7
When to use XMLType ....................................................................................................................... 5-8
XMLType Storage in the Database .................................................................................................. 5-8

Specifying Storage Characteristics on XMLType Columns.................................................. 5-10
Specifying Constraints on XMLType Columns...................................................................... 5-12

XMLType Functions.......................................................................................................................... 5-13
viii



Manipulating XML Data in XMLType Columns ........................................................................ 5-16
Inserting XML Data into XMLType Columns........................................................................ 5-16
Updating XML Data in XMLType Columns .......................................................................... 5-18
Deleting XML Data..................................................................................................................... 5-19
Using XMLType Inside Triggers .............................................................................................. 5-19

Selecting and Querying XML Data ............................................................................................... 5-20
Selecting XML data..................................................................................................................... 5-20
Querying XML data ................................................................................................................... 5-21
Querying XMLType Data using Text Operators ................................................................... 5-29

Indexing XMLType columns........................................................................................................... 5-31
Java Access to XMLType (oracle.xdb.XMLType)......................................................................... 5-32

Installing and using oracle.xdb.XMLType class .................................................................... 5-41
Native XML Generation .................................................................................................................. 5-42
DBMS_XMLGEN.............................................................................................................................. 5-42
SYS_XMLGEN................................................................................................................................... 5-63

XMLGenFormatType Object..................................................................................................... 5-64
SYS_XMLAGG .................................................................................................................................. 5-72

Other Aggregation Methods..................................................................................................... 5-77
TABLE Functions .............................................................................................................................. 5-77

Using Table Functions with XML ............................................................................................ 5-78
Table Functions Example 1: Exploding the PO to Store in a Relational Table .................. 5-78

Frequently Asked Questions (FAQs): XMLType ........................................................................ 5-81

6  Database Uri-references

Uri-reference (Uri-ref) Concepts ...................................................................................................... 6-2
What is a Uri-ref?.......................................................................................................................... 6-2
Advantages of Using DBUri-ref ................................................................................................. 6-3

New Datatypes Store Uri-references............................................................................................... 6-3
Benefits of Using UriTypes ......................................................................................................... 6-4

DBUri-refs, Intra-Databases References ........................................................................................ 6-4
Formulating the DBUri ................................................................................................................ 6-5
The DB-Uri Specification ............................................................................................................. 6-7
DBUri Syntax Guidelines ............................................................................................................ 6-8
Some Common DBUri-ref Scenarios ......................................................................................... 6-9
How DBUri’s Differ from Object References.......................................................................... 6-12
ix



DBUri-ref Applies to a Database and Session ........................................................................ 6-12
Where Can DBUri-ref be Used?................................................................................................ 6-12

Using Uri-ref Types (URITypes) .................................................................................................... 6-14
Storing Pointers to Documents with UriType ........................................................................ 6-14
URIType Examples ..................................................................................................................... 6-15
Using HttpUriType and DBUriType ....................................................................................... 6-16
DBUriType Examples................................................................................................................. 6-16

UriFactory Package ........................................................................................................................... 6-17
UriFactory Example: Registering the ecom Protocol............................................................. 6-18

Why Use Different Uri-refs? ........................................................................................................... 6-19
SYS_DBURIGEN() SQL Function ................................................................................................. 6-20

SYS_DBURIGEN Example 1: Inserting Database References .............................................. 6-22
SYS_DBURIGEN Example 2: Returning Partial Results ....................................................... 6-22
SYS_DBURIGEN Example 3: RETURNING Uri-refs ............................................................ 6-24

Accessing DBUri-refs From Your Browser Using Servlets ....................................................... 6-25
oracle.xml.dburi.OraDbUriServlet() Servlet Mechanism...................................................... 6-25
OraDBUriServlet Security ......................................................................................................... 6-26
Installing OraDBUri Servlet ...................................................................................................... 6-27
DBUri Servlet Example 1: First Create a DBUriServer Web Service [tkxmsrv.ssh] .......... 6-28
DBUri Servlet Example 2: Creating DBUridomain — Publishing OraDbUriServlet Under

SYS [tkxmsys.ssh] 6-29
DBUri Servlet Example 3: Publishing OraDbUriServlet Under SYS [tkxmsysd.ssh] ....... 6-30
DBUri Servlet Example 4: Publishing OraDbUriServlet Under ADAMS with Class Under

SYS [tkxmadam.ssh] 6-31
DBUri Servlet Example 5: Publishing OraDbUriServlet Under SCOTT [tkxmsctd.ssh].. 6-32
DBUri Servlet Example 6: Creating and Mapping dburirealm — Publishing

OraDbUriServlet Under SYS [tkxmsysr.ssh] 6-33
DBUri Servlet Example 7: Publishing OraDbUriServlet Under the ADAMS Schema Using

the Class Under ADAMS [tkxmadmn.ssh] 6-34
DBUri Servlet Example 8: Publishing OraDbUriServlet Under the ADAMS Schema Using

the Class Under ADAMS with uritests Context Mapped to DBUSER-realm [tkxmadmd.ssh]

6-35
Configuring the UriFactory Package to Handle DBUri-refs ................................................ 6-37

7     XML SQL Utility (XSU)

What is XML SQL Utility (XSU)?..................................................................................................... 7-2
x



XSU Features ................................................................................................................................. 7-3
XSU Oracle9i Features ................................................................................................................. 7-3

XSU Dependencies and Installation ............................................................................................... 7-4
Dependencies ................................................................................................................................ 7-4
Installation ..................................................................................................................................... 7-4

XML SQL Utility and the Bigger Picture ....................................................................................... 7-5
XML SQL Utility in the Database............................................................................................... 7-5
XML SQL Utility in the Middle Tier .......................................................................................... 7-6
XML SQL Utility in a Web Server .............................................................................................. 7-7
XML SQL Utility In The Client Tier........................................................................................... 7-8

SQL-to-XML and XML-to-SQL Mapping Primer ......................................................................... 7-8
Default SQL-to-XML Mapping................................................................................................... 7-8
Customizing the Generated XML: Mapping SQL to XML................................................... 7-12
Default XML-to-SQL Mapping................................................................................................. 7-13

How XML SQL Utility Works ........................................................................................................ 7-14
Selecting with XSU ..................................................................................................................... 7-14
Inserting with XSU ..................................................................................................................... 7-14
Updating with XSU .................................................................................................................... 7-15
Deleting with XSU...................................................................................................................... 7-16

Using the XSU Command Line Front End,OracleXML ............................................................. 7-17
Generating XML Using the XSU Command Line ................................................................. 7-17
XSU’s OracleXML getXML Options ........................................................................................ 7-18
Inserting XML Using XSU’s Command Line (putXML)....................................................... 7-19
XSU OracleXML putXML Options........................................................................................... 7-20

XSU Java API ..................................................................................................................................... 7-20
Generating XML with XSU’s OracleXMLQuery......................................................................... 7-21

Generating XML From SQL Queries Using XSU................................................................... 7-21
XSU Generating XML Example 1: Generating a String From Table emp (Java) ............... 7-22
XSU Generating XML Example 2: Generating DOM From emp table (Java) .................... 7-25

Paginating Results: skipRows and maxRows ............................................................................. 7-27
Keeping the Object Open For the Duration of the User’s Session....................................... 7-27
When the Number of Rows or Columns in a Row Are Too Large ..................................... 7-27
keepObjectOpen Function......................................................................................................... 7-28
XSU Generating XML Example 3. Paginating Results: Generating an XML Page When

Called (Java) 7-28
Generating XML from ResultSet Objects .................................................................................... 7-30
xi



XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)........... 7-30
XSU Generating XML Example 5: Generating XML from Procedure Return Values (REF

CURSORS) (Java) 7-32
Raising No Rows Exception............................................................................................................ 7-33

XSU Generating XML Example 6: No Rows Exception (Java) ............................................. 7-34
Storing XML Back in the Database Using XSU OracleXMLSave............................................ 7-35
Insert Processing Using XSU (Java API)....................................................................................... 7-36

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java) ............. 7-36
XSU Inserting XML Example 8: Inserting XML Values into Only Certain Columns (Java).......

7-37
Update Processing Using XSU (Java API) .................................................................................... 7-38

XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java) .......... 7-39
XSU Updating XML Example 10: Updating a Specified List of Columns (Java) .............. 7-40

Delete Processing Using XSU (Java API) ..................................................................................... 7-41
XSU Deleting XML Example 11: Deleting Operations Per ROW (Java) ............................. 7-41
XSU Deleting XML Example 12: Deleting Specified Key Values (Java) ............................. 7-42

XSU PL/SQL API ............................................................................................................................... 7-43
Generating XML with DBMS_XMLQuery() ........................................................................... 7-43
XSU Generating XML Example 13: Generating XML From Simple Queries (PL/SQL) .. 7-43
XSU Generating XML Example 13a: Printing CLOB to Output Buffer .............................. 7-44
XSU Generating XML Example 14: Changing ROW and ROWSET Tag Names (PL/SQL).......

7-44
XSU Generating XML Example 15: Paginating Results Using setMaxRows() and

setSkipRows() 7-45
Setting Stylesheets in XSU (PL/SQL)............................................................................................ 7-46
Binding Values in XSU (PL/SQL) .................................................................................................. 7-47

XSU Generating XML Example 15a: Binding Values to the SQL Statement...................... 7-48
Storing XML in the Database Using DBMS_XMLSave ............................................................ 7-48
Insert Processing Using XSU (PL/SQL API) ................................................................................ 7-49

XSU Inserting XML Example 16: Inserting Values into All Columns (PL/SQL) .............. 7-49
XSU Inserting XML Example 17: Inserting Values into Only Certain Columns (PL/SQL) .......

7-50
Update Processing Using XSU (PL/SQL API) ............................................................................. 7-51

XSU Updating XML Example 18: Updating an XML Document Using keyColumns

(PL/SQL) 7-52
XSU Updating XML Example 19: Specifying a List of Columns to Update (PL/SQL).... 7-53
xii



Delete Processing Usingh XSU (PL/SQL API) ............................................................................ 7-53
XSU Deleting XML Example 20: Deleting Operations per ROW (PL/SQL)...................... 7-53
XSU Example 21: Deleting by Specifying the Key Values (PL/SQL) ................................. 7-54
XSU Deleting XML Example 22: ReUsing the Context Handle (PL/SQL) ........................ 7-55

Advanced XSU Usage Techniques................................................................................................. 7-57
XSU Exception Handling in Java.............................................................................................. 7-57
XSU Exception Handling in PL/SQL ...................................................................................... 7-58

Frequently Asked Questions (FAQs): XML SQL Utility (XSU)............................................... 7-59
What Schema Structure Should I Use With XSU to Store XML?......................................... 7-59
Can XSU Store XML Data Across Tables? .............................................................................. 7-60
Can I Use XML SQL Utility to Load XML Stored in Attributes?......................................... 7-61
Is XML SQL Utility Case Sensitive? Can I Use ignoreCase? ................................................ 7-61
Will XSU Generate Database Schema from a DTD?.............................................................. 7-62
Can You Provide a Thin Driver Connect String Example for XSU? ................................... 7-62
Does XML SQL Utility Commit After INSERT, DELETE, UPDATE? ................................ 7-62
Can You Explain How to Map Table Columns to XML Attributes Using XSU? .............. 7-63
How Can I Use XMLGEN.insertXML with LOBs?................................................................ 7-64

8  Searching XML Data with Oracle Text

Introducing Oracle Text ..................................................................................................................... 8-3
Assumptions Made in this Chapter’s Examples ........................................................................... 8-4
Oracle Text Users and Roles ............................................................................................................. 8-5
Querying with the CONTAINS Operator...................................................................................... 8-6

Using a Simple SELECT Statement............................................................................................ 8-7
Using the Score Operator with a Label to Obtain the Relevance .......................................... 8-7
Using the WITHIN Operator to Narrow  Query Down to Document Sections.................. 8-7
Using INPATH or HASPATH Operators for Query Searching With XPath-like Expressions ....

8-11
Using Oracle Text to Search XML Documents ........................................................................... 8-17

Step 1. Create a Section Preference .......................................................................................... 8-18
Step 2. Create an Index Using the Section Preference Created in Step 1............................ 8-22
Oracle Text Example 1: Creating an Index Using XML_SECTION_GROUP .................... 8-22
Oracle Text Example 2: Creating an Index Using AUTO_SECTION_GROUP ................. 8-24
Oracle Text Example 3: Creating an Index Using PATH_SECTION_GROUP.................. 8-24

Building XML Query Applications with Oracle Text ................................................................ 8-24
xiii



Querying XML Documents ............................................................................................................. 8-25
Distinguishing Tags Across DocTypes.................................................................................... 8-25
Specifying Doctype Limiters to Distinguish Between Tags ................................................. 8-25
Doctype-Limited and Unlimited Tags in a Section Group................................................... 8-26
Querying Within Attribute Sections ........................................................................................ 8-26
XML_SECTION_GROUP Attribute Sections.......................................................................... 8-27
Constraints for Querying Attribute Sections .......................................................................... 8-29

Procedure for Building a Query Application with Oracle Text ............................................... 8-30
Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View ................................ 8-31

Step 1. Create a Preference .............................................................................................................. 8-32
Step 2. Set the Preference’s Attributes .......................................................................................... 8-32

2.1   Using CTX_DDL.add_zone_section................................................................................. 8-32
2.2 Using CTX_DDL.Add_Attr_Section .................................................................................. 8-33
2.3 Using CTX_DDL.add_field_section................................................................................... 8-34
2.5   Using CtX_DDL.Add_Stop_Section................................................................................. 8-36

Step 3. Create Your Query Syntax .................................................................................................. 8-36
Oracle Text Example 4: Querying a... Document................................................................... 8-37
Oracle Text Example 5: Creating an Index and Performing a Text Query......................... 8-39

Creating Sections in XML Documents that are Document Type Sensitive .......................... 8-40
Repeated Sections ....................................................................................................................... 8-40
Overlapping Sections ................................................................................................................. 8-41
Nested Sections ........................................................................................................................... 8-41

Presenting the Results of Your Query........................................................................................... 8-42
Case Study: Searching an Online FAQ List Using Oracle Text................................................ 8-42

1   Create and Populate Your FAQ Table. Create an Auto Section Group and Oracle Text

Index 8-45
2 Compile showxml.psp ............................................................................................................ 8-47
3 Compile faqsearch.psp............................................................................................................ 8-48

Frequently Asked Questions (FAQs): Oracle Text...................................................................... 8-51
Searching Attribute Values ............................................................................................................. 8-51

Can I Build Indexes on Attribute Values?............................................................................... 8-51
General Oracle Text Questions....................................................................................................... 8-52

Can XML Documents Be Queried Like Table Data? ............................................................. 8-52
Can we Search Based on Structural Conditions? ................................................................... 8-53
How Can I Searching XML Documents and Return a Zone?............................................... 8-53
Loading XML Documents into the Database and Searching with Oracle Text ................. 8-54
xiv



How Do I Search XML using the WITHIN Operator? .......................................................... 8-54
Oracle Text (intermedia Text) and XML ................................................................................. 8-55
Oracle Text (intermedia Text) and XML: Add_field_section ............................................... 8-55
Can I Do Range Searching with Oracle Text?......................................................................... 8-56
Can Oracle Text Do Section Extraction?.................................................................................. 8-56
Can I Create a Text Index on Three Columns?....................................................................... 8-56
How Fast is Oracle9i at Indexing Text and Can I Just Enable Boolean Searches? ............ 8-57
How Can We Index XML Documents in Different Languages? ......................................... 8-57

Searching XML Documents in CLOBs ......................................................................................... 8-58
How Do I Search CLOBs Using Oracle Text?......................................................................... 8-58
How Can I Search Different XML Documents Stored in CLOBs With Different DTDs? 8-59
Storing an XML Document in CLOB: Using Oracle Text (intermedia Text) ..................... 8-60
Can We Only Insert Structured When The Table is Created?.............................................. 8-62

Part III  Data Exchange Using XML

9  Exchanging XML Data Using Oracle AQ

What is AQ? ......................................................................................................................................... 9-2
How do AQ and XML Complement Each Other? ........................................................................ 9-2
Internet-Data-Access-Presentation (IDAP).................................................................................... 9-6

XML and the IDAP Interface ...................................................................................................... 9-6
IDAP Architecture .............................................................................................................................. 9-6

IDAP Method Invocation ............................................................................................................ 9-8
IDAP Message Structure.............................................................................................................. 9-9
IDAP Method Invocation Body: “IDAP Payload”................................................................. 9-10

IDAP Message Body is an AQ XML Document ......................................................................... 9-11
IDAP Client Requests for Enqueue .............................................................................................. 9-11

Message Payloads....................................................................................................................... 9-13
IDAP Enqueue Request Example1 — Sending an ADT Message to a Single-Consumer

Queue 9-17
IDAP Enqueue Request Example 2 — Publishing an ADT Message to a Multiconsumer

Queue 9-19
IDAP Enqueue Request Example 3 — Sending a Message to a JMS Queue...................... 9-20
IDAP Enqueue Request Example 4 — Sending/Publishing and Committing the Transaction

9-21
xv



IDAP Client Requests for Dequeue .............................................................................................. 9-23
IDAP Dequeue Request Example 1— Receiving Messages from a Single-Consumer Queue ...

9-25
IDAP Dequeue Request Example 2 — Receiving Messages that Satisfy a Specific Condition ..

9-25
IDAP Dequeue Request Example 3 — Receiving Messages and Committing .................. 9-25
IDAP Dequeue Request Example 4 — Browsing Messages................................................. 9-26

IDAP Client Requests for Registration ........................................................................................ 9-26
IDAP Register Request Example 1— Registering for Notification at an Email Address. 9-27
Commit Request.......................................................................................................................... 9-27
Rollback Request......................................................................................................................... 9-28

IDAP Server Response to Enqueue ............................................................................................... 9-28
IDAP Server Request Example 1 — Enqueuing a Single Message to a Single-Consumer

Queue 9-29
IDAP Server Request Example 2— Enqueuing to a Multiconsumer Queue ..................... 9-29

Server Response to a Dequeue Request ....................................................................................... 9-30
IDAP Server Dequeue Response Example 1 — Receiving Messages from an ADT Queue

(AQXmlReceiveResponse) 9-30
Server Response to a Register Request......................................................................................... 9-31

Commit Response....................................................................................................................... 9-31
Rollback Response ...................................................................................................................... 9-32

Notification......................................................................................................................................... 9-32
.......................................................................................................... IDAP and AQ XML Schemas 9-33
AQXMLServlet .................................................................................................................................. 9-33

Accessing AQXMLServlet with HTTP .................................................................................... 9-33
XMLType Queues.............................................................................................................................. 9-37

Storing and Querying XML Documents with Advanced Queueing (AQ)......................... 9-37
Structuring and Managing Message Payloads with Object Types...................................... 9-37
Creating Message Payloads Queues Containing XMLType Attributes ............................. 9-37
XMLType Queues Example 1: Creating XMLType Queue Tables for a Queue Object Type

Containing Messages with XMLType Attributes 9-38
AQ XML Message Format Transformation .................................................................................. 9-39

AQ Message Transformation Example 1: Creating a Single PL/SQL Function that Returns

an XMLType Object or Constructor of Target Type 9-39
Frequently Asked Questions (FAQs): XML and Advanced Queuing..................................... 9-42

Can we Store AQ XML Messages with Many PDFs as One Record? ................................. 9-42
xvi



Can We Add New Recipients After Messages are Enqueued?............................................ 9-43
How Does Oracle Enqueue and Dequeue and Process XML Messages?........................... 9-44
How Can We Parse Messages with XML Content From AQ Queues? .............................. 9-44
Can we Prevent the Listener From Stopping Until the XML Document is Processed? ... 9-45

Part IV Tools and Frameworks for Building Oracle-Based XML Applications

10  XSQL Pages Publishing Framework

XSQL Pages Publishing Framework Overview .......................................................................... 10-2
What Can I Do with Oracle XSQL Pages?............................................................................... 10-3
Where Can I Obtain Oracle XSQL Pages?............................................................................... 10-5
What’s Needed to Run XSQL Pages? ...................................................................................... 10-5

Overview of Basic XSQL Pages Features ..................................................................................... 10-6
Producing XML Datagrams from SQL Queries ..................................................................... 10-7
Transforming XML Datagrams into an Alternative XML Format ...................................... 10-9
Transforming XML Datagrams into HTML for Display..................................................... 10-13

Setting Up and Using XSQL Pages in Your Environment ...................................................... 10-15
Using XSQL Pages With Oracle JDeveloper......................................................................... 10-15
Setting the CLASSPATH Correctly in Your Production Environment ............................ 10-16
Setting Up the Connection Definitions.................................................................................. 10-17
Using the XSQL Command Line Utility................................................................................ 10-18

Overview of All XSQL Pages Capabilities ................................................................................ 10-19
Using All of the Core Built-in Actions................................................................................... 10-19
Aggregating Information Using <xsql:include-xsql> ......................................................... 10-36
Handling Posted Information................................................................................................. 10-38
Using Custom XSQL Action Handlers .................................................................................. 10-44

Description of XSQL Servlet Examples...................................................................................... 10-46
Setting Up the Demo Data....................................................................................................... 10-48

Advanced XSQL Pages Topics...................................................................................................... 10-49
Understanding Client Stylesheet-Override Options ........................................................... 10-49
Controlling How Stylesheets are Processed ......................................................................... 10-50
Using XSQLConfig.xml to Tune Your Environment........................................................... 10-54
Using the FOP Serializer to Produce PDF Output............................................................... 10-59
Using XSQL Page Processor Programmatically................................................................... 10-61
Writing Custom XSQL Action Handlers............................................................................... 10-63
xvii



Writing Custom XSQL Serializers .......................................................................................... 10-68
Writing Custom XSQL Connection Managers ..................................................................... 10-71
Formatting XSQL Action Handler Errors ............................................................................. 10-72

XSQL Servlet Limitations.............................................................................................................. 10-73
HTTP Parameters with Multibyte Names............................................................................. 10-73
CURSOR() Function in SQL Statements................................................................................ 10-73

Frequently Asked Questions (FAQs) - XSQL Servlet .............................................................. 10-74
Specifying a DTD While Transforming XSQL Output to a WML Document ................. 10-74
XSQL Servlet Conditional Statements ................................................................................... 10-74
Using Value Retrieved in One Query in Another Query’s Where Clause ....................... 10-75
Working with Non-Oracle Databases.................................................................................... 10-75
XSQL Servlet: Access to JServ Process................................................................................... 10-76
XSQL on Oracle8i Lite.............................................................................................................. 10-76
Handling Multi-Valued HTML Form Parameters............................................................... 10-77
XSQL Servlet and Oracle 7.3 ................................................................................................... 10-79
Out Variable Not Supported in <xsql:dml> ......................................................................... 10-79
Unable to Connect Errors ........................................................................................................ 10-81
Using Other File Extensions Besides *.xsql ........................................................................... 10-81
Avoiding Errors for Queries Containing XML Reserved Characters ............................... 10-82

11  Using JDeveloper to Build Oracle XML Applications

Introducing JDeveloper9i................................................................................................................ 11-2
Business Components for Java (BC4J) ..................................................................................... 11-3
Oracle JDeveloper XML Strategy ............................................................................................. 11-4
Further Information About JDeveloper................................................................................... 11-5

What’s Needed to Run JDeveloper9i............................................................................................. 11-5
Accessing JDeveloper9i.............................................................................................................. 11-6

XML in Business Components for Java (BC4J) ........................................................................... 11-6
Building XSQL Clients with Business Components for Java (BC4J) ..................................... 11-8

Object Gallery.............................................................................................................................. 11-8
XSQL Element Wizard ............................................................................................................. 11-10
Page Selector Wizard................................................................................................................ 11-11

XML Features in JDeveloper9i ..................................................................................................... 11-11
Oracle XDK and Transviewer Beans Integration ................................................................. 11-11
Oracle XML Parser for Java ..................................................................................................... 11-12
xviii



Oracle XSQL Servlet ................................................................................................................. 11-12
XML Data Generator Web Bean ............................................................................................. 11-14
Mobile Application Development with Portal-To-Go and JDeveloper............................ 11-14

Building XML Applications with JDeveloper .......................................................................... 11-14
JDeveloper XML Example 1: BC4J Metadata........................................................................ 11-14
Procedure for Building Applications in JDeveloper9i ........................................................ 11-15

Using JDeveloper’s XML Data Generator Web Bean .............................................................. 11-15
Using XSQL Servlet from JDeveloper ........................................................................................ 11-18

JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql ...................... 11-19
JDeveloper XSQL Example 3: Employee Data with Stylesheet Added............................ 11-20

Creating a Mobile Application in JDeveloper .......................................................................... 11-21
1 Create the BC4J Application ................................................................................................ 11-22
2 Create JSP Pages Based on a BC4J Application................................................................. 11-23
3 Create XSLT Stylesheets According to the Devices Needed to Read The Data ........... 11-24

Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications .... 11-27
Constructing an XML Document in JSP................................................................................ 11-27
Using XMLData From BC4J .................................................................................................... 11-28
Running XML Parser for Java in JDeveloper 3.0.................................................................. 11-29
Moving Complex XML Documents to a Database .............................................................. 11-32

12  Building BC4J and XML Applications

Introducing Business Components for Java (BC4J) ................................................................... 12-2
BC4J Features ..................................................................................................................................... 12-2

BC4J Advantages ........................................................................................................................ 12-3
Building BC4J XML Applications in JDeveloper ....................................................................... 12-4

Building XSQL Clients with BC4J ............................................................................................ 12-5
Ease of Code Generation and Management when Building XML and Java Applications .........

12-6

13 Using Metadata API

Introduction to Metadata API ........................................................................................................ 13-2
Previous Methods Used to Extract Metadata ......................................................................... 13-2
Metadata API Components....................................................................................................... 13-2
Metadata API Features .............................................................................................................. 13-3
Internet Computing.................................................................................................................... 13-4
xix



What is DBMS_METADATA? ........................................................................................................ 13-4
DBMS_METADATA and Security ........................................................................................... 13-5

DBMS_METADATA Programmatic Interface ............................................................................. 13-6
DBMS_METADATA.FETCH_XML ......................................................................................... 13-8
DBMS_METADATA.FETCH_DDL()....................................................................................... 13-9
Performance Tips ...................................................................................................................... 13-12

DBMS_METADATA Browsing Interface ................................................................................... 13-12
Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers ......

13-14
mddemo.sql ............................................................................................................................... 13-14
PAYROLL_DEMO Output ...................................................................................................... 13-20

14  Oracle9iAS Reports Services and XML

Introducing Oracle9iAS Reports Services and XML.................................................................. 14-2
B2B Data Exchange: Why Use XML in Reports?.................................................................... 14-2
What’s Needed to Run Oracle9iAS Reports Services............................................................ 14-3

Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services .............................. 14-4
XML as a Data InterChange Format ........................................................................................ 14-4
Formatting XML Output Using XSL Stylesheets ................................................................... 14-5

Customizing Report Definitions at Runtime............................................................................... 14-6
Applying an XML Customization............................................................................................ 14-6
Customizing Reports at Runtime with XML .......................................................................... 14-8
Customizing Reports with XML, Example 1: Modifying F_EMPNO and Setting its Color to

Red 14-9
Customizing Reports with XML, Example 2: Changing Text Color of F_EMPNO to Red and

Setting Date Format of F_HIREDATE to German 14-9
Customizing Reports with XML, Example 3: Modifying Boilerplate Text Objects ........ 14-10
Customizing Reports with XML, Example 4: Replacing a SELECT * Query with a SELECT *

FROM... WHERE Query 14-10
Customizing Reports with XML, Example 5: Adding a Trigger to Field S_SAL ............ 14-11

Performing Batch Report Modifications by Applying XML Report Definitions ............... 14-12
Creating Mutated RDFs Out of One Master ......................................................................... 14-13
Creating Multi-Version Reports Out of a Single RDF ......................................................... 14-13
Customizing Reports with XML Example 6: Creating Different Language Versions from

One Report Definition 14-13
Creating Report Definitions in XML........................................................................................... 14-15
xx



Customizing Reports with XML, Example 7: Creating a Report from XML Definitions Only .

14-15
Running XML Report Definitions .......................................................................................... 14-16
Running an XML Report Definition by Itself ....................................................................... 14-16
XML Used in JSP for Storing Report Definitions ................................................................. 14-17

Using XML as a Datasource .......................................................................................................... 14-17
Pluggable Data Source, XML-PDS ......................................................................................... 14-17
Using XML for Oracle9iAS Reports Services Configuration Files .................................... 14-18
How Reports9i XML-PDS Supports XSQL Servlet.............................................................. 14-19

Reports Case Studies...................................................................................................................... 14-20
How to Become a Supplier of Live XML Streams................................................................ 14-20
How to Take Advantage of Supplied XML-Data ................................................................ 14-22

Frequently Asked Questions: Reports and XML...................................................................... 14-25
Can We Output XML From Our Year End Reports Through a Database Interface? ..... 14-25
Changing the Report Template .............................................................................................. 14-26
REP-6106:Error in the XML report definition at line 1 in 'c:\am01.xml' Start of root element

expected instead of TEXT 'null' 14-27

15  Using the PDK for Visualizing XML Data in Oracle Portal

Introducing Oracle Portal................................................................................................................ 15-2
What are Portlets?....................................................................................................................... 15-2

Common Portlet Applications........................................................................................................ 15-3
Oracle Portal Development Kit (PDK) ......................................................................................... 15-3

PDK Integration Services (PDKIS) ........................................................................................... 15-4
PDK URL Services ............................................................................................................................ 15-4

What’s Needed to Run URL Services ...................................................................................... 15-4
PDK URL Services Overview ......................................................................................................... 15-4

Creating a URL Portlet............................................................................................................... 15-5
Web Provider .............................................................................................................................. 15-5

URL Services Architecture .............................................................................................................. 15-6
URL Services Interface ............................................................................................................... 15-6
URL Services Runtime ............................................................................................................... 15-6

Provider.xml ....................................................................................................................................... 15-7
Using provider.xml .................................................................................................................... 15-8

Configuring provider.xml................................................................................................................ 15-9
xxi



Provider Tag ................................................................................................................................ 15-9
Portlet Tag.................................................................................................................................. 15-10

Integrating Technologies into Oracle 9iAS Portal .................................................................... 15-14

16    How Oracle Exchange Uses XML

Oracle Exchange and XML .............................................................................................................. 16-2
Stored Transactions........................................................................................................................... 16-2
Pass Through Transactions.............................................................................................................. 16-3
XML Delivery Formats..................................................................................................................... 16-4
E-Business Solution Architecture .................................................................................................. 16-4
ATP (Availability to Promise) for Oracle Exchange ................................................................... 16-5

The webMethods Services ......................................................................................................... 16-5
Exchange - Supplier XML.......................................................................................................... 16-5

XML Messaging Services................................................................................................................. 16-9
XML Message Designer and Runtime Execution Engine ..................................................... 16-9
Generating XML that Conforms to New Schema ................................................................ 16-10

17  Introducing Oracle XML Gateway

....................................................................................................................What is XML Gateway? 17-2
Oracle XML Gateway Services ....................................................................................................... 17-2
Oracle XML Gateway Architecture................................................................................................ 17-3
XML Gateway Services - Message Designer ............................................................................... 17-4
XML Gateway Services - Message Set Up.................................................................................... 17-7
XML Gateway Services - Execution Engine ................................................................................. 17-8
A Word About XML Standards .................................................................................................... 17-10

Part V Oracle9i Dynamic Services (DS) and Oracle Syndication Server (OSS)

18    Using Oracle9iAS Dynamic Services and XML

Introducing Oracle9iAS Dynamic Services ................................................................................. 18-2
How Dynamic Services (DS) Helps Developers .................................................................... 18-3
For Further Information............................................................................................................. 18-4

What is Needed to Run Oracle9iAS Dynamic Services?........................................................... 18-4
Dynamic Services (DS) Architecture Overview.......................................................................... 18-4
xxii



Dynamic Services (DS) Implementation Overview................................................................... 18-6
Dynamic Services Java Deployment ............................................................................................. 18-7
Dynamic Services PL/SQL Deployment ...................................................................................... 18-8
Dynamic Services Java HTTP/Java Messaging Services (JMS) Deployment ....................... 18-9

Multiple Channel Capabilities of DS ..................................................................................... 18-11
Dynamic Services Features ........................................................................................................... 18-12

Service Management and Administration ............................................................................ 18-12
Service Discovery ..................................................................................................................... 18-13
Service Execution...................................................................................................................... 18-13

Dynamic Services Integrates with Other Oracle Products ..................................................... 18-16
How Service Consumers Use Dynamic Services...................................................................... 18-17
Developing Services For Dynamic Services .............................................................................. 18-17
Oracle Syndication Server (OSS)................................................................................................. 18-18
Dynamic Services Consumer Application: Stock Portfolio Example................................... 18-19

Compiling SampleStock.java .................................................................................................. 18-19
Dynamic Services Example 1: SampleStock (Java) .............................................................. 18-21

 Frequently Asked Questions (FAQs): Dynamic Services ...................................................... 18-27
What is the Best Way that I Can Set Up a Language of Queuing and Sequencing

Commands? 18-27
Other FAQs?.............................................................................................................................. 18-27

19  Oracle Syndication Server (OSS) and XML

Introducing Oracle Syndication Services (OSS)......................................................................... 19-2
OSS Features: e-Business Content Aggregation, Exchange, and Syndication...................... 19-2

Content Syndication................................................................................................................... 19-3
Information and Content Exchange (ICE) Protocol.................................................................... 19-4
OSS Architecture .............................................................................................................................. 19-5
Interacting with Content Providers............................................................................................... 19-7

Dynamic Services Content Provider Adapter (DSCPA)....................................................... 19-7
Interacting With Content Subscribers .......................................................................................... 19-7

Delivering content to subscribers............................................................................................. 19-8

Part VI  XDK for Java
xxiii



20  Using XML Parser for Java

XML Parser for Java: Features......................................................................................................... 20-2
XSL Transformation (XSLT)  Processor ................................................................................... 20-4
Namespace Support ................................................................................................................... 20-5
Oracle XML Parsers Support Four Validation Modes .......................................................... 20-5

Parsers Access XML Document’s Content and Structure .......................................................... 20-6
DOM and SAX APIs ......................................................................................................................... 20-8

DOM: Tree-Based API................................................................................................................ 20-8
SAX: Event -Based API .............................................................................................................. 20-8
Guidelines for Using DOM and SAX APIs ............................................................................. 20-9

XML Parser and Data Compression ............................................................................................ 20-10
XML Serialization/Compression ........................................................................................... 20-10

Upgrading XDK for Java ............................................................................................................... 20-11
Upgrading XDK for Java from a Previous Release to Oracle9i.......................................... 20-11

Downgrading to Oracle Release 8.1 ............................................................................................ 20-12
Running the XML Parser for Java Samples ............................................................................... 20-12

XML Parser for Java - XML Sample 1: class.xml .................................................................. 20-13
XML Parser for Java - XML Example 2: Using DTD employee — employee.xml .......... 20-14
XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml............... 20-14
XML Parser for Java — XSL Example 1: XSL (iden.xsl) ...................................................... 20-15
XML Parser for Java - DTD Example 1: (NSExample) ........................................................ 20-15

Using XML Parser for Java: DOMParser() Class....................................................................... 20-16
XML Parser for Java Example 1: Using the Parser and DOM API (DomSample.java) .. 20-18
Comments on DOMParser() Example 1 ................................................................................ 20-22

Using XML Parser for Java: DOMNamespace() Class ............................................................. 20-23
XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java...................... 20-23

Using XML Parser for Java: SAXParser() Class ......................................................................... 20-27
XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java) ..... 20-29

Using XML Parser for Java: XSLT Processor.............................................................................. 20-33
XML Parser for Java Example 4: (XSLSample.java)............................................................. 20-35
XML Parser for Java Example 5: Using the DOM API and XSLT Processor.................... 20-38
Comments on XSLT Example 5 .............................................................................................. 20-40

Using XML Parser for Java: SAXNamespace() Class................................................................ 20-41
XML Parser for Java Example 6: (SAXNamespace.java)..................................................... 20-41

XML Parser for Java: Command Line Interface ........................................................................ 20-45
xxiv



oraxml - Oracle XML parser.................................................................................................... 20-45
oraxsl - Oracle XSL processor ................................................................................................. 20-46

XML Extension Functions for XSLT Processing ....................................................................... 20-47
XSLT Processor Extension Functions: Introduction ............................................................ 20-47
Static Versus Non-static Methods .......................................................................................... 20-48
Constructor Extension Function............................................................................................. 20-48
Return Value Extension Function .......................................................................................... 20-49
Datatypes Extension Function ................................................................................................ 20-50
ora XSLT Built In Extensions: ora:node-set and ora:output ............................................... 20-50

Frequently Asked Questions (FAQs): XML Parser for Java ................................................... 20-55
DTDs ................................................................................................................................................. 20-55

Checking DTD Syntax: Suggestions for Editors .................................................................. 20-55
DTD File in DOCTYPE Must be Relative to XML Document Location ........................... 20-57
Validating an XML File Using External DTD....................................................................... 20-57
DTD Caching............................................................................................................................. 20-57
Recognizing External DTDs .................................................................................................... 20-58
Loading external DTD’s from a jar File ................................................................................. 20-59
Can I Check the Correctness of an XML Document Using their DTD?............................ 20-59
Parsing a DTD Object Separately from XML Document .................................................... 20-60
Case-Sensitivity in Parser Validation against DTD? ........................................................... 20-60
Extracting Embedded XML From a CDATA Section.......................................................... 20-61
Why Am I Getting an Error When I Call DOMParser.parseDTD()?................................. 20-62
Is There a Standard Extension To Use for External Entities References in an XML

Document? 20-64
DOM and SAX APIs....................................................................................................................... 20-65

Using the DOM API ................................................................................................................. 20-65
How DOM Parser Works ........................................................................................................ 20-65
Creating a Node With Value to be Set Later......................................................................... 20-65
Traversing the XML Tree......................................................................................................... 20-66
Extracting Elements from XML File....................................................................................... 20-66
Does a DTD Validate the DOM Tree? ................................................................................... 20-66
First Child Node Element Value ............................................................................................ 20-67
Creating DocType Node.......................................................................................................... 20-67
XMLNode.selectNodes() Method .......................................................................................... 20-67
Using SAX API to Get the Data Value................................................................................... 20-68
SAXSample.java........................................................................................................................ 20-69
xxv



Does DOMParser implement Parser interface ..................................................................... 20-69
Creating an New Document Type Node Via DOM............................................................. 20-69
Querying for First Child Node’s Value of a Certain Tag.................................................... 20-70
XML Document Generation From Data in Variables .......................................................... 20-71
Printing Data in the Element Tags: DOM API ..................................................................... 20-71
Building XML Files from Hashtable Value Pairs ................................................................. 20-72
XML Parser for Java: wrong_document_err on Node.appendChild() ............................. 20-72
Creating Nodes: DOMException when Setting Node Value ............................................. 20-74
With SAX, How Can I Force the Parser to Not Discard Whitespace?............................... 20-74

Validation ......................................................................................................................................... 20-75
DTD: Understanding DOCTYPE and Validating Parser .................................................... 20-75
Can Multiple Threads Use Single XSLProcessor/Stylesheet? ........................................... 20-75
Is it Safe to Use Document Clones in Multiple Threads?.................................................... 20-76

Character Sets .................................................................................................................................. 20-76
Encoding iso-8859-1 in xmlparser .......................................................................................... 20-76
Parsing XML Stored in NCLOB With UTF-8 Encoding ...................................................... 20-77
NLS support within XML........................................................................................................ 20-78
UTF-16 Encoding with XML Parser for Java V2 .................................................................. 20-79
How Can I Read in Accented Characters? ............................................................................ 20-80

Adding XML Document as a Child ............................................................................................. 20-81
Adding an XMLDocument as a Child to Another Element ............................................... 20-81
Adding an XML DocumentFragment as a Child to XMLDocument ................................ 20-82

Uninstalling Parsers ....................................................................................................................... 20-83
Removing XML Parser from the Database............................................................................ 20-83

XML Parser for Java: Installation ................................................................................................. 20-84
XMLPARSER Fails to Install ................................................................................................... 20-84

General XML Parser Related Questions..................................................................................... 20-84
How the XML Parser Works ................................................................................................... 20-84
Converting XML Files to HTML Files ................................................................................... 20-85
Does XML Parser Validate Against XML Schema? ............................................................. 20-85
Including Binary Data in an XML Document....................................................................... 20-85
What is XML Schema? ............................................................................................................. 20-86
Oracle’s Participation in Defining the XML/SQL Standard .............................................. 20-86
XDK Version Numbers ............................................................................................................ 20-86
Inserting <, >, >= and <= in XML Documents ..................................................................... 20-87
xxvi



Are Namespace and Schema Supported............................................................................... 20-87
Using JDK 1.1.x with XML Parser for Java v2 ...................................................................... 20-87
Sorting the Result on the Page................................................................................................ 20-87
Is Oracle9i Needed to Run XML Parser for Java? ................................................................ 20-88
Dynamically Setting the Encoding in an XML File ............................................................. 20-88
Parsing a String ......................................................................................................................... 20-88
Displaying an XML Document............................................................................................... 20-89
System.out.println() and Special Characters ........................................................................ 20-89
Obtaining Ampersand from Character Data........................................................................ 20-89
How Can We Use Special Characters in the Tags?.............................................................. 20-90
Parsing XML from Data of Type String................................................................................. 20-91
Extracting Data from XML Document into a String............................................................ 20-91
Disabling Output Escaping ..................................................................................................... 20-92
Using the XML Parser for Java with Oracle 8.0.5................................................................. 20-92
Delimiting Multiple XML Documents................................................................................... 20-92
XML and Entity-references: XML Parser for Java................................................................ 20-93
Can I  Break up and Store an XML Document without a DDL Insert? ............................ 20-93
Merging XML Documents....................................................................................................... 20-94
Getting the Value of a Tag....................................................................................................... 20-96
Granting JAVASYSPRIV to User............................................................................................ 20-96
Including an External XML File in Another XML File: External Parsed Entities............ 20-97
Where Can I Download OraXSL, The Parser’s Command Line Interface?...................... 20-99
Will Oracle Support Hierarchical Mapping?........................................................................ 20-99

XSLT Processor and XSL Stylesheets ........................................................................................ 20-100
HTML Error in XSL ................................................................................................................ 20-100
Is <xsl:output method="html"/> Supported?.................................................................... 20-101
Netscape 4.0: Preventing XSL From Outputting <meta> Tag ......................................... 20-103
XSL Error Messages................................................................................................................ 20-104
Generating HTML: “<“ Character........................................................................................ 20-104
HTML “<“ Conversion Works in oraxsl but not XSLSample.java? ................................ 20-105
XSLT Examples ....................................................................................................................... 20-106
XSLT Features ......................................................................................................................... 20-106
Using XSL To Convert XML Document To Another Form.............................................. 20-107
Information on XSL? .............................................................................................................. 20-108
XSLProcessor and Multiple Outputs? ................................................................................. 20-109
xxvii



What Good Books for XML/XSL Can You Recommend?............................................... 20-109
XML Developer Kits for HP/UX Platform ........................................................................ 20-110

Compressing Large Volumes of XML Documents ................................................................ 20-110
How Can I  Generate an XML Document Based on Two Tables? .................................. 20-111

21    Using XML Schema Processor for Java

Introducing XML Schema ............................................................................................................... 21-2
How DTDs and XML Schema Differ ............................................................................................ 21-2
XML Schema Features ...................................................................................................................... 21-3
Oracle XML Schema Processor for Java Features ....................................................................... 21-6

Supported Character Sets .......................................................................................................... 21-6
What’s Needed to Run XML Schema Processor for Java...................................................... 21-7
XML Schema Processor for Java Directory Structure............................................................ 21-8

XML Schema Processor for Java Usage......................................................................................... 21-8
How to Run the XML Schema for Java Sample Program.......................................................... 21-9

MakeFile ..................................................................................................................................... 21-10
XML Schema for Java Example 1: cat.xsd ............................................................................. 21-11
XML Schema for Java Example 2: catalogue.xml................................................................. 21-12
XML Schema for Java Example 3: catalogue_e.xml............................................................. 21-12
XML Schema for Java Example 4: report.xml....................................................................... 21-13
XML Schema for Java Example 5: report.xsd ....................................................................... 21-14
XML Schema for Java Example 6: report_e.xml................................................................... 21-15
XML Schema for Java Example 7: XSDSample.java ............................................................ 21-16
XML Schema for Java Example 8: XSDSetSchema.java....................................................... 21-18

22 XML Class Generator for Java

Accessing XML Class Generator for Java ..................................................................................... 22-2
XML Class Generator for Java: Overview .................................................................................... 22-2
Oracg Command Line Utility ......................................................................................................... 22-3
Class Generator for Java: XML Schema ........................................................................................ 22-4

Namespace Features................................................................................................................... 22-4
Using XML Class Generator for Java with XML Schema ......................................................... 22-5

Generating Top Level Element Classes ................................................................................... 22-6
Generating Top Level ComplexType Element Classes ......................................................... 22-7
Generating SimpleType Element Classes................................................................................ 22-7
xxviii



Using XML Class Generator for Java with DTDs ...................................................................... 22-8
Examples Using XML Java Class Generator with DTDs and XML Schema ....................... 22-10

Running XML Class Generator for Java — DTD Examples ............................................... 22-10
Running XML Class Generator for Java — XML Schema Examples ................................ 22-11
XML Class Generator for Java, DTD Example 1a: Application — SampleMain.java..... 22-12
XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd ..................... 22-14
XML Class Generator for Java, DTD Example 1c: Input — widl.xml............................... 22-16
XML Class Generator for Java, DTD Example 1d: TestWidl.java ..................................... 22-16
XML Class Generator for Java, DTD Example 1e: XML Output — widl.out .................. 22-18
XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd ................... 22-19
XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java........ 22-20
XML Class Generator for Java, Schema Example 2a: Schema — book.xsd ..................... 22-22
XML Class Generator for Java, Schema Example 2b: Application — BookCatalogue.java........

22-23
XML Class Generator for Java, Schema Example 3a: Schema — po.xsd.......................... 22-25
XML Class Generator for Java, Schema Example 3b: Application — TestPo.java.......... 22-26

Frequently Asked Questions (FAQs): Class Generator for Java............................................ 22-30
How Do I Install XML Class Generator?............................................................................... 22-30
What Does XML Class Generator for Java Do?.................................................................... 22-30
Which DTD’s are Supported? ................................................................................................. 22-31
How do I Solve the Classes not Found Error When Running XML Class Generator Samples?

22-31
In XML Class Generator, How Do I Create the Root Object More than Once?............... 22-31
How Can I Create XML Files from Scratch Using the DOM API?.................................... 22-32
Can I Create an XML Document in a Java Class? ................................................................ 22-32

Part VII  XDK for Java Beans

23  Using XML Transviewer Beans

Accessing Oracle XML Transviewer Beans.................................................................................. 23-2
XDK for Java: XML Transviewer Bean Features ......................................................................... 23-2

Database Connectivity ............................................................................................................... 23-2
XML Transviewer Beans............................................................................................................ 23-2

Using the XML Transviewer Beans ............................................................................................... 23-4
Using DOMBuilder Bean ................................................................................................................ 23-5
xxix



Used for Asynchronous Parsing in the Background ............................................................. 23-5
DOMBuilder Bean Parses Many Files Fast ............................................................................. 23-5
DOMBuilder Bean Usage........................................................................................................... 23-5

Using XSLTransformer Bean........................................................................................................... 23-9
Many Files to Transform? Use XSLTransformer Bean ........................................................ 23-10
Need a responsive User Interface? Use XSLTransformer Bean ......................................... 23-10
XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Underlying Data

Changes 23-10
XSLTransformer Bean Usage .................................................................................................. 23-11

Using Treeviewer Bean .................................................................................................................. 23-13
Using XMLSourceView Bean ....................................................................................................... 23-15

XMLSourceView Bean Usage ................................................................................................. 23-16
Using XMLTransformPanel Bean................................................................................................. 23-20

XMLTransformPanel Bean Features ...................................................................................... 23-20
Using DBViewer Bean ................................................................................................................... 23-23

DBViewer Bean Usage ............................................................................................................. 23-26
Using DBAccess Bean .................................................................................................................... 23-30

DBAcess Bean Usage................................................................................................................ 23-30
Running the Transviewer Bean Samples ................................................................................... 23-32
Installing the Transviewer Bean Samples .................................................................................. 23-33

Using Database Connectivity.................................................................................................. 23-34
Running Makefile ..................................................................................................................... 23-34
Transviewer Bean Example 1: AsyncTransformSample.java............................................. 23-35
Transviewer Bean Example 2: ViewSample.java ................................................................. 23-42
Transviewer Bean Example 3: XMLTransformPanelSample.java ..................................... 23-46
Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java ........................ 23-47
Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java ......................... 23-50
Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java........................ 23-51

Part VIII  XDK for C

24    Using XML Parser for C

Accessing XML Parser for C............................................................................................................ 24-2
XML Parser for C Features............................................................................................................... 24-2

Specifications ............................................................................................................................... 24-2
xxx



Memory Allocation..................................................................................................................... 24-2
Thread Safety............................................................................................................................... 24-3
Data Types Index........................................................................................................................ 24-3
Error Message Files .................................................................................................................... 24-3
Validation Modes ....................................................................................................................... 24-3

XML Parser for C Usage................................................................................................................... 24-4
XML Parser for C, XSLT (DOM Interface) Usage ....................................................................... 24-6
XML Parser for C, Default Behavior ............................................................................................. 24-8
DOM and SAX APIs......................................................................................................................... 24-9

Using the SAX API ..................................................................................................................... 24-9
Using the DOM API ................................................................................................................. 24-10

Invoking XML Parser for C........................................................................................................... 24-11
Command Line Usage ............................................................................................................. 24-11
Writing C Code to Use Supplied APIs .................................................................................. 24-11

Using the Sample Files Included with Your Software ............................................................ 24-12
Running the XML Parser for C Sample Programs.................................................................... 24-13

Building the Sample programs............................................................................................... 24-13
Sample Programs...................................................................................................................... 24-13
XML Parser for C Example 1: XML — class.xml.................................................................. 24-13
XML Parser for C Example 2: XML — cleo.xml................................................................... 24-14
XML Parser for C Example 3: XSL — iden.xsl...................................................................... 24-17
XML Parser for C Example 4: XML — FullDOM.xml (DTD)............................................. 24-18
XML Parser for C Example 5: XML — NSExample.xml ..................................................... 24-18
XML Parser for C Example 6: C — DOMSample.c.............................................................. 24-19
XML Parser for C Example 7: C — DOMSample.std .......................................................... 24-21
XML Parser for C Example 8: C — SAXSample.c ................................................................ 24-21
XML Parser for C Example 9: C — SAXSample.std ............................................................ 24-24
XML Parser for C Example 10: C — DOMNamespace.c .................................................... 24-25
XML Parser for C Example 11: C — DOMNamespace.std................................................. 24-30
XML Parser for C Example 12: C — SAXNamespace.c....................................................... 24-30
XML Parser for C Example 13: C — SAXNamespace.std................................................... 24-35
XML Parser for C Example 14: C — FullDOM.c .................................................................. 24-36
XML Parser for C Example 15: C — FullDOM.std .............................................................. 24-46
XML Parser for C Example 16: C — XSLSample.c............................................................... 24-52
XML Parser for C Example 17: C — XSLSample.std ........................................................... 24-54
xxxi



25    Using XML Schema Processor for C

Oracle XML Schema Processor for C............................................................................................. 25-2
Oracle XML Schema for C Features ......................................................................................... 25-2
Requirements............................................................................................................................... 25-2
Standards Conformance ............................................................................................................ 25-3
Using the Supported Character Sets ........................................................................................ 25-3
XML Schema Processor for C: Software .................................................................................. 25-5

Invoking XML Schema Processor for C........................................................................................ 25-5
XML Schema Processor for C Usage Diagram............................................................................. 25-6
How to Run XML Schema for C Sample Programs.................................................................... 25-7

XML Schema for C Example 1: xsdtest.c ................................................................................. 25-9
XML Schema for C Example 2: car.xsd.................................................................................. 25-11
XML Schema for C Example 3: car.xml ................................................................................. 25-12
XML Schema for C Example 4: car.std .................................................................................. 25-13
XML Schema for C Example 5: aq.xsd................................................................................... 25-14
XML Schema for C Example 6: aq.xml .................................................................................. 25-23
XML Schema for C Example 7: aq.std.................................................................................... 25-24
XML Schema for C Example 8: pub.xsd ................................................................................ 25-24
XML Schema for C Example 9: pub.xml................................................................................ 25-26
XML Schema for C Example 10: pub.std............................................................................... 25-27

Part IX  XDK for C++

26    Using XML Parser for C++

Accessing XML Parser for C++....................................................................................................... 26-2
XML Parser for C++ Features.......................................................................................................... 26-2

Specifications ............................................................................................................................... 26-2
Memory Allocation..................................................................................................................... 26-2
Thread Safety............................................................................................................................... 26-3
Data Types Index ........................................................................................................................ 26-3
Error Message Files..................................................................................................................... 26-3
Validation Modes........................................................................................................................ 26-3

XML Parser for C++ Usage .............................................................................................................. 26-3
XML Parser for C++ XSLT (DOM Interface) Usage ................................................................... 26-6
xxxii



Default Behavior ............................................................................................................................... 26-8
DOM and SAX APIs......................................................................................................................... 26-9

Using the SAX API ..................................................................................................................... 26-9
Using the DOM API ................................................................................................................. 26-10

Invoking XML Parser for C++ ...................................................................................................... 26-10
Command Line Usage ............................................................................................................. 26-10
Writing C++ Code to Use Supplied APIs ............................................................................. 26-11

Using the Sample Files Included with Your Software ............................................................ 26-11
Running the XML Parser for C++ Sample Programs............................................................... 26-12

Building the Sample programs............................................................................................... 26-12
Sample Programs...................................................................................................................... 26-12
XML Parser for C++ Example 1: XML — class.xml............................................................. 26-13
XML Parser for C++ Example 2: XML — cleo.xml .............................................................. 26-14
XML Parser for C++ Example 3: XSL — iden.xsl................................................................. 26-16
XML Parser for C++ Example 4: XML — FullDOM.xml (DTD)........................................ 26-16
XML Parser for C++ Example 5: XML — NSExample.xml ................................................ 26-16
XML Parser for C++ Example 6: C++ — DOMSample.cpp ............................................... 26-17
XML Parser for C++ Example 7: C++ — DOMSample.std ................................................ 26-20
XML Parser for C++ Example 8: C++ — SAXSample.cpp ................................................. 26-22
XML Parser for C++ Example 9: C++ — SAXSample.std................................................... 26-25
XML Parser for C++ Example 10: C++ — DOMNamespace.cpp...................................... 26-27
XML Parser for C++ Example 11: C++ — DOMNamespace.std ....................................... 26-31
XML Parser for C++ Example 12: C++ — SAXNamespace.cpp ........................................ 26-31
XML Parser for C++ Example 13: C++ — SAXNamespace.std ......................................... 26-35
XML Parser for C++ Example 14: C++ — FullDOM.cpp ................................................... 26-36
XML Parser for C++ Example 15: C++ — FullDOM.std..................................................... 26-46
XML Parser for C++ Example 16: C++ — XSLSample.cpp ................................................ 26-52
XML Parser for C++ Example 17: C++ — XSLSample.std ................................................. 26-54

27    Using XML Schema Processor for C++

Oracle XML Schema Processor for C++ Features ....................................................................... 27-2
Requirements .............................................................................................................................. 27-2
Standards Conformance ............................................................................................................ 27-3
Using the Supported Character Sets ........................................................................................ 27-3
XML Schema Processor for C++: Provided Software............................................................ 27-4
xxxiii



Invoking XML Schema Processor for C++ ................................................................................... 27-5
XML Schema Processor for C++ Usage Diagram........................................................................ 27-6
Running the Provided XML Schema Sample Application ....................................................... 27-7

Error Messages are in English................................................................................................... 27-8
XML Schema for C++ Example 1: xsdtest.cpp ....................................................................... 27-8
XML Schema for C++ Example 2: car.xsd............................................................................. 27-10
XML Schema for C++ Example 3: car.xml ............................................................................ 27-11
XML Schema for C++ Example 4: car.std.............................................................................. 27-11
XML Schema for C++ Example 5: aq.xsd .............................................................................. 27-12
XML Schema for C++ Example 6: aq.xml ............................................................................. 27-16
XML Schema for C++ Example 7: aq.std............................................................................... 27-18
XML Schema for C++ Example 8: pub.xsd ........................................................................... 27-18
XML Schema for C++ Example 9: pub.xml........................................................................... 27-20
XML Schema for C++ Example 10: pub.std .......................................................................... 27-21

28  Using XML C++ Class Generator

Accessing XML C++ Class Generator ........................................................................................... 28-2
Using XML C++ Class Generator................................................................................................... 28-2

External DTD Parsing ................................................................................................................ 28-2
Error Message Files..................................................................................................................... 28-2

XML C++ Class Generator Usage .................................................................................................. 28-3
xmlcg Usage........................................................................................................................................ 28-4
Using the XML C++ Class Generator Examples in sample/ ..................................................... 28-5

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml . 28-5
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd .. 28-6
XML C++ Class Generator Example 3: CG Sample Program .............................................. 28-6

Part X   XDK for PL/SQL

29    Using XML Parser for PL/SQL

Accessing XML Parser for PL/SQL ................................................................................................ 29-2
What’s Needed to Run XML Parser for PL/SQL ......................................................................... 29-2
Using XML Parser for PL/SQL (DOM Interface) ........................................................................ 29-2

XML Parser for PL/SQL: Default Behavior ............................................................................ 29-5
xxxiv



Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface) ................................. 29-6
XML Parser for PL/SQL: XSLT Processor — Default Behavior .......................................... 29-8

Using XML Parser for PL/SQL Examples in sample/................................................................. 29-9
Setting Up the Environment to Run the sample/ Sample Programs ................................. 29-9
Running domsample................................................................................................................ 29-10
Running xslsample ................................................................................................................... 29-11
XML Parser for PL/SQL Example 1: XML — family.xml .................................................. 29-13
XML Parser for PL/SQL Example 2: DTD — family.dtd ................................................... 29-13
XML Parser for PL/SQL Example 3: XSL — iden.xsl ......................................................... 29-13
XML Parser for PL/SQL Example 4: PL/SQL — domsample.sql .................................... 29-14
XML Parser for PL/SQL Example 5: PL/SQL — xslsample.sql........................................ 29-17

Frequently Asked Questions (FAQs): XML Parser for PL/SQL ............................................. 29-20
Exception in Thread Parser Error........................................................................................... 29-20
Encoding '8859_1' is not currently supported by the JavaVM? ......................................... 29-20
xmldom.GetNodeValue in PL/SQL ...................................................................................... 29-20
XDK for PL/SQL Toolkit......................................................................................................... 29-22
Parsing DTD contained in a CLOB (PL/SQL) XML............................................................ 29-22
XML Parser for PL/SQL.......................................................................................................... 29-24
Security: ORA-29532, Granting JavaSysPriv to User........................................................... 29-24
Installing XML Parser for PL/SQL: JServer(JVM) Option ................................................. 29-25
XML Parser for PL/SQL: domsample ................................................................................... 29-26
XML in CLOBs .......................................................................................................................... 29-27
Out of memory errors in oracle.xml.parser .......................................................................... 29-27
Is There a PL/SQL Parser Based on C? ................................................................................. 29-29
Memory Requirements When Using the Parser for PL/SQL ............................................ 29-29
JServer (JVM), Is It Needed to Run XML Parser for PL/SQL? .......................................... 29-29
Using the DOM API ................................................................................................................. 29-30
Using the Sample...................................................................................................................... 29-33
XML Parser for PL/SQL: Parsing DTD in a CLOB.............................................................. 29-34
Errors When Parsing a Document.......................................................................................... 29-38
PLXML: Parsing a Given URL? .............................................................................................. 29-38
Using XML Parser to Parse HTML?....................................................................................... 29-39
Oracle 7.3.4: Moving Data to a Web Browser (PL/SQL) .................................................... 29-40
Oracle 7.3.4 and XML............................................................................................................... 29-40
getNodeValue(): Getting the Value of DomNode ............................................................... 29-41
xxxv



Retrieving all Children or Grandchildren of a Node .......................................................... 29-41
What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException? ....... 29-41

A  An XML Primer

What is XML?....................................................................................................................................... A-2
Basic Rules for XML Markup...................................................................................................... A-3

W3C XML Recommendations........................................................................................................... A-4
XML Features ....................................................................................................................................... A-5
How XML Differs From HTML ....................................................................................................... A-7
Presenting XML Using Stylesheets ................................................................................................. A-9

eXtensible Stylesheet Language (XSL).................................................................................... A-10
Cascading Style Sheets (CSS) ................................................................................................... A-10

Extensibility and Document Type Definitions (DTD).............................................................. A-11
Well-Formed and Valid XML Documents ............................................................................. A-12

Why Use XML? ................................................................................................................................. A-13
Additional XML Resources ............................................................................................................ A-14

B  Comparing Oracle XML Parsers and Class Generators by Language

Comparing the Oracle XML Parsers ................................................................................................ B-2
Comparing the Oracle XML Class Generators .............................................................................. B-4

C  XDK for Java: Specifications and Cheat Sheets

XML Parser for Java Cheat Sheets .................................................................................................. C-2
Accessing XML Parser for Java...................................................................................................... C-12
Installing XML Parser for Java, Version 2 ................................................................................... C-12
XML Parser for Java, Version 2 Specifications............................................................................ C-13

Requirements.............................................................................................................................. C-13
Online Documentation.............................................................................................................. C-13
Release Specific Notes ............................................................................................................... C-14
Standards Conformance ........................................................................................................... C-14
Supported Character Set Encodings ....................................................................................... C-15

Oracle XML Parser V1 and V2 ....................................................................................................... C-15
NEW CLASS STRUCTURE ...................................................................................................... C-16

XDK for Java: XML Schema Processor......................................................................................... C-19
xxxvi



XDK for Java: XML Class Generator for Java............................................................................. C-20
Installing XML Class Generator for Java................................................................................ C-20
XML Class Generator for Java: Windows NT Installation .................................................. C-20
XML Class Generator for Java: UNIX Installation................................................................ C-21

XML Class Generator for Java Cheat Sheet ................................................................................ C-22
oracg Command Line Utility ................................................................................................... C-24

XDK for Java: XSQL Servlet .......................................................................................................... C-25
Downloading and Installing XSQL Servlet............................................................................ C-25
Windows NT: Starting the Web-to-go Server........................................................................ C-26
Setting Up the Database Connection Definitions for Your Environment ......................... C-27
UNIX: Setting Up Your Servlet Engine to Run XSQL Pages............................................... C-27

XSQL Servlet Specifications .......................................................................................................... C-28
Character Set Support ............................................................................................................... C-28

XDK for Java: XSQL Servlet Cheat Sheets.................................................................................. C-29
XML SQL Utility for Java Cheat Sheet ........................................................................................ C-31

D  XDK for Java Beans: Specifications and Cheat Sheets

XDK for Javabeans: Transviewer Bean Cheat Sheet .................................................................... D-2
DOMBuilder Bean Cheat Sheet ....................................................................................................... D-2
XSLTransformer Bean Cheat Sheet.................................................................................................. D-3
XMLTreeView Bean Cheat Sheet ..................................................................................................... D-4
XMLTransformPanel Cheat Sheet ................................................................................................... D-5
DBViewer Bean Cheat Sheet ............................................................................................................ D-6
XMLSourceView Bean Cheat Sheet ............................................................................................. D-10
DBAccess Bean Cheat Sheet .......................................................................................................... D-14

E  XDK for C: Specifications and Cheat Sheets

XML Parser for C Specifications ...................................................................................................... E-2
Validating and Non-Validating Mode Support ....................................................................... E-2
Example Code ............................................................................................................................... E-2
Online Documentation................................................................................................................. E-3
Release Specific Notes.................................................................................................................. E-3
Standards Conformance .............................................................................................................. E-3
Supported Character Set Encodings .......................................................................................... E-3

XML Parser for C Revision History................................................................................................. E-5
xxxvii



XML Parser for C: Parser Functions................................................................................................. E-8
XML Parser for C: DOM API Functions ......................................................................................... E-9
XML Parser for C: Namespace API Functions ............................................................................ E-12
XML Parser for C: XSLT API Functions....................................................................................... E-12
XML Parser for C: SAX API Functions......................................................................................... E-13

F  XDK for C++: Specifications and Cheat Sheet

XML Parser for C++ Specifications.................................................................................................. F-2
Validating and Non-Validating Mode Support ....................................................................... F-2
Example Code ............................................................................................................................... F-2
Online Documentation................................................................................................................. F-3
Release Specific Notes .................................................................................................................. F-3
Standards Conformance .............................................................................................................. F-3
Supported Character Set Encodings .......................................................................................... F-3

XML Parser for C++ Revision History ............................................................................................ F-5
XML Parser for C++: XMLParser() API........................................................................................... F-9
XML Parser for C++: DOM API ..................................................................................................... F-10
XML Parser for C++: XSLT API ...................................................................................................... F-14
XML Parser for C++: SAX API........................................................................................................ F-16
.................................................................................... XML C++ Class Generator Specifications F-18

Input to the XML C++ Class Generator................................................................................... F-18
Output to XML C++ Class Generator ...................................................................................... F-19
Standards Conformance ............................................................................................................ F-19
Directory Structure ..................................................................................................................... F-19

G  XDK for PL/SQL: Specifications and Cheat Sheets

XML Parser for PL/SQL .................................................................................................................... G-2
Oracle XML Parser Features....................................................................................................... G-2
Namespace Support .................................................................................................................... G-3
Validating and Non-Validating Mode Support ...................................................................... G-3
Example Code .............................................................................................................................. G-3
IXML Parser for PL/SQL Directory Structure......................................................................... G-3
DOM and SAX APIs .................................................................................................................... G-4

XML Parser for PL/SQL Specifications .......................................................................................... G-5
XML Parser for PL/SQL: Parser() API ............................................................................................ G-7
xxxviii



XML Parser for PL/SQL: XSLT Processor API .............................................................................. G-9
XML Parser for PL/SQL: W3C DOM API — Types ................................................................... G-10
XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM Interface
Types................................................................................................................................................... G-11

Node Methods............................................................................................................................ G-11
DOM Node Types...................................................................................................................... G-12
DOMException Types............................................................................................................... G-13
DOM Interface Types................................................................................................................ G-13

H  XML SQL Utility (XSU) Specifications and Cheat Sheets

Installing XML SQL Utility .............................................................................................................. H-2
Contents of the XSU Distribution............................................................................................... H-2
Installing XML SQL Utility: Procedure ..................................................................................... H-2
Installing XSU Downloaded from OTN.................................................................................... H-3

Requirements for Running XML SQL Utility............................................................................... H-3
XSU Requirements........................................................................................................................ H-4
Extract the XSU Files .................................................................................................................... H-4

XML SQL Utility (XSU) for Java, Cheat Sheets ............................................................................ H-5
XML SQL Utility (XSU) for PL/SQL, Cheat Sheets................................................................... H-24

DBMS_XMLQuery PL/SQL Package ..................................................................................... H-24
DBMS_XMLSave PL/SQL Package ........................................................................................ H-27

Glossary

Index
xxxix



xl



Send Us Your Comments

Oracle9 i Application Developer’s Guide - XML, Release 1 (9.0.1)

Part No.  A88894-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227   Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood City, CA  94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xli



xlii



Preface

The Preface has the following sections:

■ About this Guide

■ Audience

■ Feature Coverage and Availability

■ How this Manual is Organized

■ Related Documentation

■ How to Order this Manual

■ Downloading Release Notes, Installation Guides, White Papers,...

■ How to Access this Manual On-Line

■ Conventions

■ Documentation Accessibility
xliii



About this Guide
This manual describes Oracle9i’s XML-enabled database technology. It describes

how XML data can be stored, managed, and queried in the database using Oracle

XML-enabled technology and the appropriate Oracle development tools.

After introducing you to the main criteria to consider when designing your Oracle

XML application, this manual describes an overview of several scenarios that are

based on real-life existing business applications. You are then introduced to the

XML Developer’s Kits (XDKs) and how the XDK componoents can work together to

generate and store XML data in a database. Examples and sample applications are

introduced where possible.

Oracle9i Case Studies - XML Applications describes case studies that use Oracle

XML-enabled technology. The case studies are presented according to their main

function, namely, whether they are primarily used for one or both of the following:

■ Content or Document Management

■ Data Exchange and Business--to-Business (B2B)

Examples and Sample Code
Many of the XDK examples in the manual are provided with your software in the

following directories:

■ $ORACLE_HOME/xdk/java/demo/

■ $ORACLE_HOME/xdk/C/demo/, and so on

■ $ORACLE_HOME/xdk/java/sample/

■ $ORACLE_HOME/rdbms/demo directory

A detailed application with example code is described in Oracle9i Case Studies - XML
Applications, “Building a B2B Application Using XML and AQ”. This describes how

to build an XML B2B data exchange and customized presentation application.

Composed or Decomposed (Generated) XML
In general, XML documents are processed in one of two ways:

■ As composed XML documents, stored in LOBs

■ As decomposed XML document fragments, stored in relational tables, with the

XML tags mapped to their respective columns in the database tables. The

decomposed or fragmented XML documents can then be regenerated into

composed XML documents
xliv



Oracle XML-Enabled Technology
The main Oracle XML-enabled technology components are the XML Developer’s

Kits (XDKs). These are available in four language implementations:

■ Java. XDK for Java, XDK for Javabeans, and XML SQL Utility for Java

■ PL/SQL. XDK for PL/SQL and XML SQL Utility for PL/SQL

■ C. XDK for C

■ C++. XDK for C++

Audience
This guide is intended for developers building XML applications on Oracle9i or

Oracle9iApplication Server (Oracle9iAS).

Prerequisite Knowledge
An understanding of XML and XSL is helpful but not essential for using this

manual. References to good sources for more information are included in Appendix

A and in the FAQ section of Chapter 3. An XML primer is included in Appendix A.

Many examples provided here are in either SQL, Java, PL/SQL, C, or C++, hence a

working knowledge of one or more of these languages is presumed.

If you understand XML but know nothing about databases...
The best place for you to start is:

1. Read Oracle9i Concepts.. First plan, model, and design your database.

2. Read the chapters in Part I, "Introducing Oracle XML-Enabled Technology" and

Part II, "Storing and Retrieving XML From the Database".

3. Visit Oracle Technology Network (OTN) sites at:

■  http://otn.oracle.com for general information about database features

■ http://otn.oracle.com/tech/xml for information about the XML

Developer’s Kits (XDKs) available as well as white papers and demos.

4. Check the Frequently Asked Questions (FAQ) sections in this manual, starting

with those at the end of:

■ Chapter 3 — "Frequently Asked Questions (FAQs): Oracle XML-Enabled

Technology"  on page 3-26
xlv



■ Chapter 7 — "Frequently Asked Questions (FAQs): XML SQL Utility (XSU)"

on page 7-2

■ Chapter 8 — "Frequently Asked Questions (FAQs): Oracle Text"  on

page 8-51

■ Chapter 10 — "Frequently Asked Questions (FAQs) - XSQL Servlet"  on

page 10-74

■ Chapter 20 — "Frequently Asked Questions (FAQs): XML Parser for Java"

on page 20-55

5. If you still have questions, consult with your Oracle representative or, to help

get you started, go to the “Discussions” option on OTN and post your question

there.

6. Read Oracle9i Case Studies - XML Applications for ideas from similar

applications.

7. Of course, once you have determined which language you need for your

application and which XDK components you need to build your application, for

detail on the XML components and how they are used, see:

■ Chapter 7, Chapter 10, and Part IV — Tools and Frameworks for Building

Oracle-Based XML Applications through Part X — XDK for PL/SQL, of this

manual.

■ Oracle9i XML Reference

If you understand databases but know nothing about XML...
The best place for you to start is:

1. Read Appendix A, "An XML Primer" and the references at the end of Chapter 3,

"Oracle XML Developer Kits (XDKs) and Components: Overview and General

FAQs". There are many good books and web sites that introduce you to XML.

Some of these are listed in Appendix A.

2. Read Chapter 4, "Using XSL and XSLT".

3. Read the FAQs at the end of the chapters, starting with:

■ Chapter 3 — "Frequently Asked Questions (FAQs): Oracle XML-Enabled

Technology"  on page 3-26

■ Chapter 7 — "Frequently Asked Questions (FAQs): XML SQL Utility (XSU)"

on page 7-2
xlvi



■ Chapter 8 — "Frequently Asked Questions (FAQs): Oracle Text"  on

page 8-51

■ Chapter 10 — "Frequently Asked Questions (FAQs) - XSQL Servlet"  on

page 10-74

■ Chapter 20 — "Frequently Asked Questions (FAQs): XML Parser for Java"

on page 20-55

4. Read Oracle9i Case Studies - XML Applications for ideas from similar

applications.

5. Of course you need to read about the (new) native XML support in Oracle9i, so

read the chapters in Part I, "Introducing Oracle XML-Enabled Technology" and

Part II, "Storing and Retrieving XML From the Database".

6. Visit the Oracle Technology Network (OTN) XML site at

http://otn.oracle.com/tech/xml for information about the XML Developer Kits

(XDKs) available as well as white papers and demos.

7. Of course, once you have determined which language you need for your

application and which XDK components you need to build your application, for

detail on the XML components and how they are used, see:

■ Chapter 7, Chapter 10, and Part IV — Tools and Frameworks for Building

Oracle-Based XML Applications through Part X — XDK for PL/SQL, of this

manual.

■ Oracle9i XML Reference

8. If you still have questions, consult with your Oracle representative or, to help

get you started, go to the “Discussions” option on OTN and post your question

there.

Feature Coverage and Availability
Information in this manual represents a snapshot of information on Oracle

XML-enabled technology components. These change rapidly. To view the latest

information, refer to Oracle Technology Network (OTN) at:

http://otn.oracle.com/tech/xml

How this Manual is Organized
This manual is organized into 10 parts, 29 chapters, and 8 appendixes. It includes an

index and glossary.
xlvii



Roadmap of this Manual
Figure 0–1, "Oracle XML Components and E-Business Solutions: Roadmap of this

Manual", maps all the main “stops” in the manual. In the online versions of this

manual, if you click on these “stops” you will go directly to the chapters of interest.

A more detailed version of this diagram is provided in Chapter 1, "Oracle

XML-Enabled Technology".

■ Introducing XML and the Oracle Database. Introductory and basic information

about using Oracle9i’s XML components (Chapters 1 through 8), XML support

in the database, using XMLType and URI-Reference, XML SQL Utility (XSU),

and how to apply Oracle Text to search and retrieve information from XML

documents.

■ PART 1 "Introducing Oracle XML-Enabled Technology"

* Chapter 1, "Oracle XML-Enabled Technology", introduces you to Oracle

XML Developer Kits (XDKs), the (new) native XML support in the

database and XMLType and DBUri-ref, tools used to build XML

applications, and Oracle Text (interMedia Text).

* Chapter 2, "Modeling and Design Issues for Oracle XML Applications",

describes some XML design and loading issues, and how Oracle XML

components can be used in typical content/document management and

business-to-business messaging applications.

* Chapter 3, "Oracle XML Developer Kits (XDKs) and Components:

Overview and General FAQs", introduces you to the Oracle XML

components, the XML Development Kits and XML SQL Utility. It

summarizes the ways you can generate XML documents for each

language, Java, C, C++, and PL/SQL. It provides Frequently Asked

Questions (FAQs) about Oracle’s XML-enabled technology.

* Chapter 4, "Using XSL and XSLT", introduces you to XML and XSLT. It

also discusses the differences between Cascading Style Sheets (CSS) and

XSL. This chapter includes Frequently Asked Questions.

■ PART II "Storing and Retrieving XML From the Database"

* Chapter 5, "Database Support for XML", introduces the (new) datatype

XMLType and describes how to use XMLType when generating and

storing XML in the database. This chapter also describes the

extract()  and existsnode()  functions and member functions,

DBMS_XMLGEN package, SYS_XMLGEN function used to generate XML

in SQL queries, SYS_XMLAGG function used to aggregate XML data,
xlviii



creating and managing XMLTypes, and using functional indexes and

table functions to query XML.

* Chapter 6, "Database Uri-references", describes Uri-Reference (Uri-ref),

and DBUri-ref, how to use URIType  and subtypes, DBUriType  and

HttpUriType,  the new SYS_DBURIGEN()  operator, URIFactory
Method, HTTP access to objects and the OraDBUriServlet
mechanism.

* Chapter 7, "XML SQL Utility (XSU)", describes how to use XML SQL

Utility Java and PL/SQL APIs, to generate and ’store’ XML documents,

how to insert, update, and delete XML documents in the database, use

the XSU command line tool, and map elements to columns. Examples

in this chapter are also available from $ORACLE_
HOME/rdbms/demo/xsu . This chapter also provides Frequently Asked

Questions (FAQs).

* Chapter 8, "Searching XML Data with Oracle Text", introduces you to

Oracle Text (interMedia Text), using the CONTAINS operator, how to

create an Oracle Text section and index, and how to build queries. It

includes examples and guidelines on using XML_SECTION_GROUP,

AUTO_SECTION_GROUP, the new PATH_SECTION_GROUP, the

INPATH and HASPATH operators. This chapter also provides

Frequently Asked Questions (FAQs).

■ Content and Document Management. See Oracle9i Case Studies - XML Applications,
for example applications on content and document management.

■ B2B and XML Data Exchange.

■ Part III. "Data Exchange Using XML"

* Chapter 9, "Exchanging XML Data Using Oracle AQ", introduces you to

some Advanced Queueing (AQ) concepts and describes how AQ and

XML complement each other. This chapter also describes the (new)

Internet-Data-Access-Presentation (IDAP) mechanism, the

AQXMLServlet and accessing it with HTTP and SMTP. It also

describes XMLType Queues and XML AQ message transformation. This

chapter provides several FAQs.
xlix



■ Oracle Development Tools. Chapters 10 through 17 describes either

introductory information or how to use XSQL Pages Publishing Framework,

JDeveloper, Business Components for Java (BC4J), the (new) Metadata API,

Oracle Reports, Oracle Portal, Oracle Exchange, and XML Gateway.

■ PART IV "Tools and Frameworks for Building Oracle-Based XML

Applications"

* Chapter 10, "XSQL Pages Publishing Framework", provides some

insight on using XSQL Servlet. It includes diagrams that explain how

the XSQL Page Processor works.This chapter includes FAQs.

* Chapter 11, "Using JDeveloper to Build Oracle XML Applications",

introduces you using JDeveloper for building XML applications, using

XSQL servlet from JDeveloper, and steps to take when about building a

Mobile application with JDeveloper. This chapter includes FAQs.

* Chapter 12, "Building BC4J and XML Applications", introduces you to

Business Components for Java (BC4J) and how to use the BC4J

framework to build XML applications.

* Chapter 13, "Using Metadata API", describes the Metadata API and

how to use it. It includes a description of the (new) DBMS_METADATA’s

programmatic and browsing interfaces, as well as a detailed example.

* Chapter 14, "Oracle9iAS Reports Services and XML", describes how to

generate and customize reports Reports as XML and read XML data

source from reports. It includes information about using (new)

pluggable XML data sources, XML-PDS, and their support for XSQL.

* Chapter 15, "Using the PDK for Visualizing XML Data in Oracle Portal",

briefly describes the Oracle9iAS Portal features, Portal Developer Kit

(PDK) and how you can use URL Services to enable you use your XML

application as a  web or database-based portlet.

* Chapter 16, "How Oracle Exchange Uses XML" introduces you to

Oracle Exchange, its stored and pass through transactions, XML

delivery formats, and e-business solution architecture.

* Chapter 17, "Introducing Oracle XML Gateway" -- introduces you to

Oracle XML Gateway. Oracle XML Gateway is a set of services that

See Also: Oracle9i Case Studies - XML Applications, for example

applications on typical XML-based business solutions, involving

B2B and data exchange.
l



allows for easy integration with the Oracle e-Business Suite to create

and consume XML messages triggered by business events.

■   PART V "Oracle9i Dynamic Services (DS) and Oracle Syndication Server

(OSS)"

* Chapter 18, "Using Oracle9iAS Dynamic Services and XML", introduces

you to Oracle9iAS Dynamic Services, its architecture, Java, PL/SQL,

and JMS/HTTP deployment modes, and developing Dynamic Services

services.

* Chapter 19, "Oracle Syndication Server (OSS) and XML", provides an

overview of Oracle Syndication Server (OSS), its use of the ICE

protocol, OSS architecture, and how OSS interfaces with Oracle9i

Dynamic Services, content providers, and subscribers.

■ XML Developer Kits (XDKs). The roadmap shows the various XML Developer

Kits (XDKs), in the “XML Application” box. Chapter 7, and 19 through 29

describe how to use the XDKs.

■ Part VI "XDK for Java"

* Chapter 20, "Using XML Parser for Java", describes ways of using XML

Parser for Java and XSLT Processor. It lists the examples provided with

the software. This chapter includes FAQs.

* Chapter 21, "Using XML Schema Processor for Java", introduces you to

XML Schema, compares XML Schema to DTDs, and describes Oracle

XML Schema Processor Java features, usage, how to use the sample

program. It also provides FAQs.

* Chapter 22, "XML Class Generator for Java", describes ways of using

XML Java Class Generator with DTDs and XML Schema. It lists the

examples provided with the software. This chapter includes FAQs.

■ Part VII "XDK for Java Beans"

* Chapter 23, "Using XML Transviewer Beans", discusses the XML

Transviewer Beans and how to use them, including the (new)

DBViewer bean and (new) DBAccess bean. It lists examples provided

with your software.

■ Part VIII "XDK for C"

* Chapter 24, "Using XML Parser for C", describes ways of using XML

Parser for C and XSLT Processor. It lists the examples provided with the

software.
li



* Chapter 25, "Using XML Schema Processor for C", describes the XML

Schema Process for C features, calling sequence, and how to run the

supplied sample programs. This chapter also lists the supplied

examples.

■ Part IX "XDK for C++"

* Chapter 26, "Using XML Parser for C++", describes ways of using XML

Parser for C++ and XSLT Processor. It lists the examples provided with

the software.

* Chapter 27, "Using XML Schema Processor for C++", describes the XML

Schema Process for C++ features, calling sequence, and how to run the

supplied sample programs. This chapter also lists the supplied

example.

* Chapter 28, "Using XML C++ Class Generator", describes ways of using

XML C++ Class Generator. It lists the examples provided with the

software.

■ Part X "XDK for PL/SQL"

* Chapter 29, "Using XML Parser for PL/SQL", describes ways of using

XML Parser for PL/SQL and XSLT Processor. It lists the examples

provided with the software. This chapter includes FAQs.

Not shown in the roadmap are the Appendixes which include the XML Primer, and

XDK cheat sheets and specifications.
lii



Figure 0–1 Oracle XML Components and E-Business Solutions: Roadmap of this
Manual

Oracle
Text

Chapter 8

Middle Tier

XDK for Java
part VI

XDK for C
part VIII

XDK for C++
part IX

XDK for PL/SQL
part X

XDK for Java Beans
part VII

XML SQL Utility
part of

· XDK for Java
·  XDK for PL/SQL

Chapter 7

XML 
Documents

Web
Interface

User / Browser / 
Client / Application
(Business or Consumer)

SQL
Query

Part III
Data Exchange with XML
· B2B XML Application Step by Step
  See manual: Case Studies –
  XML Applications

Services provided with XML: 
· Discoverer 4iViewer 
· Phone Number Portability 
  

Content and Document 
management with XML
· Dynamic News 
· Oracle9i Application Server
  Wireless Edition
· Flight Finder Application
· 9iFs and Arbortext

Typical XML-Based 
Business Solutions

Oracle Development Tools:
Part IV
· XSL Pages Publishing Framework Chapter 10
· JDeveloper and BC4J Chapter 11 & 12
· Oracle portal (WebDb) Chapter 15
· Oracle Reports Chapter 14
· Metadata API Chapter 13

XML Application
IDAP Data
Messaging
Using AQ
Chapter 9

Using
Oracle9 i
and XML

Part I
Chapter 1 Introduction
Chapter 2 Modeling and Design
Chapter 3 Oracle XML Components
Chapter 4 XSL Stylesheets
Part II
Chapter 5 Database Support for XML
Chapter 6 URI Support in the Database

See manual
Case Studies – 
XML 
Applications

See manual
Case Studies – 
XML 
Applications

Dynamic Services and Oracle 
Syndication Server 
Chapter 18

XML
Gateway

Chapter 17

Oracle e-Business Suite
Oracle Exchange
Chapter 16
liii



■ Appendix A, "An XML Primer", introduces you to some basic and background

information about XML.

■ Appendix B, "Comparing Oracle XML Parsers and Class Generators by

Language", compares the Oracle XML Parsers and Class Generators according

to implementation language.

■ Appendix C, "XDK for Java: Specifications and Cheat Sheets", describes the

XDK for Java component specifications. Includes several top level class and

method listings.

■ Appendix D, "XDK for Java Beans: Specifications and Cheat Sheets", describes

the XDK for Java Beans, specifically the Transviewer Beans cheatsheets.

■ Appendix E, "XDK for C: Specifications and Cheat Sheets", describes the XDK

for C specifications. Includes top level function listings.

■ Appendix F, "XDK for C++: Specifications and Cheat Sheet", describes the XDK

for C++ component specifications. Includes several top level class and method

listings.

■ Appendix G, "XDK for PL/SQL: Specifications and Cheat Sheets", describes the

XDK for PL/SQL specifications. Includes several top level function listings.

■ Appendix H, "XML SQL Utility (XSU) Specifications and Cheat Sheets",

describes the XML SQL Utility (XSU) for Java and PL/SQL specifications.

Includes several top level method and function listings.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i New Features for information about the differences between Oracle9i
and the Oracle9i Enterprise Edition and the available features and options. That

book also describes all the features that are new in Oracle9i.

■ Oracle9i Concepts.

■ The JDeveloper Guide

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle8i Application Developer’s Guide - Advanced Queuing

■ Oracle9i Supplied PL/SQL Packages Reference

■ Oracle Integration Server Overview
liv



■ Oracle9i XML Reference

■ Oracle9i Case Studies - XML Applications

■ The Oracle XML Handbook, XML Core Development Team, Oracle., Oracle Press

■ Building Oracle XML Applications, Steve Muench, O’Reilly

■ XML Bible, Elliotte Rusty Harold, IDG Books Worldwide

■ XML Unleashed, Morrison et al., SAMS

■ Building XML Applications, St.Laurent and Cerami, McGraw-Hill

■ Building Web Sites with XML, Michael Floyd, Prentice Hall PTR

■ Building Corporate Portals with XML, Finkelstein and Aiken, McGraw-Hill

■ XML in a Nutshell, O’Reilly

■ Learning XML - (Guide to) Creating Self-Describing Data, Ray, O’Reilly

■ http://www.xml.com/pub/rg/46

■ http://www.xml.org/xmlorg_resources/index.shtml

■ http://www.xmlmag.com/

■ http://www.webmethods.com/

■ http://www.infoshark.com/default2.htm

■ http://www.clarient.org/

■ http://www.xmlwriter.com/

■ http://webdevelopersjournal.com/articles/why_xml.html

■ http://www.w3schools.com/xml/

■ http://www.w3scripts.com/xml/default.asp

■ http://www.xml101.com/examples/

■ http://www.w3.org/TR/REC-xml

How to Order this Manual
In North America, printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/
lv



Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from:

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Downloading Release Notes, Installation Guides, White Papers,...
To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

How to Access this Manual On-Line
You can find copies of or download this manual from any of the following

locations:

■ On the Document CD that accompanies your Oracle9i software CD

■ From Oracle Technology Network (OTN) at

http://otn.oracle.com/docs/index.htm, under Data Server (or whatever other

product you have). For example, select Oracle9i > General Documentation

Release 1 (9.0.1) (or whatever other section you need to specify). Select HTML

then select HTML or PDF for your particular of interest, such as, “Oracle
lvi



Documentation Library”. Note that you may only be able to locate the prior

release manuals at this site.

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.
lvii



Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospaced (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus  to open SQL*Plus.

The password is specified in the orapwd  file.

Back up the datafiles and control files in the
/disk1/oracle/dbs  directory.

The department_id , department_name ,
and location_id  columns are in the
hr.departments  table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe  user.

The JRepUtil  class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL  where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[ ] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL ( digits  [ , precision  ])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example
lviii



Documentation Accessibility
Oracle's goal is to make our products, services, and supporting documentation

accessible to the disabled community with good usability. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle is actively engaged with other market-leading

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln  FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

   acctbal NUMBER(11,2);

   acct    CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
lix



technology vendors to address technical obstacles so that our documentation can be

accessible to all of our customers. For additional information, visit the Oracle

Accessibility Program web site at

 http://www.oracle.com/accessibility/.

Reading Code Examples
JAWS, a Windows screen reader, may not always correctly read the code examples

in this document. The conventions for writing code require that closing braces

should appear on an otherwise empty line; however, JAWS may not always read a

line of text that consists solely of a bracket or brace.
lx



What’s New in Oracle XML-Enabled
Technology?

This section describes the new features in the following releases:

■ XML Features Introduced with Oracle9i, Release 1 (9.0.1)

■ XML Features Introduced with Oracle8i Release 3 (8.1.7)

XML Features Introduced with Oracle9 i, Release 1 (9.0.1)
Here are the new XML features in Oracle9i Release 1 (9.0.1):

XDK for Java
■ XML Schema Processor for Java

■ XML Parser for Java — DOM 2.0 and SAX 2.0 support

■ Improved XSLT performance

■ Class Generator for Java now includes XML Schema based Class Generator

as well as a DTD based Class Generator

See:

■ Chapter 20, "Using XML Parser for Java"

■ Chapter 21, "Using XML Schema Processor for Java"
lxi



■ XSQL Servlet and Pages

■ Support for Database Bind Variables. Now both lexical subsitution and true

database bind variables are supported for improved performance.

■ Support for PDF Output Using Apache FOP.  You can now combine XSQL

Pages with the Apache FOP processor to produce Adobe PDF output from

any XML content.

■ Trusted Host Support for XSLT Stylesheets. New security features insure

that stylesheets cannot be executed from non-trusted hosts.

■ Full Support for Non-Oracle JDBC Drivers. Now all query, insert, update,

and delete features with with both Oracle and Non-Oracle JDBC drivers.

■ Process Dynamically Constructed XSQL Pages. The XSQLRequest API can

now process programmatically constructed XSQL pages.

■ Use a Custom Connection Manager. You can now implement your own

Connection Manager to handle database connections in any way you like.

■ Produce Inline XML Schema. You can now optionally produce an inline

XML Schema that describes the structure of your XML query results.

■ Set Default Date Format for Queries. You can now supply a date format

mask to change the default way date data is formatted.

■ Write Custom Serializers. You can create and use custom serializers that

control what and how the XSQL page processor will return to the client.

■ Dynamic Stylesheet Assignment. Assign stylesheets dynamically based on

parameters or the result of a SQL query.

■ Update or Delete Posted XML. In addition to inserting XML, now updating

and deleting is also supported.

■ Insert or Update Only Targeted Columns. You can now explicitly list what

columns should be included in any insert or update request.

■ Page-Request Scoped Objects. Your action handlers can now get/set objects

in the page request context to share state between actions within a page.

■ Access to ServletContext. In addition to accessing the HttpRequest and

HttpResponse objects, you can also access the ServletContext.

See: Chapter 22, "XML Class Generator for Java"
lxii



■ XDK for Java Beans

■ DBViewer Bean (new). Displays database queries or any XML by applying

XSL stylesheets and visualizing the resulting HTML in a scrollable swing

panel.

■ DBAccess Bean (new). DB Access bean maintains CLOB tables that hold

multiple XML and text documents.

■ XDK for C

■ XML Parser for C — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)

■ XML Schema Processor for C

■ Improved XSLT performance

■ XDK for C++

■ XML Parser for C++ — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)

■ XML Schema Processor for C++

■ Improved XSLT performance

■ XDK for PL/SQL

■ Improved XSLT performance

XML SQL Utility (XSU) Features
■ Ability to generate XML Schema given an SQL Query

■ Support for XMLType and Uri-ref

■ Ability to generate XML as a stream of SAX2 callbacks

See: Chapter 10, "XSQL Pages Publishing Framework"

See: Chapter 23, "Using XML Transviewer Beans"

See: Chapter 25, "Using XML Schema Processor for C"

See: Chapter 27, "Using XML Schema Processor for C++"

See: Chapter 29, "Using XML Parser for PL/SQL"
lxiii



■ XML attribute support when generation XML from the database. This

provides an easy way of specifying that a particular column or group of

columns should be mapped to an XML attribute instead of an XML

element.

XSU is also considered part of the XDK for Java and XDK for PL/SQL.

Database XML Related Enhancements
Extensible Markup Language (XML) is a standard format developed by the World

Wide Web Consortium (W3C) for representing structured and unstructured data on

the Web. Universal Resource Identifiers (URIs) identify resources such as Web

pages anywhere on the Web. Oracle provides types to handle XML and URI data, as

well as a class of URIs called DBUri-REF s to access data stored within the database

itself. It also provides a new set of types to store and access both external and

internal URIs from within the database.

XMLType
This (new) Oracle-supplied type can be used to store and query XML data in the

database. XMLType has member functions you can use to access, extract, and query

the XML data using XPath expressions. XPath is another standard developed by the

W3C committee to traverse XML documents. Oracle XMLType functions support a

subset of the W3C XPath expressions. Oracle also provides a set of SQL functions

(including SYS_XMLGEN and SYS_XMLAGG) and PL/SQL packages (including

DBMS_XMLGEN) to create XMLType values from existing relational or object

relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or

as the datatype of a table or view column. When you create a XMLType column in a

table, Oracle internally uses a CLOB to store the actual XML data associated with

this column. As is true for all CLOB data, you can make updates only to the entire

XML document. You can create an Oracle Text index or other function-based index

on a XMLType column.

URI Datatypes
Oracle supplies a family of URI types—UriType , DBUriType , and

HttpUriType —which are related by an inheritance hierarchy. UriType  is an

object type and the others are subtypes of UriType .

See: Chapter 7, "XML SQL Utility (XSU)"
lxiv



■ You can use HttpUriType to store URLs to external web pages or to files. It

accesses these files using HTTP (Hypertext Transfer Protocol).

■ DBUriType can be used to store DBUri-REF s, which reference data inside the

database. Since UriType  is the supertype, you can create columns of this type

and store DBUriType or HttpUriType type instances in this column. Doing so

lets you reference data stored inside or outside the database and access the data

consistently.

DBUri-REF s use an XPath-like representation to reference data inside the

database. If you imagine the database as a XML tree, then you would see the

tables, rows, and columns as elements in the XML document. For instance, the

sample human resources user hr  would see the following XML tree:

<HR>
  <EMPLOYEES>
    <ROW>
      <EMPLOYEE_ID>205</EMPLOYEE_ID>
      <LAST_NAME>Higgins</LAST_NAME>
      <SALARY>12000</SALARY>
      .. <!-- other columns -->
    </ROW>
    ... <!-- other rows -->
  </EMPLOYEES>
  <!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBUri-REF  is simply an XPath expression over this virtual XML

document. So to reference the SALARY value in the EMPLOYEES table for the

employee with employee number 205, we can write a DBUri-REF  as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns

and expose them as URLs to the external world. Oracle provides a standard URI

servlet that can interpret such URLs. You can install and run this servlet under the

Oracle Servlet engine.

UriFactoryType
UriFactoryType is a factory type, which is a type that can create and return other

object types. When given a URL string, UriFactoryType  can create instances of

the various subtypes of the UriTypes . It analyzes the URL string, identifies the

type of URL (HTTP, DBUri , and so on) and creates an instance of the subtype.
lxv



Advanced Queueing (AQ) Features
New Advanced Queueing features include enhanced XML messaging options:

■ Internet-Data-Access-Presentation (IDAP)

■ AQXMLServlet for use with HTTP and SMTP access

■ XMLType Queues

■ XML AQ message transformation

Metadata API
Metadata API (new) provides a centralized, simple and flexible means for

performing the following tasks:

■ Extracting complete definitions of database objects (metadata) as either

XML or creation DDL

■ Transforming metadata via industry-standard XSLT (XML Stylesheet

Transformation language).

■ Generating SQL DDL to recreate the database objects

Metadata API is available on Oracle9i whenever the instance is operational. It is

not available on Oracle Lite. It includes the (new) DBMS_METADATA PL/SQL

supplied package.

Oracle Text (inter Media Text/Context) Features
The new Oracle Text section group, PATH_SECTION_GROUP, enables new

and more sophisticated section searching for XML documents. PATH_

SECTION_GROUP supports the following:

■ Case sensitivity

■ Searching multi-tag paths with direct parentage ensured

See:

■ Chapter 5, "Database Support for XML"

■ Chapter 6, "Database Uri-references"

■ Chapter 8, "Searching XML Data with Oracle Text"

See: Chapter 9, "Exchanging XML Data Using Oracle AQ"

See: Chapter 13, "Using Metadata API"
lxvi



■ Path searching to wildcard levels

■ Searching to reference top-level tags

■ Attribute value sensitive searching, searching by section existence

The new Oracle Text operators are:

* HASPATH()  operator

* INPATH() operator

Oracle9iAS Reports Services
■ Server enhancements: For Java based servers — Re-engineered in 100%

Java. Status information is now available in HTML and XML.

■ Pluggable Datasources and Destinations (new). Create your own

data-access-modules in JAVA.

* Plug into Reports using PDS-API

* Integrate seamlessly into datamodell

* combine mutliple datasources in a single report

* Shipped PDSs (XML, JDBC, Express, and SQL)

■ JSP Based runtime

■ Enhanced portal integration, report bursting, email, distribution, and PDF

support

■ Event based reporting

XML Features Introduced with Oracle8 i Release 3 (8.1.7)
New XML  features introduced in Oracle8i, Release 3 (8.1.7) were enhanced and

improved versions of the following components:

See: Chapter 8, "Searching XML Data with Oracle Text"

See Also: Chapter 14, "Oracle9iAS Reports Services and XML"
lxvii



■ XDK for Java

■ XDK for C

■ XDK for C++

■ XDK for PL/SQL

■ XML SQL Utility
lxviii



Part I

  Introducing Oracle XML-Enabled

Technology

Part I of the book introduces you to Oracle XML-enabled technology and features,

Oracle XML  Developer’s Kits (XDKs) and XML components, modeling and design

issues, and example scenarios. Chapter 4 provides some basic information about

using XSL and XSLT.

Part I contains the following chapters:

■ Chapter 1, "Oracle XML-Enabled Technology"

■ Chapter 2, "Modeling and Design Issues for Oracle XML Applications"

■ Chapter 3, "Oracle XML Developer Kits (XDKs) and Components: Overview

and General FAQs"

■ Chapter 4, "Using XSL and XSLT"





Oracle XML-Enabled Techn
1

Oracle XML-Enabled Technology

This chapter describes the following sections:

■ What is XML ?

■ Storing and Retrieving XML Data from Oracle9i

■ XML Support in the Database

■ Oracle-Based XML Applications

■ Oracle XML-Enabled Technology Components and Features

■ The Oracle Suite of Integrated Tools and Components

■ Oracle XML Samples and Demos

■ What Is Needed to Run Oracle XML Components

■ XML Technical Support
ology 1-1



What is XML ?
What is XML ?
Appendix A, "An XML Primer", provides some introductory information about

XML, the W3C XML recommendations, differences between HTML and XML, and

other XML syntax topics. It also discusses reasons why XML, the internet standard

for information exchange is such an appropriate and necessary language to use in

database applications.

What are Oracle XML-Enabled Technologies?
XML models structured and semi-structured data. Oracle9i supports structured and

semi-structured data, as well as complex and  unstructured data. Oracle9i is

XML-enabled in that it natively handles the storage, query, presentation, and

manipulation of XML data.

Oracle XML Components
Figure 1–1 shows the Oracle XML components in the  "XML application" box.

Oracle XML components are comprised of the following:

■ Database XML support

– XMLType - a new datatype to store, query, and retrieve XML documents

– SYS_XMLGEN - SQL function to create XML documents

– SYS_XMLAGG - SQL function to aggregate multiple XML documents

– DBMS_XMLGEN - a built-in package to create XML from SQL queries

– URI support - store and retrieve global and intra-database references

– Text support - Supports XPath on XMLType and text columns

■ XML Developer’s Kit (XDK) for Java

– XML Parser for Java and XSLT Processor

– XML Schema Processor for Java

– XML Class Generator for Java

– XSQL Servlet

– XML SQL Utility (XSU) for Java

■ XDK for Java Beans

– XML Transviewer Beans
1-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What is XML ?
* DOMBuilder Bean

* XSLTransformer Bean

* DBAccessBean

* TreeViewer Bean

* SourceViewer Bean

* XMLTransformPanel Bean

* DBViewer Bean

■ XDK for C

– XML Parser for C

– XML Schema Processor for C

■ XDK for C++

– XML Parser for C++

– XML Schema Processor for C++

– XML Class Generator for C++

■ XDK for PL/SQL

– XML Parser for PL/SQL

– XML SQL Utility (XSU) for PL/SQL

Figure 1–1 also lists some typical XML-based business solutions:

■ Business Data Exchanges with XML

– Buyer-Supplier Transparent Trading Automation

– Seamless integration of partners and HTTP-based data exchange

– Database inventory access and integration of commercial transactions and

flow

– Self-service procurement, such as using Oracle iProcurement

– Data mining and reporting with Oracle Discoverer 3i Viewer

– Oracle Exchange and Applications

– Phone number portability

■ Content and Document Management with XML
Oracle XML-Enabled Technology 1-3



What is XML ?
– Personalized publishing and portals

– Customized presentation. Dynamic News case study, Portal-to-Go, and

Flight Finder
1-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What is XML ?
Figure 1–1 Oracle XML Components and E-Business Solutions: What’s Involved

Oracle9i or other database

XML Data stored:
· In relational tables in LOBs
· As XML documents in CLOBs (XMLType)
· DBUri-type

Object 
Relational
data Oracle

Text

XML Doc in CLOB or XMLType

To search and retrieve 
XML documents stored 
in CLOBS

Middle Tier:
· Oracle9i Application Server
· Apache Server
· Java enabled web server

XDK for Java

XDK for C

XDK for C++

XDK for PL/SQL

XDK for Javabeans

XML SQL Utility
(Java or PL/SQL)

XML 
Documents

Web
Interface

User / Browser / 
Client / Application
(Business or Consumer)

SQL Query

Business Data Exchange with 
XML (data stored in or out of 
database in relational tables 
or LOBs):
· Buyer-Supplier Transparent
  Trading Automation 
· Seamless integration of partners
· HTTP-Based commercial and other
  data exchanged
· Integration of commercial
  transactions and work flow

Content and Document 
management with XML
(XML documents stored in or out 
of database):
· Personalized publishing and
  portals
· Customized presentation according
  to customer 
· Dynamically creating composite
  documents from fragments
· Data displayed on different
  devices [see Wireless edition]

Services provided with XML: 
· Data mining and report-generation
  [See Discoverer 4iViewer]
· Phone number portability

XML Application in 
the database or 
middle Tier

Dynamic Services and Oracle 
Syndication Server (OSS)

Typical XML-Based 
Business Solutions
See manual case studies 

XML Applications

JDBC,
OCI,

OCCI,
or

Pro*C/C++

Oracle Development Tools:
· XSQL Pages Publishing Framework
· 9iFS (Internet file System)
· JDeveloper and BC4J
· Oracle portal (WebDb)
· Oracle Reports
· Metadata API

XML Application

B2B or B2C
XML Messaging

Using AQ
IDAP

Oracle e-Business Suite
Oracle Exchange
Chapter 16

XML Gateway
Oracle XML-Enabled Technology 1-5



Storing and Retrieving XML Data from Oracle9i
Figure 1–1 also shows the following:

Oracle Development Tools and Frameworks
XSQL Servlet and Pages, Oracle9i Internet File System (9iFS), JDeveloper, Business

Components for Java (BC4J), Oracle Portal (WebDB), Oracle9iAS Reports Services,

and Oracle9i Dynamic Services can all be used to build XML applications.

Database and Middle Tier
XML applications can either reside on the database or on a middle tier, such as

Oracle9i Application Server, Apache Server, or other Java enabled Web servers.

Data Stored in the Database
Data is stored as relational tables utilizing object views or as XML documents in

XMLType columns and CLOBs. Oracle Text (interMedia Text) can be used to

efficiently search XML documents stored in XMLType or CLOB columns.

Storing and Retrieving XML Data from Oracle9 i
XML has emerged as the standard for data interchange on the Web and Oracle9i is
XML-enabled to natively store, search, and retrieve XML in the following formats:

■ As decomposed XML documents. That is, when the XML documents are stored

in their constituent fragments. Here the XML data is stored in object relational

form and you can use XML SQL Utility (XSU) or SQL functions and packages to

generate the whole (composed) XML documents from these object relational

instances.

You can also use XSU or SQL functions, such as Extract() , and TABLE
functions, to convert the XML back to its object relational (decomposed) form.

■ As composed, or "whole" XML documents. Store XML data in XMLType or

CLOB/BLOB columns and use XMLType functions such as Extract() and

ExistsNode()  or Oracle Text indexing to search these documents.

Note: XSQL Servlet and Pages are part of the Oracle XDK for Java.
1-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Support in the Database
XML Support in the Database
Oracle9i provides the following XML support:

■ Generation of XML Documents. Oracle9i supports the generation of XML on

the client or server, where existing object-relational data can be used to generate

the corresponding XML. XML can be generated from query results or as part of

the SQL query itself using the XSU (XML SQL Utility) Java or PL/SQL API.

In this release, Oracle extends the XML support in the server:

– By providing new SQL functions for XML generation and aggregation

– By providing a C version of the XML SQL Utility,  linked to the server

■ Storage, Querying, and Retrieval of XML documents. Before this release you

could use, for example, XSU to store, query, and retrieve XML documents.

Now, with this release you can use the new datatype, XMLType.

XMLType stores XML documents as Character Large Objects (CLOBs). Oracle

Text (interMedia Text) indexing can then be used to index the XMLType
columns and query them using the CONTAINS operator and an XPath-like

syntax. XMLType also supports member functions that can be used to extract

fragments from the XML document.

XML and URI Data Types
Oracle9i provides new types to handle XML and URI data. The Extensible Markup

Language (XML) is a standard format developed by the World Wide Web

Consortium (W3C) for representing structured and un-structured data on the Web.

URIs or Universal Resource Identifiers are used to identify resources such as web

pages anywhere on the web. Oracle9i provides a new class of URIs to access data

stored in the database itself, called DBUri-refs. It also provides a new set of types to

store and access both external and internal URIs from the database.

XMLType
The Oracle supplied type, XMLType, can be used to store and query XML data in

the database. XMLType provides member functions to access, extract and query the

XML data using XPath expressions. XPath is another standard developed by the

W3C committee to traverse XML documents. In Oracle9i, XMLType functions only

support a limited subset of the XPath expressions. Oracle9i also provides a set of

See Also: Chapter 5, "Database Support for XML", "Indexing

XMLType columns"  on page 5-31.
Oracle XML-Enabled Technology 1-7



XML Support in the Database
SQL functions such as SYS_XMLGEN,SYS_XMLAGG, and other PL/SQL packages

(DBMS_XMLGEN) to create these XMLType values from existing relational or object

relational data.

XMLType, a system defined type, can be used as arguments to functions or as table

or view columns. When you create a XMLType column in a table Oracle internally

uses a CLOB to actually store the XML data associated with this column. You can

create Oracle Text indexing on the XMLType column and other functional indexes.

In Oracle9i, since the XMLType is stored as a CLOB, updates can only be made to

the entire document.

URI Data Types
Oracle9i supplies the following family of Uri types:

■ UriType

■ DBUriType

■ HttpUriType

These are related by an inheritance hierarchy. UriType  is an abstract type and the

DBUriType  and HttpUriType  are subtypes of this type.

■ HttpUriType  can be used to store URLs to external web pages or files. It

accesses these files using the HTTP protocol (Hyper Text Transfer Protocol).

■ DBUriType  can be used to store DBUri-refs which reference data inside the

database.

Since UriType is the super type, you can create columns of this type and store

DBUriType  or HttpUriType  instances in this column. This allows you to

reference data stored inside or outside the database and access them consistently.

DBUri-ref uses an XPath like representation to reference data inside the database. If

you imagine the database as a XML tree, then you would see the tables, rows and

See Also:

■ Chapter 5, "Database Support for XML"

■ Chapter 8, "Searching XML Data with Oracle Text"

■ Chapter 9, "Exchanging XML Data Using Oracle AQ"

■ Oracle9i Application Developer’s Guide - Advanced Queuing, or

information about using XMLType with Oracle Advanced

Queuing
1-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Support in the Database
columns as elements in the XML document. For instance, user scott  would see a

tree such as:

  <SCOTT>
    <EMP>
      <ROW>
        <EMPNO>2100</EMPNO>
        <ENAME>John</ENAME>
        <SALARY>10000</SALARY>
        .. <!-- other columns -->
      </ROW>
      ... <!-- other rows -->
    </EMP>
    <!-- other tables..-->
  </SCOTT>
  <!-- other user schemas on which you have some privilege on..-->

DBUri-ref is simply an XPath expression over this virtual XML document. So to

reference the SALARY value in the EMP table for the employee with employee

number 2100 , you can write a DBUri-ref as:

/SCOTT/EMP/ROW[EMPNO=2100]/SALARY

Using this, you can reference data stored in CLOBs or other columns and expose

them as URLs to the external world. Oracle9i provides a standard servlet than can

be installed and run under the Oracle Servlet engine which can interpret such

URLs.

Extensibility and XML
Oracle’s extensibility enables special indexing on XML, including Oracle Text

indexes for section searching, special operators to process XML, aggregation of

XML, and special optimization of queries involving XML.

Oracle Text Searching
XML text stored in LOBs can be indexed using the extensibility indexing interface.

Oracle9i provides operators such as CONTAINS and WITHIN that you can use to

search within the XML text for substring matches.

See Also: Chapter 6, "Database Uri-references"
Oracle XML-Enabled Technology 1-9



Oracle-Based XML Applications
Oracle-Based XML Applications
There are many potential uses of XML in Internet applications. This manual focuses

on the following two database-centric application areas where Oracle’s XML

components are well suited.

Content and Document Management
Content and document management includes customizing data presentation. These

applications typically process mostly authored XML documents. Several case

studies are described in the manual.

Business-to-Business (B2B) or Business-to-Consumer (B2C) Messaging
B2B and B2C messaging involves exchanging data between business applications.

These applications typically process generated XML documents or a combination of

generated and composed XML documents.

See Also:

■ Chapter 2, "Modeling and Design Issues for Oracle XML

Applications".

■ Chapter 8, "Searching XML Data with Oracle Text"

See: Content and Document Management Chapters in Oracle9i
Case Studies - XML Applications:

■ "Customizing Content with XML: Dynamic News Application"

■ "Oracle9i AS Wireless Edition and XML"

■ "Customizing Presentation with XML and XSQL: Flight Finder"
1-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML-Enabled Technology Components and Features
When to Use Oracle XML Components: How They Work Together
For descriptions of the Oracle XML components and how they work together see

Chapter 2, "Modeling and Design Issues for Oracle XML Applications" and

Chapter 3, "Oracle XML Developer Kits (XDKs) and Components: Overview and

General FAQs".

The remaining sections of this manual, describe how to use the Oracle XML

components, Oracle development tools, and how to build Web-based, database

applications with these tools.

Oracle XML-Enabled Technology Components and Features
Oracle9i is well-suited for building XML database applications. Oracle

XML-enabled technology has the following features:

■ Indexing and Searching XML Documents with Oracle Text (interMedia Text)

■ Messaging Hubs and Middle Tier Components

■ Back-End to Database to Front-End Integration Issues

■ Oracle XDKs Provide the Two Most Common APIs: DOM and SAX

■ The Oracle Suite of Integrated Tools and Components

■ Oracle XML Samples and Demos

Indexing and Searching XML Documents with Oracle Text ( inter Media Text)
Oracle Text (interMedia Text)  provides powerful search and retrieval options for

XML stored in CLOBs and other documents. It can index and search XML

See: These B2B Chapters:

■ Chapter 9, "Exchanging XML Data Using Oracle AQ"

The following chapters in the manual, Oracle9i Case Studies - XML
Applications:

■ "Customizing Discoverer 4i Viewer with XSL"

■ "Service Delivery Platform (SDP) and XML"

■ "How Oracle Exchange Uses XML"

■ "B2B XML Application: Step by Step"
Oracle XML-Enabled Technology 1-11



Oracle XML-Enabled Technology Components and Features
documents and document sections as large as 4 Gigabytes each stored in a column

in a table.

Oracle Text XML document searches include hierarchical element containership,

doctype discrimination, and searching on XML attributes. These XML document

searches can be used in combination with standard SQL query predicates or with

other powerful lexical and full-text searching options.

XML documents or document sections saved into text CLOBs in the database can be

enabled for indexing by Oracle Text’s text-search engine. Developers can pinpoint

searches to data within a specific XML hierarchy as well as locate name-value pairs

in attributes of XML elements.

Since Oracle Text is seamlessly integrated into the database and the SQL language,

developers can easily use SQL to perform queries that involve both structured data

and indexed document sections.

Messaging Hubs and Middle Tier Components
Also included in Oracle XML are the following components:

■ XML-Enabled Messaging Hubs. These hubs are vital in business-to-business

applications that interface with non-Oracle systems. See also Chapter 9,

"Exchanging XML Data Using Oracle AQ".

■ Middle Tier Systems: XML-enabled application, web, or integrated servers,

such as Oracle Integration Server (OIS) and Oracle9i Application Server.

Oracle JVM (Java Virtual Machine)
Built from the ground up on Oracle Multi-threaded Server (MTS) architecture,

Oracle JVM (Jserver) is a Java 1.2 compliant virtual machine that data server shares

memory address space. This allows the following:

■ Java and XML-processing code to run with in-memory data access speeds using

standard JDBC interfaces.

■ Natively compile Java byte codes to improve performance of server-side Java,

with linear scalability to thousands of concurrent users. Oracle  XDK

components are preloaded and natively compiled.

See Also:

■ Chapter 8, "Searching XML Data with Oracle Text"

■ Oracle9i Text Reference
1-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML-Enabled Technology Components and Features
Oracle JVM supports native CORBA and EJB standards as well as Java Stored

Procedures for easy integration of Java with SQL and PL/SQL.

Oracle9 i Application Server
Oracle9i Application Server (Oracle9iAS), offers services for both intranet and

internet Web applications. It is integrated with Oracle9i and offers advanced

services such as data caching and Oracle Portal. Oracle9iAS also provides other

services including Oracle Advanced Queueing, Oracle Message Broker, Oracle

Workflow, Oracle9i Reports Services, Dynamic Services, and more.

Back-End to Database to Front-End Integration Issues
A key development challenge is integrating back-end ERP and CRM systems from

multiple vendors, with systems from partners in their supply chain, and with

customized data warehouses.

Such data exchange between different vendors’ relational and object-relational

databases is simpler using XML. One example of a data exchange implementation

using XML and AQ is provided in Oracle9i Case Studies - XML Applications,

"Building a B2B Application Using XML and AQ".

Oracle XML Technology and Oracle XML-enabled tools, interfaces, and servers

provide building blocks for most data and application integration challenges.

Higher Performance Implications
Not only are these building blocks available, but their use results in higher

performance implementations for the following reasons:

■ Processing database data and XML together on the same server helps eliminate

network traffic for data access.

■ Exploiting the speed of the Oracle9i query engine and Oracle JVM, Oracle9i

Application Server, or OIS further enhances data access speed.

■ XDK for C components can be used for their native XML capabilities and higher

performance

Hence developers can build XML-based Web solutions that integrate Java and

database data and facilities in many ways.

See Also: http://otn.oracle.com/products/
Oracle XML-Enabled Technology 1-13



The Oracle Suite of Integrated Tools and Components
Oracle XDKs Provide the Two Most Common APIs: DOM and SAX
Oracle XDKs are implemented in four languages, Java, C, C++, and PL/SQL. The

Java version runs directly on Oracle JVM (Java virtual machine). It supports the

XML 1.0 specification and is used as a validating or non-validating parser.

The parser provides the two most common APIs that developers need for

processing XML documents:

■ DOM 1.0 and 2.0: W3C-recommended Document Object Model (DOM)

interface. This provides a standard way to access and edit a parsed document’s

element contents.

■ SAX 1.0 and 2.0: Simple API for XML interface.

 For more information, see Chapter 20, "Using XML Parser for Java"". See

Appendix B, "Comparing Oracle XML Parsers and Class Generators by Language",

for a comparison of the Oracle XML parsers and generators.

Writing Custom XML Applications
Writing custom applications that process XML documents can be simpler in an

Oracle9i environment. This enables you to write portable standards-based

applications and components in your language of choice that can be deployed on

any tier.

The XML parser is part of the Oracle9i platform on every operating system where

Oracle9i is ported.

Oracle XML Parser is also implemented in PL/SQL. Existing PL/SQL applications

can be extended to take advantage of Oracle XML technology.

The Oracle Suite of Integrated Tools and Components
Oracle9i provides an integrated suite of tools and components for building

e-business applications:

■ Oracle JDeveloper and Oracle Business Components for Java (BC4J)

■ Oracle9i Internet File System (Oracle 9iFS or 9iFS)

■ Oracle Portal

■ Oracle Exchange

This suite of tools ensure that exchanging data and document objects is simplified

for application development and that multiple serializations is eliminated.
1-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



The Oracle Suite of Integrated Tools and Components
Oracle JDeveloper and Oracle Business Components for Java (BC4J)
Oracle JDeveloper is an integrated environment for building, deploying, and

debugging applications leveraging Java and XML on Oracle9i. It facilitates working

in Java 1.1 or 1.2 with CORBA, EJB, and Java Stored Procedures. With it you can do

the following:

■ Directly access Oracle XML components to build multitier applications

■ Quickly create and debug Java Servlets that serve XML information

■ Build portable application logic with JDeveloper and BC4J components

Examples of applications built using Oracle JDeveloper include:

■ iProcurement (Self Service Applications) including Self-Service Web-Expensing.

■ Content Delivery for PDAs. See the chapter, "Oracle9i AS Wireless Edition and

XML", in Oracle9i Case Studies - XML Applications, .

■ Online Marketplaces

■ Retailer - Supplier transaction using XML and AQ messaging. See Oracle9i Case
Studies - XML Applications, ", chapter,  "B2B XML Application: Step by Step".

See Chapter 11, "Using JDeveloper to Build Oracle XML Applications" for more

information on JDeveloper and XML applications.

Oracle Business Components for Java (BC4J) Business Components for Java (BC4J) is an

Oracle9i application framework for encapsulating business logic into reusable

libraries of Java components and reusing the business logic through flexible,

SQL-based views of information.

Oracle9i Internet File System (Oracle 9iFS or 9iFS)
Access to Oracle9i Internet File System (9iFS) facilitates organizing and accessing

documents and data using a file- and folder-based model through standard

Windows and Internet protocols such as SMB, HTTP, FTP, SMTP, and IMAP4.

9iFs facilitates building and administering Web-based applications. It is an

application interface for Java and can load a document, such as a Powerpoint  file,

Note: Oracle JDeveloper and BC4J are not included with Oracle9i.

Only the BC4J runtime is included. You can download JDeveloper

from OTN.
Oracle XML-Enabled Technology 1-15



The Oracle Suite of Integrated Tools and Components
into Oracle9i and display the document from a Web server, such as Oracle9i
Application Server or Apache Web Server.

9iFS is a simple way for developers to work with XML, where iFS serves as the

repository for XML. 9iFS automatically parses XML and stores content in tables and

columns. 9iFS renders the content when a file is requested delivering select

information, for example, on the Web.

For more information see http://otn.oracle.com/products/ifs/

Oracle Portal
Oracle Portal can, for example, input XML-based Rich Site Summary (RSS) format

documents, and merge the information with an XSL stylesheet. The result can be

rendered in a browser. This design efficiently separates the rendition of information

from the information itself and allows for easy customization of the look and feel

without risk to data integrity.

Oracle Portal is software for building and deploying enterprise portals, the Web

sites that power an e-business. The browser interface delivers an organized,

personalized view of business information, Web content, and applications needed

by each user. It includes site-building and self-service Web publishing functionality

of WebDB 2.2 and adds new enterprise portal features such as single sign-on,

personalization, and content classification. Oracle Portal uses Oracle9i and is

deployed on and packaged with Oracle9i Application Server.

Portlets: Portlets are reusable interface components that provide access to

Web-based resources. Any Web page, application, business intelligence report,

syndicated content feed, hosted software service or other resource can be accessed

through a portlet, allowing it to be personalized and managed as a service of Oracle

Portal. Companies can create their own portlets and select portlets from third-party

portlet providers. Oracle provides a Portal Developer's Kit (PDK) for developers to

easily create portlets using PL/SQL, Java, HTML, or XML.

See Also: Oracle9i Case Studies - XML Applications, ", the chapter,

"Using Internet File System (iFS) to Build XML Applications"
1-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



The Oracle Suite of Integrated Tools and Components
Oracle Exchange
The Oracle Exchange platform is based on Oracle9i. It offers all necessary business

transactions to support an entire industry's or a company's supply chain. Oracle

Exchange is based on Oracle's e-Business Suite, which supports a supply chain from

the initial contact with the prospect, to manufacturing planning and execution, to

post-sales ongoing service and support.

Oracle Exchange uses XML as its data exchange format and message payload, and

Advanced Queueing.

XML Gateway
XML Gateway is a set of services that  allow you to easily integrate with the Oracle

e-Business Suite, to create and consume XML messages triggered by business

events.  It also integrates with Oracle Advanced Queuing to enqueue/dequeue

messages which are then transmitted to/from business partners through any

message transport service, including Oracle Message Broker.

Metadata API
Metadata API provides a centralized, simple, and flexible means for performing the

following tasks:

■ Extracting complete definitions of database objects (metadata) as either XML or

creation DDL

■ Transforming metadata via industry-standard XML Stylesheet Transformation

language (XSLT).

■ Generating SQL DDL to recreate the database objects

Metadata API is available on Oracle9i whenever the instance is operational. It is not

available on Oracle Lite.

See Also: Chapter 15, "Using the PDK for Visualizing XML Data

in Oracle Portal" for an introduction to Oracle Portal’s PDF and

URL Services.

See Also: Chapter 16, "How Oracle Exchange Uses XML"

See Also: Chapter 17, "Introducing Oracle XML Gateway"
Oracle XML-Enabled Technology 1-17



Oracle XML Samples and Demos
Other XML Initiatives
Besides these tools, the following initiatives are underway.

XML Metadata Interchange (XMI): Managing and Sharing Tools and Data
Warehouse Metadata
Support for XML Metadata Interchange (XMI) specification proposed by Oracle,

IBM, and Unisys. This enables application development tools and data

warehousing tools from Oracle and others to exchange common metadata, ensuring

that you can choose any tool without having to modify your application and

warehouse design.

Advanced Queueing XML Support: Using the Internet for Reliable,
Asynchronous Messaging
Oracle Advanced Queueing (AQ) now allows reliable propagation of asynchronous

messages, including messages with XML documents, document sections, or even

fragments as their payload, over secure HTTP. This enables dynamic trading and

eliminates delays and startup costs to establish inter-company or inter-agency links.

Oracle XML Samples and Demos
This manual contains examples that illustrate the use of Oracle XML components.

The examples do not conform to one schema. Where examples are available for

download or supplied with the $ORACLE_HOME/rdbms/demo or $ORACLE_
HOME/xdk/.../sample , this is indicated.

What Is Needed to Run Oracle XML Components
Oracle8i and higher includes native support for internet standards, including Java

and XML. You can run Oracle XML components and applications built with them

inside the database itself using Oracle JServer, a built-in Java Virtual Machine.

Use Oracle Lite to store and retrieve XML data, for devices and applications that

require a smaller database footprint.

Oracle XML components can be downloaded for free from

http://otn.oracle.com/tech/xml

See Also: Chapter 13, "Using Metadata API"

See Also: Chapter 9, "Exchanging XML Data Using Oracle AQ"
1-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What Is Needed to Run Oracle XML Components
Requirements for XDK
The following are requirements for XDK for Java and XDK for PL/SQL:

■ XDK for Java requires JDK/JRE 1.1 or high VM for Java

■ XDK for PL/SQL requires Oracle8x or higher, or PL/SQL cartridge

Requirements are also discussed in the XDK chapters, chapters 19 through 29, and

Appendixes C though G.

Which XML Components are Included with Oracle9i Database and Oracle9i
Application Server?

Table 1–1 lists the XDK component versions included with Oracle9i Database and

Oracle9i Application Server (Oracle9iAS):

Table 1–1 Oracle9i and Oracle9iAS XDK Component Supplied Versions

XDK Component

Oracle9 i Database

Rel. 1(9.0.1)

Oracle9 iAS

Rel.--prellimary  version

nos. only

XDK for Java

     XML Parser for Java and XSLT Processor 9.0.1.0.0 9.0.1.0.0

     XML Schema Processor for Java 9.0.1.0.0 9.0.1.0.0

     XML Class Generator for Java 9.0.1.0.0 9.0.1.0.0

     XSQL Servlet 9.0.1.0.0  9.0.1.0.0

     XML SQL Utility (XSU) for Java 9.0.1.0.0 9.0.1.0.0

XDK for Java Beans

     XML Transviewer Beans 9.0.1.0.0 9.0.1.0.0

XDK for C

     XML Parser for C and XSLT Processor 9.0.1.0.0 9.0.1.0.0

     XML Schema Processor for C 9.0.1.0.0 9.0.1.0.0

XDK for C++

     XML Parser for C++ and XSLT Processor 9.0.1.0.0 9.0.1.0.0

     XML Schema Processor for C++ 9.0.1.0.0 9.0.1.0.0
Oracle XML-Enabled Technology 1-19



XML Technical Support
XML Technical Support
Besides your regular channels of support through your customer representative or

consultant, technical support for Oracle XML-enabled techologies is available free

through the Discussions option on Oracle Technology Network (OTN):

http://otn.oracle.com/tech/xml

You do not need to be a registered user of OTN to post or reply to XML-related

questions on the OTN technical discussion forum. To use the OTN technical forum

follow these steps:

1. In the left-hand navigation bar, of the OTN site select Support > Discussions.

2. Click on Enter a Technical Forum.

3. Scroll down to the Technologies section. Select XML.

4. Post any questions, comments, requests, or bug reports there.

Download the Latest Software From OTN
You will find the latest information about the Oracle XML components and can

download them from OTN:

http://otn.oracle.com/software/tech/xm l

At the top, under Download Oracle Products, Drivers, and Utilities, in the Select a

Utility or Driver pull down menu, scroll down and select any of the XML utilities

listed. For the latest XML Parser for Java and C++, select v2.

     XML Class Generator for C++ 9.0.1.0.0 9.0.1.0.0

XDK for PL/SQL

     XML Parser for PL/SQL and XSLT Processor 9.0.1.0.0 9.0.1.0.0

     XML SQL Utility (XSU) for PL/SQL 9.0.1.0.0 9.0.1.0.0

Table 1–1 Oracle9i and Oracle9iAS XDK Component Supplied Versions(Cont.)

XDK Component

Oracle9 i Database

Rel. 1(9.0.1)

Oracle9 iAS

Rel.--prellimary  version

nos. only
1-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Modeling and Design Issues for Oracle XML Applic
2

Modeling and Design Issues for Oracle XML

Applications

This chapter contains the following sections:

■ XML Data can be Stored as Generated XML or Composed XML

■ Generated XML

■ Composed (Authored/Native) XML

■ Using a Hybrid XML Storage Approach for Better Mapping Granularity

■ Transforming Generated XML

■ General XML: Design Issues for Data Exchange Applications

■ Sending XML Documents Applications-to-Application

■ Loading XML into a Database

■ Applications that Use Oracle XML -EnabledTechnology

■ Content and Document Management with Oracle XML-Enabled Technology

■ Business-to-Business and Business-to-Consumer Messaging
ations 2-1



XML Data can be Stored as Generated XML or Composed XML
XML Data can be Stored as Generated XML or Composed XML
XML data can be stored in Oracle9i in the following ways:

■ Generated XML, where the XML data is stored across object-relational tables or

as views in the database. This data can then be generated back into XML

format, dynamically, when necessary

■ Composed (Authored/Native) XML, where the XML document is stored as is in

CLOBs

Generated XML
XML can be generated from object-relational tables and views. The benefits of using

object-relational tables and views as opposed to pure relational structures are

discussed below.

Generated XML is used when the XML is an interchange format and existing

business data is wrapped in XML structures (tags). This is the most common way of

using XML in the database. Here, XML is used only for the interchange process

itself and is transient.

Generated XML Examples
Examples of this kind of document include sales orders and invoices, airline flight

schedules, and so on.

Oracle, with its object-relational extensions has the ability to capture the structure of

the data in the database using object types, object references, and collections. There

are two options for storing and preserving the structure of the XML data in an

object-relational form:

■ Store the attributes of the elements in a relational table and define object views

to capture the structure of the XML elements

■ Store the structured XML elements in an object table

Once stored generated, in the object-relational form, the data can be easily updated,

queried, rearranged, and reformatted as needed using SQL.

Object-Relational Storage for Generated XML Documents
Complex XML documents can be stored as object-relational instances and indexed

efficiently. Such instances fully capture and express the nesting and list semantics of

XML. With Oracle’s extensibility infrastructure, new types of indices, such as path

indices, can be created for faster searching through XML documents.
2-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Composed (Authored/Native) XML
XML SQL Utility (XSU) Stores XML and Converts SQL Query Results into XML
XML SQL Utility (XSU) provides the means to store an XML document by mapping

it to the underlying object-relational storage, and conversely, provides the ability

retrieve the object-relational data as an XML document.

XSU converts the result of an SQL query into XML by mapping the query alias or

column names into the element tag names and preserving the nesting of object

types. The result can be in text or a DOM (Document Object Model) tree. The

generation of the latter avoids the overhead of parsing the text and directly realizes

the DOM tree.

Composed (Authored/Native) XML
Oracle8i and higher support the storage of large objects or LOBs as character LOBs

(CLOB), binary LOBs (BLOB), or externally stored binary files (BFILE). LOBs are

used to store composed (Authored/Native) XML documents.

Storing Composed XML Data in CLOBs or BFILEs
If the incoming XML documents do not conform to one particular structure, then it

might be better to store such documents in CLOBs. For instance, in an XML

messaging environment, each XML message in a queue might be of a different

structure.

CLOBs store large character data and are useful for storing composed XML

documents.

BFILEs are external file references and can also be used, although they are more

useful for multimedia data that is not accessed often. In this case the XML is stored

and managed outside Oracle, but can be used in queries on the server. The

metadata for the document can be stored in object-relational tables in the server for

fast indexing and access.

Storing an intact XML document in a CLOB or BLOB is a good strategy if the XML

document contains static content that will only be updated by replacing the entire

document.

■ Composed XML examples include written text such as articles, advertisements,

books, legal contracts, and so on. Documents of this nature are known as

document-centric and are delivered from the database as a whole. Storing this

See Also: Chapter 7, "XML SQL Utility (XSU)"
Modeling and Design Issues for Oracle XML Applications 2-3



Composed (Authored/Native) XML
kind of document intact within Oracle gives you the advantages of an

industry-proven database and its reliability over file system storage.

■ Storage Outside the database. If you choose to store an XML document outside

the database, you can still use Oracle features to index, query, and efficiently

retrieve the document through the use of BFILES, URLs, and text-based

indexing.

Oracle Text (inter Media Text) Indexing Enables Fine Grain Searching of XML Element
Content

Oracle allows the creation of  Oracle Text (interMedia Text) indexes on LOB

columns, in addition to URLs that point to external documents. This indexing

mechanism works for XML data as well.

Oracle8i and Oracle9i recognize XML tags, and section and sub-section text

searching within XML elements’ content. The result is that queries can be posed on

unstructured data and restricted to certain sections or elements within a document.

Oracle Text Example: Searching Text and XML Data Using CONTAINS
This Oracle Text (interMedia Text) example presume you have already created the

appropriate index.

SELECT *
FROM   purchaseXMLTab
WHERE  CONTAINS(po_xml,”street WITHIN addr”) >= 1;

Advantages of Using Composed (Authored) XML Storage
CLOB storage is ideal if the structure of the XML document is unknown or

dynamic.

Disadvantages of Using Composed XML Storage
Much of the SQL functionality on object-relational columns cannot be exploited.

Concurrency of certain operations such as updates may be reduced. However, the

exact copy of the document is retained.

See Also: Chapter 8, "Searching XML Data with Oracle Text" for

more information on Oracle Text.
2-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using a Hybrid XML Storage Approach for Better Mapping Granularity
Using a Hybrid XML Storage Approach for Better Mapping Granularity
The previous section described the following:

■ How structured XML documents (Generated) can be mapped to

object-relational instances

■ How composed XML documents (Authored) can be stored in LOBs

However, in many cases, you need better control of the mapping granularity.

For example, when mapping a text document, such as a book, in XML, you may not

want every single element to be expanded and stored as object-relational. Storing

the font and paragraph information for such documents in an object-relational

format may not be useful with respect to querying.

On the other hand, storing the whole text document in a CLOB reduces the effective

SQL queriability on the entire document.

A Hybrid Approach Allows for User-Defined Storage Granularity
The alternative is to have user-defined granularity for such storage. In the book

example, you may want the following:

■ To query on top-level elements such as chapter, section, title, and so on. These

elements can be stored in object relational tables.

■ To query the book’s contents in each section. These sections can be stored in a

CLOB.

You can specify the granularity of mapping at table definition time. The server can

automatically construct the XML from the various sources and generate queries

appropriately.

Figure 2–1 illustrates this hybrid approach to XML storage.
Modeling and Design Issues for Oracle XML Applications 2-5



Using a Hybrid XML Storage Approach for Better Mapping Granularity
Figure 2–1 Hybrid XML Storage Approach: Querying Top Level Elements in Tables
While Contents are in a CLOB

Hybrid Storage Advantages
The advantages of the hybrid storage approach for storing XML documents are the

following:

■ It gives the flexibility of storing useful and queryable information in

object-relational format while not decomposing the entire document.

■ Saves time in reconstructing the document, since the entire document is not

broken down.

■ Enables text searching on those parts of the document stored in LOBs

XML Document

<?xml version = '1.0'?>
<BOOK>
  <TITLE>Oracle PL/SQL</TITLE>
  <AUTHOR>Steve Feuerstein</AUTHOR>
  <TABLE_OF_CONTENTS>
     <CHAPTER>
        <CHAPTER_NUM>1</CHAPTER_NUM>
        <TITLE>Introduction</TITLE>
        <SECTIONS>
        . . .
        <SECTIONS>
     </CHAPTER>
     . . .
  </TABLE_OF_CONTENTS>
  <DETAILS>
     <CHAPTER no="1">
        <SECTION no="1" name"What is PL/SQL?">
             PL/SQL is a programming language that 
Oracle supports.
        </SECTION>
     . . .
     </CHAPTER>
  </DETAILS>
</BOOK>

Top level 
elements
mapped to 
columns

Title 
Author

Object_Relational Storage

Table_of_Contents

Chapter
Title

Details

Chapter no = "1"
Section no = "1"

.

.

.

.

.

.

LOB storage

PL/SQL is a programming 
language that Oracle 
supports.

These can be 
tables or
views
2-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Transforming Generated XML
Transforming Generated XML
XML generated from the database is in a canonical format that maps columns to

elements and object types to nested elements. However, applications might require

different representations of the XML document in different circumstances.

When the XML Document Structure Needs Transforming
If an XML document is structured, but the structure of the XML document is not

compatible with the structure of the underlying database schema, you must

transform the data into the correct format before writing it to the database. You can

achieve this in one of the following ways:

■ Use XSL stylesheets or other programming approaches

■ Store the data-centric XML document as an intact single object

■ Define object views corresponding to the various XML document structure and

define instead-of triggers to perform the appropriate transformation and

update the base data.

Combining XML Documents and Data Using Views
Finally, if you have a combination of structured and unstructured XML data, but

still want to view and operate on it as a whole, you can use Oracle views.

Views enable you to construct an object on the fly by combining XML data stored in

a variety of ways. You can do the following:

■ Store structured data, such as employee data, customer data, and so on, in one

location within object-relational tables.

■ Store related unstructured data, such as descriptions and comments, within a

CLOB.

When you need to retrieve the data as a whole, simply construct the structure from

the various pieces of data with the use of type constructors in the view's select

statement. XML SQL Utility then enables retrieving the constructed data from the

view as a single XML document.

Indexing and Querying Transformations
You may need to create indexes and query on transformed views of an XML

document. For example, in an XML messaging environment, there could be
Modeling and Design Issues for Oracle XML Applications 2-7



Transforming Generated XML
purchase order messages in different formats. You may want to query them

canonically, so that a particular query can work across all purchase order messages.

In this case, the query is posed against the transformed view of the documents. You

can create functional indexes or use regular views to achieve this.

Indexing Approaches
Native implementation for the extract()  and existsNode() member functions

is to parse the XML document, perform path traversal, and extract the fragment.

However, this is not a performance-enhancing or scalable solution.

A second approach is to use Oracle Text (interMedia Text) indexing.

You can also build your own indexing mechanism on an XMLType column using

the extensibility indexing infrastructure.

XML Schemas and Mapping of Documents
W3C has chartered a schema working group to provide a new, XML based notation

for structural schema and datatypes as an evolution of the current Document Type

Definition (DTD) based mechanism. XML schemas can be used for the following:

■ XML-Schema1: Constraining document structure (elements, attributes,

namespaces)

■ XMLSchema2: Constraining content (datatypes, entities, notations)

Datatypes themselves can either be primitive (such as bytes, dates, integers,

sequences, intervals) or user-defined (including ones that are derived from existing

datatypes and which may constrain certain properties -- range, precision, length,

mask -- of the basetype.) Application-specific constraints and descriptions are

allowed.

XML Schema provides inheritance for element, attribute, and datatype definitions.

Mechanisms are provided for URI references to facilitate a standard, unambiguous

semantic understanding of constructs. The schema language also provides for

embedded documentation or comments.

For example, you can define a simple data type as shown in the following example.

See Also: Chapter 8, "Searching XML Data with Oracle Text"

See Also: Oracle9i Data Cartridge Developer’s Guide
2-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Transforming Generated XML
XMLSchema Example 1: Defining a Simple Data Type
This is an example of defining a simple data type in XMLSchema:

<datatype name=”positiveInteger”
             basetype=”integer”/>
   <minExclusive> 0 </minExclusive>
</datatype>

It is clear even from the simple example above that XMLSchema provides a number

of important new constructs over DTDs, such as a basetype, and a minimum value

constraint.

When dynamic data is generated from a database, it is typically expressed in terms

of a database type system. In Oracle, this is the object-relational type system

described above, which provides for much richness in data types, such as

NULL-ness, variable precision, NUMBER(7,2), check constraints, user-defined

types, inheritance, references between types, collections of types and so on. XML

Schema can capture a wide spectrum of schema constraints that go towards better

matching generated documents to the underlying type-system of the data.

XMLSchema Example 2: Using XMLSchema to Map Generated XML Documents to
Underlying Schema

Consider the simple Purchase Order  type expressed in XML Schema:

<type name="Address" >
   <element name="street" type="string" />
   <element name="city"   type="string" />
   <element name="state"  type="string" />
   <element name="zip"    type="string" />
</type>

<type name=”Customer”>
   <element name=”custNo”
                     type=”positiveInteger”/>
   <element name=”custName” type=”string” />
   <element name=”custAddr” type=”Address” />
</type>

<type name=”Items”>
   <element name=”lineItem” minOccurs=”0” maxOccurs=”*”>
    <type>
      <element name=”lineItemNo” type=”positiveInteger” />
      <element name=”lineItemName” type=”string” />
Modeling and Design Issues for Oracle XML Applications 2-9



Transforming Generated XML
      <element name=”lineItemPrice” type=”number” />
      <element name=”LineItemQuan”>
        <datatype basetype=”integer”>
          <minExclusive>0</minExclusive>
        </datatype>
      </element>
    </type>
   </element>
</type>

<type name="PurchaseOrderType">
    <element name="purchaseNo"
                      type="positiveInteger" />
    <element name="purchaseDate"  type="date" />
    <element name="customer” type=”Customer” />
    <element name="lineItemList"  type="Items" />
</type>

These XML Schemas have been deliberately constructed to match closely the

Object-Relational purchase order example described above in""XMLSchema

Example 2: Using XMLSchema to Map Generated XML Documents to Underlying

Schema". The point is to underscore the closeness of match between the proposed

constructs of XML Schema with SQL:1999-based type systems. Given such a close

match, it is relatively easy to map an XML Schema to a database Object-Relational

schema, and map documents that arevalid according to the above schema to row

objects in the database schema. In fact, the greater expressiveness of XML Schema

over DTDs greatly facilitates the mapping.

The applicability of the schema constraints provided by XML Schema is not limited

to data-driven applications. There are more and more document-driven

applications that exhibit dynamic behavior.

■ A simple example might be a memo, which is routed differently based on

markup tags.

■ A more sophisticated example is a technical service manual for an

intercontinental aircraft. Based on complex constraints provided by XML

Schema, one can ensure that the author of such a manual always enters a valid

part-number, and one might even ensure that part-number validity depends on

dynamic considerations such as inventory levels, fluctuating demand and

supply metrics, or changing regulatory mandates.
2-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML: Design Issues for Data Exchange Applications
General XML: Design Issues for Data Exchange Applications
This section describes the following XML design issues for applications that

exchange data.

■ Generating a Web Form from XML Data Stored in the Database

■ Sending XML Data from a Web Form to the Database

Generating a Web Form from XML Data Stored in the Database
To generate a Web form’s infrastructure, you can do the following:

1. Use XML SQL Utility to generate a DTD based on the schema of the underlying

table being queried.

2. Use the generated DTD as input to the XML Java Class Generator, which will

generate a set of classes based on the DTD elements.

3. Write Java code that use these classes to generate the infrastructure behind a

Web-based form. Based on this infrastructure, the Web form can capture user

data and create an XML document compatible with the database schema.This

data can then be written directly to the corresponding database table or object

view without further processing.

Sending XML Data from a Web Form to the Database
One way to ensure that data obtained via a Web form will map to an underlying

database schema is to design the Web form and its underlying structure so that it

generates XML data based on a schema-compatible DTD. This section describes

how to use the XML SQL Utility and the XML Parser for Java to achieve this. This

scenario has the following flow:

1. A Java application uses the XML SQL Utility to generate a DTD that matches

the expected format of the target object view or table.

2. The application feeds this DTD into the XML Class Generator for Java, which

builds classes that can be used to set up the Web form presented to the user.

3. Using the generated classes, the web form is built dynamically by a JavaServer

Page, Java servlet, or other component.

4. When a user fills out the form and submits it, the servlet maps the data to the

proper XML data structure and the XML SQL Utility writes the data to the

database.
Modeling and Design Issues for Oracle XML Applications 2-11



Sending XML Documents Applications-to-Application
You can use the DTD-generation capability of the XML SQL Utility to determine

what XML format is expected by a target object view or table. To do this, you can

perform a SELECT * FROM an object view or table to generate an XML result.

This result contains the DTD information as a separate file or embedded within the

DOCTYPE tag at the top of the XML file.

Use this DTD as input to the XML Class Generator to generate a set of classes based

on the DTD elements. You can then write Java code that use these classes to

generate the infrastructure behind a Web-based form. The result is that data

submitted via the Web form will be converted to an XML document that can be

written to the database.

Sending XML Documents Applications-to-Application
There are numerous ways to transmit XML documents among applications. This

section presents some of the more common approaches.

Here you can assume the following:

■ The sending application transmits the XML document

■ The receiving application receives the XML document

File Transfer. The receiving application requests the XML document from the

sending application via FTP, NFS, SMB, or other file transfer protocol. The

document is copied to the receiving application's file system. The application reads

the file and processes it.

HTTP. The receiving application makes an HTTP request to a servlet. The servlet

returns the XML document to the receiving application, which reads and processes

it.

Web Form. The sending application renders a Web form. A user fills out the form

and submits the information via a Java applet or Javascript running in the browser.

The applet or Javascript transmits the user's form in XML format to the receiving

application, which reads and processes it. If the receiving application will

ultimately write data to the database, the sending application should create the

XML in a database compatible format. One way to do this using Oracle XML

products is described in the section Sending XML Data from a Web Form to a

Database.

Advanced Queuing. An Oracle database sends an XML document via Net Services,

HTTP or SMTP, and JDBC to the one or more receiving applications as a message
2-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Loading XML into a Database
through Oracle Advanced Queueing (AQ). The receiving applications dequeue the

XML message and process it.

Loading XML into a Database
You can use the following options to load XML data or DTD files into Oracle9i:

■ Use PL/SQL stored procedures for LOB, such as DBMS_LOB

■ Write Java (Pro*C, C++) custom code

■ Use SQL*Loader

■ Use Oracle interMedia

■ XML SQL Utility (XSU)

You can also use Oracle9i Internet File System (9iFS) to put an XML document into

the database. However, it does not support DTDs. It does however support XML

Schema, the standard that will replace DTDs.

Using SQL*Loader
You can use SQL*Loader to bulk load LOBs.

See Also:

■ Chapter 9, "Exchanging XML Data Using Oracle AQ"

■ Oracle9i Case Studies - XML Applications, the chapter, "B2B XML

Application: Step by Step"

■ Oracle Integration Server Overview

■ Oracle9i Application Developer’s Guide - Advanced Queuing
Modeling and Design Issues for Oracle XML Applications 2-13



Loading XML into a Database
Loading XML Documents Into LOBs With SQL*Loader
Because LOBs can be quite large, SQL*Loader can load LOB data from either the

main datafile (inline with the rest of the data) or from LOBFILEs. Figure 2–2 shows

the LOBFILE syntax.

Figure 2–2 The LOBFILE Syntax

LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In

LOBFILEs, LOB data instances are still considered to be in fields (predetermined

size, delimited, length-value), but these fields are not organized into records (the

concept of a record does not exist within LOBFILEs). Therefore, the processing

overhead of dealing with records is avoided. This type of organization of data is

ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader

reads LOBFILEs in 64K chunks. To load physical records larger than 64K, you can

use the READSIZE parameter to specify a larger size.

It is best to load XMLType columns or columns containing XML data in CLOBs,

using LOBFILEs.

■ When the XML is valid. If the XML data in the LOBFILE is large and you know

that the data is valid XML, then use direct-path load since it bypasses all the

XML validation processing.

See:

■ Oracle9i Database Utilitiesfor a detailed description of using

SQL*Loader to load LOBs.

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs) ,
Chapter 4, "Managing LOBs", "Using SQL*Loader to Load

LOBs", for a brief description and examples of using

SQL*Loader.
2-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Loading XML into a Database
■ When the XML needs validating. If it is imperative that the validity of the XML

data be checked, then use conventional path load, keeping in mind that it is not

as efficient as a direct-path load.

A conventional path load executes SQL INSERT statements to populate tables in an

Oracle database. A direct path load eliminates much of the Oracle database

overhead by formatting Oracle data blocks and writing the data blocks directly to

the database files.

A direct-path load does not compete with other users for database resources, so it

can usually load data at near disk speed. Considerations inherent to direct path

loads, such as restrictions, security, and backup implications, are discussed in

Chapter 9 of Oracle9i Database Utilities.

Figure 2–3 illustrates SQL*Loader’s direct-path load and conventional path loads.

Tables to be loaded must already exist in the database. SQL*Loader never creates

tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:

■ You must have INSERT privileges on the table to be loaded.

■ You must have DELETE privilege on the table to be loaded, when using the

REPLACE or TRUNCATE option to empty out the table's old data before

loading the new data in its place.

See Also: Oracle9i Database Utilities.  Chapters 7 and 9 for more

information about loading and examples.
Modeling and Design Issues for Oracle XML Applications 2-15



Loading XML into a Database
Figure 2–3 SQL*Loader: Direct-Path and Conventional Path Loads
2-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Content and Document Management with Oracle XML-Enabled Technology
Applications that Use Oracle XML -EnabledTechnology
There are many potential uses for XML in Internet applications. Two

database-centric application areas where Oracle’s XML components are well-suited

are:

■ "Content and Document Management with Oracle XML-Enabled Technology",
including customizing data presentation

■ "Business-to-Business and Business-to-Consumer Messaging"for data exchange

in inter system or intra system applications

or any combinations of these. This manual focuses on these two application areas,

in Part III, "Data Exchange Using XML" and Part IV, "Tools and Frameworks for

Building Oracle-Based XML Applications", respectively.

Typical scenarios in each of these two application areas are described in this

chapter.

Content and Document Management with Oracle XML-Enabled
Technology

Customizing Presentation of Data
XML is increasingly used to enable customized presentation of data for different

browsers, devices, and users. By using XML documents along with XSL stylesheets

on either the client, middle-tier, or server, you can transform, organize, and present

XML data tailored to individual users for a variety of client devices, including the

following:

■ Graphical and non-graphical Web browsers

■ Personal digital assistants (PDAs), such as the Palm Pilot

■ Digital cell phones and pagers

In doing so, you can focus your business applications on business operations,

knowing you can accommodate differing output devices easily.

Using XML and XSL also makes it easier to create and manage dynamic Web sites.

You can change the look and feel simply by changing the XSL stylesheet, without

having to modify the underlying business logic or database code. As you target new

users and devices, you can simply design new XSL stylesheets as needed. This is

illustrated in Figure 2–4
Modeling and Design Issues for Oracle XML Applications 2-17



Content and Document Management with Oracle XML-Enabled Technology
Figure 2–4 Content Management: Customizing Your Presentation

Consider the following content management scenarios that use Oracle’s XML

components:

See Also: Chapter 20, "Using XML Parser for Java"

Browser

Graphical or
non-graphical

browser 

Java-enabled 
Web Server 

XSQL Servlet
Servlet runs in a 

servlet-compatible 
web server, as listed below

XML-SQL
Utility for

Java

Oracle9 i

SQL Queries

SQL Queries

QueryData
returns

Query Result
Transformed by 
Java program or
XSL stylesheet
for target device

XML-Formatted
SQL Queries
(.xsql file)

Personal
Digital

Assistant

Cell
Phone

XSQL Servlet

XML Parser
for Java

XML-SQL
. . . . 
2-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 1. Content and Document Management: Publishing Composite Documents Using XML-Enabled OracleTechnology
■ Scenario 1. Content and Document Management: Publishing Composite

Documents Using XML-Enabled OracleTechnology

■ Scenario 2. Content and Document Management: Delivering Personalized

Information Using Oracle XML Technology

■ Scenario 3. Content Management: Using Oracle XML Technology to Customize

Data Driven Applications

Each scenario includes a brief description of the business problem, solution, main

tasks, and Oracle XML components used.

These scenarios are further illustrated in Oracle9i Case Studies - XML Applications
under the section, "Managing Content and Documents with XML".

Scenario 1. Content and Document Management: Publishing Composite
Documents Using XML-Enabled OracleTechnology

Problem
Company X has numerous document repositories of SGML and XML marked up

text fragments. Composite documents must be published dynamically.

Solution
The bottom line is that the database application design must begin with a good

database design. In other words, Company X must first use good data modeling

and design guidelines. Then object views can more readily be created against the

data.

Use XMLType to store the documents in XML format, where the relational data is

updatable. Use Oracle9i’s Internet File System (9iFS) as the data repository

interface. 9iFS helps implement XML data repository management and

administration tasks.

Company X can use XSL stylesheets to assemble the document sections or

fragments and deliver the composite documents electronically to users. One

suggested solution is to use Arbortext and EPIC for single sourcing and authoring

or multichannel publishing. Multichannel publishing facilitates producing the same

document in many different formats, such as HTML, PDF, WORD, ASCII text,

SGML, and Framemaker.
Modeling and Design Issues for Oracle XML Applications 2-19



Scenario 1. Content and Document Management: Publishing Composite Documents Using XML-Enabled OracleTechnology
 See Figure 2–5

Main Tasks Involved
These are the main tasks involved in Scenario 1’s solution:

1. Design your database with care. Decide on the XML tags and elements to use.

2. Store these sections or fragments in XMLType columns in CLOBs in the

database.

3. Create XSL Stylesheets to render the sections or fragments into complete

documents.

Oracle XML Components Used
■ XML Parser with XSLT. See Chapter 20, "Using XML Parser for Java", or

Chapter 24, "Using XML Parser for C".

■ XSQL Servlet. See Chapter 10, "XSQL Pages Publishing Framework".

■ XSU to move sections or fragments into and out of the database. See Chapter 7,

"XML SQL Utility (XSU)".

■ Oracle Text for enhanced data searching applications. See Chapter 8, "Searching

XML Data with Oracle Text".

■ For XML storage in XMLType (CLOBs), see Chapter 5, "Database Support for

XML".

See Also: http://www.arbortext.com for more information about

the  Arbortext and EPIC. products.
2-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML Technology
Figure 2–5 Scenario 1. Using XSL to Create and Publish Composite Documents

Scenario 2. Content and Document Management: Delivering
Personalized Information Using Oracle XML Technology

Problem
A large news distributor receives data from various news sources. This data must

be stored in a database and sent to all the distributors and users on demand so that

they can view specific and customized news at any time, according to their contract

with the news distributor. The distributor uses XSL to normalize and store the data

in a database. The stored data is used to back several Websites and portals. These

Websites and portals receive HTTP requests from various wired and unwired

clients.

Solution
Use XSL stylesheets with the XSQL Servlet to dynamically deliver appropriate

rendering to the requesting service. See Figure 2–6

XSQL Servlet Composite
Document
XML, HTML, . . .

XSL stylesheets

XML

XML
Ready for viewing
or publishing

XML

XSL-T
Processor*

7

3

1

3

17

*XSL-T Processor
can also be used to 
break up composite 
documents into 
document 
fragment.

Document fragments 
in XML
Modeling and Design Issues for Oracle XML Applications 2-21



Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML Technology
Main Tasks Involved
These are the main tasks involved in Scenario 2:

1. Data model for database schema is designed for optimum output.

2. XSL Stylesheets are created for each information source to transform to

normalized format. It is then stored in the database.

3. XSL Stylesheets are created along with XSQL pages to present the data on a

web site.

Oracle XML Components Used
■ XML Parser for Java v2. See Chapter 20, "Using XML Parser for Java".

■ XML SQL Utility (XSU). See Chapter 7, "XML SQL Utility (XSU)".

■ XSQL Servlet. See Chapter 10, "XSQL Pages Publishing Framework".

See Also: Oracle9i Case Studies - XML Applications, the chapters:

■ "Customizing Content with XML: Dynamic News Application"

■ "Oracle9i AS Wireless Edition and XML"
2-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML Technology
Figure 2–6 Scenario 2. Oracle XML Components Deliver Customized News
Information

XSQL Servlet

XML Parser

XSL
stylesheets

XML

XML

WML

HTML

HTML

XML

XML
XSL-T

Processor

XML-SQL
Utility
(XSU)

Normalize
XML

SQL

Middle TierInternational
News Service

Domestic
News Service

Weather
Reports

International
News Service

Browser

Graphical or
non-graphical

browser 

Personal
Digital

Assistant

Cell
Phone

XSQL Servlet

XSL-T
Processor XSU

Web Server

XSL
stylesheets

Database

SQL

User / Application Request
Modeling and Design Issues for Oracle XML Applications 2-23



Scenario 3. Content Management: Using Oracle XML Technology to Customize Data Driven Applications
Scenario 3. Content Management: Using Oracle XML Technology to
Customize Data Driven Applications

Problem
Company X needs data interactively delivered to a thin client.

Solution
Queries are sent from the client to databases whose output is rendered dynamically

through one or more XSL stylesheets, for sending to the client application. The data

is stored in a relational database in LOBs and materialized in XML.

Main Tasks Involved
See Oracle9i Case Studies - XML Applications, the chapter, "Customizing

Discoverer4i(9i) Viewer with XSL"

Oracle XML Components Used
■ XML Parser for Java and XSLT Processor. See Chapter 20, "Using XML Parser

for Java" and Chapter 21, "Using XML Schema Processor for Java".

■ For storage of XML in LOBs, see Chapter 5, "Database Support for XML"
2-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML
Business-to-Business and Business-to-Consumer Messaging
A challenge for business application developers is to tie together data generated by

applications from different vendors and different application domains. Oracle

XML-enabled technology makes this kind of data exchange among applications

easier to do by focusing on the data and its context without tying it to specific

network or communication protocols.

Using XML and XSL transformations, applications can exchange data without

having to manage and interpret proprietary or incompatible data formats.

Consider the following business-to-business and business-to-consumer (B2B/B2C)

messaging scenarios that use Oracle XML components:

■ Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using

XML

■ Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced

Queueing for an Online Inventory Application

■ Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for

Multi-Application Integration

Each scenario briefly describes the problem, solution, main tasks used to resolve the

problem and Oracle XML components used.

These scenarios are illustrated with case studies in Part III, "Data Exchange Using

XML"

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design
Using XML

Problem
Company X needs to build an online shopping cart, for products coming from

various vendors. Company X wants to receive orders online and then based upon

which product is ordered, transfer the order to the correct vendor.

Solution
Use XML to deliver an integrated online purchasing application. While a user is

completing a new purchase requisition for new hardware, they can go directly to

the computer manufacturer’s Web site to browse the latest models, configuration
Modeling and Design Issues for Oracle XML Applications 2-25



Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML
options, and prices. The user’s site sends a purchase requisition reference number

and authentication information to the vendor’s Web site.

At the vendor site, the user adds items to their shopping cart, then clicks on a

button to indicate that they are done shopping. The vendor sends back the contents

of the shopping cart to the Company X’s application as an XML file containing the

part numbers, quantities, and prices that the user has chosen.

Items from the shopping cart are automatically added to the new purchase

requisition as line items.

Customer orders (in XML) are delivered to the appropriate vendor databases for

processing. XSL is used to transform and divide the shopping cart for compliant

transfers. Data is stored in a relational database and materialized using XML.  See

Figure 2–7.

Oracle XML Components Used
■ Oracle XML Parser. See Chapter 20, "Using XML Parser for Java".

■ XML SQL Utility. See Chapter 7, "XML SQL Utility (XSU)".

■ XSQL Servlet. See Chapter 10, "XSQL Pages Publishing Framework".

See Also:

■ Chapter 13, "iProcurement Uses XML to Offer Multiple Catalog

Products"

■ Chapter 18, "B2B XML Application: Step by Step"

for examples of similar implementations
2-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Inventory Application
Figure 2–7 Scenario 4. Using Oracle’s XML Components for an Online Multivendor
Shopping Cart

Scenario 5. B2B Messaging: Using Oracle XML Components and
Advanced Queueing for an Online Inventory Application

Problem
A client/server and server/server application stores a data resource and inventory

in a database repository. This repository is shared across enterprises. Company X

needs to know every time the data resource is accessed, and all the users and

customers on the system need to know when and where data is accessed.

XSQL Servlet

XML-SQL
Utility

Sports Wear
Retailer

Golf Club
Retailer

Tennis Racket
Retailer

Warehouse Inventory
Database

XSL
stylesheets

Stock request

Return request

Stock order

Inventory
needed

XML messages
Look up table

Free 
Inventory

Message Queue
Processing

AQ Message
Broker

XSL-T
Processor

· Stock Status Displayed
· Transaction Acknowledgement Displayed

SQL

Free
Inventory

Inventory
is

Needed

XML
Modeling and Design Issues for Oracle XML Applications 2-27



Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Inventory Application
Solution
When a resource is accessed or released this triggers an availability XML message.

This in turn transforms the resource, using XSL, into multiple client formats

according to need. Conversely, a resource acquisition by one client sends an XML

message to other clients, signalling its removal. Messages are stored in LOBs. Data

is stored in a relational database and materialized in XML. See Figure 2–8.

Oracle XML Components Used
■ XML Parser and XSLT Processor. See Chapter 20, "Using XML Parser for Java",

Chapter 24, "Using XML Parser for C", Chapter 26, "Using XML Parser for C++",

or Chapter 29, "Using XML Parser for PL/SQL".

■ For storage of XML data in LOBs. See Chapter 5, "Database Support for XML".

See: Oracle9i Case Studies - XML Applications, the chapters:

■ "Exchanging XML Data Using Oracle AQ"

■ "Service Delivery Platform (SDP) and XML"

■ "B2B XML Application: Step by Step"
2-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Inventory Application
Figure 2–8 Scenario 5. Using Oracle’s XML Components and Advanced Queueing  in
an Online Inventory Application

Browser

BrowserBrowser

Customer

Client Tier Middle Tier or Oracle8 i 
Virtual Middle-Tier

Server Tier

Accountant

Shipping Clerk

Ship product
to

customer

Inventory
and Shipping
Application

Accounting
Application

Web Sales
Application

Oracle9 i

Oracle9 i

Oracle9 i

Product Database
Information, prices,

product codes
Dynamically
generated
Web Form

Dynamically
generated
Web Form

Accounting Database
Customers billing information,

accounting histories

Shipping Database
Product inventory 

and localization
in warehouse

Customer
order as
XML

Approved
order as
XML

· Queries database
· Submits order

· Presents data via
  XSL stylesheet
· Queries customer db
· Approve or reject 
  order

Presents shipping
data using XSL 
stylesheet
Modeling and Design Issues for Oracle XML Applications 2-29



Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration
Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and
AQ for Multi-Application Integration

Problem
Company X needs several applications to communicate and share data to integrate

the business work flow and processes.

Solution
XML is used as the message payload. It is transformed via the XSLT Processor,

enveloped and routed accordingly. The XML messages are stored in an AQ Broker

Database in LOBs. Oracle Workflow is used to facilitate management of message

and data routing and transformation. This solution also utilizes content

management, here presentation customization using XSL stylesheets. See

Figure 2–9.

Main Tasks Involved
1. The user or application places a request. The resulting data is pulled from the

corporate database using XSU.

2. Data is transformed by XSLT Processor and sent to the AQ Broker.

3. AQ Broker reads this message and determines accordingly what action is

needed. It issues the appropriate response to Application 1, 2, and 3, for further

processing.

Oracle XML Components Used
■ XML Parser and XSLT Processor.See Chapter 20, "Using XML Parser for Java".

■ XML SQL Utility (XSU). See Chapter 7, "XML SQL Utility (XSU)".

■ Advanced Queueing. See Chapter 9, "Exchanging XML Data Using Oracle AQ".
2-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration
Figure 2–9 Scenario 6. Using Oracle’s XML Components and Advanced Queueing in
for Multi-Application Integration

Application
1

Application
3

Data sent to AQ Broker 
determines
· Which action occurs 
· Which action 
  receives data

Corporate
HQ

Database

XSL-T
Processor

XML-SQL
Utility

User / Client / 
Application

XML Parser
XML

LOBs

AQ Broker

XML Messages
stored in LOBs

XML

Lob
LobLob

AQ AQ AQ

Application
2

Request 
for sales 
analysis 
results 
from 
satellite 
storesALERT 

satellite 
stores of 
new 
stock 
arrivals

Stock 
status 
request
Modeling and Design Issues for Oracle XML Applications 2-31



Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration
2-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Developer Kits (XDKs) and Components: Overview and General 
3

Oracle XML Developer Kits (XDKs) and

Components: Overview and General FAQs

This chapter contains the following sections:

■ Oracle XML Components: Overview

■ Development Tools and Other XML-Enabled Oracle9i Features

■ XML Parsers

■ XSL Transformation (XSLT) Processor

■ XML Class Generator

■ XML Transviewer Java Beans

■ Oracle XSQL Page Processor and Servlet

■ Oracle XML SQL Utility (XSU)

■ Oracle Text

■ Oracle XML Components: Generating XML Documents

■ Using Oracle XML Components to Generate XML Documents: Java

■ Using Oracle XML Components to Generate XML Documents: C

■ Using Oracle XML Components to Generate XML Documents: C++

■ Using Oracle XML Components to Generate XML Documents: PL/SQL

■ Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
FAQs 3-1



Oracle XML Components: Overview
Oracle XML Components: Overview
This chapter provides an overview of Oracle’s XML components.

Oracle9i provides several components, utilities, and interfaces you can use to take

advantage of XML technology in building your Web-based database applications.

Which components you use depends on your application requirements,

programming preferences, development, and deployment environments.

The following XML components are provided with Oracle9i and Oracle9i
Application Server:

■ XML Developer’s Kits (XDKs). There are Oracle XDKs for Java, C, C++, and

PL/SQL. These development kits contain building blocks for reading,

manipulating, transforming, and viewing XML documents. Oracle XDKs are

fully supported and come with a commercial redistribution license. Table 3–1

lists the XDK components.

■ XML SQL Utility (XSU). This utility, for Java and PL/SQL: Generates  and

stores  XML data to and from the database from SQL queries or result sets or

tables. It achieves data transformation, by mapping canonically any SQL query

result to XML and vice versa.

The following figures schematically illustrate how the XDK components can be

used to generate XML:

■ Figure 3–7, "Generating XML Documents Using XDK for Java"

■ Figure 3–8, "Generating XML Documents Using XDK for C"

■ Figure 3–9, "Generating XML Documents Using XDK for C++"

■ Figure 3–10, "Generating XML Documents Using XDK for PL/SQL"

Table 3–1 XDK Component Descriptions

XDK Component Languages Description

XML Parser Java, C, C++, PL/SQL Creates and parses XML using industry standard DOM and
SAX interfaces.

XSLT Processor Java, C, C++, PL/SQL Transforms or renders XML into other text-based formats
such as HTML and WML

XML Schema Processor Java, C, C++ Allows the use of XML simple and complex datatypes by
means of your XML Schema definitions.

XML Class Generator Java, C++ Automatically generates Java and C++ classes from DTDs
and XML Schemas to send XML data from Web forms or
applications.
3-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Development Tools and Other XML-Enabled Oracle9i Features
Development Tools and Other XML-Enabled Oracle9 i Features
The following list includes Oracle’s XML-enabled development tools:

■ Oracle Text (interMedia Text/Context): A querying, search and retrieval tool,

described in Chapter 8, "Searching XML Data with Oracle Text".

■ Oracle JDeveloper9i and BC4J: JDeveloper9i is an integrated development tool

for building Java web-based applications. Oracle Business Components for Java

(BC4J) is a Java, XML-powered framework that enables productive

development, portable deployment, and flexible customization of multitier,

database-savvy applications from reusable business components. These

applications can be deployed as CORBA Server Objects or EJB Session Beans on

enterprise-scale server platforms supporting Java technology.

■ Oracle9i Internet File System (9iFS): An application interface in which data can

be viewed as documents and the documents can be treated as data.9iFS is a

simple way for developers to work with XML, where 9iFS serves as the

repository for XML. 9iFS can perform the following tasks on XML documents:

■ Automatically parse XML and store content in tables and columns

■ Render the XML file’s content

XML Transviewer Java
Bean

Java View and transform XML documents and data via Java
components.

XML SQL Utility (XSU) Java, PL/SQL Generates XML documents, DTDs, and XML Schemas from
SQL queries.

XSQL Servlet Java Combines XML, SQL, and XSLT in the server to deliver
dynamic Web content.

See Also:

■ Chapter 11, "Using JDeveloper to Build Oracle XML

Applications"

■ Chapter 12, "Building BC4J and XML Applications"

Table 3–1 XDK Component Descriptions

XDK Component Languages Description
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-3



Development Tools and Other XML-Enabled Oracle9i Features
■ Oracle Reports. Oracle Reports Developer and Reports Server enable you to

build and publish high-quality, dynamically generated Web reports. Each major

task is expedited by the use of a wizard, while the use of report templates and a

live data preview allows for easy customization of the report structure. Reports

can be published throughout the enterprise via a standard Web browser, in any

chosen format, including HTML, HTML Cascading Style Sheets (HTML CSS),

Adobe's Portable Document Format (PDF), delimited text, Rich Text Format

(RTF), PostScript, PCL, or XML. Reports can be integrated with Oracle Portal

(webDB).

■ You can schedule reports to run periodically and update the information in

an Oracle Portal site. Reports can also be personalized for a user.

■ Oracle Reports Developer is part of Oracle's e-business intelligence

solution, and integrates with Oracle Discoverer and Oracle Express.

XDK for Java
XDK for Java is composed of the following components:

■ XML Parser for Java. Creates and parses XML using industry standard DOM

and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that

transforms XML to XML or other text-based formats, such as HTML.

■ XML Schema Processor for Java. Supports simple and complex types and is

built on the Oracle XML Parser for Java v2.

■ XML Class Generator for Java. Creates source files from an XML DTD or XML

Schema definition.

■ XSQL Servlet. Processes SQL queries embedded in an XSQL file, xxxx.xsql.

Returns results in XML format. Uses XML SQL Utility and XML Parser for Java.

■ XML SQL Utility (XSU) for Java. Enables you to transform data retrieved from

object-relational database tables or views into XML, extract data from an XML

document and:

– Use canonical mapping to insert data into appropriate columns or attributes

of a table or a view

See Also: Oracle9i Case Studies - XML Applications, the chapter,

"Using Internet File System (iFS) to Build XML Applications".

See Also: Chapter 14, "Oracle9iAS Reports Services and XML"
3-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Development Tools and Other XML-Enabled Oracle9i Features
– Apply this data to update or delete values of the appropriate columns or

attributes

XDK for Java Beans
XDK for Java Beans is composed of the following component:

■ XML Transviewer Java Beans. View and transform XML documents and data

through Java

XDK for C
XDK for C is composed of the following component:

■ XML Parser for C: Creates and parses XML using industry standard DOM and

SAX interfaces. Includes an XSL Transformation (XSLT) Processor that

transforms XML to XML or other text-based formats, such as HTML.

XDK for C++
XDK for C++ is composed of the following:

■ XML Parser for C++. Creates and parses XML using industry standard DOM

and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that

transforms XML to XML or other text-based formats, such as HTML.

■ XML Schema Processor for C++. A companion component to XML Parser for

C++. It allows support for simple and complex datatypes in XML applications

with Oracle9i. The Schema Processor supports the XML Schema Working Draft.

■ XML C++ Class Generator: Creates source files from an XML DTD or XML

Schema definition.

XDK for PL/SQL
XDK for PL/SQL is composed of the following:

■ XML Parser for PL/SQL: Creates and parses XML using industry standard

DOM and SAX interfaces. Includes an XSL Transformation (XSLT) Processor
that transforms XML to XML or other text-based formats, such as HTML.

■ XML SQL Utility (XSU) for PL/SQL. Enables you to transform data retrieved

from object-relational database tables or views into XML, extract data from an

XML document and:
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-5



XML Parsers
– Use canonical mapping to insert data into appropriate columns or attributes

of a table or a view

– Apply this data to update or delete values of the appropriate columns or

attributes

XML Parsers
The Oracle XML parser includes implementations in C, C++, PL/SQL, and Java for

the full range of platforms on which Oracle9i runs.

Based on conformance tests, xml.com  ranked the Oracle parser in the top two

validating parsers for its conformance to the XML 1.0 specification, including

support for both SAX and DOM interfaces. The SAX and DOM interfaces conform

to the W3C recommendations 2.0.

Version 2 (v2) of the Oracle XML parser provides integrated support for the

following features:

■ XPath. XPath is the W3C recommendation that specifies the data model and

grammar for navigating an XML document utilized by XSLT, XLink and XML

Query

■ Incremental XSL transformation of document nodes. XSL transformations are

compliant with version 1.0 of the W3C recommendations. This support enables

the following:

■ Transformations of XML documents to another XML structure

■ Transformations of XML documents to other text-based formats

The parsers are available on all Oracle platforms.

Figure 3–1 illustrates the Oracle XML Parser for Java. Figure 3–2 illustrates the

Oracle XML parsers’ overall functionality.
3-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parsers
Figure 3–1 Oracle XML Parser for Java

Figure 3–2 The XML Parsers: Java, C, C++, PL/SQL

See Also: Chapter 20, "Using XML Parser for Java" and

Appendix C, "XDK for Java: Specifications and Cheat Sheets".

DOM / SAX Parser

XML Parser for Java

Original
XML

Document

Transfered
XML

Document

Parsed XML

Parsed XSL
Commands

XSL
Stylesheet

XSL-T Processor

XML Parser for C++

XML Parser for C

XML Parser for PL/SQL

XML Parser for Java

XML
document

or DTD

DOM / SAX for C++

DOM / SAX for C

DOM for PL/SQL

DOM / SAX for Java

C++ Application

C Application

PL/SQL Application

Java Application

Parsers
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-7



XSL Transformation (XSLT) Processor
XSL Transformation (XSLT) Processor
The Oracle XSLT engine fully supports the W3C 1.0 XSL Transformations

recommendation. It has the following features:

■ Enables standards-based transformation of XML information inside and outside

the database on any platform.

■ Supports Java extensibility and for additional performance comes natively

compiled from Oracle8i Release 3 (8.1.7) and higher.

The Oracle XML Parsers, Version 2 include an integrated XSL Transformation

(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT

processor, you can transform XML documents from XML to XML, HTML, or

virtually any other text-based format.

How to use the XSLT Processor is described in Chapter 20, "Using XML Parser for

Java".

XML Class Generator
XML Class Generator creates a set of Java or C++ classes for creation of XML

documents corresponding to an input DTD or XML Schema. Figure 3–3 shows

Oracle XML Class Generator functionality.

How to use the XML Class Generators is described in the following chapters:

■ Chapter 22, "XML Class Generator for Java"

■ Chapter 28, "Using XML C++ Class Generator"

See Also: Appendix C, "XDK for Java: Specifications and Cheat

Sheets".
3-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Transviewer Java Beans
Figure 3–3 Oracle XML Java Class Generator

XML Transviewer Java Beans
Oracle XML Transviewer Java Beans are a set of XML components that constitute

XML for Java Beans. These are used for Java applications or applets to view and

transform XML documents.

They are visual and non-visual Java components that are integrated into Oracle

JDeveloper to enable the fast creation and deployment of XML-based database

applications. In this release, the following four beans are available:

■ DOM Builder Bean. This wraps the Java XML (DOM) parser with a bean

interface, allowing multiple files to be parsed at once (asynchronous parsing).

By registering a listener, Java applications can parse large or successive

documents having control return immediately to the caller.

■ XML Source Viewer Bean. This bean extends JPanel by enabling the viewing of

XML documents. It improves the viewing of XML and XSL files by

color-highlighting XML and XSL syntax. This is useful when modifying an

XML document with an editing application. Easily integrated with the DOM

Builder Bean, it allows for pre-parsing and post-parsing and validation against

a specified DTD.

■ XML Tree Viewer Bean. This bean extends JPanel by enabling viewing XML

documents in tree form with the ability to expand and collapse XML parsers. It

Valid XML
document
based on

DTD or XML
Schema

XML Class Generator 
for Java

Java Application

Parsed 
DTD or
XML
Schema

XML Parser for Java

Jc
Jc

Jc
Jc

Java classes based
on DTD or XML Schema
(one class per element)

DTD or
XML Schema
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-9



Oracle XSQL Page Processor and Servlet
displays a visual DOM view of an XML document, enabling users to easily

manipulate the tree with a mouse to hide or view selected branches.

■ XSL Transformer Bean. This wraps the XSLT Processor with a bean interface

and performs XSL transformations on an XML document based on an XSL

stylesheet. It enables users to transform an XML document to almost any

text-based format including XML, HTML and DDL, by applying an XSL

stylesheet. When integrated with other beans, this bean enables an application

or user to view the results of transformations immediately. This bean can also

be used as the basis of a server-side application or servlet to render an XML

document, such as an XML representation of a query result, into HTML for

display in a browser.

■ XML TransPanel Bean. This bean uses the other beans to create a sample

application which can process XML files. This bean includes a file interface to

load XML documents and XSL stylesheets. It uses the beans as follows:

– Visual beans to view and edit files

– Transformer bean to apply the stylesheet to the XML document and view

the output

■ DBAccess Bean.

■ DBViewer Bean.

As standard Java Beans, they can be used in any graphical Java development

environment, such as Oracle JDeveloper. The Oracle XML Transviewer Beans

functionality is described in Chapter 23, "Using XML Transviewer Beans".

Oracle XSQL Page Processor and Servlet
XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.

This processor is implemented as a Java servlet and takes as its input an XML file

containing embedded SQL queries. It uses XML Parser for Java, XML- SQL Utility,

and Oracle XSL Transformation (XSLT) Engine to perform many of its operations.

You can use XSQL Servlet to perform the following tasks:

■ Build dynamic XML datapages from the results of one or more SQL queries and

serve the results over the Web as XML datagrams or HTML pages using

server-side XSLT transformations.

■ Receive XML posted to your web server and insert it into your database.
3-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XSQL Page Processor and Servlet
Servlet Engines that Support XSQL Servlet
XSQL Servlet has been tested with the following servlet engines:

■ Allaire JRun 2.3.3

■ Apache 1.3.9 with JServ 1.0 and 1.1

■ Apache 1.3.9 with Tomcat 3.1 Beta1 Servlet Engine

■ Apache Tomcat 3.1 Beta1 Web Server + Servlet Engine

■ Caucho Resin 1.1

■ NewAtlanta ServletExec 2.2 for IIS/PWS 4.0

■ Oracle9i Lite Web-to-Go Server

■ Oracle Application Server 4.0.8.1 (with JSP Patch)

■ Oracle8i 8.1.7 Beta Aurora and Oracle9i Servlet Engine and higher

■ Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

JavaServer Pages Platforms that Support XSQL Servlet
JavaServer Pages can use <jsp:forward>  or <jsp:include>  to collaborate with

XSQL Pages as part of an application. The following JSP platforms have been tested

to support XSQL Servlet:

■ Apache 1.3.9 with Tomcat 3.1 Beta1 Servlet Engine

■ Apache Tomcat 3.1 Beta1 Web Server + Tomcat 3.1 Beta1 Servlet Engine

■ Caucho Resin 1.1 (Built-in JSP 1.0 Support)

■ NewAtlanta ServletExec 2.2 for IIS/PWS 4.0 (Built-in JSP 1.0 Support)

■ Oracle9i Lite Web-to-Go Server with Oracle JSP 1.0

■ Oracle8i 8.1.7 Beta Aurora and Oracle9i Servlet Engine with Oracle JSP 1.0 and

higher

■ Any Servlet Engine with Servlet API 2.1+ and Oracle JSP 1.0

In general, it should work with the following:

■ Any servlet engine supporting the Servlet 2.1 specification or higher

■ Oracle JSP 1.0 reference implementation or functional equivalent from another

vendor
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-11



Oracle XSQL Page Processor and Servlet
XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.

This processor is implemented as a Java servlet and takes as its input an XML file

containing embedded SQL queries. It uses XML Parser for Java and XML SQL

Utility to perform many of its operations.

Figure 3–4 shows how data flows from a client, to the servlet, and back to the client.

The sequence of events is as follows:

1. The user enters a URL through a browser, which is interpreted and passed to

the XSQL Servlet through a Java Web Server. The URL contains the name of the

target XSQL file (.xsql) and optionally, parameters, such as values and an XSL

stylesheet name. Alternatively, the user can invoke the XSQL Servlet from the

command line, bypassing the browser and Java web server.

2. The servlet passes the XSQL file to the XML Parser for Java, which parses the

XML and creates an API for accessing the XML contents.

3. The page processor component of the servlet uses the API to pass XML

parameters and SQL statements (found between <query></query>  tags) to

XML SQL Utility. The page processor also passes any XSL processing

statements to the XSLT Processor.

4. XML SQL Utility sends the SQL queries to the underlying Oracle9i database,

which returns the query results to the utility.

5. XML SQL Utility returns the query results to the XSLT Processor as XML

formatted text. Results are embedded in the XML file in the same location as the

original <query>  tags.

6. If desired, the query results and any other XML data are transformed by the

XSLT processor using a specified XSL stylesheet. The data can be transformed

to HTML or any other format defined by the stylesheet. The XSLT processor can

selectively apply different stylesheets based on the type of client that made the

original URL request. This HTTP_USER_AGENT information is obtained from

the client through an HTTP request.

7. The XSLT Processor passes the completed document back to the client browser

for presentation to the user.
3-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XSQL Page Processor and Servlet
Figure 3–4 Oracle XSQL Page Processor and Servlet Functional Diagram

See Also: Chapter 10, "XSQL Pages Publishing Framework"

Oracle9 i

Servlet-Compatible Web Server

Web Form

Browser

User

URL

1

XML Formatted
SQL Queries

2

XML Parser
for Java

XSQL Page
Processor

XML SQL
Parser

XSL
Stylesheet

XSLT
Porcessor

6 4

3

7

Query 
Results
in XML, 
HTML,
or Other 
Format

XSQL Servlet

SQL QueriesXSL Tags

6 Query
Results
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-13



Oracle XML SQL Utility (XSU)
Oracle XML SQL Utility (XSU)
Oracle XML SQL Utility (XSU) supports Java and PL/SQL.

■ XML SQL Utility is comprised of core Java class libraries for automatically and

dynamically rendering the results of arbitrary SQL queries into canonical XML.

It includes the following features:

– Supports queries over richly-structured user-defined object types and object

views.

– Supports automatic XML Insert of canonically-structured XML into any

existing table, view, object table, or object view. By combining with XSLT

transformations, virtually any XML document can be automatically

inserted into the database.

XML SQL Utility Java classes can be used for the following tasks:

– Generate from an SQL query or Result set object a text or XML document, a

Document Object Model (DOM), Document Type Definition (DTD), or

XML Schema.

– Load data from an XML document into an existing database schema or

view.

■ XML SQL Utility for PL/SQL is comprised of a PL/SQL package that wraps

the XML SQL Utility for Java.

Figure 3–5 shows the Oracle XML SQL Utility overall functionality.

Figure 3–5 Oracle XML SQL Utility Functional Diagram

XML SQL Utility for Java consists of a set of Java classes that perform the following

tasks:

■ Pass a query to the database and generate an XML document (text or DOM)

from the results or the DTD which can be used for validation.

XML-SQL Utility
for Java

Oracle9 i

XML
Document
3-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML SQL Utility (XSU)
– Write XML data to a database table

Generating XML from Query Results
Figure 3–6 shows how XML SQL Utility processes SQL queries and returns the

results as an XML document.

Figure 3–6 XMl-SQL Utility Processes SQL Queries and Returns the Result as an XML
Document

XML Document Structure: Columns Are Mapped to Elements
The structure of the resulting XML document is based on the internal structure of

the database schema that returns the query results:

■ Columns are mapped to top level elements

■ Scalar values are mapped to elements with text-only content

■ Object types are mapped to elements with attributes appearing as sub-elements

■ Collections are mapped to lists of elements

See Also: Chapter 7, "XML SQL Utility (XSU)"

SQL or Object
Queries

XML Document of
Query Results as a
string or DOM tree

XML-SQL Utility
for Java

Oracle9 i

Store and retrieve 
XML documents 
in the database
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-15



Oracle Text
XSU Generates the XML Document as a String or DOM Element Tree
The XML SQL Utility (XSU) generates either of the following:

■ A string representation of the XML document. Use this representation if you are

returning the XML document to a requester.

■ An in-memory XML DOM tree of elements. Use this representation if you are

operating on the XML programmatically, for example, transforming it using the

XSLT Processor using DOM methods to search or modify the XML in some

way.

XSU Generates a DTD Based on Queried Table’s Schema
You can also use the XML SQL Utility (XSU) to generate a DTD based on the

schema of the underlying table or view being queried. You can use the generated

DTD as input to the XML Class Generator for Java or C++. This generates a set of

classes based on the DTD elements. You can then write code that uses these classes

to generate the infrastructure behind a Web-based form. See also "XML Class

Generator".

Based on this infrastructure, the Web form can capture user data and create an XML

document compatible with the database schema. This data can then be written

directly to the corresponding database table or object view without further

processing.

Oracle Text
Oracle Text (interMedia Text) extends Oracle9i by indexing any text or documents

stored in Oracle9i. Use Oracle Text to perform searches on XML documents stored

in Oracle9i by indexing the XML as plain text, or as document sections for more

precise searches, such as find Oracle WITHIN title  where title  is a section of

the document.

See Also: Chapter 7, "XML SQL Utility (XSU)" and Oracle9i Case
Studies - XML Applications, the chapter, "B2B XML Application: Step

by Step", for more information about this approach.

Note: To write an XML document to a database table, where the

XML data does not match the underlying table structure, transform

the XML document before writing it to the database. For techniques

on doing this, see Chapter 7, "XML SQL Utility (XSU)".
3-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle XML Components to Generate XML Documents: Java
JDeveloper

Oracle XML Components: Generating XML Documents
Figure 3–7 through Figure 3–10 illustrate the relationship of the Oracle XML

components and how they work together to generate XML documents from

Oracle9i via a SQL query. The options are depicted according to language used:

■ Java

■ C

■ C++

■ PL/SQL

Using Oracle XML Components to Generate XML Documents: Java
Figure 3–7 shows the Oracle XML Java components and how they can be used to

generate an XML document. Available XML Java components are:

■ XDK for Java:

– XML Parser for Java, Version 2 including the XSLT

– XMl Schema Processor for Java

– XML Class Generator for Java

– XSQL Servlet

– XML Transviewer Beans

■ XML SQL Utility (XSU) for Java

In the Java environment, when a user or client or application sends a query (SQL),

there are three possible ways of processing the query using the Oracle XML

components:

■ By the XSL Servlet (this includes using XSU and XML Parser)

■ Directly by the XSU (this includes XML Parser)

■ Directly by JDBC which then accesses XML Parser

See Also: Chapter 8, "Searching XML Data with Oracle Text", for

more information on using Oracle Text and XML.
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-17



Using Oracle XML Components to Generate XML Documents: Java
Regardless of which way the stored XML data is generated from the database, the

resulting XML document output from the XML Parser is further processed,

depending on what you or your application needs it for.

The XML document is formatted and customized by applying stylesheets and

processed by the XSLT.
3-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle XML Components to Generate XML Documents: Java
Figure 3–7 Generating XML Documents Using XDK for Java

XSQL Servlet

Oracle9 i or other database

XML documents stored:
· As single object with tags 
  in CLOB or BLOB
· As data distributed 
  untagged across tables
· Via views that combine 
  the documents and data

XML SQL
Utility

Data OutQuery In

User / Browser / 
Client Application

DTD or
XML
Schema

· Parsed DTD 
  objects
· Parsed HTML

XML
Parser

Class
Generator

Transviewer
Beans

Formatted
and customized
XML Document

XML Document
with or without 
a DTD or 
XML Schema

Checks for
errors

XSL-T
Processor

Integrated in 
Jdeveloper

XSL
Stylesheet

SQL Query

XML
Parser

XSL-T API 
is in the 
XML
Parser

Creates Java 
source files

B

C

A

Object 
Relational
data

Oracle text

LOBs

JDBC

Dom or String

Stream Dom or Sax

XML Document from 
LOB / XML Type

XML Parser
iswithin user
application

Browser / 
Application

HTML

Text
XML

XML SQL Utility

XML
Parser
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-19



Using Oracle XML Components to Generate XML Documents: C
Using Oracle XML Components to Generate XML Documents: C
Figure 3–8 shows the Oracle XML C language components used to generate an

XML document. The XML components are:

■ XML Parser/XSLT Processor for C

■ XML Schema Processor for C

SQL queries can be sent to the database via OCI or as embedded statements in the

Pro*C precompiler.

The resulting XML data can be processed in the following ways:

■ With the XML Parser

■ From the CLOB as an XML document

This XML data is optionally transformed by the XSLT processor, viewed directly by

an XML-enabled browser, or sent for further processing to an application or AQ

Broker.
3-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle XML Components to Generate XML Documents: C
Figure 3–8 Generating XML Documents Using XDK for C

Oracle9 i or other database

XML documents stored:
· As single object with tags 
  in CLOB or BLOB
· As data distributed 
  untagged across tables
· Via views that combine 
  the documents and data

User / Browser / 
Client Application

DTD or
XML 
Schema

· Parsed DTD 
  objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without 
a DTD or XML
Schema

XSL-T
Processor

XSL
Stylesheet

SQL 
Query

XML
Parser

XSL-T API 
is in the 
XML
Parser

Object 
Relational
data Oracle

Text

LOBs

Stream DOM or Sax

XML Parser is 
within the user
application

Browser / 
Application

XML

OCI or 
Pro*C/C++

Stream

XML Document from LOB / XML Type
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-21



Using Oracle XML Components to Generate XML Documents: C++
Using Oracle XML Components to Generate XML Documents: C++
Figure 3–9 shows the Oracle XML components used to generate an XML document.

The XDK for C++ components used here are:

■ XML Parser for C++, Version 2 including the XSLT

■ XML Schema Processor for C++

■ XML Class Generator for C++

In the C++ environment, when a user or client or application sends a SQL query,

there are two possible ways of processing the query using the XDK for C++:

■ Directly by JDBC which then accesses the XML Parser

■ Through OCCI or Pro*C/C++ Precompiler
3-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle XML Components to Generate XML Documents: C++
Figure 3–9 Generating XML Documents Using XDK for C++

Oracle9 i or other database

XML documents stored:
· As single object with tags 
  in CLOB or BLOB
· As data distributed 
  untagged across tables
· Via views that combine 
  the documents and data

User / Browser / 
Client Application

DTD or
XML Schema

· Parsed DTD 
  objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without 
a DTD or XML
Schema

XSL-T
Processor

XSL
Stylesheet

SQL 
Query

XML
Type

XSL-T API 
is in the 
XML
Parser

Object 
Relational
data Oracle

Text

LOBs

Stream DOM or Sax

XML Document from LOB

XML Parser is 
within the user
application

Browser or 
Application

XML

OCCI or 
Pro*C/C++

Class
Generator

Checks for
errors

Creates C++ 
source files
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-23



Using Oracle XML Components to Generate XML Documents: PL/SQL
Using Oracle XML Components to Generate XML Documents: PL/SQL
Figure 3–10 shows the XDK for PL/SQL components used to generate an XML

document:

■ XML Parser for PL/SQL, Version 2 including XSLT

■ XML SQL Utility (XSU) for PL/SQL

In the PL/SQL environment, when a user or client or application sends a SQL

query, there are two possible ways of processing the query using the Oracle XML

components:

■ Directly by JDBC which then accesses the XML Parser

■ Through XML SQL Utility (XSU)
3-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle XML Components to Generate XML Documents: PL/SQL
Figure 3–10 Generating XML Documents Using XDK for PL/SQL

Oracle9 i or other database

XML documents stored:
· As single object with tags 
  in CLOB or BLOB
· As data distributed 
  untagged across tables
· Via views that combine 
  the documents and data

User / Browser / 
Client Application

DTD or
XML
Schema

· Parsed DTD 
  objects
· Parsed HTML

Formatted
and customized
XML Document

XML Document
with or without 
a DTD or XML 
Schema

XSL-T
Processor

XSL
Stylesheet

SQL 
Query

XML
Parser

XSL-T API 
is in the 
XML
Parser

Object 
Relational
data Oracle

Text

LOBs

DOM or String

Stream DOM or Sax

XML Document from 
LOB / XML Type

XML Parser is 
within the user
application

Browser / 
Application

XML-SQL Utility

XML
Parser

XML

JDBC / SQL
Access
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-25



Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
This section includes general questions about Oracle XML-enabled technology in

the following categories:

■ General XDK Questions

■ Portability and XML Support in Older Oracle Releases

■ Browsers that Support XML

■ Standards

■ XML, CLOBs, and BLOBs

■ Maximum FileSizes

■ Inserting XML Data Into Tables

■ XML in the Database: Performance

■ Using XML With Different Languages

■ Further References

There are Frequently Asked Questions at the end of several other chapters in this

manual.

General XDK Questions

What XML Components Do I Need to Install?
I am going to develop a small application using XML and Oracle. Here is the

scenario: Company A has is a central purchasing system with Departments B, C,

and D.  Company A gets purchase orders in XML format from B, C, and D.

Company A needs to collect all purchase orders and store them in an Oracle

database. Then, it has to create another Request for proposal for its preferred

vendors in XML. I am writing queries to insert or update into the database. What

XML components do I need to install in Oracle?

Answer
Assuming you are using Java, you need the XML Parser and XML SQL Utility. If

you are using a Java-based front end to generate the purchase orders, then the XML

Class Generator can provide you with the classes you need to populate your

purchase orders. Finally, the XSQL Servlet can help you build a Web interface.
3-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XDK Questions
Building an XML Application: What Software Is Needed?
I have a CGI-PERL-Oracle7 application on Solaris 2.6 and I want to convert it to

XML/XSL-JAVA-Oracle. I know most parts of the technologies, for example,

SGML, XML, and JAVA, but I don't know how to start it in Oracle. What software

do I need from Oracle? Specifically,

1. Can I use Apache instead of the Oracle Web server? If so, how?

2. How far can I go with Oracle 7.3?

3. Do I still need an XML Parser if all XML was created by my programs?

4. What should be between the Web server and Oracle DB server? XSQL Servlet?

Parser? JAVA VM? EJB? CORBA? SQLJ? JDBC? Oracle packages such as UTL_
HTTP?

Answer
1. Yes you can. The Apache web server must now interact with Oracle through

JDBC or other means. See the XSQL servlet. This is a servlet that can run on any

servlet-enabled Web server. This runs on Apache and connects to the database

through a JDBC driver to the Oracle database.

2. How far can you go with Oracle 7.3? You can go a long way. The only problem

would be that you cannot run any of the Java programs inside the server, that

is, you cannot load all the XML tools into the server. But you can connect to the

database by downloading the Oracle JDBC utility for Oracle7 and run all the

programs as client-side utilities.

3. Do you still need an XML Parser if all XML was created by your programs?

That depends on what you intend to do with the generated XML. If your task is

just to generate XML and send it out then you might not need it. But if you

wanted to generate an XML DOM tree then you would need the parser. Also,

you would need it if you have incoming XML documents and you want to

parse and store them somewhere. See the XML SQL utility for some help on this

issue.

4. What should be between the Web server and Oracle DB server?   As explained

before in Answer 1, you would need to have a servlet (or CGI) which interacts

to Oracle through OCI or JDBC.

DTD to Database Schema
Is there a tool that goes from a DTD to a database schema?
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-27



General XDK Questions
Answer
Currently we do not have a tool to go from a DTD to a database schema as there is

no way to specify datatypes until we have XML Schema. With our XML- SQL

Utility available on OTN with our other XML components you can generate a DTD

from a database schema which can then be entered into the Class Generator. You

should try an approach your solution from that angle since a database is involved.

Check out our OTN resource including the XML Discussion Forum for further

assistance at http://otn.oracle.com/tech/xml

Schema Map to XML
My project requires converting master-details data to XML for clients.

1. Is there a best way to design tables and generate XML (flat tables,  objects, or

collections)?

2. Can I use XML SQL Utilities in Pro*C?

3. Is there a limiting size for generating XML documents from database? Can I use

Pro*C to call XSU?

Answer
1. It really depends on what your application calls for. The generalized approach

is to use object views and have the schema define the tag structure with

database data as the element content.

2. I am not aware of any limits beyond those imposed by the object view and the

underlying table structure.

Are There XDK Utilities That Translate From Other Formats to XML?
Are there any utilities in the XDK that translate data from a given format to XML? I

know that the XSLT will translate from XML to XML, HTML, or another text-based

format. What about the other way around?

Answer
For HTML, you can use utilities like Tidy or JTidy to turn HTML into well-formed

HTML that can be transformed using XSLT. For random text formats, you can try

utilities like XFlat at http://www.unidex.com/xflat.htm .
3-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XDK Questions
Can Oracle Generate a Database Schema From a Rational Rose Generated XML File?
It is possible to generate database schema in Oracle using a script with CREATE
TABLE, from an XML file generated by a Rational Rose design tool?

Answer
All the parser/generator files (such as petal files, XML, and so on) are developed in

our project. All the components are designed for reuse, but developed in the context

of a lager framework. You have to follow some guidelines, such as modeling in

UML, and you must use the base class to get any benefit from our work.

Oracle only generates object types and delivers full object-oriented features such as

inheritance in the persistence layer. If you did not need this, the Rational Rose

(Petal-File) parser and Oracle packages as the base of the various generators may

interest you.

Does Oracle Offer Any Tools to Create and Edit XML Documents?
Does Oracle have any tools for creation (based on DTDs or XML Schema Definition

DOM) and editing of XML documents with DTD or Schema validation?

Answer
JDeveloper9i has an integrated XML Schema-driven code editor for working on

XMLSchema-based documents such as XML Schemas and XSLT Stylesheets, with

tag-insight to help you easily enter the correct elements and attributes as defined by

the schema.

How Can I Format XML Documents as PDF?
I have been asked to take stored XML docs in v816 and format them as PDF. We are

using JDev 3112 as our development environment and the client wants to stick to

OAS 4082 on NT if possible. Any suggestions or recommended resources?

Answer
Oracle XSQL Pages v1.0.2 supports integration with Apache FOP 0.14.0 for

rendering PDF output from XML/SQL input.

See Also: Chapter 11, "Using JDeveloper to Build Oracle XML

Applications"
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-29



General XDK Questions
It is possible to format XML into PDF using Formatting Object (FOP). See

information on this at: http://xml.apache.org/fop/  and

http://www.xml.com/pub/rg/75)

How Do I Load a Large XML Document Into the Database?

Question 1
I have a large (27 MB) data-centric XML document. I could not load it into the

database when it was split into relational tables with XML SQL Utility, because the

DOM parser failed (memory leak) during the XSLT processor execution. Do you

have a workaround for this problem? Should I use SAX Parser? How do I use the

XSLT processor and Sax Parser?

Answer 1a
If this is a one time load, or if the XML document you get always has the same tags,

then you might consider using the SQL*Loader (direct path). All you have to do is

compose a loader control file (see the Oracle9i Utilities manual, Chapter 3, for

examples). You can use the enclosed by  option to describe the fields. For

example, in the files list you enter something like the following:

(empno    number(10)    enclosed by “<empno>” and “</empno>”,...)

Except for the data parsing which has to be done the same regardless of what you

are using, the actual loading into the database will be fastest with SQL*Loader (as

the direct path writes data straight to data blocks, bypassing the layers in between).

Answer 1b
If the document is 27 MB because it is a very large number of repeating

sub-documents, then you can use the sample code that comes in Chapter 14 of the

book “Building Oracle XML Applications” by Steve Muench (O’Reilly) to load XML

of any size into any number of tables. In Chapter 14, “Advanced XML Loading

Techniques”, the example builds an XML Loader utility that does what you are

looking for.

Question 2
Can SQL*Loader handle nesting? That is, what if you have:

...
     <something>
        <price>10.00</price>
3-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XDK Questions
     </something>
...
   ...
      ...
          <somethingelse>
            <price>55.00</price>
          </somethingelse>

Is there a way to uniquely identify the two <price>  elements?

Answer 2
Not really. The field description in the control file can be nested which is part of the

support for object relational columns. The data record to which this maps is of

course flat but using all the data-field description features of the SQL*Loader one

can get a lot done. For example:

sample.xml

<resultset>
    <emp>
        <first>...</first>
        <last>...</last>
        <middle>....</middle>
    <emp>
    <friend>
        <first>...</first>
        <last>...</last>
        <middle>....</middle>
    </friend>
</resultset>

sample.ctl  -- field definition part of the SQL Loader control file

field list ....
(
 emp  COLUMN OBJECT ....
   (
        first      char(30)   enclosed by "<first>" and "</first>",
        last      char(30)   enclosed by "<last>" and "</last>",
        middle     char(30)   enclosed by "<middle>" and </middle>"
   )
    friend COLUMN OBJECT ....
  (
        first      char(30)   enclosed by "<first>" and "</first>",
        last      char(30)   enclosed by "<last>" and "</last>",
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-31



Portability and XML Support in Older Oracle Releases
        middle     char(30)   enclosed by "<middle>" and </middle>"
  )

Keep in mind that the COLUMN OBJECTfield names have to match the ADT column

in the database. Also, you will have to use a custom record terminator, otherwise it

defaults to newline  (that is, at every new line it thinks that is has data for a

complete database record).

If your XML is more complex and you are trying to extract only select fields, you

can use FILLER  fields to reposition the scanning cursor, which scans from where it

has left off  towards the end of the record (or for the first field, from the beginning

of the record).

The SQL*Loader has a very powerful text parser so you can do a lot of neat tricks.

For loading XML when the document is very big, but consistent in its tags, you

should consider it.

Portability and XML Support in Older Oracle Releases

Can I Use Parsers from Different Vendors?
I am currently investigating SAX. I understand that both the Oracle and IBM

parsers use DOM and SAX from W3C.

■ What is the difference between the parsers from different vendors like Oracle

and IBM?

■ If I use the Oracle XML Parser now, and for some reason I decide to switch to

parser by other vendor, will I have to change my code?

Answer
You will not have to change your code if you stick to SAX interfaces or DOM

interfaces for your implementation. That is what the standard interfaces are in place

to assist you with.

See Also: Chapter 2, "Modeling and Design Issues for Oracle

XML Applications", "Loading XML into a Database"  on page 2-13,

for guidelines on loading XML
3-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Portability and XML Support in Older Oracle Releases
Is There XML Support in Oracle 8.0.x?
We are currently architecting some of our future systems to run on XML-based

interfaces. We are a large Wall Street institution. Our current systems are all running

Oracle 8.0.6, and we would like to have some of our XML concepts implemented on

the existing systems due to high demand. Are there current or future plans to

support XML-based code within the database, or are there any adapters or

cartridges that we can use to get by?

Answer
All of our XML Developer's Kit components, including the XML Parser, XSLT

Processor, XSQL Servlet, and utilities like the XML SQL Utility all work outside the

database against Oracle 8.0.6. However, you will not be able to run XML

components inside the database or use Oracle Text (interMedia) XML searching,

which are both features in Oracle 8i and higher.

Oracle 7.3.4: Data Transfers to Other Vendors Using XML

Question
My company has Oracle release 7.3.4 and my group is thinking of using XML for

some data transfers between us and our vendors. From what I could see from this

Web site, it looks like we would need to move to Oracle8i or higher in order to do

so. Is there any way of leveraging Oracle release 7 to do XML?

Answer
As long as you have the appropriate JDBC 1.1 drivers for 7.3.4 you should be able to

use the XML SQL Utility to extract data in XML.

For JDBC drivers, refer to http://otn.oracle.com/tech/java/sqlj_jdbc/
for information about Oracle7 JDBC OCI and JDBC Thin Drivers.

If I Use Versions Prior to Oracle8 i Can I use Oracle XML Tools?
1. If I am using an Oracle version lower than Oracle8i, can I supply XML based

applications using Oracle XML tools? If yes, then what are the licensing terms

in that case?

2. Is Oracle XML technology suitable for creating magtape files where the file is

just a string of characters like 'abcdefg........ ' in a particular format? Is it

is possible to create a stylesheet that will create these kind of files?
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-33



Browsers that Support XML
Answer
1. XDKs for Java, C, and C++ can work outside the database, including the XML

SQL Utility and XSQL Pages framework. Licensing is the same, free runtime.

See OTN for the latest licenses.

2. Yes. Just use <xsl:output method=”text”/>  to output plain text.

Browsers that Support XML

Which Browsers Support XML?
Is there a list of browsers that support XML?

Answer
The following browsers support the display of XML:

■ Opera. XML, in version 4.0 and higher

■ Citec Doczilla. XML and SGML browser

■ Indelv. Will display XML documents only using XSL

■ Mozilla Gecko. Supports XML, CSS1, and DOM1

■ HP ChaiFarer. Embedded environment that supports XML and CSS1

■ ICESoft embedded browser. Supports XML, DOM1, CSS1, and MathML

■ Microsoft IE5. Has a full XML parser, IE5.x or higher

■ Netscape 5.x or higher

Standards

Are there Advantages of XML Over EDI?
We are considering implementing EDI to communicate requirements with our

vendors and customers. I understand that XML is a cheaper alternative for smaller

companies. Do you have any information on the advantages of XML over EDI?

Answer
Here are some thoughts on the subject:
3-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Standards
■ EDI is a difficult technology: EDI allows machine-to-machine communication in

a format that developers cannot easily read and understand.

■ EDI messages are very difficult to debug. XML documents are readable and

easier to edit.

■ EDI is not flexible: it is very hard to add a new trading partner as part of an

existing system, each new trading partner requires its own mapping. XML is

extremely flexible with the ability to add new tags on demand and to transform

an XML document into another XML document, for example, to map two

different formats of purchase order numbers.

■ EDI is expensive: developer training costs are high, and deployment of EDI

requires very powerful servers that need a specialized network. (EDI runs on

VANs, which are expensive). XML works with inexpensive Web servers over

existing internet connections.

The next question then becomes: is XML going to replace EDI? Probably not. The

technologies will likely coexist, at least for a while. Large companies with an

existing investment in EDI will probably use XML as a way to extend their EDI

implementation, which raises a new question of XML and EDI integration.

XML is a compelling approach for smaller organizations, and for applications

where EDI is inflexible.

What B2B Standards and Development Tools Does Oracle Support?
What B2B XML standards (such as ebXML, cxml, and BizTalk) does Oracle support?

What tools does Oracle offer to create B2B exchanges?

Answer
Oracle participates in several B2B standards organizations:

■ OBI (Open Buying on the Internet)

■ ebXML (Electronic Business XML)

■ RosettaNet (E-Commerce for Supply Chain in IT Industry)

■ OFX (Open Financial Exchange for Electronic Bill Presentment and Payment)

For B2B exchanges, Oracle provides several alternatives depending on customer

needs, such as the following:

■ Oracle Exchange delivers an out-of-the-box solution for implementing

electronic marketplaces
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-35



Standards
■ Oracle Integration Server (and primarily Message Broker) for in-house

implementations

■ Oracle Gateways for exchanges at data level

■ Oracle XML Gateway to transfer XML-based messages from our e-business

suite.

Oracle Internet Platform provides an integrated and solid platform for B2B

exchanges.

What is Oracle Corporation’s Direction Regarding XML?
What is Oracle Corporation’s direction regarding XML?

Answer
Oracle Corporation’s XML strategy is to use XML in ways that exploit all of the

benefits of the current Oracle technology stack. Today you can combine Oracle XML

components with the Oracle8i (or higher) database and Advanced Queueing (AQ)

to achieve conflict resolution, transaction verification, and so on. Oracle is working

to make future releases more seamless for these functions, as well as for functions

such as distributed two phase commit transactions.

XML data is stored either object-relational tables or views, or as CLOBs. XML

transactions are transactions with one of these datatypes and are handled using the

standard Oracle mechanisms, including rollback segments, locking, and logging.

From Oracle9i, Oracle supports sending XML payloads using AQ. This involves

making XML queriable from SQL.

Oracle is active in all XML standards initiatives, including W3C XML Working

Groups, Java Extensions for XML, Open Applications Group, and XML.org  for

developing and registering specific XML schemas.

XML Query
Oracle is participating in the W3C Working Group for XML Query. Oracle is

considering plans to implement a language that allows querying XML data, such as

in the XQL proposal. While XSLT provides static XML transformation features, a

query language will add data query flexibility similar to what SQL does for

relational data.

Oracle has representatives participating actively in the following 3C Working

Groups related to XML/XSL: XML Schema, XML Query, XSL, XLink/XPointer,

XML Infoset, DOM, and XML Core.
3-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Maximum FileSizes
Are There Standard DTDs that We Can Use for Orders, Shipments, and So On?
We have implemented Oracle8i and the XDK. Where can we find basic, standard

DTDs to build on for orders, shipments, and acknowledgements?

Answer
A good place to start would be this Web site: http://www.xml.org  which is

being set up for that purpose.

XML, CLOBs, and BLOBs

Is There Support for XML Messages in BLOBs?
Is there any support for XML messages enclosing BLOBs, or I should do it on an

application level by encoding my binary objects in a suitable text format such as

UUENCODE with a MIME wrapper?

Answer
XML requires all characters to be interpreted, therefore there is no provision for

including raw binary data in an XML document. That being said, you could

UUENCODE the data and include it in a CDATA section. The limitation on the

encoding technique is to be sure it only produces legal characters for a CDATA

section.

Maximum FileSizes

What is the Maximum XML File Size When Stored in CLOBs?
If we store XML files as CLOBs in the Oracle database, what is the maximum file

size?

Answer
The maximum file size is 2 GB. See the Oracle9i Application Developer’s Guide - Large
Objects (LOBs) for more information on LOBs and CLOBs. For sample code, see

http://otn.oracle.com/tech/java/sqlj_
jdbc/index2.htm?Code&files/advanced/advanced.htm
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-37



Inserting XML Data Into Tables
XML File Size Limitations
Are there any limitations in the size of an XML file?

Answer
There are no XML limitations to an XML file size.

Maximum Size for an XML Document
1. Is there a maximum size for an XML document to provide data for PL/SQL (or

SQL) across tables, provided that no CLOBs are used?

2. What is the maximum size of XML document generated from Oracle to an XML

document?

Answer
1. The size limit should be what can be inserted into an object view.

2. The size limit should be what can be retrieved from an object view.

Inserting XML Data Into Tables

What Do I Need to Insert Data Into Tables Using XML?
To select data for display and insert data to tables by XML what software do I need?

We are using Oracle8i on Solaris.

Answer
You need the following software:

■ XML SQL Utility

■ XML Parser for Java,V2

■ JDBC driver

■ JDK

The first three can be obtained from Oracle. The fourth can be obtained from Sun

Microsystems. If you want to perform the tasks from a browser, you will also need

the following:

■ A Java compliant Web server
3-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML With Different Languages
■ XSQL Servlet

XML in the Database: Performance

Where Can I Find Information about the Performance of XML and Oracle?
Is there a whitepaper that discusses the performance of XML and Oracle?

Answer
Currently, we do not have any official performance analyses due to the lack of a

performance standard or benchmark for XML products.

How Can I Speed Up the Record Retrieval in XML Documents?
I have a database with millions of records. I give a query based on some 4/5

parameters, and retrieve the records corresponding to that, I have added indexes in

the database for faster retrieval of the same, but since the number of records

returned is quite high and I planned to put a previous and next link to show only 10

records at a time, I had to get the count(*)  of the number of records that match.

Since there are so many records, and count(*)  does not consider index, it takes

nearly 20-30 seconds for the retrieved list to be seen on the browser window. If I

remove that count(*) , the retrieval is quite fast, but then there is no previous and

next as I had linked them to count(*) .

Answer
I presume you are referring on a faster way to retrieve XML documents. The

solution is to use SAX interface instead of DOM.

Make sure to select the COUNT(*)  of an indexed column (the more selective the

index the better), this way the optimizer can satisfy the count query with a few I/Os

of the index blocks instead of a full-table scan.

Using XML With Different Languages
My application requires communication with outside entities that may have a

totally different language system. If I need to put information in other languages

(for instance, Chinese) into XML, do I need to treat and process them differently?

For example, do I need to care which encoding they use, or would the parser be able

to recognize it? Would there be any problems when dealing with the database?
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-39



Further References
Answer
XML inherently supports multiple languages in a single document. Each entity can

use a different encoding from the others; that is, you could add a Chinese entity

encoded in a Chinese encoding to the rest of the document. You could also treat all

portions uniformly, regardless of the language used, by encoding in Unicode. Using

the former, you must have an encoding declaration in the XML text declaration.

Oracle XML Parsers are designed to be able to handle most external entities and

recognizes a wide range of encodings, including most widely used ones from all

over the world.

The database should support all the languages you are going to use on XML.

Chinese character sets like ZHS16GBK and ZHT16BIG5 are a superset of ASCII so

you may be able to do with one of them to serve for English and Chinese, but you

may want to use Unicode to use more languages.

Further References

Other XML Frequently Asked Questions
Here are some other XML Frequently Asked Question sites of interest:

■ http://www.ucc.ie/xml/

■ http://www.oasis-open.org/cover/

Recommended XML and XSL Books
Can you recommend a good XML or XSL book?

Answer
■ A publisher group by the name of WROX has a number of helpful books. One

of these, XML Design and Implementation by Paul Spencer covers XML, XSL and

development well.

■ Building Oracle XML Applications by Steve Muench (published by O'Reilly) See

http://www.oreilly.com/catalog/orxmlapp/

■ The XML Bible. Although I do not have this book, my impression that it is good

one on XML and XSL. I read the updated chapter 14 from:

http://metalab.unc.edu/xml/books/bible/  and it gave me a good
3-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)

http://www.oasis-open.org/cover/xml.html#faq


Further References
understanding of XSLT. Downloading this chapter is free so you can get a good

impression.

■ Oracle XML Handbook by the Oracle XML Product Development Team

http://www.osborne.com/oracle/
Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs 3-41



Further References
3-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XS
4

Using XSL and XSLT

This chapter contains the following sections:

■ Introducing XSL

■ XSL Transformation (XSLT)

■ XML Path Language (Xpath)

■ CSS Versus XSL

■ XSL References

■ Frequently Asked Questions: XSL and XSLT
L and XSLT 4-1



Introducing XSL
Introducing XSL
XML documents have structure but no format. Extensible Stylesheet Language

(XSL) adds formatting to XML documents.

XSL provides a way of displaying XML semantics. It can map XML elements into

other formatting langauges such as HTML.

The W3C XSL Specification
The W3C is developing the XSL specification as part of its Style Sheets Activity. XSL

has document manipulation capabilities beyond styling. It is a stylesheet language

for XML.

The July 1999 W3C XSL specification, was split into two separate documents:

■ XSL syntax and semantics

■ How to use XSL to apply style sheets to transform one document into another

The formatting objects used in XSL are based on prior work on Cascading Style

Sheets (CSS) and the Document Style Semantics & Specification Language (DSSSL).

XSL is designed to be easier to use than DSSSL.

Capabilities provided by XSL as defined in the proposal enable the following

functionality:

■ Formatting of source elements based on ancestry and descendency, position,

and uniqueness

■ The creation of formatting constructs including generated text and graphics

■ The definition of reusable formatting macros

■ Writing-direction independent stylesheets

■ An extensible set of formatting objects.

XSL Specification Proposal
The XSL specification defines XSL as a language for expressing stylesheets. Given a

class of arbitrarily structured XML documents or data files, designers use an XSL

stylesheet to express their intentions about how that structured content should be

presented; that is, how the source content should be styled, laid out, and paginated

in a presentation medium, such as a window in a Web browser or a hand-held

device, or a set of physical pages in a catalog, report, pamphlet, or book. Formatting

is enabled by including formatting semantics in the result tree.
4-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introducing XSL
Formatting semantics are expressed in terms of a catalog of classes of formatting

objects. The nodes of the result tree are formatting objects. The classes of formatting

objects denote typographic abstractions such as page, paragraph, table, and so

forth.

Finer control over the presentation of these abstractions is provided by a set of

formatting properties, such as those controlling indents, word and letter spacing,

and widow, orphan, and hyphenation control. In XSL, the classes of formatting

objects and formatting properties provide the vocabulary for expressing

presentation intent.

An implementation is not mandated to provide these as separate processes.

Furthermore, implementations are free to process the source document in any way

that produces the same result as if it were processed using the conceptual XSL

processing model.

Namespaces in XML
A namespace is a unique identifier or name. This is needed because XML

documents can be authored separately with different DTDs or XML Schemas.

Namespaces prevent conflicts in markup tags by identifying which DTD or XML

Schema a tag comes from. Namespaces link an XML element to a specific DTD or

XML Schema.

Before you can use a namespace marker such as rml: , xhtml: , or xsl: , you must

identify it using the namespace indicator, xmlns  as shown in the next paragraph.

XSL Stylesheet Architecture
The XSL stylesheets must include the following syntax:

■ Start tag stating the stylesheet, such as <xsl:stylesheet2>

■ Namespace indicator, such as

xmlns:xsl="http//www.w3.org/TR/WD-xsl"  for an XSL namespace

indicator and xmlns:fo="http//www.w3.org/TR/WD-xsl/FO"  for a

formatting object namespace indicator

■ Template rules including font families and weight, colors, and breaks. The

templates have instructions that control the element and element values

■ End of stylesheet declaration, </xsl:stylesheet2>

See Also:   http://w3.org/TR/REC-xml-names
Using XSL and XSLT 4-3



XSL Transformation (XSLT)
XSL Transformation (XSLT)
XSLT is designed to be used as part of XSL. In addition to XSLT, XSL includes an

XML vocabulary for specifying formatting. XSL specifies the styling of an XML

document by using XSLT to describe how the document is transformed into another

XML document that uses the formatting vocabulary.

Meanwhile the second part is concerned with the XSL formatting objects, their

attributes, and how they can be combined.

XSLT 1.1 Specification
The W3C Working Group on XSL has just released a document describing the

requirements for the XSLT 1.1 specification. The primary goal of the XSLT 1.1

specification is to improve stylesheet portability. The new draft is available at

http://www.w3.org/TR/xslt11req

In addition to supporting user-derocessors have exploited the XSLT 1.0 extension

mechanism to provide additional built-in transformation functionality. As useful

built-in extensions have emerged, users have embraced them and have begun to

rely on them.

However the benefits of these extensions come at the price of portability. Since

XSLT 1.0 provides no details or guidance on the implementation of extensions,

today any user-written or built-in extensions are inevitably tied to a single XSLT

processor.

Goal 1. Improve Stylesheet Portability
The primary goal of the XSLT 1.1 specification is to improve stylesheet portability.

This goal will be achieved by standardizing the mechanism for implementing

extension functions, and by including in the core XSLT specification two of the

built-in extensions that many existing vendors XSLT processors have added due to

user demand:

■ Support for multiple output documents from a transformation

■ Support for converting a result tree fragment to a nodeset for further processing

By standardizing these extension-related aspects which multiple vendor

implementations already provide, the ability to create stylesheets that work

across multiple XSLT processors should improve dramatically.

See Also: Chapter 20, "Using XML Parser for Java"
4-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



CSS Versus XSL
Goal 2. Support the New XML Specification
A secondary goal of the XSLT 1.1 specification is to support the new XML base

specification.

The XSLT 1.1 specification proposal provides the requirements that will achieve

these goals. The working group has decided to limit the scope of XSLT 1.1 to the

standardization of features already implemented in several XSLT 1.0 processors,

and concentrate first on standardizing the implementation of extension functions.

Standardization of extension elements and support for new XML Schema data type

aware facilities are planned for XSLT 2.0.

XML Path Language (Xpath)
A separate, related specification is published as the XML Path Language (XPath)

Version 1.0. XPath is a language for addressing parts of an XML document,

essential for cases where you want to specify exactly which parts of a document are

to be transformed by XSL. For example, XPath lets you select all paragraphs

belonging to the chapter element, or select the elements called special notes. XPath

is designed to be used by both XSLT and XPointer. XPath is the result of an effort to

provide a common syntax and semantics for functionality shared between XSL

transformations and XPointer.

CSS Versus XSL
W3C  is working to ensure that interoperable implementations of the formatting

model is available.

Cascading Stylesheets (CSS)
Cascading Stylesheets (CSS) can be used to style HTML documents. CSS were

developed by the W3C Style Working Group. CSS2 is a style sheet language that

allows authors and users to attach styles (for example, fonts, spacing, or aural cues)

to structured documents, such as HTML documents and XML applications.

By separating the presentation style of documents from the content of documents,

CSS2 simplifies Web authoring and site maintenance.

XSL
XSL, on the other hand, is able to tranform documents. For example, XSL can be

used to transform XML data into HTML/CSS documents on the Web server. This
Using XSL and XSLT 4-5



XSL References
way, the two languages complement each other and can be used together. Both

languages can be used to style XML documents. CSS and XSL will use the same

underlying formatting model and designers will therefore have access to the same

formatting features in both languages.

The model used by XSL for rendering documents on the screen builds on years of

work on a complex ISO-standard style language called DSSSL. Aimed mainly at

complex documentation projects, XSL also has many uses in automatic generation

of tables of contents, indexes, reports, and other more complex publishing tasks.

XSL References
Examples on using XSL can be found throughout this manual. In particular, refer to

the following chapters in Oracle9i Case Studies - XML Applications:

■  "Customizing Content with XML: Dynamic News Application"

■  "Oracle9i AS Wireless Edition and XML"

■  "Customizing Presentation with XML and XSQL: Flight Finder"

Frequently Asked Questions: XSL and XSLT

How Do I Write an IF Statement in XSL That Tests for Values Within Tags?
What is the syntax to compare not an element but the value of the element?  So far,

the documentation I have read tests for tags but not values within the tags. Here is a

portion of my XSL document:

<xsl:template match="EmployeeList">

See Also:

■ http://www.oasis-open.org/cover/xsl.html

■ http://www.mulberrytech.com/xsl/xsl-list/

■ http://www.builder.com/Authoring/XmlSpot/?tag=st.cn.sr1.ssr.

bl_xml

■ http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/i

ndex.html

■ http://www.arbortext.com
4-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)

http://www.oasis-open.org/cover/xsl.html
http://www.oasis-open.org/cover/xsl.html
http://www.mulberrytech.com/xsl/xsl-list/


Frequently Asked Questions: XSL and XSLT
    <xsl:for-each select="employee">
         <xsl:value-of select="name"/>
         <xsl:value-of select="sal"/>
    </xsl:for-each>
<xsl:template>

I want to construct an IF  statement that will display the information of employees

with salaries greater than 5000 in red.  How do I insert the value of sal  in the IF
statement?

Answer
Here is the IF  statement:

  <xsl:if expr="this.nodeTypedValue == 'INIZIATIVE'">
    .........
  </xsl:if>

In an XSL Document,  How Can We Select Specific Attributes?
We are merging an XML document with its XSL stylesheet.  However the child

attributes are not being returned when we use syntax of type:

<xsl:value-of select="Foo/Bar"/>

in the XSL document. Why not? This seems to work fine in other XML parsers.

Answer
The XPath expression, Foo/Bar ,  is only designed to select the value of the <Bar>
element contained in the <Foo>  element. It will return the concatenation of all text

nodes in the nested content of that <Bar>  element, but certainly is not designed to

select any text values in attributes.

For this, you would need the syntax: Foo/Bar/@SomeAttr

to select one attribute and...

Foo/Bar/@*

to select all the attributes of <Bar>

When Converting XML to HTML, Why Do I get "Unexpected EOF"?
I am trying to render a simple XML document to an HTML form, using the

following XML and XSLT. The transformation fails with the message "Unexpected
Using XSL and XSLT 4-7



Frequently Asked Questions: XSL and XSLT
EOF" using the XSLSample.java  provided with the XML parser for Java V2.

When I remove the <td></td>  from the transformation (which contains the XPath

expression of the type {ELEMENT} , the transformation is fine.

Here is the XML:

<ROWSET>
   <ROW>
         <ELEM0>Al</ELEM0>
         <ELEM1>Gore</ELEM1>
         <ELEM2></ELEM2>
         <ELEM3></ELEM3>
         <ELEM4></ELEM4>
   </ROW>
.....

Here is the XSLT:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>
 <head>
   <title>Value Upload</title>
 </head>
   <body bgcolor="#FFFFFF">
     <form method="post" action="">
     <xsl:for-each select="ROWSET">
       <table border="1" cellspacing="0" cellpadding="0">
          <xsl:for-each select="ROW">
            <tr>
          <td><input type="text" name="elem0" value="{ELEM0}" size="10"
                maxlength="20"></td>
          <td><input type="text" name="elem1" value="{ELEM1}" size="10"
                maxlength="20"></td>
          ...
          </xsl:for-each>
     </form>
   </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

Answer
You need to put a slash (/) for the input element, as follows:
4-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
<td> <input xxxx /> </td>

Whitespace: Why are my Resulting Values Multiplied by 2?
Is there a syntax error in the following code?

Here is djia.xml :

<?xml version="1.0" encoding="Shift_JIS"?>
<?xml-stylesheet type="text/xsl" href="djia.xsl"?>
<djia>
  <company>ALCOA</company>
  <company>ExxonMobil</company>
  <company>McDonalds</company>
  <company>American Express</company>
</djia>

Here is djia.xsl :

<?xml version="1.0" encoding="Shift_JIS"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"version="1.0">
<xsl:output method="xml" encoding="Shift_JIS"/>
<xsl:template match="/djia">
<page>
     <xsl:apply-templates/>
</page>
</xsl:template>
<xsl:template match="company">
     <xsl:value-of select="current()"/>
     <xsl:value-of select="position()"/>:
     <xsl:if test="current()=../company[last()]"> last one!
     </xsl:if>
</xsl:template>
</xsl:stylesheet>

yields the following:

<?xml version="1.0" encoding="Shift_JIS" ?>
<page>ALCOA2: ExxonMobil4: McDonalds6: American Express8: last one!</page>

Why the resulting numbers are multiplied by 2?
Using XSL and XSLT 4-9



Frequently Asked Questions: XSL and XSLT
Answer
The answer is whitespace. When your /djia  template does

<xsl:apply-templates/>  it selects all child nodes of <djia> . Since your

djia.xml  is nicely indented, that means that child nodes of <djia>  are:

1. TextNode containing CR + spaces to make next element look indented

2. <company>    (with value ALCOA)

3. TextNode containing CR + spaces to make next element look indented

4. <company>    (with value ExxonMobil)

5. TextNode containing CR + spaces to make next element look indented

6. <company>    (with value McDonalds)

7. TextNode containing CR + spaces to make next element look indented

8. <company>    (with value American Express)

9. TextNode containing CR + spaces to put </djia> on next line.

So as the XSLT processor is processing this current node list, the position()
function is the position in the current node list, which are 2, 4, 6, 8 for the

<company>  element.

You should be able to fix the problem by adding a top level:

 <xsl:strip-space elements="*"/>

However, a bug in XDK for Java currently prevents this from working correctly.

One workaround is to use:

<xsl:apply-templates select="company"/>

instead of only:

<xsl:apply-templates/>

How Can I Specify a NULL Indicator in XSL?
I want my XSLT to output <mytag  null="yes"/>  when my corresponding

source XML is <mytag /> or <mytag NULL="YES"/> . How do I specify that

within my XSLT?

Answer
Use the following syntax:
4-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
<xsl:template match="mytag">
  <!-- If there are no child nodes -->
  <xsl:if test="not(node())">
    <mytag null="yes"/>
  </xsl:if>
</xsl:template>

How Can Transfer Tag Names in XSLT?
I need to use XSLT to change my XML code from:

<REF_STATUS>
 ...
</REF_STATUS>

to:

<REF index="STATUS">
...
</REF>

and similar code for REF_VATCODE and REF_USFLG. Here is the first attempt I

wrote, which works:

<!-- fix REF_STATUS nodes -->
<xsl:template priority="1" match="REF_STATUS">
  <xsl:element name="REF">
   <xsl:attribute name="index">STATUS</xsl:attribute>
    <xsl:apply-templates/>
  </xsl:element>
</xsl:template>

<!-- fix REF_USFLG nodes -->
<xsl:template priority="1" match="REF_USFLG">
  <xsl:element name="REF">
   <xsl:attribute name="index">USFLG</xsl:attribute>
    <xsl:apply-templates/>
  </xsl:element>
</xsl:template>

<!-- fix REF_VATCODE nodes -->
<xsl:template priority="1" match="REF_VATCODE">
  <xsl:element name="REF">
   <xsl:attribute name="index">VATCODE</xsl:attribute>
    <xsl:apply-templates/>
 </xsl:element>
Using XSL and XSLT 4-11



Frequently Asked Questions: XSL and XSLT
</xsl:template>

There are three tag names all beginning with REF_, that are changed into the REF
tagname with and index attribute equal to the remainder of the original tag name.

I'd like to make one rule which matches all of these and does the correct

transformation.  Here is one attempt:

<xsl:template priority="1" match="starts-with(local-name(),'REF_')">
  <xsl:element name="REF">
   <xsl:attribute name="index">
    <xsl:value-of select="substring-after(local-name(),'REF_')"/>
   </xsl:attribute>
    <xsl:apply-templates/>
  </xsl:element>
</xsl:template>

Unfortunately, I get this error message:

Error occurred while processing elName.xsl: XSL-1013: Error in expression:
'starts-with(local-name(),'REF_')'.

What is wrong with the above expression?

Answer
The following works for me:

Note the match="starts-with(..)"  is illegal because it is not a valid match

pattern. You will need:

match="*[starts-with(local-name(.),'REF_')]"

as shown below:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <!-- Identity Transform -->
  <xsl:template match="node()|@*">
    <!-- Copy the current node -->
    <xsl:copy>
      <!-- Including any attributes it has and any child nodes -->
      <xsl:apply-templates select="@*|node()"/>
    </xsl:copy>
 </xsl:template>

<xsl:template priority="2" match="*[starts-with(local-name(),'REF_')]">
  <REF index="{substring-after(local-name(.),'REF_')}">
    <xsl:apply-templates/>
4-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
  </REF>
 </xsl:template>
</xsl:stylesheet>

This transforms a document like:

<foo>
   <bar>
     <REF_STATUS>
        <baz/>
     </REF_STATUS>
     <zoo>
        <REF_USFLG>
           <boo/>
        </REF_USFLG>
     </zoo>
   </bar>
</foo>

into the result:

<foo>
   <bar>
     <REF index="STATUS">
        <baz/>
     </REF>
     <zoo>
        <REF index="USFLG">
           <boo/>
        </REF>
     </zoo>
   </bar>
</foo>

How Do I Convert A String to a Nodeset in XSL?

Question 1
The XML we receive is wrapped with extra code using CDATA notation. My XSL is

not picking up the elements in the CDATA section. What do I need to do?
Using XSL and XSLT 4-13



Frequently Asked Questions: XSL and XSLT
Answer 1
Inside a <![CDATA[  ]]>  are not elements and attributes for querying with

XPath. They are just literal characters (angle brackets, names, and quotes) that look

like elements and attributes, but are not in the infoset tree as separate nodes.

Inside a CDATA there is just a single text node. XSL will not pick up elements in the

CDATA. The best you can do is:

■ Match on string content of the CDATA

■ Programmatically parse the document and programmatically replace the

CDATA node by the result of parsing the CDATA node's content as an XML

document.

■ Extract and parse the string-content of the CDATA and process that with XSLT

Question 2
In one of your examples, I found an XSL file, toolbar.xsl , that does what

appears to be converting strings to a nodeset by doing the following XSL:

<xsl:variable name="barns"select="my:nodeset($bar)"/>
<xsl:stylesheet version="1.0"xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:my="http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.Extensio
ns"exclude-result-prefixes="my">
    <xsl:template match="/">
      <xsl:call-template name="toolbar">
        <xsl:with-param name="bar">
          <toolbar>
             <button name="xxx" url="www.oracle.com"/>
          </toolbar>
        </xsl:with-param>
      </xsl:call-template>
    </xsl:template>
...

Is my observation correct? I have extracted the CDATA section into a variable, but I

think I need to convert it to a nodeset. When I tried it using

AsyncTransformSample.java  in TransView bean, I get the error:

XSL-1045: Extension function error: Class not found
'oracle.xml.parser.v2.Extensions'

Is this part of the standard packages or do I need to import it.  The import

statement:
4-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
import oracle.xml.parser.v2.*;

is already in AsyncTransformSample.

Answer 2
No. The ora:node-set() converts result tree fragments to nodesets, not strings to

nodesets. To convert strings to nodesets you have to parse the string. XSLT does not

have a built-in parse-string()  function, so we can build one as a Java extension

function. See Chapter 16 in Developing Oracle XML Applications by Steve Muench

(O’Reilly)  for details on developing and debugging Java XSLT extension functions.

Here is an example Java class that parses a string and returns a nodeset containing

the root node of the parsed XML document in a string. If there is an error during

parsing, it returns an empty nodeset.

import org.w3c.dom.*;
import org.xml.sax.SAXException;
import oracle.xml.parser.v2.*;
import java.io.StringReader;
public class Util {
  public static NodeList parse (String s) {
    // Create a new parser
    DOMParser d = new DOMParser();
    try {
      // Parse the string into an in-memory DOM tree
      d.parse( new StringReader(s) );
      // Return a node list containing the root node
      return ((XMLDocument)d.getDocument()).selectNodes("/");
    }
    catch (Exception e) {
      // Return an empty nodelist in case of an error.
      return (new XMLDocument()).getChildNodes();
    }
  }
}

Here is a sample message.xml  file that simulates the scenario you are in with

some XML in the body of an XML document enclosed in a CDATA section.

<message>
  <from>Steve</from>
  <to>Albee</to>
  <body><![CDATA[
    <order id="101">
Using XSL and XSLT 4-15



Frequently Asked Questions: XSL and XSLT
      <item id="12" qty="10"/>
      <item id="13" qty="3"/>
    </order>
  ]]></body>
</message>

Here is a sample stylesheet that processes the <message>  document, parses and

captures the subdocument (that is encoded as a CDATA text node in the <body> )

in an XSL variable, and then uses <xsl:for-each> to select information out of the

$body  variable containing the now-parsed message body. Here we just print out

the identifiers of the <order> , but this will give you a general idea.

<xsl:stylesheet  version="1.0"
  xmlns:util="http://www.oracle.com/XSL/Transform/java/Util"
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <!--
   | Above, we've associated the "util" namespace prefix
   | with the appropriate namespace URI that maps to
   | the "Util" class. The Util.java class is not in any
   | package, otherwise the URI would have looked like
   | http://www.oracle.com/XSL/Transform/java/my.pkg.Util
   +-->

  <xsl:template match="message">
    <!--
     | Use the parse() function in the util namespace
     | to parse the string value of the <body> child
     | element of the current <message> element, and
     | return the root node of the document
     +-->
    <xsl:variable name="body" select="util:parse(body)"/>
    <xsl:text>Items Ordered</xsl:text><xsl:text>&#xa;</xsl:text>
    <xsl:for-each select="$body/order/item">
      <xsl:value-of select="@id"/><xsl:text>&#xa;</xsl:text>
    </xsl:for-each>
  </xsl:template>
</xsl:stylesheet>

In XSL, How Can I Correctly Convert an XML Document Tag to a Link in HTML?
I have a question about XSL. My XML document is similar to the following:

<ROW num="1">
  <TITLE>New Java Classes</TITLE>
   <URL>/products/intermedia/</URL>
4-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
   <DESCRIPTION>&#60;a href=\"/products/intermedia/\">Java classes for
   Servlets and JSPs&#60;/a>are available.
   </DESCRIPTION>
</ROW>

When I use XSL to display the XML document in HTML, the description is not

displaying as a link eventhough I am specifying it as "&#60;a
href=\"/products/intermedia/\">"  in XML.

My XSL file is:

<xsl:template>
  <P><FONT face="arial" size="4"><B>
  <xsl:value-of disable-output-escaping="yes" select="TITLE"/>
  </B> </FONT><BR></BR><FONT size="2">
  <xsl:value-of disable-output-escaping="yes" select="DESCRIPTION"/></FONT>
  </P>
</xsl:template>

Answer
You can simply build the <a>  tag in your XSL transform.  Do something like this:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
 <xsl:template match="/">
  <xsl:for-each select="rowset">
   <table border="1">
      <th>Category</th>
 <th>ID</th>
 <th>Title</th>
 <th>Thumbnail</th>
  <xsl:for-each select="row">
   <tr>
   <td><xsl:value-of select="category"/> </td>
   <td><xsl:value-of select="id"/> </td>
   <td><a href="Present.jsp?page=PRES_VIEW_SINGLE&amp;id={id}"><xsl:value-of
select="title"/> </a></td>
   <td><img src="/servlets/thumb?presentation={id}&amp;slide=0" /></td>
  </tr>
 </xsl:for-each>
 </table>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>
Using XSL and XSLT 4-17



Frequently Asked Questions: XSL and XSLT
Am I Using the Correct XSL Headers for my WML Transformation?
I am using oracle.xml.async.XSLTransformer  included in XDK for Java v2

to perform an XSL transformation on an XML document. I need a WML output. My

stylesheet contains the following code:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" omit-xml-declaration="no" encoding="ISO-8859-1"/>
<xsl:output doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"
doctype-public="-//WAPFORUM//DTD WML 1.1//EN"/>
...

When I check the transformation using a servlet, I get the following error in my

WAP emulator:

"Received HTTP status: 502 - WML Encoding Error, 1:com.sun.xml.parser/P-076
Malformed UTF-8 char

Is an XML encoding declaration missing? In fact, the WML generated is not

including any XML header information. The output starts like this:

 <wml>
 <card id="gastronomia" title="Mis direcciones de gastronomia"><p>Mis
direcciones de gastronomia</p>
...
How do I get the transformer to output the XML header:

"<?xml version="1.0" encoding="ISO-8859-1"?>"

Answer
Use oracle.xml.parser.v2.XSLProcessor . Also ensure your stylesheet has:

<xsl:output method="xml"/>

just inside the <xsl:stylesheet> , and outside of any <xsl:template>

Also ensure that you're using the following API:

processXSL(stylesheet,source,printwriter)

In an XSL Transformation, How Do I Ensure that the DTD File Can be Located?
My BC4J source XML file has the following line that refers to the DTD:

<!DOCTYPE ViewObject SYSTEM "jbo_03_01.dtd">
4-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
When transforming the file, this line results in an error, saying it cannot find jbo_
03_01.dtd . The DTD file is in my classpath.

Answer
There are two solutions to this.

■ Extract jbo_03_01.dtd  from jbomt.zip  and put it in the same directory as

your VO files. This is complicated if you have VO files at several different

directory levels.

■ Use the trick that BC4J itself uses when parsing its own XML metadata files

when parsing in your program:

DOMParser d = new DOMParser();
       // read DTD as a resource from the classpath
       InputStream is = ...getResourceAsStream("/jbo_03_01.dtd");
       d.parseDTD( is );
       DTD dtd = d.getDoctype();

       d.setDoctype( dtd ); // set and cache the DTD to use.

       // Now, subsequences calls to d.parse() will

       // use the cached version of jbo_03_01.dtd

Then transform the result using XSLStylesheet and

XSLProcessor.process(style,source,printwriter) .

In XSL, How Do I Prevent the Namespace Definition from Being Repeated For Each
Element?

My second question relates to namespaces. I have the following piece of code in my

stylesheet:

<xsl:attribute name="data:text">
  <xsl:value-of select="@Name"/>@ipet:dataBindingObject
</xsl:attribute>

At the top of my stylesheet, I have defined the marlin  namespace:

xmlns:data="http://xxx.us.yyy.com/cabo/marlin"

In the resulting XML file (the marlin  UIX file), the namespace definition is

repeated for each element:

<messageTextInput id="Status" name="Status" prompt="Status"
Using XSL and XSLT 4-19



Frequently Asked Questions: XSL and XSLT
required="yes"xmlns:data="http://xxx.us.yyy.com/cabo/marlin"
data:text="Status@ipet:dataBindingObject" rows="1" maximumLength="3"
columns="3"/>

Answer
Try defining the data namespace prefix on the document element in your XSLT root

template. If it is defined at a higher level in the result tree we may notice that and

not output it on each lower level element.

JDeveloper9i has virtual Virtual Objects (VOs) that expose the metadata of aVO

kind of like the database X$ views. This means that you could use the normal

VO.writeXML()  method against one of these virtual metadata views to perform

operations like I think you are trying to do to render a data-driven output based on

the structure of a given VO.

How Do I Pass a Parameter from a Java Program to an XSL Stylesheet?
Is there a way to pass a parameter from a Java program to an XSLT stylesheet using

Oracle XSL processor? The XSLT standard states that "...XSLT does not define the

mechanism by which parameters arepassed to the stylesheet." (see

http://www.w3.org/TR/xslt#variable-values ). This is possible, but is a

vendor-dependant implementation. However, none of the XSL constructors in the

OracleXSLprocessor  seems to allow for this.

We need to pass in an integer to a stylesheet and use the xsl:position()
function to extract a document fragmentfrom an XML doc. For example:

<xsl:templatematch="ROW">
<xsl:if test="position()=1">
  SELECT DISTINCT sp.site_datatype_id
  FROM ref_hm_site_pcode sp
  WHERE sp.hm_site_code = '<xsl:value-ofselect='HM_SITE_CODE'/>'
  AND sp.hm_pcode = '<xsl:value-ofselect='HM_PCODE'/>'
</xsl:if>
</xsl:template>

However, instead of position()=1 ,  we need to substitute a parameter, such as

$1 .

How can we do this?

Answer
If you have a top-level parameter declared in your stylesheet, such as:
4-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
<xsl:stylesheet ... >
   <!-- declare top-level $foo parameter, default value to 5 -->
   <xsl:param name="foo" select="5"/>
   <xsl:template match="/">
   <xsl:if test="$foo=10">
     :

Then you can use the following methods on

oracle.xml.parser.v2.XSLStylesheet  to control parameters:

■ resetParams()

■ setParam()

To set the parameter named foo  to the number 10, use the following:

myStylesheet.setParam("foo","10");

To set foo  to the string ten , you need to quote it:

myStylesheet.setParam("foo","'ten'");

Question 2
If I need to pass parameters to the stylesheet in a Java program, what Java class

must I use?

Currently, we use:

processXSL(XSLStylesheet xsl,XMLDocument xml)

What method canI use to pass the parameters?

Answer 2
See:

■ XSLStylesheet.setParam()

■ XSLStylesheet.resetParams()

How Can I Resolve the Error XSL-1009 Attribute ’XSL Version’ Not Found in HTML?
We used Note:104675.1  from http://metalink.oracle.com , that explains

how to use the XDK to retrieve XML data from Oracle and transform it to HTML.

We can generate the XML output file but when we try to generate the HTML output

by using the file, Emp.xsl , which has the following argument:
Using XSL and XSLT 4-21



Frequently Asked Questions: XSL and XSLT
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

it shows error XSL-1009 ATTRIBUTE 'XSL VERSION' NOT FOUND IN 'HTML'

■ What is the right argument for the XSL file? We tried <xsl:stylesheet
xmlns:xsl="http://www.w3.org/XSL/Transform/1.0"
version="1.0">  and it works but the HTML output does not have any

HTML tag at all, just pure data.

■ I have never seen the HTML output generated from the XMLParser so I do not

know whether it will generate HTML tags for me automatically or not.

What should the HTML output file look like?

Answer
You must add xsl:version="1.0"  attribute to your <html>  element.

What XPath Expression Will Retrieve Only Terminal Child Elements?
Can you tell me what XPath expression I should use to retrieve only terminal child

elements (that is, elements which don't have any child elements) from a specified

element. For example, I want to use an XPath expression to return only the TABLE
child elements highlighted in red below:

<TABLE>
     <ID>1</ID>
     <NAME>1</NAME>
     <SIZE>1</SIZE>
     <COLUMNS>
        <COLUMN>
            <ID>1</ID>
            <NAME>Customers</NAME>
        <COLUMN>
        <COLUMN>
            <ID>c</ID>
            <NAME>Categories</NAME>
        <COLUMN>
     <COLUMNS>
     <DATE_CREATED>01/10/2000</DATE_CREATED>
  </TABLE>

Answer 1
A possible solution is the following:
4-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: XSL and XSLT
<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="TABLE">
  <xsl:apply-templates select="child::*[not(child::*)]"/>
</xsl:template>
</xsl:stylesheet>

Answer 2
The expression you want is:

/TABLE/*[count(child::*) = 0]

or

/TABLE/*[not (child::*)]

You can omit the child axis, so above expression is the same as:

/TABLE/*[count(*) = 0]

or

/TABLE/*[not (*)]

Child Attributes are Not Returned After Applying XSL Stylesheet
We are merging an XML document with its XSL stylesheet.  Child attributes are not

being returned when they are using syntax of type:

<xsl:value-of select="Foo/Bar"/>

in the XSL document. This seems to work fine in other XML parsers including XML

Spy and Stylus.

Answer
The XPath expression Foo/Bar  is only designed to select the value of the <Bar>
element contained in the <Foo> element. It will return the concatenation of all text

nodes in the nested content of that <Bar>  element, but certainly is not designed to

select any text values in attributes. For this, you'd need the syntax:

Foo/Bar/@SomeAttr      to select one attribute and...

Foo/Bar/@*    to select all the attributes of <Bar>.
Using XSL and XSLT 4-23



Frequently Asked Questions: XSL and XSLT
4-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part II

 Storing and Retrieving XML From the

Database

Part II of this manual focuses on storing XML data in, and retrieving XML data

from Oracle9i, how to use XML SQL Utility (XSU), SYS.XMLType, and Database

URI-Reference to do these tasks. This section also describes how to use Oracle Text

(interMedia Text) to fine tune and turbocharge your search and retrieval of XML

data.

Part II contains the following chapters:

■ Chapter 5, "Database Support for XML"

■ Chapter 6, "Database Uri-references"

■ Chapter 7, "XML SQL Utility (XSU)"

■ Chapter 8, "Searching XML Data with Oracle Text"





Database Suppo
5

Database Support for XML

This chapter contains the following sections:

■ What are the Oracle9i Native XML Database Features?

■ XMLType Datatype

■ When to use XMLType

■ XMLType Storage in the Database

■ XMLType Functions

■ Manipulating XML Data in XMLType Columns

■ Selecting and Querying XML Data

■ Indexing XMLType columns

■ Java Access to XMLType (oracle.xdb.XMLType)

■ DBMS_XMLGEN

■ SYS_XMLGEN

■ SYS_XMLAGG

■ TABLE Functions

■ Frequently Asked Questions (FAQs): XMLType
rt for XML 5-1



What are the Oracle9i Native XML Database Features?
What are the Oracle9i Native XML Database Features?
Oracle9i supports XMLType, a new system defined object type. XMLType has

built-in member functions that offer a powerful mechanism to create, extract and

index XML data. Users can also generate XML documents as XMLType instances

dynamically using the SQL functions, SYS_XMLGEN and SYS_XMLAGG, and the

PL/SQL package DBMS_XMLGEN.

Table 5–1 summarizes the new XML features natively supported in Oracle9i.

Table 5–1 Oracle9i Native XML Support Feature Summary

XML Feature Description

XMLType (new) XMLType is a system defined datatype with predefined member functions to access
XML data. You can perform the following tasks with XMLType:

■ Create columns of XMLType and use XMLType member functions on instances of the
type. See "XMLType Datatype"  on page 5-3.

■ Create PL/SQL functions and procedures, with XMLType as argument and return
parameters. See, "When to use XMLType"  on page 5-8.

■ Store, index, and manipulate XML data in XMLType columns.

Refer to "XMLType Datatype" on page 5-3.

DBMS_XMLGEN (new) DBMS_XMLGEN is a PL/SQL package that converts the results of SQL queries to
canonical XML format, returning it as XMLType or CLOB. DBMS_XMLGEN is
implemented in C, and compiled in the database kernel. DBMS_XMLGEN is similar in
functionality to DBMS_XMLQuery package.

Refer to "DBMS_XMLGEN"  on page 5-31.
5-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Datatype
XMLType Datatype
XMLType is a new server datatype that can be used as columns in tables, and views.

Variables of XMLType can be used in PL/SQL stored procedures as parameters,

return values, and so on. You can use XMLType inside the server, in PL/SQL, SQL

and Java. It is not currently supported through OCI.

XMLType includes useful built-in member functions that operate on XML content.
For example, function Extract extracts a specific node(s) from an XMLType instance.

New SQL functions such as SYS_XMLGEN that return XML documents return them

as XMLType. This provides strong typing in SQL statements. You can use XMLType
in SQL queries in the same way as any other user-defined datatypes in the system.

SYS_XMLGEN (new) SYS_XMLGEN is a SQL function, which generates XML within SQL queries. DBMS_
XMLGEN and other packages operate at a query level, giving aggregated results for the
entire query. SYS_XMLGEN operates on a single argument inside a SQL query and converts
the result to XML.

SYS_XMLGENtakes in a scalar value, object type, or a XMLType instance to be converted to
an XML document. It also takes an optional XMLGenFormatType  object to specify
formatting options for the result. SYS_XMLGEN returns a XMLType.

Refer to "SYS_XMLGEN"  on page 5-63.

SYS_XMLAGG (new) SYS_XMLAGG is an aggregate function, which aggregates over a set of XMLType’s.
SYS_XMLAGG aggregates all the input XML documents/fragments and produces a single
XML document by concatenating XML fragments, and adding a top-level tag.

Refer to "SYS_XMLAGG"  on page 5-72.

UriTypes (new) The UriType family of types can store and query Uri-refs in the database.
SYS.UriType is an abstract object type which provides functions to access the data pointed
to by the URL. SYS.HttpUriType and SYS.DBUriType are subtypes of UriType. The
HttpUriType can store HTTP URLs and the DBUriType can store intra-database
references. You can also define your own subtypes of SYS.UriType to handle different URL
protocols.

UriFactory package: This is a factory package that can generate instances of these
UriTypes automatically by scanning the prefix, such as, http:// or ftp:// etc. Users can
also register their own subtype with UriFactory, specifying the supported prefix. For
example, a subtype to handle the gopher protocol can be registered with UriFactory,
specifying that URLs with the prefix “gopher://” are to be handled by your subtype.
UriFactory now generates the registered subtype instance for any URL starting with that
prefix.

See Chapter 6, "Database Uri-references".

Table 5–1 Oracle9i Native XML Support Feature Summary (Cont.)

XML Feature Description
Database Support for XML 5-3



XMLType Datatype
How to use XMLType
XMLType can be used to create table columns. The createXML()  static function in

the XMLType can be used to create XMLType instances for insertion. By storing your

XML documents as XMLType, XML content can be readily searched using standard

SQL queries.

We will show some simple examples on how to create an XMLType column and use

it in a SQL statement.

Example of Creating XMLType columns
The XMLType column can be created like any other user-defined type column,

CREATE TABLE warehouses(
  warehouse_id NUMBER(3),
  warehouse_spec SYS.XMLTYPE,
  warehouse_name VARCHAR2(35),
  location_id NUMBER(4));

Example of Inserting values into an XMLType column
To insert values into the XMLType column, you would need to bind an XMLType

instance. An XMLType instance can be easily created from a varchar or a CLOB by

using the createXML() static function of the XMLType.

INSERT into warehouses (warehouse_id, warehouse_spec)
   VALUES (1001, sys.XMLType.createXML(
                    ’<Warehouse whNo="100">
                       <Building>Owned</Building>
                     </Warehouse>’));

In this example, we are creating an XMLType instance from a string literal. The

input to the createXML could be any expression which returns a varchar2 or a

CLOB.

The createXML function also checks to make sure that the input XML is

well-formed. It does not check for validity of the XML.

Note: In this release, XMLType is only supported in the server in

SQL, PL/SQL, and Java. To use XMLType on the client side, use

Oracle Call Interface (OCI) or Oracle C++ Call Interface (OCCI),

and such functions as getClobVal()  or other functions on it to

retrieve the complete XML document.
5-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Datatype
Example of Using XMLType in a SQL Statement
The following simple SELECT statement shows how you can use XMLType in a SQL

statement:-

SELECT
  w.warehouse_spec.extract('/Warehouse/Building/text()').getStringVal()
     "Building"
FROM warehouses w

where warehouse_spec  is a XMLType  column operated on by member function

Extract (). The result of this simple query is a string (varchar2):

Building
-----------------
Owned

Example of Updating an XMLType column
In this release, an XML document in an XMLType is stored packed in a CLOB.

Consequently updates, have to replace the document in place. We do not support

piece-wise update of the XML for this release.

To update an XML document, you would fire a standard SQL update statement,

except that you would bind an XMLType instance.

UPDATE warehouses SET warehouse_spec =
           sys.XMLType.createXML(
                    ’<Warehouse whono="200">
                       <Building>Leased</Building>
                     </Warehouse>’));

In this example, we are creating an XMLType instance from a string literal and

updating the warehouse_spec column with the new value. Note that any triggers

would get fired on the update statement and you can see and modify the XML

value inside the triggers.

Example of Deleting a row containing an XMLType column
Deleting a row containing an XMLType column is no different from any other

datatype.

See Also: "How to use XMLType"  on page 5-4.
Database Support for XML 5-5



XMLType Datatype
You can use the Extract and ExistsNode functions to identify rows to delete as well.

For example to delete all warehouse rows for which the warehouse building is

Leased, we can write a statement such as,

DELETE FROM warehouses e
   WHERE e.warehouse_spec.extract(’//Building/text()’).getStringVal()
           = ’Leased’;

Guidelines for using XMLType Columns
The following are guidelines for storing XML data in XMLType columns:

■ Define column XMLType. First, define a column of XMLType. You can include

optional storage characteristics with the column definition.

■ Create an XMLType instance. Use the XMLType constructor to create the

XMLType instance before inserting into the column. You can also use the SYS_
XMLGEN and SYS_XMLAGG functions to directly create instances of XMLType.

See "SYS_XMLGEN Example 3: Converting XMLType Instance"  on page 5-68

and "SYS_XMLAGG Example 2: Aggregating XMLType Instances Stored in

Tables"  on page 5-74.

■ Select or extract a particular XMLType instance. You can select out the

XMLType instance from the column. XMLType offers a choice of member

functions, such as, extract() and existsNode() , to extract a particular

node or check to see if a node exists, respectively. See Table 5–3, "XMLType

Member and Static Functions".

■ You can define an Oracle Text index. You can define an Oracle Text (interMedia

Text) index on XMLType columns. This enables you to use CONTAINS,

HASPATH, INPATH, and other text operators on the column. All the text

operators and index functions that operate on LOB columns, also work on

XMLType columns.

See Also:

■ "XMLType Query Example 6 — Extract fragments from

XMLType"  on page 28

■ "XMLType Query Example 1 — Retrieve an XML Document as

a CLOB"  on page 5-20
5-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Benefits of XMLType
Benefits of XMLType
Using XMLType has the following advantages:

■ It brings the worlds of XML and SQL together as it enables:

■ SQL operations on XML content

■ XML operations on SQL content

■ It is convenient to implement as it includes built-in functions, indexing support,

navigation, and so on.

XMLType Interacts with Other SQL Constructs
You can use XMLType in SQL statements combined with other columns and

datatypes. For example, you can query XMLType columns, join the result of the

extraction with a relational column, and then Oracle can determine an optimal way

to execute these queries.

You Can Select a Tree or Serialized Format for Your Resulting XML
XMLType is optimized to not materialize the XML data into a tree structure unless

needed. Hence when SQL selects XMLType instances inside queries, only a

serialized form is exchanged across function boundaries. These are exploded into

tree format only when operations such as extract() and existsNode()  are

performed. The internal structure of XMLType is also an optimized DOM-like tree

structure.

You Can Create functional indexes and Text indexes on XMLType
Oracle9i text index has been enhanced to support XMLType columns as well. You

can create functional indexes on Existsnode and Extract functions as well to speed

up query evaluation.

See Also:

■ "Indexing XMLType columns"  on page 31

■ Chapter 8, "Searching XML Data with Oracle Text"

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)

See Also: Chapter 8, "Searching XML Data with Oracle Text"
Database Support for XML 5-7



When to use XMLType
When to use XMLType
Use XMLType in the following cases:

■ You need to store XML as a whole in the database and retrieve it.

■ You need SQL queriability on some or the whole document. The functions

ExistsNode and Extract provide the necessary SQL queriability over XML

documents.

■ You need strong typing inside SQL statements and PL/SQL functions. Strong

typing implies that you ensure that the values passed in are XML values and

not any arbitrary text string.

■ You need the XPath functionality provided by Extract and ExistsNode functions

to work on your XML document. Note that the XMLtype uses the built-in C

XML parser and processor and hence would provide better performance and

scalability when used inside the server.

■ You need indexing on XPath searches on documents. XMLtype provides

member functions that can be used to create functional indexes to optimize

searches.

■ You do not need piecewise updates of the document.

■ Shield applications from storage models - In future releases, the XMLtype

would support different storage alternatives. Using XMLType instead of CLOBs

or relational storage, allows applications to gracefully move to various storage

alternatives later, without affecting any of the query or DML statements in the

application.

■ Preparing for future optimizations - All new functionality related to XML will

only support the XMLType. Since the server is natively aware that the XMLtype

can only store XML data, better optimizations and indexing techniques can be

done in the future.By writing applications to use XMLtype, these optimizations

and enhancements can be easily achieved in the future without rewriting the

application.

XMLType Storage in the Database
In this release, XMLType offers a single CLOB storage option. In future releases,

Oracle may provide other storage options, such as BLOBs, NCLOBS, and so on.

When you create an XMLType column, a hidden CLOB column is automatically

created to store the XML data. The XMLType column itself becomes a virtual

column over this hidden CLOB column. It is not possible to directly access the
5-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Storage in the Database
CLOB column, however, you can set the storage characteristics for the column using

the XMLType storage clause.

You cannot create VARRAYs of XMLType and store it in the database since

VARRAYs do not support CLOBs when stored in tables.

XMLType Creation Example 1 — Creating XMLType Columns
As explained earlier, you can create XMLtype columns by simply using the

XMLType as the datatype.

The following statement creates a purchase order document column of XMLType.

CREATE TABLE po_xml_tab(
  poid number,
  poDoc SYS.XMLTYPE);

XMLType Creation Example 2 — Adding XMLType Columns
You can alter tables to add XMLType columns as well. This is similar to any other

datatype,

The following statement adds a new customer document column to the table,

ALTER TABLE po_xml_tab add (custDoc sys.XMLType);

XMLType Creation Example 3 — Dropping XMLType Columns
You can alter tables to drop XMLType columns, similar to any other datatype,

The following statement drops the custDoc column.

ALTER TABLE po_xml_tab drop (custDoc sys.XMLType);

Note: You cannot create columns of VARRAY types which

contain XMLType. This is because Oracle does not support LOB

locators inside VARRAYs, and XMLType (currently) always stores

the XML data in a CLOB.
Database Support for XML 5-9



XMLType Storage in the Database
Specifying Storage Characteristics on XMLType Columns
As previously mentioned, the XML data in a XMLType column is stored as a CLOB

column. You can also specify LOB storage characteristics for the CLOB column. In

the previous example, the warehouse spec column is an XMLType column.

Figure 5–1 illustrates the XMLType storage clause syntax.

Figure 5–1 XMLType Storage Clause Syntax

Table 5–2 explains the XMLType storage clause syntax.

XMLType
column

STORE AS CLOB
LOB_segname

( LOB_parameters )

LOB_parameters
5-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Storage in the Database
You can specify storage characteristics on this column when creating the table as

follows:

CREATE TABLE po_xml_tab(
     poid NUMBER(10),
     poDoc SYS.XMLTYPE
     )
     XMLType COLUMN poDocument

Table 5–2 XMLType Storage Clause Syntax Description - See Figure 5–1

Syntax Member Description

column Specifies the LOB column name or LOB object attribute for which you are
explicitly defining tablespace and storage characteristics that are different from
those of the table. Oracle automatically creates a system-managed index for each
column you create.

LOB_segname Specify the name of the LOB data segment. You cannot use LOB_segname if you
specify more than one LOB_item .

LOB_parameters The LOB_parameters  clause lets you specify various elements of LOB storage.

■ ENABLE STORAGE IN ROW: If you enable storage in row, the LOB value is
stored in the row (inline) if its length is less than approximately 4000 bytes
minus system control information. This is the default. Restriction: For an
index-organized table, you cannot specify this parameter unless you have
specified an OVERFLOW segment in the index_org_table_clause .

■ DISABLE STORAGE IN ROW: If you disable storage in row, the LOB value is
stored out of line (outside of the row) regardless of the length of the LOB
value.Note:The LOB locator is always stored inline (inside the row) regardless
of where the LOB value is stored. You cannot change the value of STORAGE
IN ROW once it is set except by moving the table. See Oracle9i SQL Reference,
ALTER TABLE — move_table_clause .

■ CHUNKinteger : Specifies bytes to be allocated for LOB manipulation. If
integer  is not a multiple of the database block size, Oracle rounds up (in
bytes) to the next multiple. If database block size is 2048 and integer is 2050,
Oracle allocates 4096 bytes (2 blocks). Maximum value is 32768 (32K). Default
CHUNK size is one Oracle database block.You cannot change the value of
CHUNK once it is set. Note: The value of CHUNK must be less than or equal to
the value of NEXT (either the default value or that specified in the storage_
clause ). If CHUNK exceeds the value of NEXT, Oracle returns an error.

■ PCTVERSIONinteger : Specify the maximum percentage of overall LOB
storage space used for creating new versions of the LOB. The default value is
10, meaning that older versions of the LOB data are not overwritten until 10%
of the overall LOB storage space is used.
Database Support for XML 5-11



XMLType Storage in the Database
        STORE AS CLOB (
            TABLESPACE lob_seg_ts
            STORAGE (INITIAL 4096 NEXT 4096)
            CHUNK 4096 NOCACHE LOGGING
         );

The storage clause is also supported while adding columns to the table. If you want

to add a new XMLType column to this table and specify the storage clause for that

you can do the following:-

ALTER TABLE po_xml_tab  add(
     custDoc SYS.XMLTYPE
   )
   XMLType COLUMN custDoc
      STORE AS CLOB (
           TABLESPACE lob_seg_ts
           STORAGE (INITIAL 4096 NEXT 4096)
           CHUNK 4096 NOCACHE LOGGING
         );

Specifying Constraints on XMLType Columns
You can specify the NOT NULL constraint on a XMLType column. For example:

CREATE TABLE po_xml_tab (
  poid number(10),
  poDoc sys.XMLType NOT NULL
);

prevents inserts such as:

INSERT INTO po_xml_tab (poDoc) VALUES (null);

You can also use the ALTER TABLE statement to change the NOT NULL

information of a XMLType column, in the same way you would for other column

types:

ALTER TABLE po_tab MODIFY (poDoc NULL);
ALTER TABLE po_tab MODIFY (poDoc NOT NULL);

Default values and other check constraints are not supported on this datatype.

See also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for more information about LOB storage options.
5-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Functions
XMLType Functions
Oracle9i has introduced two new SQL functions ExistsNode and Extract that

operator on XMLType values.

The existsNode() function uses the XMLType.existsNode() member function

for its implementation. The syntax of the ExistsNode function is:

existsNode ( "XMLType_instance" IN sys.XMLType,
             "XPath_string" IN VARCHAR2) RETURN NUMBER

extract()  function applies an XPath expression and returns an XMLType
containing the resultant XML fragment. The syntax is:

extract ( "XMLType_instance" IN sys.XMLType,
          "XPath_string" IN VARCHAR2) RETURN sys.XMLType;

Table 5–3 lists all the XMLType SQL and member functions, their syntax and

descriptions.

You can use the SQL functions instead of the member functions ExistsNode and

Extract inside any SQL statement. All the XMLType functions use the built-in C

parser and processor to parse the XML data, validate it and apply XPath

expressions over it. It also uses an optimized in-memory DOM tree to do processing

(such as Extract).

Note: In this release, existsNode() and extract() SQL functions

only use the functional implementation. In future releases, these

functions will use new indices and be further optimized.
Database Support for XML 5-13



XMLType Functions
Table 5–3 XMLType Member and Static Functions

XMLType
Function Syntax Summary Description

createXML() STATIC FUNCTION

 createXML(xmlval IN varchar2)

 RETURN sys.XMLType deterministic

Static function to create the XMLType  instance from a
string. Checks for well-formed XML value.

PARAMETERS: xmlval (IN) - string containing the XML
document.

RETURNS: A XMLType instance. String must contain a
well-formed XML document.

See also "XMLType Query Example 6 — Extract
fragments from XMLType"  on page 5-28, and other
examples in this chapter.

createXML() STATIC FUNCTION

 createXML(xmlval IN clob)

 RETURN sys.XMLType deterministic

Static function to create the XMLType instance from a
CLOB. Checks for well-formed XML value.

PARAMETERS: xmlval (IN) - CLOB containing the XML
document

RETURNS: A XMLType instance. CLOB must contain a
well-formed XML document.

See "XMLType Query Example 2 — Using extract() and
existsNode()"  on page 5-24 and other examples in this
chapter.

existsNode() MEMBER FUNCTION

 existsNode(xpath IN varchar2)

 RETURN number deterministic

Given an XPath expression, checks if the XPath applied
over the document can return any valid nodes.

PARAMETERS: xpath (IN) - the XPath expression to test

RETURNS: 0 if the XPath expression does not return any
nodes else 1. If the XPath string is null or the document
is empty, then a value of 0 is returned.

See also "XMLType Query Example 2 — Using extract()
and existsNode()"  on page 5-24.

extract() MEMBER FUNCTION

extract(xpath IN varchar2)

 RETURN sys.XMLType deterministic

Given an XPath expression, applies the XPath to the
document and returns the fragment as a XMLType

PARAMETERS: xpath (IN) - the XPath expression to
apply

RETURNS: A XMLType instance containing the result
node(s). If the XPath does not result in any nodes, then
the result is NULL.

See also "XMLType Query Example 6 — Extract
fragments from XMLType"  on page 5-28.
5-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Functions
isFragment() MEMBER FUNCTION

isFragment()

RETURN number

Checks if the document is really a fragment. A fragment
might be present, if an EXTRACT or other operation was
done on an XML document that may have resulted in
many nodes.

RETURNS: A numerical value 1 or 0 indicating if
the XMLType instance contains a fragment or a
well-formed document.

See also "XMLType Query Example 6 — Extract
fragments from XMLType"  on page 5-28.

getClobVal() MEMBER FUNCTION

    getClobVal()

 RETURN clob deterministic

Gets the document as a CLOB.

RETURNS: A CLOB containing the serialized XML
representation.Free the temporary CLOB after use.

See also: "XMLType Query Example 1 — Retrieve an
XML Document as a CLOB"  on page 5-55.

getStringVal() MEMBER FUNCTION

 getStringVal()

RETURN varchar2 deterministic

Gets the XML value as a string.

RETURNS: A string containing the serialized XML
representation, or in case of text nodes, the text itself. If
the XML document is bigger than the maximum size of
VARCHAR2, (4000 bytes), an error is raised at run time.

See"XMLType Delete Example 1 — Deleting Rows Using
extract" and also, "How to use XMLType"  on page 5-4.

getNumberVal() MEMBER FUNCTION

getNumberVal()

RETURN number deterministic

Gets the numeric value pointed to by the XMLType as a
number

RETURNS: A number formatted from the text value
pointed to by the XMLType instance. The XMLType must
point to a valid text node that contains a numeric value.

See also: "XMLType Query Example 2 — Using extract()
and existsNode()"  on page 5-24.

Table 5–3 XMLType Member and Static Functions(Cont.)

XMLType
Function Syntax Summary Description
Database Support for XML 5-15



Manipulating XML Data in XMLType Columns
Manipulating XML Data in XMLType Columns
Since XMLType is a user-defined data type with functions defined on it, you can

invoke functions on XMLType and obtain results. You can use XMLType wherever

you use a user-defined type. This includes columns of tables, views, trigger body,

type definitions, and so on.

You can perform the following manipulations (DML) on XML data in XMLType
columns:

■ Insert XML data

■ Update XML data

■ Delete XML data

Inserting XML Data into XMLType Columns
You can insert data into XMLType columns in the following ways:

■ By using the INSERT statement (in SQL, PL/SQL, C(OCI), and Java)

■ By using SQL*Loader

The XMLType columns can only store well-formed XML documents. Fragments and

other non-well formed XML cannot be stored in such columns.

Using INSERT Statements
If you use the INSERT statement to insert XML data into XMLType , you need to

first create XML documents to perform the insert with. You can create the insertable

XML documents as follows:

1. Using XMLType  constructors, SYS.XMLType.createXML().T his can be

done in SQL, PL/SQL, C(OCI), and Java.

2. Using SYS_XMLGEN and SYS_XMLAGG SQL functions. This can be done in

PL/SQL,SQL, C(OCI), and Java.

See Also: "How to use XMLType" examples starting on page 5-4,

for ideas on how you can use extract() , existsNode() ,

getClobVal(),  and other functions.
5-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Manipulating XML Data in XMLType Columns
XMLType Insert Example 1- Using createXML() with CLOB
The following examples use INSERT...SELECT and the XMLType.createXML()

construct to first create an XML document and then insert the document into

XMLType columns.

For example, if the po_clob_tab is a table containing a CLOB that stores an XML

document,

CREATE TABLE po_clob_tab
(
  poid number,
  poClob CLOB
);

-- some value is present in the po_clob_tab
INSERT INTO po_clob_tab
     VALUES(100, ’<?xml version="1.0"?>
                    <PO pono="1">
                       <PNAME>Po_1</PNAME>
                       <CUSTNAME>John</CUSTNAME>
                       <SHIPADDR>
                         <STREET>1033, Main Street</STREET>
                         <CITY>Sunnyvalue</CITY>
                         <STATE>CA</STATE>
                       </SHIPADDR>
                    </PO>');

Now you can insert a purchase order XML document into table, po_tab by simply

creating an XML instance from the CLOB data stored in the other po_clob_tab,

INSERT INTO po_xml_tab
       SELECT poid, sys.XMLType.createXML(poClob)
       FROM po_clob_tab;

Note that we could have gotten the clob value from any expression including

functions which can create temporary CLOBs or select out CLOBs from other table

or views.

XMLType Insert Example 2 - Using createXML() with string
This example inserts a purchase order into table, po_tab using the createXML()
construct.

insert into po_xml_tab
   VALUES(100, sys.XMLType.createXML( ’<?xml version="1.0"?>
Database Support for XML 5-17



Manipulating XML Data in XMLType Columns
                    <PO pono="1">
                       <PNAME>Po_1</PNAME>
                       <CUSTNAME>John</CUSTNAME>
                       <SHIPADDR>
                         <STREET>1033, Main Street</STREET>
                         <CITY>Sunnyvalue</CITY>
                         <STATE>CA</STATE>
                       </SHIPADDR>
                    </PO>' ) );

Here the XMLType was created using the createXML function by passing in a string

literal.

XMLType Insert Example 3 - Using SYS_XMLGEN()
This example inserts PurchaseOrder into table, po_tab by generating it using the

SYS_XMLGEN() SQL function which is explained later in this chapter. Assume that

the PO is an object view that contains a purchase order object. The whole definition

of the PO view is given in "DBMS_XMLGEN Example 5: Generating a Purchase

Order From the Database in XML Format".

INSERT into po_xml_tab
  SELECT SYS_XMLGEN(value(p),
               sys.xmlgenformatType.createFormat('PO'))
  FROM po p
  WHERE p.pono=2001;

The SYS_XMLGEN creates an XMLType from the purchase order object which is

then inserted into the po_xml_tab table.

Updating XML Data in XMLType Columns
You can only update the whole XML document. You can perform the update in

SQL, PL/SQL, C(OCI) or Java.

See also "XMLType Java Example 4: Updating an Element in XMLType Column" on

page 5-36, for updating XMLType through Java.

XMLType Update Example 1 — Updating Using createXML()
This example updates the XMLType using the createXML() construct. It updates

only those documents whose purchase order number is 2001.

update po_xml_tab e
set  e.poDoc = sys.XMLType.createXML(
5-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Manipulating XML Data in XMLType Columns
'<?xml version="1.0"?>
<PO pono="2">
   <PNAME>Po_2</PNAME>
   <CUSTNAME>Nance</CUSTNAME>
   <SHIPADDR>
      <STREET>2 Avocet Drive</STREET>
      <CITY>Redwood Shores</CITY>
      <STATE>CA</STATE>
   </SHIPADDR>
</PO>')
WHERE e.po.extract('/PO/PONO/text()').getNumberVal() = 2001;

Deleting XML Data
DELETEs on the row containing the XMLType column are handled in the same way

as any other datatype.

XMLType Delete Example 1 — Deleting Rows Using extract
For example, to delete all purchase order rows with a purchase order name of “Po_

2”, you can execute a statement such as:

DELETE from po_xml_tab e
WHERE e.poDoc.extract('/PO/PNAME/text()').getStringVal()='Po_2';

Using XMLType Inside Triggers
You can use the NEW and OLD binds inside triggers to read and modify the

XMLtype column values. In the case of INSERTs and UPDATE statements, you can

modify the NEW value to change the value being inserted.

XMLType Trigger Example 1 -
For instance, you can write a trigger to change the purchase order to be a different

one if it does not contain a shipping address.

CREATE OR REPLACE TRIGGER po_trigger
    BEFORE insert or update on po_xml_tab for each row
  pono Number;

Note: UPDATEs, currently are supported only at the document

level. So to update a piece of a particular document, you would

have to update the entire document.
Database Support for XML 5-19



Selecting and Querying XML Data
begin

   if INSERTING then
     if :NEW.poDoc.existsnode('//SHIPADDR') = 0 then
      :NEW.poDoc := sys.xmltype.createxml('<PO>INVALID_PO</PO>'); end if;
     end if;

     -- when updating, if the old poDoc has purchase order number
     -- different from the new one then make it an invalid PO.
     if UPDATING then

        if :OLD.poDoc.extract(’//PONO/text()’).getNumberVal() !=
            :NEW.poDoc.extract(’//PONO/text()’).getNumberVal() then

          :NEW.poDoc := sys.xmltype.createXML('<PO>INVALID_PO</PO>');
        end if;
     end if;
end;
/

This example is of course, only for illustration purposes. You can use the XMLtype

value to perform useful operations inside the trigger, such as validation of business

logic or rules that the XML document should conform to, auditing,.

Selecting and Querying XML Data
You can query XML Data from XMLType columns in the following ways:

■ By selecting XMLType columns through SQL, PL/SQL, C(OCI), or Java.

■ By querying XMLType columns directly and using extract()  and/or

existsNode() .

■ By using Text operators to query the XML content

Selecting XML data
You can select the XMLType data through PL/SQL or Java. You can also use the

getClobVal(), getStringVal() or getNumberVal() functions to get out the XML as a

CLOB, varchar or a number respectively.

XMLType Query Example 1 — Retrieve an XML Document as a CLOB
This example shows how to select an XMLType column through SQL*Plus
5-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Selecting and Querying XML Data
set long 2000

select e.poDoc.getClobval() AS poXML
from po_xml_tab e;

POXML
---------------------
<?xml version="1.0"?>
<PO pono="2">
   <PNAME>Po_2</PNAME>
   <CUSTNAME>Nance</CUSTNAME>
   <SHIPADDR>
      <STREET>2 Avocet Drive</STREET>
      <CITY>Redwood Shores</CITY>
      <STATE>CA</STATE>
   </SHIPADDR>
</PO>

Querying XML data
We can query the XMLType data and extract portions of it using the ExistsNode and

Extract functions. Both these functions use a limited set of the W3C standard XPath

to navigate the document.

Using XPath Expressions for Searching
XPath is a W3C standard way to navigate XML documents. XPath models the XML

document as a tree of nodes. It provides a rich set of operations to “walk” the tree

and to apply predicates and node test functions. Applying an XPath expression to

an XML document can result in a set of nodes. For instance, /PO/PONO selects out

all the “PONO” child elements under the “PO” root element of the document.

Here are some of the common constructs used in XPath:-

The “/” denotes the root of the tree in an XPath expression. e.g. /PO refers to the

child of the root node whose name is “PO”.

The “/” is also used as a path separator to identify the children node of any given

node. e.g. /PO/PNAME identifies the purchase order name element which is a

child of the root element.

The “//” is used to identify all descendants of the current node. e.g. PO//ZIP

matches any zip code element under the “PO” element.
Database Support for XML 5-21



Selecting and Querying XML Data
The “*” is used as a wildcard to match any child node. e.g. /PO/*/STREET would

match any street element that is a grandchild of the “PO” element.

The [ ] are used to denote predicate expressions. XPath supports a rich list of binary

operators such as OR, AND and NOT. e.g. /PO[PONO=20 and PNAME=”PO_

2”]/SHIPADDR selects out the shipping address element of all purchase orders,

whose purchase order number is 20 and whose purchase order name is “PO_2”

The [ ] is also used for denoting an index into a list. For instance, /PO/PONO[2]

identifies the second purchase order number element under the "PO" root element.

Supported XPath constructs
Oracle’s Extract and ExistsNode functions support a limited set of XPath

expressions. XPath constructs supported in this release are:

■ Child traversals /PO/SHIPADDR/STREET

■ Attribute traversals /PO/@PONO

■ Index access /PO/PONO[2]

■ Wild card searches /PO/*/STREET

■ Descendant searches PO//STREET

■ Node test functions - /PO/PNAME/text()

Only the non-order dependant axes such as the child, descendant axes are

supported. No sibling or parent axes are supported.

Predicates are Not Supported For this release, XMLType does not support any

predicates. If you need predicate support, you can rewrite the function into multiple

functions with the predicates expressed in SQL, when possible.

Finally, the XPath must identify a single or a set of element, text or attribute nodes.

The result of the XPath cannot be a boolean expression.

existsNode() Function with XPath
The ExistsNode function on XMLType, checks if the given XPath evaluation

results in at least a single XML element or text node. If so, it returns the numeric

value 1 otherwise it returns a 0. For example, consider an XML document such as:

Note: Extract and ExistsNode functions do not yet support

multi-byte character sets.
5-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Selecting and Querying XML Data
<PO>
  <PONO>100</PONO>
  <PNAME>Po_1</PNAME>
  <CUSTOMER CUSTNAME="John"/>
  <SHIPADDR>
    <STREET>1033, Main Street</STREET>
    <CITY>Sunnyvalue</CITY>
    <STATE>CA</STATE>
  </SHIPADDR>
</PO>

An XPath expression such as /PO/PNAME, results in a single node and hence the

ExistsNode will return true for that XPath. This is the same with

/PO/PNAME/text() which results in a single text node. The XPath, /PO/@pono

also returns a value.

An XPath expression such as, /PO/POTYPE does not return any nodes and hence

an ExistsNode on this would return the value 0.

Hence, the ExistsNode()  member function can be directly used in the following

ways:

■ In queries as will be shown in the next few examples

■ To create functional indexes to speed up evaluation of queries

Extract Function with XPath
The Extract  function on XMLType, extracts the node or a set of nodes from the

document identified by the XPath expression. The extracted nodes may be elements,

attributes or text nodes. When extracted out all text nodes are collapsed into a single

text node value.

The XMLType resulting from applying an XPath through Extract need not be a

well-formed XML document but can contain a set of nodes or simple scalar data in

some cases. You can use the getStringVal()  or getNumberVal()  methods on

XMLType to extract this scalar data.

For example, the XPath expression /PO/PNAME identifies the PNAME element

inside the XML document shown above. The expression /PO/PNAME/text() on

the other hand refers to the text node of the PNAME element. Note that the latter is

still considered an XMLType. i.e. EXTRACT(poDoc, ’/PO/PNAME/text()’) still returns

an XMLtype instance though the instance may actually contain only text. You can

use the getStringVal() to get the text value out as a varchar2 result.
Database Support for XML 5-23



Selecting and Querying XML Data
Use the text() node test function to identify text nodes in elements before using the

getStringVal() or getNumberVal() to convert them to SQL data. Not having the text()

node would produce an XML fragment. For example, the XPath expression

/PO/PNAME identifies the fragment <PNAME>PO_1</PNAME> whereas the

expression /PO/PNAME/text() identifies the text value “PO_1”.

You can use the index mechanism to identify individual elements in case of

repeated elements in an XML document. For example if we had an XML document

such as,

<PO>
  <PONO>100</PONO>
  <PONO>200</PONO>
</PO>
you can use //PONO[1] to identify the first “PONO” element (with value 100) and

//PONO[2] to identify the second “PONO” element in the document.

The result of the extract is always an XMLType. If applying the XPath produces an

empty set, then the Extract returns a NULL value.

Hence, the extract()  member function can be used in a number of ways,

including the following:

■ Extracting numerical values on which functional indexes can be created to

speed up processing

■ Extracting collection expressions to be used in the FROM clause of SQL

statements

■ Extracting fragments to be later aggregated to produce different documents

XMLType Query Example 2 — Using extract() and existsNode()
Assume the po_xml_tab table which contains the purchase order id and the

purchase order XML columns - and assume that the following values are inserted

into the table,

INSERT INTO po_xml_tab values (100,
   sys.xmltype.createxml(’<?xml version="1.0"?>
                          <PO>
                            <PONO>221</PONO>
                            <PNAME>PO_2</PNAME>
                          </PO>’));

INSERT INTO po_xml_tab values (200,
   sys.xmltype.createxml(’<?xml version="1.0"?>
                          <PO>
5-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Selecting and Querying XML Data
                            <PONAME>PO_1</PONAME>
                          </PO>’));

Now we can extract the numerical values for the purchase order numbers using the

EXTRACT function.

SELECT e.poDoc.extract(’//PONO/text()’).getNumberVal() as pono
FROM po_xml_tab e
WHERE e.podoc.existsnode(’/PO/PONO’)  = 1 AND poid > 1;

Here extract()  extracts the contents of tag, purchase order number, “PONO”.

existsnode() finds those nodes where there exists “PONO” as a child of “PO”.

Note the use of the text() function to return only the text nodes. The

getNumberVal() function can convert only text values into numerical quantity.

XMLType Query Example 3 — Querying Transient XMLtype data

The following example shows how you can select out the XML data and query it

inside PL/SQL.

-- create a transient instance from the purchase order table and then
perform some extraction on it...
declare
   poxml SYS.XMLType;
   cust SYS.XMLType;

      val VARCHAR2;
begin

 -- select the adt instance
  select poDoc into poxml
     from po_xml_tab p where p.poid = 100;

  -- do some traversals and print the output
  cust := poxml.extract(’//SHIPADDR’);

   -- do something with the customer XML fragment
  val := cust.getStringVal();
  dbms_output.put_line(’ The customer XML value is ’|| val);

end;
/

See Also: "XMLType Functions"  on page 5-13.
Database Support for XML 5-25



Selecting and Querying XML Data
XMLType Query Example 4 — Extracting data from XML

The following example shows how you can extract out data from a purchase order

XML and insert it into a SQL relation table.

Assume the following relational tables,

CREATE TABLE cust_tab
(
  custid number primary key,
  custname varchar2(20)
);

insert into cust_tab values (1001, "John Nike");

CREATE table po_rel_tab
(
  pono number,
  pname varchar2(100),
  custid number refernces cust_tab
  shipstreet varchar2(100),
  shipcity varchar2(30),
  shipzip varchar2(20)
);

You can write a simple PL/SQL block to transform any XML of the form,

<?xml version = '1.0'?>
<PO>
  <PONO>2001</PONO>
  <CUSTOMER CUSTNAME="John Nike"/>
  <SHIPADDR>
    <STREET>323 College Drive</STREET>
    <CITY>Edison</CITY>
    <STATE>NJ</STATE>
    <ZIP>08820</ZIP>
  </SHIPADDR>
</PO>
into the relational tables, using the Extract functions.

Here is a SQL example, (assuming that the XML described above is present in the

po_xml_tab) -

insert into po_rel_tab as
select p.poDoc.extract(’/PO/PONO/text()’).getnumberval(),
       p.poDoc.extract(’/PO/PNAME/text()’).getstringval(),
5-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Selecting and Querying XML Data
       -- get the customer id corresponding to the customer name
       ( SELECT custid
         FROM   cust_tab c
         WHERE  c.custname =
               p.poDoc.extract(’/PO/CUSTOMER/@CUSTNAME’).getstringval()
        ),
       p.poDoc.extract(’/PO/SHIPADDR/STREET/text()’).getstringval(),
       p.poDoc.extract(’//CITY/text()’).getstringval(),
       p.poDoc.extract(’//ZIP/text()’).getstringval(),

from po_xml_tab p;

The po_tab would now have the following values,

PONO    PNAME   CUSTID   SHIPSTREET         SHIPCITY   SHIPZIP
----------------------------------------------------------------
2001            1001     323 College Drive  Edison     08820

Note how the PNAME is null, since the input XML document did not have the

element called PNAME under PO. Also, note that we have used the //CITY to

search for the city element at any depth.

We can do the same in an equivalent fashion inside a PL/SQL block-

declare
  poxml SYS.XMLType;
  cname varchar2(200);
  pono number;
  pname varchar2(100);
  shipstreet varchar2(100);
  shipcity varchar2(30);
  shipzip varchar2(20);

begin

 -- select the adt instance
  select poDoc into poxml from po_xml_tab p;

  cname := poxml.extract(’//CUSTOMER/@CUSTNAME’).getstringval();

  pono := poxml.extract(’/PO/PONO/text()’).getnumberval(),
  pname := poxml.extract(’/PO/PNAME/text()’).getstringval(),
  shipstreet := poxml.extract(’/PO/SHIPADDR/STREET/text()’).getstringval(),
  shipcity := poxml.extract(’//CITY/text()’).getstringval(),
Database Support for XML 5-27



Selecting and Querying XML Data
  shipzip := poxml.extract(’//ZIP/text()’).getstringval(),

  insert into po_rel_tab
    values (pono, pname,
           (select custid from cust_tab c where custname = cname),
            shipstreet, shipcity, shipzip);
end;
/

XMLType Query Example 5 — Using extract() to Search
Using Extract, Existsnode functions, you can perform a variety of operations on the

column, as follows:

select e.poDoc.extract('/PO/PNAME/text()').getStringVal() PNAME
from po_xml_tab e
where e.poDoc.existsNode('/PO/SHIPADDR') = 1 and
      e.poDoc.extract('//PONO/text()').getNumberVal() = 300 and
      e.poDoc.extract('//@CUSTNAME').getStringVal() like '%John%';

This SQL statement extracts the purchase order name “PNAME” from the purchase

order element PO, from all the documents which contain a shipping address and

whose purchase order number is 300 and the customer name “CUSTNAME”

contains the string “John”.

XMLType Query Example 6 — Extract fragments from XMLType
The extract()  member function extracts the nodes identified by the XPath

expression and returns a XMLType containing the fragment. Here, the result of the

traversal may be a set of nodes, a singleton node, or a text value. You can check if

the result is a fragment by using the isFragment() function on the XMLType. For

example:

select e.po.extract('/PO/SHIPADDR/STATE').isFragment()
    from foo_tab e;
5-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Selecting and Querying XML Data
The previous SQL statement would return 0, since the extraction

/PO/SHIPADDR/STATE returns a singleton well formed node which is not a

fragment.

On the other hand, an XPath such as, /PO/SHIPADDR/STATE/text() would be

considered a fragment, since it is not a well-formed XML document.

Querying XMLType Data using Text Operators
Oracle Text index works on CLOB and VARCHAR columns. It has been extended in

Oracle9i to work on XMLType columns as well. The default behavior of Oracle Text

index is to automatically create XML sections, when defined over XMLType
columns. It also provides the CONTAINS operator which has been extended to

support XPath.

Creating Text index over XMLType columns
Text index can be created by using the CREATE INDEX with the INDEXTYPE

specification as with other CLOB or VARCHAR columns. However, since the

XMLType is implemented as a virtual column, the text index is created using the

functional index mechanism.

This requires that to create and use the text index in queries, in additional to having

the privileges to create indexes and the privileges necessary to create text indexes,

you would need to also need to have the privileges and settings necessary to create

functional indexes. This includes

■ QUERY_REWRITE privilege - You must have this privilege granted to create

text indexes on XMLType columns in your own schema. If you need to create

text indexes on XMLtype columns in other schemas or on tables residing in

other schemas, you must have the GLOBAL_QUERY_REWRITE privilege

granted.

■ QUERY_REWRITE_ENABLED parameter must be set to true.

Note: You cannot insert fragments into XMLType columns. You

can use the SYS_XMLGEN function to convert a fragment into a

well formed document by adding an enclosing tag. See "SYS_

XMLGEN"  on page 5-63.You can, however, query further on the

fragment using the various XMLType functions.
Database Support for XML 5-29



Selecting and Querying XML Data
■ QUERY_REWRITE_INTEGRITY must be set to trusted for the queries to be

rewritten to use the text index.

Differences between CONTAINS and ExistsNode/Extract
There are certain differences with regard to the XPath support inside CONTAINS

and that supported through the ExistsNode and Extract functions.

■ In this release, the XPath supported by the Oracle Text index is more powerful

than the functional implementation, as it can satisfy certain equality predicates

as well

■ Since Oracle Text index ignores spaces, the XPath expression may not yield

accurate results when spaces are significant.

■ Oracle Text index also supports certain predicate expressions with string

equality, but cannot support numerical and range comparisons.

■ One other limitation is that the Oracle Text index may give wrong result if the

XML document only has tag names and attribute names without any text. For

example in the case of the following document,

<A>
  <B>
      <C>
      </C>
  </B>
  <D>
      <E>
      </E>
   </D>
 </A>

the XPath expression - A/B/E will falsely match the above XML document.

■ Both the functional and the Oracle Text index support navigation. Thus you can

use the text index as a primary filter, to filer out all the documents that can

potentially match the criterion in an efficient manner, and then apply secondary

See Also:

■ Chapter 8, "Searching XML Data with Oracle Text"

■ Oracle9i Text Reference

■ Oracle9i Text Developer’s Guide
5-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Indexing XMLType columns
filters such as existsNode()  or extract()  operations on the remainder of

the documents.

Indexing XMLType columns
We can create the following indexes using XMLType to speed up query evaluation.

■ Functional Indexes with XMLType. Queries can be speeded up by building

functional indexes on the ExistsNode or the Extracted portions of an XML

document.

Example of Functional Indexes on Extract operation:

For instance to speed up the search on the query,

   SELECT * FROM po_xml_tab e
   WHERE e.poDoc.extract(’//PONO/text()’).getNumberVal()= 100;

we can create a functional index on the Extract function as:

CREATE INDEX city_index ON po_xml_tab
   (poDoc.extract('//PONO/text()').getNumberVal());

With this index, the SQL query would use the functional index to evaluate the

predicate instead of parsing the XML document per row and evaluating the

XPath expression.

Example of Functional indexes on ExistsNode:

We can also create bitmapped functional indexes to speed up the evaluation of

the operators. In particular, the ExistsNode is best suited, since it returns a

value of 1 or 0 depending on whether the XPath is satisfied in the document or

not.

For instance to speed up the query, that searches for whether the XML

document contains an element called Shipping address at any level -

   SELECT * FROM po_xml_tab e
   WHERE e.poDoc.existsNode(’//SHIPADDR’) = 1;

we can create a bitmapped functional index on the ExistsNode function as:

CREATE INDEX po_index ON po_xml_tab
   (poDoc.existsNode('//SHIPADDR'));

to speed up the query processing.
Database Support for XML 5-31



Java Access to XMLType (oracle.xdb.XMLType)
■ Creating Text Indexes on XMLType Columns. As explained earlier, you can

create text indexes on the XMLType column. The index uses the PATH_

SECTION_GROUP as the default section group when indexing XMLType
columns. This is the default and can be overridden during index creation.

    CREATE INDEX po_text_index ON
        po_xml_tab(poDoc) indextype is ctxsys.context;

You can do text operations such as CONTAINS and SCORE.. on this XMLType

column. In Oracle9i CONTAINS function has been enhanced to support XPath

using two new operators, INPATH and HASPATH.

INPATH checks if the given word appears within the path specified and

HASPATH checks if the given XPath is present in the document.

SELECT * FROM po_xml_doc  w
WHERE CONTAINS(w.poDoc,
              ’haspath(/PO[./@CUSTNAME="John Nike"])’) > 0;

Java Access to XMLType (oracle.xdb.XMLType)
XMLType can be accessed through the oracle.xdb.XMLType class in Java. The class

provides functions similar to the XMLType in PL/SQL. The oracle.xdb.XMLType is

a subclass of Oracle JDBC’s oracle.sql.OPAQUE class.

Since the XMLType in the server is implemented as an opaque type, you would

need to use the getOPAQUE call in JDBC to get the opaque type instance from the

JDBC Resultset and then create an XMLType instance out of it. In future releases,

JDBC would instantiate XMLTypes automatically.

You can bind XMLType to any XML data instance in JDBC using the setObject call in

the java.sql.PreparedStatement interface.

The functions defined in the oracle.xdb.XMLtype class help to retrieve the XML

data in Java. Use the SQL functions to perform any queries etc.

XMLType Java Example 1: Selecting XMLType data in Java
You can select the XMLType in java in one of 2 ways,

■ Use the getClobVal() or getStringVal() in SQL and get the result as a

oracle.sql.CLOB or java.lang.String in Java. Here is a snippet of Java code that

shows how to use this,
5-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Java Access to XMLType (oracle.xdb.XMLType)
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Connection conn =
    DriverManager.getConnection("jdbc:oracle:oci8:@", "scott", "tiger");

 OraclePreparedStatement stmt =
    (OraclePreparedStatement) conn.prepareStatement(
          "select e.poDoc.getClobVal() poDoc, "+
                  e.poDoc.getStringVal() poString "+
          " from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet orset = (OracleResultSet) rset;

// the first argument is a CLOB
oracle.sql.CLOB clb = orset.getCLOB(1);

// the second argument is a string..
String poString = orset.getString(2);

// now use the CLOB inside the program..

■ Use the getOPAQUE() call in the PreparedStatement to get the whole XMLType

instance and use the XMLType constructor to construct an oracle.xdb.XMLType

class out of it. Then you can use the Java functions on the XMLtype class to

access the data.

import oracle.xdb.XMLType;
...

 OraclePreparedStatement stmt =
    (OraclePreparedStatement) conn.prepareStatement(
          "select e.poDoc from po_xml_tab e");

ResultSet rset = stmt.executeQuery();
OracleResultSet orset = (OracleResultSet) rset;

// get the XMLType
XMLType poxml = XMLType(orset.getOPAQUE(1));

// get the XML as a string...
String poString = poxml.getStringVal();
Database Support for XML 5-33



Java Access to XMLType (oracle.xdb.XMLType)
XMLType Java Example 2: Updating XMLType data in Java
You can insert an XMLType in java in one of 2 ways,

■ Bind a CLOB or a string to an insert/update/delete statement and use the

createXML() constructor inside SQL to construct the XML instance,

 OraclePreparedStatement stmt =
    (OraclePreparedStatement) conn.prepareStatement(
        "update po_xml_tab set poDoc = sys.XMLType.createXML(?) ");

// the second argument is a string..
String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";

// now bind the string..
stmt.setString(1,poString);
stmt.execute();

■ Use the setObject() (or setOPAQUE()) call in the PreparedStatement to set the

whole XMLType instance.

import oracle.xdb.XMLType;
...
OraclePreparedStatement stmt =
    (OraclePreparedStatement) conn.prepareStatement(
        "update po_xml_tab set poDoc = ? ");

// the second argument is a string..
String poString = "<PO><PONO>200</PONO><PNAME>PO_2</PNAME></PO>";
XMLType poXML = XMLType.createXML(conn, poString);

// now bind the string..
stmt.setObject(1,poXML);
stmt.execute();

XMLType Java Example 3: Getting Metadata on XMLType
When selecting out XMLtype values, JDBC describes the column as an OPAQUE

type. You can select the column type name out and compare it with “XMLTYPE” to

check if you are dealing with an XMLType,

import oracle.sql.*;
import oracle.jdbc.*;
...
OraclePreparedStatement stmt =
    (OraclePreparedStatement) conn.prepareStatement(
5-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Java Access to XMLType (oracle.xdb.XMLType)
        "select poDoc from po_xml_tab");

OracleResultSet rset = (OracleResultSet)stmt.exuecuteQuery();

// Now, we can get the resultset metadata
OracleResultSetMetaData mdata =
        (OracleResultSetMetaData)rset.getMetaData();

// Describe the column = the column type comes out as OPAQUE
// and column type name comes out as SYS.XMLTYPE
if (mdata.getColumnType(1) == OracleTypes.OPAQUE &&
    mdata.getColumnTypeName(1).oompareTo("SYS.XMLTYPE") == 0)
{
   // we know it is an XMLtype..
}

Database Support for XML 5-35



Java Access to XMLType (oracle.xdb.XMLType)
XMLType Java Example 4: Updating an Element in XMLType Column
This example updates the “DISCOUNT” element inside PurchaseOrder stored in a

XMLType column. It uses Java (JDBC) and the oracle.xdb.XMLType  class. This

example also shows you how to insert/update/delete XMLTypes using Java (JDBC).

Table 5–4 Summary of oracle.xdb.XMLType Member and Static Functions

Functions Syntax Summary Description

XMLType()

(constructor)

PUBLIC

oracle.xdb. XMLType(

    oracle.sql.OPAQUE opt)

Constructor to create the oracle.xdb.XMLType
instance from an opaque instance. Currently, JDBC
returns the XMLType data as an oracle.sql.OPAQUE
instance. Use this constructor to construct an XMLType
from the opaque instance.

PARAMETERS:

opq (IN) - A valid opaque instance.

createXML() PUBLIC STATIC

oracle.xdb.XMLType

 createXML(Connection conn,

                     String xmlval)

Static function to create the oracle.xdb.XMLType
instance from a string. Does not checks for well-formed
XML value. Any database operation on the XML value
would check for well-formedness.

PARAMETERS:

conn (IN) - A valid Oracle Connection

xmlval (IN) - A Java string containing the XML value.

RETURNS: An oracle.xdb.XMLType instance.

createXML() PUBLIC STATIC

 oracle.xdb.XMLType

 createXML(Connection conn,

      oracle.sql.clob xmlVal)

Static function to create the XMLType instance from an
oracle.sql.CLOB. Does not check for well-formedness.
Any database operation would check for that.

PARAMETERS:

conn (IN) - A valid Oracle Connection.

xmlval (IN) - CLOB containing the XML document

RETURNS: An oracle.xdb.XMLType instance.

getClobVal() PUBLIC oracle.sql.CLOB

    getClobVal()

Gets the document as a oracle.sql.CLOB.

RETURNS: A CLOB containing the serialized XML
representation. Free the temporary CLOB after use.

getStringVal() PUBLIC java.lang.String

   getStringVal()

Gets the XML value as a string.

RETURNS: A string containing the serialized XML
representation, or in case of text nodes, the text itself.
5-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Java Access to XMLType (oracle.xdb.XMLType)
It uses the parser to update an in-memory DOM tree and write the updated XML

value to the column.

-- create po_xml_hist table to store old PurchaseOrders
create table po_xml_hist (
 xpo sys.xmltype
);

/*
   DESCRIPTION
    Example for oracle.xdb.XMLType

   NOTES
   Have classes12.zip, xmlparserv2.jar, and oraxdb.jar in CLASSPATH

*/

import java.sql.*;
import java.io.*;

import oracle.xml.parser.v2.*;
import org.xml.sax.*;
import org.w3c.dom.*;

import oracle.jdbc.driver.*;
import oracle.sql.*;

import oracle.xdb.XMLType;

public class tkxmtpje
{

  static String conStr = "jdbc:oracle:oci8:@";
  static String user = "scott";
  static String pass = "tiger";
  static String qryStr =
        "SELECT x.poDoc from po_xml_tab x "+
        "WHERE  x.poDoc.extract('/PO/PONO/text()').getNumberVal()=200";

 static String updateXML(String xmlTypeStr)
  {
     System.out.println("\n===============================");
     System.out.println("xmlType.getStringVal():");
     System.out.println(xmlTypeStr);
Database Support for XML 5-37



Java Access to XMLType (oracle.xdb.XMLType)
     System.out.println("===============================");
     String outXML = null;
     try{
        DOMParser parser  = new DOMParser();
        parser.setValidationMode(false);
        parser.setPreserveWhitespace (true);

        parser.parse(new StringReader(xmlTypeStr));
        System.out.println("xmlType.getStringVal(): xml String is well-formed");

        XMLDocument doc = parser.getDocument();

        NodeList nl = doc.getElementsByTagName("DISCOUNT");

        for(int i=0;i<nl.getLength();i++){
           XMLElement discount = (XMLElement)nl.item(i);
           XMLNode textNode = (XMLNode)discount.getFirstChild();
           textNode.setNodeValue("10");
        }

       StringWriter sw = new StringWriter();
       doc.print(new PrintWriter(sw));

       outXML = sw.toString();

      //print modified xml
       System.out.println("\n===============================");
       System.out.println("Updated PurchaseOrder:");
       System.out.println(outXML);
       System.out.println("===============================");
      }
    catch ( Exception e )
    {
      e.printStackTrace(System.out);
    }
    return outXML;
  }

 public static void main(String args[]) throws Exception
  {
    try{

        System.out.println("qryStr="+ qryStr);

        DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
5-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Java Access to XMLType (oracle.xdb.XMLType)
        Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@", user, pass);

        Statement s = conn.createStatement();
        OraclePreparedStatement stmt;

        ResultSet rset = s.executeQuery(qryStr);
        OracleResultSet orset = (OracleResultSet) rset;

        while(orset.next()){

        //retrieve PurchaseOrder xml document from database
         XMLType xt = XMLType.createXML(orset.getOPAQUE(1));

         //store this PurchaseOrder in po_xml_hist table
         stmt = (OraclePreparedStatement)conn.prepareStatement(
                   "insert into po_xml_hist values(?)");

         stmt.setObject(1,xt);  // bind the XMLType instance
         stmt.execute();

//update "DISCOUNT" element
         String newXML = updateXML(xt.getStringVal());

         // create a new instance of an XMLtype from the updated value
         xt = XMLType.createXML(conn,newXML);

        // update PurchaseOrder xml document in database
         stmt = (OraclePreparedStatement)conn.prepareStatement(
           "update po_xml_tab x set x.poDoc =? where "+
             "x.poDoc.extract('/PO/PONO/text()').getNumberVal()=200");

         stmt.setObject(1,xt);  // bind the XMLType instance
         stmt.execute();

         conn.commit();
         System.out.println("PurchaseOrder 200 Updated!");

        }

       //delete PurchaseOrder 1001
        s.execute("delete from po_xml x "+
           "where x.xpo.extract"+
              "('/PurchaseOrder/PONO/text()').getNumberVal()=1001");
Database Support for XML 5-39



Java Access to XMLType (oracle.xdb.XMLType)
        System.out.println("PurchaseOrder 1001 deleted!");
    }
    catch( Exception e )
    {
      e.printStackTrace(System.out);
    }
  }
}

----------------------
-- list PurchaseOrders
----------------------

set long 20000
set pages 100
select x.xpo.getClobVal()
from po_xml x;

Here is the resulting updated purchase order in XML:

<?xml version = '1.0'?>
<PurchaseOrder>
  <PONO>200</PONO>
  <CUSTOMER>
   <CUSTNO>2</CUSTNO>
   <CUSTNAME>John Nike</CUSTNAME>
   <ADDRESS>
    <STREET>323 College Drive</STREET>
    <CITY>Edison</CITY>
    <STATE>NJ</STATE>
    <ZIP>08820</ZIP>
   </ADDRESS>
   <PHONELIST>
    <VARCHAR2>609-555-1212</VARCHAR2>
    <VARCHAR2>201-555-1212</VARCHAR2>
   </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>20-APR-97</ORDERDATE>
  <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS>
   <LINEITEM_TYP LineItemNo="1">
    <ITEM StockNo="1004">
     <PRICE>6750</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
5-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Java Access to XMLType (oracle.xdb.XMLType)
    <QUANTITY>1</QUANTITY>
    <DISCOUNT>10</DISCOUNT>
   </LINEITEM_TYP>
   <LINEITEM_TYP LineItemNo="2">
    <ITEM StockNo="1011">
     <PRICE>4500.23</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>2</QUANTITY>
    <DISCOUNT>10</DISCOUNT>
   </LINEITEM_TYP>
  </LINEITEMS>
  <SHIPTOADDR>
   <STREET>55 Madison Ave</STREET>
   <CITY>Madison</CITY>
   <STATE>WI</STATE>
   <ZIP>53715</ZIP>
  </SHIPTOADDR>
</PurchaseOrder>

Installing and using oracle.xdb.XMLType class
The oracle.xdb.XMLType is available in the xdb_g.jar file in the ORACLE_
HOME/rdbms/jlib where ORACLE_HOME refers to the Oracle home directory.

Using oracle.xdb.XMLType inside JServer:

This class is pre-loaded in to the JServer and is available in the SYS schema.

It is not loaded however, if you have upgraded your database from an earlier

version. If you need to upload the class into the JServer, you would need to run the

initxdbj.sql file located in the ORACLE_HOME/rdbms/admin directory, while

connected as SYS.

Using oracle.xdb.XMLType on the client:

If you need to use the oracle.xdb.XMLType class on the client side, then ensure that

the xdb_g.jar file is listed in your CLASSPATH environment variable.
Database Support for XML 5-41



Native XML Generation
Native XML Generation
Oracle9i supports native XML generation with the following packages and

functions:

■ DBMS_XMLGENPL/SQL supplied package. Gets XML from SQL queries. This is

written in C and linked to the server for enhanced performance.

■ SQL functions for getting XML from SQL queries are:

■ SYS_XMLGEN operates on rows, generating XML documents

■ SYS_XMLAGG operates on groups of rows, aggregating several XML

documents into one

DBMS_XMLGEN
DBMS_XMLGEN creates XML documents from any SQL query by mapping the

database query results into XML. It gets the XML document as a CLOB. It provides

a “fetch” interface whereby you can specify the maximum rows and rows to skip.

This is useful for pagination requirements in web applications. DBMS_XMLGEN also

provides options for changing tag names for ROW, ROWSET, and so on.

The parameters of the package can restrict the number of rows retrieved, the

enclosing tag names. To summarize, DBMS_XMLGEN PL/SQL package allows you:

■ To create an XML document instance from any SQL query and get the

document as a CLOB

■ A “fetch” interface with maximum rows and rows to skip. For example, the first

fetch could retrieve a maximum of 10 rows, skipping the first four. This is useful

for pagination in web-based applications.

■ Options for changing tag names for ROW, ROWSET, and so on.

Sample Query Result
The following shows a sample result from executing the “select * from scott.emp”
query on a database:

<?xml version="1.0"?>

See Also: "Generating XML with XSU’s OracleXMLQuery" on

page 7-2, in Chapter 7, "XML SQL Utility (XSU)", to compare. the

functionality OracleXMLQuery with DBMS_XMLGEN.
5-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
<ROWSET>
<ROW>
  <EMPNO>30</EMPNO>
  <ENAME>Scott</ENAME>
  <SALARY>20000</SALARY>
</ROW>
<ROW>
  <EMPNO>30</EMPNO>
  <ENAME>Mary</ENAME>
  <AGE>40</AGE>
</ROW>
</ROWSET>

The result of the getXML()  using DBMS_XMLGen package is a CLOB. The default

mapping is as follows:

■ Every row of the query result maps to an XML element with the default tag

name “ROW”.

■ The entire result is enclosed in a “ROWSET” element. These names are both

configurable, using the setRowTagName()  and setRowSetTagName()
procedures in DBMS_XMLGEN.

■ Each column in the SQL query result, maps as a subelement of the ROW

element.

■ All datatypes other than CURSOR expressions are supported by DBMS_
XMLGEN. Binary data is transformed to its hexadecimal representation.

As the document is in a CLOB, it has the same encoding as the database character

set. If the database character set is SHIFTJIS, then the XML document is SHIFTJIS.

DBMS_XMLGEN Calling Sequence
Figure 5–2 summarizes the DBMS_XMLGEN calling sequence.
Database Support for XML 5-43



DBMS_XMLGEN
Figure 5–2 DBMS_XMLGEN Calling Sequence

Here is DBMS_XMLGEN’s calling sequence:

1. Get the context from the package by supplying a SQL query and calling the

newContext()  call.

2. Pass the context to all the procedures/functions in the package to set the

various options. For example to set the ROW element’s name, use

setRowTag(ctx) , where ctx is the context got from the previous

newContext()  call.

3. Get the XML result, using the getXML() . By setting the maximum rows to be

retrieved per fetch using the setMaxRows()  call, you can call this function

repeatedly, getting the maximum number of row set per call. The function

returns a null CLOB if there are no rows left in the query.

getXML()  always returns an XML document, even if there were no rows to

retrieve. If you want to know if there were any rows retrieved, use the function

getNumRowsProcessed( ).

set
the options

REGISTER
Query

close

User / Browser / 
Client / 

Application

bind
values

Generated
XML

as DOM
User / Browser 

Client / 
Application

Generated
XML

as String

fetch
XML

Using DBMS_XMLGEN to Generate XML
5-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
4. You can reset the query to start again and repeat step 3.

5. Close the closeContext()  to free up any resource allocated inside.

Table 5–5 summarizes DBMS_XMLGEN functions and procedures.

Table 5–5 DBMS_XMLGEN Functions and Procedures

Function or Procedure Description

DBMS_XMLGEN Type definitions

SUBTYPE ctxHandle IS NUMBER

The context handle used by all functions.

DTD or schema specifications:

■ NONE CONSTANT NUMBER:= 0; -- supported for
this release.

■ DTD CONSTANT NUMBER:= 1; S

■ CHEMA CONSTANT NUMBER:= 2;

Can be used in getXML function to specify whether to
generate a DTD or XML Schema or none. Only the NONE
specification is supported in the getXML functions for this
release.

FUNCTION PROTOTYPES

newContext()

Given a query string, generate a new context handle to be
used in subsequent functions.

FUNCTION

newContext(queryString IN VARCHAR2)

Returns a new context

PARAMETERS: queryString (IN)- the query string, the
result of which needs to be converted to XML

RETURNS: Context handle. Call this function first to
obtain a handle that you can use in the getXML() and
other functions to get the XML back from the result.

setRowTag() Sets the name of the element separating all the rows. The
default name is ROW.

PROCEDURE

setRowTag(ctx IN ctxHandle,

                      rowTag IN VARCHAR2);

PARAMETERS:

ctx (IN) - the context handle obtained from the
newContext call,

rowTag (IN) - the name of the ROW element. NULL
indicates that you do not want the ROW element to be
present. Call this function to set the name of the ROW
element, if you do not want the default “ROW” name to
show up. You can also set this to NULL to suppress the
ROW element itself. Its an error if both the row and the
rowset are null and there is more than one column or row
in the output.
Database Support for XML 5-45



DBMS_XMLGEN
setRowSetTag() Sets the name of the document’s root element. The default
name is “ROWSET”

PROCEDURE

setRowSetTag(ctx IN ctxHandle,

                            rowSetTag IN VARCHAR2);

PARAMETERS:

 ctx (IN) - the context handle obtained from the
newContext call,

rowsetTag (IN) - the name of the document element.
NULL indicates that you do not want the ROW element to
be present. Call this to set the name of the document root
element, if you do not want the default “ROWSET” name
in the output. You can also set this to NULL to suppress
the printing of this element. However, this is an error if
both the row and the rowset are null and there is more
than one column or row in the output.

getXML() Gets the XML document by fetching the maximum
number of rows specified. It appends the XML document
to the CLOB passed in.

PROCEDURE

getXML(ctx IN ctxHandle,

              clobval IN OUT NCOPY clob,

              dtdOrSchema IN number:= NONE);

PARAMETERS:

ctx (IN) - The context handle obtained from the
newContext() call,

clobval (IN/OUT) - the clob to which the XML document
is to be appended,

dtdOrSchema (IN) - whether we should generate the DTD
or Schema. This parameter is NOT supported.

Use this version of the getXML function, to avoid any
extra CLOB copies and if you want to reuse the same
CLOB for subsequent calls. This getXML call is more
efficient than the next flavor, though this involves that you
create the lob locator.

When generating the XML, the number of rows indicated
by the setSkipRows call are skipped, then the maximum
number of rows as specified by the setMaxRows call (or
the entire result if not specified) is fetched and converted
to XML. Use the getNumRowsProcessed function to check
if any rows were retrieved or not.

getXML() Generates the XML document and return it as a CLOB.

Table 5–5 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
5-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
FUNCTION

getXML(ctx IN ctxHandle, dtdOrSchema IN number:= NONE)

 RETURN clob

PARAMETERS: ctx (IN) - The context handle obtained
from the newContext() call,

dtdOrSchema (IN) - whether we should generate the DTD
or Schema. This parameter is NOT supported.

RETURNS: A temporary CLOB containing the
document.Free the temporary CLOB obtained from this
function using the dbms_lob.freetemporary call.

FUNCTION

getXMLType(ctx IN ctxHandle,

   dtdOrSchema IN number:= NONE) RETURN

sys.XMLType

PARAMETERS: ctx (IN) - The context handle obtained
from the newContext() call,

dtdOrSchema (IN) - whether we should generate the DTD
or Schema. This parameter is NOT supported.

RETURNS: An XMLType instance containing the
document.

getNumRowsProcessed() Gets the number of SQL rows processed when generating
the XML using the getXML call. This count does not
include the number of rows skipped before generating the
XML.

FUNCTION

getNumRowsProcessed(ctx IN ctxHandle) RETURN number

PARAMETERS: queryString (IN)- the query string, the
result of which needs to be converted to XML RETURNS:

The number of rows processed in the last call to getXML.
This does not include the number of rows skipped. Use
this function to determine the terminating condition if you
are calling getXML in a loop. Note that getXML would
always generate a XML document even if there are no
rows present.

setMaxRows() Sets the maximum number of rows to fetch from the SQL
query result for every invocation of the getXML call.

PROCEDURE

setMaxRows(ctx IN ctxHandle, maxRows IN NUMBER);

PARAMETERS: ctx (IN) - the context handle
corresponding to the query executed,

maxRows (IN) - the maximum number of rows to get per
call to getXML.

The maxRows parameter can be used when generating
paginated results using this utility. For instance when
generating a page of XML or HTML data, you can restrict
the number of rows converted to XML and then in
subsequent calls, you can get the next set of rows and so
on. This also can provide for faster response times.

Table 5–5 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
Database Support for XML 5-47



DBMS_XMLGEN
setSkipRows() Skips a given number of rows before generating the XML
output for every call to the getXML routine.

PROCEDURE

setSkipRows(ctx IN ctxHandle,

                          skipRows IN NUMBER);

PARAMETERS: ctx (IN) - the context handle
corresponding to the query executed,

skipRows (IN) - the number of rows to skip per call to
getXML.

The skipRows parameter can be used when generating
paginated results for stateless web pages using this utility.
For instance when generating the first page of XML or
HTML data, you can set skipRows to zero. For the next set,
you can set the skipRows to the number of rows that you
got in the first case.

setConvertSpecialChars() Sets whether special characters in the XML data need to be
converted into their escaped XML equivalent or not. For
example, the "<" sign is converted to &lt;. The default is to
perform conversions.

PROCEDURE

setConvertSpecialChars(ctx IN ctxHandle,

                                               conv IN boolean);

PARAMETERS: ctx (IN) - the context handle to use,

conv (IN) - true indicates that conversion is needed.

You can use this function to speed up the XML processing
whenever you are sure that the input data cannot contain
any special characters such as <, >, ", ’ etc. which need to
be escaped. Note that it is expensive to actually scan the
character data to replace the special characters,
particularly if it involves a lot of data. So in cases when the
data is XML-safe, then this function can be called to
improve performance.

useItemTagsForColl() Sets the name of the collection elements. The default name
for collection elements it he type name itself. You can
override that to use the name of the column with the “_
ITEM” tag appended to it using this function.

PROCEDURE useItemTagsForColl(ctx IN ctxHandle); PARAMETERS: ctx (IN) - the context handle.

If you have a collection of NUMBER, say, the default tag
name for the collection elements is NUMBER. You can
override this behavior and generate the collection column
name with the _ITEM tag appended to it, by calling this
procedure.

restartQuery() Restarts the query and generate the XML from the first
row again.

Table 5–5 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
5-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
DBMS_XMLGEN Example 1: Generating Simple XML
This example creates an XML document by selecting out the employee data from an

object-relational table and puts the result CLOB into a table.

CREATE TABLE temp_clob_tab(result CLOB);

DECLARE
   qryCtx DBMS_XMLGEN.ctxHandle;
   result CLOB;
BEGIN
  qryCtx := dbms_xmlgen.newContext('SELECT * from scott.emp;');

  -- set the row header to be EMPLOYEE
  DBMS_XMLGEN.setRowTag(qryCtx, 'EMPLOYEE');

  -- now get the result
  result := DBMS_XMLGEN.getXML(qryCtx);

  INSERT INTO temp_clob_tab VALUES(result);
END;
/

Here is the XML generated from this example:

select * from temp_clob_tab;

RESULT
------------------------------------
<?xml version=''1.0''?>

PROCEDURE

restartQuery(ctx IN ctxHandle);

PARAMETERS: ctx (IN) - the context handle
corresponding to the current query. You can call this to
start executing the query again, without having to create a
new context.

closeContext() Closes a given context and releases all resources
associated with that context, including the SQL cursor and
bind and define buffers etc.

PROCEDURE

closeContext(ctx IN ctxHandle);

PARAMETERS: ctx (IN) - the context handle to close.
Closes all resources associated with this handle. After this
you cannot use the handle for any other DBMS_XMLGEN
function call.

Table 5–5 DBMS_XMLGEN Functions and Procedures (Cont.)

Function or Procedure Description
Database Support for XML 5-49



DBMS_XMLGEN
<ROWSET>
 <EMPLOYEE>
  <EMPNO>7369</EMPNO>
  <ENAME>SMITH</ENAME>
  <JOB>CLERK</JOB>
  <MGR>7902</MGR>
  <HIREDATE>17-DEC-80</HIREDATE>
  <SAL>800</SAL>
  <DEPTNO>20</DEPTNO>
 </EMPLOYEE>
 <EMPLOYEE>
  <EMPNO>7499</EMPNO>
  <ENAME>ALLEN</ENAME>
  <JOB>SALESMAN</JOB>
  <MGR>7698</MGR>
  <HIREDATE>20-FEB-81</HIREDATE>
  <SAL>1600</SAL>
  <COMM>300</COMM>
  <DEPTNO>30</DEPTNO>
 </EMPLOYEE>
...
</ROWSET>

DBMS_XMLGEN Example 2: Generating Simple XML with pagination
Instead of getting the whole XML for all the rows, we can use the “fetch” interface

that the DBMS_XMLGEN provides to retrieve a fixed number of rows each time.

This speeds up the response time and also can help in scaling applications which

would need to use a DOM API over the result XML - particularly if the number of

rows is large.

The following example illustrates how to use DBMS_XMLGENto retrieve results from

the scott.emp table:

-- create a table to hold the results..!
create table temp_clob_tab ( result clob);

declare
   qryCtx dbms_xmlgen.ctxHandle;
   result CLOB;
begin

  -- get the query context;
  qryCtx := dbms_xmlgen.newContext(’select * from scott.emp’);
5-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
  -- set the maximum number of rows to be 5,
  dbms_xmlgen.setMaxRows(qryCtx, 5);

  loop
    -- now get the result
    result := dbms_xmlgen.getXML(qryCtx);

    -- if there were no rows processed, then quit..!
    exit when dbms_xmlgen.getNumRowsProcessed(qryCtx) = 0;

    -- do some processing with the lob data..!
    -- Here, we are inserting the results
    -- into a table. You can print the lob out, output it to a stream,
    -- put it in a queure
    -- or do any other processing.
    insert into temp_clob_tab values(result);

  end loop;

end;
/

Here, for each set of 5 rows, we would get an XML document.

DBMS_XMLGEN Example 3: Generating Complex XML
Complex XML can be generated using Object types to represent nested structures

 CREATE TABLE new_departments (
    department_id   NUMBER PRIMARY KEY,
    department_name VARCHAR2(20)
  );

 CREATE TABLE new_employees (
    employee_id    NUMBER PRIMARY KEY,
    last_name    VARCHAR2(20),
    department_id  NUMBER REFERENCES departments
  );

 CREATE TYPE emp_t AS OBJECT(
    "@employee_id" NUMBER,
     last_name VARCHAR2(20)
  );

 CREATE TYPE emplist_t AS TABLE OF emp_t;
Database Support for XML 5-51



DBMS_XMLGEN
 CREATE TYPE dept_t AS OBJECT(
    "@department_id" NUMBER,
     department_name VARCHAR2(20),
     emplist emplist_t
  );

 qryCtx := dbms_xmlgen.newContext
     ('SELECT dept_t(department_id, department_name,
              CAST(MULTISET
                   (SELECT e.employee_id, e.last_name
                    FROM   employees e
                    WHERE  e.department_id = d.department_id)
                            AS   emplist_t))  AS deptxml
         FROM departments d');
DBMS_XMLGEN.setRowTag(qryCtx, NULL);

Here is the resulting XML:

 <ROWSET>
    <DEPTXML DEPARTMENT_ID="10">
       <DEPARTMENT_NAME>SALES</DEPARTMENT_NAME>
           <EMPLIST>
             <EMP_T EMPLOYEE_ID="30">
               <LAST_NAME>Scott</LAST_NAME>
             </EMP_T>
             <EMP_T EMPLOYEE_ID="31">
               <LAST_NAME>Mary</LAST_NAME>
             </EMP_T>
           </EMPLIST>
       </DEPTXML>
    <DEPTXML DEPARTMENT_ID="20">
    ...
</ROWSET>

Now, you can select the LOB data from the temp_clob_Tab table and verify the

results. The result looks like the sample result shown in the previous section,

"Sample Query Result"  on page 5-42.

With relational data, the results are a flat non-nested XML document. To obtain

nested XML structures, you can use object-relational data, where the mapping is as

follows:

■ Object types map as an XML element
5-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
■ Attributes of the type, map to sub-elements of the parent element

DBMS_XMLGEN Example 4: Generating Complex XML #2 - Inputting User
Defined Types To Get Nesting in XML Documents
When you input a user-defined type (UDT) value to DBMS_XMLGEN functions, the

user-defined type gets mapped to an XML document using a canonical mapping. In

the canonical mapping, user-defined type’s attributes are mapped to XML elements.

Any attributes with names starting with “@” are mapped to an attribute of the

preceding element.

User-defined types can be used to get nesting within the result XML document.

For example, consider the two tables, EMP and DEPT:

CREATE TABLE DEPT
(
 deptno number primary key,
 dname varchar2(20)
);

CREATE TABLE EMP
(
  empno number primary key,
  ename varchar2(20),
  deptno number references dept
);

Now, to generate a hierarchical view of the data, that is, departments with

employees in them, you can define suitable object types to create the structure

inside the database as follows:

CREATE TYPE EMP_T AS OBJECT
(
  "@empno" number,  -- empno defined as an attribute!
   ename varchar2(20),
);

Note: Complex structures can be obtained by using object types

and creating object views or object tables. A canonical mapping is

used to map object instances to XML.

The @ sign, when used in column or attribute names, is translated

into an attribute of the enclosing XML element in the mapping.
Database Support for XML 5-53



DBMS_XMLGEN
/
You have defined the empno with an @ sign in front, to denote that it must be

mapped as an attribute of the enclosing Employee element.

CREATE TYPE EMPLIST_T AS TABLE OF EMP_T;
/
CREATE TYPE DEPT_T AS OBJECT
(
  "@deptno" number,
  dname varchar2(20),
  emplist emplist_t
);
    /

Department type, DEPT_T, represents the department as containing a list of

employees. You can now query the employee and department tables and get the

result as an XML document, as follows:

declare
   qryCtx dbms_xmlgen.ctxHandle;
   result CLOB;
begin

  -- get the query context;
  qryCtx := dbms_xmlgen.newContext(

 ’SELECT
  dept_t(deptno,dname,
           CAST(MULTISET(select empno, ename
                from emp e
                where e.deptno = d.deptno) AS emplist_t))) AS deptxml
FROM dept d’);

  -- set the maximum number of rows to be 5,
  dbms_xmlgen.setMaxRows(qryCtx, 5);

  -- set no row tag for this result as we have a single ADT column
  dbms_xmlgen.setRowTag(qryCtx,null);

  loop
    -- now get the result
    result := dbms_xmlgen.getXML(qryCtx);

    -- if there were no rows processed, then quit..!
    exit when dbms_xmlgen.getNumRowsProcessed(qryCtx) = 0;
5-54 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
    -- do whatever with the result..!
  end loop;
end;
/

The MULTISET operator treats the result of the subset of employees working in the

department as a list and the CAST around it, cast’s it to the appropriate collection

type. You then create a department instance around it and call the DBMS_XMLGEN
routines to create the XML for the object instance. The result is:

<?xml version="1.0"?>
<ROWSET>
 <DEPTXML deptno="10">
   <DNAME>Sports</DNAME>
   <EMPLIST>
    <EMP_T empno="200">
     <ENAME>John</ENAME>
    </EMP_T>
    <EMP_T empno="300">
     <ENAME>Jack</ENAME>
    </EMP_T>
   </EMPLIST>
 </DEPTXML>
   <DEPTXML deptno="20">
      <!-- .. other columns -->
   </DEPTXML>

     </ROWSET>

The default name “ROW” is not present because you set that to NULL. The deptno

and empno have become attributes of the enclosing element.

DBMS_XMLGEN Example 5: Generating a Purchase Order From the Database in
XML Format
This example uses DBMS_XMLGEN.getXMLType()  to generate PurchaseOrder in

XML format from a relational database using object views.

------------------------------------------------------
-- Create relational schema and define Object Views
-- Note: DBMS_XMLGEN Package maps UDT attributes names
--       starting with '@' to xml attributes
------------------------------------------------------
-- Purchase Order Object View Model
Database Support for XML 5-55



DBMS_XMLGEN
-- PhoneList Varray object type
CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20)
/

-- Address object type
CREATE TYPE Address_typ AS OBJECT (
  Street         VARCHAR2(200),
  City           VARCHAR2(200),
  State          CHAR(2),
  Zip            VARCHAR2(20)
  )
/

-- Customer object type
CREATE TYPE Customer_typ AS OBJECT (
  CustNo           NUMBER,
  CustName         VARCHAR2(200),
  Address          Address_typ,
  PhoneList        PhoneList_vartyp
)
/

-- StockItem object type
CREATE TYPE StockItem_typ AS OBJECT (
  "@StockNo"    NUMBER,
  Price      NUMBER,
  TaxRate    NUMBER
)
/

-- LineItems object type
CREATE TYPE LineItem_typ AS OBJECT (
  "@LineItemNo"   NUMBER,
  Item    StockItem_typ,
  Quantity     NUMBER,
  Discount     NUMBER
  )
/
-- LineItems Nested table
CREATE TYPE LineItems_ntabtyp AS TABLE OF LineItem_typ
/

-- Purchase Order object type
CREATE TYPE PO_typ AUTHID CURRENT_USER AS OBJECT (
  PONO                 NUMBER,
5-56 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
  Cust_ref             REF Customer_typ,
  OrderDate            DATE,
  ShipDate             TIMESTAMP,
  LineItems_ntab       LineItems_ntabtyp,
  ShipToAddr           Address_typ
 )
/

-- Create Purchase Order Relational Model tables

--Customer table
CREATE TABLE Customer_tab(
  CustNo                NUMBER NOT NULL,
  CustName              VARCHAR2(200) ,
  Street                VARCHAR2(200) ,
  City                  VARCHAR2(200) ,
  State                 CHAR(2) ,
  Zip                   VARCHAR2(20) ,
  Phone1                VARCHAR2(20),
  Phone2                VARCHAR2(20),
  Phone3                VARCHAR2(20),
  constraint cust_pk PRIMARY KEY (CustNo)
)
ORGANIZATION INDEX OVERFLOW;

-- Purchase Order table
CREATE TABLE po_tab (
   PONo        NUMBER, /* purchase order no */
   Custno      NUMBER constraint po_cust_fk references Customer_tab,
                                /*  Foreign KEY referencing customer */
   OrderDate   DATE, /*  date of order */
   ShipDate    TIMESTAMP, /* date to be shipped */
   ToStreet    VARCHAR2(200), /* shipto address */
   ToCity      VARCHAR2(200),
   ToState     CHAR(2),
   ToZip       VARCHAR2(20),
   constraint po_pk PRIMARY KEY(PONo)
);

--Stock Table
CREATE TABLE Stock_tab (
  StockNo      NUMBER constraint stock_uk UNIQUE,
  Price        NUMBER,
  TaxRate      NUMBER
);
Database Support for XML 5-57



DBMS_XMLGEN
--Line Items Table
CREATE TABLE LineItems_tab(
  LineItemNo           NUMBER,
  PONo                 NUMBER constraint LI_PO_FK REFERENCES po_tab,
  StockNo              NUMBER ,
  Quantity             NUMBER,
  Discount             NUMBER,
  constraint LI_PK PRIMARY KEY (PONo, LineItemNo)
);

-- create Object Views

--Customer Object View
CREATE OR REPLACE VIEW Customer OF Customer_typ
   WITH OBJECT IDENTIFIER(CustNo)
   AS SELECT c.Custno, C.custname,
             Address_typ(C.Street, C.City, C.State, C.Zip),
             PhoneList_vartyp(Phone1, Phone2, Phone3)
        FROM Customer_tab c;

--Purchase order view
CREATE OR REPLACE VIEW PO OF PO_typ
  WITH OBJECT IDENTIFIER (PONO)
   AS SELECT P.PONo,
             MAKE_REF(Customer, P.Custno),
             P.OrderDate,
             P.ShipDate,
             CAST( MULTISET(
                    SELECT LineItem_typ( L.LineItemNo,
                                  StockItem_typ(L.StockNo,S.Price,S.TaxRate),
                                            L.Quantity, L.Discount)
                     FROM LineItems_tab L, Stock_tab S
                     WHERE L.PONo = P.PONo and S.StockNo=L.StockNo )
                 AS LineItems_ntabtyp),
         Address_typ(P.ToStreet,P.ToCity, P.ToState, P.ToZip)
        FROM PO_tab P;

-- create table with XMLType column to store po in XML format
create table po_xml_tab(
  poid number,
  poDoc SYS.XMLType /* purchase order in XML format */
)
/

5-58 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
--------------------
-- Populate data
-------------------
-- Establish Inventory

INSERT INTO Stock_tab VALUES(1004, 6750.00, 2) ;
INSERT INTO Stock_tab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_tab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_tab VALUES(1535, 3456.23, 2) ;

-- Register Customers

INSERT INTO Customer_tab
  VALUES (1, 'Jean Nance', '2 Avocet Drive',
         'Redwood Shores', 'CA', '95054',
         '415-555-1212', NULL, NULL) ;

INSERT INTO Customer_tab
  VALUES (2, 'John Nike', '323 College Drive',
         'Edison', 'NJ', '08820',
         '609-555-1212', '201-555-1212', NULL) ;

-- Place Orders

INSERT INTO PO_tab
  VALUES (1001, 1, '10-APR-1997', '10-MAY-1997',
          NULL, NULL, NULL, NULL) ;

INSERT INTO PO_tab
  VALUES (2001, 2, '20-APR-1997', '20-MAY-1997',
         '55 Madison Ave', 'Madison', 'WI', '53715') ;

-- Detail Line Items

INSERT INTO LineItems_tab VALUES(01, 1001, 1534, 12,  0) ;
INSERT INTO LineItems_tab VALUES(02, 1001, 1535, 10, 10) ;
INSERT INTO LineItems_tab VALUES(01, 2001, 1004,  1,  0) ;
INSERT INTO LineItems_tab VALUES(02, 2001, 1011,  2,  1) ;

-------------------------------------------------------
-- Use DBMS_XMLGEN Package to generate PO in XML format
-- and store SYS.XMLType in po_xml table
-------------------------------------------------------
Database Support for XML 5-59



DBMS_XMLGEN
declare
   qryCtx dbms_xmlgen.ctxHandle;
   pxml SYS.XMLType;
   cxml clob;
begin

  -- get the query context;
  qryCtx := dbms_xmlgen.newContext('
                    select pono,deref(cust_ref) customer,p.OrderDate,p.shipdate,
                           lineitems_ntab lineitems,shiptoaddr
                    from po p'
             );

  -- set the maximum number of rows to be 1,
  dbms_xmlgen.setMaxRows(qryCtx, 1);
  -- set rowset tag to null and row tag to PurchaseOrder
  dbms_xmlgen.setRowSetTag(qryCtx,null);
  dbms_xmlgen.setRowTag(qryCtx,'PurchaseOrder');

  loop
    -- now get the po in xml format
    pxml := dbms_xmlgen.getXMLType(qryCtx);

    -- if there were no rows processed, then quit..!
    exit when dbms_xmlgen.getNumRowsProcessed(qryCtx) = 0;

    -- Store SYS.XMLType po in po_xml table (get the pono out)
    insert into po_xml_tab (poid, poDoc)
       values(
            pxml.extract(’//PONO/text()’).getNumberVal(),
            pxml);
  end loop;
end;
/

---------------------------
-- list xml PurchaseOrders
---------------------------

set long 100000
set pages 100
select x.xpo.getClobVal() xpo
from   po_xml x;

PurchaseOrder 1001:
5-60 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_XMLGEN
This produces the following purchase order XML document:

<?xml version="1.0"?>
 <PurchaseOrder>
  <PONO>1001</PONO>
  <CUSTOMER>
   <CUSTNO>1</CUSTNO>
   <CUSTNAME>Jean Nance</CUSTNAME>
   <ADDRESS>
    <STREET>2 Avocet Drive</STREET>
    <CITY>Redwood Shores</CITY>
    <STATE>CA</STATE>
    <ZIP>95054</ZIP>
   </ADDRESS>
   <PHONELIST>
    <VARCHAR2>415-555-1212</VARCHAR2>
   </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>10-APR-97</ORDERDATE>
  <SHIPDATE>10-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS>
   <LINEITEM_TYP LineItemNo="1">
    <ITEM StockNo="1534">
     <PRICE>2234</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>12</QUANTITY>
    <DISCOUNT>0</DISCOUNT>
   </LINEITEM_TYP>
   <LINEITEM_TYP LineItemNo="2">
    <ITEM StockNo="1535">
     <PRICE>3456.23</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>10</QUANTITY>
    <DISCOUNT>10</DISCOUNT>
   </LINEITEM_TYP>
  </LINEITEMS>
  <SHIPTOADDR/>
 </PurchaseOrder>

PurchaseOrder 2001:

<?xml version="1.0"?>
Database Support for XML 5-61



DBMS_XMLGEN
 <PurchaseOrder>
  <PONO>2001</PONO>
  <CUSTOMER>
   <CUSTNO>2</CUSTNO>
   <CUSTNAME>John Nike</CUSTNAME>
   <ADDRESS>
    <STREET>323 College Drive</STREET>
    <CITY>Edison</CITY>
    <STATE>NJ</STATE>
    <ZIP>08820</ZIP>
   </ADDRESS>
   <PHONELIST>
    <VARCHAR2>609-555-1212</VARCHAR2>
    <VARCHAR2>201-555-1212</VARCHAR2>
   </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>20-APR-97</ORDERDATE>
  <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS>
   <LINEITEM_TYP LineItemNo="1">
    <ITEM StockNo="1004">
     <PRICE>6750</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>1</QUANTITY>
    <DISCOUNT>0</DISCOUNT>
   </LINEITEM_TYP>
   <LINEITEM_TYP LineItemNo="2">
    <ITEM StockNo="1011">
     <PRICE>4500.23</PRICE>
     <TAXRATE>2</TAXRATE>
    </ITEM>
    <QUANTITY>2</QUANTITY>
    <DISCOUNT>1</DISCOUNT>
   </LINEITEM_TYP>
  </LINEITEMS>
  <SHIPTOADDR>
   <STREET>55 Madison Ave</STREET>
   <CITY>Madison</CITY>
   <STATE>WI</STATE>
   <ZIP>53715</ZIP>
  </SHIPTOADDR>
 </PurchaseOrder>
5-62 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLGEN
SYS_XMLGEN
Oracle9i introduces a new SQL function, SYS_XMLGEN(), to generate XML in SQL

queries. DBMS_XMLGEN and other packages operate at a query level, giving

aggregated results for the entire query. SYS_XMLGENtakes in a single argument in an

SQL query and converts it (the result) to XML.

SYS_XMLGEN takes a scalar value, object type, or XMLType  instance to be

converted to an XML document. It also takes an optional XMLGenFormatType
object that you can use to specify formatting options for the resulting XML

document.

SYS_XMLGEN returns a XMLType.

It is used to create and query XML instances within SQL queries, as follows:

SQL> SELECT SYS_XMLGEN(employee_id)
            2  FROM employees WHERE last_name LIKE
             'Scott%';

The resulting XML document is:

<?xml version=''1.0''?>
<employee_id>60</employee_id>

SYS_XMLGEN Syntax
The SYS_XMLGEN function takes an expression that evaluates to a particular row

and column of the database, and returns an instance of type XMLType containing an

XML document. See Figure 5–3. The expr  can be a scalar value, a user-defined

type, or a XMLType instance.

■ If expr  is a scalar value, the function returns an XML element containing the

scalar value.

■ If expr  is a type, the function maps the user-defined type attributes to XML

elements.

■ If expr  is a XMLType instance, then the function encloses the document in an

XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr . For

example, if expr resolves to a column name, the enclosing XML element will be the

same column name. If you want to format the XML document differently, specify

fmt , which is an instance of the XMLGenFormatType  object.
Database Support for XML 5-63



SYS_XMLGEN
Figure 5–3 SYS_XMLGEN Syntax

The following example retrieves the employee email ID from the sample table

oe.employees where the employee_id value is 205, and generates an instance of

a XMLType containing an XML document with an EMAIL element.

SELECT SYS_XMLGEN(email).getStringVal()
   FROM employees
   WHERE employee_id = 205;

SYS_XMLGEN(EMAIL).GETSTRINGVAL()
------------------------------------------------------------------
<EMAIL>SHIGGENS</EMAIL>

Why is SYS_XMLGEN so Powerful?
SYS_XMLGEN() is powerful for the following reasons:

■ You can create and query XML instances within SQL queries.

■ Using the object-relational infrastructure, you can create complex and nested

XML instances from simple relational tables.

SYS_XMLGEN() creates an XML document from either of the following:

■ A user-defined type (UDT) instance

■ A scalar value passed

 and returns an XMLType instance contained in the document.

SYS_XMLGEN() also optionally inputs a XMLGenFormatType object type through

which you can customize the SQL results. A NULL format object implies that the

default mapping behavior is to be used.

XMLGenFormatType Object
XMLGenFormatType  can be used to specify formatting arguments to SYS_XMLGEN
and SYS_XMLAGG functions. Table 5–6 lists the XMLGenFormatType attributes.

SYS_XMLGEN ( expr
fmt

)

5-64 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLGEN
Table 5–6 XMLGenFormatType Attributes

XMLGenFormatType
Attribute Description

enclTag The name of the enclosing tag to use

schemaType Not currently supported, but in future will be used to specify
how the XMLSchema should be generated.

processingIns Can specify processing instructions such as stylesheet
instructions that need to be appended to the beginning of the
document.

dburl Not used currently.

targetNameSpace Not used currently, but will be used for XMLSchema
generation.
Database Support for XML 5-65



SYS_XMLGEN
Creating a Formatting Object with createFormat
You can use the static member function createformat to create a formatting object.

This function has most of the values defaulted. For example:

  -- function to create the formatting object..
  STATIC MEMBER FUNCTION createFormat(
       enclTag IN varchar2 := null,
        schemaType IN varchar2 := ’NO_SCHEMA’
        schemaName IN varchar2 := null,
        targetNameSpace IN varchar2 := null,
       dburl IN varchar2 := null,
        processingIns IN varchar2 := null)
   RETURN XMLGenFormatType;

SYS_XMLGEN Example 1: Converting a Scalar Value to an XML Document
Element’s Contents
When you input a scalar value to SYS_XMLGEN(), SYS_XMLGEN() converts the

scalar value to an element containing the scalar value. For example:

select sys_xmlgen(empno) from scott.emp where rownum < 1;

returns an XML document that contains the empno value as an element, as follows:

<?xml version="1.0"?>
<EMPNO>30</EMPNO>

The enclosing element name, in this case EMPNO, is derived from the column name

passed to the operator. Also, note that the result of the SELECT statement is a row

containing a XMLType.

In the last example, you used the column name “EMPNO” for the document. If the

column name cannot be derived directly, then the default name “ROW” is used. For

example, in the following case:

Note: Currently, SQL*Plus cannot display XMLType properly, so

you need to extract the LOB value out and display that. Use the

getClobval() function on the XMLType to retrieve the CLOB

value. For example,

SELECT sys_xmlgen(empno).getclobval() FROM scott.emp

WHERE rownum < 1;
5-66 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLGEN
select sys_xmlgen(empno).getclobval()
from scott.emp
where rownum < 1;

you get the following XML output:

<?xml version="1.0"?>
<ROW>60</ROW>

since the function cannot infer the name of the expression. You can override the

default ROW tag by supplying an XMLGenFormatType  object to the first argument

of the operator.

For example, in the last case, if you wanted the result to have EMPNO as the tag

name, you can supply a formatting argument to the function, as follows:

select sys_xmlgen(empno *2,
     sys.xmlgenformattype.createformat(’EMPNO’)).getClobVal()
from dual;

This results in the following XML:

<?xml version="1.0"?>
<EMPNO>60</EMPNO>

SYS_XMLGEN Example 2: Converting a User-Defined Type (UDT) to XML
When you input a user-defined type (UDT) value to SYS_XMLGEN(), the

user-defined type gets mapped to an XML document using a canonical mapping. In

the canonical mapping the user-defined type’s attributes are mapped to XML

elements.

Any type attributes with names starting with “@” are mapped to an attribute of the

preceding element.User-defined types can be used to get nesting within the result

XML document.

Using the same example as given in the DBMS_XMLGEN section ("DBMS_XMLGEN

Example 4: Generating Complex XML #2 - Inputting User Defined Types To Get

Nesting in XML Documents"  on page 5-53), you can generate a hierarchical XML

for the employee, department example as follows:

Note: Currently, CURSOR expressions are not supported as input

values.
Database Support for XML 5-67



SYS_XMLGEN
SELECT SYS_XMLGEN(
  dept_t(deptno,dname,
        CAST(MULTISET(
            select empno, ename
            from emp e
            where e.deptno = d.deptno) AS emplist_t))).getClobVal()
     AS deptxml
FROM dept d;

The MULTISET operator treats the result of the subset of employees working in the

department as a list and the CAST around it, cast’s it to the appropriate collection

type. You then create a department instance around it and call SYS_XMLGEN() to

create the XML for the object instance.

The result is:

<?xml version="1.0"?>
<ROW DEPTNO="100">
  <DNAME>Sports</DNAME>
  <EMPLIST>
    <EMP_T EMPNO="200">
      <ENAME>John</ENAME>
    <EMP_T>
    <EMP_T>
      <ENAME>Jack</ENAME>
    </EMP_T>
 </EMPLIST>
</ROW>

per row of the department. The default name “ROW” is present because the function

cannot deduce the name of the input operand directly.

The difference between the SYS_XMLGEN and the DBMS_XMLGEN is apparent

from this example:

■ SYS_XMLGEN works inside SQL queries and operates on the expressions and

columns within the row

■ DBMS_XMLGEN works on the entire result set

SYS_XMLGEN Example 3: Converting XMLType Instance
If you pass an XML document into SYS_XMLGEN(), SYS_XMLGEN encloses the

document (or fragment) with an element, whose tag name is the default “ROW”, or

the name passed in through the formatting object. This functionality can be used to

turn document fragments into well formed documents.
5-68 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLGEN
For example, the extract operation on the following document, can return a

fragment. If you extract out the EMPNO elements from the following document:

<DOCUMENT>
  <EMPLOYEE>
    <ENAME>John</ENAME>
    <EMPNO>200</EMPNO>
  </EMPLOYEE>
  <EMPLOYEE>
    <ENAME>Jack</ENAME>
    <EMPNO>400</EMPNO>
  </EMPLOYEE>
  <EMPLOYEE>
    <ENAME>Joseph</ENAME>
    <EMPNO>300</EMPNO>
  </EMPLOYEE>
</DOCUMENT>

Using the following statement:

select e.xmldoc.extract(’/DOCUMENT/EMPLOYEE/ENAME’)
   from po_xml_tab e;

you get a document fragment such as the following:

<ENAME>John</ENAME>
<ENAME>Jack</ENAME>
<ENAME>Joseph</ENAME>

You can make this fragment a valid XML document, by calling SYS_XMLGEN() to
put an enclosing element around the document, as follows:

select SYS_XMLGEN(e.xmldoc.extract(’/DOCUMENT/EMPLOYEE/ENAME’)).getclobval()
   from po_xml_tab e;

This places an element “ROW” around the result, as follows:

<?xml version="1.0"?>
<ROW>
  <ENAME>John</ENAME>
  <ENAME>Jack</ENAME>
  <ENAME>Joseph</ENAME>
</ROW>
Database Support for XML 5-69



SYS_XMLGEN
SYS_XMLGEN() Example 4: Using SYS_XMLGEN() with Object Views
-- create Purchase Order object type
CREATE OR REPLACE TYPE PO_typ AUTHID CURRENT_USER AS OBJECT (
  PONO                 NUMBER,
  Customer             Customer_typ,
  OrderDate            DATE,
  ShipDate             TIMESTAMP,
  LineItems_ntab       LineItems_ntabtyp,
  ShipToAddr           Address_typ
 )
/

--Purchase order view
CREATE OR REPLACE VIEW PO OF PO_typ
  WITH OBJECT IDENTIFIER (PONO)
   AS SELECT P.PONo,
             Customer_typ(P.Custno,C.CustName,C.Address,C.PhoneList),
             P.OrderDate,
             P.ShipDate,
             CAST( MULTISET(
                    SELECT LineItem_typ( L.LineItemNo,
                                  StockItem_typ(L.StockNo,S.Price,S.TaxRate),
                                            L.Quantity, L.Discount)
                     FROM LineItems_tab L, Stock_tab S
                     WHERE L.PONo = P.PONo and S.StockNo=L.StockNo )
                 AS LineItems_ntabtyp),
         Address_typ(P.ToStreet,P.ToCity, P.ToState, P.ToZip)
        FROM PO_tab P, Customer C
        WHERE P.CustNo=C.custNo;

-------------------------------------------------------
-- Use SYS_XMLGEN() to generate PO in XML format
-------------------------------------------------------
set long 20000
set pages 100
SELECT SYS_XMLGEN(value(p),
               sys.xmlgenformatType.createFormat('PurchaseOrder')).getClobVal()

Note: If the input was a column, then the column name would

have been used as default. You can override the enclosing element

name using the formatting object that can be passed in as an

additional argument to the function.
5-70 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLGEN
PO
FROM po p
WHERE p.pono=1001;

This returns the Purchase Order in XML format:

<?xml version="1.0"?>
<PurchaseOrder>
 <PONO>1001</PONO>
 <CUSTOMER>
  <CUSTNO>1</CUSTNO>
  <CUSTNAME>Jean Nance</CUSTNAME>
  <ADDRESS>
   <STREET>2 Avocet Drive</STREET>
   <CITY>Redwood Shores</CITY>
   <STATE>CA</STATE>
   <ZIP>95054</ZIP>
  </ADDRESS>
  <PHONELIST>
   <VARCHAR2>415-555-1212</VARCHAR2>
  </PHONELIST>
 </CUSTOMER>
 <ORDERDATE>10-APR-97</ORDERDATE>
 <SHIPDATE>10-MAY-97 12.00.00.000000 AM</SHIPDATE>
 <LINEITEMS_NTAB>
  <LINEITEM_TYP LineItemNo="1">
   <ITEM StockNo="1534">
    <PRICE>2234</PRICE>
    <TAXRATE>2</TAXRATE>
   </ITEM>
   <QUANTITY>12</QUANTITY>
   <DISCOUNT>0</DISCOUNT>
  </LINEITEM_TYP>
  <LINEITEM_TYP LineItemNo="2">
   <ITEM StockNo="1535">
    <PRICE>3456.23</PRICE>
    <TAXRATE>2</TAXRATE>
   </ITEM>
   <QUANTITY>10</QUANTITY>
   <DISCOUNT>10</DISCOUNT>
  </LINEITEM_TYP>
 </LINEITEMS_NTAB>
 <SHIPTOADDR/>
</PurchaseOrder>
Database Support for XML 5-71



SYS_XMLAGG
SYS_XMLAGG
SYS_XMLAGG aggregates all input documents and produces a single XML

document. It aggregates (concatenates) fragments. SYS_XMLAGG takes in an

XMLType as argument, and aggregates (or concatenates) all XML documents in

rows into a single document per group. Use SYS_XMLAGG() for either of the

following tasks:

■ Aggregate fragments together

■ Aggregate related XML data

In Figure 5–4 shows how SYS_XMLAGG function aggregates all XML documents or

fragments, represented by expr,  and produces a single XML document. It adds a

new enclosing element with a default name ROWSET. To format the XML document

differently, specify fmt , which is an instance of the SYS.XMLGenFormatType
object.

Figure 5–4 SYS_XMLAGG Syntax

For example:

SQL> SELECT SYS_XMLAGG(SYS_XMLGEN(last_name)
             2  ,      SYS.XMLGENFORMATTYPE.createFormat
             3         ('EmployeeGroup')).getClobVal()
             4  FROM employees
             5  GROUP BY department_id;

This generates the following XML document:

<EmployeeGroup>
     <last_name>Scott</last_name>
     <last_name>Mary<last_name>
</EmployeeGroup >
<EmployeeGroup >
     <last_name>Jack</last_name>
     <last_name>John>/last_name>
</EmployeeGroup >

SYS_XMLAGG ( expr
fmt

)

5-72 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLAGG
SYS_XMLAGG Example 1: Aggregating XML from Relational Data
Consider the SELECT statement:

SELECT SYS_XMLAGG(SYS_XMLGEN(ename)).getClobVal() xml_val
FROM scott.emp
GROUP BY deptno;

This returns the following XML document:

xml_val
-------------
<ROWSET>
  <ENAME>John</ENAME>
  <ENAME>Jack</ENAME>
  <ENAME>Joseph</ENAME>
</ROWSET>

<ROWSET>
  <ENAME>Scott</ENAME>
  <ENAME>Adams</ENAME>
</ROWSET>

2 rows selected

Here, you grouped all the employees belonging to a particular department and

aggregated all the XML documents produced by the SYS_XMLGEN function. In the

previous SQL statement, if you wanted to enclose the result of each group in an

EMPLOYEE tag, use the following statement:

select sys_xmlagg(sys_xmlgen(ename),
    sys.xmlgenformattype.createformat(’EMPLOYEE’)).getClobVal() xmlval
          from scott.emp
          group by deptno);

This returns the following:

xml_val
-------------
<EMPLOYEE>
 <ENAME>John</ENAME>
  <ENAME>Jack</ENAME>
  <ENAME>Joseph</ENAME>
</EMPLOYEE>

<EMPLOYEE>
  <ENAME>Scott</ENAME>
Database Support for XML 5-73



SYS_XMLAGG
  <ENAME>Adams</ENAME>
</EMPLOYEE>

2 rows selected

SYS_XMLAGG Example 2: Aggregating XMLType Instances Stored in Tables
You can also aggregate XMLType instances that are stored in tables or selected out

from functions. Assuming that you have a table defined as follows:

CREATE TABLE po_tab
(
  pono  number primary key,
  orderdate date,
  poxml sys.XMLType;
);

insert into po_Tab values (100,’10-11-2000’,
   ’<?xml version="1.0"?><PO pono="100"><PONAME>Po_1</PONAME></PO>’);
insert into po_Tab values (200,’10-23-1999’,
   ’<?xml version="1.0"?><PO pono="200"><PONAME>Po_2</PONAME></PO>’);

You can now aggregate the purchase orders into a single purchase order using the

SYS_XMLAGG function as follows:

select SYS_XMLAGG(poxml,sys.xmlgenformattype.createformat(’POSET’))
from po_Tab;

This produces a single XML document of the form:

<?xml version="1.0"?>
<POSET>
  <PO pono="100">
    <PONAME>Po_1</PONAME>
  </PO>
  <PO pono="200">
    <PONAME>Po_2</PONAME>
  </PO>
</POSET>

SYS_XMLAGG Example 3: Aggregating XMLType Fragments
The Extract()  function in XMLType, allows you to extract fragments of XML

documents. You can also aggregate these fragments together using the SYS_
XMLAGG function. For example, from the previous example, if you extract out the
5-74 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_XMLAGG
PONAME elements alone, you can aggregate those together using the SYS_XMLAGG
function as follows:

select SYS_XMLAGG(p.po_xml.extract(’//PONAME’)).getclobval()
from po_tab p;

This produces the following XML document:

<?xml version="1.0"?>
<ROWSET>
  <PONAME>Po_1</PONAME>
  <PONAME>Po_2</PONAME>
</ROWSET>

SYS_XMLAGG Example 4: Aggregating all Purchase Orders into One XML
Document
set long 20000
set pages 200
SELECT SYS_XMLAGG(SYS_XMLGEN(value(p),
             sys.xmlgenformatType.createFormat('PurchaseOrder'))).getClobVal()
PO
FROM po p;

This returns all Purchase Orders in one XML Document, namely that enclosed in

the ROWSET element:

<?xml version="1.0"?>
<ROWSET>
<PurchaseOrder>
  <PONO>1001</PONO>
  <CUSTOMER>
    <CUSTNO>1</CUSTNO>
    <CUSTNAME>Jean Nance</CUSTNAME>
    <ADDRESS>
      <STREET>2 Avocet Drive</STREET>
      <CITY>Redwood Shores</CITY>
      <STATE>CA</STATE>
      <ZIP>95054</ZIP>
    </ADDRESS>
    <PHONELIST>
      <VARCHAR2>415-555-1212</VARCHAR2>
    </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>10-APR-97</ORDERDATE>
Database Support for XML 5-75



SYS_XMLAGG
  <SHIPDATE>10-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS_NTAB>
    <LINEITEM_TYP LineItemNo="1">
      <ITEM StockNo="1534">
        <PRICE>2234</PRICE>
        <TAXRATE>2</TAXRATE>
      </ITEM>
      <QUANTITY>12</QUANTITY>
      <DISCOUNT>0</DISCOUNT>
    </LINEITEM_TYP>
    <LINEITEM_TYP LineItemNo="2">
      <ITEM StockNo="1535">
        <PRICE>3456.23</PRICE>
        <TAXRATE>2</TAXRATE>
      </ITEM>
      <QUANTITY>10</QUANTITY>
      <DISCOUNT>10</DISCOUNT>
    </LINEITEM_TYP>
  </LINEITEMS_NTAB>
  <SHIPTOADDR/>
</PurchaseOrder>
<PurchaseOrder>
  <PONO>2001</PONO>
  <CUSTOMER>
    <CUSTNO>2</CUSTNO>
    <CUSTNAME>John Nike</CUSTNAME>
    <ADDRESS>
      <STREET>323 College Drive</STREET>
      <CITY>Edison</CITY>
      <STATE>NJ</STATE>
      <ZIP>08820</ZIP>
    </ADDRESS>
    <PHONELIST>
      <VARCHAR2>609-555-1212</VARCHAR2>
      <VARCHAR2>201-555-1212</VARCHAR2>
    </PHONELIST>
  </CUSTOMER>
  <ORDERDATE>20-APR-97</ORDERDATE>
  <SHIPDATE>20-MAY-97 12.00.00.000000 AM</SHIPDATE>
  <LINEITEMS_NTAB>
    <LINEITEM_TYP LineItemNo="1">
      <ITEM StockNo="1004">
        <PRICE>6750</PRICE>
        <TAXRATE>2</TAXRATE>
      </ITEM>
5-76 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



TABLE Functions
      <QUANTITY>1</QUANTITY>
      <DISCOUNT>0</DISCOUNT>
    </LINEITEM_TYP>
    <LINEITEM_TYP LineItemNo="2">
      <ITEM StockNo="1011">
        <PRICE>4500.23</PRICE>
        <TAXRATE>2</TAXRATE>
      </ITEM>
      <QUANTITY>2</QUANTITY>
      <DISCOUNT>1</DISCOUNT>
    </LINEITEM_TYP>
  </LINEITEMS_NTAB>
  <SHIPTOADDR>
    <STREET>55 Madison Ave</STREET>
    <CITY>Madison</CITY>
    <STATE>WI</STATE>
    <ZIP>53715</ZIP>
  </SHIPTOADDR>
</PurchaseOrder>
</ROWSET>

Other Aggregation Methods

ROLLUP and CUBE
Oracle provides powerful functionality for OLAP operations such as CUBE and

ROLLUP. SYS_XMLAGG function also works in these cases. You can, for example,

create different XML documents based on the ROLLUP or CUBE operation.

WINDOWING Function
Oracle provides windowing functions that can be used to compute cumulative,

moving, and centered aggregates. SYS_XMLAGG can also be used here to create

documents based on rank and partition.

TABLE Functions
The previous sections talked about the new functions and operators that Oracle has

introduced that can help query the XML instances using a XPath-like syntax.

However, you also need to be able to explode the XML into simple relational or

object-relational data so that you can insert that into tables or query using standard

relational SQL statements. You can do this using a powerful mechanism called

TABLE functions.
Database Support for XML 5-77



TABLE Functions
Table functions are new in Oracle9i. They can be used to model any arbitrary data

(internal to the database or from an external source) as a collection of SQL rows.

Table functions are executed pipelined and in parallel for improved performance.

You can use Table functions to break XML into SQL rows. These can then be

consumed by regular SQL queries and inserted into regular relational or

object-relational tables.

With Oracle8i you could have a function returning a collection and use it in the

FROM clause in the SELECT statement. However, the function would have to

materialize the entire collection before it can be consumed by the outer query block.

With TABLE functions, these are both pipelined and parallel. Thus the function

need not instantiate the whole collection in memory and instead pipe the results to

the outer query block. The result is a faster response time and lower memory usage.

Using Table Functions with XML
With XML, you can use these TABLE functions, to break the XML into SQL rows

that can be queried by regular SQL queries and put into regular relational or object

relational tables. Since they are parallel and piped, the performance of such an

operation is vastly improved.

You can define a function for instance that takes an XMLType or a CLOB and

returns a well known collection type. The function, for example, can use the XML

parser available with Oracle9i to perform SAX parsing and return the results, or use

the extract()  function to extract pieces of the XML document and return it.

Table Functions Example 1: Exploding the PO to Store in a Relational Table
Assuming that you have the purchase order document explained in earlier sections

and you need to explode it to store it in relational table containing the purchase

order details, you first create a type to describe the structure of the result,

create type poRow_type as object
(
  poname varchar2(20),
  postreet varchar2(20),
  pocity varchar2(20),
  postate char(2),
  pozip char(10)
);
/

See Also: Oracle9i Application Developer’s Guide - Fundamentals,
Table Functions.
5-78 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



TABLE Functions
create type poRow_list as TABLE of poRow_type;
/

Now, you can either create an ODCI implementation type to implement the TABLE

interface, or use native PL/SQL.

Assuming that you have created the body of the implementation type in PL/SQL,

by creating the function itself, you can define the TABLE function as follows:

create function poExplode_func (arg IN sys.XMLType) return poRow_list
pipelined is
  out_rec poRow_type;
  poxml sys.XMLType;
  i binary_integer := 1;
  argnew sys.XMLType := arg;
begin

  loop

   -- extract the i’th purchase order!
   poxml := argnew.extract(’//PO[’||i||’]’);
   exit when poxml is null;

   -- extract the required attributes..!!!
   out_rec.poname := poxml.extract(’/PONAME/text()’).getStringVal();
   out_rec.postreet := poxml.extract(’/POADDR/STREET/text()’).getStringVal();
   out_rec.pocity := poxml.extract(’/POADDR/CITY/text()’).getStringVal();
   out_rec.postate := poxml.extract(’/POADDR/STATE/text()’).getStringVal();
   out_rec.pozip := poxml.extract(’/POADDR/ZIP/text()’).getStringVal();
   PIPE ROW(out_rec);

  i := i+1;

  end loop;
  return;
end;
/

You can use this function in the FROM list, and the interfaces defined in the Imp_t

would be automatically called to get the values in a pipelined fashion as follows:

See Also: Oracle9i Application Developer’s Guide - Fundamentals,
Table Functions, for details on what the interface definitions are and
an example of the body,...
Database Support for XML 5-79



TABLE Functions
select *
   from TABLE( CAST(

poExplode_func (
       sys.XMLType.createXML(
         ’<?xml version="1.0"?>
          <POLIST>
           <PO>
            <PONAME>Po_1</PONAME>
            <POADDR>
              <STREET>100 Main Street</STREET>
              <CITY>Sunnyvale</CITY>
              <STATE>CA</STATE>
              <ZIP>94086</ZIP>
            </POADDR>
           </PO>
           <PO>
            <PONAME>Po_2</PONAME>
            <POADDR>
              <STREET>200 First Street</STREET>
              <CITY>Oaksdale</CITY>
              <STATE>CA</STATE>
              <ZIP>95043</ZIP>
            </POADDR>
           </PO>
          </POLIST>’)
   ) AS poRow_list));

 The SQL statement returns the following values:

PONAME    POSTREET        POCITY    POSTATE   POZIP
------------------------------------------------------------
Po_1     100 Main Street  Sunnyvale   CA       94086
Po_2     200 First Street Oaksdale   CA       95043

which can then be inserted into relational tables or queried with SQL.

Note: IN the foregoing example, XMLType static constructor was

used to construct the XML document. You can also use bind

variables or select list subqueries to get the value.
5-80 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XMLType
Frequently Asked Questions (FAQs): XMLType

Is Replication and Materialized Views (MV) Supported by XMLType?

Question Are there any issues regarding using XMLType with replication and

materialized views?

Answer Replication treats XMLType as another user-defined type. It should work as

other user-defined types. dbms_defer_query and user-defined conflict resolution

routines do not support XMLType until a forthcoming release. So, no, replication

and MV are not fully supported by XMLType in this release.

How Can I Update an XML Tag in a Database Record?

Question Can I update an XML tag within a record of a database table? Also, can I

create indexes based on XML tags?

Answer In this release Oracle offers XMLType with a CLOB storage. Updatability is

at the level of a single document, so you must replace the whole document.

XMLType can be indexed using Oracle Text (interMedia). This kind of index is best

for locating documents that match certain XML search criteria, but if your

applications are going to want to select out data like the “quantity” and the “price”

as numerical values to operate on (for example, by some graphing or data

warehousing software), then storing data-oriented XML as real tables and columns

will give the best fit. You can also use functional indexes to speed up certain

well-known XPath expressions.

The book “Building Oracle XML Applications”, by Steve Muench (O’Reilly), covers

Oracle8i with examples.

See Also:

■ Chapter 8, "Searching XML Data with Oracle Text"

■ Oracle9i Text Developer’s Guide

■ Oracle9i Text Reference
Database Support for XML 5-81



Frequently Asked Questions (FAQs): XMLType
Does XMLType Support the Enforcing of Business Rules Such as Attribute
Constraints?

Question Does the XML datatype in Oracle9i, provide the ability to enforce business

rules or constraints as an attribute of an element within the data? For example:

 <Address>
   <Street type=string> </Street>
   <City type=string> </City>
   <State type=string size=2> </State>
   <Zip type=number size=5> </Zip>
 </Address>

Answer With Oracle9i, you can use the trigger mechanism to enforce any

constraints. Oracle9i currently only supports storage as a CLOB and no constraint

checks are inherently available. With forthcoming releases we may offer XML

schema compliance and you would be able to create columns conforming to

schemas, and so on. This would enable you to have any constraint that the schema

enforces.

How Do I Create XML Documents with the Appropriate Encoding for Japanese?

Question I need to use SYS_XMLGEN() to create documents in Japanese, on

Oracle9i. The database character set is EUC_JP, but creating XML with SYS_
XMLGEN(), SYS_XMLAGG() and DBMS_XMLGEN() produces documents with the

XML declaration:

<?xml version="1.0"?>

Can I create XML documents with the appropriate declaration, such as:

<?xml version="1.0" encoding="EUC_JP"?>

Answer In Oracle9i, you cannot generate XML output with an encoding tag. If you

have data in binary datatype, then the conversion will fail if it is not convertible to

the database character set.

Note that the encoding declaration does not constitute a part of the document

per-se. It is an identifier to help processors identify its encoding.
5-82 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XMLType
What is the Best Way to Store XML in a Database?

Question What is the best way to store XML in a database? Can I store XML data in

an NCLOB? Or is it preferable to store it in a BLOB and manipulate it within the

application only?

Answer The best way to store XML in Oracle9i is to use the XMLType. Oracle

currently allows only CLOB storage natively, but in forthcoming releases Oracle

may allow native storage in NCLOBs, BLOBs, etc.

For Oracle9i Release 1 (9.0.1), you can store the XML as:

■ XMLType - the preferred way. This helps the server to know that the data is

XML. You can do XML based querying and indexing.

■ BLOBs - This helps you store the XML document intact in the same encoding as

the original document. The burden is on the user to deal with all the encoding

issues.

■ NCLOBs - Storing XML as NCLOBs will allow you to SQL operations on the

data, as well as do Context searches. Context search is supported only if the

database charset is a proper super-set or convertible set of the NCHAR, that is,

the NCLOB must be convertible to the database char set without loss of data.
Database Support for XML 5-83



Frequently Asked Questions (FAQs): XMLType
5-84 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Database Uri-r
6

Database Uri-references

This chapter contains the following sections:

■ Uri-reference (Uri-ref) Concepts

■ New Datatypes Store Uri-references

■ DBUri-refs, Intra-Databases References

■ Using Uri-ref Types (URITypes)

■ UriFactory Package

■ Why Use Different Uri-refs?

■ SYS_DBURIGEN() SQL Function

■ Accessing DBUri-refs From Your Browser Using Servlets
eferences 6-1



Uri-reference (Uri-ref) Concepts
Uri-reference (Uri-ref) Concepts

What is a Uri-ref?
Uri-Reference (Uri-ref) is a generalization of the URL concept. In this release, URI

can reference any document, including HTML and XML. It also provides pointer

semantics into the document. Uri-ref consists of two parts:

■ URL part, according to the regular URL specification

■ Fragment part, that identifies a fragment within that document.

It is in a language specific to the type of the document in question. The fragment

part is that part after the "#" in the following examples. The fragment part is not

supported in this release.

URL Path Created From an XML Document View
Figure 6–2 shows a view of the XML data stored in relational table, Emp, in the

database, and the columns of data mapped to elements in the XML document. This

mapping is also referred to as an “XML visualization”. The resulting URL path can

then be created simply from the XML document view.

Typical Uri-ref’s look like the following:

■ For HTML: http://www.url.com/document1#A

where A is an anchor inside the document.

■ For XML: http://www.xml.com/xml_doc#//po/cust/custname

where:

■ The portion before the ’#’ identifies the location of the document itself

■ The portion after the ’#’ identifies a fragment within that document. This

portion is defined by W3C’s XPointer specification.

Uri-ref can Use Different Protocols to Retrieve Data
Oracle9i, has introduced new datatypes in the database to store and retrieve uri-ref

objects. See "New Datatypes Store Uri-references" in the following section. Uri-ref,

can in turn, use different protocols, such as the HTTP, to retrieve data.

Oracle9i has also introduced a new concept called DBUri-refs. These are references

into columns and rows of tables and views inside the database itself.

■ HTTP URL references objects that are global
6-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



New Datatypes Store Uri-references
■ DBUri-ref references local objects

Using this DBUri-ref mechanism you can access any row or column data in any

table or view in the database. In effect it provides a intra-database URL for any data
stored in the database. See "DBUri-refs, Intra-Databases References"  on page 6-4.

Advantages of Using DBUri-ref
DBUri-ref advantages include the following:

■ Improved Performance by Bypassing the Web Server. Uri-ref is one way to

locally reference stylesheets. For example, DBMS-Metadata uses DbUri-ref to

reference many stylesheets. If you already have a URL in your XML document

and you have to replace this with a reference to the database, you can either:

■ Use a servlet

■ Use an input mechanism, such as the DBUri-ref, to bring back the results

Using DBUri-ref has performance benefits as you interact directly with the

database rather than through a web server.

■ Who Needs SQL? You do not need to know SQL to access an XML document

stored in the database. DBUri-ref allows you to access an XML document from

the database using SQL semantics but without your need to use SQL. In other

words, a non-SQL programmer can now easily access XML documents stored

in a database.

New Datatypes Store Uri-references
Oracle9i has introduced the following new datatypes to store the uri-references:

■ UriType. An abstract object type that can store instances of HttpUriType or

DBUriType.

■ DBUriType. Can obtain data pointed to by the DBUri-ref.

■ HttpUriType. Implements the HTTP protocol for accessing remote pages.

■ UriFactoryType.

See Also: Figure 6–3, "UriFactory to Generate UriType Instances".
Database Uri-references 6-3



DBUri-refs, Intra-Databases References
Figure 6–1 New UriTypes

These datatypes are object types with member functions that can be used to access

objects or pages pointed to by the objects. Thus by using the UriType, you can do

the following:

■ Create columns that can point to data inside or outside the database

■ Query the database columns using abstract functions provided by UriType

Benefits of Using UriTypes
Oracle already supports UTL_HTTP and java.net.URL in PL/SQL and Java

respectively, to fetch URL references. The advantages of defining this new UriType

datatype in SQL are as follows:

■ Better Typing Leads to More Efficient Indexing, Navigation, and Querying
Uri-ref also makes the database aware of a new URL type that can be stored in

columns of tables or views. Better typing of a column can lead to newer

url-aware indexing schemes and better navigation and query capabilities

through the URL.

■ Improved Mapping of XML Documents to Columns. Uri-ref support is needed

when exploding XML documents into object-relational columns, so that the

Uri-ref specified in documents can map to a URL column in the database.

DBUri-refs, Intra-Databases References
DBUri-Ref, a database relative to URI, is a special case of the Uri-ref mechanism,

where ref is guaranteed to work inside the context of a database and session. This

ref is not a global ref like the HTTP URL, instead it is local ref (URL) within the

database.

You can also access objects pointed to by this URL globally, by “appending” this

DBUri-ref to an HTTP URL path that identifies the servlet that can handle

See Also: "Using Uri-ref Types (URITypes)"  on page 6-14.

SYS.XMLType

SYS.UriType

SYS.UriFactoryType
6-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBUri-refs, Intra-Databases References
DBUri-ref. This is explained later under "Accessing DBUri-refs From Your Browser

Using Servlets"  on page 6-25.

Figure 6–2 DBUri-ref Explained

Formulating the DBUri
The URL syntax is obtained by specifying a XPath-like syntax over a virtual XML

visualization of the database. See also Figure 6–2, "DBUri-ref Explained".

The "visual model" is a hierarchical view of what a current connected user would

see in terms of SQL schemas, tables, rows and columns.

The "XML view" contains a root element that maps to the database. The root XML

element contains child elements which are the schemas on which the user has some

privileges on any object. The schema elements contain tables and views which the

user can see. For example, the user scott can see the following virtual document.

<?xml version=’1.0’?>
<oradb SID=" ORCL">
 < PUBLIC>
    <ALL_TABLES>
       ..
     </ALL_TABLES>
    <EMP>

URL becomes . . .
/oracle/scott/emp/row/[empno=21]/ename..

XML document
XMLview

Data stored in tables
Visual model

URI-Reference

Database

Table Emp
Empno Ename Job

.
x
x
x

.
John
Mary
x

.
21
33
x

<oracle>
   <scott>
      <emp>
         <row>
            <EmpNo> 21
            <Ename> John
         </row>
      </emp>
   </scott>
</oracle>

XML
Visualization
Database Uri-references 6-5



DBUri-refs, Intra-Databases References
      <!-- EMp table -->
    </EMP>
 < PUBLIC>
 < SCOTT>
  <ALL_TABLES>
    ....
  </ALL_TABLES>
  <EMP>
   <ROW>
     <EMPNO>1001</EMPNO>
     <ENAME>John</ENAME>
     <EMP_SALARY>20000</EMP_SALARY>
   </ROW>
   <ROW>
     <EMPNO>2001</EMPNO>
     <ENAME xsi:null="true"/>
     <EMP_SALARY xsi:null="true"/>
   </ROW>
 </EMP>

  <DEPT>
   <ROW>
     <DEPTNO>200</DEPTNO>
     <DNAME>Sports</DNAME>
   </ROW>
  </DEPT>
</SCOTT>
<JONES>
 <CUSTOMER_OBJ_TAB>
   <ROW>
     <NAME>xxx</NAME>
     <ADDRESS>
        <STATE>CA</STATE>
        <ZIP>94065</ZIP>
     </ADDRESS>
   </ROW>
  </CUSTOMER_OBJ_TAB>
 </JONES>
</database>

Remember, that this is a virtual XML document based on the privileges that you

have at the time of access.

You can make the following observations from the foregoing example:
6-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBUri-refs, Intra-Databases References
■ The scott user can see the scott schema and jones schema. These are schemas on

which the user has some table or views that he can read.

■ Table emp shows up as EMP with row element tags. This is the default mapping

for all tables. The same for dept and the customer_obj_tab table under the

JONES schema.

■ Null elements are shown as being absent. This will change with later releases to

conform to the XMLSchema specification which specifies a special null attribute

to indicate nullness.

■ There is also a PUBLIC element under which are tables and views accessible

without schema qualification. For example, a select query such as:

select * from emp;

when queried by the user scott, will match the table emp under the scott schema

and if not found, would try to match it with a public synonym that is available.

In the same way, the PUBLIC element contains all the tables and views that are

either visible to the user through his/her schema and all the tables that are

visible through the PUBLIC synonym.

The DB-Uri Specification
With the database being visualized as an XML tree, you can perform XPath

traversals to any part of the virtual document. This translates to any row-column

intersection of the database tables or views. By specifying an XPath over the

visualization model, you can create references to any piece of data in the database.

DbUri is specified in a simplified XPath format. For this release Oracle does not

support the full flavor of XPath or Xpointer for DBUri- ref. The following sections

discuss the structure of these DBUri.

As stated above, you can now create DBUri’s to any piece of data. You can use the

following units of reference:

■ A scalar or object or collection instance in a column

■ An attribute of an object type

Note: When exposing the DBUri through a global HTTP URL, you

may have to "escape" certain characters such as’]’,’’,.... in the XPath

syntax. You can use the getExternalUrl() functions in the

types to get an escaped version of the URL.
Database Uri-references 6-7



DBUri-refs, Intra-Databases References
With DBUri’s, you can also create globally reference able URLs. This is explained in

a later section, "Accessing DBUri-refs From Your Browser Using Servlets"  on

page 6-25.

DBUri Syntax Guidelines
There are restrictions on the kind of XPath queries that can be used to specify a

reference. In general, DBUri-ref’s must adhere to the following syntax guidelines:

■ Include the user schema name or PUBLIC to resolve the table name without a

specific schema.

■ Include a table or view name.

■ Include the ROW tag for identifying the ROW element.

■ Identify the column or object attribute that you wish to extract.

■ Include predicates at any level in the path other than the schema and table

elements.

■ Indicate predicates not on the selection path in the ROW element. For example,

if you wanted to specify the predicate, pono = 100, but the selection path is

/scott/purchase_obj_tab[..]/ROW/line_item_list, then you must include the

pono predicate along with the ROW node as:

 /scott/purchase_obj_tab/ROW[spono=100]//line_item_list

■ DBUri-ref must identify exactly a single data value which may be an object type

or collection. The data value can be an entire row in which case ROW node

must be used to indicate that. The uri-ref can also point to an entire table.

Using Predicate (XPath) Expressions in DBUri
The predicate expressions can use the following XPath expressions:

■ Boolean operators - AND, OR and NOT

■ Relational operators - <, >, <=,!=, >=, =, mod, div, * (multiply)

Note: Oracle does not currently support references within a

scalar, XMLType or LOB data value.
6-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBUri-refs, Intra-Databases References
The predicates can be defined at any element other than the schema and table

elements. If you have object columns, then you can search on the attribute values as

well. For example, if address was a column in the emp table, which contains say the

state, city, street and zipcode attributes, then the following dburi-ref is valid:

/SCOTT/EMP/ROW[ADDRESS/STATE=’CA’ OR ADDRESS/STATE=’OR’]/ADDRESS[CITY=’Portland’
OR ./ZIPCODE=94404]/CITY

This dburi-ref identifies the city attribute of the address column in the emp table

whose state is either California or Oregon or the city name is Portland or the

zipcode is 94404.

Some Common DBUri-ref Scenarios
The DBUri-ref can identify various objects, such as the table, a particular row, a

particular column in a row, or a particular attribute of an object column. Here are

some common DBUri-ref scenarios:-

1. Identifying the whole table. This returns an XML document that retrieves the

whole table. The enclosing tag is the name of the table. The row values are

enclosed inside a "ROW" element, as follows:

Use the following syntax:

/<schemaname>/<tablename>

For example:

/SCOTT/EMP

returns the following XML document,:

<?xml version="1.0"?>
<EMP>

Note:

■ No XPath axes other than the child axes are supported. Thus

the wild card (*), descendant (//), and other operations are not

valid.

■ No XPath functions other than text() are supported. text()
is also valid only on a scalar node. Thus you cannot apply the

text() node say at the ROW level or at the table level
Database Uri-references 6-9



DBUri-refs, Intra-Databases References
 <ROW>
 <EMPNO>7369</EMPNO>

  <ENAME>Smith</ENAME>
   ... <!-- other columns -->
 </ROW>
 <!-- other rows -->
</EMP>

2. Identifying a particular row of the table. This identifies a particular ROW

element in a table. The result is an XML document that contains the ROW

element with it’s columns as child elements:

Use the following syntax:

/<schemaname>/<tablename>/ROW[<predicate_expression>]

For example:

/SCOTT/EMP/ROW[EMPNO=7369]

returns the following XML document:

<?xml version="1.0"?>
<ROW>
  <EMPNO>7369</EMPNO>
  <ENAME>SMITH</ENAME>
  <JOB>CLERK</JOB>

         <!-- other columns -->
    </ROW>

3. Identifying a target column. In this case a target column or an attribute of a

column is identified and retrieved as XML.

Use the following syntax:

/<schemaname>/<tablename>/ROW[<predicate expression>]/<columnname>
/<schemaname>/<tablename>/ROW[<preciate expression>]/ <columnname>/
<attribute>*

Note: Here, the predicate expression must identify a unique row.

Note: You cannot traverse into nested table or VARRAY columns.
6-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBUri-refs, Intra-Databases References
Example 1:

/SCOTT/EMP/ROW[EMPNO=7369 and DEPTNO =20]/ENAME

retrieves the ename column in the emp table, where empno is 7369, and

department number is 20, as follows:

<?xml version="1.0"?>
<ENAME>SMITH</ENAME>

Example 2:

/SCOTT/EMP/ROW[EMPNO=7369]/ADDRESS/STATE

retrieves the state attribute inside an address object column for the employee

whose empno is 7369, as follows:

<?xml version="1.0"?>
<STATE>CA</STATE>

4. Retrieving the text value of a column. In many cases, it can be useful to retrieve

only the text values of a column and not the enclosing tags. For example, if the

XSL stylesheets are stored in a CLOB column, you can retrieve such XML

documents without having an enclosing column name tag put around them. In

these cases, the text()  function helps identify that only the text value of the

node is to be retrieved.

Use the following syntax:

/<schemaname>/<tablename>/ROW[<predicate expression>]/<columnname>/text()

For example:

/SCOTT/EMP/ROW[EMPNO=7369]/ENAME/text()

retrieves the text value of the employee name, without the XML tags, for

employee with empno = 7369. This returns a text document, not an XML

document, with value "SMITH".
Database Uri-references 6-11



DBUri-refs, Intra-Databases References
How DBUri’s Differ from Object References
DBUri-ref has column and attribute level access and is loosely typed. Oracle8 object

features provide object references which are references to row objects in the system.

DBUri-ref is inherently a superset of this reference mechanism.

DBUri-ref can not only identify a particular row, but can also provide access to a
column or an object attribute of the row. However, it is loosely typed unlike the object

reference. The result of the Uri-ref traversal can be an object in the system.

DBUri-ref Applies to a Database and Session
An important aspect of DBUri-ref is that it is scoped to a database and session. Since

DBUri-ref itself does not carry any session specific information, it is assumed that

you are connected to the database in a particular session context and are resolving

the Uri-ref in that context. This is similar to the object reference mechanism, where

the derefencing of an object reference requires that you have privileges to read the

referenced object.

Where Can DBUri-ref be Used?
Uri-ref can be used in a number of scenarios, including the following:

Note: The XPath alone does not constitute a valid URI. Oracle

calls it a DBUri since it behaves like a URI within the database, but

it can be translated in to a globally valid Uri-Ref.

Note: The DBUri is case-sensitive. So to specify scott.emp, you use

SCOTT/EMP since the actual table names are stored capitalized in

the Oracle dictionary. To create a table name or column name in

small letters in the database use the " " to enclose the names.

Note: The same DBUri-ref may give different results based on the

session context used, particularly if the PUBLIC path is used.

For example, /PUBLIC/FOO_TAB can resolve to SCOTT.FOO_

TAB when connected as scott, and resolve as JONES.FOO_TAB

when connected as JONES.
6-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBUri-refs, Intra-Databases References
For Storing URLs to Related Documents
In the case of a travel story web site where you store travel stories in a table, you

may have to create links to related stories. DBUri’s can help, since you can create an

intra-database link to the related story.

For Storing Stylesheets in the Database
Applications can use XSL stylesheets to convert XML into other formats. This data

is transformed into XML. The XSL stylesheets used are stored in CLOBs. The

application can use DBUri references in the following manner:

■ To access the XSL stylesheets stored in the database for use during parsing

■ To have references to related XSL stylesheets, such as, import/include,... within

the XSL stylesheet itself.

Note: DBUri-ref does not provide the following support:

■ As a general purpose XPointer mechanism to XML data.

■ It is not a replacement for database object references. The syntax

and semantics of references differ from those of Uri-ref type.

■ It does not enforce or create any new security models or

restrictions. Instead, it relies on the underlying security

architecture to enforce privileges.
Database Uri-references 6-13



Using Uri-ref Types (URITypes)
Using Uri-ref Types (URITypes)
This section describes how to use Uri-ref to store pointers to documents and how to

access such Uri-refs in the database.

Storing Pointers to Documents with UriType
As explained earlier, UriType is an abstract type that can store instances of it’s

subtypes in a column. This type contains a single VARCHAR2 attribute containing

the Uri-ref string and has functions for traversing the reference and extracting the

data.

You can create columns of UriType and store Uri-references in the database. Oracle

provides standard classes for HTTP and DBUri traversals. You can navigate the URI

using a rich set of navigational functions.

Table 6–1 lists some useful UriType methods.

Note: You can plug-in any new protocol using the inheritance

mechanism. Oracle provides the HttpUriType and DBUriType

types for handling HTTP protocol and for deciphering DBUri

references. You can for instance, implement a subtype of the

UriType, to handle say, the gopher protocol.

Table 6–1 URIType Methods

URIType Method Description

getClob This returns the value pointed to by the URL as a character lob
value. The character encoding will be that of the database
character set.

getUrl Returns the url that is stored in the UriType. Do not use the
attribute "url" directly. Use this function instead. This can be
overridden by subtypes to give you the correct url. For
instance, the HttpUriType, stores only the URL and not the
"http://" prefix. So the getUrl() actually appends the prefix
and returns the value.

getExternalUrl Similar to the latter (getUrl), except that it calls the escaping
mechanism to escape the characters in the URL as to conform
to the URL specification. (For example spaces are converted to
the escaped value %20)
6-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Uri-ref Types (URITypes)
URIType Examples

URIType Example 1: Creating URL References to a List of Purchase Orders
You can create a list of all purchase orders with URL references to these purchase

orders as follows:

CREATE TABLE uri_tab
(
   poUrl SYS.UriType,  -- Note that we have created abstract type columns
-- if we knew what kind of uri’s we are going to store, we can actually
-- create the appropriate types.
   poName VARCHAR2
);

 -- insert an absolute url into SYS.UriType..!
 -- the factory will create the correct instance (in this case a FtpUriType
INSERT INTO uri_tab VALUES
  (sys.UriFactory.getUri(’http://www.oracle.com/cust/po’),’AbsPo’);

-- insert a URL by directly calling the SYS.HttpUriType constructor.
-- Note this isstrongly discouraged. Note the absence of the
-- http:// prefix when creating SYS.HttpUriType instance through the default
-- constructor.
INSERT INTO uri_tab VALUES (sys.HttpUriType(’proxy.us.oracle.com’),’RelPo’);

-- Now extract all the purchase orders
SELECT e.poUrl.getClob(), poName FROM uri_tab e;

-- In PL/SQL
declare
   a SYS.UriType;
begin

 -- absolute URL
 SELECT poUrl into a from uri_Tab WHERE poName like ’AbsPo%’;
 printDataOut(a.getClob());

 SELECT poUrl into a from uri_Tab WHERE poName like ’RelPo%’;
 -- here u need to supply a prefix before u can get at the data..!
 printDataOut(a.getClob());
end;
/

Database Uri-references 6-15



Using Uri-ref Types (URITypes)
URIType Example 2: Using the Substitution Mechanism
You can create columns of the UriType directly, and insert both HttpUriTypes and

DBUriTypes into that column. You can also query the column without knowing

where the referenced document lies.

For example, from the first example, you can insert DBUri-ref references as well

into the uri_tab table as follows:

INSERT INTO uri_tab VALUES
  (UriFactory.getUrl(
     ’/SCOTT/PURCHASE_ORDER_TAB/ROW[PONO=1000]’),’ScottPo’);

This insert, assumes that there is a purchase order table in the SCOTT schema.

Now, the url column in the table contains values that are pointing through HTTP to

documents globally as well as pointing to virtual documents inside the database.

A select on the column using the getClob() method, would retrieve the results as

a CLOB irrespective of where the document resides:

select e.poURL.getclob() from uri_tab e;

would retrieve values from the global HTTP address stored in the first row as well

as the local DBUri reference.

Using HttpUriType and DBUriType
HttpUriType and DBUriType are sub types of UriType and implement the functions

for HTTP and DBUri-ref references respectively.

DBUriType Examples

DBUriType Example 1: Creating DBUri-ref References
The following example creates a table with a column of type DBUriType and

assigns a value to it.

CREATE TABLE DBURiTab(DBUri DBUriType, dbDocName VARCHAR2(2000));

See: "UriFactory Package"  on page 6-17 for a description on how

to use URIFactory.

Note: HttpUriType cannot store relative HTTP references, in this

release.
6-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



UriFactory Package
-- insert values into it..!
INSERT INTO DBUriTab VALUES
   (sys.UriFactory.createUri(’/ORADB/SCOTT/EMP/ROW[EMPNO=7369]’),’emp1’);

INSERT INTO DBUriTab VALUES
   (sys.DBUriType(’/SCOTT/EMP/ROW[EMPNO=7369]/’),’emp2’);

-- access the references
SELECT e.DBUri.getCLOB() from dual;

UriFactory Package
UriFactory package contains factory methods that can be used to generate the

appropriate instance of the Uri types without having to hard code the

implementation in the program. See Figure 6–3.

The factory  method can take in strings representing the various URLs and return

the appropriate subtype instance. For example:

■ If the prefix starts with http://, it creates a SYS.HttpUriType and returns a

reference to that instance, after stripping out the http:// prefix.

■ If the string starts with a "/oradb/" prefix or does not match any of the well

known prefixes (such as http://....), then it creates a SYS.DBUriType instance

and returns that.

Registering New UriType Subtypes
The UriFactory package also provides the ability to register new subtypes of the

UriType to handle various other protocols not currently supported by Oracle9i. For

example, you can invent a new protocol "ecom://" and define a subtype of the

UriType to handle that protocol and register it with UriFactory. After that any

factory method would generate the new subtype instance if it sees the ecom prefix.
Database Uri-references 6-17



UriFactory Package
Figure 6–3 UriFactory to Generate UriType Instances

UriFactory Example: Registering the ecom Protocol
To register the new protocol ecom://. You need to do the following:

■ Define a type to handle the protocol

■ Register it with the UriFactory package, as follows:

create table url_tab (urlcol varchar2(20));

-- insert a Http reference
insert into url_tab values (’http://www.oracle.com’);

-- insert a DBuri-ref reference
insert into url_tab values (’/SCOTT/EMPLOYEE/ROW[ENAME="Jack"]’);

-- create a new type to handle a new protocol called ecom://
create type EComUriType under SYS.UriType
(
  overriding member function getClob() return clob,
  overriding member function getBlob() return blob, -- not supported

FtpUriType

HttpUriType DBUriType User Defined
URL Type

URIType

URL

Register
handlersURI

Factory

Inherited Types

Creates
instances
6-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Why Use Different Uri-refs?
  overriding member function getExternalUrl() return varchar2,
  overriding member function getUrl() return varchar2,

  -- MUST NEED THIS for registering with the url handler
  static member function createUri(url in varchar2) return EcomUriType
);
/

-- register a new protocol handler.
begin

  -- register a new handler for ecom:// prefixes. The handler
  -- type name is ECOMURITYPE, schema is SCOTT
  -- Ignore the prefix case, when comparing and also strip the prefix
  -- before calling the createUri function
  urifactory.registerHandler(’ecom://’,’SCOTT’,’ECOMURITYPE’,
     true,true);
end;
/
insert into url_tab values (’ECOM://company1/company2=22/comp’);

-- now use the factory to generate the instances.!
select urifactory.getUri(urlcol) from url_tab;

-- would now generate
HttpUriType(’www.oracle.com’); -- a Http uri type instance

SYS.DBUriType(’/SCOTT/EMPLOYEE/ROW[ENAME="Jack"],null); -- a SYS.DBUriType

EComUriType(’company1/company2=22/comp’); -- a EComUriType instance

Why Use Different Uri-refs?
As explained in earlier sections, Uri-ref is an abstract class with various derivations

which implement different protocols. The advantage of separation of the various

derivations is two fold.

■ If you choose a subtype for representing a column, it provides an implicit

constraint on the column to contain only instances of that protocol type. This

might be useful for implementing specialized indexes on that column for

specific protocols. For example for the DbUri-ref you can implement some

specialized indexes that can directly go and fetch the data from the disk blocks

rather than executing SQL queries.
Database Uri-references 6-19



SYS_DBURIGEN() SQL Function
■ The second reason is that, you can have different constraints on the columns

based on the type involved. For instance for the HTTP case, you could

potentially define proxy and firewall constraints on the column so that any

access through the HTTP would use the proxy server.

The separation of the implementation classes from the abstract Uri-ref class

provides:

■ Better modelling

■ Better extension capabilities.

You can now implement your own protocol and actually make the database treat

that as an Uri-ref for purposes of navigation, indexing, and so on.

SYS_DBURIGEN() SQL Function
DBUri reference can be created by specifying the path expression to the constructor

or the UriFactory methods. However, you also need methods to generate these

DBUri references dynamically given target columns. For this purpose a new SQL

function, called SYS_DBURIGEN(),  has been introduced.

Figure 6–4 shows the SYS_DBURIGEN() syntax.

Figure 6–4 SYS_DBURIGEN() Syntax

The following example uses the SYS_DBURIGEN() function to generate a URL of

datatype DBUriType  to the email column of the row in the sample table

hr.employees  where the employee_id = 206:

SELECT SYS_DBURIGEN(employee_id, email)
   FROM employees
   WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)
-------------------------------------------------------------------
DBURITYPE(’/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID = "206"]/EMAIL’, NULL)

SYS_DBURIGEN (
column

attribute

rowid

,

, ’ text ( ) ’
)

6-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_DBURIGEN() SQL Function
SYS_DBURIGEN() function takes as its argument one or more columns or

attributes, and optionally a rowid, and generates a URL of datatype DBUriType  to

a particular column or row object. You can then use the URL to retrieve an XML

document from the database. The function takes an additional parameter to indicate

if the text value of the node is needed.

All columns or attributes referenced must reside in the same table. They must

perform the function of a primary key. That is, they need not actually match the

primary keys of the table, but they must reference a unique value. If you specify

multiple columns, all but the final column identify the row in the database, and the

last column specified identifies the column within the row.

By default the URL points to a formatted XML document. If you want the URL to

point only the text of the document, specify the optional ’text() ’. (In this XML

context, the lowercase ’text ’ is a keyword, not a syntactic placeholder.)

If the table or view containing the columns or attributes does not have a schema

specified in the context of the query, Oracle interprets the table or view name as a

public synonym.

The column or attribute passed to the SYS_DBURIGEN() function must obey the

following rules:

■ Unique mapping: The column or UDT attribute must be uniquely mappable

back to the table or view from which it comes. This means that virtual columns

are not allowed. The only exception is the VALUE and REF operators. The

column may come from a TABLE() subquery or an online view provided that

the online view does not rename the columns.

■ Key columns: Either the rowid or a set of key columns must be specified. The list of

key columns need not match the list of keys in the table so long as the columns

can uniquely identify a particular row in the result.

■ Same table: All columns referenced in the SYS_DBURIGEN() function MUST

come from the same table or view.

■ PUBLIC element: If the table or view pointed by the rowid or key columns

does not have a database schema specified, then the PUBLIC keyword would

be used instead of the schema. This has the effect of using the current binding

(that is, table or synonym or view) to the table name when the DBUri is

accessed.

■ TEXT function: DBuri, by default, retrieves an XML document containing the

result. To retrieve only the text value, use the ’text()’ keyword as the final

argument to the function.
Database Uri-references 6-21



SYS_DBURIGEN() SQL Function
For example:

select SYS_DBURIGEN(empno,ename,’text()’) from scott.emp,

 generates a URL of the form:

/SCOTT/EMP/ROW[EMPNO=7369]/ENAME/text()

■ Single column argument: If there is a single column argument, then the

column is used both as the key column to identify the row and as the referenced

column. For example:

select SYS_DBURIGEN(empno) from emp;

would use the empno both as the key column and the referenced column, that

is, it would generate a URL of the form:

/SCOTT/EMP/ROW[EMPNO=7369]/EMPNO,

for the row which has empno = 7369.

SYS_DBURIGEN Example 1: Inserting Database References
CREATE TABLE doc_list_tab(docno number primary key, doc_ref SYS.DBUriType);

-- inserts /SCOTT/EMP/ROW[rowid=’xxx’]/EMPNO
INSERT INTO doc_list_tab(1001,
     (select SYS_DBURIGEN(rowid,empno) from emp where empno = 100);

-- insert a Uri-ref to point to the empname column of emp!
INSERT INTO doc_list_tab
   select empno, SYS_DBURIGEN(empno, ename) from emp));

-- result of the DBURIGEN looks like, /SCOTT/EMP/ROW[EMPNO=7369]/ENAME

SYS_DBURIGEN Example 2: Returning Partial Results
When selecting the results of a column such as a lob column, you might want to

retrieve only a portion of the result and create a URL to the column instead. For

example, consider the case of a travel story web site. If you have a table which

stores all the travel stories and the user queries over the table to find all relevant

stories according to his search criterion, then you do not want to list the entire story

in the result page. You, instead show the first 100 characters or the gist of the story

and then return a URL to the actual story instead.
6-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SYS_DBURIGEN() SQL Function
This can be done as follows:

Assume that the travel story table is defined as follows:

create table travel_story
(
  story_name varchar2(100),
  story clob
);

-- insert some value..!
insert into travel_story values (’Egypt’,’This is my story of how I spent my
time in Egypt, with the pyramids in full view from my hotel room’);

Now, you create a function that returns only the first 20 characters from the story,

create function charfunc(clobval IN clob ) return varchar2 is
 res varchar2(20);
 amount number := 20;
begin
  dbms_lob.read(clobval,amount,1,res);
  return res;
end;
/

Now, you create a view which selects out only the first 100 characters from the story

and then returns a DBUri reference to the story column.

create view travel_view as select story_name, charfunc(story) short_story,
   SYS_DBURIGEN(story_name,story,’text()’) story_link
from travel_story;

Now, a select from the view returns the following:

select * from travel_view;

STORY_NAME      SHORT_STORY             STORY_LINK
-----------------------------------------------------------------------------
Egypt           This is my story of h

SYS.DBUriType(’/PUBLIC/TRAVEL_STORY/ROW[SHORT_STORY=’Egypt’]/STORY/text()’)
Database Uri-references 6-23



SYS_DBURIGEN() SQL Function
SYS_DBURIGEN Example 3: RETURNING Uri-refs
You can use SYS_DBURIGEN in the RETURNING clause of DML statements. This is

useful to retrieve the URL to an object inserted. For example, consider table, clob_

tab:

CREATE TABLE clob_tab ( docid number, doc clob);

If you insert a document, you may need to retrieve a URL to that document and

store it in another table, uri_tab. This would be useful for auditing or other

purposes.

CREATE TABLE uri_tab (docs sys.DBUriType);

You can do that as part of the insertion into clob_tab, using the RETURNING

clause. You can use the EXECUTE IMMEDIATE syntax to execute the SYS_DBURI
function inside PL/SQL as follows:

declare
  ret sys.dburitype;
begin
  -- exucute the insert and get the url
 EXECUTE IMMEDIATE
’insert into clob_tab values (1,’’TEMP CLOB TEST’’)
 RETURNING SYS_DBURIGEN(docid, doc, ’’text()’’) INTO :1 ’
 RETURNING INTO ret;
 -- insert the url into uri_tab
insert into uri_tab values (ret);
end;
/
The URL created would be of the form:

/SCOTT/CLOB_TAB/ROW[DOCID="xxx"]/DOC/text()

Note: The text() keyword is appended to the end, indicating that

you want the URL to return just the CLOB value and not an XML

document enclosing the CLOB text.
6-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
Accessing DBUri-refs From Your Browser Using Servlets
DBUri reference, is a database reference. It can be extended to be accessible from

your browser or any other web server in the following ways:

■ By writing a servlet that runs on the Oracle Servlet Engine or the Apache JServ

module which can execute the DBUri-ref URL and return the values

■ Through the default servlet provided to perform the same task. This servlet can

only be run on the OSE as it uses JNI (Java Native Interface) to talk to the DBUri

resolution code linked in to the server.

oracle.xml.dburi.OraDbUriServlet() Servlet Mechanism
For the above methods, a servlet, OraDBUriServlet()  class, runs in Oracle9i
servlet engine. This servlet takes in a path expression following the servlet name as

the DbUri reference and outputs the document pointed to by the DBUri to the

output stream. It can do either of the following:

■ Generate the MIME type of the document automatically. In this release the only

values supported are "text/xml" and "text/plain". In the case the DBUri ends in

a text() function, then the "text/plain" mime type is used, else an XML

document is generated with the mime type of "text/xml".

■ Override the mime value using the contenttype argument to the servlet.

For example to retrieve the empno column of employee table, you can write a URL

such as one of the following:

■ http://machine.oracle.com:8080/oradb/SCOTT/EMP/ROW[EMPNO=7369]/EN

AME/text() -- Generates a contenttype of text/plain

■ http://machine.oracle.com:8080/oradb/SCOTT/EMP/ROW[EMPNO=7369/ENA

ME   -- Generates a contenttype of text/xml

where the machine machine.oracle.com is running the OSE, with a web service at

port 8080 listening to requests. The oradb is the virtual path that maps to the

OraDbUriServlet.
Database Uri-references 6-25



Accessing DBUri-refs From Your Browser Using Servlets
OraDBUriServlet Security
Consider these security issues when publishing OraDbServlet :

■ Publishing OraDBServlet  Under the DBUser realm

■ Publishing OraDBServlet  Under no realm

Publishing OraDBServlet Under the DBUser Realm
The OraDBUri servlet supplied, when published under the DbUser  realm,

automatically switches to the authenticated user and executes the query under that

authenticated user.

For example:

■ If the servlet is published as SYS under the DBUser realm, then the queries are

always executed as the user who is logged in.

■ If the servlet is published under the Rdbms realm, then the servlet is run as the

publisher and not as the authenticated user.

Take care that the servlet is not published under a realm other than the DBUser realm,
particularly, if it is published in the SYS schema or if you want to enforce security to data
access.

Publishing OraDBServlet Under No Realm
If you do not publish the servlet under any realm, then the users can access the

servlet directly without having to enter any username/password. The servlet

executes under the privileges of the published user, and users of the servlet can

access all data that the published user is privileged to see.

This can be useful in cases where you have a user that has restricted privileges and

contains data (such as documents or demos or example schemas), which you would

like any user to access.

Note: In HTTP access special characters such as, ’]’,’[’,’&’,’|’ have

to be escaped using the %xxx format, where the xxx is the decimal

number that points to the ASCII code for that character. Use the

getExternalUrl() function in the UriType family to get the escaped

URL version.
6-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
For example, you can have a HELP user containing all helpful documentation

related to a product or a company’s operations and publish the servlet in that

schema, giving access to everyone to access all the documents.

Installing OraDBUri Servlet
OraDbUriServlet  is shipped in the jar file OraDbUri.jar under rdbms/jlib/

directory in your $ORACLE_HOME. To install the servlet, perform the following

tasks:

You can skip the first two steps, since the Java classes corresponding to the Java

classes is already installed under the SYS user and execute privileges are granted to

all the users. However, if you want the Java classes corresponding to the servlet to

reside in your schema, then perform the following steps:

1. Run SQL*Plus and connect to the required schema that you want to install the

servlet under. The preferred schema is the SYS schema.

2. Load the jar file in to the required schema by running the inituris.sql script

found in the admin directory. You can also use loadjava to load the jar file into

the schema. You need IO privileges to access files when running the dbms_java

interface.

3. Now use the sess_sh to connect to your database at the admin port. See the

Oracle9i Oracle Servlet Engine User’s Guide for more details.

4. Set up the appropriate web services and realms. An example of setting up a

DBUser realm is available under the servlet demos.

5. Once you have set up all the necessary realms and contexts, publish the servlet.

For example in the sess_sh shell:

Special Note: If you publish the servlet under a realm other than

the DbUserRealm, then queries are executed under the published

user. So care MUST be taken to publish the servlet only in the

DBUser realm, or if published under some other realm, the

privileges granted to the published user must be limited. See the

examples, starting with: "DBUri Servlet Example 1: First Create a

DBUriServer Web Service [tkxmsrv.ssh]"  on page 6-28.

Do not publish the servlet in any other realm other than the
DBUser realm for the SYS user, otherwise users accessing the
servlet will have privileges to access all your database data!
Database Uri-references 6-27



Accessing DBUri-refs From Your Browser Using Servlets
publishservlet -virtualpath /oradb/*  -stateless
/webdomains/default/contexts DBUriServlet SYS:oracle.xml.uri.OraDbUriServlet

■ Note the use of /oradb/*. The * is necessary to indicate that any path

following oradb is to be mapped to the same servlet. The oradb is published

as the virtual path. Here, if you have installed the servlet in your own

schema, then change the SYS: keyword to the schema name that the servlet

is installed under.

■ The stateless parameter indicates that the servlet itself is stateless and hence

the same connection can be used to invoke the servlet.

■ The /webdomains/default/contexts is the context under which the servlet

is being published. Note that a context may have a virtual path already

defined, in which case the virtual path that you publish the servlet under

would be under that path. For example, if the context given here had a

virtual path of /servlets, then the DBUriServlet can be accessed by the path

/servlets/oradb/*.

■ The DBUriServlet  is the name of the servlet.

■ The oracle.xml.uri.OraDbUriServlet is the name of the class to

use under the SYS schema. Change the schema name to the schema under

which the jar file was loaded.

■ After this you can access the servlet directly through the Apache server

using the mod_ose module or go directly to the OSE through the port on

which the web service is listening.

DBUri Servlet Example 1: First Create a DBUriServer Web Service [tkxmsrv.ssh]
Script tkxmsrv.ssh , creates a DBUriServer Web service at port 8088 (hard coded

in the script) and assigns ownership of the service to the user whose ID is passed as

a parameter to the script. This script must be run before running any of the

following scripts. In the environment in which the script was created, AURORA_

AWS_ADMIN_PORT is set to 8080 and we have to connect to AURORA_AWS_

ADMIN_PORT to do administrative activities. You can configure the Web service

for any port by changing this part of the script.

#   USAGE :
#   sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh
<user-name>"
#
# This script does the following :
#   1. Creates dburiServer service with -root /dburidomain.
6-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
#   2. Assigns ownership to user passed as parameter

destroywebdomain dburidomain
destroyservice   dburiServer

echo "Creating dburiService ..."
createwebservice -root /dburidomain dburiServer

#The following line requires this script to be run as SYS
rmendpoint -force dburiServer main
addendpoint -port 8088 -register dburiServer main

chown -R &1 /dburidomain

echo "Service creation complete"

DBUri Servlet Example 2: Creating DBUridomain — Publishing OraDbUriServlet
Under SYS [tkxmsys.ssh]

This script creates webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using the default context. URI Servlet classes

must be loaded under the SYS schema before running this script.

sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh SYS"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsys.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsys.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Publishes the OraDbUriServlet servlet under SYS.

echo "Creating dburidomain ..."
createwebdomain /dburidomain

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>

echo "Domain creation complete"
Database Uri-references 6-29



Accessing DBUri-refs From Your Browser Using Servlets
echo "Publishing servlet under default context .."

publishservlet /dburidomain/contexts/default -virtualpath /norealm/*
DBUriServlet SYS:oracle.xml.dburi.OraDbUriServlet

echo "Servlet publishing complete .."

DBUri Servlet Example 3: Publishing OraDbUriServlet Under SYS [tkxmsysd.ssh]
This script creates a webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using the default context mapped to

DBUSER-realm. URI Servlet classes must be loaded under SYS schema before

running this script.

sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh SYS"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsysd.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsysd.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Creates and protects dburirealm
#   3. Publishes the OraDbUriServlet servlet under SYS.
#   4. Grant permission to execute the servlet to SCOTT and ADAMS.

echo "Creating dburidomain ..."
createwebdomain /dburidomain
#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>
echo "Domain creation complete"

echo "Creating and protecting dburirealm "
realm publish -w /dburidomain -r dburirealm -type DBUSER
realm publish -w /dburidomain -add dburirealm -type DBUSER
realm map -s /dburidomain/contexts/default -add /oradb/* -scheme
basic:dburirealm
realm perm -w /dburidomain -realm dburirealm -s /dburidomain/contexts/default
-name SYS -path /oradb/* + get,post
realm perm -w /dburidomain -realm dburirealm -s /dburidomain/contexts/default
-name SCOTT -path /oradb/* + get,post
realm perm -w /dburidomain -realm dburirealm -s /dburidomain/contexts/default
6-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
-name ADAMS -path /oradb/* + get,post
echo "Realm creation complete"

echo "Publishing servlet under default context .."

publishservlet /dburidomain/contexts/default -virtualpath /oradb/* DBUriServlet
SYS:oracle.xml.dburi.OraDbUriServlet

chmod +x SCOTT /dburidomain/contexts/default/named_servlets/DBUriServlet

chmod +x ADAMS /dburidomain/contexts/default/named_servlets/DBUriServlet

echo "Servlet publishing complete .."

DBUri Servlet Example 4: Publishing OraDbUriServlet Under ADAMS with Class
Under SYS [tkxmadam.ssh]

This script creates webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using the uritests context. URI Servlet classes

must be loaded under SYS schema before running this script.

sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh
ADAMS"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmadam.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u adams/wood -c "@tkxmadam.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Creates uritests context.
#   3. Publishes the OraDbUriServlet servlet under ADAMS using the class
#      under SYS.

echo "Creating dburidomain and uritests context ..."
createwebdomain /dburidomain

echo "Creating uritests context ..."
createcontext -virtualpath /adamscon/ /dburidomain uritests

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
Database Uri-references 6-31



Accessing DBUri-refs From Your Browser Using Servlets
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/uritests -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/uritests -add /errors/internal -scheme <NONE>

echo "Domain creation complete"

echo "Publishing servlet under uritests context"

publishservlet /dburidomain/contexts/uritests -virtualpath /adamsdb/*
DBUriServlet SYS:oracle.xml.dburi.OraDbUriServlet

echo "Servlet publishing complete .."

DBUri Servlet Example 5: Publishing OraDbUriServlet Under SCOTT [tkxmsctd.ssh]
This script creates webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using the uritests context mapped to
DBUSER-realm. URI Servlet classes must be loaded under SYS schema before

running this script.

sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh
SCOTT"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsctd.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u scott/tiger -c "@tkxmsctd.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Creates uritests context.
#   3. Creates and protects dburirealm
#   4. Publishes the OraDbUriServlet servlet under SCOTT.

echo "Creating dburidomain and uritests context ..."
createwebdomain /dburidomain

echo "Creating uritests context and granting ownership to SCOTT ..."
createcontext -virtualpath /scottcon/ /dburidomain uritests

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
6-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/uritests -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/uritests -add /errors/internal -scheme <NONE>

echo "Domain creation complete"

echo "Creating and protecting dburirealm "
realm publish -w /dburidomain -r dburirealm -type DBUSER
realm publish -w /dburidomain -add dburirealm -type DBUSER
realm map -s /dburidomain/contexts/uritests -add /scottdb/* -scheme
basic:dburirealm
realm perm -w /dburidomain -realm dburirealm -s /dburidomain/contexts/uritests
-name PUBLIC -path /scottdb/* + get,post
echo "Realm creation complete"

echo "Publishing servlet under uritests context"

publishservlet /dburidomain/contexts/uritests -virtualpath /scottdb/*
DBUriServlet SYS:oracle.xml.dburi.OraDbUriServlet

echo "Servlet publishing complete .."

DBUri Servlet Example 6: Creating and Mapping dburirealm — Publishing
OraDbUriServlet Under SYS [tkxmsysr.ssh]

This script creates webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using the default context mapped to

RDBMS-realm. URI Servlet classes must be loaded under SYS schema before

running this script.

sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh SYS"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsysr.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsysr.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Creates and protects dburirealm using RDBMS realm mapping.
#   3. Publishes the OraDbUriServlet servlet under SYS.
Database Uri-references 6-33



Accessing DBUri-refs From Your Browser Using Servlets
#   4. Grant permission to execute the servlet to SCOTT and ADAMS.

echo "Creating dburidomain ..."
createwebdomain /dburidomain
#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>
echo "Domain creation complete"

echo "Creating and protecting dburirealm "

realm publish -w /dburidomain -r dburirealm -type rdbms
realm publish -w /dburidomain -add dburirealm -type rdbms
# create a user in the realm
realm user -w /dburidomain -realm dburirealm -add alex -p welcome
# create a group in the realm
realm group -w /dburidomain -realm dburirealm -add uriGroup -p welcome
# add 'alex' to the 'uriGroup'
realm parent -w /dburidomain -realm dburirealm -group uriGroup -add alex
# Allow 'uriGroup' to execute http requests with the GET,POST methods
realm perm -w /dburidomain -realm dburirealm -s /dburidomain/contexts/default
-name uriGroup -path /rdbrealm/* + get,post
# protect the resource '/rdbrealm'
realm map -s /dburidomain/contexts/default -add /rdbrealm/* -scheme
Basic:dburirealm

echo "Realm creation complete"

echo "Publishing servlet under default context .."

publishservlet /dburidomain/contexts/default -virtualpath /rdbrealm/*
DBUriServlet SYS:oracle.xml.dburi.OraDbUriServlet

chmod +x SCOTT /dburidomain/contexts/default/named_servlets/DBUriServlet

echo "Servlet publishing complete .."

DBUri Servlet Example 7: Publishing OraDbUriServlet Under the ADAMS Schema
Using the Class Under ADAMS [tkxmadmn.ssh]

This script creates webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using uritests context. URI Servlet classes

must be loaded under ADAMS schema before running this script.
6-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh
ADAMS"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmadmn.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u adams/wood -c "@tkxmadmn.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Creates uritests context.
#   3. Publishes the OraDbUriServlet servlet under ADAMS using the class
#      under ADAMS.

echo "Creating dburidomain and uritests context ..."
createwebdomain /dburidomain

echo "Creating uritests context ..."
createcontext -virtualpath /adamscon/ /dburidomain uritests

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/uritests -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/uritests -add /errors/internal -scheme <NONE>

echo "Domain creation complete"

echo "Publishing servlet under uritests context"

publishservlet /dburidomain/contexts/uritests -virtualpath /adamsdb/*
DBUriServlet ADAMS:oracle.xml.dburi.OraDbUriServlet

echo "Servlet publishing complete .."

DBUri Servlet Example 8: Publishing OraDbUriServlet Under the ADAMS Schema
Using the Class Under ADAMS with uritests Context Mapped to DBUSER-realm
[tkxmadmd.ssh]

This script creates webdomain under the service created by tkxmsrv.ssh . It

publishes URI servlet in this domain using uritests context mapped to
Database Uri-references 6-35



Accessing DBUri-refs From Your Browser Using Servlets
DBUSER-realm. URI Servlet classes must be loaded under ADAMS schema before

running this script.

sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmsrv.ssh
ADAMS"
sess_sh -s http://localhost:8080 -u sys/change_on_install -c "@tkxmadmd.ssh"

#   USAGE :
#   sess_sh -s http://localhost:8080 -u adams/wood -c "@tkxmadmd.ssh"
#   tkxmsrv.ssh must be run before running this script.
#
# This script does the following :
#   1. Creates webdomain /dburidomain.
#   2. Creates uritests context.
#   3. Creates and protects dburirealm
#   4. Publishes the OraDbUriServlet servlet under ADAMS using the class
#      under ADAMS.

echo "Creating dburidomain and uritests context ..."
createwebdomain /dburidomain

echo "Creating uritests context and granting ownership to ADAMS ..."
createcontext -virtualpath /adamscon/ /dburidomain uritests

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/default -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/default -add /errors/internal -scheme <NONE>

#ensure that error pages are not protected
realm map -s /dburidomain/contexts/uritests -add /system/errors/* -scheme <NONE>
realm map -s /dburidomain/contexts/uritests -add /errors/internal -scheme <NONE>

echo "Domain creation complete"

echo "Creating and protecting dburirealm "
realm publish -w /dburidomain -r dburirealm -type DBUSER
realm publish -w /dburidomain -add dburirealm -type DBUSER
realm map -s /dburidomain/contexts/uritests -add /adamsdb/* -scheme
basic:dburirealm
realm perm -w /dburidomain -realm dburirealm -s /dburidomain/contexts/uritests
-name PUBLIC -path /adamsdb/* + get,post
echo "Realm creation complete"

echo "Publishing servlet under uritests context"
6-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Accessing DBUri-refs From Your Browser Using Servlets
publishservlet /dburidomain/contexts/uritests -virtualpath /adamsdb/*
DBUriServlet ADAMS:oracle.xml.dburi.OraDbUriServlet

echo "Servlet publishing complete .."

Configuring the UriFactory Package to Handle DBUri-refs
The UriFactory, as explained earlier, "UriFactory Package"  on page 6-17, if given an

URL, would generate the appropriate subtypes of the UriType to handle the

particular protocol. In the case of HTTP URLs, UriFactory would create instances of

the HttpUriType. But, when you have a HTTP url which is really pointing into the

database using the DBUri-ref mechanism, then it would be more efficient to store

and process it as a DBUriType instance in the database.

Inside the server, it is always more efficient to process the DBUri-ref directly using

the DBUriType instances, instead of going through the HTTP URL mechanism. This

is because the latter involves additional data transfer through the JavaVM, servlet,

and web server layers, and could introduce additional character conversions.

If you have installed OraDBUriServlet to process the DBUri-refs, so that any URL

such as http://machine-name/servlets/oradb/ gets handled by that

servlet, then you can configure the UriFactory to use that prefix and create instances

of the DBUriType instead of the HttpUriType.

begin
 -- register a new handler for the dburi prefix..
urifactory.registerHandler(’http://machine-name/servlets/oradb’
        ,’SYS’,’DBURITYPE’, true,true);
end;
/
Once you have executed this block in your session, then any

UriFactory.getUri()  call in that session, would automatically create an

instance of the DBUriType for those HTTP URLs that have the prefix. In this way,

you can convert the true DBUri URLs in to DBUriType instances for efficient

processing.
Database Uri-references 6-37



Accessing DBUri-refs From Your Browser Using Servlets
6-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Ut
7

XML SQL Utility (XSU)

This chapter contains the following sections:

■ What is XML SQL Utility (XSU)?

■ XSU Dependencies and Installation

■ XML SQL Utility and the Bigger Picture

■ SQL-to-XML and XML-to-SQL Mapping Primer

■ How XML SQL Utility Works

■ Using the XSU Command Line Front End,OracleXML

■ XSU Java API

■ XSU PL/SQL API

■ Advanced XSU Usage Techniques

■ Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
ility (XSU) 7-1



What is XML SQL Utility (XSU)?
What is XML SQL Utility (XSU)?
XML has become the format for data interchange. At the same time, a substantial

amount of business data resides in object-relational databases. It is therefore

necessary to have the ability to transform this relational data to XML.

XML SQL Utility (XSU) enables you to do this as follows:

■ XSU can transform data retrieved from object-relational database tables or

views into XML.

■ XSU can extract data from an XML document, and using a canonical mapping,

insert the data into appropriate columns or attributes of a table or a view.

■ XSU can extract data from an XML document and apply this data to updating

or deleting values of the appropriate columns or attributes.

Generating XML from the Database
For example, on the XML generation side, when given the query SELECT * FROM
emp, XSU queries the database and returns the results as the following XML

document:

<?xml version=’1.0’?>
<ROWSET>
  <ROW num="1">
    <EMPNO>7369</EMPNO>
    <ENAME>Smith</ENAME>
    <JOB>CLERK</JOB>
    <MGR>7902</MGR>
    <HIREDATE>12/17/1980 0:0:0</HIREDATE>
    <SAL>800</SAL>
    <DEPTNO>20</DEPTNO>
  </ROW>
  <!-- additional rows ... -->
</ROWSET>

Storing XML in the Database
Going the other way, given the XML document above, XSU can extract the data

from it and insert it into the scott.emp  table in the database.

Accessing XSU Functionality
XML SQL Utility functionality can be accessed in the following ways:
7-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What is XML SQL Utility (XSU)?
■ Through a Java API

■ Through a PL/SQL API

■ Through a Java command line front end

XSU Features
XSU can perform the following tasks:

■ Generate XML documents from any SQL query. XSU virtually supports all the

datatypes supported in the Oracle9i database server.

■ Dynamically generate DTDs (Document Type Definitions).

■ During generation, perform simple transformations, such as modifying default

tag names for the ROW element. You can also register an XSL transformation

which is then applied to the generated XML documents as needed.

■ Generate XML documents in their string or DOM representations.

■ Insert XML into database tables or views. XSU can also update or delete records

records from a database object, given an XML document.

■ Easily generate complex nested XML documents. XSU can also store them in

relational tables by creating object views over the flat tables and querying over

these views. Object views can create structured data from existing relational

data using Oracle8i and Oracle9i’s object-relational infrastructure.

XSU Oracle9i Features
 In Oracle9i, XSU can also perform the following tasks:

■ Generates XML Schema given an SQL Query.

■ Generates XML as a stream of SAX2 callbacks.

■ Supports XML attributes during generation. This provides an easy way to

specify that a particular column or group of columns should be mapped to an

XML attribute instead of an XML element.

See Also:

■ Appendix H, "XML SQL Utility (XSU) Specifications and Cheat

Sheets"

■ Oracle9i XML Reference
XML SQL Utility (XSU) 7-3



XSU Dependencies and Installation
■ SQL identifier to XML identifier escaping. Sometimes column names are not

valid XML tag names. To avoid this you can either alias all the column names

or turn on tag escaping.

XSU Dependencies and Installation

Dependencies
XML SQL Utility (XSU) needs the following components:

■ Database connectivity -- JDBC drivers. XSU can work with any JDBC driver

but is optimized for Oracle JDBC drivers. Oracle does not make any guarantee

or provide support for the XSU running against non-Oracle databases.

■ XML Parser -- Oracle XML Parser, Version2. Oracle XML Parser, version 2 is

included in Oracle8i and Oracle9i, and is also available as part of the XSU install

downloadable from the Oracle Technology Network (OTN) web site.

Installation
XML SQL Utility (XSU) is packaged with Oracle8i (8.1.7 and later) and Oracle9i.
XSU is made up of three files:

■ $ORACLE_HOME/rdbms/jlib/xsu12.jar  -- Contains all the Java classes

which make up XSU. xsu12  requires JDK1.2.x and JDBC2.x . This is the

XSU version loaded into Oracle9i.

■ $ORACLE_HOME/rdbms/jlib/xsu111.jar  -- Contains the same classes as

xsu12.jar, except that xsu111 requires JDK1.1.x and JDBC1.x .

■ $ORACLE_HOME/rdbms/admin/dbmsxsu.sql  -- This is the SQL script that

builds the XSU PL/SQL API. xsu12.jar  needs to be loaded into the database

before dbmsxsu.sql  is executed.

By default the Oracle9i installer installs XSU on the hard drive in the locations

specified above. It also loads it into the database.

Note: Oracle9i introduces the DBMS_XMLGen PL/SQL supplied

package. This package provides the functionality previously

available with DBMS_XMLQuery. DBMS_XMLGenis built into the

database code, hence, it provides better performance.
7-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility and the Bigger Picture
If during initial installation you choose to not install XSU, you can install it later,

but the installation becomes less simple. To install XSU later, first install XSU and its

dependent components on your system. You can accomplish this using Oracle

Installer. Next perform the following steps:

1. If you have not yet loaded XML Parser for Java in the database, go to

$ORACLE_HOME/xdk/lib . Here you will find xmlparserv2.jar  that you

need to load into the database. To do this, see “Loading JAVA Classes” in the

Oracle9i Java Stored Procedures Developer’s Guide

2. Go to $ORACLE_HOME/admin and run catxsu.sql

XML SQL Utility and the Bigger Picture
XML SQL Utility (XSU) is written in Java, and can live in any tier that supports

Java.

XML SQL Utility in the Database
The Java classes which make up XSU can be loaded into Java-enabled Oracle8i or

later. Also, XSU contains a PL/SQL wrapper that publishes the XSU Java API to

PL/SQL, creating a PL/SQL API. This way you can:

■ Write new Java applications that run inside the database and that can directly

access the XSU Java API

■ Write PL/SQL applications that access XSU through its PL/SQL API

■ Access XSU functionality directly through SQL

Figure 7–1 shows the typical architecture for such a system. XML generated from

XSU running in the database, can be placed in advanced queues in the database to

be queued to other systems or clients. The XML can be used from within stored

procedures in the database or shipped outside through web servers or application

servers.

Note: XML SQL Utility (XSU) is also available on OTN at:

http://otn.oracle.com/tech/xml Check here for XSU

updates.

Note: To load and run Java code inside the database you need a

Java-enabled Oracle8i or later server.
XML SQL Utility (XSU) 7-5



XML SQL Utility and the Bigger Picture
Figure 7–1 Running XML SQL Utility in the Database

XML SQL Utility in the Middle Tier
Your application architecture may need to use an application server in the middle

tier, separate from the database. The application tier can be an Oracle database,

Oracle9i Application Server, or a third party application server that supports Java

programs.

You may want to generate XML in the middle tier, from SQL queries or ResultSets,

for various reasons. For example, to integrate different JDBC data sources in the

middle tier. In this case you could install the XSU in your middle tier and your Java

programs could make use of XSU through its Java API.

Figure 7–2, shows how a typical architecture for running XSU in a middle tier. In

the middle tier, data from JDBC sources is converted by XSU into XML and then

Note: In Figure 7–1, all lines are bi-directional. Since XSU can

generate as well as save data, data can come from various sources to

XSU running inside the database, and can be put back in the

appropriate database tables.

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier
Application 
Server

Internet
SQL
Tables
and
Views

Advanced
Queuing
(AQ) Application

Logic

XML SQL Utility
(Java / PL/SQL)

XML*

XML*

Oracle9 i

User

XML*XML*XML*

*  XML, HTML, 
    XHTML, VML, . . .
7-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility and the Bigger Picture
sent to Web servers or other systems. Again, the whole process is bi-directional and

the data can be put back into the JDBC sources (database tables or views) using

XSU. If an Oracle database itself is used as the application server, then you can also

use the PL/SQL front-end instead of Java.

Figure 7–2 Running XML SQL Utility in the MIddle Tier

XML SQL Utility in a Web Server
XSU can live in the Web server, as long as the Web server supports Java servlets.

This way you can write Java servlets that use XSU to accomplish their task.

XSQL servlet does just this. XSQL servlet is a standard servlet provided by Oracle.

It is built on top of XSU and provides a template-like interface to XSU functionality.

If XML processing in the Web server is your goal, you should probably use the

XSQL servlet, as it will spare you from the intricate servlet programming.

Other Database,
Messaging Systems, . . .

Web
Server

Middle Tier 
Application Server
or
Oracle9 i (Java or 
PL/SQL front end)

InternetSQL
Tables
and
Views

Application
Logic

XML SQL Utility
(Java)

XML*

Any
Database

User

SQL data
(via JDBC) XML*XML*

*  XML, HTML, 
    XHTML, VML, . . .
XML SQL Utility (XSU) 7-7



SQL-to-XML and XML-to-SQL Mapping Primer
Figure 7–3 Running XML SQL Utility in a Web Server

XML SQL Utility In The Client Tier
XML SQL Utility can be also installed on a client system, where you can write Java

programs that use XSU. You can also use XSU directly through its command line

front end.

SQL-to-XML and XML-to-SQL Mapping Primer
As described earlier, XML SQL Utility transforms data retrieved from

object-relational database tables or views into XML. XSU can also extract data from

an XML document, and using a specified mapping, insert the data into appropriate

columns or attributes of a table or a view in the database. This section describes the

canonical mapping or transformation used to go from SQL to XML or vice versa.

Default SQL-to-XML Mapping
Consider table emp:

CREATE TABLE emp
(
   EMPNO NUMBER,
   ENAME VARCHAR2(20),
   JOB VARCHAR2(20),
   MGR  NUMBER,

See: Chapter 10, "XSQL Pages Publishing Framework" for

information about using XSQL Servlet.

Web Server
(running Servlets)

InternetSQL
Tables
and
Views

Servlets
(XSQL servlets)

XML SQL Utility
(Java)

Any
Database

User

SQL data
(via JDBC) XML*

*  XML, HTML, 
    XHTML, VML, . . .
7-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SQL-to-XML and XML-to-SQL Mapping Primer
   HIREDATE DATE,
   SAL NUMBER,
   DEPTNO NUMBER
);

XSU can generate the following XML document by specifying the query, select *
from emp :

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
  <EMPNO>7369</EMPNO>

    <ENAME>Smith</ENAME>
    <JOB>CLERK</JOB>
    <MGR>7902</MGR>
    <HIREDATE>12/17/1980 0:0:0</HIREDATE>
    <SAL>800</SAL>
    <DEPTNO>20</DEPTNO>
  </ROW>
  <!-- additional rows ... -->
</ROWSET>

In the generated XML, the rows returned by the SQL query are enclosed in a

ROWSET tag to constitute the <ROWSET> element. This element is also the root

element of the generated XML document.

■ The <ROWSET> element contains one or more <ROW>elements.

■ Each of the <ROW> elements contain the data from one of the returned database

table rows. Specifically, each <ROW> element contains one or more elements

whose names and content are those of the database columns specified in the

SELECT list of the SQL query.

■ These elements, corresponding to database columns, contain the data from the

columns.

SQL-to-XML Mapping Against Object-Relational Schema
Next we describe this mapping but against an object-relational schema. Consider

the following type, AddressType . Its an object type whose attributes are all scalar

types and is created as follows:

CREATE TYPE AddressType AS OBJECT (
   STREET VARCHAR2(20),
   CITY   VARCHAR2(20),
   STATE  CHAR(2),
XML SQL Utility (XSU) 7-9



SQL-to-XML and XML-to-SQL Mapping Primer
   ZIP    VARCHAR2(10)
);
/

The following type, EmplyeeType , is also an object type but it has an EMPADDR
attribute that is of an object type itself, specifically, AddressType . Employee
Type  is created as follows:

CREATE TYPE EmployeeType AS OBJECT
(
  EMPNO NUMBER,
  ENAME VARCHAR2(20),
  SALARY NUMBER,
  EMPADDR AddressType
);
/

The following type, EmployeeListType , is a collection type whose elements are

of the object type, EmployeeType . EmployeeListType  is created as follows:

CREATE TYPE EmployeeListType AS TABLE OF EmployeeType;
/

Finally, dept  is a table with, among other things, an object type column and a

collection type column -- AddressType  and EmployeeListType  respectively.

CREATE TABLE dept
(
  DEPTNO NUMBER,
  DEPTNAME VARCHAR2(20),
  DEPTADDR AddressType,
  EMPLIST  EmployeeListType
)
NESTED TABLE EMPLIST STORE AS EMPLIST_TABLE;

Assume that valid values are stored in table, dept . For the query select * from
dept , XSU generates the following XML document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
  <DEPTNO>100</DEPTNO>

    <DEPTNAME>Sports</DEPTNAME>
    <DEPTADDR>
      <STREET>100 Redwood Shores Pkwy</STREET>
      <CITY>Redwood Shores</CITY>
7-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SQL-to-XML and XML-to-SQL Mapping Primer
      <STATE>CA</STATE>
      <ZIP>94065</ZIP>
    </DEPTADDR>

<EMPLIST>
      <EMPLIST_ITEM num="1">
         <EMPNO>7369</EMPNO>
         <ENAME>John</ENAME>
         <SALARY>10000</SALARY>
         <EMPADDR>
           <STREET>300 Embarcadero</STREET>
           <CITY>Palo Alto</CITY>
           <STATE>CA</STATE>
           <ZIP>94056</ZIP>
         </EMPADDR>
      </EMPLIST_ITEM>
       <!-- additional employee types within the employee list -->
    </EMPLIST>
  </ROW>
  <!-- additional rows ... -->
</ROWSET>

As in the last example, the mapping is canonical, that is, <ROWSET> contains

<ROW>s that contain elements corresponding to the columns. As before, the

elements corresponding to scalar type columns simply contain the data from the

column.

Mapping Complex Type Columns to XML

Things get more complex with elements corresponding to a complex type column.

For example, <DEPTADDR>corresponds to the DEPTADDRcolumn which is of object

type ADDRESS. Consequently, <DEPTADDR>contains subelements corresponding to

the attributes specified in the type ADDRESS. These subelements can contain data or

sub-elements of their own, again depending if the attribute they correspond to is of

a simple or complex type.

Mapping Collections to XML

When dealing with elements corresponding to database collections, things are yet

different. Specifically, the <EMPLIST> element corresponds to the EMPLIST column

which is of a EmployeeListType collection type. Consequently, the <EMPLIST>
element contains a list of <EMPLIST_ITEM> elements each corresponding to one of

the elements of the collection.

Other observations to make about the above mapping are:
XML SQL Utility (XSU) 7-11



SQL-to-XML and XML-to-SQL Mapping Primer
■ The <ROW> elements contains a cardinality attribute num.

■ If a particular column or attribute value is null, then for that row, the

corresponding XML element is left out altogether.

■ If a top level scalar column name starts with the at sign (@) character, then the

particular column is mapped to an XML attribute instead of an XML element.

Customizing the Generated XML: Mapping SQL to XML
Often, one needs to generate XML with a specific structure. Since the desired

structure may differ from the default structure of the generated XML document, it

is desirable to have some flexibility in this process. You can customize the structure

of a generated XML document using one of the following methods:

■ "Source Customization"

■ "Mapping Customization"

■ "Post-Generation Customization"

Source Customization
Source customizations are done by altering the query or database schema. The

simplest and most powerful source customizations include the following:

■ In the database schema, create an object-relational view that maps to the

desired XML document structure.

■ In your query:

■ Use cursor subqueries, or cast-multiset constructs to get nesting in the XML

document which comes from a flat schema.

■ Alias column/attribute names to get the desired XML element names.

■ Alias top level scalar type columns with identifiers which begin with the at

sign (@) to have them map to an XML attribute instead of an XML element .

For example, select empno as “@empno”,... from emp , results in

an XML document where the <ROW> element has an attribute EMPNO.

Mapping Customization
XML SQL Utility allows you to modify the mapping it uses to transform SQL data

into XML. You can make any of the following SQL to XML mapping changes:

■ Change or omit the <ROWSET> tag.
7-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



SQL-to-XML and XML-to-SQL Mapping Primer
■ Change or omit the <ROW> tag.

■ Change or omit the attribute num. This is the cardinality attribute of the <ROW>
element.

■ Specify the case for the generated XML element names.

■ Specify that XML elements corresponding to elements of a collection, should

have a cardinality attribute.

■ Specify the format for dates in the XML document.

■ Specify that null values in the XML document should be indicated using a

nullness attribute, rather then by omission of the element.

Post-Generation Customization
Finally, if the desired customization cannot be achieved with the foregoing

methods, you can write an XSL transformation and register it with XSU.  While

there is an XSLT registered with the XSU, XSU can apply XSLT to any XML it

generates.

Default XML-to-SQL Mapping
XML to SQL mapping is just the reverse of the SQL to XML mapping.

Consider the following differences when mapping from XML to SQL, compared to

mapping from SQL to XML:

■ When going from XML to SQL,  the XML attributes are ignored. Thus, there is

really no mapping of XML attributes to SQL.

■ When going from SQL to XML, mapping is performed from the resultset

created by the SQL query to XML. This way the query can span multiple

database tables or views. What gets formed is a single resultset which is then

converted into XML.  This is not the case when going from XML to SQL, where:

■ To insert one XML document into multiple tables or views, you must create

an object-relational view over the target schema.

■ If the view is not updatable, one work around is to use

INSTEAD-OF-INSERT  triggers.

If the XML document does not perfectly map into the target database schema, there

are three things you can do:

See Also: "Default SQL-to-XML Mapping"  on page 7-8.
XML SQL Utility (XSU) 7-13



How XML SQL Utility Works
■ Modify the Target. Create an object-relational view over the target schema, and

make the view the new target.

■ Modify the XML Document. Use XSLT to transform the XML document.  The

XSLT can be registered with XSU so that the incoming XML is automatically

transformed, before any mapping attempts are made.  This is the least

performant solution.

■ Modify XSU’s XML-to-SQL Mapping.  You can instruct XSU to perform case

insensitive matching of the XML elements to database columns or attributes.

■ If not the default (ROW),  you can tell XSU to use the name of the element

corresponding to a database row.

■ You can instruct XSU on which date format to use when parsing dates in

the XML document.

How XML SQL Utility Works
This section describes how XSU works when performing the following tasks:

■ Selecting with XSU  on page 7-14

■ Inserting with XSU  on page 7-14

■ Updating with XSU  on page 7-15

■ Deleting with XSU  on page 7-16

Selecting with XSU
XSU generation is simple.  SQL queries are executed and the resultset is retrieved

from the database.  Metadata about the resultset is aquired and analyzed. Using the

mapping described in "Default SQL-to-XML Mapping"  on page 7-8, the SQL result

set is processed and converted into an XML document.

Inserting with XSU
To insert the contents of an XML document into a particular table or view, XSU first

retrieves the metadata about the target table or view. Based on the metadata, XSU

generates an SQL INSERT statement. XSU extracts the data out of the XML

document and binds it to the appropriate columns or attributes.  Finally the

statement is executed.
7-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How XML SQL Utility Works
For example, assume that the target table is dept and the XML document is the one

generated from dept .

XSU generates the following INSERT statement.

INSERT INTO Dept (DEPTNO, DEPTNAME, DEPTADDR, EMPLIST) VALUES (?,?,?,?)

Next, the XSU parses the XML document, and for each record, it binds the

appropriate values to the appropriate columns or attributes, and executes the

statement:

DEPTNO <- 100
DEPTNAME <- SPORTS
DEPTADDR <- AddressType(’100 Redwood Shores Pkwy’,’Redwood Shores’,
                        ’CA’,’94065’)

EMPLIST <- EmployeeListType(EmployeeType(7369,’John’,100000,
            AddressType(’300 Embarcadero’,’Palo Alto’,’CA’,’94056’),...)

Insert processing can be optimized to insert in batches, and commit in batches.

More detail on batching can be found in the section on "Insert Processing Using

XSU (Java API)" on page 7-36.

Updating with XSU
Updates and deletes differ from inserts in that they can affect more than one row in

the database table. For inserts, each ROW element of the XML document can affect at

most, one row in the table, provided that there are no triggers or constraints on the

table.

However, with both updates and deletes, the XML element could match more than

one row if the matching columns are not key columns in the table. For updates, you

must provide a list of key columns which XSU needs to identify the row to update.

For example, to update the DEPTNAME to SportsDept  instead of Sports , you can

have an XML document such as:

<ROWSET>
 <ROW num="1">
  <DEPTNO>100</DEPTNO>

    <DEPTNAME>SportsDept</DEPTNAME>
  </ROW>
</ROWSET>

See Also: "Default SQL-to-XML Mapping"  on page 7-8.
XML SQL Utility (XSU) 7-15



How XML SQL Utility Works
and supply the DEPTNO as the key column. This would result in the following

UPDATE statement:

UPDATE DEPT SET DEPTNAME = ? WHERE DEPTNO = ?

and bind the values,

DEPTNO <- 100
DEPTNAME <- SportsDept

For updates, you can also choose to update only a set of columns and not all the

elements present in the XML document. See also, "Update Processing Using XSU

(Java API)"  on page 7-38.

Deleting with XSU
For deletes, you can choose to give a set of key columns for the delete to identify the

rows. If the set of key columns are not given, then the DELETE statement tries to

match all the columns given in the document.  For an XML document:

<ROWSET>
 <ROW num="1">
  <DEPTNO>100</DEPTNO>

    <DEPTNAME>Sports</DEPTNAME>
    <DEPTADDR>
      <STREET>100 Redwood Shores Pkwy</STREET>
      <CITY>Redwood Shores</CITY>
      <STATE>CA</STATE>
      <ZIP>94065</ZIP>
    </DEPTADDR>
  </ROW>
  <!-- additional rows ... -->
</ROWSET>

To delete, XSU fires off a DELETE statement (one per ROW element) which looks like

the following:

DELETE FROM Dept WHERE DEPTNO = ? AND DEPTNAME = ? AND DEPTADDR = ?
binding,
DEPTNO <- 100
DEPTNAME <- Sports
DEPTADDR <-  AddressType(’100 Redwood Shores Pkwy’,’Redwood
City’,’CA’,’94065’)

See also, "Delete Processing Using XSU (Java API)"  on page 7-41.
7-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the XSU Command Line Front End,OracleXML
Using the XSU Command Line Front End,OracleXML
XSU comes with a simple command line front end which gives you quick access to

XML generation and insertion. In Oracle9i, the XSU front end does not publish the

update and delete functionalities. The XSU command line options are provided

through the Java class, OracleXML . Invoke it by calling:

java OracleXML

This prints the front end usage information. To run the XSU command line front

end, first specify where the executable is located.  Add the following to your

CLASSPATH:

■ XSU Java library (xsu12.jar or xsu111.jar )

Also, since XSU depends on Oracle XML Parser and JDBC drivers, make the

location of these components known. To do this, the CLASSPATH must include the

locations of:

■ Oracle XML Parser Java library (xmlparserv2.jar )

■ JDBC library (classes12.jar if using xsu12.jar or classes111.jar
if using xsu111.jar )

Generating XML Using the XSU Command Line
For XSU generation capabilities,  use the XSU getXML parameter. For example, to

generate an XML document by querying the emp table in the scott schema, use:

java OracleXML getXML -user "scott/tiger" "select * from emp"

This performs the following tasks:

■ Connects to the current default database

■ Executes the query select * from emp

■ Converts the result to XML

■ Displays the result

The getXML  parameter supports a wide range of options which are explained in

the following section.
XML SQL Utility (XSU) 7-17



Using the XSU Command Line Front End,OracleXML
XSU’s OracleXML getXML Options
Table 7–1 lists the OracleXML getXML  options:

Table 7–1 XSU’s OracleXML getXML Options

getXML Option Description

-user "<username>/<password>" Specifies the user name and password to connect to the database. If
this is not specified, the user defaults to scott/tiger .  Note that
he connect string is also being specified, the user name and
password can be specified as part of the connect string.

-conn "<JDBC_connect_string>" Specifies the JDBC database connect string.  By default the connect
string is: "jdbc:oracle:oci8:@ "):

-withDTD Instructs the XSU to generate the DTD along with the XML
document.

-rowsetTag   "<tag_name>" Specifies rowset  tag (the tag that encloses all the XML elements
corresponding to the records returned by the query). The default
rowset tag is ROWSET. Specifying an empty string for the rowset
tells the XSU to completely omit the rowset  element.

-rowTag   "<tag_name>" Specifies the row tag (the tag used to enclose the data coresponding
to a database row).  The default row tag is ROW.  Specifying an
empty string for the row tag tells the XSU to completely omit the
row tag.

-rowIdAttr   "<row_id-attribute-name>" Names the attribute of the ROW element keeping track of the
cardinality of the rows .  By default this attribute is called num.
Specifying an empty string (i.e. "") as the rowID  attribute will tell
the XSU to omit the attribute.

 -rowIdColumn  "<row Id column name>" Specifies that the value of one of the scalar columns from the query
should be used as the value of the rowID  attribute.

-collectionIdAttr  "<collection id attribute
name>"

Names the attribute of an XML list element keeping track of the
cardinality of the elements of the list (Note: the generated XML lists
correspond to either a cursor query, or collection).  Specifying an
empty string (i.e. "") as the rowID attribute will tell the XSU to omit
the attribute.

-useNullAttrId Tells the XSU to use the attribute NULL (TRUE/FALSE) to indicate
the nullness of an element.

-styleSheet "<stylesheet URI>" Specifies the stylesheet in the XML PI (Processing Instruction).

-stylesheetType "<stylesheet type>" Specifies the stylesheet type in the XML PI (Processing Instruction).

-errorTag "<error tag name>" Secifies the error tag -- the tag to enclose error messages which are
formated into XML.
7-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the XSU Command Line Front End,OracleXML
Inserting XML Using XSU’s Command Line (putXML)
To insert an XML document into the emp table in the scott  schema, use the

following syntax:

java OracleXML putXML -user "scott/tiger" -fileName "/tmp/temp.xml" "emp"

This performs the following tasks:

■ Connects to the current database

■ Reads the XML document from the given file

■ Parses it, matches the tags with column names

■ Inserts the values appropriately in to the emp table

-raiseNoRowsException Tells the XSU to raise an exception if no rows are returned.

-maxRows "<maximum number of
rows>"

Specifies the maximum number of rows to be retrieved and
converted to XML.

-skipRows "<number of rows to skip>" Specifies the number of rows to be skipped.

-encoding "<encoding name>" Specifies the characterset encoding of the generated XML.

-dateFormat "<date format>" Specifies the date format for the date values in the XML document.

-fileName "<SQL query fileName>" |
<sql query>

Specifies the file name which contains the query or specify the
query itself.

Note: The XSU command line front end,putXML , currently only
publishes XSUinsert  functionality. It may be expanded in future to
also publish XSUupdate and delete  functionality.

Table 7–1 XSU’s OracleXML getXML Options (Cont.)

getXML Option Description
XML SQL Utility (XSU) 7-19



XSU Java API
XSU OracleXML putXML Options
Table 7–2 lists the putXML  options:

:

XSU Java API
The following two classes make up the XML SQL Utility Java API:

■ XSU API for XML generation: oracle.xml.sql.query.OracleXMLQuery

■ XSU API for XML save , insert , update , and delete :

oracle.xml.sql.dml.OracleXMLSave

Table 7–2 XSU’s OracleXML putXML Options

putXML Options Description

-user "<username>/<password>" Specifies the user name and password to connect to the database. If
this is not specified, the user defaults to scott/tiger .  Note that
he connect string is also being specified, the user name and
password can be specified as part of the connect string.

-conn "<JDBC_connect_string>" Specifies the JDBC database connect string.  By default the connect
string is: "jdbc:oracle:oci8:@ "):

-batchSize "<batching size>" Specifies the batch size, which control the number of rows which
are batched together and inserted in a single trip to the database.
Batching improves performance.

-commitBatch "<commit size>" Specifies the number of inserted records after which a commit is to
be executed.  Note that if the autocommit is true  (default), then
setting the commitBatch  has no consequence.

-rowTag   "<tag_name>" Specifies the row tag (the tag used to enclose the data coresponding
to a database row).  The default row tag is ROW.  Specifying an

empty string for the row  tag tells the XSU that no row enclosing

tag is used in the XML document.

-dateFormat "<date format>" Specifies the date format for the date values in the XML document.

-ignoreCase Makes the matching of the column names with tag names case
insensitive (e.g. "EmpNo" will match with "EMPNO" if ignoreCase
is on).

-fileName "<file name>" | -URL "<url>" |
-xmlDoc "<xml document>"

Specifies the XML document to insert. The fileName option
specifies a local file, the URL specifies a URL to fetch the document
from and the xmlDoc option inlines the XML document as a string
on the command line.

<tableName> The name of the table to put the values into.
7-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Generating XML with XSU’s OracleXMLQuery
Generating XML with XSU’s OracleXMLQuery
The OracleXMLQuery  class makes up the XML generation part of the XSU Java

API. Figure 7–4 illustrates the basic steps you need to take when using

OracleXMLQuery to generate XML:

1. Create a connection.

2. Create an OracleXMLQuery  instance by supplying an SQL string or a

ResultSet  object.

3. Obtain the result as a DOM tree or XML string.

Figure 7–4 Generating XML With XML SQL Utility for Java: Basic Steps

Generating XML From SQL Queries Using XSU
The following examples illustrate how XSU can generate an XML document in its

DOM or string representation given a SQL query. See Figure 7–5.

JDBC Result
Set XML

String

DOM
object

Create JDBC
Connection

OracleXMLQuery
instance

Further
processing

SQL
Query

SQL
Query getXMLDOM

getXMLString
XML SQL Utility (XSU) 7-21



Generating XML with XSU’s OracleXMLQuery
Figure 7–5 Generating XML With XML SQL Utility

XSU Generating XML Example 1: Generating a String From Table emp (Java)
1. Create a connection

Before generating the XML you must create a connection to the database. The

connection can be obtained by supplying the JDBC connect string. First register

the Oracle JDBC class and then create the connection, as follows

// import the Oracle driver..
import oracle.jdbc.driver.*;

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

// Create the connection.
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:@","scott","tiger");

Here, the connection is done using OCI8’s JDBC driver. You can connect to the

scott  schema supplying the password tiger . It connects to the current

set
the options

REGISTER
Query

close

User / Browser / 
Client / 

Application

bind
values

Generated
XML

as DOM
User / Browser / 

Client / 
Application

Generated
XML

as String

fetch
XML

Generating XML from the Database using the XML SQL Utility
7-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Generating XML with XSU’s OracleXMLQuery
database (identified by the ORA_SID environment variable). You can also use

the JDBC thin driver to connect to the database. The thin driver is written in

pure Java and can be called from within applets or any other Java program.

■ Connecting With the Thin Driver. Here is an example of connecting using

the JDBC thin driver:

// Create the connection.
Connection conn =
DriverManager.getConnection("jdbc:oracle:thin:@dlsun489:1521:ORCL",

                                  "scott","tiger");

The thin driver requires you to specificy the host name (dlsun489), port

number (1521), and the Oracle SID (ORCL), which identifies a specific

Oracle instance on the machine.

■ No Connection Needed When Run In the Server. When writing server side

Java code, that is, when writing code that will run on the server, you need

not establish a connection using a username and password, since the

server-side internal driver runs within a default session. You are already

connected. In this case call the defaultConnection() on the

oracle.jdbc.driver.OracleDriver() class to get the current

connection, as follows:

import oracle.jdbc.driver.*;

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Connection conn =  new oracle.jdbc.driver.OracleDriver
().defaultConnection ();

The remaining discussion either assumes you are using an OCI8 connection

from the client or that you already have a connection object created. Use the

appropriate connection creation based on your needs.

2. Creating an OracleXMLQuery Class Instance

Once you have registered your connection, create an OracleXMLQuery  class

instance by supplying a SQL query to execute as follows:

// import the query class in to your class
import oracle.xml.sql.query.OracleXMLQuery;

OracleXMLQuery qry = new OracleXMLQuery (conn, "select * from emp");

See Also: Oracle9i Java Developer’s Guide for more details.
XML SQL Utility (XSU) 7-23



Generating XML with XSU’s OracleXMLQuery
You are now ready to use the query class.

3. Obtain the result as a DOM tree or XML string

■ DOM Object Output. If, instead of a string, you wanted a DOM object, you

can simply request a DOM output as follows:

org.w3c.DOM.Document domDoc = qry.getXMLDOM();

and use the DOM traversals.

■ XML String Output. You can get an XML string for the result by:

String xmlString = qry.getXMLString();

Here is a complete listing of the program to extract (generate) the XML string. This

program gets the string and prints it out to standard output:

Import oracle.jdbc.driver.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;
import java.sql.*;

// class to test the String generation!
class testXMLSQL {

   public static void main(String[] argv)
   {

     try{
      // create the connection
      Connection conn  = getConnection("scott","tiger");

      // Create the query class.
      OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp");

      // Get the XML string
      String str = qry.getXMLString();

      // Print the XML output
      System.out.println(" The XML output is:\n"+str);
      // Always close the query to get rid of any resources..
     qry.close();
     }catch(SQLException e){
      System.out.println(e.toString());
     }
7-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Generating XML with XSU’s OracleXMLQuery
   }

   // Get the connection given the user name and password..!
   private static Connection getConnection(String username, String password)
     throws SQLException
   {
      // register the JDBC driver..
       DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

      // Create the connection using the OCI8 driver
       Connection conn =
        DriverManager.getConnection("jdbc:oracle:oci8:@",username,password);

      return conn;
   }
}

How to Run This Program
To run this program, carry out the following:

1. Store this in a file called testXMLSQL.java

2. Compile it using javac , the Java compiler

3. Execute it by specifying: java testXMLSQL

You must have the CLASSPATH pointing to this directory for the Java executable to

find the class. Alternatively use various visual Java tools including Oracle

JDeveloper to compile and run this program. When run, this program prints out the

XML file to the screen.

XSU Generating XML Example 2: Generating DOM From emp table (Java)
DOM (Document Object Model) is a standard defined by the W3C committee. DOM

represents an XML document in a parsed tree-like form. Each XML entity becomes

a DOM node. Thus XML elements and attributes become DOM nodes while their

children become child nodes. To generate a DOM tree from the XML generated by

XSU, you can directly request a DOM document from XSU, as it saves the overhead

of having to create a string representation of the XML document and then parse it to

generate the DOM tree.
XML SQL Utility (XSU) 7-25



Generating XML with XSU’s OracleXMLQuery
XSU calls the parser to directly construct the DOM tree from the data values. The

following example illustrates how to generate a DOM tree. The example steps

through the DOM tree and prints all the nodes one by one.

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;

 class domTest{

   public static void main(String[] argv)
   {
      try{
      // create the connection
      Connection conn  = getConnection("scott","tiger");

      // Create the query class.
      OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp");

      // Get the XML DOM object. The actual type is the Oracle Parser's DOM
      // representation. (XMLDocument)
      XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

      // Print the XML output directly from the DOM
      domDoc.print(System.out);

      // If you instead want to print it to a string buffer you can do
this..!
      StringWriter s = new StringWriter(10000);
      domDoc.print(new PrintWriter(s));
      System.out.println(" The string version ---> "+s.toString());

      qry.close(); // You should always close the query!!
      }catch(Exception e){
        System.out.println(e.toString());
      }
    }

    // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
7-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Paginating Results: skipRows and maxRows
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }
}

Paginating Results: skipRows and maxRows
In the examples shown so far, XML SQL Utility (XSU) takes the ResultSet or the

query and generates the whole document from all the rows of the query. To obtain

100 rows at a time, you would then have to fire off different queries to get the first

100 rows, the next 100, and so on. Also it is not possible to skip the first five rows of

the query and then generate the result.

To obtain the desired results, use the XSU skipRows  and maxRows parameter

settings:

■ skipRows  parameter, when set, forces the generation to skip the desired

number of rows before starting to generate the result.

■ maxRows limits the number of rows converted to XML.

For example, if you set skipRows  to a value of 5 and maxRows to a value of 10,

then XSU skips the first 5 rows, then generates XML for the next 10 rows.

Keeping the Object Open For the Duration of the User’s Session
In Web scenarios, you may want to keep the query object open for the duration of

the user’s session. For example, consider the case of a Web search engine which

gives the results of a user’s search in a paginated fashion. The first page lists 10

results, the next page lists 10 more results, and so on.

To achieve this, request XSU to convert 10 rows at a time and keep the ResultSet

state alive, so that the next time you ask XSU for more results, it starts generating

from the place the last generation finished.  See "XSU Generating XML Example 3.

Paginating Results: Generating an XML Page When Called (Java)"  on page 7-28.

When the Number of Rows or Columns in a Row Are Too Large
There is also the case when the number of rows, or number of columns in a row are

very large. In this case, you can generate multiple documents each of a smaller size.
XML SQL Utility (XSU) 7-27



Paginating Results: skipRows and maxRows
These cases can be handled by using the maxRows parameter and the

keepObjectOpen  function.

keepObjectOpen Function
Typically, as soon as all results are generated, OracleXMLQuery  internally closes

the ResultSet , if it created one using the SQL query string given, since it assumes

you no longer want any more results. However, in the case described above, to

maintain that state, you need to call the keepObjectOpen  function to keep the

cursor alive. See the following example.

XSU Generating XML Example 3. Paginating Results: Generating an XML Page When
Called (Java)

This example, writes a simple class that maintains the state and generates the next

page each time it is called.

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;
public class pageTest
{
   Connection conn;
   OracleXMLQuery qry;
   ResultSet rset;
   Statement stmt;
   int lastRow = 0;

   public pageTest(String sqlQuery)
   {
     try{
     conn  = getConnection("scott","tiger");
     //stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

// ResultSet.CONCUR_READ_ONLY);// create a scrollable Rset
     //stmt = conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

// ResultSet.CONCUR_READ_ONLY);// create a scrollable Rset
     stmt = conn.createStatement();
     ResultSet rset = stmt.executeQuery(sqlQuery);  // get the result set..
     rset.first();
     qry = new OracleXMLQuery(conn,rset);   // create a OracleXMLQuery instance
     qry.keepCursorState(true); // Don't lose state after the first fetch
     qry.setRaiseNoRowsException(true);
7-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Paginating Results: skipRows and maxRows
     qry.setRaiseException(true);
     }catch(SQLException e){
      System.out.println(e.toString());
     }
   }

   // Returns the next XML page..!
   public String getResult(int startRow, int endRow)  throws SQLException
   {
     //rset.relative(lastRow-startRow);  // scroll inside the result set
     //rset.absolute(startRow);  // scroll inside the result set
     qry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
     //System.out.println("before getxml");
     return qry.getXMLString();
   }

   // Function to still perform the next page.
   public String nextPage() throws SQLException
   {
     String result = getResult(lastRow,lastRow+10);
     lastRow+= 10;
     return result;
   }

   public void close() throws SQLException
   {
     stmt.close();   // close the statement..
     conn.close();   // close the connection
     qry.close();    // close the query..
   }

   public static void main(String[] argv)
   {
     String str;

     try{
     pageTest test = new pageTest("select e.* from emp e");

     int i = 0;
     // Get the data one page at a time..!!!!!
     while ((str = test.getResult(i,i+10))!= null)
     {
         System.out.println(str);
         i+= 10;
     }
XML SQL Utility (XSU) 7-29



Generating XML from ResultSet Objects
     test.close();
    }catch(Exception e){
     e.printStackTrace(System.out);
    }
   }
 // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }

}

Generating XML from ResultSet Objects
You saw how you can supply a SQL query and get the results as XML. In the last

example, you retrieved paginated results. However in Web cases, you may want to

retrieve the previous page and not just the next page of results. To provide this

scrollable functionality, you can use the Scrollable ResultSet . Use the ResultSet
object to move back and forth within the result set and use XSU to generate the

XML each time. The following example illustrates how to do this.

XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
This example shows you how to use the JDBC ResultSet  to generate XML. Note

that using the ResultSet  might be necessary in cases that are not handled directly

by XSU, for example, when setting the batch size, binding values, and so on.  This

example extends the previously defined pageTest  class to handle any page.

public class pageTest()
{
   Connection conn;
   OracleXMLQuery qry;
   ResultSet rset;
   int lastRow = 0;

   public pageTest(String sqlQuery)
   {
     conn  = getConnection("scott","tiger");
     Statement stmt = conn.createStatement(sqlQuery);// create a scrollable Rset
7-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Generating XML from ResultSet Objects
     ResultSet rset = stmt.executeQuery();  // get the result set..
     qry = new OracleXMLQuery(conn,rset);   // create a OracleXMLQuery instance
     qry.keepObjectOpen(true); // Don’t lose state after the first fetch
   }

   // Returns the next XML page..!
   public String getResult(int startRow, int endRow)
   {
     rset.scroll(lastRow-startRow);  // scroll inside the result set
     qry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
     return qry.getXMLString();
   }

   // Function to still perform the next page.
   public String nextPage()
   {
     String result = getResult(lastRow,lastRow+10);
     lastRow+= 10;
     return result;
   }

   public void close()
   {
     stmt.close();   // close the statement..
     conn.close();   // close the connection
     qry.close();    // close the query..
   }

   public void main(String[] argv)
   {
     pageTest test = new pageTest("select * from emp");

     int i = 0;
     // Get the data one page at a time..!!!!!
     while ((str = test.getResult(i,i+10))!= null)
     {
         System.out.println(str);
         i+= 10;
     }
     test.close();
   }
}

XML SQL Utility (XSU) 7-31



Generating XML from ResultSet Objects
XSU Generating XML Example 5: Generating XML from Procedure Return Values
(REF CURSORS) (Java)

The OracleXMLQuery class provides XML conversion only for query strings or

ResultSets . But in your application if you have PL/SQL procedures that return

REF cursors, how would you do the conversion?

In this case, you can use the abovementioned ResultSet conversion mechanism to

perform the task. REF cursors are references to cursor objects in PL/SQL. These

cursor objects are valid SQL statements that can be iterated upon to get a set of

values. These REF cursors are converted into OracleResultSet objects in the Java

world.

You can execute these procedures, get the OracleResultSet  object, and then

send that to the OracleXMLQuery  object to get the desired XML.

Consider the following PL/SQL function that defines a REF cursor and returns it:

CREATE OR REPLACE package body testRef is

  function testRefCur RETURN empREF is
  a empREF;
  begin
      OPEN a FOR select * from scott.emp;
      return a;
  end;
end;
/

Every time this function is called, it opens a cursor object for the query, select *
from emp and returns that cursor instance. To convert this to XML, you can do the

following:

import org.w3c.dom.*;
import oracle.xml.parser.v2.*;
import java.sql.*;
import oracle.jdbc.driver.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.io.*;
public class REFCURtest
{
   public static void main(String[] argv)
     throws SQLException
   {
      String str;
      Connection conn  = getConnection("scott","tiger"); // create connection
7-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Raising No Rows Exception
      // Create a ResultSet object by calling the PL/SQL function
      CallableStatement stmt =
         conn.prepareCall("begin ? := testRef.testRefCur(); end;");

      stmt.registerOutParameter(1,OracleTypes.CURSOR); // set the define type

      stmt.execute();   // Execute the statement.
      ResultSet rset = (ResultSet)stmt.getObject(1);  // Get the ResultSet

      OracleXMLQuery qry = new OracleXMLQuery(conn,rset); // prepare Query class
      qry.setRaiseNoRowsException(true);
      qry.setRaiseException(true);
      qry.keepCursorState(true);        // set options (keep the cursor alive..
      while ((str = qry.getXMLString())!= null)
           System.out.println(str);

      qry.close();    // close the query..!

      // Note since we supplied the statement and resultset, closing the
      // OracleXMLquery instance will not close these. We would need to
      // explicitly close this ourselves..!
      stmt.close();
      conn.close();
   }
    // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }

}

To apply the stylesheet, on the other hand, use the applyStylesheet()
command. This forces the stylesheet to be applied before generating the output.

Raising No Rows Exception
When there are no rows to process, XSU simply returns a null string. However, it

might be desirable to get an exception every time there are no more rows present,
XML SQL Utility (XSU) 7-33



Raising No Rows Exception
so that the application can process this through exception handlers. When the

setRaiseNoRowsException () is set, then whenever there are no rows to generate

for the output XSU raises an

oracle.xml.sql.OracleXMLSQLNoRowsException . This is a run time

exception and need not be caught unless needed.

XSU Generating XML Example 6: No Rows Exception (Java)
The following code extends the previous examples to use the exception instead of

checking for null strings:

public class pageTest {
    .... // rest of the class definitions....

   public void main(String[] argv)
   {
     pageTest test = new pageTest("select * from emp");

     test.query.setRaiseNoRowsException(true); // ask it to generate
exceptions
     try
     {
        while(true)
         System.out.println(test.nextPage());
     }
     catch(oracle.xml.sql.OracleXMLNoRowsException)
     {
       System.out.println(" END OF OUTPUT ");
       test.close();
     }
   }
}

Note: Notice how the condition to check the termination changed

from checking for the result to be NULL to an exception handler.
7-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Storing XML Back in the Database Using XSU OracleXMLSave
Storing XML Back in the Database Using XSU OracleXMLSave
Now that you have seen how queries can be converted to XML, observe how you

can put the XML back into the tables or views using XSU. The class

oracle.xml.sql.dml.OracleXMLSave  provides this functionality. It has

methods to insert XML into tables, update existing tables with the XML document,

and delete rows from the table based on XML element values.

In all these cases the given XML document is parsed, and the elements are

examined to match tag names to column names in the target table or view. The

elements are converted to the SQL types and then bound to the appropriate

statement. The process for storing XML using XSU is shown in Figure 7–6.

Figure 7–6 Storing XML in the Database Using XML SQL Utility

Consider an XML document that contains a list of ROW elements, each of which

constitutes a separate DML operation, namely, insert , update, or delete on the

table or view.

close

REGISTER
the table

set
the options

insert
XML into

table

User / Browser / 
Client / 

Application

Storing XML in the Database Using the XML SQL Utility
XML SQL Utility (XSU) 7-35



Insert Processing Using XSU (Java API)
Insert Processing Using XSU (Java API)
To insert a document into a table or view, simply supply the table or the view name

and then the document. XSU parses the document (if a string is given) and then

creates an INSERT statement into which it binds all the values. By default, XSU

inserts values into all the columns of the table or view and an absent element is

treated as a NULLvalue. The following example shows you how the XML document

generated from the emp table, can be stored in the table with relative ease.

XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
This example inserts XML values into all columns:

// This program takes as an argument the file name, or a url to
// a properly formated XML document and inserts it into the SCOTT.EMP table.
import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testInsert
{
   public static void main(String argv[])
     throws SQLException
  {
     DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
     Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@","scott","tiger");

     OracleXMLSave sav = new OracleXMLSave(conn, "emp");
     sav.insertXML(sav.getUrl(argv[0]));
     sav.close();
   }
}

An INSERT statement of the form:

insert into scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,?,?,?,?,?);

is generated, and the element tags in the input XML document matching the

column names are matched and their values bound.

If you store the following XML document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
  <EMPNO>7369</EMPNO>

    <ENAME>Smith</ENAME>
7-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Insert Processing Using XSU (Java API)
    <JOB>CLERK</JOB>
    <MGR>7902</MGR>
    <HIREDATE>12/17/1980 0:0:0</HIREDATE>
    <SAL>800</SAL>
    <DEPTNO>20</DEPTNO>
  </ROW>
  <!-- additional rows ... -->
</ROWSET>

to a file and specify the file to the program described above, you would end up with

a new row in the emptable containing the values (7369, Smith, CLERK, 7902,
12/17/1980,800,20 ). Any element absent inside the row element is taken as a

null value.

XSU Inserting XML Example 8: Inserting XML Values into Only Certain Columns
(Java)

In certain cases, you may not want to insert values into all columns. This may be

true when the group of values that you are getting is not the complete set and you

need triggers or default values to be used for the rest of the columns. The code

below shows how this can be done.

Assume that you are getting the values only for the employee number, name, and

job and that the salary, manager, department number, and hire date fields are filled

in automatically. First create a list of column names that you want the insert  to

work on and then pass it to the OracleXMLSave  instance.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testInsert
{
   public static void main(String argv[])
     throws SQLException
   {
      Connection conn = getConnection("scott","tiger");
      OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

      String [] colNames = new String[5];
      colNames[0] = "EMPNO";
      colNames[1] = "ENAME";
      colNames[2] = "JOB";

      sav.setUpdateColumnList(colNames); // set the columns to update..!
XML SQL Utility (XSU) 7-37



Update Processing Using XSU (Java API)
      // Assume that the user passes in this document as the first argument!
      sav.insertXML(argv[0]);
      sav.close();
   }
   // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }
}

An insert  statement of the form:

insert into scott.emp (EMPNO, ENAME, JOB) VALUES (?, ?, ?);

is generated. Note that, in the above example, if the inserted document contains

values for the other columns (JOB, HIREDATE , and so on), those are ignored. Also

an insert  is performed for each ROW element that is present in the input. These

inserts are batched by default.

Update Processing Using XSU (Java API)
Now that you know how to insert values into the table from XML documents, see

how you can update only certain values. In an XML document, to update the salary

of an employee and the department that they work in:

<ROWSET>
 <ROW num="1">
  <EMPNO>7369</EMPNO>

    <SAL>1800</SAL>
    <DEPTNO>30</DEPTNO>
  </ROW>
  <ROW>
    <EMPNO>2290</EMPNO>
    <SAL>2000</SAL>
    <HIREDATE>12/31/1992</HIREDATE>
  <!-- additional rows ... -->
</ROWSET>
7-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Update Processing Using XSU (Java API)
You can use the XSU to update the values.  For updates, you must supply XSU with

the list of key column names. These form part of the WHERE clause in the UPDATE
statement. In the emp table shown above, employee number (EMPNO) column forms

the key. Use this for updates.

XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
This example updates table , emp, using keyColumns :

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testUpdate
{
   public static void main(String argv[])
     throws SQLException
   {
      Connection conn = getConnection("scott","tiger");
      OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

      String [] keyColNames = new String[1];
      keyColNames[0] = "EMPNO";
      sav.setKeyColumnList(keyColNames);

      // Assume that the user passes in this document as the first argument!
      sav.updateXML(argv[0]);
      sav.close();
   }
   // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }
}

In this example, two UPDATE statements are generated. For the first ROW element,

you generate an UPDATE statement to update the SAL and JOB  fields as follows:

update scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

For the second ROW element:
XML SQL Utility (XSU) 7-39



Update Processing Using XSU (Java API)
update scott.emp SET SAL = 2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;

XSU Updating XML Example 10: Updating a Specified List of Columns (Java)
You may want to specify a list of columns to update. This would speed up the

processing since the same UPDATE statement can be used for all the ROW elements.

Also you can ignore other tags in the XML document.

If you know that all the elements to be updated are the same for all the ROW
elements in the XML document, you can use the setUpdateColumnNames ()
function to set the list of columns to update.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testUpdate
{
   public static void main(String argv[])
     throws SQLException
   {
      Connection conn = getConnection("scott","tiger");
      OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

      String [] keyColNames = new String[1];
      keyColNames[0] = "EMPNO";
      sav.setKeyColumnList(keyColNames);

      // you create the list of columns to update..!
      // Note that if you do not supply this, then for each ROW element in the
      // XML document, you would generate a new update statement to update all
      // the tag values (other than the key columns)present in that element.
      String[] updateColNames = new String[2];
      updateColNames[0] = "SAL";
      updateColNames[1] = "JOB";
      sav.setUpdateColumnList(updateColNames); // set the columns to update..!

      // Assume that the user passes in this document as the first argument!
      sav.updateXML(argv[0]);
      sav.close();

Note: When you specify a list of columns to update, an element

corresponding to one of the update columns, if absent, will be

treated as NULL.
7-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Delete Processing Using XSU (Java API)
   }
   // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }
}

Delete Processing Using XSU (Java API)
When deleting from XML documents, you can set the list of key columns. These

columns are used in the WHERE clause of  the DELETE statement. If the key column

names are not supplied, then a new DELETE statement is created for each ROW
element of the XML document, where the list of columns in the WHERE clause of the

DELETE statement will match those in the ROW element.

XSU Deleting XML Example 11: Deleting Operations Per ROW (Java)
Consider this delete example:

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testDelete
{
   public static void main(String argv[])
     throws SQLException
   {
      Connection conn = getConnection("scott","tiger");
      OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

      // Assume that the user passes in this document as the first argument!
      sav.deleteXML(argv[0]);
      sav.close();
   }
   // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
XML SQL Utility (XSU) 7-41



Delete Processing Using XSU (Java API)
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }
}

Using the same XML document shown previously for the update example, you

would end up with two DELETE statements:

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;
DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The DELETE statements were formed based on the tag names present in each ROW
element in the XML document.

XSU Deleting XML Example 12: Deleting Specified Key Values (Java)
If instead, you want the DELETE statement to only use the key values as predicates,

you can use the setKeyColumn  function to set this.

import java.sql.*;
import oracle.xml.sql.dml.OracleXMLSave;
public class testDelete
{
   public static void main(String argv[])
     throws SQLException
   {
      Connection conn = getConnection("scott","tiger");
      OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp");

      String [] keyColNames = new String[1];
      keyColNames[0] = "EMPNO";
      sav.setKeyColumnList(keyColNames);

      // Assume that the user passes in this document as the first argument!
      sav.deleteXML(argv[0]);
      sav.close();
   }
   // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
7-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSU PL/SQL API
   }
}

Here is a single DELETE statement of the form:

DELETE FROM scott.emp WHERE EMPNO=?

This is generated and used for all ROW elements in the document.

XSU PL/SQL API
The XML SQL Utility PL/SQL API reflects the Java API in the generation and

storage of XML documents from and to a database. DBMS_XMLQuery and DBMS_
XMLSave are the two packages that reflect the functions in the Java classes -

OracleXMLQuery  and OracleXMLSave . Both of these packages have a context

handle associated with them. Create a context by calling one of the constructor-like

functions to get the handle and then use the handle in all subsequent calls.

Generating XML with DBMS_XMLQuery()
Generating XML results in a CLOB that contains the XML document. To use DBMS_
XMLQuery and the XSU generation engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLQuery.getCtx  function and

supplying it the query, either as a CLOB or a VARCHAR2.

2. Bind possible values to the query using the DBMS_XMLQuery.bind  function.

The binds work by binding a name to the position. For example, the query can

be select * from emp where empno = :EMPNO_VAR . Here you are

binding the value for the EMPNO_VAR using the setBindValue  function.

3. Set optional arguments like the ROW tag name, the ROWSET tag name, or the

number of rows to fetch, and so on.

4. Fetch the XML as a CLOB using the getXML()  functions. getXML()  can be

called to generate the XML with or without a DTD.

5. Close the context.

Here are some examples that use the DBMS_XMLQuery PL/SQL package.

XSU Generating XML Example 13: Generating XML From Simple Queries (PL/SQL)
In this example, you select rows from table emp, and obtain an XML document as a

CLOB. First get the context handle by passing in a query and then call the
XML SQL Utility (XSU) 7-43



XSU PL/SQL API
getXMLClob routine to get the CLOB value. The document is in the same encoding

as the database character set.

declare
  queryCtx DBMS_XMLquery.ctxType;
  result CLOB;
begin

  -- set up the query context...!
  queryCtx := DBMS_XMLQuery.newContext('select * from emp');

  -- get the result..!
  result := DBMS_XMLQuery.getXML(queryCtx);
  -- Now you can use the result to put it in tables/send as messages..
  printClobOut(result);
  DBMS_XMLQuery.closeContext(queryCtx);  -- you must close the query handle..
end;
/

XSU Generating XML Example 13a: Printing CLOB to Output Buffer
printClobOut () is a simple procedure that prints the CLOB to the output buffer. If

you run this PL/SQL code in SQL*Plus, the result of the CLOB is printed to screen.

Set the serveroutput  to on in order to see the results.

/CREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB) is
xmlstr varchar2(32767);
line varchar2(2000);
begin
  xmlstr := dbms_lob.SUBSTR(result,32767);
  loop
    exit when xmlstr is null;
    line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
    dbms_output.put_line('| '||line);
    xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);
  end loop;
end;
/

XSU Generating XML Example 14: Changing ROW and ROWSET Tag Names (PL/SQL)
With the XSU PL/SQL API you can also change the ROW and the ROWSET tag

names. These are the default names placed around each row of the result, and

round the whole document, respectively. The procedures, setRowTagName and

setRowSetTagName  accomplish this as shown in the following example:
7-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSU PL/SQL API
--Setting the ROW tag names

declare
   queryCtx DBMS_XMLQuery.ctxType;
   result CLOB;
begin
   -- set the query context.
   queryCtx := DBMS_XMLQuery.newContext('select * from emp');

   DBMS_XMLQuery.setRowTag(queryCtx,'EMP'); -- sets the row tag name
   DBMS_XMLQuery.setRowSetTag(queryCtx,'EMPSET'); -- sets rowset tag name

   result := DBMS_XMLQuery.getXML(queryCtx); -- get the result

   printClobOut(result);  -- print the result..!
   DBMS_XMLQuery.closeContext(queryCtx);  -- close the query handle;
end;
/

The resulting XML document has an EMPSET document element. Each row is

separated using the EMP tag.

XSU Generating XML Example 15: Paginating Results Using setMaxRows() and
setSkipRows()

The results from the query generation can be paginated by using:

■ setMaxRows function. This sets the maximum number of rows to be

converted to XML. This is relative to the current row position from which the

last result was generated.

■ setSkipRows function.  This specifies the number of rows to skip before

converting the row values to XML.

For example, to skip the first 3 rows of the emp table and then print out the rest of

the rows 10 at a time, you can set the skipRows  to 3 for the first batch of 10 rows

and then set skipRows  to 0 for the rest of the batches.

As in the case of XML SQL Utility’s Java API, call the keepObjectOpen()
function to ensure that the state is maintained between fetches. The default

behavior is to close the state after a fetch. For multiple fetches, you must determine

when there are no more rows to fetch. This can be done by setting the

setRaiseNoRowsException (). This causes an exception to be raised if no rows

are written to the CLOB. This can be caught and used as the termination condition.
XML SQL Utility (XSU) 7-45



Setting Stylesheets in XSU (PL/SQL)
-- Pagination of results

declare
  queryCtx DBMS_XMLquery.ctxType;
  result CLOB;
begin

  -- set up the query context...!
  queryCtx := DBMS_XMLQuery.newContext('select * from emp');

  DBMS_XMLQuery.setSkipRows(queryCtx,3); -- set the number of rows to skip
  DBMS_XMLQuery.setMaxRows(queryCtx,10); -- set the max number of rows per fetch

  result := DBMS_XMLQuery.getXML(queryCtx); -- get the first result..!

  printClobOut(result); -- print the result out.. This is you own routine..!
  DBMS_XMLQuery.setSkipRows(queryCtx,0); -- from now don't skip any more rows..!

  DBMS_XMLQuery.setRaiseNoRowsException(queryCtx,true);
                                         -- raise no rows exception..!
  begin
    loop  -- loop forever..!
      result := DBMS_XMLQuery.getXML(queryCtx); -- get the next batch
      printClobOut(result);             -- print the next batch of 10 rows..!
    end loop;
  exception
    when others then
    -- dbms_output.put_line(sqlerrm);
       null; -- termination condition, nothing to do;
  end;
  DBMS_XMLQuery.closeContext(queryCtx);  -- close the handle..!
end;
/

Setting Stylesheets in XSU (PL/SQL)
The XSU PL/SQL API provides the ability to set stylehseets on the generated XML

documents as follows:

■ Set the stylesheet header in the result XML. To do this, use

setStylesheetHeader () procedure, to set the stylesheet header in the result.

This simply adds the XML processing instruction to include the stylesheet.

■ Apply a stylesheet to the result XML document, before generation. This method

is a huge performance win since otherwise the XML document has to be
7-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Binding Values in XSU (PL/SQL)
generated as a CLOB, sent to the parser again, and then have the stylesheet

applied. XSU generates a DOM document, calls the parser, applies the

stylesheet and then generates the result. To apply the stylesheet to the resulting

XML document, use the useStyleSheet () procedure. This uses the stylesheet

to generate the result.

Binding Values in XSU (PL/SQL)
The XSU PL/SQL API provides the ability to bind values to the SQL statement. The

SQL statement can contain named bind variables. The variables must be prefixed

with a colon (:)  to declare that they are bind variables.  To use the bind variable

follow these steps:

1. Initialize the query context with the query containing the bind variables. For

example, the following statement registers a query to select the rows from the

emp table with the where clause containing the bind variables :EMPNO and

:ENAME. You will bind the values for employee number and employee name

later.

queryCtx = DBMS_XMLQuery.getCtx(’select * from emp where empno = :EMPNO and
ename = :ENAME’);

2. Set the list of bind values. The clearBindValues () clears all the bind

variables set. The setBindValue () sets a single bind variable with a string

value. For example, you will set the empno and ename values as shown below:-

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,’EMPNO’,20);
DBMS_XMLQuery.setBindValue(queryCtx,’ENAME’,’John’);

3. Fetch the results. This will apply the bind values to the statement and then get

the result corresponding to the predicate empno = 20  and ename = ’John’ .

DBMS_XMLQuery.getXMLClob(queryCtx);

4. Re-bind values if necessary. For example to change the ENAME alone to scott
and re-execute the query,

DBMS_XMLQuery.setBindValue(queryCtx,’ENAME’,’Scott’);

The rebinding of ENAME will now use Scott  instead of John .
XML SQL Utility (XSU) 7-47



Storing XML in the Database Using DBMS_XMLSave
XSU Generating XML Example 15a: Binding Values to the SQL Statement
The following example illustrates the use of bind variables in the SQL statement:

declare
  queryCtx DBMS_XMLquery.ctxType;
  result CLOB;
begin

queryCtx := DBMS_XMLQuery.newContext(
       'select * from emp where empno = :EMPNO and ename = :ENAME');

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,'EMPNO',7566);
DBMS_XMLQuery.setBindValue(queryCtx,'ENAME','JONES');

result := DBMS_XMLQuery.getXML(queryCtx);

--printClobOut(result);

DBMS_XMLQuery.setBindValue(queryCtx,'ENAME','Scott');

result := DBMS_XMLQuery.getXML(queryCtx);

--printClobOut(result);
end;
/

Storing XML in the Database Using DBMS_XMLSave
To use DBMS_XMLSave() and XML SQL Utility storage engine, follow these steps:

1. Create a context handle by calling the DBMS_XMLSave.getCtx function and

supplying it the table name to use for the DML operations.

2. For inserts. You can set the list of columns to insert into using the

setUpdateColNames  function. The default is to insert values into all the

columns.

For updates. The list of key columns must be supplied. Optionally the list of

columns to update may also be supplied. In this case, the tags in the XML

document matching the key column names will be used in the WHERE clause

of the update statement and the tags matching the update column list will be

used in the SET clause of the update statement.
7-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Insert Processing Using XSU (PL/SQL API)
For deletes. The default is to create a WHERE clause to match all the tag values

present in each ROW element of the document supplied. To override this

behavior you can set the list of key columns. In this case only those tag values

whose tag names match these columns will be used to identify the rows to

delete (in effect used in the WHERE clause of the delete statement).

3. Supply an XML document to the insertXML , updateXML,  or deleteXML
functions to insert, update and delete respectively.

4. You can repeat the last operation any number of times.

5. Close the context.

Use the same examples as for the Java case, OracleXMLSave  class examples.

Insert Processing Using XSU (PL/SQL API)
To insert a document into a table or view, simply supply the table or the view name

and then the XML document. XSU parses the XML document (if a string is given)

and then creates an INSERT statement, into which it binds all the values. By default,

XSU inserts values into all the columns of the table or view and an absent element is

treated as a NULL value.

The following code shows how the document generated from the emp table can be

put back into it with relative ease.

XSU Inserting XML Example 16: Inserting Values into All Columns (PL/SQL)
This example creates a procedure, insProc , which takes in:

■ An XML document as a CLOB

■ A table name to put the document into

and then inserts the XML document into the table:

create or replace procedure insProc(xmlDoc IN CLOB, tableName IN VARCHAR2) is
   insCtx DBMS_XMLSave.ctxType;
   rows number;
 begin
    insCtx := DBMS_XMLSave.newContext(tableName); -- get the context handle
    rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- this inserts the document
    DBMS_XMLSave.closeContext(insCtx);            -- this closes the handle
end;
/

XML SQL Utility (XSU) 7-49



Insert Processing Using XSU (PL/SQL API)
This procedure can now be called with any XML document and a table name. For

example, a call of the form:

insProc(xmlDocument, ’scott.emp’);

generates an INSERT statement of the form:

insert into scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,?,?,?,?,?);

and the element tags in the input XML document matching the column names will

be matched and their values bound. For the code snippet shown above, if you send

it the following XML document:

<?xml version=’1.0’?>
<ROWSET>
 <ROW num="1">
  <EMPNO>7369</EMPNO>

    <ENAME>Smith</ENAME>
    <JOB>CLERK</JOB>
    <MGR>7902</MGR>
    <HIREDATE>12/17/1980 0:0:0</HIREDATE>
    <SAL>800</SAL>
    <DEPTNO>20</DEPTNO>
  </ROW>
  <!-- additional rows ... -->
</ROWSET>

you would have a new row in the emp table containing the values (7369, Smith,

CLERK, 7902, 12/17/1980,800,20). Any element absent inside the row element

would is considered a null value.

XSU Inserting XML Example 17: Inserting Values into Only Certain Columns (PL/SQL)
In certain cases, you may not want to insert values into all columns. This might be

true when the values that you are getting is not the complete set and you need

triggers or default values to be used for the rest of the columns. The code below

shows how this can be done.

Assume that you are getting the values only for the employee number, name, and

job, and that the salary, manager, department number and hiredate fields are filled

in automatically. You create a list of column names that you want the insert to work

on and then pass it to the DBMS_XMLSave procedure. The setting of these values

can be done by calling setUpdateColumnName() procedure repeatedly, passing

in a column name to update every time. The column name settings can be cleared

using clearUpdateColumnNames() .
7-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Update Processing Using XSU (PL/SQL API)
create or replace procedure testInsert( xmlDoc IN clob) is
  insCtx DBMS_XMLSave.ctxType;
  doc clob;
  rows number;
begin

   insCtx := DBMS_XMLSave.newContext('scott.emp'); -- get the save context..!

   DBMS_XMLSave.clearUpdateColumnList(insCtx); -- clear the update settings

   -- set the columns to be updated as a list of values..
   DBMS_XMLSave.setUpdateColumn(insCtx,'EMPNO');
   DBMS_XMLSave.setUpdateColumn(insCtx,'ENAME');
   DBMS_XMLSave.setUpdatecolumn(insCtx,'JOB');

   -- Now insert the doc. This will only insert into EMPNO,ENAME and JOB columns
   rows := DBMS_XMLSave.insertXML(insCtx, xmlDoc);
   DBMS_XMLSave.closeContext(insCtx);

end;
/
If you call the procedure passing in a CLOB as a document, an INSERT statement of

the form:

insert into scott.emp (EMPNO, ENAME, JOB) VALUES (?, ?, ?);

is generated. Note that in the above example, if the inserted document contains

values for the other columns (JOB, HIREDATE, and so on), those are ignored.

Also an insert  is performed for each ROW element that is present in the input.

These inserts are batched by default.

Update Processing Using XSU (PL/SQL API)
Now that you know how to insert values into the table from XML documents, let us

see how to update only certain values. If you get an XML document to update the

salary of an employee and also the department that she works in:

<ROWSET>
 <ROW num="1">
  <EMPNO>7369</EMPNO>

    <SAL>1800</SAL>
    <DEPTNO>30</DEPTNO>
  </ROW>
XML SQL Utility (XSU) 7-51



Update Processing Using XSU (PL/SQL API)
  <ROW>
    <EMPNO>2290</EMPNO>
    <SAL>2000</SAL>
    <HIREDATE>12/31/1992</HIREDATE>
  <!-- additional rows ... -->
</ROWSET>

you can call the update processing to update the values. In the case of update, you

need to supply XSU with the list of key column names. These form part of the

where  clause in the update statement. In the emp table shown above, the employee

number (EMPNO) column forms the key and you use that for updates.

XSU Updating XML Example 18: Updating an XML Document Using keyColumns
(PL/SQL)

,.......

create or replace procedure testUpdate ( xmlDoc IN clob) is
  updCtx DBMS_XMLSave.ctxType;
  rows number;
begin

   updCtx := DBMS_XMLSave.newContext('scott.emp');  -- get the context
   DBMS_XMLSave.clearUpdateColumnList(updCtx); -- clear the update settings..

   DBMS_XMLSave.setKeyColumn(updCtx,'EMPNO'); -- set EMPNO as key column
   rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc);  -- update the table.
   DBMS_XMLSave.closeContext(updCtx);             -- close the context..!

end;
/

In this example, when the procedure is executed with a CLOB value that contains

the document described above, two update statements would be generated. For the

first ROW element, you would generate an UPDATE statement to update the SAL and

JOB fields as shown below:-

update scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

and for the second ROW element,

update scott.emp SET SAL = 2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;
7-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Delete Processing Usingh XSU (PL/SQL API)
XSU Updating XML Example 19: Specifying a List of Columns to Update (PL/SQL)
You may want to specify the list of columns to update. This would speed up the

processing since the same update statement can be used for all the ROW elements.

Also you can ignore other tags which occur in the document. Note that when you

specify a list of columns to update, an element corresponding to one of the update

columns, if absent, will be treated as NULL.

If you know that all the elements to be updated are the same for all the ROW
elements in the XML document, then you can use the setUpdateColumnName ()
procedure to set the column name to update.

create or replace procedure testUpdate(xmlDoc IN CLOB) is
  updCtx DBMS_XMLSave.ctxType;
  rows number;
begin

   updCtx := DBMS_XMLSave.newContext('scott.emp');
   DBMS_XMLSave.setKeyColumn(updCtx,'EMPNO'); -- set EMPNO as key column

   -- set list of columnst to update.
   DBMS_XMLSave.setUpdateColumn(updCtx,'SAL');
   DBMS_XMLSave.setUpdateColumn(updCtx,'JOB');

   rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update the XML document..!
   DBMS_XMLSave.closeContext(updCtx);   -- close the handle

end;
/

Delete Processing Usingh XSU (PL/SQL API)
For deletes, you can set the list of key columns. These columns will be put as part of

the WHERE clause of the DELETE statement. If the key column names are not

supplied, then a new DELETE statement will be created for each ROW element of the

XML document where the list of columns in the WHERE clause of the DELETE will

match those in the ROW element.

XSU Deleting XML Example 20: Deleting Operations per ROW (PL/SQL)
Consider the delete  example shown here:

create or replace procedure testDelete(xmlDoc IN clob) is
  delCtx DBMS_XMLSave.ctxType;
XML SQL Utility (XSU) 7-53



Delete Processing Usingh XSU (PL/SQL API)
  rows number;
begin

   delCtx  := DBMS_XMLSave.newContext('scott.emp');
   DBMS_XMLSave.setKeyColumn(delCtx,'EMPNO');

   rows := DBMS_XMLSave.deleteXML(delCtx,xmlDoc);
   DBMS_XMLSave.closeContext(delCtx);
end;
/

If you use the same XML document shown for the update example, you would end

up with two DELETE statements,

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;
DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The DELETE statements were formed based on the tag names present in each ROW
element in the XML document.

XSU Example 21: Deleting by Specifying the Key Values (PL/SQL)
If instead you want the delete to only use the key values as predicates, you can use

the setKeyColumn  function to set this.

create or replace package testDML AS
   saveCtx DBMS_XMLSave.ctxType := null;   -- a single static variable

   procedure insertXML(xmlDoc in clob);
   procedure updateXML(xmlDoc in clob);
   procedure deleteXML(xmlDoc in clob);

 end;
/

create or replace package body testDML AS

  rows number;

  procedure insertXML(xmlDoc in clob) is
  begin
    rows := DBMS_XMLSave.insertXML(saveCtx,xmlDoc);
  end;

  procedure updateXML(xmlDoc in clob) is
7-54 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Delete Processing Usingh XSU (PL/SQL API)
  begin
    rows := DBMS_XMLSave.updateXML(saveCtx,xmlDoc);
  end;

  procedure deleteXML(xmlDoc in clob) is
  begin
    rows := DBMS_XMLSave.deleteXML(saveCtx,xmlDoc);
  end;

begin
  saveCtx := DBMS_XMLSave.newContext('scott.emp'); -- create the context once..!
  DBMS_XMLSave.setKeyColumn(saveCtx, 'EMPNO');      -- set the key column name.
end;
/

Here a single delete  statement of the form,

DELETE FROM scott.emp WHERE EMPNO=?

will be generated and used for all ROW elements in the document.

XSU Deleting XML Example 22: ReUsing the Context Handle (PL/SQL)
In all the three cases described above, insert, update, and delete , the same

context handle can be used to do more than one operation. That is, you can perform

more than one insert  using the same context provided all of those inserts are

going to the same table that was specified when creating the save  context. The

context can also be used to mix updates, deletes, and inserts .

For example, the following code shows how one can use the same context and

settings to insert, delete, or update  values depending on the user’s input.

The example uses a PL/SQL supplied package static variable to store the context so

that the same context can be used for all the function calls.

create or replace package testDML AS
   saveCtx DBMS_XMLSave.ctxType := null;   -- a single static variable

   procedure insert(xmlDoc in clob);
   procedure update(xmlDoc in clob);
   procedure delete(xmlDoc in clob);

 end;
/

XML SQL Utility (XSU) 7-55



Delete Processing Usingh XSU (PL/SQL API)
create or replace package body testDML AS

  procedure insert(xmlDoc in clob) is
  begin
    DBMS_XMLSave.insertXML(saveCtx, xmlDoc);
  end;

  procedure update(xmlDoc in clob) is
  begin
    DBMS_XMLSave.updateXML(saveCtx, xmlDoc);
  end;

  procedure delete(xmlDoc in clob) is
  begin
    DBMS_XMLSave.deleteXML(saveCtx, xmlDoc);
  end;

  begin
    saveCtx := DBMS_XMLSave.newContext(’scott.emp’); -- create the context
once..!
    DBMS_XMLSave.setKeyColumn(saveCtx, ’EMPNO’);   -- set the key column name.
  end;
end;
/
In the above package, you create a context once for the whole package (thus the

session) and then reuse the same context for performing inserts, udpates and

deletes.

Users of this package can now call any of the three routines to update the emp table:

testDML.insert(xmlclob);
testDML.delete(xmlclob);
testDML.update(xmlclob);

All of these calls would use the same context. This would improve the performance

of these operations, particularly if these operations are performed frequently.

Note: The key column EMPNO would be used both for updates

and deletes as a way of identifying the row.
7-56 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Advanced XSU Usage Techniques
Advanced XSU Usage Techniques

XSU Exception Handling in Java

OracleXMLSQLException class
XSU catches all exceptions that occur during processing and throws an

oracle.xml.sql.OracleXMLSQLException which is a run time exception. The

calling program thus does not have to catch this exception all the time, if the

program can still catch this exception and do the appropriate action. The exception

class provides functions to get the error message and also get the parent exception,

if any. For example, the program shown below, catches the run time exception and

then gets the parent exception.

OracleXMLNoRowsException class
This exception is generated when the setRaiseNoRowsException is set in the

OracleXMLQuery  class during generation. This is a subclass of the

OracleXMLSQLException  class and can be used as an indicator of the end of row

processing during generation.

import java.sql.*;
import oracle.xml.sql.query.OracleXMLQuery;

public class testException
{
   public static void main(String argv[])
     throws SQLException
   {
      Connection conn = getConnection("scott","tiger");

      // wrong query this will generate an exception
      OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from emp where sd
 = 322323");

      qry.setRaiseException(true); // ask it to raise exceptions..!

      try{
        String str = qry.getXMLString();
      }catch(oracle.xml.sql.OracleXMLSQLException e)
      {
        // Get the original exception
        Exception parent = e.getParentException();
XML SQL Utility (XSU) 7-57



Advanced XSU Usage Techniques
        if (parent instanceof java.sql.SQLException)
        {
           // perform some other stuff. Here you simply print it out..
           System.out.println(" Caught SQL Exception:"+parent.getMessage());
        }
        else
          System.out.println(" Exception caught..!"+e.getMessage());
     }
   }
    // Get the connection given the user name and password..!
    private static Connection getConnection(String user, String passwd)
      throws SQLException
    {
      DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
      Connection conn =
          DriverManager.getConnection("jdbc:oracle:oci8:@",user,passwd);
     return conn;
   }
}

XSU Exception Handling in PL/SQL
Here is an XSU PL/SQL exception handling example:

declare
  queryCtx DBMS_XMLQuery.ctxType;
  result clob;
  errorNum NUMBER;
  errorMsg VARCHAR2(200);
begin

  queryCtx := DBMS_XMLQuery.newContext('select * from emp where df = dfdf');

  -- set the raise exception to true..
  DBMS_XMLQuery.setRaiseException(queryCtx, true);
  DBMS_XMLQuery.setRaiseNoRowsException(queryCtx, true);

  -- set propagate original exception to true to get the original exception..!
  DBMS_XMLQuery.propagateOriginalException(queryCtx,true);
  result := DBMS_XMLQuery.getXML(queryCtx);

  exception
    when others then
      -- get the original exception
      DBMS_XMLQuery.getExceptionContent(queryCtx,errorNum, errorMsg);
7-58 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
      dbms_output.put_line(' Exception caught ' || TO_CHAR(errorNum)
                   || errorMsg );
end;
/

Frequently Asked Questions (FAQs): XML SQL Utility (XSU)

What Schema Structure Should I Use With XSU to Store XML?
I have the following XML in my customer.xml  file:

<ROWSET>
 <ROW num="1">
  <CUSTOMER>
   <CUSTOMERID>1044</CUSTOMERID>
   <FIRSTNAME>Paul</FIRSTNAME>
   <LASTNAME>Astoria</LASTNAME>
   <HOMEADDRESS>
    <STREET>123 Cherry Lane</STREET>
    <CITY>SF</CITY>
    <STATE>CA</STATE>
    <ZIP>94132</ZIP>
   </HOMEADDRESS>
  </CUSTOMER>
 </ROW>
</ROWSET>

What database schema structure should I use to store this XML with XSU?

Answer
Since your example is more than one level deep (that is, it has a nested structure),

you should use an object-relational schema. The XML above will canonically map to

such a schema. An appropriate database schema would be the following:

create type address_type as object
 (
 street varchar2(40),
 city varchar2(20),
 state varchar2(10),
 zip varchar2(10)
 );
 /
 create type customer_type as object
XML SQL Utility (XSU) 7-59



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
 (
customerid number(10),
firstname varchar2(20),
lastname varchar2(20),
homeaddress address_type
 );
/
create table customer_tab ( customer customer_type);

In the case you wanted to load customer.xml  via the XSU into a relational

schema, you could still do it by creating objects in views on top of your relational

schema.

For example, you would have a relational table which would contain all the

information:

create table cust_tab
 ( customerid number(10),
   firstname varchar2(20),
   lastname varchar2(20),
   state varchar2(40),
   city varchar2(20),
   state varchar2(20),
   zip varchar2(20)
 );

Then you would create a customer view which contains a customer object on top of

it, as in the following example:

create view customer_view as
select customer_type(customerid, firstname, lastname,
address_type(state,street,city,zip))
from cust_tab;

Finally, you could flatten your XML using XSLT and then insert it directly into your

relational schema. Howevr, this is the least recommended option.

Can XSU Store XML Data Across Tables?
Can XML SQL Utility store XML data across tables?

Answer
Currently XML SQL Utility (XSU) can only store to a single table. It maps a

canonical representation of an XML document into any table or view. But of course
7-60 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
there is a way to store XML with XSU across tables. One can do this using XSLT to

transform any document into multiple documents and insert them separately.

Another way is to define views over multiple tables (object views if needed) and

then do the inserts  into the view. If the view is inherently non-updatable

(because of complex joins), then you can use INSTEAD OF triggers over the views

to do the inserts.

Can I Use XML SQL Utility to Load XML Stored in Attributes?
I would like to use XML SQL Utility to load XML where some of the data is stored

in attributes; yet, XML SQL Utility seems to ignore the XML attributes. What can I

do?

Answer
Unfortunately, for now you will have to use XSLT to transform your XML

document (that is, change your attributes into elements). XML SQL Utility does

assume canonical mapping from XML to a database schema. This takes away a bit

from the flexibility, forcing you to sometimes resort to XSLT, but at the same time,

in the common case, it does not burden you with having to specify a mapping.

Is XML SQL Utility Case Sensitive? Can I Use ignoreCase?
I am trying to insert the following XML document (dual.xml ):

<ROWSET>
   <row>
      <DUMMY>X</DUMMY>
   </row>
</ROWSET>

Into the table dual  using the command line front end of the XSU, like in:

java OracleXML putxml -filename dual.xml dual

and I get the following error:

oracle.xml.sql.OracleXMLSQLException: No rows to modify -- the row enclosing tag
missing.  Specify the correct row enclosing tag.

Answer
By default, XML SQL Utility is case sensitive, so it looks for the record separator tag

which by default is ROW, yet, all it can find is row . Another related common mistake
XML SQL Utility (XSU) 7-61



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
is to case mismatch one of the element tags. For example, if in dual.xml the tag

DUMMYwas actually dummy, than XML SQL Utility raises an error complaining

that it could not find a matching  column in table, dual . So you have two options --

use the correct case or use the ignoreCase  feature.

Will XSU Generate Database Schema from a DTD?
Given a DTD, will XML SQL Utility generate the database schema?

Answer
No. Due to a number of shortcomings of the DTD, this functionality is not available.

Once the W3C XML Schema recommendation is finalized this functionality will

become feasible.

Can You Provide a Thin Driver Connect String Example for XSU?
I am using the XML SQL Utility command line front end, and I am passing a

connect string but I get a TNS error back. Can you provide examples of a thin driver

connect string and an OCI8 driver connect string?

Answer
An example of an JDBC thin driver connect string is:

jdbc:oracle:thin:<user>/<password>@<hostname>:<port number>:<DB SID>;

furthermore, the database must have an active TCP/IP listener. A valid OCI8

connect string would be:

jdbc:oracle:oci8:<user>/<password>@<hostname>

Does XML SQL Utility Commit After INSERT, DELETE, UPDATE?
Does XML SQL Utility commit after it is done inserting, deleting , or

updating ? What happens if an error occurs?

Answer
By default XML SQL Utility executes a number of insert, delete, or update
statements at a time. The number of statements batch together and executed at the

same time can be overridden using the setBatchSize  feature.
7-62 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
Also, by default XML SQL Utility does no explicit commits. If autocommit is on

(default for the JDBC connection), then after each batch of statement executions a

commit occurs. You can override this by turning autocommit off and then

specifying after how many statement executions should a commit occur which can

be done using the setCommitBatch  feature.

What happens if an error occurs? XSU rolls back to either the state the target table

was before the particular call to XSU, or the state right after the last commit made

during the current call to XSU.

Can You Explain How to Map Table Columns to XML Attributes Using XSU?

Question
Can you explain how to map table columns to XML attributes using XSU?

Answer
From XML SQL Utility release 2.1.0 you can map a particular column or a group of

columns to an XML attribute instead of an XML element. To achieve this, you have

to create an alias for the column name, and prepend the at sign (@) to the name of

this alias. For example :

* Create a file called select.sql with the following content :
   SELECT empno "@EMPNO", ename, job, hiredate
   FROM emp
   ORDER BY empno

 * Call the XML SQL Utility :
   java OracleXML getXML -user "scott/tiger" \
           -conn "jdbc:oracle:thin:@myhost:1521:ORCL" \
           -fileName "select.sql"

 * As a result, the XML document will look like :
     <?xml version = '1.0'?>
     <ROWSET>
        <ROW num="1" EMPNO="7369">
           <ENAME>SMITH</ENAME>
           <JOB>CLERK</JOB>
           <HIREDATE>12/17/1980 0:0:0</HIREDATE>
        </ROW>
        <ROW num="2" EMPNO="7499">
           <ENAME>ALLEN</ENAME>
           <JOB>SALESMAN</JOB>
XML SQL Utility (XSU) 7-63



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
           <HIREDATE>2/20/1981 0:0:0</HIREDATE>
        </ROW>
     </ROWSET>

Since the XML document is created in a streamed manner, the query :

SELECT ename, empno "@EMPNO", ...

would not generate the expected result. It is currently not possible to load XML data

stored in attributes. You will still need to use an XSLT transformation to change the

attributes into elements. XML SQL Utility assumes canonical mapping from XML to

a database schema.

How Can I Use XMLGEN.insertXML with LOBs?
I am using the following:

■  OS: SOLARIS 7

■  DB: ORACLE 815

and trying to use the insertXML  procedure from XSU. I have little experience with

using LOBS. What is the problem in my script?

I have a table lob_temp :

 SQL> desc lob_temp
 Name Null? Type
 ----------------- -------- ------------------  ----------
 CHUNK CLOB

 SQL> set long 100000
 SQL> select * from lob_temp;

 CHUNK
 -----------------------------------------  ----------
 <DOCID> 91739.1 </DOCID>
 <SUBJECT> MTS: ORA-29855, DRG-50704, ORA-12154: on create index using

Intermedia

 </SUBJECT>
 <TYPE> PROBLEM </TYPE>
 <CONTENT_TYPE> TEXT/PLAIN </CONTENT_TYPE>

Note: All attributes must appear before any non-attribute.
7-64 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
 <STATUS> PUBLISHED </STATUS>
 <CREATION_DATE> 14-DEC-1999 </CREATION_DATE>
 <LAST_REVISION_DATE> 05-JUN-2000 </LAST_REVISION_DATE>
 <LANGUAGE> USAENG </LANGUAGE>

I have another table where I need to insert data from lob_temp :

 SQL> desc metalink_doc
 Name Null? Type
 ---------------- -------- ------------------ ----------
 DOCID VARCHAR2(10)
 SUBJECT VARCHAR2(100)
 TYPE VARCHAR2(20)
 CONTENT_TYPE VARCHAR2(20)
 STATUS VARCHAR2(20)
 CREATION_DATE DATE
 LAST_REVISION_DATE DATE
 LANGUAGE VARCHAR2(10)

This is the script. It is supposed to read data from lob_temp  and then insert the

data, extracted from the XML document, to table metalink_doc :

 declare
 xmlstr clob := null;
 amount integer := 255;
 position integer := 1;
 charstring varchar2(255);
 finalstr varchar2(4000) := null;
 ignore_case constant number := 0;
 default_date_format constant varchar2(21) := 'DD-MON-YYYY';
 default_rowtag constant varchar2(10) := 'MDOC_DATA';
 len integer;
 insrow integer;
 begin
 select chunk into xmlstr from lob_temp;
 dbms_lob.open(xmlstr,dbms_lob.lob_readonly);
 len := dbms_lob.getlength(xmlstr);
 while position < len loop
 dbms_lob.read(xmlstr,amount,position,charstring);
 if finalstr is not null then
 finalstr := finalstr||charstring;
 else
 finalstr := charstring;
 end if;
 position := position + amount;
XML SQL Utility (XSU) 7-65



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
 end loop;
 insrow := xmlgen.insertXML('metalink_doc',finalstr);
 dbms_output.put_line(insrow);
 dbms_lob.close(xmlstr);
 exception
 when others then
 dbms_lob.close(xmlstr);
 dbms_lob.freetemporary(xmlstr);
 end;
 /

This is the error received:

ERROR at line 1:
ORA-22275: invalid LOB locator specified
ORA-06512: at "SYS.DBMS_LOB", line 485
ORA-06512: at line 31
ORA-29532: Java call terminated by uncaught Java exception:
oracle.xml.sql.OracleXMLSQLException: Expected 'EOF'.

The user I am using owns both tables, and all objects created when I ran

oraclexmlsqlload.csh .

Answer
You need to have <ROWSET>and <ROW>tags to insert XML document into a table. I

modified your procedure as below. There is a problem when parsing the DATE
format, hence I used VARCHAR2:

drop table lob_temp;
 create table lob_temp (chunk clob);
 insert into lob_temp values ('
 <ROWSET>
 <ROW>
 <DOCID> 91739.1 </DOCID>
 <SUBJECT> MTS: ORA-29855, DRG-50704, ORA-12154: on create index using
Intermedia </SUBJECT>
 <TYPE> PROBLEM </TYPE>
 <CONTENT_TYPE> TEXT/PLAIN </CONTENT_TYPE>
 <STATUS> PUBLISHED </STATUS>
 <CREATION_DATE> 14-DEC-1999 </CREATION_DATE>
 <LAST_REVISION_DATE> 05-JUN-2000 </LAST_REVISION_DATE>
 <LANGUAGE> USAENG </LANGUAGE>
 </ROW>
 </ROWSET>
 ');
7-66 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
 drop table metalink_doc;
 create table metalink_doc (
 DOCID VARCHAR2(10),
 SUBJECT VARCHAR2(100),
 TYPE VARCHAR2(20),
 CONTENT_TYPE VARCHAR2(20),
 STATUS VARCHAR2(20),
 CREATION_DATE VARCHAR2(50),
 LAST_REVISION_DATE varchar2(50),
 LANGUAGE VARCHAR2(10)
 );

 create or replace procedure prtest as
 xmlstr clob := null;
 amount integer := 255;
 position integer := 1;
 charstring varchar2(255);
 finalstr varchar2(4000) := null;
 ignore_case constant number := 0;
 default_date_format constant varchar2(21) := 'DD-MON-YYYY';
 default_rowtag constant varchar2(10) := 'MDOC_DATA';
 len integer;
 insrow integer;
 begin

 select chunk into xmlstr from lob_temp;
 dbms_lob.open(xmlstr,dbms_lob.lob_readonly);
 len := dbms_lob.getlength(xmlstr);

 while position < len loop
 dbms_lob.read(xmlstr,amount,position,charstring);
 if finalstr is not null then
 finalstr := finalstr||charstring;
 else
 finalstr := charstring;
 end if;
 position := position + amount;
 end loop;

 insrow := xmlgen.insertXML('metalink_doc',finalstr);
 dbms_output.put_line(insrow);

 IF DBMS_LOB.ISOPEN(xmlstr) = 1 THEN
 dbms_lob.close(xmlstr);
XML SQL Utility (XSU) 7-67



Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
 END IF;

 exception
 when others then
 IF DBMS_LOB.ISOPEN(xmlstr)=1 THEN
 dbms_lob.close(xmlstr);
 END IF;
 end;
 /
 show err

Response Comment
Its working! Thank you!
7-68 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Searching XML Data with 
8

Searching XML Data with Oracle Text

This chapter describes the following aspects of Oracle Text (interMedia

Text/Context):

■ How to create a section group and index your XML document(s)

■ How to build an XML query application with Oracle Text, to search and

retrieve data from your XML document(s)

This chapter contains the following sections:

■ Introducing Oracle Text

■ Assumptions Made in this Chapter’s Examples

■ Oracle Text Users and Roles

■ Querying with the CONTAINS Operator

■ Using a Simple SELECT Statement

■ Using the Score Operator with a Label to Obtain the Relevance

■ Using the WITHIN Operator to Narrow Query Down to Document Sections

■ Using INPATH or HASPATH Operators for Query Searching With

XPath-like Expressions

■ Using Oracle Text to Search XML Documents

■ Building XML Query Applications with Oracle Text

■ Querying XML Documents

■ Querying Within Attribute Sections

■ Procedure for Building a Query Application with Oracle Text

■ Step 1. Create a Preference
Oracle Text 8-1



■ Step 2. Set the Preference’s Attributes

■ Step 3. Create Your Query Syntax

■ Creating Sections in XML Documents that are Document Type Sensitive

■ Presenting the Results of Your Query

■ Case Study: Searching an Online FAQ List Using Oracle Text

■ Frequently Asked Questions (FAQs): Oracle Text
8-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introducing Oracle Text
Introducing Oracle Text

Oracle Text can be used to search XML documents. It extends Oracle9i by indexing

any text or document stored in Oracle. It can also search documents in the operating

system (flat files) and URLs.

Oracle Text enables the following:

■ Content-based queries, such as, finding text and documents which contain

particular words, using familiar, standard SQL.

■ File-based text applications to use Oracle9i to manage text and documents in an

integrated fashion with traditional relational information.

■ Concept searching of English language documents.

■ Theme analysis of English language documents using the theme/gist package.

■ Highlighting hit words. With Oracle Text, you can render a document in

different ways. For example, you can present documents with query terms

highlighted, either the “words” of a word query or the “themes” of an ABOUT

query in English. Use the CTX_DOC.MARKUP or HIGHLIGHT procedures for

this.

■ With Oracle Text PL/SQL packages for document presentation and thesaurus
maintenance.

Oracle Text is packaged with the other interMedia products, namely, image, audio,

video, and geographic location services for web content management applications.

Users can query XML data stored in the database directly, without using Oracle

Text. However, Oracle Text is useful for boosting query performance.

Note: Oracle Text is strictly a server-based implementation.

See Also: http://otn.oracle.com/products/text
Searching XML Data with Oracle Text 8-3



Assumptions Made in this Chapter’s Examples
Accessing Oracle Text
interMedia, including Oracle Text, is a standard feature that comes with every

Oracle9i Standard, Enterprise, and Personal edition license. It needs to be selected

during installation. No special installation instructions are required.

Oracle Text is essentially a set of schema objects owned by CTXSYS. These objects

are linked to the Oracle kernel. The schema objects are present when you perform

an Oracle9i installation.

Further Oracle Text Examples
You can find more examples for Oracle Text and for creating section group indexes

at the following site: http://otn.oracle.com/products/text

Assumptions Made in this Chapter’s Examples
XML text is aVARCHAR2 or CLOB type in an Oracle9i database table with

character semantics. Oracle Text can also deal with documents in a file system or in

URLs, but we are not considering these document types in this chapter.

To simplify the examples included in this chapter we consider a subset of the Oracle

Text options. In this chapter’s examples, w made the following assumptions:

■ All XML data here is represented using US-ASCII, a 7 bit character set.

■ Issues about whether a character such as "*" is treated as white space or as part

of a word are not included.

■ Storage characteristics of the Oracle schema object that implement the TEXT

index are not considered.

■ We focus here on the SECTION GROUP parameter in the CREATE INDEX or

ALTER INDEX statement. The other parameter types available for CREATE INDEX

and ALTER INDEX, are DATASTORE, FILTER, LEXER, STOPLIST, and

WORDLIST.

See Also:

■ Oracle Text Reference

■ Oracle Text Application Developer’s Guide

■ http://otn.oracle.com/products/text
8-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle Text Users and Roles
Here is an example of using SECTION GROUP in CREATE INDEX:

CREATE INDEX my_index
  ON my_table ( my_column )
  INDEXTYPE IS ctxsys.context
  PARAMETERS ( 'SECTION GROUP my_section_group' ) ;

■ Specifically, we focus on using AUTO_SECTION_GROUP and

XML_SECTION_GROUP, and PATH_SECTION_GROUP.

■ Tagged or marked up data. In this chapter, we focus on how to handle XML

data. Oracle Text handles many other kinds of data besides XML data.

Oracle Text Users and Roles
With Oracle Text you can use the following users/roles:

■ user CTXSYS to administer users

■ role CTXAPP to create and delete Oracle Text preferences and use Oracle Text

PL/SQL packages

User CTXSYS
This user is created at install time. Administer Oracle Text users as this user. It has

the following privileges:

■ Modify system-defined preferences

■ Drop and modify other user preferences

■ Call procedures in the CTX_ADM PL/SQL package to start servers and set

system-parameters

■ Start a ctxsrv server

■ Query all system-defined views

■ Perform all the tasks of a user with the CTXAPP role

See Also: Oracle Text Reference , for more information on these

parameter types.

See Also: Oracle Text Application Developer’s Guide
Searching XML Data with Oracle Text 8-5



Querying with the CONTAINS Operator
Role CTXAPP
Any user can create an Oracle Text index and issue a Text query. For additional

tasks, use the CTXAPP role. This is a system-defined role that allows you to

perform the following tasks:

■ Create and delete Oracle Text preferences

■ Use Oracle Text PL/SQL packages, such as the CTX_DDL package

Querying with the CONTAINS Operator
Oracle Text’s main purpose is to provide an implementation for the CONTAINS

operator. The CONTAINS operator is used in the WHERE clause of a SELECT

statement to specify the query expression for a Text query.

CONTAINS Syntax
Here is the CONTAINS syntax:

...WHERE CONTAINS([schema.]column,text_query VARCHAR2,[label NUMBER])

where:

For each row selected, CONTAINS returns a number between 0 and 100 that

indicates how relevant the document row is to the query. The number 0 means that

Oracle found no matches in the row. You can obtain this score with the SCORE

operator.

See Also: "Building XML Query Applications with Oracle Text".

Table 8–1 CONTAINS Operator: Syntax Description

Syntax Description

[schema.]column Specifies the text column to be searched on. This column must
have a Text index associated with it.

text_query Specifies the query expression that defines your search in
column.

label Optionally specifies the label that identifies the score generated
by the CONTAINS operator.
8-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying with the CONTAINS Operator
Using a Simple SELECT Statement
The following example illustrates how the CONTAINS operator is used in a

SELECT statement:

SELECT id FROM my_table
   WHERE
   CONTAINS (my_column, ’receipts’) > 0

The ’receipts’ parameter of the CONTAINS function is called the “Text Query

Expression”.

Using the Score Operator with a Label to Obtain the Relevance
The following example searches for all documents in the text column that contain

the word Oracle. The score for each row is selected with the SCORE operator using

a label of 1:

SELECT SCORE(1), title from newsindex
           WHERE CONTAINS(text, 'oracle', 1) > 0 ORDER BY SCORE(1) DESC;

The CONTAINS operator must always be followed by the > 0 syntax. This specifies

that the score value calculated by the CONTAINS operator must be greater than

zero for the row selected.

When the SCORE operator is called, such as in a SELECT clause, the operator must

reference the label value as shown in the example.

Using the WITHIN Operator to Narrow  Query Down to Document Sections
When documents have internal structure such as in HTML and XML, you can

define document sections using embedded tags before you index. This enables you

to query within the sections using the WITHIN operator.

Note: You must use the SCORE operator with a label to obtain

this number.

Note: The SQL statement with the CONTAINS function requires a

text index in order to run.
Searching XML Data with Oracle Text 8-7



Querying with the CONTAINS Operator
You define sections as part of a section group.  Use the WITHIN operator to narrow

queries down into document sections. Document sections can be any of the

following:

■ Zone sections

■ Field sections

■ Attribute sections

■ Special sections (sentence or paragraph)

WITHIN Syntax for Section Querying
Here is the WITHIN syntax for querying sections:

expression WITHIN section

This searches for expression within a section. If you are using XML_SECTION_

GROUP the following restrictions apply to the pre-defined zone, field, or attribute

section:

■ If section is a zone, expression can contain one or more WITHIN operators

(nested WITHIN) whose section is a zone or special section.

■ If section is a field or attribute section, expression cannot contain another

WITHIN operator.

You can combine and nest WITHIN clauses. For finer grained searches of XML

sections, you can use WITHIN clauses inside CONTAINS select statements.

WITHIN Operator Limitations
The WITHIN operator has the following limitations:

■ You cannot embed the WITHIN clause in a phrase. For example, you cannot

write: term1 WITHIN section term2

■ You cannot combine WITHIN with expansion operators, such as $ ! and *.

■ Since WITHIN is a reserved word, you must escape the word with braces to

search on it.

Note: This is only true for XML_SECTION_GROUP, but not true

for AUTO_ or PATH_SECTION_GROUP.
8-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying with the CONTAINS Operator
You can query within attribute sections when you index with either XML_

SECTION_GROUP, AUTO_SECTION_GROUP, or PATH_SECTION_GROUP your

section group type.

Consider the following XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

XML_SECTION_GROUP
If you use XML_SECTION_GROUP, you can name attribute sections anything with

CTX_DDL.ADD_ATTR_SECTION.

To define section, title@book , as the attribute section booktitle , you can use

either of the following methods:

■ CTX_DLL.ADD_ATTR_SECTION procedure. The syntax for this is:

CTX_DDL.ADD_ATTR_SECTION(
  group_name     in    varchar2,
  section_name   in    varchar2,
  tag            in    varchar2);

To define the title attribute as an attribute section, create an XML_SECTION_

GROUP and define the attribute section as follows:

EXEC ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');

When you define the TITLE attribute section as such and index the document

set, you can query the XML attribute text as follows:

'Cities within booktitle'

■ Dynamically, after indexing, using the ALTER INDEX statement. The syntax

for ALTER INDEX is:

ALTER INDEX [schema.]index REBUILD [ONLINE] [PARAMETERS (paramstring)];

where

paramstring = 'replace [datastore datastore_pref]
                       [filter filter_pref]
                       [lexer lexer_pref]
                       [wordlist wordlist_pref]

See Also: ■Oracle Text Reference
Searching XML Data with Oracle Text 8-9



Querying with the CONTAINS Operator
                       [storage storage_pref]
                       [stoplist stoplist]
                       [section group section_group]
                          [memory memsize]
|    ... add attr section section_name tag tag@attr
|    add stop section tag'

Dynamically  the clause add attr section section_name tag
tag@attr  adds an attribute section section_name to the existing index. You

must specify the XML tag and attribute in the form tag@attr. You can only add

attribute sections to XML section groups.

The added section, section_name, applies only to documents indexed after this

operation. Thus for the change to take effect, you must manually re-index any

existing documents that contain the tag. The index is not rebuilt by this

statement.

AUTO_ or  PATH_SECTION_GROUP
When you use the AUTO_SECTION_GROUP or  PATH_SECTION_GROUP to

index XML documents, the system automatically creates attribute sections and

names them in the form attribute@tag.

To search on Tale within the attribute section booktitle , include the following

WITHIN clause in your SELECT statement:

■ If you are using XML_SECTION_GROUP:

... WHERE CONTAINS ('Tale WITHIN booktitle')>0;

■ If you are using AUTO_ or PATH_SECTION_GROUP

... WHERE CONTAINS (’Tale WITHIN title@book’)>0;

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

■ Regular queries on attribute text will not work unless qualified in a WITHIN

clause. Using the following XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

querying on Tale will not work unless qualified with ’WITHIN title@book’.

See Also: "Distinguishing Tags Across DocTypes"  on page 8-25.
8-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying with the CONTAINS Operator
■ You cannot use attribute sections in a nested WITHIN query.

■ Phrases ignore attribute text. For example, if the original document looked like:

....Now is the time for all good <word type="noun"> men </word> to come to
the aid......

The search would result in a regular query’s, “good men”, and ignore the

intervening attribute text.

Using INPATH or HASPATH Operators for Query Searching With XPath-like
Expressions

Use the INPATH and HASPATH operators only when your index has been created

with PATH_SECTION_GROUP.

Use of PATH_SE CTION_GROUP enables path searching. Path searching extends

the syntax of the WITHIN operator so that the section name operand

(right-hand-side) is a path instead of a section name.

Table 8–2 lists the different ways you can use the INPATH operator for path

searching.
Searching XML Data with Oracle Text 8-11



Querying with the CONTAINS Operator
Table 8–2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax Description

Simple Tag Searching virginia INPATH (STATE)

virginia INPATH (//STATE)

Finds all documents where the word “virginia”
appears between <STATE> and </STATE>. The
STATE element can appear at any level of the
document structure.

Case-sensitivity virginia INPATH (STATE)

virginia INPATH (State)

Tags and attribute names in path searching are
case-sensitive. virginia INPATH STATE -- finds
<STATE>virginia</STATE>  but NOT
<State>virginia</State> . To find the latter
you must do virginia INPATH State.

Top-Level Tag
Searching

virginia INPATH (Legal)

virginia INPATH (/Legal)

Finds all documents where “virginia” appears in a
Legal element which is the top-level tag.'Legal'
MUST be the top-level tag of the document.’virginia'
may appear anywhere in this tag - regardless of
other intervening tags. For example:

<?xml version=”1.0” standalone=”yes”?>

<!-- <?xml-stylesheet type=”text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

  <Filing ID="f001" FilingType="Civil">

   <LeadDocument>

    <CaseCaption>

     <CourtInformation>

      <Location>

       <Address>

        <AddressState>VIRGINIA</AddressState>

       </Address>  ... </Legal>
8-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying with the CONTAINS Operator
Any Level Tag
Searching

virginia INPATH (//Address) 'Virginia' can appear anywhere within an 'Address'
tag, which may appear within any other tags. for
example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

  <Filing ID="f001" FilingType="Civil">

   <LeadDocument>

    <CaseCaption>

     <CourtInformation>

      <Location>

       <Address>

        <AddressState> VIRGINIA </AddressState>...
</Legal>

Direct Parentage Path
Searching

virginia INPATH
(//CourtInformation/Location)

Finds all documents where “virginia” appears in a
Location element which is a direct child of a
CourtInformation element. For example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

  <Filing ID="f001" FilingType="Civil">

   <LeadDocument>

    <CaseCaption>

     <CourtInformation>

      <Location>

       <Address>

        <AddressState> VIRGINIA </AddressState>

       </Address>...   </CourtInformation>

Table 8–2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax Description
Searching XML Data with Oracle Text 8-13



Querying with the CONTAINS Operator
Single-Level Wildcard
Searching

virginia INPATH(A/*/B)

'virginia INPATH
(//CaseCaption/*/Location)'

Finds all documents where “virginia” appears in a B
element which is a grandchild of an A element. For
instance, <A><D><B>virginia</B></D></A> .
The intermediate element does not need to be an
indexed XML tag. For example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

  <Filing ID="f001" FilingType="Civil">

   <LeadDocument>

    <CaseCaption>

     <CourtInformation>

      <Location>

       <Address>

        <AddressState>VIRGINIA</AddressState>...

</Legal>

Table 8–2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax Description
8-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying with the CONTAINS Operator
Multi-level Wildcard
Searching

'virginia INPATH
(Legal/*/Filing/*/*/CourtInfor
mation)'

'Legal' must be a top-level tag, and there must be
exactly one tag-level between 'Legal' and 'Filing',
and two between 'Filing' and 'CourtInformation'.
'Virginia' may then appear anywhere within
'CourtInformation'. For example:

<?xml version="1.0" standalone="yes"?>

<!-- <?xml-stylesheet type="text/xsl"
href="./xsl/vacourtfiling(html).xsl"?> -->

<Legal>

 <CourtFiling>

  <Filing ID="f001" FilingType="Civil">

   <LeadDocument>

    <CaseCaption>

     <CourtInformation>

      <Location>

       <Address>

        <AddressState>VIRGINIA</AddressState>

       </Address>

      </Location>

      <CourtName>

          IN THE CIRCUIT COURT OF LOUDOUN COUNTY

      </CourtName>

     </CourtInformation>....

Descendant Searching virginia INPATH(A//B) Finds all documents where “virginia” appears in a B
element which is some descendant (any level) of an
A element.

Attribute Searching virginia INPATH(A/@B) Finds all documents where “virginia” appears in the
B attribute of an A element.

Descendant/Attribute
Existence Testing

virginia INPATH (A[B]) Finds all documents where “virginia” appears in an
A element which has a B element as a direct child.

■ virginia INPATH A[.//B] -- Finds all
documents where “virginia” appears in an A
element which has a B element as a descendant
(any level).

■ virginia INPATH A[@B] -- Finds all documents
where “virginia” appears in an A element
which has a B attribute

Table 8–2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax Description
Searching XML Data with Oracle Text 8-15



Querying with the CONTAINS Operator
Attribute Value
Testing

Within Equality

virginia INPATH A[@B = “foo”]

That means that:

virginia INPATH (A[@B = "pot
of gold”]), would, with the
default lexer and stoplist, match
any of the following:

<A B="POT OF
GOLD">virginia</A>

By default, lexing is
case-independent, so “pot”
matches “POT”, <A B="POT
BLACK GOLD”>virginia</A>

By default, “of” is a stopword,
and, in a query, would match
any word in that position, <A
B="     Pot OF     Gold
“>virginia</A>

Finds all documents where “virginia” appears in an
A element which has a B attribute whose value is
“foo”.

■ Only equality is supported as a test. Range
operators and functions are not supported.

■ The left-hand-side of the equality MUST be an
attribute or tag. Literals here are not allowed.

■ The right-hand-side must be a literal. Tags and
attributes here are not allowed.

Within equality (See "Using the HASPATH Operator
for Path Searching"  on page 8-17) is used to
evaluate the test.

Whitespace is mainly ignored in text indexing.
Again, lexing is case-independent:

<A B=”pot_of_gold”>virginia</A>

Underscore is a non-alphabetic character, and is not
a join character by default. As a result, it is treated
more or less as whitespace and breaks up that string
into three words.

Numeric Equality virginia INPATH (A[@B = 5]) Numeric literals are allowed. But they are treated as
text. The within equality is used to evaluate.This
means that the query does NOT match. Thst is, <A
B=”5.0”>virginia</A> does not match A[@B=5]
where "5.0", a decimal is not considered the same as
5, an integer.

Conjunctive Testing virginia INPATH (A[B AND C])

virginia INPATH (A[B AND @C
= “foo”])...

Predicates can be conjunctively combined.

Combining Path and
Node Tests

virginia INPATH (A[@B =
“foo”]/C/D)

virginia
INPATH(A//B[@C]/D[E])...

Node tests can be applied to any node in the path.

Table 8–2 Path Searching XML Documents Using the INPATH Operator

Path Search Feature Syntax Description
8-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle Text to Search XML Documents
Using the HASPATH Operator for Path Searching

Only use the HASPATH operator when your index has been created with the

PATH_SECTION_GROUP. The syntax for the HASPATH operator is:

■ WHERE CONTAINS(column, ’HASPATH(path)’...): Here HASPATH searches

an XML document set and returns a score of 100 for all documents where path

exists. Parent and child paths are separated with the / character, for example,

A/B/C. For example, the query:

...WHERE CONTAINS (col,’HASPATH(A/B/C)’)>0;

finds and returns a score of 100 for the document:

<A><B><C>Virginia</C></B></A>

without having to reference Virginia at all.

■ WHERE CONTAINS(column, ’HASPATH(A=”value”)’...): Here the HASPATH

clause searches an XML document set and returns a score of 100 for all

documents that have element A with content value and only that value.

HASPATH is used to test equality.  This is the "Section Equality Testing" feature

of the HASPATH operator. The query:

...WHERE CONTAINS virginia INPATH A

finds <A>virginia</A>, but it also finds <A>virginia state</A>. To limit the

query to the term virginia and nothing else, you can use a section equality test

with the HASPATH operator. For example:

... WHERE CONTAINS (col,’HASPATH(A="virginia")’

finds and returns a score of 100 only for the first document, and not the second.

Using Oracle Text to Search XML Documents
To use Oracle Text to search and retrieve data from XML documents you must do

the following overall tasks:

1. Create a section group

Note: The HASPATH operator functions in a similar fashion to

the Existsnode() operator in XMLType. See Also Chapter 5,

"Database Support for XML".
Searching XML Data with Oracle Text 8-17



Using Oracle Text to Search XML Documents
2. Create an Oracle Text index based on the section group you created

3. Build your query application using the CONTAINS operator

Before you create a section group and Oracle text index you must first determine

the role you will need and grant the appropriate privilege. See "Oracle Text Users

and Roles"  on page 8-5, and grant the appropriate privilege.

After creating and preparing your data, you are ready to perform the next step. See

Step 1. Create a Section Preference.

Using the section preference created, you then create an Oracle Text index. See Step

2. Create an Index Using the Section Preference Created in Step 1.

Now you can finish building your query application. See "Using Oracle Text to

Search XML Documents".

First determine the role you need. See Oracle Text Reference and "Oracle Text Users

and Roles"  on page 8-5, and grant the appropriate privilege as follows:

CONNECT system/manager
GRANT ctxapp to scott;
CONNECT scott/tiger

Step 1. Create a Section Preference
Here we describe the basics of how to create section preferences using PATH_

SECTION_GROUP, XML_SECTION_GROUP, and AUTO_SECTION_GROUP.

Table 8–3 describes the section groups you can use when indexing XML documents.
8-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle Text to Search XML Documents
Table 8–3 Comparing Oracle Text Section Groups

Section Group Description

XML_SECTION_GROUP Use this group type for indexing XML documents and for defining sections in
XML documents.

AUTO_SECTION_GROUP Use this group type to automatically create a zone section for each
start-tag/end-tag pair in an XML document. The section names derived from XML
tags are case-sensitive as in XML. Attribute sections are created automatically for
XML tags that have attributes. Attribute sections are named in the form
attribute@tag. Stop sections, empty tags, processing instructions, and comments
are not indexed. The following limitations apply to automatic section groups:

■ You cannot add zone, field or special sections to an automatic section group.

■ Automatic sectioning does not index XML document types (root elements.)
However, you can define stop-sections with document type.

■ The length of the indexed tags including prefix and namespace cannot exceed
64 characters. Tags longer than this are not indexed.

PATH_SECTION_GROUP Use this group type to index XML documents. Behaves like the AUTO_SECTION_
GROUP. With this section group you can do path searching with the INPATH and
HASPATH operators. Queries are case-sensitive for tag and attribute names.

How is PATH_SECTION_GROUP Similar to AUTO_SECTION_GROUP?

Documents are assumed to be XML, Every tag and every attribute is indexed by
default, Stop sections can be added to prevent certain tags from being indexed,
Only stop sections can be added -- ZONE, FIELD, and SPECIAL sections cannot be
added, When indexing XML document collections, you do not need to explicitly
define sections as Oracle automatically does this for you.

How Does PATH_SECTION_GROUP Differ From AUTO_SECTION_GROUP?

Path Searching is allowed at query time (see "Case Study: Searching an Online
FAQ List Using Oracle Text" and "Using the HASPATH Operator for Path
Searching"  on page 8-17) with the new INPATH and HASPATH operators, Tag
and attribute names are case-sensitive in queries.
Searching XML Data with Oracle Text 8-19



Using Oracle Text to Search XML Documents
Deciding Which Section Group to Use
How do you determine which section groups is best for your application? This

depends on your application. Table 8–4 lists some general guidelines to help you

decide which of the XML_, AUTO_, or PATH_ section groups to use when indexing

your XML documents, and why.

Note: If you are using the AUTO_SECTION_GROUP or PATH_

SECTION_GROUP to index an XML document collection, you need

not explicitly define sections since the system does this for you

during indexing.

Table 8–4 Guidelines for Choosing XML_, AUTO_, or PATH_ Section Groups

Application Criteria XML_section_... AUTO_section_... PATH_section_...

You are using XPATH search
features

X

You know the layout and structure of
your XML documents, and you can
predefine the sections on which users
are most likely to search.

X

You do not know which tags users
are most likely to search.

X

Query performance, in general Fastest Little slower than
XML_section_...

Little slower than
AUTO_section_...

Indexing performance, in general Fastest Little slower than
XML_section_...

Little slower than
AUTO_section_...

Index size Smallest Little larger than
XML_section_...

Little larger than
AUTO_section_...

Other features Mappings can be
defined so that tags
in one or different

DTDs can be
mapped to one

section. Good for
DTD evolution and
data aggregation.

Simplest. No need
to define mapping,
add_stop_section

can be used to
ignore some

sections.

Designed for more
sophisticated
XPATH- like

queries
8-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle Text to Search XML Documents
Creating a Section Preference with XML_SECTION_GROUP
The following command creates a section group called, xmlgroup, with the XML_

SECTION_GROUP group type.

EXEC ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');

You can add sections to this group using CTX_DDL.ADD_SECTION.  Consider an

XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">  It was the best of times. </BOOK>

To define the title attribute as an attribute section, create an XML_SECTION_

GROUP and define the attribute section as follows:

EXEC ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');

When you define the TITLE attribute section as such and index the document set,

you can query the XML attribute text as follows:

'Cities within booktitle'

Creating a Section Preference with AUTO_SECTION_GROUP
You can set up your indexing operation to automatically create sections from XML

documents using the section group AUTO_SECTION_GROUP. Here, Oracle creates

zone sections for XML tags. Attribute sections are created for those tags that have

attributes, and these attribute sections are named in the form “tag@attribute.”

The following command creates a section group called autogroup with the AUTO_

SECTION_GROUP group type. This section group automatically creates sections

from tags in XML documents.

EXEC ctx_ddl.create_section_group('autogroup', 'AUTO_SECTION_GROUP');

Creating a Section Preference with PATH_SECTION_GROUP
To enable path section searching, index your XML document with PATH_

SECTION_GROUP. For example:

EXEC ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');

Note: You can add attribute sections only to XML section groups.

When you use AUTO_SECTION_GROUP, attribute sections are

created automatically. Attribute sections created automatically are

named in the form tag@attribute.
Searching XML Data with Oracle Text 8-21



Using Oracle Text to Search XML Documents
Step 2. Create an Index Using the Section Preference Created in Step 1
Create an index depending on which section group you used to create a preference:

Creating an Index Using XML_SECTION_GROUP
To index your XML document when you have used XML_SECTION_GROUP, you

can use the following statement:

CREATE INDEX myindex ON docs(htmlfile) INDEXTYPE IS ctxsys.context
     parameters('section group xmlgroup');

Creating an Index Using AUTO_SECTION_GROUP
The following statement creates the index, myindex, on a column containing XML

files using the AUTO_SECTION_GROUP:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
('section group autogroup');

Creating an Index Using PATH_SECTION_GROUP
To index your XML document when you have used PATH_SECTION_GROUP, you

can use the following statement:

CREATE INDEX myindex ON xmldocs(xmlfile) INDEXTYPE IS ctxsys.context PARAMETERS
('section group xmlpathgroup');

Oracle Text Example 1: Creating an Index Using XML_SECTION_GROUP
EXEC ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');

/* ADDING A FIELD SECTION */
EXEC ctx_ddl.Add_Field_Section /* THIS IS KEY */
  (  group_name   =>'my_section_group',
     section_name =>'author',/* do this for EVERY tag used after "WITHIN" */
     tag          =>'author'
  );

EXEC ctx_ddl.Add_Field_Section /* THIS IS KEY */
      (  group_name   =>'my_section_group',

See Also: "Oracle Text Example 1: Creating an Index Using XML_

SECTION_GROUP"  on page 8-22.

See Also: Oracle Text Reference for detailed notes on CTX_DDL.
8-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Oracle Text to Search XML Documents
         section_name =>'document',/*do this for EVERY tag after "WITHIN" */
         tag          =>'document'
      );

  ...
/
/* ADDING AN ATTRIBUTE SECTION */
EXEC ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');

/* The more sections you add to your index, the longer your search will take.*/
/* Useful for defining attributes in XML documents as sections. This allows*/
/* you to search XML attribute  text using the WITHIN operator.*/
/*  The section name:
/* ** Is used for WITHIN queries on the attribute text.
   ** Cannot contain the colon (:) or dot (.) characters.
   ** Must be unique within group_name.
   ** Is case-insensitive.
   ** Can be no more than 64 bytes.
   **  The tag specifies the name of the attribute in tag@attr format. This is
       case-sensitive. */
/* Names used as arguments of the keyword WITHIN can be different from the
   actual XML tag names. Many tags can be mapped to the same name at query
   time.*/

/* ADDING A ZONE SECTION */
/* If You have an XML document that contains the <book> tag declared for */
/* different document types. You can create a distinct book section for each */
/* document type. If mydocname is declared in your DTD as an XML document */
/* type (root element) as follows: */

<!DOCTYPE mydocname ... [...

/* Within mydocname, element <book> is declared. For this tag, you can create */
/* a section named, mybooksec, that’s sensitive to the tag's document type as */
/* follows: */

EXEC ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', 'mydocname(book)');

/* Call CTX_DDL.Add_Zone_Section for each tag in your XML document that you need
to search on. */

CREATE INDEX my_index ON my_table ( my_column )
  INDEXTYPE IS ctxsys.context
  PARAMETERS ( 'SECTION GROUP my_section_group' );
Searching XML Data with Oracle Text 8-23



Building XML Query Applications with Oracle Text
SELECT my_column FROM my_table
  WHERE CONTAINS(my_column, 'smith WITHIN author') > 0;

Oracle Text Example 2: Creating an Index Using AUTO_SECTION_GROUP
ctx_ddl_create_section_group('auto', 'AUTO_SECTION_GROUP');

CREATE INDEX myindex ON docs(xmlfile_column)
    INDEXTYPE IS ctxsys.context
    PARAMETERS ('filter ctxsys.null_filter SECTION GROUP auto');

SELECT xmlfile_column FROM docs
    WHERE CONTAINS (xmlfile_column, ’virginia WITHIN title’)>0;

Oracle Text Example 3: Creating an Index Using PATH_SECTION_GROUP
EXEC ctx_ddl.create_section_group('xmlpathgroup', 'PATH_SECTION_GROUP');

CREATE INDEX myindex ON xmldocs(xmlfile_column)
    INDEXTYPE IS ctxsys.context
    PARAMETERS ('section group xmlpathgroup');

SELECT xmlfile_column FROM xmldocs
... WHERE CONTAINS (column, ’Tale WITHIN title@book’)>0;

Building XML Query Applications with Oracle Text
Building XML query applications with Oracle Text includes the following topics:

■ Querying Within Attribute Sections

■ Querying XML Documents

■ Procedure for Building a Query Application with Oracle Text

■ Creating Sections in XML Documents that are Document Type Sensitive
8-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying XML Documents
Querying XML Documents

Distinguishing Tags Across DocTypes
In previous releases, the XML section group was unable to distinguish between tags

in different DTD's. For instance, perhaps you have a DTD for storing contact

information:

  <!DOCTYPE contact>
  <contact>
    <address>506 Blue Pool Road</address>
    <email>dudeman@radical.com</email>
  </contact>

Appropriate sections might look like:

  ctx_ddl.add_field_section('mysg','email',  'email');
  ctx_ddl.add_field_section('mysg','address','address');

This is fine until you have a different kind of document in the same table:

<!DOCTYPE mail>
 <mail>
   <address>dudeman@radical.com</address>
</mail>

Now your address section, originally intended for street addresses, starts picking

up email addresses, because of tag collision.

Specifying Doctype Limiters to Distinguish Between Tags
Oracle8i release 8.1.5 and higher allow you to specify doctype limiters to distinguish

between these tags across doctypes. Simply specify the doctype in parentheses

before the tag as follows:

  ctx_ddl.add_field_section('mysg','email','email');

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference

■ "Case Study: Searching an Online FAQ List Using Oracle Text"

on page 8-42.
Searching XML Data with Oracle Text 8-25



Querying XML Documents
  ctx_ddl.add_field_section('mysg','address',' (contact) address');
  ctx_ddl.add_field_section('mysg','email',' (mail) address');

Now when the XML section group sees an address tag, it will index it as the

address section when the document type is contact , or as the email section when

the document type is mail .

Doctype-Limited and Unlimited Tags in a Section Group
If you have both doctype-limited and unlimited tags in a section group:

  ctx_ddl.add_field_section('mysg','sec1','(type1)tag1');
  ctx_ddl.add_field_section('mysg','sec2','tag1');

Then the limited tag applies when in the doctype, and the unlimited tag applies in

all other doctypes.

Querying is unaffected by this -- the query is done on the section name, not the tag,

so querying for an email address would be done like:

  radical WITHIN email

which, since we have mapped two different kinds of tags to the same section name,

finds documents independent of which tags are used to express the email address.

Querying Within Attribute Sections
You can query within attribute sections when you index with either of the following

as your section group type:

■ XML_SECTION_GROUP

■ AUTOMATIC_SECTION_GROUP

■ PATH_SECTION_GROUP

Consider the following XML document:

<book title="Tale of Two Cities">It was the best of times.</book>

You can define the section title@book to be the attribute section title. You can do so

with the CTX_DLL.ADD_ATTR_SECTION procedure or dynamically after

indexing with ALTER INDEX.
8-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying XML Documents
To search on Tale within the attribute section title, you issue the following query:

'Tale WITHIN BOOK@TITLE'

You cannot use attribute sections in a nested WITHIN query.

Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men </word> to come to the aid.
The WITHIN operator requires you to know the name of the section you search. A

list of defined sections can be obtained using the CTX_SECTIONS or CTX_USER_

SECTIONS views.

XML_SECTION_GROUP Attribute Sections
In Oracle8i Release 1(8.1.5) and higher, XML_SECTION_GROUP offers the ability to

index and search within attribute values. Consider a document with the following

lines:

<comment author="jeeves">
    I really like Oracle Text
  </comment>

Now XML_SECTION_GROUP offers an attribute section. This allows the inclusion

of attribute values to index. For example:

  ctx_ddl.add_attr_section('mysg','author','comment@author');

Note:

■ When you use the AUTO_SECTION_GROUP to index XML

documents, the system automatically creates attribute sections

and names them in the form attribute@tag.

■ If you use the XML_SECTION_GROUP, you can name

attribute sections anything with CTX_DDL.ADD_ATTR_

SECTION.

See Also:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference
Searching XML Data with Oracle Text 8-27



Querying XML Documents
The syntax is similar to other add_section calls. The first argument is the name of

the section group, the second is the name of the section, and the third is the tag, in

the form <tag_name>@<attribute_name>. This tells Oracle Text to index the

contents of the author attribute of the comment tag as the section “author”.

Query syntax is just like for any other section:

WHERE CONTAINS ( ... ,’jeeves WITHIN author...’,...)...

and finds the document.

Attribute Value Sensitive Section Search
Attribute sections allow you to search the contents of attributes. They do not allow

you to use attribute values to specify sections to search. For instance, given the

document:

 <comment author="jeeves">
    I really like Oracle Text
 </comment>

You can find this document by asking:

jeeves within comment@author

which is equivalent to “find me all documents which have a comment element

whose author attribute's value includes the word jeeves”.

However, there you cannot currently request the following:

interMedia within comment where (@author = "jeeves")

in other words, “find me all documents where interMedia appears in a comment

element whose author is jeeves”. This feature -- attribute value sensitive section

searching -- is planned for future versions of the product.

Dynamic Add Section
Because the section group is defined before creating the index, Oracle8i Release 1

(8.1.5) is limited in its ability to cope with changing structured document sets; if

your documents start coming with new tags, or you start getting new doctypes, you

have to re-create the index to start making use of those tags.

In Oracle8i Release 2 (8.1.6) and higher allows you to add new sections to an

existing index without rebuilding the index, using alter index and the new add

section parameters string syntax:
8-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Querying XML Documents
add zone  section <section_name> tag <tag>
add field section <section_name> tag <tag> [ visible | invisible ]

For instance, to add a new zone section named tsec using the tag title:

alter index <indexname> rebuild
parameters ('add zone section tsec tag title')

To add a new field section named asec using the tag author:

alter index <indexname> rebuild
parameters ('add field section asec tag author')

This field section would be invisible by default, just like when using add_field_

section. To add it as visible field section:

alter index <indexname> rebuild
parameters ('add field section asec tag author visible')

Dynamic add section only modifies the index meta-data, and does not rebuild the

index in any way. This means that these sections take effect for any document

indexed after the operation, and do not affect any existing documents -- if the index

already has documents with these sections, they must be manually marked for

re-indexing (usually with an update of the indexed column to itself).

This operation does not support addition of special sections. Those would require

all documents to be re-indexed, anyway. This operation cannot be done using

rebuild online, but it should be a fairly quick operation.

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

■ Regular queries on attribute text do not hit the document unless qualified in a

within clause. Assume you have an XML document as follows:

 <book title="Tale of Two Cities">It was the best of times.</book>

A query on Tale by itself does not produce a hit on the document unless

qualified with WITHIN title@book. This behavior is like field sections when

you set the visible flag set to false.

■ You cannot use attribute sections in a nested WITHIN query.

■ Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men </word> to come to the
Searching XML Data with Oracle Text 8-29



Procedure for Building a Query Application with Oracle Text
aid.
Then this document would hit on the regular query good men, ignoring the

intervening attribute text.

WITHIN queries can distinguish repeated attribute sections. This behavior is like

zone sections but unlike field sections. For example, for the following document:

<book title="Tale of Two Cities">It was the best of times.</book>
<book title="Of Human Bondage">The sky broke dull and gray.</book>

Assume the book is a zone section and book@author is an attribute section.

Consider the query:

'(Tale and Bondage) WITHIN book@author'

This query does not hit the document, because tale and bondage are in different

occurrences of the attribute section book@author.

Procedure for Building a Query Application with Oracle Text
To build the query application with Oracle Text carry out the indexing steps first..

The next step is to build your query application. To do so follow these steps:

1. Create a preference using the procedure, CTX_DDL.create_preference. See "Step

1. Create a Preference"

2. Set preference’s attributes using CTX_DDL.Add_Attr_Section and so on. See

"Step 2. Set the Preference’s Attributes".

3. Create your query syntax

You can query within attribute sections when you index with either XML_

SECTION_GROUP or AUTOMATIC_SECTION_GROUP as your section group

type.

Nested tag searching is supported in Oracle Text.

Note:

■ Not everything in your document may be searchable. You must

first state what is searchable using the.......add_....._section

■ The more sections you add to your index the longer the search

will take!
8-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Procedure for Building a Query Application with Oracle Text
Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View
The CTX_OBJECT_ATTRIBUTES view displays attributes that can be assigned to

preferences of each object. It can be queried by all users.

Check out the structure of CTX_OBJECTS and CTX_OBJECT_ATTRIBUTE view,

with the following DESCRIBE commands. Because we are only interested in

querying XML documents in this chapter, we focus on XML_SECTION_GROUP

and AUTO_SECTION_GROUP.

Describe ctx_objects
  SELECT obj_class, obj_name FROM ctx_objects
  ORDRR BY obj_class, obj_name;

The result is:

...
SECTION_GROUP                  AUTO_SECTION_GROUP    <<==
SECTION_GROUP                  BASIC_SECTION_GROUP
SECTION_GROUP                  HTML_SECTION_GROUP
SECTION_GROUP                  NEWS_SECTION_GROUP
SECTION_GROUP                  NULL_SECTION_GROUP
SECTION_GROUP                  XML_SECTION_GROUP     <<==

...

Describe ctx_object_attributes
SELECT oat_attribute FROM ctx_object_attributes
  WHERE oat_object = 'XML_SECTION_GROUP';

The result is:

OAT_ATTRIBUTE
-------------
ATTR
FIELD
SPECIAL
ZONE

SELECT oat_attribute FROM ctx_object_attributes
  WHERE oat_object = 'AUTO_SECTION_GROUP';

The result is:

OAT_ATTRIBUTE
-------------
STOP
Searching XML Data with Oracle Text 8-31



Step 1. Create a Preference
Step 1. Create a Preference
The first thing you must do is create a preference. To do this, use the CTX_

DDL.Create_Preference procedure. For example:

CTX_DDL.Create_Preference
CTX_DDL.Create_Preference (
 preference_name  => 'books' /* or whatever you want to call it */
 object_name      => 'XML_SECTION GROUP' /* either XML_SECTION_GROUP or AUTO_
SECTION_GROUP */);

To drop this preference use the following syntax:

CTX_DDL.Drop_Preference (
 preference_name => ’books’);

Step 2. Set the Preference’s Attributes
To set the preference’s attributes for XML_SECTION_GROUP, use the following

procedures:

■ Add_Zone_Section

■ Add_Attr_Section

■ Add_Field_Section

■ Add_Special_Section

To set the preference’s attributes for AUTO_SECTION_GROUP, use the following

procedures:

■ Add_Zone_Section

■ Add_Attr_Section

■ Add_Field_Section

There are corresponding CTX_DDL.drop sections and CTX_DDL.remove section

syntax.

2.1   Using CTX_DDL.add_zone_section
The syntax for CTX_DDL.add_zone_section follows:

CTX_DDL.Add_Zone_Section (
8-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Step 2. Set the Preference’s Attributes
 group_name      => 'my_section_group' /* whatever you called it above */
 section_name    => 'author' /* what you want to call this section */
 tag             => 'my_tag' /* what represents it in XML */ );

where ’my_tag’ implies opening with <my_tag> and closing with </my_tag>.

add_zone_section Guidelines
add_zone_section guidelines are listed here:

■ Call CTX_DDL.Add_Zone_Section for each tag in your XML document that

you need to search on.

2.2 Using CTX_DDL.Add_Attr_Section
The syntax for CTX_DDL.add_attr_section follows:

CTX_DDL.Add_Attr_Section ( /* call this as many times as you need to describe
                             the attribute sections */
 group_name      => 'my_section_group' /* whatever you did call it above */
 section_name    => 'author' /* what you want to call this section */
 tag             => 'my_tag' /* what represents it in XML */ );

where ’my_tag’ implies opening with <my_tag> and closing with </my_tag>.

add_attr_section Guidelines
add_attr_section guidelines are listed here:

■ Consider meta_data attribute author:

<meta_data author = “John Smith” title=”How to get to Mars”>

The more sections you add to your index, the longer your search will take.

add_attr_section adds an attribute section to an XML section group. This procedure

is useful for defining attributes in XML documents as sections. This allows you to

search XML attribute text with the WITHIN operator.

The section_name:

■ Is the name used for WITHIN queries on the attribute text.

■ Cannot contain the colon (:) or dot (.) characters.

■ Must be unique within group_name.

■ Is case-insensitive.
Searching XML Data with Oracle Text 8-33



Step 2. Set the Preference’s Attributes
■ Can be no more than 64 bytes.

The tag specifies the name of the attribute in tag@attr format. This is case-sensitive.

2.3 Using CTX_DDL.add_field_section
The syntax for CTX_DDL.add_field_section follows:

CTX_DDL.Add_Field_Section (
 group_name     => 'my_section_group' /* whatever you called it above */
 section_name   => 'qq' /* what you want to call this section */
 tag            => 'my_tag' /* what represents it in XML */ );
 visible        => TRUE or FALSE );

add_field_section Guidelines
add_field_section guidelines are listed here:

■ add_field_section and add_zone_section attributes differ in performance.

■ In a document, tags can be repeated two or more times, however some tags,

such as “title”, occur only once. A DTD (or XML Schema) define how many

times the tags occur.

■ Visible attribute: This is available in add_field_section but not available in the

add_zone_section. If VISIBLE is set to TRUE then a query such as “...

CONTAINS virginia... becomes irrelevant if cat occurs in title or paragraph.

Consider again the query, “... CONTAINS virginia...”. You may not get a hit if

you use VISIBLE=TRUE. If VISIBLE=FALSE, the index will be smaller. You

may lose some functionality but your performance will be improved, compared

to if you set VISIBLE =TRUE.

■  If you set up your index using the add_zone_section....

■ If you set up your index using the add_field_section....

Note: In the add_attr_section procedure, you can have many tags

all represented by the same section name at query time. Explained

in another way, the names used as the arguments of the keyword

WITHIN can be different from the actual XML tag names. That is

many tags can be mapped to the same name at query time. This

feature enhances query usability.
8-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Step 2. Set the Preference’s Attributes
How Attr_Section Differs From Field_Section
Attribute section differs from field section in the following ways:

■ Attribute text is considered invisible, though, so the following:

WHERE CONTAINS (..., ’... jeeves’,...)...

does NOT find the document, somewhat like field sections. Unlike field

sections, however, attribute section within searches can distinguish between

occurrences. Consider the document:

  <comment author="jeeves">
    I really like Oracle Text
  </comment>
  <comment author="bertram">
    Me too
  </comment>

the query:

WHERE CONTAINS (...,’(cryil and bertram) WITHIN author’, ...)...

will NOT find the document, because "jeeves" and "bertram" do not occur

within the SAME attribute text.

■ Attribute section names cannot overlap with zone or field section names,

although you can map more than one tag@attr to a single section name.

Attribute sections do not support default values. Given the document:

  <!DOCTYPE foo [
    <!ELEMENT foo (bar)>
    <!ELEMENT bar (#PCDATA)>

Note: Constructing an index is harder if you have to cater for the

fact that there could be more than one occurrence of any one tag.

■ If the tag in your XML document occurs only once, use the

single add_field_section procedure. For example, “....

CONTAINS virginia and state WITHIN title......

■ If the tag in your XML document occurs more than once, use

the add_zone_section procedure. For example, “.... CONTAINS

virginia and state WITHIN paragraph....”. This has many

possibilities.
Searching XML Data with Oracle Text 8-35



Step 3. Create Your Query Syntax
      <!ATTLIST bar
        rev CDATA "8i">

  ]>
  <foo>
    <bar>whatever</bar>
  </foo>

and attribute section:

  ctx_ddl.add_attr_section('mysg','barrev','bar@rev');

the query:

 8i within barrev does not hit the document, although in XML semantics, the

“bar” element has a default value for its “rev” attribute.

2.5   Using CtX_DDL.Add_Stop_Section
CtX_DDL.Add_Stop_Section (
 group_name     => 'my_section_group' /* whatever you called it above */
 section_name   => 'qq' /* what you want to call this section */ );

Step 3. Create Your Query Syntax
See the section, "Querying with the CONTAINS Operator" for information about

how to use the CONTAINS operator in query statements.

Querying Within Attribute Sections
You can query within attribute sections when you index with either XML_

SECTION_GROUP or AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:

<book title="Tale of Two Cities">It was the best of times.</book>

You can define the section title@book as the attribute section title. You can do so

with the CTX_DLL.Add_Attr_Section procedure or dynamically after indexing with

ALTER INDEX.
8-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Step 3. Create Your Query Syntax
If you use the XML_SECTION_GROUP, you can name attribute sections anything

with CTX_DDL.Add_Attr_Section.

To search on Tale within the attribute section title, issue the following query:

WHERE CONTAINS (...,'Tale WITHIN title', ...)

Using XML_SECTION_GROUP and add_attr_section to Aid Querying
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">
It was the best of times. </BOOK>
<Author="Charles Dickens">
Born in England in the town, Stratford_Upon_Avon </Author>

Recall the CTX_DDL.Add_Attr_Section syntax is:

CTX_DDL.Add_Attr_Section ( group_name, section_name, tag );

To define the title attribute as an attribute section, create an XML_SECTION_

GROUP and define the attribute section as follows:

ctx_ddl_create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_attr_section('myxmlgroup', 'booktitle', 'book@title');
ctx_ddl.add_attr_section('myxmlgroup', 'authors', 'author');
end;

When you define the TITLE attribute section as such and index the document set,

you can query the XML attribute text as follows:

... WHERE CONTAINS (...,'Cities WITHIN booktitle', ....)...

When you define the AUTHOR attribute section as such and index the document

set, you can query the XML attribute text as follows:

... WHERE 'England WITHIN authors'

Oracle Text Example 4: Querying a... Document
This example does the following:

Note: When you use the AUTO_SECTION_GROUP to index XML

documents, the system automatically creates attribute sections and

names them in the form attribute@tag.
Searching XML Data with Oracle Text 8-37



Step 3. Create Your Query Syntax
1. Creates and populates table res_xml

2. Creates an index, section_group, and preferences

3. Paramaterizes the preferences

4. Runs a test query against res_xml

drop table res_xml;

CREATE TABLE res_xml (
  pk            NUMBER PRIMARY KEY ,
  text          CLOB
  ) ;

insert into res_xml values(111,
'ENTITY chap8 "Chapter 8, <q>Keeping it Tidy: the XML Rule Book </q>"> this is

the document section');
commit;

---
--- script to create index on res_xml
---

--- cleanup, in case we have run this before
DROP INDEX res_index ;
EXEC CTX_DDL.DROP_SECTION_GROUP ( 'res_sections' ) ;

--- create a section group
BEGIN
  CTX_DDL.CREATE_SECTION_GROUP ( 'res_sections', 'XML_SECTION_GROUP' ) ;
  CTX_DDL.ADD_FIELD_SECTION ( 'res_sections', 'chap8', '<q>') ;
END ;
/

begin
  ctx_ddl.create_preference
    (
      preference_name => 'my_basic_lexer',
      object_name     => 'basic_lexer'
    );
  ctx_ddl.set_attribute
    (
      preference_name => 'my_basic_lexer',
      attribute_name  => 'index_text',
      attribute_value => 'true'
8-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Step 3. Create Your Query Syntax
    );
  ctx_ddl.set_attribute
    (
      preference_name => 'my_basic_lexer',
      attribute_name  => 'index_themes',
      attribute_value => 'false');
end;
/

CREATE INDEX res_index
  ON res_xml(text)
  INDEXTYPE IS ctxsys.context
  PARAMETERS ( 'lexer my_basic_lexer SECTION GROUP res_sections' ) ;

Test the above index with a test query, such as:

SELECT pk FROM res_xml WHERE CONTAINS( text, 'keeping WITHIN chap8' )>0 ;

Oracle Text Example 5: Creating an Index and Performing a Text Query

Creating Table explain_ex to Use in this Example
drop table explain_ex;

create table explain_ex
  (
    id        number primary key,
    text      varchar(2000)
  );

insert into explain_ex ( id, text )
  values ( 1, 'thinks thinking thought go going goes gone went' || chr(10) ||
              'oracle orackle oricle dog cat bird'              || chr(10) ||
              'President Clinton' );
insert into explain_ex ( id, text )
  values ( 2, 'Last summer I went to New England'               || chr(10) ||
              'I hiked a lot.'                                  || chr(10) ||
              'I camped a bit.' );
commit;

Text Query Using "ABOUT" in the Text Query Expression
Set Define Off
select text
Searching XML Data with Oracle Text 8-39



Creating Sections in XML Documents that are Document Type Sensitive
  from explain_ex
  WHERE CONTAINS ( text,
  '( $( think & go ) , ?oracle ) & ( dog , ( cat & bird ) ) & about(mammal
                                                    during Bill Clinton)' ) > 0;

select text
  from explain_ex
  WHERE CONTAINS ( text, 'about ( camping and hiking in new england )'  ) > 0;

Creating Sections in XML Documents that are Document Type Sensitive
Consider an XML document set that contains the <book> tag declared for different

document types. You need to create a distinct book section for each document type.

Assume that mydocname is declared as an XML document type (root element) as

follows:

<!DOCTYPE mydocname ... [...

Within mydocname, the element <book> is declared. For this tag, you can create a

section named mybooksec that is sensitive to the tag's document type as follows:

begin
ctx_ddl.create_section_group('myxmlgroup', 'XML_SECTION_GROUP');
ctx_ddl.add_zone_section('myxmlgroup', 'mybooksec', 'mydocname(book)');
end;

Repeated Sections
Zone sections can repeat. Each occurrence is treated as a separate section. For

example, if <H1> denotes a heading section, they can repeat in the same documents

as follows:

<H1> The Brown Fox </H1>
<H1> The Gray Wolf </H1>

Note:

■ Oracle knows what the end tags look like from the group_type

parameter you specify when you create the section group. The

start tag you specify must be unique within a section group.

■ Section names need not be unique across tags. You can assign

the same section name to more than one tag, making details

transparent to searches.
8-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Creating Sections in XML Documents that are Document Type Sensitive
Assuming that these zone sections are named Heading.

The query:

WHERE CONTAINS (..., ’Brown WITHIN Heading’, ...)...

returns this document.

But the query:

WHERE CONTAINS (...,’ (Brown and Gray) WITHIN Heading’,...)...

does not.

Overlapping Sections
Zone sections can overlap each other. For example, if <B> and <I> denote two

different zone sections, they can overlap in document as follows:

plain <B> bold <I> bold and italic </B> only italic </I>  plain

Nested Sections
Zone sections can nest, including themselves as follows:

<TD>
  <TABLE>
  <TD>nested cell</TD>
  </TABLE>
</TD>

Using the WITHIN operator, you can write queries to search for text in sections

within sections.

Nested Section Query Example
For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as

follows in documents doc1 and doc2:

doc1:

<book1><author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:
Searching XML Data with Oracle Text 8-41



Presenting the Results of Your Query
<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:

'Scott WITHIN author WITHIN book1'

This query returns only doc1.

Presenting the Results of Your Query
A Text query application allows you to view the documents returned by a query.

You typically select a document from the hitlist and then your application presents

the document in some form.

With Oracle Text, you can render a document in different ways. For example, with

the query terms highlighted. Highlighted query terms can be either the words of a

word query or the themes of an ABOUT query in English. This rendering uses the

CTX_DOC.HIGHLIGHT or CTX_DOC.MARKUP procedures.

You can also obtain theme information from documents with the CTX_

DOC.THEMES PL/SQL package. Besides these there are several other CTX_DOC

procedures for presenting your query results.

’

Case Study: Searching an Online FAQ List Using Oracle Text

Consider the scenario where your company has several FAQs for each product.

Each FAQ is an XML document similar to the following:

<?xml version="1.0"?>
    <FAQ OWNER="Billy Text">
      <TITLE>Oracle Text FAQ</TITLE>
        <DESCRIPTION>Everything you always wanted to know ...</DESCRIPTION>
        <QUESTION>What is Oracle Text?</QUESTION>
        <ANSWER>Oracle Text uses standard SQL to index, ...</ANSWER>
    </FAQ>

See Also: Oracle Text Reference for more information on the CTX_

DOC package.

Note: ■You can download this sample application from

http://otn.oracle.com/products/text.
8-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Case Study: Searching an Online FAQ List Using Oracle Text
In this sample FAQ case study, we are only using 3 FAQs, with titles: Text,

Performance, and XML. The sample FAQ program searches for information within

the FAQs’ XML tags using the WITHIN operator. The pull-down menu for the FAQ

user interface is generated at run-time. Figure 8–1 shows the online FAQ Search

user interface. The pull down menu shows the XML elements selected for use in

searching the FAQ data:

■ Title

■ Question

■ FAQ

■ Description

■ Answer

"FAQ Owner" is actually an element attribute. Attributes are also searchable. These

tags or elements are used here to assist users in fine tuning their keyword search for

desired FAQs.

Figure 8–1 Online FAQ Search User Interface: Search Options

Figure 8–2 shows to enter a search for keyword “XML”, in all TITLE elements of

the FAQs. The result of the search here is one FAQ with title, "XML..."
Searching XML Data with Oracle Text 8-43



Case Study: Searching an Online FAQ List Using Oracle Text
Figure 8–2 Creating an Online FAQ Search User Interface with Oracle Text: Searching
for “XML” Within TITLE

Figure 8–3 shows how you can enter an attribute search for “Billy” within FAQ

OWNER by using TITLE, where TITLE is the attribute of the element FAQ OWNER.

The syntax is "...WHERE Billy WITHIN faq@owner".
8-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Case Study: Searching an Online FAQ List Using Oracle Text
Figure 8–3 Creating an Online FAQ Search User Interface with Oracle Text: Attribute
Searching for “Billy” Within “FAQ OWNER”

To create your online FAQ search program for your company, follow these steps:

1 Create and Populate Your FAQ Table. Create an Auto Section Group and Oracle

Text Index

2 Compile showxml.psp

3 Compile faqsearch.psp

1   Create and Populate Your FAQ Table. Create an Auto Section Group and Oracle
Text Index

Run faqsearch_install.sql . This script does the following:

■ Creates the table faq.

■ Populates table faq with three records of data.

■ Creates the section group and the Text index.

faqsearch_install.sql
insert into faq(tk,xml_desc)
 values(1,'<?xml version="1.0"?>
<FAQ OWNER="Billy Text">
<TITLE>Oracle Text FAQ</TITLE><DESCRIPTION>Everything you always wanted to know
Searching XML Data with Oracle Text 8-45



Case Study: Searching an Online FAQ List Using Oracle Text
about Text but were afraid to ask</DESCRIPTION>
<QUESTION>What is Oracle Text?</QUESTION>

<ANSWER>Oracle Text uses standard SQL to index, search, and analyze text and
documents stored in the database, files or websites</ANSWER>
<QUESTION>What is ABOUT?</QUESTION>
    <ANSWER>ABOUT queries increase the number of relevant documents returned by
a query.</ANSWER>');

insert into faq(tk,xml_desc)
 values(2,'<?xml version="1.0"?><FAQ OWNER="Jack Performance">
<TITLE>Text Performance Guide</TITLE>
<DESCRIPTION>Oracle Text and interMedia Text performance guide</DESCRIPTION>
<QUESTION>What do we mean by query performance anyway?</QUESTION>
    <ANSWER>There are generally two measures of query performance - response
time (the time to get an answer to an individual query), and throughput (the
number of queries that can be run in any time period, eg queries per
second).</ANSWER></FAQ>');

insert into faq(tk,xml_desc)
 values(3,'<?xml version="1.0"?><FAQ OWNER="John XML">
<TITLE>XML FAQ</TITLE><DESCRIPTION>Oracle XML FAQ</DESCRIPTION>
<QUESTION>What is XML?</QUESTION>
    <ANSWER>XML stands for eXtensible Markup Language. XML s quickly becoming
the standard way to identify and describe data on the web because it has proved
broadly implementable and easy to deploy</ANSWER>
<QUESTION>What is the Oracle Kit?</QUESTION>
    <ANSWER>The Oracle XML Developer Kit (XDK) contains the basic building
blocks for reading, manipulating, transforming and viewing XML documents. To
provide a broad variety of deployment options, the Oracle XDK is available for
Java, C, C++ and PL/SQL.</ANSWER></FAQ>');

commit;

begin
 ctx_ddl.create_section_group('faq_auto_section_group','auto_section_group');
end;
/

create index faq_idx on faq(xml_desc) indextype is ctxsys.context
 parameters('section group faq_auto_section_group')
/

8-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Case Study: Searching an Online FAQ List Using Oracle Text
2 Compile showxml.psp
To develop and deploy PL/SQL Server Pages (PSP), you need the Oracle server at

version 8.1.6 or later, together with a PL/SQL web gateway. Currently, the web

gateways are Oracle Internet Application Server (iAS), the WebDB PL/SQL

Gateway, and the OAS PL/SQL Cartridge. Before you start with PSP, you should

have access to both the database server and the web server for one of these

gateways.

To compile showxml.psp, use the command:

loadpsp -replace -user username/passwd showxml.psp

showxml.psp

<%@ plsql procedure="showxml" %>
<%@ plsql parameter="id" default="null" %>
<%! v_text      varchar2(32767); %>
<%! v_text_xml  varchar2(32767); %>

<%
  select xml_desc into v_text from faq where tk=id;
%>

<html>
<title>Show xml </title>
<body>
<h3>XML Content</h3>
<hr>

  <pre>
  <% v_text_xml := replace(v_text,'<','&lt;'); %>

  <%= v_text_xml %>
  </pre>

</body>
</html>

See Also: Oracle9i Application Developer’s Guide - Fundamentals for
information about using PSP programs.
Searching XML Data with Oracle Text 8-47



Case Study: Searching an Online FAQ List Using Oracle Text
3 Compile faqsearch.psp
Open a URL in your browser to access faqsearch.psp , as follows:

http://myserver_and_directory/faqsearch

faqsearch.psp

<%@ plsql parameter="query" default="null" %>
<%@ plsql parameter="tagvalue" default="null"  %>

<%! v_results numeric := 0; %>

<html>
<head>
   <title>FAQ Search </title>
</head>
<body>

<%
  If query is null Then
%>

  <center>
  <h3>FAQ Search </h3>
  <form method=post action="faqsearch">
  <p>
  Search for <input type=Text size=15 maxlength=25 name="query">
  within
  <select name="tagvalue">

  <%
-- generates the pull-down menu with the following select
      for c in (select token_text from DR$FAQ_IDX$I
                where token_type=2)
        loop
  %>
          <option value="<%= c.token_text %>"><%= c.token_text %>

  <%  end loop; %>

     <option value="faq@Owner">FAQ Owner
  </select>
8-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Case Study: Searching an Online FAQ List Using Oracle Text
  <input type=submit value="Search">
  </form>

<% Else %>
   <%!
     color varchar2(6) := 'ffffff';
   %>
   <center>
   <h3>FAQ Search</h3>
   <form method=post action="faqsearch">
   <p>
   Search for
   <input type=text size=15 maxlength=25 name="query" value=<%= query %>>
   within
   <select name="tagvalue">

   <%
-- generates the pull-down menu with the following select
      for c in (select token_text from DR$FAQ_IDX$I
                where token_type=2)
      loop
   %>
          <option value="<%= c.token_text %>"><%= c.token_text %>

   <% end loop; %>

      <option value="faq@Owner">FAQ Owner
   </select>

   <input type=submit value="Search">
   </form>

   <p>

   <%! v_query        varchar2(400);  %>
   <%! v_desc_substr  varchar2(1000); %>
   <%! v_desc_item    varchar2(1000); %>
   <%! v_desc_start   number;         %>
   <%! v_desc_final   number;         %>
   <%! v_title_substr varchar2(1000); %>
   <%! v_title_start  number;         %>
   <%! v_title_final  number;         %>
Searching XML Data with Oracle Text 8-49



Case Study: Searching an Online FAQ List Using Oracle Text
   <%

     v_query := query || ' WITHIN '|| tagvalue;

-- Text query using WITHIN for XML documents
     for doc in (select tk, xml_desc
                    from faq where contains(xml_desc,v_query) >0
                )
        loop
          v_results := v_results + 1;
          if v_results = 1 then
   %>

             <table border="1" cellpadding="4" cellspacing="0">
               <tr bgcolor="#6699CC">
                 <th>Title</th>
                 <th>Description</th>
               </tr>
   <%     end if; %>

          <tr bgcolor="#<%= color %>">

   <%
           v_title_start  := instr(doc.xml_desc,'<TITLE>');
           v_title_final  := instr(doc.xml_desc,'</TITLE>');
           v_title_substr := substr(doc.xml_desc,v_title_
start+length('<TITLE>'),v_title_final - length('</TITLE>') - v_title_start+1);

           v_desc_start   := instr(doc.xml_desc,'<DESCRIPTION>');
           v_desc_final   := instr(doc.xml_desc,'</DESCRIPTION>');
           v_desc_substr  := substr(doc.xml_desc,v_desc_
start+length('<DESCRIPTION>'),v_desc_final - length('</DESCRIPTION>') - v_desc_
start+1);
   %>

           <td>
             <a href="showxml?id=<%= doc.tk %>"><%= v_title_substr %></a>
           </td>

   <%      v_desc_item := replace(v_desc_substr,'<','&lt;'); %>

           <td>
             <%= v_desc_item %>
           </td>
          </tr>
8-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Searching Attribute Values
   <%
          if (color = 'ffffff') then /* alternate row color */
             color := 'eeeeee';
           else
             color := 'ffffff';
          end if;
        end loop;
   %>

        </table>
     </center>

  <%
     if v_results = 0 then %>
       <center><h3>Found 0 records for your query</h3></center>
  <% end if; %>

<% End if;%>
<p>
<hr>
<p>
</body>
</html>

Frequently Asked Questions (FAQs): Oracle Text
This FAQ section is divided into the following categories:

■ Searching Attribute Values

■ General Oracle Text Questions

■ Searching XML Documents in CLOBs

Searching Attribute Values

Can I Build Indexes on Attribute Values?
Currently Oracle Text (intermedia Text) has the option to create indexes based on

the content of a section group. But most XML Elements are of the type of Element.
Searching XML Data with Oracle Text 8-51



General Oracle Text Questions
So, the only option for searching would be attribute values. Can I build indexes on

attribute values?

Answer
Releases from 8.1.6 and higher allow attribute indexing. See the following site:

http://otn.oracle.com/products/intermedia/htdocs/text_training_

816/Samples/imt_816_techover.html#SCN

General Oracle Text Questions

Can XML Documents Be Queried Like Table Data?
I know that an intact XML document can be stored in a CLOB in ORACLE’s XML

solution.

1. Can XML documents stored in a CLOB/BLOB be queried like table schema?

For example:

[XML document stored in BLOB]...<name id="1111"><first>lee</first>
<sencond>jumee</second></name>...

Can value(lee, jumee) be queried by elements, attributes and the structure of

XML document?

2. If some element or attribute is inserted/updated/deleted, must the whole

document be updated? Or can insert/update/delete function as in table

schema?

3. About locking, if we manage an XML document stored in a CLOB/BLOB, can

nobody access the same XML document?

Answer
1. Using Oracle Text (intermedia Text), you can find this document with a query

such as:

lee within first or this:jumee within second or this:1111 within name@id

you can combine these like this:

lee within first and jumee within secondor this:(lee within first) within
name.
For more information, please read the “interMedia Text Technical Overview”

for 8.1.5 and 8.1.6 available on OTN.
8-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General Oracle Text Questions
2. Oracle Text (intermedia Text) indexes CLOB/BLOB, and this has no knowledge

about XML specifically, so you cannot really change individual elements. You

have to edit the document as a whole.

3. Just like any other CLOB, if someone is writing to the CLOB, they have it locked

and nobody else can write to the CLOB. Other users can READ it, but not write.

This is basic LOB behavior.

Another alternative is to decompose the XML document and store the

information in relational fields. Then you could modify individual elements,

have element-level simultaneous access, and so on. In this case, using

something called the USER_DATASTORE, you can use PL/SQL to reconstitute

the document to XML for text indexing. Then, you get text search as if it were

XML, but data management as if it were relational data. Again, see interMedia

Text Technical Overview for more information.

http://otn.oracle.com/products/text.

Can we Search Based on Structural Conditions?
Is it possible for Oracle Text (intermedia Text) to index XML such as:   2/7/1968

and then process a query such as:

Who has brown hair, that is, select name from person where hair.color = “BROWN”

Answer
Searches based on structural conditions are not yet available through Oracle Text

(intermedia Text). Attribute searches are supported fromOracle8i Release 2 (8.1.6).

For reference you should not put data in attributes as that will not be compliant

with XML Schema when it becomes a recommendation.

How Can I Searching XML Documents and Return a Zone?
I need to store a large XML file in Oracle8i, search it, and return a specific tagged

area.Using Oracle Text (intermedia Text) some of this is possible:

■ I can store an XML file in a CLOB field

■ I can index it with ctxsys.context

■ I can create <Zones> and <Fields> to represent the Tags in my XML fileEx. ctx_

ddl.add_zone_section(xmlgroup,”dublincore”, dc);

■ I can search for text within a Zone or fieldEx. Select title from mytable where

CONTAINS(textField,”some words WITHIN doubleness”)
Searching XML Data with Oracle Text 8-53



General Oracle Text Questions
How do I return a zone or a field based on a text search?

Answer
Oracle Text (intermedia Text) will only return the “hits”. You will need to

subsequently parse the CLOB to extract a section.

Loading XML Documents into the Database and Searching with Oracle Text
How do I insert XML documents into a database? I need to insert the XML

document “as is” in column of datatype CLOB into a table.

Answer
Oracle's XML SQL Utility for Java offers a command-line utility that can be used for

loading XML data. More information can be found on the XML SQL Utility at:

http://otn.oracle.com/tech/xml and here in Chapter 7, "XML SQL Utility (XSU)".

You can insert the XML documents as you would any text file. There is nothing

special about an XML-formatted file from a CLOB perspective.

Question 2

Oracle Text (intermedia Text) can be used to index and search XML stored in

CLOBs? How can we get started?

Answer 2
Versions of Oracle Text (intermedia Text) before Oracle8i Release 2 (8.1.6) only

allowed tag-based searching. The current version allows for XML structure and

attribute based searching. There is documentation on how to have the index built

and the SQL usage in the Oracle Text documentation.

How Do I Search XML using the WITHIN Operator?
I have this xml:

<person>
  <name>efrat</name>
 <childrens>
     <child>
         <id>1</id>
         <name>keren</name>
     </child>

See Also: Oracle Text Reference.
8-54 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General Oracle Text Questions
  </childrens>
</person>

How do I find the person who has a child name keren but not the person's name

keren? Assuming I defined every tag with the add_zone_section that can be nested

and can include themselves.

Answer
Use selectSingleNode or selectNodes with XPATH string as a parameter.eg.

selectSingleNode(“//child/name[.='keren'])Also, I recommend making id as an

attribute instead of a tag.

Oracle Text (intermedia Text) and XML
Where can I get good samples of searching XML with Oracle Text.

Answer
See the following manuals:

■ Oracle Text Application Developer’s Guide

■ Oracle Text Reference

Oracle Text (intermedia Text) and XML: Add_field_section
Can Oracle Text (intermedia Text) recognize the tags in my XML document or do I

have to use the add_field_section command for each tag in the XML document? My

XML documents have hundreds of tags. Is there an easy way to do this?

Answer
Which version of the database are you using? I believe you need to do it for 8.1.5

but not in Oracle8i Release 2(8.1.6). You can use AUTO_SECTION_GROUP in 8.1.6

XSQL Servlet ships with a complete (albeit simple from the interMedia standpoint)

example of a SQL script that creates a complex XML Datagram out of Object Types,

and then creates an Oracle Text (intermedia Text) index on the XML Document

Fragment stored in the “Insurance Claim” type.

If you download the XSQL Servlet, and look at the file ./xsql/demo/insclaim.sql

you'll be able to see the interMedia stuff at the bottom of the file. One of the key

new features in interMedia in Oracle8i Release 2(8.1.6) is the AUTO Sectioner for

XML.
Searching XML Data with Oracle Text 8-55



General Oracle Text Questions
Can I Do Range Searching with Oracle Text?
I have an XML document that I have stored in CLOB. I have also created the

indexes on the tags using section_group, and so on. One of the tags is <SALARY>

</SALARY> I want to write an SQL statement so as to select all the records that

have salary lets say > 5000. How do I do this? I cannot use WITHIN operator. I want

to interpret the value present in this tag as a number. This could be floating point

number also since this is salary.

Answer
You cannot do this in Oracle Text. Range search is not really a text operation. The

best solution is to use the other Oracle XML parsing utilities to extract the salary

into a NUMBER field -- then you can use Oracle Text (intermedia Text) for text

searching, and normal SQL operators for the more structured fields, and achieve the

same results.

Can Oracle Text Do Section Extraction?
We are storing all our documents in XML format in a CLOB. Are there utilities

available in Oracle perhaps interMedia to retrieve the contents a field at a time, that

is given a field name, get the text between tags, as opposed to retrieving the whole

document and traversing the structure?

Answer
interMedia does not do section extraction. See the XML SQL Utility for this in

Chapter 7, "XML SQL Utility (XSU)".

Can I Create a Text Index on Three Columns?
I have created a view based on 7-8 tables and it has columns like, custordnumber,

product_dscr, qty, prdid,shipdate, ship_status, and so on. I need to create an Oracle

Text index on the three columns:

■ custordnumber

■ product_dsc

■ ship_status

Is there a way to create a Text index on these columns?
8-56 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General Oracle Text Questions
Answer
The short answer is yes. You have two options:

1. Use the USER_DATASTORE object to create a concatenated field on the fly

during indexing;

2. Concatenate your fields and store them in an extra CLOB field in one of your

tables. Then create the index on the CLOB field. If you're using Oracle8i Release

2(8.1.6) or higher, then you also have the option of placing XML tags around

each field prior to concatenation. This gives you the capability of searching

WITHIN each field.

How Fast is Oracle9i at Indexing Text and Can I Just Enable Boolean Searches?
We are using mySQL to do partial indexing of 9 million Web pages a day. We are

running on a 4-processor Sparc 420 and unable to do full text indexing. Can

Oracle8i or Oracle9i do this?

We are not interested in transactional integrity, applying any special filters to the

text pages, or in doing any other searching other than straight boolean word

searches (no scoring, no stemming, no fuzzy searches, no proximity searches, and

so on).

I have are the following questions:

■ Will Oracle8i or oracle9i be any faster at indexing text than mySQL?

■ If so, is there a way to disable all the features of text indexing except for boolean

word searches?

Answer
Yes. Oracle Text (interMedia Text) can create a full-text index on 9 million web

pages - and pretty quickly. In a benchmark on a large Sun box, we indexed 100Gig

of web pages (about 15 million) in 7 hours. We can also do partial indexing via

regular DML or (in 9i) via partitioning.

You can do “indexing light” to some extent - you can disable theme indexing, you

do not need to filter documents if they are already ASCII/HTML/XML, and most

common expansions - fuzzy, stemming, proximity - are done at query time.

How Can We Index XML Documents in Different Languages?
We know that Oracle 8i Release 2 (8.1.6) allows multiple language records to be

stored in the same table (and column) and interMedia handles the index
Searching XML Data with Oracle Text 8-57



Searching XML Documents in CLOBs
appropriately based on the language setting for each row (using the multi-lexer

feature).

Currently we use one CLOB column in the table and it is indexed using Oracle Text.

The column content is in XML (tagged) format and we use fields, sections and zone

functions for indexing and search. This works perfectly as we only have a single

language data in the database (and we have different database for different

languages and sites) and we are currently using Oralce8i Release 1 (8.1.5) so we

have NLS_LANG appropriately set for indexing and searches work correctly for

individual languages.

However, we now have to store multi-lingual data in the same table (and column).

Individual data elements may also be in different languages. For example, this is a

record for a book that has a French title but Spanish authors. At present we have all

this information in the CLOB column separated by fields/sections. My questions

are:

1. I presume there is no way to specify language for individual sections within an

index in Oracle8i Release 2 (8.1.6) Is this correct?

2. We could separate out all the fields that could potentially be in different

language into different columns in the same table and then have a

corresponding language column for each of those columns and use the

multi-lexer functionality to build separate indexes. Is this assumption correct or

recommended?

3. If we do as described above, then we need to have multiple CONTAINS clauses

when searching across columns, which can adversely affect performance.

4. How best we can approach this issue?

Answer
1. Correct.

2) - 3) You have correctly identified the potential problem.

Searching XML Documents in CLOBs

How Do I Search CLOBs Using Oracle Text?
How would I define interMedia parameters so that I would be able to search my

CLOB column for records that contained “aorta” and “damage”. For example using

the following XML (DTD implied):
8-58 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Searching XML Documents in CLOBs
WellKnownFileName.gif   echocardiogram   aorta

This is an image of the vessel damage. It would be nice to see a simple (or

complicated) example of an XML interMedia implementation. I assume there is no

need to setup the ZONE or FIELDS.....Is this the case?

Answer
If you save an XML Document fragment in a CLOB, and enable an Oracle Text

(intermedia Text) XML index on it, then you can do an SQL query which uses the

CONTAINS() operator as the following query does:

Assume you have a document like an insurance claim:

77804
1999-01-01 00:00:00.0 8895 1044
Paul               Astoria
123 Cherry Lane SF CA 94132
1999-01-05 00:00:00.0 7600 JCOX
It was becase of Faulty Brakes

If you store the content as a document fragment in a CLOB, then you can do a query

like the following (assuming everything else you store in relational tables):

REM Select the SUM of the amounts of
REM  all settlement payments approved by "JCOX"
REM  for claims whose  relates to Brakes.
select sum(n.amount) as TotalApprovedAmount
  from insurance_claim_view v, TABLE(v.settlements) n
  where n.approver = 'JCOX'
  and contains(damageReport,'Brakes within Cause') >

How Can I Search Different XML Documents Stored in CLOBs With Different DTDs?
If I store XML in CLOBs and use the DOM or SAX to reparse the XML later as

needed.How can I search this document repository? Oracle Text (intermedia Text)

seems ideal. Do you have an example of setting this up using intermedia in

Oracle8i, demonstrating how to define the XML_SECTION_GROUP and where to

use a ZONE as opposed to a FIELD, and so on? For example:

How would I define Intermedia parameters so that I would be able to search my

CLOB column for records that had the “aorta” and “damage” in the using the

following XML (DTD implied)   WellKnownFileName.gif   echo cardiogram aorta

This is an image of the vessel damage.
Searching XML Data with Oracle Text 8-59



Searching XML Documents in CLOBs
Answer
Oracle8i Release 2 (8.1.6) and higher allow searching within attribute text. That's

something like: state within book@author. Oracle now offers attribute value

sensitive search, more like the following:

state within book[@author = “Eric”]:

begin  ctx_ddl.create_section_group('mygrp','basic_section_group');
  ctx_ddl.add_field_section('mygrp','keyword','keyword');
  ctx_ddl.add_field_section('mygrp','caption','caption');
end;
create index myidx on mytab(mytxtcolumn)indextype is ctxsys.contextparameters
('section group mygrp');
select * from mytab where contains(mytxtcolumn, 'aorta within keyword')>0;
options:

■ Use XML section group instead of basic section group if your tags have

attributes or you need case-sensitive tag detection

■ Use zone sections instead of field sections if your sections overlap, or if you

need to distinguish between instances. For instance, keywords. If keywords is a

field section, then (aorta and echo cardiogram) within keywords finds the

document. If it is a zone section, then it does not, because they are not in the

SAME instance of keywords.

It is not so clear. It looks to me like this example is trying to find instances of

elements containing “damage” that have a sibling element containing “aorta”

within the same record. It's not clear what exactly he means by “record”.

If each record equates to the in his example, and there can be multiple records in a

single XML LOB, than I don't see how you could do this search with interMedia.

If there is only one per CLOB/row, than perhaps you could find it by ANDing two

context element queries. But that would still be a sloppy sort of xml search relying

on some expected limitations of the situation more so than the structural

composition actually called for.

Storing an XML Document in CLOB: Using Oracle Text (intermedia Text)
I need to store XML files (that are present on the file system as of now) into the

database. I want to store the whole document. What I mean is that I do not want to

break the document as per the tags and then store the info in separate tables/fields.

Rather I want to have a universal table, that I can use to store different XML

documents. I think internally it will be stored in a CLOB type of field in my case.

My XML files will always contain ASCII data.
8-60 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Searching XML Documents in CLOBs
Can this be done using interMedia. Should we be using Oracle Text (intermedia

Text) or interMedia Annotator for this? I downloaded Annotator from OTN, but I

could not store XML document in the database.

I am trying to store XML document into CLOB column. Basically I have one table

with the following definition:

CREATE TABLE xml_store_testing
(
    xml_doc_id  NUMBER,
    xml_doc     CLOB  )

I want to store my XML document in xml_doc field.

I have written another PL/SQL procedure shown below, to read the contents of the

XML Document. The XML document is available on the file system. XML document

contains just ASCII data - no binary data.

CREATE OR REPLACE PROCEDURE FileExec
(
  p_Directory      IN VARCHAR2,
  p_FileName       IN VARCHAR2)
  AS   v_CLOBLocator  CLOB;
       v_FileLocator       BFILE;
BEGIN
    SELECT  xml_doc
    INTO      v_CLOBLocator
    FROM    xml_store_testing
    WHERE  xml_doc_id = 1
    FOR        UPDATE;
    v_FileLocator := BFILENAME(p_Directory, p_FileName);
    DBMS_LOB.FILEOPEN(v_FileLocator, DBMS_LOB.FILE_READONLY);
    dbms_output.put_line(to_char(DBMS_LOB.GETLENGTH(v_FileLocator)));
      DBMS_LOB.LOADFROMFILE(v_CLOBLocator, v_FileLocator,
      DBMS_LOB.GETLENGTH(v_FileLocator));
      DBMS_LOB.FILECLOSE(v_FileLocator);
END FileExec;

Answer
Put the XML documents into your CLOB column, then add an Oracle Text

(intermedia Text) index on it using the XML section-group. See the documentation

and overview material at http://otn.oracle.com/products/intermedia.
Searching XML Data with Oracle Text 8-61

http://technet.oracle.com/products/intermedia


Searching XML Documents in CLOBs
Question 2
When I execute this procedure, it executes successfully. But when I select from the

table I see unknown characters in the table in CLOB field. Could this be because of

the reason of the character set difference between operating system (where XML file

resides) and database (where CLOB data resides).

Answer 2
Yes. If the character sets are different then you probably have to pass the data

through UTL_RAW.CONVERT to do a character set conversion before writing to

the CLOB.

Can We Only Insert Structured When The Table is Created?
We need to insert data in the Database from an XML file. Currently we only can

insert structured data with the table already created. Is this true?

We are working in a law project where we need to store laws that have structured

data and unstructured data, and then search the data using Oracle Text (interMedia

Text). Can we insert unstructured data too? Or do we need to develop a custom

application to do it? Then if we have the data stored with some structured parts and

some unstructured parts, can we use Oracle Text to search it? If we stored the

unstructured part in a CLOB, and the CLOB has tags, how can we search only data

in an specific tag?

Answer
Consider using iFS which allows you to break up a document storing it across

tables and in a LOB. Oracle Text can perform data searches with tags and is

knowledgeable about the hierachical XML structure. From Oracle8i Release 2

(8.1.6), Oracle Text (intermedia Text) has this capability along with name/value pair

attribute searches.

Question 2
Hence, this document breaking is not possible in these cases if I don't create a

custom development? Although interMedia does not understand hierachical XML

structure, can I do something like this?

<report>
   <day>yesterday</day> there was a disaster <cause>hurricane</cause>
</report>
8-62 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)

http://technet.oracle.com/products/intermedia


Searching XML Documents in CLOBs
Indexing with Oracle Text I would like to search LOBs where cause was hurricane.

Is this possible?

Answer 2
You can perform that level of searching with the current release of Oracle Text

(intermedia Text). Currently to break a document up you have to use the XML

Parser with XSLT to create a stylesheet that transforms the XML into DDL. iFS gives

you a higher level interface.

Another technique is to use a JDBC program to insert the text of the document or

document fragment into a CLOB or LONG column, then do the searching using the

CONTAINS() operator after setting up the indexes.
Searching XML Data with Oracle Text 8-63



Searching XML Documents in CLOBs
8-64 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part III

  Data Exchange Using XML

Part III  includes  a description of Oracle Advanced Queuing (AQ), the new AQ

iDAP feature, XML queues, XML message transformation, and how AQ and XML

can be used in B2B messaging applications.

Part III contains the following chapters:

■ Chapter 9, "Exchanging XML Data Using Oracle AQ"

See Also: Oracle9i Case Studies - XML Applications, for more case

studies and sample applications on data exchange using XMl and

AQ.





Exchanging XML Data Using O
/ 9

Exchanging XML Data Using Oracle AQ

This chapter contains the following sections:

■ What is AQ?

■ How do AQ and XML Complement Each Other?

■ Internet-Data-Access-Presentation (IDAP)

■ IDAP Architecture

■ IDAP Message Body is an AQ XML Document

■ IDAP Client Requests for Enqueue

■ IDAP Client Requests for Dequeue

■ IDAP Client Requests for Registration

■ IDAP Server Response to Enqueue

■ Server Response to a Dequeue Request

■ Server Response to a Register Request

■ Notification

■ IDAP and AQ XML Schemas

■ AQXMLServlet

■ XMLType Queues

■ AQ XML Message Format Transformation

■ Frequently Asked Questions (FAQs): XML and Advanced Queuing
racle AQ 9-1



What is AQ?
What is AQ?
Oracle Advanced Queuing (AQ) provides database integrated message queuing

functionality. AQ:

■ Enables and manages asynchronous communication of two or more

applications using messages.

■ Supports point-to-point and publish/subscribe communication models.

Integration of message queuing with Oracle9i database brings the integrity,

reliability, recoverability, scalability, performance, and security features of Oracle9i
to message queuing. Integration with Oracle9i also facilitates the extraction of

intelligence from message flows.

How do AQ and XML Complement Each Other?
XML has emerged as a standard format for business communications. XML is being

used not only to represent data communicated between business applications, but

also, the business logic that is encapsulated in the XML.

In Oracle9i, AQ supports native XML messages and also allows AQ operations to

be defined in the XML-based Internet-Data-Access-Presentation (IDAP) format.

IDAP, an extensible message invocation protocol, is built on Internet standards,

using HTTP and email protocols as the transport mechanism, and XML as the

language for data presentation. Clients can access AQ using this.

See "Internet-Data-Access-Presentation (IDAP)"  on page 9-6.

AQ and XML Message Payloads
Figure 9–1 shows an Oracle9i database using AQ to communicate with three

applications, with XML as the message payload. The general tasks performed by

AQ in this scenario are:

■ Message flow using subscription rules

■ Message management

■ Extracting business intelligence from messages

■ Message transformation

This is an intra- and inter-business scenario where XML messages are passed

asynchronously among applications using AQ.
9-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How do AQ and XML Complement Each Other?
■ Intra-business. Typical examples of this kind of scenario include sales order

fulfillment and supply-chain management.

■ Inter-business processes. Here multiple integration hubs can communicate over

the Internet backplane. Examples of inter-business scenarios include travel

reservations, coordination between manufacturers and suppliers, transferring

of funds between banks, and insurance claims settlements, among others.

Oracle uses this in its enterprise application integration products. XML

messages are sent from applications to an AQ hub, here shown as an OIS hub.

This serves as a “message server” for any application that wants the message.

Through this hub and spoke architecture, XML messages can be communicated

asynchronously to multiple loosely-coupled receiving applications.

Figure 9–1 shows XML payload messages transported using AQ in the following

ways:

■ Web-based application that uses an AQ operation over an HTTP connection

using IDAP

■ Accounting application that uses AQ to propagate an XML message over a Net*

connection.

■ Shipping and inventory application that uses AQ to propagate an IDAP/XML

message directly to the database over HTTP.
Exchanging XML Data Using Oracle AQ 9-3



How do AQ and XML Complement Each Other?
Figure 9–1 Advanced Queueing and XML Message Payloads

AQ Enables Hub-and-Spoke Architecture for Application Integration
A critical challenge facing enterprises today is application integration. Application

integration involves getting multiple departmental applications to cooperate,

coordinate, and synchronize in order to execute complex business transactions.

Web Sales
Application

Oracle9 i

Advanced
Queuing

To other database
systems and
applications

Gateways

XML
Message

XML
Message

IDAP*

XML
Message

Oracle 
Net

HTTP

OIS Hub

Oracle9 i

Accounting
Application

Oracle9 i

Shipping Database
(product inventory and 
location in warehouse)

Accounting Database
stomer billing information, 

account histories)

AQ tasks
· Message flow with 
  subscription rules
· Message Management
· Business Intelligence 
  from messages
· Message transformation

SMTP

i DAP*

Inventory and 
Shipping

Application

IDAP = AQ operation + data*
9-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How do AQ and XML Complement Each Other?
Advanced Queuing enables hub-and-spoke architecture for application integration.

It makes integrated solution easy to manage, easy to configure, and easy to modify

with changing business needs.

Messages Can be Retained for Auditing, Tracking, and Mining
Message management provided by AQ is not only used to manage the flow of

messages between different applications, but also, messages can be retained for

future auditing and tracking, and extracting business intelligence.

Viewing Message Content With SQL Views
AQ also provides SQL views to look at the messages. These SQL views can be used

to analyze the past, current, and future trends in the system.

Advantages of Using AQ
AQ provides the flexibility of configuring communication between different

applications.
Exchanging XML Data Using Oracle AQ 9-5



Internet-Data-Access-Presentation (IDAP)
Internet-Data-Access-Presentation (IDAP)
You can now perform AQ operations over the Internet by using Internet Data

Access Presentation (IDAP). IDAP defines the message structure using XML. IDAP-

structured message is sent over the Internet using using transport protocols such as

HTTP or SMTP.

XML and the IDAP Interface
The Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml
to specify the body of the request containing an XML-encoded method request.

XML provides the presentation for IDAP request and response messages as follows:

■ All protocol tags are scoped to the IDAP namespace.

■ The sender includes namespaces in IDAP elements and attributes.

■ The receiver processes IDAP messages that have correct namespaces; for

requests with incorrect namespaces, the receiver returns an invalid request

error.

■ The receiver processes IDAP messages without namespaces as though they had

the correct namespaces, if the context is valid.

■ The IDAP namespace has the value

http://ns.oracle.com/AQ/schemas/envelope

■ An XML document forming the request of an IDAP invocation does not require

the use of an XML DTD or a schema.

IDAP Architecture
Figure 9–2 shows the following components needed to send HTTP messages:

■ Client program which sends XML messages, that conform to IDAP format, to

the AQ Servlet. This can be any HTTP client, such as, Web browsers.

■ The Webserver or ServletRunner which hosts the AQ servlet that can interpret

the incoming XML messages, for example, Apache/Jserv or Tomcat

■ Oracle9i. The AQ servlet connects to this server to perform operations in your

queues.

The AQ client program sends XML messages (conforming to IDAP) to the AQ

servlet. Any HTTP client, for example Web browsers, can be used. The Web

See Also: Oracle9i Application Developer’s Guide - Advanced Queuing
9-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Architecture
server/ServletRunner hosting the AQ servlet interprets the incoming XML

messages. Examples include Apache/Jserv or Tomcat. The AQ servlet connects to

the Oracle database server and performs operations on the users’ queues.

Figure 9–2 IDAP Architecture for Performing AQ Operations Using HTTP

Figure 9–3 shows IDAP architecture when using SMTP. For SMTP, you will need the

following two additional components:

■ An Email Server

■ An LDAP Server

The Email server verifies client signatures using certificates stored in LDAP and

then routes the request to the AQ servlet.

AQ Client

Oracle9 i
Server

AQ Queue

Web Server

AQ
Servlet

XML
Messages
over HTTP
Exchanging XML Data Using Oracle AQ 9-7



IDAP Architecture
Figure 9–3 IDAP Architecture for Performing AQ Operations Using SMTP

IDAP Method Invocation
A method invocation is performed by creating the request header and body and

processing the returned response header and body. The request and response

headers can consist of standard transport protocol-specific and extended headers.

HTTP Headers
The POST method within the HTTP request header performs the IDAP method

invocation. The request should include the header IDAPMethodName, whose value

indicates the method to be invoked on the target. The value consists of a URI

followed by a "#", followed by a method name (which must not include the "#"

character), as follows:

IDAPMethodName: http://ns.oracle.com/AQ/schemas/access#AQXmlSend

The URI used for the interface must match the implied or specified namespace

qualification of the method name element in the IDAP:Body  part of the payload.

SMTP Headers
In the case of SMTP (email), the method invocation can be done by the filter

interface of the email server, which invokes a Java method with the

email-message-body as argument. This results in remote invocation of the POST
method on the AQ servlet. The response is emailed directly to the recipient

AQ Client

Oracle9 i
Server

AQ Queue

Web Server

AQ
Servlet

XML
Messages

over SMTP Oracle
eMail

Server

LDAP
Server
9-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Architecture
specified in the reply of the message. The response header can contain

SMTP-protocol-related headers also.

IDAP Message Structure
IDAP structures a message request or response as follows:

■ IDAP envelope (the root or top element in an XML tree))

■ IDAP header (first element under the root)

■ IDAP body (the AQ XML document)

The IDAP Envelope
The tag of this root element is IDAP:Envelope . IDAP defines a global attribute

IDAP:encodingStyle  that indicates serialization rules used instead of those

described by the IDAP specification. This attribute may appear on any element and

is scoped to that element and all child elements not themselves containing such an

attribute. Omitting IDAP:encodingStyle  means that type specification has been

followed (unless overridden by a parent element).

The IDAP envelope also contains namespace declarations and additional attributes,

provided they are namespace-qualified. Additional namespace-qualified

subelements can follow the body.

IDAP Headers
The tag of this first element under the root is IDAP:Header . An IDAP header

passes necessary information, such as the transaction ID, with the request. The

header is encoded as a child of the IDAP:Envelope  XML element. Headers are

identified by the name element and are namespace-qualified. A header entry is

encoded as an embedded element.

The IDAP Body
The IDAP body, tagged IDAP:Body , contains a first subelement whose name is the

method name. This method request element contains elements for each input and

output parameter. The element names are the parameter names. The body also

contains IDAP: Fault , indicating information about an error.

For performing AQ operations, the IDAP body must contain an AQ XML

document. The AQ XML document has the namespace

http://ns.oracle.com/AQ/schemas/access
Exchanging XML Data Using Oracle AQ 9-9



IDAP Architecture
IDAP Method Invocation Body: “IDAP Payload”
IDAP method invocation consists of a method request and optionally a method

response. The IDAP method request and method response are HTTP request and

response, respectively, whose content is an XML document that consists of the root

and mandatory body elements. This XML document is referred to as IDAP payload
in the rest of this chapter.

The IDAP payload is defined as follows:

■ IDAP root element is the top element in the XML tree.

■ IDAP payload headers contain additional information that must travel with the

request.

■ The method request is represented as an XML element with additional elements

for parameters. It is the first child of the IDAP:Body element. This request can

be one of the AQ XML client requests described in the next section

■ The response is the return value or error/exception that is passed back to the

client. The encoding rules are as follows:

Requests: Outcomes at the Receiving Site
At the receiving site, a request can have one of the following four outcomes:

a. The HTTP infrastructure on the receiving site was able to receive and

process the request. The HTTP infrastructure passes the headers and body

to the IDAP infrastructure.

b. The HTTP infrastructure on the receiving site could not receive and process

the request. The result is an HTTP response containing an HTTP error in

the status field and no XML body.

c. The IDAP infrastructure on the receiving site was able to decode the input

parameters, dispatch to an appropriate server indicated by the server

address, and invoke an application-level function corresponding

semantically to the method indicated in the method request. The result of

the method request consists of a response or error.

d. IDAP infrastructure on the receiving site could not decode the input

parameters, dispatch to an appropriate server indicated by the server

address, and invoke an application-level function corresponding

semantically to the interface or method indicated in the method request.

The result of the method is a error indicating a error that prevented the

dispatching infrastructure on the receiving side from successful completion.
9-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Enqueue
In (c) and (d), additional message headers may, for extensibility, again be present in

the request results.

Results from a Method Request
The results of the request are provided in a request-response format. The HTTP

response must be of Content-Type “text/xml”.

An IDAP result indicates success. An a error indicates failure. The method response

will never contain both a result and an error. The different types of responses and

errors are described in the next section

IDAP Message Body is an AQ XML Document
The body of an IDAP message is an AQ XML document, which represents:

■ Client requests for enqueue, dequeue, and registration

■ Server responses to client requests for enqueue, dequeue, and registration

■ Notifications from the server to the client

IDAP Client Requests for Enqueue
Client requests for enqueue—SEND and PUBLISH requests—use the following

methods:

■ AQXmlSend—to enqueue to a single-consumer queue

■ AQXmlPublish —to enqueue to multiconsumer queues/topics

AQXmlSend and AQXmlPublish  take the arguments and argument attributes

shown in Table 9–1. Required arguments are shown in bold.

Note: AQ Internet Access is supported only for 8.1-style queues.

8.0-style queues cannot be accessed using IDAP.
Exchanging XML Data Using Oracle AQ 9-11



IDAP Client Requests for Enqueue
Table 9–1 IDAP Client Requests for Enqueue—Arguments and Attributes for AQXmlSend and
AQXmlPublish

Argument Attribute

producer_options destination —specify the queue/topic to which messages are to be sent. The
destination element has an attribute lookup_type which determines how the
destination element value is interpreted

■ DATABASE (default) —destination is interpreted as schema.queue_
name

■ LDAP—the LDAP server is used  to resolve the destination

visibility

■ ON_COMMIT—The enqueue is part of the current transaction. The operation is
complete when the transaction commits. This is the default case.

■ IMMEDIATE—effects of the enqueue are visible immediately after the request
is completed. The enqueue is not part of the current transaction. The
operation constitutes a transaction on its own.

transformation —the PL/SQL transformation to be  invoked before the
message is enqueued

message_set —contains
one or more messages.

Each message consists of a message_header  and message_payload

■ message_header message_id —unique identifier of the message, supplied during dequeue

correlation —correlation identifier of the message

expiration —duration in seconds that a message is available for dequeuing.
This parameter is an offset from the delay. By default messages never expire.

If the message is not dequeued before it expires, then it is moved to the exception
queue in the EXPIRED state

delay —duration in seconds after which a message is available for processing

priority —the priority of the message. A smaller number indicates higher
priority. The priority can be any number, including negative numbers.

sender_id —the application-specified identifier

■ agent_name, address, protocol

■ agent_alias —if specified, resolves to a name, address, protocol using
LDAP
9-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Enqueue
Message Payloads
AQ supports messages of the following types:

■ RAW Queues

■ Oracle Object (ADT) Type Queues

■ Java Message Service (JMS) Type Queues/Topics

All these types of queues can be accessed using IDAP. If the queue holds messages

in RAW, Oracle object, or JMS format, XML payloads are transformed to the

recipient_list —overrides the default subscriber list; lookup_type defines if
the recipients are specified or looked up in LDAP

■ agent_name, address, protocol

■ agent_alias —if specified, resolves to a name, address, protocol using
LDAP

message_state —the state of the message is filled in automatically during
dequeue

0: The message is ready to be processed.

1: The message delay has not yet been reached.

2: The message has been processed and is retained.

3: The message has been moved to the exception queue.

exception_queue —in case of exceptions the name of the queue to which the
message is moved if it cannot be processed successfully. Messages are moved in
two cases: The number of unsuccessful dequeue attempts has exceeded max_retries
or the message has expired. All messages in the exception queue are in the
EXPIRED state.

The default is the exception queue associated with the queue table. If the
exception queue specified does not exist at the time of the move, then the message
is moved to the default exception queue associated with the queue table, and a
warning is logged in the alert file. If the default exception queue is used, then the
parameter returns a NULL value at dequeue time.

■ message_payload this can have different sub-elements based on the payload type of the destination
queue/topic. The different payload types are described in the next section

AQXmlCommit this is an empty element —if specified, the user transaction is committed
at the end of the request

Table 9–1 IDAP Client Requests for Enqueue—Arguments and Attributes for AQXmlSend and
AQXmlPublish

Argument Attribute
Exchanging XML Data Using Oracle AQ 9-13



IDAP Client Requests for Enqueue
appropriate internal format during enqueue and stored in the queue. During

dequeue, when messages are obtained from queues containing messages in any of

the above formats, they are converted to XML before being sent to the client.

The message payload type depends on the type of the queue on which the

operation is being performed. A discussion of the queue types follows:

RAW Queues
The contents of RAW queues are raw bytes. The user must supply the hex

representation of the message payload in the XML message. For example,

<raw>023f4523</raw> .

Oracle Object (ADT) Type Queues
For ADT queues that are not JMS queues (that is, they are not type AQ$_JMS_*), the

type of the payload depends on the type specified while creating the queue table

that holds the queue. The XML specified here must map to the SQL type of the

payload for the queue table.

ADT Type Queues Example Assume the queue is defined to be of type EMP_TYP,
which has the following structure:

create or replace type emp_typ as object (
     empno NUMBER(4),
     ename VARCHAR2(10),
     job VARCHAR2(9),
     mgr NUMBER(4),
     hiredate DATE,
     sal   NUMBER(7,2),
     comm  NUMBER(7,2)
     deptno NUMBER(2));

The corresponding XML representation is:

<EMP_TYP>
  <EMPNO>1111</EMPNO>
  <ENAME>Mary</ENAME>

See Also:

■ Chapter 5, "Database Support for XML"

■ Chapter 7, "XML SQL Utility (XSU)"

for more details on mapping SQL types to XML.
9-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Enqueue
      <MGR>5000</MGR>
      <HIREDATE>1996-01-01 0:0:0</HIREDATE>

                <SAL>10000</SAL>
                <COMM>100.12</COMM>

      <DEPTNO>60</DEPTNO>
    </EMP_TYP>

Java Message Service (JMS) Type Queues/Topics
For queues with JMS types (that is, those with payloads of type AQ$_JMS_*), there

are four different XML elements, depending on the JMS type. Hence, IDAP

supports queues/topics with the following JMS types:

■ TextMessage

■ MapMessage

■ BytesMessage

■ ObjectMessage

Table 9–2 lists the JMS types and XML components. The distinct XML element for

each JMS type is shown in its respective column. Required elements are shown in

bold.

Note: JMS queues with payload type StreamMessage  are not

supported through IDAP.

Table 9–2 JMS Types and XML Components

jms_text_message jms_map_message jms_bytes_message jms_object_message

Used for queues/topics with payload type:

AQ$_JMS_TEXT_
MESSAGE

AQ$_JMS_MAP_MESSAGE AQ$_JMS_BYTES_
MESSAGE

AQ$_JMS_OBJECT_
MESSAGE

oracle_jms_properties

user_properties
Exchanging XML Data Using Oracle AQ 9-15



IDAP Client Requests for Enqueue
All JMS messages consist of the following common elements:

■ oracle_jms_properties , which consists of

■ type —type of the message

■ reply_to —consists of an agent_name , address , and protocol

■ userid —supplied by AQ; client cannot specify

■ appid —application identifier

■ groupid —group identifier

■ group_sequence —sequence within the group identified by group_id

■ timestamp —the time the message was sent, which cannot be specified

during enqueue. It is automatically populated in a message that is

dequeued.

■ recv_timestamp —the time the message was received

■ user_properties —in addition to the above predefined properties, users can

also specify their own message properties as name-value pairs. The user_
properties  consists of a list of property elements. Each property is a

name-value pair consisting of the following:

■ name—property name

■ int_value —integer property value  or

text_data —string
representing the text
payload

map_data —set of
name-value pairs called
items, consisting of:

■ name

■ int_value  or

string_value  or

long_value or

double_value or

boolean_value or

float_value or

short_value or

byte_value

bytes_data —hex
representation of the
payload bytes

ser_object_data —hex
representation of the
serialized object

Table 9–2 JMS Types and XML Components (Cont.)
9-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Enqueue
string_value —string property value  or

long_value —long property value  or

double_value —double property value  or

boolean_value —boolean property value  or

float_value — float property value  or

short_value —short property value  or

byte_value —byte property value or

The following examples show enqueue requests using the different message and

queue types.

IDAP Enqueue Request Example1 — Sending an ADT Message to a Single-Consumer
Queue

The queue QS.NEW_ORDER_QUE has a payload of type ORDER_TYP.

 <?xml version="1.0"?>
   <Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <producer_options>
            <destination>QS.NEW_ORDERS_QUE</destination>
          </producer_options>

          <message_set>
            <message_count>1</message_count>

            <message>
              <message_number>1</message_number>

              <message_header>
<correlation>ORDER1</correlation>
<sender_id>

<agent_name>scott</agent_name>
</sender_id>

              </message_header>

              <message_payload>

               <ORDER_TYP>
                     <ORDERNO>100</ORDERNO>
Exchanging XML Data Using Oracle AQ 9-17



IDAP Client Requests for Enqueue
                     <STATUS>NEW</STATUS>
                     <ORDERTYPE>URGENT</ORDERTYPE>
                     <ORDERREGION>EAST</ORDERREGION>
                     <CUSTOMER>
                        <CUSTNO>1001233</CUSTNO>
                        <CUSTID>MA1234555623212</CUSTID>
                        <NAME>AMERICAN EXPRESS</NAME>
                        <STREET>EXPRESS STREET</STREET>
                        <CITY>REDWOOD CITY</CITY>
                        <STATE>CA</STATE>
                        <ZIP>94065</ZIP>
                        <COUNTRY>USA</COUNTRY>
                     </CUSTOMER>
                     <PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
                     <ITEMS>
                        <ITEMS_ITEM>
                           <QUANTITY>10</QUANTITY>
                           <ITEM>
                              <TITLE>Perl</TITLE>
                              <AUTHORS>Randal</AUTHORS>
                              <ISBN>ISBN20200</ISBN>
                              <PRICE>19</PRICE>
                           </ITEM>
                           <SUBTOTAL>190</SUBTOTAL>
                        </ITEMS_ITEM>
                        <ITEMS_ITEM>
                           <QUANTITY>20</QUANTITY>
                           <ITEM>
                              <TITLE>XML</TITLE>
                              <AUTHORS>Micheal</AUTHORS>
                              <ISBN>ISBN20212</ISBN>
                              <PRICE>59</PRICE>
                           </ITEM>
                           <SUBTOTAL>590</SUBTOTAL>
                        </ITEMS_ITEM>
                     </ITEMS>
                     <CCNUMBER>NUMBER01</CCNUMBER>
                     <ORDER_DATE>2000-08-23 0:0:0</ORDER_DATE>
               </ORDER_TYP>
             </message_payload>
            </message>
          </message_set>
        </AQXmlSend>
      </Body>
</Envelope>
9-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Enqueue
IDAP Enqueue Request Example 2 — Publishing an ADT Message to a
Multiconsumer Queue

The multiconsumer queue AQUSER.EMP_TOPIC has a payload of type EMP_TYP.
EMP_TYP has the following structure:

create or replace type emp_typ as object (
     empno NUMBER(4),
     ename VARCHAR2(10),
     job VARCHAR2(9),
     mgr NUMBER(4),
     hiredate DATE,
     sal   NUMBER(7,2),
     comm  NUMBER(7,2)
     deptno NUMBER(2));

 A PUBLISH request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlPublish xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <producer_options>
            <destination>AQUSER.EMP_TOPIC</destination>
          </producer_options>

          <message_set>
            <message_count>1</message_count>

            <message>
              <message_number>1</message_number>

              <message_header>
<correlation>NEWEMP</correlation>
<sender_id>

<agent_name>scott</agent_name>
</sender_id>

              </message_header>

              <message_payload>
    <EMP_TYP>

  <EMPNO>1111</EMPNO>
  <ENAME>Mary</ENAME>

      <MGR>5000</MGR>
      <HIREDATE>1996-01-01 0:0:0</HIREDATE>
Exchanging XML Data Using Oracle AQ 9-19



IDAP Client Requests for Enqueue
                <SAL>10000</SAL>
                <COMM>100.12</COMM>

      <DEPTNO>60</DEPTNO>
    </EMP_TYP>

             </message_payload>
            </message>
          </message_set>
        </AQXmlPublish>
      </Body>
</Envelope>

IDAP Enqueue Request Example 3 — Sending a Message to a JMS Queue
The JMS queue AQUSER.JMS_TEXTQ has payload type JMS Text message

(SYS.AQ$_JMS_TEXT_MESSAGE). The send request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>

        <AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <producer_options>
            <destination>AQUSER.JMS_TEXTQ</destination>
          </producer_options>

          <message_set>
            <message_count>1</message_count>

            <message>
              <message_number>1</message_number>

              <message_header>
<correlation>text_msg</correlation>

<sender_id>
<agent_name>john</agent_name>

</sender_id>
              </message_header>

              <message_payload>

<jms_text_message>
 <oracle_jms_properties>

    <appid>AQProduct</appid>
  <groupid>AQ</groupid>
9-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Enqueue
</oracle_jms_properties>

  <user_properties>
    <property>
      <name>Country</name>

    <string_value>USA</string_value>
</property>
<property>

<name>State</name>
<string_value>California</string_value>

</property>
</user_properties>

<text_data>All things bright and beautiful</text_data>
               </jms_text_message>
             </message_payload>
            </message>
          </message_set>

</AQXmlSend>
      </Body>
</Envelope>

IDAP Enqueue Request Example 4 — Sending/Publishing and Committing the
Transaction

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlPublish xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <producer_options>
            <destination>AQUSER.EMP_TOPIC</destination>
          </producer_options>

          <message_set>
            <message_count>1</message_count>

            <message>
              <message_number>1</message_number>

              <message_header>
<correlation>NEWEMP</correlation>
<sender_id>
   <agent_name>scott</agent_name>
</sender_id>
Exchanging XML Data Using Oracle AQ 9-21



IDAP Client Requests for Enqueue
              </message_header>

              <message_payload>
<EMP_TYP>

<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>
<HIREDATE>1996-01-01 0:0:0</HIREDATE>

                  <SAL>10000</SAL>
                  <COMM>100.12</COMM>

<DEPTNO>60</DEPTNO>
</EMP_TYP>

             </message_payload>
            </message>
          </message_set>

        <AQXmlCommit/>

        </AQXmlPublish>
      </Body>
</Envelope>
9-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Dequeue
IDAP Client Requests for Dequeue
Client requests for dequeue use the AQXmlReceive  method. Table 9–3 lists

AQXmlReceive method’s arguments and argument attributes. Required arguments

are shown in bold.

Table 9–3 IDAP Client Requests for Dequeue—Arguments and Attributes for AQXmlReceive

Argument Attribute

consumer_options destination —specify the queue/topic from which messages are to be
received. The destination element has an attribute lookup_type which
determines how the destination element value is interpreted

■ DATABASE (default) —destination is interpreted as
schema.queue_name

■ LDAP—the LDAP server is used to resolve the destination

consumer_name —Name of the consumer. Only those messages matching
the consumer name are accessed. If a queue is not set up for multiple
consumers, then this field should not be specified

wait_time—the time (in seconds) to wait if there is currently no message
available which matches the search criteria

selector —criteria used to select the message, specified as one of:

■ correlation —the correlation identifier of the message to be
dequeued.

■ message_id — the message identifier of the message to be dequeued

■ condition—dequeue message that satisfy this condition.

A condition is specified as a Boolean expression using syntax similar to the
WHERE clause of a SQL query. This Boolean expression can include
conditions on message properties, user data properties (object payloads
only), and PL/SQL or SQL functions (as specified in the where clause of a
SQL query). Message properties include priority , corrid  and other
columns in the queue table

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab .user_data  as a qualifier to indicate the specific column of the queue
table that stores the payload. The deq_condition parameter cannot exceed
4000 characters.
Exchanging XML Data Using Oracle AQ 9-23



IDAP Client Requests for Dequeue
The following examples show dequeue requests using different attributes of

AQXmlReceive .

visibility

■ ON_COMMIT (default)—The dequeue is part of the current transaction.
The operation is complete when the transaction commits.

■ IMMEDIATE—effects of the dequeue are visible immediately after the
request is completed. The dequeue is not part of the current transaction.
The operation constitutes a transaction on its own.

dequeue_mode —Specifies the locking behavior associated with the
dequeue. The dequeue_mode can be specified as one of:

■ REMOVE (default): Read the message and update or delete it. This is the
default. The message can be retained in the queue table based on the
retention properties.

■ BROWSE: Read the message without acquiring any lock on the message.
This is equivalent to a select statement.

■ LOCKED: Read and obtain a write lock on the message. The lock lasts for
the duration of the transaction. This is equivalent to a select for update
statement.

navigation_mode —Specifies the position of the message that will be
retrieved. First, the position is determined. Second, the search criterion is
applied. Finally, the message is retrieved. The navigation_mode can be
specified as one of:

■ FIRST_MESSAGE: Retrieves the first message which is available and
matches the search criteria. This resets the position to the beginning of
the queue.

■ NEXT_MESSAGE (default) : Retrieve the next message which is
available and matches the search criteria. If the previous message
belongs to a message group, then AQ retrieves the next available
message which matches the search criteria and belongs to the message
group. This is the default.

■ NEXT_TRANSACTION: Skip the remainder of the current transaction
group (if any) and retrieve the first message of the next transaction
group. This option can only be used if message grouping is enabled for
the current queue.

transformation —the PL/SQL transformation to be invoked after the
message is dequeued

Table 9–3 IDAP Client Requests for Dequeue—Arguments and Attributes for AQXmlReceive (Cont.)

Argument Attribute
9-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Dequeue
IDAP Dequeue Request Example 1— Receiving Messages from a Single-Consumer
Queue

Using the single-consumer queue QS.NEW_ORDERS_QUE, the receive request has

the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <consumer_options>
            <destination>QS.NEW_ORDERS_QUE</destination>
            <wait_time>0</wait_time>
          </consumer_options>

</AQXmlReceive>
      </Body>
</Envelope>

IDAP Dequeue Request Example 2 — Receiving Messages that Satisfy a Specific
Condition

Using the multiconsumer queue AQUSER.EMP_TOPIC with subscriber APP1 and

condition deptno=60 , the receive request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <consumer_options>
            <destination>AQUSER.EMP_TOPIC</destination>
            <consumer_name>APP1</consumer_name>
            <wait_time>0</wait_time>
            <selector>
                 <condition>tab.user_data.deptno=60</condition>
            </selector>
          </consumer_options>

</AQXmlReceive>
      </Body>
</Envelope>

IDAP Dequeue Request Example 3 — Receiving Messages and Committing
In the dequeue request examples, if you include AQXmlCommit at the end of the

RECEIVE request, the transaction is committed upon completion of the operation.
Exchanging XML Data Using Oracle AQ 9-25



IDAP Client Requests for Registration
In "IDAP Dequeue Request Example 1— Receiving Messages from a

Single-Consumer Queue" on page 9-25, the receive request can include the commit

flag as follows:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <consumer_options>
            <destination>QS.NEW_ORDERS_QUE</destination>
            <wait_time>0</wait_time>
          </consumer_options>

<AQXmlCommit/>

</AQXmlReceive>
      </Body>
</Envelope>

IDAP Dequeue Request Example 4 — Browsing Messages
Messages are dequeued in REMOVE mode by default. To receive messages from

QS.NEW_ORDERS_QUE in BROWSE mode, modify the receive request as follows:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <consumer_options>
            <destination>QS.NEW_ORDERS_QUE</destination>
            <wait_time>0</wait_time>
            <dequeue_mode>BROWSE</dequeue_mode>
          </consumer_options>

</AQXmlReceive>
      </Body>
</Envelope>

IDAP Client Requests for Registration
Client requests for registration use the AQXmlRegister  method. Table 9–4 lists

AQXmlRegister ’s arguments and argument attributes. Required arguments are

shown in bold.
9-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Client Requests for Registration
.

IDAP Register Request Example 1— Registering for Notification at an Email Address
To notify an email address of messages enqueued for consumer APP1 in queue

AQUSER.EMP_TOPIC, the register request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://ns.oracle.com/AQ/schemas/envelope">
      <Body>

        <AQXmlRegister xmlns = "http://ns.oracle.com/AQ/schemas/access">

          <register_options>
            <destination>AQUSER.EMP_TOPIC</destination>
            <consumer_name>APP1</consumer_name>
            <notify_url>mailto:app1@hotmail.com</notify_url>
          </register_options>

<AQXmlCommit/>

</AQXmlRegister>
      </Body>
</Envelope>

Commit Request
A request to commit all actions performed by the user in a session uses the

AQXmlCommit method.

Table 9–4 Client Registration—Arguments and Attributes for AQXmlRegister

Argument Attribute

register_options destination —specify the queue or topic on which notifications are
registered. The destination element has an attribute lookup_type which
determines how the destination element value is interpreted

■ DATABASE (default) —destination is interpreted as
schema.queue_name

■ LDAP—the LDAP server is used to resolve the destination

consumer_name —the consumer name for multiconsumer queues or topics.
For single consumer queues, this parameter must not be specified

notify_url —where notification is sent when a message is enqueued. The
form can be http://<url>  or mailto://<email address>  or
plsql://<pl/sql procedure> .
Exchanging XML Data Using Oracle AQ 9-27



IDAP Server Response to Enqueue
Commit Request Example
A commit request has the following format.

<?xml version="1.0"?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>
      <AQXmlCommit xmlns="http://ns.oracle.com/AQ/schemas/access"/>
   </Body>
</Envelope>

Rollback Request
A request to roll back all actions performed by the user in a session uses the

AQXmlRollback  method. Actions performed with IMMEDIATE visibility are not

rolled back.

Rollback Request Example
A rollback request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>
      <AQXmlRollback xmlns="http://ns.oracle.com/AQ/schemas/access"/>
   </Body>
</Envelope>

IDAP Server Response to Enqueue
The response to an enqueue request to a single-consumer queue uses the

AQXmlSendResponse  method. The components of the response are shown in

Table 9–5.

.

Table 9–5 Server Response to an Enqueue to a Single-Consumer Queue (AQXmlSendResponse)

Response Attribute

status_response status_code —indicates success (0) or failure (-1)

error_code —Oracle code for the error

error_message —description of the error

send_result destination —where the message was sent

message_id —identifier for every message sent
9-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



IDAP Server Response to Enqueue
IDAP Server Request Example 1 — Enqueuing a Single Message to a
Single-Consumer Queue

The result of a SEND request to the single consumer queue QS.NEW_ORDERS_QUE
has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>
      <AQXmlSendResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
         <status_response>
            <status_code>0</status_code>
         </status_response>
         <send_result>
            <destination>QS.NEW_ORDERS_QUE</destination>
            <message_id>12341234123412341234</message_id>
         </send_result>
      </AQXmlSendResponse>
   </Body>
</Envelope>

The response to an enqueue request to a multiconsumer queue or topic uses the

AQXmlPublishResponse  method. The components of the response are shown in

Table 9–6.

.

IDAP Server Request Example 2— Enqueuing to a Multiconsumer Queue
The result of a SEND request to the multiconsumer queue AQUSER.EMP_TOPIC has

the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>

Table 9–6 Server Response to an Enqueue to a Multiconsumer Queue or Topic
(AQXmlPublishResponse)

Response Attribute

status_response status_code —indicates success (0) or failure (-1)

error_code —Oracle code for the error

error_message —description of the error

publish_result destination —where the message was sent

message_id —identifier for every message sent
Exchanging XML Data Using Oracle AQ 9-29



Server Response to a Dequeue Request
      <AQXmlPublishResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
         <status_response>
            <status_code>0</status_code>
         </status_response>
         <publish_result>
            <destination>AQUSER.EMP_TOPIC</destination>
            <message_id>23434435435456546546546546</message_id>
         </publish_result>
      </AQXmlPublishResponse>
   </Body>
</Envelope>

Server Response to a Dequeue Request
The response to a dequeue request uses the AQXmlReceiveResponse  method.

The components of the response are shown in Table 9–7.

.

IDAP Server Dequeue Response Example 1 — Receiving Messages from an ADT
Queue (AQXmlReceiveResponse)

The result of a RECEIVErequest on the queue AQUSER.EMP_TOPICwith a payload

of type EMP_TYP has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>
      <AQXmlReceiveResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
         <status_response>
            <status_code>0</status_code>
         </status_response>
         <receive_result>
            <destination>AQUSER.EMP_TOPIC</destination>
            <message_set>

Table 9–7 Server Response to a Dequeue from a Queue or Topic (AQXmlReceiveResponse)

Response Attribute

status_response status_code —indicates success (0) or failure (-1)

error_code —Oracle code for the error

error_message —description of the error

receive_result destination —where the message was sent

message_set —the set of messages dequeued
9-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Server Response to a Register Request
               <message_count>1</message_count>
               <message>
                  <message_number>1</message_number>
                  <message_header>
                     <message_id>1234344545565667</message_id>
                     <correlation>TKAXAP10</correlation>
                     <priority>1</priority>
                     <delivery_count>0</delivery_count>
                     <sender_id>
                        <agent_name>scott</agent_name>
                     </sender_id>
                     <message_state>0</message_state>
                  </message_header>
                  <message_payload>

  <EMP_TYP>
<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>
<HIREDATE>1996-01-01 0:0:0</HIREDATE>
<SAL>10000</SAL>
<COMM>100.12</COMM>
<DEPTNO>60</DEPTNO>

</EMP_TYP>
                 </message_payload>
               </message>
            </message_set>
         </receive_result>
      </AQXmlReceiveResponse>
   </Body>
</Envelope>

Server Response to a Register Request
The response to a register request uses the AQXmlRegisterResponse  method,

which consists of status_response . (SeeTable 9–7 for a description of status_
response .)

Commit Response
The response to a commit request uses the AQXmlCommitResponse method, which

consists of status_response . (SeeTable 9–7 for a description of status_
response .)
Exchanging XML Data Using Oracle AQ 9-31



Notification
Example
The response to a commit request has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>
      <AQXmlCommitResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
         <status_response>
            <status_code>0</status_code>
         </status_response>
      </AQXmlCommitResponse>
   </Body>
</Envelope>

Rollback Response
The response to a rollback request uses the AQXmlRollbackResponse  method,

which consists of status_response . (SeeTable 9–7 for a description of status_
response .)

Notification
When an event for which a client has registered occurs, a notification is sent to the

client at the URL specified in the REGISTER request. AQXmlNotification
consists of:

■ notification_options , which has

■ destination —the destination queue/topic on which the event occurred

■ consumer_name —in case of multiconsumer queues/topics, this refers to

the consumer name for which the event occurred

■ message_set —the set of message properties.

Response in Case of Error
In case of an error in any of the above requests, a FAULT is generated. The FAULT
element consists of:

■ faultcode  - error code for fault

■ faultstring  - indicates a client error or a server error. A client error means

that the request is not valid. Server error indicates that the AQ servlet has not

been set up correctly
9-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



AQXMLServlet
■ detail , which consists of

■ status_response

IDAP and AQ XML Schemas
IDAP presentation exposes the following two schemas to the client. All documents

sent by the Parser are validated against these two schemas:

■ IDAP schema — http://ns.oracle.com/AQ/schemas/envelope

This describes the structure of the document. Each document has an envelope,

header, and body.

■ AQ XML schema. — http://ns.oracle.com/AQ/schemas/access

This describes the IDAP body contents for Internet access to AQ features.

AQXMLServlet
AQXMLServlet  is a Java class that extends oracle.AQ.xml.AQxmlServlet
class. AQxmlServlet  class in turn extends

javax.servlet.http.HttpServlet class.

Accessing AQXMLServlet with HTTP

How AQ Client Makes a Request to AQ Servlet Using HTTP
The general AQ client procedure making a request using HTTP to the AQ Servlet, is

as follows:

1. The AQ client opens an HTTP(S) connection to the server. For example:

https://aq.us.oracle.com:8000/aqserv/servlet/AQTestServlet

This opens a connection to port 8000 on aq.us.oracle.com

2. The AQ client logs in to the server by either:

■ HTTP basic authentication (with or without SSL)

See Also: Oracle9i Application Developer’s Guide - Advanced Queuing

See Also: Oracle9i Application Developer’s Guide - Advanced Queuing for
information on creating and deploying AQ XML Servlet.

See: Oracle9i Application Developer’s Guide - Advanced Queuing, for
setting up AQ to receive XML messages over HTTP.
Exchanging XML Data Using Oracle AQ 9-33



AQXMLServlet
■ SSL certificate based client authentication.

3. The AQ client constructs the XML message representing the Send, Publish,

Receive or Register request. For example:

<?xml version="1.0"?>
<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
      <Body>
        <AQXmlSend  xmlns = "http://ns.oracle.com/AQ/schemas/access">
          <producer_options>
            <destination>OE.OE_NEW_ORDERS_QUE</destination>
          </producer_options>
          <message_set>
            <message_count>1</message_count>
            <message>
              <message_number>1</message_number>
              <message_header>

<correlation>XML_ADT_SINGLE_ENQ</correlation>
<sender_id>

           <agent_name>john</agent_name>
       </sender_id>

              </message_header>
              <message_payload>
              <ORDER_TYP>
                     <ORDERNO>100</ORDERNO>
                     <STATUS>NEW</STATUS>
                     <ORDERTYPE>NORMAL</ORDERTYPE>
                     <ORDERREGION>EAST</ORDERREGION>
                     <CUSTOMER>
                        <CUSTNO>1001233</CUSTNO>
                        <CUSTID>JOHN</CUSTID>
                        <NAME>AMERICAN EXPRESS</NAME>
                        <STREET>EXPRESS STREET</STREET>
                        <CITY>REDWOOD CITY</CITY>
                        <STATE>CA</STATE>
                        <ZIP>94065</ZIP>
                        <COUNTRY>USA</COUNTRY>
                     </CUSTOMER>
                     <PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
                     <ITEMS>
                        <ITEMS_ITEM>
                           <QUANTITY>10</QUANTITY>
                           <ITEM>
                              <TITLE>Perl</TITLE>
                              <AUTHORS>Randal</AUTHORS>
                              <ISBN>ISBN20200</ISBN>
9-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



AQXMLServlet
                              <PRICE>19</PRICE>
                           </ITEM>
                           <SUBTOTAL>190</SUBTOTAL>
                        </ITEMS_ITEM>
                     </ITEMS>

                     <CCNUMBER>NUMBER01</CCNUMBER>
                     <ORDER_DATE>2000-08-23 0:0:0</ORDER_DATE>
               </ORDER_TYP>
             </message_payload>
            </message>
          </message_set>
          </AQXmlSend>
      </Body>
</Envelope>

4. The AQ client sends an HTTP POST to the Servlet at the remote server.

How AQ Servlet Processes a Request Using HTTP
The AQ servlet’s general procedure for making a request using HTTP is as follows:

1. The server accepts the client HTTP(S) connection

2. The server authenticates the user (AQ agent) specified by the client

3. The server receives the POST request

4. AQ servlet is invoked. If this is the first request being serviced by this servlet,

the servlet is initialized - its init( ) method is invoked. The init()
method creates a connection pool to the Oracle9i server using the

AQxmlDataSource  parameters (sid, host, port, aq servlet super-user name,

password)  provided by the client.

5. AQ servlet processes the message as follows:

a. If this is the first request from this client, a new HTTP session is created.

The XML message is parsed and its contents are validated. If a SessionID is

passed by the client in the HTTP headers, then this operation is performed

in the context of that session - this is described in detail in Oracle9i
Application Developer’s Guide - Advanced Queuing

b. The servlet determines which object (queue/topic) the agent is trying to

perform operations on. For example, in the above request sequence (Step 3

in "How AQ Client Makes a Request to AQ Servlet Using HTTP"), the agent

“JOHN” is trying to access the OE.OE_NEW_ORDERS_QUE.
Exchanging XML Data Using Oracle AQ 9-35



AQXMLServlet
c. After that the servlet looks through the list of database users that map to

this AQ Agent (using the AQ$INTERNET_USERS view). If any one of these

db_users has privileges to access the queue/topic specified in the request,

the aq servlet super-user creates a session on behalf of this db_user.

d. For example, in the above example, say, “JOHN” was mapped to the

database user “OE” using the DBMS_AQADM.ENABLE_DB_ACCESS call.

The servlet will create a session for the agent “JOHN” with the privileges of

database user OE.

e. If there is no transaction active in this HTTP session, then a new database

transaction is started. Subsequent requests in this session will be part of the

same transaction until an explicit commit or rollback request is made.

f. Now the requested operation (send/publish/receive/register) is

performed.

g. The response is formatted as an XML message and sent back the client. For

exampl, the response for the above request could be:

  <Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">
   <Body>
      <AQXmlSendResponse
         xmlns="http://ns.oracle.com/AQ/schemas/access">
         <status_response>
            <status_code>0</status_code>
         </status_response>
         <send_result>
            <destination>OE.OE_NEW_ORDERS_QUE</destination>
            <message_id>12341234123412341234123412341234</message_id>
         </send_result>
      </AQXmlSendResponse>
   </Body>
</Envelope>

The response also includes the session id in the HTTP headers as a cookie.

For example: Tomcat sends back session ids as JSESSIONID=239454ds2343
9-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLType Queues
XMLType Queues

Storing and Querying XML Documents with Advanced Queueing (AQ)
Advanced Queuing (AQ) supports the storage of XML documents in queues and

provides the ability to query the XML documents. XML can be used with Oracle

AQ in the following two cases:

■ XML data stored in queues. XML payloads are supported by AQ queues. XML

messages can be stored as the XMLType datatype.

■ XML data generated from existing queues with ADT or RAW payloads. Used

by applications that already store their data in ADT or RAW queues and where

new applications, written on the same data, need to use XML as the message

format.

Structuring and Managing Message Payloads with Object Types
With Oracle AQ, you can use object types to structure and manage the payload of

messages. Using strongly typed content, content whose format is defined by an

external type system, the following AQ features are made available:

■ Content-based routing: AQ can examine the content and automatically route

messages to another queue based on content.

■ Content-based subscription: A publish and subscribe system can be built on top

of a messaging system so that you can create subscriptions based on content.

■ Querying: The ability to execute queries on the content of messages allows you

to examine current and processed messages for various applications, including

message warehousing.

Creating Message Payloads Queues Containing XMLType Attributes
You can create queues with payloads that contain XMLType attributes. These can

be used for transmitting and storing messages that contain XML documents. By

defining Oracle objects with XMLType attributes, you can do the following:

■ Store more than one type of XML document in the same queue. The documents

are stored internally as CLOBs.

See Also: Chapter 5, "Database Support for XML", for more

details on XML support in the database.
Exchanging XML Data Using Oracle AQ 9-37



XMLType Queues
■ Selectively dequeue messages with XMLType attributes using the operators

XMLType.existsNode() , XMLType.extract() , and so on.

For details on XMlType operations refer to Application Developer's guide - XML

■ Define transformations to convert Oracle objects to XMLType.

■ Define rule-based subscribers that query message content using XMLType

operators such as XMLType.existsNode()  and XMLType.extract() .

XMLType Queues Example 1: Creating XMLType Queue Tables for a Queue Object
Type Containing Messages with XMLType Attributes

In the BooksOnline application, assume that the Overseas Shipping site represents

the order as ORDER_XML_TYP, with the order information in an XMLType attribute.

The Order Entry site represents the order as an Oracle object, ORDER_TYP.

ORDER_XML_TYP is a composite type that contains an XMLType attribute:

CREATE OR REPLACE TYPE order_xml_typ as OBJECT (
   orderno  NUMBER,
   details  XMLTYPE);

The Overseas queue table and queue are created as follows:

BEGIN
dbms_aqadm.create_queue_table(
   queue_table        => 'OS_orders_pr_mqtab',
   comment            => 'Overseas Shipping MultiConsumer Orders queue table',
   multiple_consumers => TRUE,
   queue_payload_type => 'OS.order_xml_typ',
   compatible         => '8.1');
END;

BEGIN
dbms_aqadm.create_queue (
   queue_name   => 'OS_bookedorders_que',
   queue_table  => 'OS_orders_pr_mqtab');
END;

See Also: Oracle9i Application Developer’s Guide - XML for details

on XMLType operations.
9-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



AQ XML Message Format Transformation
AQ XML Message Format Transformation
You can specify transformations between different Oracle and user-defined types.

Transformations can be created in any of the following ways:

■ PL/SQL functions (including callouts). See AQ Message Transformation

Example 1: Creating a Single PL/SQL Function that Returns an XMLType

Object or Constructor of Target Type

■ SQL expressions

■ Java stored procedures

with a return type of the target type.

Only one-to-one message transformation is supported. The transformation engine is

integrated with Advanced Queuing to facilitate transformation of messages as they

move through the database messaging system.

An Advanced Queuing application can enqueue or dequeue messages from a queue

in the format specified by the application. An application can also specify a message

format when subscribing to queues.

The AQ propagator transforms messages to the format of the destination queue

message, as specified by the remote subscription. The transformation function

cannot write the database state or commit/rollback the current transaction.

Transformations are exported with a schema or a full database export.

AQ Message Transformation Example 1: Creating a Single PL/SQL Function that
Returns an XMLType Object or Constructor of Target Type

An Order Entry site represents the order as Oracle object, ORDER_TYP.

Since the Overseas Shipping site subscribes to messages in the OE_
BOOKEDORDERS_QUE queue, a transformation is applied before messages are

propagated from the Order Entry site to the Overseas Shipping site.

ORDER_XML_TYP is a composite type that contains an XMLType attribute:

CREATE OR REPLACE TYPE order_xml_typ as OBJECT (
   orderno  NUMBER,
   details  XMLTYPE);

The transformation is defined as follows:

CREATE OR REPLACE FUNCTION CONVERT_TO_ORDER_XML(input_order TYPE OE.ORDER_TYP)
RETURN OS.ORDER_XML_TYP AS
Exchanging XML Data Using Oracle AQ 9-39



AQ XML Message Format Transformation
  xdata SYS.XMLType;
  new_order OS.ORDER_XML_TYP;
BEGIN
  xdata := XMLType.createXML(input_order, NULL);
  new_order := OS.ORDER_XML_TYP(input_order.orderno, xdata);
  RETURN new_order;
END CONVERT_TO_ORDER_XML;

execute dbms_transform.create_transformation(
   schema =>         'OS',
   name   =>         'OE2XML',
   from_schema =>    'OE',
   from_type =>      'ORDER_TYP',
   to_schema =>      'OS',
   to_type =>        'ORDER_XML_TYP',
   transformation => 'CONVERT_TO_ORDER_XML(source.user_data)');

/*  Add a rule-based subscriber for Overseas Shipping to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: */
DECLARE
 subscriber     aq$_agent;
BEGIN
 subscriber := aq$_agent('Overseas_Shipping','OS.OS_bookedorders_que',null);

 dbms_aqadm.add_subscriber(
        queue_name     => 'OE.OE_bookedorders_que',
        subscriber     => subscriber,
        rule           => 'tab.user_data.orderregion = ''INTERNATIONAL'''
        transformation => 'OS.OE2XML');
END;

Assume that an application processes orders for customers in Canada. This

application can dequeue messages using the following procedure:

/*  Create procedures to enqueue into single-consumer queues: */
create or replace procedure get_canada_orders() as
deq_msgid                RAW(16);
dopt                     dbms_aq.dequeue_options_t;
mprop                    dbms_aq.message_properties_t;
deq_order_data           OS.order_xml_typ;
no_messages              exception;
pragma exception_init    (no_messages, -25228);
new_orders               BOOLEAN := TRUE;

begin
9-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



AQ XML Message Format Transformation
        dopt.wait := 1;

/* Specify dequeue condition to select Orders for Canada */
        dopt.deq_condition := 'tab.user_data.xdata.extract(
''/ORDER_TYP/CUSTOMER/COUNTRY/text()'').getStringVal()=''CANADA''';

            dopt.consumer_name : = 'Overseas_Shipping';

        WHILE (new_orders) LOOP
          BEGIN
            dbms_aq.dequeue(
                queue_name         => 'OS.OS_bookedorders_que',
                dequeue_options    => dopt,
                message_properties => mprop,
                payload            => deq_order_data,
                msgid              => deq_msgid);
            commit;

            dbms_output.put_line(' Order for Canada - Order No: ' ||
                                   deq_order_data.orderno);

          EXCEPTION
            WHEN no_messages THEN
                 dbms_output.put_line (' ---- NO MORE ORDERS  ---- ');
                 new_orders := FALSE;
          END;
        END LOOP;
end;
Exchanging XML Data Using Oracle AQ 9-41



Frequently Asked Questions (FAQs): XML and Advanced Queuing
Frequently Asked Questions (FAQs): XML and Advanced Queuing

Can we Store AQ XML Messages with Many PDFs as One Record?

Question
We are exchanging XML documents from one business area to another using Oracle

Advanced Queuing. Each message received or sent includes an XML header, XML

attachment (XML data stream), DTDs, and PDF files. We need to store all this

information, including some imagery files, in the database table, in this case, the

queuetable.

Can we enqueue this message into an Oracle queue table as one record or one

piece? Or do we have to enqueue this message as multiple records, such as one

record for XML data streams as CLOB type, one record for PDF files as RAW type?

Then somehow specify that these sets of records are correlated? Also, we want to

ensure that we dequeue this.

Answer
You can achieve this in the following ways:

■ You can either define an object type with (CLOB, RAW,...) attributes, and store

it as a single message

■ You can use the AQ message grouping feature and store it in multiple

messages. But the message properties will be associated with a group. To use

the message grouping feature, all messages must be the same payload type.

Question 2
Does this mean that we specify the payload type as CLOB first, then enqueue and

store all the pieces, XML message data stream, DTDs, and PDF,... as a single

See Also

■ Oracle9i Application Developer’s Guide - Advanced Queuing,
Chapter 8, for more detail on how to implement structured

message payloads applications using either DBMS_AQADM or

Java (JDBC)

■ Oracle9i Supplied PL/SQL Packages Reference for more

information about DBMS_TRANSFORM.
9-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML and Advanced Queuing
message payload in the Queue table? If so, how can we separate this single message

into individual pieces when we dequeue this message?

Answer 2
No. You create an object type, for example:

CREATE TYPE mypayload_type as OBJECT (xmlDataStream CLOB, dtd CLOB, pdf BLOB);

Then store it as a single message.

Can We Add New Recipients After Messages are Enqueued?

Question
We want to use the queue table to support message assignments. For example,

when other business areas send messages to Oracle, they do not know who should

be assigned to process these messages, but they know the messages are for Human

Resources (HR). So all messages will go to the HR supervisor.

At this point, the message has been enqueued in the queue table. The HR

supervisor is the only recipient of this message, and the entire HR staff have been

pre-defined as subscribers for this queue). Can the HR supervisor add new

recipients, namely additional staff, to the message_properties.recipient_list on the

existing the message in the queue table?

We do not have multiple consumers (recipients) when the messages are enqueued,

but we want to replace the old recipient, or add new recipients after the message

has already been in the queue table. This new message will then be dequeued by

the new recipient. Is this workable? Or do we have to remove the message from old

recipient, then enqueue the same message contents to the new recipient?

Answer
You cannot change the recipient list after the message is enqueued. If you do not

specify a recipient list then subscribers can subscribe to the queue and dequeue the

message.

In your case, the new recipient should be a subscriber to the queue. Otherwise, you

will have to dequeue the message and enqueue it again with the new recipient.
Exchanging XML Data Using Oracle AQ 9-43



Frequently Asked Questions (FAQs): XML and Advanced Queuing
How Does Oracle Enqueue and Dequeue and Process XML Messages?

Question
In the OTN document, “Using XML in Oracle Database Applications, Part 4,

Exchanging Business Data Among Applications” Nov. 1999, it says that an Oracle

database can enqueue and dequeue XML messages and process them. How does it

do this?

Do I have to use XML SQL Utility (XSU) in order to insert an XML file into a table

before processing it, or can I enqueue an XML file directly, parse it, and dispatch its

messages via the AQ process? Must I use XML SQL Utility every time I want to

INSERT or UPDATE XML data into an Oracle Database?

Answer
AQ supports enqueing and dequeing objects. These objects can have an attribute of

type XMLType containing an XML Document, as well as other interested “factored

out” metadata attributes that might make sense to send along with the message.

Refer to the latest AQ document, Oracle9i Application Developer’s Guide - Advanced
Queuing, to get specific details and see more examples.

How Can We Parse Messages with XML Content From AQ Queues?

Question
We need a tool to parse messages with XML content, from an AQ queue and then

update tables and fields in an ODS (Operational Data Store). In short, we want to

retrieve and parse XML documents and map specific fields to database tables and

columns.

Is Oracle9i Text (intermedia Text/Context) a solution?

Answer
The easiest way to do this is using Oracle XML Parser for Java and Java Stored

Procedures in tandem with AQ inside Oracle9i.

Question 2
We can use XML SQL Utility if we go with a custom solution. Our main

concentration is supply-chain. We want to get metadata information such as, AQ

enqueue/dequeue times, JMS header information,.... based on queries on certain
9-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML and Advanced Queuing
XML tag values. Can we just store the XML in a CLOB and issue queries using

Oracle9i Text (intermedia Text)?

Answer 2
■ If you store XML as CLOBs then you can definitely search it using Oracle9i Text

(interMedia Text), but this only helps you find a particular message that

matches a criteria.

■ If you need to do aggregation operations over the metadata, view the metadata

from existing relational tools, or use normal SQL predicates on the metadata,

then having it “only” stored as XML in a CLOB is not going to be good enough.

You can combine Oracle9i Text (interMedia Text) XML searching with some amount

of redundant metadata storage as “factored out” columns and use SQL statements

that combine normal SQL predicates with the Oracle9i Text (interMedia Text)

CONTAINS() clause to have the best of both.

Can we Prevent the Listener From Stopping Until the XML Document is Processed?

Question
We receive XML messages from clients as messages and need to process them as

soon as they come in. Each XML document takes about 15 seconds to process. We

are using PL/SQL.

One PL/SQL procedure starts the listener and Dequeues the message and calls

another procedure to process the XML document. The problem is that the listener is

held up until the XML document is processed. Meanwhile messages accumulate in

the queue.

What is the best way to handle this? Is there a way for the listener program to call

the XML processing procedure asynchronously and return to listening? Java is not

an option at this point.

Answer
After receiving the message, you can submit a job using the DBMS_JOB package.

The job will be invoked asynchronously in a different database session.

Oracle9i has added PL/SQL callbacks in the AQ notification framework. This

allows you register a PL/SQL callback which is invoked asynchronously when a

message shows up in a queue.

See Also: Chapter 8, "Searching XML Data with Oracle Text".
Exchanging XML Data Using Oracle AQ 9-45



Frequently Asked Questions (FAQs): XML and Advanced Queuing
9-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



PartIV

 Tools and Frameworks for Building

Oracle-Based XML Applications

This section includes a description of how to use XSQL Servlet Pages. XSQL Servlet

is part of XDK for Java.

Other chapters in PartIV describe how to use JDeveloper, BC4J, Metadata API,

Oracle Reports, and Oracle Portal, to build Oracle-based XML applications. It also

introduces you to Oracle Exchange and Oracle XML Gateway.

Part IV contains the following chapters:

■ Chapter 10, "XSQL Pages Publishing Framework"

■ Chapter 11, "Using JDeveloper to Build Oracle XML Applications"

■ Chapter 12, "Building BC4J and XML Applications"

■ Chapter 13, "Using Metadata API"

■ Chapter 14, "Oracle9iAS Reports Services and XML"

■ Chapter 15, "Using the PDK for Visualizing XML Data in Oracle Portal"

■ Chapter 16, "How Oracle Exchange Uses XML"

■ Chapter 17, "Introducing Oracle XML Gateway"





XSQL Pages Publishing Fra
10

XSQL Pages Publishing Framework

This chapter contains the following sections:

■ XSQL Pages Publishing Framework Overview

■ What Can I Do with Oracle XSQL Pages?

■ Where Can I Obtain Oracle XSQL Pages?

■ What’s Needed to Run XSQL Pages?

■ Overview of Basic XSQL Pages Features

■ Producing XML Datagrams from SQL Queries

■ Transforming XML Datagrams into an Alternative XML Format

■ Transforming XML Datagrams into HTML for Display

■ Setting Up and Using XSQL Pages in Your Environment

■ Using XSQL Pages With Oracle JDeveloper

■ Setting the CLASSPATH Correctly in Your Production Environment

■ Setting Up the Connection Definitions

■ Using the XSQL Command Line Utility

■ Overview of All XSQL Pages Capabilities

■ Using All of the Core Built-in Actions

■ Aggregating Information Using <xsql:include-xsql>

■ Handling Posted Information

■ Using Custom XSQL Action Handlers

■ Description of XSQL Servlet Examples
mework 10-1



XSQL Pages Publishing Framework Overview
■ Setting Up the Demo Data

■ Advanced XSQL Pages Topics

■ Understanding Client Stylesheet-Override Options

■ Controlling How Stylesheets are Processed

■ Using XSQLConfig.xml to Tune Your Environment

■ Using the FOP Serializer to Produce PDF Output

■ Using XSQL Page Processor Programmatically

■ Writing Custom XSQL Action Handlers

■ Writing Custom XSQL Serializers

■ Writing Custom XSQL Connection Managers

■ Formatting XSQL Action Handler Errors

■ XSQL Servlet Limitations

■ Frequently Asked Questions (FAQs) - XSQL Servlet

XSQL Pages Publishing Framework Overview
The Oracle XSQL Pages publishing framework is an extensible platform for easily

publishing XML information in any format you desire.  It greatly simplifies

combining the power of SQL, XML, and XSLT to publish dynamic web content

based on database information.

Using the XSQL publishing framework, anyone familiar with SQL can create and

use declarative templates called "XSQL pages" to:

■ Assemble dynamic XML "datagrams" based on parameterized SQL queries, and

■ Transform these "data pages" to produce a final result in any desired XML,

HTML, or text-based format using an associated XSLT transformation.

Assembling and transforming information for publishing requires no

programming. In fact, most of the common things you will want to do can be easily

achieved in a declarative way. However, since the XSQL publishing framework is

extensible, if one of the built-in features does not fit your needs, you can easily

extend the framework using Java to integrate custom information sources or to

perform custom server-side processing.
10-2 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



XSQL Pages Publishing Framework Overview
Using the XSQL Pages framework, the assembly of information to be published is

cleanly separated from presentation. This simple architectural detail has profound

productivity benefits. It allows you to:

■ Present the same information in multiple ways, including tailoring the

presentation appropriately to the kind of client device making the request

(brower, cellular phone, PDA, etc.).

■ Reuse information easily by aggregating existing pages into new ones

■ Revise and enhance the presentation independently of the information content

being presented.

What Can I Do with Oracle XSQL Pages?
Using server-side templates — known as "XSQL pages"  due to their .xsql
extension — you can publish any information in any format to any device. The

XSQL page processor "engine" interprets, caches, and processes the contents of your

XSQL page templates. Figure 10–1 illustrates that the core XSQL page processor

engine can be "exercised" in four different ways:

■ From the command line or in batch using the XSQL Command Line Utility

■ Over the Web, using the XSQL Servlet installed into your favorite web server

■ As part of JSP applications, using <jsp:include>  to include a template

■ Programmatically,  with the XSQLRequest  object, the engine’s Java API
XSQL Pages Publishing Framework 10-3



XSQL Pages Publishing Framework Overview
Figure 10–1 Understanding the Architecture of the XSQL Pages Framework

The same XSQL page templates can be used in any or all of these scenarios.

Regardless of the means by which a template is processed, the same basic steps

occur to produce a result. The XSQL page processor "engine":

1. Receives a request to process an XSQL template

2. Assembles an XML "datagram" using the result of one or more SQL queries

3. Returns this XML "datagram" to the requestor

4. Optionally transforms the "datagram" into any XML, HTML, or text format

During the transformation step in this process, you can use stylesheets that conform

to the W3C XSLT 1.0 standard to transform the assembled "datagram" into

document formats like:

■ HTML for browser display

■ Wireless Markup Language (WML) for wireless devices

■ Scalable Vector Graphics (SVG) for data-driven charts, graphs, and diagrams

■ XML Stylesheet Formatting Objects (XSL-FO), for rendering into Adobe PDF

■ Text documents, like emails, SQL scripts, Java programs, etc.

■ Arbitrary XML-based document formats
10-4 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



XSQL Pages Publishing Framework Overview
XSQL Pages bring this functionality to you by automating the use of underlying

Oracle XML components to solve many common cases without resorting to custom

programming. However, when only custom programming will do — as we’ll see in

the Advanced Topics section of this chapter — you can augment the framework’s

built-in actions and serializers to assemble the XSQL "datagrams" from any custom

source and serialize the datagrams into any desired format, without having to write

an entire publishing framework from scratch.

Where Can I Obtain Oracle XSQL Pages?
XSQL Servlet is provided with Oracle9i and is also available for download from the

OTN site: http://otn.oracle.com/tech/xml.

Where indicated, the examples and demos described in this chapter are also

available from OTN.

What’s Needed to Run XSQL Pages?
To run the Oracle XSQL Pages publishing framework from the command-line, all

you need is a Java VM (1.1.8, 1.2.2, or 1.3). The XSQL Pages framework depends on

and comes bundled with two underlying components in the Oracle XML

Developer’s Kit:

■ Oracle XML Parser and XSLT Processor (xmlparserv2.jar )

■ Oracle XML SQL Utility (xsu12.jar )

Both of their Java archive files must be present in the CLASSPATH where the XSQL

pages framework is running. Since most XSQL pages will connect to a database to

query information for publishing, the framework also depends on a JDBC driver.

Any JDBC driver is supported, but when connecting to Oracle, it’s best to use the

Oracle JDBC driver (classes12.zip ) for maximum functionality and

performance.

Lastly, the XSQL publishing engine expects to read its configuration file named

XSQLConfig.xml  as a Java resource, so you must include the directory where the

XSQLConfig.xml  file resides in the CLASSPATH as well.

See Also:

■ Appendix C, "XDK for Java: Specifications and Cheat Sheets"

for the XSQL Servlet specifications and cheat sheets

■ XSQL Servlet Release Notes on OTN at:

http://otn.oracle.com/tech/xml
XSQL Pages Publishing Framework 10-5



Overview of Basic XSQL Pages Features
To use the XSQL Pages framework for Web publishing, in addition to the above

you’ll need a web server that supports Java Servlets. The following is the list of web

servers with Servlet capability on which the XSQL Servlet has been tested:

■ Oracle9i Internet Application Server v1.x and v2.x

■ Oracle9i Oracle Servlet Engine

■ Allaire JRun 2.3.3 and 3.0.0

■ Apache 1.3.9 or higher with JServ 1.0/1.1 or Tomcat 3.1/3.2  Servlet Engine

■ Apache Tomcat 3.1 or 3.2 Web Server + Servlet Engine

■ Caucho Resin 1.1

■ Java Web Server 2.0

■ Weblogic 5.1 Web Server

■ NewAtlanta ServletExec 2.2 and 3.0 for IIS/PWS 4.0

■ Oracle8i Lite Web-to-Go Server

■ Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

For details on installing, configuring your environment, and running XSQL Servlet

and for additional examples and guidelines, see the XSQL Servlet “Release Notes”

on OTN at http://otn.oracle.com/tech/xml

Overview of Basic XSQL Pages Features
In this section, we’ll get take a brief look at the most basic features you can exploit

in your server-side XSQL page templates:

■ Producing XML Datagrams from SQL Queries

■ Transforming the XML Datagram into an Alternative XML Format

■ Transforming the XML Datagram into HTML for Display

Note: For security reasons, when installing XSQL Servlet on your

production web server, make sure XSQLConfig.xml  file does not
reside in a directory that is part of the web server’s virtual directory

hierarchy. Failure to take this precaution risks exposing your

configuration information over the web.
10-6 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of Basic XSQL Pages Features
Producing XML Datagrams from SQL Queries
It is extremely easy to serve database information in XML format over the Web

using XSQL pages. For example, let’s see how simple it is to serve a real-time XML

“datagram” from Oracle9i, of all available flights landing today at JFK airport.

Using Oracle JDeveloper — or your favorite text editor —  just build an XSQL page

template like the one below, and save it in a file named,

AvailableFlightsToday.xsql :

<?xml version="1.0"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
    SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
      FROM FlightSchedule
     WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
       AND Destination = ?   /* The ? is a bind variable being bound */
  ORDER BY ExpectedTime      /* to the value of the City parameter   */
</xsql:query>

With XSQL Servlet properly installed on your web server, you just need to copy the

AvailableFlightsToday.xsql  file above to a directory under your web

server’s virtual directory hierarchy. Then you can access the template through a

web browser by requesting the URL:

http://yourcompany.com/AvailableFlightsToday.xsql?City=JFK

The results of the query in your XSQL page are materialized automatically as XML

and returned to the requestor. This XML-based “datagram” would typically be

requested by another server program for processing, but if you are using a browser

such as Internet Explorer 5.0, you can directly view the XML result as shown in

Figure 10–2.
XSQL Pages Publishing Framework 10-7



Overview of Basic XSQL Pages Features
Figure 10–2 XML Result From XSQL Page (AvailableFlightsToday.xsq) Query

Let’s take a closer look at the "anatomy" of the XSQL page template we used. Notice

the XSQL page begins with:

<?xml version="1.0"?>

This is because the XSQL template is itself an XML file (with an *.xsql  extension)

that contains any mix of static XML content and XSQL "action elements". The

AvailableFlightsToday.xsql example above contains no static XML elements,

and just a single XSQL action element <xsql:query> . It represents the simplest

useful XSQL page we can build, one that just contains a single query.
10-8 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of Basic XSQL Pages Features
Notice that the first (and in this case, only!) element in the page <xsql:query>
includes a special attribute that declares the xsql namespace prefix as a "nickname"

for the Oracle XSQL namespace identifier urn:oracle-xsql .

<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql" >

This first, outermost element — known at the "document element" — also contains

a connection  attribute whose value "demo" is the name of one of the pre-defined

connections in the XSQLConfig.xml  configuration file:

<xsql:query connection="demo"  bind-params="City" xmlns:xsql="urn:oracle-xsql">

The details concerning the username, password, database, and JDBC driver that

will be used for the "demo" connection are centralized into the configuration file.

Setting up these connection definitions is discussed in a later section of this chapter.

Lastly, the <xsql:query>  element contains a bind-params  attribute that

associates the values of parameters in the request by name to bind parameters

represented by question marks in the SQL statement contained inside the

<xsql:query>  tag.

Note that if we wanted to include more than one query on the page, we’ll need to

invent an XML element of our own creation to "wrap" the other elements like this:

<?xml version="1.0"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query bind-params="City">
    SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
      FROM FlightSchedule
     WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
       AND Destination = ?   /* The ? is a bind variable being bound */
      ORDER BY ExpectedTime  /* to the value of the City parameter   */
  </xsql:query>
  <!-- Other xsql:query actions can go here inside <page> and </page> -->
</page>

Notice in this example that the connection  attribute and the xsql  namespace

declaration always go on the document element, while the bind-params  is specific

to the <xsql:query>  action.

Transforming XML Datagrams into an Alternative XML Format
If the canonical <ROWSET> and <ROW> XML output from Figure 10–2 is not the

XML format you need, then you can associate an XSLT stylesheet to your XSQL

page template to transform this XML "datagram" in the server before returning the

information in any alternative format desired.
XSQL Pages Publishing Framework 10-9



Overview of Basic XSQL Pages Features
When exchanging data with another program, typically you will agree in advance

with the other party on a specific Document Type Descriptor (DTD) that describes

the XML format you will be exchanging. A DTD is in effect, a "schema" definition. It

formally defines what XML elements and attributes that a document of that type

can have.

Let’s assume you are given the flight-list.dtd  definition and are told to

produce your list of arriving flights in a format compliant with that DTD. You can

use a visual tool such as Extensibility's “XML Authority” to browse the structure of

the flight-list DTD as shown in Figure 10–3.

Figure 10–3 Exploring the ’industry standard’ flight-list.dtd using Extensibility’s XML
Authority

This shows that the standard XML formats for Flight Lists are:

■ <flight-list>  element, containing one or more…

■ <flight>  elements, having attributes airline and number, each of which

contains an…

■ <arrives>  element.

By associating the following XSLT stylesheet, flight-list.xsl , with the XSQL

page, you can "morph" the default <ROWSET> and <ROW> format of your arriving

flights into the "industry standard" DTD format.
10-10 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of Basic XSQL Pages Features
<!-- XSLT Stylesheet to transform ROWSET/ROW results into flight-list format -->
<flight-list xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xsl:version="1.0" >
<xsl:for-each select="ROWSET/ROW">

      <flight airline=" {CARRIER} " number=" {FLIGHTNUMBER}">
        <arrives> <xsl:value-of select="DUE"/> </arrives>
      </flight>

</xsl:for-each>
</flight-list>

The stylesheet is a template that includes the literal elements that you want

produced in the resulting document, such as, <flight-list> , <flight> , and

<arrives> , interspersed with special XSLT "actions" that allow you to do the

following:

■ Loop over matching elements in the source document using <xsl:for-each>

■ Plug in the values of source document elements where necessary using

<xsl:value-of>

■ Plug in the values of source document elements into attribute values using

{something}

Note two things have been added to the top-level <flight-list>  element in the

stylesheet:

■ xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

This defines the XML Namespace (xmlns) named "xsl" and identifies the

uniform resource locator string that uniquely identifies the XSLT specification.

Although it looks just like a URL, think of the string

http://www.w3.org/1999/XSL/Transform as the "global primary key"

for the set of elements that are defined in the XSLT 1.0 specification. Once the

namespace is defined, we can then make use of the <xsl:XXX> action elements

in our stylesheet to loop and plug values in where necessary.

■ xsl:version="1.0"

This attribute identifies the document as an XSLT 1.0 stylesheet. A version

attribute is required on all XSLT Stylesheets for them to be valid and recognized

by an XSLT Processor.

Associate the stylesheet to your XSQL Page by adding an <?xml-stylesheet?>
processing instruction to the top of the page as follows:
XSQL Pages Publishing Framework 10-11



Overview of Basic XSQL Pages Features
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="flight-list.xsl"?>
<xsql:query connection="demo" bind-params="City" xmlns:xsql="urn:oracle-xsql">
    SELECT Carrier, FlightNumber, Origin, TO_CHAR(ExpectedTime,'HH24:MI') AS Due
      FROM FlightSchedule
     WHERE TRUNC(ExpectedTime) = TRUNC(SYSDATE) AND Arrived = 'N'
       AND Destination = ?   /* The ? is a bind variable being bound */
      ORDER BY ExpectedTime  /* to the value of the City parameter   */
</xsql:query>

This is the W3C Standard mechanism of associating stylesheets with XML

documents (http://www.w3.org/TR/xml-stylesheet). Specifying an associated

XSLT stylesheet to the XSQL page causes the requesting program or browser to see

the XML in the “industry-standard” format as specified by flight-list.dtd you

were given as shown in Figure 10–4.

Figure 10–4 XSQL Page Results in "Industry Standard" XML Format
10-12 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of Basic XSQL Pages Features
Transforming XML Datagrams into HTML for Display
To return the same XML information in HTML instead of an alternative XML

format, simply use a different XSLT stylesheet. Rather than producing elements like

<flight-list>  and <flight> , your stylesheet produces HTML elements like

<table> , <tr> , and <td>  instead. The result of the dynamically queried

information would then look like the HTML page shown in Figure 10–5. Instead of

returning “raw” XML information, the XSQL Page leverages server-side XSLT

transformation to format the information as HTML for delivery to the browser.

Figure 10–5 Using an Associated XSLT Stylesheet to Render HTML

Similar to the syntax of the flight-list.xsl  stylesheet, the

flight-display.xsl  stylesheet looks like a template HTML page, with

<xsl:for-each>, <xsl:value-of>  and attribute value templates like {DUE}
to plug in the dynamic values from the underlying <ROWSET> and <ROW>
structured XML query results.
XSQL Pages Publishing Framework 10-13



Overview of Basic XSQL Pages Features
<!-- XSLT Stylesheet to transform ROWSET/ROW results into HTML -->
<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xsl:version="1.0" >
  <head><link rel="stylesheet" type="text/css" href="flights.css" /></head>
  <body>
    <center><table border="0">
      <tr><th>Flight</th><th>Arrives</th></tr>

<xsl:for-each select="ROWSET/ROW">
        <tr>
          <td>
            <table border="0" cellspacing="0" cellpadding="4">
              <tr>
                <td><img align="absmiddle" src="images/ {CARRIER} .gif"/></td>
                <td width="180">

<xsl:value-of select="CARRIER"/>
<xsl:text> </xsl:text>
<xsl:value-of select="FLIGHTNUMBER"/>

                </td>
              </tr>
            </table>
          </td>
          <td align="center"> <xsl:value-of select="DUE"/> </td>
        </tr>

</xsl:for-each>
    </table></center>
  </body>
</html>

You can see that by combining the power of:

■ Parameterized SQL statements to select any information you need from our

Oracle database,

■ Industry-standard XML as a portable, interim data exchange format

■ XSLT to transform XML-based "data pages" into any XML- or HTML-based

format you need

Note: The stylesheet looks exactly like HTML, with one tiny

difference. It is well-formed HTML. This means that each opening

tag is properly closed (e.g. <td>…</td>) and that empty tags use

the XML empty element syntax <br/> instead of just <br>.
10-14 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Setting Up and Using XSQL Pages in Your Environment
you can achieve very interesting and useful results quickly. You will see in later

sections that what you have  seen above is just scratching the surface of what you

can do using XSQL pages.

Setting Up and Using XSQL Pages in Your Environment
You can develop and use XSQL pages in a variety of ways. We start by describing

the easiest way to get started, using Oracle JDeveloper, then cover the details you’ll

need to understand to use XSQL pages in your production environment.

Using XSQL Pages With Oracle JDeveloper
The easiest way to work with XSQL pages during development is to use Oracle

JDeveloper. Versions 3.1 and higher of the JDeveloper IDE support color-coded

syntax highlighting, XML syntax checking, and easy testing of your XSQL pages. In

addition, the JDeveloper 3.2 release supports debugging XSQL pages and adds new

wizards to help create XSQL actions.

To create an XSQL page in a JDeveloper project, you can:

■ Click the plus icon at the top of the navigator to add a new or existing XSQL

page to your project

■ Select File | New... and select "XSQL" from the "Web Objects" tab of the gallery

To get assistance adding XSQL action elements like <xsql:query>  to your XSQL

page, place the cursor where you want the new element to go and either:

■ Select XSQL Element... from the right mouse menu, or

■ Select Wizards | XSQL Element... from the IDE menu.

The XSQL Element wizard takes you through the steps of selecting which XSQL

action you want to use, and which attributes you need to provide.

To syntax-check an XSQL page template, you can select Check XML Syntax... at any

time from the right-mouse menu in the navigator after selecting the name of the

XSQL page you’d like to check. If there are any XML syntax errors, they will appear

in the message view and your cursor will be brought to the first one.

Note: For a detailed introduction to XSLT and a thorough tutorial

on how to apply XSLT to many different Oracle database scenarios,

see "Building Oracle XML Applications", by Steve Muench, from

O’Reilly and Associates.
XSQL Pages Publishing Framework 10-15



Setting Up and Using XSQL Pages in Your Environment
To test an XSQL page, simply select the page in the navigator and choose Run from

the right-mouse menu. JDeveloper automatically starts up a local Web-to-go web

server, properly configured to run XSQL pages, and tests your page by launching

your default browser with the appropriate URL to request the page. Once you’ve

run the XSQL page, you can continue to make modifications to it in the IDE — as

well as to any XSLT stylesheets with which it might be associated — and after

saving the files in the IDE you can immediately refresh the browser to observe the

effect of the changes.

Using JDeveloper, the "XSQL Runtime" library should be added to your project’s

library list so that the CLASSPATH is properly setup. The IDE adds this entry

automatically when you go through the New Object gallery to create a new XSQL

page, but you can also add it manually to the project by selecting Project | Project
Properties... and clicking on the "Libraries" tab.

Setting the CLASSPATH Correctly in Your Production Environment
Outside of the JDeveloper environment, you need to make sure that the XSQL page

processor engine is properly configured to run. Oracle9i comes with the XSQL

Servlet pre-installed to the Oracle HTTP Server that accompanies the database, but

using XSQL in any other environment, you’ll need to ensure that the Java

CLASSPATH is setup correctly.

There are three "entry points" to the XSQL page processor:

■ oracle.xml.xsql.XSQLServlet , the servlet interface

■ oracle.xml.xsql.XSQLCommandLine , the command line interface

■ oracle.xml.xsql.XSQLRequest , the programmatic interface

Since all three of these interfaces, as well as the core XSQL engine itself, are written

in Java, they are very portable and very simple to setup. The only setup

requirements are to make sure the appropriate JAR files are in the CLASSPATH of

the JavaVM that will be running processing the XSQL Pages. The JAR files include:

■ oraclexsql.jar , the XSQL page processor

■ xmlparserv2.jar , the Oracle XML Parser for Java v2

■ xsu12.jar , the Oracle XML SQL utility

■ classes12.zip , the Oracle JDBC driver

In addition, the directory where XSQL Page Processor's configuration file

XSQLConfig.xml  resides must also be listed as a directory in the CLASSPATH.
10-16 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Setting Up and Using XSQL Pages in Your Environment
Putting all this together, if you have installed the XSQL distribution in C:\xsql ,

then your CLASSPATH would appear as follows:

C:\xsql\lib\classes12.zip;C:\xsql\lib\xmlparserv2.jar;
C:\xsql\lib\xsu12.jar;C:\xsql\lib\oraclexsql.jar;
directory_where_XSQLConfig.xml_resides

On Unix, if you extracted the XSQL distribution into your /web  directory, the

CLASSPATH would appear as follows:

/web/xsql/lib/classes12.zip:/web/xsql/lib/xmlparserv2.jar:
/web/xsql/lib/xsu12.jar:/web/xsql/lib/oraclexsql.jar:
directory_where_XSQLConfig.xml_resides

To use the XSQL Servlet, one additional setup step is required. You must associate

the .xsql  file extension with the XSQL Servlet's java class

oracle.xml.xsql.XSQLServlet . How you set the CLASSPATH of the web

server's servlet environment and how you associate a Servlet with a file extension

are done differently for each web server. The XSQL Servlet's Release Notes contain

detailed setup information for specific web servers you might want to use with

XSQL Pages.

Setting Up the Connection Definitions
XSQL pages refer to database connections by using a “nickname” for the connection

defined in the XSQL configuration file. Connection names are defined in the

<connectiondefs>  section of XSQLConfig.xml  file like this:

 <connectiondefs>
   <connection name=" demo">
     <username> scott </username>
     <password> tiger </password>
     <dburl> jdbc:oracle:thin:@localhost:1521:testDB </dburl>
     <driver> oracle.jdbc.driver.OracleDriver </driver>
     <autocommit>true</autocommit>
   </connection>
   <connection name=" lite ">
     <username> system </username>
     <password> manager </password>
     <dburl> jdbc:Polite:POlite </dburl>
     <driver> oracle.lite.poljdbc.POLJDBCDriver </driver>
    </connection>
</connectiondefs>

For each connection, you can specify five pieces of information:
XSQL Pages Publishing Framework 10-17



Setting Up and Using XSQL Pages in Your Environment
1. <username>

2. <password>

3. <dburl> , the JDBC connection string

4. <driver> , the fully-qualified class name of the JDBC driver to use

5. <autocommit> , optionally forces the autocommit to true  or false

If the <autocommit>  element is omitted, then the XSQL page processor will use

the JDBC driver’s default setting of the AutoCommit flag.

Any number of <connection>  elements can be placed in this file to define the

connections you need. An individual XSQL page refers to the connection it wants to

use by putting a connection=” xxx ” attribute on the top-level element in the page

(also called the “document element”).

Using the XSQL Command Line Utility
Often the content of a dynamic page will be based on data that is not frequently

changing in your environment. To optimize performance of your web publishing,

you can use operating system facilities to schedule offline processing of your XSQL

pages, leaving the processed results to be served statically by your web server.

You can process any XSQL page from the command line using the XSQL command

line utility. The syntax is:

$ java oracle.xml.xsql.XSQLCommandLine xsqlpage  [ outfile ] [ param1=value1  ...]

If an outfile  is specified, the result of processing xsqlpage  is written to it,

otherwise the result goes to standard out. Any number of parameters can be passed

to the XSQL page processor and are available for reference by the XSQL page being

processed as part of the request. However, the following parameter names are

recognized by the command line utility and have a pre-defined behavior:

■ xml-stylesheet= stylesheetURL

Note: For security reasons, when installing XSQL Servlet on your

production web server, make sure the XSQLConfig.xml  file does

not reside in a directory that is part of the web server’s virtual

directory hierarchy. Failure to take this precaution risks exposing

your configuration information over the web.
10-18 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
Provides the relative or absolute URL for a stylesheet to use for the request.

Also can be set to the string none  to suppress XSLT stylesheet processing

for debugging purposes.

■ posted-xml= XMLDocumentURL

Provides the relative or absolute URL of an XML resource to treat as if it

were posted as part of the request.

■ useragent= UserAgentString

Used to simulate a particular HTTP User-Agent string from the command

line so that an appropriate stylesheet for that User-Agent type will be

selected as part of command-line processing of the page.

The ?/xdk/java/xsql/bin directory contains a platform-specific command script to

automate invoking the XSQL command line utility. This script sets up the Java

runtime to run oracle.xml.xsql.XSQLCommandLine  class.

Overview of All XSQL Pages Capabilities
So far we’ve only seen a single XSQL action element, the <xsql:query>  action.

This is by far the most popular action, but it is not the only one that comes built-in

to the XSQL Pages framework. We explore the full set of functionality that you can

exploit in your XSQL pages in the following sections.

Using All of the Core Built-in Actions
This section provides a list of the core built-in actions, including a brief description

of what each action does, and a listing of all required and optional attributes that

each supports.

The <xsql:query> Action
The <xsql:query>  action element executes a SQL select statement and includes a

canonical XML representation of the query’s result set in the data page. This action

requires a database connection to be provided by supplying a connection=" connname"

attribute on the document element of the XSQL page in which it appears.

The syntax for the action is:

<xsql:query>
SELECT Statement

</xsql:query>
XSQL Pages Publishing Framework 10-19



Overview of All XSQL Pages Capabilities
Any legal SQL select statement is allowed. If the select statement produces no rows,

a "fallback" query can be provided by including a nested <xsql:no-rows-query>

element like this:

<xsql:query>
SELECT Statement

  <xsql:no-rows-query>
SELECT Statement to use if outer query returns no rows

  </xsql:no-rows-query>
</xsql:query>

An <xsql:no-rows-query>  element can itself contain nested <xsql:no-rows-query>

elements to any level of nesting. The options available on the

<xsql:no-rows-query> are identical to those available on the <xsql:query> action

element.

By default, the XML produced by a query will reflect the column structure of its

resultset, with element names matching the names of the columns. Columns in the

result with nested structure like:

■ Object Types

■ Collection Types

■ CURSOR Expressions

produce nested elements that reflect this structure. The result of a typical query

containing different types of columns and returning one row might look like this:

<ROWSET>
  <ROW id="1">
    < VARCHARCOL>Value</ VARCHARCOL>
    < NUMBERCOL>12345</ NUMBERCOL>
    < DATECOL>12/10/2001 10:13:22</ DATECOL>
    < OBJECTCOL>
       < ATTR1>Value</ ATTR1>
       < ATTR2>Value</ ATTR2>
    </ OBJECTCOL>
    < COLLECTIONCOL>
       < COLLECTIONCOL_ITEM>
         < ATTR1>Value</ ATTR1>
         < ATTR2>Value</ ATTR2>
       </ COLLECTIONCOL_ITEM>
       < COLLECTIONCOL_ITEM>
         < ATTR1>Value</ ATTR1>
         < ATTR2>Value</ ATTR2>
10-20 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
       </ COLLECTIONCOL_ITEM>
    </ COLLECTIONCOL>
    < CURSORCOL>
      < CURSORCOL_ROW>
        < COL1>Value1</ COL1>
        < COL2>Value2</ COL2>
      </ CURSORCOR_ROW>
    </ CURSORCOL>
  </ROW>
</ROWSET>

A <ROW> element will repeat for each row in the result set. Your query can use

standard SQL column aliasing to rename the columns in the result, and in doing so

effectively rename the XML elements that are produced as well. Note that such

column aliasing is required for columns whose names would otherwise be an illegal

name for an XML element.

For example, an <xsql:query>  action like this:

<xsql:query>SELECT TO_CHAR(hiredate,’DD-MON’) FROM EMP</xsql:query>

would produce an error because the default column name for the calculated

expression will be an illegal XML element name. You can fix the problem with

column aliasing like this:

<xsql:query>SELECT TO_CHAR(hiredate,’DD-MON’) as hiredate  FROM EMP</xsql:query>

The optional attributes listed in Table 10–1 can be supplied to control various

aspects of the data retrieved and the XML produced by the <xsql:query>  action.

Table 10–1 Attributes for <xsql:query>

Attribute Name  Description

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

date-format = "string" Date format mask to use for formatted date column/attribute
values in XML being queried. Valid values are those
documented for the java.text.SimpleDateFormat class.

error-statement = "boolean" If set to no , suppresses the inclusion of the offending SQL
statement in any <xsql-error>  element generated. Valid
values are yes  and no . The default value is yes .
XSQL Pages Publishing Framework 10-21



Overview of All XSQL Pages Capabilities
fetch-size = "integer" Number of records to fetch in each round-trip to the database.
If not set, the default value is used as specified by the
/XSQLConfig/processor/default-fetch-size
configuration setting in XSQLConfig.xml

id-attribute = "string" XML attribute name to use instead of the default num attribute
for uniquely identifying each row in the result set. If the value
of this attribute is the empty string, the row id attribute is
suppressed.

id-attribute-column = "string" Case-sensitive name of the column in the result set whose
value should be used in each row as the value of the row id
attribute. The default is to use the row count as the value of the
row id attribute.

include-schema = "boolean" If set to yes , includes an inline XML schema that describes the
structure of the result set. Valid values are yes  and no . The
default value is no .

max-rows = "integer" Maximum number of rows to fetch, after optionally skipping
the number of rows indicated by the skip-rows  attribute. If
not specified, default is to fetch all rows.

null-indicator = "boolean" Indicates whether to signal that a column's value is NULL by
including the NULL="Y"  attribute on the element for the
column. By default, columns with NULL values are omitted
from the output. Valid values are yes  and no . The default
value is no .

row-element = "string" XML element name to use instead of the default <ROW>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROW>
element for each row in the result set.

rowset-element = "string" XML element name to use instead of the default <ROWSET>
element name for the entire rowset of query results. Set to the
empty string to suppress generating a containing <ROWSET>
element.

skip-rows = "integer" Number of rows to skip before fetching rows from the result
set. Can be combined with max-rows  for stateless paging
through query results.

tag-case = "string" Valid values are lower  and upper . If not specified, the default
is to use the case of column names as specified in the query as
corresponding XML element names.

Table 10–1 Attributes for <xsql:query>

Attribute Name  Description
10-22 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
The <xsql:dml> Action

You can use the <xsql:dml> action to perform any DML or DDL operation, as well as

any PL/SQL block. This action requires a database connection to be provided by

supplying a connection=" connname"  attribute on the document element of the XSQL

page in which it appears.

The syntax for the action is:

<xsql:dml>
DML Statement or DDL Statement or PL/SQL Block

</xsql:dml>

Table 10–2 lists the optional attributes that you can use on the <xsql:dml>  action.

The <xsql:ref-cursor-function> Action
The <xsql:ref-cursor-function>  action allows you to include the XML results

produced by a query whose result set is determined by executing a PL/SQL stored

function. This action requires a database connection to be provided by supplying a

connection=" connname"  attribute on the document element of the XSQL page in

which it appears.

By exploiting PL/SQL’s dynamic SQL capabilities, the query can be dynamically

and/or conditionally constructed by the function before a cursor handle to its result

set is returned to the XSQL page processor. As its name implies, the return value of

the function being invoked must be of type REF CURSOR.

Table 10–2 Attributes for <xsql:dml>

Attribute Name  Description

commit = "boolean" If set to yes , calls commit on the current connection after a
successful execution of the DML statement. Valid values are
yes  and no . The default value is no .

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-statement = "boolean" If set to no , suppresses the inclusion of the offending SQL
statement in any <xsql-error>  element generated. Valid
values are yes  and no . The default value is yes .
XSQL Pages Publishing Framework 10-23



Overview of All XSQL Pages Capabilities
The syntax of the action is:

<xsql:ref-cursor-function>
[SCHEMA.][PACKAGE.]FUNCTION_NAME(args);

</xsql:ref-cursor-function>

With the exception of the fetch-size  attribute, the optional attributes available for

the <xsql:ref-cursor-function>  action are exactly the same as for the

<xsql:query>  action that are listed Table 10–1.

For example, consider the PL/SQL package below:

CREATE OR REPLACE PACKAGE DynCursor IS
  TYPE ref_cursor IS REF CURSOR;
  FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor;
END;
CREATE OR REPLACE PACKAGE BODY DynCursor IS
  FUNCTION DynamicQuery(id NUMBER) RETURN ref_cursor IS
    the_cursor ref_cursor;
  BEGIN
   -- Conditionally return a dynamic query as a REF CURSOR
   IF id = 1 THEN
     OPEN the_cursor
      FOR 'SELECT empno, ename FROM EMP'; -- An EMP Query
   ELSE
     OPEN the_cursor
      FOR 'SELECT dname, deptno FROM DEPT'; -- A DEPT Query
   END IF;
   RETURN the_cursor;
  END;
END;

An <xsql:ref-cursor-function>  can include the dynamic results of the REF

CURSOR returned by this function by doing:

<xsql:ref-cursor-function>
  DynCursor.DynamicQuery(1);
</xsql:ref-cursor-function>

The <xsql:include-owa> Action
The <xsql:include-owa>  action allows you to include XML content that has been

generated by a database stored procedure. This action requires a database

connection to be provided by supplying a connection=" connname"  attribute on the

document element of the XSQL page in which it appears.
10-24 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
The stored procedure uses the standard Oracle Web Agent (OWA) packages  (HTP

and HTF) to "print" the XML tags into the server-side page buffer, then the XSQL

page processor fetches, parses, and includes the dynamically-produced XML

content in the data page. The stored procedure must generate a well-formed XML

page or an appropriate error is displayed.

The syntax for the action is:

<xsql:include-owa>
PL/SQL Block invoking a procedure that uses the HTP and/or HTF packages

</xsql:include-owa>

Table 10–3 lists the optional attributes supported by this action.

Using Bind Variables
To parameterize the results of any of the above actions, you can use SQL bind

variables. This allows your XSQL page template to produce different results based

on the value of parameters passed in the request. To use a bind variable, simply

include a question mark anywhere in the statement where bind variables are

allowed by SQL. For example, your <xsql:query>  action might contain the select

statement:

SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
  FROM latest_stocks s, customer_portfolio p
 WHERE p.customer_id = ?
   AND s.ticker = p.ticker

Using a question mark to create a bind-variable for the customer id. Whenever the

SQL statement is executed in the page, pameter values are bound to the bind

variable by specifying the bind-params attribute on the action element. Using the

example above, we could create an XSQL page that binds the indicated bind

variables to the value of the custid  parameter in the page request like this:

Table 10–3 Attributes for <xsql:include-owa>

Attribute Name  Description

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

error-statement = "boolean" If set to no , suppresses the inclusion of the offending SQL
statement in any <xsql-error>  element generated. Valid
values are yes  and no . The default value is yes .
XSQL Pages Publishing Framework 10-25



Overview of All XSQL Pages Capabilities
<!-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
  <xsql:query bind-params="custid" >
    SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
      FROM latest_stocks s, customer_portfolio p
     WHERE p.customer_id = ?
       AND s.ticker = p.ticker
  </xsql:query>
</portfolio>

The XML data for a particular customer’s portfolio can then be requested by

passing the customer id parameter in the request like this:

http://yourserver.com/fin/CustomerPortfolio.xsql? custid=1001

The value of the bind-params  attribute is a space-separated list of parameter

names whose left-to-right order indicates the positional bind variable to which its

value will be bound in the statement. So, if your SQL statement has five question

marks, then your bind-params attribute needs a space-separated list of five

parameter names. If the same parameter value needs to be bound to several

different occurrences of a question-mark-indicated bind variable, you simply repeat

the name of the parameters in the value of the bind-params  attribute at the

appropriate position. Failure to include exactly as many parameter names in the

bind-params attribute as there are question marks in the query, will results in an

error when the page is executed.

Bind variables can be used in any action that expects a SQL statement. The

following page gives additional examples:

<!-- CustomerPortfolio.xsql -->
<portfolio connnection="prod" xmlns:xsql="urn:oracle-xsql">
  <xsql:dml commit="yes" bind-params="useridCookie" >
     BEGIN log_user_hit( ?); END;
  </xsql:dml>
  <current-prices>
    <xsql:query bind-params="custid" >
      SELECT s.ticker as "Symbol", s.last_traded_price as "Price"
        FROM latest_stocks s, customer_portfolio p
       WHERE p.customer_id = ?
         AND s.ticker = p.ticker
    </xsql:query>
  </current-prices>
  <analysis>
    <xsql:include-owa bind-params="custid userCookie" >
      BEGIN portfolio_analysis.historical_data( ?,5 /* years */, ?); END;
10-26 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
    </xsql:include-owa>
  </analysis>
</portfolio>

Using Lexical Substitution Parameters
For any XSQL action element, you can substitute the value of any attribute, or the

text of any contained SQL statement, by using a lexical substitution parameter. This

allows you to parameterize how the actions behave as well as substitute parts of the

SQL statements they perform. Lexical substitution parameters are referenced using

the syntax {@ParameterName } .

The following example illustrates using two lexical substitution parameters, one

which allows the maximum number of rows to be passed in as a parameter, and the

other which controls the list of columns to ORDER BY.

<!-- DevOpenBugs.xsql -->
<open-bugs connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query max-rows=" {@max}" bind-params="dev prod">
    SELECT bugno, abstract, status
      FROM bug_table
     WHERE programmer_assigned = UPPER(?)
       AND product_id          = ?
       AND status < 80
    ORDER BY {@orderby}
  </xsql:query>
</open-bugs>

This example could then show the XML for a given developer’s open bug list by

requesting the URL:

http://yourserver.com/bug/DevOpenBugs.xsql? dev=smuench&prod=817

or using the XSQL Command Line Utility to request:

$ xsql DevOpenBugs.xsql dev=smuench prod=817

We close by noting that lexical parameters can also be used to parameterize the

XSQL page connection, as well as parameterize the stylesheet that is used to process

the page like this:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href=" {@sheet} .xsl"?>
<!-- DevOpenBugs.xsql -->
<open-bugs connection=" {@conn} " xmlns:xsql="urn:oracle-xsql">
  <xsql:query max-rows=" {@max}" bind-params="dev prod">
    SELECT bugno, abstract, status
XSQL Pages Publishing Framework 10-27



Overview of All XSQL Pages Capabilities
      FROM bug_table
     WHERE programmer_assigned = UPPER(?)
       AND product_id          = ?
       AND status < 80
    ORDER BY {@orderby}
  </xsql:query>
</open-bugs>

Providing Default Values for Bind Variables and Parameters
It is often convenient to provide a default value for a bind variable or a substitution

parameter directly in the page. This allows the page to be parameterized without

requiring the requester to explicitly pass in all the values in each request.

To include a default value for a parameter, simply add an XML attribute of the same

name as the parameter to the action element, or to any ancestor element. If a value

for a given parameter is not included in the request, the XSQL page processor looks

for an attribute by the same name on the current action element. If it doesn’t find

one, it keeps looking for such an attribute on each ancestor element of the current

action element until it gets to the document element of the page.

As a simple example, the following page defaults the value of the max parameter to

10 for both <xsql:query>  actions in the page:

<example max="10"  connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query max-rows=" {@max}">SELECT * FROM TABLE1</xsql:query>
  <xsql:query max-rows=" {@max}">SELECT * FROM TABLE2</xsql:query>
</example>

This example defaults the first query to have a max of 5, the second query to have a

max of 7 and the third query to have a max of 10.

<example max="10"  connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query max="5"  max-rows=" {@max}">SELECT * FROM TABLE1</xsql:query>
  <xsql:query max="7"  max-rows=" {@max}">SELECT * FROM TABLE2</xsql:query>
  <xsql:query max-rows=" {@max}">SELECT * FROM TABLE3</xsql:query>
</example>

Of course, all of these defaults would be overridden if a value of max is supplied in

the request like:

http://yourserver.com/example.xsql? max=3

Bind variables respect the same defaulting rules so a — not-very-useful, yet

educational — page like this:
10-28 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
<example val="10"  connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query tag-case="lower" bind-params="val val val">
    SELECT ? as somevalue
      FROM DUAL
     WHERE ? = ?
  </xsql:query>
</example>

Would return the XML datagram:

<example>
  <rowset>
    <row>
      <somevalue>10</somevalue>
    </row>
  </row>
</example>

if the page were requested without any parameters, while a request like:

http://yourserver.com/example.xsql? val=3

Would return:

<example>
  <rowset>
    <row>
      <somevalue>3</somevalue>
    </row>
  </row>
</example>

To illustrate an important point for bind variables, imagine removing the default

value for the val  parameter from the page by removing the val  attribute like this:

<example connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query tag-case="lower" bind-params="val val val">
    SELECT ? as somevalue
      FROM DUAL
     WHERE ? = ?
  </xsql:query>
</example>

Now a request for the page without supplying any parameters would return:

<example>
  <rowset/>
</example>
XSQL Pages Publishing Framework 10-29



Overview of All XSQL Pages Capabilities
because a bind variable that is bound to a parameter with neither a default value nor
a value supplied in the request will be bound to NULL, causing the WHERE clause

in our example page above to return no rows.

Understanding the Different Kinds of Parameters
XSQL pages can make use of parameters supplied in the request, as well as

page-private parameters whose names and values are determined by actions in the

page. If an action encounters a reference to a parameter named param  in either a

bind-params  attribute or in a lexical parameter reference, the value of the param
parameter is resolved by using:

1. The value of the page-private parameter named param , if set, otherwise

2. The value of the request parameter named param , if supplied, otherwise

3. The default value provided by an attribute named param  on the current action

element or one of its ancestor elements, otherwise

4. The value NULL for bind variables and the empty string for lexical parameters

For XSQL pages that are processed by the XSQL Servlet over HTTP, two additional

HTTP-specific type of parameters are available to be set and referenced. These are

HTTP-Session-level variables and HTTP Cookies. For XSQL pages processed

through the XSQL Servlet, the parameter value resolution scheme is augmented as

follows. The value of a parameter param  is resolved by using:

1. The value of the page-private parameter param , if set, otherwise

2. The value of the cookie named param , if set, otherwise

3. The value of the session variable named param , if set, otherwise

4. The value of the request parameter named param , if supplied, otherwise

5. The default value provided by an attribute named param  on the current action

element or one of its ancestor elements, otherwise

6. The value NULL for bind variables and the empty string for lexical parameters

The resolution order is arranged this way so that users cannot supply parameter

values in a request to override parameters of the same name that have been set in

the HTTP session — whose lifetime is the duration of the HTTP session and

controlled by your web server — or set as cookies, which can bet set to "live" across

browser sessions.
10-30 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
The <xsql:include-request-params> Action
The <xsql:include-request-params>  action allows you to include an XML

representation of all parameters in the request in your datagram. This is useful if

your associated XSLT stylesheet wants to refer to any of the request parameter

values by using XPath expressions.

The syntax of the action is:

<xsql:include-request-params/>

The XML included will have the form:

<request>
  <parameters>
    < paramname>value1</ paramname>
    < ParamName2>value2</ ParamName2>
      :
  </parameters>
</request>

or the form:

<request>
  <parameters>
    < paramname>value1</ paramname>
    < ParamName2>value2</ ParamName2>
      :
  </parameters>
  <session>
    < sessVarName >value1</ sessVarName >
      :
  </session>
  <cookies>
    < cookieName >value1</ cookieName >
      :
  </cookies>
</request>

when processing pages through the XSQL Servlet.

This action has no required or optional attributes.
XSQL Pages Publishing Framework 10-31



Overview of All XSQL Pages Capabilities
The <xsql:include-param> Action
The <xsql:include-param> action allows you to include an XML representation

of a single parameter in your datagram. This is useful if your associated XSLT

stylesheet wants to refer to the parameter’s value by using an XPath expression.

The syntax of the action is:

<xsql:include-param name=" paramname" />

This name attribute is required, and supplies the name of the parameter whose

value you would like to include. This action has no optional attributes.

The XML included will have the form:

<paramname>value1</ paramname>

The <xsql:include-xml> Action
The <xsql:include-xml>  action includes the XML contents of a local or remote

resource into your datagram. The resource is specified by URL.

The syntax for this action is:

<xsql:include-xml href=" URL"/>

The URL can be an absolute, http-based URL to retrieve XML from another web

site, or a relative URL to include XML from a file on the file system. The href
attribute is required, and this action has no other optional attributes.

The <xsql:set-page-param> Action
The <xsql:set-page-param>  action sets a page-private parameter to a value.

The value can be supplied by a combination of static text and other parameter

values, or alternatively from the result of a SQL select statement.

The syntax for this action is:

<xsql:set-page-param name="paramname" value=" value "/>

or

<xsql:set-page-param name="paramname">
  SQL select statement
</xsql:set-page-param>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database
10-32 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
connection to be provided by supplying a connection=" connname"  attribute on the

document element of the XSQL page in which it appears.

The name attribute is required. The value  attribute and the contained SQL

statement are mutually exclusive. If one is supplied, the other must not be.

Table 10–4 lists the attributes supported by this action. Attributes in bold are

required.

The <xsql:set-session-param> Action
The <xsql:set-session-param> action sets an HTTP session-level parameter to

a value. The value of the session-level parameter remains for the lifetime of the

current browser user’s HTTP session, which is controlled by the web server. The

value can be supplied by a combination of static text and other parameter values, or

alternatively from the result of a SQL select statement.

Since this feature is specific to Java Servlets, this action is only effective if the XSQL

page in which it appears is being processed by the XSQL Servlet. If this action is

encountered in an XSQL page being processed by the XSQL command line utility or

the XSQLRequest  programmatic API, this action is a no-op.

The syntax for this action is:

<xsql:set-session-param name=" paramname" value=" value "/>

or

<xsql:set-session-param name=" paramname">
  SQL select statement
</xsql:set-session-param>

Table 10–4 Attributes for <xsql:set-page-param>

Attribute Name  Description

name = " string " Name of the page-private parameter whose value you want to
set.

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the page-level parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no . The default value is

no .
XSQL Pages Publishing Framework 10-33



Overview of All XSQL Pages Capabilities
If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database

connection to be provided by supplying a connection=" connname"  attribute on the

document element of the XSQL page in which it appears.

The name attribute is required. The value  attribute and the contained SQL

statement are mutually exclusive. If one is supplied, the other must not be.

Table 10–5 lists the optional attributes supported by this action.

The <xsql:set-cookie> Action
The <xsql:set-cookie>  action sets an HTTP cookie to a value. By default, the

value of the cookie remains for the lifetime of the current browser, but it’s lifetime

can be changed by supplying the optional max-age  attribute. The value can be

supplied by a combination of static text and other parameter values, or alternatively

from the result of a SQL select statement.

Since this feature is specific to the HTTP protocol, this action is only effective if the

XSQL page in which it appears is being processed by the XSQL Servlet. If this action

is encountered in an XSQL page being processed by the XSQL command line utility

or the XSQLRequest  programmatic API, this action is a no-op.

The syntax for this action is:

<xsql:set-cookie name=" paramname" value=" value "/>

or

Table 10–5 Attributes for <xsql:set-session-param>

Attribute Name  Description

name = " string " Name of the session-level variable whose value you want to
set.

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the page-level parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no . The default value is

no .

only-if-unset = "boolean" Indicates whether the session variable assignment should only

occur when the session variable currently does not exists. Valid

values are yes  and no . The default value is no .
10-34 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
<xsql:set-cookie name=" paramname">
  SQL select statement
</xsql:set-cookie>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database

connection to be provided by supplying a connection=" connname"  attribute on the

document element of the XSQL page in which it appears.

The name attribute is required. The value  attribute and the contained SQL

statement are mutually exclusive. If one is supplied, the other must not be.

Table 10–6 lists the optional attributes supported by this action.

Table 10–6 Attributes for <xsql:set-cookie>

Attribute Name  Description

name = " string " Name of the cookie whose value you want to set.

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

domain = "string" Domain in which cookie value is valid and readable. If domain
is not set explicitly, then it defaults to the fully-qualified
hostname (e.g. bigserver.yourcompany.com ) of the
document creating the cookie.

ignore-empty-value = "boolean" Indicates whether the page-level parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no . The default value is

no .

max-age = "integer" Sets the maximum age of the cookie in seconds. Default is to set
the cookie to expire when users current browser session
terminates.

only-if-unset = "boolean" Indicates whether the cookie assignment should only occur

when the cookie currently does not exists. Valid values are yes
and no . The default value is no .

path = "string" Relative URL path within domain in which cookie value is
valid and readable. If path is not set explicitly, then it defaults
to the URL path of the document creating the cookie.
XSQL Pages Publishing Framework 10-35



Overview of All XSQL Pages Capabilities
The <xsql:set-stylesheet-param> Action
The <xsql:set-stylesheet-param>  action sets a top-level XSLT stylesheet

parameter to a value. The value can be supplied by a combination of static text and

other parameter values, or alternatively from the result of a SQL select statement.

The stylesheet parameter will be set on any stylesheet used during the processing of

the current page.

The syntax for this action is:

<xsql:set-stylesheet-param name=" paramname" value=" value "/>

or

<xsql:set-stylesheet-param name=" paramname">
  SQL select statement
</xsql:set-stylesheet-param>

If you use the SQL statement option, a single row is fetched from the result set and

the parameter is assigned the value of the first column. This use requires a database

connection to be provided by supplying a connection=" connname"  attribute on the

document element of the XSQL page in which it appears.

The name attribute is required. The value  attribute and the contained SQL

statement are mutually exclusive. If one is supplied, the other must not be.

Table 10–7 lists the optional attributes supported by this action.

Aggregating Information Using <xsql:include-xsql>
The <xsql:include-xsql> action makes it very easy to include the results of one

XSQL page into another page. This allows you to easily aggregate content from a

Table 10–7 Attributes for <xsql:set-stylesheet-param>

Attribute Name  Description

name = " string " Name of the top-level stylesheet parameter whose value you
want to set.

bind-params = "string" Ordered, space-separated list of one or more XSQL parameter
names whose values will be used to bind to the JDBC bind
variable in the appropriate sequential position in the SQL
statement.

ignore-empty-value = "boolean" Indicates whether the page-level parameter assignment should
be ignored if the value to which it is being assigned is an

empty string. Valid values are yes and no . The default value is

no .
10-36 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
page that you’ve already built and repurpose it. The examples below illustrate two

of the most common uses of <xsql:include-xsql> .

Assume you have an XSQL page that lists discussion forum categories:

<!-- Categories.xsql -->
<xsql:query connection="forum" xmlns:xsql="urn:oracle-xsql">
  SELECT name
    FROM categories
    ORDER BY name
</xsql:query>

You can include the results of this page into a page that lists the ten most recent

topics in the current forum like this:

<!-- TopTenTopics.xsql -->
<top-ten-topics connection="forum" xmlns:xsql="urn:oracle-xsql">
  <topics>
    <xsql:query max-rows="10">
      SELECT subject FROM topics ORDER BY last_modified DESC
    </xsql:query>
  </topics>
  <categories>

<xsql:include-xsql href="Categories.xsql"/>
  </categories>
</top-ten-topics>

You can use <xsql:include-xsql>  to include an existing page to apply an XSLT

stylesheet to it as well. So, if we have two different XSLT stylesheets:

■ cats-as-html.xsl , which renders the topics in HTML, and

■ cats-as-wml.xsl , which renders the topics in WML

Then one approach for catering to two different types of devices is to create

different XSQL pages for each device. We can create:

<?xml version="1.0"?>
<!-- HTMLCategories.xsql -->
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql"/>

which aggegrates Categories.xsql  and applies the cats-as-html.xsl
stylesheet, and another page:

<?xml version="1.0"?>
<!-- WMLCategories.xsql -->
XSQL Pages Publishing Framework 10-37



Overview of All XSQL Pages Capabilities
<?xml-stylesheet type="text/xsl" href="cats-as-html.xsl"?>
<xsql:include-xsql href="Categories.xsql" xmlns:xsql="urn:oracle-xsql" />

which aggregates Categories.xsql  and applies the cats-as-wml.xsl
stylesheet for delivering to wireless devices. In this way, we’ve repurposed the

reusable Categories.xsql page content in two different ways.

If the page being aggregated contains an <?xml-stylesheet?>  processing

instruction, then that stylesheet is applied before the result is aggregated, so using

<xsql:include-xsql>  you can also easily chain the application of XSLT

stylesheets together.

When one XSQL page aggregates another page’s content using

<xsql:include-xsql>  all of the request-level parameters are visible to the

"nested" page. For pages processed by the XSQL Servlet, this also includes

session-level parameters and cookies, too. As you would expect, none of the

aggregating page’s page-private parameters are visible to the nested page.

Table 10–8 lists the attributes supported by this action. Required attributes are in

bold.

Handling Posted Information
In addition to simplifying the assembly and transformation of XML content, the

XSQL Pages framework makes it easy to handle posted XML content as well.

Built-in actions simplify the handling of posted information from both XML

document and HTML forms, and allow that information to be posted directly into a

database table using the underlying facilities of the Oracle XML SQL Utility.

The XML SQL Utility provides the ability to data database inserts, updates, and

deletes based on the content of an XML document in "canonical" form with respect

to a target table or view. For a given database table, the "canonical" XML form of its

data is given by one row of XML output from a SELECT * FROM tablename
query against it. Given an XML document in this canonical form, the XML SQL

Table 10–8 Attributes for <xsql:include-xsql>

Attribute Name  Description

href = " string " Relative or absolute URL of XSQL page to be included.

reparse = "boolean" Indicates whether output of included XSQL page should be
reparsed before it is included. Useful if included XSQL page is
selecting the text of an XML document fragment that the

including page wants to treat as elements. Valid values are yes
and no . The default value is no .
10-38 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
Utility can automate the insert, update, and/or delete for you. By combining the

XML SQL Utility with an XSLT transformation, you can transform XML in any

format into the canonical format expected by a given table, and then ask the XML

SQL Utility to insert, update, delete the resulting "canonical" XML for you.

The following built-in XSQL actions make exploiting this capability easy from

within your XSQL pages:

■ <xsql:insert-request>

Insert the optionally transformed XML document that was posted in the

request into a table.Table 10–9 lists the required and optional attributes

supported by this action.

■ <xsql:update-request>

Update the optionally transformed XML document that was posted in the

request into a table or view. Table 10–10 lists the required and optional

attributes supported by this action.

■ <xsql:delete-request>

Delete the optionally transformed XML document that was posted in the

request from a table or view. Table 10–11 lists the required and optional

attributes supported by this action.

■ <xsql:insert-param>

Insert the optionally transformed XML document that was posted as the

value of a request parameter into a table or view. Table 10–12 lists the

required and optional attributes supported by this action.

If you target a database view with your insert, then you can create INSTEAD OF
INSERT triggers on the view to further automate the handling of the posted

information. For example, an INSTEAD OF INSERT  trigger on a view could use

PL/SQL to check for the existence of a record and intelligently choose whether to

do an INSERT or an UPDATE depending on the result of this check.

Table 10–9 Attributes for <xsql:insert-request>

Attribute Name  Description

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.
XSQL Pages Publishing Framework 10-39



Overview of All XSQL Pages Capabilities
columns = "string" Space-separated or comma-separated list of one or more
column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, non-zero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat  class.

Table 10–10 Attributes for <xsql:update-request>

Attribute Name  Description

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

key-columns = " string " Space-separated or comma-separated list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-separated or comma-separated list of one or more
column names whose values will be updated. If supplied, then
only these columns will be updated. If not supplied, all
columns will be updated, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, non-zero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat  class.

Table 10–9 Attributes for <xsql:insert-request>

Attribute Name  Description
10-40 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
Table 10–11 Attributes for <xsql:delete-request>

Attribute Name  Description

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

key-columns = " string " Space-separated or comma-separated list of one or more
column names whose values in the posted XML document will
be used to identify the existing rows to update.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

commit-batch-size = "integer" If a positive, non-zero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.

Table 10–12 Attributes for <xsql:insert-param>

Attribute Name  Description

name = " string " Name of the parameter whose value contains XML to be
inserted.

table = " string " Name of the table, view, or synonym to use for inserting the
XML information.

transform = "URL" Relative or absolute URL of the XSLT transformation to use to
transform the document to be inserted into canonical
ROWSET/ROW format.

columns = "string" Space-separated or comma-separated list of one or more
column names whose values will be inserted. If supplied, then
only these columns will be inserted. If not supplied, all
columns will be inserted, with NULL values for columns
whose values do not appear in the XML document.

commit-batch-size = "integer" If a positive, non-zero number N is specified, then after each
batch of N inserted records, a commit will be issued. Default
batch size is zero (0) if not specified, meaning not to commit
interim batches.
XSQL Pages Publishing Framework 10-41



Overview of All XSQL Pages Capabilities
Understanding Different XML Posting Options
There are three different ways that the XSQL pages framework can handle posted

information.

1. A client program can send an HTTP POST message that targets an XSQL

page, whose request body contains an XML document and whose HTTP

header reports a ContentType of "text/xml ".

In this case, you can use the <xsql:insert-request> ,

<xsql:update-request> , or the <xsql:delete-request> action and

the content of the posted XML will be insert, updated, or deleted in the

target table as indicated. If you transform the posted XML document using

an XSLT transformation, the posted XML document is the source document

for this transformation.

2. A client program can send an HTTP GET request for an XSQL page, one of

whose parameters contains an XML document.

In this case, you can use the <xsql:insert-param>  action and the

content of the posted XML parameter value will be inserted in the target

table as indicated. If you transform the posted XML document using an

XSLT transformation, the XML document in the parameter value is the

source document for this transformation.

3. A browser can submit an HTML form with method="POST" whose action

targets an XSQL page. In this case, by convention the browser sends an

HTTP POST message whose request body contains an encoded version of

all of the HTML form’s fields and their values with a ContentType of

"application/x-www-form-urlencoded "

In this case, there request does not contain an XML document, but instead

an encoded version of the form parameters. However, to make all three of

these cases uniform, the XSQL page processor will (on demand) materialize

an XML document from the set of form parameters, session variables, and

cookies contained in the request. Your XSLT transformation then transforms

this dynamically-materialized XML document into canonical form for

date-format = "string" Date format mask to use for interpreting date field values in
XML being inserted. Valid values are those documented for the
java.text.SimpleDateFormat  class.

Table 10–12 Attributes for <xsql:insert-param>

Attribute Name  Description
10-42 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities

est
insert, update, or delete using <xsql:insert> ,

<xsql:update-request> , or <xsql:delete-request>  respectively.

When working with posted HTML forms, the dynamically materialized XML

document will have the following form:

<request>
  <parameters>
    < firstparamname >firstparamvalue</ firstparamname >
      :
    < lastparamname >lastparamvalue</ lastparamname >
  </parameters>
  <session>
    < firstparamname >firstsessionparamvalue</ firstparamname >
       :
    < lastparamname >lastsessionparamvalue</ lastparamname >
  </session>
  <cookies>
    < firstcookie >firstcookievalue</ firstcookiename >
        :
    < lastcookie >firstcookievalue</ lastcookiename >
  </cookies>
</request>

If multiple parameters are posted with the same name, then they will automatically be
"row-ified" to make subsequent processing easier. This means, for example, that a requ
which posts or includes the following parameters:

■ id  = 101

■ name = Steve

■ id  = 102

■ name = Sita

■ operation  = update

Will create a "row-ified" set of parameters like:

<request>
  <parameters>

<row>
      <id>101</id>
      <name>Steve</name>

</row>
<row>

      <id>102</id>
XSQL Pages Publishing Framework 10-43



Overview of All XSQL Pages Capabilities
      <name>Sita</name>
</row>

    <operation>update</operation>
  </parameters>
       :
</request>

Since you will need to provide an XSLT stylesheet that transforms this materialized

XML document containing the request parameters into canonical format for your

target table, it might be useful to build yourself an XSQL page like this:

<!--
 | ShowRequestDocument.xsql
 | Show Materialized XML Document for an HTML Form
 +-->
<xsql:include-request-params xmlns:xsql="urn:oracle-xsql"/>

With this page in place, you can temporarily modify your HTML form to post to the

ShowRequestDocument.xsql  page, and in the browser you will see the "raw"

XML for the materialized XML request document which you can save out and use

to develop the XSLT transformation.

Using Custom XSQL Action Handlers
When you need to perform tasks that are not handled by the built-in action

handlers, the XSQL Pages framework allows custom actions to be invoked to do

virtually any kind of job you need done as part of page processing. Custom actions

can supply arbitrary XML content to the data page and perform arbitrary

processing. See Writing Custom XSQL Action Handlers later in this chapter for

more details on writing custom action handlers in Java. Here we explore how to

make use of a custom action handler, once it’s already created.

To invoke a custom action handler, use the built-in <xsql:action>  action

element. It has a single, required attribute named handler  whose value is the

fully-qualified Java class name of the action you want to invoke. The class must

implement the oracle.xml.xsql.XSQLActionHandler  interface. For example:

<xsql:action handler="yourpackage.YourCustomHandler"/>
Any number of additional attribute can be supplied to the handler in the normal

way. For example, if the yourpackage.YourCustomHandler  is expecting a

attributes named param1  and param2 , you use the syntax:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy"/>
10-44 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Overview of All XSQL Pages Capabilities
Some action handlers, perhaps in addition to attributes, may expect text content or

element content to appear inside the <xsql:action>  element. If this is the case,

simply use the expected syntax like:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
   Some Text Goes Here
</xsql:action>

or this:

<xsql:action handler="yourpackage.YourCustomHandler" param1="xxx" param2="yyy">
  <some>
    <other/>
    <elements/>
    <here/>
  </some>
</xsql:action>
XSQL Pages Publishing Framework 10-45



Description of XSQL Servlet Examples
Description of XSQL Servlet Examples
Figure 10–13 lists the XSQL Servlet example applications supplied with the software

in the ./demo  directory.

Table 10–13 XSQL Servlet Examples

Demonstration Name  Description

Hello World
./demo/helloworld

Simplest possible XSQL page.

Do You XML Site
./demo/doyouxml

XSQL page shows how a to build a data-driven web site with an XSQL page. Uses
SQL, XSQL-substitution variables in queries, and XSLT to format.

Uses substitution parameters in SQL statements in <xsql:query>  tags, and in
attributes to <xsql:query> t ags, to control for example how many records to
display, or to skip, for paging through query results.

Employee Page
./demo/emp

XSQL page displays XML data from EMP table, using XSQL page parameters to
control employees and data sorting.

Uses an associated XSLT Stylesheet to format results as HTML version of emp.xsql
page. This is the form action hence you can fine tune your search criteria.

Insurance Claim Page
./demo/insclaim

Shows sample queries over a structured, Insurance Claim object view.
insclaim.sql sets up the INSURANCE_CLAIM_VIEW object view and
populates it with sample data.

Invalid Classes Page
./demo/classerr

XSQL Page uses invalidclasses.xsl  to format a “live” list of current Java
class compilation errors in your schema. The .sql script sets up
XSQLJavaClassesView object view for the demo. Master/detail information from
object view is formatted into HTML by the invalidclasses.xsl  stylesheet in
the server.

Airport Code Validation
./demo/airport

XSQL page returns a “datagram” of information about airports based on their
three-letter codes. Uses <xsql:no-rows-query>  as alternative queries when
initial queries return no rows. After attempting to match the airport code passed
in, the XSQL page tries a fuzzy match based on the airport description.

airport.htm page demonstrates how to use the XML results of airport.xsql
page from a web page using JavaScript to exploit built-in XML Document Object
Model (DOM) functionality in Internet Explorer 5.0.

When you enter the three-letter airport code on the web page, a JavaScript fetches
the XML datagram from XSQL Servlet over the web corresponding to the code you
entered. If the return indicates no match, the program collects a “picklist” of
possible matches based on information returned in the XML “datagram” from
XSQL Servlet
10-46 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Description of XSQL Servlet Examples
Airport Code Display
./demo/airport

Demonstrates using the same XSQL page as the Airport Code Validation example
but supplying an XSLT Stylesheet name in the request. This causes the airport
information to be formatted as an HTML form instead of being returned as raw
XML.

Emp/Dept Object Demo
./demo/empdept

How to use an object view to group master/detail information from two existing
"flat" tables like EMP and DEPT. empdeptobjs.sql  script creates the object view
and INSTEAD OF INSERT triggers, allowing the use of master/detail view as an
insert target of xsql:insert-request.

empdept.xsl  stylesheet illustrates an example of the “simple form” of an XSLT
stylesheet that can look just like an HTML page without the extra xsl:stylesheet or
xsl:transform at the top. Part of XSLT 1.0 specification called using a Literal Result
Element as Stylesheet.

Shows how to generate an HTML page that includes the <link rel=”stylesheet”> to
allow the generated HTML to fully leverage CSS for centralized HTML style
information, found in the coolcolors.css  file.

Adhoc Query
Visualization
./demo/adhocsql

Shows how to pass an SQL query and XSLT Stylesheet to use as parameters to the
server.

NOTE: Deploying this demo page to your production environment should be given
particular consideration because it allows the results of any SQL query in XML format
over the Web that your SCOTT user account has access to.

XML Document Demo
./demo/document

How to insert XML documents into relational tables.

docdemo.sql  script creates a user-defined type called XMLDOCFRAG containing
an attribute of type CLOB.

■ Insert the text of the document in ./xsql/demo/xml99.xml and provide the
name xml99.xsl  as the stylesheet

■ Insert the text of the document in./xsql/demo/JDevRelNotes.xml  with
the stylesheet relnotes.xsl .

docstyle.xsql  page illustrates an example of the <xsql:include-xsql>
action element to include the output of the doc.xsql  page into its own page
before transforming the final output using a client-supplied stylesheet name.

XML Document demo uses client-side XML features of Internet Explorer 5.0 to
check the document for well-formedness before it is posted to the server.

Table 10–13 XSQL Servlet Examples(Cont.)

Demonstration Name  Description
XSQL Pages Publishing Framework 10-47



Description of XSQL Servlet Examples
Setting Up the Demo Data
To set up the demo data do the following:

1. Change directory to the ./demo directory on your machine.

2. In this directory, run SQLPLUS. Connect to your database as CTXSYS/CTXSYS

— the schema owner for Oracle9i Text (Intermedia Text) packages — and issue

the command

GRANT EXECUTE ON CTX_DDL TO SCOTT;

3. Connect to your database as SYSTEM/MANAGER and issue the command:

GRANT QUERY REWRITE TO SCOTT;

XML Insert Request Demo
./demo/insertxml

Posts XML from a client to an XSQL Page that inserts the posted XML information
into a database table using the <xsql:insert-request>  action element.

The demo accepts XML documents in the moreover.com XML-based news format.
The program posting the XML is a client-side web page using Internet Explorer 5.0
and the XMLHttpRequest object from JavaScript.

The source for insertnewsstory.xsql  page, specifies a table name and XSLT
Transform name.

moreover-to-newsstory.xsl stylesheet transforms the incoming XML into
canonical format that OracleXMLSave  utility can insert. Copy and paste the
example <article> element several times within the <moreovernews> element to
insert several new articles in one shot.

newsstory.sql  shows how INSTEAD OF triggers can be used on the database
views into which you ask XSQL Pages to insert to the data to customize how
incoming data is handled, default primary key values,....

SVG Demo
./demo/svg

deptlist.xsql  page displays a simple list of departments with hyperlinks to
SalChart.xsql  page.

SalChart.xsql  page queries employees for a given department passed in as a
parameter and uses the SalChart.xsql stylesheet to format the result into a Scalable
Vector Graphics drawing, a bar chart comparing salaries of the employees in that
department.

PDF Demo
./demo/fop

emptable.xsql  page displays a simple list of employees. The emptable.xsl
stylesheet transforms the datapage into the XSL-FO Formatting Objects which,
combined with the built-in FOP serializer, render the results in Adobe PDF format.

Table 10–13 XSQL Servlet Examples(Cont.)

Demonstration Name  Description
10-48 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
This allows SCOTT to create a functional index that one of the demos uses to

perform case-insensitive queries on descriptions of airports.

4. Connect to your database as SCOTT/TIGER.

5. Run the script install.sql  in the ./demo directory. This script runs all SQL

scripts for all the demos.

install.sql
@@insclaim/insclaim.sql
@@document/docdemo.sql
@@classerr/invalidclasses.sql
@@airport/airport.sql
@@insertxml/newsstory.sql
@@empdept/empdeptobjs.sql

6. Change directory to ./doyouxml subdirectory, and run the following:

imp scott/tiger file=doyouxml.dmp

to import sample data for the "Do You XML? Site" demo.

7. To experience the Scalable Vector Graphics (SVG) demonstration, install an SVG

plug-in into your browser, such as Adobe SVG Plug-in.

Advanced XSQL Pages Topics

Understanding Client Stylesheet-Override Options
If the current XSQL page being requested allows it, you can supply an XSLT

stylesheet URL in the request to override the default stylesheet that would have

been used — or to apply a stylesheet where none would have been applied by

default. The client-initiated stylesheet URL is provided by supplying the

xml-stylesheet  parameter as part of the request. The valid values for this

parameter are:

■ Any relative URL, interpreted relative to the XSQL page being processed

■ Any absolute URL using the http protocol scheme, provided it references a

trusted host (as defined in the XSQLConfig.xml  file)

■ The literal value none

This last value, xml-stylesheet=none , is particularly useful during

development to temporarily "short-circuit" the XSLT stylesheet processing to see
XSQL Pages Publishing Framework 10-49



Advanced XSQL Pages Topics
what XML datagram your stylesheet is actually seeing. This can help understand

why a stylesheet might not be producing the expected results.

Client-override of stylesheets for an XSQL page can be disallowed either by:

■ Setting the allow-client-style  configuration parameter to no  in the

XSQLConfig.xml  file, or

■ Explicitly including an allow-client-style=”no”  attribute on the

document element of any XSQL page

If client-override of stylesheets has been globally disabled by default in the

XSQLConfig.xml configuration file, any page can still enable client-override

explicitly by including an allow-client-style=”yes”  attribute on the

document element of that page.

Controlling How Stylesheets are Processed

Controlling the Content Type of the Returned Document
Setting the content type of the information you serve is very important. It allows the

requesting client to correctly interpret the information that you send back.If your

stylesheet uses an <xsl:output>  element, the XSQL Page Processor infers the

media type and encoding of the returned document from the media-type  and

encoding  attributes of <xsl:output> .

For example, the following stylesheet uses the

media-type="application/vnd.ms-excel"  attribute on <xsl:output>  to

transform the results of an XSQL page containing a standard query over the emp

table into Microsoft Excel spreadsheet format.

<?xml version="1.0"?>
<!-- empToExcel.xsl -->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:output method="html" media-type="application/vnd.ms-excel"/>
  <xsl:template match="/">
   <html>
     <table>
       <tr><th>EMPNO</th><th>ENAME</th><th>SAL</th></tr>
       <xsl:for-each select="ROWSET/ROW">
         <tr>
           <td><xsl:value-of select="EMPNO"/></td>
           <td><xsl:value-of select="ENAME"/></td>
           <td><xsl:value-of select="SAL"/></td>
         </tr>
10-50 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
       </xsl:for-each>
     </table>
   </html>
  </xsl:template>
</xsl:stylesheet>

An XSQL page that makes use of this stylesheet looks like this:

<?xml version="1.0"?>
<?xml-stylesheet href="empToExcel.xsl" type="text/xsl"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
  select * from emp order by sal desc
</xsql:query>

Assigning the Stylesheet Dynamically
As we've seen, if you include an <?xml-stylesheet?>  processing instruction at

the top of your .xsql  file, it will be considered by the XSQL page processor for use

in transforming the resulting XML datagram. For example:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:query>
    SELECT * FROM emp ORDER BY sal DESC
  </xsql:query>
</page>

would use the emp.xsl  stylesheet to transform the results of the EMP query in the

server tier, before returning the response to the requestor. The stylesheet is accessed

by the relative or absolute URL provided in the href  pseudo-attribute on the

<?xml-stylesheet?>  processing instruction.

By including one or more parameter references in the value of the href
pseudo-attribute, you can dynamically determine the name of the stylesheet. For

example, this page selects the name of the stylesheet to use from a table by

assigning the value of a page-private parameter using a query.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href=" {@sheet} .xsl"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:set-page-param bind-params="UserCookie" name="sheet">
    SELECT stylesheet_name
      FROM user_prefs
     WHERE username = ?
  </xsql:set-page-param>
XSQL Pages Publishing Framework 10-51



Advanced XSQL Pages Topics
  <xsql:query>
    SELECT * FROM emp ORDER BY sal DESC
  </xsql:query>
</page>

Processing Stylesheets in the Client
Some browsers like Microsoft’s Internet Explorer 5.0 and higher support processing

XSLT stylesheets in the client. These browsers recognize the stylesheet to be

processed for an XML document in the same way that a server-side XSQL page

does, using an <?xml-stylesheet?>  processing instruction. This is not a

coincidence. The use of <?xml-stylesheet?>  for this purpose is part of the W3C

Recommendation from June 29, 1999 entitled "Associating Stylesheets with XML

Documents, Version 1.0"

By default, the XSQL page processor performs XSLT transformations in the server,

however by adding on additional pseudo-attribute to your <?xml-stylesheet?>
processing instruction in your XSQL page — client="yes"  — the page processor

will defer the XSLT processing to the client by serving the XML datagram "raw",

with the current <?xml-stylesheet?>   at the top of the document.

One important point to note is that Internet Explorer 5.0 shipped in late 1998,

containing an implementation of the XSL stylesheet language that conformed to a

December 1998 Working Draft of the standard. The XSLT 1.0 Recommendation that

finally emerged in November of 1999 had significant changes from the earlier

working draft version on which IE5 is based. This means that IE5 browsers

understand a different "dialect" of XSLT than all other XSLT processors — like the

Oracle XSLT processor — which implement the XSLT 1.0 Recommendation syntax.

Toward the end of 2000, Microsoft released version 3.0 of their MSXML components

as a Web-downloadable release. This latest version does implement the XSLT 1.0

standard, however in order for it to be used as the XSLT processor inside the IE5

browser, the user must go through additional installation steps. Unfortunately there

is no way for a server to detect that the IE5 browser has installed the latest XSLT

components, so until the Internet Explorer 6.0 release emerges — which will contain

the latest components by default and which will send a detectably different

User-Agent string containing the 6.0 version number — stylesheets delivered for

client processing to IE5 browsers should use the earlier IE5-"flavor" of XSL.

What we need is a way to request that an XSQL page use different stylesheets

depending on the User-Agent making the request. Luckily, the XSQL Pages

framework makes this easy and we learn how in the next section.
10-52 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
Providing Multiple, UserAgent-Specific Stylesheets
You can include multiple <?xml-stylesheet?> processing instructions at the top

of an XSQL page and any of them can contain an optional media  pseudo-attribute.

If specified, the media pseudo-attribute’s value is compared case-insensitively with

the value of the HTTP header’s User-Agent string. If the value of the media
pseudo-attribute matches a part of the User-Agent string, then the processor selects

the current <?xml-stylesheet?>  processing instruction for use, otherwise it

ignores it and continues looking. The first matching processing instruction in

document order will be used. A processing instruction without a media
pseudo-attribute matches all user agents so it can be used as the fallback/default.

For example, the following processing instructions at the top of an .xsql file...

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="lynx"  href=" doyouxml-lynx.xsl " ?>
<?xml-stylesheet type="text/xsl" media="msie 5"  href=" doyouxml-ie.xsl " ?>
<?xml-stylesheet type="text/xsl" href="doyouxml.xsl" ?>
<page xmlns:xsql="urn:oracle-xsql" connection="demo">
  :

will use doyouxml-lynx.xsl for Lynx browsers, doyouxml-ie.xsl for Internet

Explorer 5.0 or 5.5 browsers, and doyouxml.xsl  for all others.

Table 10–14 summarizes all of the supported pseudo-attributes allowed on the

<?xml-stylesheet?>  processing instruction.

Table 10–14 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name  Description

type = "string" Indicates the MIME type of the associated stylesheet. For XSLT
stylesheets, this attribute must be set to the string text/xsl .

This attribute may be present or absent when using the
serializer  attribute, depending on whether an XSLT
stylesheet should execute before invoking the serializer or not.

href = "URL" Indicates the relative or absolute URL to the XSLT stylesheet to
be used. If an absolute URL is supplied that uses the http
protocol scheme, the IP address of the resource must be a
trusted host listed in the XSQLConfig.xml  file.

media = "string" This attribute is optional. If provided, its value is used to
perform a case-insensitive match on the User-Agent  string
from the HTTP header sent by the requesting device. The
current <?xml-stylesheet?>  processing instruction will
only be used if the User-Agent  string contains the value of
the media  attribute, otherwise it is ignored.
XSQL Pages Publishing Framework 10-53



Advanced XSQL Pages Topics
Using XSQLConfig.xml to Tune Your Environment
Use the XSQLConfig.xml  File to tune your XSQL pages environment. Table 10–15

defines all of the parameters that can be set.

client = "boolean" If set to yes , caused the XSQL page processor to defer the
processing of the associated XSLT stylesheet to the client. The
"raw" XML datagram will be sent to the client with the current
<?xml-stylesheet?>  processing instruction at the top of
the document. The default if not specified is to perform the

transform in the server.

serializer = "string" By default, the XSQL page processor uses the:

■ XML DOM serializer if no XSLT stylesheet is used

■ XSLT processor’s serializer, if XSLT stylesheet is used

Specifying this pseudo-attribute indicates that a custom
serializer implementation should be used insteaad.

Valid values are either the name of a custom serializer defined
in the <serializerdefs>  section of the XSQLConfig.xml
file, or the string java: fully.qualified.Classname . If
both an XSLT stylesheet and the serializer attribute are present,
then the XSLT transform is performed first, then the custom
serializer is invoked to render the final result to the
OutputStream or PrintWriter.

Table 10–15 XSQLConfig.xml Configuation Settings

Configuration Setting Name

XSQLConfig/servlet/output-buffer-size

Sets the size (in bytes) of the buffered output stream. If your servlet engine already buffers
I/O to the Servlet Output Stream, then you can set to 0 to avoid additional buffering.

Default value is 0. Valid value is any non-negative integer.

Table 10–14 Pseudo-Attributes for <?xml-stylesheet?>

Attribute Name  Description
10-54 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
XSQLConfig/servlet/suppress-mime-charset/media-type

The XSQL Servlet sets the HTTP ContentType  header to indicate the MIME type of the
resource being returned to the request. By default, the XSQL Servlet includes the optional
character set information in the MIME type. For a particular MIME type, you can suppress
the inclusion of the character set information by including a <media-type>  element, with
the desired MIME type as its contents.

You may list any number of <media-type>  elements.

Valid value is any string.

XSQLConfig/processor/character-set-conversion/default-charset

By default, the XSQL page processor does charater set conversion on the value of HTTP
parameters to compensate for the default character set used by most servlet engines. The
default base character set used for conversion is the Java character set 8859_1
corresponding to IANA's ISO-8859-1  character set. If your servlet engine uses a different
character set as its base character set you can now specify that value here.

To suppress character set conversion, specify the empty element <none/>  as the content of
the <default-charset>  element, instead of a character set name. This is useful if you are
working with parameter values that are correctly representable using your servlet's default
character set, and eliminates a small amount of overhead associated with performing the
character set conversion.

Valid values are any Java character set name, or the element <none/> .

XSQLConfig/processor/reload-connections-on-error

Connection definitions are cached when the XSQL Page Processor is initialized. Set this
setting to yes  to cause the processor to reread the XSQLConfig.xml  file to reload
connection definitions if an attempt is made to request a connection name that's not in the
cached connection list. The yes  setting is useful during development when you might be
adding new <connection>  definitions to the file while the servlet is running. Set to no  to
avoid reloading the connection definition file when a connection name is not found in the
in-memory cache.

Default is yes . Valid values are yes  and no .

XSQLConfig/processor/default-fetch-size

Sets the default value of the row fetch size for retrieving information from SQL queries from
the database. Only takes effect if you are using the Oracle JDBC Driver, otherwise the setting
is ignored. Useful for reducing network roundtrips to the database from the servlet engine
running in a different tier.

Default is 50 . Valid value is any non-zero positive integer.

Table 10–15 XSQLConfig.xml Configuation Settings

Configuration Setting Name
XSQL Pages Publishing Framework 10-55



Advanced XSQL Pages Topics
XSQLConfig/processor/page-cache-size

Sets the size of the XSQL cache for XSQL page templates. This determines the maximum
number of XSQL pages that will be cached. Least recently used pages get "bumped" out of
the cache if you go beyond this number.

Default is 25 . Valid value is any non-zero positive integer.

XSQLConfig/processor/stylesheet-cache-size

Sets the size of the XSQL cache for XSLT stylesheets. This determines the maximum number
of stylesheets that will be cached. Least recently used stylesheets get "bumped" out of the
cache if you go beyond this number.

Default is 25 . Valid value is any non-zero positive integer.

XSQLConfig/processor/stylesheet-pool/initial

Each cached stylesheet is actually a pool of cached stylesheet instances to improve
throughput. Sets the initial number of stylesheets to be allocated in each stylesheet pool.

Default is 1. Valid value is any non-zero positive integer.

XSQLConfig/processor/stylesheet-pool/increment

Sets the number of stylesheets to be allocated when the stylesheet pool must grow due to
increased load on the server.

Default is 1. Valid value is any non-zero positive integer.

XSQLConfig/processor/stylesheet-pool/timeout-seconds

Sets the number of seconds of inactivity that must transpire before a stylesheet instance in
the pool will be removed to free resources as the pool tries to "shrink" back to its initial size.

Default is 60 . Valid value is any non-zero positive integer.

XSQLConfig/processor/connection-pool/initial

The XSQL page processor’s default connection manager implements connection pooling to
improve throughput. This setting controls the initial number of JDBC connections to be
allocated in each connection pool.

Default is 2. Valid value is any non-zero positive integer.

XSQLConfig/processor/connection-pool/increment

Sets the number of connections to be allocated when the connection pool must grow due to
increased load on the server.

Default is 1. Valid value is any non-zero positive integer.

Table 10–15 XSQLConfig.xml Configuation Settings

Configuration Setting Name
10-56 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
XSQLConfig/processor/connection-pool/timeout-seconds

Sets the number of seconds of inactivity that must transpire before a JDBC connection in the
pool will be removed to free resources as the pool tries to "shrink" back to its initial size.

Default is 60 . Valid value is any non-zero positive integer.

XSQLConfig/processor/connection-pool/dump-allowed

Determines whether a diagnostic report of connection pool activity can be requested by
passing the dump-pool=y  parameter in the page request.

Default is no . Valid value is yes  or no .

XSQLConfig/processor/connection-manager/factory

Specifies the fully-qualified Java class name of the XSQL connection manager factory
implementation.  If not specified, this setting defaults to
oracle.xml.xsql.XSQLConnectionManagerFactoryImpl .

Default is oracle.xml.xsql.XSQLConnectionManagerFactoryImpl . Valid value is
any class name that implements the
oracle.xml.xsql.XSQLConnectionManagerFactory  interface.

XSQLConfig/processor/timing/page

Determines whether a the XSQL page processor adds an xsql-timing  attribute to the
document element of the page whose value reports the elapsed number of milliseconds
required to process the page.

Default is no . Valid value is yes  or no .

XSQLConfig/processor/timing/action

Determines whether a the XSQL page processor adds comment to the page just before the
action element whose contents reports the elapsed number of milliseconds required to
process the action.

Default is no . Valid value is yes  or no .

Table 10–15 XSQLConfig.xml Configuation Settings

Configuration Setting Name
XSQL Pages Publishing Framework 10-57



Advanced XSQL Pages Topics
XSQLConfig/processor/security/stylesheet/defaults/allow-client-style

While developing an application, it is frequently useful to take advantage of the XSQL page
processor's per-request stylesheet override capability by providing a value for the special
xml-stylesheet parameter in the request. One of the most common uses is to provide the
xml-stylesheet=none  combination to temporarily disable the application of the
stylesheet to "peek" underneath at the raw XSQL data page for debugging purposes.

When development is completed, you could explicitly add the
allow-client-style="no"  attribute to the document element of each XSQL page to
prohibit client overriding of the stylesheet in the production application. However, using
this configuration setting, you can globally change the default behavior for
allow-client-style  in a single place.

Note that this only provides the default setting for this behavior. If the
allow-client-style="yes|no"  attribute is explicitly specified on the document
element for a given XSQL page, its value takes precedence over this global default.

Valid values are yes  and no .

XSQLConfig/processor/security/stylesheet/trusted-hosts/host

XSLT stylesheets can invoke extension functions. In particular, the Oracle XSLT processor —
which the XSQL page processor uses to process all XSLT stylesheets — supports Java
extension functions. Typically your XSQL pages will refer to XSLT stylesheets using relative
URL’s The XSQL page processor enforces that any absolute URL to an XSLT stylesheet that
is processed must be from a trusted host whose name is listed here in the configuration file.

You may list any number of <host>  elements inside the <trusted-hosts>  element. The
name of the local machine, localhost , and 127.0.0.1  are considered trusted hosts by
default.

Valid values are any hostname or IP address.

XSQLConfig/http/proxyhost

Sets the name of the HTTP proxy server to use when processing URL’s with the http protcol
scheme.

Valid value is any hostname or IP address.

XSQLConfig/http/proxyport

Sets the port number of the HTTP proxy server to use when processing URL’s with the http
protcol scheme.

Valid value is any non-zero integer.

Table 10–15 XSQLConfig.xml Configuation Settings

Configuration Setting Name
10-58 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
Using the FOP Serializer to Produce PDF Output
Using the XSQL Pages framework’s support for custom serializers, the

oracle.xml.xsql.serializers.XSQLFOPSerializer  is provided for

integrating with the Apache FOP processor (http://xml.apache.org/fop). The FOP

XSQLConfig/connectiondefs/connection

Defines a "nickname" and the JDBC connection details for a named connection for use by the
XSQL page processor.

You may supply any number of <connection>  element children of <connectiondefs> .
Each connection definition must supply a name attribute, and may supply appropriate
children elements <username> , <password> , <driver> , <dburl> , and <autocommit> .

XSQLConfig/connectiondefs/connection/username

Defines the username for the current connection.

XSQLConfig/connectiondefs/connection/password

Defines the password for the current connection.

XSQLConfig/connectiondefs/connection/dburl

Defines the JDBC connection URL for the current connection.

XSQLConfig/connectiondefs/connection/driver

Specifies the fully-qualified Java class name of the JDBC driver to be used for the current
connection. If not specified, defaults to oracle.jdbc.driver.OracleDriver .

XSQLConfig/connectiondefs/connection/autocommit

Explicity sets the Auto Commit flag for the current connection. If not specified, connection
uses JDBC driver’s default setting for Auto Commit.

XSQLConfig/serializerdefs/serializer

Defines a named custom serializer implementation.

You may supply any number of <serializer>  element children of <serializerdefs> .
Each must specify both a <name> and a <class>  child element.

XSQLConfig/serializerdefs/serializer/name

Defines the name of the current custom serializer definition.

XSQLConfig/connectiondefs/connection/class

Specifies the fully-qualified Java class name of the current custom serializer. The class must
implement the oracle.xml.xsql.XSQLDocumentSerializer  interface.

Table 10–15 XSQLConfig.xml Configuation Settings

Configuration Setting Name
XSQL Pages Publishing Framework 10-59



Advanced XSQL Pages Topics
processor renders a PDF document from an XML document containing XSL

Formatting Objects (http://www.w3.org/TR/xsl).

For example, given the following XSLT stylesheet, EmpTableFO.xsl :

<!-- EmpTableFO.xsl -->
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format" xsl:version="1.0"
         xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <!-- defines the layout master -->
  <fo:layout-master-set>
    <fo:simple-page-master master-name="first"
                           page-height="29.7cm"
                           page-width="21cm"
                           margin-top="1cm"
                           margin-bottom="2cm"
                           margin-left="2.5cm"
                           margin-right="2.5cm">
      <fo:region-body margin-top="3cm"/>
    </fo:simple-page-master>
  </fo:layout-master-set>
  <!-- starts actual layout -->
  <fo:page-sequence master-name="first">
  <fo:flow flow-name="xsl-region-body">
      <fo:block font-size="24pt" font-family="Garamond" line-height="24pt"
                space-after.optimum="3pt" font-weight="bold"
                start-indent="15pt">

Total of All Salaries is $ <xsl:value-of select="sum(/ROWSET/ROW/SAL)"/>
      </fo:block>
      <!-- Here starts the table -->
      <fo:block border-width="2pt">
        <fo:table>
          <fo:table-column column-width="4cm"/>
          <fo:table-column column-width="4cm"/>
          <fo:table-body font-size="10pt" font-family="sans-serif">
            <xsl:for-each select="ROWSET/ROW">
              <fo:table-row line-height="12pt">
                <fo:table-cell>
                  <fo:block><xsl:value-of select="ENAME"/></fo:block>
                </fo:table-cell>
                <fo:table-cell>
                  <fo:block><xsl:value-of select="SAL"/></fo:block>
                </fo:table-cell>
              </fo:table-row>
            </xsl:for-each>
          </fo:table-body>
        </fo:table>
10-60 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
      </fo:block>
    </fo:flow>
  </fo:page-sequence>
</fo:root>

you can format the results of a query against the EMP table using the supplied FOP

serializer (pre-defined in XSQLConfig.xml ) with an XSQL page like:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emptablefo.xsl" serializer="FOP"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
  SELECT ENAME, SAL FROM EMP
    ORDER BY SAL asc
</xsql:query>

Using XSQL Page Processor Programmatically
The XSQLRequest  class, allows you to utilize the XSQL page processor "engine"

from within your own custom Java programs. Using the API is simple. You

construct an instance of XSQLRequest , passing the XSQL page to be processed into

the constructor as one of the following:

■ String  containing a URL to the page

■ URL object for the page

■ In-memory XMLDocument

Then you invoke one of the following methods to process the page:

■ process()— to write the result to a PrintWriter or OutputStream, or

■ processToXML() —  to return the result as an XML Document

If you want to use the built-in XSQL Connection Manager — which implements

JDBC connection pooling based on XSQLConfig.xml -based connection definitions

— then the XSQL page is all you need to pass to the constructor. Optionally, you can

Note: To use the XSQL FOP Serializer, you need to add these

additional Java archives to your server’s CLASSPATH:

■ xsqlserializers.jar  — supplied with Oracle XSQL

■ fop.jar  — From Apache, version 0.16 or higher

■ w3c.jar   — from the FOP distribution’s ./lib  directory
XSQL Pages Publishing Framework 10-61



Advanced XSQL Pages Topics
pass in a custom implementation for the XSQLConnectionManagerFactory
interface as well, if you want to use your own connection manager implementation.

Note that the ability to pass the XSQL page to be processed as an in-memory XML

Document object means that you can dynamically generate any valid XSQL page

for processing using any means necessary, then pass the page to the XSQL engine

for evaluation.

When processing a page, there are two additional things you may want to do as

part of the request:

■ Pass a set of parameters to the request

You accomplish this by passing any object that implements the

Dictionary  interface, to the process()  or processToXML()  methods.

Passing a HashTable  containing the parameters is one popular approach.

■ Set an XML document to be processed by the page as if it were the "posted

XML" message body

You can do this using the setPostedDocument()  method on the

XSQLRequest object.

Here is a simple example of processing a page using XSQLRequest :

import oracle.xml.xsql.XSQLRequest;
import java.util.Hashtable;
import java.io.PrintWriter;
import java.net.URL;
public class XSQLRequestSample {
  public static void main( String[] args) throws Exception {
     // Construct the URL of the XSQL Page
   URL pageUrl = new URL("file:///C:/foo/bar.xsql");
   // Construct a new XSQL Page request
   XSQLRequest req = new XSQLRequest(pageUrl);
   // Setup a Hashtable of named parameters to pass to the request
   Hashtable params = new Hashtable(3);
   params.put("param1","value1");
   params.put("param2","value2");
   /* If needed, treat an existing, in-memory XMLDocument as if
   ** it were posted to the XSQL Page as part of the request
   req.setPostedDocument(myXMLDocument);
   **
   */
   // Process the page, passing the parameters and writing the output
   // to standard out.
   req.process(params,new PrintWriter(System.out)
10-62 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
                        ,new PrintWriter(System.err));
  }
}

Writing Custom XSQL Action Handlers
When the task at hand requires custom processing, and none of the built-in actions

does exactly what you need, you can augment your repertoire by writing your own

actions that any of your XSQL pages can use.

The XSQL page processor at its very core is an engine that processes XML

documents containing "action elements". The page processor engine is written to

support any action that implements the XSQLActionHandler  interface. All of the

built-in actions implement this interface.

The XSQL Page Processor processes the actions in a page in the following way. For

each action in the page, the engine:

1. Constructs an instance of the action handler class using the default constructor

2. Initializes the handler instance with the action element object and the page

processor context by invoking the method:

init(Element actionElt,XSQLPageRequest context )

3. Invokes the method that allows the handler to handle the action:

handleAction (Node result)

For built-in actions, the engine knows the mapping of XSQL action element name to

the Java class that implements the action’s handler. Table 10–16 lists that mapping

explicitly for your reference. For user-defined actions, you use the built-in:

<xsql:action handler=" fully.qualified.Classname " ... />

action whose handler  attribute provides the fully-qualified name of the Java class

that implements the custom action handler.

Table 10–16 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions

<xsql:query> XSQLQueryHandler

<xsql:dml> XSQLDMLHandler

<xsql:set-stylesheet-param> XSQLStylesheetParameterHandler

<xsql:insert-request> XSQLInsertRequestHandler
XSQL Pages Publishing Framework 10-63



Advanced XSQL Pages Topics
Writing your Own Action Handler
To create a custom Action Handler, you need to provide a class that implements the

oracle.xml.xsql.XSQLActionHandler interface. Most custom action handlers

should extend oracle.xml.xsql.XSQLActionHandlerImpl  that provides a

default implementation of the init()  method and offers a set of useful helper

methods that will prove very useful.

When an action handler’s handleAction method is invoked by the XSQL page

processor, the action implementation gets passed the root node of a DOM

Document Fragment to which the action handler should append any dynamically

created XML content that should be returned to the page.

The XSQL Page Processor conceptually replaces the action element in the XSQL

page template with the content of this Document Fragment. It is completely legal for

an Action Handler to append nothing to this document fragment, if it has no XML

content to add to the page.

While writing you custom action handlers, several methods on the

XSQLActionHandlerImpl class are worth noting because they make your life a lot

easier. Table 10–17 lists the methods that will likely come in handy for you.

<xsql:include-xml> XSQLIncludeXMLHandler

<xsql:include-request-params> XSQLIncludeRequestHandler

<xsql:include-xsql> XSQLIncludeXSQLHandler

<xsql:include-owa> XSQLIncludeOWAHandler

<xsql:action> XSQLExtensionActionHandler

<xsql:ref-cursor-function> XSQLRefCursorFunctionHandler

<xsql:include-param> XSQLGetParameterHandler

<xsql:set-session-param> XSQLSetSessionParamHandler

<xsql:set-page-param> XSQLSetPageParamHandler

<xsql:set-cookie> XSQLSetCookieHandler

<xsql:insert-param> XSQLInsertParameterHandler

<xsql:update-request> XSQLUpdateRequestHandler

<xsql:delete-request> XSQLDeleteRequestHandler

Table 10–16 Built-In XSQL Elements and Action Handler Classes

XSQL Action Element Handler Class in oracle.xml.xsql.actions
10-64 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
orac

Table 10–17 Helpful Methods on oracle.xml.xsql.SQLActionHandlerImpl

Method Name Description

getActionElement Returns the current action element being handled

getActionElementContent Returns the text content of the current action element,
with all lexical parameters substituted appropriately.

getPageRequest Returns the current XSQL page processor context. Using
this object you can then do things like:

■ setPageParam()

Set a page parameter value

■ getPostedDocument()/setPostedDocument()

Get or set the posted XML document

■ translateURL()

Translate a relative URL to an absolute URL

■ getRequestObject()/setRequestObject()

Get or set objects in the page request context that
can be shared across actions in a single page.

■ getJDBCConnection()

Gets the JDBC connection in use by this page
(possible null if no connection in use).

■ getRequestType()

Detect whether you are running in the "Servlet",
"Command Line" or "Programmatic" context. For
example, if the request type is "Servlet" then you can
cast the XSQLPageRequest  object to the more
specific XSQLServletPageRequest  to access
addition Servlet-specific methods like
getHttpServletRequest ,
getHttpServletResponse , and
getServletContext

getAttributeAllowingParam Retrieve the attribute value from an element, resolving
any XSQL lexical parameter references that might appear
in the attribute’s value. Typically this method is applied
to the action element itself, but it is also useful for
accessing attributes of any of its subelements.  To access
an attribute value without allowing lexical parameters,
use the standard getAttribute()  method on the
DOM Element interface.
XSQL Pages Publishing Framework 10-65



Advanced XSQL Pages Topics
The following example shows a custom action handler MyIncludeXSQLHandler
that leverages one of the built-in action handlers and then uses arbitrary Java code

to modify the resulting XML fragment returned by that handler before appending

its result to the XSQL page:

appendSecondaryDocument Append the entire contents of an external XML
document to the root of the action handler result content.

addResultElement Simplify appending a single element with text content to
the root of the action handler result content.

firstColumnOfFirstRow Return the first column value of the first row of a SQL
statement passed in. Requires the current page to have a
connection attribute on its document element, or an error
is returned.

bindVariableCount Returns the number of tokens in the space-separated list
of bind-params , indicating how many bind variables
are expected to be bound to parameters.

handleBindVariables Manage the binding of JDBC bind variables that appear
in a prepared statement with the parameter values
specified in the bind-params  attribute on the current
action element. If the statement already is using a
number of bind variables prior to call this method, you
can pass the number of existing bind variable "slots" in
use as well.

reportErrorIncludingStatement Report an error, including the offending (SQL) statement
that caused the problem, optionally including a numeric
error code.

reportFatalError Report a fatal error.

reportMissingAttribute Report an error that a required action handler attribute is
missing using the standard <xsql-error>  element.

reportStatus Report action handler status using the standard
<xsql-status>  element.

requiredConnectionProvided Checks whether a connection is available for this request,
and outputs an "errorgram" into the page if no
connection is available.

variableValue Returns the value of a lexical parameter, taking into
account all scoping rules which might determine its
default value.

Table 10–17 Helpful Methods on oracle.xml.xsql.SQLActionHandlerImpl

Method Name Description
10-66 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
    import oracle.xml.xsql.*;
    import oracle.xml.xsql.actions.XSQLIncludeXSQLHandler;
    import org.w3c.dom.*;
    import java.sql.SQLException;
    public class MyIncludeXSQLHandler extends XSQLActionHandlerImpl {
      XSQLActionHandler nestedHandler = null;
      public void init(XSQLPageRequest req, Element action) {
        super.init(req, action);
        // Create an instance of an XSQLIncludeXSQLHandler
        // and init() the handler by passing the current request/action
        // This assumes the XSQLIncludeXSQLHandler will pick up its
        // href="xxx.xsql" attribute from the current action element.
        nestedHandler = new XSQLIncludeXSQLHandler();
        nestedHandler.init(req,action);
      }
      public void handleAction(Node result) throws SQLException {
        DocumentFragment df=result.getOwnerDocument().createDocumentFragment();
        nestedHandler.handleAction(df);
        // Custom Java code here can work on the returned document fragment
        // before appending the final, modified document to the result node.
        // For example, add an attribute to the first child
        Element e = (Element)df.getFirstChild();
        if (e != null) {
          e.setAttribute("ExtraAttribute","SomeValue");
        }
        result.appendChild(df);
      }
    }
If you create custom action handlers that need to work differently based on whether

the page is being requested through the XSQL Servlet, the XSQL Command Line

Utility, or programmatically through the XSQLRequest class, then in your Action

Handler implementation you can call getPageRequest()  to get a reference to the

XSQLPageRequest interface for the current page request. By calling

getRequestType()  on the XSQLPageRequest object, you can see if the request is

coming from the “Servlet”, “Command Line”, or “Programmatic” routes

respectively. If the return value is “Servlet”, then you can get access to the HTTP

Servlet's request, response, and servlet context objects by doing:

XSQLServletPageRequest xspr = (XSQLServletPageRequest)getPageRequest();
if (xspr.getRequestType().equals("Servlet")) {
  HttpServletRequest     req  = xspr.getHttpServletRequest();
  HttpServletResponse   resp  = xspr.getHttpServletResponse();
  ServletContext        cont  = xspr.getServletContext();
  // do something fun here with req, resp, or cont however
XSQL Pages Publishing Framework 10-67



Advanced XSQL Pages Topics
  // writing to the response directly from a handler will
  // produce unexpected results. Allow the XSQL Servlet
  // or your custom Serializer to write to the servlet's
  // response output stream at the write moment later when all
  // action elements have been processed.
}

Writing Custom XSQL Serializers
You can provide a user-defined serializer class to programmatically control how the

final XSQL datapage's XML document should be serialized to a text or binary

stream. A user-defined serializer must implement the

oracle.xml.xsql.XSQLDocumentSerializer  interface which comprises the

single method:

void serialize(org.w3c.dom.Document doc, XSQLPageRequest env) throws Throwable;

In this release, DOM-based serializers are supported. A future release may support

SAX2-based serializers as well. A custom serializer class is expected to perform the

following tasks in the correct order:

1. Set the content type of the serialized stream before writing any content to the

output PrintWriter  (or OutputStream ).

You set the type by calling setContentType()  on the XSQLPageRequest
that is passed to your serializer. When setting the content type, you can either

set just a MIME type like this:

env.setContentType("text/html");

or a MIME type with an explicit output encoding character set like this:

env.setContentType("text/html;charset=Shift_JIS");

2. Call getWriter()  or getOutputStream()  — but not both! — on the

XSQLPageRequest  to get the appropriate PrintWriter  or OutputStream
respectively to use for serializing the content.

For example, the following custom serializer illustrates a simple implementation

which simply serializes an HTML document containing the name of the document

element of the current XSQL data page:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.PrintWriter;
import oracle.xml.xsql.*;
10-68 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
public class XSQLSampleSerializer implements XSQLDocumentSerializer {
  public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
    String encoding = env.getPageEncoding();  // Use same encoding as XSQL page
                                              // template. Set to specific
                                              // encoding if necessary
    String mimeType = "text/html"; // Set this to the appropriate content type
    // (1) Set content type using the setContentType on the XSQLPageRequest
    if (encoding != null && !encoding.equals("")) {
      env.setContentType(mimeType+";charset="+encoding);
    }
    else {
      env.setContentType(mimeType);
    }
    // (2) Get the output writer from the XSQLPageRequest
    PrintWriter e = env.getWriter();
    // (3) Serialize the document to the writer
    e.println("<html>Document element is <b>"+
              doc.getDocumentElement().getNodeName()+
              "</b></html>");
  }
}

There are two ways to use a custom serializer, depending on whether you need to

first perform an XSLT transformation before serializing or not. To perform an XSLT

transformation before using a custom serializer, simply add the

serializer="java: fully.qualified.ClassName "  in the

<?xml-stylesheet?>  processing instruction at the top of your page like this:

<?xml version="1.0?>
<?xml-stylesheet type="text/xsl" href="mystyle.xsl"
                 serializer="java:my.pkg.MySerializer"?>

If you only need the custom serializer, simply leave out the type  and href
attributes like this:

<?xml version="1.0?>
<?xml-stylesheet serializer="java:my.pkg.MySerializer"?>

You can also assign a short nickname to your custom serializers in the

<serializerdefs>  section of the XSQLConfig.xml  file and then use the

nickname (case-sensitive) in the serializer attribute instead to save typing. For

example, if you have the following in XSQLConfig.xml :
XSQL Pages Publishing Framework 10-69



Advanced XSQL Pages Topics
<XSQLConfig>
  <!-- etc. -->
  <serializerdefs>
    <serializer>
      <name>Sample</name>
      <class>oracle.xml.xsql.serializers.XSQLSampleSerializer</class>
    </serializer>
    <serializer>
      <name>FOP</name>
      <class>oracle.xml.xsql.serializers.XSQLFOPSerializer</class>
    </serializer>
  </serializerdefs>
</XSQLConfig>

then you can use the nicknames "Sample" and/or "FOP" as shown in the following

examples:

<?xml-stylesheet type="text/xsl" href="emp-to-xslfo.xsl" serializer="FOP"?>

or

<?xml-stylesheet serializer="Sample"?>

The XSQLPageRequest  interface supports both a getWriter()  and a

getOutputStream()  method. Custom serializers can call getOutputStream()
to return an OutputStream  instance into which binary data (like a dynamically

produced GIF image, for example) can be serialized. Using the XSQL Servlet,

writing to this output stream results in writing the binary information to the

servlet's output stream.

For example, the following serializer illustrates an example of writing out a

dynamic GIF image. In this example the GIF image is a static little "ok" icon, but it

shows the basic technique that a more sophisticated image serializer would need to

use:

package oracle.xml.xsql.serializers;
import org.w3c.dom.Document;
import java.io.*;
import oracle.xml.xsql.*;

public class XSQLSampleImageSerializer implements XSQLDocumentSerializer {
   // Byte array representing a small "ok" GIF image
   private static byte[] okGif =
     {(byte)0x47,(byte)0x49,(byte)0x46,(byte)0x38,
      (byte)0x39,(byte)0x61,(byte)0xB,(byte)0x0,
      (byte)0x9,(byte)0x0,(byte)0xFFFFFF80,(byte)0x0,
10-70 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Advanced XSQL Pages Topics
      (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
      (byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0xFFFFFFFF,(byte)0x2C,
      (byte)0x0,(byte)0x0,(byte)0x0,(byte)0x0,
      (byte)0xB,(byte)0x0,(byte)0x9,(byte)0x0,
      (byte)0x0,(byte)0x2,(byte)0x14,(byte)0xFFFFFF8C,
      (byte)0xF,(byte)0xFFFFFFA7,(byte)0xFFFFFFB8,(byte)0xFFFFFF9B,
      (byte)0xA,(byte)0xFFFFFFA2,(byte)0x79,(byte)0xFFFFFFE9,
      (byte)0xFFFFFF85,(byte)0x7A,(byte)0x27,(byte)0xFFFFFF93,
      (byte)0x5A,(byte)0xFFFFFFE3,(byte)0xFFFFFFEC,(byte)0x75,
      (byte)0x11,(byte)0xFFFFFF85,(byte)0x14,(byte)0x0,
      (byte)0x3B};

  public void serialize(Document doc, XSQLPageRequest env) throws Throwable {
    env.setContentType("image/gif");
    OutputStream os = env.getOutputStream();
    os.write(okGif,0,okGif.length);
    os.flush();
  }
}

Using the XSQL Command Line utility, the binary information is written to the

target output file. Using the XSQLRequest programmatic API, two constructors

exist that allow the caller to supply the target OutputStream to use for the results of

page processing.

Note that your serializer must either call getWriter()  (for textual output) or

getOutputStream()  (for binary output) but not both. Calling both in the same

request will raise an error.

Writing Custom XSQL Connection Managers
You can provide a custom connection manager to replace the built-in connection

management mechanism. To provide a custom connection manager

implementation, you must provide:

1. A connection manager factory object that implements the

oracle.xml.xsql.XSQLConnectionManagerFactory  interface.

2. A connection manager object that implements the
oracle.xml.xsql.XSQLConnectionManager  interface.

Your custom connection manager factory can be set to be used as the default

connection manager factory by providing the classname in the XSQLConfig.xml
file in the section:
XSQL Pages Publishing Framework 10-71



Advanced XSQL Pages Topics
    <!--
     | Set the name of the XSQL Connection Manager Factory
     | implementation. The class must implement the
     | oracle.xml.xsql.XSQLConnectionManagerFactory interface.
     | If unset, the default is to use the built-in connection
     | manager implementation in
     | oracle.xml.xsql.XSQLConnectionManagerFactoryImpl
     +-->
    <connection-manager>
      <factory>oracle.xml.xsql.XSQLConnectionManagerFactoryImpl</factory>
    </connection-manager>

In addition to specifying the default connection manager factory, a custom

connection factory can be associated with any individual XSQLRequest  object

using API's provided.

The responsibility of the XSQLConnectionManagerFactory  is to return an

instance of an XSQLConnectionManager  for use by the current request. In a

multithreaded environment like a servlet engine, it is the responsibility of the

XSQLConnectionManager  object to insure that a single XSQLConnection
instance is not used by two different threads. This can be assured by marking the

connection as "in use" for the span of time between the invocation of the

getConnection() method and the releaseConnection() method. The default

XSQL connection manager implementation automatically pools named connections,

and adheres to this threadsafe policy.

Formatting XSQL Action Handler Errors
Errors raised by the processing of any XSQL Action Elements are reported as XML

elements in a uniform way so that XSL Stylesheets can detect their presence and

optionally format them for presentation.

The action element in error will be replaced in the page by:

<xsql-error action="xxx">

Depending on the error the <xsql-error> element contains:

■ A nested <message> element

■ A <statement> element with the offending SQL statement
10-72 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



XSQL Servlet Limitations
Displaying Error Information on Screen
Here is an example of an XSLT stylesheet that uses this information to display error

information on the screen:

<xsl:if test="//xsql-error">
     <table style="background:yellow">
        <xsl:for-each select="//xsql-error">
           <tr>
            <td><b>Action</b></td>
            <td><xsl:value-of select="@action"/></td>
            </tr>
            <tr valign="top">
            <td><b>Message</b></td>
            <td><xsl:value-of select="message"/></td>
           </tr>
          </xsl:for-each>
     </table>
</xsl:if>

XSQL Servlet Limitations
XSQL Servlet has the following limitations:

HTTP Parameters with Multibyte Names
HTTP parameters with multibyte names, for example, a parameter whose name is

in Kanji, are properly handled when they are inserted into your XSQL page using

<xsql:include-request-params>. An attempt to refer to a parameter with a multibyte

name inside the query statement of an <xsql:query> tag will return an empty string

for the parameter's value.

Workaround
As a workaround use a non-multibyte parameter name. The parameter can still

have a multibyte value which can be handled correctly.

CURSOR() Function in SQL Statements
If you use the CURSOR() function in SQL statements you may get an “Exhausted

ResultSet” error if the CURSOR() statements are nested and if the first row of the

query returns an empty result set for its CURSOR() function.
XSQL Pages Publishing Framework 10-73



Frequently Asked Questions (FAQs) - XSQL Servlet
Frequently Asked Questions (FAQs) - XSQL Servlet

Specifying a DTD While Transforming XSQL Output to a WML Document
I am trying to write my own stylesheet for transforming XSQL output to WML and

VML format. These programs (mobile phone simulators) need a WML document

with a specific DTD assigned.

Is there any way, I can specify a particular DTD while transforming XSQL's output

to a WML document.

Answer
Sure. The way you do it is using a built-in facility of the XSLT stylesheet called

<xsl:output> .

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:output type="xml" doctype-system="your.dtd"/>
  <xsl:template match="/">
  </xsl:template>
     :
     :
</xsl:stylesheet>

This will produce an XML result with a:

<!DOCTYPE xxxx SYSTEM “your.dtd”>

in the result. "your.dtd" can be any valid absolute or relative URL.

XSQL Servlet Conditional Statements
Is it possible to write conditional statements in a .xsql file, and if yes what is the

syntax to do that?

For example:

<xsql:choose>
    <xsql:when test="@security='admin'">
      <xsql:query>
          SELECT ....
      </xsql:query>
   </xsq:when>
   <xsql:when test="@security='user'">
      <xsql:query>
          SELECT ....
10-74 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Frequently Asked Questions (FAQs) - XSQL Servlet
      </xsql:query>
   </xsql:when>
</xsql:if>

Answer
Use <xsql:ref-cursor-function>  to call a PL/SQL procedure that would

conditionally return a REF CURSOR to the appropriate query.

Using Value Retrieved in One Query in Another Query’s Where Clause
 I have two queries in an .xsql file.

<xsql:query>
   select col1,col2
   from table1
</xsql:query>
<xsql:query>
   select col3,col4 from table2
   where col3 = {@col1}    => the value of col1 in the previous query
</xsql:query>

How can I use, in the second query, the value of a select list item of the first query?

Answer
You do this with page parameters.

<page xmlns:xsql="urn:oracle-xsql" connection="demo">
  <!-- Value of page param "xxx" will be first column of first row -->
  <xsql:set-page-param name="xxx">
    select one from table1 where ...
  </xsl:set-param-param>
  <xsql:query bind-params="xxx">
     select col3,col4 from table2
    where col3 = ?
  </xsql:query>
</page>

Working with Non-Oracle Databases
Can the XSQL Servlet connect to any DB that has JDBC support?
XSQL Pages Publishing Framework 10-75



Frequently Asked Questions (FAQs) - XSQL Servlet
Answer
Yes. Just indicate the appropriate JDBC driver class and connection URL in the

XSQLConfig.xml  file’s connection definition. Of course, object/relational

functionality only works when using Oracle with the Oracle JDBC driver.

XSQL Servlet: Access to JServ Process
I am running the demo helloworld.xsql. Initially I was getting the following error:

XSQL-007 cannot aquire a database connection to process page

Now my request times out and I see the following message in the

jserv/log/jserv.log file:

Connections from Localhost/127.0.0.1 are not allowed

Is this a security issue? Do we have to give explicit permission to process an .xsql

page. If so, how do we do that? I am using Apache web server and Apache jserver

and Oracle9i as database. I have Oracle client installed and Tnsnames.ora file

configured to get database connection. My XSQconnections.xml file is configured

correctly.

Answer
This looks like a generic JServ problem. You have to make sure that your

security.allowedAddresses=property in jserv.properties allows your current host

access to the JServ process where Java runs. Can you successfully run *any* JServ

Servlet?

XSQL on Oracle8i Lite
I am trying to use XSQL with Oracle8i Lite (Win 98) and Apache/JServ Webserver. I

am getting error message "no oljdbc40 in java.library.path" even though I have set

the olite40.jar in my classpath (which contains the POLJDBC driver). Is there

anything extra I need to do to run XSQL for Oracle8i Lite.

Answer
You must include the following instruction in your jserv.properties  file:

wrapper.path=C:\orant\bin

where C:\orant\bin  is the directory where (by default) the OLJDBC40.DLL lives.
10-76 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Frequently Asked Questions (FAQs) - XSQL Servlet
Note that this is not wrapper.classpath ,it’s wrapper.path .

Handling Multi-Valued HTML Form Parameters
Is there any way to handle multi-valued HTML <form>  parameters which is

needed for <input type="checkbox"> ?

Answer
There is no built-in way, but you could use a custom Action Handler like this:

// MultiValuedParam: XSQL Action Handler that takes the value of
// ----------------  a multi-valued HTTP request parameter and
//                   sets the value of a user-defined page-parameter
//                   equal to the concatenation of the multiple values
//                   with optional control over the separator used
//                   between values and delimiter used around values.
//                   Subsequent actions in the page can then reference
//                   the value of the user-defined page-parameter.
import oracle.xml.xsql.*;
import javax.servlet.http.*;
import org.w3c.dom.*;
public class MultiValuedParam extends XSQLActionHandlerImpl {
  public void handleAction(Node root) {
    XSQLPageRequest req = getPageRequest();
    // Only bother to do this if we're in a Servlet environment
    if (req.getRequestType().equals("Servlet")) {
      Element      actElt = getActionElement();
      // Get name of multi-valued parameter to read from attribute
      String paramName = getAttributeAllowingParam("name",actElt);
      // Get name of page-param to set with resulting value
      String pageParam = getAttributeAllowingParam("page-param",actElt);
      // Get separator string
      String separator = getAttributeAllowingParam("separator",actElt);
      // Get delimiter string
      String delimiter = getAttributeAllowingParam("delimiter",actElt);
      // If the separator is not specified or is blank, use comma
      if (separator == null || separator.equals("")) {
        separator = ",";
      }
      // We're in a Servlet environment, so we can cast
      XSQLServletPageRequest spReq = (XSQLServletPageRequest)req;
      // Get hold of the HTTP Request
      HttpServletRequest httpReq = spReq.getHttpServletRequest();
      // Get the String array of parameter values
XSQL Pages Publishing Framework 10-77



Frequently Asked Questions (FAQs) - XSQL Servlet
      String[] values = httpReq.getParameterValues(paramName);
      StringBuffer str = new StringBuffer();
      // If some values have been returned
      if (values != null) {
        int items = values.length;
        // Append each value to the string buffer
        for (int z = 0; z < items; z++) {
          // Add a separator before all but the first
          if (z != 0) str.append(separator);
          // Add a delimiter around the value if non-null
          if (delimiter != null) str.append(delimiter);
          str.append(values[z]);
          if (delimiter != null) str.append(delimiter);
        }
        // If page-param attribute not provided, default page param name
        if (pageParam == null) {
          pageParam = paramName+"-values";
        }
        // Set the page-param to the concatenated value
        req.setPageParam(pageParam,str.toString());
      }
    }
  }
}

Then you can use this custom action in a page like this:

<page xmlns:xsql="urn:oracle-xsql">
  <xsql:action handler="MultiValuedParam" name="guy" page-param="p1" />
  <xsql:action handler="MultiValuedParam" name="guy" page-param="p2"
               delimiter="'" />
  <xsql:action handler="MultiValuedParam" name="guy" page-param="p3"
               delimiter="&quot;" separator=" " />
  <xsql:include-param name="p1"/>
  <xsql:include-param name="p2"/>
  <xsql:include-param name="p3"/>
</page>

If this page is requested with the URL below, containing multiple parameters of the

same name to produce a multi-valued attribute:

http://yourserver.com/page.xsql?guy=Curly&guy=Larry&guy=Moe

Then the page returned will be:

<page>
10-78 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Frequently Asked Questions (FAQs) - XSQL Servlet
  <p1>Curly,Larry,Moe</p1>
  <p2>'Curly','Larry','Moe'</p2>
  <p3>"Curly" "Larry" "Moe"</p3>
</page>

Of course you could also use the value of the multi-valued page parameter above in

a SQL statement by doing:

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:action handler="MultiValuedParam" name="guy" page-param=" list "
               delimiter="'" />
  <!-- Above custom action sets the value of page param named ’list’ -->
  <xsql:query>
    SELECT * FROM sometable WHERE name IN ( {@list} )
  </xsql:query>
</page>

XSQL Servlet and Oracle 7.3
Is there anything that prevents me from running the XSQL Servlet with Oracle 7.3? I

know the XML SQL Utility can be used with Oracle 7.3 as long as I use it as a

client-side utility.

Answer
No. Just make sure you’re using the Oracle9i JDBC driver, which can connect to an

Oracle 7.3 database with no problems.

Out Variable Not Supported in <xsql:dml>
I using <xsql:dml> to call a stored procedure which has one OUT parameter, but I

was not able to see any results. The executed code results in the following

statement:

<xsql-status action="xsql:dml" rows="0"/>

Answer
You cannot set parameter values by binding them in the position of OUT variables

in this release using <xsql:dml> . Only IN parameters are supported for binding.

You can create a wrapper procedure that constructs XML elements using the HTP

package and then your XSQL page can invoke the wrapper procedure using

<xsql:include-owa>  instead.

For an example, suppose you had the following procedure:
XSQL Pages Publishing Framework 10-79



Frequently Asked Questions (FAQs) - XSQL Servlet
CREATE OR REPLACE PROCEDURE addmult(arg1        NUMBER,
                                    arg2        NUMBER,
                                    sumval  OUT NUMBER,
                                    prodval OUT NUMBER) IS
BEGIN
  sumval := arg1 + arg2;
  prodval := arg1 * arg2;
END;

You could write the following procedure to "wrap" it, taking all of the IN arguments

that the procedure above expects, and then "encoding" the OUT values as a little

XML datagram that you print to the OWA page buffer:

CREATE OR REPLACE PROCEDURE addmultwrapper(arg1 NUMBER, arg2 NUMBER) IS
  sumval  NUMBER;
  prodval NUMBER;
  xml     VARCHAR2(2000);
BEGIN
  -- Call the procedure with OUT values
  addmult(arg1,arg2,sumval,prodval);
  -- Then produce XML that encodes the OUT values
  xml := '<addmult>'||
         '<sum>'||sumval||'</sum>'||
         '<product>'||prodval||'</product>'||
         '</addmult>';
  -- Print the XML result to the OWA page buffer for return
  HTP.P(xml);
END;

This way, you can build an XSQL page like this that calls the wrapper procedure:

<page connection="demo" xmlns:xsql="urn:oracle-xsql">
  <xsql:include-owa bind-params="arg1 arg2">
    BEGIN addmultwrapper(?,?); END;
  </xsql:include-owa>
</page>

This allows a request like:

http://yourserver.com/addmult.xsql?arg1=30&arg2=45

to return an XML datagram that reflects the OUT values like this:

<page>
  <addmult><sum>75</sum><product>1350</product></addmult>
</page>
10-80 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Frequently Asked Questions (FAQs) - XSQL Servlet
Unable to Connect Errors
Trying to play with XSQL I’m unable to connect to a database I get errors like this

running the helloworld.xsql  example:

Oracle XSQL Servlet Page Processor 9.0.0.0.0 (Beta)
XSQL-007: Cannot acquire a database connection to process page.
Connection refused(DESCRIPTION=(TMP=)(VSNNUM=135286784)(ERR=12505)
(ERROR_STACK=(ERROR=(CODE=12505)(EMFI=4))))

Does this mean that it has actually found the config file? I have a user with

scott/tiger setup.

Answer
Yes. If you get this far, it's actually attempting the JDBC connection based on the

<connectiondef>  info for the connection named "demo", assuming you didn't

modify the helloworld.xsql  demo page.

By default the XSQLConfig.xml  file comes with the entry for the

"demo"connection that looks like this:

<connection name="demo">
  <username>scott</username>
  <password>tiger</password>
  <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
  <driver>oracle.jdbc.driver.OracleDriver</driver>
</connection>

So the error you're getting is likely because:

1. Your database is not on "localhost" machine.

2. Your database SID is not ORCL

3. Your TNS Listener Port is not 1521

Make sure those values are appropriate for your database and you should be in

business.

Using Other File Extensions Besides *.xsql
I want users to think they are accessing HTML files or XML files with extensions

.html and .xml respectively, however I’d like to use XSQL so serve the HTML and

XML to them. Is it possible to have the XSQL Servlet recognize files with an

extension of .html  and/or .xml  in addition to the default .xsql  extension?
XSQL Pages Publishing Framework 10-81



Frequently Asked Questions (FAQs) - XSQL Servlet
Answer
Sure. There is nothing sacred about the *.xsql  extension, it is just the default

extension used to recognize XSQL pages. You can modify your servlet engine’s

configuration settings to associate any extension you like with the

oracle.xml.xsql.XSQLServlet  servlet class using the same technique that

was used to associate the *.xsql  extension with it.

Avoiding Errors for Queries Containing XML Reserved Characters
I have a page like:

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
  SELECT id, REPLACE(company,’ &’,’and’) company, balance
    FROM vendors
   WHERE outstanding_balance < 3000
</xsql:query>

but when I try to request  the page I get an error:

XSQL-005: XSQL page is not well-formed.
XML parse error at line 4, char 16
Expected name instead of ’

What’s wrong?

Answer
The problem is that the ampersand character (&) and the less-than sign (<) are

reserved characters in XML because:

■ The & starts the sequence of characters that designates an entity reference

like &#160;  or &lt;

■ The < starts the sequence of characters that designates an element like

<SomeElement>

To include a literal ampersand character or less-than character you need to either

encode each one as a entity reference like this:

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
  SELECT id, REPLACE(company,’ &amp;’,’and’) company, balance
    FROM vendors
   WHERE outstanding_balance &lt;  3000
</xsql:query>
10-82 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Frequently Asked Questions (FAQs) - XSQL Servlet
Alternatively, you can surround an entire block of text with a so-called CDATA

section that begins with the sequence <![CDATA[  and ends with a corresponding

]]>  sequence. All text contained in the CDATA section is treated as literal.

<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">

<![CDATA[
  SELECT id, REPLACE(company,’&’,’and’) company, balance

    FROM vendors

   WHERE outstanding_balance < 3000

]]>
</xsql:query>
XSQL Pages Publishing Framework 10-83



Frequently Asked Questions (FAQs) - XSQL Servlet
10-84 Oracle9i Application Developer’s Guide - XML, Release 9.0.1



Using JDeveloper to Build Oracle XML A
11

Using JDeveloper to Build Oracle XML

Applications

This chapter contains the following sections:

■ Introducing JDeveloper9i

■ What’s Needed to Run JDeveloper9i

■ XML in Business Components for Java (BC4J)

■ Building XSQL Clients with Business Components for Java (BC4J)

■ XML Features in JDeveloper9i

■ Building XML Applications with JDeveloper

■ Using JDeveloper’s XML Data Generator Web Bean

■ Using XSQL Servlet from JDeveloper

■ Creating a Mobile Application in JDeveloper

■ Frequently Asked Questions (FAQs): Using JDeveloper to Build XML

Applications
pplications 11-1



Introducing JDeveloper9i
Introducing JDeveloper9i
Oracle JDeveloper9i is a J2EETM development environment with end-to-end support

for developing, debugging, and deploying e-business applications. JDeveloper

empowers users with highly productive tools, such as the industry's fastest Java

debugger, a new profiler, and the innovative CodeCoach tool for code performance

analysis and improvement.

To take J2EE application development to a higher level of productivity, JDeveloper

now offers Business Components for Java (BC4J), a standards-based, server-side

framework for creating scalable, high-performance Internet applications. The

framework provides design-time facilities and runtime services to drastically

simplify the task of building and reusing business logic.

JDeveloper9i has a new schema-driven XML editor. See Figure 11–1. An XML

Schema Definition defines the structure of an XML document and is used in the

editor to validate the XML and help developers when typing. This feature is called

Code Insight and provides a list of valid alternatives for XML elements or attributes

in the document. Just by specifying the schema for a certain language, the editor can

assist you in creating a document in that markup language.

Oracle JDeveloper9i simplifies the task of working with Java application code and

XML data and documents at the same time. It features drag-and-drop XML

development modules. These include the following:

■ Color-coded syntax highlighting for XML

■ Built-in syntax checking for XML and Extensible Style Sheet Language (XSL)

■ XSQL Pages and Servlet support, where developers can edit and debug Oracle

XSQL Pages, Java programs that can query the database and return formatted

XML, or insert XML into the database without writing code. The integrated

servlet engine allows you to view XML output generated by Java code in the

same environment as your program source, making it easy to do rapid, iterative

development and testing.

■ Includes Oracle's XML Parser for Java

■ Includes XSLT Processor

■ Related XDK for JavaBeans components

■ XSQL Page Wizard. See "Page Selector Wizard"  on page 11-11.

■ XSQL Element Wizard. See "XSQL Element Wizard"  on page 11-10.

■ XSQL ActionHandlers
11-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introducing JDeveloper9i
■ Schema-driven XML editor.

Figure 11–1 JDeveloper9i’s Schema-Driven XML Editor in Action

Oracle XML Developer’s Kit (XDK) is integrated into JDeveloper, so that it offers

many utilities to help Java developers handle, create, and transform XML. For

example, when designing with XSQL Servlet, you can query and manipulate

database information, generate XML documents, transform them using XSLT

stylesheets, and make them available on the web.

Business Components for Java (BC4J)
Oracle Business Components for Java is a 100%-Java, XML-powered framework

that enables productive development, portable deployment, and flexible

customization of multi-tier, database-savvy applications from reusable business

components.

See Also: Chapter 10, "XSQL Pages Publishing Framework"
Using JDeveloper to Build Oracle XML Applications 11-3



Introducing JDeveloper9i
Application developers use the Oracle Business Components framework and Oracle

JDeveloper 's integrated design-time wizards, component editors, and productive

Java coding environment to assemble and test application services from reusable

business components.

These application services can then be deployed as either CORBA Server Objects or

EJB Session Beans on enterprise-scale server platforms supporting Java technology.

The same server-side business component can be deployed without modification as

either a JavaServer Pages/Servlet application or Enterprise JavaBeans component.

This deployment flexibility, enables developers to reuse the same business logic and

data models to deliver applications to a variety of clients, browsers, and wireless

Internet devices without having to rewrite code.

In JDeveloper, you can customize the functionality of existing Business

Components by using the new visual wizards to modify your XML metadata

descriptions.

Oracle JDeveloper XML Strategy
Oracle JDeveloper9i supports building XML applications. JDeveloper new

integrated schema-driven XML code editor works on XML Schema-based

documents such as:

■ For creating XML Schemas

■ For creating XSLT Stylesheets,...

with “tag-insight” to help you easily enter the correct elements and attributes as

defined by the schema. In addition to the editing capabilities, JDeveloper’s XML

code editor also has the following features:

■ Error highlighting

■ Property inspection

■ Tree-like view in the structure pane
11-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What’s Needed to Run JDeveloper9i
Further Information About JDeveloper

What’s Needed to Run JDeveloper9i
JDeveloper9i is an IDE that has been written in Java and therefore, runs on

Windows NT, Windows 2000, Linux and Solaris operating systems. It needs a

minimum of 128 Mb RAM.

Minimum system requirements for JDeveloper
Refer to JDeveloper Release Notes. As more products are run on the same machine,

system requirements are increased. A typical development environment for

running JDeveloper includes:

■ Running JDeveloper

■ Running Oracle9i locally

■ Running Oracle9i Application Server locally

■ Additional third party tools (profilers, version control, modelers,...)

These add to system requirements, in terms of actual CPU usage and in disk space

needs.

See Also:

■ http://otn.oracle.com/products/jdev/

■ Oracle9i Java Developer’s Guide

■ Oracle JavaServer Pages Developer’s Guide and Reference

■ Oracle9i CORBA Developer’s Guide and Reference

■ Oracle9i Enterprise JavaBeans Developer’s Guide and Reference

■ Oracle9i Java Stored Procedures Developer’s Guide

■ Oracle9i Java Tools Reference

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i JPublisher User’s Guide

■ Oracle9i Oracle Servlet Engine User’s Guide

■ Oracle9i SQLJ Developer’s Guide and Reference
Using JDeveloper to Build Oracle XML Applications 11-5



XML in Business Components for Java (BC4J)
Accessing JDeveloper9i
The beta release of JDeveloper9i will be available in the summer of 2001 from the

Oracle Technology Network (OTN) at http://otn.oracle.com.

XML in Business Components for Java (BC4J)
The Business Components for Java (BC4J) framework in JDeveloper9i uses XML to

define the metadata that represents the declarative settings and features of the

objects. Custom or complex business logic can be implemented in Java.

■ The BC4J Tester enables you to see data in view objects as XML.

■ Business rules, such as validation rules, are stored in XML rather than Java

source code

■ Easy customization of business applications by changing XML rather than Java

source code

■ Applications are easier to read and understand by abstracting the logic in XML

BC4J uses XML to Store Metadata The business components for Java framework that

ships with JDeveloper uses XML to store metadata about its application

components. Important information is now stored in a structured document rather

than in Java source code. This makes the application easier to understand and

customize. The application is now customizable without having access to the source

code. Figure 11–2 shows how BC4J is used with XSQL servlet to generate XML

documents.
11-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML in Business Components for Java (BC4J)
Figure 11–2 Using Business Components for Java (BC4J)

Business rules can be changed on site without needing access to the underlying

component source code.

See Also: http://otn.oracle.com/products/bc4j/

XML

Oracle9 i

XSL
Stylesheet

XSQL Servlet

Oracle Business 
components for 
Java

Browser

Graphical or
non-graphical

browser 

Personal
Digital

Assistant

Cell
Phone
Using JDeveloper to Build Oracle XML Applications 11-7



Building XSQL Clients with Business Components for Java (BC4J)
Building XSQL Clients with Business Components for Java (BC4J)
In JDeveloper 9i, you can build XSQL Pages which can integrate with BC4J

application modules and thereby serve application logic from the middle tier to

multiple clients. You can retrieve XML data and present it to any kind of a client

device just by applying the corresponding stylesheet.

The following features will assist you in building XSQL clients with BC4J:

■ Object Gallery

■ XSQL Element Wizard

■ Page Selector Wizard

Object Gallery
The Web Object Gallery has icons to assist in creating XSQL, XML, and XSL

documents easily. When you click on them, the basic tags for these pages are

generated and you can then enhance them.

The XSQL Pages icon is of special interest because the XSQL Element Wizard can be

used, after generating your basic XSQL pages, to insert data bound tags in the XSQL

pages. Figure 11–3 illustrates JDeveloper’s Object Gallery.

Note: These appearance of these features may differ in the

JDeveloper9i production version.

See Also: Chapter 12, "Building BC4J and XML Applications"
11-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Building XSQL Clients with Business Components for Java (BC4J)
Figure 11–3 JDeveloper’s Object Gallery Showing the new XSQL, XML, and XSL
Icons

See Also: "XSQL Element Wizard"  on page 11-10.

Note: The appearance of these features (wizards) may change in

the production release.
Using JDeveloper to Build Oracle XML Applications 11-9



Building XSQL Clients with Business Components for Java (BC4J)
XSQL Element Wizard
XSQL Element Wizard provides you with a mechanism to add tags which allows

accessing database tables or BC4J View Objects. You can either perform queries

against them or update the underlying database tables through them. Figure 11–4

illustrates the JDeveloper9i XSQL Element Wizard.

Figure 11–4 JDeveloper’s XSQL Element Wizard

Note: The appearance of these features (wizards) may change in

the production release.
11-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Features in JDeveloper9i
Page Selector Wizard
When you need create XSQL pages while building a web application, you can

invoke Page Wizard which allows you to create XSQL Pages on top of either

database tables directly or on top of BC4J View Objects. When you choose to build

an XSQL Page on top of a BC4J View Object, you are prompted to select an

application module from a list or create a new application module and then build

the XSQL Pages based application.

XML Features in JDeveloper9i
The following lists JDeveloper9i’s supported Oracle XML Developer's Kit for Java

(XDK for Java) components:

■ Oracle XML Parser for Java

■ Oracle XSQL Servlet

You can use the XML Parser for Java including the XSLT Processor and the XML

SQL Utility in JDeveloper as all these tools are written in Java. JDeveloper provides

these components.

Sample programs which demonstrate how to use these tools can be found in the

[JDeveloper]/Samples/xmlsamples  directory.

Oracle XDK and Transviewer Beans Integration
Oracle XDK for Java consists of the following XML tools:

■ XML Parser for Java

■ XML- SQL Utility for Java

■ XML Java Class Generator

■ XSQL Servlet

■ XML Transviewer Beans

All these utilities are written in Java and hence can easily be dropped into

JDeveloper and used ’out of box’. You can also update the XDK for Java

components with the latest versions downloaded from Oracle Technology Network

(OTN) at http://technet.oracle.com/tech/xml.

See Also: Oracle9i Java Developer’s Guide
Using JDeveloper to Build Oracle XML Applications 11-11



XML Features in JDeveloper9i
Oracle XDK for Java also includes the XML Transviewer Beans. These are a set of

Java Beans that permit the easy addition of graphical or visual interfaces to XML

applications. Bean encapsulation includes documentation and descriptors that make

them accessible directly from JDeveloper. You can drop these beans into the TOOLS

palette and use them to build applications such as XML/XSL editors.

Oracle XML Parser for Java
Including the Oracle XML Parser for Java in your project allows you to write

applications that can search and process XML documents. You can include the

Oracle XML Parser in your project with one click as JDeveloper has a built-in library

for it.

Code Insight makes understanding and using the code easier and in-place access to

JavaDoc on the classes for reference. The XML parser for Java facilitates processing

an XML document using either of the following interfaces:

■ DOM: a tree of W3C DOM

■ SAX: a stream of SAX events

Oracle XSQL Servlet
The XSQL Servlet is a tool that processes SQL queries and outputs the result set as

XML. This processor is implemented as a Java servlet and takes as its input an XML

file containing embedded SQL queries. It uses the XML Parser for Java and the XML

SQL Utility to perform many of its operations.

The XSQL Servlet offers a productive and easy way to get XML in and out of the

database. Using simple scripts you can:

■ Generate simple and complex XML documents

■ Apply XSL Stylesheets to generate into any text format

■ Parse XML documents and store the data in the database

■ Create complete dynamic web applications without programming a single line

of code

JDeveloper XSQL Example 1: emp.xsql
For example, consider the following XML example:

See Also: Chapter 23, "Using XML Transviewer Beans" for more

information on how to use the Transviewer Beans.
11-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Features in JDeveloper9i
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<FAQ xmlns:xsql="urn:oracle-xsql" connection = "scott">
  <xsql:query doc-element="EMPLOYEES" row-element="EMP">
    select e.ename, e.sal, d.dname as department
    from dept d, emp e
    where d.deptno = e.deptno
  </xsql:query>
</FAQ>

Generates the following:

<EMPLOYEES>
  <EMP>
    <ENAME>Scott</ENAME>
    <SAL>1000</SAL>
    <DEPARTMENT>Boston</DEPARTMENT>
  </EMP>
  <EMP>
  ...
</EMPLOYEES>

With JDeveloper9i you can easily develop and execute XSQL files. The built in Web

Server and the user's default Web Browser will be used to display the resulting

pages.

Using ActionHandlers in XSQL Pages
XSQL ActionHandlers are Java classes which can be invoked from XSQL Page

applications very easily. Since these are Java classes they can be debugged from

JDeveloper just like any other Java application.

If you are building an XSQL Pages application, you can make use of the XSQL

Action Handler to extend the set of actions that can be performed to handle more

complex jobs. You will need to debug this ActionHandler.

Your XSQL Pages should be in the directory specified in the Project Property

“HTML Paths” settings for “HTML Source Directory”.

To debug your ActionHandler carry out these steps:

1. Assume you have created an .xsql file which has reference to a custom

ActionHandler called MyActionHandler.

2. Debug this ActionHandler because it is not exactly behaving as you expect.

3. Set breakpoints in your Java source file.
Using JDeveloper to Build Oracle XML Applications 11-13



Building XML Applications with JDeveloper
4. He right mouse clicks on the .xsql file and now chooses Debug... from the

menu.

XML Data Generator Web Bean
Oracle JDeveloper has an XML Data Generator Web Bean. It generates XML

containing the data from a View Object and renders it to the output stream of a JSP

response.

You can author JSP pages that use XML and XSL to render a response to the client.

This XML Web Bean can be used in JSP and Servlet applications. It reads data from

a Business Component (View Object) and produces the appropriate XML. The

strength of this Web Bean is that it analyzes the Business Component Application

and navigates through it's hierarchy to produce the nested XML.

The XML Web Beans also allows the specification of an XSL Stylesheet. In addition

to XML, the Web Bean can then generate HTML, WML, transformed XML and any

other text format.

Mobile Application Development with Portal-To-Go and JDeveloper
Portal-To- Go and Oracle JDeveloper together offer an extremely powerful

environment for developing mobile applications. Developers can use JDeveloper to

generate XML from the database or from a Business Components for Java

Application and use Portal-To-Go to deliver content to Web browsers, PDAs, or

Cell phones.

Building XML Applications with JDeveloper
Consider the following example that demonstrates how XML is used to represent

data, not present it. It shows the many to one relationship between employees and

departments.

JDeveloper XML Example 1: BC4J Metadata
<Departments>
<Dept>
   <Deptno>10</Deptno>
   <Dname>Sales></Dname>
   <Loc>

See Also: The JDeveloper Guide under the online HELP menu.
11-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using JDeveloper’s XML Data Generator Web Bean
   <Employees>
     <Employee>
        <Empno>1001></Empno>
        <Ename>Scott</Ename>
        <Salary>80000</Salary>
     </Employee>
   </Employees>
...
     </Employee>
   </Employees>
</Dept>
<Dept>
...

Procedure for Building Applications in JDeveloper9i
To build this project in JDeveloper9i carry out the following steps:

1. Start a New JDeveloper Project by selecting File > New Project.

2. Create a Business Components for Java application.

3. Create an XSQL Page based upon a BC4J application module, by invoking the

Page Selector Wizard.

4. Select the application module from the list that pops up.

5. Select the View Object on which you want to base your XSQL Page.

6. Select the columns that you want to view.

When you finish these steps in the Page Wizard, you should have an XSQL Page

based on the Business Components for Java (BC4J) framework View objects. When

you run this page, it sends the XML data to your browser. You could optionally

create a stylesheet to format the data so that it appears in a way that you prefer or

you can tune it so that it can be displayed on a PDA or cellphone.

Using JDeveloper’s XML Data Generator Web Bean
The XML Data Generator Web (Bean) can be used in JSP and Servlet applications. It

reads data from a Business Component (View Object) and produces the appropriate

XML. The strength of this Web Bean is the following:

■ It analyzes the Business Component Application and navigates through it's

hierarchy to produce the nested XML.
Using JDeveloper to Build Oracle XML Applications 11-15



Using JDeveloper’s XML Data Generator Web Bean
■ It allows specification of an XSL Stylesheet. The Web Bean can then generate

HTML, WML, transformed XML, and any other text format.

The Data Generator Web Bean is in the “Data Web Beans” category of the JSP

Elements wizard. Figure 11–5 illustrates accessing the XML Data Generator Web

(Bean) from the JSP Element Wizard.

Call the Element Wizard from your JSP or XSQL Page by right-clicking anywhere

on the Page where you want to include an element. Specify the stylesheet as a

parameter in the Element Wizard.
11-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using JDeveloper’s XML Data Generator Web Bean
Figure 11–5 JSP Element Wizard: XML Data Generator Bean

Once you launch this wizard, you can specify a stylesheet to apply to the XML data

that you generate and see the result of your output.

Figure 11–6 is an example output displayed by applying an XSL stylesheet to the

employee listing.

Note: The appearance of these features (wizards) may change in

the production release.
Using JDeveloper to Build Oracle XML Applications 11-17



Using XSQL Servlet from JDeveloper
Figure 11–6 Browser HTML Display Showing the Employee Listing (XML+XSLT=
HTML)

Using XSQL Servlet from JDeveloper
XSQL Servlet offers a productive and easy way to get XML in and out of the

database.

When using XSQL Servlet in JDeveloper, you do not need to include the XSQL

Runtime in your project as this is already done for any new XSQL Page or XSQL

wizard-based application.

See Also: Chapter 3, "Oracle XML Developer Kits (XDKs) and

Components: Overview and General FAQs" and Chapter 10, "XSQL

Pages Publishing Framework" for information about how to use

XSQL Servlet.
11-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XSQL Servlet from JDeveloper
Using simple scripts you can do the following from JDeveloper:

■ Generate simple and complex XML documents

■ Apply XSL stylesheets to generate into any text format

■ Parse XML documents and store the data in the database

■ Create complete dynamic web applications without programming a single line

of code

Consider a simple query in an XSQL file, which returns details about all the

employees in the emp table. The XSQL code to get this information would be as

shown in Example 2.

JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql
<?xml version="1.0"?>
<xsql:query xmlns:xsql="urn:oracle-xsql" connection="demo">
    select *
    from emp
    order by empno
</xsql:query>

Figure 11–7 shows what the raw employee XML data displayed on the browser.
Using JDeveloper to Build Oracle XML Applications 11-19



Using XSQL Servlet from JDeveloper
Figure 11–7 Employee Data in Raw XML Format

If you want to output your data in a tabular form as shown in Figure 11–6, make a

small modification to your XSQL code to specify a stylesheet. The changes you

would make in this example are shown below highlighted.

JDeveloper XSQL Example 3: Employee Data with Stylesheet Added
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<xsql:query xmlns:xsql="urn:oracle-xsql" connection="demo">
    select *
    from emp
11-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Creating a Mobile Application in JDeveloper
    order by empno
</xsql:query>

The result would be like the table shown in Figure 11–6. You can do a lot more with

XSQL Servlet of course.

Creating a Mobile Application in JDeveloper
This mobile application is a Departments database application that demonstrates

how Business Components for Java (BC4J) and XML can be used to develop

applications that can be accessed over wireless devices. The application consists of

two main parts:

■ Server-side business logic which is developed using the Business Components

for Java (BC4J) Framework and the second is the client part. The business logic

consists of a view object based on the DEPT table in SCOTT's schema.

■ A mechanism to query the DEPT table and update it from any client device

including a browser, a cellular phone and a Palm Pilot. For the latter device, the

application uses emulators running on Windows NT.

Figure 11–8 shows schematically how the mobile application works with BC4J,

XSQL Servlet, XSL Stylesheets, and Oracle9i.

You can see a more comprehensive demo of a similar application on

http://otn.oracle.com/tech/xml

See Also: Chapter 10, "XSQL Pages Publishing Framework" and

also the XDK for Java, XSQL Servlet Release Notes on OTN at

http://technet.oracle.com/tech/xml
Using JDeveloper to Build Oracle XML Applications 11-21

http://technet.oracle.com/tech/xml
http://technet.oracle.com/tech/xml


Creating a Mobile Application in JDeveloper
Figure 11–8 Creating a Mobile Application in JDeveloper Using BC4J and XSQL
Servlet

1 Create the BC4J Application
First create the BC4J application. It connects to the SCOTT schema on an Oracle9i
database. Figure 11–9 shows the XML file containing the metadata about the DEPT

object. See "JDeveloper XML Example 1: BC4J Metadata"  on page 11-14.
11-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Creating a Mobile Application in JDeveloper
Figure 11–9  BC4J Application: DEPT View Object XML File

2 Create JSP Pages Based on a BC4J Application
You can then create JSP pages based upon this BC4J application. In the JSP pages

you are introduced to the XML Data Generator Web Beans. Figure 11–10 shows the

XSQL file which calls the JSP page to create the new department.
Using JDeveloper to Build Oracle XML Applications 11-23



Creating a Mobile Application in JDeveloper
Figure 11–10 BC4J Application: XSQL File Calling JSP Page

3 Create XSLT Stylesheets According to the Devices Needed to Read The Data
We create XSLT stylesheets to go with the various client devices that we are going

to access our data from. In your XSQL files, you specify the list of stylesheets and

the protocols they go with which basically ties the stylesheets to the client device.

Figure 11–11 shows an example code snippet of a stylesheet (indexPP.xsl) which

transforms the XML data to HTML for displaying on a browser on the Palm Pilot

emulator.
11-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Creating a Mobile Application in JDeveloper
Figure 11–11 BC4J Application: XSL Stylesheet (indexPP.xsl)

Figure 11–12 shows the Cell Phone Emulator running the Departments Application

Client. It also shows the setup screen for the Cell Phone Emulator.
Using JDeveloper to Build Oracle XML Applications 11-25



Creating a Mobile Application in JDeveloper
Figure 11–12 Cell Phone Emulator Running the Department Application Client

Figure 11–13 shows the Palm Pilot Emulator accessing the Departments Application

via HandWeb Browser.
11-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
Figure 11–13 Palm Pilot Emulator Accessing the BC4J Departments Application
Through HandWeb Browser

Frequently Asked Questions (FAQs): Using JDeveloper to Build XML
Applications

Constructing an XML Document in JSP
I am dynamically constructing an XML document in a JSP page (from the results of

data returned by a PL/SQL API) using the classes generated by the Class generator

(based on a DTD) and then applying a XSL stylesheet to render the transformation

in HTML. I see that this works fine only for the first time, i.e when the JSP is first

accessed (and internally compiled), and fails every time the same page is accessed

thereafter.

The error I get is:

"oracle.xml.parser.v2.XMLDOMException: Node doesn't belong to the current
document"
Using JDeveloper to Build Oracle XML Applications 11-27



Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
The only way to make it work again is to compile the JSP, by just 'touching' the JSP

page. Of course, this again works only once. I am using Apache JServ.

How can this be overcome? Does the 'static' code in the Java class generated for the

top level node have to do anything with it?

Answer
It seems to me that you may have stored some “invalid” state in your JSP. And the

XML Parser picks this “invalid” state, then, throws the exception you mentioned.

As far as I know, CRM does not use an HTTP session in their application. I guess

this is true in your case also. You may have used a member variable to store some

“invalid” state unintentionally. Member variables are the variables declared by the

following syntax:

<%! %>

For example:

<%! Document doc=null; %>

Many JSP users misunderstand that they need to use this syntax to declare

variables. In fact, you do not need to do that. In most of cases, you do not need a

member variable. Member variables are shared by all requests and are initialized

only once in the lifetime of the JSP.

Most users need stack variables or method variables. These are created and

initialized per request. They are declared as a form of scriptlet as shown in the

following example:

<% Document doc=null; %>

In this case, every request has its own “doc” object, and the doc object is initialized

to null per request.

If you do not store an “invalid” state in session or method variables in your JSP,

then there may be other reasons that cause this.

Using XMLData From BC4J
I am using XmlData to retrieve data from a BC4J. I Do not use XmlData from a JSP,

but from a standalone java application. In the record I target, I have the value 'R &

D'.
11-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
XmlData returns 'R &amp; D', which is fine for HTTP, but not for my needs. Can

XmlData not escape the characters, and just return what's in the database?

Answer
XmlData builds an in-memory DOM, so it must be the XML parser's serialization

that's doing this. The only way I know is to do the following:

1. Write your own serializer for the DOM tree that does what you want.

2. Do an identity transform augmented with one template to write that data with

disable-output-escaping="yes”

Running XML Parser for Java in JDeveloper 3.0
I have downloaded JDeveloper on my laptop (Windows 95 operating system). I am

trying to run a sample XML parser program (SimpleParse.java). This program

imports org.w3c.dom.Document class. I have set CLASSPATH in autoexe.bat with

correct directory. The program runs on DOS prompt with “java SimpleParse

<filename>” command. I am trying to run the same program through JDeveloper

but it gives me following error:

 "identifier org.w3c.dom.Document not found"

Am I missing something?

Answer
Make sure to include the Library named:

“Oracle XML Parser 2.0"

is in your project. This library is pre-defined with JDev 3.0and higher and you just

need to visit the Project | Properties... and look at the “Paths” tab to see your

project's library list.

Click the (Add...) button and pick the above library from the list.

The org.w3c.dom.* interfaces are included in this Jar. They come from the W3C and

define the Document Object Model standard API's for working with a tree of XML

nodes.

Question 2
Now, if I wish to use the @code as a key, I use

<xsl:template match="aTextNode">
Using JDeveloper to Build Oracle XML Applications 11-29



Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
    ...
   <xsl:param name="labelCode" select="@code"/>
     <xsl:value-of
 select="document('messages.xml')/messages/msg[@id=$labelCode and
 @lang=$lang]"/>
    ...
   </xsl:template>

that works too, but I was wondering if there isn't a way to use the '@code' directly

in the 'document()' line?

Answer 2
This is what the current() function is useful for. Rather than:

<xsl:param name="labelCode" select="@code"/>
<xsl:value-of
 select="document('messages.xml')/messages/msg[@id=$labelCode and
 @lang=$lang]"/>

you can do:

<xsl:value-of
select="document('messages.xml')/messages/msg[@id=current()/@code
                      and @lang = $lang]"/>

Question 3
And finally, another question: it is - or will it be - possible to retrieve the data stored

in messages.xml from the database? How is the 'document()' instruction going to

work where listener and servlet will run inside the database?

Answer 3
Sure. By the spec, the XSLT engine should read and cache the document referred to

in the document() function. It caches the parsed document based on the string-form

of the URI you pass in, so here's how you can achieve a database-based message

lookup:

1. CREATE TABLE MESSAGES (lang VARCHAR2(2), code NUMBER, message

VARCHAR2(200));

2. Create an xsql page like “msg.xsql” below:

<xsql:query lang="en" xmlns:xsql="urn:oracle-xsql" connection="demo"
            row-element="" rowset-element="">
11-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
      select message
        from messages
       where lang = '{@lang}'
         and code = {@code}
</xsql:query>

3. Create a stylesheet that uses msg.xsql in the document() function like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
  <xsl:template match="/">
  <html><body>
    In English my name is
      <xsl:call-template name="msg">
         <xsl:with-param name="code">101</xsl:with-param>
      </xsl:call-template><br/>
    En espanol mi nombre es
      <xsl:call-template name="msg">
         <xsl:with-param name="code">101</xsl:with-param>
         <xsl:with-param name="lang">es</xsl:with-param>
      </xsl:call-template><br/>
    En fran&#231;ais, je m'appelle
      <xsl:call-template name="msg">
         <xsl:with-param name="code">101</xsl:with-param>
         <xsl:with-param name="lang">fr</xsl:with-param>
      </xsl:call-template><br/>
    In italiano, mi chiamo
      <xsl:call-template name="msg">
         <xsl:with-param name="code">101</xsl:with-param>
         <xsl:with-param name="lang">it</xsl:with-param>
      </xsl:call-template>
  </body></html>
  </xsl:template>
  <xsl:template name="msg">
    <xsl:param name="lang">en</xsl:param>
    <xsl:param name="code"/>
    <xsl:variable name="msgurl"
select="concat('http://xml/msg.xsql?lang=',$lang,'&amp;code=',$code)"/>
    <xsl:value-of select="document($msgurl)/MESSAGE"/>
  </xsl:template>
</xsl:stylesheet>

4. Try it out at http://xml/testmessage.xsql
Using JDeveloper to Build Oracle XML Applications 11-31



Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
This is great if you want to fetch the message from over the web. Alternatively, you

could use the msg.xsql above but include it in your XSQL Page if that makes sense

using:

<xsql:include-xsql href="msg.xsql?lang={@lang}&amp;code={@code}"/>

Or you could write your own custom action handler to use JDBC to fetch the

message and include it in the XSQL page yourself.

Moving Complex XML Documents to a Database
I am moving XML documents to an Oracle database. The documents are fairly

complex. Can an XML document and the Oracle Developer’s Kit (XDK) generate a

possible DDL format for how the XML Document should be stored in the database,

ideally generating an Object-Relational Structure. Does anyone know of a tool that

can do this?

Answer a
The best way may be to use the Class Generator. Use XML SQL Utility if DTD files

are not already created. You'll still have to write a mapping program.

Another method is to create views and write stored procedures to update multiple

tables. Unfortunately, you'll have to create your tables and views beforehand in

either case.

BC4J Business Components for Java (BC4J) framework provides a general,

meta-data-driven solution for mapping E-Commerce XML Messages into and out of

the database. BC4J has a technical white paper on its features available at

http://otn.oracle.com/products/jdev/info/techwp20/wp.html.

It is a Pure-Java, XML-Based business components framework for making building

E-Commerce applications easier. It is a Java framework usable on its own, but also

has tight development support built-into JDeveloper 3.0 IDE, available for

download from http://otn.oracle.com/software/.

BC4J lets you flexibly map hierarchies of SQL-based “view components” to

underlying business components that manage all application behavior (rules and

processes) in a uniform way. It also supports *dynamic* functionality, so most of its

features can be driven completely off XML metadata. You can build a layer which

flexibly maps any XML Document into and out of the database using this

framework. One key benefit is that when XML Documents are put into the system,

they automatically can have all the same business rules validated.
11-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Building BC4J and XML App
12

Building BC4J and XML Applications

This chapter contains the following sections:

■ Introducing Business Components for Java (BC4J)

■ BC4J Features

■ Building BC4J XML Applications in JDeveloper
lications 12-1



Introducing Business Components for Java (BC4J)
Introducing Business Components for Java (BC4J)
Oracle Business Components for Java (BC4J) is a Java, XML-powered framework

that enables development, portable deployment, and flexible customization of

multi-tier, database applications from reusable business components.

Maps XML Messages
The Business Components for Java (BC4J) framework provides a general,

metadata-driven solution for mapping E-commerce XML Messages into and out of

the database.

Test BC4J Applications using JDeveloper
You can use Oracle BC4J framework and Oracle JDeveloper 's wizards and

component editors to assemble and test application services from your reusable

business components.

In JDeveloper, you can also customize the functionality of existing Business

Components by using the visual wizards to modify your XML metadata

descriptions.

BC4J Features
BC4J features include the following:

■ Write Once, Deploy Anywhere

■ A 100% Java application framework for building component-based, multitier

enterprise applications

■ Easily separate business logic and user interface (UI)

■ Easily customize using extensible markup language (XML) and Java

■ Helps automate complex database interactions

See Also:

■ Chapter 11, "Using JDeveloper to Build Oracle XML

Applications"

■ Oracle9i Java Developer’s Guide

■ http://otn.oracle.com/products/bc4j
12-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



BC4J Features
■ Allows you to flexibly map hierarchies of SQL-based “view components” to

underlying business components that manage all application behavior (rules

and processes) uniformly.

■ Supports *dynamic* functionality, such that features can be driven from XML

metadata.

■ You can build a layer which maps any XML document in and out of the

database using this framework; when these XML Documents are used in the

system, they will automatically have all the same business rules validated.

BC4J Advantages
BC4J has the following advantages:

■ Reusable business logic

■ Entities encapsulate business logic

■ Associate and compose business components

■ Flexible, updateable SQL-based views

■ Optimized data retrieval and caching

■ Automatically coordinated with business logic

■ 100% pure Java

■ Local, remote CORBA and EJB session bean support

Flexible Deployment
BC4J-developed services can then be deployed as CORBA Server Objects or EJB

Session Beans on enterprise-scale server platforms supporting Java technology.

The same server-side business component can also be deployed without

modification, as a JavaServer Pages/Servlet application or Enterprise JavaBeans

component.

This flexibility, enables you to reuse the same business logic and data models to

deliver applications to a variety of clients, browsers, and wireless Internet devices

without needing to rewrite code.
Building BC4J and XML Applications 12-3



Building BC4J XML Applications in JDeveloper
Building BC4J XML Applications in JDeveloper
The Business Components for Java (BC4J) framework in JDeveloper9i uses XML to

define the metadata that represents the declarative settings and features of the

objects. Custom or complex business logic can be implemented in Java.

■ The BC4J Tester enables you to see data in view objects as XML.

■ Business rules, such as validation rules, are stored in XML rather than Java

source code

■ Easy customization of business applications by changing XML rather than Java

source code

■ Applications are easier to read and understand by abstracting the logic in XML

BC4J uses XML to Store Metadata The business components for Java framework that

ships with JDeveloper uses XML to store metadata about its application

components. Important information is now stored in a structured document rather

than in Java source code. This makes the application easier to understand and

customize.

The application is now customizable without having access to the source code.

Figure 14–1 shows how BC4J is used with XSQL servlet to generate XML

documents.
12-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Building BC4J XML Applications in JDeveloper
Figure 12–1 Using Business Components for Java (BC4J)

Business rules can be changed on site without needing access to the underlying

component source code.

Building XSQL Clients with BC4J
In JDeveloper9i, you can build XSQL Pages which can integrate with BC4J

application modules and thereby serve application logic from the middle tier to

multiple clients. You can retrieve XML data and present it to any kind of a client

device just by applying the corresponding stylesheet.

XML

Oracle9 i

XSL
Stylesheet

XSQL Servlet

Oracle Business 
components for 
Java

Browser

Graphical or
non-graphical

browser 

Personal
Digital

Assistant

Cell
Phone
Building BC4J and XML Applications 12-5



Building BC4J XML Applications in JDeveloper
Ease of Code Generation and Management when Building XML and Java Applications
The following lists some typical JDeveloper code requirements when using the BC4J

framework to build an XML application:

■ A .java file and a .xml file for each entity object and each view object

■ A .java file for each association object and each link object

■ A .java file and a .xml file for the application module

■ Double-click any of these files in the JDeveloper navigator to view the file

contents.

The BC4J framework represents each Business Component that uses a combination

of XML and Java code.

■ XML. The XML code defines the metadata representing declarative settings and

features of the object.

■ Java. The Java code implements the object’s behavior.

Other typical generated files are:

■ Java implementation of the entity

■ View XML file

■ Java implementation of the view

■ Application module XML file

■ Java implementation of the application module

See Also:

■ Chapter 11, "Using JDeveloper to Build Oracle XML

Applications"

■ Oracle9i Java Developer’s Guide

■ Oracle9i Case Studies - XML Applications
12-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Met
13

Using Metadata API

This chapter describes the following sections:

■ Introduction to Metadata API

■ What is DBMS_METADATA?

■ DBMS_METADATA Programmatic Interface

■ Performance Tips

■ DBMS_METADATA Browsing Interface

■ Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants

and Triggers
adata API 13-1



Introduction to Metadata API
Introduction to Metadata API
The Metadata API provides a centralized, simple and flexible means for performing

the following tasks:

■ Extracting complete definitions of database objects (metadata) as either XML or

creation DDL

■ Transforming the metadata via industry-standard XSL-T (XML Stylesheet

Transformation language).

■ Generating SQL DDL to recreate the database objects

The Metadata API is available on Oracle9i whenever the instance is operational. It is

not available on Oracle Lite.

Previous Methods Used to Extract Metadata
An object’s metadata is distributed in normalized fashion across the Dictionary. In

prior releases, you first had to understand how and where your object’s metadata

was represented in the Dictionary, then you had to issue multiple queries to extract

the object’s full representation. Once the metadata was extracted, you would

typically perform the following tasks:

1. Transform it in some way, such as, change the object’s tablespace, change a

column datatype, change an object’s owner, and so on.

2. Convert it to SQL DDL text for execution on the source or some other database.

In prior releases, there was no assistance for either of these steps.

Metadata API Components
Underlying the Metadata API is an object model of the Oracle Dictionary comprised

of a series of User-Defined Types (UDTs) and corresponding object views. The

UDTs provide the aggregation of each object class’s metadata and the object views

map the UDTs’ attributes onto the appropriate base relational tables in the

Dictionary. The Metadata API generates queries against these object views to

retrieve aggregated database object definitions.

The results from these queries are converted into XML documents by the XML /

SQL utility (also new in Oracle9i). When the caller requests DDL output, the

Metadata API uses the Oracle9i server’s integral XML Parser and XSL Processor to

convert the XML documents into creation DDL.
13-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introduction to Metadata API
Metadata API Features
The Metadata API has the following features:

■ Provides a powerful PL/SQL interface for detailed programmatic control or

casual browsing.

■ Supports retrieval of complete, aggregated database object definitions for the

following classes of objects:

■ All types of tables (including relational, object, index-organized, nested,

temporary and partitioned)

■ Indexes (including functional and domain indexes)

■ User-defined types

■ Procedures, functions, and packages

■ Operators

■ Indextypes

■ Relational and object views

■ Triggers

■ Synonyms

■ Grants (object and system privilege grants)

■ Outlines

■ Provides only complete representations of objects.

■ Provides database object metadata in an XML format that is easily

transformable via XSL-T by downstream processes.

■ Provides complete Oracle-specific creation DDL for all supported objects.

■ Provides flexible object selection. Can return multiple objects per query.

■ Supports daisy-chained transforms where the output of the first becomes the

input to the second and so on.

■ DDL output can be customized via object type-specific transform parameters.

Note: Subsetting of object attributes is not supported in this

release except through XSLT transformation.
Using Metadata API 13-3



What is DBMS_METADATA?
Internet Computing
Metadata API uses two internet standards, XML and XSLT, for encoding and

transforming object metadata. Use of an industry-standard format for metadata

encoding (rather than a proprietary format) allows you to use standard tools to

parse and transform the output.

There is currently no industry-standard XML model for database metadata, so

Metadata API uses one optimized for generating Oracle DDL. Document element

names are derived directly from attributes of the UDTs in the Oracle Dictionary

model. As standard models emerge, Metadata API will support the ability to plug

them in. Older documents can be converted to alternate models with XSLT.

With n-tier Internet Computing, it is natural for Metadata API to be bound to the

server, close to the metadata. Hence, the Metadata API’s implementation chose

PL/SQL, which is callable from any other language including Java.

What is DBMS_METADATA?
DBMS_METADATA is the PL/SQL package that implements Metadata API. It

allows callers to retrieve metadata from the database Dictionary. It provides a

flexible and extensible means for object selection. You can use DBMS_METADATA

to extract database object metadata in XML and DDL.

DBMS_METADATA has two types of interface:

■ Programmatic interface for fine-grained, detailed control:

■ The following routines are provided and explained later: OPEN, SET_

FILTER, SET_PARSE_ITEM, SET_COUNT, ADD_TRANSFORM, SET_

TRANSFORM_PARAM, FETCH_xxx, CLOSE

■ Metadata is expressed as XML. This allows industry-standard metadata

transformations using XSLT.

■ You can ask DBMS_METADATA to return metadata as DDL. The API uses

XSL scripts internally to transparently perform the conversion.

■ You can simply invoke an XSL script, using either Oracle’s XML parser or

some third-party tool, to do an off-line conversion of the XML

representation.

■ Browsing interface for casual use within SQL clients such as SQL*Plus:

■ GET_DDL, GET_XML. For example, the following query will show the

DDL for all tables in the current user’s schema:
13-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What is DBMS_METADATA?
SELECT dbms_metadata.get_ddl(’TABLE’, table_name) FROM user_tables;

■ Session-level “sticky” transform parameters

DBMS_METADATA and Security
The object views of the Oracle metadata model implement security. Non-privileged

users can see the metadata of just their own objects. SYS and those users with

SELECT_CATALOG_ROLE can see all objects. Non-privileged users can also

retrieve object and system privileges granted to them or by them to others. This also

includes privileges granted to PUBLIC.

If callers request objects they are not privileged to retrieve, no exception is raised;

the object is simply not retrieved.

Note: If non-privileged users are granted some form of access to

an object in someone else’s schema, they will be able to retrieve the

grant specification through the Metadata API, but not the object’s

actual metadata.

Note: The types and public interface defined by the Metadata API

can be found in:

$ORACLE_HOME/rdbms/admin/dbmsmeta.sql

See Also: Oracle9i Supplied PL/SQL Packages Reference
Using Metadata API 13-5



DBMS_METADATA Programmatic Interface
DBMS_METADATA Programmatic Interface
Table 13–1 lists the nine DBMS_METADATA programmatic interface procedures.

Table 13–1 DBMS_METADATA Procedures: Programmatic Interface

PL/SQL Procedure Syntax Description

DBMS_

METADATA.OPEN()

FUNCTION open

(object_type IN VARCHAR2,

    version IN VARCHAR2 DEFAULT
’COMPATIBLE’,

    model IN VARCHAR2 DEFAULT ’ORACLE’

) RETURN NUMBER;

Specifies type of object to be retrieved,
version of its metadata, and object
model. Return value is an opaque
context handle for the set of objects to be
used in subsequent calls.

DBMS_METADATA.SET_
FILTER()

PROCEDURE set_filter

 (handle IN NUMBER, name IN VARCHAR2,

 value IN VARCHAR2);

PROCEDURE set_filter

 (handle IN NUMBER, name IN VARCHAR2,

 value IN BOOLEAN DEFAULT TRUE);

Specifies restrictions on objects to be
retrieved, such as, object name or
schema. Allows specification of base
object(s) for dependent objects such as
INDEXes and TRIGGERs.

DBMS_METADATA.SET_
COUNT()

PROCEDURE set_count

 (handle IN NUMBER,

 value IN NUMBER);

Specifies number of objects to be
retrieved in a single FETCH_xxx call. By
default, each call to FETCH_xxx returns
one object.

DBMS_METADATA.GET_
QUERY()

FUNCTION get_query

 (handle IN NUMBER

 ) RETURN VARCHAR2;

Returns text of query (or queries) used
by FETCH_xxx. Provided to assist in
debugging.

DBMS_METADATA.SET_
PARSE_ITEM()

PROCEDURE set_parse_item

   (handle IN NUMBER,

    name IN VARCHAR2);

Enables output parsing and specifies an
object attribute to be parsed and
returned. This frees the caller from
having to parse SQL DDL for key
attributes.
13-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_METADATA Programmatic Interface
DBMS_
METADATA.ADD_
TRANSFORM()

FUNCTION add_transform

(handle IN NUMBER,

name IN VARCHAR2

encoding  IN VARCHAR2 DEFAULT NULL)

) RETURN NUMBER;

Specifies a transform that FETCH_xxx
applies to the XML representation of
retrieved objects. You can add more
than one transform. By default (with no
transforms added), objects are returned
as XML documents. Call ADD_
TRANSFORM to specify an XSLT script
to transform the returned documents. If
’DDL’ is specified, the objects’ creation
DDL is returned from subsequent
FETCH_xxx calls. ADD_TRANSFORM
returns an opaque transform handle
different from that returned by OPEN.

Specify encoding if:

■ The XSL stylesheet pointed to by an
external URL is encoded in a
character set that is not a subset of
UTF-8, or

■ The XSL stylesheet pointed to by a
DB-internal URL is encoded in a
character set that is not a subset of
the database’s character set.

Table 13–1 DBMS_METADATA Procedures: Programmatic Interface(Cont.)

PL/SQL Procedure Syntax Description
Using Metadata API 13-7



DBMS_METADATA Programmatic Interface
DBMS_METADATA.FETCH_XML
Figure 13–1 illustrates DBMS_METADATA.FETCH_XML() usage:

1. Open the object type using DBMS_METADATA.OPEN().

2. Specify which objects to retrieve using DBMS_METADATA.SET_FILTER().

DBMS_METADATA.SET_
TRANSFORM_PARAM()

PROCEDURE set_transform_param

(transform_handle IN NUMBER,

name IN VARCHAR2,

value IN VARCHAR2);

PROCEDURE set_transform_param

(transform_handle IN NUMBER,

name IN VARCHAR2,

value IN BOOLEAN DEFAULT TRUE);

Specifies parameters to the XSLT
stylesheet identified by transform_handle
returned from ADD_TRANSFORM.

For the DDL transform, these
parameters alter the form of the DDL.
For example, constraints may be
requested as column constraints or
ALTER TABLE statements.

DBMS_
METADATA.FETCH_
xxx()

FUNCTION fetch_xml (handle IN NUMBER)
RETURN XMLType;

FUNCTION fetch_ddl  (handle IN NUMBER)

RETURN sys.ku$_ddls;

FUNCTION fetch_clob (handle IN NUMBER)

RETURN CLOB;

PROCEDURE fetch_clob (handle IN NUMBER,

doc IN OUT NOCOPY CLOB);

The FETCH_xxx routines return
metadata for objects meeting the criteria
established by OPEN, SET_FILTER,
SET_COUNT, ADD_TRANSFORM...

FETCH_XML and FETCH_DDL return
the metadata as XML and SQL DDL,
respectively. The FETCH_CLOB
routines return either XML or DDL as
denoted by the transforms  specified.

The types used by these routines are
described in Oracle9i Supplied PL/SQL
Packages Reference.

DBMS_
METADATA.CLOSE()

PROCEDURE close (handle IN NUMBER); Invalidates the handle returned by
OPEN and cleans up associated state.

See Also:

■ Oracle9i Supplied PL/SQL Packages Reference

■ Chapter 5, "Database Support for XML" for the specification of

XMLType.

Table 13–1 DBMS_METADATA Procedures: Programmatic Interface(Cont.)

PL/SQL Procedure Syntax Description
13-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_METADATA Programmatic Interface
3. Fetch  each qualifying object’s metadata as an XML document using DBMS_
METADATA.FETCH_XML().

4. If the result of this operation is NULL, then DBMS_METADATA.CLOSE().

Figure 13–1 Using DBMS_METADATA.FETCH_XML()

DBMS_METADATA.FETCH_DDL()
Figure 13–2 illustrates DBMS_METADATA.FETCH_DDL() usage:

1. Open the object type using DBMS_METADATA.OPEN().

2. Specify which objects to retrieve using DBMS_METADATA.SET_FILTER().

3. Specify what transforms are to be invoked on the output:

Object Type
input

.open()

.set_filter()

Object types
include:

• TABLE
• INDEX
• TYPE
• PACKAGE
• SYNONYM, ...

.fetch_xml() .close()if null

Process XML; 
eg. Streamed to 
export file

XML

DBMS_METADATA: fetch_xml()
Using Metadata API 13-9



DBMS_METADATA Programmatic Interface
■ DBMS_METADATA.ADD_TRANSFORM() to add a transform. The last

transform added must be the "DDL" transform.

4. DBMS_METADATA.SET_TRANSFORM_PARAM(). This allows you to customize

the DDL; for example, to exclude storage clauses on table definitions.

Transform parameters are specific to the object type chosen.

5. Fetch the DDL using DBMS_METADATA.FETCH_DDL().

6. If the result of this operation is NULL, then DBMS_METADATA.CLOSE().
13-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_METADATA Programmatic Interface
Figure 13–2 Using DBMS_METADATA.FETCH_DDL()

Process DDL; 
eg. Recreate object 
in another schema 
or database

Object Type
input

.open()

.set_filter()

Specific to object 
type

*set_transform_
param 
affects how DDLs 
look

eg.
_storage
_tablespace

.add_transform()

.fetch_ddl() .close()if null

DDL

set_transform_
param()

Object types
include:

• TABLE
• INDEX
• TYPE
• PACKAGE
• SYNONYM, ...

DBMS_METADATA: fetch_ddl()
Using Metadata API 13-11



DBMS_METADATA Browsing Interface
Performance Tips
This section describes how to enhance performance when using the programmatic

interface of Metadata API.

1. Fetch all of one type of object before fetching the next. For example, if you are

retrieving the definitions of all objects in your schema, first fetch all the tables,

then all the indexes, then all the triggers, and so on. This will be much faster

than nesting OPEN contexts; that is, fetch one table then all of its indexes,

grants and triggers, then the next table and all of its indexes, grants and

triggers, and so on. The example at the end of this chapter actually reflects this

second, less efficient means, but its purpose is to demonstrate most of the

programmatic calls which are best shown by this method.

2. Use the SET_COUNT procedure to retrieve more than one object at a time. This

minimizes server round trips as well as eliminates many redundant function

calls.

3. Use the procedure rather than function form of FETCH_CLOB. The procedure

form returns the output CLOB by reference via the IN OUT NOCOPY specifier.

The function form returns the output CLOB by value requiring an extra LOB

copy.

4. When writing a PL/SQL package that calls Metadata API, declare LOB

variables and objects that contain LOBs (such as SYS.KU$_DDLS) at package

scope rather than within individual functions. This eliminates the creation and

deletion of LOB duration structures upon function entrance and exit which are

very expensive operations.

DBMS_METADATA Browsing Interface
The DBMS_METADATA browsing interface is provided by the GET_XML and

GET_DDL functions.

Table 13–2 lists the browsing APIs, their syntax, and a brief description.

See Also: Oracle9i Application Developer’s Guide - Large Objects (LOBs)
13-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBMS_METADATA Browsing Interface
Example
The following SQL*Plus command will display the creation DDL for all tables in the

current user’s schema:

SQL> SELECT dbms_metadata.get_ddl(’TABLE’, table_name) FROM user_tables;

Table 13–2 DBMS_METADATA Procedures: Browsing Interface

PL/SQL Procedure Name Syntax Description

DBMS_
METADATA.GET_xxx()

FUNCTION get_xml  (

   object_type IN VARCHAR2,

   name IN VARCHAR2,

   schema IN VARCHAR2 DEFAULT NULL,

   version IN VARCHAR2 DEFAULT ’COMPATIBLE’,

   model IN VARCHAR2 DEFAULT ’ORACLE’,

   transform IN VARCHAR2 DEFAULT NULL)

   RETURN CLOB;

FUNCTION get_ddl  (

   object_type IN VARCHAR2,

   name IN VARCHAR2,

   schema IN VARCHAR2 DEFAULT NULL,

   version IN VARCHAR2 DEFAULT ’COMPATIBLE’,

   model IN VARCHAR2 DEFAULT ’ORACLE’,

   transformIN VARCHAR2 DEFAULT ’DDL’)

   RETURN CLOB;

Provides a way to return metadata
for a single object. Each GET_xxx
call is comprised of an OPEN, one
or two SET_FILTER calls, optionally
an ADD_TRANSFORM, a FETCH_
xxx and a CLOSE.

The object_type parameter has the
same semantics as in OPEN. schema
and name are used for filtering.

If a transform is specified,
session-level transform flags are
inherited.
Using Metadata API 13-13



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
Metadata API Example: Retrieving DDL for Tables and their Indexes,
Grants and Triggers

Here is a detailed Metadata API programming example, PAYROLL_DEMO, that

retrieves the DDL for all tables in the MDDEMO schema that start with 'PAYROLL'.

It then fetches the DDL for grants, indexes and triggers defined on those tables. This

script can be found in the file rdbms/demo/mddemo.sql  in your Oracle home

directory.

mddemo.sql
-- This script demonstrates how to use the Metadata API. It first
-- establishes a schema (MDDEMO) and some payroll users, then creates three
-- payroll-like tables within it along with associated indexes, triggers
-- and grants.

-- It then creates a package PAYROLL_DEMO that shows common usage of the
-- Metadata API. The procedure GET_PAYROLL_TABLES retrieves the DDL for the
-- two tables in this schema that start with ’PAYROLL’ then for each one,
-- retrieves the DDL for its associate dependent objects; indexes, grants
-- and triggers. All the DDL is written to a table named "MDDEMO"."DDL".

-- First, Install the demo. cd to rdbms/demo:
-- > sqlplus system/manager
-- SQL> @mddemo

-- Then, run it.
-- > sqlplus mddemo/mddemo
-- SQL> set long 40000
-- SQL> set pages 0
-- SQL> call payroll_demo.get_payroll_tables();
-- SQL> select ddl from DDL order by seqno;

Rem Set up schema for demo pkg. PAYROLL_DEMO.

connect system/manager
drop user mddemo cascade;
drop user mddemo_clerk cascade;
drop user mddemo_mgr cascade;

create user mddemo identified by mddemo;
GRANT resource, connect, create session
     , create table
     , create procedure
13-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
     , create sequence
     , create trigger
     , create view
     , create synonym
     , alter session
TO mddemo;

create user mddemo_clerk identified by clerk;
create user mddemo_mgr identified by mgr;

connect mddemo/mddemo

Rem Create some payroll-like tables...

create table payroll_emps
( lastname varchar2(60) not null,
  firstname varchar2(20) not null,
 mi varchar2(2),
 suffix varchar2(10),
 DOB date not null,
 badge_no number(6) primary key,
 exempt varchar(1) not null,
 salary number (9,2),
 hourly_rate number (7,2)
)
/
create table payroll_timecards
 badge_no number(6) references payroll_emps (badge_no),
 week number(2),
job_id number(5),
hours_worked number(4,2)
)
/
-- This is a dummy table used only to show that tables NOT starting with
-- ’PAYROLL’ are NOT retrieved by payroll_demo.get_payroll_tables

create table audit_trail
(action_time DATE,
lastname VARCHAR2(60),
action LONG
)
/

Rem Then, create some grants...
Using Metadata API 13-15



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
grant update (salary,hourly_rate) on payroll_emps to mddemo_clerk;
grant ALL on payroll_emps to mddemo_mgr with grant option;

grant insert,update on payroll_timecards to mddemo_clerk;
grant ALL on payroll_timecards to mddemo_mgr with grant option;

Rem Then, create some indexes...

create index i_payroll_emps_name on payroll_emps(lastname);
create index i_payroll_emps_dob on payroll_emps(DOB);

create index i_payroll_timecards_badge on payroll_timecards(badge_no);

Rem Then, create some triggers (and required procedure)...

create or replace procedure check_sal( salary in number) as
begin
  return;  -- Fairly loose security here...
end;
/

create or replace trigger salary_trigger before insert or update of salary on
payroll_emps
for each row when (new.salary > 150000)
call check_sal(:new.salary)
/

create or replace trigger hourly_trigger before update of hourly_rate on
payroll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/

--
-- Set up a table to hold the generated DDL
--
CREATE TABLE ddl (ddl CLOB, seqno NUMBER);

Rem Finally, create the PAYROLL_DEMO package itself.

CREATE OR REPLACE PACKAGE payroll_demo AS

   PROCEDURE get_payroll_tables;
END;
/

13-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
CREATE OR REPLACE PACKAGE BODY payroll_demo AS

-- GET_PAYROLL_TABLES: Fetch DDL for payroll tables and their dependent objects

PROCEDURE  get_payroll_tables IS

tableOpenHandle NUMBER;
depObjOpenHandle NUMBER;
tableTransHandle  NUMBER;
indexTransHandle NUMBER;
schemaName VARCHAR2(30);
tableName VARCHAR2(30);
tableDDLs sys.ku$_ddls;
tableDDL sys.ku$_ddl;
parsedItems   sys.ku$_parsed_items;
depObjDDL CLOB;
seqNo NUMBER := 1;

TYPE obj_array_t IS VARRAY(3) OF VARCHAR2(30);

-- Load this array with the dependent object classes to be retrieved...
obj_array obj_array_t := obj_array_t(’OBJECT_GRANT’, ’INDEX’, ’TRIGGER’);

BEGIN

-- Open a handle for tables in the current schema.
  tableOpenHandle := dbms_metadata.open(’TABLE’);

-- Tell mdAPI to retrieve one table at a time. This call is not actually
-- necessary since 1 is the default... just showing the call.
  dbms_metadata.set_count(tableOpenHandle, 1);

-- Retrieve tables whose name starts with ’PAYROLL’. When the filter is
-- ’NAME_EXPR’, the filter value string must include the SQL operator. This
-- gives the caller flexibility to use LIKE, IN, NOT IN, subqueries, etc.
  dbms_metadata.set_filter(tableOpenHandle, ’NAME_EXPR’, ’LIKE ’’PAYROLL%’’’);

-- There are no index-organized tables in the MDDEMO schema, so tell the API.
-- This eliminates one of the views it’ll need to look in.
  dbms_metadata.set_filter(tableOpenHandle, ’IOT’, FALSE);

-- Tell the mdAPI to parse out each table’s schema and name separately so we
-- can use them to set up the calls to retrieve its dependent objects.
  dbms_metadata.set_parse_item(tableOpenHandle, ’SCHEMA’);
  dbms_metadata.set_parse_item(tableOpenHandle, ’NAME’);
Using Metadata API 13-17



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
-- Add the DDL transform so we get SQL creation DDL
  tableTransHandle := dbms_metadata.add_transform(tableOpenHandle, ’DDL’);

-- Tell the XSL stylesheet we don’t want physical storage information (storage,
-- tablespace, etc), and that we want a SQL terminator on each DDL. Notice that
-- these calls use the transform handle, not the open handle.
  dbms_metadata.set_transform_param(tableTransHandle,
     ’SEGMENT_ATTRIBUTES’, FALSE);
  dbms_metadata.set_transform_param(tableTransHandle,
    ’SQLTERMINATOR’, TRUE);

-- Ready to start fetching tables. We use the FETCH_DDL interface (rather than
-- FETCH_XML or FETCH_CLOB). This interface returns a SYS.KU$_DDLS; a table of
-- SYS.KU$_DDL objects. This is a table because some object types return
-- multiple DDL statements (like types / pkgs which have create header and
-- body statements). Each KU$_DDL has a CLOB containing the ’CREATE foo’
-- statement plus a nested table of the parse items specified. In our case,
-- we asked for two parse items; Schema and Name. (NOTE: See admin/dbmsmeta.sql
-- for a more detailed description of these types)

  LOOP
    tableDDLs := dbms_metadata.fetch_ddl(tableOpenHandle);
    EXIT WHEN tableDDLs IS NULL;  -- Get out when no more payroll tables

-- In our case, we know there is only one row in tableDDLs (a KU$_DDLS tbl obj)
-- for the current table. Sometimes tables have multiple DDL statements;
-- eg, if constraints are applied as ALTER TABLE statements, but we didn’t ask
-- for that option. So, rather than writing code to loop through tableDDLs,
-- we’ll just work with the 1st row.
--
-- First, write the CREATE TABLE text to our output table then retrieve the
-- parsed schema and table names.
    tableDDL := tableDDLs(1);
    INSERT INTO ddl VALUES(tableDDL.ddltext, seqNo);
    seqNo := seqNo + 1;
    parsedItems := tableDDL.parsedItems;

-- Must check the name of the returned parse items as ordering isn’t guaranteed
    FOR i IN 1..2 LOOP
      IF parsedItems(i).item = ’SCHEMA’
      THEN
        schemaName := parsedItems(i).value;
      ELSE
        tableName  := parsedItems(i).value;
13-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
      END IF;
    END LOOP;

-- Now, we want to retrieve all the dependent objects defined on the current
-- table: indexes, triggers and grants. Since all ’dependent’ object types
-- have BASE_OBJECT_NAME and BASE_OBJECT_SCHEMA in common as filter criteria,
-- we’ll set up a loop to get all objects of the 3 types, just changing the
-- OPEN context in each pass through the loop. Transform parameters are
-- different for each object type, so we’ll only use one that’s common to all;
-- SQLTERMINATOR.

    FOR i IN 1..3 LOOP
      depObjOpenHandle := dbms_metadata.open(obj_array(i));
      dbms_metadata.set_filter(depObjOpenHandle,’BASE_OBJECT_SCHEMA’,
       schemaName);
      dbms_metadata.set_filter(depObjOpenHandle,’BASE_OBJECT_NAME’,tableName);

-- Add the DDL transform and say we want a SQL terminator
      indexTransHandle := dbms_metadata.add_transform(depObjOpenHandle, ’DDL’);
      dbms_metadata.set_transform_param(indexTransHandle,
        ’SQLTERMINATOR’, TRUE);

-- Retrieve dependent object DDLs as CLOBs and write them to table DDL.
      LOOP
        depObjDDL := dbms_metadata.fetch_clob(depObjOpenHandle);
        EXIT WHEN depObjDDL IS NULL;
        INSERT INTO ddl VALUES(depObjDDL, seqNo);
        seqNo := seqNo + 1;
      END LOOP;

-- Free resources allocated for current dependent object stream.
      dbms_metadata.close(depObjOpenHandle);

    END LOOP; -- End of fetch dependent objects loop

  END LOOP;   -- End of fetch table loop

-- Free resources allocated for table stream and close output file.
  dbms_metadata.close(tableOpenHandle);
  RETURN;

END;  -- of procedure get_payroll_tables

END payroll_demo;
/

Using Metadata API 13-19



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
PAYROLL_DEMO Output
This is the output obtained from executing procedure, mddemo.payroll_
demo.get_payroll_tables . The output is obtained by executing the following

query as user mddemo:

SQL> SELECT ddl FROM ddl ORDER BY seqno;

CREATE TABLE "MDDEMO"."PAYROLL_EMPS"
   (    "LASTNAME" VARCHAR2(60) NOT NULL ENABLE,
        "FIRSTNAME" VARCHAR2(20) NOT NULL ENABLE,
        "MI" VARCHAR2(2),
        "SUFFIX" VARCHAR2(10),
        "DOB" DATE NOT NULL ENABLE,
        "BADGE_NO" NUMBER(6,0),
        "EXEMPT" VARCHAR2(1) NOT NULL ENABLE,
        "SALARY" NUMBER(9,2),
        "HOURLY_RATE" NUMBER(7,2),
 PRIMARY KEY ("BADGE_NO") ENABLE
   ) ;

  GRANT UPDATE ("SALARY") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
  GRANT UPDATE ("HOURLY_RATE") ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_CLERK";
  GRANT ALTER ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT DELETE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT INDEX ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT INSERT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT SELECT ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT UPDATE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT REFERENCES ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT
OPTION;
  GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_EMPS" TO "MDDEMO_MGR" WITH GRANT OPTI
ON;

  CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_DOB" ON "MDDEMO"."PAYROLL_EMPS" ("DOB")
  PCTFREE 10 INITRANS 2 MAXTRANS 255
  STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
  FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

  CREATE INDEX "MDDEMO"."I_PAYROLL_EMPS_NAME" ON "MDDEMO"."PAYROLL_EMPS" ("LASTN
AME")
  PCTFREE 10 INITRANS 2 MAXTRANS 255
13-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
  STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
  FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;

  CREATE OR REPLACE TRIGGER hourly_trigger before update of hourly_rate on payro
ll_emps
for each row
begin :new.hourly_rate:=:old.hourly_rate;end;
/
ALTER TRIGGER "MDDEMO"."HOURLY_TRIGGER" ENABLE;

  CREATE OR REPLACE TRIGGER salary_trigger before insert or update of salary on
payroll_emps
for each row  WHEN (new.salary > 150000)  CALL check_sal(:new.salary)
/
ALTER TRIGGER "MDDEMO"."SALARY_TRIGGER" ENABLE;

CREATE TABLE "MDDEMO"."PAYROLL_TIMECARDS"
   (    "BADGE_NO" NUMBER(6,0),
        "WEEK" NUMBER(2,0),
        "JOB_ID" NUMBER(5,0),
        "HOURS_WORKED" NUMBER(4,2),
 FOREIGN KEY ("BADGE_NO")
  REFERENCES "MDDEMO"."PAYROLL_EMPS" ("BADGE_NO") ENABLE
   ) ;

  GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
  GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_CLERK";
  GRANT ALTER ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT DELETE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION
;
  GRANT INDEX ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION;
  GRANT INSERT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION
;
  GRANT SELECT ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION
;
  GRANT UPDATE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OPTION
;
  GRANT REFERENCES ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT OP
TION;
  GRANT ON COMMIT REFRESH ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH G
RANT OPTION;
  GRANT QUERY REWRITE ON "MDDEMO"."PAYROLL_TIMECARDS" TO "MDDEMO_MGR" WITH GRANT
 OPTION;
Using Metadata API 13-21



Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
  CREATE INDEX "MDDEMO"."I_PAYROLL_TIMECARDS_BADGE" ON "MDDEMO"."PAYROLL_TIMECAR
DS" ("BADGE_NO")
  PCTFREE 10 INITRANS 2 MAXTRANS 255
  STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50
  FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "SYSTEM" ;
13-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle9iAS Reports Services a
14

Oracle9iAS Reports Services and XML

This chapter contains the following sections:

■ Introducing Oracle9iAS Reports Services and XML

■ Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services

■ Customizing Report Definitions at Runtime

■ Performing Batch Report Modifications by Applying XML Report Definitions

■ Creating Report Definitions in XML

■ Using XML as a Datasource

■ Reports Case Studies

■ Frequently Asked Questions: Reports and XML
nd XML 14-1



Introducing Oracle9iAS Reports Services and XML
Introducing Oracle9iAS Reports Services and XML
Oracle9iAS (Application Server) Reports Services provides the following XML

support:

■ Reports can be output and customized as XML [Reports 6i and higher].

■ Create XML output ’on the fly’, using Oracle9iAS Reports Services. See

"Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services" on

page 14-4.

■ Customize Report Definitions at runtime. See "Customizing Report

Definitions at Runtime"  on page 14-6.

■ Run Batch report modifications using XML Report Definitions. See

"Performing Batch Report Modifications by Applying XML Report

Definitions"  on page 14-12.

■ Read XML data source from Reports [Reports 9i and higher]. See "Using XML

as a Datasource"  on page 14-17.

B2B Data Exchange: Why Use XML in Reports?
Figure 14–1 shows the sharing of information with partners and how XML can be

used to help send data in a more timely manner. With Oracle9iAS Reports Server,

you can automatically generate XML files. A URL is all that is required to invoke an

Oracle Report on the Web. By defining a Report module to query the data, suppliers

can stream information back to the calling eCommerce application in real time.
14-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introducing Oracle9iAS Reports Services and XML
Figure 14–1 Why Use XML in Oracle9iAS Reports Services?

What’s Needed to Run Oracle9iAS Reports Services
Oracle Reports, or Oracle9iAS Reports Service as it is called now, is part of Oracle9i

Application Server. It seamlessly integrates in the environment and the other

services provided by the product.

See Also:

■ Oracle9i Case Studies - XML Applications, under the chapter,

"Customizing Discoverer4i (9i) Viewer with XSL"

■ "Oracle Reports Developer Release 6i: Building Reports" or later.

■ "Oracle Reports Developer Release 6i: Publishing Reports" or later.

■ "Oracle Reports Developer Release 6i Reference Manual" or later.

■ Online help, accessed in several ways, for example from your

desktop, go to START > "Oracle Forms and Reports Doc".
Oracle9iAS Reports Services and XML 14-3



Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services
Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services
The data model drives the structure of XML output for a report. XML output is not

dependent on the visual layout.

■ You can change the structure of a report's XML output by editing the XML

properties available in the Property Palette for data model objects.

■ Report Builder does not currently support presentation information (color, font,

physical layout, etc.) in XML output. You may provide your own presentation

information using XSL, which may be specified in the prolog.

■ From the command line, you can use the argument DESFORMAT=XML to

generate XML output.

XML as a Data InterChange Format
You may need to send a report to a B2B partner in XML. Figure 14–2 shows an

example of a report in XML. This is obtained by changing one parameter that tells

Reports Server to output the report in XML instead of HTML.

See Also: http://otn.oracle.com/products/reports/

See Also: ■"Oracle Reports Developer Release 6i Reference Manual",
for more information on DESFORMAT.
14-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services
Figure 14–2 Example Report Shown in XML

Formatting XML Output Using XSL Stylesheets
Figure 14–3 shows the results of applying an XSL stylesheet to the same XML report

shown in Figure 14–2. In this case, the example report of data is needed in HTML.
Oracle9iAS Reports Services and XML 14-5



Customizing Report Definitions at Runtime
Figure 14–3 Example Report After Applying an XSL Stylesheet

Customizing Report Definitions at Runtime
Oracle9iAS Reports Services allows modifications to be externalized into a separate

’customization’ file, rather than having to create unique versions of each report.

Report outputs can be customized for specific users or groups without changing the

original report definition.

A customization file is a report definition that is applied to an existing report (.RDF
or .XML). It can change certain characteristics of existing report objects, such as the

field’s date format mask or background color. A customization file can also be used

to add entirely new objects to another report.

Applying an XML Customization
To apply an XML report definition to an .RDF or .XML file at runtime, use either of

the following:

■ Runtime options. The CUSTOMIZE command line argument. CUSTOMIZE can

be used with RWCLI60, RWRUN60, RWBLD60, RWCON60, and URL report

requests.

■ Built-In Options. The SRW.APPLY_DEFINITION  built-in (a supplied PL/SQL

package)

See Also: "Using XML as a Datasource"  on page 14-17
14-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Customizing Report Definitions at Runtime
Applying One Customization File
The following command line sends a job request to Oracle9iAS Reports Services

that applies an XML report definition, emp.xml,  to an .RDF file, emp.rdf :

rwcli60 report=emp.rdf customize=e:\myreports\emp.xml
  userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
  server=repserver

Reports Runtime. If you were using Oracle9iAS Reports Services Runtime, then the

equivalent command line would be:

rwrun60 userid=username/password@mydb report=emp.rdf
   customize=e:\myreports\emp.xml destype=file desname=emp.pdf
   desformat=PDF

When testing your XML report definition, it is sometimes useful to run your report

requests with additional arguments to create a trace file. For example:

tracefile=emp.log tracemode=trace_replace traceopt=trace_app

The trace file provides a detailed listing of the creation and formatting of the report

objects.

Applying Multiple XML Customization Files
You can apply multiple XML report definitions to a report at runtime by providing

a list with the CUSTOMIZE command line argument. The following command line

sends a job request to Oracle9iAS Reports Services that applies two XML report

definitions, emp0.xml and emp1.xml, to an .RDF file, emp.rdf:

rwcli60 report=emp.rdf
  customize="(e:\corp\myreports\emp0.xml,
  e:\corp\myreports\emp1.xml)"
  userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
  server=repserver

Reports Runtime. If you are using Oracle9iAS Reports Services Runtime, then the

equivalent command line is:

rwrun60 report=emp.rdf
  customize="(e:\corp\myreports\emp0.xml,
  e:\corp\myreports\emp1.xml)"
  userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
Oracle9iAS Reports Services and XML 14-7



Customizing Report Definitions at Runtime
Applying an XML Customization File Using PL/SQL
To apply an XML report definition to an .RDF file in PL/SQL, use the SRW.ADD_
DEFINITION  and SRW.APPLY_DEFINITION PL/SQL supplied packages

(built-ins) in the Before Form or After Form trigger.

■ Applying an XML Definition Stored in a File. (Built-In) To apply XML that is

stored in the file system to a report, you can use the SRW.APPLY_DEFINITION
PL/SQL supplied package in the Before Form or After Form triggers of the

report:

SRW.APPLY_DEFINITION (’d:\orant\tools\doc60\us\rbbr60\cond.xml’);

When the report is run, the trigger executes and the specified XML file is

applied to the report.

■ Applying an XML Definition Stored in Memory. To create an XML report

definition in memory, add the definition to the document buffer using

SRW.ADD_DEFINITION before applying it using SRW.APPLY_DEFINITION.

Customizing Reports at Runtime with XML
Using Oracle Reports Developer, in Reports6i and higher, you can change the

appearance and content of a report at runtime. To do this, merge the report

definition files (RDFs), built from XML tags, with existing .RDF files at runtime, and

then execute the combination. You can use XML report definitions for other tasks

such as:

■ Making batch modifications using XML report definitions with the Reports

Conversion Tool (RWCON60). RWCON60 is a PL/SQL supplied package (Built-in

function).

■ Building a complete report definition in XML that can be run by itself, without

an existing /RDF file.

The following examples show you how to modify reports using XML at runtime,

including:

■ Changing visual attributes of an item and changing its format-mask

■ Modifying the attributes of non-database-fields

■ Creation of multi-language reports from one RDF file

■ Creation of a report without any definitions in the RDF file out of an XML

file
14-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Customizing Report Definitions at Runtime
Before you Start...
Before you can use the following examples 1 through 5, you must create a default

report (a tabular report - "select * from emp", select all columns, "Corporate 1"

template) that the XML customizations are applied to. You can call it anything you

want, but in the following examples, we refer to it as emp_report.

To activate these modifications, it is best to create a file called modify.xml , and

then copy the XML code of the current example into it. This way, you can always

use the following same command line to run the report and modifications:

rwrun60 report=emp_report userid=scott/tiger customize=modify.xml

If you modify the scripts listed below, keep all XML specific restrictions in mind,

especially the case-sensitivity of XML.

Customizing Reports with XML, Example 1: Modifying F_EMPNO and Setting its
Color to Red

The following example modifies the field F_EMPNO and sets its color to red.

<report name="emp_report" DTDVersion="1.0">
 <layout>
  <section name="main">
   <field name="F_EMPNO" source="EMPNO" textColor="red"/>
  </section>
 </layout>
</report>

Customizing Reports with XML, Example 2: Changing Text Color of F_EMPNO to Red
and Setting Date Format of F_HIREDATE to German

Example 2 changes the text-color of field F_EMPNO to red and sets the date-format

of field F_HIREDATE to german notation.

<report name="emp_report" DTDVersion="1.0">
 <layout>
  <section name="main">
   <field name="F_EMPNO" source="EMPNO" textColor="red"/>
   <field name="F_HIREDATE" source="HIREDATE" formatMask="dd.mm.yyyy"/>
  </section>
 </layout>
</report>
Oracle9iAS Reports Services and XML 14-9



Customizing Report Definitions at Runtime
Customizing Reports with XML, Example 3: Modifying Boilerplate Text Objects
This example shows you how to modify boilerplate text objects. Normal report

layout elements are enclosed by the <layout>...</layout> tags, while the boilerplate

and logic elements are enclosed by the <customize>...</customize>  tags.

<report name="emp_report" DTDVersion="1.0">
 <layout>
  <section name="main">
   <field name="F_EMPNO" source="EMPNO" textColor="red"/>
   <field name="F_HIREDATE" source="HIREDATE" formatMask="dd.mm.yyyy"/>
  </section>
 </layout>
 <customize>
  <object name="B_HIREDATE" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Anst.Dat. </property>
   </properties>
  </object>
 </customize>
</report>

Customizing Reports with XML, Example 4: Replacing a SELECT * Query with a
SELECT * FROM... WHERE Query

As any other element of a report definition, the query is an element that can be

customized by the XML file. In this example, the query used when creating the

report (select * from emp) is replaced by one using a WHERE-clause (select * from

emp where deptno = 10).

Note that you have to use the same datasource name as originally used in the report

definition done by the wizard. Otherwise, there would be another datasource

created but not used, as there is no association to any repeating frame.

<report name="emp_report" DTDVersion="1.0">
 <data>
  <dataSource name="Q_1">
   <select>
    select * from emp where deptno = 10
   </select>
  </dataSource>
 </data>
 <layout>
  <section name="main">
14-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Customizing Report Definitions at Runtime
   <field name="F_EMPNO" source="EMPNO" textColor="red"/>
   <field name="F_HIREDATE" source="HIREDATE" formatMask="dd.mm.yyyy"/>
  </section>
 </layout>
 <customize>
  <object name="B_HIREDATE" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Anst.Dat. </property>
   </properties>
  </object>
 </customize>
</report>

Customizing Reports with XML, Example 5: Adding a Trigger to Field S_SAL
Besides changing the visual attributes of a report, you can easily modify its logic by

customizing the PL/SQL code as well. In this example, the report we created does

not contain format-triggers. By applying this XML file, a trigger is added to field, F_

SAL, that hides the field if the value of :SAL is less than 2500.

<report name="emp_report" DTDVersion="1.0">
 <layout>
  <section name="main">
   <field name="F_EMPNO" source="EMPNO" textColor="red"/>
   <field name="F_HIREDATE" source="HIREDATE" formatMask="dd.mm.yyyy"/>
   <field name="F_SAL" source="SAL" formatTrigger="SAL_FORMAT"/>
  </section>
 </layout>
 <programUnits>
 <function name="SAL_FORMAT">
  <![CDATA[
    function sal_format return boolean
    is
    begin
     if :SAL > 2500 then
        return (true);
     else
        return (false);
     end if;
    end;
  ]]>
 </function>
 </programUnits>
 <customize>
Oracle9iAS Reports Services and XML 14-11



Performing Batch Report Modifications by Applying XML Report Definitions
  <object name="B_HIREDATE" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Anst.Dat. </property>
   </properties>
  </object>
 </customize>
</report>

Performing Batch Report Modifications by Applying XML Report
Definitions

Reports’ ability to externalize modifications simplifies upgrading and the need to

make an application site-specific. You can apply an XML definition and save the

resultant definition as a new unique module. This also facilitates updates or

upgrades without having to open each file in Reports Builder to make changes.

To update a large number of reports, you can use the CUSTOMIZE command line

argument with RWCON60,the Reports Conversion Tool, to perform modifications in

batch. Batch modifications are useful when making repetitive changes to a large

number of reports, for example, when changing a field’s format mask. From Oracle

Report Builder, you can run RWCON60 once and make the same change to a large

number of reports.

The following example applies two XML report definitions, translate.xml  and

customize.xml , to three .RDF files, inven.rdf , inven2.rdf , and manu.rdf .

It saves the revised definitions to new files:

■ inven1_new.rdf

■ inven2_new.rdf

■ manu_new.rdf

rwcon60 username/password@mydb
  stype=rdffile
  source="(inven1.rdf, inven2.rdf, manu.rdf)"
  dtype=rdffile
  dest="(inven1_new.rdf, inven2_new.rdf, manu_new.rdf)"
  customize="(e:\apps\trans\translate.xml,
  e:\apps\custom\customize.xml)" batch=yes
14-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Performing Batch Report Modifications by Applying XML Report Definitions
Creating Mutated RDFs Out of One Master
For example, ERP vendors may want each customer to individualize their own

reports. This requires modifying fonts, colors, and so on. By using the Reports XML

based customization, vendors can make changes like this to the entire application in

one step.

To do so, simply apply the XML customization files using RWCON60 and create a

new RDF or REP file out of it, like you an see in the example above. This way, you

can create customized applications for each customer without the problem of

maintaining different versions of a report. You only have one master-report

containing your basic layout and maybe placeholder objects for customer-specific

things like logos, company names. And then you apply a customization file for each

customer building their own report.

Creating Multi-Version Reports Out of a Single RDF
Creating multi-language reports is always a challenging task. Developing a base

report and then translating it for all supported languages can cause maintenance

problems. With Oracle9iAS Reports Services’ XML customization feature, this is

easily done.

You create your report in the base-language and then apply different XML

customization files containing language specific settings, such as, label text,

data-format, and numeric formats. This way you can create different language

versions of your report easily.

Customizing Reports with XML Example 6: Creating Different Language Versions
from One Report Definition

This example shows how you can easily create different language versions from one

report definition. You no longer have to do heavy coding or multiple versions of the

same report. Simply create one layout and localize it by applying a

"language-XML".

The example modifies emp_report to have a German boilerplate and date-formats.

You can easily change this to your local language. Simply replace the German terms

by ones used in your language and you have localized the report.

<report name="emp_report" DTDVersion="1.0">
 <layout>
  <section name="main">
   <field name="F_EMPNO" source="EMPNO" textColor="red"/>
   <field name="F_HIREDATE" source="HIREDATE" formatMask="dd.mm.yyyy"/>
Oracle9iAS Reports Services and XML 14-13



Performing Batch Report Modifications by Applying XML Report Definitions
   <field name="F_DATE1_SEC2" source="Current Date" formatMask="dd.mm.yyyy"/>
  </section>
 </layout>
 <customize>
  <object name="B_EMPNO" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Pers.No. </property>
   </properties>
  </object>
  <object name="B_ENAME" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Name </property>
   </properties>
  </object>
  <object name="B_JOB" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Pos. </property>
   </properties>
  </object>
  <object name="B_MGR" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Vorges. </property>
   </properties>
  </object>
  <object name="B_HIREDATE" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Anst.Dat. </property>
   </properties>
  </object>
  <object name="B_SAL" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Geh. </property>
   </properties>
  </object>
  <object name="B_COMM" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Prov. </property>
   </properties>
  </object>
  <object name="B_DEPTNO" type="REP_GRAPHIC_TEXT">
   <properties>
    <property name="textSegment"> Abt. </property>
   </properties>
  </object>
  <object name="B_DATE1_SEC2" type="REP_GRAPHIC_TEXT">
14-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Creating Report Definitions in XML
   <properties>
    <property name="textSegment"> Stand vom </property>
   </properties>
  </object>
 </customize>
</report>

If your application requires dynamic switching of languages, you can also consider

applying the customization at runtime.

Creating Report Definitions in XML
Another use of XML report definitions is to make an entire report definition in XML

that can be run independently of another report. The advantage of this is that you

can build a report without using the Oracle Report Builder. In fact, you could even

use your own front end to generate the necessary XML and allow your users to

build their own reports dynamically.

With Oracle9iAS Reports Services you can also create a report in Report-Builder,

save it in XML format so that you have a starting point. You can then modify the

XML or use it as template for an application that creates the XML.

Customizing Reports with XML, Example 7: Creating a Report from XML Definitions
Only

This example requires an empty RDF file. Just create an empty report, and save it as

an empty .rdf. You then apply the following XML that contains the needed

modifications to create a report out of XML definitions only.

rwrun60 report=empty userid=scott/tiger customize=modify.xml

This example creates a simple report that displays the columns EMPNO, ENAME,

SAL, and COMM using the template corp1.tdf. This report looks exactly like one

created using the report-wizard.

<report name="emp_report" DTDVersion="1.0">
<data>
 <dataSource name="Q_EMP">
  <select>
   select empno, ename, sal, comm from emp
  </select>
 </dataSource>
</data>
Oracle9iAS Reports Services and XML 14-15



Creating Report Definitions in XML
<layout>
 <section name="main">
  <groupLeft name="M_emp" template="corp1.tdf">
   <group>
    <field name="F_EMPNO" source="empno"/>
    <field name="F_ENAME" source="ename"/>
    <field name="F_SAL" source="sal"/>
    <field name="F_COMM" source="comm"/>
   </group>
  </groupLeft>
 </section>
</layout>
</report>

Running XML Report Definitions
Once you have created your XML report definition, you can use it in the following

ways.

■ "Applying an XML Customization". Apply XML report definitions to .RDF or

other .XML files at runtime by specifying the CUSTOMIZE command line

argument or the SRW.APPLY_DEFINITION built-in.

■ "Running an XML Report Definition by Itself". Run an XML report definition by

itself (without another report) by specifying the REPORT command line

argument.

Running an XML Report Definition by Itself
To run an XML report definition by itself, send a request with an XML file specified

in the REPORT argument. You can do this in the following ways:

■ From the command line, to send a job request to Oracle9iAS Reports Services to

run report, emp.xml, by itself, use:

rwcli60 userid=username/password@mydb
  report=e:\corp\myreports\emp.xml
  destype=file desname=emp.pdf desformat=PDF
  server=repserver

■ From Oracle9iAS Reports Services Runtime, to send the equivalent job request,

the command would be:

rwrun60 userid=username/password@mydb
  report=e:\corp\myreports\emp.xml
14-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML as a Datasource
  destype=file desname=emp.pdf desformat=PDF

When running an XML report definition in this way, the file extension must be

.XML. You could apply an XML customization file to this report using the

CUSTOMIZE argument.

XML Used in JSP for Storing Report Definitions
In Reports 9i, besides using RDF and XML, you can also use Java Server Pages (JSP),

as a format for saving a report. Inside the JSP, report elements such as data-model

and paper-layout, are stored in XML format.

Depending on what you want to do with the JSP, it may contain only the

data-model and the web-source, or it may also contain the paper-layout. In this case

you can produce, for example, a PDF document from the same file.

Using XML as a Datasource
Oracle9iAS Reports Services introduces the concept of a pluggable data source

(PDS). PDS enables you to create interfaces to your own data sources, hence

allowing reports to access this data and use it together with data from other PDSs in

a single report.

Through a published interface, Oracle9iAS Reports Services communicates with the

PDS and uses it to fetch data from the specified source. Reports PDSs are

transparent to the user. The Reports pluggable data sources (PDS) can be used

side-by-side in the same data model and linked together.

The PDS is written in JAVA™ and then linked into Oracle9iAS Reports Services

using the configuration files.

Pluggable Data Source, XML-PDS
The XML-PDS is one of the PDSs shipped with Oracle9iAS Reports Services. It

enables you to access XML-data from a file or live stream from the Internet. The

structure of the XML data must follow a DTD (document type definition) or XSD

(XML schema definition). The advantage of using the XML schema is:

■ With XML Schema Definition, the columns can have different data types

■ With a normal XML document using a DTD, only the structure and simple

syntax-specific information is stored. All values are of type CHARACTER.
Oracle9iAS Reports Services and XML 14-17



Using XML as a Datasource
Using XML for Oracle9iAS Reports Services Configuration Files
As the configuration-files for Oracle 9i Application Server – Reports Service became

more and more complex, their format has moved to XML for easier modification

and readability.

Pluggable Data Source (PDS) Configuration
Needing to store configuration information, the XML-PDS and the JDBC-PDS both

use XML-files for storing their preference settings.

Server Configuration
The configuration file for the server has also moved to XML format. When you

migrate from an older version, such as, Reports 6i, the server will read the old

configuration file and create a file in XML format for you.

Here is an example of a simple configuration file:

<?xml version = '1.0' encoding = 'ISO-8859-1'?>
<!DOCTYPE server PUBLIC "-//Oracle Corp.//DTD Reports Server Configuration
9i//EN" "file:/d:/orawin70/report70/server/jasmine.dtd">
<server>
   <cache class="oracle.reports.cache.RWCache">
      <property name="cacheSize" value="50"/>
      <property name="cacheDir" value="d:\orawin70\report70\server\cache"/>
   </cache>
   <!--Please do not change the id for reports engine.-->
   <!--The class specifies below is subclass of _EngineImplBase and implements
EngineInterface.-->
   <engine id="rwEng" class="oracle.reports.engine.EngineImpl" initEngine="1"
maxEngine="1" minEngine="0" engLife="50" maxIdle="30" callbackTimeOut="60000">
      <property name="cacheDir" value="d:\orawin70\report70\server\cache"/>
   </engine>
   <job jobType="report" engineId="rwEng"/>
   <log option="noJob"/>
   <trace traceOpts="trace_all" traceFile="foo.txt" traceMode="trace_replace"/>
   <connection maxConnect="20" idleTimeOut="15">
      <orbClient id="RWClient" publicKeyFile="clientpub.key"/>
      <cluster publicKeyFile="serverpub.key" privateKeyFile="serverpri.key"/>
   </connection>
   <queue maxQueueSize="10000"/>
   <persistFile fileName="d:\orawin70\report70\server\demo-pc.c7.dat"/>
</server>
14-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML as a Datasource
Distribution File
The distribution capabilities in Oracle9iAS Reports Services have been enhanced

dramatically. To fit these changes and make the management of the distribution file

easier, it also now uses the XML format.

The new distribution files now look like the following:

<?xml version = "1.0" encoding = "UTF-8"?>
<destination>
 <file id = "1" name = "Testfile.html" section = "main" format = "htmlcss">
   <include src = ""/>
 </file>
<mail id = "2" to = "test@myserver.com">
  <attach format = "pdf" srctype = "report">
    <include src = "test.pdf"/>
  </attach>
</mail>
</destination>

How Reports9i XML-PDS Supports XSQL Servlet
XML-PDS allows you to specify an XSQL Servlet file as the XML data source.

You can specify the URL (local or remote) of the XSQL file, as the data source URL

for the XML- PDS. XML-PDS then sends the URL  request  to the Web Server. To

process the XSQL file, the webserver noted in the URL, must be configured with

XSQL Servlet. By identifying the specific extension of the file mentioned in the URL,

such as .xsql in this case, (which can be configured in the Webserver), it invokes

XSQL Servlet.

XSQL servlet has the information on the database connection in an XSQL Pages

configuration file. It processes the given XSQL Page, sends the SQL query to the

database through a JDBC interface, receives the resultset , and puts the resultset in

XML format. XSQL Servlet sends this to XML-PDS. Hereafter XML-PDS treats this

XML as any other XML data source and processes it inside the reports.

An XML Schema or DTD  must be used as Data Definition when XSQL is used as

Data Source.
Oracle9iAS Reports Services and XML 14-19



Reports Case Studies
Reports Case Studies

How to Become a Supplier of Live XML Streams
In the ever-growing B2B environment, time has become a vital factor. Many

businesses rely on just-in-time delivery to avoid large inventories and the need for

large amounts of fixed capital. Hence, it is vital for merchants to know, what their

suppliers have in stock at any moment.

To offer such a service, suppliers could provide their inventory-information on their

web-page. However, in most cases this information is needed in a format that can

be used for further processing; a format such as XML. Even more useful would be a

tool that can produce a report in HTML, PDF, and XML, out of the same report. So,

merchants can either:

■ Go to the web-page of their suppliers and look up the information.

■ Use a URL and get the information in XML format to import it into their own

system or even the system accessing the data at the moment of request.

In this case, Oracle 9i Application Server – Reports service offers an ideal solution.

You can design a good looking report for creating HTML or PDF output, and at the

same time use this to produce an XML stream.

Figure 14–4 shows an example of a report produced by Oracle9iAS Reports Services

in HTML format.
14-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Reports Case Studies
Figure 14–4 Example Report of Inventory Data Producing HTML and PDF Output

Figure 14–5 shows an example report representing the same inventory data in

Figure 14–4 but as an XML stream.

Note: The link in the upper left corner of the report-output. It calls

the report itself but with destination-type XML and produces an

XML-format output from the same report.
Oracle9iAS Reports Services and XML 14-21



Reports Case Studies
Figure 14–5 Example Report For Inventory Data as an XML Stream

How to Take Advantage of Supplied XML-Data
As merchants, you can use the inventory data provided by your suppliers and

combine it with data your own inventory to create a virtual stock list.

Oracle9iAS Reports Services now also enables you to use:

■ SQL-PDS (SQL-Pluggable Data Source) module to access your inventory data

■ XML-PDS (XML-Pluggable Data Source) module to access your inventory data

of your suppliers

To do so, you, ideally need the URL to your suppliers XML-stream and a DTD or

XML schema definition that describes the data provided by the XML stream. For

example, the DTD would look something like the following:

<?xml version='1.0' encoding='UTF-8' ?>
<!ELEMENT INVENTORY (INVENTORY_ITEM+)>
<!ELEMENT INVENTORY_ITEM
  ( ID ,
    TITLE ,
    SUBTITLE ,
    IN_STOCK ,
14-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Reports Case Studies
    BACK_ORDER ,
    BACKORDER_AVAILABLE ,
    ITEM_CANCELED_SINCE ,
    PRICE_PER_UNIT ,
    UNITS_PER_PACKAGING ,
    PACKAGE_DESCRIPTION
  )>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT SUBTITLE (#PCDATA)>
<!ELEMENT IN_STOCK (#PCDATA)>
<!ELEMENT BACK_ORDER (#PCDATA)>
<!ELEMENT BACKORDER_AVAILABLE (#PCDATA)>
<!ELEMENT ITEM_CANCELED_SINCE (#PCDATA)>
<!ELEMENT PRICE_PER_UNIT (#PCDATA)>
<!ELEMENT UNITS_PER_PACKAGING (#PCDATA)>
<!ELEMENT PACKAGE_DESCRIPTION (#PCDATA)>

As the PDS is transparent to you, different PDSs (in this case, SQL and XML PDSs),

work seamlessly together in the data-model and can be handled as if they are

SQL-ones (that is, joined together).

Figure 14–6 shows a data-model in Oracle Report Builder, with both the SQL and

XML data sources linked together.
Oracle9iAS Reports Services and XML 14-23



Reports Case Studies
Figure 14–6 Report Builder: A Data Model Showing the SQL and XML Data Sources
Linked Together

You can also create a layout using data from both the data sources together. In this

case, the columns, ’virtual stock’ and ’backorder’ come from the XML-stream and

represent data for this particular item in your one supplier’s inventory. The data is

fetched everytime the report is run using a URL to a report on the supplier’s site.

This produces an XML stream of your supplier’s inventory data.

Figure 14–7 shows the finished report of inventory data that combines SQL data, for

example, retrieved from the merchants own inventory, and data from a remote XML

stream (virtual data), for example, of inventory data retrieved from a supplier.
14-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: Reports and XML
Figure 14–7 Example Report of Inventory Data Combining SQL Data and Data From a
Remote XML Stream

Frequently Asked Questions: Reports and XML

Can We Output XML From Our Year End Reports Through a Database Interface?
We are working on AU/SG Year End Reporting which involve archiving and

production of magtape files. Do you have information on EOY reporting? Have you

created any sites/documentation that explain how XML is actually being used for

EOY reporting? And what it's being used for? We are using DBIs in fast formulas to

obtain a lot of the YE information. Can we use/access DBIs in XML?

Answer
You can output XML from Reports 6i by just changing a single parameter -

DESFORMAT.  Instead of it being set to HTML or PDF,.... just change it to XML.

This will work with your existing report, so you should not have to do anything

extra.

What you describe after generating the XML output (that is, applying a stylesheet)

is trivial in reports - there is an undocumented PL/SQL built-in SRW.SET_XML_
Oracle9iAS Reports Services and XML 14-25



Frequently Asked Questions: Reports and XML
PROLOG to allow you to set the XML prolog line. Refer to bug 1265291 for

information on how to do this. It should take about 5mins to test.

With Reports you could have nice looking printable output (PDF, postscript, and so

on) or on the web in HTML or HTMLCSS - but at the same time, get XML out just

by changing a single parameter, and then use in a B2B environment such as the one

described.

Regarding XML report generation, you can do this in different ways:

■ Using Oracle9iAS Reports Services and an existing report structure. Generate

XML as the output for the report (an Oracle Reports 6i feature). Then to apply a

stylesheet for creating the totals and formatting the report following the schema

given.

■ Using Java and the Oracle XML SQL Utility (XSU). In this case a Java Stored

Procedure is created for retrieving all the information needed in the format

required. Information about the Oracle Developer Kit is at

http://otn.oracle.com/tech/xml/

■ Using the XSQL Servlet. You may find very useful information at

http://larva.us.oracle.com/docs/tech/xml/oracle_xsu/doc_

library/relnotes.html

■ Using the current Magtape process. The magtape process already generates all

the data necessary. The problem is that no XML code is produced. The solution

in this case would involve the creation of a new file (in XML format) using the

standard fast-formula strategy for the magtape process.

About your question on DBIs, you can access any table/view in the database using

the XML developer kit or the XSQL Servlet, so you can generate XML code using

the information from the database items (FF_DATABASE_ITEMS table)

Changing the Report Template
I have a report with a template. The same report is needed with another template. I

copied the report and try to change the template. Is there another way of changing

the template than the wizard, because the wizard changes the layout of the report

and I do not want that.

Answer
You must apply the template first, because when you use the Report Wizard to

apply a new template, it will then create a new layout overriding the existing

layout. There is no other way.
14-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions: Reports and XML
However, you can use XML for modifying the Report at runtime without changing

the layout. See this chapter under section, "Customizing Reports at Runtime with

XML" on page 14-8, for some simple examples for modifying a report using XML at

runtime.

REP-6106:Error in the XML report definition at line 1 in 'c:\am01.xml' Start of root
element expected instead of TEXT 'null'

I tried to apply XML to my RDF file to change the boilerplate text from English to

Chinese. My XML is shown as below:

  <report name="am01.rdf" DTDVersion="1.0">
  <layout>
  <section name="main">
  <field name="f_title" source="title" textColor="red" fontSize="16"
fontStyle="bold"/>
  </section>
  </layout>
  <customize>
  <object name="B_4" type="REP_GRAPHIC_TEXT">
  <properties>
  <property name="textSegment"> çÓ˚Ãû</property>
  </properties>
  </object>
  </customize>
  </report>

I saved this XML file as unicode format, and when I tried applying XML to my RDF

through RWRUN60 from command line, report builder gives me the following

message:

  REP-6106:Error in the XML report definition at line 1 in 'c:\am01.xml'
  Start of root element expected instead of TEXT 'null'
I am using Oracle Report Server/Developer 6i running with Apache web server.

Answer
See the following example for ideas on answering your question:

"Customizing Reports with XML, Example 4: Replacing a SELECT * Query with a

SELECT * FROM... WHERE Query"
Oracle9iAS Reports Services and XML 14-27



Frequently Asked Questions: Reports and XML
14-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the PDK for Visualizing XML Data in Orac
15

Using the PDK for Visualizing XML Data in

Oracle Portal

This chapter describes the following sections:

■ Introducing Oracle Portal

■ Common Portlet Applications

■ Oracle Portal Development Kit (PDK)

■ PDK URL Services

■ PDK URL Services Overview

■ URL Services Architecture

■ Provider.xml

■ Configuring provider.xml

■ Integrating Technologies into Oracle 9iAS Portal
le Portal 15-1



Introducing Oracle Portal
Introducing Oracle Portal
Oracle9iAS Portal is a component of Oracle9i. It offers the security, reliability, and

scalability of Oracle9i Application Server (Oracle9iAS) and Oracle9i database. It is

comprised of easy-to-use portal software and a suite of products for application

development, data warehousing, business intelligence, application integration, and

mobile computing.

What are Portlets?
A portlet is a contained region on an Oracle Portal web page. Portlets can be

considered as "web components" that display excerpts of other web sites and

generate summaries of key information.  Portlets can be placed on the same page

with other portlets so that users have easy access to frequently used sites and

information.

Portlets are rendered by web browsers just like any other part of a web page.

Typically, portlets use standard HTML to display information to users, but their

interfaces can be extended using other browser-capable technologies such as

Cascading Style Sheets (CSS), eXtensible Style Language (XSL), JavaScript, and even

Java applets.

Portlets can be used to access nearly any type of web-accessible information --- from

files stored on the corporate intranet and reports on data managed by corporate

applications to news and stock quotes from the Internet.  Because of their dynamic

nature, portlets are often used to highlight important information, alert users to

new developments, and summarize key data.

There are three types of portlets:

■ Built-in portlets.  Oracle Portal provides a set of built-in portlets with

ready-to-use functionality for web application development, web publishing

and external site integration.

■ Database Portlets.  Implemented as stored procedures and executed in the

database.  Can be written in PL/SQL or Java Stored Procedures wrapped in

PL/SQL. DATABASE PORTLETS. Use Database Portlets whenever your

portlets require significant database interaction or when the development team

has Oracle experience. To create a Database Portlet:

■ Create a Database Provider by creating a package that exposes methods

required by the API to display portlets accordingly.

■ Code the portlet producing any technology that can be rendered within an

HTML table cell, including HTML, JavaScript, applets and certain plug-ins.
15-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle Portal Development Kit (PDK)
■ Register the provider with the Portal before it can be accessed and used.

This step refreshes the portlet repository.

■ Refresh the portlet repository which stores information for the providers

and portlets that the provider owns.  You will need to do this manually if

you     change portlet information after registering your provider.

■ Web Portlets.  Implemented using any web-capable language on a web server

external to the Portal.  The PDK includes Java classes to make building web

portlets easier.

Common Portlet Applications
Here are some common applications for portlets:

■ Centralizing access to intranet sites. Oracle Portal makes it easy to gather links

to all many sites in one place, then organize these access points so that users

have a simple way to find what they are looking for.  Sets of these links can be

published as portlets so that users can readily access frequently used sites from

their own personalized page.

■ Publishing information and documents.  Content on the web can be arranged

into folders, then placed as portlets onto any portal page, allowing you to mix

and match the specific content you wish to see.

■ Integrating dynamic data services.  Portlets are useful for rendering content

provided from external data sources and displaying that information on portal

pages.  For example, portlets allow real-time news stories to be displayed

within the portal from XML data sources.

■ Providing an interface to web applications.  Portlets can be used to

automatically login to well used application (or its data store) and retrieve a

summary of that information. The portlet can then display the information on a

portal page.

■ Integrating with other corporate systems.  Organizations have many different,

sometimes incompatible, systems.  Portlets allow the interfaces for these

systems to be presented in a consistent manner within the Oracle Portal

environment.

Oracle Portal Development Kit (PDK)
Oracle Portal Development Kit (PDK) includes services and tools for extending the

Oracle9iAS Portal framework by developing portlets. These services include:
Using the PDK for Visualizing XML Data in Oracle Portal 15-3



PDK URL Services
PDK Integration Services (PDKIS)
PDK Integration Services (PDKIS) is one of the services offered by Oracle9iAS

Portal. PDKIS allow you to pull content into portlets directly from URLs, including

URLs requiring authentication before viewing. PDKIS can do either of the following

tasks:

■ Parse HTML content directly and place it into a portlet

■ Transform the HTML content into XHTML for further processing using an XSL

stylesheet

PDKIS can pull content into your portal, and then modify the default XSL stylesheet

to select what to display and how to display it.

PDK URL Services
You can extend the JPDK (PDK for Java) to create URL-based portlets in any

language. Create portlets using any existing application without altering any code.

These services can be installed on any machine using JPDK 1.4 or later.

What’s Needed to Run URL Services
You need the following to run URL Services:

■ Oracle 9iAS Portal 3.0.8.9.8 or later.  Most features of the PDK URL Services

work with older versions, but  is only certified against this version of Oracle

9iAS Portal.  Certain features such as authenticated portlets will not work on

older versions of Oracle 9iAS Portal.

■ JPDK 1.4 or later.

PDK URL Services Overview
Oracle Portal Development Kit (PDK) currently provides services for Java and

PL/SQL.  These services allow developers to integrate Java classes and servlets,

Java Server Pages, and PL/SQL as portlets within Oracle 9iAS Portal using Portal

APIs.  The PDK and JPDK (PDK Services for Java) provide  samples, utilities, and

articles to easily develop portlets in PL/SQL and Java, but do not provide a simple

solution for developers who have applications written in any other language like C,

C++, Perl, ASP,...  To simplify developing portlets in any language, Oracle Portal

Development Kit provides PDK URL Services.
15-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



PDK URL Services Overview
PDK URL Services allow developers to take any application written in any

language and easily create integrated portlets.  The URL Services takes the URL of

an application, parses the content, and uses the JPDK framework to create a portlet.

This process allows each ’show mode’ of your portlet to be rendered from different

applications and/or languages.  For example, a portlet can have ’show mode’

rendered using PERL,’ edit mode’ rendered using ASP, ’help mode’ rendered using

HTML, ’details mode’ rendered using JSP, and so on.

■ The current JPDK Framework allows you to define and list portlets through the

provider.xml  file and limits the amount of programming required.

■ PDK URL Services extends the JPDK Framework and takes advantage of its

ease and simplicity. Therefore, creating URL portlets follows the same steps

and configuration needed to create Web portlets with a few exceptions.

Creating a URL Portlet
To create a URL portlet, follow these main steps:

1. Create your application in any language.

2. Configure your application to be accessible through a URL.

3. Define your application through the provider.xml by providing a URL.

4. Register your provider as a "Web" provider through Oracle 9iAS Portal.

5. Add the portlet to a page.

Web Provider
A Web Provider is one that is written as a Web application. It is installed and hosted

in a Web server and is remote from Oracle Portal. A Web Provider also owns and

manages a set of portlets. PDK Java Services offers a Provider Runtime called

DefaultProvider that implements the functions of a provider. DefaultProvider owns

and manages a set of portlets. It uses a initialization file to manage the set of

portlets, called provider.xml .

The file, provider.xml,  is a static file that stores information about a provider

and its portlets. Understanding the configuration of provider.xml allows you to

create your own file to list and describe your Web portlets.
Using the PDK for Visualizing XML Data in Oracle Portal 15-5



URL Services Architecture
URL Services Architecture
URL Services uses existing JPDK classes and extends the framework where

required for rendering content from a URL. PDK URL Services allows you to define

and list your URL portlets within the provider.xml  file.

URL Services also eliminates the need for additional programming by including a

default runtime that handles portlet creation, integration, and communication with

Oracle 9iAS Portal. The three main components of PDK URL Services are:

■ URL Services Interface

■ URL Services Runtime

■ provider.xml .

URL Services Interface
URL Services Interface is additions to the Web Provider Interface included in JPDK.

The interface specific to URL rendering  is oracle.portal.provider.v1.ContentFilter,

specifications for filtering URL content.

URL Services Runtime
URL Services Runtime extends classes from the current Web Provider (JPDK)

Runtime to adapt to the new URL rendering capabilities. URL Services Runtime is

comprised of the following set of runtime classes:

■ oracle.portal.provider.v1.http.DefaultURLProvider extends the Web Provider

Runtime class DefaultProvider.  This class represents the Provider for all

portlets rendered using the URL Services.

■ oracle.portal.provider.v1.http.PortletNodeHandler extends the Web Provider

Runtime class DefaultPortlet.  This class parses all of the XML content within

the provider.xml referring to URL rendering.

■ oracle.portal.provider.v1.http.URLSecurityManager implements the Web

Provider Interface defined by oracle.portal.provider.v1.PortletSecurityManager.

This class manages portlet access and security.

■ oracle.portal.provider.v1.http.URLPageRenderer implements the Web Provider

Interfaces defined by oracle.portal.v1.PortletRenderer.  The URLPageRenderer

allows you to use the URL to render the content of a request.
15-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Provider.xml
■ oracle.portal.provider.v1.http.XMLFilter implements the Web Provider

Interface defined by oracle.portal.provider.v1.ContentFilter.  This filter converts

the HTML contents received from a URL into XHTML.

■ oracle.portal.provider.v1.http.HtmlFilter implements the Web Provider

Interface defined by oracle.portal.provider.v1.ContentFilter.  This filter converts

the HTML contents into Oracle 9iAS compliant HTML.

DefaultXhtml.xsl  is a default stylesheet that converts XHTML to Oracle 9iAS

Portal compliant XHTML.

Provider.xml
provider.xm l stores information by hierarchy and defines and lists available

portlets. provider.xml is associated with only one provider.  The default

provider in the XML file is

oracle.portal.provider.v1.http.DefaultProvider.   To take advantage

of  URL Services, you need to specify

oracle.portal.provider.v1.http.DefaultURLProvider .

DefaultURLProvider  parses the additional/updated tags within

provider.xml  file. The DefaultURLProvider  can handle standard

provider.xml  tags, but DefaultProvider cannot handle tags within the

provider.xml that contain URL Services information.

provider.xml Tags
Table 15–1 lists provider.xml tags that have been added or modified in the

provider.xml :

Table 15–1 provider.xml Tags

provider.xml Tags Description

provider tag The following are tags that have been added or modified
within the provider tag.

authentication A required tag that has been added to the provider tag.  It
holds information about the type of authentication used.

proxyInfo A required tag and holds proxy server information.

authorizatio A required tag and holds information about the type of
authorization.
Using the PDK for Visualizing XML Data in Oracle Portal 15-7



Provider.xml
Using provider.xml
Provider.xml is a declarative file containing descriptive informatio. It is used to

list and display portlets. DefaultProvider parses provider.xml to gather information

from the file. It creates a portlet instance (Java object) for each portlet listed in

provider.xml. DefaultProvider also retrieves the render modes, personalization, and

security information from provider.xml. It attaches this information to each of the

portlet instances it creates and pushes the information to the other class files.

DefaultProvider pushes the information about render modes to the PortletRender.

It pushes the information about personalization to the

PortletPersonalizationManager. Finally, it pushes security information to the

PortletSecurityManager. This allows each class to retrieve information from

provider.xml  without knowing its name or location.

Once DefaultProvider parses provider.xml , it stores the information until the

instance is shut down. When updating, adding, or removing information from

provider.xml, you must stop and restart the Oracle HTTP Server and also refresh

the Portal repository.

XML parser preserves whitespace surrounding XML elements that contain text, so

you must take care with the use of whitespace and line feeds when editing

provider.xml.  Consider the example:

     <showEdit> true </showEdit>
     <showEditDefault> true </showEditDefault>
     <hasHelp> true </hasHelp>

redirectUrl An optional tag and contains the parameter name used by the
External Application for redirection after a successful
authentication.

portlet tag The following are tags that have been added or modified
within the portlet tag.

registrationPortlet An optional tag and specifies whether this portlet is a
registration portlet for the provider.

portletRenderer Modified to accept URL pages and filters for each show
mode.

Table 15–1 provider.xml Tags

provider.xml Tags Description
15-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Configuring provider.xml
Here, the boolean string values in these tags would not be recognized because of

the surrounding whitespace and therefore would be evaluated as false. The tags

should be specified as follows:

     <showEdit>true</showEdit>
     <showEditDefault>true</showEditDefault>
     <hasHelp>true</hasHelp>

Configuring provider.xml
provider.xml stores information that is used by the Web Provider. It stores

information by hierarchy and its hierarchical nature starts with "Provider". The file

is organized to simplify the process required by the DefaultProvider to parse the

file. provider.xml  file is also organized for readability.

This section describes the information in provider.xml. When creating your own

provider.xml , you must follow the hierarchy and syntax required for the

DefaultProvider to properly parse the file.

Provider Tag
The provider tag is the first tag within provider.xml. It specifies the class that

implements oracle.portal.provider.v1.Provider. This specification points the

Provider Adapter to a corresponding Provider. The provider tag has two attributes:

■ class is an optional attribute and names the Java class that implements

oracle.portal.provider.v1.Provider. If no class is specified, it defaults to

■ oracle.portal.provider.v1.http.DefaultProvider.

session is an optional attribute and is used to disable the initSession method within

the DefaultProvider. If this session is disabled, the DefaultProvider does not create

a servlet session. The default for this attribute is true.

Below is a sample of the provider tag from provider.xml . In the sample, the

provider tag declares DefaultProvider as the class that implements

oracle.portal.provider.v1.Provider and that DefaultProvider creates a servlet

session.

<provider class="oracle.portal.provider.v1.http.DefaultProvider" session="true">

The provider tag manages a single tag: useOldStyleHeaders is a optional. Set this to

true if you are using Oracle Portal 3.0.6.6.5 with JPDK 1.3 and later, your provider's

portlets support Customize/Help/About links and you want to retain the 'old 3.0.6

style' headers and footers.
Using the PDK for Visualizing XML Data in Oracle Portal 15-9



Configuring provider.xml
For example, include the following line under the provider

tag: <useOldStyleHeaders>true</useOldStyleHeaders>

Portlet Tag
Web Provider has a tag called portlet. There is one portlet tag for each portlet that

the provider manages. The portlet tag declares the class that implements

oracle.portal.provider.v1.Portlet. The tag lists and describes a set of portlets that this

provider manages. The portlet tag has three attributes:

■ class is an optional attribute and names the Java class that implements

oracle.portal.provider.v1.Portlet. If no class is specified, it defaults to

■ oracle.portal.provider.v1.http.DefaultPortlet.

■ resource is an optional attribute and specifies the class file that represents the

resource bundle. The resource bundle is a compiled Java source that localizes

the portlet string of the meta-data information. The resource bundle stores

information about your portlet in a local environment. You can store

information like portlet name, portlet title, and portlet description. If you

specify information in the resource bundle, you would not create a tag in the

provider.xml for those values. Default for this attribute is null.

version is an optional attribute and specifies the PDK version that the portlet

implements. It is the version of the Portlet interface the portlet relies on. Currently,

the value must be 1 and the attribute defaults to 1 if no version is specified.

Below is a sample of the portlet tag with three attributes from provider.xml. In

the sample, the portlet tag declares DefaultPortlet as the class that implements

Portlet, declares a resource bundle called HelloWorldBundle and a version of 1.

<portlet class="oracle.portal.provider.v1.http.DefaultPortlet"
resource="oracle.portal.sample.devguide.helloworld.resource.HelloWorldBundle"
version="1" >

Portlet tag has twenty tags that it manages. Each tag describes an attribute of the

portlet. Table 15–2 lists these tags.
15-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Configuring provider.xml
.

Table 15–2 Configuring provider.xml: Portlet Tags

Portlet Tags Description

id A required tag and holds the portlet ID number. This number must be unique
within this portlet provider. The number is specified by the developer and
does not need to be sequential. There is no limit to the length of the number as
it is received in by the DefaultProvider as a LONG. There is no default value
for this tag.

name A required tag and holds the portlet name. This portlet name must be unique
and contain no spaces or special characters. There is no default value for this
tag.

title A recommended tag. The title is the display name for the portlet and is what
is seen by users accessing your portlet. The title may have spaces and special
characters. There is no default value for this tag.

description A recommended tag. The description is displayed to users adding portlets to a
page. There is no default value for this tag.

imageURL Optional and holds the URL that the portlet image references. There is no
default value for this tag.

thumbnailURL Optional and holds the URL that the thumbnail image references. There is no
default for this tag.

timeout Optional and holds the timeout in seconds that the Portal waits for the portlet
before it times out. If no timeout is specified, it takes the timeout of the
Provider.

timeoutMsg Optional and holds the timeout message that displays if the portlet times out.
If no timeout message is specified, it takes the timeout message of the
Provider.

showEdit Optional flag for whether the portlet will have an "Customize" link. This is a
boolean value and the default for this tag is false.

showEditPublic Optional flag for whether the public users may edit the portlet. By default a
public page where users are not logged-in does not display the "Customize"
link. If you want public users to be able to customize the portlet, specify true
here. This is a boolean value and the default for this tag is false.

showEditDefault Optional flag for whether the customization page will have an EditDefaults
link. This is a boolean value and the default for this tag is false.

showPreview Optional flag for whether the portlet will have a preview option when adding
portlets to a page. This is a boolean value and the default for this tag is false.

showDetails Optional flag for whether the portlet can be displayed in a full browser page.
This is a boolean value and the default for this tag is false.
Using the PDK for Visualizing XML Data in Oracle Portal 15-11



Configuring provider.xml
hasHelp Optional flag for whether the portlet will have a "Help" link. This is a boolean
value and the default for this tag is false.

hasAbout Optional flag for whether the portlet will have an "About" link. This is a
boolean value and the default for this tag is false.

defaultLocale Optional tag and holds the language that the portlet uses by default. You
specify the Locale as a two digit language and a two digit country. The
java.util.Locale class contains a list of locales. For example: en.US

acceptContentTypes Optional tag and holds mime types that the portlet recognizes. This tag is an
array and contains one tag called item.

item A required tag under acceptContentTypes, it specifies a mime type. There is
one item tag per mime type recognized by the portlet.  The sample below lists
to mime types recognized by the portlet, HTML and XML.

            <item>text/html</item>

            <item>text/xml</item>

portletRenderer A required tag and specifies the class that will render portlet pages. The
portletRenderer tag is an array. It has one attribute and eleven tags. class is an
optional attribute and names the Java class that implements
oracle.portal.provider.v1.PortletRenderer. If no class is specified, it defaults to
oracle.portal.provider.v1.http.

PageRenderer. appPath A required tag and holds the virtual path to the root of pages that render the
portlet.

appRoot A required tag and holds the physical path to the root of pages that render the
portlet.

showPage A required tag and specifies the page that renders the portlet.

aboutPage An optional tag and specifies the page used to supply information about the
portlet. helpPage is an optional tag and specifies the help page of the portlet.

editPage Optional tag and specifies the page used to display portlet customization.

editDefaultsPage An optional tag and specifies the page used by an administrator to customize
the default settings for the portlet.

previewPage An optional tag and specifies the preview page of the portlet.

showDetailsPage An optional tag and specifies the page used to display the portlet in a full
browser window.

pageParameterName An optional tag and holds the parameter name to render additional pages.
This tag allows the PortletRenderer to support screen chaining.

Table 15–2 Configuring provider.xml: Portlet Tags

Portlet Tags Description
15-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Configuring provider.xml
renderContainer An optional tag and is a flag that determines whether to render a title bar and
border for this portlet. The default value is true. The sample below declares
PageRenderer as the implementation class and displays a render page and a
few additional display modes. This portlet also renders a container.

<portletRenderer class="oracle.portal.provider.v1.http.PageRenderer" >

      <appPath>/lottery</appPath>

             <appRoot>E:\jpdk\htdocs\lottery</appRoot>

                 <showPage>lotto.jsp</showPage>

                <editPage>custom.jsp</editPage>

                 <aboutPage>about.html</aboutPage>

                <helpPage>help.html</helpPage>

                <renderContainer>true</renderContainer>

   </portletRenderer>

portletPersonalizationManager An optional tag and specifies the class that handles user customization. The
portletPersonalizationManager is an array. It has one attribute and two tags.

class An optional attribute and names the Java class that implements
oracle.portal.provider.v1.PortletPersonalizationManager. If no class is
specified, it defaults to
oracle.portal.provider.v1.http.DefaultPortletPersonalizationManager.

dataClass An optional tag and references the Java class that implements
CustomizationObject. If no class is specified, it defaults to
oracle.portal.provider.v1.http.BaseCustomization.

multiLangStringClass An optional tag and references the Java class that implements the language
used to store the customization string. If no class is specified, it defaults to the
language of the Java Virtual Machine. The sample below declares
DefaultPortletPersonalizationManager as the implementation class, the
customization class as BaseCustomization, and language class as
HashMLString.

<portletPersonalizationManager
class="oracle.portal.provider.v1.http.DefaultPortletPersonalizationManager" >

     <dataClass> oracle.portal.provider.v1.http.BaseCustomization </dataClass>

     <multiLangStringClass> oracle.portal.provider.v1.HashMLString </multiLangStringClass>

 </portletPersonalizationManager>

portletSecurityManager An optional tag that specifies the java class that implements
PortletSecurityManager. There is no default value for this tag.

Table 15–2 Configuring provider.xml: Portlet Tags

Portlet Tags Description
Using the PDK for Visualizing XML Data in Oracle Portal 15-13



Integrating Technologies into Oracle 9iAS Portal
Integrating Technologies into Oracle 9iAS Portal
You can seamlessly integrate Oracle9iAS Portal with technologies not natively

included with Oracle 9iAS Portal, such as

■ Developing portlets with Dynamic Services. See also Chapter 18, "Using

Oracle9iAS Dynamic Services and XML" and http://otn.oracle.com/products

■ Developing Portlets with HyperText Templates (HTT). HyperText Templates

(HTT) is an Oracle developed utility for building dynamic Web Pages using

templates. HTT does a 100% separation of presentation, logic, and data. HTT is

used by Oracle internal consultants to build Internet and Intranet solutions.

HTT is simple to understand and use. The technology facilitates the rapid

development of dynamic Web pages and allows for code and template reuse, as

well as assembly from multiple templates.

See Also:

■ http://otn.oracle.com/products

■ WebDB 2.1: Getting Started - Installation and Tutorial

(A70070-01)

■ WebDB 2.1: Creating and Managing Components - Task Help

(A74969-01)

■ WebDB 2.1: Creating and Managing Components - Field-Level

Help (A70072-01)  Contains field level help for the component

building features of WebDB.

■  WebDB 2.1: Creating and Managing Sites - Task Help

(A70073-01)  Contains task help for the site building features of

WebDB.

■  WebDB 2.1: Creating and Managing Sites - Field-Level Help

(A70074-01)
15-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How Oracle Exchange U
16

How Oracle Exchange Uses XML

This chapter contains the following sections:

■ Oracle Exchange and XML

■ Stored Transactions

■ Pass Through Transactions

■ XML Delivery Formats

■ E-Business Solution Architecture

■ ATP (Availability to Promise) for Oracle Exchange

■ XML Messaging Services
ses XML 16-1



Oracle Exchange and XML
Oracle Exchange and XML
Many Oracle Exchange transactions can be conducted in XML format, if you choose

to do so. These transactions include the following:

■ Purchase Orders (POs) inbound. POs outbound are not stored on Oracle

Exchange.

■ Service Orders (SOs) in and outbound

■ PO acknowledgments

■ SO acknowledgments

■ Advance Shipment Notices (ASNs)

■ Invoices

You can send and receive documents in XML format through Oracle Exchange

using a communication method, such as HTTP with Web methods, or SMTP

(e-mail). Oracle Exchange currently supports two transaction models:

■ Stored Transactions. In this transaction model, transactions are mapped and

stored on Oracle Exchange.

■ Pass Through Transactions. In the second transaction model, Oracle Exchange

acts as a mapping and routing hub for documents between suppliers and

buyers.

Outbound or Inbound Transactions
Transactions in Oracle Exchange are also labeled as “outbound” or “inbound”,

relative to Oracle Exchange.

■ Outbound. Any document sent from Oracle Exchange to a supplier or buyer is

called an “outbound” transaction.

■ Inbound. Any document generated by a supplier’s or buyer’s system and sent

to Oracle Exchange is called an “inbound” transaction.

Stored Transactions
All documents created in Oracle Exchange and inbound purchase orders are stored

on Oracle Exchange. These XML documents are mapped and stored in the Oracle

Exchange data model:

See Also: http://www.oracle.com/appsnet/products/index.htm
16-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Pass Through Transactions
■ Outbound purchase orders . When a buyer makes a catalog purchase on

Oracle Exchange, Oracle Exchange will send the purchase order to the buyer

via the buyer’s selected communication method. Outbound purchase orders are

supported in Version 1.0 and later.

■ Outbound purchase orders from auctions. When awarding a Buyer's Auction,

the buyer can generate one or more purchase orders for auction items (one

purchase order for each supplier to whom auction business was awarded).

Oracle Exchange will send the purchase order(s) to the buyer via the buyer’s

selected communication method. Outbound purchase orders from auctions are

supported in Version 5.2 and later.

■ Inbound purchase orders. Purchase orders generated by the buyer’s system and

sent to Oracle Exchange are called inbound purchase orders. Oracle Exchange

will forward the inbound purchase order from the buyer to the supplier via the

supplier’s selected communication method. Inbound purchase orders are

supported in Version 5.2 and later.

■ Outbound sales orders. When a buyer makes a purchase from a supplier’s

catalog, Oracle Exchange will send the sales order to the supplier via the

supplier’s selected communication method. Outbound sales orders are

supported in Version 1.0 and later.

■ Outbound purchase order acknowledgments. After a supplier has

acknowledged a purchase order, Oracle Exchange will update the status of the

purchase order and forward the purchase order acknowledgment from the

supplier to the buyer via the buyer’s selected communication method.

Outbound purchase order acknowledgments are supported in Version 1.0 and

later.

■ Inbound purchase order acknowledgments. Inbound purchase order

acknowledgments are generated by the supplier’s system and sent to Oracle

Exchange. Oracle Exchange will forward the inbound purchase order

acknowledgment from the supplier to the buyer via the buyer’s selected

communication method. Inbound purchase order acknowledgments are

supported in Version 5.2 and later.

Pass Through Transactions
Oracle Exchange acts as a document routing hub for the following transactions. All

of the incoming XML documents are mapped and forwarded.
How Oracle Exchange Uses XML 16-3



XML Delivery Formats
■ Inbound advance shipment Notices (ASNs). The supplier generates an advance

shipment notice to inform the buyer about the shipment. ASNs are supported

in Oracle Exchange Release 5.2 and later.

■ Outbound advance shipment notices. Oracle Exchange forwards the supplier’s

inbound advance shipment notice to the buyer. Outbound ASNs are supported

in Version 5.2 and later.

■ Inbound invoices. The supplier generates an invoice against a purchase order

and sends it to Oracle Exchange. Inbound invoices are supported in Oracle

Exchange Release 5.2 and later.

■ Outbound invoices. Oracle Exchange forwards the supplier’s inbound invoice

to the buyer via the buyer’s selected communication method. Outbound

invoices are supported in Oracle Exchange Release 5.2 and later.

Buyers and suppliers must set up their system infrastructure to send and receive

XML documents through Oracle Exchange.

XML Delivery Formats
Oracle Exchange uses the Open Applications Group (OAG) Extensible Markup

Language (XML) to transfer documents. XML is a universal format for structured

documents and data (such as spreadsheets, address books, and financial

transactions) on the Web. OAG is an independent standards body focused on best

practices and process-based XML content for e-Business and application

integration.

OAG XML is one particular “flavor” of the XML format. The OAG XML standard is

an open standard for defining and transmitting business transactions using XML.

Oracle Exchange uses the OAG XML format in an effort to standardize XML

transactions by subscribing to the industry consensus-based XML framework for

business software application interoperability.

E-Business Solution Architecture
Oracle Exchange enables you to use one of the following implementations:

■ OMB (Oracle Message Broker) plus adapters

■ webMethods

See Also:  http://www.openapplications.org, for more

information about OAG.
16-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



ATP (Availability to Promise) for Oracle Exchange
A webMethods implementation is described in "ATP (Availability to Promise) for

Oracle Exchange".

ATP (Availability to Promise) for Oracle Exchange
Availability to Promise (ATP) functionality allows buyers in exchanges to obtain

availability information of products. The request from the buyer is sent as an XML

document through a webMethods B2B server to the supplier. The supplier then

processes the request and sends the necessary information back to the buyer as an

XML document.

ATP is implemented using a combination of Java and webMethods on the following

four-tier client-server architecture.

Browser (Client) <—> Exchange Server <—> webMethods B2B Server <—>

Supplier Server

The Java classes:

■ ATPDataService.java

■ ATPItem.java

■ ATPRecord.java

■ ATPService.java

■ ATPSupplierInfo.java

■ ATPThreadService.java *

■ BuildXML.java

*ATPThreadService.java is generated by webMethods.

The webMethods Services
ATP Package includes:

     ATPRequest Interface
         ---> ATPThreadService (Java Service)
         ---> httpPost (Flow Service)
         ---> httpTimer (Flow Service)

Exchange - Supplier XML
The following is the XML document that is sent from Exchange to supplier:
How Oracle Exchange Uses XML 16-5



ATP (Availability to Promise) for Oracle Exchange
Control Section:
     Sender: Supplier information is available in this section.
     Logical Id: is the supplier Id.
     Auth Id: is the supplier name.
Data Section:
     User Area:
     Name1: Exchange Id.
     Name2: Exchange Name.

<?xml version = '1.0' standalone = 'no'?>
<GET_PRODAVAIL_002>
   <CNTROLAREA>
      <BSR>
         <VERB>
            <![CDATA[GET]]>
         </VERB>
         <NOUN>
            <![CDATA[PRODAVAIL]]>
         </NOUN>
         <REVISION>
            <![CDATA[002]]>
         </REVISION>
      </BSR>
      <SENDER>
         <LOGICALID>
            <![CDATA[8821]]>
         </LOGICALID>
         <COMPONENT>
            <![CDATA[SALES]]>
         </COMPONENT>
         <TASK>
            <![CDATA[ATP]]>
         </TASK>
         <REFERENCEID>
            <![CDATA[786957]]>
         </REFERENCEID>
         <CONFIRMATION>
            <![CDATA[1]]>
         </CONFIRMATION>
         <LANGUAGE>
            <![CDATA[EN]]>
         </LANGUAGE>
         <CODEPAGE>
            <![CDATA[CPXML]]>
         </CODEPAGE>
16-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



ATP (Availability to Promise) for Oracle Exchange
         <AUTHID>
            <![CDATA[CHRIS]]>
         </AUTHID>
      </SENDER>
      <DATETIME qualifer='CREATION'>
         <YEAR>
            <![CDATA[1999]]>
         </YEAR>
         <MONTH>
            <![CDATA[01]]>
         </MONTH>
         <DAY>
            <![CDATA[01]]>
         </DAY>
         <HOUR>
            <![CDATA[00]]>
         </HOUR>
         <MINUTE>
            <![CDATA[00]]>
         </MINUTE>
         <SECOND>
            <![CDATA[00]]>
         </SECOND>
         <SUBSECOND>
            <![CDATA[0000]]>
         </SUBSECOND>
         <TIMEZONE>
            <![CDATA[-0600]]>
         </TIMEZONE>
      </DATETIME>
   </CNTROLAREA>
   <DATAAREA>
      <GET_PRODAVAIL>
         <PRODAVAIL returndata='1'>
            <DATETIME qualifer='REQUIRED'>
               <YEAR>
                  <![CDATA[2000]]>
               </YEAR>
               <MONTH>
                  <![CDATA[6]]>
               </MONTH>
               <DAY>
                  <![CDATA[6]]>
               </DAY>
               <HOUR>
How Oracle Exchange Uses XML 16-7



ATP (Availability to Promise) for Oracle Exchange
                  <![CDATA[15]]>
               </HOUR>
               <MINUTE>
                  <![CDATA[32]]>
               </MINUTE>
               <SECOND>
                  <![CDATA[21]]>
               </SECOND>
               <SUBSECOND>
                  <![CDATA[0000]]>
               </SUBSECOND>
               <TIMEZONE>
                  <![CDATA[-8]]>
               </TIMEZONE>
            </DATETIME>
            <QUANTITY qualifer='ORDERED'>
               <VALUE>
                  <![CDATA[1]]>
               </VALUE>
               <NUMOFDEC>
                  <![CDATA[0]]>
               </NUMOFDEC>
               <SIGN>
                  <![CDATA[+]]>
               </SIGN>
               <UOM>
                  <![CDATA[Each]]>
               </UOM>
            </QUANTITY>
            <ITEM>
               <![CDATA[652EGBA002]]>
            </ITEM>
            <SITELEVEL index='1'>
               <![CDATA[200]]>
            </SITELEVEL>
            <USERAREA>
<NAME index=’1’>
  <![CDATA[2]]>
</NAME>
<NAME index=’2’>
  <![CDATA[auto-xchange]]>
</NAME>
            </USERAREA>
         </PRODAVAIL>
      </GET_PRODAVAIL>
16-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Messaging Services
   </DATAAREA>
</GET_PRODAVAIL_002>

XML Messaging Services
Oracle can send and receive key OAG compliant XML documents with other

leading ERP vendors using XML Messaging Services.

Oracle XML Messaging Services is a tool that enables the production and

consumption of valid, well-formed XML messages between Oracle e-Business suite

and trading partners. XML Messaging Services enables application interoperability

and integration supporting enterprise integration requirements driven by

Business-to-Business (B2B) and Application to Application (A2A) integration

requirements. XML Messaging Services is the core technology used for sending and

receiving OAG compliant XML documents to trading partners in Oracle Exchange.

XML Messaging Services features include the following:

■ Provides a single, consistent XML-based application integration tool

■ Provides a repository based, design time user interface for message mapping

and creation and a run-time engine for message processing

■ Supports event driven message processing to parallel enterprise and trading

partner business processes

■ Supports an open, standards independent message development approach

■ Provides pre-built XML messages conforming to the OAGI specifications

■ Provides message validation based on a specified DTD, file, or XML Schema

■ Supports rule-based exception processing

■ Integration to Oracle Advanced Queueing (AQ) for placing outgoing and

extracting incoming messages

XML Message Designer and Runtime Execution Engine
The Message Designer is a Java user interface that allows quick and easy creation of

XML Messaging Maps which can be loaded into the XML Messaging Services

repository.
How Oracle Exchange Uses XML 16-9



XML Messaging Services
Generating XML that Conforms to New Schema
You can use XSQL Servlet to produce an XML document with a structure which

reflects your database schema. As you define or adopt XML schemas for various

categories of data (such as timeseries ML, News ML, FpML) you also need to be

able to generate XML that conforms to these schemas.

How can you generate standard XML industry schemas?

You can use the following methods to help you generate XML industry schemas:

■ XML Messaging Services. This is part of Oracle Exchange and is not a stand

alone component.

■ XSLT stylesheets. These are useful for structural transformation, but not so

good for content, such as unique ids, xrefs, and so on. Various tools allow you

to write stylesheets, but they are all not much more than enhanced editors.

Generation, repositories, and so on are not readily available.

■ Specialized transformation tools, such as Mercator and Constellar. These costly

tools have drag and drop capability and support wizard-based development.
16-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introducing Oracle XML 
17

Introducing Oracle XML Gateway

This chapter describes the following sections:

■ What is XML Gateway?

■ Oracle XML Gateway Services

■ Oracle XML Gateway Architecture

■ XML Gateway Services - Message Designer

■ XML Gateway Services - Message Set Up

■ XML Gateway Services - Execution Engine

■ A Word About XML Standards
Gateway 17-1



What is XML Gateway?
What is XML Gateway?
With Release 11i.4 of the Oracle e-Business Suite, Oracle XML Gateway emerges as

a key component of Oracle’s application integration framework. XML Gateway is a

set of services that allows for easy integration with the Oracle e-Business Suite to

create and consume XML messages triggered by business events. It integrates with

Oracle Advanced Queuing to enqueue/dequeue a message which is then

transmitted to/from the business partner via any message transport agent.

Oracle XML Gateway Services
Oracle XML Gateway provides the following services:

■ Wizard-guided, GUI-oriented, repository-based Message Designer to define

data source and targets, create hierarchy and element maps plus define actions

for data transformation and process control.

■ Robust execution engine integrated with the Oracle e-Business Suite to create

and consume XML messages based on a business event. Messages are created

or consumed based on the message map (associated with the trading partner)

stored in the XML Gateway repository.

■ Flexible trading partner definition to accommodate a hub, all trading partners

exchanging on a hub, or a specific business partner.

■ Site level trading partner directory service to enable a message, identify a

message map, and identify the communication protocol.

■ Flexible message set up to define code conversion values and transaction names

between the sender and recipient.

■ Integration with the XML Parser to ensure that XML Gateway creates or

consumes well-formed and valid (if DTD available) XML messages.

■ Active notification via Oracle Workflow to report errors detected by the XML

Gateway Execution Engine, Oracle Advanced Queuing or a transport agent.

■ Integration with Oracle Advanced Queuing to en-queue/de-queue outbound or

inbound XML messages. In addition, Oracle AQ is used to en-queue/de-queue

error messages to support active error notification.

■ Integration of Oracle Advanced Queuing with Oracle Workflow to

deliver/receive XML messages.
17-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Gateway Architecture
Oracle XML Gateway Architecture
The services supported by Oracle XML Gateway are grouped into three major

components: Message Designer, Message Set Up, and Execution Engine.

Figure 17–1 shows the relationship of these three components:

Figure 17–1 XML Gateway Architecture

XML Gateway components are integrated with the following Oracle tools and

technologies to provide a complete solution:

XML Gateway 
Message Designer

Outbound Source
Database Views

Oracle e-Business Suite
Outbound Message Using 
Database Views

Extract
Trigger

Outbound Target
DTD / XML Msg

Inbound Source
DTD / XML Msg

Inbound Target
Application Open

Interface

Create
Source

Create
Target

Hierarchy
Mapping

Element
Mapping

Define Action

XML Gateway 
Execution Engine

Start / Stop Engines
(In, Out, Error)

Trigger Message
Creation

XML Gateway 
Setup

Error Queue

Define Trading Partner / Hub

Define Code Conversion

Define Transaction

Identify DTD Directory

Identify Message & Log Directory
XML

Gateway
Repository

Run 
LoadXML
to load
Message
Map

MAP.xgm

Oracle e-Business Suite
Inbound Message Using 
Application Open Interfaces

XML.Msg
XML.Msg Workflow

to Report
Errors

Workflow
Queue

Handler

Outbound Queue

XML.Msg
XML.Msg

Inbound Queue

XML.Msg
XML.Msg

If
Error
Introducing Oracle XML Gateway 17-3



XML Gateway Services - Message Designer
■ XML Parser to validate XML message is well-formed and valid (if DTD or XML

Schema is available)

■ Oracle Workflow to report processing errors

■ Oracle Advanced Queuing to en-queue/de-queue an XML message

■ Oracle Workflow and transport agent to deliver/receive an XML message

XML Gateway Services - Message Designer
The XML Gateway Message Designer is a wizard-guided, GUI-oriented,

repository-based tool that allows you to do the following:

■ Create Data Source. Every message must get it’s data from some data source to

create the target message meaningful to the recipient. The possible data sources

supported by the Message Designer are database tables, database views, DTD

or sample XML message. The common data source for outbound messages is

database views (new or existing) and the relevant view columns required by the

message. The common data source for inbound messages is a DTD from any

XML standards body or a sample XML message.

Selecting a sample XML message as a data source is a wise choice if you are

transitioning from an existing implementation/legacy system to the Oracle

e-Business Suite. For each source column identified, you can use Message

Designer to perform the following:

■ Define document levels if source is a DTD or XML Schema as they (DTDs)

do not have the concept of document level

■ Set default values

■ Enable code conversion

■ Indicate whether column is mandatory or not

■ Add/delete sibling (same hierarchy) or child (next level of detail) node as

necessary

■ Create Data Target. As with data sources, every message must have a data

target. The possible data targets supported by the Message Designer are

identical to what’s supported for data sources. The common data target for

outbound messages is a DTD from any XML standards body or a sample XML

message. The common data target for inbound messages is the Application

Open Interface tables (new or existing) and the relevant columns required by

the message. Selecting a sample XML message as a data target is a wise choice if
17-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Gateway Services - Message Designer
you are transitioning from an existing implementation/legacy system to the

Oracle e-Business Suite. For each target column identified, you can use Message

Designer to perform the following:

■ Define document levels if target is a DTD as DTDs do not have the concept

of document level

■ Set default values

■ Indicate whether column is mandatory or not

■ Add/delete sibling (same hierarchy) or child (next level of detail) node as

necessary

Code conversion is enabled at the data source only as you are converting the

source value to the value required by the recipient.

■ Perform Hierarchy Mapping. Once the data source and data target is created,

use the Message Designer’s hierarchy mapping to relate the source data

structure to the target data structure. If the document levels between the source

and target are different, use the Message Designer to expand or collapse

document levels as necessary.

■ Perform Element Mapping. Once the source and target are created and the

hierarchy between the source and target is defined, use the Message Designer to

map the source data element to the target data element.  The Message Designer

displays the data source on the left pane and the data target on the right pane.

A simple drag and drop between the source and target data element creates a

map relationship. The source data element name is noted next to the target data

element name to identify the map relationship.

■ Define Actions. As part of the hierarchy or element mapping process, you can

use the Message Designer to define actions for data transformation or process

control. An action may be defined as follows:

■  At the source or target

■  Applied at the data element, document, or root level

■  Applied before, during or after the message is created or consumed

An action may be based on a pre-defined condition. If no condition is defined,

the action will always be applied.

Table 17–1 lists the actions supported by XML Gateway.

Table 17–1 Actions Supported by XML Gateway
Introducing Oracle XML Gateway 17-5



XML Gateway Services - Message Designer
Action Category Action Description

Assignments Create global variable

Assign value from another variable

Math Functions Add

Subtract

Multiple

Divide

String Functions Sub-string

Concatenate

Database Functions Assign next sequence value

Append where clause

Insert into database table

Procedure Call Execute procedure with send and return parameters

Function Call Execute function and assign function return value

XSLT
Transformation

Execute procedure to perform XSLT transformation

OAG Standard
Conversions

■ Convert Oracle date to OAG date format

■ Convert Oracle operational amount to OAG operational amount
format

■ Convert Oracle quantity to OAG quantity format

■ Convert Oracle amount to OAG amount format

■ Convert OAG date to Oracle date format

■ Convert OAG operational amount to Oracle operational amount

■ Convert OAG quantity to Oracle quantity format

■ Convert OAG amount to Oracle amount format

Return Error Code
to Sender

Return error code and error message to sender
17-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Gateway Services - Message Set Up
The most common actions are the OAG standard conversions to convert Oracle’s

representation for date, operational amount, quantity, and amount values to the

OAG format and vice versa. The ability to inquire on the status of the Execution

Engine allows flexible process control based on the severity of an error. For serious

errors, the process may be aborted with error messages returned to the sender via

an Oracle Workflow process. The convenience of calling out to existing procedures

or functions enables tight integration with the Oracle e-Business Suite. Once the

message map is defined, it is loaded into the XML Gateway repository for use by

the Execution Engine to create outbound or consume inbound XML messages.

XML Gateway Services - Message Set Up
To implement a message with a trading partner, use XML Gateway Services

message set up to define the trading partner or hub, code conversion values, and

transaction name cross references. In addition, you can identify where on the file

system to store the DTDs, XML messages and process LOG files.

■ Define Trading Partner/Hub. E.-Business may be conducted directly with a

business partner commonly known as a trading partner or via a hub such as

Exchange where many buyers and sellers converge to conduct electronic

commerce.

With Oracle XML Gateway services, you can define the hub or the actual

business partner as a trading partner. If you define the hub as the trading

partner, you can identify all the buyers and sellers who are conducting business

on the hub as trading partners to the hub.

Included in the trading partner/hub definition is the following information:

■ Trading Partner/Hub name

Get Global Variable
Value

Get global variable value

■ DOCUMENT_ID

■ RETURN_CODE

■ RETURN_MESG

■ SENDER_TP_ID

■ RECEIVER_TP_ID

■ CODE_CONVERSION

Other Exit program
Introducing Oracle XML Gateway 17-7



XML Gateway Services - Execution Engine
■ Message enabled

■ Message map to use for message creation or consumption

■ Communication protocol - SMTP, HTTP, HTTPS and username/password

as necessary

■ Trading partner specific code conversion values

■ Define Code Conversion. The Oracle XML Gateway service for code conversion

allows you indicate what to convert an Oracle code to so that it is meaningful to

the recipient or vice versa.   Common Oracle e-Business Suite codes requiring

code conversion are units of measure and currency code. Oracle XML Gateway

provides a seeded master list of code conversion values which may be applied

to any data element of any message.   Additional code conversion values may

be added to the master list if the seeded list is insufficient. In addition, you may

define a trading partner specific code conversion value which will be applied

for that trading partner only.

■ Define Transaction. Use Oracle XML Gateway to define a cross reference

between the Oracle transaction name and a transaction name meaningful to the

recipient. For the pre-built messages delivered with the Oracle e-Business Suite,

the cross referenced name is the verb/noun (i.e. Process PO or Show Delivery)

combination defined by the OAG Business Object Document (OAG BOD).

■ Identify DTD Directory. Use Oracle XML Gateway to identify a directory on the

file system to store the DTD used to implement the message. The XML Gateway

Execution Engine and XML Parser will use the DTDs stored in this directory to

validate all outgoing and incoming messages to ensure that they are

well-formed and valid.

■ Identify XML Message and Process Log Directory. Use Oracle XML Gateway to

identify a directory on the file system for the XML Gateway Execution Engine

to store a copy of the XML message and it’s associated process log file. Both the

XML message and process log file may be archived or used for trouble

shooting.

XML Gateway Services - Execution Engine
The XML Gateway Execution Engine interfaces with the Oracle e-Business Suite,

XML Gateway Set Ups and Oracle Advanced Queuing to perform the following

functions:

■ Start/Stop Engines associated with the inbound, outbound, and error queues
17-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Gateway Services - Execution Engine
■ Allow users to manually trigger message creation if message creation is not

trigger by a business event in the Oracle e-Business Suite

■ Interface with Oracle e-Business Suite to produce an outbound message

■ Validate Trading Partner/Hub. If the Trading Partner is not defined or the

document is not defined for the Trading Partner, no message will be produced.

■ Get Message Map from Repository. If the message map associated with the

Trading Partner is not available in the XML Gateway repository, no message

will be created.

■ Gather Application Data. If the Trading Partner is valid and the message map

exist in the repository, the XML Gateway Execution Engine gathers the

application data from the Oracle e-Business Suite using the database view and

columns identified in the message map.

■ Apply Code Conversion. Apply code conversion for source columns enabled

for code conversion

■ Apply Actions. Apply actions where defined (may be document or element

level)

■ Create XML Message. Create XML message using the message map and the

application data

■ Validate Message via XML Parser. Use the XML Parser to validate the newly

created message to ensure that it is well-formed and valid. A poorly formed or

invalid message (based on DTD stored in DTD directory) will not be en-queued

onto the Outbound Queue.

■ Enqueue Message to Outbound Queue. Enqueue well-formed and valid

message onto the Outbound Queue to be picked up by the transport agent for

delivery to the trading partner.

■ Interface with Oracle e-Business Suite to consume an inbound message

■ Dequeue Message from Inbound Queue

■ Validate Message via XML Parser. Use the XML Parser to validate the inbound

message to determine if it is well-formed and valid (based on DTD stored in

DTD directory) before proceeding further.

■ Validate Trading Partner/Hub. If the inbound message is both well-formed and

valid, the Execution Engine proceeds to validate that the Trading Partner and

document are defined. If the Trading Partner is not defined or the document is

not defined for the Trading Partner, the message cannot be processed further.
Introducing Oracle XML Gateway 17-9



A Word About XML Standards
■ Get Message Map from Repository. If the message map associated with the

Trading Partner is not available in the XML Gateway repository, the message

cannot be processed further.

■ Apply code conversion for source columns enabled for code conversion

■ Apply actions where defined (may be document or element level) including

inserting data into the Application Open Interface tables and then finally

executing the Open Interface API to populate the base application tables.

■ Detect and Report Processing Errors. Errors may be detected by the Oracle XML

Gateway Execution Engine, Oracle Advanced Queuing, or a transport agent.

Information regarding the error is en-queued onto the Error Queue. A

notification is sent via Oracle Workflow to notify the trading partner regarding

data errors or the XML Gateway system administrator regarding

system/process errors.

In addition, for system/process errors, a copy of the XML message is placed in the

XML message directory for use in trouble shooting the reported error. For trading

partner related data errors, the trading partner can refer to their copy of the XML

message. The XML Gateway listeners are actively polling for messages and will

begin processing once it detects that something has arrived on the transaction

queue. The XML Gateway Execution Engine will take the document information

from the transaction queue and begin the process of creating or consuming an XML

message as described above.

A Word About XML Standards
Many standards bodies (for example, EbXML, Rosettanet, SOAP, iFX) exist with

published Document Type Definitions (DTD) each claiming to be better than the

other. Some standards are strong at managing the message content while others

excel at managing both the message content and its related processes.

As a provider of software to support all industries, Oracle has chosen to align with

Open Application Group’s (OAG) XML standards for broad based message

implementation. OAG is also the standard most widely adopted by the Oracle

customer base. All Oracle pre-built messages delivered with the Oracle e-Business

Suite will be based on the OAG standards. However, all pre-built messages may be

re-mapped to any standard of choice using the XML Gateway Message Designer

provided a DTD or XML Schema Definition is available.
17-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part V

 Oracle9i Dynamic Services (DS) and

Oracle Syndication Server (OSS)

Part V contains the following chapters:

■ Chapter 18, "Using Oracle9iAS Dynamic Services and XML"

■ Chapter 19, "Oracle Syndication Server (OSS) and XML"





Using Oracle9iAS Dynamic Services a
18

Using Oracle9iAS Dynamic Services and

XML

Oracle9iAS Dynamic Services (Dynamic Services or DS) enables developers to take

advantage of Web application functionality and content, as services to increase

productivity. DS adds web services deployment and management capability to

Oracle9i. Developers can use Oracle9i Dynamic Services to compose, catalog,

manage, and personalize web services according to user roles, protocols and

delivery devices.

This chapter describes the following sections:

■ Introducing Oracle9iAS Dynamic Services

■ What is Needed to Run Oracle9iAS Dynamic Services?

■ Dynamic Services (DS) Architecture Overview

■ Dynamic Services (DS) Implementation Overview (Java, PL/SQL, HTTP/Java)

■ Dynamic Services Features

■ Dynamic Services Integrates with Other Oracle Products

■ How Service Consumers Use Dynamic Services

■ Developing Services For Dynamic Services

■ Oracle Syndication Server (OSS)

■ Dynamic Services Consumer Application: Stock Portfolio Example

■ Frequently Asked Questions (FAQs): Dynamic Services
nd XML 18-1



Introducing Oracle9iAS Dynamic Services
Introducing Oracle9iAS Dynamic Services
Oracle9iAS Dynamic Services (DS) is a Java-based programmatic framework for

incorporating, managing, and deploying Internet and Intranet services. It uses the

Internet as the information source. It facilitates the rapid incorporation of services

from Web sites, local databases, and proprietary systems into applications.

For example, an online financial portfolio application can use DS to integrate

Internet financial services, such as stock quotes and exchange rates, from different

resource providers to calculate the current value of a portfolio in foreign currency.

See also Figure 18–1 and "Dynamic Services Consumer Application: Stock Portfolio

Example"  on page 18-19. DS handles dynamic business models with no

degradation in service quality. A DS “service” provides access to information or

application functionality through standard Internet protocols, such as, HTTP, JDBC,

or SOAP. A “service” can also aggregate other DS services to form a compound

service with a specific execution flow. It can include transformations and

conditional logic and is accessible through a uniform interface.

Figure 18–1 illustrates a typical Dynamic Services (DS) scenario. This is a workflow

of how an application can use DS services to retrieve and manage the data. You

simply need to determine the semantics and output formats needed:

1. The database notes that the inventory is getting low for a certain part in your

inventory. This triggers an event that tells you a specific part is low.

2. A DS service is then invoked that access a supplier and invokes the service that

accesses the information. The supplier ABC’s site could be in a foreign currency

or different format. Data about the supplier is logged as well as a catalog of

parts available.

3. Another service is invoked that translates the language and currency to the

desired language and currency of your Inventory Application.

4. The inventory application can also be connected to other applications. In steps 4

and 5 the results are delivered in multiple channels.

5. The resulting data is formatted according to the devices target user’s devices.

The DS service can also render the results in any format that the service has

been equipped for using stylesheets. The data is transferred mostly in XML.
18-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Introducing Oracle9iAS Dynamic Services
Figure 18–1 Typical Dynamic Services Scenario

How Dynamic Services (DS) Helps Developers
DS meets the design criteria needed by application developers in that with DS,

developers have:

■ A single programmatic framework for service access, management, execution,

and delivery, based on the following features:

■ Access: Uniform, XML-based access to diverse sources through different

protocols.

■ Management: Centralized management of services, sessions, caching

policies, and events.

■ Execution: Advanced execution modules to enable service aggregation and

failover.
Using Oracle9iAS Dynamic Services and XML 18-3



What is Needed to Run Oracle9iAS Dynamic Services?
■ Delivery: Multi-channel delivery to different output formats, devices, and

user groups

■ Each business can define its own internal service interfaces, without forcing

partners to standardize. In other words, if you have partners with various

interfaces, languages, currencies, and so on, they will not have to make any

changes in order to exchange data with you.

For Further Information
For further information about Oracle9iAS Dynamic Services:

What is Needed to Run Oracle9iAS Dynamic Services?
To run Oracle9iAS Dynamic Services you need the following:

■ Oracle9i Enterprise Edition, Oracle9iAS

■ Any platform that has Java2-compliant (JDK 1.2.2 or later) JVM installed,

including Oracle8i JVM or higher. This is because the Dynamic Services engine

is implemented in Java.

■ JDK 1.2.2 or higher. <JAVA2_HOME> is the installation directory of the JDK

1.2.2 or higher, distribution.

Ensure that you have at least a full (typical) installation of Oracle9i.

Dynamic Services (DS) Architecture Overview
Figure 18–2 shows an overview of Oracle Dynamic Services (DS) architecture. It

shows the following:

■ How Service Providers (business partners and application developers) provide

services that Service Administrators register in the Service Registry using the

DSAdmin utility (Service Administrator).

■ Application developers can create applications using application profiles that

service administrators register in the Application Profile Registry. The registry

See:

■ Oracle Directory Service Integration and Deployment Guide

■ Oracle Dynamic Services User’s and Administrator’s Guide

■ http://otn.oracle.com/products/dynamic_services/index.htm
18-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services (DS) Architecture Overview
is an Oracle Internet Directory (OID) Lightweight Directory Access Protocol

(LDAP) server whose contents are also mirrored in the Oracle9i database for

performance optimization.

Figure 18–2 Oracle Dynamic Services (DS) Architecture

Dynamic Services can be deployed in the following ways:

■ Using PL/SQL interfaces when deployed within the Oracle9i JVM (see

Figure 18–4)

■ Using Java interfaces, when deployed on a local machine hosting the

application (thick client library) (see Figure 18–3)
Using Oracle9iAS Dynamic Services and XML 18-5



Dynamic Services (DS) Implementation Overview
■ Using remote Java interfaces when deployed as a middle-tier Java engine

behind a Java servlet with which the application can communicate through

Dynamic Services thin client library (see Figure 18–5)

Dynamic Services (DS) Implementation Overview
Oracle9iAS Dynamic Services (DS) currently offers deployment modes:

■ Java deployment view (see "Dynamic Services Java Deployment"  on page 18-7).

■ PL/SQL deployment view (see "Dynamic Services PL/SQL Deployment"  on

page 18-8).

■ Java (HTTP/Java Messaging Services (JMS)) Deployment view (see"Dynamic

Services Java HTTP/Java Messaging Services (JMS) Deployment"  on

page 18-9).

Main DS Components
The following lists the DS main components for each of these deployment modes.

■ Dynamic Services Engine. The Dynamic Services engine can be deployed as any

of the following three engine types:

■ A Java engine running on the machine hosting the application (thick client

library) (see Figure 18–3).

■ A middle-tier Java engine behind a Java servlet (see Figure 18–5).

■ An engine running within Oracle9i JVM (see Figure 18–4).

You can switch from one environment to another without recompiling or even

restarting your application. This gives you a way to try out the various options.

■ DS Service and Application Profile Registries. The Service Registry and

Application Profile Registry are used as directories in Oracle Internet Directory

(OID) server. The access control list of OID is used for access control, allowing

service administrators to choose the services visible to a particular service

consumer application.

■ Communication Between Service Consumer Applications and Dynamic
Services Engine. Communication between the Dynamic Services engine and the

service consumer applications is handled by the Dynamic Services client

library. By registering a Dynamic Servicesdriver, a service consumer

application can dynamically change the underlying communication protocol

used by the client library to communicate with the Dynamic Services engine.
18-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Java Deployment
Supported communication protocols include HTTP, AQ/JMS, and direct Java

access.

Dynamic Services Java Deployment
Figure 18–3 shows the Dynamic Services Java deployment view. Oracle9i serves as

a registry cache, communicating with the OID Lightweight Directory Access

Protocol (LDAP) server hosting the registries. Service Consumer Application

contains application logic that uses the services through direct Java calls.

Here, Service Consumer Application uses the DS thick client library, that contains

the Dynamic Services Execution Engine. Service providers run in their own servers.
Using Oracle9iAS Dynamic Services and XML 18-7



Dynamic Services PL/SQL Deployment
Figure 18–3 Oracle Dynamic Services: Java Deployment

Dynamic Services PL/SQL Deployment
Figure 18–4 shows Oracle Dynamic Services PL/SQL deployment. The Dynamic

Services engine runs in the Oracle9i JVM, with its functions exposed as a set of Java

stored procedures. Oracle9i database serves as a registry cache. It communicates

with Oracle Internet Directory LDAP server which hosts the registries. The Service

Consumer Application’s logic makes use of the services through PL/SQL calls.

Service Providers run in their own servers.
18-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Java HTTP/Java Messaging Services (JMS) Deployment
Figure 18–4 Oracle Dynamic Services: PL/SQL Deployment

Dynamic Services Java HTTP/Java Messaging Services (JMS)
Deployment

Figure 18–5 shows an Oracle Dynamic Services Java (HTTP/JMS) deployment view.

The Dynamic Services engine running in a Dynamic Services gateway (middle tier)

supports HTTP, HTTPS, and JMS communication protocols. Oracle9i database

serves as a registry cache, communicating with the Oracle Internet Directory LDAP

server hosting the registries. The Service Consumer Application’s logic, makes use

of the services through Dynamic Services’ thin Java client library, and executes

services remotely in other systems. Here, service execution requests are forwarded

to the Dynamic Services gateway, which executes the service and returns a
Using Oracle9iAS Dynamic Services and XML 18-9



Dynamic Services Java HTTP/Java Messaging Services (JMS) Deployment
response. Communication between the service consumer application and the

gateway is handled by the Dynamic Services thin client library.

Figure 18–5 Oracle Dynamic Services Java (HTTP/JMS) Deployment

For example, in asynchronous deployment communications (JMS), the

DSJMSDriver can allow for asynchronous access to services, in the form of a JMS
18-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Java HTTP/Java Messaging Services (JMS) Deployment
daemon (using a Dynamic Services gateway). The driver allows request submission

asynchronously to an AQ/JMS queue in a remote database. The driver assumes the

existence of this JMS daemon running somewhere that listens asynchronously to the

same queue where requests are being submitted.

The JMS daemon takes on the role of the Dynamic Services engine. It processes the

request, generates a response, and submits the response to another queue that the

DSJMSDriver listens to asynchronously. On the service consumer application side,

therefore, listeners can be registered to be informed when the response is returned.

Multiple Channel Capabilities of DS
Figure 18–6 illustrates the multiple channels through which DS can be delivered.

These include:

■ Oracle Portal

■ Oracle9i Application Server Wireless Edition (Oracle9iAS WE)

■ ICE through the Oracle Syndication Server (OSS)

■ SOAP through the Oracle Dynamic Services SOAP Listener

See Also:

■ Oracle Directory Service Integration and Deployment Guide

■ Oracle Dynamic Services User’s and Administrator’s Guide

for more information about Dynamic Services’ Java, PL/SQL, and

JMS deployment.
Using Oracle9iAS Dynamic Services and XML 18-11



Dynamic Services Features
Figure 18–6 Dynamic Services Overview

Dynamic Services Features
Dynamic Services (DS) features include the following:

Service Management and Administration
Dynamic Services’ (DS) service management and administration features include:

DS business relationship management can handle such business tasks as:

■ Specifying service policies, priorities

■ Working with partner security or authentication models

■ Tracking usage and perform billing through events

■ Maintain copyright, logo, and other provider information in service descriptor

In forthcoming releases, DS will be managed and administered through Oracle

Enterprise Manager.
18-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Features
Service Discovery
Dynamic Services’ service discovery feature supports run-time Intranet Discovery

(LDAP). For example, service descriptors can be stored in Oracle Internet Directory

(OID) for security, centralized management, and LDAP lookup. They can be

accessed from mirrored Oracle instances for improved runtime performance.

Service Execution
Dynamic Services service execution features include the following:

■ Executing a service. Figure 18–7 shows an overview of this.

■ Advanced Execution Modules:

■ Failover

■ Compound

■ Conditional services

■ Events/triggers

The following sections and diagrams describe these DS service execution features.

Figure 18–7 DS: Executing a Service — Overview

D

Using Oracle9iAS Dynamic Services and XML 18-13



Dynamic Services Features
Failover Services
DS Failover services is a prioritized list of backup equivalent services. Figure 18–8

shows an example of failover services used in a stock quote application.

Figure 18–8 Dynamic Services: Failover Services Example

Compound Services
DS allows you to aggregate services and specify which services you need executed

in parallel and which services you need executed in series.

For example, Figure 18–9 shows how you can take one or more services, here

Service 1 and Service 2, and combine the results by performing operations (here

merging or splitting) on them to generate a single result. You can also take the

output of one service and input this into another service.
18-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Features
Figure 18–9 Dynamic Services: Compound Services

Conditional Services
Dynamic Services can execute services according to business requirements.

Requirements can be based on service request or user profile properties.

Figure 18–10 shows how you can use DS to switch on a specific service(s) for ’gold’

customers.

Figure 18–10 DS: Conditional Services
Using Oracle9iAS Dynamic Services and XML 18-15



Dynamic Services Integrates with Other Oracle Products
Events or Triggers
Through the course of executing a DS service, numerous events will be generated

that can be captured by the monitoring application. This application will in turn

execute other DS services, termed, “monitoring services”, depending on the events

they receive. Figure 18–11 illustrates an example of this and how the monitored

events can trigger a variety of services, including logging, notification, profiling,

and billing services.

Figure 18–11 Dynamic Services: Events or Trigger Services

Dynamic Services Integrates with Other Oracle Products
Dynamic Services (DS) integrates with other Oracle products, including:

■ JDeveloper. You can use JDeveloper to create, debug, and deploy DS.

JDeveloper facilitates application integration in Java, JSP, XSQL, and SOAP.

■ Oracle9iAS Wireless Edition. DS integrates with Oracle9i Application Server

Wireless Edition (WE), previously known as Portal-To-Go. You can build an
18-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Developing Services For Dynamic Services
adaptor for Oracle9i Application Server WE to make use of Dynamic Services in

your mobile applications.

■ Oracle Portal. You can integrate with Oracle Portal through the Oracle Portal

JPDK to create a Java Web Provider that uses Dynamic Services. This exposes

Dynamic Services as portlets. A DS Web Provider that supports this is currently

downloadable from OTN from

http://otn.oracle.com/products/iportal/index.htm

Under “Portal Development Kit (PDK)”, select the PDK (“click here”) then

“Integrating Technologies”. Read further information under Developing

Portlets with Dynamic Services Portlet

How Service Consumers Use Dynamic Services
The Dynamic Services client library provides service consumers (application

developers) with a Java application programming interface (API) that can be used

to access the functions of the Dynamic Services engine.

For more information, refer to the sample code in <$ORACLE_
HOME>/ds/demo/consumer  directory and to the Javadoc API (apidoc.zip) in

<$ORACLE_HOME>/ds/doc/ .

Developing Services For Dynamic Services
In Dynamic Services, a service is a component within the Internet computing model

that delivers a specialized value-added function. A service is bundled into a simple

service package and structured as a local directory. The following are typical tasks

you will be using Dynamic Services for:

■ Enabling Persistent Auditing or Event Monitor Services

■ Enabling Event Logging and the event monitor

■ Using the event logger monitor service

See Also:

■ Oracle Directory Service Integration and Deployment Guide

■ Oracle Dynamic Services User’s and Administrator’s Guide

for client Java code examples used to create a service request for

some of the sample services supplied with Oracle Dynamic

Services, and executing them.
Using Oracle9iAS Dynamic Services and XML 18-17



Oracle Syndication Server (OSS)
■ Querying the logger events

■ Modifying Cache Parameter values

Service Response Caching
The Dynamic Services engine uses the Oracle9i database for caching service

responses. The caching policy for a given service is controlled through deployment

parameters in the service descriptors. Before registering a service, the Service

Administrator can review these parameters and modify them as needed. The

caching parameters are defined in the SERVICE_HEADER, DEPLOYMENT, and

CACHING elements in the service descriptor.

To change the caching parameters of a given service, you must unregister the

service and register it again with the new parameter settings. Available caching

parameters are:

■ MAX_AGE: Specifies the number of seconds the service response remains valid

in the cache. After the specified amount of time elapses, the cached response is

discarded. When the MAX_AGE value is specified to be zero or less, the service

response is never cached.

■ SESSION_PRIVATE: Takes a Boolean value (TRUE or FALSE) to indicate

whether cached responses for this service should be visible only within the

current session, or if they should be visible to all executions. Table 7-1 shows an

overview of the behavior of four possible service response cases.

Oracle Syndication Server (OSS)
OSS is an application of Dynamic Services. See Chapter 19, "Oracle Syndication

Server (OSS) and XML".

See:

■ Oracle Directory Service Integration and Deployment Guide

■ Oracle Dynamic Services User’s and Administrator’s Guide

chapters 3 and 6, and Appendix C, "Descriptive Matrix of the

packaged XML Schemas and Adaptors", for detailed information

about developing Dynamic Services services.
18-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Consumer Application: Stock Portfolio Example
Dynamic Services Consumer Application: Stock Portfolio Example
The Dynamic Services software package contains sample code to specifically invoke

Yahoo Portfolio service through Dynamic Service engine, using Java. Portfolio

service is a service that takes stock symbols as input and give quotes as responses.

This service is provided by Yahoo.

This Dynamic Services software contains the following:

■ SampleStock.java : Example java code to invoke a dynamic service in Java.

■ yapfl_req.xml : Sample service request file.

■ readme.txt

Compiling SampleStock.java
Before compiling SampleStock.java , include the following library in your

CLASSPATH:

■ Dynamic Services: C:\Oracle\Ora81\ds\lib\ds.jar

■ Oracle XML Parser 2.0.2.9: C:\Oracle\Ora81\ds\lib\xmlparserv2.jar

■ Oracle XMLSchema Parser 1.0: C:\Oracle\Ora81\ds\lib\xschema.jar

■ Oracle AQ and JMS:

C:\Oracle\Ora81\RDBMS\jlib\jmscommon.jar;C:\Oracle\Ora81\RDBMS\jlib

\aqapi.jar

■ JSSE 1.0:

C:\Oracle\Ora81\ds\lib\jcert.jar;C:\Oracle\Ora81\ds\lib\jsse.jar;C:\Oracle\

Ora81\ds\lib\jnet.jar

■ LDAP JNDI:

C:\Oracle\Ora81\ds\lib\providerutil.jar;C:\Oracle\Ora81\ds\lib\ldap.jar;C:

\Oracle\Ora81\ds\lib\jndi.jar

■ ODS - XSQL 1.0.3 and dependent libraries:

■ C:\Oracle\Ora81\ds\lib\sax2.jar;C:\Oracle\Ora81\ds\lib\oraclexsql.jar;C:\Orac

le\Ora81\ds\lib\xsu12.jar where C:\Oracle\Ora81 should be replaced with

your $ORACLE_HOME. If there are any other libraries in red, please fix them

appropriately.

Compile SampleStock  at the command line as follows:

javac SampleStock.java
Using Oracle9iAS Dynamic Services and XML 18-19



Dynamic Services Consumer Application: Stock Portfolio Example
To run and test the sample, proper arguments should be given in the command

line, as follows:

java SampleStock <HOST_URL> <SID> <SymbolList>

where:

The output of SampleStock  should be a table of data about requested stocks, such

as the following:

|-----+--------------------|
|     | Time  | 12:19PM    |
|     |-------+------------|
|     | Price | 30 3/16    |
|ORCL |-------+------------|
|     | Change| +0.42%     |
|     |-------+------------|
|     | Volume| 34,272,000 |
|-----+--------------------|
|     | Time  | 12:19PM    |
|     |-------+------------|
|     | Price | 35 15/64   |
|INTC |-------+------------|
|     | Change| -2.80%     |
|     |-------+------------|
|     | Volume| 22,499,200 |
|-----+--------------------|
|     | Time  | 12:19PM    |
|     |-------+------------|
|     | Price | 63         |
|MSFT |-------+------------|
|     | Change| +0.10%     |
|     |-------+------------|
|     | Volume| 24,091,600 |
|-----+--------------------|

Table 18–1 SampleStock Command Line Arguments

Argument Description

HOST_URL For example, egroup-dev3.us.oracle.com

SID For example, db816

SymbolList For example, 'ORCL INTC MSFT'
18-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Consumer Application: Stock Portfolio Example
Dynamic Services Example 1: SampleStock (Java)
SampleStock takes the command line parameters and keeps them in the class data

members. Then it calls getQuotes()  to retrieve the quote data.

SampleStock  abstracts the process of executing YahooPortofolio DS service by:

■ Inputting a list of stock tickers and returning all relevant information in the

format of Java.util.Hashtable .

■ Input parameter, symbolList A string, consists of several stock symbols, which

are separated by white space, such as, "ORCL INTC MSFT”.

■ The return Hashtable is indexed by symbol name. Each entry of Hashtable is

also a Hashtable which is indexed by an information label, that is, “Time”,

“Price”, “Change”, or “Volume”.

■ SampleStock calls printQuotes() to display the results in the Hashtable in

the format shown above.

import java.io.*;
import java.util.*;

// imports for handling XML docs
import org.w3c.dom.*;
import oracle.xml.parser.v2.*;

// Dynamic Services imports
import oracle.ds.*;
import oracle.ds.comm.*;
import oracle.ds.registry.*;
import oracle.ds.comm.message.*;
import oracle.ds.driver.*;
import oracle.ds.utils.*;

/**
* SampleStock code. It opens a Dynamic Service
* connection, looks up a stock quote service,
* executes it and stores the results in a hash table.
*/
public class SampleStock implements CommunicationMessageConstants
{
 // Usage message
 private static final String USAGE =
 (
  "Usage: java SampleStock <HOST_URL> <SID> <Symbol list>\n "+
  "where, \n"+
Using Oracle9iAS Dynamic Services and XML 18-21



Dynamic Services Consumer Application: Stock Portfolio Example
  "\tHOST_URL: i.e. egroup-dev3.us.oracle.com\n"+
  "\tSID: i,e. db816\n" +
  "\tSymbol list: i.e. 'ORCL MSFT SEBL'\n"
 );

 // The following are actually the parameters in the
 // command line and some are hard coded.
 private static String ms_szJdbcURL;
 private static String ms_szUsername;
 private static String ms_szPassword;
 private static String ms_szServiceID;
 private static String ms_szSymbolList;

 // A utility to resolve the NamespacePrefix
 // In our case, we hard coded the namespace of the prortfolio service
 static private NSResolver ms_nsResolver = new NSResolver()
 {
   public String resolveNamespacePrefix(String szPrefix)
     { return "http://www.portfolio.org/Portfolio/Response"; }
 };

 /**
  * The main function
  */
 public static void main(String[] argv)
 {
   // Strict: Take only 3 arguments
   if (argv.length != 3) { System.err.println(USAGE); return; }

   // Extract the command line arguments
   int  iArgCounter = 0;
   ms_szJdbcURL = "jdbc:oracle:thin:@" + argv[iArgCounter++]
                            + ":1521:" + argv[iArgCounter++];
   ms_szUsername = "dssys";
   ms_szPassword = "dssys";

   // Hardcoded service ID for "Yahoo StockQuote service"
   ms_szServiceID = "urn:com.yahoo:finance.portfolio03";
   ms_szSymbolList = argv[iArgCounter++];

   // Get quotes
   Hashtable ht = getQuotes(ms_szSymbolList);

   // Print quotes in a form
   printQuotes(ht);
18-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Consumer Application: Stock Portfolio Example
 } // end of main

 /**
  * This function abstracts the process of executing the YahooPortofolio DS
  * service by taking in an input of a list of stock tickers and returning
  * all the relevant information in a java.util.Hashtable object.
  *
  * @param symbolList A white space delimited string containing the stock
  *                   symbols ( e.g. "ORCL INTC MSFT" ).
  * @return A Hashtable indexed by the stock symbol, and each entry of the
  *         Hashtable is also a Hashtable which is indexed by the information
  *         label, i.e. "Time", "Price", "Change", "Volume".
  */
 public static Hashtable getQuotes(String symbolList)
 {
   Hashtable ht = new Hashtable();

   // If we are to use a session, a header field has to be set
   DSConnection dsconn = null;

   try
   {
     // First open the connection with the Direct Driver
     DSDriverManager.registerDriver("oracle.ds.driver.DSDirectDriver");
     dsconn = DSDriverManager.getConnection(ms_szJdbcURL);

     // Connect using your specified username/password
     dsconn.connect(ms_szUsername, ms_szPassword);
     System.err.println("==> Opened connection for "+ms_szUsername);

     // Lookup a service and obtaing the service request/response schemas
     DService dsServ = dsconn.lookupService(ms_szServiceID);

     // Make an XML request string from the symbol list
     String xmlRequest =
"<?xml version=\"1.0\"?>                                 \n" +
"<!-- Sample request of the Yahoo! portfolio service --> \n" +
"<PortfolioReq                                           \n" +
"  xmlns=\"http://www.portfolio.org/Portfolio/Request\" >\n";

     StringTokenizer st = new StringTokenizer(ms_szSymbolList);
     while (st.hasMoreTokens()) {
xmlRequest = xmlRequest + "<Symbol>" + st.nextToken() + "</Symbol>\n";
     }
Using Oracle9iAS Dynamic Services and XML 18-23



Dynamic Services Consumer Application: Stock Portfolio Example
     xmlRequest = xmlRequest + "</PortfolioReq>\n";

     // Create a Request by requesting for a default request context
     // from our Dynamic Services Connection
     DSRequest dsReq = dsconn.createDSRequest(ms_szServiceID,
       new StringReader(xmlRequest));

     // Execute synchronously, get the response and print it
     DSResponse dsResp = null;
     dsResp = dsconn.executeSynch(dsReq);

     // Get the result XML
     StringWriter sw = new StringWriter();
     dsResp.writeResponse(sw);

     // Instantiate a DOM Parser to parse the result
     // to eventually get a Document
     DOMParser xmlp = new DOMParser();
     xmlp.parse( new StringReader(sw.toString()));
     XMLDocument xmldoc = xmlp.getDocument();

     // Get the list of "Quote" nodes
     NodeList nlist = xmldoc.getElementsByTagName("Quote");
     int nsym = nlist.getLength();

     // For each 'Quote' node
     for (int i = 0 ; i < nsym ; i ++)
     {
XMLNode qnode = (XMLNode) nlist.item(i);

// Make an entry from a quote node
Hashtable entry = new Hashtable();

entry.put("Time", qnode.valueOf("./P:Time", ms_nsResolver));
entry.put("Price", qnode.valueOf("./P:Price", ms_nsResolver));
entry.put("Change", qnode.valueOf("./P:Change", ms_nsResolver));
entry.put("Volume", qnode.valueOf("./P:Volume", ms_nsResolver));

// Insert into hash table
ht.put(qnode.valueOf("./P:Symbol", ms_nsResolver), entry);
     } // end of for
   }
   catch (Exception e) { e.printStackTrace(); }

   // Clean up job
18-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Dynamic Services Consumer Application: Stock Portfolio Example
   finally
   {
     // If I have a valid connection then do clean-up
     if(dsconn != null)
     {
// Now close the connectin
try { dsconn.close(); }
catch(Exception e) { e.printStackTrace(); }
     }
   }

   // Return the final result
   return ht;
 } // end of getQuotes

 /**
  * This function outputs quotes in a Hashable to a form like
  * |-----+-------------------|
  * |     | Time  | 12:19PM   |
  * |     |-------+-----------|
  * |     | Price | 30 3/16   |
  * |ORCL |-------+-----------|
  * |     | Change| +0.42%    |
  * |     |-------+-----------|
  * |     | Volume| 34,272,000|
  * |-----+-------------------|
  * |     | Time  | 12:19PM   |
  * |     |-------+-----------|
  * |     | Price | 35 15/64  |
  * |INTC |-------+-----------|
  * |     | Change| -2.80%    |
  * |     |-------+-----------|
  * |     | Volume| 22,499,200|
  * |-----+-------------------|
  * |     | Time  | 12:19PM   |
  * |     |-------+-----------|
  * |     | Price | 63        |
  * |MSFT |-------+-----------|
  * |     | Change| +0.10%    |
  * |     |-------+-----------|
  * |     | Volume| 24,091,600|
  * |-----+-------------------|
  *
  * @param ht A Java.util.Hastable that is the result of method getQuotes().
  */
Using Oracle9iAS Dynamic Services and XML 18-25



Dynamic Services Consumer Application: Stock Portfolio Example
 public static void printQuotes(Hashtable ht)
 {

   System.out.println("|-----+-------------------------|");

   Enumeration e = ht.keys();

   // For each key in the Hashtable
   while (e.hasMoreElements())
   {
     // Key is a symbol
     String symbol = (String) e.nextElement();

     // Get an entry
     Hashtable entry = (Hashtable) ht.get(symbol);

     // -- Time
     System.out.println("|     | Time  | " +
       (String) entry.get("Time") + "\t\t|" );
     System.out.println("|     |-------+-----------------|");

     // -- Price
     System.out.println("|     | Price | " +
       (String) entry.get("Price") + "      \t|" );
     System.out.println("|" + symbol + " |-------+-----------------|");

     // -- Change
     System.out.println("|     | Change| " +
       (String) entry.get("Change") + "\t\t|" );
     System.out.println("|     |-------+-----------------|");

     // -- Volume
     System.out.println("|     | Volume| " +
       (String) entry.get("Volume") + "\t|" );
     System.out.println("|-----+-------------------------|");
   } // end of while
 } // end of printQuotes
}

Here is some typical XML code for SampleStock.java:

<PortfolioReq xmlns="http://www.portfolio.org/Portfolio/Request">
  <Symbol>ORCL</Symbol>
  <Symbol>INTC</Symbol>
</Portfolio>
18-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): Dynamic Services
 Frequently Asked Questions (FAQs): Dynamic Services

What is the Best Way that I Can Set Up a Language of Queuing and Sequencing
Commands?

I am investigating setting up a small language for queueing and sequencing

commands. XML has obvious benefits, so I would like to know if anybody is

familiar with an existing dtd for that use? This is obviously not difficult, but if a

standard DTD already exists, why reinvent the wheel? Desired commands include:

■ fetch from queue

■ perform xslt transform

■ perform xsql process

■ insert into queue

■ send an email

■ log a message

■ set configuration parameter

Others may be required in the future.

Answer
Dynamic Services allows you to model all the commands you mentioned as XML

based services.

You can define these services as well as the flow in which you can execute them.

Dynamic Services engine will follow the flow (including sending email because it

has SMTP services available inside the engine) and send you a completed response

back. The engine is directly callable via Java/PLSQL APIs. You can also use the

’Dynamic Services Gateway’ or equivalent, to accept requests over HTTP using

SOAP or other SOAP like xml-rpc calls. Almost all parts of the engine are extensible

to allow you to plug-in any transformation, protocol or execution flow according to

your needs.

Other FAQs?
You can locate other Frequently Asked Questions (FAQs) with your DS software

package at:

$ORACLE_HOME/ds/doc/dsfaq.txt
Using Oracle9iAS Dynamic Services and XML 18-27



Frequently Asked Questions (FAQs): Dynamic Services
18-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle Syndication Server (OSS) a
19

Oracle Syndication Server (OSS) and XML

Oracle Syndication Server (OSS) has a content syndication solution that generates

one simple catalog for various content resources and aggregates any Internet data.

It automatically pushes content updates to anywhere.

This chapter describes the following sections:

■ Introducing Oracle Syndication Services (OSS)

■ OSS Features: e-Business Content Aggregation, Exchange, and Syndication

■ Information and Content Exchange (ICE) Protocol

■ OSS Architecture

■ Interacting with Content Providers

■ Interacting With Content Subscribers
nd XML 19-1



Introducing Oracle Syndication Services (OSS)
Introducing Oracle Syndication Services (OSS)
Content syndication can be applied to many application scenarios, including

catalog exchange solutions in a B2B supply chain,and content providers syndicating

to multiple portals. Oracle Syndication Server (OSS) has an extensible and scaleable

content syndication solution that offers the following support:

■ Generates one simple catalog for various content resources

■ Aggregates any Internet data

■ Automatically pushes content updates to anywhere

Hence, OSS allows content syndication in B2B, B2C, and B2E, facilitating content

exchange among providers, content delivery from providers to consumers, and

content sharing in organizations.

OSS Features: e-Business Content Aggregation, Exchange, and
Syndication

OSS provides content aggregation, exchange, and syndication for e-Businesses. OSS

ensures your data is available, anywhere, and anytime. Its primary features are:

■ Aggregate content from any source: OSS uses Oracle9iAS Dynamic Services to

extract or adapt information from any source, including existing Web sites,

databases, enterprise applications, e-mail repositories, and legacy systems, to

syndicate to its subscribers. These information and content sources are

consolidated into one point of access known as a "content catalog", for any

subscriber. See Chapter 18, "Using Oracle9iAS Dynamic Services and XML" for

information about Oracle9iAS Dynamic Services.

■ Personalize subscriptions and content delivery for each subscriber: OSS allows

syndicators to personalize content for delivery based on profiles of subscribers,

and to deliver content updates based on the subscription delivery policies.

■ Automate content delivery: OSS pushes content to subscribers when

information relevant to them changes. It allows a syndicator to schedule a

"push" delivery for a subscriber. OSS uses Oracle9i Dynamic Services

framework to push content over multiple channels.

See Also:

■ http://otn.oracle.com/products

■ Chapter 18, "Using Oracle9iAS Dynamic Services and XML"
19-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



OSS Features: e-Business Content Aggregation, Exchange, and Syndication
■ Transform content to adapt to a subscriber’s format: Because of the Oracle9iAS

Dynamic Services framework, OSS can transform content from any formatted

source to a markup language suitable for each subscriber.

Figure 19–1 summarizes OSS features. Here you see OSS used to transport and

redistribute any content, using any protocol, between syndicators and subscribers.

It also offers content personalization. OSS is shown to facilitate data Push and Pull

strategy. OSS includes administrative tools to manage subscriber profiles, content

resources profiles, established subscriptions, and system monitoring.

Figure 19–1 Oracle Syndication Server (OSS) Features

Content Syndication
There are two roles in content syndication:

■ Content Subscriber: One of the two parties, that obtain information and content

from a syndicator. This can be human subscribers, applications in organizations

needing content feeds, or entire organizations that re-purpose the content they

subscribe to.
Oracle Syndication Server (OSS) and XML 19-3



Information and Content Exchange (ICE) Protocol
■ Content Syndicator: One of the two parties, that send information and content

to a subscriber, retrieving the content from a third party content provider, or

providing content in-house.

Oracle Syndication Server (OSS) can be configured to act as the content syndicator,

content subscriber, or both.

Information and Content Exchange (ICE) Protocol
Information and Content Exchange (ICE) protocol is an XML-based specification to

manage and automate the establishment of syndication relationships, data transfer,

and results analysis in a content syndication scenario.

When combined with an industry specific vocabulary, ICE provides a complete

solution for syndicating any type of information between information providers

and subscribers. As a result, ICE can facilitate the controlled exchange and

management of electronic assets between networked partners and affiliates.

Applications based on ICE allow companies to easily construct syndicated

publishing networks, Web superstores, and online reseller channels by establishing

information and content exchange networks.  ICE  implementation features:

■ Message Definition: ICE messages are XML based, andICE 1.1 specification

uses XML DTD to define the format of these messages, hence the protocol

grammar is thereby established through this message definition.

■ Content Transport: ICE protocol has been designed based XML document

exchange. Each protocol message consists of a valid XML document, and the

protocol involves sending such documents back and forth between syndicator

and subscriber. The specification does not restrict ICE to any transport

mechanism.

■ Security: ICE implementations can achieve security using methods, such as

encryption, at the transport level. Or applications can agree to send digitally

signed content as items in ICE protocol. Or syndicators and subscribers can use

certificates to authenticate each other.

ICE Operation Types
ICE protocol handles four types of operations:

■ Subscription establishment and management. In ICE, a relationship between a

Syndicator and a Subscriber begins with some form of subscription

establishment. In ICE, the subscriber typically begins by obtaining a catalog of

possible subscriptions (really, subscription offers) from the Syndicator. The
19-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



OSS Architecture
structure of a Catalog defined by ICE protocol consists of subscription offer

groups. Each offer group has a set of offers as the finest unit for subscribers to

choose from. For every offer, ICE protocol supports and defines the structure of

associated delivery policies, usage reporting, presentation constraints, and

business terms.

■ Data delivery. The Subscriber then subscribes to particular subscriptions,

possibly engaging in protocol parameter negotiation to arrive at mutually

agreeable delivery methods and schedules.

■ Event logs. The relationship then moves on to the steady state, where the

primary message exchanges center on data delivery. ICE uses a package

concept as a container mechanism for generic data items. ICE defines a

sequenced package model allowing syndicators to support both incremental

and full update models. ICE also defines push and pull data transfer models.

Managing exceptional conditions and being able to diagnose problems is an

important part of syndication management; accordingly, ICE defines a

mechanism by which event logs can be automatically exchanged between

(consenting) Subscribers and Syndicators.

Other Miscellaneous ICE Operations
Finally, ICE provides a number of mechanisms for supporting miscellaneous

operations, such as the ability to renegotiate protocol parameters in an established

relationship, the ability to send unsolicited ad-hoc notifications (i.e., textual

messages) between systems (presumably ultimately targeted at administrators), the

ability to query and ascertain the state of the relationship, etc.

OSS Architecture
OSS is built on Oracle9iAS Dynamic Services to adapt any content/information

from Web sites, Internet Applications, or database, into an XML representation. It

also transforms the XML into a markup language specific to the subscriber by

means of XSL stylesheets.

Each content source is modeled as a set of services in Oracle9iAS Dynamic Services.

Information about the subscribers, content resources, and existing subscriptions is

stored in OSS’s registry. At runtime, OSS’s engine processes subscriber content

requests by invoking the corresponding components, and sends back content

responses. On notification of content updates, OSS’s engine checks its local registry

to locate relevant subscribers and then pushes the updated information according to

the delivery policy specified inside the subscription for each subscriber. Events

from OSS are logged in an Oracle 9i database.
Oracle Syndication Server (OSS) and XML 19-5



OSS Architecture
Figure 19–2 illustrates Oracle Syndication Server’s architecture overview and main

functional components. Oracle Syndication Server (OSS) is built on Oracle9iAS

Dynamic Services framework using XML and Java. It communicates using a Java

servlet, deployed in a servlet container with any industry standard Web listener, to

receive and send messages. Information about subscribers and content resources as

services are stored in OSS’s registry on Oracle9i.

Figure 19–2 Oracle Syndication Server: Architecture Overview

OSS components are divided into two parts:

■ Components that interface with content providers directly or through

Oracle9iAS Dynamic Services framework

■ Syndication Server Engine that manages the interaction between content

subscribers and the content providers.
19-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Interacting With Content Subscribers
Interacting with Content Providers
OSS interacts with content providers using Oracle9iAS Dynamic Services(DS). OSS

exposes content providers as a set of Dynamic Services services. The handling of a

subscriber’s request is mapped to a corresponding service execution inside the

specified Dynamic Services Engine.  OSS serves as a digital asset hub, aggregating

content from all types of providers, regardless of location, access protocol, or

content format.

Dynamic Services Content Provider Adapter (DSCPA)
DSCPA provides the interface for OSS’s engine to access each registered content

provider as a set of DS services. Enforced by the OSS, every published content

provider service must comply with pre-defined DS interface. At runtime, OSS

invokes the specified DSCPA to construct a DS service request from the subscriber’s

request. DSCPA then sends the service request to the specified DS engine for

execution. The DS service engine’s response is collected by DSCPA, marking the

end of the transaction with a content provider. OSS requires each content provider

to have the following minimum set of DS services:

■ "Catalog" DS service.  Used for content providers to provide catalog

information of their available subscription offers.

■ Subscription Approval DS service. Used as a way for certain content providers

to approve subscriptions before they are stored in the OSSer. The service takes

in a subscription request, forwarded by OSS, as input, and returns an approved

subscription if the content provider agrees on all terms.

■ Content Access DS service. Subscribers can initiate pulling content from OSS as

well as having the content pushed to them.

■ Subscription Cancellation DS service. Subscribers can cancel their subscriptions.

When this occurs, OSS forwards the intent to an underlying "unsubscribe" DS

service implemented by the content provider to allow the content provider to

perform subscription clean ups.

Interacting With Content Subscribers
As OSS is implemented with ICE as the underlying mechanism of communication,

a Content Subscriber Development Kit (CSDK) is bundled with OSS to facilitate

subscribers in implementing their applications to communicate with any content

syndicator using ICE.  CSDK contains a client library that abstracts to some extent

the formation of ICE messages from the subscriber’s perspective, so applications
Oracle Syndication Server (OSS) and XML 19-7



Interacting With Content Subscribers
can be easily developed without being coupled with the underlying communication

protocol with the server. Along with this client library is a set of API documentation

that will further facilitate the process of content application development.

Delivering content to subscribers
Transport Protocol Manager (TPM) handles PULL and PUSH content deliveries

from OSS to subscribers. In PUSH, subscribers can speak a protocol-specific

language – most of them are XML-based markup languages.

To deliver data to a specific subscriber, TPM transforms the XML-formatted content

to an appropriate subscriber-specific markup language and transports the content

over a specified transport layer. This is done by a DS service model, one DS delivery

service for each protocol. At runtime, the TPM selects a DS delivery service

corresponding to a specified protocol, and executes it through the underlying DS

framework.
19-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part VI

  XDK for Java

Part VI describes how to access and use the XML components in XML Developer’s

Kit (XDK) for Java. Part VI contains the following chapters:

■ Chapter 20, "Using XML Parser for Java"

■ Chapter 21, "Using XML Schema Processor for Java"

■ Chapter 22, "XML Class Generator for Java"

FAQs are included at the end of  the following chapters:

■ Chapter 7: "Frequently Asked Questions (FAQs): XML SQL Utility (XSU)"

■ Chapter 10: "Frequently Asked Questions (FAQs) - XSQL Servlet"

■ Chapter 20: "Frequently Asked Questions (FAQs): XML Parser for Java"

■ Chapter 22: "Frequently Asked Questions (FAQs): Class Generator for Java"

Note:

■ XML-SQL Utility (XSU) is also considered part of the XDK for

Java (and the XDK for PL/SQL). In this manual, XSU is

described in Part II, Chapter 7, "XML SQL Utility (XSU)".

■ XSQL Servlet is considered part of XDK for Java. In this manual

XSQK Servlet is described in Part IV, Chapter 10, "XSQL Pages

Publishing Framework"





Using XML Parser
20

Using XML Parser for Java

This chapter contains the following sections:

■ XML Parser for Java: Features

■ Parsers Access XML Document’s Content and Structure

■ DOM and SAX APIs

■ Running the XML Parser for Java Samples

■ Using XML Parser for Java: DOMParser() Class

■ Using XML Parser for Java: DOMNamespace() Class

■ Using XML Parser for Java: SAXParser() Class

■ Using XML Parser for Java: XSLT Processor

■ Using XML Parser for Java: SAXNamespace() Class

■ XML Parser for Java: Command Line Interface

■ XML Extension Functions for XSLT Processing

■ Frequently Asked Questions (FAQs): XML Parser for Java
 for Java 20-1



XML Parser for Java: Features
XML Parser for Java: Features
Oracle provides a set of XML parsers for Java, C, C++, and PL/SQL. Each of these

parsers is a stand-alone XML component that parses an XML document (or a

standalone DTD or XML Schema) so that it can be processed by an application.

Library and command-line versions are provided supporting the following

standards and features:

■ XML.  W3C XML 1.0 Recommendation

■ DOM.  Integrated DOM (Document Object Model) API, compliant with:

■ W3C DOM 1.0 Recommendation

■ W3C DOM 2.0 CORE Recommendation

■ W3C DOM 2.0 Traversal Recommendation, including Treewalker, Node

Iterator, and Node Filter.

These APIs permit applications to access and manipulate an XML document as

a tree structure in memory. This interface is used by such applications as

editors.

■ SAX. Integrated SAX (Simple API for XML) API, compliant with the SAX 2.0

recommendation. These APIs permit an application to process XML documents

using an event-driven model.

■ W3C Proposed Recommendation for XML Namespaces 1.0 thereby avoiding

name collision, increasing reusability and easing application integration.

Supports Oracle XML Schema Processor. See also

http://www.w3.org/TR/1999/REC-xml-names-19990114/

■ XSLT. XSLT Processor for Java includes the following features:

■ Integrated support for W3C XSLT 1.1 Working Draft

■ Provides new APIs to get XSL Transformation as SAX Output

■ XML Schema Processor. See Chapter 21, "Using XML Schema Processor for

Java". Supports XML Schema Processor that parses and validates XML files

against an XML Schema Definition file (.xsd). It includes the following features:

■ Built on the XML Parser for Java v2

■ Supports the three parts of the XML Schema Working Draft

*      Part 0: Primer XML Schema

*      Part 1: Structures XML Schema
20-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java: Features
*      Part 2: Datatypes

■ Runs on Oracle9i and Oracle9i Application Server

Additional features include:

■ Validating and non-validating modes

■ Built-in error recovery until fatal error

■ DOM extension APIs for document creation

The parsers are available on all Oracle platforms.

Figure 20–1 shows an XML document inputting XML Parser for Java. The DOM or

SAX parser interface parses the XML document. The parsed XML is then

transferred to the application for further processing.

If  a stylesheet is used,  the DOM or SAX interface also parses and outputs the XSL

commands. These are sent together with the parsed XML to the XSLT Processor

where the selected stylesheet is applied and the transformed (new) XML document

is then output.
Using XML Parser for Java 20-3



XML Parser for Java: Features
Figure 20–1 Oracle XML Parser

DOM and SAX APIs are explained in "DOM and SAX APIs".

The classes and methods used to parse an XML document are illustrated in the

following diagrams:

■ Figure 20–4, "XML Parser for Java: DOMParser()"

■ Figure 20–5, "Using SAXParser() Class"

The classes and methods used by the XSLT Processor to apply stylesheets are

illustrated in the following diagram:

■ Figure 20–6, "XSLProcessor Class Process"

XSL Transformation (XSLT)  Processor
The V2 versions of the XML Parsers include an integrated XSL Transformation

(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT

processor, you can transform XML documents from XML to XML, XML to HTML,

or to virtually any other text-based format. See Figure 20–1.

The processor supports the following standards and features:

See Also: Appendix C, "XDK for Java: Specifications and Cheat

Sheets".

DOM / SAX Parser

XML Parser for Java

Original
XML

Document

Transfered
XML

Document

Parsed XML

Parsed XSL
Commands

XSL
Stylesheet

XSL-T Processor
20-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java: Features
■ Compliant with the W3C XSL Transform Proposed Recommendation 1.0

■ Compliant with the W3C XPath Proposed Recommendation 1.0

■ Integrated into the XML Parser for improved performance and scalability

■ Available with library and command-line interfaces for Java, C, C++, and

PL/SQL

Namespace Support
The Java, C, and C++ XML parsers also support XML Namespaces. Namespaces are

a mechanism to resolve or avoid name collisions between element types (tags) or

attributes in XML documents.

This mechanism provides "universal" namespace element types and attribute names

whose scope extends beyond this manual.

Such tags are qualified by uniform resource identifiers (URIs), such as:

<oracle:EMP xmlns:oracle="http://www.oracle.com/xml"/>

For example, namespaces can be used to identify an Oracle <EMP> data element as

distinct from another company's definition of an <EMP> data element.

This enables an application to more easily identify elements and attributes it is

designed to process. The Java, C, and C++ parsers support namespaces by being

able to recognize and parse universal element types and attribute names, as well as

unqualified "local" element types and attribute names.

Oracle XML Parsers Support Four Validation Modes
The Java, C, and C++ parsers can parse XML in validating or non-validating modes.

■ Non-Validating Mode. The parser verifies that the XML is well-formed and

parses the data into a tree of objects that can be manipulated by the DOM API.

■ DTD Validating Mode. The parser verifies that the XML is well-formed and

validates the XML data against the DTD (if any).

■ Partial Validation Mode. Partial validation validates an input XML document

as per the DTD if a DTD or XMLS Schema is present else it will be in NON

Validationg mode.

See Also: Chapter 21, "Using XML Schema Processor for Java"
Using XML Parser for Java 20-5



Parsers Access XML Document’s Content and Structure
■ Schema Validation Mode. The XML Document is validated as per the XML

Schema specified for the document.

■ Auto Validation Mode. In this mode the parser does its best to validate with

whatever is available. If DTD is available, it is set to DTD_VALIDATION, if

Schema is present then it is set to SCHEMA_VALIDATION. If none is available,

it is set to NON_VALIDATING mode.

Validation involves checking whether or not the attribute names and element tags

are legal, whether nested elements belong where they are, and so on.

Parsers Access XML Document’s Content and Structure
XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markup.

Markup encodes a description of the document's storage layout and logical

structure. XML provides a mechanism to impose constraints on the storage layout

and logical structure.

A software module called an XML processor is used to read XML documents and

provide access to their content and structure. It is assumed that an XML processor is

doing its work on behalf of another module, called the application.

This parsing process is illustrated in Figure 20–2.

See Also:   Oracle9i XML Reference
20-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Parsers Access XML Document’s Content and Structure
Figure 20–2 XML Parsing Process

Parsed
Data

Storage Units
(entities)

Unparsed
Data

Characters

Character
Data

Markup

XML
document

XML Parser
(Processor)

Content and StructureReads
Using XML Parser for Java 20-7



DOM and SAX APIs
DOM and SAX APIs
XML APIs generally fall into the following two categories:

■ Event-based

■ Tree-based

See Figure 20–3. Consider the following simple XML document:

<?xml version="1.0"?>
  <EMPLIST>
    <EMP>
     <ENAME>MARY</ENAME>
    </EMP>
    <EMP>
     <ENAME>SCOTT</ENAME>
    </EMP>
  </EMPLIST>

DOM: Tree-Based API
A tree-based API (such as Document Object Model, DOM) builds an in-memory

tree representation of the XML document. It provides classes and methods for an

application to navigate and process the tree.

In general, the DOM interface is most useful for structural manipulations of the

XML tree, such as reordering elements, adding or deleting elements and attributes,

renaming elements, and so on. For example, for the XML document above, the

DOM creates an in-memory tree structure as shown inFigure 20–3.

SAX: Event -Based API
An event-based API (such as SAX) uses calls to report parsing events to the

application. The application deals with these events through customized event

handlers. Events include the start and end of elements and characters.

Unlike tree-based APIs, event-based APIs usually do not build in-memory tree

representations of the XML documents. Therefore, in general, SAX is useful for

applications that do not need to manipulate the XML tree, such as search

operations, among others.

The above XML document becomes a series of linear events as shown in

Figure 20–3.
20-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
Figure 20–3 Comparing DOM (Tree-Based) and SAX (Event-Based) APIs

[

Guidelines for Using DOM and SAX APIs
Here are some guidelines for using the DOM and SAX APIs:

DOM:
■ Use the DOM API when you need to use random access.

■ DOM consumes more memory.

■ Use DOM when you are performing transformations.

■ Use DOM when you want to have tree iterations and need to walk through the

entire document tree.

■ When using the DOM interface, try to use more attributes over elements in your

XML, to reduce the pipe size.

SAX:
Use the SAX API when your data is mostly streaming data.

<EMP> <EMP>

<EMPLIST>

<ENAME> <ENAME>

MARY SCOTT

The DOM interface creates a 
TREE structure based on the 
XML DocumentXML Document

<?XML Version = "1.0"?>
  <EMPLIST>
    <EMP>
      <ENAME>MARY</ENAME>
    </EMP>
    <EMP>
      <ENAME>SCOTT</ENAME>
    </EMP>
  </EMPLIST>

The SAX interface creates 
a series of linear events 
based on the XML 
document

Useful for applications such 
as search and retrieval that do 
not change the "XML tree".

Useful for applications that include 
changes eg. reordering, adding, or 
deleting elements.

start document

start element: EMPLIST
start element: EMP
start element: ENAME
characters: MARY
end element: EMP

start element: EMP
start element: ENAME
characters: SCOTT
end element: EMP

end element: EMPLIST
end document
Using XML Parser for Java 20-9



XML Parser and Data Compression
XML Parser and Data Compression
Oracle XML Parser can also compress XML documents. Using the compression

feature, an in-memory DOM tree or the SAX events generated from an XML

document can be compressed to generate a binary compressed output.

The compressed stream generated from DOM and SAX are compatible, that is, the

compressed stream generated from SAX could be used to generate the DOM tree

and vice versa. The compression is based on tokenizing the XML tags. This is based

on the assumption that XML files typically have repeated tags and tokenizing the

tags compresses the data. The compression depends on the type of input XML

document  — the larger the number of tags, the less the text content, and the better

the compression.

As with XML documents in general, you can store the compressed XML data output

as a CLOB (Character Large Object) in the database.

XML Serialization/Compression
An XML document is compressed into a binary stream by means of the serialization

of an in-memory DOM tree. When a large XML document is parsed and a DOM

tree is created in memory corresponding to it, it may be difficult to satisfy memory

requirements and this could affect performance. The XML document is compressed

into a byte stream and stored in an in-memory DOM tree. This can be expanded at a

later time into a DOM tree without performing validation on the XML data stored

in the compressed stream.

The compressed stream can be treated as a serialized stream, but note that the

information in the stream is more controlled and managed, compared to the

compression implemented by Java's default serialization.

In this release, there are two kinds of XML compressed streams:

■ SAX based Compression: The compressed stream is generated when an XML

file is parsed using a SAX Parser. SAX events generated by the SAX Parser are

handled by the SAX Compression utility. It handles the SAX events to generate

a compressed binary stream. When the binary stream is read back, the SAX

events are generated.

■ DOM based compression: The in-memory DOM tree, corresponding to a parsed

XML document, is serialized, and a compressed XML output stream is

generated. This serialized stream when read back regenerates the DOM tree.

The compressed stream is generated using SAX events and that generated using

DOM serialization are compatible. You can use the compressed stream generated
20-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Upgrading XDK for Java
by SAX events to create a DOM tree and vice versa. The compression algorithm

used is based on tokenizing the XML tag's. The assumption is that any XML file has

repeated number of tags and therefore tokenizing the tags will give considerable

compression.

Upgrading XDK for Java

Upgrading XDK for Java from a Previous Release to Oracle9i
If you already have XDK for Java installed, and are upgrading to Oracle9i, follow

these steps:

1. Make sure you have successfully upgraded JServer.

2. Change to the ORACLE_HOME/rdbms/admin  directory.

3. Start SQL*Plus.

4. Connect to the database instance as a user with SYSDBA privileges.

5. Run STARTUP:

SQL> STARTUP

You may need to use the PFILE  option to specify the location of your

initialization parameter file.

6. Run the appropriate upgrade script depending on the release from which you

are upgrading.

If you are upgrading from release 8.1.5, run xmlu815.sql :

SQL> @xmlu815.sql

If you are upgrading from release 8.1.6, run xmlu816.sql :

SQL> @xmlu816.sql

If you are upgrading from release 8.1.7, run xmlu817.sql :

SQL> @xmlu817.sql

See Also:

■ Chapter 2, "Modeling and Design Issues for Oracle XML

Applications", "Loading XML into a Database"  on page 2-13.

■ Chapter 5, "Database Support for XML"
Using XML Parser for Java 20-11



Downgrading to Oracle Release 8.1
7. Shut down all instances using SHUTDOWN:

SQL> SHUTDOWN

8. Exit SQL*Plus.

The XDK for Java component is upgraded to the new release.

Upgrading Session Namespace, CORBA, and OSE
1. Make sure you have successfully upgraded JServer and XDK for Java.

2. At a system prompt, change to the ORACLE_HOME/javavm/install
directory.

Upgrading JSP
If the Oracle system has JSP installed, then complete the following steps:

1. Make sure you have successfully upgraded JServer, XDK for Java, and Session

Namespace, CORBA, and OSE.

2. At a system prompt, change to the ORACLE_HOME/javavm/install
directory.

Downgrading to Oracle Release 8.1
See Chapter 13 of the Oracle9i Migration manual.

Running the XML Parser for Java Samples
Table 20–1 lists the XML Parser for Java examples provided with XDK for Java

software. The samples are located in the sample/ subdirectory. They illustrate

how to use Oracle XML Parser for Java.

Table 20–1 XML Parser for Java Samples

Name of Sample File Description

DOMSample.java A sample application using DOM APIs.

SAXSample.java A sample application using SAX APIs.

XSLSample.java A sample application using XSL APIs.
20-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for Java Samples
Note that because some package names are different in V2, different files were

generated to show the differences between V2 and V1 of the XML Parser for Java.

To run the sample programs:

1. Use “make” to generate .class  files.

2. Add xmlparserv2.jar  and the current directory to the CLASSPATH.

3. Run the sample program for DOM/SAX APIs as follows:

java <classname> <sample xml file>

4. Run the sample program for XSL APIs as follows:

java XSLSample <sample xsl file> <sample xml file>

A few XMLfiles such as class.xml , empl.xml , and family.xml , are provided as

test cases.

XSL stylesheet iden.xsl,  can be used to achieve an identity transformation of the

supplied XML files:

■ class.xml

■ NSExample.xml

■ family.xml

■ empl.xml

XML Parser for Java - XML Sample 1: class.xml
<?xml version = "1.0"?>
<!DOCTYPE course [
<!ELEMENT course (Name, Dept, Instructor, Student)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT Instructor (Name)>

DOMNamespace.java A sample application using Namespace extensions to
DOM APIs.

SAXNamespace.java A sample application using Namespace extensions to
SAX APIs.

Table 20–1 XML Parser for Java Samples (Cont.)

Name of Sample File Description
Using XML Parser for Java 20-13



Running the XML Parser for Java Samples
<!ELEMENT Student (Name*)>
]>
<course>
<Name>Calculus</Name>
<Dept>Math</Dept>
<Instructor>
<Name>Jim Green</Name>
</Instructor>
<Student>
<Name>Jack</Name>
<Name>Mary</Name>
<Name>Paul</Name>
</Student>
</course>

XML Parser for Java - XML Example 2: Using DTD employee — employee.xml
<?xml version="1.0"?>
<!DOCTYPE employee [
<!ELEMENT employee (Name, Dept, Title)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
]>
<employee>
<Name>John Goodman</Name>
<Dept>Manufacturing</Dept>
<Title>Supervisor</Title>
</employee>

XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml
<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">
<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>
20-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for Java Samples
DTD: family.dtd
<!ELEMENT family (member*)>
<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>
<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

XML Parser for Java — XSL Example 1: XSL (iden.xsl)
<?xml version="1.0"?>
<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
  <xsl:template match="*|@*|comment()|processing-instruction()|text()">
      <xsl:copy>
          <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
      </xsl:copy>
  </xsl:template>

</xsl:stylesheet>

XML Parser for Java - DTD Example 1: (NSExample)
<!DOCTYPE doc [
<!ELEMENT doc (child*)>
<!ATTLIST doc xmlns:nsprefix CDATA #IMPLIED>
<!ATTLIST doc xmlns CDATA #IMPLIED>
<!ATTLIST doc nsprefix:a1 CDATA #IMPLIED>
<!ELEMENT child (#PCDATA)>
]>
<doc nsprefix:a1 = "v1" xmlns="http://www.w3c.org"
xmlns:nsprefix="http://www.oracle.com">
<child>
This element inherits the default Namespace of doc.
</child>
</doc>
Using XML Parser for Java 20-15



Using XML Parser for Java: DOMParser() Class
Using XML Parser for Java: DOMParser() Class
To write DOM based parser applications you can use the following classes:

■ DOMNamespace() class

■ DOMParser() class

■ XMLParser() class

Since DOMParser extends XMLParser, all methods of XMLparser are also available

to DOMParser. Figure 20–4 shows the main steps you need when coding with the

DOMParser()  class:

■ Without DTD Input

1. A new DOMParser() class is called. Available properties to use with this

class are:

* setValidateMode

* setPreserveWhiteSpace

* setDocType

* setBaseURL

* showWarnings

2. The results of 1) are passed to XMLParser.parse() along with the XML

input. The XML input can be a file, a string buffer, or URL.

3. Use the XMLParser.getDocument() method.

4. Optionally, you can apply other DOM methods such as:

* print()

* DOMNamespace() methods

5. The Parser outputs the DOM tree XML (parsed) document.

6. Optionally, use DOMParser.reset()  to clean up any internal data

structures, once the Parser has finished building the DOM tree.

■ With a DTD Input

1. A new DOMParser()  class is called. The available properties to apply to

this class are:

* setValidateMode
20-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: DOMParser() Class
* setPreserveWhiteSpace

* setDocType

* setBaseURL

* showWarnings

2. The results of 1) are passed to XMLParser.parseDTD()  method along

with the DTD input.

3. XMLParser.getDocumentType() method then sends the resulting DTD

object back to the new DOMParser()  and the process continues until the

DTD has been applied.

The example, "XML Parser for Java Example 1: Using the Parser and DOM API

(DomSample.java)", shows hoe to use DOMParser()  class.
Using XML Parser for Java 20-17



Using XML Parser for Java: DOMParser() Class
Figure 20–4 XML Parser for Java: DOMParser()

XML Parser for Java Example 1: Using the Parser and DOM API (DomSample.java)
The examples represent the way we write code so it is required to present the

examples with Java coding standards (like all imports expanded), with

documentation headers before the methods, and so on.

// This file demonstates a simple use of the parser and DOM API.
// The XML file given to the application is parsed.

file, string
buffer, or URL

xml input

new
DOMParser()

XMLParser.
parse()

XMLParser.
getDocument

DTD input

XMLParser.
parseDTD()

Available properties:
· setValidationMode 
  [default = not]
· setPreserveWhiteSpace 
  [default = not]
· setDocType 
  [if input type is a DTD]
· setBaseURL 
  [refers other locations to 
  base location if reading 
  from outside source ]
· showWarnings

Apply other
DOM methods

DOM
document

Typically Node 
class methods

To print, use the 
print method. 
This is a 
nonstandard 
DOM method

XMLParser.
getDocument-

Type()

DTD
object

DOMParser.
reset()

XDK for Java: XML Parser for Java — DOM Parser()
20-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: DOMParser() Class
// The elements and attributes in the document are printed.
// This demonstrates setting the parser options.
//

import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import org.w3c.dom.Node;

import oracle.xml.parser.v2.*;

public class DOMSample
{
   static public void main(String[] argv)
   {
      try
      {
         if (argv.length != 1)
         {
            // Must pass in the name of the XML file.
            System.err.println("Usage: java DOMSample filename");
            System.exit(1);
         }

         // Get an instance of the parser
         DOMParser parser = new DOMParser();

 // Generate a URL from the filename.
 URL url = createURL(argv[0]);

         // Set various parser options: validation on,
         // warnings shown, error stream set to stderr.
         parser.setErrorStream(System.err);
         parser.setValidationMode(DTD_validation);
         parser.showWarnings(true);

 // Parse the document.
         parser.parse(url);

         // Obtain the document.
         XMLDocument doc = parser.getDocument();

         // Print document elements
         System.out.print("The elements are: ");
         printElements(doc);
Using XML Parser for Java 20-19



Using XML Parser for Java: DOMParser() Class
         // Print document element attributes
         System.out.println("The attributes of each element are: ");
         printElementAttributes(doc);
         parser.reset();
      }
      catch (Exception e)
      {
         System.out.println(e.toString());
      }
   }

   static void printElements(Document doc)
   {
      NodeList nl = doc.getElementsByTagName("*");
      Node n;

      for (int i=0; i<nl.getLength(); i++)
      {
         n = nl.item(i);
         System.out.print(n.getNodeName() + " ");
      }

      System.out.println();
   }

   static void printElementAttributes(Document doc)
   {
      NodeList nl = doc.getElementsByTagName("*");
      Element e;
      Node n;
      NamedNodeMap nnm;

      String attrname;
      String attrval;
      int i, len;

      len = nl.getLength();
      for (int j=0; j < len; j++)
      {
         e = (Element)nl.item(j);
         System.out.println(e.getTagName() + ":");
         nnm = e.getAttributes();
         if (nnm != null)
         {
20-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: DOMParser() Class
            for (i=0; i<nnm.getLength(); i++)
            {
               n = nnm.item(i);
               attrname = n.getNodeName();
               attrval = n.getNodeValue();
               System.out.print(" " + attrname + " = " + attrval);
            }
         }
         System.out.println();
      }
   }

   static URL createURL(String fileName)
   {
      URL url = null;
      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);
         try
         {
            String path = f.getAbsolutePath();
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
            System.out.println("Cannot create url for: " + fileName);
            System.exit(0);
         }
      }
      return url;
   }
Using XML Parser for Java 20-21



Using XML Parser for Java: DOMParser() Class
}

Comments on DOMParser() Example 1
See also Figure 20–4. The following provides comments for Example 1:

1. Declare a new DOMParser() . In Example 1, see the line:

DOMParser parser = new DOMParser();

This class has several properties you can use. Here the example uses:

parser.setErrorStream(System.err);
parser.setValidationMode(DTD_validation);
parser.showWarnings(true);

2. The XML input is a URL as declared by:

URL url = createURL(argv[0])

3. The XML document is input as a URL. This is parsed using parser.parse():

 parser.parse(url);

4. Gets the document:

XMLDocument doc = parser.getDocument();

5. Applies other DOM methods. In this case:

■ Node class methods:

* getElementsByTagName()

* getAttributes()

* getNodeName()

* getNodeValue()

■ Method, createURL() to convert the string name into a URL.

6. parser.reset() is called to clean up any data structure created during the parse

process, after the DOM tree has been created. Note that this is a new method

with this release.

7. Generates the DOM tree (parsed XML) document for further processing by

your application.
20-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: DOMNamespace() Class
Using XML Parser for Java: DOMNamespace() Class
Figure 20–3 illustrates the main processes involved when parsing an XML

document using the DOM interface. The DOMNamespace() method is applied in

the parser process at the “bubble” that states “Apply other DOM methods”. The

following example illustrates how to use DOMNamespace():

■ "XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java"

XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java
// This file demonstates a simple use of the parser and Namespace
// extensions to the DOM APIs.
// The XML file given to the application is parsed and the
// elements and attributes in the document are printed.
//

import java.io.*;
import java.net.*;

import oracle.xml.parser.v2.DOMParser;

import org.w3c.dom.*;
import org.w3c.dom.Node;

// Extensions to DOM Interfaces for Namespace support.
import oracle.xml.parser.v2.XMLElement;
import oracle.xml.parser.v2.XMLAttr;

public class DOMNamespace
{
   static public void main(String[] argv)
   {
      try
      {
         if (argv.length != 1)
         {
            // Must pass in the name of the XML file.
            System.err.println("Usage: DOMNamespace filename");
            System.exit(1);

Note: No DTD  input is shown in Example 1.
Using XML Parser for Java 20-23



Using XML Parser for Java: DOMNamespace() Class
         }

         // Get an instance of the parser
         Class cls = Class.forName("oracle.xml.parser.v2.DOMParser");
         DOMParser parser = (DOMParser)cls.newInstance();

 // Generate a URL from the filename.
 URL url = createURL(argv[0]);

 // Parse the document.
         parser.parse(url);

         // Obtain the document.
         Document doc = parser.getDocument();

         // Print document elements
         printElements(doc);

         // Print document element attributes
         System.out.println("The attributes of each element are: ");
         printElementAttributes(doc);
      }
      catch (Exception e)
      {
         System.out.println(e.toString());
      }
   }

   static void printElements(Document doc)
   {
      NodeList nl = doc.getElementsByTagName("*");
      XMLElement nsElement;

      String qName;
      String localName;
      String nsName;
      String expName;

      System.out.println("The elements are: ");
      for (int i=0; i < nl.getLength(); i++)
      {
         nsElement = (XMLElement)nl.item(i);

         // Use the methods getQualifiedName(), getLocalName(), getNamespace()
         // and getExpandedName() in NSName interface to get Namespace
20-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: DOMNamespace() Class
         // information.

         qName = nsElement.getQualifiedName();
         System.out.println("  ELEMENT Qualified Name:" + qName);

         localName = nsElement.getLocalName();
         System.out.println("  ELEMENT Local Name    :" + localName);

         nsName = nsElement.getNamespace();
         System.out.println("  ELEMENT Namespace     :" + nsName);

         expName = nsElement.getExpandedName();
         System.out.println("  ELEMENT Expanded Name :" + expName);
      }

      System.out.println();
   }

   static void printElementAttributes(Document doc)
   {
      NodeList nl = doc.getElementsByTagName("*");
      Element e;
      XMLAttr nsAttr;
      String attrname;
      String attrval;
      String attrqname;

      NamedNodeMap nnm;
      int i, len;
      len = nl.getLength();
      for (int j=0; j < len; j++)
      {
         e = (Element) nl.item(j);
         System.out.println(e.getTagName() + ":");
         nnm = e.getAttributes();

         if (nnm != null)
         {
            for (i=0; i < nnm.getLength(); i++)
            {
               nsAttr = (XMLAttr) nnm.item(i);

               // Use the methods getQualifiedName(), getLocalName(),
               // getNamespace() and getExpandedName() in NSName
               // interface to get Namespace information.
Using XML Parser for Java 20-25



Using XML Parser for Java: DOMNamespace() Class
               attrname = nsAttr.getExpandedName();
               attrqname = nsAttr.getQualifiedName();
               attrval = nsAttr.getNodeValue();

System.out.println(" " + attrqname + "(" + attrname + ")" + " = "
+ attrval);
            }
         }
         System.out.println();
      }
   }

   static URL createURL(String fileName)
   {
      URL url = null;
      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);
         try
         {
            String path = f.getAbsolutePath();
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
            System.out.println("Cannot create url for: " + fileName);
            System.exit(0);
         }
      }
      return url;
20-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: SAXParser() Class
   }
}

Using XML Parser for Java: SAXParser() Class
Applications can register a SAX handler to receive notification of various parser

events. XMLReader is the interface that an XML parser's SAX2 driver must

implement. This interface allows an application to set and query features and

properties in the parser, to register event handlers for document processing, and to

initiate a document parse.

All SAX interfaces are assumed synchronous: the parse methods must not return

until parsing is complete, and readers must wait for an event-handler callback to

return before reporting the next event.

This interface replaces the (now deprecated) SAX 1.0 Parser interface. The

XMLReader interface contains two important enhancements over the old Parser

interface:

■ It adds a standard way to query and set features and properties.

■ It adds Namespace support, which is required for many higher-level XML

standards.

Table 20–2 lists the class SAXParser() methods.

Note: No DTD is input is shown in Example 2.

Table 20–2 Class SAXParser() Methods

Method Description

getContentHandler() Returns the current content handler.

getDTDHandler() Returns the current DTD handler.

getEntityResolver() Returns the current entity resolver.

getErrorHandler() Returns the current error handler.

getFeature(java.lang.String name) Looks up the value of a feature.

getProperty(java.lang.String name) Looks up the value of a property.

setContentHandler(ContentHandler handler) Allows an application to register a content event
handler.
Using XML Parser for Java 20-27



Using XML Parser for Java: SAXParser() Class
Figure 20–5 shows the main steps for coding with the SAXParser() class.

1. Declare a new DOMParser() class. Table 20–2 lists the available methods.

2. The results of 1) are passed to .parse() along with the XML input in the form of

a file, string, or URL.

3. Parse methods return when parsing completes. Meanwhile the process waits for

an event-handler callback to return before reporting the next event.

4. The parsed XML document is available for further processing by your

application.

The example, "XML Parser for Java Example 3: Using the Parser and SAX API

(SAXSample.java)", illustrates how you can use SAXParser() class and several

handler interfaces.

setDocumentHandler(DocumentHandler handler) Deprecated. as of SAX2.0 - Replaced by
setContentHandler

setDTDHandler(DTDHandler handler) Allows an application to register a DTD event
handler.

setEntityResolver(EntityResolver resolver) Allows an application to register an entity
resolver.

setErrorHandler(ErrorHandler handler) Allows an application to register an error event
handler.

setFeature(java.lang.String name, boolean value) Sets the state of a feature.

setProperty(java.lang.String name, java.lang.Object value) Sets the value of a property.

Table 20–2 Class SAXParser() Methods(Cont.)

Method Description
20-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: SAXParser() Class
Figure 20–5  Using SAXParser() Class

XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)
// This file demonstates a simple use of the parser and SAX API.
// The XML file given to the application is parsed and
// prints out some information about the contents of this file.
//

import org.xml.sax.*;
import java.io.*;
import java.net.*;
import oracle.xml.parser.v2.*;

public class SAXSample extends HandlerBase
{
   // Store the locator
   Locator locator;

   static public void main(String[] argv)
   {
      try
      {

file,
string buffer,

or URL
xml input

new
SAXParser()

.parse()

Callback
methods

Methods
· setValidationMode
· setPreserveWhiteSpace
· setDocType
· setBaseURL
· setDocumentHandler
· setDTDHandler
· setEntity Resolver
· setErrorHandler

XML Parser for Java: SAXParser()
Using XML Parser for Java 20-29



Using XML Parser for Java: SAXParser() Class
         if (argv.length != 1)
         {
            // Must pass in the name of the XML file.
            System.err.println("Usage: SAXSample filename");
            System.exit(1);
         }
         // (1) Create a new handler for the parser
         SAXSample sample = new SAXSample();

         // (2) Get an instance of the parser
         Parser parser = new SAXParser();

         // (3) Set Handlers in the parser
         parser.setDocumentHandler(sample);
         parser.setEntityResolver(sample);
         parser.setDTDHandler(sample);
         parser.setErrorHandler(sample);

         // (4) Convert file to URL and parse
         try
         {
            parser.parse(fileToURL(new File(argv[0])).toString());
         }
         catch (SAXParseException e)
         {
            System.out.println(e.getMessage());
         }
         catch (SAXException e)
         {
            System.out.println(e.getMessage());
         }
      }
      catch (Exception e)
      {
         System.out.println(e.toString());
      }
   }

   static URL fileToURL(File file)
   {
      String path = file.getAbsolutePath();
      String fSep = System.getProperty("file.separator");
      if (fSep != null && fSep.length() == 1)
         path = path.replace(fSep.charAt(0), '/');
      if (path.length() > 0 && path.charAt(0) != '/')
20-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: SAXParser() Class
         path = '/' + path;
      try
      {
         return new URL("file", null, path);
      }
      catch (java.net.MalformedURLException e)
      {
         throw new Error("unexpected MalformedURLException");
      }
   }

   //////////////////////////////////////////////////////////////////////
   // (5) Sample implementation of DocumentHandler interface.
   //////////////////////////////////////////////////////////////////////

   public void setDocumentLocator (Locator locator)
   {
      System.out.println("SetDocumentLocator:");
      this.locator = locator;
   }

   public void startDocument()
   {
      System.out.println("StartDocument");
   }
   public void endDocument() throws SAXException
   {
      System.out.println("EndDocument");
   }

   public void startElement(String name, AttributeList atts)
                                                  throws SAXException
   {
      System.out.println("StartElement:"+name);
      for (int i=0;i<atts.getLength();i++)
      {
         String aname = atts.getName(i);
         String type = atts.getType(i);
         String value = atts.getValue(i);

         System.out.println("   "+aname+"("+type+")"+"="+value);
      }

   }
   public void endElement(String name) throws SAXException
Using XML Parser for Java 20-31



Using XML Parser for Java: SAXParser() Class
   {
      System.out.println("EndElement:"+name);
   }

   public void characters(char[] cbuf, int start, int len)
   {
      System.out.print("Characters:");
      System.out.println(new String(cbuf,start,len));
   }

   public void ignorableWhitespace(char[] cbuf, int start, int len)
   {
      System.out.println("IgnorableWhiteSpace");
   }

   public void processingInstruction(String target, String data)
              throws SAXException
   {
      System.out.println("ProcessingInstruction:"+target+" "+data);
   }

   //////////////////////////////////////////////////////////////////////
   // (6) Sample implementation of the EntityResolver interface.
   //////////////////////////////////////////////////////////////////////

   public InputSource resolveEntity (String publicId, String systemId)
                      throws SAXException
   {
      System.out.println("ResolveEntity:"+publicId+" "+systemId);
      System.out.println("Locator:"+locator.getPublicId()+" "+
                  locator.getSystemId()+
                  " "+locator.getLineNumber()+" "+locator.getColumnNumber());
      return null;
   }

   //////////////////////////////////////////////////////////////////////
   // (7) Sample implementation of the DTDHandler interface.
   //////////////////////////////////////////////////////////////////////

   public void notationDecl (String name, String publicId, String systemId)
   {
      System.out.println("NotationDecl:"+name+" "+publicId+" "+systemId);
   }
20-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: XSLT Processor
   public void unparsedEntityDecl (String name, String publicId,
         String systemId, String notationName)
   {
      System.out.println("UnparsedEntityDecl:"+name + " "+publicId+" "+
         systemId+" "+notationName);
   }

   //////////////////////////////////////////////////////////////////////
   // (8) Sample implementation of the ErrorHandler interface.
   //////////////////////////////////////////////////////////////////////

   public void warning (SAXParseException e)
         throws SAXException
   {
      System.out.println("Warning:"+e.getMessage());
   }

   public void error (SAXParseException e)
         throws SAXException
   {
      throw new SAXException(e.getMessage());
   }

   public void fatalError (SAXParseException e)
         throws SAXException
   {
      System.out.println("Fatal error");
      throw new SAXException(e.getMessage());
   }
}

Using XML Parser for Java: XSLT Processor
To implement the XSLT Processor in the XML Parser for Java use XSLProcessor

class.

Figure 20–6 shows the overall process used by class, XSLProcessor .

1. A new XSLProcessor()  class declaration begins the XSLT process.

2. There are two inputs:

■ “Stylesheet”. First a stylesheet is built. A new XSLStylesheet() class
is declared with any of the following available methods:
Using XML Parser for Java 20-33



Using XML Parser for Java: XSLT Processor
* removeParam()

* resetParam()

* setParam()

■ “XML input”. This can repeat 1 through n times for a particular stylesheet.

This inputs the “Process Stylesheet” step.

Both inputs can be one of four types:

■ input stream

■ URL

■ XML document

■ Reader

3. The resulting stylesheet object and the XML input, feed the “Process Stylesheet”

step, namely:

XSLProcessor.processXSL(xslstylesheet, xml instance)

4. The XSLProcessor.processXSL() method processes the XML input 1

through n times, using the selected stylesheet.

5. XSLProcessor.processXSL()  outputs either an output stream or a DOM

document.

XML Parser for Java XSLT Processor is illustrated by the following examples:

■ "XML Parser for Java Example 4: (XSLSample.java)"

■ "XML Parser for Java Example 5: Using the DOM API and XSLT Processor"
20-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: XSLT Processor
Figure 20–6 XSLProcessor Class Process

XML Parser for Java Example 4: (XSLSample.java)
/**
 * This file gives a simple example of how to use the XSL processing
 * capabilities of the Oracle XML Parser V2.0. An input XML document is
 * transformed using a given input stylesheet
 */

import org.w3c.dom.*;

Build
stylesheet: new 
XSLStylesheet()

XML input
1...n

Stylesheet
input

stylesheet object

output stream
(writes to a

stream)

DOM
document

XSLProcessor.processXSL
(xslstylesheet, xml instance)

Methods
· removeParam()
· resetParam()
· setParam()

· input stream
· URL
· XML document
· reader

Process
stylesheet

new
XSLProcessor()

1...n

XML Parser for Java: XSLProcessor class
Using XML Parser for Java 20-35



Using XML Parser for Java: XSLT Processor
import java.util.*;
import java.io.*;
import java.net.*;
import oracle.xml.parser.v2.*;

public class XSLSample
{
   /**
    * Transforms an xml document using a stylesheet
    * @param args input xml and xml documents
    */
   public static void main (String args[]) throws Exception
   {
      DOMParser parser;
      XMLDocument xml, xsldoc, out;
      URL xslURL;
      URL xmlURL;

      try
      {

         if (args.length != 2)
         {
            // Must pass in the names of the XSL and XML files
            System.err.println("Usage: java XSLSample xslfile xmlfile");
            System.exit(1);
         }

         // Parse xsl and xml documents

         parser = new DOMParser();
         parser.setPreserveWhitespace(true);

         // parser input XSL file
         xslURL = createURL(args[0]);
         parser.parse(xslURL);
         xsldoc = parser.getDocument();

         // parser input XML file
         xmlURL = createURL(args[1]);
         parser.parse(xmlURL);
         xml = parser.getDocument();

         // instantiate a stylesheet
         XSLStylesheet xsl = new XSLStylesheet(xsldoc, xslURL);
20-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: XSLT Processor
         XSLProcessor processor = new XSLProcessor();

         // display any warnings that may occur
         processor.showWarnings(true);
         processor.setErrorStream(System.err);

         // Process XSL
         DocumentFragment result = processor.processXSL(xsl, xml);

         // create an output document to hold the result
         out = new XMLDocument();

         // create a dummy document element for the output document
         Element root = out.createElement("root");
         out.appendChild(root);

         // append the transformed tree to the dummy document element
         root.appendChild(result);

         // print the transformed document
         out.print(System.out);
      }
      catch (Exception e)
      {
         e.printStackTrace();
      }
   }

   // Helper method to create a URL from a file name
   static URL createURL(String fileName)
   {
      URL url = null;
      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);
         try
         {
            String path = f.getAbsolutePath();
            // This is a bunch of weird code that is required to
            // make a valid URL on the Windows platform, due
            // to inconsistencies in what getAbsolutePath returns.
Using XML Parser for Java 20-37



Using XML Parser for Java: XSLT Processor
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
            System.out.println("Cannot create url for: " + fileName);
            System.exit(0);
         }
      }
      return url;
   }
}

XML Parser for Java Example 5: Using the DOM API and XSLT Processor
This example code is not included in the sample/  subdirectory. It uses the XML

Parser for Java v2, to perform the following tasks.

■ Parse an XML document

■ Use the DOM API, to manipulate the XML data

■ Use the XSLT Processor to transform the data

import org.w3c.dom.*;
import java.util.*;
import java.io.*;
import java.net.*;
import oracle.xml.parser.v2.*;
public class XSLTransform
{
   public static void main (String args[]) throws Exception
   {
      DOMParser parser;
      XMLDocument xml, xsldoc, out;
20-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: XSLT Processor
      URL xslURL;
      URL xmlURL;

      try
      {
         if (args.length != 2)
         {
      // Pass in the names of the XSL and XML files
         System.err.println("Usage: java XSLTransform
            xslfile xmlfile");
         System.exit(1);
         }

      // Parse XSL and XML documents
         parser = new DOMParser();
         parser.setPreserveWhitespace(true);

         xslURL = createURL(args[0]);
         parser.parse(xslURL);
         xsldoc = parser.getDocument();

         xmlURL = createURL(args[1]);
         parser.parse(xmlURL);
         xml = parser.getDocument();

      // Instantiate the stylesheet
         XSLStylesheet xsl = new XSLStylesheet(xsldoc, xslURL);

         XSLProcessor processor = new XSLProcessor();

      // Display any warnings that may occur
         processor.showWarnings(true);
         processor.setErrorStream(System.err);

      // Process XSL
         DocumentFragment result = processor.processXSL(xsl, xml);

      // Create an output document to hold the result
         out = new XMLDocument();

      // Create a dummy document element for the output document
         Element root = out.createElement("root");
         out.appendChild(root);

      // Append the transformed tree to the dummy document element
Using XML Parser for Java 20-39



Using XML Parser for Java: XSLT Processor
          root.appendChild(result);

      // Print the transformed document
         out.print(System.out);
      }
      catch (Exception e)
      {
         e.printStackTrace();
      }
   }
}

Comments on XSLT Example 5
See Figure 20–4 and Figure 20–6. The following provides comments for Example 5:

1. The program inputs two URL documents:

■ URL xmlURL;

■ URL xslURL;

2. Parse the two documents and set the preserve white space property:

parser = new DOMParser();
parser.setPreserveWhitespace(true);

3. Get the XSL and XML documents

xslURL = createURL(args[0]);
parser.parse(xslURL);
xsldoc = parser.getDocument();

xmlURL = createURL(args[1]);
xmlURL = createURL(args[1]);
parser.parse(xmlURL);
xml = parser.getDocument();

4. Initialize a new XSLStylesheet and XSLProcessor class:

XSLStylesheet xsl = new XSLStylesheet(xsldoc, xslURL);

XSLProcessor processor = new XSLProcessor();
    processor.setErrorStream(System.err);

5. Process the stylesheet
20-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: SAXNamespace() Class
DocumentFragment result = processor.processXSL(xsl, xml);

6. Output the DOM XML transformed document

out = new XMLDocument();
Element root = out.createElement("root");
out.appendChild(root);
root.appendChild(result);

Using XML Parser for Java: SAXNamespace() Class
Using the SAXNamespace() class is illustrated in the following example:

■ "XML Parser for Java Example 6: (SAXNamespace.java)"

XML Parser for Java Example 6: (SAXNamespace.java)
// This file demonstrates a simple use of the Namespace extensions to
// the SAX APIs.

import org.xml.sax.*;
import java.io.*;
import java.net.URL;
import java.net.MalformedURLException;

// Extensions to the SAX Interfaces for Namespace support.
import oracle.xml.parser.v2.XMLDocumentHandler;
import oracle.xml.parser.v2.DefaultXMLDocumentHandler;
import oracle.xml.parser.v2.NSName;
import oracle.xml.parser.v2.SAXAttrList;

import oracle.xml.parser.v2.SAXParser;

public class SAXNamespace {
  static public void main(String[] args) {
     String fileName;

     //Get the file name
     if (args.length == 0)
     {
        System.err.println("No file Specified!!!");
        System.err.println("USAGE: java SAXNamespace <filename>");
        return;
     }
Using XML Parser for Java 20-41



Using XML Parser for Java: SAXNamespace() Class
     else
     {
        fileName = args[0];
     }

     try {
        // Create handlers for the parser
        // Use the XMLDocumentHandler interface for namespace support
        // instead of org.xml.sax.DocumentHandler
        XMLDocumentHandler xmlDocHandler = new XMLDocumentHandlerImpl();

        // For all the other interface use the default provided by
        // Handler base
        HandlerBase defHandler = new HandlerBase();

        // Get an instance of the parser
        SAXParser parser = new SAXParser();

        // Set Handlers in the parser
        // Set the DocumentHandler to XMLDocumentHandler
        parser.setDocumentHandler(xmlDocHandler);

        // Set the other Handler to the defHandler
        parser.setErrorHandler(defHandler);
        parser.setEntityResolver(defHandler);
        parser.setDTDHandler(defHandler);

        try
        {
           parser.parse(fileToURL(new File(fileName)).toString());
        }
        catch (SAXParseException e)
        {
           System.err.println(args[0] + ": " + e.getMessage());
        }
        catch (SAXException e)
        {
           System.err.println(args[0] + ": " + e.getMessage());
        }
     }
     catch (Exception e)
     {
        System.err.println(e.toString());
     }
  }
20-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for Java: SAXNamespace() Class
static public URL fileToURL(File file)
   {
    String path = file.getAbsolutePath();
    String fSep = System.getProperty("file.separator");
    if (fSep != null && fSep.length() == 1)
      path = path.replace(fSep.charAt(0), '/');
    if (path.length() > 0 && path.charAt(0) != '/')
      path = '/' + path;
    try {
      return new URL("file", null, path);
    }
    catch (java.net.MalformedURLException e) {
      /* According to the spec this could only happen if the file
 protocol were not recognized. */
      throw new Error("unexpected MalformedURLException");
    }
  }

  private SAXNamespace() throws IOException
   {
   }

}
   /***********************************************************************
     Implementation of XMLDocumentHandler interface. Only the new
     startElement and endElement interfaces are implemented here. All other
     interfaces are implemented in the class HandlerBase.
     **********************************************************************/

class XMLDocumentHandlerImpl extends DefaultXMLDocumentHandler
{

   public void XMLDocumentHandlerImpl()
   {
   }

   public void startElement(NSName name, SAXAttrList atts) throws SAXException
   {

      // Use the methods getQualifiedName(), getLocalName(), getNamespace()
      // and getExpandedName() in NSName interface to get Namespace
      // information.
      String qName;
Using XML Parser for Java 20-43



Using XML Parser for Java: SAXNamespace() Class
      String localName;
      String nsName;
      String expName;
      qName = name.getQualifiedName();
      System.out.println("ELEMENT Qualified Name:" + qName);
      localName = name.getLocalName();
      System.out.println("ELEMENT Local Name    :" + localName);

      nsName = name.getNamespace();
      System.out.println("ELEMENT Namespace     :" + nsName);

      expName = name.getExpandedName();
      System.out.println("ELEMENT Expanded Name :" + expName);

      for (int i=0; i<atts.getLength(); i++)
      {

      // Use the methods getQualifiedName(), getLocalName(), getNamespace()
      // and getExpandedName() in SAXAttrList interface to get Namespace
      // information.
         qName = atts.getQualifiedName(i);
         localName = atts.getLocalName(i);
         nsName = atts.getNamespace(i);
         expName = atts.getExpandedName(i);

         System.out.println(" ATTRIBUTE Qualified Name   :" + qName);
         System.out.println(" ATTRIBUTE Local Name       :" + localName);
         System.out.println(" ATTRIBUTE Namespace        :" + nsName);
         System.out.println(" ATTRIBUTE Expanded Name    :" + expName);

         // You can get the type and value of the attributes either
         // by index or by the Qualified Name.
         String type = atts.getType(qName);
         String value = atts.getValue(qName);

         System.out.println(" ATTRIBUTE Type             :" + type);
         System.out.println(" ATTRIBUTE Value            :" + value);
         System.out.println();
      }
   }

  public void endElement(NSName name) throws SAXException
   {
      // Use the methods getQualifiedName(), getLocalName(), getNamespace()
      // and getExpandedName() in NSName interface to get Namespace
20-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java: Command Line Interface
      // information.
      String expName = name.getExpandedName();
      System.out.println("ELEMENT Expanded Name  :" + expName);
   }
}

XML Parser for Java: Command Line Interface

oraxml - Oracle XML parser
oraxml  is a command-line interface to parse an XML document. It checks for

well-formedness and validity.

To use oraxml ensure the following:

■ Your CLASSPATH environment variable is set to point to the xmlparserv2.jar

file that comes with Oracle XML V2 parser for Java.

■ Your PATH environment variable can find the java interpreter that comes with

JDK 1.1.x or JDK 1.2.

■  Because oraxml  supports schema validation, include xschema.jar  also in

your CLASSPATH

Use the following syntax to invoke oraxml :

oraxml options* source

oraxml  expects to be given an XML file to parse. Table 20–3 lists oraxml’s

command line options.

Table 20–3 oraxml: Command Line Options

Option Purpose

-h Help mod. Prints oraxml invocation syntax.

-v Partial validation mo. If this option is not used, the parser
checks only for well formedness.

-s Strict validation mode.

-w Show warnings. By default, warnings are turned off.

-debug Debug mod. By default, debug mode is turned off.
Using XML Parser for Java 20-45



XML Parser for Java: Command Line Interface
oraxsl - Oracle XSL processor
oraxsl  is a command-line interface used to apply a stylesheet on multiple XML

documents. It accepts a number of command-line options that dictate how it should

behave.

To use oraxsl  ensure the following:

■ Your CLASSPATH environment variable is set to point to the xmlparserv2.jar

file that comes with Oracle XML V2 parser for Java.

■ Your PATH environment variable can find the java interpreter that comes with

JDK 1.1.x or JDK 1.2.

Use the following syntax to invoke oraxsl :

oraxsl options* source? stylesheet? result?

oraxsl  expects to be given a stylesheet, an XML file to transform, and optionally, a

result file. If no result file is specified, it outputs the transformed document to

standard out. If multiple XML documents need to be transformed by a stylesheet,

the -l or -d options in conjunction with the -s and -r options should be used instead.

These and other options are described in Table 20–4.

-e <error log> A file to write errors to. Specify a log file to write errors and
warnings.

Table 20–4 oraxsl: Command Line Options

Option Purpose

-h Help mode (prints oraxsl invocation syntax)

-v Verbose mode (some debugging information is printed and
could help in tracing any problems that are encountered
during processing)

 -w Show warnings (by default, warnings are turned off)

-debug New - Debug mode (by default, debug mode is turned off)

-e <error log> A file to write errors to (specify a log file to write errors and
warnings).

Table 20–3 oraxml: Command Line Options

Option Purpose
20-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Extension Functions for XSLT Processing
XML Extension Functions for XSLT Processing

XSLT Processor Extension Functions: Introduction
XML extension functions for XSLT processing allow users of XSLT processor to call

any Java method from XSL expressions. Java extension functions should belong to

the namespace that starts with the following:

 -t <# of threads> Number of threads to use for processing (using multiple
threads could provide performance improvements when
processing multiple documents).

 -l <xml file list> List of files to transform (allows you to explicitly list the files to
be processed).

-d <directory> Directory with files to transform (the default behavior is to
process all files in the directory). If only a certain subset of the
files in that directory, e.g., one file, need to be processed, this
behavior must be changed by using -l and specifying just the
files that need to be processed. You could also change the
behavior by using the '-x' or '-i' option to select files based on
their extension).

 -x <source extension> Extensions to exclude (used in conjunction with -d. All files
with the specified extension will not be selected).

 -i <source extension> Extensions to include (used in conjunction with -d. Only files
with the specified extension will be selected).

-s <stylesheet> Stylesheet to use (if -d or -l is specified, this option needs to be
specified to specify the stylesheet to be used. The complete
path must be specified).

 -r <result extension> Extension to use for results (if -d or -l is specified, this option
must be specified to specify the extension to be used for the
results of the transformation. So, if one specifies the extension
"out", an input document "foo" would get transformed to
"foo.out". By default, the results are placed in the current
directory. This is can be changed by using the -o option which
allows you to specify a directory to hold the results).

 -o <result directory> Directory to place results (this must be used in conjunction
with the -r option).

-p List of Parameters

Table 20–4 oraxsl: Command Line Options (Cont.)

Option Purpose
Using XML Parser for Java 20-47



XML Extension Functions for XSLT Processing
http://www.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace:

http://www.oracle.com/XSL/Transform/java/classname

refers to methods in class classname . For example, the following namespace:

http://www.oracle.com/XSL/Transform/java/java.lang.String

can be used to call java.lang.String methods from XSL expressions.

Static Versus Non-static Methods
If the method is a non-static method of the class, then the first parameter will be

used as the instance on which the method is invoked, and the rest of the parameters

are passed on to the method.

If the extension function is a static method, then all the parameters of the extension

function are passed on as parameters to the static function.

XML Parser for Java - XSL Example 1: Static function
The following XSL, static function example:

<xsl:stylesheet
xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
  <xsl:template match="/">
  <xsl:value-of select="math:ceil('12.34')"/>
</xsl:template>
</xsl:stylesheet>

prints out '13'.

Constructor Extension Function
The extension function 'new' creates a new instance of the class and acts as the

constructor.

XML Parser for Java - XSL Example 2: Constructor Extension Function
The following constructor function example:

<xsl:stylesheet
xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
  <xsl:template match="/">
20-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Extension Functions for XSLT Processing
  <!-- creates a new java.lang.String and stores it in the variable str1 -->
  <xsl:variable name="str1" select="jstring:new('Hello World')"/>
  <xsl:value-of select="jstring:toUpperCase($str1)"/>
</xsl:template>
</xsl:stylesheet>

prints out 'HELLO WORLD'.

Return Value Extension Function
The result of an extension function can be of any type, including the five types

defined in XSL:

■ NodeList

■ boolean

■ String

■ Number

■ resulttree

They can be stored in variables or passed onto other extension functions.

If the result is of one of the five types defined in XSL, then the result can be returned

as the result of an XSL expression.

XML Parser for Java XSL- XSL Example 3: Return Value Extension Function
Here is an XSL example illustrating the Return value extension function:

<!-- Declare extension function namespace -->
<xsl:stylesheet xmlns:parser =
"http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.DOMParser"
xmlns:document =
"http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument" >

<xsl:template match ="/"> <!-- Create a new instance of the parser, store it in
myparser variable -->
<xsl:variable name="myparser" select="parser:new()"/>
<!-- Call a non-static method of DOMParser. Since the method is anon-static
method, the first parameter is the instance on which themethod is called. This
is equivalent to $myparser.parse('test.xml') -->
<xsl:value-of select="parser:parse($myparser, 'test.xml')"/>
<!-- Get the document node of the XML Dom tree -->
<xsl:variable name="mydocument" select="parser:getDocument($myparser)"/>
Using XML Parser for Java 20-49



XML Extension Functions for XSLT Processing
<!-- Invoke getelementsbytagname on mydocument -->
<xsl:for-each select="document:getElementsByTagName($mydocument,'elementname')">
......
</xsl:for-each> </xsl:template>
</xsl:stylesheet>

Datatypes Extension Function
Overloading based on number of parameters and type is supported. Implicit type

conversion is done between the five XSL types as defined in XSL.

Type conversion is done implicitly between (String, Number, Boolean, ResultTree)

and from NodeSet to (String, Number, Boolean, ResultTree).

Overloading based on two types which can be implicitly converted to each other is

not permitted.

XML Parser for Java - XSL Example 4: Datatype Extension Function
The following overloading will result in an error in XSL, since String and Number

can be implicitly converted to each other:

■ abc(int i){}

■ abc(String s){}

Mapping between XSL type and Java type is done as following:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean
NodeSet -> XMLNodeList
ResultTree -> XMLDocumentFragment

ora XSLT Built In Extensions: ora:node-set and ora:output
The following example illustrates both ora:node-set and ora:output in action.

If you do:

$ oraxsl foo.xml slides.xsl toc.html

where "foo.xml" is any XML file, you get:

■ A "toc.html" slide with a table of contents

■ A "slide01.html" file with slide 1
20-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Extension Functions for XSLT Processing
■ A "slide02.html" file with slide 2

<!--
                                      | Illustrate using ora:node-set and
ora:output
                                      |
                                      | Both extensions depend on defining a
namespace
                                      | with the uri of
"http://www.oracle.com/XSL/Transform/java"
                                      +-->
                                     <xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:ora="http://www.oracle.com/XSL/Transform/java">

                                       <!-- <xsl:output> affects the primary
result document -->
                                       <xsl:output mode="html" indent="no"/>

                                       <!--
| <ora:output> at the top-level allows

all attributes
                                        |   that <xsl:output> allows, but you
must provide the
                                        |   additional "name" attribute to
assign a name to
                                        |   these output settings to be used
later.
                                        +-->
                                       <ora:output name="myOutput" mode="html"
indent="no"/>
                                       <!--
                                        | This top-level variable is a
result-tree fragment
                                        +-->
                                       <xsl:variable name="fragment">
                                         <slides>
                                           <slide>
                                             <title>First Slide</title>
                                             <bullet>Point One</bullet>
                                             <bullet>Point Two</bullet>
                                             <bullet>Point Three</bullet>
                                           </slide>
Using XML Parser for Java 20-51



XML Extension Functions for XSLT Processing
                                           <slide>
                                             <title>Second Slide</title>
                                             <bullet>Point One</bullet>
                                             <bullet>Point Two</bullet>
                                             <bullet>Point Three</bullet>
                                           </slide>
                                         </slides>
                                       </xsl:variable>
                                       <xsl:template match="/">
                                         <!--
                                          | We cannot "de-reference" a
result-tree-fragment to
                                          | navigate into it with an XPath
expression. However, using
                                          | the ora:node-set() built-in
extension function, you can
                                          | "cast" a result-tree fragment to a
node-set which *can*

| then be navigated using XPath. Since
we'll use the node-set

| of <slides> twice below, we save the
node-set in a variable.
                                          +-->
                                         <xsl:variable name="slides"
select="ora:node-set($fragment)"/>
                                         <!--
                                          | This <html> page will go to the
primary result document.
                                          | It is a "table of contents" for the
slide show, with
                                          | links to each slide. The "slides"
will each be generated
                                          | into *secondary* result documents,
each slide having
                                          | a file name of "slideNN.html" where
NN is the two-digit
                                          | slide number
                                          +-->
                                         <html>
                                           <body>
                                             <h1>List of All Slides</h1>
                                             <xsl:apply-templates
select="$slides" mode="toc"/>
                                           </body>
                                         </html>
20-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Extension Functions for XSLT Processing
                                         <!--
                                          | Now go apply-templates to format
each slide
                                          +-->
                                         <xsl:apply-templates select="$slides"/>
                                       </xsl:template>
                                       <!-- In 'toc' mode, generate a link to
each slide we match -->
                                       <xsl:template match="slide" mode="toc">
                                         <a
href="slide{format-number(position(),'00')}.html">
                                           <xsl:value-of select="title"/>
                                         </a><br/>
                                       </xsl:template>
                                       <!--
                                        | For each slide matched, send the
output for the current
                                        | <slide> to a file named
"slideNN.html". Use the named
                                        | output style defined above called
"myOutput".
                                        +-->
                                       <xsl:template match="slide">
                                         <ora:output use="myOutput"

href="slide{format-number(position(),'00')}.html">
                                           <html>
                                             <body>
                                               <xsl:apply-templates
select="title"/>
                                               <ul>
                                                 <xsl:apply-templates
select="*[not(self::title)]"/>
                                               </ul>
                                             </body>
                                           </html>
                                         </ora:output>
                                       </xsl:template>
                                       <xsl:template match="bullet">
                                         <li><xsl:value-of select="."/></li>
                                       </xsl:template>
                                       <xsl:template match="title">
                                         <h1><xsl:value-of select="."/></h1>
                                       </xsl:template>
                                     </xsl:stylesheet>
Using XML Parser for Java 20-53



XML Extension Functions for XSLT Processing
20-54 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DTDs
Frequently Asked Questions (FAQs): XML Parser for Java
The XML Parser for Java Frequently Asked Questions (FAQs) are organized into the

following topics:

■ DTDs

■ DOM and SAX APIs

■ Validation

■ Character Sets

■ Adding XML Document as a Child

■ Uninstalling Parsers

■ XML Parser for Java: Installation

■ General XML Parser Related Questions

■ XSLT Processor and XSL Stylesheets

■ Compressing Large Volumes of XML Documents

DTDs

Checking DTD Syntax: Suggestions for Editors

Question
I was wondering if someone could help me verify the syntax for the following DTD.

I realize that I can use a DTD editor to do this for me, but the editor I'm using is not

very good.

 <?xml version="1.0"?>
 <!DOCTYPE CATALOG [

 <!ELEMENT CATALOG ( ADMIN, SCHEMA?, DATA? ) >
 <!ATTLIST CATALOG xml:lang NMTOKEN #IMPLIED >

 <!ELEMENT ADMIN ( NAME, INFORMATION) >
 <!ELEMENT SCHEMA (CATEGORY | DESCRIPTOR)* >
 <!ELEMENT DATA (ITEM)*>

 <!ELEMENT NAME (#PCDATA) >
 <!ELEMENT INFORMATION ( DATE, SOURCE )  >
Using XML Parser for Java 20-55



DTDs
 <!ELEMENT DATE (#PCDATA) >
 <!ELEMENT SOURCE (#PCDATA) >

 <!ELEMENT CATEGORY (NAME | KEY | TYPE | UPDATE  )* >
 <!ATTLIST CATEGORY ACTION (ADD|DELETE|UPDATE) #REQUIRED>
 <!ELEMENT DESCRIPTOR (NAME | KEY | UPDATE | OWNER  | TYPE )* >
 <!ATTLIST DESCRIPTOR ACTION (ADD|DELETE|UPDATE) #REQUIRED>
 <!ELEMENT OWNER (NAME?, KEY? ) >
 <!ELEMENT KEY (#PCDATA) >
 <!ELEMENT TYPE (#PCDATA) >

 <!ELEMENT ITEM (OWNER?, NAMEVALUE*, UPDATE ) >
 <!ATTLIST ITEM ACTION (ADD | DELETE | UPDATE) #REQUIRED>
 <!ELEMENT UPDATE (NAME | KEY | NAMEVALUE )* >

 <!ELEMENT NAMEVALUE ( NAME, VALUE ) >
 <!ELEMENT VALUE (#PCDATA)* >
 ]>

 I'm unsure about the ATTLIST syntax.

Answer
I loaded this into XMLAuthority 1.1 and did a Save As. XML Authority lets you

visually inspect and edit DTD's and XML Schemas. Highly recommended.

http://www.extensibility.com ($99.00).

It came back with:

<!ELEMENT CATALOG  (ADMIN , SCHEMA? , DATA? )>
<!ATTLIST CATALOG  xml:lang NMTOKEN  #IMPLIED >
<!ELEMENT ADMIN  (NAME , INFORMATION )>
<!ELEMENT SCHEMA  (CATEGORY | DESCRIPTOR )*>
<!ELEMENT DATA  (ITEM )*>
<!ELEMENT NAME  (#PCDATA )>
<!ELEMENT INFORMATION  (DATE , SOURCE )>
<!ELEMENT DATE  (#PCDATA )>
<!ELEMENT SOURCE  (#PCDATA )>
<!ELEMENT CATEGORY  (NAME | KEY | TYPE | UPDATE )*>
<!ATTLIST CATEGORY  ACTION  (ADD | DELETE | UPDATE )  #REQUIRED >
<!ELEMENT DESCRIPTOR  (NAME | KEY | UPDATE | OWNER | TYPE )*>
<!ATTLIST DESCRIPTOR  ACTION  (ADD | DELETE | UPDATE )  #REQUIRED >
<!ELEMENT OWNER  (NAME? , KEY? )>
<!ELEMENT KEY  (#PCDATA )>
<!ELEMENT TYPE  (#PCDATA )>
20-56 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DTDs
<!ELEMENT ITEM  (OWNER? , NAMEVALUE* , UPDATE )>
<!ATTLIST ITEM  ACTION  (ADD | DELETE | UPDATE )  #REQUIRED >
<!ELEMENT UPDATE  (NAME | KEY | NAMEVALUE )*>
<!ELEMENT NAMEVALUE  (NAME , VALUE )>
<!ELEMENT VALUE  (#PCDATA )*>

DTD File in DOCTYPE Must be Relative to XML Document Location

Question
My parser doesn’t find the DTD file.

Answer
The DTD file defined in the <!DOCTYPE> declaration must be relative to the

location of the input XML document. Otherwise, you'll need to use the

setBaseURL(url) functions to set the base URL to resolve the relative address of the

DTD if the input is coming from an InputStream.

Validating an XML File Using External DTD

Question
Can I validate an XML file using an external DTD?

Answer
You need to include a reference to the applicable DTD in your XML document.

Without it there is no way that the parser knows what to validate against. Including

the reference is the XML standard way of specifying an external DTD. Otherwise

you need to embed the DTD in your XML Document.

DTD Caching

Question
Do you have DTD caching? How do I set the DTD using v2 parser for DTD Cache

purpose?

Answer
Yes, DTD caching is optional and is not enabled automatically.
Using XML Parser for Java 20-57



DTDs
The method to set the DTD is setDoctype(). Here is an example:

// Test using InputSource
parser = new DOMParser();
parser.setErrorStream(System.out);
parser.showWarnings(true);

FileReader r = new FileReader(args[0]);
InputSource inSource = new InputSource(r);
inSource.setSystemId(createURL(args[0]).toString());
parser.parseDTD(inSource, args[1]);
dtd = (DTD)parser.getDoctype();

r = new FileReader(args[2]);
inSource = new InputSource(r);
inSource.setSystemId(createURL(args[2]).toString());
parser.setDoctype(dtd);
parser.setValidationMode(DTD_validation);
parser.parse(inSource);

doc = (XMLDocument)parser.getDocument();
doc.print(new PrintWriter(System.out));

Recognizing External DTDs

Question
How can XML Parser for Java (V2) recognize external DTD’s when running from

the server. The Java code has been loaded with loadjava and runs in the Oracle9i

server process. My XML file has an external DTD reference.

1. But is there a more generic way, as with the SAX parser, to redirect it to a

stream or string or something if my DTD is in the database?

2. Do you have a more generic way to redirect the DTD, analogous to that offered

by the SAXParser with resolveEntity().

Answer
1. We only have the setBaseURL() method at this time.

2. You can achieve your desired result using the following:

a. Parse your External DTD using a DOMParser's parseDTD() method.

b. Call getDoctype() to get an instance of oracle.xml.parser.v2.DTD
20-58 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DTDs
c. On the document where you want to set your DTD programmatically, use

the: setDoctype(yourDTD); We use this technique to read a DTD out of our

product's JAR file.

Loading external DTD’s from a jar File

Question
I would like to put all my DTDs in a jar file, so that when the XML Parser needs a

DTD it can get it from the jar. The current XML Parser supports a base

URL(setBaseURL()), but that just points to a place where all the DTDs are exposed.

Answer
The solution involves a combination of:

1. Load DTD as InputStream using:

InputStream is =
YourClass.class.getResourceAsStream("/foo/bar/your.dtd");
This will open ./foo/bar/your.dtd in the first relative location on the

CLASSPATH that it can be found, including out of your jar if it’s in the

CLASSPATH.

2. Parse the DTD with the code:

DOMParser d = new DOMParser();
d.parseDTD(is, "rootelementname");
d.setDoctype(d.getDoctype());

3. Now parse your document with:

d.parse("yourdoc");

Can I Check the Correctness of an XML Document Using their DTD?

Question
I am exporting Java objects to XML. I can construct a DOM with an XML Document

and use its print method to export it. But, I am unable to set the DTD of these

documents. I construct a parser, parse the DTD, and then get the DTD via

Document doc = parser.getDocument() and DocType dtd =

doc.getDocumentType().
Using XML Parser for Java 20-59



DTDs
How do I set the DTD of the freshly constructed XML Documents to use this one in

order to be able to check the correctness of the documents using this DTD at a later

time?

Answer
Your method of getting the DTD object is correct. However, we do not do any

validation while creating the DOM tree using DOM APIs. So setting the DTD in the

Document will not help validate the DOM tree that is constructed. The only way to

validate an XML file is to parse the XML document using DOMParser or

SAXParser.

Parsing a DTD Object Separately from XML Document

Question
How do I parse and get a DTD Object separately from parsing my XML document?

Answer
The parseDTD() method allows you to parse a DTD file separately and get a DTD

object. Here is a sample code to do that:

DOMParser domparser = new DOMParser();
domparser.setValidationMode(DTD_validation);
/* parse the DTD file */
domparser.parseDTD(new FileReader(dtdfile));
DTD dtd = domparser.getDocType();

Case-Sensitivity in Parser Validation against DTD?

Question
The XML file has a tag like: <xn:subjectcode>. In the DTD, it is defined as

<xn:subjectCode> . When the file is parsed and validated against the DTD, it

gives an error: XML-0148: (Error) Invalid element 'xn:subjectcode' in content of

'xn:Resource',...

When I changed the element name to <xn:subjectCode> instead of <xn:subjectcode>

it works. Is the parser case-sensitive as far as validation against DTD's go - or is it

because, there is a namespace also in the tag definition of the element and when a

element is defined along with its namespace, the case-sensitivity comes into effect?
20-60 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DTDs
Answer
XML is inherently case-sensitive, therefore our parsers enforce case sensitivity in

order to be compliant.   When you run in non-validation mode only

well-formedness counts. However <test></Test> would signal an error even in

non-validation mode.

Extracting Embedded XML From a CDATA Section

Question
1. I want to extract PAYLOAD and do extra processing on it.

2. When I select the value of PAYLOAD it does not parse the data because it is in a

CDATA section.

3. How do I extract embedded XML using just XSLT. I have done this using SAX

before but in the current setup all I can use is XSLT.

Answer
1. Here are the answers:

<PAYLOAD>
<![CDATA[<?xml version = '1.0' encoding = 'ASCII' standalone = 'no'?>
<ADD_PO_003>
   <CNTROLAREA>
      <BSR>
         <VERB value="ADD">ADD</VERB>
         <NOUN value="PO">PO</NOUN>
         <REVISION value="003">003</REVISION>
      </BSR>
   </CNTROLAREA>
</ADD_PO_003>]]>
</PAYLOAD>

The CDATA strategy is kind of odd. You won't be able to use a different

encoding on the nested XML document included as text inside the CDATA, so

having the XML Declaration of the embedded document seems of little value to

me. If you don't need the XML Declaration, then why not just embed the

message as real elements into the <PAYLOAD> instead of as a text chunk

which is what CDATA does for you.

Just do:

String s = YourDocumentObject.selectSingleNode("/OES_MESSAGE/PAYLOAD");
Using XML Parser for Java 20-61



DTDs
2. It shouldn't parse the data, you've asked for it to be a big text chunk, which is

what it will give you. You'll have to parse the text chunk yourself (another

benefit of not using the CDATA approach) by doing something like:

  YourParser.parse( new StringReader(s));

where s is the string you got in the previous step.

3. There's nothing special about what's in your CDATA, it's just text. If you want

the text content to be output without escaping the angle-brackets, then you'll

do:

 <xsl:value-of select="/OES_MESSAGE/PAYLOAD" disable-output-escaping="yes"/>

Why Am I Getting an Error When I Call DOMParser.parseDTD()?

Question
I am having trouble creating a DTD and parsing it using Oracle XML Parser for Java

v2. I got the following error when I call DOMParser.parseDTD() function:

Attribute value should start with quote.

Please check my DTD and tell me what's wrong?

<?xml version = "1.0" encoding="UTF-8" ?>
<!-- RCS_ID = "$Header: XMLRenderer.dtd 115.0 2000/09/18 03:00:10 fli noship $"
-->
<!-- RCS_ID_RECORDED = VersionInfo.recordClassVersion(RCS_ID,
"oracle.apps.mwa.admin") -->
<!--  Copyright: This DTD file is owned by Oracle Mobile Application Server
Group.  -->
  <!ELEMENT    page    (header?,form,footer?) >
  <!ATTLIST    page
               name    CDATA   #REQUIRED
               lov     (Y|N)   'N' >
  <!ELEMENT    header EMPTY >
  <!ATTLIST    header
               name    CDATA   #REQUIRED

title   CDATA
               home    (Y|N)   'N'
               portal  (Y|N)   'N'
               logout  (Y|N)   'N' >
  <!ELEMENT    footer EMPTY >
  <!ATTLIST    footer
20-62 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DTDs
               name    CDATA   #REQUIRED
               home    (Y|N)   'N'
               portal  (Y|N)   'N'
               logout  (Y|N)   'N'
               copyright (Y|N) 'N' >

  <!ELEMENT    form
  (styledText|textInput|list|link|menu|submitButton|table|separator)+ >
  <!ATTLIST    form
               name    CDATA    #REQUIRED

title    CDATA
               type     CDATA >

  <!ELEMENT    styledText    (#PCDATA) >

  <!ELEMENT    textInput    EMPTY >
  <!ATTLIST    textInput
               name    CDATA    #REQUIRED
               prompt    CDATA    #IMPLIED
               password    (Y|N)    'N'
               required    (Y|N)    'N'
               maxlength    #IMPLIED
               size    #IMPLIED
               format    #IMPLIED
               default    #IMPLIED >

  <!ELEMENT    link (postfield*) >
  <!ATTLIST    link
               name    CDATA    #REQUIRED
               title    CDATA    #REQUIRED
               baseurl    CDATA    #REQUIRED >

Answer
Your DTD syntax is not valid. When you declare ATTLIST with CDATA, you must

put #REQUIRED, #IMPLIED, #FIXED, “any value”, %paramatic_entity. For

example, your DTD contains

<!ELEMENT  header EMPTY >
<!ATTLIST  header
           name    CDATA   #REQUIRED
           title   CDATA
           home    (Y|N)   'N'
           portal  (Y|N)   'N'
           logout  (Y|N)   'N' >
Using XML Parser for Java 20-63



DTDs
should change as follows:

<!ELEMENT  header EMPTY >
<!ATTLIST  header
           name   CDATA #REQUIRED
           title  CDATA #REQUIRED <- can replaced by #FIXED, #IMPLIED, or
"title1"
           home    (Y|N)   'N'
           portal  (Y|N)   'N'
           logout  (Y|N)   'N' >

Is There a Standard Extension To Use for External Entities References in an XML
Document?

Question
Is there a standard extension (other than .xml or .txt) that should be used for

external entities which are being referenced in an XML document. These external

entities are not complete XML files, but rather only part of an XML file, starting

with the <![CDATA[. Mostly they contain HTML, or Javascript code, but may also

contain just some plain text. As an example, the external entity is A.txt which is

being referenced in the XML document B.xml.

 A.txt:

<![CDATA[<!-- This is just an html comment -->]]>

B.xml:

 <?xml version="1.0"?>
 <!DOCTYPE B[
 <!ENTITY htmlComment SYSTEM "A.txt">
]>

<B>
  &htmlComment;
</B>

Currently we are using .txt as an extension for all such entities, but need to change

that, otherwise the translation team assumes that these files need to get translated,

whereas they don't. Is there a standard extension that we should be using?
20-64 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
Answer
I marked up your DTD syntax in “red (bold)” in your DTD. The file extension for

external entities is unimportant so you can change it to any convenient extension,

including *no* extension.:-)

DOM and SAX APIs

Using the DOM API

Question
How do I get the number of elements in a particular tag using the parser?

Answer
You can use the getElementsByTagName() method that returns a NodeList of all

descent elements with a given tag name. You can then find out the number of

elements in that NodeList to determine the number of the elements in the particular

tag.

How DOM Parser Works

Question
How does the XML DOM parser work?

Answer
The parser accepts an XML formatted document and constructs in memory a DOM

tree based on its structure. It will then check whether the document is well-formed

and optionally whether it complies with a DTD. It also provides methods to

support DOM Level 1 and 2.

Creating a Node With Value to be Set Later

Question
How do I create a node whose value I can set later?
Using XML Parser for Java 20-65



DOM and SAX APIs
Answer
If you check the DOM spec referring to the table discussing the node type, you will

find that if you are creating an element node, its nodeValue is to be null and hence

cannot be set.   However, you can create a text node and append it to the element

node. You can put the value in the text node.

Traversing the XML Tree

Question
How to traverse the XML tree

Answer
You can traverse the tree by using the DOM API. Or alternately, you can use the

selectNodes() method which takes XPath syntax to navigate through the XML

document. selectNodes() is part of oracle.xml.parser.v2.XMLNode.

Extracting Elements from XML File

Question
How do I extract elements from the XML file?

Answer
If you're using DOM, the getElementsByTagName() method can be used to get all

of the elements in the document.

Does a DTD Validate the DOM Tree?

Question
If I add a DTD to an XML Document, does it validate the DOM tree?

Answer
No, we do not do any validation while creating the DOM tree using the DOM APIs.

So setting the DTD in the Document will not help in validating the DOM tree that is

constructed. The only way to validate an XML file is to parse the XML document

using the DOMParser or SAXParser.
20-66 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
First Child Node Element Value

Question
How do I efficiently obtain the value of first child node of the element without

going through the DOM Tree?

Answer
If you do not need the entire tree, use the SAX interface to return the desired data.

Since it is event-driven, it does not have to parse the whole document.

Creating DocType Node

Question
How do I create a DocType Node?

Answer
The only current way of creating a doctype node is by using the parseDTD

functions. For example, emp.dtd has the following DTD:

<!ELEMENT employee (Name, Dept, Title)>
 <!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
 <!ELEMENT Title (#PCDATA)>

You can use the following code to create a doctype node:

parser.parseDTD(new FileInputStream(emp.dtd), "employee");
dtd = parser.getDocType();

XMLNode.selectNodes() Method

Question
How do I use the selectNodes() method in XMLNode class?

Answer
The selectNodes() method is used in XMLElement and XMLDocument nodes. This

method is used to extract contents from the tree/subtree based on the select
Using XML Parser for Java 20-67



DOM and SAX APIs
patterns allowed by XSL. The optional second parameter of selectNodes, is used to

resolve Namespace prefixes (return the expanded namespace URL given a prefix).

XMLElement implements NSResolver, so it can be sent as the second parameter.

XMLElement resolves the prefixes based on the input document. You can

implement the NSResolver interface, if you need to override the namespace

definitions. The following sample code uses selectNodes

public class SelectNodesTest  {
public static void main(String[] args) throws Exception {
String pattern = "/family/member/text()";
String file    = args[0];

if (args.length == 2)
  pattern = args[1];

DOMParser dp = new DOMParser();

dp.parse(createURL(file));  // Include createURL from DOMSample
XMLDocument xd = dp.getDocument();
XMLElement e = (XMLElement) xd.getDocumentElement();
NodeList nl = e.selectNodes(pattern, e);
for (int i = 0; i < nl.getLength(); i++) {
   System.out.println(nl.item(i).getNodeValue());
    }
  }
}

> java SelectNodesTest family.xml
Sarah
Bob
Joanne
Jim

> java SelectNodesTest family.xml //member/@memberid
m1
m2
m3
m4

Using SAX API to Get the Data Value

Question
I am using SAX to parse an XML document. How does it get the value of the data?
20-68 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
Answer
During a SAX parse the value of an element will be the concatenation of the

characters reported from after the startElement event to before the corresponding

endElement event is called.

SAXSample.java

Question
Inside the SAXSample program, I did not see any line that explicitly calls

setDocumentLocator and some other methods. However, these methods are 'run'.

Can you explain when they are called and from where

Answer
SAX is a standard interface for event-based XML parsing. The parser reports

parsing events directly through callback functions such as setDocumentLocator()

and startDocument(). The application, in this case, the SAXSample, implements

handlers to deal with the different events. Here is a good place to help you start

learning about the event-driven API, SAX:

http://www.megginson.com/SAX/index.html

Does DOMParser implement Parser interface

Question
Does the XML Parser DOMParser implement org.xml.sax.Parser interface at all?

The documentation says it implements XML Constants and the API does not

include that class at all.

Answer
You'll want oracle.xml.parser.v2.SAXParser to work with SAX and to have

something that implements the org.xml.sax.Parser interface.

Creating an New Document Type Node Via DOM

Question
I am trying to create a XML file on the fly. I use the NodeFactory to construct a

document (createDocument()). I have then setStandalone(“no”) and
Using XML Parser for Java 20-69



DOM and SAX APIs
setVersion(“1.0”). when I try to add a DOCTYPE node via appendChild(new

XMLNode(“test”, Node.DOCUMENT_TYPE_NODE)), I get a ClassCastException.

What is the mechanism to add a node of this type? I noticed that the NodeFactory

did not have a mechanism for creating a DOCTYPE node.

Answer
There is no mechanism to create a new DOCUMENT_TYPE_NODE object via DOM

APIs. The only way to get a DTD object is to parse the DTD file or the XML file

using the DOMParser, and then use the getDocType() method.

Note that new XMLNode(“test”,Node.DOCUMENT_TYPE_NODE) does not create

a DTDobject. It creates an XMLNode object with the type set to DOCUMENT_

TYPE_NODE, which in fact should not be allowed. The ClassCastException is

raised because appendChild expects a DTDobject (based on the type).

Also, we do not do any validation while creating the DOM tree using the DOM

APIs. So setting the DTD in the Document will not help in validating the DOM tree

that is constructed. The only way to validate an XML file is to parse the XML

document using DOMParser or SAXParser.

Querying for First Child Node’s Value of a Certain Tag

Question
I am using the XML Parser for Java v2. Given a XML document containing the

following    Calculus Math       Jim Green         Jack     Mary     Paul, I want to obtain

the value of first child node of whose tag is. I could not find any method that can do

that efficiently. The nearest match is method getElementsByTag(“Name”), which

traverses the entire tree under.

Answer
Your best bet, if you do not need the entire tree, is to use the SAX interface to return

the desired data. Since it is event driven it does not have to parse the whole

document.
20-70 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
XML Document Generation From Data in Variables

Question
Is there an example of XML document generation starting from information

contained in simple variables? An example would be: A client fills a Java form and

wants to obtain an XML document containing the given data.

Answer
Here are two possible interpretations of your question and answers to both. Let's

say you have two variables in Java:

String firstname = "Gianfranco";
String lastname = "Pietraforte";

The two ways that come to mind first to get this into an XML document are as

follows:

1. Make an XML document in a string and parse it.

String xml = "<person><first>"+firstname+"</first>"+
                      "<last>"+lastname+"</last></person";

 DOMParser d = new DOMParser();
 d.parse( new StringReader(xml));
 Document xmldoc = d.getDocument();

2. Use DOM APIs to construct the document and "stitch" it together:

Document xmldoc = new XMLDocument();
Element e1 = xmldoc.createElement("person");
xmldoc.appendChild(e1);
Element e2 = xmldoc.createElement("first");
e1.appendChild(e2);
Text t = xmldoc.createText(firstname);
e2.appendChild(t);
// and so on

Printing Data in the Element Tags: DOM API

Question
Can you suggest how to get a print out using the DOM API in Java:

<name>macy</name>
Using XML Parser for Java 20-71



DOM and SAX APIs
I want to print out "may". Don’t know which class and what function to use. I was

successful in printing "name" on to the console.

Answer
For DOM, you need to first realize that <name>macy</name> is actually an

element named "name" with a child node (Text Node) of value "macy".

So, you can do the following:

String value = myElement.getFirstChild().getNodeValue();

Building XML Files from Hashtable Value Pairs

Question
We have a hash table of key value pairs, how do we build an XML file out of it

using the DOM API? We have a hashtablekey = valuename = georgezip = 20000.

How do we build this?

<key>value</key><name>george</name><zip>20000</zip>’

Is there a utility to do it automatically?

Answer
1. Get the enumeration of keys from your hashtable

2. Loop while enum.hasMoreElements()

3. For each key in the enumeration, use the createElement() on DOM Document

to create an element by the name of    the key with a child text node with the

value of the *value* of the hashtable entry for that key.

XML Parser for Java: wrong_document_err on Node.appendChild()

Question
I have a question regarding our XML parser (v2) implementation. Say if I have the

following scenario:

  Document doc1 = new XMLDocument();
  Element element1 = doc1.creatElement("foo");
  Document doc2 = new XMLDocument();
20-72 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
  Element element2 = doc2.createElement("bar");
  element1.appendChild(element2);

My question is whether or not we should get a DOMException of WRONG_

DOCUMENT_ERR on calling the appendChild() routine. This comes to my mind

when I look at the XSLSample.java distributed with the XMLparser (v2).   Any

feedback would be greatly appreciated.

Answer
Yes you should get this error, since the owner document of element1 is doc1 while

that of element2 is doc2. AppendChild() only works within a single tree and you are

dealing with two different ones.

Question 2
In XSLSample.java that's shipped with xmlparser v2:

DocumentFragment result = processor.processXSL(xsl, xml);
// create an output document to hold the result
  out = new XMLDocument();
// create a dummy document element for the output document
  Element root = out.createElement("root");
  out.appendChild(root);
// append the transformed tree to the dummy document element
   root.appendChild(result);

Nodes root and result are created from different XML Documents, wouldn't this

result in the WRONG_DOCUMENT_ERR when we try to append result to root?

Answer 2
This sample uses a document fragment that does not have a root node, therefore

there are not two XML documents.

Question 3
When appending a document fragment to a node, only the child nodes of the

document fragment (but not the document fragment itself) is inserted. Wouldn't the

parser check the owner document of these child nodes?

Comment
A DocumentFragment shouldn't be bound to a 'root' node, since, by definition, a

fragment could very well be just a list of nodes. The root node, if any, should be
Using XML Parser for Java 20-73



DOM and SAX APIs
considered a single child. That is, you could for example take all the lines of an

Invoice document, and add them into an ProviderOrder document, without taking

the invoice itself. How do we create a documentFragment without root? As the

XSLT Processor does, so that we can append it to other documents?

Creating Nodes: DOMException when Setting Node Value

Question
I get the following error:

oracle.xml.parser.XMLDOMException: Node cannot be modified while trying to set
the value of a newly created node as below:
  String eName="Mynode";
  XMLNode aNode = new XMLNode(eName, Node.ELEMENT_NODE);
  aNode.setNodeValue(eValue);

How do I create a node whose value I can set later on?

Answer
Check the DOM notes where they discuss the node type. You will see that if you are

creating an element node, its nodeValue is null and hence cannot be set.

With SAX, How Can I Force the Parser to Not Discard Whitespace?

Question
I receive the following error when reading the attached file using SAX (Oracle XML

Parser, v.2.0.2.9.0): if character data starts with a whitespace, characters( ) method

discards characters that follows whitespace.

Is this a bug or can I force the parser to not discard those characters?

Answer
Use XMLParser.setPreserveWhitespace(true) to force the parser to not discard

whitespace.
20-74 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Validation
Validation

DTD: Understanding DOCTYPE and Validating Parser

Question
I have an XML string contains the following reference to a DTD, that is physically

located in the directory where I start my program. The validating XML parser

complains that this file can not be found.

<!DOCTYPE xyz SYSTEM "xyz.dtd" >

What are the rules for locating DTDs on the disk? Can anyone point me to a decent

discussion of DOCTYPE attribute descriptions.

Answer
Are you parsing an InputStream or a URL? If you are parsing an InputStream the

parser doesn't know where that InputStream came from so it cannot find the DTD

in the "same directory as the current file". The solution is to setBaseURL()on

DOMParser() to give the parser the URL "hint" information to be able to derive the

rest when it goes to get the DTD.

Can Multiple Threads Use Single XSLProcessor/Stylesheet?

Question
Can multiple threads use a single XSLProcessor/XSLStylesheet instance to perform

concurrent (at the same time) transformations?

Answer
As long as you are processing multiple files with no more than one

XSLProcessor/XSLStylesheet instance per XML file you can do this simultaneously

using threads. If you take a look at the readme.html file in the bin directory, it

describes ORAXSL which has a threads parameter for multi-threaded processing.
Using XML Parser for Java 20-75



Character Sets
Is it Safe to Use Document Clones in Multiple Threads?

Question
Is it safe to use clones of a document in multiple threads? Is the public void

setParam(String,String) throws XSLExceptionmethod of Class

oracle.xml.parser.v2.XSLStylesheet supported? If no, is there another way to pass

parameters at runtime to the XSLT Processor?

Answer
If you are copying the global area set up by the constructor to another thread then it

should work.

That method is supported since XML Parser release 2.0.2.5.

Comment
You have it in your docs, but it is not implemented in the XSLStylesheet class

(windows zip edition). First update your zip download file.

public static void serve(Document template, Document data,Element
userdata,PrintWriter out)
{
 XMLDocument clone = (XMLDocument)data.cloneNode(true);
    clone.getDocumentElement().appendChild(userdata.cloneNode(true));
    serve(template, clone, out);
}

Character Sets

Encoding iso-8859-1 in xmlparser

Question
I have some XML-Documents with encoding="iso-8859-1". I am trying to parse

these with xmlparser SAX API. In characters (char[], int, int), I would like to output

the content in iso-8859-1 (Latin1) too.

With System.out.println() it doesn't work correctly. German umlauts result in '?' in

the output stream. Internally „, ,’, ,Ù,›,˛ are stored as

65508,65526,65532,65476,65494,65500,65503 respectively. What do I have to do to get

the output in Latin1? Host system here is a SPARC Solaris 2.6.
20-76 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Character Sets
Answer
You cannot use System.out.println(). You need to use an output stream which is

encoding aware, for example, OutputStreamWriter.

You can construct an outputstreamwriter  and use the write(char[], int, int)

method to:

print.Ex:OutputStreamWriter out = new OutputStreamWriter(System.out, "8859_1");
/* Java enc string for ISO8859-1*/

Parsing XML Stored in NCLOB With UTF-8 Encoding

Question
I'm having trouble with parsing XML stored in NCLOB column using UTF-8

encoding. Here is what I'm running:

■ Windows NT 4.0 Server

■ Oracle 8i (8.1.5)

■ EEJDeveloper 3.0

■ JDK 1.1.8

■ Oracle XML Parser v2 (2.0.2.5?)

The following XML sample that I loaded into the database contains two UTF-8

multi-byte characters:

<?xml version="1.0" encoding="UTF-8"?>
<G>
<A>GÂ‚otingen, BrÃ ck_W</A>
</G>
G(0xc2, 0x82)otingen, Br(0xc3, 0xbc)ck_W

If I'm not mistaken, both multibyte characters are valid UTF-8 encodings and they

are defined in ISO-8859-1 as:

 0xC2 LATIN CAPITAL LETTER A WITH CIRCUMFLEX
0xFC  LATIN SMALL LETTER U WITH DIAERESIS

I wrote a Java stored function that uses the default connection object to connect to

the database, runs a Select query, gets the OracleResultSet, calls the getCLOB

method and calls the getAsciiStream() method on the CLOB object. Then it executes

the following piece of code to get the XML into a DOM object:
Using XML Parser for Java 20-77



Character Sets
DOMParser parser = new DOMParser();
parser.setPreserveWhitespace(true);
parser.parse(istr);
// istr getAsciiStreamXMLDocument xmldoc = parser.getDocument();

Before the stored function can do other tasks, this code throws an exception

complaining that the above XML contains "Invalid UTF8 encoding".

■ When I remove the first multibyte character (0xc2, 0x82) from the XML, it

parses fine.

■ When I do not remove this character, but connect via the JDBC Oracle: thin

driver (note that now I'm not running inside the RDBMS as stored function

anymore) the XML is parsed with no problem and I can do what ever I want

with the XMLDocument.

I loaded the sample XML into the database using the thin JDBC driver. I tried two

database configurations with WE8ISO8859P1/WE8ISO8859P1 and

WE8ISO8859P1/UTF8 and both showed the same problem.

Answer
Yes, the character (0xc2, 0x82) is valid UTF-8. We suspect that the character is

distorted when getAsciiStream() is called. Try to use getUnicodeStream() and

getBinaryStream() instead of getAsciiStream().

If this does not work, try print out the characters before to make sure that they are

not distorted before they are sent to the parser in step: parser.parse(istr)

NLS support within XML

Question
I've got Japanese data stored in an nvarchar2 field in the database. I have a dynamic

SQL procedure that utilizes the PL/SQL web toolkit that allows me to access data

via OAS and a browser. This procedure uses the XML Parser to correctly format the

result set in XML before returning it to the browser.

My problem is that the Japanese data is returned and displayed on the browser as

upside down question marks. Is there anything I can do so that this data is correctly

returned and displayed as Kanji?
20-78 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Character Sets
Answer
Unfortunately, Java and XML default character set is UTF8 while I haven't heard of

any UTF8 OS nor people using it as in their database and people writing their web

pages in UTF8. All this means is that you have a character code conversion

problem. Answer to your last question is 'yes'. We do have both PL/SQL and Java

XML parsers working in Japanese. Unfortunately, we cannot provide a simple

solution that will fit in this space.

UTF-16 Encoding with XML Parser for Java V2

Question
This is my XML Document:

Documento de Prueba de gestin de contenidos. Roberto P‰rez Lita

This is the way in which I parse the document:

DOMParser parser=new DOMParser();
parser.setPreserveWhitespace(true);
parser.setErrorStream(System.err);
parser.setValidationMode(false);
parser.showWarnings(true);
parser.parse ( new FileInputStream(new File("PruebaA3Ingles.xml")));

I get the following error:

XML-0231 : (Error) Encoding 'UTF-16' is not currently supported

I am using the XML Parser for Java V2_0_2_5 and I am confused because the

documentation says that the UTF-16 encoding is supported in this version of the

Parser. Does anybody know how can I parse documents containing spanish

accents?

Answer
Oracle just uploaded a new release of V2 Parser. It should support UTF-16.Yet,

other utilities still have some problems with UTF-16 encoding.
Using XML Parser for Java 20-79



Character Sets
How Can I Read in Accented Characters?

Question
I need to store accented characters in my XML documents. If I manually add an

accented character e.g. é, to my XML file and then attempt to parse the XML doc.

with Oracle's XML Parser for Java the Parser throws the following exception:

'Invalid UTF-8 encoding'

Here's my encoding declaration in my xml header:

<?xml version="1.0" encoding="UTF-8"?>

Aside: If I specify UTF-16 as the default encoding the Oracle XML Parser for Java

states that UTF-16 is not currently supported. From within my Java program if I

define a Java String object as follows:

String name = "éééé";

and programmatically generate an XML document and save it to file then the é

character is correctly written out to file. Can you tell me how I can successfully read

in character data consisting of accented characters. I know that I can read in

accented characters once I represent them in their HEX or Decimal format within

the XML document, for example:

&#xe9;

but I'd prefer not to do this.

Answer 1
You need to set the encoding based on the character set you were using when you

created the xml file - I ran into this problem & solved it by setting the encoding to

iso-8859-1 (western european ascii) - you may need to use something different

depending on the tool and/or operating system you were using.

If you explicitly set the encoding to UTF-8 (or do not specify it at all), the parser

interprets your accented character (which has an ascii value > 127) as the first byte

of a UTF-8 multi-byte sequence. If the subsequent bytes do not form a valid UTF-8

sequence, you get this error.
20-80 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Adding XML Document as a Child
Answer 2
This error just means that your editor is not saving the file with UTF-8 encoding.

For example, it might be saving it with ISO-8859-1 encoding. Remember that the

encoding is a particular scheme used to write the Unicode character number

representation to disk. Just adding the string to the top of the document like:

<?xml version="1.0" encoding="UTF-8"?>

does not cause your *editor* to write out the bytes representing the file to disk using

UTF-8 encoding. I believe Notepad uses UTF-8, so you might try that.

Adding XML Document as a Child

Adding an XMLDocument as a Child to Another Element

Question
I am trying to add an XMLDocument as a child to an existing element. Here’s an

example:

import org.w3c.dom.*;
import java.util.*;
import java.io.*;
import java.net.*;
import oracle.xml.parser.v2.*;
public class ggg {public static void main (String [] args) throws Exception
 {
new ggg().doWork();;
public void doWork() throws Exception {XMLDocument doc1 = new XMLDocument();
Element root1=doc1.createElement("root1");
XMLDocument doc2= new XMLDocument();Element root2=doc2.createElement("root2");
root1.appendChild(root2);
doc1.print(System.out);};};

This reports:

D:\Temp\Oracle\sample>c:\jdk1.2.2\bin\javac -classpath
D:\Temp\Oracle\lib\xmlparserv2.jar;.
ggg.javaD:\Temp\Oracle\sample>c:\jdk1.2.2\bin\java -classpath
D:\Temp\Oracle\lib\xmlparserv2.jar;. gggException in thread "main"
java.lang.NullPointerException        at
oracle.xml.parser.v2.XMLDOMException.(XMLDOMException.java:67)        at
oracle.xml.parser.v2.XMLNode.checkDocument(XMLNode.java:919)        at
Using XML Parser for Java 20-81



Adding XML Document as a Child
oracle.xml.parser.v2.XMLNode.appendChild(XMLNode.java, Compiled Code)        at
oracle.xml.parser.v2.XMLNode.appendChild(XMLNode.java:494)        at
ggg.doWork(ggg.java:20)        at ggg.main(ggg.java:12)

Answer a
The following works for me:

DocumentFragment rootNode = new XMLDocumentFragment(); DOMParser d  = new
DOMParser(); d.parse("http://.../stuff.xml");
Document doc = d.getDocument();
Element e = doc.getDocumentElement();
// Important to remove it from the first doc
// before adding it to the other doc. doc.removeChild(e);
rootNode.appendChild(e);

You need to use the DocumentFragment class to do this as a document cannot have

more than one root.

Answer b
Actually, isn’t this specifically a problem with appending a node created in another

document, since all nodes contain a reference to the document they are created in?

While Document Fragmentsolves this, it isn’t a more than one root problem, is it? Is

there a quick or easy way to convert a com.w3c.dom.Document to

org.w3c.dom.DocumentFragment?

Adding an XML DocumentFragment as a Child to XMLDocument

Question
I have this piece of code:

XSLStylesheet XSLProcessorStylesheet = new XSLStylesheet(XSLProcessorDoc,
XSLProcessorURL);
XSLStylesheet XSLRendererStylesheet = new XSLStylesheet(XSLRendererDoc,
XSLRendererURL);
XSLProcessor processor = new XSLProcessor();
// configure the processorprocessor.showWarnings(true);
processor.setErrorStream(System.err);
XMLDocumentFragment processedXML = processor.processXSL(XSLProcessorStylesheet,
XMLInputDoc);
XMLDocumentFragment renderedXML = processor.processXSL(XSLRendererStylesheet,
processedXML);
Document resultXML = new XMLDocument();
20-82 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Uninstalling Parsers
resultXML.appendChild(renderedXML);

The last line causes Exception in thread "main" oracle.xml.parser.v2.

XMLDOMException: Node of this type cannot be added.

Do I have to create a root element _every time_, even if I know that the resulting

DocumentFragment is a well formed XML Document (and of course has only one

root element!)?

Answer
It happens, as you have guessed, because a Fragment can have more than one "root"

element (for lack of a better term). In order to work around this, use the Node

functions to extract the one root element from your fragment and cast it into an

Uninstalling Parsers

Removing XML Parser from the Database

Question
I am uninstalling a version of XML Parser and installing a newer version. How do I

do that? I know that there is something like dropjava, but still there are other

packages which are loaded into the schema. I want to clean out the earlier version

and install the new version in a clean manner.

Answer
You'll need to write SQL to write SQL based on the USER_OBJECTS table where:

SELECT 'drop java class '''&#0124; &#0124;       dbms_java.longname(object_
name)&#0124; &#0124;''';
from user_objects where

OBJECT_TYPE = 'JAVA CLASS'and DBMS_JAVA.LONGNAME(OBJECT_NAME)     LIKE
'oracle/xml/parser/%'

This will spew out a set of DROP JAVA CLASS command which you can capture in

a file using SQL*Plus': SPOOL somefilenamecommand.

Then run that spool file as a SQL script and all the right classes will be dropped.
Using XML Parser for Java 20-83



XML Parser for Java: Installation
XML Parser for Java: Installation

XMLPARSER Fails to Install

Question
I'm getting an error message when I try installing XMLPARSER:

loadjava -user username/manager -r -v xmlparserv2.jar
Error:
Exception in thread "main" java.lang.NoClassDefFounderr:
oracle/jdbc/driver/OracleDriver at oracle.aurora.server.tools..

Answer
This is a failure to find the JDBC classes111.zip in your classpath. The loadjava

utility connects to the database to load your classes using the JDBC driver.

I checked 'loadjava' and the path to classes111.zip is

<ORACLE_HOME>/jdbc/lib/classes111.zip

In version 8.1.6, classes111.zip resides in:

<ORACLE_HOME/jdbc/admin

General XML Parser Related Questions

How the XML Parser Works

Question
What does an XML Parser do?

Answer
The parser accepts any XML document giving you a tree-based API (DOM) to

access or modify the document’s elements and attributes as well as an event-API

(SAX) that provides a listener to be registered and report specific elements or

attributes and other document events.
20-84 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
Converting XML Files to HTML Files

Question
How do I convert XML files into HTML files?

Answer
You need to create an XSL stylesheet to render your XML into HTML. You can start

with an HTML document in your desired format and populated with dummy data.

Then you can replace this data with the XSLT commands that will populate the

HTML with data from the XML document completing your stylesheet.

Does XML Parser Validate Against XML Schema?

Question
Does the XML Parser v2 validate against an XML Schema?

Answer
Yes. It supports both validating and non-validating modes. XML Schema is still

under the development W3C XML Schema committee and is supported by Oracle9i.

Currently, XML Parser for Java supports validating, non-validating, partial

validating DTDs and XML Schemas with the modes: non-validating mode, DTD

validating mode, partial validation mode, and schema validation mode.

Including Binary Data in an XML Document

Question
How do I include binary data in an XML document?

Answer
There is no way to directly include binary data within the document; however,

there are two ways to work around this:

■ Binary data could be referenced as an external unparsed entity that resided in a

different file.

■ Binary data can be uuencoded (meaning converting binary data into ASCII

data) and be included in a CDATA section. The limitation on the encoding
Using XML Parser for Java 20-85



General XML Parser Related Questions
technique is to ensure that it only produces legal characters for the CDATA

section.

What is XML Schema?

Question
What is the XML Schema?

Answer
XML Schema is a W3C XML standards effort to bring the concept of data types to

XML documents and in the process replace the syntax of DTDs to one based on

XML. For more details, check out http://www.w3.org/TR/xmlschema-1/ and

http://www.w3.org/TR/xmlschema-2/. XML Schema is supported in Oracle9i

and higher.

Oracle’s Participation in Defining the XML/SQL Standard

Question
Does Oracle participate in defining the XML/XSL standard?

Answer
Oracle has representatives participating actively in the following 3C Working

Groups related to XML/XSL: XML Schema, XML Query, XSL, XLink/XPointer,

XML Infoset, DOM and XML Core.

XDK Version Numbers

Question
How do I determine the version number of the XDK toolkit that I downloaded?

Answer
You can find out the full version number by looking at the readme.html file

included in the archive and linked off of the Release Notes page.
20-86 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
Inserting <, >, >= and <= in XML Documents

Question
How do I insert these characters in the XML documents: >,<,>=, and <=?

Answer
You need to use the entities &lt; for < and &gt; for >.

Are Namespace and Schema Supported

Question
Is support for Namespaces and Schema included?

Answer
The current XML parsers support Namespaces. Schema support is provided in

Oracle9i and higher.

Using JDK 1.1.x with XML Parser for Java v2

Question
Can I use JDK 1.1.x with XML Parser v2 for Java?

Answer
v2 of XML Parser for Java has nothing to do with Java2. It is simply a designation

that indicates that it is not backwards compatible with the v1 Parser and that it

includes XSLT support. The v2 parser will work fine with JDK 1.1.x.

Sorting the Result on the Page

Question
I have a set of records say 100, I am showing 10 at a time, now on each column

name I have made a link, on the click of the same, I want to sort the data in the page

alone, based on that column. How to go about it?
Using XML Parser for Java 20-87



General XML Parser Related Questions
Answer
It depends on how you are going about. If you are writing for IE5 alone and

receiving XML data, you could just use MS's XSL to sort data in a page.If you are

writing for other browser and browsers are getting data as HTML, then you have to

have a sort parameter in XSQL script and use it in ORDER BY clause. Just passed it

along with skip-rows parameter.

Is Oracle9 i Needed to Run XML Parser for Java?

Question
Do I need Oracle9i to run the XML Parser for Java?

Answer
XML Parser for Java can be used with any of the supported version JavaVMs. The

only difference with 9i is that you can load it into the database and use JServer,

which is an internal JVM. For other database versions or servers, you simply run it

in an external JVM and as necessary connect to a database through JDBC.

Dynamically Setting the Encoding in an XML File

Question
Is it possible to dynamically set the encodings in the XML file?

Answer
No, you need to include the proper encoding declaration in your document as per

the specification. You cannot use setEncoding() to set the encoding for you input

document. SetEncoding() is used with oracle.xml.parser.v2.XMLDocument to set

the correct encoding for the printing.

Parsing a String

Question
How do I parse a string?
20-88 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
Answer
We do not currently have any method that can directly parse an XML document

contained within a String. You would need to convert the String into an

InputStream or InputSource before parsing. An easy way is to create a

ByteArrayInputStream using the bytes in the String.

Displaying an XML Document

Question
How do I display my XML document?

Answer
If you are using IE5 as your browser you can display the XML document directly.

Otherwise, you can use our XSLT Processor in v2 of the parser to create the HTML

document using an XSL Stylesheet. The Oracle XML Transviewer bean also allows

you to view your XML document.

System.out.println() and Special Characters

Question
I am having problems using System.out.println() with special character encoding.

Answer
You can't use System.out.println(). You need to use an output stream which is

encoding aware (Ex.OutputStreamWriter). You can construct an

OutputStreamWriter and use the write(char[ ], int, int) method to print.

/* Example */
OutputStreamWriter out = new OutputStreamWriter
(System.out, "8859_1");
/* Java enc string for ISO8859-1*/

Obtaining Ampersand from Character Data

Question
How do I to get ampersand from character data?
Using XML Parser for Java 20-89



General XML Parser Related Questions
Answer
You cannot have "raw" ampersands in XML data. You need to use the entity, &amp;

instead. This is defined in the XML standard.

How Can We Use Special Characters in the Tags?

Question
I have a tag in XML <COMPANYNAME>

When we try to use "A&B", the parser gives an error with invalid character. How do

we use special characters when parsing companyname tag? We are using the Oracle

XML Parser for C.

Answer 1
You have to represent literal...

 &    as    &amp;

 <    as    &lt;

Answer 2
I think you may want to use special characters as part of XML name. For example:

<A&B>abc</A&B>

If this is the case, using name entity doesn't solve the problem. According to XML

1.0 spec(http://www.w3.org/TR/2000/REC-xml-20001006), NameChar and Name

are defined as follows:

[4] NameChar ::= Letter | Digit | '.' | '-' | '_' | ':' | CombiningChar |Extender

[5] Name     ::= (Letter | '_' | ':') (NameChar)*

To answer your question, special character such as '&', '$', '#',... are not allowed to be

used as NameChar. Hence, if you are creating XML document from scratch, you can

use a workaround by using only valid NameChars. For example, <A_B>, <AB>,

<A_AND_B>...

They are still readable.

If you are generating XML from external data sources such as database tables, then

this is a problem. XML 1.0 does not address it.

In Oracle, the new type, XMLType, will help address this problem by offering a

function which maps SQL names to XML names. This will address this problem at
20-90 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
the application level. The SQL to XML name mapping function will escape invalid

XML NameChar in the format of _XHHHH_ where HHHH is a Unicode value of

the invalid character. For example, table name "V$SESSION" will be mapped to

XML name "V_X0024_SESSION".

At last, escaping invalid characters is a hack to give people a way to serialize names

so that they can reload them somewhere else.

Parsing XML from Data of Type String

Question
How do I parse XML from data of type String?

Answer
Check out the following example:

/* xmlDoc is a String of xml */
byte aByteArr [] = xmlDoc.getBytes();
ByteArrayInputStream bais = new ByteArrayInputStream (aByteArr, 0,
aByteArr.length);
domParser.parse(bais);

Extracting Data from XML Document into a String

Question
How do I extract data from an XML document into type String?

Answer
Here is an example to do that:

XMLDocument Your Document;
/* Parse and Make Mods */
:
StringWriter sw = new StringWriter();
PrintWriter  pw = new PrintWriter(sw);
YourDocument.print(pw);
String YourDocInString = sw.toString();
Using XML Parser for Java 20-91



General XML Parser Related Questions
Disabling Output Escaping

Question
Does XML Parser for Java support Disabling Output Escaping?

Answer
Yes, since version 2.022, the parser provides an option to xsl:text to disable output

escaping.

Using the XML Parser for Java with Oracle 8.0.5

Question
Is the XML Parser for Java only available for use with Oracle 9i? Is it possible to use

with Oracle 8.0.5

Answer
The XML Parser for Java can be used with any of the supported version JavaVMs.

The only difference with Oracle9i is that you can load it into the database and use

JServer which is an internal VM.  For 8.0.5 you simple run it externally and connect

through JDBC.

Delimiting Multiple XML Documents

Question
We need to be able to read (and separate) several XML documents as a single string.

One solution would be to delimit these documents using some (programatically

generated) special character that we know for sure can never occur inside an xml

document. The individual documents can then be easily tokenized and

extracted/parsed as required.

Has any one else done this before? Any suggestions for what character can be used

as the delimiter (for instance can characters in the range #x0-#x8 ever occur inside

an xml document?)
20-92 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
Answer
As far as legality is concerned and you limit it to 8-bit, #x0-#x8; #xB, #xC, #xE, and

#xF are not legal. HOWEVER this assumes that you preprocess the doc and not

depend upon exceptions as not ALL parsers reject ALL illegal characters.

Element, which you then append to the Document.

XML and Entity-references: XML Parser for Java

Question
1. The XML-parser for Java does not expand entity references,such as

&[whatever], instead all values are null. How can I fix this?

2. It seems you cannot have international character (such as swedish characters,

…„ ) as values for internal entities. How does one solve this problem?

Answer
1. You probably have a simple error defining/using your entities since we’ve a

number of regression tests that handle entity references fine.  A simple example

is:    ]> Alpha, then &status

2. What do you set your character set encoding to be?

Can I  Break up and Store an XML Document without a DDL Insert?

Question
1. We would like to break apart an arbitrary XML document and store it in the

database without creating a DDL to insert. Is this possible?

2. And as for querying, is it possible to perform hierarchical searches across XML

documents?

Answer
1. No this is not possible. Either the schema must already exist or and XSL

stylesheet to create the DDL from the XML must exist.

2. From Oracle8i Release 8.1.6 and higher, interMedia Text (now called Oracle

Text) can do this.
Using XML Parser for Java 20-93



General XML Parser Related Questions
Merging XML Documents

Question
How can I merge two XML Documents?

Answer
This is not possible with the current DOM specification. DOM2 specification may

address this.

You can use a DOM-approach or an XSLT-based approach to accomplish this. If

you use DOM, then you'll have to remove the node from one document before you

append it into the other document to avoid ownership errors.

Here's an example of the XSL-based approach. Assume your two XML source files

are:

demo1.xml

<messages>
  <msg>
    <key>AAA</key>
    <num>01001</num>
  </msg>
  <msg>
    <key>BBB</key>
    <num>01011</num>
  </msg>
</messages>

demo2.xml

<messages>
  <msg>
    <key>AAA</key>
    <text>This is a Message</text>
  </msg>
  <msg>
    <key>BBB</key>
    <text>This is another Message</text>
  </msg>
</messages>

Here is a stylesheet the "joins" demo1.xml to demo2.xml based on matching the

"<key>" values.
20-94 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
demomerge.xsl

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="yes"/>
<xsl:variable name="doc2" select="document('demo2.xml')"/>
  <xsl:template match="@*|node()">
    <xsl:copy>
      <xsl:apply-templates select="@*|node()"/>
    </xsl:copy>
  </xsl:template>
<xsl:template match="msg">
    <xsl:copy>
      <xsl:apply-templates select="@*|node()"/>
      <text><xsl:value-of select="$doc2/messages/msg[key=current()/key]/text"/>
</text>
    </xsl:copy>
</xsl:template>
</xsl:stylesheet>

If you use the command-line "oraxsl " to test this out, you would do:

$ oraxsl demo1.xml demomerge.xsl

And you'll get the merged result of:

<messages>
  <msg>
    <key>AAA</key>
    <num>01001</num>
    <text>This is a Message</text>
  </msg>
  <msg>
    <key>BBB</key>
    <num>01011</num>
    <text>This is another Message</text>
  </msg></messages>

Obviously not as efficient for larger-sized files as an equivalent database "join"

between two tables, but this illustrates the technique if you only have XML files to

work with.Error: Cannot Find Class
Using XML Parser for Java 20-95



General XML Parser Related Questions
Getting the Value of a Tag

Question
I am using SAX to parse an XML document. How I can get the value of a particular

tag? For example, Java. How do I get the value for title? I know there are

startElement, endElement, and characters methods.

Answer
During a SAX parse the value of an element will be the concatenation of the

characters reported from after startElement to before the corresponding endElement

is called.

Granting JAVASYSPRIV to User

Question
We are using Oracle XML Parser for Java on NT 4.0. When we are parsing an XML

document with an external DTD we get the following error:

<!DOCTYPE listsamplereceipt SYSTEM
"file:/E:/ORACLE/utl_file_dir/dadm/ae.dtd">
java.lang.SecurityExceptionat
oracle.aurora.rdbms.SecurityManagerImpl.checkFile(SecurityManagerImpl.java)at
oracle.aurora.rdbms.SecurityManagerImpl.checkRead(SecurityManagerImpl.java)at
java.io.FileInputStream.<init>(FileInputStream.java)at
java.io.FileInputStream.<init>(FileInputStream.java)at
sun.net.www.MimeTable.load(MimeTable.java)at
sun.net.www.MimeTable.<init>(MimeTable.java)at
sun.net.www.MimeTable.getDefaultTable(MimeTable.java)at
sun.net.www.protocol.file.FileURLConnection.connect(FileURLConnection.java)at
sun.net.www.protocol.file.FileURLConnection.getInputStream(FileURLConnection.
java)at
java.net.URL.openStream(URL.java)at
oracle.xml.parser.v2.XMLReader.openURL(XMLReader.java:2313)at
oracle.xml.parser.v2.XMLReader.pushXMLReader(XMLReader.java:176)at
...

What is causing this?
20-96 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
Answer
Grant the JAVASYSPRIV role to your user running this code to allow it to open the

external file/URL.

Including an External XML File in Another XML File: External Parsed Entities

Question
1. I am trying to include an external XML file in another XML file.  Does Oracle

Parser for Java v1 and v2 support external parsed entities?

2. We are using version 1.0, because that is what is shipped to the customers with

release 10.7 and 11.0 of our application. Can you refer me to this, or some other

sample code to do this.

Shouldn't file b.xml be in the format:

<?xml version="1.0" ?>
<b>
  <ok/>
</b>

Does Oracle XML Parser come with a utility to parse an XML file and see the

parsed output?

Answer
1. IE 5.0 will parse an XML file and show the parsed output.  Just load the file like

you would an HTML page.

The following works, both browsing it in IE5 as well as parsing it with Oracle

XML Parser v2. Even though I'm sure it works fine in Oracle XML Parser 1.0,

you should be using the latest parser version as it is faster than v1.

File: a.xml

<?xml version="1.0" ?>
<!DOCTYPE a [<!ENTITY b SYSTEM "b.xml">]>
 <a>&b;</a>

 File: b.xml

 <ok/>

 When I browse/parse a.xml I get the following:
Using XML Parser for Java 20-97



General XML Parser Related Questions
<a>
  <ok/>
</a>

2. Not strictly. The parsed external entity only needs to be a well-formed

fragment. The following program  (with xmlparser.jar from v 1.0) in your

CLASSPATH shows parsing and printing the parsed document. It's parsing

here from a String but the mechanism would be no different for parsing from a

file, given it's URL.

import oracle.xml.parser.*;
import java.io.*;
import java.net.*;
import org.w3c.dom.*;
import org.xml.sax.*;
/*
** Simple Example of Parsing an XML File from a String
** and, if successful, printing the results.
**
** Usage: java ParseXMLFromString <hello><world/></hello>
*/
public class ParseXMLFromString {
  public static void main( String[] arg ) throws IOException, SAXException {
    String theStringToParse =
       "<?xml version='1.0'?>"+
       "<hello>"+
       "  <world/>"+
       "</hello>";
    XMLDocument theXMLDoc = parseString( theStringToParse );
    // Print the document out to standard out
    theXMLDoc.print(System.out);
  }
  public static XMLDocument parseString( String xmlString ) throws
   IOException, SAXException {
   XMLDocument theXMLDoc     = null;
    // Create an oracle.xml.parser.v2.DOMParser to parse the document.
    XMLParser theParser = new XMLParser();
    // Open an input stream on the string
    ByteArrayInputStream theStream =
         new ByteArrayInputStream( xmlString.getBytes() );
    // Set the parser to work in non-Validating mode
    theParser.setValidationMode(DTD_validation);
    try {
      // Parse the document from the InputStream
      theParser.parse( theStream );
20-98 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



General XML Parser Related Questions
      // Get the parsed XML Document from the parser
      theXMLDoc = theParser.getDocument();
    }
    catch (SAXParseException s) {
      System.out.println(xmlError(s));
      throw s;
    }
    return theXMLDoc;
  }
  private static String xmlError(SAXParseException s) {
     int lineNum = s.getLineNumber();
     int  colNum = s.getColumnNumber();
     String file = s.getSystemId();
     String  err = s.getMessage();
     return "XML parse error in file " + file +
            "\n" + "at line " + lineNum + ", character " + colNum +
            "\n" + err;
  }
}

Where Can I Download OraXSL, The Parser’s Command Line Interface?

Question
From where I can download oracle.xml.parser.v2.OraXSL ?

Answer
It's part of our integrated XML Parser for Java V2 release. Our XML Parser, DOM,

XPath implementation, and XSLT engine are nicely integrated into a single,

cooperating package. http://otn.oracle.com/tech/xml/xdk_java/

Will Oracle Support Hierarchical Mapping?

Question
We are interested in using the Oracle database to primarily store XML.  We would

like to parse incoming XML documents and store data and tags in the database. We

are concerned about the following two aspects of XML in Oracle:

Relational mapping of parsed XML data. We prefer hierarchical storage of parsed

XML data.  Is this a valid concern?  Will XMLType in Oracle9i address this concern?
Using XML Parser for Java 20-99



XSLT Processor and XSL Stylesheets
A lack of an "Ambiguous Content Mode" in the Oracle Parser for Java is limiting to

our business.  Are there plans to add an "Ambiguous Content Mode" to the Oracle

Parser for Java?

Answer
Lots of customers initially have this concern. It depends on what kind of XML data

you are storing. If you are storing XML datagrams that are really just encoding of

relational information, a purchase order, for example, then you will get much better

performance and much better query flexibility (via SQL) to store the data contained

in the XML documents in relational tables, then on-demand reproduce an XML

format when any particular data is needed to be extracted.

If you are storing documents that are more mixed-content, like legal proceeding,

chapters of a book, reference manuals, and so on. Then storing them in chunks and

searching them using Oracle Text’s XML search capabilities is the best bet.

The book, "Building Oracle XML Applications" by Steve Muench, covers both of

these storage and searching techniques with lots of examples.

For the second point, Oracle's XML Parser implements all the XML 1.0 standard,

and the XML 1.0 standard requires XML documents to have unambiguous content

models, so there's no way a compliant XML 1.0 parser can implement ambiguous

content models. See: http://www.xml.com/axml/target.html#determinism

XSLT Processor and XSL Stylesheets

HTML Error in XSL

Question
I don't know what is wrong here. This is my news_xsl.xsl file:

<?xml version ="1.0"?>
<xsl:stylesheet  xmlns:xsl="http://www.w3.org/TR/WD-xsl">
<xsl:template match="/">
 <HTML>

See Also:

■ Chapter 8, "Searching XML Data with Oracle Text"

■ Oracle9i Text Reference
20-100 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSLT Processor and XSL Stylesheets
    <HEAD>
        <TITLE>   Sample Form    </TITLE>
        </HEAD>
     <BODY>
      <FORM>

<input type="text" name="country" size="15"> </FORM>
    </BODY>
 </HTML>
</xsl:template>
</xsl:stylesheet>

ERROR:End tag 'FORM' does not match the start tag 'input'. Line 14, Position 12
</FORM>-
----------̂ news.xml
<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="news_xsl.xsl"?>
<GREETING/>

Answer
Unlike in HTML, in XML you must know that every opening/starting tag should

have an ending tag. So even the input that you are giving should have a matching

ending tag, so you should modify your script like this:

<FORM>
<input type="text" name="country" size="15"> </input>
</FORM>

OR

<FORM>
<input type="text" name="country" size="15"/>
</FORM>

And also always remember, in XML the tags are case sensitive, unlike in HTML. So

be careful.

Is <xsl:output method="html"/> Supported?

Question
Is the output method “html” supported in the recent version of the XML/XSL

parser? I was trying to use the <BR> tag with the <xsl utput method="xml”/>

declaration but I got an XSLException error message indicating a not well-formed
Using XML Parser for Java 20-101



XSLT Processor and XSL Stylesheets
XML document. Then I tried the following output method declaration: <xsl utput

method="html"/>but I got the same result.

Here's a simple XSL stylesheet I was using:

<?xml version="1.0"?> <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl utput method="html"/>
<xsl:template match="/"> <HTML> <HEAD></HEAD> <BODY>
<P>           Blah blah<BR>           More blah blah<BR>         </P>
</BODY>      </HTML>   </xsl:template>

How do I use a not well-formed tag (like <IMG>, <BR>, etc.) in an XSL stylesheet?

Answer
We fully support all options of <xsl utput> The problem here is that your XSL

Stylesheet must be a well-formed XML document, so everywhere you are using the

<BR> element, you need to use <BR/> instead.<xsl utput method="html”/>

requests that when the XSLT Engine *writes out* the result of your transformation,

is a proper HTML document. What the XSLT engine reads *in* must be well-formed

XML.

Question 2
Sorry for jumping in on this thread, but I have a question regarding your reply. I

have an XSL stylesheet that preforms XML to HTML conversion. Everything works

correctly with the exception of those HTML tags that are not well formed. Using

your example if I have something like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
......
<input type="text" name="{NAME}" size="{DISPLAY_LENGTH}" maxlength="{LENGTH}">
</input>
......
</xsl:stylesheet>

It would render HTML in the format of

<HTML>......<input type="text" name="in1" size="10" maxlength="20"/>
......
</HTML>

While IE can handle this Netscape can not. Is there anyway to generate completely

cross browser compliant HTML with XSL?
20-102 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSLT Processor and XSL Stylesheets
Answer 2
If you are seeing:

<input ... />

instead of:

<input>

Then you are likely using the incorrect way of calling XSLProcessor.processXSL()

since it appear that it's not doing the HTML output for you. Use:

void processXSL(style,sourceDoc,PrintWriter)

instead of:

DocumentFragment processXSL(style,sourceDoc)

and it will work correctly.

Netscape 4.0: Preventing XSL From Outputting <meta> Tag

Question
I'm using   <xsl utput method="html” encoding="iso-8859-1"   indent = “no” />. Is

it possible to prevent XSLT from outputting <META http-equiv="Content-Type”

content="text/html; charset=iso-8859-1"> in the head because Netscape 4.0 has

difficulties with this statement. It renders the page twice.

Answer
The XSLT 1.0 Recommendation says in Section 16.2 (“HTML Output Method”)...If

there is a HEAD element, then the html output method should add a META

element immediately after the start-tag of the HEAD element specifying the

character encoding actually used.

For example:

<HEAD><META http-equiv="Content-Type" content="text/html;

charset=EUC-JP">.

So any XSLT 1.0-compliant engine needs to add this.

Question 2
Netscape 4.0 has following bug:
Using XML Parser for Java 20-103



XSLT Processor and XSL Stylesheets
When Mozilla hits the meta-encoding tag it stops rendering the page and does a

refresh. So you experience this annoying flickering. So I probably have to do a

replacement in the servlets Outputstream, but I don't like doing so. Are there any

alternatives.

Answer 2
Only alternatives I can think of are:

■ Don't have a <HEAD> section in your HTML page. As per the XSLT

specification, this will suppress the inclusion of the <META> tag.

■ Don't use method="HTML” for the output. Since it defaults to “HTML” as per

the specification for result trees that start with <HTML> (in any mixture of

case), you'd have to explicitly set it to method=”xml” or method=”text”.

Neither is pretty, but either one might provide a workaround.

XSL Error Messages

Question
Where can I find more info on the XSL error messages. I get the error XSL-1900,

exception occurred. What does this mean? How can I find out what caused the

exception?

Answer
If you are using Java, you could write Exception routines to trap errors.Using tools

such as JDeveloper also helps.

The error messages of our components are usually more legible. XSL-1900 indicates

possible internal error or incorrect usage.

Generating HTML: “<“ Character

Question
I am trying to generate an HTML form for inputting data using column names from

the user_tab_columns table and the following XSL code:

<xsl:template match="ROW">
<xsl:value-of select="COLUMN_NAME"/>
<: lt;INPUT NAME="<xsl:value-of select="COLUMN_NAME"/>>
20-104 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSLT Processor and XSL Stylesheets
</xsl:template>

although 'gt;' is generated as '>' 'lt;' is generated as '#60;'. How do I generate the "<"

character?

Comment
Using the following:

<xsl:text disable-output-escaping="yes">entity-reference</xsl:text>

 does what I need.

HTML “<“ Conversion Works in oraxsl but not XSLSample.java?

Question
I can't seem to display HTML from XML.In my XML file I store the HTML snippet

in an XML tag:

<PRE>
<body.htmlcontent>
<&#60;table width="540" border="0" cellpadding="0"
cellspacing="0">&#60;tr>&#60;td>&#60;font face="Helvetica, Arial"
size="2">&#60;!-- STILL IMAGE GOES HERE -->&#60;img
src="graphics/imagegoeshere.jpg"  width="200" height="175" align="right"
vspace="0" hspace="7">&#60;!-- END STILL IMAGE TAG -->&#60;!-- CITY OR TOWN NAME
GOES FIRST FOLLOWED BY TWO LETTER STATE ABBREVIATION -->&#60;b>City, state
abbreviation&#60;/b> - &#60;!-- CITY OR TOWN NAME ENDS HERE -->&#60;!-- STORY
TEXT STARTS HERE -->Story text goes here.. &#60;!-- STORY TEXT ENDS HERE
-->&#60;/font>&#60;/td>&#60;/tr>&#60;/table>
</body.htmlcontent>
</PRE>

I use the following in my XSL:

<xsl:value-of select="body.HTMLcontent" disable-output-escaping="yes"/>

However, the HTML output

<PRE>&#60;</PRE>

is still outputted and all of the HTML tags are displayed in the browser. How do I

display the HTML properly?
Using XML Parser for Java 20-105



XSLT Processor and XSL Stylesheets
Comment
That doesn't look right. All of the < are #60; in the code with an ampersand in front

of them. They are still that way when they are displayed in the browser.

Even more confusing is that it works with oraxsl, but not with XSLSample.java.

Answer
This makes sense. Here's why:

■ oraxsl internally uses the: void XSLProcessor.processXSL

(style,source,printwriter);

■ XSLSample.java uses:DocumentFragment XSLProcessor.processXSL

(style,source);

The former supports <xsl:output> and all options related to writing out output that

might not be valid XML (including the disable output escaping). The latter is pure

XML-to-XML tree returned, so no <xsl:output> or disabled escaping can be used

since nothing's being output, just a DOM tree fragment of the result is being

returned.

XSLT Examples

Question
Is there any site which has good examples or small tutorials on XSLT?

Answer
This site is an evolving tutorial on lots of different XML/XSLT/XPath-related

subjects:

http://zvon.vscht.cz/ZvonHTML/Zvon/zvonTutorials_en.html

XSLT Features

Question
1. Is there a list of features of the XSLT that Oracle XDK implements?
20-106 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSLT Processor and XSL Stylesheets
2. So the v2 parsers implement more features of the recommendation than IE5?

My first impression supports this, the use of <xsl:choose... and <xsl:if... works

with the v2 parser but gives strange messages with IE5.

Answer
1. Our v2 parsers support the W3C Recommendation of w3c XSLT version 1.0 at

http://www.w3.org/TR/XSLT.

2. You are correct. Ours is XSLT Recommendation compliant.

Using XSL To Convert XML Document To Another Form

Question
I am in the process of trying to convert an xml document from one format to

another by means of an xsl (or xslt) stylesheet. Before incorporating it into my java

code, I tried testing the transformation from the command line:

 > java oracle.xml.parser.v2.oraxsl jwnemp.xml jwnemp.xsl newjwnemp.xml

The problem is that instead of returning the transformed xml file

(newjwnemp.xml), the above command just returns a file with the xsl code from

jwnemp.xsl in it. I cannot figure out why this is occurring. I have attached the two

input files.

 <?xml version="1.0"?>
 <employee_data>
    <employee_row>
       <employee_number>7950</employee_number>
       <employee_name>CLINTON</employee_name>
       <employee_title>PRESIDENT</employee_title>
       <manager>1111</manager>
       <date_of_hire>20-JAN-93</date_of_hire>
       <salary>125000</salary>
       <commission>1000</commission>
       <department_number>10</department_number>
    </employee_row>
 </employee_data>

 <?xml version='1.0'?>
 <ROWSET xmlns:xsl="HTTP://www.w3.org/1999/XSL/Transform">
    <xsl:for-each select="employee_data/employee_row">
    <ROW>
Using XML Parser for Java 20-107



XSLT Processor and XSL Stylesheets
       <EMPNO><xsl:value-of select="employee_number"/></EMPNO>
       <ENAME><xsl:value-of select="employee_name"/></ENAME>
       <JOB><xsl:value-of select="employee_title"/></JOB>
       <MGR><xsl:value-of select="manager"/></MGR>
       <HIREDATE><xsl:value-of select="date_of_hire"/></HIREDATE>
       <SAL><xsl:value-of select="salary"/></SAL>
       <COMM><xsl:value-of select="commission"/></COMM>
       <DEPTNO><xsl:value-of select="department_number"/></DEPTNO>
    </ROW>
    </xsl:for-each>
 </ROWSET>

Answer
This is occurring nearly 100%-likely because you have the wrong XSL namespace

uri for your xmlns:xsl="..." namespace declaration.

If you use:    xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

everything works.

If you use    xmlns:xsl="-- any other string here --”

If will do what you're seeing.

Information on XSL?

Question
I cannot find anything about using XSL. Can you help? I would like to get an XML

and XSL file to show my company what they can expect from this technology. XML

alone is not very impressive for users.

Answer
A pretty good starting place for XSL is the following page:

http://metalab.unc.edu/xml/books/bible/updates/14.html

It shows pretty much in english what the gist of xsl is. XSL isn't really anything

more than an XML file, so I don't think that it will be anymore impressive to show

to a customer. There's also the main website for XSL which is:

http://www.w3.org/style/XSL/
20-108 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSLT Processor and XSL Stylesheets
XSLProcessor and Multiple Outputs?

Question
I recall seeing discussions about XSLProcessor producing more than one result from

one XML and XSL. How can this can be achieved?

Answer
XML Parser 2.0.2.8 supports <ora:output> to handle this.

What Good Books for XML/XSL Can You Recommend?

Question
Can any one suggest good books for learning about XML/XSL?

Answer
There are many excellent articles, white papers, and books that describe all facets of

XML technology. Many of these are available on the world wide web. The following

are some of the most useful resources we have found:

■ XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems

http://metalab.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm

■ XML for the Absolute Beginner by Mark Johnson, JavaWorld

http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html

■ XML And Databases by Ronald Bourret, Technical University of Darmstadt

http://www.informatik.tu-darmstadt.de/DVS1/staff/bourret/xml/

■ XMLAndDatabases.htm World Wide Web Consortium (W3C)

■ XML Specifications http://www.w3.org/XML/

■  XML.com (a broad collection of XML resources and commentary)

http://www.xml.com/

■ Annotated XML Specification by Tim Bray, XML.com

http://www.xml.com/axml/testaxml.htm

■ The XML FAQ by the W3C XML Special Interest Group

http://www.ucc.ie/xml/ XML.org (the industry clearing house for XML DTDs

that allow companies to exchange XML data)
Using XML Parser for Java 20-109



Compressing Large Volumes of XML Documents
■  http://xml.org/

■ xDev (the DataChannel XML Developer pages) http://xdev.datachannel.com/

XML Developer Kits for HP/UX Platform

Question
I would like to know if there are any release plans for the XML Parser or an XDK for

HP/UX platform.

Answer
HP-UX ports for our C/C++ Parser as well as our C++ Class Generator are

available. Look for an announcement on http://technet.oracle.com

Compressing Large Volumes of XML Documents

Question
Can we compress XML documents when saving them to the database as a CLOB? If

they are compressed, what is the implication of using Oracle Text (intermedia)

against the documents? We have large XML documents that go up to 1 megabyte

and they need to be minimized.

The main requirement is to save cost in terms of disk storage as the XML

documents stored are history information (more of a datawarehouse environment).

We could save a lot of disk space if we could compress the documents before

storage. The searching capability is only secondary, but a big plus.

Answer a
XDK for Java support a compression mechanism in Oracle9i. It supports streaming

compression/uncompression. The compression is achieved by removing the

markup in the XML Document. The initial version does not support searching the

compressed data. This is planned for a future release.

Answer b
If you want to store and search your XML docs, Oracle Text can handle this. I am

sure that the size of individual document is not a problem for Oracle Text.
20-110 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Compressing Large Volumes of XML Documents
If you want to compress the 1megabyte docs for saving disk space/costs, Oracle

Text will not be able to automatically handle a compressed XML document.

Try looking at XMLZip:

http://www.xmls.com/resources/xmlzip.xml?id=resources_xmlzip

My only concern would be the performance hit to do the uncompression. If you are

just worried about transmitting the XML from client to server or vice versa, then

HTTP compression could be easier.

How Can I  Generate an XML Document Based on Two Tables?

Question
I would like to generate an XML-document based on 2 tables with a master detail

relationship between them.  Suppose I have two tables :

■ PARENT with colums : ID and PARENT_NAME   (Key = ID)

■ CHILD with columns : PARENT_ID, CHILD_ID, CHILD_NAME (Key =

PARENT_ID   +   CHILD_ID)

And a master detail relationship between PARENT and CHILD. How can I generate

a document that looks like this ?

<?xml version = '1.0'?>
  <ROWSET>
     <ROW num="1">
       <parent_name>Bill</parent_name>
         <child_name>Child 1 of 2</child_name>
         <child_name>Child 2 of 2</child_name>
      </ROW>
      <ROW num="2">
       <parent_name>Larry</parent_name>
         <child_name>Only one child</child_name>
      </ROW>
  </ROWSET>

Answer
You can (should) use an object view to generate an XML document from a

master-detail structure. In your case:

create type child_type is object
Using XML Parser for Java 20-111



Compressing Large Volumes of XML Documents
(child_name <data type child_name>) ;
/
create type child_type_nst
is table of child_type ;
/

create view parent_child
as
select p.parent_name
, cast
  ( multiset
    ( select c.child_name
      from   child c
      where  c.parent_id = p.id
    ) as child_type_nst
  ) child_type
from parent p
/

A SELECT * FROM parent_child, processed by an SQL to XML utility would

generate a valid XML document for your parent child relationship. The structure

would not look like the one you have presented, though. It would be like:

<?xml version = '1.0'?>
<ROWSET>
   <ROW num="1">
      <PARENT_NAME>Bill</PARENT_NAME>
      <CHILD_TYPE>
         <CHILD_TYPE_ITEM>
            <CHILD_NAME>Child 1 of 2</CHILD_NAME>
         </CHILD_TYPE_ITEM>
         <CHILD_TYPE_ITEM>
            <CHILD_NAME>Child 2 of 2</CHILD_NAME>
         </CHILD_TYPE_ITEM>
      </CHILD_TYPE>
  </ROW>
   <ROW num="2">
      <PARENT_NAME>Larry</PARENT_NAME>
      <CHILD_TYPE>
         <CHILD_TYPE_ITEM>
            <CHILD_NAME>Only one child</CHILD_NAME>
         </CHILD_TYPE_ITEM>
      </CHILD_TYPE>
  </ROW>
</ROWSET>
20-112 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Compressing Large Volumes of XML Documents
Using XML Parser for Java 20-113



Compressing Large Volumes of XML Documents
20-114 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Schema Process
21

Using XML Schema Processor for Java

This chapter contains the following sections:

■ Introducing XML Schema

■ Oracle XML Schema Processor for Java Features

■ XML Schema Processor for Java Usage

■ How to Run the XML Schema for Java Sample Program
or for Java 21-1



Introducing XML Schema
Introducing XML Schema
XML Schema is being drawn up by W3C to describe the content and structure of

XML documents in XML. It includes the full capabilities of DTDs so that existing

DTDs can be converted to XML Schema. XML Schemas have additional capabilities

over DTDs.

How DTDs and XML Schema Differ
Document Type Definition (DTD) is a mechanism provided by XML 1.0 for

declaring constraints on XML markup. DTDs allow the specification of the

following:

■ Which elements can appear in your XML documents

■ What elements can be in the elements

■ The order the elements can appear

XML Schema language serves a similar purpose to DTDs (Document Type

Description), but it is more flexible in specifying XML document constraints and

potentially more useful for certain applications. See the following section "DTD

Limitations".

Consider the XML document:

<?XML version="1.0">
<publisher pubid="ab1234">
  <publish-year>2000</publish-year>
     <title>The Cat in the Hat</title>
     <author>Dr. Seuss</author>
     <artist>Ms. Seuss</artist>
     <isbn>123456781111</isbn>
</publisher>

Consider a typical DTD for the foregoing XML document:

<!ELEMENT publisher (year,title, author+, artist?, isbn)>
<!ELEMENT publish-year (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
...
21-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Schema Features
DTD Limitations
DTDs, also known as XML Markup Declarations, are considered to be deficient in

handling certain applications including the following:

■ Document authoring and publishing

■ Exchange of metadata

■ E-commerce

■ Inter-database operations

DTD limitations include:

■ DTD is not integrated with Namespace technology so users cannot import and

reuse code

■ DTD does not support data types other than character data, a limitation for

describing metadata standards and database schemas

■ Applications need to specify document structure constraints more flexibly than

the DTD allows for

XML Schema Features
Table 21–1 lists XML Schema features. Note that XML Schema features include DTD

features.
Using XML Schema Processor for Java 21-3



XML Schema Features
Table 21–1 XML Schema Features

XML Schema Feature DTD

Built-In Data Types

XML schema specifies a set of built-in datatypes. Some of them are defined
by their own called primitive datatypes, and they form the basis of the type
system:

string, boolean, float, decimal, double, timeDuration, timeInstant, time, date,
yearMonth, year, monthDay, day, month, binary, uriReference, ID, IDREF,
ENTITY, QName.

Others are derived datatypes that are defined in terms of primitive types.

DTDs do not support data types
other than character strings.

User-Defined Data Types

Users can derive their own datatypes from the built-in data types. There are
three ways of datatype derivation: restriction, list and union. Restriction
defines a more restricted data type by applying constraining facets to the
base type, list simply allows a list of values of its item type, and union
defines a new type whose value can be of any of its member types.

The publish-year element in
the DTD example cannot be
constrained further.

For example, to specify that the value of publish-year type to be within a
specific range:

<SimpleType name = "publish-year">

    <restriction base="year">

         <minInclusive value="1970"/>

         <maxInclusive value="2000"/>

    </restriction>

</SimpleType>

The constraining facets are: length, minLength, maxLength, pattern,
enumeration, whiteSpace, maxInclusive, maxExclusive, minInclusive,
minExclusive, precision, scale, encoding. Some facets only apply to certain
base types.
21-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Schema Features
Occurrence Indicators (Content Model or Structure)

In XML Schema, the structure (called complexType) of the instance
document or an element is defined in terms of model group and attribute
group. A model group may further contain model groups or element
particles, while attribute group contains attributes. Wildcards can be used in
both model group and attribute group to indicate any element or attribute.
There are three varies of model group: sequence, all, and choice,
representing the sequence, conjunction and disjunction relationships among
particles respectively. The range of the number of occurrence of each particle
can also be specified.

Like the data type, complexType can be derived from other types. The
derivation method can be either restriction or extension. The derived type
inherits the content of the base type plus corresponding modifications. In
addition to inheritance, a type definition can make references to other
components. This feature allows a component being defined once and used
in many other structures.

The type declaration and definition mechanism in XML Schema is much
more flexible and powerful than the DTD.

Control by DTDs over the
number of child elements in an
element are assigned with the
following symbols:

■ ? = zero or one. In the
foregoing DTD example,
artist? implied artist is
optional - there may or may
not be an artist.

■ * = zero or more

■ + = one or more (in the
foregoing DTD example,
author+ implies more than
one author is possible)

■ (none) = exactly one

Identity Constraints

XML Schema extends the concept of XML ID/IDREF mechanism with the
declarations of unique, key and keyref. They are part of the type definition
and allow not only attributes, but also element contents as keys. Each
constraint has a scope within which it holds and the comparison is in terms
of their value rather than lexical strings.

Import/Export Mechanisms (Schema Import, Inclusion and
Modification)

All components of a schema need not be defined in a single schema file.
XML Schema provides a mechanism of assembling multiple schemas.
Import is used to integrate schemas of different namespace while inclusion
is used to add components of the same namespace. Components can also be
modified using redefinition when included.

You cannot use constructs
defined in external schemas.

Extensibility Mechanism

XML Schema is more flexible and supports three possible models:

Open model - where content and attributes declared for the element are
required but other content and attributes are possible

Refinable model - content and attributes are declared for the element.
Allows content and attributes declared in refined sub-types.

Closed model - as with DTDs where additional child elements and attributes
not in the element declaration are not allowed.

An instance of an element
cannot have additional child
elements and attributes not
specified in the schema’s
element declaration.

Table 21–1 XML Schema Features (Cont.)

XML Schema Feature DTD
Using XML Schema Processor for Java 21-5



Oracle XML Schema Processor for Java Features
XML Schema can be used to define a class of XML documents. “Instance document”

describes an XML document that conforms to a particular schema.

Although these instances and schemas need not exist specifically as “documents”,

they are commonly referred to as files. They may exist as any of the following:

■ Streams of bytes

■ Fields in a database record

■ Collections of XML Infoset “Information Items”

Oracle XML Schema Processor for Java Features
Oracle XML Schema Processor for Java has the following features:

■ Supports simple and complex types

■ Built on the Oracle XML Parser for Java v2

■ Supports the following W3C XML Schema Working Drafts

■ XML Schema Part 0: Primer

■ XML Schema Part 1: Structures

■ XML Schema Part 2: Datatypes

Supported Character Sets
XML Schema Processor for Java supports documents in the following encodings:

■ BIG

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

See Also:

■  http://www.w3.org/TR/xmlschema-0/

■ Appendix C, "XDK for Java: Specifications and Cheat Sheets"

■ Oracle9i XML Reference
21-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Schema Processor for Java Features
■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

What’s Needed to Run XML Schema Processor for Java
To run XML Schema Processor for Java, you need the following:

■ Operating Systems: Any OS with Java 1.1.x support

■ JAVA: JDK 1.1.x. or above.

Online Documentation
Documentation for Oracle XML Schema Processor for Java is located in the doc/

directory in your install area.

Release Specific Notes
The readme.html file in the root directory of the archive, contains release specific

information including bug fixes, API additions,...

Oracle XML Schema Processor is an early adopter release and is written in Java. It

includes the production release of the XML Parser for Java v2.

Standards Conformance
The XML Schema Processor conforms to the following W3C standards:

■ XML Schema Part 0: Primer

■ XML Schema Part 1: Structures

■ XML Schema Part 2: Datatypes
Using XML Schema Processor for Java 21-7



XML Schema Processor for Java Usage
XML Schema Processor for Java Directory Structure
Table 21–2 lists the directory structure after installing XML Schema Processor for

Java on Windows NT. Installation on UNIX renders the same structure.

XML Schema Processor for Java Usage
As shown in Figure 21–1, Oracle’s XML Schema processor performs two major

tasks:

■ A builder assembles schema from schema XML documents

■ A validator use the schema to validate instance document.

When building the schema, the builder first calls the DOM Parser to parse the

schema XML documents into corresponding DOM trees. It then compiles them into

an internal schema object. The validator works as a filter between the SAX parser

and your applications for the instance document. The validator takes SAX events of

the instance document as input and validates them against the schema. If the

validator detects any invalid XML component it sends an error message. The output

of the validator is:

■ Input SAX events

■ Default values it supplies

■ Post-Schema Validation (PSV) information

The API of the XML Schema Processor for Java is simple. You can either use either

of the following:

■ setSchemaValidationMode () in the DOMParser  as shown in "XML Schema

for Java Example 7: XSDSample.java"

Table 21–2 Directory Structure for a Windows NT Installation of XML Schema
Processor

Directory and File Description

license.html copy of license agreement

readme.html  release and installation notes

doc\ directory for documents

lib\ directory for class files

sample\ sample code files
21-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run the XML Schema for Java Sample Program
■ Explicitly build the schema using XSDBuilder  and set the schema for

XMLParser  as shown in"XML Schema for Java Example 8:

XSDSetSchema.java".

There is no clean up call similar to xmlclean . If you need to release all memory

and reset the state before validating a new XML document, terminate the context

and start over.

Figure 21–1 XML Schema Processor for Java Usage

How to Run the XML Schema for Java Sample Program
XML Schema Processor for Java sample/ directory contains sample XML

applications that illustrate how to use Oracle XML parser with XML Schema

Processor for Java. The sample Java file provided in this directory is XSDSample, a

sample driver that processes XML instance documents. To run the sample program,

carry out the following:

See Also: Oracle9i XML Reference, under XDK for Java, XML Schema
Processor

Schema
XML Document

DOM
Parser

Schema
DOM tree

Schema

DOM
Parser

Instance
Document

SAX
Parser

SAX

SAX + PSV
+ Default

valueSchema
Validator

DOM Builder
or Application

Error
Messages
Using XML Schema Processor for Java 21-9



How to Run the XML Schema for Java Sample Program
1. Execute "make" to generate .class files.

2. Add xmlparserv2.jar, xschema.jar, and the current directory to the

CLASSPATH.

3. Run the sample program with the report.xml file, as follows:

java XSDSample report.xml
java XSDSetSchema report.xsd report.xml

XML Schema Processor uses the XMLSchema specification from “report.xsd” to

validate the contents of “report.xml”

4. Run the sample program with the catalogue.xml file, as follows:

java XSDSample   catalogue.xml
java XSDSetSchema cat.xsd  catalogue.xml

XML Schema Processor uses the XMLSchema specification from “cat.xsd” to

validate the contents of “catalogue.xml”

5. The following are examples with XMLSchema errors:

java XSDSample catalogue_e.xml
java XSDSample report_e.xml

XML Schema Processor generates error messages.

MakeFile
# Makefile for sample java files
# ======================================================================

.SUFFIXES : .java .class

CLASSES = XSDSample.class

# Change it to the appropriate separator based on the OS.
PATHSEP = :

# XML Parser V2 jar file
XMLPARSER = ../lib/xmlparserv2.jar

# XMLSchema jar file
XSCHEMA = ../lib/xschema.jar

# Assumes that the CLASSPATH contains JDK classes.
21-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run the XML Schema for Java Sample Program
CLASSPATH := $(CLASSPATH)$(PATHSEP)$(XMLPARSER)$(PATHSEP)$(XSCHEMA)

%.class: %.java
/usr/local/packages/jdk1.2/bin/javac -classpath "$(CLASSPATH)" $<

# make all class files
all: $(CLASSES)

XML Schema for Java Example 1: cat.xsd
This is the sample XML Schema Definition file that inputs XSDSetSchema.java

program. XML Schema Processor uses the XMLSchema specification from cat.xsd to

validate the contents of catalogue.xml.

<?xml version="1.0"?>
schema xmlns="http://www.w3.org/1999/XMLSchema"
            targetNamespace="http://www.somewhere.org/BookCatalogue"
            xmlns:catd = "http://www.somewhere.org/Digest"
            xmlns:cat  = "http://www.somewhere.org/BookCatalogue">

<import namespace = "http://www.somewhere.org/Digest"
        schemaLocation = "catd.xsd" />

  <element name="BookCatalogue">
     <complexType>
        <all>
        <element ref="cat:Book" minOccurs="0" maxOccurs="*"/>
        <element name="Digest" type="catd:Digest" minOccurs="0" maxOccurs="*"/>
        </all>
     </complexType>
  </element>
  <element name="Book">
     <complexType content="mixed">
        <group ref="cat:Book"/>
        <attribute name="number" type="integer"/>
        <attribute name="volumeName" type="string"/>
        <attribute name="volumeNumber" type="integer"/>
     </complexType>
  </element>
  <group name="Book">
     <all>
        <element ref="cat:Title"/>
        <element ref="cat:Author" minOccurs="0" maxOccurs="1"/>
        <element ref="cat:Date"/>
        <element ref="cat:ISBN"/>
Using XML Schema Processor for Java 21-11



How to Run the XML Schema for Java Sample Program
        <element ref="cat:Publisher"/>
     </all>
  </group>
  <element name="Title" type="string"/>
  <element name="Author" type="string"/>
  <element name="Date" type="date"/>
  <element name="ISBN" type="string"/>
  <element name="Publisher" type="string"/>
</schema>

XML Schema for Java Example 2: catalogue.xml
This is the sample XML file that is validated by XML Schema processor against the

XML Schema Definition file, cat.xsd, using the program, XSDSetSchema.java.

<?xml version="1.0"?>
<BookCatalogue xmlns =
                      "http://www.somewhere.org/BookCatalogue"
               xmlns:xsi =
                      "http://www.w3.org/1999/XMLSchema/instance"
               xsi:schemaLocation =
                      "http://www.somewhere.org/BookCatalogue
                       cat.xsd">

        <Book number="11" volumeName="any" volumeNumber="1">
           <Date>July, 1998</Date>
           <Title>My Life and Times</Title>
           <Author>Paul McCartney</Author>
           <ISBN>1111-12021-43892</ISBN>
           <Publisher>McMillin Publishing</Publisher>
        </Book>
        <Digest>
           <Title>Book Revwiew</Title>
           <Volume>42</Volume>
           <Publisher>McMillin Publishing</Publisher>
        </Digest>
</BookCatalogue>

XML Schema for Java Example 3: catalogue_e.xml
When XML Schema Processor processes this sample XML file using

XSDSample.java, it generates XML Schema errors.

<?xml version="1.0"?>
<BookCatalogue xmlns =
21-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run the XML Schema for Java Sample Program
                      "http://www.somewhere.org/BookCatalogue"
               xmlns:xsi =
                      "http://www.w3.org/1999/XMLSchema/instance"
               xsi:schemaLocation =
                      "http://www.somewhere.org/BookCatalogue
                       cat.xsd">

        <Book number="11k" volumeName="any" volumeNumber="1">
           <Date>July, 1998</Date>
           <Title>My Life and Times</Title>
           <Author>Paul McCartney</Author>
           <ISBN>1111-12021-43892</ISBN>
           <Publisher>McMillin Publishing</Publisher>
        </Book>
        <Digest>
           <Title>Book Revwiew</Title>
           <Volume>42</Volume>
           <Author>McMillin Publishing</Author>
        </Digest>
</BookCatalogue>

XML Schema for Java Example 4: report.xml
This is the sample XML file that is validated by XML Schema processor against the

XML Schema Definition file, report.xsd, using the program, XSDSetSchema.java.

<purchaseReport
  xmlns='http://www.example.com/Report'
  period="P3M" periodEnding="1999-12-31"
  xmlns:xsi = "http://www.w3.org/1999/XMLSchema/instance"
   xsi:schemaLocation="http://www.example.com/Report  report.xsd">

 <regions>
  <zip code="95819">
   <part number="872-AA" quantity="1"/>
   <part number="926-AA" quantity="1"/>
   <part number="833-AA" quantity="1"/>
   <part number="455-BX" quantity="1"/>
  </zip>
  <zip code="63143">
   <part number="755-KY" quantity="4"/>
  </zip>
 </regions>

 <parts>
Using XML Schema Processor for Java 21-13



How to Run the XML Schema for Java Sample Program
  <partSpec number="872-AA">Lawnmower</partSpec>
  <partSpec number="926-AA">Baby Monitor</partSpec>
  <partSpec number="833-AA">Lapis Necklace</partSpec>
  <partSpec number="455-BX">Sturdy Shelves</partSpec>
  <partSpec number="755-KY">Sturdy Shelves</partSpec>
 </parts>

</purchaseReport>

XML Schema for Java Example 5: report.xsd
This is the sample XML Schema Definition file that inputs XSDSetSchema.java

program. XML Schema Processor uses the XMLSchema specification from

report.xsd to validate the contents of report.xml.

<schema targetNamespace='http://www.example.com/Report'
        xmlns='http://www.w3.org/1999/XMLSchema'
        xmlns:r='http://www.example.com/Report'
        xmlns:xipo='http://www.example.com/IPO'
elementFormDefault="qualified">

 <element name="purchaseReport">
  <complexType>
   <element name="regions" type="r:RegionsType"/>
   <element name="parts" type="r:PartsType"/>
   <attribute name="period" type="timeDuration"/>
   <attribute name="periodEnding" type="date"/>
  </complexType>
    <unique name="pZipCode">
   <selector>regions/zip</selector>
   <field>@code</field>
  </unique>
  <key name="pNumKey">
   <selector>parts/part</selector>
   <field>@number</field>
  </key>
  <keyref name="pKeyRef" refer="pNumKey">
   <selector>regions/zip/part</selector>
   <field>@number</field>
  </keyref>
 </element>
 <complexType name="RegionsType">
  <element name="zip" minOccurs="1" maxOccurs="unbounded">
   <complexType>
    <element name="part" maxOccurs="unbounded">
21-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run the XML Schema for Java Sample Program
     <complexType content="empty">
      <attribute name="number" type="r:Sku"/>
      <attribute name="quantity" type="positiveInteger"/>
     </complexType>
    </element>
    <attribute name="code" type="positiveInteger"/>
   </complexType>
  </element>
 </complexType>

 <complexType name="PartsType">
  <element name="partSpec" minOccurs="1" maxOccurs="unbounded">
   <complexType content="textOnly">
     <attribute name="number" type="r:Sku"/>
   </complexType>
  </element>
 </complexType>
<simpleType name="Sku" base="string">
    <pattern value="\d{3}-[A-Z]{2}"/>
</simpleType>
</schema>

XML Schema for Java Example 6: report_e.xml
When XML Schema Processor processes this sample XML file using

XSDSample.java, it generates XML Schema errors.

<purchaseReport
  xmlns='http://www.example.com/Report'
  period="P3M" periodEnding="1999-12-31"
  xmlns:xsi = "http://www.w3.org/1999/XMLSchema/instance"
  xsi:schemaLocation="http://www.example.com/Report  report.xsd">
 <regions>
  <zip code="95819">
   <part number="872-AA" quantity="1"/>
   <part number="926-AA" quantity="1"/>
   <part number="833-AAA" quantity="1"/>
   <part number="455-BX" quantity="1"/>
  </zip>
  <zip code="63143">
   <part number="755-KY" quantity="4"/>
  </zip>
 </regions>
 <parts>
  <partSpec number="872-AA">Lawnmower</partSpec>
Using XML Schema Processor for Java 21-15



How to Run the XML Schema for Java Sample Program
  <partSpec number="926-AA">Baby Monitor</partSpec>
  <partSpec number="833-AA">Lapis Necklace</partSpec>
  <partSpec number="455-BX">Sturdy Shelves</partSpec>
  <partSpec number="755-KY">Sturdy Shelves</partSpec>
 </parts>
</purchaseReport>

XML Schema for Java Example 7: XSDSample.java
//import oracle.xml.parser.schema.*;
import oracle.xml.parser.v2.*;
import java.net.*;
import java.io.*;
import org.w3c.dom.*;
import java.util.*;

public class XSDSample
{
   public static void main(String[] args) throws Exception
   {
      if (args.length != 1)
      {
         System.out.println("Usage: java XSDSample <filename>");
         return;
      }
      process (args[0]);
   }

   public static void process (String xmlURI) throws Exception
   {

      DOMParser dp  = new DOMParser();
      URL       url = createURL (xmlURI);

      // Set Schema Validation to true
      dp.setSchemaValidationMode(true);
      dp.setValidationMode(false);
      dp.setPreserveWhitespace (true);

      dp.setErrorStream (System.out);

      try
      {
         System.out.println("Parsing "+xmlURI);
         dp.parse (url);
21-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run the XML Schema for Java Sample Program
         System.out.println("The input file <"+xmlURI+"> parsed without
errors");
      }
      catch (XMLParseException pe)
      {
         System.out.println("Parser Exception: " + pe.getMessage());
      }
      catch (Exception e)
      {
         System.out.println("NonParserException: " + e.getMessage());
      }

  }

   // Helper method to create a URL from a file name
   static URL createURL(String fileName)
   {
      URL url = null;
      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);
         try
         {
            String path = f.getAbsolutePath();
            // This is a bunch of weird code that is required to
            // make a valid URL on the Windows platform, due
            // to inconsistencies in what getAbsolutePath returns.
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
Using XML Schema Processor for Java 21-17



How to Run the XML Schema for Java Sample Program
            System.out.println("Cannot create url for: " + fileName);
            System.exit(0);
         }
      }
      return url;
   }

}

XML Schema for Java Example 8: XSDSetSchema.java
When this example is run with cat.xsd and catalogue.xml, XML Schema Processor

uses the XMLSchema specification from cat.xsd to validate the contents of

catalogue.xml.

When this example is run with report.xsd and report.xml, XML Schema Processor

uses the XMLSchema specification from cat.xsd to validate the contents of

report.xml.

import oracle.xml.parser.schema.*;
import oracle.xml.parser.v2.*;

import java.net.*;
import java.io.*;
import org.w3c.dom.*;
import java.util.*;

public class XSDSetSchema
{
   public static void main(String[] args) throws Exception
   {
      if (args.length != 2)
      {
         System.out.println("Usage: java XSDSample <schema_file> <xml_file>");
         return;
      }

      XSDBuilder builder = new XSDBuilder();
      URL    url =  createURL(args[0]);

      // Build XML Schema Object
      XMLSchema schemadoc = (XMLSchema)builder.build(url);
      process(args[1], schemadoc);
   }
21-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run the XML Schema for Java Sample Program
   public static void process(String xmlURI, XMLSchema schemadoc)
   throws Exception
   {

      DOMParser dp  = new DOMParser();
      URL       url = createURL (xmlURI);

      // Set Schema Object for Validation
      dp.setXMLSchema(schemadoc);
      dp.setValidationMode(XMLParser.SCHEMA_VALIDATION);
      dp.setPreserveWhitespace (true);

      dp.setErrorStream (System.out);

      try
      {
         System.out.println("Parsing "+xmlURI);
         dp.parse (url);
         System.out.println("The input file <"+xmlURI+"> parsed without
errors");
      }
      catch (XMLParseException pe)
      {
         System.out.println("Parser Exception: " + pe.getMessage());
      }
      catch (Exception e)
      {
         System.out.println ("NonParserException: " + e.getMessage());
      }

   }

   // Helper method to create a URL from a file name
   static URL createURL(String fileName)
   {
      URL url = null;
      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);
         try
         {
Using XML Schema Processor for Java 21-19



How to Run the XML Schema for Java Sample Program
            String path = f.getAbsolutePath();
            // This is a bunch of weird code that is required to
            // make a valid URL on the Windows platform, due
            // to inconsistencies in what getAbsolutePath returns.
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
            System.out.println("Cannot create url for: " + fileName);
            System.exit(0);
         }
      }
      return url;
   }

}

21-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Class Generator
22

XML Class Generator for Java

This chapter contains the following sections:

■ Accessing XML Class Generator for Java

■ XML Class Generator for Java: Overview

■ Oracg Command Line Utility

■ Class Generator for Java: XML Schema

■ Using XML Class Generator for Java with XML Schema

■ Using XML Class Generator for Java with DTDs

■ Examples Using XML Java Class Generator with DTDs and XML Schema

■ XML Class Generator for Java, DTD Example 1a: Application —

SampleMain.java

■ XML Class Generator for Java, DTD Example 1d: TestWidl.java

■ XML Class Generator for Java, Schema Example 1b: Application,

CarDealer.java

■ XML Class Generator for Java, Schema Example 2b: Application —

BookCatalogue.java

■ XML Class Generator for Java, Schema Example 3b: Application —

TestPo.java

■ Frequently Asked Questions (FAQs): Class Generator for Java
 for Java 22-1



Accessing XML Class Generator for Java
Accessing XML Class Generator for Java
The Oracle XML Class Generator for Java is provided with Oracle9i’s XDK for Java.

It is located at $ORACLE_HOME/xdk/java/classgen. It is also available for

download from the OTN site: http://otn.oracle.com/tech/xml.

XML Class Generator for Java: Overview
XML Class Generator for Java creates Java source files from an XML DTD or XML

Schema Definition. This is useful in the following situations:

■ When an application wants to send an XML message to another application

based on agreed-upon DTDs or XML Schemas.

■ As the back end of a web form to construct an XML document.

The generated classes can be used to programmatically construct XML documents.

XML Class Generator for Java also optionally generates javadoc comments on the

generated source files. XML Class Generator for Java requires the XML Parser for

Java and the XML Schema Processor for Java. It works in conjunction with XML

Parser for Java, which parses the DTD (or XML Schema) and sends the parsed XML

document to the Class Generator.

XML Class Generator for Java consists of the following two class generators:

■ DTD Class Generator

■ XML Schema Class Generator

These can both be invoked from command line utility, oracg .

Figure 22–1 provides an overview of how XML Class Generator for Java is used.
22-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracg Command Line Utility
Figure 22–1 XML Class Generator for Java: Overview

Oracg Command Line Utility
The oracg  command line utility is used to invoke the DTD or Schema Class

Generator for Java, depending on the input arguments. Table 22–1 lists the oracg
arguments.

Note: The clause, “one class per element” does not apply to the

XML Schema Class Generator for Java.

See Also: Figure 3–7, "Generating XML Documents Using XDK

for Java" in Chapter 3, "Oracle XML Developer Kits (XDKs) and

Components: Overview and General FAQs".

Table 22–1 Class Generator for Java: oracg Command Line Arguments

oracg Arguments Description

- h Prints the help message text

- d <dtd file> DTD file (.dtd file)

- s <schema file> Schema file (.xsd file)

- o <Output dirname> Specifies the output directory

- c Comment option

Valid XML
document
based on

DTD or XML
Schema

XML Class Generator 
for Java

Java Application

Parsed 
DTD or
XML
Schema

XML Parser for Java

Jc
Jc

Jc
Jc

Java classes based
on DTD or XML Schema
(one class per element)

DTD or
XML Schema
XML Class Generator for Java 22-3



Class Generator for Java: XML Schema
Class Generator for Java: XML Schema
XML Class Generator for Java’s XML Schema Class Generator has the following

features:

■ It generates a Java class for each top level element, that is, global elements

simpleType  element and complexType  element.

■ Classes corresponding to the top level elements, that is, global elements, extend

the CGXSDElement.

■ The type hierarchy among the elements is maintained in the generated Java

classes. If the complexType  or simpleType  element extends any other

complexType  or simpleType  element, then the class corresponding to them

extends the base type simpleType  or complexType  element. Otherwise, they

extend the CGSXDElement class.

Namespace Features
XML Schema Class Generator also supports the following namespace features:

■ Package Name Creation. For each namespace, a package is created and

corresponds to the elements in the namespace — the Java classes are generated

in that package.

■ If there is no namespace defined, then the classes are generated in the

default package.

■ If targetNamespace  is specified in the schema, then a package name is

required to generate the classes.

■ If there is a namespace defined then the user needs to specify the package name

through the command line utility. The number of packages specified should

match the command line arguments corresponding to the package names.

■ Symbol Spaces. A single distinct symbol space is used within a given target

namespace for each kind of definition and declaration component identified in

XML Schema. The exceptions for this is when symbol space is shared between

simple type and complex type.

- p <package name/s> Specifies the package names corresponding to namespace

Table 22–1 Class Generator for Java: oracg Command Line Arguments

oracg Arguments Description
22-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Class Generator for Java with XML Schema
In a given symbol space, names are unique, but the same name may appear in

more than one symbol space without conflict. For example, the same name can

appear in both a type definition and an element declaration, without conflict or

necessary relation between the two. In such conflict situation, the class name

generated corresponding to the simpleType /complexType  element is

appended with the key word “Type”.

■ To avoid conflict, any methods which take the 'type' of an element

(corresponding to which there is a generated Java class) as parameter, take the

fully resolved name with the package name.

Using XML Class Generator for Java with XML Schema
Figure 22–2 shows the calling sequence used when generating classes with XML

Class Generator for Java with XML Schema.

XML Java Class Generator with XML Schema operates as follows:

1. A new SchemaClassGenerator()  class is initiated and inputs the

generate()  method. The available properties for class,

SchemaClassGenerator() include:

■ setGeneraterComments() , with default = TRUE

■ setJavaPackage(string) , with default = no package

■ setOutputDirectory(string) , with default = current directory

2. If an XML Schema is used, the Schema object returned using getDocType()
from the parseSchema()  method, is also input. See also Figure 20–4, "XML

Parser for Java: DOMParser()" on page 20-18 from Chapter 20, "Using XML

Parser for Java".

3. The generate()  method generates Java classes which can then be used to

build your XML document.

To generate classes using XML Class Generator for Java with XML Schema, follow

the guidelines described in the following sections:

■ Generating Top Level Element Classes  on page 22-6

■ Generating Top Level ComplexType Element Classes  on page 22-7

■ Generating SimpleType Element Classes  on page 22-7
XML Class Generator for Java 22-5



Using XML Class Generator for Java with XML Schema
Figure 22–2 Generating Classes Using Class Generator for Java with XML Schema

Generating Top Level Element Classes
The following lists guidelines for using XML Schema Class Generator for Java when

generating top level element classes:

■ A class corresponding to the element name is generated in the package

associated with the namespace.

■ The element has a method called setType  to set the type of the element in the

element class. The setType  takes fully resolved package name to avoid

conflict.

■ If the element has an inline simpleType  or complexType , a public static class

inside the element class is created which follows all the rules specified in the

simpleType /complexType . The name of the public static class, is the element

name suffixed by Type. For example, if the element name is PurchaseOrder
and PurchaseOrder has an inline complexType  definition, then the public

static inner class will have the name PurchaseOrder_Type

[Schema object]
New Schema

ClassGenerator()

generate()

Java
classes

Available properties include:
· setGenerateComments() 
  [default = TRUE]
· setJavaPackage(vector) 
  [default = no package]
· setOutputDirectory(String) 
  [default = current directory]
· setSerializationMode(boolean) 
· setValidationMode(boolean) 
 

Use these to
build your
XML
document

XML Class Generator for Java
22-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Class Generator for Java with XML Schema
■ The name clash in class names between elements and complexType using

“Type” as suffix.

■ The element name and namespace is stored inside the element class (which

could be used for serialization and validation)

■ A validate method is provided inside the elements to accept an XMLSchema

object to validate.

■ A print method is provided inside the element to print the node.

Generating Top Level ComplexType Element Classes
The following lists guidelines for using XML Schema Class Generator for Java when

generating top level complexType  element classes:

■ If the complexType  element is a top level element, then a class is generated in

the package associated with the namespace. If the complexType  element

extends a base type element, then the class corresponding to the complexType
element also extends the base Type element. Otherwise, it extends the

CGXSDElement class.

■ The class contains fields corresponding to the attributes. The fields are made

protected, so that they can be accessed from subtypes. The fields are added only

for the attributes that not present in the base type.

■ The class contains methods to set and get attributes.

■ For each local element, a public static class is created exactly similar to top level

elements, except that it will be completely inside the complexType class.

Generating SimpleType Element Classes
The following lists guidelines for using XML Schema Class Generator for Java when

generating top level simpleType  element classes:

■ A class is generated for each top level simpleType  element

■ The hierarchy of the simpleType element is maintained in the generated class.

If the simpleType element extends a base class then the class corresponding to

the simpleType element also extends the base class corresponding to the base

element. Otherwise the simpleType  element extends the CGXSDElement
class.

■ If the simpleType  element extends the schema data type, then the class

extends the class corresponding to the schema data type. For example, if the
XML Class Generator for Java 22-7



Using XML Class Generator for Java with DTDs
base type is a string, then the schema equivalent class is taken as

XSDStringType , and so on.

■ The class contains a field to store the simpleType  value.

■ The constructor of the simpleType  element class sets the schema facets.

■ The constructor sets the simpleType  data value (XSDDataValue ) in the

constructor after validating against the facets.

Using XML Class Generator for Java with DTDs
Figure 22–3 shows the calling sequence of XML Java Class Generator with DTDs:

1. A new DTDClassGenerator()  class is initiated and inputs the generate()
method. Available properties for class, DTDClassGenerator() are:

■ setGeneraterComments() , with default = TRUE

■ setJavaPackage(string) , with default = no package

■ setOutputDirectory(string) , with default = current directory

2. If a DTD is used, the DTD object returned using getDocType()  from the

parseDTD()  method, is also input. See also Figure 20–4, "XML Parser for Java:

DOMParser()" on page 20-18 from Chapter 20, "Using XML Parser for Java".

3. The generate()  method generates Java classes which can then be used to

build your XML document.
22-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Class Generator for Java with DTDs
Figure 22–3 Generating Classes Using XML Class Generator for Java and DTDs

See Also:

■ Chapter 3, "Oracle XML Developer Kits (XDKs) and

Components: Overview and General FAQs", "Using Oracle

XML Components to Generate XML Documents: Java"  on

page 3-17

■ Appendix C, "XDK for Java: Specifications and Cheat Sheets"

■ Oracle9i XML Reference

[DTD object]
New DTD

ClassGenerator()

generate()

Java
classes

Available properties include:
· setGenerateComments() 
  [default = TRUE]
· setJavaPackage(vector) 
  [default = no package]
· setOutputDirectory(String) 
  [default = current directory]
· setSerializationMode(boolean) 
· setValidationMode(boolean) 
 

Use these to
build your
XML
document

XML Class Generator for Java
XML Class Generator for Java 22-9



Examples Using XML Java Class Generator with DTDs and XML Schema
Examples Using XML Java Class Generator with DTDs and XML
Schema

Table 22–2 lists the example files and directories supplied in $ORACLE_HOME:

Running XML Class Generator for Java — DTD Examples
To run the XML Class Generator for Java DTD sample programs, use;

make target 'dtd '

then follow these steps:

1. Compile and run SampleMain  to generate the Java source files, using the

commands:

javac SampleMain.java
java SampleMain -root WIDL Widl.dtd

Table 22–2 XML Class Generator for Java Example Files

Example File Description

Makefile Makefile used to compile and run the demo in Unix.

Make.bat Makefile used to compile and run the demo in Windows

SampleMain.java Sample application to generate Java source files based on a
DTD.

Widl.dtd Sample DTD.

Widl.xml Sample XML file based on Widl.dtd.

TestWidl.java Sample application to construct an XML document using the
Java source files generated by SampleMain.

car.xsd Sample XML Schema

CarDealer.java Sample application to construct an XML document using the
java source generated from car.xsd.

book.xsd Sample XML Schema

BookCatalogue.java Sample application to construct an XML document using the
Java sources generated from book.xsd

po.xsd Sample XML Schema

TestPo.java Sample application to construct an XML document using the
Java sources generated from po.xsd.
22-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
or

java SampleMain Widl.xml

2. Set the CLASSPATH to contain 'classgen.jar', 'xmlparser.jar', and the current

directory.

3. Compile the Java source files generated by SampleMain, that is., BINDING.java,

CONDITION.java, REGION.java, SERVICE.java, VARIABLE.java, and

WIDL.java, using the command:

javac *.java

4. Run the test application to print the XML Document using the commands:

javac TestWidl.java
java TestWidl

The output is stored in Widl_out.txt

Running XML Class Generator for Java — XML Schema Examples
To run the XML Class Generator for Java Schema sample programs, use:

make target 'schema'

There are three Schema samples: car.xsd, book.xsd, po.xsd

The classes are generated using oracg  utility. For example, the classes

corresponding to car.xsd can be generated from the command line:

oracg -c -s car.xsd -p package1

The classes are generated in the directory, package1.

When Makefile  is used to run the schema class generator demo:

■ Classes corresponding to car.xsd are generated in directory package1. Demo

program, CarDealer.java, tests the generated classes. The output of

CarDealer.java is stored in file, car_out.txt.

■ Classes corresponding to book.xsd are generated in directory package2. Demo

program BookCatalogue.java tests the generated classes. The output is stored in

the file, book_out.txt.
XML Class Generator for Java 22-11



Examples Using XML Java Class Generator with DTDs and XML Schema
■ Classes corresponding to po.xsd are generated in directory package3. Demo

program TestPo.java tests the generated classes. The output is stored in the file

po_out.txt

The following Class Generator using DTD examples are included here:

■ XML Class Generator for Java, DTD Example 1a: Application —

SampleMain.java

■ XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd

■ XML Class Generator for Java, DTD Example 1c: Input — widl.xml

■ XML Class Generator for Java, DTD Example 1d: TestWidl.java

■ XML Class Generator for Java, DTD Example 1e: XML Output — widl.out

XML Class Generator for Java, DTD Example 1a: Application — SampleMain.java
/**
 * This program generates the classes for a given DTD using
 * XML DTD Class Generator. A DTD file or an XML document which is
 * DTD compliant is given as input parameters to this application.
 */

import java.io.File;
import java.net.URL;
import oracle.xml.parser.v2.DOMParser;
import oracle.xml.parser.v2.DTD;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.classgen.DTDClassGenerator;

public class SampleMain
{

   public SampleMain()
   {
   }

   public static void main (String args[])
   {
      // Validate the input arguments
      if (args.length < 1)
      {
         System.out.println("Usage: java SampleMain "+
                            "[-root <rootName>] <fileName>");
         System.out.println("fileName\t   Input file, XML document or " +
22-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
                            "external DTD file");
         System.out.println("-root <rootName>   Name of the root Element " +
                            "(required if the input file is an external DTD)");
         return ;
      }

      // ty to open the XML Document or the External DTD File
      try
      {
         // Instantiate the parser
         DOMParser   parser = new DOMParser();
         XMLDocument doc    = null;
         DTD         dtd    = null;

         if (args.length == 3)
         {
            parser.parseDTD(fileToURL(args[2]), args[1]);
            dtd = (DTD)parser.getDoctype();
         }
         else
         {
            parser.setValidationMode(true);
            parser.parse(fileToURL(args[0]));
            doc = parser.getDocument();
            dtd = (DTD)doc.getDoctype();
         }

         String doctype_name = null;

         if (args.length == 3)
         {
            doctype_name = args[1];
         }
         else
         {
            // get the Root Element name from the XMLDocument
            doctype_name = doc.getDocumentElement().getTagName();
         }

         // generate the Java files...
         DTDClassGenerator generator = new DTDClassGenerator();

         // set generate comments to true
         generator.setGenerateComments(true);
XML Class Generator for Java 22-13



Examples Using XML Java Class Generator with DTDs and XML Schema
         // set output directory
         generator.setOutputDirectory(".");

         // set validating mode to true
         generator.setValidationMode(true);

         // generate java src
         generator.generate(dtd, doctype_name);

      }
      catch (Exception e)
      {
         System.out.println ("XML Class Generator: Error " + e.toString());
         e.printStackTrace();
      }
   }

   static public URL fileToURL(String sfile)
   {
      File file = new File(sfile);
      String path = file.getAbsolutePath();
      String fSep = System.getProperty("file.separator");
      if (fSep != null && fSep.length() == 1)
         path = path.replace(fSep.charAt(0), '/');
      if (path.length() > 0 && path.charAt(0) != '/')
         path = '/' + path;
      try
      {
         return new URL("file", null, path);
      }
      catch (java.net.MalformedURLException e)
      {
         // According to the spec this could only happen if the file
         // protocol were not recognized.
         throw new Error("unexpected MalformedURLException");
      }
   }
}

XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
The following example, widl.dtd , is the DTD file used by SampleMain.java.

<!ELEMENT WIDL ( SERVICE | BINDING )* >
<!ATTLIST WIDL
22-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
     NAME       CDATA   #IMPLIED
     VERSION (1.0 | 2.0 | ...) "2.0"
     BASEURL    CDATA   #IMPLIED
     OBJMODEL (wmdom | ...) "wmdom"
>

<!ELEMENT SERVICE EMPTY>
<!ATTLIST SERVICE
     NAME       CDATA   #REQUIRED
     URL        CDATA   #REQUIRED
     METHOD (Get | Post) "Get"
     INPUT      CDATA   #IMPLIED
     OUTPUT     CDATA   #IMPLIED
>

<!ELEMENT BINDING ( VARIABLE | CONDITION | REGION )* >
<!ATTLIST BINDING
     NAME       CDATA   #REQUIRED
     TYPE (Input | Output) "Output"
>

<!ELEMENT VARIABLE EMPTY>
<!ATTLIST VARIABLE
     NAME       CDATA   #REQUIRED
     TYPE (String | String1 | String2) "String"
     USAGE (Function | Header | Internal) "Function"
     VALUE      CDATA   #IMPLIED
     MASK       CDATA   #IMPLIED
     NULLOK    (True | False) #REQUIRED
>

<!ELEMENT CONDITION EMPTY>
<!ATTLIST CONDITION
     TYPE  (Success | Failure | Retry) "Success"
     REF        CDATA   #REQUIRED
     MATCH      CDATA   #REQUIRED
     SERVICE    CDATA   #IMPLIED
>

<!ELEMENT REGION EMPTY>
<!ATTLIST REGION
     NAME       CDATA   #REQUIRED
     START      CDATA   #REQUIRED
     END        CDATA   #REQUIRED
>

XML Class Generator for Java 22-15



Examples Using XML Java Class Generator with DTDs and XML Schema
XML Class Generator for Java, DTD Example 1c: Input — widl.xml
This XML file inputs SampleMain.java and is based on widl.dtd:

<?xml version="1.0"?>
<!DOCTYPE WIDL SYSTEM "Widl.dtd">
<WIDL>
    <SERVICE NAME="sname" URL="surl"/>
    <BINDING NAME="bname"/>
</WIDL>

XML Class Generator for Java, DTD Example 1d: TestWidl.java
TestWidl.java constructs an XML document using the Java source files generated by

SampleMain.java.

/**
 * This is a sample application program which is built using the
 * classes generated by the XML DTD Class Generator. The External DTD
 * File "Widl.dtd" or the XML document which "Widl.xml" which is compliant
 * to  Widl.dtd is used to generate the classes. The application
 * SampleMain.java is used to generate the classes which takes the DTD
 * or XML document as input parameters to generate classes.
 */

import oracle.xml.classgen.CGNode;
import oracle.xml.classgen.CGDocument;
import oracle.xml.classgen.DTDClassGenerator;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.DTD;

public class TestWidl
{
   public static void main (String args[])
   {
      try
      {
         WIDL w1 = new WIDL();
         DTD dtd = w1.getDTDNode();

         w1.setNAME("WIDL1");
         w1.setVERSION(WIDL.VERSION_1_0);

         SERVICE s1 = new SERVICE("Service1", "Service_URL");
         s1.setINPUT("File");
         s1.setOUTPUT("File");
22-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
         BINDING b1 = new BINDING("Binding1");
         b1.setTYPE(BINDING.TYPE_INPUT);

         BINDING b2 = new BINDING("Binding2");
         b2.setTYPE(BINDING.TYPE_OUTPUT);

         VARIABLE v1 = new VARIABLE("Variable1", VARIABLE.NULLOK_FALSE);
         v1.setTYPE(VARIABLE.TYPE_STRING);
         v1.setUSAGE(VARIABLE.USAGE_INTERNAL);
         v1.setVALUE("value");

         VARIABLE v2 = new VARIABLE("Variable2", VARIABLE.NULLOK_TRUE);
         v2.setTYPE(VARIABLE.TYPE_STRING1);
         v2.setUSAGE(VARIABLE.USAGE_HEADER);

         VARIABLE v3 = new VARIABLE("Variable3", VARIABLE.NULLOK_FALSE);
         v3.setTYPE(VARIABLE.TYPE_STRING2);
         v3.setUSAGE(VARIABLE.USAGE_FUNCTION);
         v3.setMASK("mask");

         CONDITION c1 = new CONDITION("CRef1", "CMatch1");
         c1.setSERVICE("Service1");
         c1.setTYPE(CONDITION.TYPE_SUCCESS);

         CONDITION c2 = new CONDITION("CRef2", "CMatch2");
         c2.setTYPE(CONDITION.TYPE_RETRY);

         CONDITION c3 = new CONDITION("CRef3", "CMatch3");
         c3.setSERVICE("Service3");
         c3.setTYPE(CONDITION.TYPE_FAILURE);

         REGION r1 = new REGION("Region1", "Start", "End");

         b1.addNode(r1);
         b1.addNode(v1);
         b1.addNode(c1);
         b1.addNode(v2);

         b2.addNode(c2);
         b2.addNode(v3);

         w1.addNode(s1);
         w1.addNode(b1);
         w1.addNode(b2);
XML Class Generator for Java 22-17



Examples Using XML Java Class Generator with DTDs and XML Schema
         w1.validateContent();
         w1.print(System.out);
      }
      catch (Exception e)
      {
         System.out.println(e.toString());
         e.printStackTrace();
      }
   }
}

XML Class Generator for Java, DTD Example 1e: XML Output — widl.out
This XML file, widl.out, is constructed and printed by TestWidl.java.

<?xml  version = '1.0' encoding = 'ASCII'?>
<!DOCTYPE WIDL SYSTEM "file:/oracore/java/xml/ORACORE_MAIN_SOLARIS_990115_
XMLCLASSGEN/sample/out/WIDL.dtd">
<WIDL NAME="WIDL1" VERSION="1.0">
   <SERVICE NAME="Service1" URL="Service_URL" INPUT="File" OUTPUT="File"/>
   <BINDING NAME="Binding1" TYPE="Input">
      <REGION NAME="Region1" START="Start" END="End"/>
      <VARIABLE NAME="Variable1" NULLOK="False" TYPE="String" USAGE="Internal"
VALUE="value"/>
      <CONDITION REF="CRef1" MATCH="CMatch1" SERVICE="Service1" TYPE="Success"/>
      <VARIABLE NAME="Variable2" NULLOK="True" TYPE="String1" USAGE="Header"/>
   </BINDING>
   <BINDING NAME="Binding2" TYPE="Output">
      <CONDITION REF="CRef2" MATCH="CMatch2" TYPE="Retry"/>
      <VARIABLE NAME="Variable3" NULLOK="False" TYPE="String2" USAGE="Function"
MASK="mask"/>
   </BINDING>
</WIDL>

The following Class Generator using XML Schema examples are included here

■ XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd

■ XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java

■ XML Class Generator for Java, Schema Example 2a: Schema — book.xsd

■ XML Class Generator for Java, Schema Example 2b: Application —

BookCatalogue.java

■ XML Class Generator for Java, Schema Example 3a: Schema — po.xsd
22-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
■ XML Class Generator for Java, Schema Example 3b: Application — TestPo.java

XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd
This sample, car.xsd, is used in an oracg  command to generate classes. These

classes inputs the program, CarDealer.java, which then creates an XML document.

The command used is:

oracg -c -s car.xsd -p package1

See the comments about how this is used, in:

■ "XML Class Generator for Java, Schema Example 1b: Application,

CarDealer.java"  on page 22-20

■ "Running XML Class Generator for Java — XML Schema Examples"  on

page 22-11

<?xml version="1.0" encoding="ISO-8859-1"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
targetNamespace = "http://www.CarDealers.com/" elementFormDefault="qualified">
<element name="Car">
  <complexType>
    <element name="Model">
      <simpleType base="string">
        <enumeration value = "Ford"/>
        <enumeration value = "Saab"/>
        <enumeration value = "Audi"/>
      </simpleType>
    </element>
    <element name="Make">
       <simpleType base="string">
         <minLength value = "1"/>
         <maxLength value = "30"/>
       </simpleType>
    </element>
    <element name="Year">
       <complexType content="mixed">
          <attribute name="PreviouslyOwned" type="string" use="required"/>
          <attribute name="YearsOwned" type="integer" use="optional"/>
       </complexType>
    </element>
    <element name="OwnerName" type="string" minOccurs="0"
maxOccurs="unbounded"/>
    <element name="Condition">
       <complexType base="string" derivedBy="extension">
XML Class Generator for Java 22-19



Examples Using XML Java Class Generator with DTDs and XML Schema
          <attribute name="Automatic">
            <simpleType base="string">
               <enumeration value = "Yes"/>
               <enumeration value = "No"/>
            </simpleType>
          </attribute>
       </complexType>
    </element>
    <element name="Mileage">
      <simpleType base="integer">
        <minInclusive value="0"/>
        <maxInclusive value="20000"/>
      </simpleType>
    </element>
    <attribute name="RequestDate" type="date"/>
  </complexType>
 </element>
</schema>

XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java
/**
 * This is a sample application program that creates an XMl document. It is
 * built using the classes generated by XML Schema Class Generator. XML
 * Schema "car.xsd", is used to generate the classes using the oracg
 * command line utility. The classes are generated in a package called
 * package1 which is specified as command line option. The following
 * oracg command line options are used to generate the classes:
 * oracg -c -s car.xsd -p package1
 */

import oracle.xml.classgen.CGXSDElement;
import oracle.xml.classgen.SchemaClassGenerator;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.XMLOutputStream;
import java.io.OutputStream;

import package1.*;

public class CarDealer
{
   static OutputStream output  = System.out;
   static XMLOutputStream out = new XMLOutputStream(output);

   public static void main(String args[])
22-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
   {
      CarDealer cardealer = new CarDealer();
      try
      {
         Car.Car_Type ctype = new Car.Car_Type();
         ctype.setRequestDate("02-09-00");
         Car.Car_Type.Model model = new Car.Car_Type.Model();
         Car.Car_Type.Model.Model_Type modelType =
                  new Car.Car_Type.Model.Model_Type("Ford");
         model.setType(modelType);
         ctype.addModel(model);

         Car.Car_Type.Make make = new Car.Car_Type.Make();
         Car.Car_Type.Make.Make_Type makeType =
                  new Car.Car_Type.Make.Make_Type("F150");
         make.setType(makeType);
         ctype.addMake(make);

         Car.Car_Type.Year year = new Car.Car_Type.Year();
         Car.Car_Type.Year.Year_Type yearType =
                 new Car.Car_Type.Year.Year_Type();
         yearType.addText("1999");

         year.setType(yearType);
         ctype.addYear(year);

         Car.Car_Type.OwnerName owner1 = new Car.Car_Type.OwnerName();
         owner1.setType("Joe Smith");
         ctype.addOwnerName(owner1);

         Car.Car_Type.OwnerName owner2 = new Car.Car_Type.OwnerName();
         owner2.setType("Bob Smith");
         ctype.addOwnerName(owner2);

         String str = "Small dent on the car's right bumper.";
         Car.Car_Type.Condition condition = new Car.Car_Type.Condition();
         Car.Car_Type.Condition.Condition_Type conditionType =
                 new Car.Car_Type.Condition.Condition_Type(str);

         Car.Car_Type.Condition.Condition_Type.Automatic automatic =
               new Car.Car_Type.Condition.Condition_Type.Automatic("Yes");
         conditionType.setAutomatic(automatic);

         condition.setType(conditionType);
         ctype.addCondition(condition);
XML Class Generator for Java 22-21



Examples Using XML Java Class Generator with DTDs and XML Schema
         Car.Car_Type.Mileage mileage = new Car.Car_Type.Mileage();
         Car.Car_Type.Mileage.Mileage_Type mileageType =
                 new Car.Car_Type.Mileage.Mileage_Type("10000");
         mileage.setType(mileageType);
         ctype.addMileage(mileage);

         Car car = new Car();
         car.setType(ctype);
         car.print(out);

         out.writeNewLine();
         out.flush();
      }
      catch(InvalidContentException e)
      {
         System.out.println(e.getMessage());
         e.printStackTrace();
      }
      catch(Exception e)
      {
         System.out.println(e.getMessage());
         e.printStackTrace();
      }
   }
}

XML Class Generator for Java, Schema Example 2a: Schema — book.xsd
This sample schema, book.xsd, is used in an oracg  command to generate classes.

The classes then input the program, CarDealer.java, which creates an XML

document. The oracg  command is:

oracg -c -s book.xsd -p package2

See the comments about how this is used, in:

■ "XML Class Generator for Java, Schema Example 2b: Application —

BookCatalogue.java"  on page 22-23

■ "Running XML Class Generator for Java — XML Schema Examples"  on

page 22-11

<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
22-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
        targetNamespace = "http://www.somewhere.org/BookCatalogue"
        xmlns:cat = "http://www.somewhere.org/BookCatalogue"
        elementFormDefault="qualified">

    <complexType name="Pub">
      <sequence>
        <element name="Title" type="cat:titleType" maxOccurs="*"/>
        <element name="Author" type="string" maxOccurs="*"/>
        <element name="Date" type="date"/>
      </sequence>
      <attribute name="language" type="string" use="default" value="English"/>
    </complexType>

    <complexType name="titleType" base="string" derivedBy="extension">
      <attribute name="old" type="string" use="default" value="false"/>
    </complexType>

    <element name="Catalogue" type="cat:Pub"/>
</schema>

XML Class Generator for Java, Schema Example 2b: Application —
BookCatalogue.java

/**
 * This is a sample application program built using the
 * classes generated by XML Schema Class Generator. XML
 * Schema "book.xsd" is used to generate the classes using the oracg
 * command line utility. The classes are generated in a package called
 * package2 which is specified as command line option. The following
 * oracg command line options are used to generate the classes:
 * oracg -c -s book.xsd -p package2
 */

import oracle.xml.classgen.SchemaClassGenerator;
import oracle.xml.classgen.CGXSDElement;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.XMLOutputStream;
import java.io.OutputStream;

import package2.*;

public class BookCatalogue
{

XML Class Generator for Java 22-23



Examples Using XML Java Class Generator with DTDs and XML Schema
   static OutputStream output  = System.out;
   static XMLOutputStream out = new XMLOutputStream(output);

   public static void main(String args[])
   {
      BookCatalogue bookCatalogue = new BookCatalogue();
      try
      {
         Pub pubType = new Pub();

         TitleType titleType = new TitleType("Natural Health");
         titleType.setOld("true");

         Pub.Title title = new Pub.Title();
         title.setType(titleType);
         pubType.addTitle(title);

         Pub.Author author = new Pub.Author();
         author.setType("Richard> Bach");
         pubType.addAuthor(author);

         Pub.Date date = new Pub.Date();
         date.setType("1977");
         pubType.addDate(date);
         pubType.setLanguage("English");

         Catalogue catalogue = new Catalogue();
         catalogue.setType(pubType);

         catalogue.print(out);
         out.writeNewLine();
         out.flush();
      }
      catch(InvalidContentException e)
      {
         System.out.println(e.getMessage());
         e.printStackTrace();
      }
      catch(Exception e)
      {
         System.out.println(e.getMessage());
         e.printStackTrace();
      }
   }
}

22-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
XML Class Generator for Java, Schema Example 3a: Schema — po.xsd
This sample schema, po.xsd, is used in an oracg  command to generate classes. The

classes then input the program, TestPo.java, which creates an XML document. The

oracg  command used is:

oracg -c -s po.xsd -p package3

See the comments about how this is used, in:

■ "XML Class Generator for Java, Schema Example 3b: Application —

TestPo.java"  on page 22-26

■ "Running XML Class Generator for Java — XML Schema Examples"  on

page 22-11

<?xml version="1.0" encoding="ISO-8859-1"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
        targetNamespace = "http://www.somewhere.org/PurchaseOrder"
        xmlns:po = "http://www.somewhere.org/PurchaseOrder">

<element name="comment" type="string"/>

<element name="PurchaseOrder">
  <complexType>
      <element name="shipTo" type="po:Address"/>
      <element name="billTo" type="po:Address"/>
      <element ref="po:comment" minOccurs="0"/>
      <element name="items" type="po:Items"/>
      <attribute name="orderDate" type="date"/>
      <attribute name="shipDate" type="date"/>
      <attribute name="receiveDate" type="date"/>
  </complexType>
</element>

<complexType name="Address">
  <element name="name" type="string"/>
  <element name="street" type="string"/>
  <element name="city" type="string"/>
  <element name="zip" type="decimal"/>
  <attribute name="country" type="NMTOKEN"
      use="fixed" value="US"/>
</complexType>

<complexType name="Items">
XML Class Generator for Java 22-25



Examples Using XML Java Class Generator with DTDs and XML Schema
   <element name="item" minOccurs="0" maxOccurs="unbounded">
      <complexType>
        <element name="productName" type="string"/>
        <element name="quantity" type="int"/>
        <element name="price" type="decimal"/>
        <element name="shipDate" type="date" minOccurs='0'/>
        <attribute name="partNum" type="string"/>
      </complexType>
   </element>
</complexType>

</schema>

XML Class Generator for Java, Schema Example 3b: Application — TestPo.java
/**
 * This is a sample application program which is built using the
 * classes generated by XML Schema Class Generator. XML
 * Schema "po.xsd" is used to generate the classes using the oracg
 * command line utility. The classes are generated in a package called
 * package3 which is specified as command line option. The following
 * oracg command line options are used to generate the classes:
 * oracg -c -s po.xsd -p package3
 */

import oracle.xml.classgen.CGXSDElement;
import oracle.xml.classgen.SchemaClassGenerator;
import oracle.xml.classgen.InvalidContentException;
import oracle.xml.parser.v2.XMLOutputStream;
import java.io.OutputStream;
import package3.*;

public class TestPo
{
   static OutputStream output = System.out;
   static XMLOutputStream out = new XMLOutputStream(output);

   public static void main (String args[])
   {
      TestPo testpo = new TestPo();
      try
      {
         // Create Purchase Order
         PurchaseOrder po = new PurchaseOrder();
22-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
         // Create Purchase Order Type
         PurchaseOrder.PurchaseOrder_Type poType =
                new PurchaseOrder.PurchaseOrder_Type();

         // Set purchase order date
         poType.setOrderDate("December 17, 2000");
         poType.setShipDate("December 19, 2000");
         poType.setReceiveDate("December 21, 2000");

         // Create a PurchaseOrder shipTo item
         PurchaseOrder.PurchaseOrder_Type.ShipTo shipTo =
                new PurchaseOrder.PurchaseOrder_Type.ShipTo();

         // Create Address
         Address address = new Address();

         // Create the Name for the address and add
         // it to addresss
         Address.Name name = new Address.Name();
         name.setType("Mary Smith");
         address.addName(name);

         // Create the Stree name for the address and add
         // it to the address
         Address.Street street = new Address.Street();
         street.setType("Laurie Meadows");
         address.addStreet(street);

         // Create the city name for the address and add
         // it to the address
         Address.City city = new Address.City();
         city.setType("San Mateo");
         address.addCity(city);

         // Create the zip name for the address and add
         // it to the address
         Address.Zip zip = new Address.Zip();
         zip.setType(new Double("11208"));
         address.addZip(zip);

         // Set the address of the shipTo object
         shipTo.setType(address);
         // Add the shipTo to the Purchase Type object
         poType.addShipTo(shipTo);
XML Class Generator for Java 22-27



Examples Using XML Java Class Generator with DTDs and XML Schema
         // Create a Purchase Order BillTo item
         PurchaseOrder.PurchaseOrder_Type.BillTo billTo =
               new PurchaseOrder.PurchaseOrder_Type.BillTo();

         // Create a billing Address
         Address billingAddress = new Address();

         // Create the name for billing address, set the
         // name and add it to the billing address
         Address.Name name1 = new Address.Name();
         name1.setType("John Smith");
         billingAddress.addName(name1);

         // Create the street name for the billing address,
         // set the street name value and add it to the
         // billing address
         Address.Street street1 = new Address.Street();
         street1.setType("No 1. North Broadway");
         billingAddress.addStreet(street1);

         // Create the City name for the address, set the
         // city name value and add it to the billing address
         Address.City city1 = new Address.City();
         city1.setType("New York");
         billingAddress.addCity(city1);

         // Create the Zip for the address, set the zip
         // value and add it to the billing address.
         Address.Zip zip1 = new Address.Zip();
         zip1.setType(new Double("10006"));
         billingAddress.addZip(zip1);

         // Set the type of the billTo object to billingAddress
         billTo.setType(billingAddress);

         // Add the billing address to the PurchaseOrder type
         poType.addBillTo(billTo);

         PurchaseOrder.PurchaseOrder_Type.Items pItem =
               new PurchaseOrder.PurchaseOrder_Type.Items();

         Items items = new Items();
         Items.Item item = new Items.Item();
         Items.Item.Item_Type itemType = new Items.Item.Item_Type();
22-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Examples Using XML Java Class Generator with DTDs and XML Schema
         Items.Item.Item_Type.ProductName pname =
             new Items.Item.Item_Type.ProductName();
         pname.setType("Perfume");
         itemType.addProductName(pname);

         Items.Item.Item_Type.Quantity qty =
             new Items.Item.Item_Type.Quantity();
         qty.setType(new Integer("1"));
         itemType.addQuantity(qty);

         Items.Item.Item_Type.Price price =
             new Items.Item.Item_Type.Price();
         price.setType(new Double("69.99"));
         itemType.addPrice(price);

         Items.Item.Item_Type.ShipDate sdate =
             new Items.Item.Item_Type.ShipDate();
         sdate.setType("Feb 14. 2000");
         itemType.addShipDate(sdate);

         itemType.setPartNum("ITMZ411");

         item.setType(itemType);
         items.addItem(item);

         pItem.setType(items);

         poType.addItems(pItem);

         // Set the type of the Purchase Order object to
         // Purchase Order Type
         po.setType(poType);
         po.print(out);

         out.writeNewLine();
         out.flush();
      }
      catch (InvalidContentException e)
      {
         System.out.println(e.getMessage());
         e.printStackTrace();
      }
      catch (Exception e)
      {
         System.out.println(e.toString());
XML Class Generator for Java 22-29



Frequently Asked Questions (FAQs): Class Generator for Java
         e.printStackTrace();
      }
   }
}

Frequently Asked Questions (FAQs): Class Generator for Java
This section lists XML Java Class Generator questions and answers.

How Do I Install XML Class Generator?

Question
How do i install XML Java Class Generator?

Answer
The Class Generator is packaged as part of the XDK and so you do not have to

download it separately. The CLASSPATH should be set to include classgen.jar,

xmlparserv2.jar, and xschema.jar which are located in the lib/ directory and not in

the bin/ directory.

What Does XML Class Generator for Java Do?

Question
What does the XML Class Generator for Java do? How do I use the XML Class

Generator for Java to get XML data?

Answer
XML Class Generator for Java creates Java source files from an XML DTD. This is

useful when an application wants to send an XML message to another application

based on an agreed-upon DTD or as the back end of a web form to construct and

XML document. Using these classes, Java applications can construct, validate, and

print XML documents that comply with the input DTD. The Class Generator works

in conjunction with the Oracle XML Parser for Java v2, which parses the DTD and

passes the parsed document to the class generator.

To get XML data, first, get the data from the database using JDBC ResultSets. Then,

instantiate objects using the classes generated by the XML Class Generator.
22-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): Class Generator for Java
Which DTD’s are Supported?

Question
Does XML Java Class Generator support any kind of DTD?

Answer
Yes, it supports any kind of DTD that is XML 1.0 compliant.

How do I Solve the Classes not Found Error When Running XML Class Generator
Samples?

Question
How do I fix the classes-not-found errors?

Answer
Correct your CLASSPATH to include classgen.jar, xmlparserv2.jar, and xschema.jar.

In XML Class Generator, How Do I Create the Root Object More than Once?

Question
I’ve generated, from a DTD, a set of Java classes with “ClassGenerator”. After, I’ve

tried to create a Java application that uses these classes to create an XML file from

data passed as arguments. I cannot create the root object, the object derived from

CGDocument, more than one time because I obtain the following error message:

oracle.xml.parser.XMLDOMException: Node doesn’t belong to the current document

How do I handle the star operator (*). When the application starts I do not know

how many times the element will appear. Thus I do not build a static loop where I

make a sequence of “element.addNode()”. The problem is that some of these will be

empty and I will obtain an XML document with a set of empty elements with empty

attributes.

Answer
You can create subsequent XML docs by calling the constructor each time. A

well-formed XML document is not permitted to have more than one root node,
XML Class Generator for Java 22-31



Frequently Asked Questions (FAQs): Class Generator for Java
therefore you cannot use the “*” on the element you are designating as the

document root.

How Can I Create XML Files from Scratch Using the DOM API?

Question
I want to create an XML file using the DOM API. I do not want to create the XML

file by typing in the text editor

<xml>
  <future>is great</future>
</xml>

instead, I want to create it using the DOM API. There are several examples of

manipulating an XML file using the DOM once there is an input file, but not the

other way round. That is, of creating the XML file from scratch (when there is no

input file) using the DOM, once you know the “tagnames” and their “values”.

Answer
The simplest way is download XML Class Generator for Java and give it a DTD of

the XML document you want. It will create the DOM classes to programmatically

create XML documents. There are samples included with the software.

Can I Create an XML Document in a Java Class?

Question
I need to create an XML document in a java class as follows

<?xml version = '1.0' encoding = 'WINDOWS-1252'?>
    <root>
     <listing>
       <one> test </one>
       <two> test </two>
     </listing>
    </root>

Can I use the XMLDocument class to create an XML document? I know about the

XML SQL Utility, but that only creates XML based on SQL queries which is not

what I am after on this occasion. Do you have an example of how to do this?
22-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): Class Generator for Java
Answer
XML Class Generator, available from http://otn.oracle.com/tech/xml as part of the

Oracle XDK for Java, does the job nicely. The XDKs are also available with Oracle9i

and Oracle9i Application Server products. The Class Generator generates Java

classes for each element in your DTD. These classes can then be used to

dynamically construct an XML document at runtime. The Class Generator

download contains sample code.
XML Class Generator for Java 22-33



Frequently Asked Questions (FAQs): Class Generator for Java
22-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part VII

  XDK for Java Beans

Part VII describes how to use XML Developer’s Kit (XDK) for Java Beans.

Part VII contains the following chapter:

■ Chapter 23, "Using XML Transviewer Beans"





Using XML Transview
23

Using XML Transviewer Beans

This chapter contains the following sections:

■ Accessing Oracle XML Transviewer Beans

■ XDK for Java: XML Transviewer Bean Features

■ Using the XML Transviewer Beans

■ Using XMLSourceView Bean

■ Using XMLTransformPanel Bean

■ Using XSLTransformer Bean

■ Using DOMBuilder Bean

■ Using Treeviewer Bean

■ Using DBViewer Bean

■ Using DBAccess Bean

■ Installing the Transviewer Bean Samples

■ Transviewer Bean Example 1: AsyncTransformSample.java

■ Transviewer Bean Example 2: ViewSample.java

■ Transviewer Bean Example 3: XMLTransformPanelSample.java

■ Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java

■ Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java

■ Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java
er Beans 23-1



Accessing Oracle XML Transviewer Beans
Accessing Oracle XML Transviewer Beans
The Oracle XML Transviewer beans are provided with Oracle9i Enterprise and

Standard Editions from Release 2 (8.1.6) and higher, as part of XDK for Java Beans.

If you do not have these editions you can download the beans from the site:

http://otn.oracle.com/tech/xml

XDK for Java: XML Transviewer Bean Features
XML Transviewer Beans facilitate the addition of graphical or visual interfaces to

your XML applications.

Direct Access from JDeveloper
Bean encapsulation includes documentation and descriptors that can be accessed

directly from Java Integrated Development Environments like JDeveloper.

Sample Transviewer Bean Application is Included
A sample application that demonstrates all of the beans to create a simple XML

editor and XSL transformer is included with your software.

The included sample application with XML SQL Utility (XSU) cause the following:

■ Database queries to materialize XML

■ Transform the XML through an XSL stylesheet

■ Store the resulting XML document back in the database for fast retrieval

Database Connectivity
Database Connectivity is included with the XML Transviewer Beans. The beans can

now connect directly to a JDBC-enabled database to retrieve and store XML and

XSL files.

XML Transviewer Beans
XML Transviewer Beans are comprised of the following beans:

DOMBuilder Bean
The DOMBuilder bean is a non-visual bean. It builds a DOMTree from an XML

document.
23-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: XML Transviewer Bean Features
DOM Builder bean encapsulates the XML Parser for Java’s DOMParser class with a

bean interface, and extends its functionality to permit asynchronous parsing. By

registering a listener, Java applications can parse large or successive documents

having control return immediately to the caller. See "Using DOMBuilder Bean"  on

page 23-5.

XSLTransformer Bean
The XSLTransformer bean is a non-visual bean. It accepts an XML file, applies the

transformation specified by an input XSL stylesheet, and creates the resulting

output file.

XSLTransformer bean enables you to transform an XML document to almost any

text-based format including XML, HTML and DDL, by applying the appropriate

XSL stylesheet.

■ When integrated with other beans, XSLTransformer bean enables an application

or user to view the results of transformations immediately.

■ This bean can also be used as the basis of a server-side application or servlet to

render an XML document, such as an XML representation of a query result, into

HTML for display in a browser.

See "Using XSLTransformer Bean" on page 23-9.

Treeviewer Bean
The Treeviewer bean displays XML formatted files graphically as a tree. The

branches and leaves of this tree can be manipulated with a mouse. See "Using

Treeviewer Bean"  on page 23-13.

XMLSourceView Bean
The XMLSourceView bean is a visual Java bean. It allows visualization of XML

documents and editing. It enables the display of XML and XSL formatted files with

color syntax highlighting when modifying an XML document with an editing

application. This helps view and edit the files. It can be easily integrated with DOM

Builder bean, and allows for pre or post parsing visualization, and validation

against a specified DTD. See "Using XMLSourceView Bean"  on page 23-15.

XMLTransformPanel Bean
A visual Java bean that applies XSL transformations on XML documents and shows

the results. It allows editing of XML and XSL input files. See "Using

XMLTransformPanel Bean"  on page 23-20.
Using XML Transviewer Beans 23-3



Using the XML Transviewer Beans
DBViewer Bean
DBViewer bean is Java bean that can be used to display database queries or any

XML by applying XSL stylesheets and visualizing the resulting HTML in a

scrollable swing panel. DBViewer bean has XML and XSL tree buffers as well as a

result buffer. DBViewer bean allows the calling program to do the following:

■ Load or save buffers from various sources such as from CLOB tables in an

Oracle database or from the file system. Control can be also used to move files

between the file system and the user schema in the database.

■ Apply stylesheet transformations to the XML buffer using the stylesheet in the

XSL buffer.

The result can be stored in the result buffer. The XML and XSL buffer content can be

shown as a source or tree structure. The result buffer content can be rendered as

HTML and also shown as source or tree structure. The XML buffer can be loaded

from a database query.

DBAccess Bean
DBAccess bean maintains CLOB tables that hold multiple XML and text documents.

Using the XML Transviewer Beans
Guidelines for using the XML Transviewer Beans are described in the following

sections:

■ Using DOMBuilder Bean

■ Using XSLTransformer Bean

■ Using Treeviewer Bean

■ Using XMLSourceView Bean

■ Using XMLTransformPanel Bean

■ Using DBViewer Bean

■ Using DBAccess Bean
23-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DOMBuilder Bean
Using DOMBuilder Bean
DOMBuilder() class implements an eXtensible Markup Language (XML) 1.0 parser

according to the World Wide Web Consortium (W3C) recommendation, to parse an

XML document and build a DOM tree.

The parsing is done in a separate thread and DOMBuilderListener interface must be

used for notification when the tree is built.

Used for Asynchronous Parsing in the Background
DOM Builder bean encapsulates XML Parser for Java with a bean interface. It

extends its functionality to permit asynchronous parsing. By registering a listener, a

Java application can parse documents and return control return to the caller.

Asynchronous parsing in a background thread can be used interactively in visual

applications. For example, when parsing a large file with the normal parser, the

user interface can freeze till the parsing has completed. This can be avoided with

the DOMBuilder bean. After calling the DOMBuilder bean parse method, the

application can receive control back immediately and display “Parsing, please

wait”. If a “Cancel” button is included you can also cancel the operation. The

application can continue when domBuilderOver()  method is called by

DOMBuilder bean when background parsing task has completed.

DOMBuilder Bean Parses Many Files Fast
When parsing a large number of files, DOMBuilder bean can save you much time.

Up to 40% faster times have been recorded when compared to parsing the files one

by one.

DOMBuilder Bean Usage
Figure 23–1 illustrates DOMBuilder Bean usage.

1. The XML document to be parsed is input as a file, string buffer, or URL.

See Also:

■ Oracle9i XML Reference

■ Chapter 3, "Oracle XML Developer Kits (XDKs) and

Components: Overview and General FAQs".
Using XML Transviewer Beans 23-5



Using DOMBuilder Bean
2. This inputs

DOMBuilder.addDOMBuilderListener(DOMBuilderListener) method.

This adds DOMBuilderListener.

3. The DOMBuilder.parser() method parses the XML document.

4. Optionally, the parsed result undergoes further processing. See Table 23–1 for a

list of available methods to apply.

5. DOMBuilderListener API is called using DOMBuilderOver()  method. This is

called when it received an async call from an application. This interface must be

implemented to receive notifications about events during asynchronous

parsing. The class implementing this interface must be added to the

DOMBuilder using addDOMBuilderListener  method.

Available DOMBuilderListener methods are:

■ domBuilderError(DOMBuilderEvent) . This method is called when

parse error occur.

■ domBuilderOver(DOMBuilderEvent) . This method is called when the

parse is complete

■ domBuilderStarted(DOMBuilderEvent) . This method is called when

parsing starts

6. DOMBuilder.getDocument()  fetches the resulting DOM document and

outputs the DOM document.
23-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DOMBuilder Bean
Figure 23–1 DOMBuilder Bean Usage

file,
string buffer, 

or URL
xml input

see the list  of 
available 
methods

DOMBuilder.
parse()

DOMBuilder.
addDOMBuilder

Listener()

.DOMBuilder
Listener()

DOM
Document

DOMBuilderListener.
DOMBuilderOver()

DOMBuilder.
getDocument()

perform other
tasks

.DOMBuilder
Error()

.DOMBuilder
Started()

async call

Transviewer Beans: DOM Builder Bean
Using XML Transviewer Beans 23-7



Using DOMBuilder Bean
.

Table 23–1 DOMBuilder Bean: Methods

Method Description

addDOMBuilderErrorListener(DOMBuilderErrorListener) Adds DOMBuilderErrorListener

addDOMBuilderListener(DOMBuilderListener) Adds DOMBuilderListener

Get the DTD

getDocument() Gets the document

getId() Returns the parser object id.

getReleaseVersion() Returns the release version of the Oracle XML
Parser

Gets the document

getValidationMode() Returns the validation mode

parse(InputSource) Parses the XML from given input source

Parses the XML from given input stream.

parse(Reader) Parses the XML from given input stream.

parse(String) Parses the XML from the URL indicated

parse(URL) Parses the XML document pointed to by the
given URL and creates the corresponding XML
document hierarchy.

parseDTD(InputSource, String) Parses the XML External DTD from given input
source

parseDTD(InputStream, String) Parses the XML External DTD from given input
stream.

parseDTD(Reader, String) Parses the XML External DTD from given input
stream.

Parses the XML External DTD from the URL
indicated

parseDTD(URL, String) Parses the XML External DTD document
pointed to by the given URL and creates the
corresponding XML document hierarchy.

removeDOMBuilderErrorListener(DOMBuilderErrorListener
)

Removes DOMBuilderErrorListener

removeDOMBuilderListener(DOMBuilderListener) Removes DOMBuilderListener

run() This method runs in a thread
23-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XSLTransformer Bean
Using XSLTransformer Bean
The XSLTransformer bean accepts an XML file and applies the transformation

specified by an input XSL stylesheet, to create and output file. It enables you to

transform an XML document to almost any text-based format including XML,

HTML and DDL, by applying an XSL stylesheet.

When integrated with other beans, XSLTransformer bean enables an application or

user to view the results of transformations immediately.

This bean can also be used as the basis of a server-side application or servlet to

render an XML document, such as an XML representation of a query result, into

HTML for display in a browser.

The XSLTransformer bean encapsulates the Java XML Parser XSLT processing

engine with a bean interface and extends its functionality to permit asynchronous

transformation.

By registering a listener, your Java application can transform large and successive

documents by having the control returned immediately to the caller.

Set the base URL for loading external enitites
and DTDs.

setDebugMode(boolean) Sets a flag to turn on debug information in the
document

setDoctype(DTD) Sets the DTD

setErrorStream(OutputStream) Creates an output stream for the output of
errors and warnings.

setErrorStream(OutputStream, String) Creates an output stream for the output of
errors and warnings.

setErrorStream(PrintWriter) Creates an output stream for the output of
errors and warnings.

Sets the node factory.

setPreserveWhitespace(boolean) Sets the white space preserving mode

setValidationMode(boolean) Sets the validation mode

showWarnings(boolean) Switches to determine whether to print
warnings

Table 23–1 DOMBuilder Bean: Methods (Cont.)

Method Description
Using XML Transviewer Beans 23-9



Using XSLTransformer Bean
Many Files to Transform? Use XSLTransformer Bean
XSL transformations can be time consuming. Use XSL Transformer bean in

applications that transform large number of files. It can transform multiple files

concurrently.

Need a responsive User Interface? Use XSLTransformer Bean
XSLTransformer bean can be used for visual applications for a responsive user

interface. There are similar issues here as with DOMBuilder bean.

By implementing XSLTransformerListener()  method, the caller application

can be notified when the transformation is complete. The application is free to

perform other tasks in between requesting and receiving the transformation.

XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Underlying Data
Changes

This scenario illustrates one way of applying XSLTransformer bean.

1. Create a SQL query. Store the selected XML data in a CLOB table.

2. Using the XSLTransfomer bean, create an XSL stylesheet and interactively

apply this to the XML data until you are satisfied by the data presentation. This

can be HTML produced by the XSL transformation.

3. Now that you have the desired SQL (data selection) and XSL (data

presentation), create a trigger on the table or view used by your SQL query. The

trigger can execute a stored procedure. The stored procedure, can for example,

do the following:

■ Run the query

■ Apply the stylesheet

■ Store the resulting HTML in a CLOB table.

4. This process can repeat whenever the source data table is updated.

The HTML stored in the CLOB table always mirrors the last data stored in the

tables being queried. A JSP (Java Server Page) can display the HTML.

In this scenario, multiple end users do not produce multiple data queries that

contribute to bigger loads to the database. The HTML is regenerated only when

the underlying data changes and only then.
23-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XSLTransformer Bean
XSLTransformer Bean Usage
Figure 23–2 illustrates the XSLTransformer bean usage. For examples of

implementing this bean, see "Transviewer Bean Example 1:

AsyncTransformSample.java".

Figure 23–2 XSLTransformer Bean Usage

1. An XSL stylesheet and XML document input the XSLTransformer using

method:

XSLTransfomer.addXSLTransformerListener(XSLTransformerListe
ner). This adds a listener.

XSL
stylesheet, 

XML document 
input

see the list  of 
available 
methods

XSLTransformer.
processXSL()

XSLTransformer.
addXSLTransformer

Listener()

XListener.
xslTransformer

Over()
async call

XML Document
fragment

XSLTransformer.
getResult()

perform other
tasks

Transviewer Beans: XSL Transformer Bean
Using XML Transviewer Beans 23-11



Using XSLTransformer Bean
2. The XSLTransfomer.processXSL() method initiates the XSL transformation in

the background.

3. Optionally, other work can be assigned to the XSLTransformer bean. Table 23–2

lists available XSLTransformer bean methods.

4. When the transformation is complete, an asynchronous call is made and the

XSLTransformerListener.xslTransformerOver()  method is called.

This interface must be implemented in order to receive notifications about

events during the asynchronous transformation. The class implementing this

interface must be added to the XSLTransformer event queue using

addXSLTransformerListener method.

5. XSLTransformer.getResult() method returns the XML document fragment for

the resulting document.

6. It ouputs the XML document fragment.

Table 23–2 XSLTransformer Bean: Methods

Method Description

addXSLTransformerErrorListener(XSLTransformerErrorListener) Adds an error event listener

addXSLTransformerListener(XSLTransformerListener) Adds a listener

getId() Returns the unique XSLTransformer id

getResult() Returns the document fragment for the resulting
document.

processXSL(XSLStylesheet, InputStream, URL) Initiates XSL Transformation in the background.

processXSL(XSLStylesheet, Reader, URL) Initiates XSL Transformation in the background.

processXSL(XSLStylesheet, URL, URL) Initiates XSL Transformation in the background.

processXSL(XSLStylesheet, XMLDocument) Initiates XSL Transformation in the background.

processXSL(XSLStylesheet, XMLDocument, OutputStream) Initiates XSL Transformation in the background.

removeDOMTransformerErrorListener(XSLTransformerErrorListener) Removes an error event listener

removeXSLTransformerListener(XSLTransformerListener) Removes a listener

run()

setErrorStream(OutputStream) Sets the error stream used by the XSL processor

showWarnings(boolean) Sets the showWarnings flag used by the XSL
processor
23-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using Treeviewer Bean
Using Treeviewer Bean
The Treeviewer bean displays an XML document as a tree. It recognizes the

following XML DOM nodes:

■ Tag

■ Attribute Name

■ Attribute Value

■ Comment

■ CDATA

■ PCDATA

■ PI Data

■ PI Name

■ NOTATION Symbol

It takes as input an org.w3c.dom.Document object.

Figure 23–3, "Treeviewer Bean in Action: Displaying an XML Document as a Tree"

shows how the Treeviewer bean displays the XML document and the editing

options.
Using XML Transviewer Beans 23-13



Using Treeviewer Bean
Figure 23–3 Treeviewer Bean in Action: Displaying an XML Document as a Tree
23-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XMLSourceView Bean
Figure 23–4 illustrates XML Treeviewer bean usage. A DOM XML document is

input to XMLTreeView.setXMLDocument(doc) method. This associates the XML

Treeviewer with the XML document. Available Treeviewer bean methods are:

■ getPreferredSize() — Returns the XMLTreeView preferred size.

■ setXMLDocument(Document) — Associates the XMLTreeViewer with an XML

document.

■ updateUI() — Forces the XMLTreeView to update/refresh the user interface.

Figure 23–4 XML Treeviewer Bean Usage

Using XMLSourceView Bean
XMLSourceView bean is a visual Java bean that displays an XML document. It

improves the viewing of XML and XSL files by color-highlighting the XML/XSL

syntax. It also offers an Edit mode. XMLSourceView bean easily integrates with

DOM Builder bean. It allows for pre or post parsing visualization and validation

against a specified DTD.

XMLSourceView bean recognizes the following XML token types:

■ Tag

■ Attribute Name

■ Attribute Value

■ Comment

DOM
document
XML input

XMLTreeView.
setXMLDocument

(doc)

TransViewer Beans: XML Tree Viewer Bean
Using XML Transviewer Beans 23-15



Using XMLSourceView Bean
■ CDATA

■ PCDATA

■ PI Data

■ PI Name

■ NOTATION Symbol

Each token type has a foreground color and font. The default color/font settings can

be changed by the user. This takes as input, an org.w3c.dom.Document object.

XMLSourceView Bean Usage
Figure 23–6 shows the XMLSourceView bean usage. This is part of the

oracle.xml.srcviewer  API. A DOM document inputs

XMLSourceView.SetXMLDocument(Doc). The resulting DOM document is

displayed. See "Transviewer Bean Example 2: ViewSample.java".

Figure 23–5, "XMLSourceView Bean in Action: Displaying an XML Document with

Color Highlighting" displays an XML document with tags shown in blue, tag

content in black and attributes in red.
23-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XMLSourceView Bean
Figure 23–5 XMLSourceView Bean in Action: Displaying an XML Document with
Color Highlighting
Using XML Transviewer Beans 23-17



Using XMLSourceView Bean
Figure 23–6 XMLSourceView Bean Usage

Table 23–3 lists the XMLSourceView methods.

Table 23–3 XMLSourceView Bean Methods

Method Description

fontGet(AttributeSet) Extracts and returns the font from a given attributeset.

fontSet(MutableAttributeSet, Font) Sets the mutableattributeset font.

getAttributeNameFont() Returns the Attribute Value font.

getAttributeNameForeground() Returns the Attribute Name foreground color.

getAttributeValueFont() Returns the Attribute Value font.

getAttributeValueForeground() Returns the Attribute Value foreground color.

getBackground() Returns the background color.

getCDATAFont() Returns the CDATA font.

DOM
document

input

xmlSourceView.
SetXMLDocument

(doc)

DOM
document
displayed

· Enables display and 
  editing XML and XSL 
  files in editor
· Integrated with DOM 
  Builder Bean
· Pre_ or post parsing 
  validation against DTD  

See the list  of 
available 
methods

Transviewer Beans: XML Source Viewer Bean
23-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XMLSourceView Bean
getCDATAForeground() Returns the CDATA foreground color.

getCommentDataFont() Returns the Comment Data font.

getCommentDataForeground() Returns the Comment Data foreground color.

getEditedText() Returns the edited text.

getJTextPane() Returns the viewer JTextPane component.

getMinimumSize() Returns the XMLSourceView minimal size.

getNodeAtOffset(int) Returns the XML node at a given offset.

getPCDATAFont() Returns the PCDATA font.

getPCDATAForeground() Returns the PCDATA foreground color.

getPIDataFont() Returns the PI Data font.

getPIDataForeground() Returns the PI Data foreground color.

getPINameFont() Returns the PI Name font.

getPINameForeground() Returns the PI Data foreground color.

getSymbolFont() Returns the NOTATION Symbol font.

getSymbolForeground() Returns the NOTATION Symbol foreground color.

getTagFont() Returns the Tag font.

getTagForeground() Returns the Tag foreground color.

getText() Returns the XML document as a String.

isEditable() Returns boolean to indicate whether this object is editable.

selectNodeAt(int) Moves the cursor to XML Node at offset i.

setAttributeNameFont(Font) Sets the Attribute Name font.

setAttributeNameForeground(Color) Sets the Attribute Name foreground color.

setAttributeValueFont(Font) Sets the Attribute Value font.

setAttributeValueForeground(Color) Sets the Attribute Value foreground color.

setBackground(Color) Sets the background color.

setCDATAFont(Font) Sets the CDATA font.

setCDATAForeground(Color) Sets the CDATA foreground color.

Table 23–3 XMLSourceView Bean Methods (Cont.)

Method Description
Using XML Transviewer Beans 23-19



Using XMLTransformPanel Bean
Using XMLTransformPanel Bean
XMLTransformPanel visual bean applies XSL transformations to XML documents.

It visualizes the result and allows editing of input XML and XSL documents and

files. XMLTransformPanel bean requires no programmatic input. It is a component

that interacts directly with you and is not customizable.

XMLTransformPanel Bean Features
XMLTransformPanel bean has the following features:

■ Imports and exports XML and XSL files from the file system, and XML, XSL,

and HTML files from Oracle9i. With Oracle9i, XMLTransformPanel bean uses

two-column CLOB tables. The first column stores the data name (file name) and

the second stores the data text (file’s data) in a CLOB. The bean lists all CLOB

tables in your schema. When you click on a table, the bean lists its file names.

setCommentDataFont(Font) Sets the Comment font.

setCommentDataForeground(Color) Sets the Comment foreground color.

setEditable(boolean) Sets the specified boolean to indicate whether this object should be
editable.

setPCDATAFont(Font) Sets the PCDATA font.

setPCDATAForeground(Color) Sets the PCDATA foreground color.

setPIDataFont(Font) Sets the PI Data font.

setPIDataForeground(Color) Sets the PI Data foreground color.

setPINameFont(Font) Sets the PI Name font.

setPINameForeground(Color) Sets the PI Name foreground color.

setSelectedNode(Node) Sets the cursor position at the selected XML node.

setSymbolFont(Font) Sets the NOTATION Symbol font.

setSymbolForeground(Color) Sets the NOTATION Symbol foreground color.

setTagFont(Font) Sets the Tag font.

setTagForeground(Color) Sets the Tag foreground color.

setXMLDocument(Document) Associates the XMLviewer with a XML document.

Table 23–3 XMLSourceView Bean Methods (Cont.)

Method Description
23-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XMLTransformPanel Bean
You can also create or delete tables, retrieve or add files to the tables. This can

be useful for organizing your information. See Figure 23–7,

"XSLTransformPanel Bean in Action: Showing CLOB Table and Data Names"

■ Supports multiple database connections

■ Creates XML from database result sets. This feature allows you to submit any

SQL query to the database that you are currently connected. The bean converts

the result set into XML and automatically loads this XML data into the bean’s

XML buffer for further processing.

■ Edits XML and XSL data loaded into the bean.

■ Applies XSL transformations to XML buffers and show the results. See With the

bean, you can also export results to the file system or a CLOB in the database.

Transviewer Bean Application
The Transviewer bean is one application that illustrates the use of XMLTransform

Panel bean. It can be used from a command line to perform the following actions:

■ Edit and parse XML files

■ Edit and apply XSL transformations

■ Retrieve and save XML, XSL and result files in the file system or in Oracle9i

Note: CLOB tables created by the XSL Transformer bean can be

used by trigger-based stored procedures to mirror tables or views

in the database into HTML data held in these CLOB tables. See "XSL

Transviewer Bean Scenario 1: Regenerating HTML Only When

Underlying Data Changes".

See: "Transviewer Bean Example 3:

XMLTransformPanelSample.java" for an example of how to use

XMLTransformPanel.
Using XML Transviewer Beans 23-21



Using XMLTransformPanel Bean
Figure 23–7 XSLTransformPanel Bean in Action: Showing CLOB Table and Data
Names
23-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DBViewer Bean
Using DBViewer Bean
DBViewer bean can be used to display database queries on any XML document by

applying XSL stylesheets and visualizing the resulting HTML in a scrollable swing

panel. See:

■ Figure 23–8, "DBViewer Bean in Action: Entering a Database Query to Generate

XML"

■ Figure 23–9, "DBViewer Bean in Action: Viewing the XML Document After

Transforming to HTM With XSL Stylesheet"

DBViewer bean has the following three buffers:

■ XML

■ XSL

■ Result buffer

DBViewer bean API allows the calling program to load or save buffers from various

sources and apply stylesheet transformation to the XML buffer using the stylesheet

in the XSL buffer. Results can be stored in the result buffer.

Showing Content
Content in the XML and XSL buffers can be shown as a source or tree structure.

Content in the result buffer content can be rendered as HTML and also shown as a

source or tree structure.

Loading and Saving the Buffers
The XML buffer can be loaded using a database query. All the buffers can be loaded

from and files saved from the following:

■ CLOB tables in Oracle9i

■ File system

Therefore, control can also be used to move files between the file system and the

user schema in the database.
Using XML Transviewer Beans 23-23



Using DBViewer Bean
Figure 23–8 DBViewer Bean in Action: Entering a Database Query to Generate XML
23-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DBViewer Bean
Figure 23–9 DBViewer Bean in Action: Viewing the XML Document After
Transforming to HTM With XSL Stylesheet
Using XML Transviewer Beans 23-25



Using DBViewer Bean
DBViewer Bean Usage
Figure 23–10 illustrates DBViewer bean’s usage.

Figure 23–10 DBViewer Bean Usage Diagram

DBViewer Bean Methods
Table 23–4 lists the DBViewer bean methods.

Table 23–4 DBViewer Bean Methods

Method Description

DBViewer() Constructs a new instance.

getHostname() Gets database host name

Transform
(XML using XSL)

to get Result

Load XSL
buffer from
file or CLOB

Set result

See list  of
available methods

as:
• HTML view, or
• Source (Edit) View, or
• TreeView, or
• CLOB, or
• Text Buffer

View the transformed XML 
result as required

See list  of available methods

from: 
• SQL resultset file, or 
• CLOB, or
• FILE

Load
XML buffer

XDK for JavaBeans : DBViewer Bean
23-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DBViewer Bean
getInstancename() Gets database instance name

getPassword() Gets user password

getPort() Gets database port number

getResBuffer() Gets the content of the result buffer

getResCLOBFileName() Gets result CLOB file name

getResCLOBTableName() Gets result CLOB table name

getResFileName() Gets Result file name

getUsername() Gets user name

getXmlBuffer() Gets the content of the XML buffer

getXmlCLOBFileName() Gets XML CLOB file name

getXmlCLOBTableName() Gets XML CLOB table name

getXmlFileName() Gets XML file name

getXMLStringFromSQL(String) Gets XML presentation of result set from SQL query

getXslBuffer() Gets the content of the XSL buffer

getXslCLOBFileName() Gets the XSL CLOB file name

getXslCLOBTableName() Gets XSL CLOB table name

getXslFileName() Gets XSL file name

loadResBuffer(String) Loads the result buffer from file

loadResBuffer(String, String) Loads the result buffer from CLOB file

loadResBufferFromClob() Loads the result buffer from CLOB file

loadResBufferFromFile() Loads the result buffer from file

loadXmlBuffer(String) Loads the XML buffer from file

loadXmlBuffer(String, String) Loads the XML buffer from CLOB file

loadXmlBufferFromClob() Loads the XML buffer from CLOB file

loadXmlBufferFromFile() Loads the XML buffer from file

loadXMLBufferFromSQL(String) Loads the XML buffer from SQL result set

loadXslBuffer(String) Loads the XSL buffer from file

Table 23–4 DBViewer Bean Methods(Cont.)

Method Description
Using XML Transviewer Beans 23-27



Using DBViewer Bean
loadXslBuffer(String, String) Loads the XSL buffer from CLOB file

loadXslBufferFromClob() Loads the XSL buffer from CLOB file

loadXslBufferFromFile() Loads the XSL buffer from file

parseResBuffer() Parses the result buffer and refresh the tree view and source
view

parseXmlBuffer() Parses the XML buffer and refresh the tree view and source
view

parseXslBuffer() Parses the XSL buffer and refresh the tree view and source
view

saveResBuffer(String) Saves the result buffer to file

saveResBuffer(String, String) Saves the result buffer to CLOB file

saveResBufferToClob() Saves the result buffer to CLOB file

saveResBufferToFile() Saves the result buffer to file

saveXmlBuffer(String) Saves the XML buffer to file

saveXmlBuffer(String, String) Saves the XML buffer to CLOB file

saveXmlBufferToClob() Saves the XML buffer to CLOB file

saveXmlBufferToFile() Saves the XML buffer to file

saveXslBuffer(String) Saves the XSL buffer to file

saveXslBuffer(String, String) Saves the XSL buffer to CLOB file

saveXslBufferToClob() Saves the XSL buffer to CLOB file

saveXslBufferToFile() Saves the XSL buffer to file

setHostname(String) Sets database host name

setInstancename(String) Sets database instance name

setPassword(String) Sets user password

setPort(String) Sets database port number

setResBuffer(String) Sets new text in the result buffer

setResCLOBFileName(String) Sets Result CLOB file name

setResCLOBTableName(String) Sets Result CLOB table name

Table 23–4 DBViewer Bean Methods(Cont.)

Method Description
23-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DBViewer Bean
setResFileName(String) Sets Result file name

setResHtmlView(boolean) Shows the result buffer as rendered HTML

setResSourceEditView(boolean) Shows the result buffer as XML source and enter edit mode

setResSourceView(boolean) Shows the result buffer as XML source

setResTreeView(boolean) Shows the result buffer as XML tree view

setUsername(String) Sets user name

setXmlBuffer(String) Sets new text in the XML buffer

setXmlCLOBFileName(String) Sets XML CLOB table name

setXmlCLOBTableName(String) Sets XML CLOB table name

setXmlFileName(String) Sets XML file name

setXmlSourceEditView(boolean) Shows the XML buffer as XML source and enter edit mode

setXmlSourceView(boolean) Shows the XML buffer as XML source

setXmlTreeView(boolean) Shows the XML buffer as tree

setXslBuffer(String) Sets new text in the XSL buffer

setXslCLOBFileName(String) Sets XSL CLOB file name

setXslCLOBTableName(String) Sets XSL CLOB table name

setXslFileName(String) Sets XSL file name

setXslSourceEditView(boolean) Shows the XSL buffer as XML source and enter edit mode

setXslSourceView(boolean) Shows the XSL buffer as XML source

setXslTreeView(boolean) Shows the XSL buffer as tree

transformToDoc() Transfroms the content of the XML buffer by applying the
stylesheet from the XSL buffer.

transformToRes() Applies the stylesheet transformation from the XSL buffer
to the XML in the XML buffer and stores the result into the
result buffer

transformToString() Transfroms the content of the XML buffer by applying the
stylesheet from the XSL buffer.

Table 23–4 DBViewer Bean Methods(Cont.)

Method Description
Using XML Transviewer Beans 23-29



Using DBAccess Bean
Using DBAccess Bean
DBAccess bean maintains CLOB tables that can hold multiple XML and text

documents. Each table is created using the following statement:

CREATE TABLE tablename FILENAME CHAR( 16) UNIQUE, FILEDATA CLOB) LOB(FILEDATA)
STORE AS (DISABLE STORAGE IN ROW)

Each XML (or text) document is stored as a row in the table. The FILENAME field

holds a unique string used as a key to retrieve, update, or delete the row. Document

text is stored in the FILEDATA field. This is a CLOB object. CLOB tables are

automatically maintained by the Transviewer bean. The CLOB tables maintained by

DBAccess bean can be later used by the Transviewer bean. DBAccess bean does the

following tasks:

■ Creates and deletes CLOB tables

■ Lists a CLOB table’s contents

■ Adds, replaces, or deletes text documents in the CLOB tables

DBAcess Bean Usage
Figure 23–11 illustrates the DBAccess bean usage. It shows how DBAccess bean

maintains, and manipulates XML documents stored in CLOBs.
23-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using DBAccess Bean
Figure 23–11 DBAccess Bean Usage Diagram

DBAccess Bean Methods
Table 23–5 lists the DBAccess bean methods.

Table 23–5 DBAccess Bean Methods

Method Description

createXMLTable(Connection, String) Creates XML table

deleteXMLName(Connection, String, String) Deletes text file from XML table

dropXMLTable(Connection, String) Deletes XML table

getNameSize() Returns the size of the field where the filename is kept.

getXMLData(Connection, String, String) Retrieve text file from XML table

getXMLNames(Connection, String) Returns all file names in XML table

getXMLTableNames(Connection, String) Gets all XML tables with names starting with a given string

insertXMLData(Connection, String, String,
String)

Inserts text file as a row in XML table

Loads
CLOB tables

Lists
CLOB tables

Manipulates
CLOB tables

Database

Stores

DB
Access
Bean

From:

SQL result_set
 files

CLOBs
Files

Text documents:

Adds
Replaces
Deletes
Using XML Transviewer Beans 23-31



Running the Transviewer Bean Samples
Running the Transviewer Bean Samples
The XDK for Java Transviewer bean sample/ directory contains sample

Transviewer bean applications that illustrate how to use Oracle Transviewer beans.

Oracle Transviewer beans toolset contains DOMBuilder, XMLSourceView,

XMLTreeView, XSLTransformer, XMLTransformPanel, DBViewer, and DBAccess

beans.

Table 23–6 lists the sample files in sample/.

isXMLTable(Connection, String) Checks if the table is XML table.

replaceXMLData(Connection, String, String,
String)

Replaces text file as a row in XML table

xmlTableExists(Connection, String) Checks if XML table exists.

Table 23–6 Transviewer Bean Sample Files in sample/

File Name Description

booklist.xml Sample XML file used by Example 1, 2, or 3

doc.xml Sample XML file used by Example 1, 2, or 3

doc.html Sample HTML file used by Examples 1, 2, or 3

doc.xsl Sample input XSL file used by Examples 1, 2, or 3.

doc.xsl is used by XSLTransformer.

emptable.xsl Sample input XSL file used by Examples 1, 2, or 3

tohtml.xsl Sample input XSL file used by Examples 1, 2, or 3.
Transforms booklist.xml.

AsyncTransformSample.java

See "Transviewer Bean Example 1:
AsyncTransformSample.java".

Sample nonvisual application using XSLTransformer bean
and DOMBuilder bean. It applies the XSLT stylesheet
specified in doc.xsl on all *.xml files from the current
directory. The results are in the files with extension.log.

Table 23–5 DBAccess Bean Methods (Cont.)

Method Description
23-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
Installing the Transviewer Bean Samples
The Transviewer beans require as a minimum JDK 1.1.6, and can be used with any

version of JDK 1.2.

1. Download and install the following components used by the Transviewer

beans:

■  Oracle JDBC Driver for thin client (jar file classes111.zip)

■  Oracle XML SQL Utility (jar file oraclexmlsql.jar)

After installing this components, include classes111.zip and oraclexmlsql.jar in

your classpath.

2. The beans and the samples use swing 1.1. If you use jdk1.2, go to step 3. If you

use jdk1.1, you will need to download Swing 1.1 from Sun. After downloading

Swing, add swingall.jar to your classpath.

3. Change JDKPATH in Makefile  to point to your JDK path. In addition, on

Windows NT, change the file separator as stated in the Makefile .

4. If you are not using the default database with a scott/tiger account, change

USERID and PASSWORD in the Makefile to run Sample4

5. Run “make” to generate .class files.

ViewSample.java

See "Transviewer Bean Example 2: ViewSample.java".

Sample visual application that uses XMLSourceView and
XMLTreeView beans.It visualizes XML document files.

XMLTransformPanelSample.java

See "Transviewer Bean Example 3:
XMLTransformPanelSample.java".

A visual application that uses XMLTransformPanel bean.
This bean uses all four beans from above. It applies XSL
transformations on XML documents and shows the result
Visualizes and allows editing of XML and XSL input files.

DBViewSample

See:

■ "Transviewer Bean Example 4a: DBViewer
Bean — DBViewClaims.java"

■ "Transviewer Bean Example 4b: DBViewer
Bean — DBViewFrame.java"

■ "Transviewer Bean Example 4c: DBViewer
Bean — DBViewSample.java"

A sample visual application that uses DBViewer bean to
implementsimpleinsuranceclaimhandlingapplication.

Table 23–6 Transviewer Bean Sample Files in sample/

File Name Description
Using XML Transviewer Beans 23-33



Installing the Transviewer Bean Samples
6. Run the sample programs using commands:

■ gmake sample1

■ gmake sample2

■ gmake sample3

■ gmake sample4

7. Visualize the results in .log files using the ViewSample.

8.  Use the XSLT document from './tohtml.xsl' to transform the XML document

from './booklist.xml'.

A few .xml files are provided as test cases. An XSL stylesheet 'doc.xsl' is used by

XSLTransformer.

Using Database Connectivity
To use the database connectivity feature in this program, you must know the

following:

■ Network name of the computer where Oracle9i or Oracle9i Application Server

runs

■ Port (usually 1521)

■ Name of the oracle instance (usually orcl)

You also need an account with CREATE TABLE privilege.

You can try the default account scott with password tiger if it still enabled on your

Oracle9i system.

Running Makefile
The following is the makefile  script:

# Makefile for sample java files

.SUFFIXES : .java .class

Note: sample1 runs the XMLTransViewer program so that you

can import and export XML files from Oracle9i, keep your XSL

transformation files in Oracle9i, and apply stylesheets to XML

interactively.
23-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
CLASSES = ViewSample.class  AsyncTransformSample.class
XMLTransformPanelSample.class

# Change it to the appropriate separator based on the OS
PATHSEP= :

# Change this path to your JDK location. If you use JDK 1.1, you will need
# to download also Swing 1.1 and add swingall.jar to your classpath.
# You do not need to do this for JDK 1.2 since Swing is part of JDK 1.2
JDKPATH = /usr/local/packages/jdk1.2

# Make sure that the following product jar/zip files are in the classpath:
# - Oracle JDBC driver for thin client (file classes111.zip)
# - Oracle XML SQL Utility (file oraclexmlsql.jar)
# You can download this products from technet.us.oracle.com

#
CLASSPATH
:=$(CLASSPATH)$(PATHSEP)../lib/xmlparserv2.jar$(PATHSEP)../lib/xmlcomp.jar$(PATH
SEP)../lib/jdev-rt.zip$(PATHSEP).$(PATHSEP)
%.class: %.java
$(JDKPATH)/bin/javac -classpath "$(CLASSPATH)" $<

# make all class files
all: $(CLASSES)

sample1: XMLTransformPanelSample.class
$(JDKPATH)/bin/java -classpath "$(CLASSPATH)" XMLTransformPanelSample
sample2: ViewSample.class
$(JDKPATH)/bin/java -classpath "$(CLASSPATH)" ViewSample
sample3: AsyncTransformSample.class
$(JDKPATH)/bin/java -classpath "$(CLASSPATH)" AsyncTransformSample

Transviewer Bean Example 1: AsyncTransformSample.java
This example shows you how to use DOMBuilder and the XSLTransformer beans to

asynchronously transform multiple XML files.

import java.net.URL;
import java.net.MalformedURLException;
import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectInputStream;
Using XML Transviewer Beans 23-35



Installing the Transviewer Bean Samples
import java.io.OutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.PrintWriter;
import java.util.Vector;

import org.w3c.dom.DocumentFragment;
import org.w3c.dom.DOMException;

import oracle.xml.async.DOMBuilder;
import oracle.xml.async.DOMBuilderEvent;
import oracle.xml.async.DOMBuilderListener;
import oracle.xml.async.DOMBuilderErrorEvent;
import oracle.xml.async.DOMBuilderErrorListener;
import oracle.xml.async.XSLTransformer;
import oracle.xml.async.XSLTransformerEvent;
import oracle.xml.async.XSLTransformerListener;
import oracle.xml.async.XSLTransformerErrorEvent;
import oracle.xml.async.XSLTransformerErrorListener;
import oracle.xml.async.ResourceManager;
import oracle.xml.parser.v2.DOMParser;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.XSLStylesheet;
import oracle.xml.parser.v2.*;

public class AsyncTransformSample
{
  /**
   *  uses DOMBuilder bean
   */
   void runDOMBuilders ()
   {
      rm = new ResourceManager (numXMLDocs);

      for (int i = 0; i < numXMLDocs; i++)
      {
         rm.getResource();

         try
         {
            DOMBuilder builder = new DOMBuilder(i);

            URL  xmlURL = createURL(basedir + "/" +
                                  (String)xmlfiles.elementAt(i));
            if (xmlURL == null)
23-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
               exitWithError("File " + (String)xmlfiles.elementAt(i) +
                             " not found");

            builder.setPreserveWhitespace(true);
            builder.setBaseURL (createURL(basedir + "/"));
            builder.addDOMBuilderListener (new DOMBuilderListener() {
               public void domBuilderStarted(DOMBuilderEvent p0) {}
               public void domBuilderError(DOMBuilderEvent p0) {}
               public synchronized void domBuilderOver(DOMBuilderEvent p0)
               {
                  DOMBuilder bld = (DOMBuilder)p0.getSource();
                  runXSLTransformer (bld.getDocument(), bld.getId());
               }
            });
            builder.addDOMBuilderErrorListener (new DOMBuilderErrorListener() {
               public void domBuilderErrorCalled(DOMBuilderErrorEvent p0)
               {
                  int id = ((DOMBuilder)p0.getSource()).getId();
                  exitWithError("Error occurred while parsing " +
                     xmlfiles.elementAt(id) + ": " +
                     p0.getException().getMessage());
               }
            });
            builder.parse (xmlURL);

            System.err.println("Parsing file " + xmlfiles.elementAt(i));
         }
         catch (Exception e)
         {
            exitWithError("Error occurred while parsing " +
                          (String)xmlfiles.elementAt(i) + ": " +
                          e.getMessage());
         }
      }
   }

  /**
   *  uses XSLTransformer bean
   */
   void runXSLTransformer (XMLDocument xml, int id)
   {
      try
      {
         XSLTransformer processor = new XSLTransformer (id);
         XSLStylesheet  xsl       = new XSLStylesheet (xsldoc, xslURL);
Using XML Transviewer Beans 23-37



Installing the Transviewer Bean Samples
         processor.showWarnings (true);
         processor.setErrorStream (errors);
         processor.addXSLTransformerListener (new XSLTransformerListener() {
            public void xslTransformerStarted (XSLTransformerEvent p0) {}
            public void xslTransformerError(XSLTransformerEvent p0) {}
            public void xslTransformerOver (XSLTransformerEvent p0)
            {
               XSLTransformer trans = (XSLTransformer)p0.getSource();
               saveResult (trans.getResult(),  trans.getId());
            }
         });
   processor.addXSLTransformerErrorListener (new XSLTransformerErrorListener() {
   public void xslTransformerErrorCalled(XSLTransformerErrorEvent p0)
            {
               int i = ((XSLTransformer)p0.getSource()).getId();

exitWithError("Error occurred while processing " +
                     xmlfiles.elementAt(i) + ": " +
                     p0.getException().getMessage());
             }
         });
         processor.processXSL (xsl, xml);
         // transform xml document
      }
      catch (Exception e)
      {
         exitWithError("Error occurred while processing " + xslFile + ": " +
                       e.getMessage());
      }
    }

    void saveResult (DocumentFragment result, int id)
    {
      System.err.println("Transforming '" + xmlfiles.elementAt(id) +
               "' to '" + xmlfiles.elementAt(id) + ".log'" +
               " applying '" + xslFile);

      try
      {
          File resultFile = new File((String)xmlfiles.elementAt(id) + ".log");

          ((XMLNode)result).print(new FileOutputStream(resultFile));
      }
      catch (Exception e)
      {
23-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
         exitWithError("Error occurred while generating output : " +
                       e.getMessage());
      }

      rm.releaseResource();
   }

   void makeXSLDocument ()
   {
      System.err.println ("Parsing file " + xslFile);
      try
      {
         DOMParser parser = new DOMParser();
         parser.setPreserveWhitespace (true);
         xslURL = createURL (xslFile);
         parser.parse (xslURL);
         xsldoc = parser.getDocument();
      }
      catch (Exception e)
      {
         exitWithError("Error occurred while parsing " + xslFile + ": " +
                       e.getMessage());
      }
   }

   private URL createURL(String fileName) throws Exception
   {
      URL url = null;

      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);

         try
         {
            String path = f.getAbsolutePath();
            // This is a bunch of weird code that is required to
            // make a valid URL on the Windows platform, due
            // to inconsistencies in what getAbsolutePath returns.
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
Using XML Transviewer Beans 23-39



Installing the Transviewer Bean Samples
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
            exitWithError("Cannot create url for: " + fileName);
         }
      }

      return url;
   }

   boolean init () throws Exception
   {
      File     directory = new File (basedir);
      String[] dirfiles = directory.list();
      for (int j = 0; j < dirfiles.length; j++)
      {
         String dirfile = dirfiles[j];

         if (!dirfile.endsWith(".xml"))
             continue;

          xmlfiles.addElement(dirfile);
      }

      if (xmlfiles.isEmpty()) {
      System.out.println("No files in directory were selected for processing");
         return false;
      }
      numXMLDocs = xmlfiles.size();

      return true;
   }

   private void exitWithError(String msg)
   {
      PrintWriter errs = new PrintWriter(errors);
23-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
      errs.println(msg);
      errs.flush();
      System.exit(1);
   }

   void asyncTransform () throws Exception
   {
      System.err.println (numXMLDocs +
               " XML documents will be transformed" +
               " using XSLT stylesheet specified in " + xslFile +
               " with " +  numXMLDocs + " threads");

      makeXSLDocument ();
      runDOMBuilders ();

      // wait for the last request to complete
      while (rm.activeFound())
         Thread.sleep(100);

   }
   String       basedir = new String (".");
   OutputStream errors = System.err;

   Vector xmlfiles = new Vector();
   int    numXMLDocs = 1;

   String      xslFile = new String ("doc.xsl");
   URL         xslURL;
   XMLDocument xsldoc;

   private ResourceManager rm;

   /**
    *   main
    */
   public static void main (String args[])
   {
      AsyncTransformSample inst = new AsyncTransformSample();

      try
      {
         if (!inst.init())
            System.exit(0);

         inst.asyncTransform ();
Using XML Transviewer Beans 23-41



Installing the Transviewer Bean Samples
      }
      catch (Exception e)
      {
         e.printStackTrace();
      }

      System.exit(0);
   }
}

Transviewer Bean Example 2: ViewSample.java
This example shows you how to use XMLSourceView and XMLTreeView beans to

visually represent XML files.

import java.awt.*;
import oracle.xml.srcviewer.*;
import oracle.xml.treeviewer.*;
import oracle.xml.parser.v2.XMLDocument;
import oracle.xml.parser.v2.*;
import org.w3c.dom.*;
import java.net.*;
import java.io.*;
import java.util.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class ViewSample
{

  public static void main(String[] args)
  {
     String fileName = new String ("booklist.xml");
     if (args.length > 0) {
        fileName = args[0];
     }

     JFrame        frame         = setFrame ("XMLViewer");
     XMLDocument   xmlDocument   = getXMLDocumentFromFile (fileName);
     XMLSourceView xmlSourceView = setXMLSourceView (xmlDocument);
     XMLTreeView   xmlTreeView   = setXMLTreeView (xmlDocument);
     JTabbedPane   jtbPane       = new JTabbedPane ();

     jtbPane.addTab ("Source", null, xmlSourceView, "XML document sorce view");
23-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
     jtbPane.addTab ("Tree", null, xmlTreeView, "XML document tree view");
     jtbPane.setPreferredSize (new Dimension(400,300));
     frame.getContentPane().add (jtbPane);

     frame.setTitle    (fileName);
     frame.setJMenuBar (setMenuBar());
     frame.setVisible  (true);
  }

  static JFrame setFrame (String title)
  {
    JFrame frame = new JFrame (title);
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize  = frame.getSize();
    if (frameSize.height > screenSize.height) {
       frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) {
      frameSize.width = screenSize.width;
    }
    frame.setLocation ((screenSize.width - frameSize.width)/2,
                      (screenSize.height - frameSize.height)/2);
    frame.addWindowListener(new WindowAdapter() {
       public void windowClosing(WindowEvent e) {
          System.exit(0);
       }
    });
    frame.getContentPane().setLayout (new BorderLayout());
    frame.setSize(new Dimension(400, 300));
    frame.setVisible (false);
    frame.setTitle (title);

    return frame;
  }

  static JMenuBar setMenuBar ()
  {
     JMenuBar menuBar = new JMenuBar();
     JMenu    menu    = new JMenu ("Exit");
     menu.addMenuListener ( new MenuListener () {
       public void menuSelected (MenuEvent ev) { System.exit(0); }
       public void menuDeselected (MenuEvent ev) {}
       public void menuCanceled (MenuEvent ev) {}
     });
Using XML Transviewer Beans 23-43



Installing the Transviewer Bean Samples
     menuBar.add (menu);
     return menuBar;
  }

  /**
   * creates  XMLSourceView object
   */
  static XMLSourceView setXMLSourceView(XMLDocument xmlDocument)
  {
    XMLSourceView xmlView = new XMLSourceView();

    xmlView.setXMLDocument(xmlDocument);
    xmlView.setBackground(Color.yellow);
    xmlView.setEditable(true);
    return xmlView;
  }
  /**
   * creates  XMLTreeView object
   */
  static XMLTreeView setXMLTreeView(XMLDocument xmlDocument)
  {
    XMLTreeView xmlView = new XMLTreeView();

    xmlView.setXMLDocument(xmlDocument);
    xmlView.setBackground(Color.yellow);
    return xmlView;
  }

  static XMLDocument getXMLDocumentFromFile (String fileName)
  {
    XMLDocument doc = null;

    try  {
      DOMParser parser = new DOMParser();
      try {
         String dir= "" ;
         FileInputStream in = new FileInputStream(fileName);
         parser.setPreserveWhitespace(false);
         parser.setBaseURL(createURL(dir));
         parser.parse(in);
         in.close();
      } catch (Exception ex) {
         ex.printStackTrace();
         System.exit(0);
      }
23-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
      doc = (XMLDocument)parser.getDocument();

      try {
         doc.print(System.out);
      } catch (Exception ie) {
         ie.printStackTrace();
         System.exit(0);
      }

    }
    catch (Exception e) {
      e.printStackTrace();
    }
    return doc;
  }

  static URL createURL(String fileName)
  {
      URL url = null;
      try
      {
         url = new URL(fileName);
      }
      catch (MalformedURLException ex)
      {
         File f = new File(fileName);
         try
         {
            String path = f.getAbsolutePath();
            String fs = System.getProperty("file.separator");
            if (fs.length() == 1)
            {
               char sep = fs.charAt(0);
               if (sep != '/')
                  path = path.replace(sep, '/');
               if (path.charAt(0) != '/')
                  path = '/' + path;
            }
            path = "file://" + path;
            url = new URL(path);
         }
         catch (MalformedURLException e)
         {
            System.out.println("Cannot create url for: " + fileName);
Using XML Transviewer Beans 23-45



Installing the Transviewer Bean Samples
            System.exit(0);
         }
      }
      return url;
   }
}

Transviewer Bean Example 3: XMLTransformPanelSample.java
This example is an interactive application that uses XMLTransformPanel bean to do

the following:

■ Generate XML from database queries

■ Transform the XML using XSL stylesheets

■ View the results

■ Store the results in CLOB tables in the database

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import oracle.xml.transviewer.XMLTransformPanel;

public class XMLTransformPanelSample
{
  XMLTransformPanel transformPanel = new XMLTransformPanel();

  /**
   * Adjust frame size and add transformPanel to it.
   */
  public XMLTransformPanelSample ()
  {
    Frame     frame      = new JFrame();
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    frame.setSize(510,550);
    transformPanel.setPreferredSize(new Dimension(510,550));
    Dimension frameSize = frame.getSize();

    if (frameSize.height > screenSize.height) {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) {
      frameSize.width = screenSize.width;
23-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
    }
    frame.setLocation ((screenSize.width - frameSize.width)/2,
                      (screenSize.height - frameSize.height)/2);
    frame.addWindowListener(new WindowAdapter() {
       public void windowClosing(WindowEvent e) { System.exit(0); }
    });
    frame.setVisible(true);

    ((JFrame)frame).getContentPane().add (transformPanel);
    frame.pack();
  }

  /**
   *  main(). Only creates XMLTransformPanelSample object.
   */
  public static void main (String[] args)
  {
    new XMLTransformPanelSample ();
  }
}

Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java
This is an interactive example which lets you input the name or policy of an

insurance claim. The appropriate claim is loaded as an XML buffer from the result

set of an XML query. An XSL stylesheet is loaded from the file system. The

DBViewer bean transforms the XML buffer using the XSL stylesheet to HTML. This

HTML output can then be viewed.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import oracle.jdeveloper.layout.*;
import oracle.xml.dbviewer.*;

public class DBViewClaims extends JPanel {
  DBViewer dbPanel= new DBViewer();
  JButton searchButton = new JButton();
  XYLayout xYLayout1 = new XYLayout();
  JLabel titleLabel = new JLabel();
  JLabel nameLabel = new JLabel();
  JLabel policyLabel = new JLabel();
  JTextField nameTF = new JTextField();
  JTextField policyTF = new JTextField();
  JButton viewXMLButton = new JButton();
Using XML Transviewer Beans 23-47



Installing the Transviewer Bean Samples
  JButton viewXSLButton = new JButton();
  JButton viewHTMLButton = new JButton();
  public DBViewClaims() {
    super();
    try  {
      jbInit();
    }
    catch (Exception e) {
      e.printStackTrace();
    }
  }
  private void jbInit() throws Exception {
    setBackground(SystemColor.controlLtHighlight);
    this.setLayout(xYLayout1);
    searchButton.setText("searchButton");
    searchButton.setLabel("Search");
    xYLayout1.setHeight(464);
    xYLayout1.setWidth(586);
    titleLabel.setText("List of Claims");
    titleLabel.setHorizontalAlignment(SwingConstants.CENTER);
    titleLabel.setBackground(new Color(192, 192, 255));
    titleLabel.setFont(new Font("Dialog", 1, 16));
    nameLabel.setText("Last Name");
    policyLabel.setText("Policy:");
    viewXMLButton.setText("viewXMLButton");
    viewXMLButton.setLabel("view XML");
    viewXMLButton.addActionListener(new java.awt.event.ActionListener() {
      public void actionPerformed(ActionEvent e) {
        viewXMLButton_actionPerformed(e);
      }
    });
    viewXSLButton.setText("viewXSLButton");
    viewXSLButton.setLabel("view XSL");
    viewXSLButton.addActionListener(new java.awt.event.ActionListener() {
      public void actionPerformed(ActionEvent e) {
        viewXSLButton_actionPerformed(e);
      }
    });
    viewHTMLButton.setText("viewHTMLButton");
    viewHTMLButton.setLabel("view HTML");
    viewHTMLButton.addActionListener(new java.awt.event.ActionListener() {

      public void actionPerformed(ActionEvent e) {
        viewHTMLButton_actionPerformed(e);
      }
23-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
    });

     searchButton.addActionListener(new java.awt.event.ActionListener() {
        public void actionPerformed(ActionEvent e) {
          searchButton_actionPerformed(e);
        }
     });

    this.add(dbPanel, new XYConstraints(16, 55, 552, 302));
    this.add(searchButton, new XYConstraints(413, 415, 154, 29));
    this.add(titleLabel, new XYConstraints(79, 10, 413, 31));
    this.add(nameLabel, new XYConstraints(333, 373, 72, -1));
    this.add(policyLabel, new XYConstraints(334, 395, 59, -1));
    this.add(nameTF, new XYConstraints(413, 368, 155, -1));
    this.add(policyTF, new XYConstraints(413, 391, 156, -1));
    this.add(viewXMLButton, new XYConstraints(19, 359, 94, 29));
    this.add(viewXSLButton, new XYConstraints(19, 390, 94, 29));
    this.add(viewHTMLButton, new XYConstraints(19, 421, 94, 29));
    updateUI();
  }
  void searchButton_actionPerformed(ActionEvent e) {
    String sqlText="select * from s_claim c ";
    try {
      if (!nameTF.getText().equals("")) {
         sqlText=sqlText+" where c.claimpolicy.primaryinsured.lastname="+
                 "'"+nameTF.getText()+"'";
      } else if (!policyTF.getText().equals("")) {
         sqlText=sqlText+" where c.claimpolicy.policyid="+
                 policyTF.getText();
      }
      dbPanel.setUsername("scott");
      dbPanel.setPassword("tiger");
      dbPanel.setInstancename("orcl");
      dbPanel.setHostname("localhost");
      dbPanel.setPort("1521");
      dbPanel.loadXMLBufferFromSQL(sqlText);
      dbPanel.loadXslBuffer("xslfiles","CLAIM.XSL");
      dbPanel.transformToRes();
      dbPanel.setResHtmlView(true);
    } catch (Exception e1) {
      System.out.println(e1);
    }
  }
  void viewXMLButton_actionPerformed(ActionEvent e) {
    dbPanel.setXmlSourceEditView(true);
Using XML Transviewer Beans 23-49



Installing the Transviewer Bean Samples
  }
  void viewXSLButton_actionPerformed(ActionEvent e) {
    dbPanel.setXslSourceEditView(true);
  }
  void viewHTMLButton_actionPerformed(ActionEvent e) {
    dbPanel.setResHtmlView(true);
  }
}

Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java
This example provides a frame with a menu bar to access the DBView Claims

functionality. Claims can then be loaded and displayed in HTML.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import oracle.jdeveloper.layout.*;

public class DBViewFrame extends JFrame {
  JMenuBar menuBar1 = new JMenuBar();
  JMenu menuFile = new JMenu();
  JMenuItem menuFileExit = new JMenuItem();
  JMenuItem menuListCustomerClaims = new JMenuItem();

  public DBViewFrame() {
    super();
    try  {
      jbInit();
    }
    catch (Exception e) {
      e.printStackTrace();
    }
  }
  private void jbInit() throws Exception {
    this.getContentPane().setLayout(new GridLayout(1,1));
    this.setSize(new Dimension(600, 550));
    menuFile.setText("File");
    menuFileExit.setText("Exit");
    menuListCustomerClaims.setText("List Claims");
    menuFileExit.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        fileExit_ActionPerformed(e);
      }
    });
23-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Installing the Transviewer Bean Samples
    menuListCustomerClaims.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
         ListCustomerClaims_ActionPerformed(e);

      }
    });
    menuFile.add(menuFileExit);
    menuFile.add(menuListCustomerClaims);
    menuBar1.add(menuFile);
    this.setJMenuBar(menuBar1);
    this.setBackground(SystemColor.controlLtHighlight);
  }
  void fileExit_ActionPerformed(ActionEvent e) {
    System.exit(0);
  }
  void ListCustomerClaims_ActionPerformed(ActionEvent e) {
    this.getContentPane().removeAll();
    this.getContentPane().add(new DBViewClaims());
    this.getContentPane().paintAll(this.getGraphics());
  }
}

Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java
This example simply provides a main function which instantiates DBViewFrame,

giving it a specific look and feel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class DBViewSample {
  public DBViewSample() {
    DBViewFrame frame = new DBViewFrame();
    frame.setVisible(true);
  }
  public static void main(String[] args) {
    try  {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch (Exception e) {
      e.printStackTrace();
    }
    new DBViewSample();
  }
}

Using XML Transviewer Beans 23-51



Installing the Transviewer Bean Samples
23-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part VIII

  XDK for C

Part VIII describes how to access and use XML Developer’s Kit (XDK) for C. It

contains the following chapters:

■ Chapter 24, "Using XML Parser for C"

■ Chapter 25, "Using XML Schema Processor for C"





Using XML Pa
24

Using XML Parser for C

This chapter contains the following sections:

■ Accessing XML Parser for C

■ XML Parser for C Features

■ XML Parser for C Usage

■ XML Parser for C, XSLT (DOM Interface) Usage

■ XML Parser for C, Default Behavior

■ DOM and SAX APIs

■ Invoking XML Parser for C

■ Using the Sample Files Included with Your Software

■ Running the XML Parser for C Sample Programs
rser for C 24-1



Accessing XML Parser for C
Accessing XML Parser for C
XML Parser for C is provided with Oracle9i and Oracle9i Application Server. It is

also available for download from the OTN site: http://otn.oracle.com/tech/xml

It is located in $ORACLE_HOME/xdk/c/parser .

XML Parser for C Features
readme.html  in the root directory of the software archive contains release specific

information including bug fixes and API additions.

XML Parser for C will check if an XML document is well-formed, and optionally

validate it against a DTD. The parser constructs an object tree which can be accessed

through a DOM interface or operate serially via a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at

http://otn.oracle.com/tech/xml.

Specifications
See Appendix E, "XDK for C: Specifications and Cheat Sheets" for a brief list of XML

Parser for C methods and specifications.

Memory Allocation
The memory callback functions memcb may be used if you wish to use your own

memory allocation. If they are used, all of the functions should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and

data stored with the DOM parse tree will not be freed until one of the following is

done:

■ xmlparse()  or xmlparsebuf() is called to parse another file or buffer.

■ xmlclean()  is called.

■ xmlterm()  is called.

See Also:

■ The doc directory in your install area

■ Oracle9i XML Reference

■ On OTN under http://otn.oracle.com/tech/xml/
24-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C Features
Thread Safety
If threads are forked off somewhere in the midst of the init-parse-term sequence of

calls, you will get unpredictable behavior and results.

Data Types Index
Table 24–1 lists the datatypes used in XML Parser for C.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also

exist in the $ORACLE_HOME/oracore/mesg  directory. You may set the

environment variable ORA_XML_MESG to point to the absolute path of the mesg/
subdirectory although this not required.

Validation Modes
Available validation modes are described in Chapter 20, "Using XML Parser for

Java", "Oracle XML Parsers Support Four Validation Modes"  on page 20-5.

Table 24–1 Datatypes Used in XML Parser for C

DataType Description

oratext String pointer

xmlctx Master XML context

xmlmemcb Memory callback structure (optional)

xmlsaxcb SAX callback structure (SAX only)

ub4 32-bit (or larger) unsigned integer

uword Native unsigned integer
Using XML Parser for C 24-3



XML Parser for C Usage
XML Parser for C Usage
Figure 24–1 describes XML Parser for C  calling sequence as follows:

1. XMLinit() function initializes the parsing process.

2. The parsed item can be an XML document (file) or string buffer. If the input is

an XML document or file, it is parsed using the xmlparser()  function. If the

input is a string buffer, it is parsed using the xmlparserbuf()  function.

3. DOM or SAX API:

DOM: If you are using the DOM interface, include the following steps:

■ The xmlparse()  or xmlparseBuffer()  function calls

.getDocumentElement() . If no other DOM functions are being applied,

you can invoke xmlterm() .

■ This optionally calls other DOM functions if required. These are typically

Node or print functions. It outputs the DOM document.

■ If complete, the process invokes xmlterm()

■ You can optionally first invoke xmlclean()  to clean up any data

structures created during the parse process. You would then call

xmlterm()

SAX: If you are using the SAX interface, include the following steps:

■ Process the results of the parser from xmlparse() or xmlparseBuf()
using callback functions.

■ Register the callback functions.

4. Optionally, use xmlclean()  to clean up the memory and structures used

during a parse, and go to Step 5. or return to Step 2.

5. Terminate the parsing process with xmlterm()

XML Parser for C usage is further explained in Figure 24–1.

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

■ xmlinit() - xmlparse()  or

xmlparsebuf() - xmlterm()

■ xmlinit() - xmlparse()  or
24-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C Usage
xmlparsebuf() - xmlclean() - xmlparse()  or

xmlparsebuf() - xmlclean() -... - xmlterm()

■ xmlinit() - xmlparse()  or

xmlparsebuf() - xmlparse() or

xmlparsebuf() -... - xmlterm()

Figure 24–1 XML Parser for C Calling Sequence

save form of 
xmlparse()

xmlinit()error handler set

error callbacks

SAX callback set

xml input file, buffer,
db, URL, . . .

xmlterm()

xmlclean()SAX completes

DOM document

SAX:
callbacks invoked DOM constructedanother

DOM:
query, edit, . . .

another
Using XML Parser for C 24-5



XML Parser for C, XSLT (DOM Interface) Usage
XML Parser for C, XSLT (DOM Interface) Usage
Figure 24–2 shows the XML Parser for C, XSLT functionality.

1. There are two inputs to xmlparse() :

■ The Stylesheet to be applied to the XML document

■ XML document

The output of xmlparse() , the parsed stylesheet and parsed XML document,

are sent to the xslprocess()  function for processing.

2. xmlinit()  initializes the XSLT processing. xmlinit()  initializes the

xslprocess()  result

3. xslprocess()o ptionally calls other functions, such as print functions. You

can see the list of available functions either on OTN or in the Oracle9i XML
Reference.

4. The resultant document (XML, HTML, VML, and so on) is typically sent to an

application for further processing.

5. The application terminates the XSLT process by declaring xmlterm() , for the

XML document, stylesheet, and final result.

XML Parser for C’s XSLT functionality is illustrated with the following examples:

■ XML Parser for C Example 16: C — XSLSample.c  on page 24-52

■ XML Parser for C Example 17: C — XSLSample.std  on page 24-54
24-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C, XSLT (DOM Interface) Usage
Figure 24–2 XML Parser for C: XSLT (DOM Interface) Usage

xmlinit()

xmlinit() xmlparse()
input

xmlterm() xmlterm()

xslprocess()

call other
functions
e.g. print

xmlparse()
input

xmlinit()

xml document

xml document stylesheet result

stylesheet

result

xmlterm()

XML Parser for C, XSL-T 
Using XML Parser for C 24-7



XML Parser for C, Default Behavior
XML Parser for C, Default Behavior
The following is the XML Parser for C default behavior:

■ Character set encoding is UTF-8. If all your documents are ASCII, you are

encouraged to set the encoding to US-ASCII for better performance.

■ Messages are printed to stderr unless msghdlr is given.

■ A parse tree which can be accessed by DOM APIs is built unless saxcb is set to

use the SAX callback APIs. Note that any of the SAX callback functions can be

set to NULL if not needed.

■ The default behavior for the parser is to check that the input is well-formed but

not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to

validate the input. The default behavior for whitespace processing is to be fully

conformant to the XML 1.0 spec, that is, all whitespace is reported back to the

application but it is indicated which whitespace is ignorable. However, some

applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE

which will discard all whitespace between an end-element tag and the

following start-element tag.

Note: It is recommended that you set the default encoding

explicitly if using only single byte character sets (such as US-ASCII

or any of the ISO-8859 character sets) for performance up to 25%

faster than with multibyte character sets, such as UTF-8.
24-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
DOM and SAX APIs
Oracle XML parser for C checks if an XML document is well-formed, and optionally

validates it against a DTD. The parser constructs an object tree which can be

accessed via one of the following interfaces:

■ DOM interface

■ Serially via a SAX interface

These two XML APIs:

■ DOM: Tree-based APIs. A tree-based API compiles an XML document into an

internal tree structure, then allows an application to navigate that tree using the

Document Object Model (DOM), a standard tree-based API for XML and

HTML documents.

■ SAX: Event-based APIs. An event-based API, on the other hand, reports parsing

events (such as the start and end of elements) directly to the application

through callbacks, and does not usually build an internal tree. The application

implements handlers to deal with the different events, much like handling

events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a

great strain on system resources, especially if the document is large (under very

controlled circumstances, it is possible to construct the tree in a lazy fashion to

avoid some of this problem). Furthermore, some applications need to build their

own, different data trees, and it is very inefficient to build a tree of parse nodes,

only to map it onto a new tree.

In both of these cases, an event-based API provides a simpler, lower-level access to

an XML document: you can parse documents much larger than your available

system memory, and you can construct your own data structures using your

callback event handlers.

Using the SAX API
To use SAX, an xmlsaxcb  structure is initialized with function pointers and passed

to the xmlinit()  call. A pointer to a user-defined context structure can also be

included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure:

typedef struct
Using XML Parser for C 24-9



DOM and SAX APIs
{
 sword (*startDocument)(void *ctx);
 sword (*endDocument)(void *ctx);
 sword (*startElement)(void *ctx, const oratext *name,
             const struct xmlarray *attrs);
 sword (*endElement)(void *ctx, const oratext *name);
 sword (*characters)(void *ctx, const oratext *ch, size_t len);
 sword (*ignorableWhitespace)(void *ctx, const oratext *ch, size_t len);
 sword (*processingInstruction)(void *ctx, const oratext *target,
             const oratext *data);
 sword (*notationDecl)(void *ctx, const oratext *name,
             const oratext *publicId, const oratext *systemId);
 sword (*unparsedEntityDecl)(void *ctx, const oratext *name,
             const oratext *publicId,
             const oratext *systemId, const oratext *notationName);
 sword (*nsStartElement)(void *ctx, const oratext *qname,
             const oratext *local, const oratext *nsp,
             const struct xmlnodes *attrs);
} xmlsaxcb;

Using the DOM API
See "XML Parser for C Example 7: C — DOMSample.std"  on page 24-18.
24-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Invoking XML Parser for C
Invoking XML Parser for C
XML Parser for C can be invoked in two ways:

■ By invoking the executable on the command line

■ By writing C code and using the supplied APIs

Command Line Usage
The XML Parser for C can be called as an executable by invoking bin/xml

Table 24–2 lists the command line options.

Writing C Code to Use Supplied APIs
XML Parser for C can also be invoked by writing code to use the supplied APIs. The

code must be compiled using the headers in the include/ subdirectory and linked

against the libraries in the lib/ subdirectory. Please see the Makefile  in the

sample/ subdirectory for full details of how to build your program.

Table 24–2 XML Parser for C: Command Line Options

Option Description

-c  Conformance check only, no validation

-e encoding Specify input file encoding

-h Help - show this usage help

-n Number - DOM traverse and report number of elements

-p Print document and DTD structures after parse

-x Exercise SAX interface and print document

-v Version - display parser version then exit

-w Whitespace - preserve all whitespace
Using XML Parser for C 24-11



Using the Sample Files Included with Your Software
Using the Sample Files Included with Your Software
$ORACLE_HOME/xdk/c/parser/sample/ directory contains several XML

applications to illustrate how to use the XML Parser for C with the DOM and SAX

interfaces.

Table 24–3 lists the sample files in sample/ directory.

—

Table 24–3 XML Parser for C sample/ Files

sample/ File Name Description

DOMNamespace.c Source for DOMNamespace program

DOMNamespace.std Expected output from DOMNamespace

DOMSample.c Source for DOMSample program

DOMSample.std Expected output from DOMSample

FullDOM.c Sample usage of DOM interface

FullDOM.std Expected output from FullDOM

Make.bat Batch file for building sample programs

NSExample.xml Sample XML file using namespaces

SAXNamespace.c Source for SAXNamespace program

SAXNamespace.std Expected output from SAXNamespace

SAXSample.c Source for SAXSample program

SAXSample.std Expected output from SAXSample

XSLSample.c Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml  XML file that may be used with XSLSample

iden.xsl Stylesheet that may be used with XSLSample

cleo.xml The Tragedy of Antony and Cleopatra

XML version of Shakespeare's play
24-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
Running the XML Parser for C Sample Programs

Building the Sample programs
Change directories to ..sample/ and read the README file. This will explain how

to build the sample programs according to your platform.

Sample Programs
Table 24–4 lists the programs built by the sample files in sample/

XML Parser for C Example 1: XML — class.xml
class.xml  is an XML file that inputs XSLSample.c.

<?xml version = "1.0"?>
<!DOCTYPE course [
<!ELEMENT course (Name, Dept, Instructor, Student)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT Instructor (Name)>
<!ELEMENT Student (Name*)>
]>
<course>

Table 24–4 XML Parser for C: Sample Built Programs in sample/

Built Program Description

DOMSample A sample application using DOM APIs (shows an outline of
Cleopatra, i.e. the XML elements ACT and SCENE).

SAXSample [word] A sample application using SAX APIs. Given a word, shows all
lines in the play Cleopatra containing that word. If no word is
specified, 'death' is used.

DOMNamespace Same as SAXNamespace except using DOM interface.

SAXNamespace A sample application using Namespace extensions to SAX API;
prints out all elements and attributes of NSExample.xml along
with full namespace information.

FullDOM Sample usage of full DOM interface. Exercises all the calls, but
does nothing too exciting.

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two filenames as input,
the XML file and XSL stylesheet
Using XML Parser for C 24-13



Running the XML Parser for C Sample Programs
<Name>Calculus</Name>
<Dept>Math</Dept>
<Instructor>
<Name>Jim Green</Name>
</Instructor>
<Student>
<Name>Jack</Name>
<Name>Mary</Name>
<Name>Paul</Name>
</Student>
</course>

XML Parser for C Example 2: XML — cleo.xml
This XML example inputs DOMSample.c  and SAXSample.c .

<?xml version="1.0"?>
<!DOCTYPE PLAY [
    <!ELEMENT PLAY     (TITLE, PERSONAE, SCNDESCR, PLAYSUBT, INDUCT?,
 PROLOGUE?, ACT+, EPILOGUE?)>
    <!ELEMENT TITLE    (#PCDATA)>
    <!ELEMENT FM       (P+)>
    <!ELEMENT P        (#PCDATA)>
    <!ELEMENT PERSONAE (TITLE, (PERSONA | PGROUP)+)>
    <!ELEMENT PGROUP   (PERSONA+, GRPDESCR)>
    <!ELEMENT PERSONA  (#PCDATA)>
    <!ELEMENT GRPDESCR (#PCDATA)>
    <!ELEMENT SCNDESCR (#PCDATA)>
    <!ELEMENT PLAYSUBT (#PCDATA)>
    <!ELEMENT INDUCT   (TITLE, SUBTITLE*, (SCENE+|(SPEECH|STAGEDIR|SUBHEAD)+))>
    <!ELEMENT ACT      (TITLE, SUBTITLE*, PROLOGUE?, SCENE+, EPILOGUE?)>
    <!ELEMENT SCENE    (TITLE, SUBTITLE*, (SPEECH | STAGEDIR | SUBHEAD)+)>
    <!ELEMENT PROLOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH)+)>
    <!ELEMENT EPILOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH)+)>
    <!ELEMENT SPEECH   (SPEAKER+, (LINE | STAGEDIR | SUBHEAD)+)>
    <!ELEMENT SPEAKER  (#PCDATA)>
    <!ELEMENT LINE     (#PCDATA | STAGEDIR)*>
    <!ELEMENT STAGEDIR (#PCDATA)>
    <!ELEMENT SUBTITLE (#PCDATA)>
    <!ELEMENT SUBHEAD  (#PCDATA)>
]>

<PLAY>
<TITLE>The Tragedy of Antony and Cleopatra</TITLE>
24-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
<PERSONAE>
<TITLE>Dramatis Personae</TITLE>

<PGROUP>
<PERSONA>MARK ANTONY</PERSONA>
<PERSONA>OCTAVIUS CAESAR</PERSONA>
<PERSONA>M. AEMILIUS LEPIDUS</PERSONA>
<GRPDESCR>triumvirs.</GRPDESCR>
</PGROUP>

<PERSONA>SEXTUS POMPEIUS</PERSONA>

<PGROUP>
<PERSONA>DOMITIUS ENOBARBUS</PERSONA>
<PERSONA>VENTIDIUS</PERSONA>
<PERSONA>EROS</PERSONA>
<PERSONA>SCARUS</PERSONA>
<PERSONA>DERCETAS</PERSONA>
<PERSONA>DEMETRIUS</PERSONA>
<PERSONA>PHILO</PERSONA>
<GRPDESCR>friends to Antony.</GRPDESCR>
</PGROUP>

<PGROUP>
<PERSONA>MECAENAS</PERSONA>
<PERSONA>AGRIPPA</PERSONA>
<PERSONA>DOLABELLA</PERSONA>
<PERSONA>PROCULEIUS</PERSONA>
<PERSONA>THYREUS</PERSONA>
<PERSONA>GALLUS</PERSONA>
<PERSONA>MENAS</PERSONA>
<GRPDESCR>friends to Caesar.</GRPDESCR>
</PGROUP>

...

...

<SCNDESCR>SCENE  In several parts of the Roman empire.</SCNDESCR>

<PLAYSUBT>ANTONY AND CLEOPATRA</PLAYSUBT>

<ACT><TITLE>ACT I</TITLE>
Using XML Parser for C 24-15



Running the XML Parser for C Sample Programs
<SCENE><TITLE>SCENE I.  Alexandria. A room in CLEOPATRA's palace.</TITLE>
<STAGEDIR>Enter DEMETRIUS and PHILO</STAGEDIR>

<SPEECH>
<SPEAKER>PHILO</SPEAKER>
<LINE>Nay, but this dotage of our general's</LINE>
<LINE>O'erflows the measure: those his goodly eyes,</LINE>
<LINE>That o'er the files and musters of the war</LINE>
<LINE>Have glow'd like plated Mars, now bend, now turn,</LINE>
<LINE>The office and devotion of their view</LINE>
<LINE>Upon a tawny front: his captain's heart,</LINE>
<LINE>Which in the scuffles of great fights hath burst</LINE>
<LINE>The buckles on his breast, reneges all temper,</LINE>
<LINE>And is become the bellows and the fan</LINE>
<LINE>To cool a gipsy's lust.</LINE>
<STAGEDIR>Flourish. Enter ANTONY, CLEOPATRA, her Ladies,
the Train, with Eunuchs fanning her</STAGEDIR>
<LINE>Look, where they come:</LINE>
<LINE>Take but good note, and you shall see in him.</LINE>
<LINE>The triple pillar of the world transform'd</LINE>
<LINE>Into a strumpet's fool: behold and see.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>CLEOPATRA</SPEAKER>
<LINE>If it be love indeed, tell me how much.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>MARK ANTONY</SPEAKER>
<LINE>There's beggary in the love that can be reckon'd.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>CLEOPATRA</SPEAKER>
<LINE>I'll set a bourn how far to be beloved.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>MARK ANTONY</SPEAKER>
<LINE>Then must thou needs find out new heaven, new earth.</LINE>
</SPEECH>
...
...
24-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
...
<SPEAKER>DOLABELLA</SPEAKER>
<LINE>Here, on her breast,</LINE>
<LINE>There is a vent of blood and something blown:</LINE>
<LINE>The like is on her arm.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>First Guard</SPEAKER>
<LINE>This is an aspic's trail: and these fig-leaves</LINE>
<LINE>Have slime upon them, such as the aspic leaves</LINE>
<LINE>Upon the caves of Nile.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>OCTAVIUS CAESAR</SPEAKER>
<LINE>Most probable</LINE>
<LINE>That so she died; for her physician tells me</LINE>
<LINE>She hath pursued conclusions infinite</LINE>
<LINE>Of easy ways to die. Take up her bed;</LINE>
<LINE>And bear her women from the monument:</LINE>
<LINE>She shall be buried by her Antony:</LINE>
<LINE>No grave upon the earth shall clip in it</LINE>
<LINE>A pair so famous. High events as these</LINE>
<LINE>Strike those that make them; and their story is</LINE>
<LINE>No less in pity than his glory which</LINE>
<LINE>Brought them to be lamented. Our army shall</LINE>
<LINE>In solemn show attend this funeral;</LINE>
<LINE>And then to Rome. Come, Dolabella, see</LINE>
<LINE>High order in this great solemnity.</LINE>
</SPEECH>

<STAGEDIR>Exeunt</STAGEDIR>
</SCENE>
</ACT>
</PLAY>

XML Parser for C Example 3: XSL — iden.xsl
This example stylesheet can be used to input XSLSample.c .

<?xml version="1.0"?>
<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
Using XML Parser for C 24-17



Running the XML Parser for C Sample Programs
  <xsl:template match="*|@*|comment()|processing-instruction()|text()">
      <xsl:copy>
          <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
      </xsl:copy>
  </xsl:template>

</xsl:stylesheet>

XML Parser for C Example 4: XML — FullDOM.xml (DTD)
This DTD example inputs FullDOM.c .

<!DOCTYPE doc [
    <!ELEMENT p (#PCDATA)>
    <!ATTLIST p xml:space (preserve|default) 'preserve'>
    <!NOTATION notation1 SYSTEM "file.txt">
    <!NOTATION notation2 PUBLIC "some notation">
    <!ELEMENT doc (p*)>
    <!ENTITY example "<p>An ampersand (&#38;#38;) may be escaped
numerically (&#38;#38;#38;) or with a general entity
(&amp;amp;).</p>">
]>
<doc xml:lang="foo">&example;</doc>

XML Parser for C Example 5: XML — NSExample.xml
The following example file, NSExample.xml , uses namespaces.

<!DOCTYPE doc [
<!ELEMENT doc (child*)>
<!ATTLIST doc xmlns:nsprefix CDATA #IMPLIED>
<!ATTLIST doc xmlns CDATA #IMPLIED>
<!ATTLIST doc nsprefix:a1 CDATA #IMPLIED>
<!ELEMENT child (#PCDATA)>
]>
<doc nsprefix:a1 = "v1" xmlns="http://www.w3c.org"
xmlns:nsprefix="http://www.oracle.com">
<child>
This element inherits the default Namespace of doc.
</child>
</doc>
24-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
XML Parser for C Example 6: C — DOMSample.c
This example contains the C source code for DOMSample.c

/* Copyright (c) Oracle Corporation 1999. All Rights Reserved. */
/*
   NAME
     DOMSample.c - Sample DOM usage
   DESCRIPTION
     Sample usage of C XML parser via DOM interface
*/

#include <stdio.h>

#ifndef ORATYPES
# include <oratypes.h>
#endif
#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

#define DOCUMENT        (oratext *) "cleo.xml"

void dump(xmlctx *ctx, xmlnode *node);
void dumppart(xmlctx *ctx, xmlnode *node, boolean indent);

int main()
{
    xmlctx     *ctx;
    uword       ecode;

    puts("XML C DOM sample");
    puts("Initializing XML package...");
    if (!(ctx = xmlinit(&ecode, (const oratext *) 0,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
(const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
return 1;
    }
Using XML Parser for C 24-19



Running the XML Parser for C Sample Programs
    printf("Parsing '%s' ...\n", DOCUMENT);
    if (ecode = xmlparse(ctx, DOCUMENT, (oratext *) 0,
XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE))
    {
printf("Parse failed, error %u\n", (unsigned) ecode);
return 1;
    }

    puts("Outlining...");
    dump(ctx, getDocumentElement(ctx));

    xmlterm(ctx);

    return 0;
}

void dump(xmlctx *ctx, xmlnode *node)
{
    const oratext *name;
    void    *nodes;
    uword    i, n_nodes;

    name = getNodeName(node);
    if (!strcmp((char *) name, "ACT"))
        dumppart(ctx, node, FALSE);
    else if (!strcmp((char *) name, "SCENE"))
        dumppart(ctx, node, TRUE);
    if (hasChildNodes(node))
    {
        nodes = getChildNodes(node);
        n_nodes = numChildNodes(nodes);
        for (i = 0; i < n_nodes; i++)
            dump(ctx, getChildNode(nodes, i));
    }
}

void dumppart(xmlctx *ctx, xmlnode *node, boolean indent)
{
    void *title = getFirstChild(node);

    if (indent)
       fputs("    ", stdout);
    puts((char *) getNodeValue(getFirstChild(title)));
}

24-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
/* end of DOMSample.c */

XML Parser for C Example 7: C — DOMSample.std
The DOMSample.std example file shows the expected output from DOMSample.c

XML C DOM sample
Initializing XML package...
Parsing 'cleo.xml' ...
Outlining...
ACT I
    SCENE I.  Alexandria. A room in CLEOPATRA's palace.
    SCENE II.  The same. Another room.
    SCENE III.  The same. Another room.
    SCENE IV.  Rome. OCTAVIUS CAESAR's house.
    SCENE V.  Alexandria. CLEOPATRA's palace.
ACT II
    SCENE I.  Messina. POMPEY's house.
    SCENE II.  Rome. The house of LEPIDUS.
...
...
...
 ACT V
    SCENE I.  Alexandria. OCTAVIUS CAESAR's camp.
    SCENE II.  Alexandria. A room in the monument.

XML Parser for C Example 8: C — SAXSample.c
This example contains the C source code for SAXSample.c

/* Copyright (c) Oracle Corporation 1999. All Rights Reserved. */

/*
   NAME
     SAXSample.c - Sample SAX usage

   DESCRIPTION
     Sample usage of C XML parser via SAX interface
*/

#include <stdio.h>

#ifndef ORATYPES
Using XML Parser for C 24-21



Running the XML Parser for C Sample Programs
# include <oratypes.h>
#endif

#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

#define DOCUMENT"cleo.xml"
#define DEFAULT_KEYWORD"death"

char    *keyword;
size_t   keylen;
oratext *elem;
oratext speaker[80];

oratext *findsub(oratext *buf, size_t bufsiz, oratext *sub, size_t subsiz);
void     savestr(oratext *buf, oratext *s, size_t len);

/* SAX callback functions */

sword startDocument(void *ctx);
sword endDocument(void *ctx);
sword startElement(void *ctx, const oratext *name,
                   const struct xmlnodes *attrs);
sword endElement(void *ctx, const oratext *name);
sword characters(void *ctx, const oratext *ch, size_t len);

xmlsaxcb saxcb = {
    startDocument,
    endDocument,
    startElement,
    endElement,
    characters
};

int main(int argc, char **argv)
{
    xmlctx     *ctx;
    ub4         flags;
    uword       ecode;
    flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;

    puts("XML C SAX sample");
    keyword = (argc > 1) ? argv[1] : DEFAULT_KEYWORD;
    keylen = strlen(keyword);
24-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
    puts("Initializing XML package...");

    if (!(ctx = xmlinit(&ecode, (const oratext *) 0,
(void (*)(void *, const oratext *, uword)) 0,
(void *) 0, &saxcb, (void *) 0,
(const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
        (void) printf("Failed to initialize XML parser, error %u\n",
                        (unsigned) ecode);
        return 1;
    }

    printf("Parsing '%s' and looking for lines containing '%s'...\n",
DOCUMENT, keyword);
    elem = (oratext *) "";
    if (ecode = xmlparse(ctx, (oratext *) DOCUMENT, (oratext *) 0, flags))
return 1;

    (void) xmlterm(ctx);/* terminate XML package */

    return 0;
}

sword startDocument(void *ctx)
{
    puts("startDocument");
    return 0;
}

sword endDocument(void *ctx)
{
    puts("endDocument");
    return 0;
}

sword startElement(void *ctx, const oratext *name,
                   const struct xmlnodes *attrs)
{
    elem = (oratext *) name;
    return 0;
}

sword endElement(void *ctx, const oratext *name)
{

Using XML Parser for C 24-23



Running the XML Parser for C Sample Programs
    elem = (oratext *) "";
    return 0;
}

sword characters(void *ctx, const oratext *ch, size_t len)
{
    if (!strcmp((char *) elem, "SPEAKER"))
savestr(speaker, (oratext *) ch, len);
    else if (findsub((oratext *) ch, len, (oratext *) keyword, keylen))
printf("    %s: %.*s\n", speaker, len, ch);
    return 0;
}

oratext *findsub(oratext *buf, size_t bufsiz, oratext *sub, size_t subsiz)
{
    uword i;

    if (!buf || !bufsiz || (subsiz > bufsiz))
return (oratext *) 0;
    if (!sub || !subsiz)
return buf;
    for (i = 0; i < bufsiz - subsiz; i++, buf++)
    {
if (!memcmp(buf, sub, subsiz))
    return buf;
    }
    return (oratext *) 0;
}

void savestr(oratext *buf, oratext *s, size_t len)
{
    memcpy(buf, s, len);
    buf[len] = 0;
}

/* End of SAXSample.c */

XML Parser for C Example 9: C — SAXSample.std
SAXSample.std  shows the expected output from SAXSample.c .

XML C SAX sample
Initializing XML package...
Parsing 'cleo.xml' and looking for lines containing 'death'...
24-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
startDocument
    MARK ANTONY: Who tells me true, though in his tale lie death,
    DOMITIUS ENOBARBUS: if they suffer our departure, death's the word.
    DOMITIUS ENOBARBUS: mettle in death, which commits some loving act upon
    MARK ANTONY: The death of Fulvia, with more urgent touches,
    MARK ANTONY: Is Fulvia's death.
    CLEOPATRA: In Fulvia's death, how mine received shall be.
    EROS: the poor third is up, till death enlarge his confine.
    SCARUS: Where death is sure. Yon ribaudred nag of Egypt,--
    EROS: Her head's declined, and death will seize her, but
    MARK ANTONY: I'll make death love me; for I will contend
    MARK ANTONY: Married to your good service, stay till death:
    MARK ANTONY: Than death and honour. Let's to supper, come,
    First Soldier: The hand of death hath raught him.
    CLEOPATRA: And bring me how he takes my death.
    MARK ANTONY: She hath betray'd me and shall die the death.
    MARK ANTONY: Than she which by her death our Caesar tells
    EROS: Of Antony's death.
    MARK ANTONY: A bridegroom in my death, and run into't
    DERCETAS: Thy death and fortunes bid thy followers fly.
    MARK ANTONY: Sufficing strokes for death.
    DIOMEDES: His death's upon him, but not dead.
    MARK ANTONY: I here importune death awhile, until
    CLEOPATRA: To rush into the secret house of death,
    CLEOPATRA: Ere death dare come to us? How do you, women?
    CLEOPATRA: And make death proud to take us. Come, away:
    OCTAVIUS CAESAR: And citizens to their dens: the death of Antony
    CLEOPATRA: What, of death too,
    CLEOPATRA: Where art thou, death?
    CLEOPATRA: The stroke of death is as a lover's pinch,
    CHARMIAN: Now boast thee, death, in thy possession lies
    OCTAVIUS CAESAR: Took her own way. The manner of their deaths?
endDocument

XML Parser for C Example 10: C — DOMNamespace.c
This example contains the C source code for DOMNamespace.c.

/* Copyright (c) Oracle Corporation 1999. All Rights Reserved. */

/**
 ** This file demonstates a simple use of the parser and Namespace
 ** extensions to the DOM APIs.
 ** The XML file that is given to the application is parsed and the
Using XML Parser for C 24-25



Running the XML Parser for C Sample Programs
 ** elements and attributes in the document are printed.
 **/

#ifndef ORATYPES
# include <oratypes.h>
#endif

#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

#define DOCUMENT         "NSExample.xml"

/*------------------------------------------------------------------------
                           FUNCTION PROTOTYPES
  ------------------------------------------------------------------------*/
static void    DOMNSprint(xmlctx *ctx);
static void    printElements(xmlctx *ctx, xmlnode *n);
static void    printAttrs(xmlctx *ctx, xmlnode *n);

/*------------------------------------------------------------------------
                                MAIN
  ------------------------------------------------------------------------*/
int main()
{
   xmlctx     *ctx;
   oratext    *encoding, *doc;
   void       *saxcbctx;
   const xmlsaxcb *saxcb;
   uword       ecode;
   ub4         flags;

   encoding = doc = (oratext *) 0;
   saxcbctx = (void *) 0;
   saxcb = (const xmlsaxcb *) 0;
   flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;
   doc = (oratext *)DOCUMENT;

   /* initialize LPX context */
   if (!(ctx = xmlinit(&ecode, encoding,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, saxcb, saxcbctx, (const xmlmemcb *) 0,
                        (void *) 0, (const oratext *) 0)))
   {
      printf("Failed to initialize XML parser, error %u\n", (unsigned) ecode);
24-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
      return -1;
   }

   /* parse the document */

   printf("\nParsing '%s' ...\n", doc);
   ecode = xmlparse(ctx, doc, encoding, flags);

   if (ecode)
     printf("Parse failed, code %u\n", (unsigned) ecode);
   else
     printf("Parse succeeded.\n");

   /* print results */

   printf("Printing results ...\n");
   DOMNSprint(ctx);

   /* terminate */

   (void) xmlterm(ctx);

   return (ecode ? -1 : 0);
}

/*------------------------------------------------------------------------
                             DOMNSprint
  ------------------------------------------------------------------------*/
static void DOMNSprint(xmlctx *ctx)
{
    xmlnode *root;

    root = getDocumentElement(ctx);
    printf("\nThe elements are:\n");
    printElements(ctx, root);
}

/*------------------------------------------------------------------------
                             printElements
  ------------------------------------------------------------------------*/
static void printElements(xmlctx *ctx, xmlnode *n)
{
    xmlnodes *nodes;
    uword     i;
    size_t    nn;
Using XML Parser for C 24-27



Running the XML Parser for C Sample Programs
    const oratext   *qname;
    const oratext   *namespace;
    const oratext   *local;
    const oratext   *prefix;

    if (n == (xmlnode*)NULL)
       return;

    if (nodes = getChildNodes(n))
    {
       for (nn = numChildNodes(nodes), i = 0; i < nn; i++)
       {
          /* get node qualified name, local name, namespace, and prefix */

          qname = namespace = local = prefix = (oratext*)" ";

          if (getNodeQualifiedName(n) != (oratext*)NULL)
             qname = getNodeQualifiedName(n);
            if (getNodePrefix(n) != (oratext*)NULL)
             prefix = getNodePrefix(n);

          if (getNodeLocal(n) != (oratext *)NULL)
             local = getNodeLocal(n);

          if (getNodeNamespace(n) != (oratext*)NULL)
             namespace = getNodeNamespace(n);

          printf("  ELEMENT Qualified Name: %s\n", qname);
          printf("  ELEMENT Prefix Name   : %s\n", prefix);
          printf("  ELEMENT Local Name    : %s\n", local);
          printf("  ELEMENT Namespace     : %s\n", namespace);

          printAttrs(ctx, n);
          printElements(ctx, (xmlnode *) getChildNode(nodes, i));
       }
    }
}

/*------------------------------------------------------------------------
                             printAttrs
  ------------------------------------------------------------------------*/
static void printAttrs(xmlctx *ctx, xmlnode *n)
{
    xmlnodes  *attrs;
24-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
    xmlnode   *a;
    uword      i;
    size_t     na;

    const oratext   *value;
    const oratext   *qname;
    const oratext   *namespace;
    const oratext   *local;
    const oratext   *prefix;

    if (attrs = getAttributes(n))
    {
       printf("\n    ATTRIBUTES: \n");
       for (na = numAttributes(attrs), i = 0; i < na; i++)
       {
          /* get attr qualified name, local name, namespace, and prefix */

          a = getAttributeIndex(attrs, i);

          qname = namespace = local = prefix = value = (oratext*)" ";

          if (getAttrQualifiedName(a) != (oratext*)NULL)
             qname = getAttrQualifiedName(a);
          if (getAttrNamespace(a) != (oratext*)NULL)
             namespace = getAttrNamespace(a);
          if (getAttrLocal(a) != (oratext*)NULL)
             local = getAttrLocal(a);
          if (getAttrPrefix(a) != (oratext*)NULL)
             prefix = getAttrPrefix(a);
          if (getAttrValue(a) != (oratext*)NULL)
             value = getAttrValue(a);

          printf("      %s = %s\n", qname, value);
          printf("      Namespace : %s\n", namespace);
          printf("      Local Name: %s\n", local);
          printf("      Prefix    : %s\n\n", prefix);
       }
    }
    printf("\n");
}

Using XML Parser for C 24-29



Running the XML Parser for C Sample Programs
XML Parser for C Example 11: C — DOMNamespace.std
DOMNamespace.std  shows the expected output from DOMNamespace.c.

Parsing 'NSExample.xml' ...
Parse succeeded.
Printing results ...

The elements are:
  ELEMENT Qualified Name: doc
  ELEMENT Prefix Name   :
  ELEMENT Local Name    : doc
  ELEMENT Namespace     : http://www.w3c.org

    ATTRIBUTES:
      nsprefix:a1 = v1
      Namespace : http://www.oracle.com
      Local Name: a1
      Prefix    : nsprefix

      xmlns = http://www.w3c.org
      Namespace :
      Local Name: xmlns
      Prefix    :

      xmlns:nsprefix = http://www.oracle.com
      Namespace :
      Local Name: nsprefix
      Prefix    : xmlns

  ELEMENT Qualified Name: child
  ELEMENT Prefix Name   :
  ELEMENT Local Name    : child
  ELEMENT Namespace     : http://www.w3c.org

XML Parser for C Example 12: C — SAXNamespace.c
This example contains the C source code for the SAXNamespace.c .

/* Copyright (c) Oracle Corporation 1999. All Rights Reserved. */

/**
 ** This file demonstrates a simple use of the Namespace extensions to
24-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
 ** the SAX APIs.
 **/

#include <stdio.h>

#ifndef ORATYPES
# include <oratypes.h>
#endif

#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

#define DOCUMENT         "NSExample.xml"

/*------------------------------------------------------------------------
                           FUNCTION PROTOTYPES
  ------------------------------------------------------------------------*/

static int sax_startdocument(void *ctx);
static int sax_enddocument(void *ctx);
static int sax_endelement(void *ctx, const oratext *name);
static int sax_nsstartelement(void *ctx, const oratext *qname,
                               const oratext *local,
                               const oratext *namespace,
                               const struct xmlnodes *attrs);

/* SAX callback structure */

xmlsaxcb sax_callback = {
    sax_startdocument,
    sax_enddocument,
    0,
    sax_endelement,
    0,
    0,
    0,
    0,
    0,
    sax_nsstartelement,
    0, 0, 0, 0, 0, 0, 0, 0
};

/* SAX callback context */
Using XML Parser for C 24-31



Running the XML Parser for C Sample Programs
typedef struct {
    xmlctx  *ctx;
    uword    depth;
} cbctx;

/*------------------------------------------------------------------------
                                MAIN
  ------------------------------------------------------------------------*/

int main()
{
   xmlctx     *ctx;
   uword       i;
   oratext    *doc, *encoding;
   xmlsaxcb   *saxcb;
   cbctx       saxctx;
   void       *saxcbctx;
   ub4         flags;
   uword       ecode;

   doc = encoding = (oratext *)0;
   flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;

   doc = (oratext *)DOCUMENT;

   /* set up SAX callbacks */

   saxcb = &sax_callback;
   saxcbctx = (void *) &saxctx;

   /* initialize LPX context */
   if (!(ctx = xmlinit(&ecode, encoding,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, saxcb, saxcbctx, (const xmlmemcb *) 0,
                        (void *) 0, (const oratext *) 0)))
   {
      printf("Failed to initialize XML parser, error %u\n", (unsigned) ecode);
      return -1;
   }

   /* parse the document */

   printf("\nParsing '%s' ...\n", doc);
   ecode = xmlparse(ctx, doc, encoding, flags);
24-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
   if (ecode)
     printf("\nParse failed, code %u\n", (unsigned) ecode);
   else
     printf("\nParse succeeded.\n");

   /* terminate */

   (void) xmlterm(ctx);

   return (ecode ? -1 : 0);
}

/*------------------------------------------------------------------------
                             SAX Interface
  ------------------------------------------------------------------------*/

static int sax_startdocument(void *ctx)
{
    printf("\nStartDocument\n\n");
    return 0;
}

static int sax_enddocument(void *ctx)
{
    printf("\nEndDocument\n");
    return 0;
}

static int sax_endelement(void *ctx, const oratext *name)
{
    printf("\nELEMENT Name  : %s\n", name);
    return 0;
}

static int sax_nsstartelement(void *ctx, const oratext *qname,
                               const oratext *local,
                               const oratext *namespace,
                               const struct xmlnodes *attrs)
{
    cbctx   *saxctx = (cbctx *) ctx;
Using XML Parser for C 24-33



Running the XML Parser for C Sample Programs
    xmlnode *attr;
    size_t   i;

    const oratext *aqname;
    const oratext *aprefix;
    const oratext *alocal;
    const oratext *anamespace;
    const oratext *avalue;

    /*
     * Use the functions getXXXQualifiedName(), getXXXLocalName(), and
     * getXXXNamespace() to get Namespace information.
     */

    if (qname == (oratext*)NULL)
       qname = (oratext*)" ";
    if (local == (oratext*)NULL)
       local = (oratext*)" ";
    if (namespace == (oratext*)NULL)
       namespace = (oratext*)" ";

    printf("ELEMENT Qualified Name: %s\n", qname);
    printf("ELEMENT Local Name    : %s\n", local);
    printf("ELEMENT Namespace     : %s\n", namespace);

    if (attrs)
    {
       for (i = 0; i < numAttributes(attrs); i++)
       {
          attr = getAttributeIndex(attrs, i);

          aqname = aprefix = alocal = anamespace = avalue = (oratext*)" ";

          if (getAttrQualifiedName(attr) != (oratext*)NULL)
             aqname = getAttrQualifiedName(attr);

          if (getAttrPrefix(attr) != (oratext*)NULL)
             aprefix = getAttrPrefix(attr);

          if (getAttrLocal(attr) != (oratext*)NULL)
             alocal = getAttrLocal(attr);

          if (getAttrNamespace(attr) != (oratext*)NULL)
             anamespace = getAttrNamespace(attr);
24-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
          if (getAttrValue(attr) != (oratext*)NULL)
             avalue = getAttrValue(attr);

          printf(" ATTRIBUTE Qualified Name   : %s\n", aqname);
          printf(" ATTRIBUTE Prefix           : %s\n", aprefix);
          printf(" ATTRIBUTE Local Name       : %s\n", alocal);
          printf(" ATTRIBUTE Namespace        : %s\n", anamespace);
          printf(" ATTRIBUTE Value            : %s\n", avalue);
          printf("\n");
       }
    }
    return 0;
}

XML Parser for C Example 13: C — SAXNamespace.std
SAXNamespace.std  shows the expected output from SAXNamespace.c

Parsing 'NSExample.xml' ...

StartDocument

ELEMENT Qualified Name: doc
ELEMENT Local Name    : doc
ELEMENT Namespace     : http://www.w3c.org
 ATTRIBUTE Qualified Name   : nsprefix:a1
 ATTRIBUTE Prefix           : nsprefix
 ATTRIBUTE Local Name       : a1
 ATTRIBUTE Namespace        : http://www.oracle.com
 ATTRIBUTE Value            : v1

 ATTRIBUTE Qualified Name   : xmlns
 ATTRIBUTE Prefix           :
 ATTRIBUTE Local Name       : xmlns
 ATTRIBUTE Namespace        :
 ATTRIBUTE Value            : http://www.w3c.org

 ATTRIBUTE Qualified Name   : xmlns:nsprefix
 ATTRIBUTE Prefix           : xmlns
 ATTRIBUTE Local Name       : nsprefix
 ATTRIBUTE Namespace        :
 ATTRIBUTE Value            : http://www.oracle.com
Using XML Parser for C 24-35



Running the XML Parser for C Sample Programs
ELEMENT Qualified Name: child
ELEMENT Local Name    : child
ELEMENT Namespace     : http://www.w3c.org

ELEMENT Name  : child

ELEMENT Name  : doc

EndDocument

Parse succeeded.

XML Parser for C Example 14: C — FullDOM.c
This example contains the C source code for FullDOM.c

/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*
   NAME
     FullDOM.c

   DESCRIPTION
     Sample code to test full DOM interface
*/

#include <stdio.h>

#ifndef ORATYPES
# include <oratypes.h>
#endif

#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

#define TEST_DOCUMENT(oratext *) "FullDOM.xml"

void dump(xmlnode *node, uword level);
void dumpnode(xmlnode *node, uword level);

static char *ntypename[] = {
    "0",
    "ELEMENT",
24-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
    "ATTRIBUTE",
    "TEXT",
    "CDATA",
    "ENTREF",
    "ENTITY",
    "PI",
    "COMMENT",
    "DOCUMENT",
    "DTD",
    "DOCFRAG",
    "NOTATION"
};

#define FAIL { puts("Failed!"); exit(1); }

int main()
{
    xmlctx     *ctx;
    xmldtd     *dtd;
    xmlnode    *doc, *elem, *node, *text, *pi, *comment, *entref,
*subelem, *subtext, *cdata, *attr1, *attr2, *clone,
*deep_clone, *frag, *fragelem, *fragtext, *sub2,
*fish, *food, *gleep1, *gleep2, *repl;
    xmlnodes   *subs, *nodes, *attrs, *notes, *entities;
    uword       i, ecode, level;

    puts("XML C Full DOM test");

    puts("Initializing XML parser...");

    if (!(ctx = xmlinit(&ecode, (const oratext *) 0,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
(const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
return 1;
    }

    puts("\nCreating new document...");
    if (!(doc = createDocument(ctx)))
FAIL

    puts("Document from root node:");
Using XML Parser for C 24-37



Running the XML Parser for C Sample Programs
    dump(getDocument(ctx), 0);

    puts("\nCreating 'ROOT' element...");
    if (!(elem = createElement(ctx, (oratext *) "ROOT")))
FAIL

    puts("Setting as 'ROOT' element...");
    if (!appendChild(ctx, doc, elem))
FAIL

    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("Adding 7 children to 'ROOT' element...");
    if (!(text = createTextNode(ctx, (oratext *) "Gibberish")) ||
        !appendChild(ctx, elem, text))
FAIL

    if (!(comment = createComment(ctx, (oratext*) "Bit warm today, innit?")) ||
        !appendChild(ctx, elem, comment))
FAIL

    if (!(pi = createProcessingInstruction(ctx, (oratext *) "target",
(oratext *) "PI-contents")) ||
        !appendChild(ctx, elem, pi))
FAIL

    if (!(cdata = createCDATASection(ctx, (oratext *) "See DATA")) ||
        !appendChild(ctx, elem, cdata))
FAIL

    if (!(entref = createEntityReference(ctx, (oratext *) "EntRef")) ||
        !appendChild(ctx, elem, entref))
FAIL

    if (!(fish = createElement(ctx, (oratext *) "FISH")) ||
!appendChild(ctx, elem, fish))
FAIL

    if (!(food = createElement(ctx, (oratext *) "FOOD")) ||
!appendChild(ctx, elem, food))
FAIL

    puts("Document from 'ROOT' element with its 7 children:");
    dump(getDocumentElement(ctx), 0);
24-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
    puts("\nTesting node insertion...");
    puts("Adding 'Pre-Gibberish' text node and 'Ask about the weather' comment
node ...");
    if (!(node = createTextNode(ctx, (oratext *) "Pre-Gibberish")) ||
        !insertBefore(ctx, elem, node, text))
FAIL

    if (!(node = createComment(ctx, (oratext *) "Ask about the weather:")) ||
        !insertBefore(ctx, elem, node, comment))
FAIL

    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("\nTesting node removal by name ...");
    puts("Removing 'FISH' element");
    if (!(nodes = getChildNodes(elem)) ||
!removeNamedItem(nodes, (oratext *) "FISH"))
FAIL

    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("\nTesting nextSibling links starting at first child...");
    for (node = getFirstChild(elem); node; node = getNextSibling(node))
dump(node, 1);

    puts("\nTesting previousSibling links starting at last child...");
    for (node = getLastChild(elem); node; node = getPreviousSibling(node))
dump(node, 1);

    puts("\nTesting setting node value...");
    puts("Original node:");
    dump(pi, 1);
    setNodeValue(pi, (oratext *) "New PI contents");
    puts("Node after new value:");
    dump(pi, 1);

    puts("\nAdding another element level, i.e., 'SUB' ...");
    if (!(subelem = createElement(ctx, (oratext *) "SUB")) ||
!insertBefore(ctx, elem, subelem, cdata) ||
!(subtext = createTextNode(ctx, (oratext *) "Lengthy SubText")) ||
        !appendChild(ctx, subelem, subtext))
FAIL
Using XML Parser for C 24-39



Running the XML Parser for C Sample Programs
    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("\nAdding a second 'SUB' element...");
    if (!(sub2 = createElement(ctx, (oratext *) "SUB")) ||
!insertBefore(ctx, elem, sub2, cdata))
FAIL

    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("\nGetting all SUB nodes - note the distinct hex addresses ...");
    if (!(subs = getElementsByTagName(ctx, (xmlnode *) 0, (oratext *) "SUB")))
FAIL
    for (i = 0; i < getNodeMapLength(subs); i++)
dumpnode(getChildNode(subs, i), 1);

    puts("\nTesting parent links...");
    for (level = 1, node = subtext; node; node = getParentNode(node), level++)
dumpnode(node, level);

    puts("\nTesting owner document of node...");
    dumpnode(subtext, 1);
    dumpnode(getOwnerDocument(subtext), 1);

    puts("\nTesting node replacement...");
    if (!(node = createTextNode(ctx, (oratext *) "REPLACEMENT, 1/2 PRICE")) ||
        !replaceChild(ctx, pi, node))
FAIL

    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("\nTesting node removal...");
    if (!removeChild(entref))
FAIL

    puts("Document from 'ROOT' element:");
    dump(getDocumentElement(ctx), 0);

    puts("\nNormalizing...");
    normalize(ctx, elem);

    puts("Document from 'ROOT' element:");
24-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
    dump(getDocumentElement(ctx), 0);

    puts("\nCreating and populating document fragment...");
    if (!(frag = createDocumentFragment(ctx)) ||
!(fragelem = createElement(ctx, (oratext *) "FragElem")) ||
!(fragtext = createTextNode(ctx, (oratext *) "FragText")) ||
!appendChild(ctx, frag, fragelem) ||
!appendChild(ctx, frag, fragtext))
FAIL
    dump(frag, 1);

    puts("Insert document fragment...");
    if (!insertBefore(ctx, elem, frag, comment))
FAIL
    dump(elem, 1);

    puts("\nCreate two attributes...");
    if (!(attr1 = createAttribute(ctx,(oratext*)"Attr1",(oratext*)"Value1")) ||
!(attr2 = createAttribute(ctx,(oratext*)"Attr2",(oratext*)"Value2")))
FAIL
    puts("Setting attributes...");
    if (!setAttributeNode(ctx, subelem, attr1, NULL) ||
!setAttributeNode(ctx, subelem, attr2, NULL))
FAIL
    dump(subelem, 1);

    puts("\nAltering attribute1 value...");
    setAttrValue(attr1, (oratext *) "New1");
    dump(subelem, 1);

    puts("\nFetching attribute by name (Attr2)...");
    if (!(node = getAttributeNode(subelem, (oratext *) "Attr2")))
FAIL
    dump(node, 1);

    puts("\nRemoving attribute by name (Attr1)...");
    removeAttribute(subelem, (oratext *) "Attr1");
    dump(subelem, 1);

    puts("\nAdding new attribute...");
    if (!setAttribute(ctx, subelem, (oratext *) "Attr3", (oratext *) "Value3"))
FAIL
    dump(subelem, 1);

    puts("\nRemoving attribute by pointer (Attr2)...");
Using XML Parser for C 24-41



Running the XML Parser for C Sample Programs
    if (!removeAttributeNode(subelem, attr2))
FAIL
    dump(subelem, 1);

    puts("\nAdding new attribute w/same name (test replacement)...");
    dump(subelem, 1);
    if (!(node = createAttribute(ctx, (oratext*)"Attr3", (oratext*)"Zoo3")))
FAIL
    if (!setAttributeNode(ctx, subelem, node, NULL))
FAIL
    dump(subelem, 1);

    puts("\nTesting node (attr) set by name ...");
puts("Adding 'GLEEP' attribute and printing out hex addresses of node set");

    attrs = getAttributes(subelem);
    if (!(gleep1=createAttribute(ctx,(oratext*)"GLEEP",(oratext*)"gleep1")) ||
!setNamedItem(ctx, attrs, gleep1, NULL))
FAIL
    dump(subelem, 1);

    puts("\nTesting node set by name ...");
    puts("Replacing 'GLEEP' attribute - note the changed hex address");
    if (!(gleep2=createAttribute(ctx,(oratext*)"GLEEP",(oratext*)"gleep2")) ||
!setNamedItem(ctx, attrs, gleep2, &repl))
FAIL
    dump(subelem, 1);
    puts("Replaced node was:");
    dump(repl, 1);

    puts("\nOriginal SubROOT...");
    dump(subelem, 1);
    puts("Cloned SubROOT (not deep)...");
    clone = cloneNode(ctx, subelem, FALSE);
    dump(clone, 1);
    puts("Cloned SubROOT (deep)...");
    deep_clone = cloneNode(ctx, subelem, TRUE);
    dump(deep_clone, 1);

    puts("\nSplitting text...");
    dump(subelem, 1);
    splitText(ctx, subtext, 3);
    dump(subelem, 1);

    puts("\nTesting string operations...");
    printf("    CharData = \"%s\"\n", getCharData(subtext));
24-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
    puts("Setting new data...");
    setCharData(subtext, (oratext *) "0123456789");
    printf("    CharData = \"%s\"\n", getCharData(subtext));
    printf("    CharLength = %d\n", getCharLength(subtext));
    printf("    Substring(0,5) = \"%s\"\n",
substringData(ctx, subtext, 0, 5));
    printf("    Substring(8,2) = \"%s\"\n",
substringData(ctx, subtext, 8, 2));
    puts("Appending data...");
    appendData(ctx, subtext, (oratext *) "ABCDEF");
    printf("    CharData = \"%s\"\n", getCharData(subtext));
    puts("Inserting data...");
    insertData(ctx, subtext, 10, (oratext *) "*foo*");
    printf("    CharData = \"%s\"\n", getCharData(subtext));
    puts("Deleting data...");
    deleteData(ctx, subtext, 0, 10);
    printf("    CharData = \"%s\"\n", getCharData(subtext));
    puts("Replacing data...");
    replaceData(ctx, subtext, 1, 3, (oratext *) "bamboozle");
    printf("    CharData = \"%s\"\n", getCharData(subtext));

    puts("Cleaning up...");
    xmlclean(ctx);

    if (getDocument(ctx))
    {
puts("Problem, document is not gone!!");
return 1;
    }

    puts("Parsing test document...");
    if (ecode = xmlparse(ctx, TEST_DOCUMENT, (oratext *) 0, 0))
    {
printf("Parse failed, code %d\n", (int) ecode);
return 1;
    }

    puts("Document from root node:");
    dump(getDocument(ctx), 0);

    dtd = getDocType(ctx);

    puts("Testing getDocTypeNotations...");
    if (notes = getDocTypeNotations(dtd))
    {
Using XML Parser for C 24-43



Running the XML Parser for C Sample Programs
size_t n_notes = numChildNodes(notes);

printf("# of notations = %d\n", (int) n_notes);
for (i = 0; i < n_notes; i++)
    dump(getChildNode(notes, i), 1);
    }
    else
puts("No defined notations\n");

    puts("Testing getDocTypeEntities...");
    if (entities = getDocTypeEntities(dtd))
    {
size_t n_entities = numChildNodes(entities);

printf("# of entities = %d\n", (int) n_entities);
for (i = 0; i < n_entities; i++)
    dump(getChildNode(entities, i), 1);
    }
    else
puts("No defined entities\n");

    puts("Cleaning up...");
    xmlclean(ctx);

    if (getDocument(ctx))
    {
puts("Problem, document is not gone!!\n");
return 1;
    }

    puts("\nTerminating parser...");
    xmlterm(ctx);

    puts("Success.");
    return 0;
}

void dump(xmlnode *node, uword level)
{
    xmlnodes *nodes;
    uword     i, n_nodes;

    if (node)
    {
dumpnode(node, level);
24-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
if (hasChildNodes(node))
{
    nodes = getChildNodes(node);
    n_nodes = numChildNodes(nodes);
    for (i = 0; i < n_nodes; i++)
dump(getChildNode(nodes, i), level + 1);
}
   }

void dumpnode(xmlnode *node, uword level)
{
    const oratext  *name, *value;
    xmlntype  type;
    xmlnodes *attrs;
    xmlnode  *attr;
    uword     i, n_attrs;

    if (node)
    {
for (i = 0; i <= level; i++)
    fputs("    ", stdout);
type = getNodeType(node);
fputs(ntypename[type], stdout);
if ((name = getNodeName(node)) && (*name != '#'))
    printf(" \"%s\"", (char *) name);
if (value = getNodeValue(node))
    printf(" = \"%s\"", (char *) value);
if ((type == ELEMENT_NODE) && (attrs = getAttributes(node)))
{
    fputs(" [", stdout);
    n_attrs = numAttributes(attrs);
    for (i = 0; i < n_attrs; i++)
    {
if (i) fputs(", ", stdout);
attr = getAttributeIndex(attrs, i);
fputs((char *) getAttrName(attr), stdout);
if (getAttrSpecified(attr))
    putchar('*');
printf("=\"%s\"", (char *) getAttrValue(attr));
    }
    putchar(']');
}
putchar('\n');
    }
Using XML Parser for C 24-45



Running the XML Parser for C Sample Programs
}

/* end of FullDOM.c */

XML Parser for C Example 15: C — FullDOM.std
FullDOM.std shows the expected output from FullDOM.c .

XML C Full DOM test
Initializing XML parser...

Creating new document...
Document from root node:
    DOCUMENT

Creating 'ROOT' element...
Setting as 'ROOT' element...
Document from 'ROOT' element:
    ELEMENT "ROOT"
Adding 7 children to 'ROOT' element...
Document from 'ROOT' element with its 7 children:
    ELEMENT "ROOT"
        TEXT = "Gibberish"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Testing node insertion...
Adding 'Pre-Gibberish' text node and 'Ask about the weather' comment node ...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"
24-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
Testing node removal by name ...
Removing 'FISH' element
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FOOD"

Testing nextSibling links starting at first child...
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FOOD"

Testing previousSibling links starting at last child...
        ELEMENT "FOOD"
        ENTREF "EntRef"
        CDATA = "See DATA"
        PI "target" = "PI-contents"
        COMMENT = "Bit warm today, innit?"
        COMMENT = "Ask about the weather:"
        TEXT = "Gibberish"
        TEXT = "Pre-Gibberish"

Testing setting node value...
Original node:
        PI "target" = "PI-contents"
Node after new value:
        PI "target" = "New PI contents"

Adding another element level, i.e., 'SUB' ...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
Using XML Parser for C 24-47



Running the XML Parser for C Sample Programs
        COMMENT = "Bit warm today, innit?"
        PI "target" = "New PI contents"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FOOD"

Adding a second 'SUB' element...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "New PI contents"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FOOD"

Getting all SUB nodes - note the distinct hex addresses ...
        ELEMENT "SUB"
        ELEMENT "SUB"

Testing parent links...
        TEXT = "Lengthy SubText"
            ELEMENT "SUB"
                ELEMENT "ROOT"
                    DOCUMENT

Testing owner document of node...
        TEXT = "Lengthy SubText"
        DOCUMENT

Testing node replacement...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        TEXT = "REPLACEMENT, 1/2 PRICE"
24-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FOOD"

Testing node removal...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        TEXT = "REPLACEMENT, 1/2 PRICE"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ELEMENT "FOOD"

Normalizing...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-GibberishGibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        TEXT = "REPLACEMENT, 1/2 PRICE"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ELEMENT "FOOD"

Creating and populating document fragment...
        DOCFRAG
            ELEMENT "FragElem"
            TEXT = "FragText"
Insert document fragment...
        ELEMENT "ROOT"
            TEXT = "Pre-GibberishGibberish"
            COMMENT = "Ask about the weather:"
            ELEMENT "FragElem"
            TEXT = "FragText"
            COMMENT = "Bit warm today, innit?"
Using XML Parser for C 24-49



Running the XML Parser for C Sample Programs
            TEXT = "REPLACEMENT, 1/2 PRICE"
            ELEMENT "SUB"
                TEXT = "Lengthy SubText"
            ELEMENT "SUB"
            CDATA = "See DATA"
            ELEMENT "FOOD"

Create two attributes...
Setting attributes...
        ELEMENT "SUB" [Attr1*="Value1", Attr2*="Value2"]
            TEXT = "Lengthy SubText"

Altering attribute1 value...
        ELEMENT "SUB" [Attr1*="New1", Attr2*="Value2"]
            TEXT = "Lengthy SubText"

Fetching attribute by name (Attr2)...
        ATTRIBUTE "Attr2" = "Value2"

Removing attribute by name (Attr1)...
        ELEMENT "SUB" [Attr2*="Value2"]
            TEXT = "Lengthy SubText"

Adding new attribute...
        ELEMENT "SUB" [Attr2*="Value2", Attr3*="Value3"]
            TEXT = "Lengthy SubText"

Removing attribute by pointer (Attr2)...
        ELEMENT "SUB" [Attr3*="Value3"]
            TEXT = "Lengthy SubText"

Adding new attribute w/same name (test replacement)...
        ELEMENT "SUB" [Attr3*="Value3"]
            TEXT = "Lengthy SubText"
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Lengthy SubText"

Testing node (attr) set by name ...
Adding 'GLEEP' attribute and printing out hex addresses of node set
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep1"]
            TEXT = "Lengthy SubText"

Testing node set by name ...
Replacing 'GLEEP' attribute - note the changed hex address
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep2"]
24-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
            TEXT = "Lengthy SubText"
Replaced node was:
        ATTRIBUTE "GLEEP" = "gleep1"

Original SubROOT...
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep2"]
            TEXT = "Lengthy SubText"
Cloned SubROOT (not deep)...
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep2"]
            TEXT = "Lengthy SubText"
Cloned SubROOT (deep)...
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep2"]
            TEXT = "Lengthy SubText"

Splitting text...
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep2"]
            TEXT = "Lengthy SubText"
        ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="gleep2"]
            TEXT = "Leng"
            TEXT = "thy SubText"

Testing string operations...
    CharData = "Leng"
Setting new data...
    CharData = "0123456789"
    CharLength = 10
    Substring(0,5) = "01234"
    Substring(8,2) = "89"
Appending data...
    CharData = "0123456789ABCDEF"
Inserting data...
    CharData = "0123456789*foo*ABCDEF"
Deleting data...
    CharData = "*foo*ABCDEF"
Replacing data...
    CharData = "*bamboozle*ABCDEF"
Cleaning up...
Parsing test document...
Document from root node:
    DOCUMENT
        DTD "doc"
        ELEMENT "doc" [xml:lang*="foo"]
            ELEMENT "p" [xml:space="preserve"]
                TEXT = "An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
Using XML Parser for C 24-51



Running the XML Parser for C Sample Programs
(&amp;)."
Testing getDocTypeNotations...
# of notations = 2
        NOTATION "notation1"
        NOTATION "notation2"
Testing getDocTypeEntities...
# of entities = 1
        ENTITY "example" = "<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;amp;).</p>"
Cleaning up...

Terminating parser...
Success.

XML Parser for C Example 16: C — XSLSample.c
This example contains C source code for XSLSample.c.

/* Copyright (c) Oracle Corporation 1999. All Rights Reserved. */

/*
   NAME
     XSLSample.c - Sample function for XSL
   DESCRIPTION
     Sample usage of C XSL Processor
*/

#include <stdio.h>
#ifndef ORATYPES
# include <oratypes.h>
#endif

#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

int main(int argc, char *argv[])
{
    xmlctx     *xctx, *xslctx, *resctx;
    xmlnode    *result;
    uword       ecode;
    /* Check for correct usage */
    if (argc < 3)
24-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
        {
        puts("Usage is XSLSample <xmlfile> <xslfile>\n");
        return 1;
        }

    /* Parse the XML document */
    if (!(xctx = xmlinit(&ecode, (const oratext *) 0,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
                        (const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
        printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
        return 1;
    }

    printf("Parsing '%s' ...\n", argv[1]);
    if (ecode = xmlparse(xctx, (oratext *)argv[1], (oratext *) 0,
                        XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE))
    {
        printf("Parse failed, error %u\n", (unsigned) ecode);
        return 1;
    }

    /* Parse the XSL document */
    if (!(xslctx = xmlinit(&ecode, (const oratext *) 0,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
                        (const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
        printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
        return 1;
    }

    printf("Parsing '%s' ...\n", argv[2]);
    if (ecode = xmlparse(xslctx, (oratext *)argv[2], (oratext *) 0,
                        XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE))
    {
        printf("Parse failed, error %u\n", (unsigned) ecode);
        return 1;
    }

    /* Initialize the result context */
    if (!(resctx = xmlinit(&ecode, (const oratext *) 0,
Using XML Parser for C 24-53



Running the XML Parser for C Sample Programs
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
                        (const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
        printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
        return 1;
    }

    /* XSL processing */
    printf("XSL Processing\n");
    if (ecode = xslprocess(xctx, xslctx, resctx, &result))
    {
        printf("Parse failed, error %u\n", (unsigned) ecode);
        return 1;
    }

    /* Print the result tree */
    printres(resctx, result);

    /* Call the terminate functions */
    (void)xmlterm(xctx);
    (void)xmlterm(xslctx);
    (void)xmlterm(resctx);

    return 0;
}

XML Parser for C Example 17: C — XSLSample.std
XSLSample.std  shows the expected output from XSLSample.c .

Parsing 'class.xml' ...
Parsing 'iden.xsl' ...
XSL Processing
<root>
   <course>
      <Name>Calculus</Name>
      <Dept>Math</Dept>
      <Instructor>
         <Name>Jim Green</Name>
      </Instructor>
      <Student>
         <Name>Jack</Name>
24-54 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C Sample Programs
         <Name>Mary</Name>
         <Name>Paul</Name>
      </Student>
   </course>
</root>
Using XML Parser for C 24-55



Running the XML Parser for C Sample Programs
24-56 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Schema Proc
25

Using XML Schema Processor for C

This chapter contains the following sections:

■ Oracle XML Schema Processor for C

■ Invoking XML Schema Processor for C

■ XML Schema Processor for C Usage Diagram

■ How to Run XML Schema for C Sample Programs
essor for C 25-1



Oracle XML Schema Processor for C
Oracle XML Schema Processor for C
The XML Schema Processor for C is a companion component to the XML Parser for

C. It allows support for simple and complex datatypes in Oracle9i XML

applications.

XML Schema Processor for C supports the W3C XML Schema Working Draft, with

the goal being that it be 100% fully conformant when XML Schema becomes a W3C

Recommendation. This makes writing custom applications that process XML

documents straightforward in the Oracle9i environment, and means that a

standards-compliant XML Schema Processor is part of the Oracle9i platform on

every operating system where Oracle9i is ported.

Oracle XML Schema for C Features
XML Schema Processor for C has the following features:

■ Supports simple and complex types

■ Built on XML Parser for C v2

■ Supports the W3C XML Schema Working Drafts

Requirements
XML Schema Processor for C runs on the following operating systems:

■ Linux

■ Solaris

■ HP-UX

■ NT 4 / Service Pack 3 (and above)

See Also: Chapter 21, "Using XML Schema Processor for Java",

for more information about XML Schema and why you would want

to use XML Schema.

See Also:

■ Oracle9i XML Reference

■ Appendix E, "XDK for C: Specifications and Cheat Sheets"
25-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Schema Processor for C
Online Documentation
Documentation for Oracle XML Schema Processor for C is located in the doc/

directory in your install area.

Standards Conformance
Oracle XML Parser for C conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0

■ W3C recommendation for Document Object Model Level 1.0

■ W3C proposed recommendation for Namespaces in XML

■ Simple API for XML (SAX) 1.0

■ W3C recommendation for XSL Transformations (XSLT)

■ W3C recommendation for XML Path Language (XPath)

Using the Supported Character Sets
The XML Parser for C currently supports the following encodings:

■ BIG5

■ EBCDIC-CP-BE

■ EBCDIC-CP-CA

■ EBCDIC-CP-CH

■ EBCDIC-CP-DK

■ EBCDIC-CP-ES

■ EBCDIC-CP-FI

■ EBCDIC-CP-FR

■ EBCDIC-CP-GB

■ EBCDIC-CP-HE

■ EBCDIC-CP-IS

■ EBCDIC-CP-IT

■ EBCDIC-CP-NL

■ EBCDIC-CP-NO
Using XML Schema Processor for C 25-3



Oracle XML Schema Processor for C
■ EBCDIC-CP-ROECE

■ EBCDIC-CP-SE

■ EBCDIC-CP-US

■ EBCDIC-CP-WT

■ EBCDIC-CP-YU

■ EUC-JP

■ GB2312

■ ISO-10646-UCS-2

■ ISO-8859-1 through 9

■ KOI8-RUTF-8

■ SHIFT_JIS

■ US-ASCII

■ UTF-16

To use these encodings, you must have the following set:

■ The ORACLE_HOME environment variable must be set to point to the location

of your Oracle installation.

■ The environment variables, ORA_NLS, ORA_NLS32, and ORA_NLS33, must

be set to point to the location of the NLS data files.

■ On Unix systems, this is usually $ORACLE_HOME/
/ocommon/nls/admin/data .

■ On Windows NT, this is usually $ORACLE_HOME\
nlsrtl\admin\nlsdata .

The default encoding is UTF-8. It is recommended that you set the default encoding

explicitly if using only single byte character sets (such as US-ASCII or any of the

ISO-8859 character sets) for performance up to twice as fast as with multibyte

character sets, such as UTF-8.

See Also: Appendix A, Character Sets, of the Oracle9i Globalization
and National Language Support Guide , where, in addition, any

character set specified in can be used.
25-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Invoking XML Schema Processor for C
XML Schema Processor for C: Software
Table 25–1 lists the supplied files and directories with this release:

Table 25–2 lists the included libraries:

Invoking XML Schema Processor for C
XML Schema Processor for C can be called as an executable by invoking

bin/schema in the install area. This takes two arguments:

■ XML instance document

■ Optionally, a default schema

The Schema Processor can also be invoked by writing code using the supplied APIs.

The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. See Makefile in the sample/

subdirectory for details on how to build your program.

Table 25–1 XML Schema Processor for C: Supplied Files

Directory an d Files Description

license.html Licensing agreement

readme.html This file

bin/ Schema processor executable, “schema”

doc/ API documentation

include/ header files

lib/ XML/XSL/Schema & support libraries

mesg/ Error message files

sample/ Example usage of the Schema processor

Table 25–2 XML Schema Processor for C: Supplied Libraries

Included Library Description

libxml8.a XML Parser/XSL Processor

libxsd8.a XML Schema Processor

libcore8.a CORE functions

libnls8.a National Language Support
Using XML Schema Processor for C 25-5



XML Schema Processor for C Usage Diagram
An error message file is provided in the mesg/ subdirectory. Currently, the only

message file is in English although message files for other languages may be

supplied in future releases.

Set Environment Variable OR_XML_MESG to Point to Absolute Path
You should set the environment variable ORA_XML_MESG to point to the

“absolute” path of the mesg/ subdirectory. Alternately, if you have an $ORACLE_

HOME installed, you may copy the contents of the mesg/ subdirectory to the

$ORACLE_HOME/oracore/mesg directory.

XML Schema Processor for C Usage Diagram
Figure 25–1 describes the calling sequence for the XML Schema Processor for C, as

follows:

The sequence of calls to the processor is: initialize, validate, validate,..., validate,

terminate.

1. The initialize call is invoked once at the beginning of a session; it returns a

Schema context which is used throughout the session.

2. The instance document to be validated is first parsed with the XML parser.

3. The XML context for the instance is then passed to the Schema validate

function, along with an optional schema URL.

4. If no explicit schema is defined in the instance document, the default schema

will be used.

5. More documents may then be validated using the same schema context.

6. When the session is over, the Schema tear down function is called, which

releases all memory allocated by the loaded schemas.
25-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
Figure 25–1 XMLSchema Processor for C Usage Diagram

How to Run XML Schema for C Sample Programs
This directory contains a sample XML Schema application that illustrates how to

use Oracle XML Schema Processor with its API. Table 25–3 lists the provided

sample files.

Table 25–3 XML Schema for C Samples Provided

Sample File Description

Makefile Makefile to build the sample programs and run them,
verifying correct output.

xsdtest.c Trivial program which invokes the XML Schema for C API

car.{xsd,xml,std} Sample schema, instance document, and expected
output respectively, after running xsdtest on them. See:

"XML Schema for C Example 2: car.xsd"  on page 25-11

"XML Schema for C Example 3: car.xml"  on page 25-12

"XML Schema for C Example 4: car.std"  on page 25-13.

schemaInitialize()

schemaTerminate()

Success codeschemaValidate()

Parsed XML doc input
Using XML Schema Processor for C 25-7



How to Run XML Schema for C Sample Programs
To build the sample programs, run 'make'.

To build the programs and run them, comparing the actual output to expected

output, run 'make sure'.

Make.bat
:: ##########################################################################
:: # Batch script to build Oracle XML parser C sample programs
:: ##########################################################################
set opt_flg=-Ox -Oy-
if (%2) == (D) set opt_flg=-Z7 -Od
if (%2) == (D) set link_dbg=/debug /debugtype:both /pdb:none

if (%1) == () goto :XSDTEST
if (%1) == (all) goto :XSDTEST
if (%1) == (xsdtest) goto :XSDTEST
if (%1) == (clean) goto :CLEAN
if (%1) == (sure) goto :SURE
goto :EOF

:CLEAN
del *.obj
del *.out
del ..\bin\xsdtest.exe
goto :EOF

:XSDTEST

aq.{xsd,xml,std} Second sample schema, instance document, and expected
output respectively, after running xsdtest on them. See:

"XML Schema for C Example 5: aq.xsd" on page 25-14

"XML Schema for C Example 6: aq.xml"  on page 25-23

"XML Schema for C Example 7: aq.std"  on page 25-24

pub.{xsd,xml,std} Third sample schema, instance document, and expected
output respectively, after running xsdtest on them. See:

"XML Schema for C Example 8: pub.xsd"  on page 25-24

"XML Schema for C Example 9: pub.xml"  on page 25-26

"XML Schema for C Example 10: pub.std"  on page 25-27

Table 25–3 XML Schema for C Samples Provided

Sample File Description
25-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
call :compile xsdtest
call :link xsdtest
if (%1) == (xsdtest) goto :EOF

:SURE
..\bin\xsdtest.exe car.xml > car.out
comp car.std car.out < NUL:
..\bin\xsdtest.exe pub.xml > pub.out
comp pub.std pub.out < NUL:
..\bin\xsdtest.exe aq.xml > aq.out
comp aq.std aq.out < NUL:
goto :EOF

:COMPILE
set filename=%1
cl -c -Fo%filename%.obj %opt_flg% /DCRTAPI1=_cdecl /DCRTAPI2=_cdecl /nologo /Zl
/Gy /DWIN32 /D_WIN32 /DWIN_NT /DWIN32COMMON /D_DLL /D_MT /D_X86_=1 -I.
-I..\include  %filename%.c
goto :EOF

:LINK
set filename=%1
link %link_dbg% /out:..\bin\%filename%.exe /libpath:%ORACLE_HOME%\lib
/libpath:..\lib %filename%.obj oraxml8.lib oraxsd8.lib oracore8.lib oranls8.lib
user32.lib kernel32.lib msvcrt.lib ADVAPI32.lib oldnames.lib winmm.lib

:EOF

XML Schema for C Example 1: xsdtest.c
/* Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved. */

/*
   NAME
     validate.c - Sample Schema validation

   DESCRIPTION
     Sample usage of C XML Schema processor
*/

#include <stdio.h>

#ifndef ORATYPES
# include <oratypes.h>
#endif
Using XML Schema Processor for C 25-9



How to Run XML Schema for C Sample Programs
#ifndef ORAXML_ORACLE
# include <oraxml.h>
#endif

#ifndef ORAXSD_ORACLE
# include <oraxsd.h>
#endif

int main(int argc, char **argv)
{
    xmlctx     *ctx;
    xsdctx     *scctx;
    char       *doc, *schema;
    uword       ecode;

    puts("XML C Schema processor");

    if ((argc < 2) || (argc > 3))
    {
puts("usage: validate <xml document> [schema]");
return -1;
    }
    doc = argv[1];
    schema = (argc > 2) ? argv[2] : 0;

    puts("Initializing XML package...");

    if (!(ctx = xmlinit(&ecode, (const oratext *) 0,
                        (void (*)(void *, const oratext *, uword)) 0,
                        (void *) 0, (const xmlsaxcb *) 0, (void *) 0,
                        (const xmlmemcb *) 0, (void *) 0,
                        (const oratext *) 0)))
    {
        printf("Failed to initialze XML parser, error %u\n", (unsigned) ecode);
        return 1;
    }

    printf("Parsing '%s' ...\n", doc);
    if (ecode = xmlparse(ctx, (oratext *) doc, (oratext *) 0,
 XML_FLAG_DISCARD_WHITESPACE))
    {
        printf("Parse failed, error %u\n", (unsigned) ecode);
        return 2;
    }
25-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
    puts("Initializing Schema package...");

    if (!(scctx = schemaInitialize(ctx, &ecode)))
    {
printf("Failed, code %u!\n", ecode);
return 3;
    }

    puts("Validating document...");
    if (ecode = schemaValidate(scctx, ctx, (oratext *) schema))
    {
        printf("Validation failed, error %u\n", (unsigned) ecode);
        return 4;
    }

    puts("Document is valid.");
    return 0;
}

XML Schema for C Example 2: car.xsd
<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
        targetNamespace = "http://www.CarDealers.com/">
    <element name="Car">
<complexType>
    <element name="Model">
<simpleType base="string">
    <enumeration value = "Ford"/>
    <enumeration value = "Saab"/>
    <enumeration value = "Audi"/>
</simpleType>
    </element>
    <element name="Make">
<simpleType base="string">
    <minLength value = "1"/>
    <maxLength value = "30"/>
</simpleType>
    </element>
    <element name="Year">
<complexType content="mixed">
    <attribute name="PreviouslyOwned" type="string"
       use="required"/>
    <attribute name="YearsOwned" type="integer"
Using XML Schema Processor for C 25-11



How to Run XML Schema for C Sample Programs
       use="optional"/>
</complexType>
    </element>
    <element name="OwnerName" type="string"
     minOccurs="0" maxOccurs="unbounded"/>
    <element name="Condition">
<complexType base="string" derivedBy="extension">
    <attribute name="Automatic">
<simpleType base="string">
    <enumeration value = "Yes"/>
    <enumeration value = "No"/>
</simpleType>
    </attribute>
</complexType>
    </element>
    <element name="Mileage">
<simpleType base="integer">
    <minInclusive value="0"/>
    <maxInclusive value="2000000"/>
</simpleType>
    </element>
    <attribute name="RequestDate" type="date"/>
</complexType>
    </element>
</schema>

XML Schema for C Example 3: car.xml
<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
        targetNamespace = "http://www.CarDealers.com/">
    <element name="Car">
<complexType>
    <element name="Model">
<simpleType base="string">
    <enumeration value = "Ford"/>
    <enumeration value = "Saab"/>
    <enumeration value = "Audi"/>
</simpleType>
    </element>
    <element name="Make">
<simpleType base="string">
    <minLength value = "1"/>
    <maxLength value = "30"/>
25-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
</simpleType>
    </element>
    <element name="Year">
<complexType content="mixed">
    <attribute name="PreviouslyOwned" type="string"
       use="required"/>
    <attribute name="YearsOwned" type="integer"
       use="optional"/>
</complexType>
    </element>
    <element name="OwnerName" type="string"
     minOccurs="0" maxOccurs="unbounded"/>
    <element name="Condition">
<complexType base="string" derivedBy="extension">
    <attribute name="Automatic">
<simpleType base="string">
    <enumeration value = "Yes"/>
    <enumeration value = "No"/>
</simpleType>
    </attribute>
</complexType>
    </element>
    <element name="Mileage">
<simpleType base="integer">
    <minInclusive value="0"/>
    <maxInclusive value="2000000"/>
</simpleType>
    </element>
    <attribute name="RequestDate" type="date"/>
</complexType>
    </element>
</schema>

XML Schema for C Example 4: car.std
XML C Schema processor
Initializing XML package...
Parsing 'car.xml' ...
Initializing Schema package...
Validating document...
Document is valid.
Using XML Schema Processor for C 25-13



How to Run XML Schema for C Sample Programs
XML Schema for C Example 5: aq.xsd
<?xml version="1.0"?>

<!-- ****************** AQ xml schema  ****************** -->

<schema xmlns = "http://www.w3.org/1999/XMLSchema"
        targetNamespace = "http://www.oracle.com/AQXmlDocument"
        xmlns:aq = "http://www.oracle.com/AQXmlDocument"
        xmlns:xsd = "http://www.w3.org/1999/XMLSchema"
elementFormDefault="qualified">

   <element name="AQXmlDocument">
      <complexType content="mixed">
        <choice>
              <group ref="aq:client_operation" minOccurs="0"/>
              <group ref="aq:server_response"/>
        </choice>
      </complexType>
    </element>

   <!-- ****************** Client Operations Group  ****************** -->
   <group name="client_operation">
       <sequence>
          <element ref="aq:client_operation" minOccurs="0" maxOccurs="1"/>

    <choice>
              <element ref="aq:producer_options" maxOccurs="1"/>
              <element ref="aq:consumer_options" maxOccurs="1"/>
              <element ref="aq:register_options" maxOccurs="1"/>
            </choice>
          <element ref="aq:message_set" minOccurs="0" maxOccurs="*"/>
       </sequence>
    </group>

   <!-- ****************** Server Response Group ****************** -->
   <group name="server_response">
       <sequence>
          <element ref="aq:server_response" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:receive_result" maxOccurs="1"/>
          <choice  minOccurs="0" >
              <element ref="aq:send_result" maxOccurs="1"/>
              <element ref="aq:publish_result" maxOccurs="1"/>
              <element ref="aq:receive_result" maxOccurs="1"/>
              <element ref="aq:sequence_num_result" maxOccurs="1"/>
25-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
          </choice>
       </sequence>
   </group>

   <!-- ****************** Server Propagation Group ****************** -->
   <group name="server_prop_operation">
       <sequence>
          <element ref="aq:server_prop_operation" minOccurs="0" maxOccurs="1"/>
          <choice>
              <element ref="aq:push" maxOccurs="1"/>
              <element ref="aq:notification" maxOccurs="1"/>
              <element ref="aq:sequence_num_request" maxOccurs="1"/>
          </choice>
       </sequence>
   </group>

   <!-- ****************** Client Operation ****************** -->
   <element name="client_operation">
      <complexType content="mixed">
        <element ref="aq:txid" minOccurs="0"/>
<attribute name="opcode" use="required" type="aq:opcode_type"/>
      </complexType>
   </element>

   <!-- ****************** Server Response ****************** -->
   <element name="server_response">
      <complexType content="mixed">
        <element ref="aq:txid" minOccurs="0"/>
        <element ref="aq:status_response" minOccurs="1"/>
<attribute name="opcode" use="required" type="aq:opcode_type"/>
      </complexType>
   </element>

   <!-- ****************** Server Propagation Operation ****************** -->
   <element name="server_prop_operation">
      <complexType content="mixed">
        <element ref="aq:txid" minOccurs="0"/>
<attribute name="prop_opcode" use="required" type="aq:prop_opcode_type"/>
      </complexType>
   </element>

   <element name="txid" type="string"/>

   <element name="destination">
     <complexType base='string' derivedBy="extension">
Using XML Schema Processor for C 25-15



How to Run XML Schema for C Sample Programs
     <attribute name="lookup_type" type="aq:dest_lookup_type"
use="default" value="NORMAL"/>

     </complexType>
   </element>

   <!-- **** destination lookup type ******* -->
   <!-- lookup_type can be specified to either lookup LDAP or use  -->
   <!-- the destination directly in NAME::ADDRESS::PROTOCOL format -->
   <simpleType name="dest_lookup_type" base="string">
      <enumeration value="NORMAL"/>
      <enumeration value="LDAP"/>
    </simpleType>

   <!-- ****************** Producer Options ****************** -->
   <element name="producer_options">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:priority" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:expiration" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:recipient_list" minOccurs="0" maxOccurs="1"/>
<attribute name="visibility" type="aq:visibility_type"
           use="default" value="ON_COMMIT"/>
<attribute name="delivery_mode" type="aq:del_mode_type"
           use="default" value="PERSISTENT"/>
      </complexType>
    </element>

   <!-- ****************** Consumer Options ****************** -->
   <element name="consumer_options">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:consumer_name" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:wait_time" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:selector" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:batch_size" minOccurs="0" maxOccurs="1"/>

<attribute name="visibility" type="aq:visibility_type"
           use="default" value="ON_COMMIT"/>
<attribute name="dequeue_mode" type="aq:deq_mode_type"
           use="default" value="REMOVE"/>
<attribute name="navigation" type="aq:nav_mode_type"
           use="default" value="NEXT_MESSAGE"/>
       </complexType>
    </element>
25-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
   <!-- ****************** Register Options ****************** -->
   <element name="register_options">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:consumer_name" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:notify_url" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:qos" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:batch_size" minOccurs="0" maxOccurs="1"/>
      </complexType>
    </element>

   <element name="recipient_list">
     <complexType content="mixed">
<element ref="aq:recipient" minOccurs="1" maxOccurs="*"/>
     </complexType>
   </element>

   <!-- ****************** Message Set ************************* -->
   <element name="message_set">
      <complexType content="mixed">
        <element ref="aq:message_count" minOccurs="1"/>
        <element ref="aq:message" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Message ************************* -->
   <element name="message">
      <complexType content="mixed">
        <element ref="aq:message_number" minOccurs="0"/>
        <element ref="aq:message_header" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_payload" minOccurs="0" maxOccurs="1"/>
      </complexType>
   </element>

   <!-- ****************** Message header ****************** -->
   <element name="message_header">
      <complexType content="mixed">
        <element ref="aq:message_id" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:correlation" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:delay" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:priority" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:delivery_count" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:message_state" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:sender_id" minOccurs="1" maxOccurs="1"/>
Using XML Schema Processor for C 25-17



How to Run XML Schema for C Sample Programs
        <element ref="aq:exception_queue" minOccurs="0" maxOccurs="1"/>
      </complexType>
    </element>

   <!-- ****************** Oracle JMS properties ****************** -->
   <element name="oracle_jms_properties">
      <complexType content="mixed">
        <element ref="aq:type" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:reply_to" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:userid" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:appid" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:groupid" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:group_sequence" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:timestamp" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:recv_timestamp" minOccurs="0" maxOccurs="1"/>
      </complexType>
    </element>

   <!-- ****************** Message payload ****************** -->
   <element name="message_payload">
     <complexType>
        <choice>
          <element ref="aq:jms_text_message" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:jms_map_message" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:jms_bytes_message" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:jms_object_message" minOccurs="0" maxOccurs="1"/>

  <any minOccurs="0" maxOccurs="*" processContents="skip"/>
        </choice>
     </complexType>
   </element>

...
   <!-- ****************** Status response ****************** -->
   <element name="status_response">
      <complexType content="mixed">
        <element ref="aq:acknowledge" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:status_code" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:error_code" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:error_message" minOccurs="0" maxOccurs="1"/>
      </complexType>
   </element>

   <!-- ****************** Send result ****************** -->
   <element name="send_result">
      <complexType content="mixed">
25-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_id" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Publish result ****************** -->
   <element name="publish_result">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_id" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Receive result ****************** -->
   <element name="receive_result">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_set" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

....
   <!-- ****************** Push messages *************************** -->
   <element name="push">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:consumer_name" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:sequence_number" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_set" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>

   <!-- ****************** Notification *************************** -->
   <element name="notification">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:consumer_name" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message" minOccurs="0" maxOccurs="1"/>
      </complexType>
   </element>

   <element name="priority" type="integer"/>
   <element name="expiration" type="integer"/>
   <element name="consumer_name" type="string"/>
   <element name="wait_time" type="integer"/>
Using XML Schema Processor for C 25-19



How to Run XML Schema for C Sample Programs
   <element name="batch_size" type="integer"/>
   <element name="qos" type="string"/>
   <element name="notify_url" type="string"/>
   <element name="message_id" type="string"/>
   <element name="message_state" type="string"/>

   <element name="sequence_number" type="integer"/>
   <element name="message_number" type="integer"/>
   <element name="message_count" type="integer"/>

   <element name="correlation" type="string"/>
   <element name="delay" type="integer"/>
   <element name="delivery_count" type="integer"/>
   <element name="exception_queue" type="string"/>

   <element name="type" type="string"/>
   <element name="userid" type="string"/>
   <element name="appid" type="string"/>
   <element name="groupid" type="string"/>
   <element name="group_sequence" type="integer"/>
   <element name="timestamp" type="date"/>
   <element name="recv_timestamp" type="date"/>

   <element name="recipient">
     <complexType base='string' derivedBy="extension">
     <attribute name="lookup_type" type="aq:dest_lookup_type"
           use="default" value="NORMAL"/>
     </complexType>
   </element>

   <element name="sender_id">
     <complexType base='string' derivedBy="extension">
     <attribute name="lookup_type" type="aq:dest_lookup_type"
           use="default" value="NORMAL"/>
     </complexType>
   </element>

   <element name="reply_to">
     <complexType base='string' derivedBy="extension">
     <attribute name="lookup_type" type="aq:dest_lookup_type"
           use="default" value="NORMAL"/>
     </complexType>
   </element>

   <element name="selector">
25-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
     <complexType>
<choice>
          <element ref="aq:correlation_id" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:message_id" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:complex_selector" minOccurs="0" maxOccurs="1"/>
        </choice>
     </complexType>
   </element>

   <element name="correlation_id" type="string"/>
   <element name="complex_selector" type="string"/>

    <simpleType name="visibility_type" base="string">
      <enumeration value="ON_COMMIT"/>
      <enumeration value="IMMEDIATE"/>
    </simpleType>

   <simpleType name="del_mode_type" base="string">
      <enumeration value="PERSISTENT"/>
      <enumeration value="NONPERSISTENT"/>
    </simpleType>

   <simpleType name="deq_mode_type" base="string">
      <enumeration value="BROWSE"/>
      <enumeration value="LOCKED"/>
      <enumeration value="REMOVE"/>
      <enumeration value="REMOVE_NO_DATA"/>
    </simpleType>

   <simpleType name="nav_mode_type" base="string">
      <enumeration value="FIRST_MESSAGE"/>
      <enumeration value="NEXT_MESSAGE"/>
      <enumeration value="NEXT_TRANSACTION"/>
    </simpleType>

   <simpleType name="opcode_type" base="string">
      <enumeration value="SEND"/>
      <enumeration value="RECEIVE"/>
      <enumeration value="PUBLISH"/>
      <enumeration value="REGISTER"/>
      <enumeration value="COMMIT"/>
      <enumeration value="ROLLBACK"/>
      <enumeration value="SEQ_NUM_REQUEST"/>
   </simpleType>
Using XML Schema Processor for C 25-21



How to Run XML Schema for C Sample Programs
   <simpleType name="prop_opcode_type" base="string">
      <enumeration value="SEND"/>
      <enumeration value="NOTIFICATION"/>
      <enumeration value="COMMIT"/>
      <enumeration value="ROLLBACK"/>
      <enumeration value="SEQ_NUM_REQUEST"/>
   </simpleType>

   <element name="acknowledge">
     <complexType content="empty">
     </complexType>
   </element>
   <element name="status_code" type="string"/>
   <element name="error_code" type="string"/>
   <element name="error_message" type="string"/>

    <simpleType name="prop_type" base="string">
      <enumeration value="STRING"/>
      <enumeration value="NUMBER"/>
    </simpleType>

   <element name="name" type="string"/>
   <element name="value" type="string"/>

   <!-- ****************** JMS text message ****************** -->
   <element name="jms_text_message">
      <complexType content="mixed">
        <element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:text_data" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>
   <element name="text_data" type="string"/>

....

   <!-- ****************** JMS object message ****************** -->
   <element name="jms_object_message">
      <complexType content="mixed">
        <element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:ser_object_data" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>
25-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
   <element name="ser_object_data" type="string"/>
</schema>

XML Schema for C Example 6: aq.xml
<AQXmlDocument xmlns="http://www.oracle.com/AQXmlDocument"
       xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
       xsi:schemaLocation="http://www.oracle.com/AQXmlDocument aq.xsd">

    <client_operation opcode="SEND">
        <txid> sdasdfdsf </txid>
    </client_operation>

    <producer_options delivery_mode="PERSISTENT">
        <destination lookup_type="NORMAL"> queue1 </destination>
        <priority>23</priority>
        <recipient_list>
            <recipient> abc </recipient>
            <recipient lookup_type="LDAP"> abc </recipient>
        </recipient_list>
    </producer_options>

    <message_set>
        <message_count>1</message_count>
        <message>
            <message_number>1</message_number>
            <message_header>
                <correlation>XML_40_NEW_TEST</correlation>
                <delay>10</delay>
                <sender_id>scott::home::0</sender_id>
            </message_header>
            <message_payload>
                <jms_map_message>
                    <oracle_jms_properties>
                        <reply_to>oracle::redwoodshores::100</reply_to>
                        <userid>scott</userid>
                        <appid>AQProduct</appid>
                        <groupid>AQ</groupid>
                    </oracle_jms_properties>
                    <user_properties>
                        <property property_type="STRING">
                            <name>country</name>
                            <value>USA</value>
                        </property>
                        <property property_type="STRING">
Using XML Schema Processor for C 25-23



How to Run XML Schema for C Sample Programs
                            <name>State</name>
                            <value>california</value>
                        </property>
                    </user_properties>
                    <map_data>
                        <item item_type="STRING">
                            <name>Car</name>
                            <value>Toyota</value>
                        </item>
                        <item item_type="STRING">
                            <name>Color</name>
                            <value>Blue</value>
                        </item>
                        <item item_type="STRING">
                            <name>Shape</name>
                            <value>Circle</value>
                        </item>
                        <item item_type="NUMBER">
                            <name>Price</name>
                            <value>20000</value>
                        </item>
                    </map_data>
                </jms_map_message>
            </message_payload>
        </message>
    </message_set>
</AQXmlDocument>

XML Schema for C Example 7: aq.std
XML C Schema processor
Initializing XML package...
Parsing 'aq.xml' ...
Initializing Schema package...
Validating document...
Document is valid.

XML Schema for C Example 8: pub.xsd
<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/2000/08/XMLSchema"
        targetNamespace = "http://www.somewhere.org/BookCatalogue"
        xmlns:cat = "http://www.somewhere.org/BookCatalogue"
        elementFormDefault="qualified">
25-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
    <complexType name="Pub">
      <sequence>
        <element name="Title" type="cat:titleType" maxOccurs="*"/>
        <element name="Author" type="string" maxOccurs="*"/>
        <element name="Date" type="date"/>
      </sequence>
      <attribute name="language" type="string" use="default" value="English"/>
      <anyAttribute namespace="##local"/>
    </complexType>

    <element name="Publication" type="cat:Pub"  abstract="true"/>
    <element name="Book" substitutionGroup="cat:Publication">
        <complexType>
           <complexContent>
               <extension base="cat:Pub" >
                  <sequence>
                     <element name="ISBN" type="string" default="123456789"/>
                     <element name="Publisher" type="string"/>
                  </sequence>
               </extension>
           </complexContent>
      </complexType>
    </element>
    <complexType name="titleType">
       <simpleContent>
          <extension base="string" >
             <attribute name="old" type="string" use="default" value="false"/>
          </extension>
       </simpleContent>
    </complexType>
    <element name="Magazine" substitutionGroup="cat:Publication">
        <complexType>
           <complexContent>
              <extension base="cat:Pub">
                  <sequence>
                     <element name="Volume" type="cat:VolumeType"/>
                     <element name="htmlTable">
                        <complexType>
                           <any namespace="##other"
                               processContents="skip"
                               minOccurs="0" maxOccurs="2"/>
                        </complexType>
                      </element>
                  </sequence>
              </extension>
Using XML Schema Processor for C 25-25



How to Run XML Schema for C Sample Programs
           </complexContent>
        </complexType>
    </element>
    <simpleType name="VolumeType">
       <restriction base="integer" >
          <minInclusive value = "1"/>
          <maxInclusive value = "12"/>
       </restriction>
    </simpleType>
    <element name="Catalogue">
        <complexType>
           <sequence>
             <element ref="cat:Publication" minOccurs="0" maxOccurs="*"/>
           </sequence>
        </complexType>
    </element>
</schema>

XML Schema for C Example 9: pub.xml
<?xml version="1.0"?>
<?xml version="1.0"?>

<Catalogue xmlns = "http://www.somewhere.org/BookCatalogue"
   xmlns:cat = "http://www.somewhere.org/BookCatalogue"
   xmlns:html = "http://www.somewhere.org/HTMLCatalogue"
   xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"
   xsi:schemaLocation =
                      "http://www.somewhere.org/BookCatalogue pub.xsd">

        <cat:Magazine>
                <Title>Natural Health</Title>
                <Author>October</Author>
                <Date>1999-12</Date>
                <Volume>12</Volume>
                <htmlTable>
                   <table  xmlns = "http://www.somewhere.org/HTMLCatalogue">
                      <tr>....</tr>
                   </table>
                   <html:table>
                      <html:tr>....</html:tr>
                   </html:table>
                </htmlTable>
        </cat:Magazine>
25-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How to Run XML Schema for C Sample Programs
        <Book>
                <Title>Illusions The Adventures of a Reluctant Messiah</Title>
                <Author>Richard Bach</Author>
                <Date>1977</Date>
                <ISBN></ISBN>
                <Publisher>Dell Publishing Co.</Publisher>
        </Book>

        <Book>
                <Title>The First and Last Freedom</Title>
                <Author>J. Krishnamurti</Author>
                <Date>1954</Date>
                <ISBN>0-06-064831-7</ISBN>
                <Publisher>Harper &amp; Row</Publisher>
        </Book>

</Catalogue>

XML Schema for C Example 10: pub.std
XML C Schema processor
Initializing XML package...
Parsing 'pub.xml' ...
Initializing Schema package...
Validating document...
Document is valid.
Using XML Schema Processor for C 25-27



How to Run XML Schema for C Sample Programs
25-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part IX

XDK for C++

Part IX describes how to access and use Oracle’s XML Developer’s Kit (XDK) for

C++. It contains the following chapters:

■ Chapter 26, "Using XML Parser for C++"

■ Chapter 27, "Using XML Schema Processor for C++"

■ Chapter 28, "Using XML C++ Class Generator"





Using XML Parse
26

Using XML Parser for C++

This chapter contains the following sections:

■ Accessing XML Parser for C++

■ XML Parser for C++ Features

■ XML Parser for C++ Usage

■ XML Parser for C++ XSLT (DOM Interface) Usage

■ Default Behavior

■ DOM and SAX APIs

■ Invoking XML Parser for C++

■ Using the Sample Files Included with Your Software

■ Running the XML Parser for C++ Sample Programs
r for C++ 26-1



Accessing XML Parser for C++
Accessing XML Parser for C++
The XML Parser for C++ is provided with Oracle9i and is also available for

download from the OTN site: http://otn.oracle.com/tech/xml.

It is located at $ORACLE_HOME/xdk/cpp/parser .

XML Parser for C++ Features
readme.html  in the root directory of the software archive contains release specific

information including bug fixes and API additions.

XML Parser for C++ will check if an XML document is well-formed, and optionally

validate it against a DTD. The parser will construct an object tree which can be

accessed via a DOM interface or operate serially via a SAX interface.

You can post questions, comments, or bug reports to the XML Discussion Forum at

http://otn.oracle.com.

Specifications
See Appendix F, "XDK for C++: Specifications and Cheat Sheet" for a list of XML

Parser for C++ specifications and methods.

Memory Allocation
The memory callback functions memcb may be used if you wish to use your own

memory allocation. If they are used, all of the functions should be specified.

The memory allocated for parameters passed to the SAX callbacks or for nodes and

data stored with the DOM parse tree will not be freed until one of the following is

done:

■ xmlparse()  or xmlparsebuf() is called to parse another file or buffer.

■ xmlclean()  is called.

■ xmlterm() is called.

See Also:

■ The doc directory in your install area

■ Oracle9i XML Reference

■ On OTN under http://otn.oracle.com/tech/xml/parser_
cpp/index.htm
26-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++ Usage
Thread Safety
If threads are forked off somewhere in the midst of the init-parse-term sequence of

calls, you will get unpredictable behavior and results.

Data Types Index
Table 26–1 lists the datatypes used in XML Parser for C++.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also

exist in the $ORACLE_HOME/oracore/mesg  directory. You may set the

environment variable ORA_XML_MESG to point to the absolute path of the mesg/
subdirectory although this not required.

Validation Modes
Available validation modes are described in Chapter 20, "Using XML Parser for

Java", "Oracle XML Parsers Support Four Validation Modes"  on page 20-5.

XML Parser for C++ Usage
Figure 26–1 illustrates the XML Parser for C++ functionality.

1. The parsing process begins with the xmlinit()  method.

2. The XML input can be either an XML file or string buffer. This inputs the

following methods:

Table 26–1 Datatypes Used in XML Parser for C++

DataType Description

oratext String pointer

xmlctx Master XML context

xmlmemcb Memory callback structure (optional)

xmlsaxcb SAX callback structure (SAX only)

ub4 32-bit (or larger) unsigned integer

uword Native unsigned integer
Using XML Parser for C++ 26-3



XML Parser for C++ Usage
■ XMLParser.xmlparse()  if the input is an XML file

■ XMLParser.xmlparseBuffer()  if the input is a string buffer

3. DOM or SAX API

DOM: If you are using the DOM interface, include the following steps:

■ The XMLParser.xmlparse()  or .xmlparserBuffer()  method calls

.getDocument Element() . If no other DOM methods are being applied,

you can invoke .xmlterm() .

■ This optionally calls other DOM methods if required. These are typically

Node class methods or print methods. It outputs the DOM document.

■ If complete, the process invokes .xmlterm()

■ You can optionally first invoke .xmlclean()  to clean up any data

structure created during the parse process. You would then call

.xmlterm()

SAX: If you are using the SAX interface, include the following steps:

■ Process the results of the parser from .xmlparse() or

.xmlparseBuffer()  via callback methods.

■ Register the callback methods

4. Optionally, use .xmlclean()  to clean up the memory and structures used

during a parse, and go to Step 5. or return to Step 2.

5. Terminate the parsing process with .xmlterm()

Parser Calling Sequence
The sequence of calls to the parser can be any of the following:

■ XMLParser.xmlinit() - XMLParser.xmlparse()  or

XMLParser.xmlparsebuf() - XMLParser.xmlterm()

■ XMLParser.xmlinit() - XMLParser.xmlparse()  or

XMLParser.xmlparsebuf() - XMLParser.xmlclean() -
XMLParser.xmlparse()  or

XMLParser.xmlparsebuf() - XMLParser.xmlclean() -... -
XMLParser.xmlterm()

■ XMLParser.xmlinit() - XMLParser.xmlparse()  or
26-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++ Usage
XMLParser.xmlparsebuf() - XMLParser.xmlparse() or

XMLParser.xmlparsebuf() -... - XMLParser.xmlterm()

Figure 26–1 XML Parser for C++ (DOM and SAX Interfaces) Usage

file, URL,
db, buffer
xml input

XMLParser::
initialize

parse,
parsebuffer,
parseurl, . . .

xmlterm

DOM
document

SAX

Process
results via
callback
methods

.getDocument_
Element and
other DOM
methods

method
class

Mostly Node 
class methods
(part of 
application)

SAX

clean

register
callback
methods

XDK for C++: XML Parser for C++ — XMLParser class
Using XML Parser for C++ 26-5



XML Parser for C++ XSLT (DOM Interface) Usage
XML Parser for C++ XSLT (DOM Interface) Usage
Figure 26–2 shows the XML Parser for C++ XSLT functionality for the DOM

interface.

1. There are two inputs to XMLParser.xmlparse() :

■ The Stylesheet to be applied to the XML document

■ XML document

The output of XMLParser.xmlparse() , the parsed stylesheet and parsed XML

document, are sent to the XSLProcess.xslprocess()  method for processing.

2. XMLParser.xmlinit()  initializes the XSLT processing. XMLParser.

xmlinit() also  initializes the xslprocess()  result

3. XSLProcess.xslProcess()  optionally calls other methods, such as print

methods. You can see the list of available methods either on OTN or in Oracle9i
XML Reference.

4. The resultant document (XML, HTML, VML, and so on) is typically sent to an

application for further processing.

5. The application terminates the XSLT process by declaring

XMLParser.xmlterm() , for the XML document, stylesheet, and final result.

XML Parser for C XSLT functionality is illustrated with the following examples:

■ XML Parser for C++ Example 16: C++ — XSLSample.cpp  on page 26-52

■ XML Parser for C++ Example 17: C++ — XSLSample.std  on page 26-54
26-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++ XSLT (DOM Interface) Usage
Figure 26–2 Parser for C++: XSL-T Functionality (DOM Interface) Usage

XMLParser.
xmlinit()

xmlparse()
input

XMLParser.
xmlterm()

XMLParser.
xmlterm()

XSLprocess.
xslProcess()

call other
methods
e.g. print

xmlparse()
input

XMLParser.
xmlinit()

xml document

xml document stylesheet result

stylesheet

result

XMLParser.
xmlterm()

XMLParser.
xmlinit()

XML Parser for C++, XSL-T 
Using XML Parser for C++ 26-7



Default Behavior
Default Behavior
The following is the XML Parser for C++ default behavior:

■ Character set encoding is UTF-8. If all your documents are ASCII, you are

encouraged to set the encoding to US-ASCII for better performance.

■ Messages are printed to stderr unless msghdlr is given.

■ A parse tree which can be accessed by DOM APIs is built unless saxcb is set to

use the SAX callback APIs. Note that any of the SAX callback functions can be

set to NULL if not needed.

■ The default behavior for the parser is to check that the input is well-formed but

not to check whether it is valid. The flag XML_FLAG_VALIDATE can be set to

validate the input. The default behavior for whitespace processing is to be fully

conformant to the XML 1.0 spec, that is, all whitespace is reported back to the

application but it is indicated which whitespace is ignorable. However, some

applications may prefer to set the XML_FLAG_DISCARD_WHITESPACE

which will discard all whitespace between an end-element tag and the

following start-element tag.

Note: It is recommended that you set the default encoding

explicitly if using only single byte character sets (such as US-ASCII

or any of the ISO-8859 character sets) for performance up to 25%

faster than with multibyte character sets, such as UTF-8.
26-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DOM and SAX APIs
DOM and SAX APIs
Oracle XML parser for C++ checks if an XML document is well-formed, and

optionally validates it against a DTD. The parser constructs an object tree which can

be accessed via one of the following interfaces:

■ DOM interface

■ Serially via a SAX interface

These two XML APIs:

■ DOM: Tree-based APIs. A tree-based API compiles an XML document into an

internal tree structure, then allows an application to navigate that tree using the

Document Object Model (DOM), a standard tree-based API for XML and

HTML documents.

■ SAX: Event-based APIs. An event-based API, on the other hand, reports parsing

events (such as the start and end of elements) directly to the application

through callbacks, and does not usually build an internal tree. The application

implements handlers to deal with the different events, much like handling

events in a graphical user interface.

Tree-based APIs are useful for a wide range of applications, but they often put a

great strain on system resources, especially if the document is large (under very

controlled circumstances, it is possible to construct the tree in a lazy fashion to

avoid some of this problem). Furthermore, some applications need to build their

own, different data trees, and it is very inefficient to build a tree of parse nodes,

only to map it onto a new tree.

In both of these cases, an event-based API provides a simpler, lower-level access to

an XML document: you can parse documents much larger than your available

system memory, and you can construct your own data structures using your

callback event handlers.

Using the SAX API
To use SAX, an xmlsaxcb  structure is initialized with function pointers and passed

to the xmlinit()  call. A pointer to a user-defined context structure can also be

included. That context pointer will be passed to each SAX function.

SAX Callback Structure
The SAX callback structure:

typedef struct
Using XML Parser for C++ 26-9



Invoking XML Parser for C++
{
 sword (*startDocument)(void *ctx);
 sword (*endDocument)(void *ctx);
 sword (*startElement)(void *ctx, const oratext *name,
             const struct xmlarray *attrs);
 sword (*endElement)(void *ctx, const oratext *name);
 sword (*characters)(void *ctx, const oratext *ch, size_t len);
 sword (*ignorableWhitespace)(void *ctx, const oratext *ch, size_t len);
 sword (*processingInstruction)(void *ctx, const oratext *target,
             const oratext *data);
 sword (*notationDecl)(void *ctx, const oratext *name,
             const oratext *publicId, const oratext *systemId);
 sword (*unparsedEntityDecl)(void *ctx, const oratext *name,
             const oratext *publicId,
             const oratext *systemId, const oratext *notationName);
 sword (*nsStartElement)(void *ctx, const oratext *qname,
             const oratext *local, const oratext *nsp,
             const struct xmlnodes *attrs);
} xmlsaxcb;

Using the DOM API
See "XML Parser for C++ Example 6: C++ — DOMSample.cpp"  on page 26-16.

Invoking XML Parser for C++
XML Parser for C++ can be invoked in two ways:

■ By invoking the executable on the command line

■ By writing C++ code and using the supplied APIs

Command Line Usage
The XML Parser for C++ can be called as an executable by invoking bin/xml

Table 26–2 lists the command line options.

Table 26–2 XML Parser for C++: Command Line Options

Option Description

-c  Conformance check only, no validation

-e encoding Specify input file encoding
26-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the Sample Files Included with Your Software
Writing C++ Code to Use Supplied APIs
XML Parser for C++ can also be invoked by writing code to use the supplied APIs.

The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. Please see the Makefile  in the

sample/ subdirectory for full details of how to build your program.

Using the Sample Files Included with Your Software
$ORACLE_HOME/xdk/cpp/parser/sample/ directory contains several XML

applications to illustrate how to use the XML Parser for C++ with the DOM and

SAX interfaces.

Table 26–3 lists the sample files in sample/ directory.

-h Help - show this usage help

-n Number - DOM traverse and report number of elements

-p Print document and DTD structures after parse

-x Exercise SAX interface and print document

-v Version - display parser version then exit

-w Whitespace - preserve all whitespace

Table 26–3 XML Parser for C++ sample/ Files

sample/ File Name Description

DOMNamespace.cpp Source for DOMNamespace program

DOMNamespace.std Expected output from DOMNamespace

DOMSample.cpp Source for DOMSample program

DOMSample.std Expected output from DOMSample

FullDOM.c Sample usage of DOM interface

FullDOM.std Expected output from FullDOM

Make.bat Batch file to build sample executables

Makefile Makefile for sample programs

Table 26–2 XML Parser for C++: Command Line Options

Option Description
Using XML Parser for C++ 26-11



Running the XML Parser for C++ Sample Programs
Running the XML Parser for C++ Sample Programs

Building the Sample programs
Change directories to ..sample/ and read the README file. This will explain how

to build the sample programs according to your platform.

Sample Programs
Table 26–4 lists the programs built by the sample files in sample/.

NSExample.xml Sample XML file using namespaces

SAXNamespace.cpp Source for SAXNamespace program

SAXNamespace.std Expected output from SAXNamespace

SAXSample.cpp Source for SAXSample program

SAXSample.std Expected output from SAXSample

XSLSample.cpp Source for XSLSample program

XSLSample.std Expected output from XSLSample

class.xml XML file that may be used with XSLSample

iden.xsl Stylesheet that may be used with XSLSample

cleo.xml XML version of Shakespeare's play

Table 26–4 XML Parser for C++, Sample Programs Built in sample/

Built Program Description

SAXSample A sample application using SAX APIs. Prints out all
speakers in each scene, i.e. all the unique SPEAKER
elements within each SCENE element.

DOMSample [speaker] A sample application using DOM APIs. Prints all speeches
made by the given speaker. If no speaker is specified,
"Soothsayer" is used. Note that major characters have
uppercase names (e.g. "CLEOPATRA"), whereas minor
characters have capitalized names (e.g. "Attendant"). See
the output of SAXSample.

Table 26–3 XML Parser for C++ sample/ Files(Cont.)

sample/ File Name Description
26-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
XML Parser for C++ Example 1: XML — class.xml
class.xml  is an XML file that inputs XSLSample.cpp.

<?xml version = "1.0"?>
<!DOCTYPE course [
<!ELEMENT course (Name, Dept, Instructor, Student)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Dept (#PCDATA)>
<!ELEMENT Instructor (Name)>
<!ELEMENT Student (Name*)>
]>
<course>
<Name>Calculus</Name>
<Dept>Math</Dept>
<Instructor>
<Name>Jim Green</Name>
</Instructor>
<Student>
<Name>Jack</Name>
<Name>Mary</Name>
<Name>Paul</Name>
</Student>
</course>

SAXNamespace A sample application using Namespace extensions to SAX
API; prints out all elements and attributes of
NSExample.xml along with full namespace information.

DOMNamespace Same as SAXNamespace except using DOM interface.

FullDOM  Sample usage of full DOM interface. Exercises all the
calls, but does nothing too exciting.

XSLSample <xmlfile> <xsl ss> Sample usage of XSL processor. It takes two
filenames as input, the XML file and the XSL stylesheet.
Note: If you redirect stdout of this program to a file, you
may encounter some missing output, depending on your
environment.

Table 26–4 XML Parser for C++, Sample Programs Built in sample/

Built Program Description
Using XML Parser for C++ 26-13



Running the XML Parser for C++ Sample Programs
XML Parser for C++ Example 2: XML — cleo.xml
This XML example inputs DOMSample.cpp  and SAXSample.cpp .

<?xml version="1.0"?>
<!DOCTYPE PLAY [
    <!ELEMENT PLAY     (TITLE, PERSONAE, SCNDESCR, PLAYSUBT, INDUCT?,
 PROLOGUE?, ACT+, EPILOGUE?)>
    <!ELEMENT TITLE    (#PCDATA)>
    <!ELEMENT FM       (P+)>
    <!ELEMENT P        (#PCDATA)>
    <!ELEMENT PERSONAE (TITLE, (PERSONA | PGROUP)+)>
    <!ELEMENT PGROUP   (PERSONA+, GRPDESCR)>
    <!ELEMENT PERSONA  (#PCDATA)>
    <!ELEMENT GRPDESCR (#PCDATA)>
    <!ELEMENT SCNDESCR (#PCDATA)>
    <!ELEMENT PLAYSUBT (#PCDATA)>
    <!ELEMENT INDUCT   (TITLE, SUBTITLE*, (SCENE+|(SPEECH|STAGEDIR|SUBHEAD)+))>
    <!ELEMENT ACT      (TITLE, SUBTITLE*, PROLOGUE?, SCENE+, EPILOGUE?)>
    <!ELEMENT SCENE    (TITLE, SUBTITLE*, (SPEECH | STAGEDIR | SUBHEAD)+)>
    <!ELEMENT PROLOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH)+)>
    <!ELEMENT EPILOGUE (TITLE, SUBTITLE*, (STAGEDIR | SPEECH)+)>
    <!ELEMENT SPEECH   (SPEAKER+, (LINE | STAGEDIR | SUBHEAD)+)>
    <!ELEMENT SPEAKER  (#PCDATA)>
    <!ELEMENT LINE     (#PCDATA | STAGEDIR)*>
    <!ELEMENT STAGEDIR (#PCDATA)>
    <!ELEMENT SUBTITLE (#PCDATA)>
    <!ELEMENT SUBHEAD  (#PCDATA)>
]>

<PLAY>
<TITLE>The Tragedy of Antony and Cleopatra</TITLE>

<PERSONAE>
<TITLE>Dramatis Personae</TITLE>

<PGROUP>
<PERSONA>MARK ANTONY</PERSONA>
<PERSONA>OCTAVIUS CAESAR</PERSONA>
<PERSONA>M. AEMILIUS LEPIDUS</PERSONA>
<GRPDESCR>triumvirs.</GRPDESCR>
</PGROUP>

<PERSONA>SEXTUS POMPEIUS</PERSONA>

<PGROUP>
26-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
<PERSONA>DOMITIUS ENOBARBUS</PERSONA>
<PERSONA>VENTIDIUS</PERSONA>
<PERSONA>EROS</PERSONA>
<PERSONA>SCARUS</PERSONA>
<PERSONA>DERCETAS</PERSONA>
<PERSONA>DEMETRIUS</PERSONA>
<PERSONA>PHILO</PERSONA>
<GRPDESCR>friends to Antony.</GRPDESCR>
</PGROUP>

<PGROUP>
<PERSONA>MECAENAS</PERSONA>
<PERSONA>AGRIPPA</PERSONA>
<PERSONA>DOLABELLA</PERSONA>
<PERSONA>PROCULEIUS</PERSONA>
<PERSONA>THYREUS</PERSONA>
<PERSONA>GALLUS</PERSONA>
<PERSONA>MENAS</PERSONA>
<GRPDESCR>friends to Caesar.</GRPDESCR>
</PGROUP>
...
...
<SPEECH>
<SPEAKER>First Guard</SPEAKER>
<LINE>This is an aspic's trail: and these fig-leaves</LINE>
<LINE>Have slime upon them, such as the aspic leaves</LINE>
<LINE>Upon the caves of Nile.</LINE>
</SPEECH>

<SPEECH>
<SPEAKER>OCTAVIUS CAESAR</SPEAKER>
<LINE>Most probable</LINE>
<LINE>That so she died; for her physician tells me</LINE>
<LINE>She hath pursued conclusions infinite</LINE>
<LINE>Of easy ways to die. Take up her bed;</LINE>
<LINE>And bear her women from the monument:</LINE>
<LINE>She shall be buried by her Antony:</LINE>
<LINE>No grave upon the earth shall clip in it</LINE>
<LINE>A pair so famous. High events as these</LINE>
<LINE>Strike those that make them; and their story is</LINE>
<LINE>No less in pity than his glory which</LINE>
<LINE>Brought them to be lamented. Our army shall</LINE>
<LINE>In solemn show attend this funeral;</LINE>
<LINE>And then to Rome. Come, Dolabella, see</LINE>
<LINE>High order in this great solemnity.</LINE>
Using XML Parser for C++ 26-15



Running the XML Parser for C++ Sample Programs
</SPEECH>

<STAGEDIR>Exeunt</STAGEDIR>
</SCENE>
</ACT>
</PLAY>

XML Parser for C++ Example 3: XSL — iden.xsl
This example stylesheet can be used to input XSLSample.cpp .

<?xml version="1.0"?>
<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

  <xsl:template match="*|@*|comment()|processing-instruction()|text()">
      <xsl:copy>
          <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
      </xsl:copy>
  </xsl:template>

</xsl:stylesheet>

XML Parser for C++ Example 4: XML — FullDOM.xml (DTD)
This example DTD file inputs FullDOM.cpp .

<!DOCTYPE doc [
    <!ELEMENT p (#PCDATA)>
    <!ATTLIST p xml:space (preserve|default) 'preserve'>
    <!NOTATION notation1 SYSTEM "file.txt">
    <!NOTATION notation2 PUBLIC "some notation">
    <!ELEMENT doc (p*)>
    <!ENTITY example "<p>An ampersand (&#38;#38;) may be escaped
numerically (&#38;#38;#38;) or with a general entity
(&amp;amp;).</p>">
]>
<doc xml:lang="foo">&example;</doc>

XML Parser for C++ Example 5: XML — NSExample.xml
The following example file, NSExample.xml , uses namespaces.

<!DOCTYPE doc [
26-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
<!ELEMENT doc (child*)>
<!ATTLIST doc xmlns:nsprefix CDATA #IMPLIED>
<!ATTLIST doc xmlns CDATA #IMPLIED>
<!ATTLIST doc nsprefix:a1 CDATA #IMPLIED>
<!ELEMENT child (#PCDATA)>
]>
<doc nsprefix:a1 = "v1" xmlns="http://www.w3c.org"
xmlns:nsprefix="http://www.oracle.com">
<child>
This element inherits the default Namespace of doc.
</child>
</doc>

XML Parser for C++ Example 6: C++ — DOMSample.cpp
This example contains the C++ source code for DOMSample.cpp.

// Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved.

///////////////////////////////////////////////////////////////////////////////
// NAME
//   DOMSample.cpp
//
// DESCRIPTION
//   Sample usage of C++ XML parser via DOM interface
//
// PUBLIC FUNCTION(S)
//
// PRIVATE FUNCTION(S)
//
// NOTES
//   none
///////////////////////////////////////////////////////////////////////////////

#include <iostream.h>
#include <string.h>

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

#define DOCUMENT"cleo.xml"
#define DEFAULT_SPEAKER"Soothsayer"

void dump(Node *node);
Using XML Parser for C++ 26-17



Running the XML Parser for C++ Sample Programs
void dumpspeech(Node *node);

char *speaker;
char *act, *scene;
uword n_speech;

int main(int argc, char **argv)
{
    XMLParser   parser;
    ub4         flags;
    uword       ecode;
    flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;

    cout << "XML C++ DOM sample\n";

    speaker = (argc > 1) ? argv[1] : DEFAULT_SPEAKER;

    cout << "Initializing XML package...\n";

    if (ecode = parser.xmlinit())
    {
        cout << "Failed to initialize XML parser, error " << ecode;
        return 1;
    }

    cout << "Parsing '" << DOCUMENT << "'...\n";
    cout.flush();
    if (ecode = parser.xmlparse((oratext *) DOCUMENT, (oratext *) 0, flags))
return 1;

    cout << "Dumping " << speaker << " speeches...\n";
    cout.flush();
    cout << "-----------------------------------------------------------\n";
    act = scene = "";
    n_speech = 0;
    dump(parser.getDocumentElement());

    (void) parser.xmlterm();// terminate LPX package

    return 0;
}

void dump(Node *node)
{
    Node *title, *speak;
26-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
    char *name, *who;
    uword i, n_nodes;

    name = (char *) node->getName();
    if (!strcmp((char *) name, "ACT"))
    {
title = node->getFirstChild();
act = (char *) title->getFirstChild()->getValue();
    }
    else if (!strcmp((char *) name, "SCENE"))
    {
title = node->getFirstChild();
scene = (char *) title->getFirstChild()->getValue();
    }
    else if (!strcmp((char *) name, "SPEECH"))
    {
speak = node->getFirstChild();
who = (char *) speak->getFirstChild()->getValue();
if (!strcmp(who, speaker))
    dumpspeech(node);
    }

    if (node->hasChildNodes())
    {
n_nodes = node->numChildNodes();
for (i = 0; i < n_nodes; i++)
    dump(node->getChildNode(i));
    }
}

// <SPEECH>
// <SPEAKER>Soothsayer</SPEAKER>
// <LINE>Your will?</LINE>
// </SPEECH>

// <SPEECH>
// <SPEAKER>CLEOPATRA</SPEAKER>
// <LINE><STAGEDIR>Aside to DOMITIUS ENOBARBUS</STAGEDIR>  What means
this?</LINE>
// </SPEECH>

void dumpspeech(Node *node)
{
    Node    *kid, *part, *partkid;
    uword    i, j, n_node, n_part;
Using XML Parser for C++ 26-19



Running the XML Parser for C++ Sample Programs
    oratext *partname, *partval;

    if (n_speech++)
cout << "\n";
    cout << act << ", " << scene << "\n";
    n_node = node->numChildNodes();
    for (i = 0; i < n_node; i++)// skip speaker
    {
kid = node->getChildNode(i);// line #i
if (!strcmp((char *) kid->getName(), "LINE"))
{
    n_part = kid->numChildNodes();
    for (j = 0; j < n_part; j++)
    {
part = kid->getChildNode(j);
if (part->getType() == TEXT_NODE)
    cout << "    " << (char *) part->getValue() << "\n";
else
{
    partname = part->getName();
    partval = part->getFirstChild()->getValue();
    if (!strcmp((char *) partname, "STAGEDIR"))
cout << "    [" << (char *) partval << "]\n";
    else
cout << "    {" << (char *) partval << "}\n";
}
    }
}
    }
    cout.flush();
}

// end of DOMSample.c

XML Parser for C++ Example 7: C++ — DOMSample.std
DOMSample.std  shows the expected output from DOMSample.cpp.

XML C++ DOM sample
Initializing XML package...
Parsing 'cleo.xml'...
Dumping Soothsayer speeches...
-----------------------------------------------------------
ACT I, SCENE II.  The same. Another room.
    Your will?
26-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
ACT I, SCENE II.  The same. Another room.
    In nature's infinite book of secrecy
    A little I can read.

ACT I, SCENE II.  The same. Another room.
    I make not, but foresee.

ACT I, SCENE II.  The same. Another room.
    You shall be yet far fairer than you are.

ACT I, SCENE II.  The same. Another room.
    You shall be more beloving than beloved.

ACT I, SCENE II.  The same. Another room.
    You shall outlive the lady whom you serve.

ACT I, SCENE II.  The same. Another room.
    You have seen and proved a fairer former fortune
    Than that which is to approach.

ACT I, SCENE II.  The same. Another room.
    If every of your wishes had a womb.
    And fertile every wish, a million.

ACT I, SCENE II.  The same. Another room.
    Your fortunes are alike.

ACT I, SCENE II.  The same. Another room.
    I have said.

ACT II, SCENE III.  The same. OCTAVIUS CAESAR's house.
    Would I had never come from thence, nor you Thither!

ACT II, SCENE III.  The same. OCTAVIUS CAESAR's house.
    I see it in
    My motion, have it not in my tongue: but yet
    Hie you to Egypt again.

ACT II, SCENE III.  The same. OCTAVIUS CAESAR's house.
    Caesar's.
    Therefore, O Antony, stay not by his side:
    Thy demon, that's thy spirit which keeps thee, is
    Noble, courageous high, unmatchable,
    Where Caesar's is not; but, near him, thy angel
Using XML Parser for C++ 26-21



Running the XML Parser for C++ Sample Programs
    Becomes a fear, as being o'erpower'd: therefore
    Make space enough between you.

ACT II, SCENE III.  The same. OCTAVIUS CAESAR's house.
    To none but thee; no more, but when to thee.
    If thou dost play with him at any game,
    Thou art sure to lose; and, of that natural luck,
    He beats thee 'gainst the odds: thy lustre thickens,
    When he shines by: I say again, thy spirit
    Is all afraid to govern thee near him;
    But, he away, 'tis noble.

XML Parser for C++ Example 8: C++ — SAXSample.cpp
This example contains the C++ source code for SAXSample.cpp .

// Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved.
///////////////////////////////////////////////////////////////////////////////
// NAME
//   SAXSample.cpp
//
// DESCRIPTION
//   Sample usage of C++ XML parser via SAX interface
//
// PUBLIC FUNCTION(S)
//
// PRIVATE FUNCTION(S)
//
// NOTES
//   none
///////////////////////////////////////////////////////////////////////////////

#include <iostream.h>
#include <string.h>

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

#define DOCUMENT"cleo.xml"
#define MAX_STRING128
#define MAX_SPEAKER20

oratext  elem[MAX_STRING], last_elem[MAX_STRING];
uword    n_speaker;
26-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
oratext *speakers[MAX_SPEAKER];
size_t   speakerlen[MAX_SPEAKER];

/* SAX callback functions */

sword startDocument(void *ctx);
sword endDocument(void *ctx);
sword startElement(void *ctx, const oratext *name,
   const struct xmlnodes *attrs);
sword endElement(void *ctx, const oratext *name);
sword characters(void *ctx, const oratext *ch, size_t len);

xmlsaxcb saxcb = {
    startDocument,
    endDocument,
    startElement,
    endElement,
    characters
};

int main()
{
    XMLParser   parser;
    ub4         flags;
    uword       ecode;
    flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;

    cout << "XML C++ SAX sample\n";

    cout << "Initializing XML package...\n";

    if (ecode = parser.xmlinit((oratext *) 0,
// encoding
  (void (*)(void *, const oratext *, ub4)) 0,
  (void *) 0,
// msghdlr ctx
  (xmlsaxcb *) &saxcb))
// SAX callback
    {
    cout << "Failed to initialize XML parser, error " << ecode;
    return 1;
    }

    cout << "Parsing '" << DOCUMENT << "' and showing speakers by scene...\n";
    cout.flush();
Using XML Parser for C++ 26-23



Running the XML Parser for C++ Sample Programs
    if (ecode = parser.xmlparse((oratext *) DOCUMENT, (oratext *) 0, flags))
return 1;

    (void) parser.xmlterm();
// terminate LPX package

    return 0;
}

sword startDocument(void *ctx)
{
    cout << "startDocument\n";
    return 0;
}

sword endDocument(void *ctx)
{
    cout << "endDocument\n";
    return 0;
}

sword startElement(void *ctx, const oratext *name,
   const struct xmlnodes *attrs)
{
    strcpy((char *) last_elem, (char *) elem);
    strcpy((char *) elem, (char *) name);
    return 0;
}

sword endElement(void *ctx, const oratext *name)
{
    uword i;

    if (!strcmp((char *) name, "SCENE"))
    {
for (i = 0; i < n_speaker; i++)
{
    cout << "    ";
    cout.write(speakers[i], speakerlen[i]);
    cout << "\n";
}
    }
    return 0;
}

26-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
sword characters(void *ctx, const oratext *ch, size_t len)
{
    uword i;

    if (!strcmp((char *) elem, "TITLE"))
    {
if (!strcmp((char *) last_elem, "ACT"))
{
    cout << "\n--- ";
    cout.write(ch, len);
    cout << " ---\n\n";
}
else if (!strcmp((char *) last_elem, "SCENE"))
{
    n_speaker = 0;
    cout << "  ";
    cout.write(ch, len);
    cout << "\n";
}
    }
    else if (!strcmp((char *) elem, "SPEAKER"))
    {
if (n_speaker < MAX_SPEAKER)
{
    for (i = 0; i < n_speaker; i++)
if ((len == speakerlen[i]) && !strncmp((char *) speakers[i],
(char *) ch, len))
    break;
    if (!n_speaker || (i == n_speaker))
    {
speakers[n_speaker] = (oratext *) ch;
speakerlen[n_speaker++] = len;
    }
}
    }
    return 0;
}

// end of SAXSample.cc

XML Parser for C++ Example 9: C++ — SAXSample.std
SAXSample.std  shows the expected output from SAXSample.cpp.

XML C++ SAX sample
Using XML Parser for C++ 26-25



Running the XML Parser for C++ Sample Programs
Initializing XML package...
Parsing 'cleo.xml' and showing speakers by scene...
startDocument

--- ACT I ---

  SCENE I.  Alexandria. A room in CLEOPATRA's palace.
    PHILO
    CLEOPATRA
    MARK ANTONY
    Attendant
    DEMETRIUS
  SCENE II.  The same. Another room.
    CHARMIAN
    ALEXAS
    Soothsayer
    DOMITIUS ENOBARBUS
    IRAS
    CLEOPATRA
    Messenger
    MARK ANTONY
    First Attendant
    Second Attendant
    Second Messenger
  SCENE III.  The same. Another room.
    CLEOPATRA
    CHARMIAN
    MARK ANTONY
  SCENE IV.  Rome. OCTAVIUS CAESAR's house.
    OCTAVIUS CAESAR
    LEPIDUS
    Messenger
  SCENE V.  Alexandria. CLEOPATRA's palace.
    CLEOPATRA
    CHARMIAN
    MARDIAN
    ALEXAS

--- ACT II ---

...

...
--- ACT V ---
  SCENE I.  Alexandria. OCTAVIUS CAESAR's camp.
    OCTAVIUS CAESAR
26-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
    DOLABELLA
    DERCETAS
    AGRIPPA
    MECAENAS
    Egyptian
    PROCULEIUS
    All
  SCENE II.  Alexandria. A room in the monument.
    CLEOPATRA
    PROCULEIUS
    GALLUS
    IRAS
    CHARMIAN
    DOLABELLA
    OCTAVIUS CAESAR
    SELEUCUS
    Guard
    Clown
    First Guard
    Second Guard
endDocument

XML Parser for C++ Example 10: C++ — DOMNamespace.cpp
This example contains the C++ source code for DOMNamespace.cpp.

// Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved.
//////////////////////////////////////////////////////////////////////////////
// NAME
//   DOMNamespace.cpp
//
// DESCRIPTION
//   This file demonstates a simple use of the parser and Namespace
//   extensions to the DOM APIs.
//
//   The XML file that is given to the application is parsed and the
//   elements and attributes in the document are printed.
//
// PUBLIC FUNCTION(S)
//
// PRIVATE FUNCTION(S)
//
// NOTES
//   none
//////////////////////////////////////////////////////////////////////////////
Using XML Parser for C++ 26-27



Running the XML Parser for C++ Sample Programs
#include <iostream.h>

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

#define DOCUMENT         "NSExample.xml"

void dump(Node *node);
void dumpattrs(Node *node);

//
// main
//

int main()
{
    XMLParser   parser;
    ub4         flags;
    uword       ecode;
    flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;

    cout << "\nXML C++ DOM Namespace\n";
    cout << "Initializing XML package...\n";
    if (ecode = parser.xmlinit())
    {
        cout << "Failed to initialize XML parser, error " << ecode;
        return 1;
    }

    cout << "Parsing '" << DOCUMENT << "'...\n";
    cout.flush();
    if (ecode = parser.xmlparse((oratext *) DOCUMENT, (oratext *) 0, flags))
return 1;

    cout << "\nThe elements are:\n";
    dump(parser.getDocumentElement());
    (void) parser.xmlterm();// terminate LPX package
    return 0;
}

//
// dump
//
26-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
void dump(Node *node)
{
    uword i, n_nodes;
    NodeList *nodes;
    size_t   nn;

    String qName;
    String localName;
    String nsName;
    String prefix;

    if (node == NULL)
       return;
    if (nodes = node->getChildNodes())
    {
       for (nn = node->numChildNodes(), i=0; i < nn; i++)
       {
          // Use the methods getQualifiedName(), getLocalName(),
          // getPrefix(), and getNamespace() to get Namespace
          // information.

          qName = prefix = localName = nsName = (oratext *)" ";

  if (node->getQualifiedName() != (oratext *)NULL)
              qName = node->getQualifiedName();

  if (node->getPrefix() != (oratext *)NULL)
              prefix = node->getPrefix();

  if (node->getLocal() != (oratext *)NULL)
              localName = node->getLocal();

  if (node->getNamespace() != (oratext *)NULL)
              nsName = node->getNamespace();
          cout << "  ELEMENT Qualified Name: " << (char *)qName << "\n";
          cout << "  ELEMENT Prefix        : " << (char *)prefix << "\n";
          cout << "  ELEMENT Local Name    : " << (char *)localName << "\n";
          cout << "  ELEMENT Namespace     : " << (char *)nsName << "\n";
          dumpattrs(node);
          dump(node->getChildNode(i));
       }
    }
}

Using XML Parser for C++ 26-29



Running the XML Parser for C++ Sample Programs
//
// dumpattrs
//

void dumpattrs(Node *node)
{
    NamedNodeMap  *attrs;
    Attr          *a;
    uword          i;
    size_t         na;

    oratext   *qname;
    oratext   *namespce;
    oratext   *local;
    oratext   *prefix;
    oratext   *value;
    if (attrs = node->getAttributes())
    {
       cout << "\n    ATTRIBUTES: \n";
       for (na = attrs->getLength(), i = 0; i < na; i++)
       {
          /* get attr qualified name, local name, namespace, and prefix */

          a = (Attr *)attrs->item(i);
          qname = namespce = local = prefix = value = (oratext*)" ";
          if (a->getQualifiedName() != (oratext*)NULL)
             qname = a->getQualifiedName();
          if (a->getNamespace() != (oratext*)NULL)
             namespce = a->getNamespace();
          if (a->getLocal() != (oratext*)NULL)
             local = a->getLocal();
          if (a->getPrefix() != (oratext*)NULL)
             prefix = a->getPrefix();
          if (a->getValue() != (oratext*)NULL)
             value = a->getValue();

          cout << "      " << (char*)qname << " = " << (char*)value << "\n";
          cout << "      Namespace : " << (char*)namespce << "\n";
          cout << "      Local Name: " << (char*)local << "\n";
          cout << "      Prefix    : " << (char*)prefix << "\n\n";
       }
    }
    cout << "\n";
}

26-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
XML Parser for C++ Example 11: C++ — DOMNamespace.std
DOMNamespace.std shows the expected output from DOMNamespace.cpp.

XML C++ DOM Namespace
Initializing XML package...
Parsing 'NSExample.xml'...

The elements are:
  ELEMENT Qualified Name: doc
  ELEMENT Prefix        :
  ELEMENT Local Name    : doc
  ELEMENT Namespace     : http://www.w3c.org

    ATTRIBUTES:
      nsprefix:a1 = v1
      Namespace : http://www.oracle.com
      Local Name: a1
      Prefix    : nsprefix

      xmlns = http://www.w3c.org
      Namespace :
      Local Name: xmlns
      Prefix    :

      xmlns:nsprefix = http://www.oracle.com
      Namespace :
      Local Name: nsprefix
      Prefix    : xmlns

  ELEMENT Qualified Name: child
  ELEMENT Prefix        :
  ELEMENT Local Name    : child
  ELEMENT Namespace     : http://www.w3c.org

XML Parser for C++ Example 12: C++ — SAXNamespace.cpp
This example contains the C++ source code for the SAXNamespace program.

// Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved.
//////////////////////////////////////////////////////////////////////////////
// NAME
//   DOMNamespace.cpp
//
// DESCRIPTION
//   This file demonstates a simple use of the parser and Namespace
Using XML Parser for C++ 26-31



Running the XML Parser for C++ Sample Programs
//   extensions to the SAX APIs.
//   The XML file that is given to the application is parsed and the
//   elements and attributes in the document are printed.
//
// PUBLIC FUNCTION(S)
//
// PRIVATE FUNCTION(S)
//
// NOTES
//   none
//////////////////////////////////////////////////////////////////////////////

#include <iostream.h>

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

#define DOCUMENT         "NSExample.xml"

/*------------------------------------------------------------------------
                           FUNCTION PROTOTYPES
  ------------------------------------------------------------------------*/
int startDocument(void *ctx);
int endDocument(void *ctx);
int endElement(void *ctx, const oratext *name);
int nsStartElement(void *ctx, const oratext *qname,
                        const oratext *local,
                        const oratext *nsp,
                        const struct xmlnodes *attrs);

/* SAX callback structure */

xmlsaxcb saxcb = {
    startDocument,
    endDocument,
    0,
    endElement,
    0,
    0,
    0,
    0,
    0,
    nsStartElement,
    0, 0, 0, 0, 0, 0, 0, 0
26-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
};

/* SAX callback context */
/*
typedef struct {
    xmlctx  *ctx;
    uword    depth;
} cbctx;
*/

/*------------------------------------------------------------------------
                                MAIN
  ------------------------------------------------------------------------*/
int main()
{
   XMLParser   parser;
   ub4         flags;
   uword       ecode;
   flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;
   cout << "XML C++ SAX Namespace\n";
   cout << "Initializing XML package...\n";
   if (ecode = parser.xmlinit((oratext *) 0,           // encoding
                                 (void (*)(void *, const oratext *, ub4)) 0,
                                 (void *) 0,           // msghdlr ctx
                                 (xmlsaxcb *) &saxcb)) // SAX callback
   {
       cout << "Failed to initialize XML parser, error " << ecode;
       return 1;
   }

   /* parse the document */

   cout << "Parsing '" << DOCUMENT << "'...\n";
   cout.flush();
   if (ecode = parser.xmlparse((oratext *) DOCUMENT, (oratext *) 0, flags))
      return 1;

   (void) parser.xmlterm();// terminate LPX package

   return 0;
}

/*------------------------------------------------------------------------
                             SAX Interface
  ------------------------------------------------------------------------*/
Using XML Parser for C++ 26-33



Running the XML Parser for C++ Sample Programs
int startDocument(void *ctx)
{
    cout << "\nStartDocument\n\n";
    return 0;
}

int endDocument(void *ctx)
{
    cout << "\nEndDocument\n";
    return 0;
}

int endElement(void *ctx, const oratext *name)
{
    cout << "\nELEMENT Name  : " << (char*)name << "\n";
    return 0;
}

int nsStartElement(void *ctx, const oratext *qname, const oratext *local,
                   const oratext *nsp, const struct xmlnodes *attrs)
{
    xmlnode *attr;
    uword    i;
    oratext *aqname;
    oratext *alocal;
    oratext *anamespace;
    oratext *aprefix;
    oratext *avalue;

    /*
     * Use the functions getXXXQualifiedName(), getXXXLocalName(), and
     * getXXXNamespace() to get Namespace information.
     */

    if (qname == (oratext*)NULL)
       qname = (oratext*)" ";
    if (local == (oratext*)NULL)
       local = (oratext*)" ";
    if (nsp == (oratext*)NULL)
       nsp = (oratext*)" ";

    cout << "ELEMENT Qualified Name: " << (char*)qname << "\n";
    cout << "ELEMENT Local Name    : " << (char*)local << "\n";
    cout << "ELEMENT Namespace     : " << (char*)nsp << "\n";
26-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
    if (attrs)
    {
       for (i = 0; i < numAttributes(attrs); i++)
       {
          attr = getAttributeIndex(attrs,i);
          aqname = alocal = anamespace = aprefix = avalue = (oratext*)" ";

          if (getAttrQualifiedName(attr))
             aqname = (oratext *) getAttrQualifiedName(attr);
          if (getAttrPrefix(attr))
             aprefix = (oratext *) getAttrPrefix(attr);
          if (getAttrLocal(attr))
             alocal = (oratext *) getAttrLocal(attr);
          if (getAttrNamespace(attr))
             anamespace = (oratext *) getAttrNamespace(attr);
          if (getAttrValue(attr))
             avalue = (oratext *) getAttrValue(attr);

         cout << " ATTRIBUTE Qualified Name   : " << (char*)aqname << "\n";
         cout << " ATTRIBUTE Prefix           : " << (char*)aprefix << "\n";
         cout << " ATTRIBUTE Local Name       : " << (char*)alocal << "\n";
         cout << " ATTRIBUTE Namespace        : " << (char*)anamespace << "\n";
         cout << " ATTRIBUTE Value            : " << (char*)avalue << "\n";
         cout << "\n";
       }
    }
    return 0;
}

XML Parser for C++ Example 13: C++ — SAXNamespace.std
SAXNamespace.std  shows the expected output from SAXNamespace.cpp .

XML C++ SAX Namespace
Initializing XML package...
Parsing 'NSExample.xml'...

StartDocument

ELEMENT Qualified Name: doc
ELEMENT Local Name    : doc
ELEMENT Namespace     : http://www.w3c.org
 ATTRIBUTE Qualified Name   : nsprefix:a1
 ATTRIBUTE Prefix           : nsprefix
 ATTRIBUTE Local Name       : a1
Using XML Parser for C++ 26-35



Running the XML Parser for C++ Sample Programs
 ATTRIBUTE Namespace        : http://www.oracle.com
 ATTRIBUTE Value            : v1

 ATTRIBUTE Qualified Name   : xmlns
 ATTRIBUTE Prefix           :
 ATTRIBUTE Local Name       : xmlns
 ATTRIBUTE Namespace        :
 ATTRIBUTE Value            : http://www.w3c.org

 ATTRIBUTE Qualified Name   : xmlns:nsprefix
 ATTRIBUTE Prefix           : xmlns
 ATTRIBUTE Local Name       : nsprefix
 ATTRIBUTE Namespace        :
 ATTRIBUTE Value            : http://www.oracle.com

ELEMENT Qualified Name: child
ELEMENT Local Name    : child
ELEMENT Namespace     : http://www.w3c.org

ELEMENT Name  : child
ELEMENT Name  : doc
EndDocument

XML Parser for C++ Example 14: C++ — FullDOM.cpp
This example contains the C++ source code for FullDOM.cpp .

// Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved.
//////////////////////////////////////////////////////////////////////////////
// NAME
//   FullDOM.cpp
//
// DESCRIPTION
//   Sample code to test full C++ DOM interface
//////////////////////////////////////////////////////////////////////////////

#include <iostream.h>

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

#define TEST_DOC(oratext *) "FullDOM.xml"
26-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
void dump(Node *node, uword level);
void dumpnode(Node *node, uword level);

static char *ntypename[] = {
    "0",
    "ELEMENT",
    "ATTRIBUTE",
    "TEXT",
    "CDATA",
    "ENTREF",
    "ENTITY",
    "PI",
    "COMMENT",
    "DOCUMENT",
    "DTD",
    "DOCFRAG",
    "NOTATION"
};

#define FAIL { cout << "Failed!\n"; return 1; }

int main()
{
    XMLParser     parser;
    Document     *doc;
    Element      *root, *elem, *subelem;
    Attr         *attr, *attr1, *attr2, *gleep1, *gleep2;
    Text         *text, *subtext;
    Node         *node, *pi, *comment, *entref, *cdata, *clone,
 *deep_clone, *frag, *fragelem, *fragtext, *sub2,
 *fish, *food, *food2, *repl;
    NodeList     *subs, *nodes;
    NamedNodeMap *attrs, *notes, *entities;
    DocumentType *dtd;
    uword         i, ecode, level;

    cout << "XML C++ Full DOM test\n";
    cout << "Initializing XML parser...\n";

    if (ecode = parser.xmlinit())
    {
cout << "Failed to initialze XML parser, error " << ecode << "\n";
return 1;
    }
Using XML Parser for C++ 26-37



Running the XML Parser for C++ Sample Programs
    cout << "\nCreating new document...\n";
    if (!(doc = parser.createDocument()))
FAIL

    cout << "Document from root node:\n";
    dump(parser.getDocument(), 0);

    cout << "\nCreating root element ('ROOT')...\n";
    if (!(elem = doc->createElement((oratext *) "ROOT")))
FAIL

    cout << "Setting as root element...\n";
    if (!doc->appendChild(elem))
FAIL

    cout << "Document from 'ROOT' element:\n";
    dump(root = parser.getDocumentElement(), 0);
    cout << "Adding 7 children to 'ROOT' element...\n";
    if (!(text = doc->createTextNode((oratext *) "Gibberish")) ||
        !elem->appendChild(text))
FAIL
    if (!(comment = doc->createComment((oratext*) "Bit warm today, innit?")) ||
        !elem->appendChild(comment))
FAIL

    if (!(pi = doc->createProcessingInstruction((oratext *) "target",
(oratext *) "PI-contents")) ||
       !elem->appendChild(pi))
FAIL

    if (!(cdata = doc->createCDATASection((oratext *) "See DATA")) ||
        !elem->appendChild(cdata))
FAIL

    if (!(entref = doc->createEntityReference((oratext *) "EntRef")) ||
        !elem->appendChild(entref))
FAIL

    if (!(fish = doc->createElement((oratext *) "FISH")) ||
!elem->appendChild(fish))
FAIL

    if (!(food = doc->createElement((oratext *) "FOOD")) ||
!elem->appendChild(food))
FAIL
26-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
    cout << "Document from 'ROOT' element with its 7 children:\n";
    dump(root, 0);

    cout << "\nTesting node insertion...\n";
    cout << "Adding 'Pre-Gibberish' text node and 'Ask about the weather'
comment node...\n";
    if (!(node = doc->createTextNode((oratext *) "Pre-Gibberish")) ||
        !elem->insertBefore(node, text))
FAIL

    if (!(node = doc->createComment((oratext *) "Ask about the weather:")) ||
        !elem->insertBefore(node, comment))
FAIL

    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);
    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);
    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);
    cout << "\nTesting nextSibling links starting at first child...\n";
    for (node = elem->getFirstChild();
    node;
    node = node->getNextSibling())dump(node, 1);
    cout << "\nTesting previousSibling links starting at last child...\n";
    for (node = elem->getLastChild();
    node;
    node = node->getPreviousSibling())dump(node, 1);

    cout << "\nTesting setting node value...\n";
    cout << "Original node:\n";
    dump(pi, 1);
    pi->setValue((oratext *) "New PI contents");
    cout << "Node after new value:\n";
    dump(pi, 1);

    cout << "\nAdding another element level, i.e., 'SUB'...\n";
    if (!(subelem = doc->createElement((oratext *) "SUB")) ||
!elem->insertBefore(subelem, cdata) ||
!(subtext = doc->createTextNode((oratext *) "Lengthy SubText")) ||
        !subelem->appendChild(subtext))
FAIL

    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);
Using XML Parser for C++ 26-39



Running the XML Parser for C++ Sample Programs
    cout << "\nAdding a second 'SUB' element...\n";
    if (!(sub2 = doc->createElement((oratext *) "SUB")) ||
!elem->insertBefore(sub2, cdata))
FAIL

    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);

    cout << "\nGetting all SUB nodes - note the distinct hex addresses...\n";
    if (!(subs = doc->getElementsByTagName(root, (oratext *) "SUB")))
FAIL
    for (i = 0; i < subs->getLength(); i++)
dumpnode(subs->item(i), 1);

    cout << "\nTesting parent links...\n";
    for (level = 1, node = subtext; node; node = node->getParentNode(), level++)
dumpnode(node, level);

    cout << "\nTesting owner document of node...\n";
    dumpnode(subtext, 1);
    dumpnode(subtext->getOwnerDocument(), 1);

    cout << "\nTesting node replacement...\n";
    if (!(node = doc->createTextNode((oratext *) "REPLACEMENT, 1/2 PRICE")) ||
        !pi->replaceChild(node))
FAIL

    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);

    cout << "\nTesting node removal...\n";
    if (!entref->removeChild())
FAIL

    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);
    cout << "\nNormalizing...\n";
    elem->normalize();
    cout << "Document from 'ROOT' element:\n";
    dump(root, 0);
    cout << "\nCreating and populating document fragment...\n";
    if (!(frag = doc->createDocumentFragment()) ||
!(fragelem = doc->createElement((oratext *) "FragElem")) ||
!(fragtext = doc->createTextNode((oratext *) "FragText")) ||
26-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
!frag->appendChild(fragelem) ||
!frag->appendChild(fragtext))
FAIL
    dump(frag, 1);
    cout << "Insert document fragment...\n";
    if (!elem->insertBefore(frag, comment))
FAIL
    dump(elem, 1);

    cout << "\nCreate two attributes...\n";
    if (!(attr1 = doc->createAttribute((oratext*)"Attr1",(oratext*)"Value1")) ||
!(attr2 = doc->createAttribute((oratext*)"Attr2",(oratext*)"Value2")))
FAIL
    cout << "Setting attributes...\n";
    if (!subelem->setAttributeNode(attr1, NULL) ||
!subelem->setAttributeNode(attr2, NULL))
FAIL
    dump(subelem, 1);

    cout << "\nAltering attribute1 value...\n";
    attr1->setValue((oratext *) "New1");
    dump(subelem, 1);

    cout << "\nFetching attribute by name (Attr2)...\n";
    if (!(node = subelem->getAttributeNode((oratext *) "Attr2")))
FAIL
    dump(node, 1);

    cout << "\nRemoving attribute by name (Attr1)...\n";
    subelem->removeAttribute((oratext *) "Attr1");
    dump(subelem, 1);

    cout << "\nAdding new attribute...\n";
    if (!subelem->setAttribute((oratext *) "Attr3", (oratext *) "Value3"))
FAIL
    dump(subelem, 1);

    cout << "\nRemoving attribute by pointer (Attr2)...\n";
    if (!subelem->removeAttributeNode(attr2))
FAIL
    dump(subelem, 1);

    cout << "\nAdding new attribute w/same name (test replacement)...\n";
    dump(subelem, 1);
    if (!(attr = doc->createAttribute((oratext*)"Attr3", (oratext*)"Zoo3")))
Using XML Parser for C++ 26-41



Running the XML Parser for C++ Sample Programs
FAIL
    if (!subelem->setAttributeNode(attr, NULL))
FAIL
    dump(subelem, 1);

    cout << "\nTesting node (attr) set by name...\n";
    cout << "Adding 'GLEEP' attr and printing out hex addresses of node set\n";
    attrs = subelem->getAttributes();
    if (!(gleep1=doc->createAttribute((oratext*)"GLEEP",(oratext*)"GLEEP1")) ||
!attrs->setNamedItem(gleep1, NULL))
FAIL
    dump(subelem, 0);

    cout << "\nTesting node (attr) set by name...\n";
    cout << "Replacing 'GLEEP' element - note the changed hex address\n";
    if (!(gleep2=doc->createAttribute((oratext*)"GLEEP",(oratext*)"GLEEP2")) ||
!attrs->setNamedItem(gleep2, &repl))
FAIL
    dump(subelem, 0);
    cout << "Replaced node was:\n";
    dump(repl, 1);

    cout << "\nTesting node removal by name...\n";
    cout << "Removing 'GLEEP' attribute\n";
    if (!attrs->removeNamedItem((oratext *) "GLEEP"))
FAIL
    dump(subelem, 0);

    cout << "\nOriginal SubROOT...\n";
    dump(subelem, 1);
    cout << "Cloned SubROOT (not deep)...\n";
    clone = subelem->cloneNode(FALSE);
    dump(clone, 1);
    cout << "Cloned SubROOT (deep)...\n";
    deep_clone = subelem->cloneNode(TRUE);
    dump(deep_clone, 1);

    cout << "\nSplitting text...\n";
    dump(subelem, 1);
    subtext->splitText(3);
    dump(subelem, 1);

    cout << "\nTesting string operations...\n";
    cout << "    CharData = \"" << (char *) subtext->getData() << "\"\n";
    cout << "Setting new data...\n";
26-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
    subtext->setData((oratext *) "0123456789");
    cout << "    CharData = \"" << (char *) subtext->getData() << "\"\n";
    cout << "    CharLength = " << (int) subtext->getLength() << "\n";
    cout << "    Substring(0,5) = \"" <<
(char *) subtext->substringData(0, 5) << "\"\n";
    cout << "    Substring(8,2) = \"" <<
(char *) subtext->substringData(8, 2) << "\"\n";
    cout << "Appending data...\n";
    subtext->appendData((oratext *) "ABCDEF");
    cout << "    CharData = \"" << (char *) subtext->getData() << "\"\n";
    cout << "Inserting data...\n";
    subtext->insertData(10, (oratext *) "*foo*");
    cout << "    CharData = \"" << (char *) subtext->getData() << "\"\n";
    cout << "Deleting data...\n";
    subtext->deleteData(0, 10);
    cout << "    CharData = \"" << (char *) subtext->getData() << "\"\n";
    cout << "Replacing data...\n";
    subtext->replaceData(1, 3, (oratext *) "bamboozle");
    cout << "    CharData = \"" << (char *) subtext->getData() << "\"\n";

    cout << "Cleaning up...\n";
    parser.xmlclean();

    if (parser.getDocument())
    {
cout << "Problem, document is not gone!!\n";
return 1;
    }

    cout << "Parsing test document...\n";
    if (ecode = parser.xmlparse(TEST_DOC, (oratext *) 0, 0))
    {
cout << "Parse failed, code " << ecode << "\n";;
return ecode;
    }

    cout << "Document from root node:\n" << flush;
    dump(parser.getDocument(), 0);

    cout << "Testing getNotations...\n" << flush;
    dtd = parser.getDocType();
    if (notes = dtd->getNotations())
    {
cout << "# of notations = " << notes->getLength() << "\n" << flush;
for (i = 0; i < notes->getLength(); i++)
Using XML Parser for C++ 26-43



Running the XML Parser for C++ Sample Programs
    dump(notes->item(i), 1);
    }
    else
cout << "No defined notations\n" << flush;

    cout << "Testing getEntities...\n" << flush;
    if (entities = dtd->getEntities())
    {
cout << "# of entities = " << entities->getLength() << "\n" << flush;
for (i = 0; i < entities->getLength(); i++)
    dump(entities->item(i), 1);
    }
    else
cout << "No defined entities\n" << flush;

    cout << "Cleaning up...\n";
    parser.xmlclean();

    if (parser.getDocument())
    {
cout << "Problem, document is not gone!!\n";
return 1;
    }

    cout << "\nTerminating parser...\n";
    parser.xmlterm();

    cout << "Success.\n";
    return 0;
}

void dump(Node *node, uword level)
{
    NodeList *nodes;
    uword     i, n_nodes;

    if (node)
    {
dumpnode(node, level);
if (node->hasChildNodes())
{
    nodes = node->getChildNodes();
    n_nodes = node->numChildNodes();
    for (i = 0; i < n_nodes; i++)
dump(nodes->item(i), level + 1);
26-44 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
}
    }
}

void dumpnode(Node *node, uword level)
{
    const oratext *name, *value;
    short          type;
    NamedNodeMap  *attrs;
    Attr          *attr;
    uword          i, n_attrs;

    if (node)
    {
for (i = 0; i <= level; i++)
    cout << "    ";
type = node->getType();
cout << (char *) ntypename[type];
if ((name = node->getName()) && (*name != '#'))
    cout << " \"" << (char *) name << "\"";
if (value = node->getValue())
    cout << " = \"" << (char *) value << "\"";
if ((type == ELEMENT_NODE) && (attrs = node->getAttributes()))
{
    cout << " [";
    n_attrs = attrs->getLength();
    for (i = 0; i < n_attrs; i++)
    {
if (i) cout << ", ";
attr = (Attr *) attrs->item(i);
cout << (char *) attr->getName();
if (attr->getSpecified())
    cout << "*";
cout << "=\"" << (char *) attr->getValue() << "\"";
    }
    cout << "]";
}
cout << "\n";
    }
}

// end of FullDOM.cpp
Using XML Parser for C++ 26-45



Running the XML Parser for C++ Sample Programs
XML Parser for C++ Example 15: C++ — FullDOM.std
The FullDOM.std example file shows the expected output from FullDOM.cpp

XML C++ Full DOM test
Initializing XML parser...

Creating new document...
Document from root node:
    DOCUMENT

Creating root element ('ROOT')...
Setting as root element...
Document from 'ROOT' element:
    ELEMENT "ROOT"
Adding 7 children to 'ROOT' element...
Document from 'ROOT' element with its 7 children:
    ELEMENT "ROOT"
        TEXT = "Gibberish"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Testing node insertion...
Adding 'Pre-Gibberish' text node and 'Ask about the weather' comment node...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
26-46 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Testing nextSibling links starting at first child...
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "PI-contents"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Testing previousSibling links starting at last child...
        ELEMENT "FOOD"
        ELEMENT "FISH"
        ENTREF "EntRef"
        CDATA = "See DATA"
        PI "target" = "PI-contents"
        COMMENT = "Bit warm today, innit?"
        COMMENT = "Ask about the weather:"
        TEXT = "Gibberish"
        TEXT = "Pre-Gibberish"

Testing setting node value...
Original node:
        PI "target" = "PI-contents"
Node after new value:
        PI "target" = "New PI contents"

Adding another element level, i.e., 'SUB'...
Using XML Parser for C++ 26-47



Running the XML Parser for C++ Sample Programs
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "New PI contents"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Adding a second 'SUB' element...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        PI "target" = "New PI contents"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Getting all SUB nodes - note the distinct hex addresses...
        ELEMENT "SUB"
        ELEMENT "SUB"

Testing parent links...
        TEXT = "Lengthy SubText"
            ELEMENT "SUB"
                ELEMENT "ROOT"
                    DOCUMENT

Testing owner document of node...
        TEXT = "Lengthy SubText"
        DOCUMENT

Testing node replacement...
26-48 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        TEXT = "REPLACEMENT, 1/2 PRICE"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ENTREF "EntRef"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Testing node removal...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-Gibberish"
        TEXT = "Gibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        TEXT = "REPLACEMENT, 1/2 PRICE"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Normalizing...
Document from 'ROOT' element:
    ELEMENT "ROOT"
        TEXT = "Pre-GibberishGibberish"
        COMMENT = "Ask about the weather:"
        COMMENT = "Bit warm today, innit?"
        TEXT = "REPLACEMENT, 1/2 PRICE"
        ELEMENT "SUB"
            TEXT = "Lengthy SubText"
        ELEMENT "SUB"
        CDATA = "See DATA"
        ELEMENT "FISH"
        ELEMENT "FOOD"

Creating and populating document fragment...
Using XML Parser for C++ 26-49



Running the XML Parser for C++ Sample Programs
        DOCFRAG
            ELEMENT "FragElem"
            TEXT = "FragText"
Insert document fragment...
        ELEMENT "ROOT"
            TEXT = "Pre-GibberishGibberish"
            COMMENT = "Ask about the weather:"
            ELEMENT "FragElem"
            TEXT = "FragText"
            COMMENT = "Bit warm today, innit?"
            TEXT = "REPLACEMENT, 1/2 PRICE"
            ELEMENT "SUB"
                TEXT = "Lengthy SubText"
            ELEMENT "SUB"
            CDATA = "See DATA"
            ELEMENT "FISH"
            ELEMENT "FOOD"

Create two attributes...
Setting attributes...
        ELEMENT "SUB" [Attr1*="Value1", Attr2*="Value2"]
            TEXT = "Lengthy SubText"

Altering attribute1 value...
        ELEMENT "SUB" [Attr1*="New1", Attr2*="Value2"]
            TEXT = "Lengthy SubText"

Fetching attribute by name (Attr2)...
        ATTRIBUTE "Attr2" = "Value2"

Removing attribute by name (Attr1)...
        ELEMENT "SUB" [Attr2*="Value2"]
            TEXT = "Lengthy SubText"

Adding new attribute...
        ELEMENT "SUB" [Attr2*="Value2", Attr3*="Value3"]
            TEXT = "Lengthy SubText"

Removing attribute by pointer (Attr2)...
        ELEMENT "SUB" [Attr3*="Value3"]
            TEXT = "Lengthy SubText"

Adding new attribute w/same name (test replacement)...
        ELEMENT "SUB" [Attr3*="Value3"]
            TEXT = "Lengthy SubText"
26-50 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Lengthy SubText"

Testing node (attr) set by name...
Adding 'GLEEP' attr and printing out hex addresses of node set
    ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="GLEEP1"]
        TEXT = "Lengthy SubText"

Testing node (attr) set by name...
Replacing 'GLEEP' element - note the changed hex address
    ELEMENT "SUB" [Attr3*="Zoo3", GLEEP*="GLEEP2"]
        TEXT = "Lengthy SubText"
Replaced node was:
        ATTRIBUTE "GLEEP" = "GLEEP1"

Testing node removal by name...
Removing 'GLEEP' attribute
    ELEMENT "SUB" [Attr3*="Zoo3"]
        TEXT = "Lengthy SubText"

Original SubROOT...
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Lengthy SubText"
Cloned SubROOT (not deep)...
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Lengthy SubText"
Cloned SubROOT (deep)...
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Lengthy SubText"

Splitting text...
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Lengthy SubText"
        ELEMENT "SUB" [Attr3*="Zoo3"]
            TEXT = "Leng"
            TEXT = "thy SubText"

Testing string operations...
    CharData = "Leng"
Setting new data...
    CharData = "0123456789"
    CharLength = 10
    Substring(0,5) = "01234"
    Substring(8,2) = "89"
Appending data...
Using XML Parser for C++ 26-51



Running the XML Parser for C++ Sample Programs
    CharData = "0123456789ABCDEF"
Inserting data...
    CharData = "0123456789*foo*ABCDEF"
Deleting data...
    CharData = "*foo*ABCDEF"
Replacing data...
    CharData = "*bamboozle*ABCDEF"
Cleaning up...
Parsing test document...
Document from root node:
    DOCUMENT
        DTD "doc"
        ELEMENT "doc" [xml:lang*="foo"]
            ELEMENT "p" [xml:space="preserve"]
                TEXT = "An ampersand (&) may be escaped
numerically (&#38;) or with a general entity
(&amp;)."
Testing getNotations...
# of notations = 2
        NOTATION "notation1"
        NOTATION "notation2"
Testing getEntities...
# of entities = 1
        ENTITY "example" = "<p>An ampersand (&#38;) may be escaped
numerically (&#38;#38;) or with a general entity
(&amp;amp;).</p>"
Cleaning up...

Terminating parser...
Success.

XML Parser for C++ Example 16: C++ — XSLSample.cpp
This example contains the C++ source code for XSLSample.cpp

// Copyright (c) Oracle Corporation 1999. All Rights Reserved.

///////////////////////////////////////////////////////////////////////////////
// NAME
//   XSLSample.cpp
//
// DESCRIPTION
//   Sample usage of C++ XSL processor
//
26-52 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
// PUBLIC FUNCTION(S)
//
// PRIVATE FUNCTION(S)
//
// NOTES
//   none
///////////////////////////////////////////////////////////////////////////////

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

int main(int argc, char **argv)
{
    XMLParser     xmlpar, xslpar, respar;
    XSLProcessor  xslproc;
    Node         *result;
    ub4           flags;
    uword         ecode;
    flags = XML_FLAG_VALIDATE | XML_FLAG_DISCARD_WHITESPACE;

    cout << "XSL processor sample\n";

    if (argc < 3)
    {
cout << "Usage is XSLSample <xmlfile> <stlyesheet>\n";
return 1;
    }

    // Parse the XML file
    cout << "Parsing XML file " << argv[1] << "\n";
    if (ecode = xmlpar.xmlinit())
    {
        cout << "Failed to initialize XML parser, error " << ecode << "\n";;
        return 1;
    }
    if (ecode = xmlpar.xmlparse((oratext *) argv[1], (oratext *) 0, flags))
        return 1;

    // Parse the Stylesheet file
    cout << "Parsing Stylesheet " << argv[2] << "\n";
    if (ecode = xslpar.xmlinit())
    {
        cout << "Failed to initialize XML parser, error " << ecode << "\n";;
        return 1;
Using XML Parser for C++ 26-53



Running the XML Parser for C++ Sample Programs
    }
    if (ecode = xslpar.xmlparse((oratext *) argv[2], (oratext *) 0, flags))
        return 1;

    // Initialize the result context
    cout << "Initializing the result context\n";
    if (ecode = respar.xmlinit())
    {
        cout << "Failed to initialize XML parser, error " << ecode << "\n";;
        return 1;
    }

    // XSL Processing
    cout << "XSL Processing\n";
    if (ecode = xslproc.xslprocess(&xmlpar, &xslpar, &respar, &result))
    {
        cout << "Failed in XSL Processing, error " << ecode << "\n";;
        return 1;
    }

    // print the resultant tree
    cout.flush();
    xslproc.printres(&respar, result);

    // Terminate the parsers
    (void) xmlpar.xmlterm();
    (void) xslpar.xmlterm();
    (void) respar.xmlterm();

    return 0;
}

XML Parser for C++ Example 17: C++ — XSLSample.std
This example shows the typical result output from XSLSample.cpp

<xsl:param name="size"/>
<xsl:param name="data"/>
<xsl:choose><xsl:when test="number(number($size) <
string-length(string($data)))">
   <xsl:value-of select="substring(string($data), 1, number($size))"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="string($data)"/>
26-54 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the XML Parser for C++ Sample Programs
</xsl:otherwise></xsl:choose>
<xsl:if test="number(number($size) > string-length(string($data)))">
<xsl:call-template name="pad">
<xsl:with-param name="padsize" select="number($size) -
string-length(string($data))"/>
</xsl:call-template></xsl:if></xsl:template><xsl:template match="/">
<xsl:text>&#13;&#10;</xsl:text><xsl:apply-templates select="//ROWSE
T/ROW/CUSTOMER"/>
   <xsl:text>&#13;&#10;</xsl:text>
</xsl:template><xsl:template match="CUSTOMER">
<xsl:call-template name="truncateorpad">
<xsl:with-param name="size" select="31"/>
<xsl:with-param name="data" select ="."/>
</xsl:call-template>
</xsl:template>
</xsl:stylesheet>
Using XML Parser for C++ 26-55



Running the XML Parser for C++ Sample Programs
26-56 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Schema Process
27

Using XML Schema Processor for C++

This chapter contains the following sections:

■ Oracle XML Schema Processor for C++ Features

■ Invoking XML Schema Processor for C++

■ XML Schema Processor for C++ Usage Diagram

■ Running the Provided XML Schema Sample Application
or for C++ 27-1



Oracle XML Schema Processor for C++ Features
Oracle XML Schema Processor for C++ Features
The XML Schema Processor for C++ is a companion component to the XML Parser

for C++ that allows support to simple and complex datatypes into XML

applications with Oracle9i. The Schema Processor supports the XML Schema

Working Draft, with the goal being that it be 100% fully conformant when XML

Schema becomes a W3C Recommendation. This makes writing custom applications

that process XML documents straightforward in the Oracle9i environment, and

means that a standards-compliant XML Schema Processor is part of the Oracle9i

platform on every operating system where Oracle9i is ported.

XML Schema Processor for C++ has the following features:

■ Supports simple and complex types

■ Built upon the XML Parser for C++ v2

■ The Schema processor is based on the April 7, 2000 version of the XML Schema

Working Draft (in three parts):

The XML Schema Processor for C++ class is XMLSchema. The version described

here is Oracle XML Schema Processor 1.0.1.0.0 (C++). The Oracle XML Schema

Processor is an early adopter release and is written in C with a C++ wrapper. It

includes the production release of the XML Parser for C v2.

Requirements
XML Schema Processor for C++ runs on the following operating systems:

■ Linux

■ Solaris

■ HP-UX

■ NT 4 / Service Pack 3 (and above)

Online Documentation
Documentation for Oracle XML Schema Processor for C++ is located in the doc

directory in your install area.

See Also: Chapter 20, "Using XML Parser for Java", for more

information about XML Schema and why you would want to use

XML Schema.

See Also: Oracle9i XML Reference
27-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Schema Processor for C++ Features
Standards Conformance
The parser conforms to the following standards:

■ W3C recommendation for Extensible Markup Language (XML) 1.0

■ W3C recommendation for Document Object Model Level 1.0

■ W3C proposed recommendation for Namespaces in XML

■ Simple API for XML (SAX) 1.0

■ W3C recommendation for XSL Transformations (XSLT)

■ W3C recommendation for XML Path Language (XPath)

Using the Supported Character Sets
The XML Parser for C++ currently supports the following encodings:

■ BIG5

■ EBCDIC-CP-BE

■ EBCDIC-CP-CA

■ EBCDIC-CP-CH

■ EBCDIC-CP-DK

■ EBCDIC-CP-ES

■ EBCDIC-CP-FI

■ EBCDIC-CP-FR

■ EBCDIC-CP-GB

■ EBCDIC-CP-HE

■ EBCDIC-CP-IS

■ EBCDIC-CP-IT

■ EBCDIC-CP-NL

■ EBCDIC-CP-NO

■ EBCDIC-CP-ROECE

■ EBCDIC-CP-SE

■ EBCDIC-CP-US
Using XML Schema Processor for C++ 27-3



Oracle XML Schema Processor for C++ Features
■ EBCDIC-CP-WT

■ EBCDIC-CP-YU

■ EUC-JP

■ GB2312

■ ISO-10646-UCS-2

■ ISO-8859-1 through 9

■ KOI8-RUTF-8

■ SHIFT_JIS

■ US-ASCII

■ UTF-16

To use these encodings, you must have the following set:

■ The ORACLE_HOME environment variable must be set and pointing to the

location of your Oracle installation.

■ The environment variables, ORA_NLS, ORA_NLS32, and ORA_NLS33, must

be set to point to the location of the NLS data files.

■ On Unix systems, this is usually $ORACLE_HOME/
ocommon/nls/admin/data .

■ On Windows NT, this is usually $ORACLE_HOME/
nlsrtl/admin/nlsdata .

The default encoding is UTF-8. It is recommended that you set the default encoding

explicitly if using only single byte character sets (such as US-ASCII or any of the

ISO-8859 character sets) for performance up to twice as fast as with multibyte

character sets, such as UTF-8.

XML Schema Processor for C++: Provided Software
Table 27–1 lists the supplied files and directories with this release:

See Also: Appendix A, Character Sets, of the Oracle9i Globalization
and National Language Support Guide, where, in addition, any

character set specified in can be used.
27-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Invoking XML Schema Processor for C++
Table 27–2 lists the included libraries:

Invoking XML Schema Processor for C++
The XML Schema Processor can be called as an executable by invoking bin/schema
in the install area. This takes two arguments:

■ XML instance document

■ Optionally, a default schema to apply

The Schema processor can also be invoked by writing code using the supplied APIs.

The code must be compiled using the headers in the include/ subdirectory and

linked against the libraries in the lib/ subdirectory. See Makefile in the sample/

subdirectory for details on how to build your program.

An error message file is provided in the mesg/ subdirectory. Currently, the only

message file is in English although message files for other languages may be

supplied in future releases.

Table 27–1 XML Schema Processor for C++: Supplied Files

Directory an d Files Description

license.html Licensing agreement

readme.html This file

bin/ Schema processor executable, "schema"

doc/ API documentation

include/ header files

lib/ XML/XSL/Schema & support libraries

mesg/ Error message files

sample/ Example usage of the Schema processor

Table 27–2 XML Schema Processor for C++: Supplied Libraries

Included Library Description

libxml8.a XML Parser/XSL Processor

libcore8.a CORE functions

libnls8.a National Language Support
Using XML Schema Processor for C++ 27-5



XML Schema Processor for C++ Usage Diagram
Set Environment Variable OR_XML_MESG to Point to Absolute Path
You should set the environment variable ORA_XML_MESG to point to the

“absolute” path of the mesg/ subdirectory. Alternately, if you have an $ORACLE_

HOME installed, you may copy the contents of the mesg/ subdirectory to the

$ORACLE_HOME/oracore/mesg directory.

XML Schema Processor for C++ Usage Diagram
Figure 27–1 illustrates the calling sequence of XMl Schema Processor for C++, as

follows:

1. XMLSchema.initialize() method initializes the process.

2. The parsed XML document(s) inputs the Schema Processor.

3. XMLSchema.validate() validates the parsed XML document(s) until a success

code results.

4. When validation completes, XMLSchema.terminate() method ends the process.
27-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
Figure 27–1 XML Schema Processor for C++ Usage Diagram

Running the Provided XML Schema Sample Application
This directory contains a sample XML Schema application that illustrates how to

use Oracle XML Schema Processor with its API. Table 27–3 lists the provided

sample files.

Table 27–3 XML Schema for C++ Samples Provided

Sample File Description

Makefile
Makefile to build the sample programs and run them,
verifying correct output.

xsdtest.cpp Trivial program which invokes the XML Schema for C++ API

car.{xsd,xml,std}

Sample Schema, instance document, expected
output respectively, after running xsdtest on them. See:

"XML Schema for C++ Example 2: car.xsd"  on page 27-10

"XML Schema for C++ Example 3: car.xml"  on page 27-11

"XML Schema for C++ Example 4: car.std"  on page 27-11.

XMLSchema::initialize()

XMLSchema::terminate()

Success codeXMLSchema::validate()

Parsed XML doc input
Using XML Schema Processor for C++ 27-7



Running the Provided XML Schema Sample Application
To build the sample programs, run 'make'.

To build the programs and run them, comparing the actual output to expected

output, run 'make sure'.

Error Messages are in English
An error message file is provided in the mesg subdirectory. Currently, the only

message file is in English although message files for other languages may be

supplied in future releases. You should set the environment variable ORA_XML_

MESG to point to the absolute path of the mesg subdirectory.

Alternately, if you have an $ORACLE_HOME installed, you can copy the contents

of the mesg subdirectory to the $ORACLE_HOME/oracore/mesg directory.

XML Schema for C++ Example 1: xsdtest.cpp
// Copyright (c) Oracle Corporation 1999, 2000. All Rights Reserved.

///////////////////////////////////////////////////////////////////////////////
//   NAME validate.cpp
//   DESCRIPTION Sample usage of C++ XML Schema processor
///////////////////////////////////////////////////////////////////////////////

#include <iostream.h>
#include <string.h>

aq.{xsd,xml,std}

Second sample Schema’s, instance document, expected
output respectively, after running xsdtest on them. See:

"XML Schema for C++ Example 5: aq.xsd" on page 27-12

"XML Schema for C++ Example 6: aq.xml"  on page 27-16

"XML Schema for C++ Example 7: aq.std"  on page 27-18

pub.{xsd,xml,std}

Third sample Schema’s, instance document, expected
output respectively, after running xsdtest on them. See:

"XML Schema for C++ Example 8: pub.xsd"  on page 27-18

"XML Schema for C++ Example 9: pub.xml"  on page 27-20

"XML Schema for C++ Example 10: pub.std"  on page 27-21

Table 27–3 XML Schema for C++ Samples Provided

Sample File Description
27-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
#ifndef ORAXML_CPP_ORACLE
# include <oraxml.hpp>
#endif

#ifndef ORAXSD_CPP_ORACLE
# include <oraxsd.hpp>
#endif

int main(int argc, char **argv)
{
    XMLSchema   schema;
    XMLParser   parser;
    xmlctx      *ctx;
    char        *doc, *uri;
    uword       ecode;

    cout << "XML C++ Schema processor\n";

    if ((argc < 2) || (argc > 3))
    {
       cout << "usage: validate <xml document> [schema]\n";
       return -1;
    }
    doc = argv[1];
    uri = (argc > 2) ? argv[2] : 0;

    cout << "Initializing XML package...\n";

    if (ecode = parser.xmlinit())
    {
        cout << "Failed to initialize XML parser, error " << ecode;
        return 1;
    }

    cout << "Parsing '" << doc << "'...\n";
    if (ecode = parser.xmlparse((oratext *) doc, (oratext *) 0,
      XML_FLAG_DISCARD_WHITESPACE))
    {
        cout << "Parse failed, error " << ecode << "\n";
        return 2;
    }

    cout << "Initializing Schema package...\n";

    if (ecode = schema.initialize(&parser))
Using XML Schema Processor for C++ 27-9



Running the Provided XML Schema Sample Application
    {
        cout << "Failed, code " << ecode << "!\n";
        return 3;
    }

    cout << "Validating document...\n";
    if (ecode = schema.validate(&parser, (oratext *) uri))
    {
        cout << "Validation failed, error " << ecode << "\n";
        return 4;
    }

    cout << "Document is valid.\n";
    schema.terminate();
    return 0;
}

XML Schema for C++ Example 2: car.xsd
<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
        targetNamespace = "http://www.CarDealers.com/">
    <element name="Car">
  <complexType>
    <element name="Model">
  <simpleType base="string">
    <enumeration value = "Ford"/>
    <enumeration value = "Saab"/>
    <enumeration value = "Audi"/>
  </simpleType>
    </element>
    <element name="Make">
  <simpleType base="string">
    <minLength value = "1"/>
    <maxLength value = "30"/>
 </simpleType>
    </element>
    <element name="Year">
 <complexType content="mixed">
    <attribute name="PreviouslyOwned" type="string"
       use="required"/>
    <attribute name="YearsOwned" type="integer"
       use="optional"/>
 </complexType>
27-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
    </element>
    <element name="OwnerName" type="string"
      minOccurs="0" maxOccurs="unbounded"/>
    <element name="Condition">
 <complexType base="string" derivedBy="extension">
    <attribute name="Automatic">
 <simpleType base="string">
    <enumeration value = "Yes"/>
    <enumeration value = "No"/>
 </simpleType>
    </attribute>
 </complexType>
    </element>
    <element name="Mileage">
 <simpleType base="integer">
    <minInclusive value="0"/>
    <maxInclusive value="2000000"/>
 </simpleType>
    </element>
    <attribute name="RequestDate" type="date"/>
 </complexType>
    </element>
 </schema>

XML Schema for C++ Example 3: car.xml
<?xml version="1.0"?>
<car:Car xmlns:car="http://www.CarDealers.com/"
     xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
     xsi:schemaLocation="http://www.CarDealers.com/ car.xsd"
     RequestDate="2000-12-6">

    <Model>Ford</Model>
    <Make>Explorer</Make>
    <Year PreviouslyOwned="You betcha">1999</Year>
    <OwnerName>Joe Smith</OwnerName>
    <OwnerName>Bob Jones</OwnerName>
    <Condition Automatic="No">Small dent on right bumper.</Condition>
    <Mileage>1999999</Mileage>
</car:Car>

XML Schema for C++ Example 4: car.std
XML C++ Schema processor
Using XML Schema Processor for C++ 27-11



Running the Provided XML Schema Sample Application
Initializing XML package...
Parsing 'car.xml'...
Initializing Schema package...
Validating document...
Document is valid.

XML Schema for C++ Example 5: aq.xsd
<?xml version="1.0"?>
<!-- ****************** AQ xml schema  ****************** -->
<schema xmlns = "http://www.w3.org/1999/XMLSchema"
        targetNamespace = "http://www.oracle.com/AQXmlDocument"
        xmlns:aq = "http://www.oracle.com/AQXmlDocument"
        xmlns:xsd = "http://www.w3.org/1999/XMLSchema"
elementFormDefault="qualified">

   <element name="AQXmlDocument">
      <complexType content="mixed">
        <choice>
              <group ref="aq:client_operation" minOccurs="0"/>
              <group ref="aq:server_response"/>
        </choice>
      </complexType>
    </element>

   <!-- ****************** Client Operations Group  ****************** -->
   <group name="client_operation">
       <sequence>
          <element ref="aq:client_operation" minOccurs="0" maxOccurs="1"/>

    <choice>
              <element ref="aq:producer_options" maxOccurs="1"/>
              <element ref="aq:consumer_options" maxOccurs="1"/>
              <element ref="aq:register_options" maxOccurs="1"/>
            </choice>
          <element ref="aq:message_set" minOccurs="0" maxOccurs="*"/>
       </sequence>
    </group>

   <!-- ****************** Server Response Group ****************** -->
   <group name="server_response">
       <sequence>
          <element ref="aq:server_response" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:receive_result" maxOccurs="1"/>
          <choice  minOccurs="0" >
              <element ref="aq:send_result" maxOccurs="1"/>
27-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
              <element ref="aq:publish_result" maxOccurs="1"/>
              <element ref="aq:receive_result" maxOccurs="1"/>
              <element ref="aq:sequence_num_result" maxOccurs="1"/>
          </choice>
       </sequence>
   </group>

   <!-- ****************** Server Propagation Group ****************** -->
   <group name="server_prop_operation">
       <sequence>
          <element ref="aq:server_prop_operation" minOccurs="0" maxOccurs="1"/>
          <choice>
              <element ref="aq:push" maxOccurs="1"/>
              <element ref="aq:notification" maxOccurs="1"/>
              <element ref="aq:sequence_num_request" maxOccurs="1"/>
          </choice>
       </sequence>
   </group>

   <!-- ****************** Client Operation ****************** -->
   <element name="client_operation">
      <complexType content="mixed">
        <element ref="aq:txid" minOccurs="0"/>
<attribute name="opcode" use="required" type="aq:opcode_type"/>
      </complexType>
   </element>

   <!-- ****************** Server Response ****************** -->
   <element name="server_response">
      <complexType content="mixed">
        <element ref="aq:txid" minOccurs="0"/>
        <element ref="aq:status_response" minOccurs="1"/>
<attribute name="opcode" use="required" type="aq:opcode_type"/>
      </complexType>
   </element>

   <!-- ****************** Server Propagation Operation ****************** -->
   <element name="server_prop_operation">
      <complexType content="mixed">
        <element ref="aq:txid" minOccurs="0"/>
<attribute name="prop_opcode" use="required" type="aq:prop_opcode_type"/>
      </complexType>
   </element>

   <element name="txid" type="string"/>
Using XML Schema Processor for C++ 27-13



Running the Provided XML Schema Sample Application
....

   <!-- ****************** Message payload ****************** -->
   <element name="message_payload">
     <complexType>
        <choice>
          <element ref="aq:jms_text_message" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:jms_map_message" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:jms_bytes_message" minOccurs="0" maxOccurs="1"/>
          <element ref="aq:jms_object_message" minOccurs="0" maxOccurs="1"/>

  <any minOccurs="0" maxOccurs="*" processContents="skip"/>
        </choice>
     </complexType>
   </element>

   <!-- ****************** User-defined properties ****************** -->
   <element name="user_properties">
      <complexType content="mixed">
        <element ref="aq:property" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Property  ****************** -->
   <element name="property">
      <complexType content="mixed">
        <element ref="aq:name" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:value" minOccurs="1" maxOccurs="1"/>
<attribute name="property_type" type="aq:prop_type"/>
       </complexType>
    </element>

   <!-- ****************** Status response ****************** -->
   <element name="status_response">
      <complexType content="mixed">
        <element ref="aq:acknowledge" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:status_code" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:error_code" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:error_message" minOccurs="0" maxOccurs="1"/>
      </complexType>
   </element>

   <!-- ****************** Send result ****************** -->
   <element name="send_result">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
27-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
        <element ref="aq:message_id" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Publish result ****************** -->
   <element name="publish_result">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_id" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Receive result ****************** -->
   <element name="receive_result">
      <complexType content="mixed">
        <element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:message_set" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

.

.
   <!-- ****************** JMS text message ****************** -->
   <element name="jms_text_message">
      <complexType content="mixed">
        <element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:text_data" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>

   <element name="text_data" type="string"/>

   <!-- ****************** JMS map message ****************** -->
   <element name="jms_map_message">
      <complexType content="mixed">
        <element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:map_data" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>

   <!-- ****************** Map data ****************** -->
   <element name="map_data">
      <complexType content="mixed">
Using XML Schema Processor for C++ 27-15



Running the Provided XML Schema Sample Application
        <element ref="aq:item" minOccurs="0" maxOccurs="*"/>
      </complexType>
   </element>

   <!-- ****************** Map Item  ****************** -->
   <element name="item">
      <complexType content="mixed">
        <element ref="aq:name" minOccurs="1" maxOccurs="1"/>
        <element ref="aq:value" minOccurs="1" maxOccurs="1"/>
<attribute name="item_type" type="aq:prop_type"/>
       </complexType>
    </element>

   <!-- ****************** JMS bytes message ****************** -->
   <element name="jms_bytes_message">
      <complexType content="mixed">
        <element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:bytes_data" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>

   <element name="bytes_data" type="string"/>

   <!-- ****************** JMS object message ****************** -->
   <element name="jms_object_message">
      <complexType content="mixed">
        <element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
        <element ref="aq:ser_object_data" minOccurs="1" maxOccurs="1"/>
      </complexType>
   </element>
   <element name="ser_object_data" type="string"/>

</schema>

XML Schema for C++ Example 6: aq.xml
<AQXmlDocument xmlns="http://www.oracle.com/AQXmlDocument"
       xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
       xsi:schemaLocation="http://www.oracle.com/AQXmlDocument aq.xsd">
    <client_operation opcode="SEND">
        <txid> sdasdfdsf </txid>
    </client_operation>
27-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
    <producer_options delivery_mode="PERSISTENT">
        <destination lookup_type="NORMAL"> queue1 </destination>
        <priority>23</priority>
        <recipient_list>
            <recipient> abc </recipient>
            <recipient lookup_type="LDAP"> abc </recipient>
        </recipient_list>
    </producer_options>

    <message_set>
        <message_count>1</message_count>
        <message>
            <message_number>1</message_number>
            <message_header>
                <correlation>XML_40_NEW_TEST</correlation>
                <delay>10</delay>
                <sender_id>scott::home::0</sender_id>
            </message_header>
            <message_payload>
                <jms_map_message>
                    <oracle_jms_properties>
                        <reply_to>oracle::redwoodshores::100</reply_to>
                        <userid>scott</userid>
                        <appid>AQProduct</appid>
                        <groupid>AQ</groupid>
                    </oracle_jms_properties>
                    <user_properties>
                        <property property_type="STRING">
                            <name>country</name>
                            <value>USA</value>
                        </property>
                        <property property_type="STRING">
                            <name>State</name>
                            <value>california</value>
                        </property>
                    </user_properties>
                    <map_data>
                        <item item_type="STRING">
                            <name>Car</name>
                            <value>Toyota</value>
                        </item>
                        <item item_type="STRING">
                            <name>Color</name>
                            <value>Blue</value>
Using XML Schema Processor for C++ 27-17



Running the Provided XML Schema Sample Application
                        </item>
                        <item item_type="STRING">
                            <name>Shape</name>
                            <value>Circle</value>
                        </item>
                        <item item_type="NUMBER">
                            <name>Price</name>
                            <value>20000</value>
                        </item>
                    </map_data>
                </jms_map_message>
            </message_payload>
        </message>
    </message_set>
</AQXmlDocument>

XML Schema for C++ Example 7: aq.std
XML C++ Schema processor
Initializing XML package...
Parsing 'aq.xml'...
Initializing Schema package...
Validating document...
Document is valid.

XML Schema for C++ Example 8: pub.xsd
<?xml version="1.0"?>
<schema xmlns = "http://www.w3.org/2000/08/XMLSchema"
        targetNamespace = "http://www.somewhere.org/BookCatalogue"
        xmlns:cat = "http://www.somewhere.org/BookCatalogue"
        elementFormDefault="qualified">
    <complexType name="Pub">
      <sequence>
        <element name="Title" type="cat:titleType" maxOccurs="*"/>
        <element name="Author" type="string" maxOccurs="*"/>
        <element name="Date" type="date"/>
      </sequence>
      <attribute name="language" type="string" use="default" value="English"/>
      <anyAttribute namespace="##local"/>
    </complexType>
    <element name="Publication" type="cat:Pub"  abstract="true"/>
    <element name="Book" substitutionGroup="cat:Publication">
        <complexType>
           <complexContent>
27-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
               <extension base="cat:Pub" >
                  <sequence>
                     <element name="ISBN" type="string" default="123456789"/>
                     <element name="Publisher" type="string"/>
                  </sequence>
               </extension>
           </complexContent>
       </complexType>
    </element>
    <complexType name="titleType">
       <simpleContent>
          <extension base="string" >
             <attribute name="old" type="string" use="default" value="false"/>
          </extension>
       </simpleContent>
    </complexType>
    <element name="Magazine" substitutionGroup="cat:Publication">
        <complexType>
           <complexContent>
              <extension base="cat:Pub">
                  <sequence>
                     <element name="Volume" type="cat:VolumeType"/>
                     <element name="htmlTable">
                        <complexType>
                           <any namespace="##other"
                               processContents="skip"
                               minOccurs="0" maxOccurs="2"/>
                        </complexType>
                      </element>
                  </sequence>
              </extension>
           </complexContent>
        </complexType>
    </element>
    <simpleType name="VolumeType">
       <restriction base="integer" >
          <minInclusive value = "1"/>
          <maxInclusive value = "12"/>
       </restriction>
    </simpleType>
    <element name="Catalogue">
        <complexType>
           <sequence>
             <element ref="cat:Publication" minOccurs="0" maxOccurs="*"/>
           </sequence>
Using XML Schema Processor for C++ 27-19



Running the Provided XML Schema Sample Application
        </complexType>
    </element>
</schema>

XML Schema for C++ Example 9: pub.xml
<?xml version="1.0"?>
<Catalogue xmlns = "http://www.somewhere.org/BookCatalogue"
   xmlns:cat = "http://www.somewhere.org/BookCatalogue"
   xmlns:html = "http://www.somewhere.org/HTMLCatalogue"
   xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"
   xsi:schemaLocation =
             "http://www.somewhere.org/BookCatalogue pub.xsd">
        <cat:Magazine>
                <Title>Natural Health</Title>
                <Author>October</Author>
                <Date>1999-12</Date>
                <Volume>12</Volume>
                <htmlTable>
                   <table  xmlns = "http://www.somewhere.org/HTMLCatalogue">
                      <tr>....</tr>
                   </table>
                   <html:table>
                      <html:tr>....</html:tr>
                   </html:table>
                </htmlTable>
        </cat:Magazine>
        <Book>
                <Title>Illusions The Adventures of a Reluctant Messiah</Title>
                <Author>Richard Bach</Author>
                <Date>1977</Date>
                <ISBN></ISBN>
                <Publisher>Dell Publishing Co.</Publisher>
        </Book>
        <Book>
                <Title>The First and Last Freedom</Title>
                <Author>J. Krishnamurti</Author>
                <Date>1954</Date>
                <ISBN>0-06-064831-7</ISBN>
                <Publisher>Harper &amp; Row</Publisher>
        </Book>
</Catalogue>
27-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Running the Provided XML Schema Sample Application
XML Schema for C++ Example 10: pub.std
XML C++ Schema processor
Initializing XML package...
Parsing 'pub.xml'...
Initializing Schema package...
Validating document...
Document is valid.
Using XML Schema Processor for C++ 27-21



Running the Provided XML Schema Sample Application
27-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML C++ Class 
28

Using XML C++ Class Generator

This chapter contains the following sections:

■ Accessing XML C++ Class Generator

■ Using XML C++ Class Generator

■ XML C++ Class Generator Usage

■ xmlcg Usage

■ Using the XML C++ Class Generator Examples in sample/
Generator 28-1



Accessing XML C++ Class Generator
Accessing XML C++ Class Generator
The XML C++ Class Generator is provided with Oracle9i and is also available for

download from the OTN site: http://otn.oracle.com/tech/xml

It is located in $ORACLE_HOME/xdk/cpp/classgen .

Using XML C++ Class Generator
The XML C++ Class Generator creates source files from an XML DTD. The Class

Generator takes the Document Type Definition (DTD) and generates classes for

each defined element. Those classes are then used in a C++ program to construct

XML documents conforming to the DTD.

This is useful when an application wants to send an XML message to another

application based on an agreed-upon DTD or as the back end of a web form to

construct an XML document. Using these classes, C++ applications can construct,

validate, and print XML documents that comply with the input DTD.

The Class Generator works in conjunction with the Oracle XML Parser for C++,

which parses the DTD and passes the parsed document to the class generator.

External DTD Parsing
The XML C++ Class Generator can also parse an external DTD directly without

requiring a complete (dummy) document. By using the Oracle XML Parser for C++

routine, xmlparsedtd() .

The provided command-line program xmlcg  has a new '-d' option that is used to

parse external DTDs. See "xmlcg Usage"  on page 28-4.

Error Message Files
Error message files are provided in the mesg/ subdirectory. The messages files also

exist in the $ORACLE_HOME/oracore/mesg  directory. You may set the

environment variable ORA_XML_MESG to point to the absolute path of the mesg/
subdirectory although this not required.

See Also: Chapter 3, "Oracle XML Developer Kits (XDKs) and

Components: Overview and General FAQs", under "Using Oracle

XML Components to Generate XML Documents: C++" on page 3-22
28-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML C++ Class Generator Usage
XML C++ Class Generator Usage
Figure 28–1 summarizes the XML C++ Class Generator usage.

1. From the bin directory, at the command line, enter the following:

xml [XML document file name, such as xxxxx]

where XML document file name is the name of the parsed XML document or

parsed DTD being processed. The XML document must have an associated

DTD.

The Input to the XML C++ Class Generator is an XML document containing a

DTD, or an external DTD. The document body itself is ignored; only the DTD is

relevant, though the document must conform to the DTD.

Accepted character set encoding for input files are listed in Appendix F, "XDK

for C++: Specifications and Cheat Sheet".

2. Two source files are output, a xxxxx.h header file and a xxxxx.cpp C++ file.

These are named after the DTD file.

3. The output files are typically used to generate XML documents.

Constructors are provided for each class (element) that allow an object to be created

in the following two ways:

■ Initially empty, then adding the children or data after the initial creation

■ Created with the initial full set of children or initial data

A method is provided for #PCDATA (and Mixed) elements to set the data and,

when appropriate, set an element's attributes.
Using XML C++ Class Generator 28-3



xmlcg Usage
Figure 28–1 XML C++ Class Generator Functionality

xmlcg Usage
The standalone parser may be called as an executable by invoking bin/xmlcg. For

example:

xmlcg [flags] <XML document or External DTD>

Table 28–1 lists the xmlcg optional flags.

Table 28–1 xmlcg Optional Flags

xmlcg Optional Flags Description

-d name DTD - Input is an external DTD with the given name

-o directory Output directory for generated files (default is current
directory)

-e encoding Encoding - Default input file encoding

-h Help - Show this usage help

-v Version - Show the Class Generator version

Input file

xxxxx.xml

Output files

Output files are
used typically to 
generate XML 
documents.

xxxxx.h

xxxxx.cpp

bin / xml xxxxx

Command line
28-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the XML C++ Class Generator Examples in sample/
Using the XML C++ Class Generator Examples in sample/
Table 28–2 lists the files supplied the sample XML C++ Class Generator sample/

directory.

The make.bat  batch file (on Windows NT) or Makefile  (on UNIX) do the

following:

■ Generate classes based on CG.xml into Sample.h and Sample.cpp

■ Compile the program CG.cpp (using Sample.h), and link this with the Sample

object into an executable named CG.exe in the...\bin (or .../bin) directory.

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
This XML file, CG.xml, inputs XML C++ Class Generator. It references the DTD file,

CG.dtd.

<?xml version="1.0"?>
<!DOCTYPE Sample SYSTEM "CG.dtd">
  <Sample>
    <B>Be!</B>
    <D attr="value"></D>
    <E>
      <F>Formula1</F>
      <F>Formula2</F>
    </E>
  </Sample>

Table 28–2 XML C++ Class Generator Examples in sample/

Sample File Name Description

CG.cpp Sample program

CG.xml XML file contains DTD and dummy document

CG.dtd DTD file referenced by CG.xml

Make.bat on Windows NT

Makefile on UNIX

Batch file (on Windows NT) or script file (on UNIX) to generate
classes and build the sample programs.

README A readme file with these instructions
Using XML C++ Class Generator 28-5



Using the XML C++ Class Generator Examples in sample/
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
This DTD file, CG.dtd is referenced by the XML file CG.xml. CG.xml inputs XML

C++ Class Generator.

<!ELEMENT Sample (A | (B, (C | (D, E))) | F)>
<!ELEMENT A (#PCDATA)>
<!ELEMENT B (#PCDATA | F)*>
<!ELEMENT C (#PCDATA)>
<!ELEMENT D (#PCDATA)>
<!ATTLIST D attr CDATA #REQUIRED>
<!ELEMENT E (F, F)>
<!ELEMENT F (#PCDATA)>

XML C++ Class Generator Example 3: CG Sample Program
The CG sample program, CG.cpp , does the following:

1. Initializes the XML parser

2. Loads the DTD (by parsing the DTD-containing file-- the dummy document

part is ignored)

3. Creates some objects using the generated classes

4. Invokes the validation function which verifies that the constructed classes

match the DTD

5. Writes the constructed document to Sample.xml

//////////////////////////////////////////////////////////////////////////////
// NAME        CG.cpp
// DESCRIPTION Demonstration program for C++ Class Generator usage
//////////////////////////////////////////////////////////////////////////////

#ifndef ORAXMLDOM_ORACLE
# include <oraxmldom.h>
#endif

#include <fstream.h>

#include "Sample.h"

#define DTD_DOCUMENT"CG.xml"
#define OUT_DOCUMENT"Sample.xml"
28-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the XML C++ Class Generator Examples in sample/
int main()
{
    XMLParser parser;
    Document *doc;
    Sample   *samp;
    B        *b;
    D        *d;
    E        *e;
    F        *f1, *f2;
    fstream  *out;
    ub4       flags = XML_FLAG_VALIDATE;
    uword     ecode;

    // Initialize XML parser
    cout << "Initializing XML parser...\n";
    if (ecode = parser.xmlinit())
    {
cout << "Failed to initialize parser, code " << ecode << "\n";
        return 1;
    }

    // Parse the document containing a DTD; parsing just a DTD is not
    // possible yet, so the file must contain a valid document (which
    // is parsed but we're ignoring).
    cout << "Loading DTD from " << DTD_DOCUMENT << "...\n";
    if (ecode = parser.xmlparse((oratext *) DTD_DOCUMENT, (oratext *)0, flags))
    {
cout << "Failed to parse DTD document " << DTD_DOCUMENT <<
    ", code " << ecode << "\n";
return 2;
    }

    // Fetch dummy document
    cout << "Fetching dummy document...\n";
    doc = parser.getDocument();

    // Create the constituent parts of a Sample
    cout << "Creating components...\n";
    b = new B(doc, (String) "Be there or be square");
    d = new D(doc, (String) "Dit dah");
    d->setattr((String) "attribute value");
    f1 = new F(doc, (String) "Formula1");
    f2 = new F(doc, (String) "Formula2");
    e = new E(doc, f1, f2);
Using XML C++ Class Generator 28-7



Using the XML C++ Class Generator Examples in sample/
    // Create the Sample
    cout << "Creating top-level element...\n";
    samp = new Sample(doc, b, d, e);

    // Validate the construct
    cout << "Validating...\n";
    if (ecode = parser.validate(samp))
    {
cout << "Validation failed, code " << ecode << "\n";
return 3;
    }

    // Write out doc
    cout << "Writing document to " << OUT_DOCUMENT << "\n";
    if (!(out = new fstream(OUT_DOCUMENT, ios::out)))
    {
cout << "Failed to open output stream\n";
return 4;
    }
    samp->print(out, 0);
    out->close();

    // Everything's OK
    cout << "Success.\n";

    // Shut down
    parser.xmlterm();
    return 0;
}

// end of CG.cpp
28-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Part X

XDK for PL/SQL

Part X describes how to access and use Oracle XML Developer’s Kit (XDK) for

PL/SQL. It contains the following chapter:

■ Chapter 29, "Using XML Parser for PL/SQL"

FAQs are located at the end of Chapter 29, "Frequently Asked Questions (FAQs):

XML Parser for PL/SQL"  on page 29-20.

Note: In Oracle9i, XML-SQL Utility (XSU) for PL/SQL is

considered part of the XDK for PL/SQL. In this manual, XSU is

described in Part II, Chapter 7, "XML SQL Utility (XSU)".





Using XML Parser fo
29

Using XML Parser for PL/SQL

This chapter contains the following sections:

■ Accessing XML Parser for PL/SQL

■ What’s Needed to Run XML Parser for PL/SQL

■ Using XML Parser for PL/SQL (DOM Interface)

■ Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)

■ Using XML Parser for PL/SQL Examples in sample/

■ Frequently Asked Questions (FAQs): XML Parser for PL/SQL
r PL/SQL 29-1



Accessing XML Parser for PL/SQL
Accessing XML Parser for PL/SQL
XML Parser for PL/SQL is provided with Oracle9i and is also available for

download from the OTN site: http://otn.oracle.com/tech/xml.

It is located at $ORACLE_HOME/xdk/plsql/parser

What’s Needed to Run XML Parser for PL/SQL
Appendix G, "XDK for PL/SQL: Specifications and Cheat Sheets" lists the

specifications and requirements for running the XML Parser for PL/SQL. It also

includes syntax cheat sheets.

Using XML Parser for PL/SQL (DOM Interface)
The XML Parser for PL/SQL makes developing XML applications with Oracle9i a
simplified and standardized process. With the PL/SQL interface, Oracle shops

familiar with PL/SQL can extend existing applications to take advantage of XML as

needed.

Since the XML Parser for PL/SQL is implemented in PL/SQL and Java, it can run

"out of the box" on the Oracle9i Java Virtual Machine.

XML Parser for PL/SQL supports the W3C XML 1.0 specification. The goal is to be

100% conformant. It can be used both as a validating or non-validating parser.

In addition, XML Parser for PL/SQL provides the two most common APIs you

need for processing XML documents:

■ W3C-recommended Document Object Model (DOM)

■ XSL-T and XPath recommendations

This makes writing custom applications that process XML documents

straightforward in the Oracle9i environment, and means that a standards-compliant

XML parser is part of the Oracle9i platform on every operating system where

Oracle9i is ported.

Figure 29–1 shows the XML Parser for PL/SQL usage and parsing process diagram.
29-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL (DOM Interface)
Figure 29–1 XML Parser for PL/SQL Functionality (DOM Interface)

1. Make a newParser declaration to begin the parsing process for the XML

document and DTD, if applicable.

Table 29–1 lists available properties for the newParser  procedure:

file name, 
varchar buffer, 

CLOB
xml input

newParser

getDocument()

DTD input

parseDTD()
parseDTDBuffer()
parsedDTDClob()

parse()
parseBuffer()
parseClob()

Available properties:
· setValidationMode 
  [default = not]
· setPreserveWhiteSpace 
  [default = not]
· setDocType 
  [if input type is a DTD]
· setBaseURL 
  [refers other locations to 
  base location if reading 
  from outside source ]
· showWarnings

other
DOM

functions

DOM
document

freeDocument()

freeParser()

getDocType() setDocType()

DTD

XML Parser for PL/SQL
Using XML Parser for PL/SQL 29-3



Using XML Parser for PL/SQL (DOM Interface)
2. The XML and DTD can be input as a file, varchar buffer, or CLOB. The XML

input is called by the following procedures:

■ parse() if the XML input is a file

■ parseBuffer()  if the XML input is an varchar buffer

■ parserClob()  if the XML input is a CLOB

If a DTD is also input, it is called by the following procedures:

■ parseDTD()  if the input is an DTD file

■ parseDTDBuffer()  if the DTD input is an varchar buffer

■ parserDTDClob() if the DTD input is a CLOB

For the XML Input: For an XML input, the parsed result from Parse(),
ParserBuffer() , or ParserClob() procedures is sent to GetDocument().

3. getDocument()  procedure performs the following:

■ Outputs the parsed XML document as a DOM document typically to be

used in a PL/SQL application, or

■ Applies other DOM functions, if applicable.

4. Use freeDocument()  function to free up the parser and parse the next XML

input

5. Use freeParser()  to free up any temporary document structures created

during the parsing process

Table 29–1 XML Parser for PL/SQL: newParser() Properties

Property Description

setValidationMode Default = Not

setPreserveWhiteSpace Default = Not

setDocType Use if input type is a DTD

setBaseURL Refers to other locations to the base locations, if reading from
an outside source

showWarnings Turns warnings on or off.

See Also: Oracle9i XML Reference for a list of available optional

DOM functions.
29-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL (DOM Interface)
For the DTD input: The parsed result from parseDTD() , parseDTDBuffer() , or

parseDTDClob()  is used by getDocType()  function.

6. getDocType()  then uses setDocType() to generate a DTD object.

7. The DTD object can be fed into the parser using setDocType() to override the

associated DTD.

XML Parser for PL/SQL: Default Behavior
The following is the default behavior for XML Parser for PLSQL XML:

■ A parse tree which can be accessed by DOM APIs is built

■ The parser is validating if a DTD is found, otherwise it is non-validating

■ Errors are not recorded unless an error log is specified; however, an application

error will be raised if parsing fails

The types and methods described in this manual are supplied with the PLSQL

package xmlparser().
Using XML Parser for PL/SQL 29-5



Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)
Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)
Extensible Stylesheet Language Transformation, abbreviated XSLT (or XSL-T),

describes rules for transforming a source tree into a result tree. A transformation

expressed in XSLT is called a stylesheet.

The transformation specified is achieved by associating patterns with templates

defined in the stylesheet. A template is instantiated to create part of the result tree.

This PLSQL implementation of the XSL processor follows the W3C XSLT working

draft (rev WD-xslt-19990813) and includes the required behavior of an XSL

processor in terms of how it must read XSLT stylesheets and the transformations it

must effect.

The types and methods described in this document are made available by the

PLSQL package, xslprocessor() .

Figure 29–2 shows the XML Parser for PL/SQL XSL-T Processor main functionality.

1. The Process Stylesheet process receives input from the XML document and the

selected Stylesheet, which may or may not be indicated in the XML document.

Both the stylesheet and XML document can be the following types:

■ File name

■ Varchar buffer

■ CLOB

The XML document can be input 1 through n times.

2. The parsed XML document inputs

XSLProcessor.processXSL(xslstylesheet,xml instance)
procedure, where:

■ XML document is indicated in the "xml instance" argument

■ Stylesheet input is indicated in the "xslstylesheet" argument

3. Build the stylesheet using the Stylesheet input to the XSLStylesheet()
procedure. The following methods are available for this procedure:

■ removeParam()

■ resetParam()

■ setParam()
29-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)
This produces a stylesheet object which then inputs the "Process Stylesheet"

step using procedure, XSLProcessor.processXSL(xslstylesheet,xml
instance) .

4. The "Process stylesheet" process can be repeated 1 through n times. In other

words, the same stylesheet can be applied to multiple parsed XML documents

to transform them wither into an XML document, HTML document, or other

text based format.

5. The resulting parsed and transformed document is output either as a stream or

a DOM document.

6. When the XSL-T process if complete, call the freeProcessor() procedure to free

up any temporary structures and the XSLProcessor procedures used in the XSL

transformation process.
Using XML Parser for PL/SQL 29-7



Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)
Figure 29–2 "XML Parser for PL/SQL: XSL-T processor (DOM Interface)

XML Parser for PL/SQL: XSLT Processor — Default Behavior
The following is the default behavior for the XML Parser for PL/SQL XSLT

Processor:

■ A result tree which can be accessed by DOM APIs is built

Build
stylesheet: new 
XSLStylesheet()

XML input
1...n

Stylesheet
input

stylesheet object

output stream
(writes to a

stream)

DOM
document

XSLProcessor.processXSL
(xslstylesheet, xml instance)

Methods
· removeParam()
· resetParam()
· setParam()

· File name
· Varchar buffer
· CLOB

Process
stylesheet

1...n

freeProcessor()

XML Parser for PL/SQL: XSL-T (DOM only)
29-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL Examples in sample/
■ Errors are not recorded unless an error log is specified; however, an application

error will be raised if parsing fails

Using XML Parser for PL/SQL Examples in sample/

Setting Up the Environment to Run the sample/ Sample Programs
The $ORACLE_HOME/xdk/plsql/parser/sample/ directory contains two sample

XML applications:

■ domsample

■ xslsample

These show you how to use XML Parser for PL/SQL.

To run these sample programs carry out the following steps:

1. Load the PL/SQL parser into the database. To do this, follow the instructions

given in the README file under the lib directory.

2. You must have the appropriate java security privileges to read and write from a

file on the file system. To this, first startup SQL*Plus (located typically under

$ORACLE_HOME/bin) and connect as a user with administration privileges,

such as, 'internal':

For example

% sqlplus
SQL> connect / as sysdba

3. A password might be required or the appropriate user with administration

privileges. Contact your System Administrator, DBA, or Oracle support, if you

cannot login with administration privileges.

4. Give special privileges to the user running this sample. It must be the same one

under which you loaded the jar files and plsql files in Step 1.

For example, for user 'scott':

SQL> grant javauserpriv to scott;
SQL> grant javasyspriv to scott;

You should see two messages that say "Grant succeeded." Contact your System

Administrator, DBA, or Oracle support, if this does not occur.
Using XML Parser for PL/SQL 29-9



Using XML Parser for PL/SQL Examples in sample/
Now, connect again as the user under which the PL/SQL parser was loaded in

step 1. For example, for user 'scott' with password 'tiger':

SQL> connect scott/tiger

Running domsample
To run domsample carry out the following steps:

1. Load domsample.sql script under SQL*Plus (if SQL*Plus is not up, first start it

up, connecting as the user running this sample) as follows:

   SQL> @domsample

The domsample.sql script defines a procedure domsample with the following

syntax:

domsample(dir varchar2, inpfile varchar2, errfile varchar2)

where:

2. Execute the domsample procedure inside SQL*Plus by supplying appropriate

arguments for 'dir', 'inpfile', and 'errfile'. For example:

On Unix, you can could do the following:

SQL>execute domsample('/private/scott', 'family.xml', 'errors.txt');

On Windows NT, you can do the following:

SQL>execute domsample('c:\xml\sample', 'family.xml', 'errors.txt');

where family.xml  is provided as a test case

3. You should see the following output:

■ The elements are: family member member member member

Argument Description

'dir' Must point to a valid directory on the external file system and
should be specified as a complete path name

'inpfile' Must point to the file located under 'dir', containing the XML
document to be parsed

'errfile' Must point to a file you wish to use to record errors; this file
will be created under 'dir'
29-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL Examples in sample/
■ The attributes of each element are:

family:
lastname = Smith
  member:
  memberid = m1
  member:
  memberid = m2
  member:
  memberid = m3 mom = m1 dad = m2
  member:
  memberid = m4 mom = m1 dad = m2

Running xslsample
To run xslsample, carry out these steps:

1. Load the xslsample.sql  script under SQL*Plus (if SQL*Plus is not up, first

start it up, connecting as the user running this sample):

SQL>@xslsample

xslsample.sql  script defines a procedure xslsample  with the following

syntax:

xslsample ( dir varchar2, xmlfile varchar2, xslfile varchar2, resfile
varchar2, errfile varchar2 )

where:

Argument Description

'dir' Must point to a valid directory on the external file
system and should be specified as a complete path
name.

'xmlfile' Must point to the file located under 'dir', containing the XML
document to be parsed.

'xskfile' Must point to the file located under 'dir', containing the XSL
stylesheet to be applied.

'resfile' Must point to the file located under 'dir' where the
transformed document is to be placed.
Using XML Parser for PL/SQL 29-11



Using XML Parser for PL/SQL Examples in sample/
2. Execute the xslsample  procedure inside SQL*Plus by supplying appropriate

arguments for 'dir', 'xmlfile', 'xslfile', and 'errfile'.

For example:

■ On Unix, you can do the following:

SQL>executexslsample('/private/scott', 'family.xml', 'iden.xsl',
'family.out', 'errors.txt');

■ On NT, you can do the following:

SQL>executexslsample('c:\xml\sample', 'family.xml', 'iden.xsl',
'family.out', 'errors.txt');

3. The provided test cases are: family.xml  and iden.xsl

4. You should see the following output:

Parsing XML document c:\/family.xml
Parsing XSL document c:\/iden.xsl
XSL Root element information
Qualified Name: xsl:stylesheet
Local Name: stylesheet
Namespace: http://www.w3.org/XSL/Transform/1.0
Expanded Name: http://www.w3.org/XSL/Transform/1.0:stylesheet
A total of 1 XSL instructions were found in the stylesheet
Processing XSL stylesheet
Writing transformed document

5. family.out  should contain the following:

<family lastname="Smith">
<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

You might see a delay in getting the output when executing the procedure for

the first time. This is because Oracle JVM performs various initialization tasks

'errfile'  Must point to a file you wish to use to record errors; this file
will be created under 'dir'

Argument Description
29-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL Examples in sample/
before it can execute a Java Stored Procedure (JSP). Subsequent invocations

should run quickly.

If you get errors, ensure the directory name is specified as a complete path on

the file system

Otherwise, report the problem on the XML discussion forum at

http://otn.oracle.com

XML Parser for PL/SQL Example 1: XML — family.xml
This XML file inputs domsample.sql .

<?xml version="1.0" standalone="no"?>
<!DOCTYPE family SYSTEM "family.dtd">
<family lastname="Smith">
<member memberid="m1">Sarah</member>
<member memberid="m2">Bob</member>
<member memberid="m3" mom="m1" dad="m2">Joanne</member>
<member memberid="m4" mom="m1" dad="m2">Jim</member>
</family>

XML Parser for PL/SQL Example 2: DTD — family.dtd
This DTD file is referenced by XML file, family.xml .

<!ELEMENT family (member*)>
<!ATTLIST family lastname CDATA #REQUIRED>
<!ELEMENT member (#PCDATA)>
<!ATTLIST member memberid ID #REQUIRED>
<!ATTLIST member dad IDREF #IMPLIED>
<!ATTLIST member mom IDREF #IMPLIED>

XML Parser for PL/SQL Example 3: XSL — iden.xsl
This XSL file inputs the xslsample.sql.

<?xml version="1.0"?>

Note: SQL directory aliases and shared directory syntax '\\' are

not supported at this time.
Using XML Parser for PL/SQL 29-13



Using XML Parser for PL/SQL Examples in sample/
<!-- Identity transformation -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:template match="*|@*|comment()|processing-instruction()|text()">
  <xsl:copy>
  <xsl:apply-templates select="*|@*|comment()|processing-instruction()|text()"/>
  </xsl:copy>
  </xsl:template>
</xsl:stylesheet>

XML Parser for PL/SQL Example 4: PL/SQL — domsample.sql
-- This file demonstrates a simple use of the parser and DOM API.
-- The XML file that is given to the application is parsed and the
-- elements and attributes in the document are printed.
-- It shows you how to set the parser options.

set serveroutput on;
create or replace procedure domsample(dir varchar2, inpfile varchar2,
                                      errfile varchar2) is
p xmlparser.parser;
doc xmldom.DOMDocument;

-- prints elements in a document
procedure printElements(doc xmldom.DOMDocument) is
nl xmldom.DOMNodeList;
len number;
n xmldom.DOMNode;

begin
   -- get all elements
   nl := xmldom.getElementsByTagName(doc, '*');
   len := xmldom.getLength(nl);

   -- loop through elements
   for i in 0..len-1 loop
      n := xmldom.item(nl, i);
      dbms_output.put(xmldom.getNodeName(n) || ' ');
   end loop;

   dbms_output.put_line('');
end printElements;

-- prints the attributes of each element in a document
procedure printElementAttributes(doc xmldom.DOMDocument) is
nl xmldom.DOMNodeList;
29-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL Examples in sample/
len1 number;
len2 number;
n xmldom.DOMNode;
e xmldom.DOMElement;
nnm xmldom.DOMNamedNodeMap;
attrname varchar2(100);
attrval varchar2(100);

begin

   -- get all elements
   nl := xmldom.getElementsByTagName(doc, '*');
   len1 := xmldom.getLength(nl);

   -- loop through elements
   for j in 0..len1-1 loop
      n := xmldom.item(nl, j);
      e := xmldom.makeElement(n);
      dbms_output.put_line(xmldom.getTagName(e) || ':');

      -- get all attributes of element
      nnm := xmldom.getAttributes(n);

     if (xmldom.isNull(nnm) = FALSE) then
        len2 := xmldom.getLength(nnm);

        -- loop through attributes
        for i in 0..len2-1 loop
           n := xmldom.item(nnm, i);
           attrname := xmldom.getNodeName(n);
           attrval := xmldom.getNodeValue(n);
           dbms_output.put(' ' || attrname || ' = ' || attrval);
        end loop;
        dbms_output.put_line('');
     end if;
   end loop;

end printElementAttributes;

begin

-- new parser
   p := xmlparser.newParser;

-- set some characteristics
Using XML Parser for PL/SQL 29-15



Using XML Parser for PL/SQL Examples in sample/
   xmlparser.setValidationMode(p, FALSE);
   xmlparser.setErrorLog(p, dir || '/' || errfile);
   xmlparser.setBaseDir(p, dir);

-- parse input file
   xmlparser.parse(p, dir || '/' || inpfile);

-- get document
   doc := xmlparser.getDocument(p);

-- Print document elements
   dbms_output.put('The elements are: ');
   printElements(doc);

-- Print document element attributes
   dbms_output.put_line('The attributes of each element are: ');
   printElementAttributes(doc);

-- deal with exceptions
exception

when xmldom.INDEX_SIZE_ERR then
   raise_application_error(-20120, 'Index Size error');

when xmldom.DOMSTRING_SIZE_ERR then
   raise_application_error(-20120, 'String Size error');

when xmldom.HIERARCHY_REQUEST_ERR then
   raise_application_error(-20120, 'Hierarchy request error');

when xmldom.WRONG_DOCUMENT_ERR then
   raise_application_error(-20120, 'Wrong doc error');

when xmldom.INVALID_CHARACTER_ERR then
   raise_application_error(-20120, 'Invalid Char error');

when xmldom.NO_DATA_ALLOWED_ERR then
   raise_application_error(-20120, 'Nod data allowed error');

when xmldom.NO_MODIFICATION_ALLOWED_ERR then
   raise_application_error(-20120, 'No mod allowed error');

when xmldom.NOT_FOUND_ERR then
   raise_application_error(-20120, 'Not found error');
29-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL Examples in sample/
when xmldom.NOT_SUPPORTED_ERR then
   raise_application_error(-20120, 'Not supported error');

when xmldom.INUSE_ATTRIBUTE_ERR then
   raise_application_error(-20120, 'In use attr error');

end domsample;
/
show errors;

XML Parser for PL/SQL Example 5: PL/SQL — xslsample.sql
-- This file demonstates a simple use of XSL-T transformation capabilities.
-- The XML and XSL files that are given to the application are parsed,
-- the transformation specified is applied and the transformed document is
-- written to a specified result file.
-- It shows you how to set the parser options.

set serveroutput on;
create or replace procedure xslsample(dir varchar2, xmlfile varchar2,
                                      xslfile varchar2, resfile varchar2,
                                      errfile varchar2) is
p xmlparser.Parser;
xmldoc xmldom.DOMDocument;
xmldocnode xmldom.DOMNode;
proc xslprocessor.Processor;
ss xslprocessor.Stylesheet;
xsldoc xmldom.DOMDocument;
docfrag xmldom.DOMDocumentFragment;
docfragnode xmldom.DOMNode;
xslelem xmldom.DOMElement;
nspace varchar2(50);
xslcmds xmldom.DOMNodeList;

begin

-- new parser
   p := xmlparser.newParser;

-- set some characteristics
   xmlparser.setValidationMode(p, FALSE);
   xmlparser.setErrorLog(p, dir || '/' || errfile);
   xmlparser.setPreserveWhiteSpace(p, TRUE);
   xmlparser.setBaseDir(p, dir);
Using XML Parser for PL/SQL 29-17



Using XML Parser for PL/SQL Examples in sample/
-- parse xml file
   dbms_output.put_line('Parsing XML document ' || dir || '/' || xmlfile);
   xmlparser.parse(p, dir || '/' || xmlfile);

-- get document
   xmldoc := xmlparser.getDocument(p);

-- parse xsl file
   dbms_output.put_line('Parsing XSL document ' || dir || '/' || xslfile);
   xmlparser.parse(p, dir || '/' || xslfile);

-- get document
   xsldoc := xmlparser.getDocument(p);

   xslelem := xmldom.getDocumentElement(xsldoc);
   nspace := xmldom.getNamespace(xslelem);

-- print out some information about the stylesheet
   dbms_output.put_line('XSL Root element information');
   dbms_output.put_line('Qualified Name: ' ||
                         xmldom.getQualifiedName(xslelem));
   dbms_output.put_line('Local Name: ' ||
                         xmldom.getLocalName(xslelem));
   dbms_output.put_line('Namespace: ' || nspace);
   dbms_output.put_line('Expanded Name: ' ||
                         xmldom.getExpandedName(xslelem));

   xslcmds := xmldom.getChildrenByTagName(xslelem, '*', nspace);
   dbms_output.put_line('A total of ' || xmldom.getLength(xslcmds) ||
                        ' XSL instructions were found in the stylesheet');
-- make stylesheet
   ss := xslprocessor.newStylesheet(xsldoc, dir || '/' || xslfile);

-- process xsl
   proc := xslprocessor.newProcessor;
   xslprocessor.showWarnings(proc, true);
   xslprocessor.setErrorLog(proc, dir || '/' || errfile);

   dbms_output.put_line('Processing XSL stylesheet');
   docfrag := xslprocessor.processXSL(proc, ss, xmldoc);
   docfragnode := xmldom.makeNode(docfrag);

   dbms_output.put_line('Writing transformed document');
  xmldom.writeToFile(docfragnode, dir || '/' || resfile);
29-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Using XML Parser for PL/SQL Examples in sample/
-- deal with exceptions
exception

when xmldom.INDEX_SIZE_ERR then
   raise_application_error(-20120, 'Index Size error');

when xmldom.DOMSTRING_SIZE_ERR then
   raise_application_error(-20120, 'String Size error');

when xmldom.HIERARCHY_REQUEST_ERR then
   raise_application_error(-20120, 'Hierarchy request error');

when xmldom.WRONG_DOCUMENT_ERR then
   raise_application_error(-20120, 'Wrong doc error');

when xmldom.INVALID_CHARACTER_ERR then
   raise_application_error(-20120, 'Invalid Char error');

when xmldom.NO_DATA_ALLOWED_ERR then
   raise_application_error(-20120, 'Nod data allowed error');

when xmldom.NO_MODIFICATION_ALLOWED_ERR then
   raise_application_error(-20120, 'No mod allowed error');

when xmldom.NOT_FOUND_ERR then
   raise_application_error(-20120, 'Not found error');

when xmldom.NOT_SUPPORTED_ERR then
   raise_application_error(-20120, 'Not supported error');

when xmldom.INUSE_ATTRIBUTE_ERR then
   raise_application_error(-20120, 'In use attr error');

end xslsample;
/
show errors;
Using XML Parser for PL/SQL 29-19



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Frequently Asked Questions (FAQs): XML Parser for PL/SQL

Exception in Thread Parser Error

Question
When I try to use the oraxsl  I get the following: Exception in thread "main":

java.lang.NoClassDefFoundError" oracle/xml/parser/v2/oraxsl.

How do I fix this?

Answer
Can you provide more details as to your configuration and usage? If you are

running outside the database you need to make sure the xmlparserv2.jar is

explicitly in your CLASS_PATH not simply its directory. If from the database you

need to make sure it has been properly loaded and that JServer initialized.

Encoding '8859_1' is not currently supported by the JavaVM?

Question
I parsed my XML document using the XML Parser for PL/SQL and modified some

of the node values of the DOMDocument by using "setNodeValue". When I tried to

write the modified DOMDocument to buffer or file using "write To Buffer" or

"ratatouille, both commands gave me the following error:

ORA-20101: Error occurred while accessing a file or URL: Encoding '8859_1' is
not currentlysupported by the JavaVM

Comment
I just reinstalled initjvm.sql and also installed the latest version of the XML Parser

for PL/SQL. Everything is working fine.

xmldom.GetNodeValue in PL/SQL

Question
I cannot get the element value using the PL/SQL XMLDOM. Here is the code

fragment:
29-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
...nl := xmldom.getElementsByTagName(doc, '*');
len := xmldom.getLength(nl)
;-- loop through elements
   for i in 0..len-1 loop      n := xmldom.item(nl, i);
     elename := xmldom.getNodeName(n);
eleval := xmldom.getNodeValue(n);
...elename is Ok, but eleval is NULL.

Associating with a text node does not seem to work, or I am not doing it correctly? I

receive a compile error, for example:

...t xmldom.DOMText;

...t := xmldom.makeText(n);
eleval := xmldom.getNodeValue(t);

What am I doing wrong?

Comment
I found the answer to my own question. To get the text node value associated with

the element node, you must perform additional node navigation via

xmldom.getFirstChild(n).

To illustrate, change printElements() in DOMSample.sql as follows:

begin
-- get all elements
nl := xmldom.getElementsByTagName(doc, '*');
 len := xmldom.getLength(nl);
  -- loop through elements
for i in 0..len-1 loop      n := xmldom.item(nl, i);
      dbms_output.put(xmldom.getNodeName(n));
      -- get the text node associated with the element node
      n := xmldom.getFirstChild(n);
     if xmldom.getNodeType(n) = xmldom.TEXT_NODE then         dbms_
output.put('=' &#0124; &#0124; xmldom.getNodeValue(n));
      end if;
     dbms_output.put(' ');
   end loop;
   dbms_output.put_line('');
end printElements;

This produces the following output:

The elements are:
Using XML Parser for PL/SQL 29-21



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
family member=Sarah member=Bob member=Joanne member=Jim
The attributes of each element are:

family:familylastname val=Smithmember:membermemberid val=m1member:membermemberid
val=m2member:membermemberid val=m3 mom val=m1 dad val=m2member:membermemberid
val=m4 mom val=m1 dad val=m2

XDK for PL/SQL Toolkit

Question
I downloaded XDK for PL/SQL but it requires OAS. Do you have any idea how to

run this in an IIS environment?

Answer
If you're going to use IIS, it would be better to use the XML Parser for Java V2.You'll

need Oracle9i.

Parsing DTD contained in a CLOB (PL/SQL) XML

Question
I am having problems parsing a DTD file contained in a CLOB. I used the API,

"xmlparser.parseDTDClob", provided by the XML Parser for PL/SQL.

 The following error was thrown:

"ORA-29531: no method parseDTD in class oracle/xml/parser/plsql/XMLParserCover".

The procedure xmlparser.parseDTDClob  calls a Java Stored Procedure

xmlparsercover.parseDTDClob , which in turn calls another Java Stored

Procedure xmlparsercover.parseDTD .

I have confirmed that the class file,

"oracle.xml.parser.plsql.XMLParserCove r", has been loaded into the

database, and that it has been published. So the error message does not make sense.

The procedure used to call "xmlparser.parseDTDClob" is:

create or replace procedure parse_my_dtd as p xmlparser.parser; l_clob clob;
begin   p := xmlparser.newParser;   select content into l_clob from dca_
documents where doc_id = 1;   xmlparser.parseDTDClob(p,l_clob,'site_template');
end; API Documentation for xmlparser.parseDTDClob:

parseDTDClob PURPOSE   Parses the DTD stored in the given clob SYNTAX
29-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
PROCEDURE parseDTDClob(p Parser, dtd CLOB, root VARCHAR2); PARAMETERS p
(IN)-  parser instance  dtd      (IN)-  dtd clob to parse  root     (IN)-  name
of the root element RETURNS   Nothing COMMENTS

Any changes to the default parser behavior should be effected before calling this

procedure.   An application error is raised if parsing failed, for some reason.

Description of the table dca_documents:

DOC_ID         NOT NULL   NUMBER  DOC_NAME       NOT NULL   VARCHAR2(350)  DOC_
TYPE                  VARCHAR2(30)
 DESCRIPTION               VARCHAR2(4000)  MIME_TYPE
VARCHAR2(48)  CONTENT        NOT NULL   CLOB  CREATED_BY     NOT NULL
VARCHAR2(30)  CREATED_ON     NOT NULL   DATE  UPDATED_BY     NOT NULL
VARCHAR2(30)  UPDATED_ON     NOT NULL   DATE

The contents of the DTD:

<!ELEMENT site_template (component*)> <!ATTLIST site_template template_id CDATA
#REQUIRED> <!ATTLIST site_template template_name CDATA #REQUIRED> <!ELEMENT
component (#PCDATA)> <!ATTLIST component component_id ID #REQUIRED> <!ATTLIST
component parent_id ID #REQUIRED> <!ATTLIST component component_name ID
#REQUIRED>

Answer
This is a known issue in the 1.0.1 release of the XML Parser for PL/SQL. Here is the

workaround.

1. Make a backup of ./plsqlxmlparser_1.0.1/lib/sql/xmlparsercover.sql

2. In line 18 in xmlparsercover.sql, change the string:

oracle.xml.parser.plsql.XMLParserCover.parseDTD    to

oracle.xml.parser.plsql.XMLParserCover.parseDTDClob

3. Verify that Line 18 now reads:    procedure parseDTDClob(id varchar2, DTD

CLOB, root varchar2, err in out varchar2)    is language java name

'oracle.xml.parser.plsql.XMLParserCover.parseDTDClob(java.lang.String,

oracle.sql.CLOB, java.lang.String, java.lang.String[])';

4. Save the file

5. Rerun xmlparsercover.sql in SQL*Plus Assuming you've loaded XMLParserV2

release 2.0.2.6 into the database, this should solve your problem.
Using XML Parser for PL/SQL 29-23



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
XML Parser for PL/SQL

Question
I have just started using XML Parser for PL/SQL. I am have trouble getting the text

between the begin tag and the end tag into a local variable. Do you have examples?

Answer
You just have to use the following:

selectSingleNode("pattern");
getNodeValue()

Remember, if you are trying to get value from a Element node, you have to move

down to the #text child node, for example, getFirstChild.getNodeValue()

Suppose you need to get the text contained between the starting and ending tags of

a xmldom.DOMNode n. The following 2 lines will suffice.

n_child:=xmldom.getFirstChild(n);
text_value:=xmldom.getNodeValue(n_child));

n_child is of type xmldom.DOMNode

text_value is of type varchar2

Security: ORA-29532, Granting JavaSysPriv to User

Question
We are using the XML Parser for PLSQL and are trying to parse an XML document.

We are getting a Java security error:

ORA-29532: Java call terminated by uncaught Java exception:
java.lang.SecurityException ORA-06512: at "NSEC.XMLPARSERCOVER", line 0
ORA-06512: at "NSEC.XMLPARSER", line 79 ORA-06512: at "NSEC.TEST1_XML line 36
ORA-06512: at line 5

Do we need to grant to user? The syntax appears correct. We also get the error

when we run the demo.
29-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Answer
If the document you are parsing contains a <!DOCTYPE which has a System URI

with a protocol like file:/// or http:/// then you to grant an appropriate privilege

to your current database user to be able to "reach out of the database", so to speak,

and open a stream on the file or URL.CONNECT SYSTEM/MANAGER

GRANT JAVAUSERPRIV, JAVASYSPRIV TO  youruser;

should do it.

Installing XML Parser for PL/SQL: JServer(JVM) Option

Question
I have downloaded and installed the plxmlparser_V1_0_1.tar.gz. The readme said

to use loadjava to upload xmlparserv2.jar and plsql.jar in order. I tried to load

xmlparserv2.jar using the following command:

loadjava -user test/test -r -v xmlparserv2.jar

to upload the jar file into Oracle8i. After much of the uploading, I got the following

error messages:

identical: oracle/xml/parser/v2/XMLConstants is unchanged from previously loaded
fileidentical: org/xml/sax/Locator is unchanged from previously loaded
fileloading  : META-INF/MANIFEST.MFcreating : META-INF/MANIFEST.MFError while
creating resource META-INF/MANIFEST.MF    ORA-29547: Java system class not
available: oracle/aurora/rdbms/Compilerloading  :
oracle/xml/parser/v2/mesg/XMLErrorMesg_en_US.propertiescreating :
oracle/xml/parser/v2/mesg/XMLErrorMesg_en_US.propertiesError while creating
...

Then I removed -r from the previous command:

loadjava -user test/test -v xmlparserv2.jar

I still got errors but it's down to four:

.identical: org/xml/sax/Locator is unchanged from previously loaded fileloading
: META-INF/MANIFEST.MFcreating : META-INF/MANIFEST.MFError while creating
...
I think I have installed the JServer on the database, correctly.
Using XML Parser for PL/SQL 29-25



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Answer
The JServer option is not properly installed if you're getting errors like this during

loadjava.You need to run INITJVM.SQL and INITDBJ.SQL to get the JavaVM

properly installed. Usually these are in the ./javavm subdirectory of your Oracle

Home.

XML Parser for PL/SQL: domsample

Question
I am trying to execute domsample on dom1151. This is an example that is provided

with installation. XML file family.xml is present in the directory

/hrwork/log/pqpd115CM/out.

Still I am getting the following error.

Usage of domsample is domsample(dir, inpfile, errfile)

     SQL>
     begin
     domsample('/hrwork/log/pqpd115CM/out','family.xml','errors.txt');
       end;
       /
     Error generated :
     begin
     *
     ERROR at line 1:
     ORA-20100: Error occurred while parsing: No such file or directory
     ORA-06512: at "APPS.XMLPARSER", line 22
     ORA-06512: at "APPS.XMLPARSER", line 69
     ORA-06512: at "APPS.DOMSAMPLE", line 80
     ORA-06512: at line 2

Answer
From your description it sounds like you have not completed all of the steps in the

sample/Readme without errors. After confirming the xmlparserv2.jar is loaded,

carefully complete the steps again.
29-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
XML in CLOBs

Question
In Oracle8i database, we have CLOBs which contain well formed XML documents

up to 1 MB in size.

We want the ability to extract only part of the CLOB (XML document), modify it,

and replace it back in the database rather than processing the entire document.

 Second, we want this process to run entirely on the database tier.

Which products or tools are needed for this? This may be possible with the JVM

which comes with Oracle9i. There also may be some PL/SQL tools available to

achieve this by means of stored procedures.

Answer
You can do this by using either of the following:

■ Oracle XML Parser for PLSQL

■ Create your own custom Java stored procedure wrappers over some code you

write yourselves with the Oracle XML Parser for Java.

XML Parser for PLSQL has methods like:

■ xmlparser.parseCLOB()

As well as methods like:

■ xslProcessor.selectNodes() to find what part of the doc you are looking for

■ xmldom.* methods to manipulate the content of the XML Doc

■ xmldom.writeToCLOB() to write it back

If you wanted to do surgical updates on the text of the CLOB, you would have to

use DBMS_LOB.* routines, but this would be tricky unless the changes being made

to the content don't involve any growth or shrinkage of the number of characters.

Out of memory errors in oracle.xml.parser

Question
Out of memory errors in oracle.xml.parser

 last entry at 2000-04-26 10:59:27.042:
Using XML Parser for PL/SQL 29-27



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
 VisiBroker for Java runtime caught exception:
 java.lang.OutOfMemoryError
    at oracle.xml.parser.v2.XMLAttrList.put(XMLAttrList.java:251)
    at oracle.xml.parser.v2.XMLElement.setAttribute(XMLElement.java:260)
    at oracle.xml.parser.v2.XMLElement.setAttribute(XMLElement.java:228)
    at cars.XMLServer.processEXL(XMLServer.java:122)

It's trying to create a new XML attribute and crashes with OutOfMemoryError.

We are parsing a 50Mb XML file. We have upped the java_pool_size to 150Mb with

a shared_pool_size of 200Mb.

Answer
You should not be using the DOMParser for parsing a 50Mb XML file. You need to

look at the SAXParser which parses files of arbitrary size because it does not create

an in-memory tree of nodes as it goes.

Which parser are you using, SAX or DOM - if you are using DOM, you should

seriously consider moving to SAX which processes the XML file sequentially

instead of trying to build an in-memory tree that represents the file.

Using SAX we process XML files in excess of 180Mb without any problems and

with very low memory requirements.

Rule of thumb for DOM and SAX:

DOM:

■ DOM is very good when you need some sort of random access

■ DOM consumes more memory

■ DOM is also good when you are trying to transformations of some sort

■ DOM is also good when you want to have tree iteration and want to walk

through the entire document tree

■ See if you can use more attributes over elements in your XML (to reduce the

pipe size)

SAX:

■ SAX is good when data comes in a streaming manner (using some input

stream)
29-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Is There a PL/SQL Parser Based on C?

Question
Is there a PL/SQL parser that is based on C?

Answer
 There is not one currently but there are plans to provide the PL/SQL parser on top

of the C version.

Memory Requirements When Using the Parser for PL/SQL

Question
What are the memory requirements for using the PL/SQL Parser?

Answer
While the memory use is directly dependent on the document size, it should also be

realized that the PL/SQL parser uses the Java parser and thus the Oracle JServer is

being run. JServer typically requires 40-60MB depending on its configuration.

JServer (JVM), Is It Needed to Run XML Parser for PL/SQL?

Question
Do I need to install JServer to run the XML Parser for PL/SQL?

Answer
Yes, if you are running the parser in the database, you do need JServer because the

PL/SQL Parser currently uses the XML Parser for Java under the covers. JServer

exists in both the Standard and Enterprise versions. A forthcoming version of XML

Parser for PL/SQL using C underneath is being developed for applications that do

not have access to a Java Virtual Machine (JVM).
Using XML Parser for PL/SQL 29-29



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Using the DOM API

What does the XML Parser for PL/SQL do?
The XML parser accepts any XML document giving you a tree-based API (DOM) to

access or modify the document’s elements and attributes. It also supports XSLT

which allows transformation from one XML document to another.

Question - Is it possible to dynamically set the encoding in the XML document?
No, you need to include the proper encoding declaration in your document as per

the specification. You cannot use setCharset(DOMDocument) to set the encoding

for the input of your document. SetCharset(DOMDocument) is used with

oracle.xml.parser.v2.XMLDocument to set the correct encoding for the printing.

Question - How do I get the number of elements in a particular tag using the
parser?
You can use the getElementByTagName (elem DOMElement, name IN

VARCHAR2) method that returns a DOMNodeList of all descent elements with a

given tag name. You can then find out the number of elements in that

DOMNodeList to determine the number of the elements in the particular tag.

Question - How do I parse a string?
We do not currently have any method that can directly parse an XML document

contained within a String. You can use

■ function parse (Parser, VARCHAR2) to parse XML data stored in the given

URL or the given file,

■ function parseBuffer (Parser, VARCHAR2) to parser XML data stored in the

given buffer, or

■ function parseCLOB (Parser, VARCHAR2) to parse XML data stored in the give

CLOB.

Question - How do I display my XML document?
If you are using IE5 as your browser you can display the XML document directly.

Otherwise, you can use our XSLT processor in v2 of the parser to create the HTML

document using an XSL Stylesheet. Our Java Transviewer bean also allows you to

view your XML document.
29-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Question - How do I write the XML data back using a special character sets?
You can specified the character sets for writing to a file or a buffer. Writing to a

CLOB will be using the default character set for the database that you are writing

to. Here are the methods to use:

■ procedure writeToFile(doc DOMDocument, fileName VARCHAR2, charset

VARCHAR2);

■ procedure writeToBuffer(doc DOMDocument, buffer IN OUT VARCHAR2,

charset VARCHAR2);

■ procedure writeToClob(doc DOMDocument, cl IN OUT CLOB, charset

VARCHAR2);

Question - How do I to get ampersand from characterData?
You cannot have "raw" ampersands in XML data. You need to use the entity, &amp;

instead. This is defined in the XML standard.

Question - How do I generate a document object from a file?
Check out the following example:

inpPath VARCHAR2;
inpFile VARCHAR2;
p xmlparser.parser;
doc xmldom.DOMDocument;

-- initialize a new  parser object;
p := xmlparser.newParser;
-- parse the file
xmlparser.parse(p, inpPath || inpFile);
-- generate a document object
doc := xmlparser.getDocument(p);

Question - Can the parser run on Linux?
As long as a 1.1.x or 1.2.x JavaVM for Linux exists in your installation, you can run

the Oracle XML Parser for Java there. Otherwise, you can use the C or C++ XML

Parser for Linux.

Question - How do I perform a >,<,>=, or <= comparison using the XML Parser
v2?
You need to use the entities &lt; for < and &gt; for >.
Using XML Parser for PL/SQL 29-31



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Question -Is support for Namespaces and Schema included?
The current XML parsers support Namespaces. Schema support will be included in

a future release.

Question -My parser doesn’t find the DTD file.
The DTD file defined in the <!DOCTYPE> declaration must be relative to the

location of the input XML document. Otherwise, you'll need to use the

setBaseDir(Parser, VARCHAR2) functions to set the base URL to resolve the relative

address of the DTD.

Question - Can I validate an XML file using an external DTD?
You need to include a reference to the applicable DTD in your XML document.

Without it there is no way that the parser knows what to validate against. Including

the reference is the XML standard way of specifying an external DTD. Otherwise

you need to embed the DTD in your XML Document.

Question - Do you have DTD caching?
Yes, DTD caching is optional and it is not enabled automatically.

Question - How do I get the DOCTYPE tag into the XMLDocument after its
parsed?
You need to do some preprocessing to the file, and then put it through the

DOMParser again, which will produce a valid, well-formed XMLDocument with

the DOCTYPE tag contained within.

Question - How does the XML DOM parser work?
The parser accepts an XML formatted document and constructs in memory a DOM

tree based on its structure. It will then check whether the document is well-formed

and optionally whether it complies with a DTD. It also provides methods to

traverse the tree and return data from it.

Question - How do I create a node whose value I can set later?
If you check the DOM spec referring to the table discussing the node type, you will

find that if you are creating an element node, its nodeValue is to be null and hence

cannot be set.   However, you can create a text node and append it to the element

node. You can store the value in the text node.
29-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Question - How do I extract elements from the XML file?
If you're using DOM, the you can use the NamedNodeMap methods to get the

elements.

Question - How do I append a text node to a DOMElement using PL/SQL parser?
Use the createTextNode() method to create a new text node. Then convert the

DOMElement to a DOMNode using makeNode(). Now, you can use appendChild()

to append the text node to the DOMElement.

Question - I am using XML parser with DOM but I cannot get the actual data.
What is wrong?
You need to check at which level your data resides.   For example,

■ <?xml version=1.0 ?>

■ <greeting>Hello World!</greeting>

The text is the first child node of the first DOM element in the document. According

to the DOM Level 1 spec, the "value" of an ELEMENT node is null and the

getNodeValue() method will always return null for an ELEMENT type node. You

have to get the TEXT children of an element and then use the getNodeValue()

method to retrieve the actual text from the nodes.

Question - Can the XML Parser for PL/SQL handle stylesheets that produce
non-XML documents such as HTML?
Yes it can.

Using the Sample

Question - I cannot run the sample file. Did I do something wrong in the
installation?
Here are two frequently missing steps in installing the PL/SQL parser:

■ initialize the JServer -- run $ORACLE_HOME/javavm/install/initjvm.sql

■ load the included jar files from the parser archive.
Using XML Parser for PL/SQL 29-33



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
XML Parser for PL/SQL: Parsing DTD in a CLOB

Question
I am having problems parsing a DTD file contained in a CLOB. I used the API,

"xmlparser.parseDTDClob", provided by the XML Parser for PL/SQL.

The following error was thrown:

"ORA-29531: no method parseDTD in class oracle/xml/parser/plsql/XMLParserCover"

I managed to work out the following:

The procedure xmlparser.parseDTDClob calls a Java Stored Procedure

xmlparsercover.parseDTDClob, which in turn calls another Java Stored Procedure

xmlparsercover.parseDTD.

I have confirmed that the class file -"oracle.xml.parser.plsql.XMLParserCover" has

been loaded into the database, and that it has been published. So the error message

does not make sense.

I am not able to figure out whether I am doing it right or whether this is a bug in the

parser API.

The procedure use to call "xmlparser.parseDTDClob" :
----------------------------------------------------
create or replace procedure parse_my_dtd as
p xmlparser.parser;
l_clob clob;
begin
  p := xmlparser.newParser;
  select content into l_clob from dca_documents where doc_id = 1;
  xmlparser.parseDTDClob(p,l_clob,'site_template');
end;

API Documentation for xmlparser.parseDTDClob:

parseDTDClob
PURPOSE
  Parses the DTD stored in the given clob
SYNTAX
  PROCEDURE parseDTDClob(p Parser, dtd CLOB, root VARCHAR2);
PARAMETERS
  p        (IN)-  parser instance
 dtd      (IN)-  dtd clob to parse
 root     (IN)-  name of the root element
29-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
RETURNS
  Nothing
COMMENTS

Any changes to the default parser behavior should be effected before calling this

procedure. An application error is raised if parsing failed, for some reason.

Description of the table dca_documents:

 DOC_ID         NOT NULL   NUMBER
 DOC_NAME       NOT NULL   VARCHAR2(350)
 DOC_TYPE                  VARCHAR2(30)
 DESCRIPTION               VARCHAR2(4000)
 MIME_TYPE                 VARCHAR2(48)
 CONTENT        NOT NULL   CLOB
 CREATED_BY     NOT NULL   VARCHAR2(30)
 CREATED_ON     NOT NULL   DATE
 UPDATED_BY     NOT NULL   VARCHAR2(30)
 UPDATED_ON     NOT NULL   DATE

The contents of the DTD:

<!ELEMENT site_template (component*)>
<!ATTLIST site_template template_id CDATA #REQUIRED>
<!ATTLIST site_template template_name CDATA #REQUIRED>
<!ELEMENT component (#PCDATA)>
<!ATTLIST component component_id ID #REQUIRED>
<!ATTLIST component parent_id ID #REQUIRED>
<!ATTLIST component component_name ID #REQUIRED>

Answer (a)
It appears to be a typo in the "xmlparsercover.sql" script which is defining the Java

Stored Procedures that wrap the XMLParser. It mentions the Java method name

"parseDTD" in the 'is language java name' part when "parseDTD" should be

"parseDTDClob" (case-sensitive).

If you:

1. Make a backup copy of this script

2. Edit the line that reads:

procedure parseDTDClob(id varchar2,
dtd CLOB, root varchar2, err in out varchar2) is language java name
'oracle.xml.parser.plsql.XMLParserCover.parseDTD (java.lang.String,
oracle.sql.CLOB, java.lang.String, java.lang.String[])';
Using XML Parser for PL/SQL 29-35



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
to say:

procedure parseDTDClob(id varchar2,
dtd CLOB, root varchar2, err in out varchar2) is language java name
’oracle.xml.parser.plsql.XMLParserCover.parseDTDClob
(java.lang.String, oracle.sql.CLOB, java.lang.String,
java.lang.String[])';

that is, change the string:

'oracle.xml.parser.plsql.XMLParserCover.parseDTD
to

 'oracle.xml.parser.plsql.XMLParserCover.parseDTDClob
and rerun the xmlparsercover.sql script you should be in business.

I filed a bug 1147031 to get this typo corrected in a future release.

Note: Your DTD had syntactic errors in it, but I was able to run the following

without problem after making the change above:

declare
   c clob;
   v varchar2(400) :=
'<!ELEMENT site_template  (component* )>
<!ATTLIST site_template  template_name CDATA  #IMPLIED
                         tempmlate_id  CDATA  #IMPLIED >
<!ELEMENT component  (#PCDATA )>
<!ATTLIST component  component_id   ID     #REQUIRED
                     parent_id      IDREF  #IMPLIED
                     component_name CDATA  #IMPLIED >';
begin
   delete from dca_documents;
   insert into dca_documents values(1,empty_clob())
    returning content into c;
   dbms_lob.writeappend(c,length(v),v);
   commit;
   parse_my_dtd;
end;

Answer (b)
What do you want to do with the LOB? The LOB can either be a temporary LOB or

a persistent LOB. In case of persistent lobs, you need to insert the value into a table.

In case of temp LOB you can instantiate it in your program.

For example:

   persistant lob
29-36 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
   declare
     clob_var CLOB;
   begin
     insert into tab_xxx values(EMPTY_CLOB()) RETURNING clob_col INTO
clob_var;
      dbms_lob.write(,,,,);
    // send to AQ
   end;
   temp lob -----

    declare
      a clob;
    begin
       dbms_lob.createtemporary(a,DBMS_LOB.SESSION);
       dbms_lob.write(...);
      // send to AQ

   end;
   /
Also refer to Oracle9i Application Developer’s Guide - Large Objects (LOBs). There are 6

books (in PDF) one for each language access (C(OCI), Java, PL/SQL, Visual Basic,

Pro*C/C++, Pro*Cobol)) and it is quite comprehensive. If this is PL/SQL, I believe

you can just do the following:

myClob CLOB = clob();

I have tried the DBMS_LOB.createtemporary()  which works.

Answer (c)
Here's what you need to do if you are using LOBs with AQ:

1. Create an ADT with one of the fields of type CLOB.

create type myAdt (id NUMBER, cdata CLOB);

The queue table must be declared to be of type myAdt

2. Instantiate the object - use empty_clob() to fill the LOB field

myMessage := myAdt(10, EMPTY_CLOB();
3. Enqueue the message

clob_loc clob;
enq_msgid RAW(16);
DBMS_AQ.enqueue('queue1', enq_opt, msg_prop, myMessage, enq_msgid)
Using XML Parser for PL/SQL 29-37



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
4. Get the LOB locator

select t.user_data.cdata into clob_loc
from qtable t  where t.msgid
= enq_msgid;

5. Populate the CLOB using dbms_lob.write

6. Commit

There is an example of this is in the Oracle8i Application Developer’s Guide - Advanced
Queuing. If you are using the Java API for AQ, the procedure is slightly more

complicated.

Errors When Parsing a Document
I downloaded the javaparser v2 and the xml parser utility and I’m using the PLSQL

parser interface. I have an XML file that is a composite of three tags and when

parsing it generates the following error:

ORA-20100: Error occurred while parsing: Unterminated string

When I separate the document into individual tags 2 are ok the third generates this

error:

ORA-20100: Error occurred while parsing: Invalid UTF8 encoding

1. Why is the error different when separating the data?

2. I have not been able to find an "unterminated string" in the document.

3. I’m fairly anxious since this is the only way the data is coming and I don’t have

time to figure out another parser.

Answer
If you document is the "composite of three tags" then it is not a well-formed

document as it has more than one root element. Try putting a start and end tag

around the three.

PLXML: Parsing a Given URL?

Question
I am working with the XML parser for PL/SQL on NT.According to your Parser

API documentation it is possible to parse a given url, too:> Parses xml stored in the
29-38 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
given url/file and returns> the built DOM DocumentNow, parsing from file works

fine, but any form of url raises   ORA-29532:... java.io.FileNotFoundException.

Can you give an example of a call?

Answer
To access external URLs, you need set up your proxy host and port. For example

using this type of syntax:

java -Dhttp.proxyHost=myproxy.mydomain.com -Dhttp.proxyPort=3182DOMSample
myxml.xml

Using XML Parser to Parse HTML?

Question
We need to parse HTML files as follows:

1. Find each "a href"

2. For each a href found, extract the file/pathname being linked to

3.  Substitute a database procedure call for the a href, passing the file/pathname

as a parameter.

Does it make sense to use the PL/SQL XML parser to do this? If so, how easy/hard

would it be, and how can we find out how to do this?

Answer
Since HTML files aren't necessary well formed XML documents, are you sure you

want to use XML parser? Won't PERL be a better choice? I'm not sure whether

PL/SQL parser supports the following methods but just for your information:

1. getElementsByTagName()  retrieves all matching nodes.

2. getNodeValue() will return a string.

3.  setNodeValue() sets node values.

Answer b
It supports those methods, but not over an ill-formed HTML file.
Using XML Parser for PL/SQL 29-39



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Oracle 7.3.4: Moving Data to a Web Browser (PL/SQL)

Question
I'm trying to get the data to a web browser in the client side while all the processing

has to take place on the server (oracle 7.3.4), using:

■ XML Parser for PL/SQL

■ XSQL servlet

Are these two components sufficient to get the job done?

Answer
Dependencies for XSQL Page Processor states:

■ Oracle XML Parser V2 R2.0.2.5

■ Oracle XML-SQL Utility for Java

■ Web server supporting Java Servlets

■ JDBC driver

You'll also need XSQL Page Processor itself.

Oracle 7.3.4 and XML

Question
Does the XML Parser for Java,V2, work with Oracle 7.3.4.?

Is XML- SQL Utility part of XML Parser for Java,V2, or does it need to be

downloaded separately.

Answer
1. The XML Parser for Java, V2 works with 7.3.4 as long as you have the proper

JDBC driver and run it in a VM on a middle tier or client.

2. The XML-SQL Utility includes a copy of the v2 parser in its download, as it

requires it.
29-40 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
getNodeValue(): Getting the Value of DomNode

Question
I am having problems obtaining the value between XML tags after using

xmlparser(). Below is code from the DOMSAMPLE.SQL example:

-- loop through elementsfor i in 0..len-1 loop   n := xmlparser.item(nl, i);
   dbms_output.put(xmlparser.getNodeName(n)

Comment
I encountered the same problem. I found out that getNodeValue() on Element Node

returns null. getNodeValue() on the text node returns the value.

Retrieving all Children or Grandchildren of a Node

Question
Is there a way to retrieve all children or grandchildren, and so on, of a particular

node in a DOM tree using the DOM API? Or is there a work-around? We are using

the XML Parser for PL/SQL.

Answer
Try the following:

DECLARE  nodeList   xmldom.DOMNodeList;
theElement xmldom.DOMElement;
BEGIN    :nodeList := xmldom.getElementsByTagName( theElement,'*');
:END;

This gets all children nodes rooted as the element in "theElement".

What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?

Question
We want to parse XML, apply XSL, and get the transformed result in the form of an

XML document. We are using XML Parser for PL/SQL. Our script does not add PI

instruction <?xml version="1.0"?> to the transformed result.

XSLProcessor.processXSL  method returns documentfragment object.
Using XML Parser for PL/SQL 29-41



Frequently Asked Questions (FAQs): XML Parser for PL/SQL
Create DOMdocument object from that documentfragment object using: finaldoc :=

xmldom.MakeDocument(docfragnode);

Write to result file using where finaldoc is created of type xmldom.DOMDocument:

xmldom.writeToFile(finaldoc, dir || '/' || resfile);

This method is available for DOMDocument, but we are getting:

ora-29532 "Uncaught java exception:java.lang.ClassCastException"

I am not sure if converting documentfragment to domdocument object adds

instruction "<?xml version="1.0"?> ", or must we add this instruction through XSL?

Answer
If you have created a new DOMDocument and then appended the document

fragment to it, then you can use xmldom.WriteToBuffer()  or similar routine to

serialize with the XML declaration in place.
29-42 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



An XML Pri
A

An XML Primer

This Appendix contains the following sections:

■ What is XML?

■ W3C XML Recommendations

■ XML Features

■ How XML Differs From HTML

■ Presenting XML Using Stylesheets

■ Extensibility and Document Type Definitions (DTD)

■ Why Use XML?

■ Additional XML Resources
mer A-1



What is XML?
What is XML?
XML, eXtensible Markup Language, is the standard way to identify and describe

data on the web. It is widely implementable and easy to deploy.

XML is a human-readable, machine-understandable, general syntax for describing

hierarchical data, applicable to a wide range of applications, databases,

e-commerce, Java, web development, searching, and so on.

Custom tags enable the definition, transmission, validation, and interpretation of

data between applications and between organizations.

Tag
XML elements use start tags (<) and end tags (>). For example, <author> where

author, the name of the tag, is enclosed is start and end tags. You can name tags

whatever you want.

Attributes
Attributes add more information about each XML element. Attributes can be used

to describe how the data is encoded or represented, to indicate where the links or

external resources are located, to identify and call external processes such as

applets, servlets, and so on, and to specify element instance in documents so that

you can find them rapidly during a document search. Attributes also can provide

extra information about the XML document’s content or other elements. Attributes

are not used to specify fonts, colors, or other style or formatting.

XML attributes can be held in the start tag of a start-end tag pair, or an empty tag.

They can be name value pairs. For example, <image="adx10.jpg" ada_txt="XSQL

Description"/>. Attributes must always be in quotes.

Attributes and their content are defined in DTDs or XML Schema.

Element
An example of an element in an XML document is <author>charles

kopman</author>. The element includes the start, tag, end tag, and text in the

middle of the start and end tags.

Every XML document must have a root or top-level element. This is the outermost

element and contains all the other elements. You can select any name for your root

element. In HTML, the root element was always <html>....</html>.
A-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



What is XML?
Entity
Entities are virtual storage units that can contain graphics, text, sound files, binary

data. in XML entities are represented by character strings. You can create your own

entities. Five internal entities are already defined for you to use in XML:

less than sign, <   uses    &lt;

greater than sign, > uses &gt;

ampersand &, uses &amp;

single quote or apostrophe, ’ uses &apos;

double quotation mark, " uses &quot;

Basic Rules for XML Markup
Here are eight basic XML markup rules:

■ Declare XML first. The very first line of your XML document must have an

XML declaration that states that the XML document complies with the W3C

XML recommendation. For example, <?xml version="1.0" standalone="yes" ?>

■ Use one top-level tag, or "document element" or root tag. All tags and XML

content are contained in (under) this top-level tag.

■ Every element must have a start and end tag, for example, <author>charles

kopman</author>

■ Empty elements must end />.

For example, <author name="charles kopman" />

■ Ensure that your elements are well nested in the correct hierarchy.

■ All attribute values must be quoted with single or double quotes. For example,

<author name = "charles kopman">

■ Every XML tag begins with <. Every XML entity begins with & and ends with ;

■ Remember the five internal entities, listed in the previous paragraph. See

"Entity".

■ You can tell the XML Parser which character encoding you are using in the

XML declaration at the top of your XML document. For example: <?xml

version="1.0" encoding="ISO-8859-9" ?>

For a comprehensive list of encoding, see:

http://www.isi.edu/in-notes/iana/assignments/character-sets
An XML Primer A-3



W3C XML Recommendations
W3C XML Recommendations
The World Wide Web Consortium (W3C) XML recommendations are an

ever-growing set of interlocking specifications.

■ XML 1.0 was recommended by W3C in February 1998. It has resulted numerous

additional W3C Working Groups, a Java Platform Extension Expert Group, and

the XML conversion of numerous data interchange standards such as Electronic

Data Interchange (EDI). The next version of HTML will be an XML application

known as xHTML.

■ XML Namespaces. Another W3C recommendation aimed at removing element

ambiguity in multi-namespace well-formed XML applications.

■ XML Query. The W3C standards effort to specify a query language for XML

documents.

■ XML Schema. The W3C standards effort to add simple and complex datatypes

to XML documents and replace the functionality of DTDs with an XML Schema

definition XML document.

■ XSL. XSL consists of two W3C recommendations:

■ XSL Transformations for transforming one XML document into another

■ XSL Formatting Objects for specifying the presentation of an XML

document

■ XPath. XPath is the W3C recommendation that specifies the data model and

grammar for navigating an XML document utilized by XSL-T, XLink, and XML

Query.

■ XPointer. XPointer is the W3C recommendation that specifies the identification

of individual entities or fragments within an XML document using XPath

navigation. This W3C proposed recommendation is defined at

http://www.w3.org/TR/WD-xptr

■ DOM. The W3C recommendation that specifies the Document Object Model of

an XML Document including APIs for programmatic access.

The XML family of applications is illustrated in Figure A–1.
A-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Features
Figure A–1 The XML Family of Applications (’Including XML-Based Standards’)

XML Features
The following bullets describe XML features:

■ Data Exchange, From Structured to Unstructured Data: XML enables a

universal standard syntax for exchanging data. XML specifies a rigorous,

text-based way to represent the structure inherent in data so that it can be

authored and interpreted unambiguously. Its simple, tag-based approach

leverages developers’ familiarity of HTML but provides a flexible, extensible

mechanism that can handle the gamut of "digital assets" from highly structured

database records to unstructured documents and everything in between. " W3C

R
D

F

X
LIN

K

X
P

O
IN

T
E

R

X
M

L S
ignature

S
V

G

X
H

T
M

L

X
F

O
R

M
S

X
S

L

S
M

IL

X
M

L S
chem

a

M
A

T
H

M
L

C
M

L

E
A

D

R
esource D

escription F
ram

ew
ork

X
M

L Linking Language

X
M

L Q
uery

X
P

ath

D
O

M

S
calable V

ector G
raphics

R
ecast H

T
M

L 4.0 into X
M

L

eX
tensible S

tylesheet Language

S
ynchronized M

ultim
edia Integration Language

A
llow

s interchange of equations

C
hem

ical M
arkup Language

E
ncoded A

rchival D
escription

Non W3C Grammars

XML HTML 4.0

SGML

X
M

L-B
ased

'S
tandards' / R

ecom
m

endations
An XML Primer A-5



XML Features
■ SGML Was Designed Specifically for Documents - XML is Designed for
Potentially Any Data: The SGML markup language was specifically designed

for documents. Web-centric XML is like a toolkit that can be used to write other

languages. It is not designed for documents only. Any data that can be

described in a tree can be programed in XML.

■ A Class of Data Objects - A Restricted Form of SGML: www.oasis-open.org

describes XML as follows: "... XML, describes a class of data objects called XML

documents and partially describes the behavior of computer programs which

process them. XML is an application profile or restricted form of SGML, the

Standard Generalized Markup Language. By construction, XML documents are

conforming SGML documents."

■ XML’s Many Uses...: A W3C.org press release describes XML as follows: "...

XML is primarily intended to meet the requirements of large-scale Web content

providers for industry-specific markup, vendor-neutral data exchange,

media-independent publishing, one-on-one marketing, workflow management

in collaborative authoring environments, and the processing of Web documents

by intelligent clients.

■ Metadata. XML is also finding use in certain metadata applications.

■ Internationalization. "XML is fully internationalized for both European and

Asian languages, with all conforming processors required to support the

Unicode character set in both its UTF-8 and UTF-16 encoding..." Its primary use

is for electronic publishing and data interchange..."

■ Parsed or Unparsed Storage Entities: From the W3C.org XML specification

proposal: "... XML documents are made up of storage units called entities,

which contain either parsed or unparsed data. Parsed data is made up of

characters, some of which form the character data in the document, and some of

which form markup. Markup encodes a description of the document's storage

layout and logical structure.

■ XML Processor Reads XML Documents. "... XML provides a mechanism to

impose constraints on the storage layout and logical structure. A software

module called an XML processor is used to read XML documents and provide

access to their content and structure. It is assumed that an XML processor is

doing its work on behalf of another module, called the application...."

■ Open Internet Standard. XML is gaining wide industry support from other

vendors besides, like IBM, Sun, Microsoft, Netscape, SAP, CISCO and others, as

a platform- and application-neutral format for exchanging information.
A-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



How XML Differs From HTML
Although this manual is not intended to expound on XML syntax, a brief overview

of some key XML topics is presented here. You can refer to the many excellent

resources listed in "Additional XML Resources" for more information on XML

syntax.

How XML Differs From HTML
Like HTML, XML is a subset of SGML (Structured Generalized Markup Language),

optimized for delivery over the web.

Unlike HTML, which tags elements in web pages for presentation by a browser, for

example,  <bold>Oracle</bold>, XML tags elements as data, such as,

<company>Oracle</company>. You can use XML to give context to words and

values in web pages, identifying them as data instead of simple textual or numeric

elements.

The following example is in HTML code. This is followed by the corresponding

XML example. The examples show employee data:

■ Employee number

■ Name

■ Job

■ Salary

HTML Example 1
<table>
   <tr><td>EMPNO</td><td>ENAME</td><td>JOB</td><td>SAL</td></tr>
   <tr><td>7654</td><td>MARTIN</td><td>SALESMAN</td><td>1250</td></tr>
   <tr><td>7788</td><td>SCOTT</td><td>ANALYST</td><td>3000</td></tr>
 </table>

XML Example 1
In the XML code, note the addition of XML data tags and the nested structure of the

elements.

<?xml version="1.0"?>
  <EMPLIST>
    <EMP>
    <EMPNO>7654</EMPNO>
    <ENAME>MARTIN</ENAME>
     <JOB>SALESMAN</JOB>
An XML Primer A-7



How XML Differs From HTML
     <SAL>1250</SAL>
    </EMP>
    <EMP>
    <EMPNO>7788</EMPNO>
    <ENAME>SCOTT</ENAME>
    <JOB>ANALYST</JOB>
    <SAL>3000</SAL>
    </EMP>
  </EMPLIST>

HTML Example 2
Consider the following HTML that uses tags to present data in a row of a table. Is

"Java Programming" the name of a book? A university course? A job skill? You

cannot be sure by looking at the data and tags on the page. Imagine a computer

program trying to figure this out!

<HTML>
  <BODY>
    <TABLE>
     <TR>
     <TD>Java Programming</TD>
     <TD>EECS</TD>
     <TD>Paul Thompson</TD>
     <TD>Ron<BR>Uma<BR>Lindsay</TD>
     </TR>
    </TABLE>
  </BODY>
 </HTML>

The analogous XML example has the same data, but the tags indicate what

information the data represents, not how it should be displayed. It’s clear that "Java

Programming" is the Name of a Course, but it says nothing about how it should be

displayed.

XML Example 2
<?xml version="1.0"?>
  <Course>
      <Name>Java Programming</Name>
    <Department>EECS</Department>
    <Teacher>
      <Name>Paul Thompson</Name>
    </Teacher>
    <Student>
A-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Presenting XML Using Stylesheets
      <Name>Ron</Name>
    </Student>
    <Student>
      <Name>Uma</Name>
    </Student>
    <Student>
      <Name>Lindsay</Name>
    </Student>
  </Course>

XML and HTML both represent information:

■ XML represents information content

■ HTML represents the presentation of that content

Summary of Differences Between XML and HTML
Figure 29–2 summarizes, how XML differs from HTML.

Presenting XML Using Stylesheets
A key advantage of using XML as a datasource is that its presentation (such as a web

page) can be separate from its structure and content.

■ Presentation. Applied stylesheets define its presentation. XML data can be

presented in various ways, both in appearance and organization, simply by

applying different stylesheets.

■ Structure and content: XML data defines the structure and content.

Table 29–2 XML and HTML Differences

XML HTML

Represents information content Represents the presentation of the content

Has user-defined tags Has a fixed set of tags defined by standards.

All start tags must have end tags Current browsers relax this requirement on tags
<P>, <B>, and so on.

Attributes must be single or double
quoted

Current browsers relax this requirement on tags

Empty elements are clearly indicated Current browsers relax this requirement on tags

Element names and attributes are case
sensitive

Element names and attributes are not case
sensitive.
An XML Primer A-9



Presenting XML Using Stylesheets
Stylesheet Uses
Consider these ways of using stylesheets:

■ A different interface can be presented to different users based on user profile,

browser type, or other criteria by defining a different stylesheet for each

presentation style.

■ Stylesheets can be used to transform XML data into a format tailored to the

specific application that receives and processes the data.

Stylesheets can be applied on the server or client side. The XSL-Transformation

Processor (XSL-T Processor) transforms one XML format into XML or any other

text-based format such as HTML. Oracle XML Parsers all include an XSL-T

Processor.

How to apply stylesheets and use the XSL-T Processor is described in the following

sections:

■ Chapter 4, "Using XSL and XSLT"

■ Chapter 20, "Using XML Parser for Java"

■ Oracle9i Case Studies - XML Applications, under the chapter, "Customizing

Discoverer4i(9i) Viewer with XSL"

eXtensible Stylesheet Language (XSL)
eXtensible Stylesheet Language (XSL), the stylesheet language of XML is another

W3C recommendation. XSL provides for stylesheets that allow you to do the

following:

■ Transform XML into XML or other text-based formats such as HTML

■ Rearrange or filter data

■ Convert XML data to XML that conforms with another Document Type

Definition (DTD), an important capability for allowing different applications to

share data

Cascading Style Sheets (CSS)
Cascading Style Sheets (CSS1), a W3C specification was originally created for use

with HTML documents. With CSS you can control the following aspects of your

document’s appearance:

■ Spacing. Element visibility, position, and size
A-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Extensibility and Document Type Definitions (DTD)
■ Colors and background

■ Fonts and text

CSS2 was published by W3C in 1998 and includes the following additional features:

■ System fonts and colors

■ Automatic numbering

■ Supports paged media

■ Tables and aura stylesheets

’Cascading’ here implies that you can apply several stylesheets to any one

document. On a web page deploying CSS, for example, three stylesheets can apply

or cascade:

1. User’s preferred stylesheet takes precedence

2. Cascading stylesheet

3. Browser stylesheet

Extensibility and Document Type Definitions (DTD)
Another key advantage of XML over HTML is that it leaves the specification of the

tags and how they can be used to the user. You construct an XML document by

creating your own tags to represent the meaning and structure of your data.

Tags may be defined by using them in an XML document or they may be formally

defined in a Document Type Definition (DTD). As your data or application

requirements change, you can change or add tags to reflect new data contexts or

extend existing ones.

The following is a simple DTD for the previous XML example:

  <!ELEMENT EMPLIST (EMP)*>
  <!ELEMENT EMP (EMPNO, ENAME, JOB, SAL)>
  <!ELEMENT EMPNO (#PCDATA)>
  <!ELEMENT ENAME (#PCDATA)>
  <!ELEMENT JOB (#PCDATA)>
  <!ELEMENT SAL (#PCDATA)>
  ]>

See Also: Chapter 4, "Using XSL and XSLT"
An XML Primer A-11



Extensibility and Document Type Definitions (DTD)
Well-Formed and Valid XML Documents

Well-Formed XML Documents
An XML document that conforms to the structural and notational rules of XML is

considered well-formed. A well-formed XML document does not have to contain or

reference a DTD, but rather can implicitly define its data elements and their

relationships. Well-formed XML documents must follow these rules:

■ Document must start with the XML declaration, <?xml version="1.0">

■ All elements must be contained within one root element

■ All elements must be nested in a tree structure without overlapping

■ All non-empty elements must have start and end tags

Valid XML Documents
Well-formed XML documents that also conform to a DTD are considered valid.

When an XML document containing or referencing a DTD is parsed, the parsing

application can verify that the XML conforms to the DTD and is therefore valid,

which allows the parsing application to process it with the assurance that all data

elements and their content follow rules defined in the DTD.

Note: The DOCTYPE declaration is only used when the DTD is

embedded in XML code.
A-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Why Use XML?
Why Use XML?
XML, the internet standard for information exchange is useful for the following

reasons:

■ Solves Data Interchange Problems. It facilitates efficient data communication

where the data:

■ Is in many different formats and platforms

■ It must be sent to different platforms

■ Must appear in different formats and presentations

■ Must appear on many different end devices

In short, XML solves application data interchange problems. Businesses can now

easily communicate with other businesses and workflow components using

XML. See Chapters 2 through 20 for more information and examples of how

XML solves data interchange problems.

Web-based applications can be built using XML which helps the interoperation

of web, database, networking, and middleware. XML provides a structured

format for data transmission.

■ Industry-Specific Data Objects are Being Designed Using XML. Organizations

such as OAG and XML.org are using XML to standardize data objects on a

per-industry basis. This will further facilitate business-to-business data

interchange.

■ Database-Resident Data is Easily Accessed, Converted, and Stored Using XML.
Large amounts of business data resides in relational and object-relational tables

as the database provides excellent data queriability, scalability and availability.

This data can be converted from XML format and stored in object-relational and

pure relational database structures or generated from them back to XML for

further processing.

Other Advantages of Using XML
Other advantages of using XML include the following:

■ You can make your own tags

■ Many tools support XML

■ XML is an Open standard
An XML Primer A-13



Additional XML Resources
■ XML parsers built according to the Open standard are interoperable parsers

and avoid vendor lock-in. XML specifications are widely industry approved.

■ In XML the presentation of data is separate from the data’s structure and

content. It is simple to customize the data’s presentation. See "Presenting XML

Using Stylesheets" and "Customizing Your Data Presentation".

■ Universality -- XML enables the representation of data in a manner that can be

self-describing and thus universally used

■ Persistence -- Through the materialization of data as an XML document this

data can persist while still allowing programmatic access and manipulation.

■ Platform and application independence

■ Scalability

Additional XML Resources
Here are some additional resources for information about XML:

■ The Oracle XML Handbook, Ben Chang, Mark Scardina, et.al., Oracle Press

■ Building Oracle XML Applications, Steve Muench, O’Reilly

■ XML Bible, Elliotte Rusty Harold, IDG Books Worldwide

■ XML Unleashed, Morrison et al., SAMS

■ Building XML Applications, St.Laurent and Cerami, McGraw-Hill

■ Building Web Sites with XML, Michael Floyd, Prentice Hall PTR

■ Building Corporate Portals with XML, Finkelstein and Aiken, McGraw-Hill

■ XML in a Nutshell, O’Reilly

■ Learning XML - (Guide to) Creating Self-Describing Data, Ray, O’Reilly

■ http://www.xml.com/pub/rg/46

■ http://www.xml.org/xmlorg_resources/index.shtml

■ http://www.xmlmag.com/

■ http://www.webmethods.com/

■ http://www.infoshark.com

■ http://www.clarient.org/
A-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Additional XML Resources
■ http://www.xmlwriter.com/

■ http://webdevelopersjournal.com/articles/why_xml.html

■ http://www.w3schools.com/xml/

■ http://www.xml101.com/examples/

■ http://www.w3.org/TR/REC-xml

■ http://msdn.microsoft.com/xml/default.asp

■ http://www.w3.org/TR lists W3C technical reports

■ http://www.w3.org/xml is the W3C XML activity overview page

■ http://www.xml.com includes latest industry news about xml

■ http://www.xml-cml.org has information about Chemical Markup Language

(CML). CML documents can be viewed and edited on the Jumbo browser.

■ http://www.loc.gov/ead/ Encoded Archival Description (EAD) information

developed for the US Library of Congress.

■ http://www.docuverse.com/xlf for information about Extensible Log Format

(XLF) a project to convert log files into XML log files to simplify log file

administration.

■ http://www.w3.org/Math for information about MathML which provides a

way of interchanging equations between applications.

■ http://www.naa.org Newspaper Association of America (naa) classified ads

format for easy exchange of classified ads.

■ http://www.w3.org/AudioVideo/ for information about Synchronized

Multimedia Integration Language (SMIL).

■ Oracle is an official sponsor of OASIS. OASIS, http://www.oasis-open.org, is

the world’s largest independent, non-profit organization dedicated to the

standardization of XML applications. It promotes participation from all

industry, and brings together both competitors and overlapping standards

bodies.
An XML Primer A-15



Additional XML Resources
A-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Comparing Oracle XML Parsers and Class Generators by Langu
B

Comparing Oracle XML Parsers and Class

Generators by Language

This appendix provides a comparison of the Oracle XML Parser and Class

Generators by language. The following sections are included in this appendix:

■ Comparing the Oracle XML Parsers

■ Comparing the Oracle XML Class Generators
age B-1



Comparing the Oracle XML Parsers
Comparing the Oracle XML Parsers
Table B–1 compares the features of the Oracle XML parsers according to language.

Figure B–1 Comparing Oracle XML Parsers

Java C C++ PL/SQL

Parser, Version 2

Includes DOM API 2.0 Includes DOM API 1.0
and CORE 2.0

Includes DOM API, 1.0
and CORE 2.0

Includes DOM API 2.0

Includes SAX API 2.0 Includes SAX API Includes SAX API N/A

XSLT Processor XSLT Processor XSLT Processor XSLT Processor

XML Schema Processor XML Schema Processor XML Schema Processor N/A

Namespace 1.0 support Namespace 1.0 support Namespace 1.0 support Namespace 1.0 support

XPath 1.0 support XPath 1.0 support XPath 1.0 support XPath 1.0 support

Checks if document is
well-formed

Checks if document is
well-formed

Checks if document is
well-formed

Checks if document is
well-formed

Validating and
Non-Validating
Support

Validating and
Non-Validating
Support

Validating and
Non-Validating
Support

Validating and
Non-Validating
Support
B-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Comparing the Oracle XML Parsers
Character Sets (15):

BIG 5

EBCDIC-CP-*

EUC-JP

EUC-KR

GB2312

ISO-2022-JP

ISO-2022-KR

ISO-8859-1to -9

ISO-10646-UCS-2

ISO-10646-UCS-4

KOI8-R

Shift_JIS

US-ASCII

UTF-8

UTF-16

Character Sets (15):

BIG 5

EBCDIC-CP-*

EUC-JP

EUC-KR

GB2312

ISO-2022-JP

ISO-2022-KR

ISO-8859-1to -9

ISO-10646-UCS-2

ISO-10646-UCS-4

KOI8-R

Shift_JIS

US-ASCII

UTF-8

UTF-16

Character Sets (15):

BIG 5

EBCDIC-CP-*

EUC-JP

EUC-KR

GB2312

ISO-2022-JP

ISO-2022-KR

ISO-8859-1to -9

ISO-10646-UCS-2

ISO-10646-UCS-4

KOI8-R

Shift_JIS

US-ASCII

UTF-8

UTF-16

Character Sets (12):

BIG 5

EBCDIC-CP-*

EUC-JP

EUC-KR

GB2312

ISO-2022-JP

ISO-2022-KR

ISO-8859-1to -9

KOI8-R

Shift_JIS

US-ASCII

UTF-8

Default Character Set:

 UTF-8

Default Character Set:

 UTF-8

Default Character Set:

 UTF-8

Default Character Set:

UTF-8

Operating Systems:

All Oracle9i platforms

Operating Systems:

All Oracle9i platforms

Operating Systems:

All Oracle9i platforms

Operating Systems:

All Oracle9i platforms

Error recovery until
fatal error

N/A N/A Error recovery until
fatal error

Figure B–1 Comparing Oracle XML Parsers (Cont.)

Java C C++ PL/SQL
Comparing Oracle XML Parsers and Class Generators by Language B-3



Comparing the Oracle XML Class Generators
Comparing the Oracle XML Class Generators
Table B–2 compares the features of the Oracle XML parsers and class generators,

according to language.

Figure B–2 Comparing Oracle XML Parsers and Class Generators

Java C C++ PL/SQL

Class Generator N/A N/A

oracle.xml.classgen

oracg command line utility

N/A xmlcg command line
utility

N/A

CGDocument

CGNode

ClassGenerator

InvalidContentException

Supports DTD and XML
Schema

N/A N/A

Character Sets (8):

EBCDIC-CP-US

ISO-8859-1

ISO-10646-UCS-2

ISO-10646-UCS-4

Shift_SJIS

US-ASCII

UTF-8

UTF-16

N/A Character Sets (8):

EBCDIC-CP-US

ISO-8859-1

ISO-10646-UCS-2

ISO-10646-UCS-4

Shift_SJIS

US-ASCII

UTF-8

UTF-16

N/A

Default Character Set:

US-ASCII

N/A Default Character Set:

US-ASCII

N/A
B-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: Specifications and Cheat She
C

XDK for Java: Specifications and Cheat

Sheets

This appendix describes the XDK for Java specifications and cheat sheets for each

XML component for Java. The cheat sheets list the main APIs, classes, and

associated methods for each XDK for Java component.

This appendix contains the following sections:

■ XML Parser for Java Cheat Sheets

■ Accessing XML Parser for Java

■ XDK for Java: XML Schema Processor

■ XDK for Java: XML Class Generator for Java

■ XDK for Java: XSQL Servlet

■ XML SQL Utility for Java Cheat Sheet— See Appendix H, "XML SQL Utility

(XSU) Specifications and Cheat Sheets"
ets C-1



XML Parser for Java Cheat Sheets
XML Parser for Java Cheat Sheets
Table C–1 and Table C–2  list XML Parser for Java top level classes with a brief

description of each. The following tables summarize other XML Parser for Java

classes:

■ Table C–3, "XML Parser for Java: DTD() Class Methods"

■ Table C–4, "XML Parser for Java: ElementDecl() Class"

■ Table C–5, "XML Parser for Java: NodeFactory() Class"

■ Table C–6, "XML Parser for Java: NSName() and NSResolver Classes"

■ Table C–7, "XMLParser for Java: SAXAttrList() Class""

■ Table C–8, "XMl Parser for Java: SAXParser() Class"

■ Table C–9, "XML Parser for Java: XMLParser() Class"

Note: Not all the XML Parser for Java methods are listed in the

foregoing tables.For the detailed reference documentation see:

■ Oracle9i XML Reference

■ http://otn/oracle.com/tech/xml

■ Your installed software under doc/

Table C–1 XML Parser for Java: oracle.xml.parser.v2 Classes

Class Summary Description

Interfaces

NSName This interface provides Namespace support for Element and Attr names

NSResolver This interface provides support for resolving Namespaces

XMLDocumentHandler This interface extends the org.xml.sax.DocumentHandler interface.

XMLToken Basic interface for XMLToken

Classes

AttrDecl Holds information about each attribute declared in an attribute list in the
Document Type Definition.
C-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java Cheat Sheets
Package

Oracle.xml.parser.v2

Implements the default behavior for the XMLDocumentHandler interface.

DOMParser Implements an eXtensible Markup Language (XML) 1.0 parser according to the
World Wide Web Consortium (W3C) recommendation.

DTD Implements the DOM DocumentType interface and holds the Document Type
Definition information for an XML document.

ElementDecl Represents an element declaration in a DTD.

NodeFactory Specifies methods to create various nodes of the DOM tree built during parsing.

oraxml Provides a command-line interface to validate XML files:

java oracle.xml.parser.v2.oraxml options* source

-h                         Prints this message

-v                         Partial Validation mode

-s                         Strict Validation Mode

-w                        Show warnings

-debug                  Debug mode

-e <error log>        A file to write errors to

oraxsl Provides a command-line interface to applying stylesheets on multiple XML
documents:

java oraxsl options* source? stylesheet? result?

-w                              Show warnings

-e <error log>              A file to write errors to

-l <xml file list>           List of files to transform

-d <directory>             Directory with files to transform

-x <source extension>  Extensions to exclude

-i <source extension>   Extensions to include

-s <stylesheet>           Stylesheet to use

-r <result extension>    Extension to use for results

-o <result extension>   Directory to place results

-p <param list>           List of Params

-t <# of threads>         Number of threads to use

-v                              Verbose mode

Table C–1 XML Parser for Java: oracle.xml.parser.v2 Classes(Cont.)

Class Summary Description
XDK for Java: Specifications and Cheat Sheets C-3



XML Parser for Java Cheat Sheets
SAXAttrList Implements the SAX AttributeList interface and also provides Namespace
support.

SAXParser Implements an eXtensible Markup Language (XML) 1.0 SAX parser according to
the World Wide Web Consortium (W3C) recommendation.

XMLAttr Implements the DOM Attr interface and holds information on each attribute of an
element.

XMLCDATA Implements the DOM CDATASection interface.

XMLComment Implements the DOM Comment interface.

XMLDocument Implements the DOM Document interface, represents an entire XML document
and serves the root of the Document Object Model tree.

XMLDocumentFragment Implements the DOM DocumentFragment interface.

XMLElement Implements the DOM Element interface.

XMLEntityReference

XMLNode Implements the DOM Node interface and serves as the primary datatype for the
entire Document Object Model.

XMLParser Serves as a base class for the DOMParser and SAXParser classes.

XMLPI Implements the DOM Processing Instruction interface.

XMLText Implements the DOM Text interface.

XMLTokenizer Implements an eXtensible Markup Language (XML) 1.0 parser according to the
World Wide Web Consortium (W3C) recommendation.

XSLProcessor Provides methods to transform an input XML document using a previously
constructed XSLStylesheet.

XSLStylesheet Holds XSL stylesheet information such as templates, keys, variables, and attribute
sets.

Exceptions

XMLParseException Indicates that a parsing exception occurred while processing an XML document

XSLException Indicates that an exception occurred during XSL transformation

Table C–1 XML Parser for Java: oracle.xml.parser.v2 Classes(Cont.)

Class Summary Description
C-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java Cheat Sheets
Table C–2 XML Parser for Java: DOMParser() Methods

Method Description

Constructor

DOMParser()

Creates a new parser object. Implements an eXtensible Markup Language
(XML) 1.0 parser according to the World Wide Web Consortium (W3C)
recommendation. to parse an XML document and build a DOM tree.

Methods

getDoctype() Get the DTD

getDocument() Gets the document

parseDTD(InputSource, String) Parses the XML External DTD from given input source

parseDTD(InputStream, String) Parses the XML External DTD from given input stream.

parseDTD(Reader, String) Parses the XML External DTD from given input stream.

parseDTD(String, String) Parses the XML External DTD from the URL indicated

parseDTD(URL, String) Parses the XML External DTD document pointed to by the given URL and
creates the corresponding XML document hierarchy.

setErrorStream(OutputStream) Creates an output stream for the output of errors and warnings.

setErrorStream(OutputStream, String) Creates an output stream for the output of errors and warnings.

setErrorStream(PrintWriter) Creates an output stream for the output of errors and warnings.

setNodeFactory(NodeFactory) Set the node factory.

showWarnings(boolean) Switch to determine whether to print warnings

Table C–3 XML Parser for Java: DTD() Class Methods

DTD Class Members Description

Class

DTD()

Implements the DOM DocumentType interface and holds the Document Type
Definition information for an XML document.

Methods

cloneNode(boolean) Returns a duplicate of this node, i.e., serves as a generic copy constructor for
nodes.

findElementDecl(String) Finds an element declaration for the given tag name.

findEntity(String, boolean) Finds a named entity in the DTD.
XDK for Java: Specifications and Cheat Sheets C-5



XML Parser for Java Cheat Sheets
findNotation(String) Retrieves the named notation from the DTD.

getChildNodes() A NodeList  that contains all children of this node.

getElementDecls() A NamedNodeMap containing the element declarations in the DTD.

getEntities() A NamedNodeMap containing the general entities, both external and internal,
declared in the DTD.

getName() Gets the name of the DTD, that is, the name immediately following the
DOCTYPE keyword.

getNotations() A NamedNodeMap containing the notations declared in the DTD.

getPublicId() Gets the public identifier associated with the DTD, if specified.

getSystemId() Gets the system identifier associated with the DTD, if specified.

hasChildNodes() A convenience method to allow easy determination of whether a node has any
children.

printExternalDTD(OutputStream) Writes the contents of this document to the given output stream.

printExternalDTD(OutputStream,
String)

Writes the contents of the external DTD to the given output stream.

printExternalDTD(PrintWriter) Writes the contents of this document to the given output stream.

Table C–4 XML Parser for Java: ElementDecl() Class

ElementDecl() Member
Summary Description

Class

ElementDecl()

This class represents an element declaration in a DTD.

Fields

ANY Element content type - Children can be any element

ASTERISK ContentModelParseTreeNode type - "*" node (has one children)

COMMA ContentModelParseTreeNode type - "," node (has two children)

ELEMENT ContentModelParseTreeNode type - 'leaf' node (has no children)

ELEMENTS Element content type - Children can be elements as per Content Model

EMPTY Element content type - No Children

Table C–3 XML Parser for Java: DTD() Class Methods(Cont.)

DTD Class Members Description
C-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java Cheat Sheets
MIXED Element content type - Children can be PCDATA & elements as per Content
Model

OR ContentModelParseTreeNode type - "|" node (has two children)

PLUS ContentModelParseTreeNode type - "+" node (has one children)

QMARK ContentModelParseTreeNode type - "?" node (has one children)

Methods

expectedElements(Element) Returns vector of element names that can be appended to the element.

findAttrDecl(String) Gets an attribute declaration object or null if not found

getAttrDecls() Gets an enumeration of attribute declarations

getContentElements() Returns Vector of elements that can be appended to this element

getContentType() Returns content model of element

getParseTree() Returns the root node of Content Model Parse Tree.

validateContent(Element) Validates the content of a element node.

Table C–5 XML Parser for Java: NodeFactory() Class

NodeFactory() Member
Summary Description

Constructors

NodeFactory() Specifies methods to create various nodes of the DOM tree built during
parsing. Applications can override these methods to create their own custom
classes to be added to the DOM tree while parsing. Applications have to
register their own NodeFactory using the XMLParser's setNodeFactory()
method. If a null pointer is returned by these methods, then the node will not
be added to the DOM tree.

Methods

createAttribute(String, String) Creates an attribute node with the specified tag, and text.

createCDATASection(String) Creates a CDATA node with the specified text.

createComment(String) Creates a comment node with the specified text.

createDocument() Creates a document node.

Table C–4 XML Parser for Java: ElementDecl() Class(Cont.)

ElementDecl() Member
Summary Description
XDK for Java: Specifications and Cheat Sheets C-7



XML Parser for Java Cheat Sheets
createElement(String) Creates an Element node with the specified tag.

createProcessingInstruction(String,
String)

Creates a PI node with the specified tag, and text.

createTextNode(String) Creates a text node with the specified text.

Table C–6 XML Parser for Java: NSName() and NSResolver Classes

Member Summary Description

Class

NSName

Provides Namespace support for Element and Attribute names.

Methods

getExpandedName() Gets the fully resolved name for this name

getLocalName() Gets the local name for this name

getNamespace() Gets the resolved Namespace for this name

getPrefix() Gets the prefix for this name

getQualifiedName() Gets the qualified name

Class

NSResolver

Provides support for resolving Namespaces.

Methods

resolveNamespacePrefix(String) Finds the namespace definition in scope for a given namespace prefix.

Table C–5 XML Parser for Java: NodeFactory() Class

NodeFactory() Member
Summary Description
C-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java Cheat Sheets
Table C–7 XMLParser for Java: SAXAttrList() Class

Member Summary Description

Class

SAXAttrList()

Implements the SAX AttributeList interface and also provides Namespace
support. Applications that require Namespace support can explicitly cast any
attribute list returned by an Oracle parser class to SAXAttrList  and use the
methods described here.It also implements Attributes (SAX 2.0) interface

This interface allows access to a list of attributes in three different ways:

■ By attribute index;

■ By Namespace-qualified name; or

■ By qualified (prefixed) name.

The list will not contain attributes that were declared #IMPLIED but not
specified in the start tag. It will also not contain attributes used as Namespace
declarations (xmlns*) unless the
http://xml.org/sax/features/namespace-prefixes feature is set to true (it is
false by default).

If the namespace-prefixes feature (see above) is false, access by qualified name
may not be available; if the http://xml.org/sax/features/namespaces feature
is false, access by Namespace-qualified names may not be available.

This interface replaces the now-deprecated SAX1 interface, which does not
contain Namespace support. In addition to Namespace support, it adds the
getIndex methods (below). The order of attributes in the list is unspecified,
and will vary with each implementation.

Methods

getExpandedName(int) Get the expanded name for an attribute in the list (by position)

getLength() Return the number of attributes in this list.

getLocalName(int) Get the local name for an attribute in the list (by position)

getName(int) Return the name of an attribute in this list (by position).

getNamespace(int) Get the resolved namespace for an attribute in the list (by position)

getPrefix(int) Get the namespace prefix for an attribute in the list (by position)

getQualifiedName(int) Get the qualified name for an attribute in the list (by position)
XDK for Java: Specifications and Cheat Sheets C-9



XML Parser for Java Cheat Sheets
/getType(int index) Looks up an attribute's type by index. The attribute type is one of the strings
"CDATA", "ID", "IDREF", "IDREFS", "NMTOKEN", "NMTOKENS", "ENTITY",
"ENTITIES", or "NOTATION" (always in upper case).

If the parser has not read a declaration for the attribute, or if the parser does
not report attribute types, then it must return the value "CDATA" as stated in
the XML 1.0 Recommendation (clause 3.3.3, "Attribute-Value Normalization").

For an enumerated attribute that is not a notation, the parser will report the
type as "NMTOKEN".

getType(java.lang.String qName) Looks up an attribute's type by XML 1.0 qualified name.

getType(java.lang.String uri,
java.lang.String localName)

Looks up an attribute's type by Namespace name.

getType(String) Return the type of an attribute in the list (by name).

getValue(int) Return the value of an attribute in the list (by position).

getValue(String) Return the value of an attribute in the list (by name).

Table C–8 XMl Parser for Java: SAXParser() Class

Member Summary Description

Constructors

SAXParser() Creates a new parser object. Implements an eXtensible Markup Language
(XML) 1.0 SAX parser according to the World Wide Web Consortium (W3C)
recommendation. Applications can register a SAX handler to receive
notification of various parser events. XMLReader is the interface that an XML
parser's SAX2 driver must implement. This interface allows an application to
set and query features and properties in the parser, to register event handlers
for document processing, and to initiate a document parse.

All SAX interfaces are assumed to be synchronous: the parse methods must
not return until parsing is complete, and readers must wait for an
event-handler callback to return before reporting the next event. This interface
replaces the (now deprecated) SAX 1.0 Parser interface. XMLReader interface
contains two important enhancements over the old Parser interface:

■ It adds a standard way to query and set features and properties; and

■ It adds Namespace support, which is required for many higher-level XML
standards.

Methods

Table C–7 XMLParser for Java: SAXAttrList() Class(Cont.)

Member Summary Description
C-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java Cheat Sheets
setDocumentHandler(DocumentHand
ler)

SAX applications can use this to register a new document event handler.

setDTDHandler(DTDHandler) SAX applications can use this to register a new DTD event handler.

setEntityResolver(EntityResolver) SAX applications can use this to register a new entity resolver

setErrorHandler(ErrorHandler) SAX applications can use this to register a new error event handler.

Table C–9 XML Parser for Java: XMLParser() Class

Member Summary Description

Class

XMLParser()

This class serves as a base class for the DOMParser and SAXParser classes. It
contains methods to parse eXtensible Markup Language (XML) 1.0 documents
according to the World Wide Web Consortium (W3C) recommendation. This
class can not be instantiated (applications can use the DOM or SAX parser
depending on their requirements).

Methods

getReleaseVersion() Returns the release version of the Oracle XML Parser

getValidationMode() Returns the validation mode

parse(InputSource) Parses the XML from given input source

parse(InputStream) Parses the XML from given input stream.

parse(Reader) Parses the XML from given input stream.

parse(String) Parses the XML from the URL indicated

parse(URL) Parses the XML document pointed to by the given URL and creates the
corresponding XML document hierarchy.

setBaseURL(URL) Sets the base URL for loading external entities and DTDs.

setDoctype(DTD) Sets the DTD

setLocale(Locale) Applications can use this to set the locale for error reporting.

setPreserveWhitespace(boolean) Sets the white space preserving mode

setValidationMode(boolean) Sets the validation mode

Table C–8 XMl Parser for Java: SAXParser() Class

Member Summary Description
XDK for Java: Specifications and Cheat Sheets C-11



Accessing XML Parser for Java
Accessing XML Parser for Java
Oracle XML Parsers are provided with Oracle9i Enterprise and Standard editions

from release 8.1.6 and higher. If you do not have these editions you can download

the XML Parsers from: http://otn.oracle.com/tech/xml/

Installing XML Parser for Java, Version 2
These sections describe how to install the Windows NT and UNIX versions of the

XML Parser for Java, Version 2.

XML Parser for Java, Version 2: Windows NT Installation To install the Oracle XML Parser

for Java (v2) on Windows NT follow these steps:

1. Install JDK-1.1.x. or above and either unzip or WinZip executable.

2. Download the Oracle XML Parser in ZIP format.

3. Unzip xmlparser.zip into a directory. For example:

C:\[your directory]> unzip xmlparser.zip

4. The result should be the following files and directories:

* license.html — copy of license agreement

* readme.html — release and installation notes

* doc\ — directory for documents

* lib\ — directory for parser class files

* sample\ — sample code files

XML Parser for Java, Version 2: UNIX Installation To install the XML Parser for Java (v2)

in UNIX follow these steps:

1. Install JDK-1.1.x or above and GNU gzip.

2. Download the Oracle XML Parser in .tar.gz format.

3. Extract the distribution package into a directory. For example:

#gzip -dc xmlparser.tar.gz | tar xvf -

4. The result should be the following files and directories:

* license.html — copy of license agreement
C-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for Java, Version 2 Specifications
* readme.html — release and installation notes

* doc/ — directory for documents

* lib/ — directory for parser class files

* sample/ — sample code files

Sample Code
See Chapter 20, "Using XML Parser for Java", for sample code and suggestions on

how to use the XML Parsers.

XML Parser for Java, Version 2 Specifications
The Oracle XML Parser for Java, Version 2 specifications follow:

■ New high performance architecture

■ Integrated support for W3C XSLT 1.0 Recommendation

■ Supports validation and non-validation modes

■ Built-in Error Recovery until fatal error

■ Integrated Document Object Model (DOM) Level 1.0 and 2.0 API

■ Integrated SAX 1.0 and 2.0 API

■ Supports W3C Recommendation for XML Namespaces

Requirements
Operating Systems: Any with Java 1.1.x support

JAVA: JDK 1.1.x. or above.

The contents of both the Windows and UNIX versions are identical. They are

simply archived differently for operating system compatibility and your

convenience.

Online Documentation
Documentation for Oracle XML Parser for Java is located in the doc/ directory in

your install area.
XDK for Java: Specifications and Cheat Sheets C-13



XML Parser for Java, Version 2 Specifications
Release Specific Notes
The readme.html file in the root directory of the archive contains release specific

information including bug fixes, API additions, and so on.

Oracle XML Parser is an early adopter release and is written in Java. It will check if

an XML document is well-formed and, optionally, if it is valid. The parser will

construct a Java object tree which can be accessed. It also contains an integrated

XSLT processor for transforming XML documents.

Standards Conformance
The parser conforms to the following W3C Recommendations:

■ Extensible Markup Language (XML) 1.0

 http://www.w3.org/TR/1998/REC-xml-19980210

■ Namespaces in XML at

 http://www.w3.org/TR/REC-xml-names/

■ Document Object Model Level 1 1.0

 http://www.w3.org/TR/REC-DOM-Level-1/

■ Document Object Model Level 2

 http://www.w3.org/TR/DOM-Level-2-Core/

■ XML Path Language (XPath) 1.0

 http://www.w3.org/TR/1999/REC-xpath-19991116

■ XML Transformations (XSLT) 1.0

 http://www.w3.org/TR/1999/REC-xslt-19991116

The parser also conforms to the following W3C Proposed Recommendations:

■ XML Schema Part 1: Structures

  http://www.w3.org/TR/xmlschema-1

■ XML Schema Part 2: Datatypes

 http://www.w3.org/TR/xmlschema-2

In addition, the parser implements the following interfaces defined by the XML

development community:

■ Simple API for XML (SAX) 1.0 and 2.0 at

http://www.megginson.com/SAX/index.html
C-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Parser V1 and V2
Supported Character Set Encodings
The XML Parser for Java currently supports the following encodings:

■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

Default: UTF-8 is the default encoding if none is specified. Any other ASCII or

EBCDIC based encodings that are supported by the JDK may be used.However,

they must be specified in the format required by the JDK instead of as official

character set names defined by IANA.

Error Recovery
The parser also provides error recovery. It will recover from most errors and

continue processing until a fatal error is encountered.

Oracle XML Parser V1 and V2
Version 2 of the XML Parser for Java, besides incorporating an XSLT processor, has

been re-architected from version 1. This has resulted in a number of changes to the
XDK for Java: Specifications and Cheat Sheets C-15



Oracle XML Parser V1 and V2
class names especially those that support Namespaces. The following summarizes

changes you have to take into account when converting code from v1 to v2.

NEW CLASS STRUCTURE
oracle.xml.parser package has been renamed to oracle.xml.parser.v2.

The following are new interfaces:

■ NSName

■ XMLDocumentHandler

The following interfaces have been removed:

■ NSAttr

■ NSAttributeList

■ NSDocumentHandler

■ NSElement

The following are new classes in v2:

■ DOMParser

■ DefaultXMLDocumentHandler

■ SAXAttrList

■ SAXParser

■ XSLProcessor

■ XSLStylesheet

■ XSLException

Table C–3 lists the XDK for Java classes that have been reorganized.

Note: This summary is based upon XML Parser versions v1.0.1.4

as v1 and v2.0.0.0 as v2.

Table C–10 XML Parser for Java: Classes Reoganization and Changes

Version 1 Version 2

Class Reorganization ■
C-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Oracle XML Parser V1 and V2
XMLParser ■ XMLParser (includes methods applicable to DOM and
SAX access),

■ DOMParser (includes methods specific to DOM access),

■ SAXParser (includes methods specific to SAX access)

NSDocumentHandler XMLDocumentHandler

NSAttr XMLAttr (supports Namespace, NSAttr interface has
been removed)

NSAttributeList SAXAttrList (includes methods in NSAttributeList and
org.xml.sax.AttributeList)

NSElement XMLElement (supports Namespace, NSElelement interface
removed)

PUBLIC CLASS /
VARIABLE /
CONSTRUCTOR /
METHOD CHANGES

AttrDecl

getName() <eliminated> Use XMLNode.getNodeName

getPresence() getAttrPresence()

getType() getAttrType()

getValues() getEnumerationValues()

ElementDecl

ASTERISK Reserved for future implementation.

COMMA Reserved for future implementation.

ELEMENT Reserved for future implementation.

OR Reserved for future implementation.

PLUS Reserved for future implementation.

QMARK Reserved for future implementation.

getParseTree() Reserved for future implementation.

Table C–10 XML Parser for Java: Classes Reoganization and Changes

Version 1 Version 2
XDK for Java: Specifications and Cheat Sheets C-17



Oracle XML Parser V1 and V2
XMLAttr New constructor - XMLAttr(String, String, String, String)

New methods - cloneNode(), getPrefix()

XMLElement New constructor - XMLElement(String, String, String)

New methods:

■ checkNamespace(String, String)

■ getElementsByTagName(String, String),

■ resolveNamespacePrefix(String)

XMLNode New method - transformNode()

XMLText New method - getNodeValue()

Table C–10 XML Parser for Java: Classes Reoganization and Changes

Version 1 Version 2
C-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: XML Schema Processor
XDK for Java: XML Schema Processor
Table C–12 summarizes the XML Schema Processor for Java’s classes, constructors,

and methods.

See Also:

■ Chapter 21, "Using XML Schema Processor for Java"

■ The readme.txt file in your installed software’s doc/ directory.

This software can also be downloaded from

http://otn.oracle.com/tech/xml

Table C–11 XML Schema Processor for Java: Classes, Constructors, Methods

Members Description

Class XMLSchema Sets top-level XMLSchema document declarations & definitions plus schema
location and schema target namespace. XMLSchema objects are created by
XSDBuilder as a result of processing XMLSchema documents. They are used
by XSDParser for instance XML documents validation and by XSDBuilder as
imported schemas.

Constructors XMLSchema()

XMLSchema(int)

Class

XDSBuilder

Builds an XMLSchema object from XMLSchema document. XMLSchema
object is a set of objects (Infoset items) corresponding to top-level schema
declarations & definitions. Schema document is 'XML' parsed and converted
to a DOM tree. This schema DOM tree is 'Schema' parsed in a following
order: (if any) builds a schema object and makes it visible. (if any) is replaced
by corresponding DOM tree. Top-level declarations & definitions are
registered as a current schema infoset items. Finally, top-level tree elements
(infoset items) are 'Schema' parsed. The result XMLSchema object is a set
(infoset) of objects (top-level input elements). Object's contents is a tree with
nodes corresponding to low-level element/group decls/refs preceded by
node/object of type SNode containing cardinality info (min/maxOccurs).

Methods
build(InputStream,URL)

Builds an XMLSchema object

build(Reader, URL) Builds an XMLSchema object

build(String) Builds an XMLSchema object

build(String, String) Builds an XMLSchema object

build(String, URL) Builds an XMLSchema object
XDK for Java: Specifications and Cheat Sheets C-19



XDK for Java: XML Class Generator for Java
XDK for Java: XML Class Generator for Java
Oracle XML Class Generator for Java requires Oracle XML Parser for Java. The XML

Document, printed by the generated classes, confirms to the W3C recommendation

for Extensible Markup Language (XML) 1.0. Oracle XML Class Generator can

optionally generate validating Java source files. It also optionally generates Javadoc

comments in the source files.

Oracle XML Class Generator supports the following encodings for printing the

XMLDocument:

UTF-8, UTF-16, ISO-10646-UCS-2, ISO-10646-UCS-4, US-ASCII, EBCDIC-CP-US,

ISO-8859-1, and Shift_SJIS.

ASCII is the default encoding if none is specified. Any other ASCII or EBCDIC

based encodings that are supported by the JDK can be used.

Installing XML Class Generator for Java
Installing the Oracle XML Java Class Generator, is described in the following

sections.

XML Class Generator for Java: Windows NT Installation
To install Oracle XML Class Generators on Windows NT, follow these steps:

1. Install JDK-1.1.x. or above and either unzip or run the WinZip executable.

build(URL) Builds an XMLSchema object

build(XMLDocument,URL) Builds XMLSchema from XML document

getObject() Returns the schema object.

setError(XMLError) Sets XMLError object.

setLocale(Locale) Sets locale for error reporting.

XSDException Indicates that an exception occurred during XMLSchema validation.

Methods getMessage() Override getMessage, in order to construct error message from error id, and
error params

getMessage(XMLError) Get localized message based on the XMLError sent as parameter

Table C–11 XML Schema Processor for Java: Classes, Constructors, Methods(Cont.)

Members Description
C-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: XML Class Generator for Java
2. Download the Oracle XML Class Generator for Java in ZIP format from

 http://otn.oracle.com/tech/xml/classgen

This Class Generator for Java uses 63KB. Select the following:

■ Software, from the XML top menu >

■ Oracle XML Class Generator for Windows NT

3. Unzip xmlclassgenV1_0_0.zip into a directory. For example:

C:\[your directory]>unzip xmlclassgenV1_0_0.zip

4. The result should be the following files and directories:

■ license.html — copy of license agreement

■ readme.html — release and installation notes

■ doc\ — directory for documents

■ lib\ — directory for classgen class files

■ sample\ — sample code files

XML Class Generator for Java: UNIX Installation
To install Oracle XML Class Generator for Java in UNIX, follow these steps:

1. Install JDK-1.1.x or above and GNU gzip.

2. Download the Oracle XML Class Generator for Java in .tar.gz format from

http://otn.oracle.com/tech/xml/classgen

This Class Generator for Java uses 63Kb. Select the following:

■ Software, from the XML top menu >

■ Oracle XML Class Generator for UNIX

3. Extract the distribution package into a directory. For example:

#gzip -dc xmlclassgenV1_0_0.tar.gz | tar xvf -

4.  The result should be the following files and directories:

■ license.html — copy of license agreement

■ readme.html — release and installation notes
XDK for Java: Specifications and Cheat Sheets C-21



XML Class Generator for Java Cheat Sheet
■ doc/ — directory for documents

■ lib/ — directory for classgen class files

■ sample/ — sample code files

XML Class Generator for Java Cheat Sheet
Table C–12 lists the main XML Class Generator for Java APIs and top level classes

with a brief description of each. Table C–13lists the XML Class Generator for Java

methods.

Table C–12 XML Class Generator for Java: APIs and Classes

Classes Description

Classes

CGDocument Serves as the base document class for the Class Generated generated classes.
Constructor for the Root element of the DTD. Parameters: doctype  - Name
of the root Element of the DTD, dtd  - The DTD used to generate the classes

CGNode Serves as the base class for nodes generated by the Class Generated

DTDClassGenerator Used by the Class Generator to generate classes against a DTD

SchemaClassGenerator Used by the Class Generator to generate classes against a Schema

CGXSDElement This class is the base class for the classes generated by Schema Class
generator. The classes corresponding to the top level elements in a schema
extends this class. This class contains the code for initialization and building
the schema from the schema file which is required for validation purpose.
Note: Since the validation is not supported, the static block for reading the
schema file is not used. It should be possible to read schema file from
anywhere in the scope of the CLASSPATH. It is required to read the schema
file using getResource.

Exceptions

InvalidContentException Definition of InvalidContentException thrown by dtdcompiler classes
C-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Class Generator for Java Cheat Sheet
Table C–13 XML Class Generator for Java: Methods

Methods  Description

Class

CGDocument(String, DTD)

Constructor for the Root element of the DTD. public abstract class
CGDocument extends CGNode. Serves as the base document class for the
DTD compiler generated classes

Methods

print(OutputStream)

Prints the constructed XML Document

print(OutputStream, String) Prints the constructed XML Document

public abstract class CGNode extends Object. Serves as the base class for nodes generated by the XML
Class Generator.

Class

generate(DTD, String) Traverses the DTD with element doctype as root and generates Java classes

Methods

setGenerateComments(boolean) Switch to determine whether to generate java doc comments. Default -
TRUE

setJavaPackage(String) Sets the package for the classes generated. Default - No package

setOutputDirectory(String) Sets the output directory. Default - current directory

setSerializationMode(boolean) Switch to determine if the DTD should be saved as a serialized object or as
text file.

setValidationMode(boolean) Switch to determine whether the classes generated should validate the XML
Document being constructed.Default - TRUE

Class

CGNode(String) Constructor for the Elements of the DOM Tree

Methods

addCDATASection(string) Adds CDATA Section to the Element.

addData(String) Adds PCDATA to the Element

addNode(CGNode) Adds a node as a child to the element

getCGDocument() Gets the base document (root Element)

getDTDNode() Gets the static DTD from the base document

setAttribute(String, String) Sets the value of the Attribute

setDocument(CGDocument) Sets the base document (root Element)

storeID(String, String) Store this value for an ID identifier, so that we can later verify IDREF values
XDK for Java: Specifications and Cheat Sheets C-23



XML Class Generator for Java Cheat Sheet
oracg Command Line Utility
oracg  invokes the DTD or Schema Class Generator for Java to generate classes

based on DTD and Schema respectively, depending on the input arguments given.

Table C–14lists the oracg arguments.

storeIDREF(String, String) Store this value for an IDREF identifier, so that we can later verify, if an
corresponding ID was defined.

validateContent() Checks if the content of the element is valid as per the Content Model
specified in DTD

validEntity(String) Checks if the ENTITY identifier is valid

validID(String) Checks if the ID identifier is valid

validNMTOKEN(String) Checks if the NMTOKEN identifier is valid

Class

CGXSDElement

This class serves as the base class for the all the generated classes
corresponding to the XML Schema generated by Schema Class Generator

Methods

addAttribute(String, String) Add the attribute of a given node to the hashtable. Parameters: attName  -
the attribute name, attValue  - the attribute value

addElement(Object)  Add the elements of a given element node to the vector corresponding to
the elements. Parameters: elem  - the object which needs to be added

getAttributes() public java.util.Hashtable getAttributes(). Return the attributes. Returns:
attributes the hashtable containing attribute name and value

getChildElements() public java.util.Vector getChildElements(). Get the vector having all the local
elements. Returns: elemChild vector

getNodeValue() public java.lang.String getNodeValue(). Return the node value

getType() public java.lang.Object getType(). Return the type

print(XMLOutputStream) public void print(oracle.xml.parser.v2.XMLOutputStream. out). Print an
element node. Parameters: out  - the stream where the output is printed

printAttributes(XMLOutputStre
am, String)

public void printAttributes(oracle.xml.parser.v2.XMLOutputStream out,
java.lang.String name). Print an attribute node. Parameters: out  - the stream
where the output is printed, name - the attribute name

setNodeValue(String) protected void setNodeValue(java.lang.String value). Set the node value of
an element. Parameters: value  - the node value

Table C–13 XML Class Generator for Java: Methods(Cont.)

Methods  Description
C-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: XSQL Servlet
XDK for Java: XSQL Servlet

Downloading and Installing XSQL Servlet

Downloading XSQL Servlet from OTN
You can download XSQL Servlet distribution from:

http://otn.oracle.com/tech/xml/xsql_servlet

1. Click on the 'Software' icon at the top of the page:

2. Log in with your OTN username and password (registration is free if you do

not already have an account).

3. Selecting whether you want the NT or Unix download (both contain the same

files)

4. Acknowledge the licensing agreement and download survey

5. Clicking on xsqlservlet_v1.0.2.0.tar.gz or xsqlservlet_v1.0.2.0.zip

Extracting the Files in the Distribution
To extract the contents of XSQL Servlet distribution, do the following:

1. Choose a directory under which you would like the .\xsql directory and

subdirectories to go, for example, C:\

2. Change directory to C:\, then extract the XSQL downloaded archive file there.

For example:

Table C–14 oracg Command Line Utility

oracg Argument Description

-h Prints the help message text

- d<dtd file> DTD file (.dtd file)

- s <schema file> Schema file (.xsd file)

- o <Output dirname> Output directory

- c Comment option

- p <package name/s> The package names corresponding to namespace
XDK for Java: Specifications and Cheat Sheets C-25



XDK for Java: XSQL Servlet
UNIX:

    tar xvfz xsqlservlet_v1.0.2.0.tar.gz

Windows NT:

    pkzip25 -extract -directories xsqlservlet_v1.0.2.0.zip

using the pkzip25 command-line tool or the WinZip visual archive extraction

tool.

Windows NT: Starting the Web-to-go Server
XSQL Servlet comes bundled with the Oracle Web-to-go server that is

pre-configured to use XSQL Pages. The Web-to-go web server is a single-user

server, supporting the Servlet 2.1 API, used for mobile application deployment and

for development. This is a great way to try XSQL Pages out on your Windows

machine before delving into the details of configuring another Servlet Engine to run

XSQL Pages.

Windows NT users can get started quickly with XSQL Pages by following these

steps:

1. Running the xsql-wtg.bat script in the .\xsql directory.

2. Browsing the URL http://localhost:7070/xsql/index.html

If you get an error starting this script, edit the xsql-wtg.bat file to properly set the

two environment variables JAVA and XSQL_HOME to appropriate values for your

machine.

    REM ----------------------------------------------
    REM Set the 'JAVA' variable equal to the full path
    REM of your Java executable.
    REM ----------------------------------------------
    set JAVA=J:\java1.2\jre\bin\java.exe
    set XSQL_HOME=C:\xsql
    REM ----------------------------------------------
    REM Set the 'XSQL_HOME' variable equal to the full
    REM path of where you install the XSQL Servlet

Note: The Web-to-go Web server is part of Oracle's development

and deployment platform for mobile applications. For more

information on Web-to-go, see http://www.oracle.com/mobile.
C-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: XSQL Servlet
    REM distribution.
    REM ----------------------------------------------

Then, repeat the two steps above.

If you get an error connecting to the database when you try the demos, you'll need

to go on to the next section, then try the steps above again after setting up your

database connection information correctly in the XSQLConfig.xml file.

Setting Up the Database Connection Definitions for Your Environment
The demos are set up to use the SCOTT schema on a database on your local

machine (that is, the machine where the web server is running). If you are running a

local database and have a SCOTT account whose password is TIGER, then you are

all set. Otherwise, you need to edit the .\xsql\lib\XSQLConfig.xml  file to

correspond to your appropriate values for username, password, dburl, and driver

values for the connection named "demo".

<?xml version="1.0" ?>
    <XSQLConfig>
         :
      <connectiondefs>
        <connection name="demo">
          <username>scott</username>
          <password>tiger</password>
          <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
          <driver>oracle.jdbc.driver.OracleDriver</driver>
        </connection>
        <connection name="lite">
          <username>system</username>
          <password>manager</password>
          <dburl>jdbc:Polite:POlite</dburl>
          <driver>oracle.lite.poljdbc.POLJDBCDriver</driver>
        </connection>
      </connectiondefs>
          :
</XSQLConfig>

UNIX: Setting Up Your Servlet Engine to Run XSQL Pages
UNIX users and any user wanting to install the XSQL Servlet on other web servers

should continue with the instructions below depending on the web server you're

trying to use. In every case, there are 3 basic steps:
XDK for Java: Specifications and Cheat Sheets C-27



XSQL Servlet Specifications
1. Include the list of XSQL Java archives as well as the directory where

XSQLConfig.xml resides (by default ./xsql/lib) in the server CLASSPATH.

2. Map the .xsql file extension to the oracle.xml.xsql.XSQLServlet servlet class

3. Map a virtual directory /xsql to the directory where you extracted the XSQL

files (to access the on-line help and demos)

XSQL Servlet Specifications
The following lists the XSQL servlet specifications:

■ Produce dynamic XML documents based on one or more SQL queries

■ Optionally transforms the resulting XML document in the server or client using

XSLT

■ Supports W3C XML 1.0 Recommendation

■ Supports Document Object Model (DOM) Level 1.0 and 2.0 API

■ Support the W3C XSLT 1.0 Recommendation

■ Supports W3C Recommendation for XML Namespaces

Character Set Support
XSQL Servlet supports the following character set encodings:

■ BIG

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

Note: For convenience, the xsqlservlet_v1.0.2.0.tar.gz and

xsqlservlet_v1.0.2.0.zip distributions include the .jar files for the

Oracle XML Parser for Java (V2), the Oracle XML SQL Utilities for

Java, and the 8.1.6 JDBC driver in the .\lib subdirectory, along with

Oracle XSQL Pages' own .jar archive.
C-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java: XSQL Servlet Cheat Sheets
■ ISO-2022-KR

■ ISO-8859-1to -9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

XDK for Java: XSQL Servlet Cheat Sheets
Table C–15 and Table C–16 list XSQL Servlet APIs and top level classes with a brief

description of each.

Table C–15 XSQL Servlet Classes

Class Summary Description

Interfaces

XSQLActionHandler Interface that must be implemented by all XSQL Action Element Handlers

XSQLPageRequest Interface representing a request for an XSQL Page

Classes

XSQLActionHandlerImpl Base Implementation of XSQLActionHandler that can be extended to create
your own custom handlers.

XSQLCommandLine Command-line Utility to process XSQL Pages.

XSQLPageRequestImpl Base implementation of the XSQLPageRequest interface that case be used to
derive new kinds of page request implementations.

XSQLParserHelper Common XML Parsing Routines

XSQLRequest Programmatically process a request for an XSQL Page.

XSQLServlet Servlet to enable HTTP GET-ing of and POST-ing to XSQL Pages

XSQLServletPageRequest Implementation of XSQLPageRequest for Servlet-based XSQL Page requests.

XSQLStylesheetProcessor XSLT Stylesheet Processing Engine
XDK for Java: Specifications and Cheat Sheets C-29



XDK for Java: XSQL Servlet Cheat Sheets
Table C–16 XSQLPageRequest Interface Methods

Methods Description

createNestedRequest(URL, Dictionary) Returns an instance of a nested Request

getConnectionName() Returns the name of the connection being used for this request May be null
if no connection set/in-use.

getErrorWriter() Returns a PrintWriter to print out errors processing this request

getJDBCConnection() Gets the JDBC connection being used for this request (can be null)

getPageEncoding() Returns encoding of source XSQL Page associated with this request

getParameter(String) Returns the value of the requested parameter

getPostedDocument() Returns the content of Posted XML for this request as an XML Document

getRequestParamsAsXMLDocument() Returns the content of a Request parameters as an XML Document

getRequestType() Returns a string identifying the type of page request being made.

getSourceDocumentURI() Returns a String representation of the requested document's URI

getStylesheetParameter(String) Gets a stylesheet parameter by name

getStylesheetParameters() Gets an enumeration of stylesheet parameter names

getStylesheetURI() Returns the URI of the stylesheet to be used to process the result.

getUserAgent() Returns a String identifier of the requesting program

getWriter() Returns a PrintWriter used for writing out the results of a page request

getXSQLConnection() Gets the XSQLConnection Object being used for this request Might be null.

isIncludedRequest() Returns true if this request is being included in another.

isOracleDriver() Returns true if the current connection uses the Oracle JDBC Driver

printedErrorHeader() Returns the state of whether an Error Header has been printed

requestProcessed() Allows Page Request to Perform end-of-request processing

setConnectionName(String) Sets the connection name to use for this request

setContentType(String) Sets the content type of the resulting page

setIncludingRequest(XSQLPageReques
t)

Sets the Including Page Request object for this request.

setPageEncoding(String) Sets encoding of source XSQL page associated with this request.

setPageParam(String, String) Sets a dynamic page parameter value.
C-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility for Java Cheat Sheet
XML SQL Utility for Java Cheat Sheet
See Appendix H, "XML SQL Utility (XSU) Specifications and Cheat Sheets".

setPostedDocument(Document) Allows programmatic setting of the Posted Document

setPrintedErrorHeader(boolean) Sets whether an Error Header has been printed

setStylesheetParameter(String, String) Sets the value of a parameter to be passed to the associated stylesheet

setStylesheetURI(String) Sets the URI of the stylesheet to be used to process the result.

translateURL(String) Returns a string representing an absolute URL resolved relative to the base
URI for this request.

useConnectionPooling() Returns true if connection pooling is desired for this request

useHTMLErrors() Returns true if HTML-formatted error messages are desired for this request

Table C–16 XSQLPageRequest Interface Methods (Cont.)

Methods Description
XDK for Java: Specifications and Cheat Sheets C-31



XML SQL Utility for Java Cheat Sheet
C-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for Java Beans: Specifications and Cheat She
D

XDK for Java Beans: Specifications and

Cheat Sheets

This Appendix describes the XDK for Java Bean specifications and cheat sheets.

This appendix contains the following section:

■ XDK for Javabeans: Transviewer Bean Cheat Sheet

■ DOMBuilder Bean Cheat Sheet

■ XSLTransformer Bean Cheat Sheet

■ XMLTreeView Bean Cheat Sheet

■ XMLTransformPanel Cheat Sheet

■ DBViewer Bean Cheat Sheet

■ XMLSourceView Bean Cheat Sheet

■ DBAccess Bean Cheat Sheet
ets D-1



XDK for Javabeans: Transviewer Bean Cheat Sheet
XDK for Javabeans: Transviewer Bean Cheat Sheet
The followng tables list the primary classes and methods of the Transviewer Beans

in XDK for Java Beans:

■ Table D–1, "DOMBuilder Bean Classes and Methods"

■ Table D–2, "XSLTransformer Bean Classes and Methods"

■ Table D–3, "XMLTreeView Bean Class and Methods"

■ Table D–4, "XMLTransformPanel Bean Classes and Methods"

■ Table D–5, "DBViewer Bean Class and Methods"

■ Table D–6, "XMLSourceView Bean Classes and Methods"

■ Table D–7, "DBAccess Classes and Methods"

DOMBuilder Bean Cheat Sheet
Table D–1 lists the primary classes and methods in DOMBuilder Bean.

Table D–1 DOMBuilder Bean Classes and Methods

Class Summary Description

Interfaces

DOMBuilderErrorListener This interface must be implemented in order to receive
notifications when error is found during parsing.

DOMBuilderListener This interface must be implemented in order to receive
notifications about events during the asyncronous parsing.

Classes

DOMBuilder This class encapsulates an eXtensible Markup Language (XML)
1.0 parser to parse an XML document and build a DOM tree.
The parsing is done in a separate thread and
DOMBuilderListener interface must be used for notification
when the tree is built.

DOMBuilderBeanInfo
D-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XSLTransformer Bean Cheat Sheet
XSLTransformer Bean Cheat Sheet
Table D–2 lists the primary XSLTransformer Bean classes and methods.

DOMBuilderErrorEvent This class defines the error event which is sent when parse
exception occurs.

DOMBuilderEvent The event object that DOMBuilder uses to notify all registered
listeners about parse events.

ResourceManager Simple semaphore that maintains access to fixed number of
logical resources.

Table D–2 XSLTransformer Bean Classes and Methods

Member Summary Description

Class

XSLTransformer Applies XSL transformation in a background thread.

Constructors

XSLTransformer() XSLTransformer constructor

XSLTransformer(int) XSLTransformer constructor

Methods

addXSLTransformerErrorListener(XSLTransformerErrorListene
r)

Adds an error event listener

addXSLTransformerListener(XSLTransformerListener) Adds a listener

Returns the unique XSLTransformer id

getResult() Returns the document fragment for the resulting
document.

processXSL(XSLStylesheet, InputStream, URL) Initiate XSL Transformation in the background.

processXSL(XSLStylesheet, Reader, URL) Initiate XSL Transformation in the background.

processXSL(XSLStylesheet, URL, URL) Initiate XSL Transformation in the background.

Initiate XSL Transformation in the background.

processXSL(XSLStylesheet, XMLDocument, OutputStream) Initiate XSL Transformation in the background.

Table D–1 DOMBuilder Bean Classes and Methods(Cont.)

Class Summary Description
XDK for Java Beans: Specifications and Cheat Sheets D-3



XMLTreeView Bean Cheat Sheet
XMLTreeView Bean Cheat Sheet
Table D–3 lists the XMLTreeView Bean primary class and methods.

removeDOMTransformerErrorListener(XSLTransformerErrorLi
stener)

Renmoves an error event listener

removeXSLTransformerListener(XSLTransformerListener) Removes a listener

run()

Sets the error stream used by the XSL processor

showWarnings(boolean) Sets the showWarnings flage used by the XSL processor

Class

XSLTransformerErrorEvent

The error event object that XSLTransformer uses to notify
all registered listeners about transformation error events.

Class

XSLTransformerEvent

The event object that XSLTransformer uses to notify all
registered listeners about transformation events.

Class

XSLTransformerErrorListener

This interface must be implemented in order to receive
notifications about error events during the asyncronous
transformation.

Class

XSLTransformerListener

This interface must be implemented in order to receive
notifications about events during the asyncronous
transformation.

Table D–3 XMLTreeView Bean Class and Methods

Class or Method Description

Class

XMLTreeView()

The class constructor.

Methods

getPreferredSize() Returns the XMLTreeView preffered size.

setXMLDocument(Document) Associates the XMLTreeViewer with a XML document.

updateUI() Forces the XMLTreeView to update/refresh UI.

Table D–2 XSLTransformer Bean Classes and Methods(Cont.)

Member Summary Description
D-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLTransformPanel Cheat Sheet
XMLTransformPanel Cheat Sheet
Table D–4 lists XMLTransformPanel Bean primary classes and methods.

Class XMLTreeViewBeanInfo() --

Methods getIcon(int) --

getPropertyDescriptors() --

Table D–4 XMLTransformPanel Bean Classes and Methods

Classes and Methods Description

Class

XMLTransformPanel

XMLTransformPanel visual bean applies XSL transformations on
XML documents. Visualizes the result. Allows editing of input
XML and XSL documents/files.

Constructors

XMLTransformPanel()

public  XMLTransformPanel() The class constructor. Creates an
object of type XMLTransformPanel.

XMLTransformPanelBeanInfo

Constructors
XMLTransformPanelBeanInfo()

public  XMLTransformPanelBeanInfo()

Methods

getIcon(int)

public java.awt.Image getIcon(int iconKind) Overrides:
java.beans.SimpleBeanInfo.getIcon(int) in class
java.beans.SimpleBeanInfo

getPropertyDescriptors() public java.beans.PropertyDescriptor[] getPropertyDescriptors()
Overrides: java.beans.SimpleBeanInfo.getPropertyDescriptors() in
class java.beans.SimpleBeanInfo

Table D–3 XMLTreeView Bean Class and Methods(Cont.)

Class or Method Description
XDK for Java Beans: Specifications and Cheat Sheets D-5



DBViewer Bean Cheat Sheet
DBViewer Bean Cheat Sheet
Table D–5 lists the DBViewer bean primary class and methods.

Table D–5 DBViewer Bean Class and Methods

Class and Methods Description

Class DBViewer()  Constructs a new instance. Displays database queries or any XML by applying
XSL stylesheets and visualizing the resulted HTML in scrollable swing panel. This
bean has tree buffers: XML, XSL and result buffer. DBViewer bean allows the
calling program to load/save the buffers from various sources and to apply
stylesheet transformation to the XML buffer using the stylesheet in the XSL buffer.
The result can be stored in the result buffer. The XML and XSL buffers content can
be shown as source or as a tree structure. The result buffer content can be rendered
as HTML and also shown as source or tree structure. The XML buffer can be
loaded from database query. All buffers can load and save files from CLOB tables
in Oracle database and from file system as well. Therefore, the control can be also
used to move files between the file system and the user schema in the database.

Methods getHostname() Get database host name

getInstancename() Get database instance name

getPassword() Get user password

getPort() Get database port number

getResBuffer() Get the content of the result buffer

getResCLOBFileName() Get result CLOB file name

getResCLOBTableName() Get result CLOB table name

getResFileName() Get Result file name

getUsername() Get user name

getXmlBuffer() Get the content of the XML buffer

getXmlCLOBFileName() Get XML CLOB file name

getXmlCLOBTableName() Get XML CLOB table name

getXmlFileName() Get XML file name

getXMLStringFromSQL(St
ring)

Get XML presentation of result set from SQL query

getXslBuffer() Get the content of the XSL buffer

getXslCLOBFileName() Get the XSL CLOB file name
D-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBViewer Bean Cheat Sheet
getXslCLOBTableName() Get XSL CLOB table name

getXslFileName() Get XSL file name

loadResBuffer(String) Load the result buffer from file

loadResBuffer(String,
String)

Load the result buffer from CLOB file

loadResBufferFromClob() Load the result buffer from CLOB file

loadResBufferFromFile() Load the result buffer from file

loadXmlBuffer(String) Load the XML buffer from file

loadXmlBuffer(String,
String)

Load the XML buffer from CLOB file

loadXmlBufferFromClob() Load the XML buffer from CLOB file

loadXmlBufferFromFile() Load the XML buffer from file

loadXMLBufferFromSQL(
String)

Load the XML buffer from SQL result set

loadXslBuffer(String) Load the XSL buffer from file

loadXslBuffer(String,
String)

Load the XSL buffer from CLOB file

loadXslBufferFromClob() Load the XSL buffer from CLOB file

loadXslBufferFromFile() Load the XSL buffer from file

parseResBuffer() Parse the result buffer and refresh the tree view and source view

parseXmlBuffer() Parse the XML buffer and refresh the tree view and source view

parseXslBuffer() Parse the XSL buffer and refresh the tree view and source view

saveResBuffer(String) Save the result buffer to file

saveResBuffer(String,
String)

Save the result buffer to CLOB file

saveResBufferToClob() Save the result buffer to CLOB file

saveResBufferToFile() Save the result buffer to file

saveXmlBuffer(String) Save the XML buffer to file

Table D–5 DBViewer Bean Class and Methods (Cont.)

Class and Methods Description
XDK for Java Beans: Specifications and Cheat Sheets D-7



DBViewer Bean Cheat Sheet
saveXmlBuffer(String,
String)

Save the XML buffer to CLOB file

saveXmlBufferToClob() Save the XML buffer to CLOB file

saveXmlBufferToFile() Save the XML buffer to file

saveXslBuffer(String) Save the XSL buffer to file

saveXslBuffer(String,
String)

Save the XSL buffer to CLOB file

saveXslBufferToClob() Save the XSL buffer to CLOB file

saveXslBufferToFile() Save the XSL buffer to file

setHostname(String) Set database host name

setInstancename(String) Set database instance name

setPassword(String) Set user password

setPort(String) Set database port number

setResBuffer(String) Set new text in the result buffer

setResCLOBFileName(Stri
ng)

Set Result CLOB file name

setResCLOBTableName(St
ring)

Set Result CLOB table name

setResFileName(String) Set Result file name

setResHtmlView(boolean) Show the result buffer as rendered HTML

setResSourceEditView(boo
lean)

Show the result buffer as XML source and enter edit mode

setResSourceView(boolean
)

Show the result buffer as XML source

setResTreeView(boolean) Show the result buffer as XML tree view

setUsername(String) Set user name

setXmlBuffer(String) Set new text in the XML buffer

setXmlCLOBFileName(Stri
ng)

Set XML CLOB table name

Table D–5 DBViewer Bean Class and Methods (Cont.)

Class and Methods Description
D-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBViewer Bean Cheat Sheet
setXmlCLOBTableName(S
tring)

Set XML CLOB table name

setXmlFileName(String) Set XML file name

setXmlSourceEditView(bo
olean)

Show the XML buffer as XML source and enter edit mode

setXmlSourceView(boolea
n)

Show the XML buffer as XML source

setXmlTreeView(boolean) Show the XML buffer as tree

setXslBuffer(String) Set new text in the XSL buffer

setXslCLOBFileName(Stri
ng)

Set XSL CLOB file name

setXslCLOBTableName(Str
ing)

Set XSL CLOB table name

setXslFileName(String) Set XSL file name

setXslSourceEditView(bool
ean)

Show the XSL buffer as XML source and enter edit mode

setXslSourceView(boolean
)

Show the XSL buffer as XML source

setXslTreeView(boolean) Show the XSL buffer as tree

transformToDoc() Transfroms the content of the XML buffer by applying the stylesheet from the XSL
buffer.

transformToRes() Apply the stylesheet transformation from the XSL buffer to the XML in the XML
buffer and stores the result into the result buffer

transformToString() Transfroms the content of the XML buffer by applying the stylesheet from the XSL
buffer.

Table D–5 DBViewer Bean Class and Methods (Cont.)

Class and Methods Description
XDK for Java Beans: Specifications and Cheat Sheets D-9



XMLSourceView Bean Cheat Sheet
XMLSourceView Bean Cheat Sheet
Table D–6 lists the primary classes and methods of XMLSourceView Bean.

Table D–6 XMLSourceView Bean Classes and Methods

Class and Methods Description

Class

XMLSourceView

Shows an XML document. Recognizes the following XML token
types: Tag, Attribute Name, Attribute Value, Comment, CDATA,
PCDATA, PI Data, PI Name and NOTATION Symbol. Each token
type has a foreground color and font. The default color/font
settings can be changed by the user. Takes as input an
org.w3c.dom.Document object.

Fields

inputDOMDocument, jScrollPane,
jTextPane, xmlStyledDocument

Constructors

XMLSourceView()

The class constructor. Creates an object of type XMLSourceView.

Methods

fontGet(AttributeSet)

Extracts and returns the font from a given attributeset.
Parameters: attributeset - The source Attributeset. Returns: The
extracted Font.

fontSet(MutableAttributeSet, Font) Sets the mutableattributeset font. Parameters: mutableattributeset
- The mutableattributeset to update, font - The new Font for the
mutableattributeset.

getAttributeNameFont() Returns the Attribute Value font. Returns: The Font object.

getAttributeNameForeground() Returns the Attribute Name foreground color. Returns: The Color
object.

getAttributeValueFont() Returns the Attribute Value font. Returns: The Font object.

getAttributeValueForeground() public java.awt.Color getAttributeValueForeground() Returns the
Attribute Value foreground color. Returns: The Color object.

getBackground() public java.awt.Color getBackground() Returns the background
color.Overrides: java.awt.Component.getBackground() in class
java.awt.Component Returns: The Color object.

getCDATAFont() public java.awt.Font getCDATAFont() Returns the CDATA font.
Returns: The Font object.

getCDATAForeground() public java.awt.Color getCDATAForeground() Returns the
CDATA foreground color. Returns: The Color object.
D-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLSourceView Bean Cheat Sheet
getCommentDataFont() public java.awt.Font getCommentDataFont() Returns the
Comment Data font. Returns:  The Font object.

getCommentDataForeground() public java.awt.Color getCommentDataForeground() Returns the
Comment Data foreground color.Returns: The Color object

getEditedText() public java.lang.String getEditedText() Returns the edited text.
Returns: The String object containing the edited text.

getJTextPane() public javax.swing.JTextPane getJTextPane() Returns the viewer
JTextPane component. Returns: The JTextPane object used by
XMLSourceViewer

getMinimumSize() public java.awt.Dimension getMinimumSize() Returns the
XMLSourceView minimal size. Overrides:
javax.swing.JComponent.getMinimumSize() in class
javax.swing.JComponent Returns: The Dimension object
containing the XMLSourceView minimum size.

getNodeAtOffset(int) public org.w3c.dom.Node getNodeAtOffset(int i) Returns the
XML node at a given offset. Parameters: i - The node offset.
Returns:  The Node object from offset i.

getPCDATAFont() public java.awt.Font getPCDATAFont() Returns the PCDATA
font. Returns: The Font object.

getPCDATAForeground() public java.awt.Color getPCDATAForeground() Returns the
PCDATA foreground color. Returns: The Color object.

getPIDataFont() public java.awt.Font getPIDataFont() Returns the PI Data font.
Returns: The Font object

getPIDataForeground() public java.awt.Color getPIDataForeground() Returns the PI Data
foreground color. Returns: The Color object.

getPINameFont() public java.awt.Font getPINameFont() Returns the PI Name font.
Returns: The Font object.

getPINameForeground() public java.awt.Color getPINameForeground() Returns the PI
Data foreground color. Returns: The Color object.

getSymbolFont() public java.awt.Font getSymbolFont() Returns the NOTATION
Symbol font. Returns: The Font object.

getSymbolForeground() public java.awt.Color getSymbolForeground() Returns the
NOTATION Symbol foreground color.Returns: The Color object.

getTagFont() public java.awt.Font getTagFont() Returns the Tag font. Returns:
The Font object.

Table D–6 XMLSourceView Bean Classes and Methods(Cont.)

Class and Methods Description
XDK for Java Beans: Specifications and Cheat Sheets D-11



XMLSourceView Bean Cheat Sheet
getTagForeground() public java.awt.Color getTagForeground() Returns the Tag
foreground color. Returns: The Color object.

getText() public java.lang.String getText() Returns the XML document as a
String. Returns: The String object containing the XML document.

isEditable() public boolean isEditable() Returns boolean to indicate whether
this object is editable.

selectNodeAt(int) public void selectNodeAt(int i) Moves the cursor to XML Node at
offset i. Parameters: i - The node offset.

setAttributeNameFont(Font) public void setAttributeNameFont(java.awt.Font font) Sets the
Attribute Name font. Parameters:  font - The new Font for
Attribute Name.

setAttributeNameForeground(Color) public void setAttributeNameForeground(java.awt.Color color)
Sets the Attribute Name foreground color.Parameters: color - The
new Color for Attribute Name.

setAttributeValueFont(Font) public void setAttributeValueFont(java.awt.Font font) Sets the
Attribute Value font. Parameters: font - The new Font for
Attribute Value.

setAttributeValueForeground(Color) public void setAttributeValueForeground(java.awt.Color color)
Sets the Attribute Value foreground color. Parameters: color - The
new Color for Attribute Value.

setBackground(Color) public void setBackground(java.awt.Color color) Sets the
background color. Overrides:
javax.swing.JComponent.setBackground(java.awt.Color) in class
javax.swing.JComponent Parameters: color - The new background
Color.

setCDATAFont(Font) public void setCDATAFont(java.awt.Font font) Sets the CDATA
font. Parameters: font - The new Font for CDATA.

setCDATAForeground(Color) public void setCDATAForeground(java.awt.Color color) Sets the
CDATA foreground color. Parameters:  color - The new Color for
CDATA.

setCommentDataFont(Font) public void setCommentDataFont(java.awt.Font font) Sets the
Comment font. Parameters: font - The new Font for the XML
Comments.

setCommentDataForeground(Color) public void setCommentDataForeground(java.awt.ColoSets the
Comment foreground color. Parameters: color - The new Color for
Comment.r color)

Table D–6 XMLSourceView Bean Classes and Methods(Cont.)

Class and Methods Description
D-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XMLSourceView Bean Cheat Sheet
setEditable(boolean) public void setEditable(boolean edit) Sets the specified boolean to
indicate whether this object should be editable. Parameters: doc -
The new boolean value.

setPCDATAFont(Font) public void setPCDATAFont(java.awt.Font font) Sets the PCDATA
font. Parameters: font - The new Font for PCDATA.

setPCDATAForeground(Color) public void setPCDATAForeground(java.awt.Color color) Sets the
PCDATA foreground color. Parameters: color - The new Color for
PCDATA.

setPIDataFont(Font) public void setPIDataFont(java.awt.Font font) Sets the PI Data
font. Parameters: font - The new Font for PI Data.

setPIDataForeground(Color) public void setPIDataForeground(java.awt.Color color) Sets the PI
Data foreground color. Parameters:  color - The new Color for PI
Data.

setPINameFont(Font) public void setPINameFont(java.awt.Font font) Sets the PI Name
font. Parameters: font - The new Font for the PI Names.

setPINameForeground(Color) public void setPINameForeground(java.awt.Color  color) Sets the
PI Name foreground color. Parameters: color - The new Color for
PI Name.

setSelectedNode(Node) public void setSelectedNode(org.w3c.dom.Node node) Sets the
cursor position at the selected XML node. Parameters: node - The
selected node.

setSymbolFont(Font) public void setSymbolFont(java.awt.Font font) Sets the
NOTATION Symbol font. Parameters:  color - The new Font for
NOTATION Symbol.

setSymbolForeground(Color) public void setSymbolForeground(java.awt.Color color) Sets the
NOTATION Symbol foreground color. Parameters: color - The
new Color for NOTATION Symbol.

setTagFont(Font) public void setTagFont(java.awt.Font font) Sets the Tag font.
Parameters:  font - The new Font for the XML Tags.

setTagForeground(Color) public void setTagForeground(java.awt.Color color) Sets the Tag
foreground color. Parameters: color - The new Color for the XML
Tags.

setXMLDocument(Document) public void setXMLDocument(org.w3c.dom.Document
document) Associates the XMLviewer with a XML document.
Parameters: doc - The Document document to display. See Also:
getText()

Table D–6 XMLSourceView Bean Classes and Methods(Cont.)

Class and Methods Description
XDK for Java Beans: Specifications and Cheat Sheets D-13



DBAccess Bean Cheat Sheet
DBAccess Bean Cheat Sheet
Table D–7 lists the DBAccess Bean primary classes and methods.

Table D–7 DBAccess Classes and Methods

Classes and Methods Description

Class

DBAccess

Maintains CLOB tables that can hold multiple XML and text
documents. Each table is created using the statement: CREATE
TABLE tablename FILENAME CHAR( 16) UNIQUE, FILEDATA
CLOB) LOB(FILEDATA) STORE AS (DISABLE STORAGE IN
ROW). Each XML (or text) document is stored as a row in the
table and the FILENAME field holds a unique string that is used
as a key to retrieve, update or delete the row. The document text is
stored in the FILEDATA field that is a CLOB object. This CLOB
tables are automatically maintained by the transviewer bean. The
CLOB tables maintained by this class can be later used by the
transviewer bean. The class creates and deletes CLOB tables, list a
CLOB table content and also add, replace or delete text
documents in this CLOB tables.

Constructors

DBAccess()

public  DBAccess()

Methods

createBLOBTable(Connection, String)

Create BLOB table Parameters:  con - - the Connection object
tablename - - the table name Returns: true if successfull

createXMLTable(Connection, String) Create XML table Parameters: con - - the Connection object,
tablename - - the table name Returns: true if successfull

deleteBLOBName(Connection, String,
String)

Delete binary file from BLOB table Parameters: con - - the
Connection object, tablename - - the table name, xmlname - - the
file name Returns: true if successfull

deleteXMLName(Connection, String,
String)

Delete file from XML table Parameters: con - - the Connection
object, tablename - - the table name, xmlname - - the file name
Returns:  true if successfull

dropBLOBTable(Connection, String) public boolean dropBLOBTable(java.sql.Connection con,
java.lang.String tablename) Delete BLOB table Parameters: con - -
the Connection object, tablename - - the table name Returns: true
if successfull

dropXMLTable(Connection, String) public boolean dropXMLTable(java.sql.Connection con,
java.lang.String tablename) Delete XML table Parameters: con - -
the Connection object, tablename - - the table name Returns: true
if successfull
D-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



DBAccess Bean Cheat Sheet
getBLOBData(Connection, String, String) public byte[] getBLOBData(java.sql.Connection con,
java.lang.String tablename, java.lang.String xmlname) Retrieve
binary file from BLOB table  Parameters: con - - the Connection
object, tablename - - the table name, xmlname - - the file name
Returns: file as a byte array

getNameSize() public int getNameSize() Returns the size of the field where the
filename is kept. Returns: filename size

getXMLData(Connection, String, String) public java.lang.String getXMLData(java.sql.Connection con,
java.lang.String tablename, java.lang.String xmlname) Retrieve
text file from XML table Parameters: con - - the Connection object,
tablename - - the table name, xmlname - - the file name Returns:
file as a string

getXMLNames(Connection, String) public java.lang.String[] getXMLNames(java.sql.Connection con,
java.lang.String tablename) Returns all file names in XML table
Parameters: con - - the Connection object, tablename - - the table
name Returns: String array with all file names in this table

getXMLTableNames(Connection, String) public java.lang.String[] getXMLTableNames(java.sql.Connection
con, java.lang.String tablePrefix) Gets all XML tables with names
starting with a given string Parameters: con - - the Connection
object, tablePrefix - - table prefix string Returns: array of all XML
tables that begin with tablePrefix

insertBLOBData(Connection, String, String,
byte[])

 public boolean insertBLOBData(java.sql.Connection con,
java.lang.String tablename, java.lang.String xmlname, byte[]
xmldata) Inserts binary file as a row in BLOB table Parameters:
con - - the Connection object tablename - - the table name,
xmlname - - the file name, xmldata - - byte array with file data
Returns: true if successfull

insertXMLData(Connection, String, String,
String)

public boolean insertXMLData(java.sql.Connection con,
java.lang.String tablename, java.lang.String xmlname,
java.lang.String xmldata) Inserts text file as a row in XML table
Parameters: con - - the Connection object, tablename - - the table
name, xmlname - - the file name, xmldata - - string with the file
data Returns: true if successfull

Table D–7 DBAccess Classes and Methods(Cont.)

Classes and Methods Description
XDK for Java Beans: Specifications and Cheat Sheets D-15



DBAccess Bean Cheat Sheet
isXMLTable(Connection, String) public boolean isXMLTable(java.sql.Connection con,
java.lang.String tablename) Check if the table is XML table.
Parameters: con - - the Connection object, tableName - - the table
name to test Returns: true if this is XML table

replaceXMLData(Connection, String,
String, String)

public boolean replaceXMLData(java.sql.Connection con,
java.lang.String tablename, java.lang.String xmlname,
java.lang.String xmldata) Replace text file as a row in XML table
Parameters: con - - the Connection object, tablename - - the table
name, xmlname - - the file name, xmldata - - string with the file
data Returns: true if successfull

xmlTableExists(Connection, String) public boolean xmlTableExists(java.sql.Connection con,
java.lang.String tablename) Checks if the XML table exists
Parameters: con - - the Connection object, tablename - - the table
name Returns: true if the table exists

See Also: Chapter 23, "Using XML Transviewer Beans".

Table D–7 DBAccess Classes and Methods(Cont.)

Classes and Methods Description
D-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for C: Specifications and Cheat S
E

XDK for C: Specifications and Cheat Sheets

This appendix contains the following sections:

■ XML Parser for C Specifications

■ XML Parser for C Revision History

■ XML Parser for C: Parser Functions

■ XML Parser for C: DOM API Functions

■ XML Parser for C: Namespace API Functions

■ XML Parser for C: XSLT API Functions

■ XML Parser for C: SAX API Functions
heets E-1



XML Parser for C Specifications
XML Parser for C Specifications
Oracle provides a set of XML parsers for Java, C, C++, and PL/SQL. Each of these

parsers is a stand-alone XML component that parses an XML document (or a

standalone DTD) so that it can be processed by an application. Library and

command-line versions are provided and support the following "standards" and

features:

■ DOM (Document Object Model) support is provided compliant with the W3C

DOM 1.0 Recommendation. These APIs permit applications to access and

manipulate an XML document as a tree structure in memory. This interface is

used by such applications as editors.

■ SAX (Simple API for XML) support is also provided compliant with the SAX 1.0

specification. These APIs permit an application to process XML documents

using an event-driven model.

■ Support is also included for W3C recommendation for XML Namespaces 1.0

thereby avoiding name collisions, increasing reusability and easing application

integration.

■ Supports validation and non-validation modes.

■ Supports W3C XML 1.0 Recommendation.

■ Integrated support for W3C XSLT 1.0 Recommendation.

Validating and Non-Validating Mode Support
The XML Parser for C can parse XML in validating or non-validating modes.

■ In non-validating mode, the parser verifies that the XML is well-formed and

parses the data into a tree of objects that can be manipulated by the DOM API.

■ In validating mode, the parser verifies that the XML is well-formed and

validates the XML data against the DTD (if any).

Validation involves checking whether or not the attribute names and element tags

are legal, whether nested elements belong where they are, and so on.

Example Code
See Chapter 24, "Using XML Parser for C" for example code and suggestions on

how to use the XML Parser for C.
E-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C Specifications
Online Documentation
Documentation for Oracle XML Parser for C is located in the $ORACLE_
HOME/xdk/c/parser/doc  directory.

Release Specific Notes
The readme.html file in the root directory of the archive contains release specific

information including bug fixes, API additions, and so on.

The Oracle XML parser for C is written in C. It will check if an XML document is

well-formed, and optionally validate it against a DTD. The parser will construct an

object tree which can be accessed via a DOM interface or operate serially via a SAX

interface.

Standards Conformance
XML Parser for C conforms to the following standards:

■ The W3C recommendation for Extensible Markup Language (XML) 1.0 at

http://www.w3.org/TR/1998/REC-xml-19980210

■ The W3C recommendation for Document Object Model Level 1 1.0 at

http://www.w3.org/TR/REC-DOM-Level-1/

■ The W3C proposed recommendation for Namespaces in XML at

http://www.w3.org/TR/1998/PR-xml-names-19981117

■ The Simple API for XML (SAX) 1.0 at

http://www.megginson.com/SAX/index.html

■ The W3C Recommendation for XSL Transform 1.0 at

http://www.w3.org/TR/xslt

Supported Character Set Encodings
XML Parser for C supports documents in the following encodings, in addition to

the ones specified in Appendix A, “Character Sets”, of Oracle9i Globalization and
National Language Support Guide:

■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR
XDK for C: Specifications and Cheat Sheets E-3



XML Parser for C Specifications
■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1, ISO-8859-2, ISO-8859-3,..., ISO-8859-9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

Default: The default encoding is UTF-8. It is recommended that you set the default

encoding explicitly if using only single byte character sets (such as US-ASCII or any

of the ISO-8859 character sets) for performance up to 25% faster than with multibyte

character sets, such as UTF-8.
E-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C Revision History
XML Parser for C Revision History
Table E–1 lists the XML Parser for C revision history.

Table E–1 XML Parser for C: Revision History

Revision Description

XML Parser 2.0.4.0.0 (C) This is the first production V2 release. This changes in this release were mainly
bug fixes.

For the XML parser, the following bugs were fixed:

■ 1352943   XMLPARSE() SOMETIMES CHOKES ON FILENAMES

■ 1302311   PROBLEM WITH PARAMETER ENTITY PROCESSING

■ 1323674   INCONSISTENT ERROR HANDLING IN THE C XML PARSER

■ 1328871   LPXPRINTBUFFER UNCONDITIONALLY PREPENDS XML
COMMENT TO OUTPUT

■ 1349962 USING FREED MEMORY LOCATION CAUSES TLPXVNSA31.DIF
oraxmldom.h was renamed to oradom.h

For the XSLT processor, the following bugs were fixed:

■ 1225546 USELESS ERROR MESSAGE NEEDS DETAIL

■  1267616 TLPXST14.DIF: REPLACE DBL_MAX WITH SBIG_ORAMAXVAL
IN LPXXP.C:LPXXPSUBSTRING()

■ 1289228 ERROR CONTEXT REQUIRED FOR DEBUGGING: FILE NAME,
LINE#, FUNCTION, ETC

■ 1289214 XSL:CHOOSE DOESN'T WORK

■ 1298028 XPATH CONSTRUCT NOT(POSITION()=LAST()) NOT WORKING

■ 1298193 XPATH FUNCTIONS DON'T PROVIDE IMPLICIT TYPE
CONVERSION OF PARAMS

■ 1323665 C XML PARSER CANNOT SET BASE DIRECTORY OR URI FOR
STYLESHEET PARSING

■ 1325452 SEVERE MEMORY CONSUMPTION / LEAK IN XSLPROCESS

■ 1333693 CHAINED TRANSFORMS WITH C XSL PROCESSOR DON'T
WORK: LPX-00002
XDK for C: Specifications and Cheat Sheets E-5



XML Parser for C Revision History
XML Parser 2.0.3.0.0 (C) SAX memory usage: Much smaller, and flat for any input size and multiple parses
(memory leaks plugged).

XSLT memory usage: Improved. Validation warnings: Validity Constraint (VC)
errors have been changed to warnings and do not terminate parsing. For
compatibility with the old behavior (halt on warnings as well as errors), a new flag
XML_FLAG_STOP_ON_WARNING (or '-W' to the xml program) has been added.
Performance improvements: Switch to finite automata VC structure validation
yields 10% performance gain.

HTTP support: HTTP URIs are now supported; look for FTP in the next release.
For other access methods, the user may define their own callbacks with the new
xmlaccess() API.

Oracle XML Parser
2.0.2.0.0 (C)

XSLT improvements: Various bugs fixed in the XSLT processor; error messages are
improved; xsl:number, xsl:sort, xsl:namespace-alias, xsl:decimal-format,
forwards-compatible processing with xsl:version, and literal result element as
stylesheet are now available; the following XSLT-specific additions to the core
XPath library are now available: current(), format-number(), generate-id(), and
system-property().

Bug fixes: Some problems with validation and matching of start and end tags with
SAX were fixed (1227096). Also, a bug with parameter entity processing in external
entities was fixed (1225219).

Oracle XML Parser
2.0.1.0.0 (C)

Performance improvements: Major performance improvement over the last, about
two and a half times faster for UTF-8 parsing and about four times faster for ASCII
parsing. Comparison timing against previous version for parsing (DOM) and
validating various standalone files (SPARC Ultra 1 CPU time):

File size   Old UTF-8    New UTF-8  Speedup  Old ASCII  New ASCII  Speedup

42K         180ms             70ms            2.6        120ms        40ms          3.0

134K        510ms          210ms             2.4         450ms      100ms         4.5

247K        980ms          400ms             2.5         690ms      180ms

3.81M     2860ms        1130ms             2.5        1820ms      380ms       4.82

7M        10550ms        4100ms            2.6         7450ms    1930ms        3.9

10.5M    42250ms      16400ms            2.6        29900ms   7800ms        3.8.

Table E–1 XML Parser for C: Revision History

Revision Description
E-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C Revision History
Conformance improvements: Stricter conformance to the XML 1.0 spec yields
higher scores on standard test suites (Jim Clark, Oasis,...).

Lists, not arrays: Internal parser data structures are now uniformly lists; arrays
have been dropped. Therefore, access is now better suited to a
firstChild/nextSibling style loop instead of numChildNodes/getChildNode.

DTD parsing:A new API call xmlparsedtd() is added which parses an external
DTD directly, without needing an enclosing document. Used mainly by the Class
Generator.

Error reporting: Error messages are improved and more specific, with nearly twice
as many as before. Error location is now described by a stack of line
number/entity pairs, showing the final location of the error and intermediate
inclusions (e.g. line X of file, line Y of entity).

NOTE: You must use the new error message file (lpxus.msb) provided with this
release; the error message file provided with earlier releases is incompatible. See
below. XSL improvements: Various bugs fixed in the XSLT processor;
xsl:call-template is now fully supported.

Oracle XML Parser
2.0.0.0.0 (C)

Oracle XML v2 parser is a beta release and is written in C. The main difference
from the Oracle XML v1 parser is the ability to format the XML document
according to a stylesheet via an integrated an XSLT processor. The XML parser
will check if an XML document is well-formed, and optionally validate it against a
DTD. The parser will construct an object tree which can be accessed via a DOM
interface or operate serially via a SAX interface.

Supported operating systems are Solaris 2.6, Linux 2.2, HP-UX 11.0, and NT 4 /
Service Pack 3 (and above). Be sure to read the licensing agreement before using
this product.

Table E–1 XML Parser for C: Revision History

Revision Description
XDK for C: Specifications and Cheat Sheets E-7



XML Parser for C: Parser Functions
XML Parser for C: Parser Functions
Table E–2 lists the XML Parser for C Parser functions, a brief description, and

syntax.

Table E–2 XML Parser for C: Parser Function s

Function Brief Description Syntax and Comments

xmlinit Initialize XML parser xmlctx *xmlinit (uword *err, const oratext *encoding, void (*msghdlr)(void
*msgctx, const oratext *msg, ub4 errcode), void *msgctx, const xmlsaxcb
*saxcb, void *saxcbctx, const xmlmemcb *memcb, void *memcbctx, const
oratext *lang);

xmlclean Clean up memory
used during parse

void xmlclean(xmlctx *ctx);

For those who want to parse multiple files but would like to
free the memory used for parses before the subsequent call to
xmlparse() or xmlparsebuf().

xmlparse Parse a file uword xmlparse(xmlctx *ctx, const oratext *filename, const oratext
*encoding, ub4 flags);

Flag bits must be OR'd to override the default behavior of the
parser. The following flag bits may be set:

■ XML_FLAG_VALIDATE turns validation on.

■ XML_FLAG_DISCARD_WHITESPACE discards
whitespace where it appears to be insignificant.

The default behavior is to not validate the input. The default
behavior for whitespace processing is to be fully conformant
to the XML 1.0 spec, i.e. all whitespace is reported back to the
application but it is indicated which whitespace is ignorable.

xmlparsebuf Parse a buffer uword xmlparsebuf(xmlctx *ctx, const oratext *buffer, size_t len, const
oratext *encoding, ub4 flags);

xmlterm Shut down XML
parser

uword xmlterm(xmlctx *ctx);

createDocument Create a new
document

xmlnode* createDocument(xmlctx *ctx)

An XML document is always rooted in a node of type
DOCUMENT_NODE-- this function creates that root node
and sets it in the context.

isStandalone Return document's
standalone flag

boolean isStandalone(xmlctx *ctx)

Returns the boolean value of the document's standalone flag,
as specified in the <?xml?> processing instruction.
E-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C: DOM API Functions
XML Parser for C: DOM API Functions
Table E–3 lists the XML Parser for C DOM API functions.

Table E–3 XML Parser for C: DOM API Functions

Function Brief Description

appendChild Append child node to current node

appendData Append character data to end of node's current data

cloneNode Create a new node identical to the current one

createAttribute Create an new attribute for an element node

createCDATASection Create a CDATA_SECTION node

createComment Create a COMMENT node

createDocumentFragment Create a DOCUMENT_FRAGMENT node

createElement Create an ELEMENT node

createEntityReference  Create an ENTITY_REFERENCE node

createProcessingInstruction Create a PROCESSING_INSTRUCTION (PI) node

createTextNode Create a TEXT node

deleteData Remove substring from a node's character data

getAttrName Return an attribute's name

getAttrSpecified Return value of attribute's specified flag [DOM getSpecified]

getAttrValue Return the value of an attribute

getAttribute Return the value of an attribute

getAttributeIndex Return an element's attribute given its index

getAttributeNode Get an element's attribute node given its name [DOM
getName]

getAttributes Return array of element's attributes

getCharData Return character data for a TEXT node [DOM getData]

getCharLength Return length of TEXT node's character data [DOM
getLength]

getChildNode Return indexed node from array of nodes [DOM item]

getChildNodes Return array of node's children
XDK for C: Specifications and Cheat Sheets E-9



XML Parser for C: DOM API Functions
getContentModel Returns the content model for an element from the DTD
[DOM extension]

getDocument Return top-level DOCUMENT node [DOM extension]

getDocumentElemen Return highest-level (root) ELEMENT node

getDocType Returns current DTD

getDocTypeEntities Returns array of DTD's general entities

getDocTypeName Returns name of DTD

getDocTypeNotations Returns array of DTD's notations

getElementsByTagName Returns list of elements with matching name

getEntityNotation Returns an entity's NDATA [DOM getNotation]

getEntityPubID Returns an entity's public ID [DOM getPublicId]

getEntitySysID Returns an entity's system ID [DOM getSystemId]

getFirstChild Returns the first child of a node

getImplementation Returns DOM-implementation structure (if defined)

getLastChild Returns the last child of a node

getModifier Returns a content model node's '?', '*', or '+' modifier
[DOM extension]

getNextSibling Returns a node's next sibling

getNamedItem Returns the named node from a list of nodes

getNodeMapLength Returns number of entries in a NodeMap [DOM
getLength]

getNodeName Returns a node's name

getNodeType Returns a node's type code (enumeration)

getNodeValue Returns a node's "value", its character data

getNotationPubID Returns a notation's public ID [DOM getPublicId]

getNotationSysID Returns a notation's system ID [DOM getSystemId]

getOwnerDocument Returns the DOCUMENT node containing the given node

getPIData Returns a processing instruction's data [DOM getData]

Table E–3 XML Parser for C: DOM API Functions (Cont.)

Function Brief Description
E-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C: DOM API Functions
getPITarget Returns a processing instruction's target [DOM getTarget]

getParentNode Returns a node's parent node

getPreviousSibling Returns a node's "previous" sibling

getTagName Returns a node's "tagname", same as name for now

hasAttributes Determines if element node has attributes [DOM extension]

hasChildNodes Determines if node has children

hasFeature Determines if DOM implementation supports a specific
feature

insertBefore Inserts a new child node before the given reference node

insertData Inserts new character data into a node's existing data

isStandalone Determines if document is standalone [DOM extension]

nodeValid Validates a node against the current DTD [DOM extension]

normalize Normalize a node by merging adjacent TEXT nodes

numAttributes Returns number of element node's attributes [DOM
extension]

numChildNodes Returns number of node's children [DOM extension]

removeAttribute Removes an element's attribute given its names

removeAttributeNode Removes an element's attribute given its pointer

removeChild Removes a node from its parents list of children

removeNamedItem Removes a node from a list of nodes given its name

replaceChild Replaces one node with another

replaceData Replaces a substring of a node's character data with another
string setAttribute  Sets (adds or replaces) a new attribute for
an element node given the attribute's name and value
setAttributeNode  Sets (adds or replaces) a new attribute for
an element node given a pointer to the new attribute

setNamedItem Sets (adds or replaces) a new node in a parent's list of
children

setNodeValue Sets a node's "value" (character data)

setPIData Sets a processing instruction's data [DOM setData]

Table E–3 XML Parser for C: DOM API Functions (Cont.)

Function Brief Description
XDK for C: Specifications and Cheat Sheets E-11



XML Parser for C: Namespace API Functions
XML Parser for C: Namespace API Functions
Table E–4 lists the XML Parser for C, Namespace functions.

XML Parser for C: XSLT API Functions
Table E–5 lists the XML Parser for C, XSLT functions.

Table E–4 XML Parser for C: Namespace API Functions

Function Brief Description

getAttrLocal(xmlattr *attrs) Returns attribute local name

getAttrNamespace(xmlattr *attr) Returns attribute namespace (URI)

getAttrPrefix(xmlattr *attr) Returns attribute prefix

getAttrQualifiedName(xmlattr *attr) Returns attribute fully qualified name

getNodeLocal(xmlnode *node) Returns node local name

getNodeNamespace(xmlnode *node) Returns node namespace (URI)

getNodePrefix(xmlnode *node) Returns node prefix

getNodeQualifiedName(xmlnode *node) Returns node qualified name

Table E–5 XML Parser for C: XSLT API Functions

Function Brief Description

 xslprocess()

xslprocess(xmlctx *docctx, xmlctx *xslctx,
xmlctx *resctx, xmlnode **result)

Processes XSL Stylesheet with XML document source
and returns success or an error code.
E-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C: SAX API Functions
XML Parser for C: SAX API Functions
Table E–6 lists the XML Parser for C, SAX API functions.

Table E–6 XML Parser for C: SAX API Functions

SAX Function Brief Description

characters(void *ctx, const
oratext *ch, size_t len)

Receive notification of character data inside an element.

endDocument(void *ctx) Receive notification of the end of the document.

endElement(void *ctx, const
oratext *name)

Receive notification of the end of an element.

ignorableWhitespace(void *ctx,
const oratext *ch, size_t len)

Receive notification of ignorable whitespace in element
content.

notationDecl(void *ctx, const
oratext *name, const oratext
*publicId, const oratext
*systemId)

Receive notification of a notation declaration.

processingInstruction(void *ctx,
const oratext *target, const
oratext *data)

Receive notification of a processing instruction.

startDocument(void *ctx) Receive notification of the beginning of the document.

startElement(void *ctx, const
oratext *name, const struct
xmlattrs *attrs)

Receive notification of the start of an element.

unparsedEntityDecl(void *ctx,
const oratext *name, const
oratext *publicId, const oratext
*systemId, const oratext
*notationName)

Receive notification of an unparsed entity declaration.

Non-SAX Callback Functions

nsStartElement(void *ctx, const
oratext *qname, const oratext
*local, const oratext
*namespace, const struct
xmlattrs *attrs)

Receive notification of the start of a namespace for an element.
XDK for C: Specifications and Cheat Sheets E-13



XML Parser for C: SAX API Functions
E-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for C++: Specifications and Cheat Sh
F

XDK for C++: Specifications and Cheat

Sheet

This appendix contains the following sections:

■ XML Parser for C++ Specifications

■ XML Parser for C++ Revision History

■ XML Parser for C++: XMLParser() API

■ XML Parser for C++: DOM API

■ XML Parser for C++: XSLT API

■ XML Parser for C++: SAX API

■ XML C++ Class Generator Specifications
eet F-1



XML Parser for C++ Specifications
XML Parser for C++ Specifications
Oracle provides a set of XML parsers for Java, C, C++, and PL/SQL. Each of these

parsers is a stand-alone XML component that parses an XML document (or a

standalone DTD) so that it can be processed by an application. Library and

command-line versions are provided supporting the following standards and

features:

■ DOM (Document Object Model) support is provided compliant with the W3C

DOM 1.0 Recommendation. These APIs permit applications to access and

manipulate an XML document as a tree structure in memory. This interface is

used by such applications as editors.

■ SAX (Simple API for XML) support is also provided compliant with the SAX 1.0

specification. These APIs permit an application to process XML documents

using an event-driven model.

■ Support is also included for W3C recommendation for XML Namespaces 1.0

thereby avoiding name collisions, increasing reusability and easing application

integration.

■ Supports validation and non-validation modes

■ Supports W3C XML 1.0 Recommendation

■ Integrated support for W3C XSLT 1.0 Recommendation

Validating and Non-Validating Mode Support
The XML Parser for C++ can parse XML in validating or non-validating modes.

■ In non-validating mode, the parser verifies that the XML is well-formed and

parses the data into a tree of objects that can be manipulated by the DOM API.

■ In validating mode, the parser verifies that the XML is well-formed and

validates the XML data against the DTD (if any).

Validation involves checking whether or not the attribute names and element tags

are legal, whether nested elements belong where they are, and so on.

Example Code
See Chapter 26, "Using XML Parser for C++" for example code and suggestions on

how to use the XML Parser for C++.
F-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++ Specifications
Online Documentation
Documentation for Oracle XML Parser for C++ is located in the $ORACLE_

HOME/xdk/cpp/parser/doc directory.

Release Specific Notes
The readme.html file in the root directory of the archive contains release specific

information including bug fixes, API additions, and so on.

The Oracle XML parser for C++ is written in C with C++ wrappers. It will check if

an XML document is well-formed, and optionally validate it against a DTD. The

parser will construct an object tree which can be accessed via a DOM interface or

operate serially via a SAX interface.

Standards Conformance
XML Parser for C++ conforms to the following standards:

■ The W3C recommendation for Extensible Markup Language (XML) 1.0 at

http://www.w3.org/TR/1998/REC-xml-19980210

■ The W3C recommendation for Document Object Model Level 1 1.0 at

http://www.w3.org/TR/REC-DOM-Level-1/

■ The W3C proposed recommendation for Namespaces in XML at

http://www.w3.org/TR/1998/PR-xml-names-19981117

■ The Simple API for XML (SAX) 1.0 at

http://www.megginson.com/SAX/index.html

■ The W3C Recommendation for XSL Transform 1.0 at

http://www.w3.org/TR/xslt

Supported Character Set Encodings
XML Parser for C++ supports documents in the following encodings, in addition to

the ones specified in Appendix A, “Character Sets”, of Oracle9i Globalization and
National Language Support Guide:

■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR
XDK for C++: Specifications and Cheat Sheet F-3



XML Parser for C++ Specifications
■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1, ISO-8859-2, ISO-8859-3,..., ISO-8859-9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

■ UTF-16

Default: The default encoding is UTF-8. It is recommended that you set the default

encoding explicitly if using only single byte character sets (such as US-ASCII or any

of the ISO-8859 character sets) for performance up to 25% faster than with multibyte

character sets, such as UTF-8.
F-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++ Revision History
XML Parser for C++ Revision History
Table F–1 lists the XML Parser for C++ revision history.

Table F–1 XML Parser for C++: Revision History

Revision Description

Oracle XML Parser
2.0.4.0.0 (C++)

First production v2 release. Changes are mainly bug fixes.

For XML parser, the following bugs were fixed:

■ 1352943   XMLPARSE() SOMETIMES CHOKES ON FILENAMES

■ 1302311   PROBLEM WITH PARAMETER ENTITY PROCESSING

■ 1323674    INCONSISTENT ERROR HANDLING IN THE C XML PARSER

■ 1328871    LPXPRINTBUFFER UNCONDITIONALLY PREPENDS XML
COMMENT TO OUTPUT

■ 1349962    USING FREED MEMORY LOCATION CAUSES TLPXVNSA31.DIF
oraxmldom.h was renamed to oradom.h

For the XSLT processor, the following bugs were fixed:

■ 1225546   USELESS ERROR MESSAGE NEEDS DETAIL

■ 1267616  TLPXST14.DIF: REPLACE DBL_MAX WITH SBIG_ORAMAXVAL
IN LPXXP.C:LPXXPSUBSTRING()

■ 1289228  ERROR CONTEXT REQUIRED FOR DEBUGGING: FILE NAME,
LINE#, FUNCTION, ETC

■ 1289214    XSL:CHOOSE DOESN'T WORK

■ 1298028    XPATH CONSTRUCT NOT(POSITION()=LAST()) NOT
WORKING

■ 1298193    XPATH FUNCTIONS DON'T PROVIDE IMPLICIT TYPE
CONVERSION OF PARAMS

■ 1323665    C XML PARSER CANNOT SET BASE DIRECTORY OR URI FOR
STYLESHEET PARSING

■ 1325452    SEVERE MEMORY CONSUMPTION / LEAK IN XSLPROCESS

■ 1333693    CHAINED TRANSFORMS WITH C XSL PROCESSOR DON'T
WORK: LPX-00002
XDK for C++: Specifications and Cheat Sheet F-5



XML Parser for C++ Revision History
Oracle XML Parser
2.0.3.0.0 (C++)

SAX memory usage: Smaller, and flat for any input size and multiple parses
(memory leaks plugged).

XSLT memory usage: Improved.

Validation warnings: Validity Constraint (VC) errors have been changed to
warnings and do not terminate parsing. For compatibility with the old behavior
(halt on warnings as well as errors), a new flag XML_FLAG_STOP_ON_
WARNING (or '-W' to the xml program) has been added.

Performance improvements: Switch to finite automata VC structure validation
yields 10% performance gain.

HTTP support: HTTP URIs are now supported; look for FTP in the next release.
For other access methods, the user may define their own callbacks with the new
xmlaccess() API.

Oracle XML Parser
2.0.2.0.0 (C++)

XSLT improvements: Various bugs fixed in the XSLT processor; error messages are
improved; xsl:number, xsl:sort, xsl:namespace-alias, xsl:decimal-format,
forwards-compatible processing with xsl:version, and literal result element as
stylesheet are now available; the following XSLT-specific additions to the core
XPath library are now available: current(), format-number(), generate-id(), and
system-property().

XML parser bug fixes: Some problems with validation and matching of start and
end tags with SAX were fixed. Also, a bug with parameter entity processing in
external entities was fixed.

Oracle XML Parser
2.0.1.0.0 (C++)

Performance improvements: Major performance improvement over the last, about
two and a half times faster for UTF-8 parsing and about four times faster for ASCII
parsing. Comparison timing against previous version for parsing (DOM) and
validating various standalone files (SPARC Ultra 1 CPU time):

File size   Old UTF-8    New UTF-8    Speedup    Old ASCII   New  ASCII   Speedup

42K         180ms            70ms            2.6             120ms           40ms           3.0

134K        510ms          210ms            2.4             450ms         100ms           4.5

247K        980ms          400ms            2.5             690ms         180ms           3.8

1M          2860ms        1130ms            2.5           1820ms         380ms           4.8

2.7M      10550ms        4100ms            2.6           7450ms       1930ms           3.9

10.5M     42250ms      16400ms            2.6         29900ms       7800ms           3.8

Conformance improvements: Stricter conformance to the XML 1.0 spec yields
higher scores on standard test suites (Jim Clark, Oasis, etc).

Table F–1 XML Parser for C++: Revision History (Cont.)

Revision Description
F-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++ Revision History
Lists, not arrays: Internal parser data structures are now uniformly lists; arrays
have been dropped. Therefore, access is now better suited to a
firstChild/nextSibling style loop instead of numChildNodes/getChildNode. DTD
parsing:A new API call xmlparsedtd() is added which parses an external DTD
directly, without needing an enclosing document. Used mainly by the Class
Generator.

Error reporting: Error messages are improved and more specific, with nearly twice
as many as before. Error location is now described by a stack of line
number/entity pairs, showing the final location of the error and intermediate
inclusions (e.g. line X of file, line Y of entity).

NOTE: You must use the new error message file (lpxus.msb) provided with this
release; the error message file provided with earlier releases is incompatible. See
below.

XSL improvements: Various bugs fixed in the XSLT processor; xsl:call-template is
now fully supported.

Oracle XML Parser
2.0.1.0.0 (C++)

Performance improvements: Major performance improvement over the last, about
two and a half times faster for UTF-8 parsing and about four times faster for ASCII
parsing. Comparison timing against previous version for parsing (DOM) and
validating various standalone files (SPARC Ultra 1 CPU time):File sizeOld
UTF-8New UTF-8SpeedupOld ASCIINew
ASCIISpeedup42K180ms70ms2.6120ms40ms3.0134K510ms210ms2.4450ms100ms4.
5247K980ms400ms2.5690ms180ms3.81M2860ms1130ms2.51820ms380ms4.82.7M10
550ms4100ms2.67450ms1930ms3.910.5M42250ms16400ms2.629900ms7800ms3.8

Conformance improvements: Stricter conformance to the XML 1.0 spec yields
higher scores on standard test suites (Jim Clark, Oasis, etc).

Lists, not arrays: Internal parser data structures are now uniformly lists; arrays
have been dropped. Therefore, access is now better suited to a
firstChild/nextSibling style loop instead of numChildNodes/item.

DTD parsing:A new method XMLParser::xmlparseDTD() is added which parses an
external DTD directly, without needing an enclosing document. Used mainly by
the Class Generator.

Table F–1 XML Parser for C++: Revision History (Cont.)

Revision Description
XDK for C++: Specifications and Cheat Sheet F-7



XML Parser for C++ Revision History
Error reporting: Error messages are improved and more specific, with nearly twice
as many as before. Error location is now described by a stack of line
number/entity pairs, showing the final location of the error and intermediate
inclusions (e.g. line X of file, line Y of entity).

NOTE: Use the new error message file (lpxus.msb) provided with this release; the
error message file provided with earlier releases is incompatible. See below.

XSL improvements: Various bugs fixed in the XSLT processor; xsl:call-template is
now fully supported.

Oracle XML Parser
2.0.0.0.0 (C++)

The Oracle XML v2 parser is a beta release and is written in C, with a C++
wrapper. The main difference from the Oracle XML v1 parser is the ability to
format the XML document according to a stylesheet via an integrated an XSLT
processor. The XML parser will check if an XML document is well-formed, and
optionally validate it against a DTD. The parser will construct an object tree which
can be accessed via a DOM interface or operate serially via a SAX interface.

Table F–1 XML Parser for C++: Revision History (Cont.)

Revision Description
F-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++: XMLParser() API
XML Parser for C++: XMLParser() API
Table F–2 lists the main XML Parser for C++,class XMLParser() methods with a

brief description of each. XMLParser() class contains top-level methods that do the

following:

■ Invoke the parser

■ Return high-level information about a document

Table F–2 XML Parser for C++: XMLParser() Class

XMLParser() Method Description

 xmlinit Initialize XML parser

uword xmlinit(oratext *encoding, void (*msghdlr)(void
*msgctx, oratext *msg, ub4 errcode),   void *msgctx, lpxsaxcb
*saxcb, void *saxcbctx, oratext *lang)

 xmlterm Terminate XML parser

 xmlparse Parse a document from a file

 xmlparseBuffer Parse a document from a buffer

 getContent Returns the content model for an element

 getModifier Returns the modifier ('?', '*' or '+') for a content-model node

 getDocument Returns the root node of a parsed document

 getDocumentElement Returns the root element (node) of a parsed document

 getDocType  eturns the document type string

 isStandalone Returns the value of the standalone flag. Returns TRUE if the
document is specified as standalone on the <?xml?> line,
FALSE otherwise.
XDK for C++: Specifications and Cheat Sheet F-9



XML Parser for C++: DOM API
XML Parser for C++: DOM API
Table F–3 lists the XML Parser for C ++ DOM API methods a brief description of

each.

Table F–3 XML Parser for C++: DOM API  Classes (SubClasses)

Class (Subclass) Methods Description

Attr (Node)

This class contains methods for accessing the name and value of a single document node attribute.

getName Return name of attribute

getValue Return "value" (definition) of attribute

getSpecified Return attribute's "specified" flag value

setValue Set an attribute's value

CDATASection (Text)

This class implements the CDATA node type, a subclass of Text. There are no methods.

CharacterData (Node)

This class contains methods for accessing and modifying the data associated with text nodes.

appendData Append a string to this node's data

deleteData Remove a substring from this node's data

getData Get data (value) of a text node

getLength Return length of a text node's data

insertData  nsert a string into this node's data

replaceData Replace a substring in this node's data

substringData Fetch a substring of this node's data

Comment (CharacterData)

This class implements the COMMENT node type, a subclass of CharacterData. There are no methods.

Document (Node)

This class contains methods for creating and retrieving nodes.

createAttribute Create an ATTRIBUTE node

createCDATASection Create a CDATA node
F-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++: DOM API
createComment Create a COMMENT node

createDocumentFragment Create a DOCUMENT_FRAGMENT node

createElement Create an ELEMENT node

createEntityReference Create an ENTITY_REFERENCE node

createProcessingInstruction Create a PROCESSING_INSTRUCTION node

createTextNode Create a TEXT node

getElementsByTagName Select nodes based on tag name

getImplementation Return DTD for document

DocumentFragment (Node)

This class implements the DOCUMENT_FRAGMENT node type, a subclass of Node.

DocumentType (Node)

This class contains methods for accessing information about the Document Type Definition (DTD) of a
document.

getName R eturn name of DTD

getEntities Return NamedNodeMap of DTD's (general) entities

getNotations Return NamedNodeMap of DTD's notations

DOMImplementation

This class contains methods relating to the specific DOM implementation supported by the parser.

hasFeature Detect if the named feature is supported

Element (Node This class contains methods pertaining to element
nodes.

getTagName Return the node's tag name

getAttribute Select an attribute given its name

setAttribute Create a new attribute given its name and value

removeAttribute Remove an attribute given its name

getAttributeNode Remove an attribute given its name

setAttributeNode Add a new attribute node

removeAttributeNode Remove an attribute node

Table F–3 XML Parser for C++: DOM API  Classes (SubClasses) (Cont.)

Class (Subclass) Methods Description
XDK for C++: Specifications and Cheat Sheet F-11



XML Parser for C++: DOM API
getElementsByTagName Return a list of element nodes with the given tag
name

normalize "Normalize" an element (merge adjacent text nodes)

Entity (Node)

This class implements the ENTITY node type, a subclass of Node.

getNotation NameReturn entity's NDATA (notation name)

getPublicId Return entity's public ID

getSystemId Return entity's system ID

EntityReference (Node)

 This class implements the ENTITY_REFERENCE node type, a subclass of Node.

NamedNodeMap

This class contains methods for accessing the number of nodes in a node map and fetching individual nodes.

item Return nth node in map

getLength Return number of nodes in map

getNamedItem Select a node by name

setNamedItem Set a node into the map

getLength Remove the named node from map

Node

 This class contains methods for details about a document node

appendChild Append a new child to the end of the current node's
list of children

cloneNode Clone an existing node and optionally all its children

getAttributes Return structure contains all defined node attributes

getChildNode Return specific indexed child of given node

getChildNodes Return structure contains all child nodes of given
node

getFirstChild Return first child of given node

getLastChild Return last child of given node

getLocal Returns the local name of the node

Table F–3 XML Parser for C++: DOM API  Classes (SubClasses) (Cont.)

Class (Subclass) Methods Description
F-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++: DOM API
getNamespace Return a node's namespace

getNextSibling Return a node's next sibling

getName Return name of node

getType Return numeric type-code of node

getValue Return "value" (data) of node

getOwnerDocument Return document node which contains a node

getParentNode Return parent node of given node

getPrefix Returns the namespace prefix for the node

getPreviousSibling Returns the previous sibling of the current node

getQualifiedName Return namespace qualified node of given node

hasAttributes Determine if node has any defined attributes

hasChildNodes Determine if node has children

insertBefore Insert new child node into a node's list of children

numChildNodes Return count of number of child nodes of given node

removeChild Remove a node from the current node's list of
children

replaceChild Replace a child node with another

setValue Sets a node's value (data)

NodeList

This class contains methods for extracting nodes from a NodeList

 item Return nth node in list

getLength  Return number of nodes in list

Notation (Node)

 This class implements the NOTATION node type, a subclass of Node.

getData Return notation's data

getTarget Return notation's target

setData Set notation's data

Table F–3 XML Parser for C++: DOM API  Classes (SubClasses) (Cont.)

Class (Subclass) Methods Description
XDK for C++: Specifications and Cheat Sheet F-13



XML Parser for C++: XSLT API
XML Parser for C++: XSLT API
XSLT is a language for tranforming XML documents into other XML documents. It

is designed for use as part of XSL, which is a stylesheet language for XML. In

addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL

specifies the styling of an XML document by using XSLT to describe how the

document is transformed into another XML document that uses the formatting

vocabulary.

XSLT is also designed to be used independently of XSL. However, XSLT is not

intended as a completely general-purpose XML transformation language. Rather it

is designed primarily for the kinds of transformation that are needed when XSLT is

used as part of XSL.

A transformation expressed in XSLT describes rules for transforming a source tree

into a result tree. The transformation is achieved by associating patterns with

templates. A pattern is matched against elements in the source tree. A template is

instantiated to create part of the result tree. The result tree is separate from the

source tree. The structure of the result tree can be completely different from the

structure of the source tree. In constructing the result tree, elements from the source

tree can be filtered and reordered, and arbitrary structure can be added.

Stylesheets
A transformation expressed in XSLT is called a stylesheet. This is because, in the

case when XSLT is transforming into the XSL formatting vocabulary, the

transformation functions as a stylesheet.

ProcessingInstruction (Node)

This class implements the PROCESSING_INSTRUCTION node type, a subclass of Node.

getData Return the PI's data

getTarget Return the PI's target

setData Set the PI's data

Text (CharacterData)

This class contains methods for accessing and modifying the data associated with text nodes (subclasses
CharacterData).

splitText Get data (value) of a text node

Table F–3 XML Parser for C++: DOM API  Classes (SubClasses) (Cont.)

Class (Subclass) Methods Description
F-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++: XSLT API
A stylesheet contains a set of template rules. A template rule has two parts:

■ A pattern which is matched against nodes in the source tree

■ A template which can be instantiated to form part of the result tree. his allows a

stylesheet to be applicable to a wide class of documents that have similar source

tree structures.

How StylesheetTemplates are Processed
A template is instantiated for a particular source element to create part of the result

tree. A template can contain elements that specify literal result element structure. A

template can also contain elements from the XSLT namespace that are instructions

for creating result tree fragments. When a template is instantiated, each instruction

is executed and replaced by the result tree fragment that it creates.

Instructions can select and process descendant source elements. Processing a

descendant element creates a result tree fragment by finding the applicable

template rule and instantiating its template. Note that elements are only processed

when they have been selected by the execution of an instruction. The result tree is

constructed by finding the template rule for the root node and instantiating its

template.

A software module called an XSL processor reads XML documents and transforms

them into other XML documents with different styles.

XML Parser for C++ implementation of the XSL processor follows the XSL

Transformations standard (version 1.0, November 16, 1999) and includes the

required behavior of an XSL processor as specified in the XSLT specification.

Table F–4 lists the XSLProcessor class methods and syntax summary.
XDK for C++: Specifications and Cheat Sheet F-15



XML Parser for C++: SAX API
XML Parser for C++: SAX API
The SAX API is based on callbacks. Instead of the entire document being parsed

and turned into a data structure which may be referenced (by the DOM interface),

the SAX interface is serial. As the document is processed, appropriate SAX user

callback functions are invoked. Each callback function returns an error code, zero

meaning success, any non-zero value meaning failure. If a non-zero code is

returned, document processing is stopped.

To use SAX, an xmlsaxcb structure is initialized with function pointers and passed

to the xmlinit() call. A pointer to a user-defined context structure may also be

included; that context pointer will be passed to each SAX function.

This SAX functionality is identical to the XML Parser for C version.

Table F–5 lists the XML Parser for C++, SAX API functions.

Table F–4 XML Parser for C++: XSLProcessor Class

Class Method

XSLProcessor

This class contains top-level
methods for invoking the XSL
processor.

xslprocess()

Processes an XSL stylesheet with an XML document source.

Syntax:

uword xslprocess(XMLParser *docctx, XMLParser *xslctx, XMLParser
*resctx, Node **result);

where:

docctx (IN/OUT) -- The XML document context

xslctx (IN) -- The XSL stylesheet context

resctx (IN) -- The result document fragment context

result (IN/OUT) -- The result document fragment node

Table F–5 XML Parser for C++: SAX API Functions

SAX Function Brief Description

characters(void *ctx, const
oratext *ch, size_t len)

Receive notification of character data inside an element.

endDocument(void *ctx) Receive notification of the end of the document.

endElement(void *ctx, const
oratext *name)

Receive notification of the end of an element.
F-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for C++: SAX API
ignorableWhitespace(void *ctx,
const oratext *ch, size_t len)

Receive notification of ignorable whitespace in element
content.

notationDecl(void *ctx, const
oratext *name, const oratext
*publicId, const oratext
*systemId)

Receive notification of a notation declaration.

processingInstruction(void *ctx,
const oratext *target, const
oratext *data)

Receive notification of a processing instruction.

startDocument(void *ctx) Receive notification of the beginning of the document.

startElement(void *ctx, const
oratext *name, const struct
xmlattrs *attrs)

Receive notification of the start of an element.

unparsedEntityDecl(void *ctx,
const oratext *name, const
oratext *publicId, const oratext
*systemId, const oratext
*notationName)

Receive notification of an unparsed entity declaration.

Non-SAX Callback Functions

nsStartElement(void *ctx, const
oratext *qname, const oratext
*local, const oratext
*namespace, const struct
xmlattrs *attrs)

Receive notification of the start of a namespace for an element.

Table F–5 XML Parser for C++: SAX API Functions

SAX Function Brief Description
XDK for C++: Specifications and Cheat Sheet F-17



XML C++ Class Generator Specifications
XML C++ Class Generator Specifications
Working in conjunction with the XML Parser for C++, the XML Class Generator

generates a set of C++ source files based on an input DTD. The generated C++

source files can then be used to construct, optionally validate, and print a XML

document that is compliant to the DTD specified. The Class Generator supports

validation mode to assist debugging.

Input to the XML C++ Class Generator
Input is an XML document containing a DTD. The document body itself is ignored;

only the DTD is relevant, though the dummy document must conform to the DTD.

The underlying XML parser only accepts file names for the document and

associated external entities.  In future releases, no dummy document will be

required, and URIs for additional protocols will be accepted.

Character Set Support
The following lists supported Character Set Encoding for files input to XML C++

Class Generator.  These are in addition to the character sets specified in Appendix

A, "Character Sets", of Oracle9i Globalization and National Language Support Guide.

■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1, ISO-8859-2, ISO-8859-3, ..., ISO-8859-9

■ ISO-10646-UCS-2

■ ISO-10646-UCS-4

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8
F-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML C++ Class Generator Specifications
■ UTF-16

Default: The default encoding is UTF-8. It is recommended that you set the default

encoding explicitly if using only single byte character sets (such as US-ASCII or any

of the ISO-8859 character sets) for performance up to 25% faster than with multibyte

character sets, such as UTF-8.

Output to XML C++ Class Generator
XML Parser for C++ output is a pair of C++ source files, .cpp and .h, named after

the DTD. Constructors are provided for each class (element) that allow an object to

be created in two different ways: initially empty, then adding the children or data

after the initial creation, or created with the initial full set of children or initial data.

A method is provided for #PCDATA (and Mixed) elements to set the data and,

when appropriate, set an element's attributes.

Standards Conformance
XML C++ Class Generator conforms to the following "Standards":

■ The W3C recommendation for Extensible Markup Language (XML) 1.0

■ The W3C recommendation for Document Object Model Level 1 1.0

■ The W3C proposed recommendation for Namespaces in XML

■ The Simple API for XML (SAX) 1.0

Directory Structure
The XML C++ Class Generator has the following file and directory structure:

license.html licensing agreement
bin/         Standalone Class Generator "xmlcg"
doc/         API documentation
include/     Header files
lib/         XML and support libraries
mesg/        Error message files (including cause/action information in the
            .msg)
sample/      Example usage

Table F–6 lists the libraries included with XML C++ Class Generator.
XDK for C++: Specifications and Cheat Sheet F-19



XML C++ Class Generator Specifications
Table F–6 XML C++ Class Generator LIbraries

XML C++ Class
Generator Library Description

libxml8.a XML Parser/XSL Processor

libxmlg8.a XML Class Generator

libxmlc8.a Compatibility library needed to link with Oracle 8.1.5

libcore8.a CORE functions

libnls8.a National Language Support
F-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XDK for PL/SQL: Specifications and Cheat She
G

XDK for PL/SQL: Specifications and Cheat

Sheets

This Appendix describes Oracle XDK for PL/SQL specifications and includes

syntax cheat sheets. It contains the following sections:

■ XML Parser for PL/SQL

■ XML Parser for PL/SQL Specifications

■ XML Parser for PL/SQL: Parser() API

■ XML Parser for PL/SQL: XSLT Processor API

■ XML Parser for PL/SQL: W3C DOM API — Types

■ XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and

DOM Interface Types
ets G-1



XML Parser for PL/SQL
XML Parser for PL/SQL
XML documents are made up of storage units called entities, which contain either

parsed or unparsed data. Parsed data is made up of characters, some of which form

character data, and some of which form markup. Markup encodes a description of

the document's storage layout and logical structure. XML provides a mechanism to

impose constraints on the storage layout and logical structure.

A software module called an XML processor is used to read XML documents and

provide access to their content and structure. It is assumed that an XML processor is

doing its work on behalf of another module, called the application.

Oracle XML Parser Features
The XML Parser for PL/SQL parses an XML document (or a standalone DTD) so

that it can be processed by an application. Library and command-line versions are

provided supporting the following standards and features:

■ DOM (Document Object Model) support is provided compliant with the W3C

DOM 1.0 Recommendation. These APIs permit applications to access and

manipulate an XML document as a tree structure in memory. This interface is

used by such applications as editors.

■ SAX (Simple API for XML) support is also provided compliant with the SAX 1.0

specification. These APIs permit an application to process XML documents

using an event-driven model.

■ Support is also included for XML Namespaces 1.0 thereby avoiding name

collisions, increasing reusability and easing application integration.

■ Able to run on Oracle9i and Oracle9i Application Server.

■ C and C++ versions initially available for Windows, Solaris, and Linux.

Additional features include:

■ Validating and non-validating operation modes

■ Built-in error recovery until fatal error

■ DOM extension APIs for document creation Oracle XSL-Transform Processors

Version 2 of the Oracle XML Parsers include an integrated XSL-Transformation

(XSL-T) Processor for transforming XML data using XSL stylesheets. Using the

XSL-T processor, you can transform XML documents from XML to XML, HTML, or

virtually any other text-based format. These processors support the following

standards and features:
G-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for PL/SQL
■ Compliant with the W3C XSL Transform Proposed Recommendation 1.0

■ Compliant with the W3C XPath Proposed Recommendation 1.0

■ Integrated into the XML Parser for improved performance and scalability

■ Available with library and command-line interfaces for Java, C, C++, and

PL/SQL

Namespace Support
The Java, C, and C++ parsers also support XML Namespaces. Namespaces are a

mechanism to resolve or avoid name collisions between element types (tags) or

attributes in XML documents. This mechanism provides "universal" namespace

element types and attribute names whose scope extends beyond the containing

document. Such tags are qualified by uniform resource identifiers (URIs), such as

<oracle:EMP xmlns:oracle="http://www.oracle.com/xml"/>. For example,

namespaces can be used to identify an Oracle <EMP> data element as distinct from

another company's definition of an <EMP> data element. This enables an

application to more easily identify elements and attributes it is designed to process.

The Java, C, and C++ parsers support namespaces by being able to recognize and

parse universal element types and attribute names, as well as unqualified "local"

element types and attribute names.

Validating and Non-Validating Mode Support
The Java, C, and C++ parsers can parse XML in validating or non-validating modes.

In non-validating mode, the parser verifies that the XML is well-formed and parses

the data into a tree of objects that can be manipulated by the DOM API. In

validating mode, the parser verifies that the XML is well-formed and validates the

XML data against the DTD (if any). Validation involves checking whether or not the

attribute names and element tags are legal, whether nested elements belong where

they are, and so on.

Example Code
See Chapter 29, "Using XML Parser for PL/SQL" for example code and suggestions

on how to use the XML Parsers.

IXML Parser for PL/SQL Directory Structure
The following lists the XML Parser for PL/SQL directory structure in $ORACLE_

HOME/xdk/plsql/parser:
XDK for PL/SQL: Specifications and Cheat Sheets G-3



XML Parser for PL/SQL
■ Windows NT

■ license.html - copy of license agreement

■ readme.html - release and installation notes

■ doc\ - directory for parser apis.

■ lib\ - directory for parser sql and class files

■ sample\ - sample code

■ UNIX

■  license.html — copy of license agreement

■  readme.html — release and installation notes

■  doc/ — directory for parser apis

■  lib/ — directory for parser sql and class files

■  sample/ — sample code files

DOM and SAX APIs
XML APIs generally fall into two categories: event-based and tree-based. An

event-based API (such as SAX) uses callbacks to report parsing events to the

application. The application deals with these events through customized event

handlers. Events include the start and end of elements and characters. Unlike

tree-based APIs, event-based APIs usually do not build in-memory tree

representations of the XML documents. Therefore, in general, SAX is useful for

applications that do not need to manipulate the XML tree, such as search

operations, among others. For example, the following XML document:

<?xml version="1.0"?>
  <EMPLIST>
    <EMP>
     <ENAME>MARTIN</ENAME>
    </EMP>
    <EMP>
     <ENAME>SCOTT</ENAME>
    </EMP>
  </EMPLIST>

Becomes a series of linear events:

start document
start element: EMPLIST
G-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for PL/SQL Specifications
start element: EMP
start element: ENAME
characters: MARTIN
end element: EMP
start element: EMP
start element: ENAME
characters: SCOTT
end element: EMP
end element: EMPLIST
end document

A tree-based API (such as DOM) builds an in-memory tree representation of the

XML document. It provides classes and methods for an application to navigate and

process the tree. In general, the DOM interface is most useful for structural

manipulations of the XML tree, such as reordering elements, adding or deleting

elements and attributes, renaming elements, and so on.

XML Parser for PL/SQL Specifications
These are the Oracle XML Parser for PL/SQL specifications:

■ Supports validation and non-validation modes

■ Includes built-in error recovery until fatal error

■ Supports the W3C XML 1.0 Recommendation

■ Supports the W3C XSL-T Final Working Draft

This PL/SQL implementation of the XML processor (or parser) follows the W3C

XML specification (rev REC-xml-19980210) and included the required behavior of

an XML processor in terms of how it must read XML data and the information it

must provide to the application.

XML Parser for PL/SQL: Default Behavior
The following is the default behavior for this PLSQL XML parser:

■ A parse tree which can be accessed by DOM APIs is built

■ The parser is validating if a DTD is found, otherwise it is non-validating

■ Errors are not recorded unless an error log is specified; however, an application

error will be raised if parsing fails

The types and methods described in this document are made available by the

PLSQL package xmlparser.
XDK for PL/SQL: Specifications and Cheat Sheets G-5



XML Parser for PL/SQL Specifications
■ Integrated Document Object Model (DOM) Level 1.0 API

Supported Character Set Encodings
Supports documents in the following Oracle database encodings:

■ BIG 5

■ EBCDIC-CP-*

■ EUC-JP

■ EUC-KR

■ GB2312

■ ISO-2022-JP

■ ISO-2022-KR

■ ISO-8859-1to -9

■ KOI8-R

■ Shift_JIS

■ US-ASCII

■ UTF-8

Default: UTF-8 is the default encoding if none is specified. Any other ASCII or

EBCDIC based encodings that are supported by the Oracle 9i database may be used.

Requirements
Oracle9i database with the Java option enabled.

Online Documentation
Documentation for Oracle XML Parser for PL/SQL is located in the doc directory in

your install area and also in Oracle9i XML Reference.

Release Specific Notes
The Oracle XML parser for PL/SQL is an early adopter release and is written in

PL/SQL and Java. It will check if an XML document is well-formed and, optionally,

if it is valid. The parser will construct an object tree which can be accessed via

PLSQL interfaces.
G-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for PL/SQL: Parser() API
Standards Conformance
The parser conforms to the following standards:

W3C recommendation for Extensible Markup Language (XML) 1.0 at

http://www.w3.org/TR/1998/REC-xml-19980210

W3C recommendation for Document Object Model Level 1 1.0 at

http://www.w3.org/TR/REC-DOM-Level-1/

The parser currently does not currently have SAX or Namespace support. These

will be made available in a future version.

Error Recovery
The parser also provides error recovery. It will recover from most errors and

continue processing until a fatal error is encountered.

Important note: The contents of both the Windows and UNIX versions are identical.

They are simply archived differently for operating system compatibility and your

convenience.

XML Parser for PL/SQL: Parser() API
Table G–1 lists the XML Parser for PL/SQL Parser() API functions.

Table G–1 XML Parser for PL/SQL: Parser() API

Parser() Functions Description

parse(VARCHAR2) Parses xml stored in the given url/file and returns the
built DOM Document

newParser Returns a new parser instance

parse(Parser, VARCHAR2) Parses xml stored in the given url/file

parseBuffer(Parser, VARCHAR2) Parses xml stored in the given buffer

parseClob(Parser, CLOB)  Parses xml stored in the given clob

parseDTD(Parser, VARCHAR2, VARCHAR2) Parses xml stored in the given url/file

parseDTDBuffer(Parser, VARCHAR2, VARCHAR2) Parses xml stored in the given buffer

parseDTDClob(Parser, CLOB, VARCHAR2) Parses xml stored in the given clob

setBaseDir(Parser, VARCHAR2) Sets base directory used to resolve relative urls

showWarnings(Parser, BOOLEAN) Turn warnings on or off
XDK for PL/SQL: Specifications and Cheat Sheets G-7



XML Parser for PL/SQL: Parser() API
setErrorLog(Parser, VARCHAR2) Sets errors to be sent to the specified file

setPreserveWhitespace(Parser, BOOLEAN) Sets white space preserve mode

setValidationMode(Parser, BOOLEAN) Sets validation mode

getValidationMode(Parser) Gets validation mode

setDoctype(Parser, DOMDocumentType) Sets DTD

getDoctype(Parser) Gets DTD

getDocument(Parser) Gets DOM document

freeParser(Parser) Frees a Parser object

Table G–1 XML Parser for PL/SQL: Parser() API

Parser() Functions Description
G-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for PL/SQL: XSLT Processor API
XML Parser for PL/SQL: XSLT Processor API
Table G–2 lists the XML Parser for PL/SQL XSL-T Processor API functions.

for the following interfaces:

■ Processor interface type: Processor()

■ Stylesheet interface type: Stylesheet()

Table G–2 XML Parser for PL/SQL: XSL-T Processor() API Functions

XSL-T Processor Functions Description

newProcessor Returns a new processor instance

processXSL(Processor, Stylesheet, DOMDocument) Transforms input XML document using given
DOMDocument and stylesheet

processXSL(Processor, Stylesheet,
DOMDocumentFragment)

Transforms input XML document fragment using
given DOMDocumentFragment and stylesheet

showWarnings(Processor, BOOLEAN) Turn warnings on or off

setErrorLog(Processor, VARCHAR2) Sets errors to be sent to the specified file

newStylesheet(DOMDocument, VARCHAR2) Returns a new stylesheet using the given
DOMDocument and reference URL

newStylesheet(VARCHAR2, VARCHAR2) Returns a new stylesheet using the given input and
reference URLs

transformNode(DOMNode, Stylesheet) Transforms a node in a DOM tree using the given
stylesheet

selectNodes(DOMNode, VARCHAR2) Selects nodes from a DOM tree which match the
given pattern

selectSingleNodes(DOMNode, VARCHAR2) Selects the first node from the tree that matches the
given pattern

valueOf(DOMNode, VARCHAR2) Retrieves the value of the first node from the tree
that matches the given pattern

setParam(Stylesheet, VARCHAR2, VARCHAR2) Sets the value of a top-level stylesheet parameter

removeParam(Stylesheet, VARCHAR2) Remove a top-level stylesheet parameter

resetParams(Stylesheet) Resets the top-level stylesheet parameters

freeStylesheet(Stylesheet) Free a stylesheet object

freeProcessor(Processor) Free a processor object
XDK for PL/SQL: Specifications and Cheat Sheets G-9



XML Parser for PL/SQL: W3C DOM API — Types
XML Parser for PL/SQL: W3C DOM API — Types
The Document Object Model (DOM) is an application programming interface (API)

for HTML and XML documents. It defines the logical structure of documents and

the way a document is accessed and manipulated. In the DOM specification, the

term "document" is used in the broad sense - increasingly, XML is being used as a

way of representing many different kinds of information that may be stored in

diverse systems, and much of this would traditionally be seen as data rather than as

documents. Nevertheless, XML presents this data as documents, and the DOM may

be used to manage this data.

The XML Parser for PL/SQL W3C DOM APIs are listed on OTN at the following

site: http://otn.oracle.com/tech/xml

Table G–3 XML Parser for PL/SQL: W3C DOM API Types

Types DOMException types DOM interface types

DOM Node types INDEX_SIZE_ERR DOMNode

ELEMENT_NODE DOMSTRING_SIZE_ERR DOMNamedNodeMap

ATTRIBUTE_NODE HIERARCHY_REQUEST_ERR DOMNodeList

TEXT_NODE WRONG_DOCUMENT_ERR DOMAttr

CDATA_SECTION_NODE INVALID_CHARACTER_ERR DOMCDataSection

ENTITY_REFERENCE_NODE NO_DATA_ALLOWED_ERR DOMCharacterData

ENTITY_NODE NO_MODIFICATION_ALLOWED_ERR DOMComment

PROCESSING_INSTRUCTION_NODE NOT_FOUND_ERR DOMDocumentFragment

COMMENT_NODE NOT_SUPPORTED_ERR DOMElement

DOCUMENT_NODE INUSE_ATTRIBUTE_ERR DOMEntity

DOCUMENT_TYPE_NODE DOMException types DOMEntityReference

DOCUMENT_FRAGMENT_NODE INDEX_SIZE_ERR DOMNotation

NOTATION_NODE DOMSTRING_SIZE_ERR DOMProcessingInstruction

DOMText

DOMImplementation

DOMDocumentType

DOMDocument
G-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM Interface Types
XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types,
and DOM Interface Types

Node Methods
The following lists the DOM API Node methods:

■ FUNCTION isNull(n DOMNode) RETURN BOOLEAN;

■ FUNCTION makeAttr(n DOMNode) RETURN DOMAttr;

■ FUNCTION makeCDataSection(n DOMNode) RETURN DOMCDataSection;

■ FUNCTION makeCharacterData(n DOMNode) RETURN DOMCharacterData;

■ FUNCTION makeComment(n DOMNode) RETURN DOMComment;

■ FUNCTION makeDocumentFragment(n DOMNode) RETURN

DOMDocumentFragment;

■ FUNCTION makeDocumentType(n DOMNode) RETURN

DOMDocumentType;

■ FUNCTION makeElement(n DOMNode) RETURN DOMElement;

■ FUNCTION makeEntity(n DOMNode) RETURN DOMEntity;

■ FUNCTION makeEntityReference(n DOMNode) RETURN

DOMEntityReference;

■ FUNCTION makeNotation(n DOMNode) RETURN DOMNotation;

■ FUNCTION makeProcessingInstruction(n DOMNode) RETURN

DOMProcessingInstruction;

■ FUNCTION makeText(n DOMNode) RETURN DOMText;

■ FUNCTION makeDocument(n DOMNode) RETURN DOMDocument;

■ PROCEDURE writeToFile(n DOMNode, fileName VARCHAR2);

■ PROCEDURE writeToBuffer(n DOMNode, buffer IN OUT VARCHAR2);

■ PROCEDURE writeToClob(n DOMNode, cl IN OUT CLOB);

■ PROCEDURE writeToFile(n DOMNode, fileName VARCHAR2, charset

VARCHAR2);

■ PROCEDURE writeToBuffer(n DOMNode, buffer IN OUT VARCHAR2,

charset VARCHAR2);
XDK for PL/SQL: Specifications and Cheat Sheets G-11



XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM Interface Types
■ PROCEDURE writeToClob(n DOMNode, cl IN OUT CLOB, charset

VARCHAR2);

■ FUNCTION getNodeName(n DOMNode) RETURN VARCHAR2;

■ FUNCTION getNodeValue(n DOMNode) RETURN VARCHAR2;

■ PROCEDURE setNodeValue(n DOMNode, nodeValue IN VARCHAR2);

■ FUNCTION getNodeType(n DOMNode) RETURN NUMBER;

■ FUNCTION getParentNode(n DOMNode) RETURN DOMNode;

■ FUNCTION getChildNodes(n DOMNode) RETURN DOMNodeList;

■ FUNCTION getFirstChild(n DOMNode) RETURN DOMNode;

■ FUNCTION getLastChild(n DOMNode) RETURN DOMNode;

■ FUNCTION getPreviousSibling(n DOMNode) RETURN DOMNode;

■ FUNCTION getNextSibling(n DOMNode) RETURN DOMNode;

■ FUNCTION getAttributes(n DOMNode) RETURN DOMNamedNodeMap;

■ FUNCTION getOwnerDocument(n DOMNode) RETURN DOMDocument;

■ FUNCTION insertBefore(n DOMNode, newChild IN DOMNode, refChild IN

DOMNode) RETURN DOMNode;

■ FUNCTION replaceChild(n DOMNode, newChild IN DOMNode, oldChild IN

DOMNode)> RETURN DOMNode;

■ FUNCTION removeChild(n DOMNode, oldChild IN DOMNode) RETURN

DOMNode;

■ FUNCTION appendChild(n DOMNode, newChild IN DOMNode) RETURN

DOMNode;

■ FUNCTION hasChildNodes(n DOMNode) RETURN BOOLEAN;

■ FUNCTION cloneNode(n DOMNode, deep boolean) RETURN DOMNode;

DOM Node Types
The following lists the DOM API  Node types:

■ DOM Node types

■ ELEMENT_NODE

■ ATTRIBUTE_NODE
G-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM Interface Types
■ TEXT_NODE

■ CDATA_SECTION_NODE

■ ENTITY_REFERENCE_NODE

■ ENTITY_NODE

■ PROCESSING_INSTRUCTION_NODE

■ COMMENT_NODE

■ DOCUMENT_NODE

■ DOCUMENT_TYPE_NODE

■ DOCUMENT_FRAGMENT_NODE

■ NOTATION_NODE

DOMException Types
The following lists the DOMException types:

■ INDEX_SIZE_ERR

■ DOMSTRING_SIZE_ERR

■ HIERARCHY_REQUEST_ERR

■ WRONG_DOCUMENT_ERR

■ INVALID_CHARACTER_ERR

■ NO_DATA_ALLOWED_ERR

■ NO_MODIFICATION_ALLOWED_ERR

■ NOT_FOUND_ERR

■ NOT_SUPPORTED_ERR

■ INUSE_ATTRIBUTE_ERR

DOM Interface Types
The following lists the DOM Interface types:

■ DOM interface types

■ DOMNode
XDK for PL/SQL: Specifications and Cheat Sheets G-13



XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM Interface Types
■ DOMNamedNodeMap

■ DOMNodeList

■ DOMAttr

■ DOMCDataSection

■ DOMCharacterData

■ DOMComment

■ DOMDocumentFragment

■ DOMElement

■ DOMEntity

■ DOMEntityReference

■ DOMNotation

■ DOMProcessingInstruction

■ DOMText

■ DOMImplementation

■ DOMDocumentType

■ DOMDocument
G-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) Specifications and Cheat She
H

XML SQL Utility (XSU) Specifications and

Cheat Sheets

This appendix contains the following sections:

■ Installing XML SQL Utility

■ Requirements for Running XML SQL Utility

■ XML SQL Utility (XSU) for Java, Cheat Sheets

■ XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
ets H-1



Installing XML SQL Utility
Installing XML SQL Utility

Contents of the XSU Distribution
Table H–1 lists XML SQL Utility (XSU) distribution archive (zip file) contents.

Installing XML SQL Utility: Procedure
To install XML SQL Utility (XSU) follow these steps:

1. Requirements. Check that you have the correct software requirements loaded.

2. Extract the XSU files

3. Set Up Your Environment Correctly: Client Side

■ CLASSPATH Settings

■ Ensure the database is up

4. Set Up Your Environment Correctly: Server Side

Table H–1 XSU Distribution Contents

File (with relative location) Description

relnotes.html The release notes

env.csh This files is a helper csh shell script which can set up all the
environmental variables needed to run the utility correctly. The
user must setup the directory information correctly (for example,
point to the installed area for the JDK etc.)

env.bat This file is the same as the env.csh except that it is written for the
Windows platform.

lib/oraclexmlsql.jar The jar file containing all the Java functions for the utility.

lib/xmlparserv2.jar The Oracle XML parser V2 packaged with the utility.

lib/oraclexmlsqlload.csh (Unix)

lib/oraclexmlsqlload.bat (Windows)

A csh and bat script to help load the utility into an Oracle
database. These scripts call loadjava to load the jar file into the
database and then run the xmlgenpkg.sql to create the PL/SQL
front-end wrappers.

lib/xmlgenpkg.sql This file contains the sql script for creating the PL/SQL front-end
wrappers.
H-2 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Requirements for Running XML SQL Utility
Installing XSU Downloaded from OTN
Download the correct XSU distribution archive from the Oracle Technology

Network web-site (http://otn.oracle.com). Expand the downloaded archive.

Depending on the usage scenario, perform the following install tasks:

To use the XSU's client side front-end or its java API, you need to:

1. Setup the environment (that is, set CLASSPATH...):

■ Unix users: make sure that the path names in env.csh are correct; source the

env.csh. If you are using a shell other than csh or tcsh, you will have to edit

the file to use your shell's syntax.

■ Windows users: make sure that the path names in env.bat are correct;

execute the file.

To use XSU's PL/SQL API, or write java stored procedures on top of XSU's java

API, you need to:

1. Confirm that the USER_PASSWORD macro in xsulload.xxx  names the

desired schema into which the XSU is to be loaded (default "scott/tiger").

■ Unix users: look into xsulload.csh

■ Windows users: look into xsuload.bat

2. Confirm that the Oracle DB into which you are planning to load the XSU is up

and java enabled.

3. Execute the appropriate xsuload.xxx file. This will:

4. Load Oracle's XML parser for Java into the database. If the parser is already

loaded into the database, you can comment out the line in xsuload.xxx  that

loads the parser.

5. Load XSU Java classes (that is, load xsu12.jar or xsu111.jar). Load the XSU

PL/SQL API (that is, execute the dbmsxsu.sql  PL/SQL script)

Requirements for Running XML SQL Utility
There are two versions of the utility, xsu111.jar and xsu12.jar, one compatible for

JDK 1.1.x and the other with JDK1.2 respectively.

XML SQL Utility (XSU) is packaged with Oracle8i (8.1.7 and later) and Oracle9i.
XSU is made up of three files:
XML SQL Utility (XSU) Specifications and Cheat Sheets H-3



Requirements for Running XML SQL Utility
■ $ORACLE_HOME/rdbms/jlib/xsu12.jar -- Contains all the Java classes which

make up XSU. xsu12 requires JDK1.2.x and JDBC2.x. This is the XSU version

loaded into Oracle9i.

■ $ORACLE_HOME/rdbms/jlib/xsu111.jar -- Contains the same classes as

xsu12.jar, except that xsu111 requires JDK1.1.x and JDBC1.x.

■ $ORACLE_HOME/rdbms/admin/dbmsxsu.sql -- This is the SQL script that

builds the XSU PL/SQL API.  xsu12.jar needs to be loaded into the database

before dbmsxsu.sql  is executed.

By default the Oracle9i installer installs XSU on your hard drive in the locations

specified above. It also loads it into the database.

If during initial installation you choose to not install XSU, you can install it later,

but the installation becomes less simple. To install XSU later, first install XSU and its

dependent components on your system. You can accomplish this using Oracle

Installer. Next perform the following steps:

1. If you have not yet loaded XML Parser for Java in the database, go to

$ORACLE_HOME/xdk/lib. Here you will find xmlparserv2.jar that you need

to load into the database. To do this, see “Loading JAVA Classes” in the

Oracle9i Java Stored Procedures Developer’s Guide

2. Go to $ORACLE_HOME/admin and execute catxsu.sql

XSU Requirements
Before installing the utility make sure that you choose the right version of the utility

depending on your particular needs. For example, if you can only use the JDK1.1.x

version, then download the xsu111.jar file. Ensure that you have the JDK and the

JDBC drivers correctly downloaded and installed, if not already available.

Extract the XSU Files
After downloading the zip file, simply extract the contents to a directory of your

choice, say C:\xml. The files will get expanded in to a subdirectory called xsu111 or

xsu112 depending on the version of the utility.

Note: XML SQL Utility (XSU) is also available on OTN at:

http://otn.oracle.com/tech/xml Check here for XSU updates.
H-4 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
XML SQL Utility (XSU) for Java, Cheat Sheets
The following tables summarize XSU Java API classes and members:

■ Table H–2, "XSU Java API: Class OracleXMLQuery"

■ Table H–3, "XSU Java API: Class OracleXMLSave"

■ Table H–4, "XSU Java API: Class OracleXMLSQLException"

■ Table H–5, "XSU Java API: Class OracleXMLSQLNoRowsException"

Table H–2 XSU Java API: Class OracleXMLQuery

Methods, Parameters, Returns, Constructors,.... Description

Class

OracleXMLQuery public class OracleXMLQuery extends
java.lang.Object

where java.lang.Object is oracle.xml.sql.query.OracleXMLQuery

 Generates XML from the database
given an SQL query.

Fields

DTD   public static final int DTD Specifies that the DTD is to be
generated.

ERROR_TAG public static final java.lang.String ERROR_TAG Specifies the default tag name for the
ERROR document.

MAXROWS_ALL    public static final int MAXROWS_ALL Specifies that all rows be included in
the result.

MAXROWS_DEFAULT public static final int MAXROWS_DEFAULT Deprecated since v2.0. Use
MAXROWS_ALL instead.

MAXROWS_NONE public static final int MAXROWS_NONE Deprecated since v2.0. Use 0 instead.

NONE public static final int NONE Specifies that no DTD is to be
generated.

ROW_TAG public static final java.lang.String ROW_TAG Specifies the default tag name for the
ROW elements.

ROWIDATTR_TAG public static final java.lang.String ROWIDATTR_
TAG

Specifies the default tag name for the
ROW elements.

ROWSET_TAG public static final java.lang.String ROWSET_TAG Specifies the default tag name for the
document.

SCHEMA public static final int SCHEMA Specifies that no XML schema is to be
generated.
XML SQL Utility (XSU) Specifications and Cheat Sheets H-5



XML SQL Utility (XSU) for Java, Cheat Sheets
SKIPROWS_ALL public static final int SKIPROWS_ALL Specifies that all rows be skipped in
the result.

SKIPROWS_DEFAULT public static final int SKIPROWS_DEFAULT Deprecated since XSU v2.0. Use 0
instead.

SKIPROWS_NONE public static final int SKIPROWS_NONE Deprecated since XSU v2.0. Use 0
instead.

Constructors

OracleXMLQuery(Connection, ResultSet)

public OracleXMLQuery(java.sql.Connection conn, java.sql.ResultSet
rset)

Constructor for the
OracleXMLQueryObject.

Parameters: conn - database connection, rset - jdbc result set object

OracleXMLQuery(Connection, String)

public OracleXMLQuery(java.sql.Connection conn, java.lang.String
query)

Constructor for the
OracleXMLQueryObject.

Parameters: conn - database connection, query - the SQL query string

OracleXMLQuery(OracleXMLDataSet) public
OracleXMLQuery(oracle.xml.sql.dataset.OracleXMLDataSet dset)

Constructor for the
OracleXMLQueryObject.

Parameters: conn - database connection, dset - dataset

Methods

close() public void close() Closes any open resource, created by
the OracleXML engine. This will not
close for instance resultset supplied by
the user.

getNumRowsProcessed() public long getNumRowsProcessed() Returns the number of rows processed.

Returns: Number of rows processed.

getXML(OracleXMLDocGen, boolean)  public void
getXML(oracle.xml.sql.docgen.OracleXMLDocGen doc, boolean
withDTD)

Deprecated since XSU v2.0.

getXMLDOM()  public org.w3c.dom.Document getXMLDOM() Transforms the object-relational data,
specified in the constructor, into a
XML document.

Returns: The DOM representation of the XML document

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
H-6 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
getXMLDOM(boolean) public org.w3c.dom.Document
getXMLDOM(boolean withDTD)

Deprecated since XSU 1.2.1. Ue
getXMLDOM(int) instead.

getXMLDOM(int)  public org.w3c.dom.Document getXMLDOM(int
metaType)

Transforms the object-relational data,
specified in the constructor, into a
XML document. The metaType
argument is used to specify the type of
XML metadata the XSU is to generate
along with the XML. Currently this
value is ignored, and no XML
metadata is generated.

Parameters: metaType - the type of XML metadata (NONE, SCHEMA)

Returns: The string representation of the XML document

getXMLDOM(Node)  public org.w3c.dom.Document
getXMLDOM(org.w3c.dom.Node root)

Transforms the object-relational data,
specified in the constructor, into XML.
If not NULL, the root argument, is
considered the "root" element of the
XML doc.

Parameters: root - root node to which to append the new XML,
Returns: String representation of the XML document

getXMLDOM(Node, int)  public org.w3c.dom.Document
getXMLDOM(org.w3c.dom.Node root, int metaType)

Transforms the object-relational data,
specified in the constructor, into XML.
If not NULL, the root argument, is
considered the "root" element of the
XML doc. MetaType argument is used
to specify the type of XML metadata
the XSU is to generate along with the
XML. Currently this value is ignored,
and no XML metadata is generated.

Parameters: root - root node to which to append the new XML,
metaType - the type of XML metadata (NONE, SCHEMA)

Returns: The string representation of the XML document

getXMLMetaData(int, boolean)  public java.lang.String
getXMLMetaData(int metaType, boolean withVer)

Returns the DTD or XMLSchema for
the XML document which would have
been generated by a getXML call. The
"metaType" parameter specifies the
type of XML metadata to be generated.
The withVer parameter specifies if
version header is to be generated or
not.

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-7



XML SQL Utility (XSU) for Java, Cheat Sheets
Parameters:  metaType - XML meta data type to generate (NONE or
DTD), withVer - generate the version PI ?

getXMLSAX(ContentHandler) public void
getXMLSAX(org.xml.sax.ContentHandler sax)

Transforms the object-relational data,
specified in the constructor, into an
XML document.

Parameters:  sax - ContentHandler object to be registered

getXMLSchema()  public org.w3c.dom.Document  getXMLSchema() Generates the XML Schema(s)
corresponding to the specified query.

Returns: the XML Schema(s)

getXMLString()  public java.lang.String getXMLString() Transforms the object-relational data,
specified in the constructor, into a
XML document.

Returns: The string representation of the XML document

getXMLString(boolean) public java.lang.String getXMLString(boolean
withDTD)

Deprecated since XSU v1.2.1. Use
getXMLString(int) instead.

getXMLString(int)  public java.lang.String getXMLString(int
metaType)

Transforms the object-relational data,
specified in the constructor, into a
XML document. The metaType
argument is used to specify the type of
XML metadata the XSU is to generate
along with the XML. Valid values for
the metaType argument are NONE
and DTD (static fields of this class).

Parameters: metaType - Tpe of XML metadata (NONE, DTD, or
SCHEMA)

Returns: String representation of the XML document

getXMLString(Node)  public java.lang.String
getXMLString(org.w3c.dom.Node root)

Transforms the object-relational data,
specified in the constructor, into XML.
If not NULL, the root argument, is
considered the "root" element of the
XML document.

Parameters: root - root node to which to append the new XML

Returns: String representation of the XML document

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
H-8 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
getXMLString(Node, int)  public java.lang.String
getXMLString(org.w3c.dom.Node root, int metaType)

Transforms the object-relational data,
specified in the constructor, into XML.
If not NULL, the root argument, is
considered the "root" element of the
XML document. MetaType argument
specifies the type of XML metadata the
XSU is to generate along with the
XML. Valid values for the metaType
argument are NONE and DTD (static
fields of this class). If the root
argument is non-null, no DTD is
generated even if requested.

Parameters: root - root node to which to append the new XML, metaType - the type of XML metadata
(NONE, DTD, or SCHEMA)

Returns: Sring representation of the XML document

keepCursorState(boolean)  public void keepCursorState(boolean alive) Deprecated since v1.2.1. Use
keepObjectOpen instead.

keepObjectOpen(boolean)  public void keepObjectOpen(boolean alive) Default behavior for all the getXML
functions which DO NOT TAKE in a
ResultSet object is to close the
ResultSet object and Statement objects
at the end of the call. To use the
persistant feature, where by calling
getXML repeatedly you get the next
set of rows, you need to turn off this
behavior by calling this function with
value true. That is, OracleXMLQuery
would not close the ResultSet and
Statement objects  after the getXML
calls. Call close() to explicitly close the
cursor state.

Parameters: alive - keep object open ?

removeXSLTParam(String)  public void
removeXSLTParam(java.lang.String name)

Removes the value of a top-level
stylesheet parameter.  If no stylesheet
is registered, this method does not
operate.

Parameters:  name - parameter name

setCollIdAttr(String)  public void setCollIdAttr(java.lang.String
collIdAttr)

Deprecated since v1.2.1. Please use
setCollIdAttrName instead.

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-9



XML SQL Utility (XSU) for Java, Cheat Sheets
setCollIdAttrName(String)  public void
setCollIdAttrName(java.lang.String attrName)

Sets the name of the id attribute of the
collection element's separator tag.
Passing null or an empty string for the
tag results the row id attribute to be
omitted.

Parameters: attrName - attribute name

setDataHeader(Reader, String) public void
setDataHeader(java.io.Reader header, java.lang.String docTag)

Sets the xml data header. The data
header is an XML entity which is
appended at the begining of the
query-generated xml entity (ie.
rowset). The two entities are enclosed
by the tag specified via the docTag
argument. The last data header
specified is the one that is used. Also,
passing in null for the header,
parameter unsets the data header.

Parameters: header - header, tag - tag used to enclose the data header
and the rowset

setDateFormat(String)  public void setDateFormat(java.lang.String
mask)

Sets the format of the generated dates
in the XML doc. The syntax of the date
format patern (i.e. the date mask),
should conform to the requirements of
the java.text.SimpleDateFormat class.
Setting the mask to null or an empty
string, unsets the date mask.

Parameters: mask - the date mask

setEncoding(String)   public void setEncoding(java.lang.String enc) Sets the encoding in the XML doc. If
null or an empty string are specified as
the encoding, then the default
characterset is specified in the
encoding PI.

Parameters: enc - characterset encoding of the XML document

setErrorTag(String)  public void setErrorTag(java.lang.String tag) Sets the tag to be used to enclose the
XML error documents.

Parameters: tag - tag name

setException(Exception)  public void setException(java.lang.Exception
e)

Allows the user to pass in an
exception, and have the XSU handle it.

Parameters: e - the exception to be processed by the XSU.

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
H-10 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
setMaxRows(int)  public void setMaxRows(int rows) Sets the max number of rows to be
converted to XML. By default there is
no max set. To explicitly specify no
max see MAXROWS_ALL.

Parameters: rows - max number of rows to generate

setMetaHeader(Reader)  public void setMetaHeader(java.io.Reader
header)

Sets the XML meta header. When set,
the header is inserted at the begining
of the metadata part (DTD or
XMLSchema) of each XML document
generated by this object. Note that the
last meta header specified is the one
that is used; furthermore, passing in
null for the header, parameter unsets
the meta header.

Parameters: header - header

setRaiseException(boolean)  public void setRaiseException(boolean
flag)

Tells the XSU to throw the raised
exceptions. If this call is not made or if
false is passed to the flag argument,
the XSU catches the SQL exceptions
and generates an XML document out
of the exception's message.

Parameters: flag - throw raised exceptions?

setRaiseNoRowsException(boolean)  public void
setRaiseNoRowsException(boolean flag)

Tells XSU to throw or not to throw an
OracleXMLNoRowsException in the
case when for one reason or another,
the XML doument generated is empty.
By default, the exception is not
thrown.

Parameters: flag - throw OracleXMLNoRowsException if no data
found?

setRowIdAttrName(String)  public void
setRowIdAttrName(java.lang.String attrName)

Sets the name of the id attribute of the
row enclosing tag. Passing null or an
empty string for the tag results the row
id attribute to be omitted.

Parameters: attrName - attribute name

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-11



XML SQL Utility (XSU) for Java, Cheat Sheets
setRowIdAttrValue(String)  public void
setRowIdAttrValue(java.lang.String colName)

Specifies the scalar column whose
value is to be assigned to the id
attribute of the row enclosing tag.
Passing null or an empty string for the
colName results the row id attribute
being assigned the row count value
(i.e. 0, 1, 2 and so on).

Parameters: colName - column whose value is to be assigned to the
row id attr

setRowIdColumn(String)  public void
setRowIdColumn(java.lang.String colName)

Deprecated since XSU v1.2.1. Use
setRowIdAttrValue instead.

setRowsetTag(String)  public void setRowsetTag(java.lang.String tag) Sets the tag to be used to enclose the
xml dataset.

Parameters: tag - tag name

setRowTag(String)  public void setRowTag(java.lang.String tag) Sets the tag to be used to enclose the
xml element corresponding to a
database record.

Parameters: tag - tag name

setSkipRows(int)  public void setSkipRows(int rows) Sets the number of rows to skip. By
default 0 rows are skipped. To skip all
the rows use SKIPROWS_ALL.

Parameters: rows - number of rows to skip

setStyleSheet(String)  public void setStyleSheet(java.lang.String uri) Deprecatet since XSU2.0. Use
setStylesheetHeader instead.

setStyleSheet(String, String) public void setStyleSheet(java.lang.String
uri, java.lang.String type)

Deprecated since XSU2.0. Use
setStylesheetHeader instead.

setStylesheetHeader(String)  public void
setStylesheetHeader(java.lang.String uri)

Sets the stylesheet header (that is,
stylesheet processing instructions) in
the generated XML doc. Passing null
for the uri argument will unset the
stylesheet header and the stylesheet
type.

Parameters: uri - stylesheet URI

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
H-12 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
setStylesheetHeader(String, String)  public void
setStylesheetHeader(java.lang.String uri, java.lang.String type)

Sets the stylesheet header (that is,
stylesheet processing instructions) in
the generated XML document.
Passing null for the URI argument will
unset the stylesheet header and the
stylesheet type.

Parameters: uri - stylesheet URI, type - stylesheet type; defaults to
'text/xsl'

setXSLT(Reader, String)  public void setXSLT(java.io.Reader
stylesheet, java.lang.String ref)

Registers a XSL transform to be
applied to generated XML. If a
stylesheet was already registered, it
gets replaced by the new one. To
un-register the stylesheet pass in a null
for the stylesheet argument.

Parameters:  stylesheet - the stylesheet, ref - URL for include, import
and external entities

setXSLT(String, String)  public void setXSLT(java.lang.String
stylesheet, java.lang.String ref)

Registers a XSL transform to be
applied to generated XML. If a
stylesheet was already registered, it
gets replaced by the new one. To
un-register the stylesheet pass in a null
for the stylesheet argument.

Parameters: stylesheet - the stylesheet URI, ref - URL for include,
import and external entities

setXSLTParam(String, String)  public void
setXSLTParam(java.lang.String name, java.lang.String value)

Sets the value of a top-level stylesheet
parameter. The parameter value is
expected to be a valid XPath
expression (String literal values would
therefore have to be explicitly quoted).
If no stylesheet is registered, this
method is not operational.

Parameters: name - parameter name, value - parameter value as an
XPATH expression

useLowerCaseTagNames() public void useLowerCaseTagNames() Sets the case to be lower for all tag
names. Make this call after all the
desired tags have been set.

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-13



XML SQL Utility (XSU) for Java, Cheat Sheets
useNullAttributeIndicator(boolean)  public void
useNullAttributeIndicator(boolean flag)

Specified weather to use an XML
attribute to indicate NULLness, or to
do it by omitting the inclusion of the
particular entity in the XML
document.

Parameters: flag - use attribute to indicate null?

useTypeForCollElemTag(boolean)  public void
useTypeForCollElemTag(boolean flag)

By default the tag name for elements
of a collection is the collection's tag
name followed by "_item". This
method, when called with argument of
true, tells XSU to use the collection
element's type  name as the collection
element tag name.

Parameters:  flag - use the coll. elem. type as its tag name?

useUpperCaseTagNames()  public void useUpperCaseTagNames() Sets the case to be upper for all tag
names. Make this call after all the
desired tags have been set.

Table H–3 XSU Java API: Class OracleXMLSave

Methods, Parameters, Returns, Constructors, ... Description

Class

OracleXMLSave

public class OracleXMLSave extends java.lang.Object

where  java.lang.Object is oracle.xml.sql.dml.OracleXMLSave

Supports canonical mapping from
XML to object-relational tables or
views. It supports inserts, updates and
deletes. You first create the class by
passing in the table name on which the
DML operations need to be done. After
that, the user is free to use the
insert/update/delete on this table. The
useful functions provided in this class
help identify the key columns for
update or delete and restrict the
columns being updated.

Fields

DATE_FORMAT  public static final java.lang.String DATE_FORMAT The date format for use in
setDateFormat

DEFAULT_BATCH_SIZE  public static int DEFAULT_BATCH_SIZE default insert batch size is 17

Table H–2 XSU Java API: Class OracleXMLQuery (Cont.)

Methods, Parameters, Returns, Constructors,.... Description
H-14 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
Constructors

OracleXMLSave(Connection, String)  public
OracleXMLSave(java.sql.Connection oconn, java.lang.String tabName)

The public constructor for the Save
class.

   Parameters oconn - Connection object (connection
to the database), tableName - The
name of the table that should be
updated

Methods

cleanLobList()  public void cleanLobList()

close()  public void close() Closes/deallocates all the context
associated with this object.

createURL(String)  public java.net.URL createURL(java.lang.String
fileName)

Deprecated since XSU2.0. Use the
static version of this method instead.

deleteXML(Document)  public int deleteXML(org.w3c.dom.Document
doc)

Deletes the rows in the table based on
the XML document.

   Parameters xmlDoc - The XML document in DOM
form

   Returns The number of XML ROW elements
processed. See Also: deleteXML(URL)

deleteXML(InputStream)  public int deleteXML(java.io.InputStream
xmlStream)

Deletes the rows in the table based on
the XML document.

    Parameters xmlDoc - The XML document in
Stream form

    Returns The number of XML ROW elements
processed. See Also: deleteXML(URL)

deleteXML(Reader)  public int deleteXML(java.io.Reader xmlStream) Deletes the rows in the table based on
the XML document.

   Parameters xmlDoc - The XML document in
Stream form

   Returns The number of XML ROW elements
processed.See Also: deleteXML(URL)

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-15



XML SQL Utility (XSU) for Java, Cheat Sheets
deleteXML(String)  public int deleteXML(java.lang.String xmlDoc) Deletes the rows in the table based on
the XML document.

   Parameters xmlDoc - The XML document in String
form

   Returns The number of XML ROW elements
processed.See Also: deleteXML(URL)

deleteXML(URL)  public int deleteXML(java.net.URL url) Deletes rows from a specified table
based on the element values in the
supplied XML document. By default,
the delete processing matches all the
element values with the corresponding
column names. Each ROW element in
the input document is taken as a
separate delete statement on the table.

   Parameters url - The URL to the document to use
to delete the rows in the table

   Returns Number of XML row elements
processed. This may or may not be
equal to the number of database rows
deleted based on whether the rows
selected through the XML document
uniquely identified the rows in the
table.

finalize()  protected void finalize() Overrides: java.lang.Object.finalize() in
class java.lang.Object

getURL(String)  public static java.net.URL getURL(java.lang.String
target)

Given a file name or a URL it return a
URL object. If the argument passed is
not in the valid URL format (e.g.
http://.. or file://) then this method
tried to fix the argument by
pre-pending "file://" to the argument.
If a null or an empty string are passed
to it, null is returned.

   Parameters target - file name or URL string

   Returns the URL object identifiying the target
entity

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
H-16 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
insertXML(Document)  public int insertXML(org.w3c.dom.Document
doc)

insertXML(InputStream)  public int insertXML(java.io.InputStream
xmlStream)

insertXML(Reader)  public int insertXML(java.io.Reader xmlStream)

insertXML(String)  public int insertXML(java.lang.String xmlDoc)

insertXML(URL)   public int insertXML(java.net.URL url) Inserts an XML document from a
specified URL into the specified table.
By default, the insert routine inserts
values into the table by matching the
element name with the column name
and inserts a null value  for all
elements missing in the input
document. By setting the list of
columns to insert using the
setUpdateColumnList() you can
restrict the insert to only insert values
into those columns and let the default
values for other columns to be
inserted. For more details see
Chapter 7, "XML SQL Utility (XSU)"
and Oracle9i XML Reference

   Parameters url - The URL to the document to use
to insert rows into the table

   Returns The number of rows inserted.

removeXSLTParam(String)  public void
removeXSLTParam(java.lang.String name)

Removes the value of a top-level
stylesheet parameter.  If no stylesheet
is registered, this method is non
operational.

   Parameters name - parameter name

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-17



XML SQL Utility (XSU) for Java, Cheat Sheets
setBatchSize(int)  public void setBatchSize(int size) Changes the batch size used during
DML operations. When inserting,
updating, or deleting, it is better to
batch the operations so that the
database can execute it once rather
than as separate statements. However,
more memory is needed to hold all the
bind values before the operation is
done. Note when batching is used, the
commits occur only in terms of
batches. So if one of the statement
inside a batch fails, the whole batch is
rolled back. If this behaviour is
unaccepatable, set the batch size to 1.
The default batch size is DEFAULT_
BATCH_SIZE;

    Parameters size - The batch size to use for all DML

setCommitBatch(int)  public void setCommitBatch(int size) Sets the commit batch size. The
commit batch size refers to the number
or records inserted after which a
commit should follow. If commitBatch
is < 1 or the session is in "auto-commit"
mode then XSU does not make any
explicit commit's. By default the
commit-batch size is 0.

   Parameters size - commit batch size

setDateFormat(String)  public void setDateFormat(java.lang.String
mask)

Describes to XSU the format of the
dates in the XML document. By
default, OracleXMLSave  assumes
that the date is in format
'MM/dd/yyyy HH:mm:ss'. You can
override this default format by calling
this function. The syntax of the date
format patern (that is, the date mask),
should conform to the requirements of
the java.text.SimpleDateFormat
class. Setting the mask to null or an
empty string, results the use of the
default mask --
OracleXMLSave.DATE_FORMAT.

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
H-18 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
   Parameters mask - the date mask

setIgnoreCase(boolean)  public void setIgnoreCase(boolean ignore) XSU maps XML elements to database
columns/attributes based on element
names (XML tags). This function tells
XSU to do this match case
insensitively. This resetting of case
may affect metadata caching done
when creating the Save object.

   Parameters flag - ignore tag case in the XML doc?
0-false 1-true

setKeyColumnList(String[])  public void
setKeyColumnList(java.lang.String[]  keyColNames)

Sets the list of columns to be used for
identifying a particular row in the
database table during update or delete.
This call is ignored for the inserts. Key
columns must be set before updates
can be done. It is optional for deletes.
When this key columns is set, then the
values from these tags in the XML
document is used to identify the
database row for update or delete.
Currently, there is no way to update
the values of the key columns
themselves, since there is no way in
the XML document to specify that
case.

   Parameters keyColNames - The names of the list of
columns that are used as keys

setRowTag(String)  public void setRowTag(java.lang.String rowTag) Names the tag used in the XML doc.,
to enclose the XML elements
corresponding to each row value.
Setting the value of this to null implies
that there is no row tag present and
the top level elements of the document
correspond to the rows themselves.

   Parameters tag - tag name

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-19



XML SQL Utility (XSU) for Java, Cheat Sheets
setUpdateColumnList(String[])  public void
setUpdateColumnList(java.lang.String[] updColNames)

Sets column values to be updated.
Only valid for inserts and updates.
Ignored for deletes.  For inserts, the
default is to insert values to all the
columns in the table. For updates, the
default is to only update the columns
corresponding to the tags present in
the ROW element of the XML
document. When specified, these
columns alone are updated in the
UPDATE or INSERT statement. All
other elements in the document are
ignored.

   Parameters updColNames - The string list of
columns to be updated

setXSLT(Reader, String) public void setXSLT(java.io.Reader stylesheet,
java.lang.String ref)

Registers an XSL transform to be
applied to generated XML. If a
stylesheet was already registered, it
gets replaced by the new one. To
un-register the stylesheet pass in a null
for the stylesheet argument.

   Parameters stylesheet - the stylesheet, ref - URL for
include, import and external entities

setXSLT(String, String)  public void setXSLT(java.lang.String
stylesheet, java.lang.String ref)

Registers a XSL transform to be
applied to generated XML. If a
stylesheet was already registered, it
gets replaced by the new one. To
un-register the stylesheet pass in a null
for the stylesheet argument.

   Parameters stylesheet - the stylesheet URI, ref -
URL for include, import and external
entities

setXSLTParam(String, String)  public void
setXSLTParam(java.lang.String name, java.lang.String value)

Sets the value of a top-level stylesheet
parameter. The parameter value is
expected to be a valid XPath
expression (note that string literal
values would therefore have to be
explicitly quoted). If no stylesheet is
registered, this method is a no op.

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
H-20 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
   Parameters name - parameter name, value -
parameter value as an XPATH
expression

updateXML(Document)  public int
updateXML(org.w3c.dom.Document doc)

Updates the table given the XML
document in a DOM tree form.

   Parameters xmlDoc - The DOM tree form of the
XML document

   Returns The number of XML elements
processed. See Also: updateXML(URL)

updateXML(InputStream)  public int updateXML(java.io.InputStream
xmlStream)

Updates the table given the XML
document in a stream form.

   Parameters xmlDoc - The stream form of the XML
document

   Returns The number of XML elements
processed. See Also: updateXML(URL)

updateXML(Reader)  public int updateXML(java.io.Reader
xmlStream)

Updates the table given the XML
document in a stream form.

   Parameters xmlDoc - The stream form of the XML
document

   Returns The number of XML elements
processed. See Also: updateXML(URL)

updateXML(String)  public int updateXML(java.lang.String xmlDoc) Updates the table given the XML
document in a string form.

   Parameters xmlDoc - The string form of the XML
document

   Returns The number of XML elements
processed. See Also: updateXML(URL)

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-21



XML SQL Utility (XSU) for Java, Cheat Sheets
updateXML(URL)  public int updateXML(java.net.URL url) Updates the columns in a database
table, based on the element values in
the supplied XML document. The
update requires a list of key columns
which are used to uniquely identify a
row to update in the given table. By
default, the update uses the list of key
columns and matches the values of the
corresponding elements in the XML
document to identify a particular row
and then updates all the columns in
the table for which there is an
equivalent element present in the XML
document.

   Parameters url - The URL to the document to use
to update the table

   Returns The number of XML row elements
processed. This may or may not be
equal to the number of database rows
modified based on whether the rows
selected through the XML document
uniquely identified the rows in the
table.

Table H–4 XSU Java API: Class OracleXMLSQLException

Constructors and Methods Description

Class

OracleXMLSQLException public class OracleXMLSQLException
extends java.lang.RuntimeException

Constructors

OracleXMLSQLException(Exception) public
OracleXMLSQLException(java.lang.Exception e)

OracleXMLSQLException(Exception, String)  public
OracleXMLSQLException(java.lang.Exception e, java.lang.String
errorTagName)

Table H–3 XSU Java API: Class OracleXMLSave (Cont.)

Methods, Parameters, Returns, Constructors, ... Description
H-22 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for Java, Cheat Sheets
OracleXMLSQLException(String)  public
OracleXMLSQLException(java.lang.String message)

OracleXMLSQLException(String, Exception)  public
OracleXMLSQLException(java.lang.String message,
java.lang.Exception e)

OracleXMLSQLException(String, Exception, String) public
OracleXMLSQLException(java.lang.String message,
java.lang.Exception e, java.lang.String errorTagName)

OracleXMLSQLException(String, int)  public
OracleXMLSQLException(java.lang.String message, int errorCode)

OracleXMLSQLException(String, int, String)  public
OracleXMLSQLException(java.lang.String message, int errorCode,
java.lang.String errorTagName)

OracleXMLSQLException(String, String)  public
OracleXMLSQLException(java.lang.String message, java.lang.String
errorTagName)

Methods

getErrorCode()  public int getErrorCode()

getParentException() public java.lang.Exception getParentException() Returns the original exception, if there
was one; otherwise, it returns null.

getXMLErrorString() public java.lang.String getXMLErrorString() Prints the XML error string with the
given error tag name.

getXMLSQLErrorString()  public java.lang.String
getXMLSQLErrorString()

Prints the SQL parameters as well in
the error message.

setErrorTag(String) public void setErrorTag(java.lang.String tagName) Sets the error tag name which is then
used by getXMLErrorString and
getXMLSQLErrorString, to generate
xml error reports.

Table H–4 XSU Java API: Class OracleXMLSQLException (Cont.)

Constructors and Methods Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-23



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
XML SQL Utility (XSU) for PL/SQL offers the following PL/SQL packages:

■ DBMS_XMLQuery -- provides database-to-XML functionality.

■ DBMS_XMLSave -- provides XML-to-database functionality.

DBMS_XMLQuery PL/SQL Package
Table H–6 lists DBMS_XMLQuery procedures, functions, and constants.

Table H–5 XSU Java API: Class OracleXMLSQLNoRowsException

Constructors Description

Class

OracleXMLSQLNoRowsException public class
OracleXMLSQLNoRowsException extends OracleXMLSQLException

Constructors

OracleXMLSQLNoRowsException()  public
OracleXMLSQLNoRowsException()

OracleXMLSQLNoRowsException(String)  public
OracleXMLSQLNoRowsException(java.lang.String errorTag)
H-24 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
Table H–6 DBMS_XMLQuery Procedures, Functions, Types, and Constants

PROCEDURE (Unless Noted Otherwise) Description

TYPE:   ctxType Type of query context handle. This is the return
type of "DBMS_ XMLQuery.newContext()".

CONSTANTS

DEFAULT_ROWSETTAG

DEFAULT_ERRORTAG

DEFAULT_ROWIDATTR

DEFAULT_ROWTAG

DEFAULT_DATE_FORMAT

ALL_ROWS

NONE

DTD

LOWER_CASE

UPPER_CASE

Mostly this is the root node tag name,ROWSET

ERROR

NUM

ROW

’MM/dd/yyyy HH:mm:ss’

All rows are needed in the output

For example, no DTD

DTD  generation required

Use lower case tags

User upper case tags

closeContext(ctxType) Closes/deallocates a particular query context

     FUNCTION:

     getDTD(ctxType, BOOLEAN := false)

getDTD(ctxType, CLOB, BOOLEAN := false) Generates the DTD based on the SQL query used
to init.

getExceptionContent(ctxType, NUMBER, VARCHAR2)

     FUNCTION:

     getXML(ctxType, NUMBER := NONE)

getXML(ctxType, CLOB, NUMBER := NONE) Generates the XML document.

     FUNCTION:

     newContext(VARCHAR2) --> RETURN -- ctxType

Creates a query context, and it returns the context
handle.

     FUNCTION:

     newContext(CLOB) ---> RETURN ---> ctxType

Creates a query context, and it returns the context
handle.

propagateOriginalException(ctxType, BOOLEAN) Tells XSU if an exception is raised, and is being
thrown, that XSU should throw the exception
raised; rather then, wrapping it with an
OracleXMLSQLException.
XML SQL Utility (XSU) Specifications and Cheat Sheets H-25



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
setBindValue(ctxType, VARCHAR2, VARCHAR2) Sets a value for a particular bind name.

setCollIdAttrName(ctxType, VARCHAR2 Sets the name of the id attribute of the collection
element's separator tag.

setDataHeader(ctxType, CLOB := null, VARCHAR2 := null) Sets the XML data header.

setDateFormat(ctxType, VARCHAR2) Sets the format of the generated dates in the XML
document.

setErrorTag(ctxType, VARCHAR2) Sets the tag to be used to enclose the xml error
docs.

setMaxRows (ctxType, NUMBER) Sets the max number of rows to be converted to
XML.

setMetaHeader(ctxType, CLOB := null) Sets the XML meta header.

setRaiseException(ctxType, BOOLEAN) Tells the XSU to throw the raised exceptions.

setRaiseNoRowsException(ctxType, BOOLEAN) Tells the XSU to throw or not to throw an
OracleXMLNoRowsException in the case when
for one reason or another, the XML document
generated is empty.

setRowIdAttrName(ctxType, VARCHAR2) Sets the name of the id attribute of the row
enclosing tag.

setRowIdAttrValue(ctxType, VARCHAR2) Specifies the scalar column whose value is to be
assigned to the id attribute of the row enclosing
tag.

setRowsetTag(ctxType, VARCHAR2) Sets the tag to be used to enclose the XML
dataset.

setRowTag(ctxType, VARCHAR2) Sets the tag to be used to enclose the xml element
corresponding to a database.

setSkipRows(ctxType, NUMBER) Sets the number of rows to skip.

setStylesheetHeader(ctxType, VARCHAR2, VARCHAR2 := 'text/xsl') Sets the stylesheet header

setTagCase(ctxType, NUMBER) Specified the case of the generated XML tags.

Table H–6 DBMS_XMLQuery Procedures, Functions, Types, and Constants (Cont.)

PROCEDURE (Unless Noted Otherwise) Description
H-26 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
DBMS_XMLSave PL/SQL Package
Table H–7 lists DBMS_XMLSave procedures, functions, types, and constants.

setXSLT(ctxType, VARCHAR2, VARCHAR2 := null) Registers a stylesheet to be applied to generated
XML.

setXSLT(ctxType, CLOB, VARCHAR2 := null) Registers a stylesheet to be applied to generated
XML.

useNullAttributeIndicator(ctxType, BOOLEAN) Specified weather to use an XML attribute to
indicate NULLness, or to do it by omitting the
inclusion of the particular entity in the XML
document.

Table H–7 DBMS_XMLSave Procedures, Functions, Types, and Constants

PROCEDURE (Unless Noted Otherwise) Description

TYPE: ctxType Type of query context handle. The return type of
"DBMS_ XMLSave.newContext()".

CONSTANTS:

DEFAULT_ROWTAG

DEFAULT_DATE_FORMAT

MATCH_CASE

IGNORE_CASE

The default tag name for the element
cooresponding to db. records. -- ROW

Default date mask. -- ’MM/dd/yyyy HH:mm:ss’

Used to specify that when mapping XML
elements to DB. entities the XSU should be case
sensitive

Used to specify that when mapping XML
elements to DB. entities the XSU should be case
insensitive

clearKeyColumnList(ctxType) Clears the key colubmn list.

clearUpdateColumnList(ctxType) Clears the update column list.

closeContext(ctxType) Closes/deallocates a particular save context

FUNCTION: deleteXML(ctxType, CLOB)

  RETURN

  NUMBER

Deletes records specified by data from the XML
document, from the table specified at the context
creation time.

Table H–6 DBMS_XMLQuery Procedures, Functions, Types, and Constants (Cont.)

PROCEDURE (Unless Noted Otherwise) Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-27



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
FUNCTION: deleteXML(ctxType, VARCHAR2)

  RETURN

  NUMBER

Deletes records specified by data from the XML
document, from the table specified at the context
creation time.

getExceptionContent(ctxType, NUMBER, VARCHAR2) Via its arguments, this method returns the
thrown exception's error code and error message

FUNCTION: insertXML(ctxType, CLOB)

  RETURN

  NUMBER

Inserts the XML document into the table
specified at the context creation time.

FUNCTION: insertXML(ctxType, VARCHAR2)

  RETURN

  NUMBER .

Inserts the XML document into the table
specified at the context creation time

FUNCTION: newContext(targetTable IN VARCHAR2)

  RETURN ctxType

Creates a save context, and it returns the context
handle.

propagateOriginalException(ctxType, BOOLEAN) Tells the XSU that if an exception is raised, and is
being thrown, the XSU should throw the very
exception raised; rather then, wrapping it with an
OracleXMLSQLException.

setBatchSize(ctxType, NUMBER) Changes the batch size used during DML
operations.

setCommitBatch(ctxType, NUMBER) Sets the commit batch size.

setDateFormat(ctxType, VARCHAR2) Describes to the XSU the format of the dates in
the XML document.

setIgnoreCase(ctxType, NUMBER) XSU maps XML elements to the database.

setKeyColumn(ctxType, VARCHAR2) Adds a column to the "key column list".

setRowTag(ctxType, VARCHAR2) Names the tag used in the XML document, to
enclose the XML elements corresponding to the
database.

setUpdateColumn(ctxType, VARCHAR2) Adds a column to the "update column list".

getExceptionContent(ctxType, NUMBER, VARCHAR2) Updates the table specified at the context creation
time with data from the XML document.

propagateOriginalException(ctxType, BOOLEAN) Updates the table specified at the context creation
time with data from the XML document.

Table H–7 DBMS_XMLSave Procedures, Functions, Types, and Constants(Cont.)

PROCEDURE (Unless Noted Otherwise) Description
H-28 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
   FUNCTION: newContext(targetTable IN VARCHAR2)

   RETURN ctxType Creates a save context, and it returns the context
handle.

   Parameter targetTable  Target table to load XML document
to.

   Returns: The context handle.

closeContext(ctxHdl IN ctxType) Closes/deallocates a particular save context.

   Parameter  ctxHdl - Context handle

setRowTag(ctxHdl IN ctxType, tag IN VARCHAR2) Names the tag used in the XML document, to
enclose the XML elements corresponding to the
database records.

   Parameters  ctxHdl - Context handle, tag - Tag name

setIgnoreCase(ctxHdl IN ctxType, flag IN NUMBER) XSU maps XML elements to the database
columns/attributes based on element names
(XML tags). This function tells XSU to do this
match case insensitive.

   Parameters  ctxHdl- context handle,  flag - ignore tag case in
the XML document? 0-false 1-true

setDateFormat(ctxHdl IN ctxType, mask IN VARCHAR2) Describes to XSU the format of the dates in the
XML document. The syntax of the date format
pattern (that is, the date mask), should conform
to the requirements of the
java.text.SimpleDateFormat class .
Setting the mask to null or an empty string,
results the use of the default mask --
OracleXMLCore.DATE_FORMAT.

   Parameters  ctxHdl - Context handle, mask - Date mask

Table H–7 DBMS_XMLSave Procedures, Functions, Types, and Constants(Cont.)

PROCEDURE (Unless Noted Otherwise) Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-29



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
setBatchSize(ctxHdl IN ctxType, batchSize IN NUMBER);  Changes the batch size used during DML
operations. When performing inserts, updates or
deletes, it is better to batch the operations so that
they get executed in one shot rather than as
separate statements. The flip side is that more
memory is needed to buffer all the bind values.
When batching is used, a commit occurs only
after a batch is executed. So if one of the
statement inside a batch fails, the whole batch is
rolled back. This is a small price to pay
considering the performance gain; nevertheless,
if this behaviour is unaccepatable, set the batch
size to 1. See Also: DEFAULT_BATCH_SIZE

    Parameters ctxHdl - Context handle, batchSize - Batch size

setCommitBatch(ctxHdl IN ctxType, batchSize IN NUMBER); Sets the commit batch size. Commit batch size
refers to the number or records inserted after
which a commit should follow. If commitBatch is
< 1 or the session is in "auto-commit" mode then
XSU does not make any explicit commit's. By
default the commit-batch size is 0.

    Parameters ctxHdl -  Context handle, ParambatchSize -
Commit batch size

setUpdateColumn(ctxHdl IN ctxType, colName IN VARCHAR2); Adds a column to the "update column list". In
inserts, the default is to insert values to all the
columns in the table. For updates, the default is
to only update the columns corresponding to the
tags present in the ROW element of the XML
document. When the update column list is
specified, the columns making up this list alone
will get updated or inserted into.

    Parameters ctxHdl - Context handle, colName - Column to be
added to the update column list

clearUpdateColumnList(ctxHdl IN ctxType) Clears the update column list. See Also:
setUpdateColumn

    Parameters ctxHdl - Context handle

Table H–7 DBMS_XMLSave Procedures, Functions, Types, and Constants(Cont.)

PROCEDURE (Unless Noted Otherwise) Description
H-30 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
setKeyColumn(ctxHdl IN ctxType, colName IN VARCHAR2) Adds a column to the "key column list". In
update or delete, it is the columns in the key
column list that make up the WHERE clause of
the UPDATE/DELETE statement. The key
columns list must be specified before updates can
be done; yet, it is only optional for delete
operations.

    Parameters ctxHdl - Context handle, colName - Column to be
added to the key column list

clearKeyColumnList(ctxHdl IN ctxType) Clears the key column list. See Also:
setKeyColumn

    Parameters ctxHdl - Context handle

FUNCTION  insertXML(ctxHdl IN ctxType, xDoc IN VARCHAR2)

    RETURN  NUMBER Inserts the XML document into the table
specified at the context creation time.

    Parameters ctxHdl - Context handle, xDoc - String containing
the XML document

    Returns The number of rows inserted.

FUNCTION   insertXML(ctxHdl IN ctxType, xDoc IN CLOB)

    RETURN   NUMBER Inserts the XML document into the table
specified at the context creation time.

    Parameters ctxHdl - Context handle, xDocl - String
containing the XML document

    Returns The number of rows inserted.

FUNCTION  updateXML(ctxHdl IN ctxType, xDoc IN VARCHAR2)

    RETURN  NUMBER Updates the table specified at the context creation
time with data from the XML document.

    Parameters ctxHdl - Context handle, xDoc - String containing
the XML document

    Returns The number of rows updated.

FUNCTION   updateXML(ctxHdl IN ctxType, xDoc IN CLOB)

RETURN  NUMBER Updates the table specified at the context creation
time with data from the XML document.

Table H–7 DBMS_XMLSave Procedures, Functions, Types, and Constants(Cont.)

PROCEDURE (Unless Noted Otherwise) Description
XML SQL Utility (XSU) Specifications and Cheat Sheets H-31



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
    Parameters ctxHdl - context handle, xDocl - string containing
the XML document

    Returns The number of rows updated.

FUNCTION   deleteXML(ctxHdl IN ctxType, xDoc IN VARCHAR2)

    RETURN  NUMBER Deletes records specified by data from the XML
document, from the table specified at the context
creation time.

    Parameters ctxHdl - context handle, xDoc - string containing
the XML document

    Returns The number of rows deleted.

FUNCTION   deleteXML(ctxHdl IN ctxType, xDoc IN CLOB)

    RETURN  NUMBER Deletes records specified by data from the XML
document, from the table specified at the context
creation time.

    Parameters ctxHdl - context handle, xDocl - string containing
the XML document

    Returns The number of rows deleted.

propagateOriginalException(ctxHdl IN ctxType, flag IN BOOLEAN) Tells XSU that if an exception is raised, and is
being thrown, XSU should throw the exception
raised; rather then, wrapping it with
OracleXMLSQLException.

     Parameters ctxHdl - Context handle, flag - Propagate original
exception? 0-false 1-true

getExceptionContent(ctxHdl IN ctxType, errNo OUT NUMBER, errMsg
OUT VARCHAR2)

Via its arguments, this returns the thrown
exception's error code and error message (that is,
SQL error code). This is to get around the fact
that the JVM throws an exception on top of
whatever exception was raised; PL/SQL is
unable to access the original exception.

     Parameters ctxHdl - Context handle, errNo - Error number,
errMsg - Error message

Table H–7 DBMS_XMLSave Procedures, Functions, Types, and Constants(Cont.)

PROCEDURE (Unless Noted Otherwise) Description
H-32 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
See Also:

■ Oracle9i XML Reference

■ Chapter 7, "XML SQL Utility (XSU)"

■ http://otn.oracle.com/tech/xml
XML SQL Utility (XSU) Specifications and Cheat Sheets H-33



XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
H-34 Oracle9i Application Developer’s Guide - XML, Release 1 (9.0.1)



Glossary

API

Application Program Interface. See application program, definition interface.

application program interface (API)

A set of public programmatic interfaces that consist of a language and message

format to communicate with an operating system or other programmatic

environment, such as databases, Web servers, JVMs, and so forth. These messages

typically call functions and methods available for application development.

application server

A server designed to host applications and their environments, permitting server

applications to run. A typical example is OAS, which is able to host Java, C, C++,

and PL/SQL applications in cases where a remote client controls the interface. See

also Oracle Application Server.

attribute

A property of an element that consists of a name and a value separated by an equals

sign and contained within the start tags after the element name. In this example,

<Price units=’USD’>5</Price>, units is the attribute and USD is its value, which

must be in single or double quotes. Attributes may reside in the document or DTD.

Elements may have many attributes but their retrieval order is not defined.

BC4J

Business Components for Java.
Glossary-1



Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods

and services to each other. The software infrastructure to enable this is referred to as

an exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the

selling of goods and services.

BFILES

External binary files that exist outside the database tablespaces residing in the

operating system. BFILES are referenced from the database semantics, and are also

known as External LOBs.

Binary Large Object (BLOB)

A Large Object datatype whose content consists of binary data. Additionally, this

data is considered raw as its structure is not recognized by the database.

BLOB

See Binary Large Object.

callback

A programmatic technique in which one process starts another and then continues.

The second process then calls the first as a result of an action, value, or other event.

This technique is used in most programs that have a user interface to allow

continuous interaction.

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the

database to understand and manipulate a new datatype. Cartridges interface

through the Extensibility Framework within Oracle 8 or 8i. interMedia Text is just

such a cartridge, adding support for reading, writing, and searching text documents

stored within the database.

CDATA

See character data.

CDF

Channel Definition Format. Provides a way to exchange information about channels

on the internet.
Glossary-2



CGI

See Common Gateway Interface.

CSS

Cascading Style Sheets.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This

allows for the inclusion of characters that would otherwise have special functions,

such as &, <, >, etc. CDATA sections can be used in the content of an element or in

attributes.

Common Gateway Interface (CGI)

The generic acronym for the programming interfaces enabling Web servers to

execute other programs and pass their output to HTML pages, graphics, audio, and

video sent to browsers.

child element

An element that is wholly contained within another, which is referred to as its

parent element. For example <Parent><Child></Child></Parent> illustrates a

child element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have

corresponding functionality. In the case of the XML Class Generator, the input file

is a DTD and the output is a series of classes that can be used to create XML

documents conforming with the DTD.

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it

needs to run applications.

client-server

The term used to describe the application architecture where the actual application

runs on the client but accesses data or other external processes on a server across a

network.
Glossary-3



Character Large Object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the

database character set. A CLOB may be indexed and searched by the interMedia

Text search engine.

CLOB

See Character Large Object.

command line

The interface method in which the user enters in commands at the command

interpreter’s prompt.

Common Object Request Broker API (CORBA)

An Object Management Group standard for communicating between distributed

objects across a network. These self-contained software modules can be used by

applications running on different platforms or operating systems. CORBA objects

and their data formats and functions are defined in the Interface Definition

Language (IDL), which can be compiled in a variety of languages including Java, C,

C++, Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create

code that can be easily ported to virtually any platform and operating system.

CORBA

See Common Object Request Broker.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD

specifies information such as the database name or the SQL*Net V2 service name,

the ORACLE_HOME directory, and NLS configuration information such as

language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester

embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML

document. For example, <!DOCTYPE person SYSTEM "person.dtd"> declares the
Glossary-4



root element name as person and an external DTD as person.dtd in the file system.

Internal DTDs are declared within the DOCTYPE declaration.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables

programmatic access to its elements and attributes. The DOM object and its

interface is a W3C recommendation. It specifies the Document Object Model of an

XML Document including the APIs for programmatic access. DOM views the

parsed document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are

text files that derive their format from SGML and can either be included in an XML

document by using the DOCTYPE element or by using an external file through a

DOCTYPE reference.

DOM

See Document Object Model.

DTD

See Document Type Definition.

EDI

Electronic Data Interchange.

Enterprise Java Bean (EJB)

An independent program module that runs within a JVM on the server. CORBA

provides the infrastructure for EJBs, and a container layer provides security,

transaction support, and other common functions on any supported server.

element

The basic logical unit of an XML document that may serve as a container for other

elements as children, data, attributes, and their values. Elements are identified by

start-tags, <name> and end-tags</name> or in the case of empty elements,

<name/>.

empty element

An element without text content or child elements. It may only contain attributes

and their values. Empty elements are of the form <name/> or <name></name>

where there is no space between the tags.
Glossary-5



entity

A string of characters that may represent either another string of characters or

special characters that are not part of the document’s character set. Entities and the

text that is substituted for them by the parser are declared in the DTD.

eXtensible Markup Language (XML)

An open standard for describing data developed by the W3C using a subset of the

SGML syntax and designed for Internet use. Version 1.0 is the current standard,

having been published as a W3C Recommendation in February 1998.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents.

There are two W3C recommendations covering XSL stylesheets—XSL

Transformations (XSLT) and XSL Formatting Objects (XSLFO).

XSL

(W3C) eXtensible Stylesheet Language, XSL consists of two W3C recommendations

- XSL Transformations for transforming one XML document into another and XSL

Formatting Objects for specifying the presentation of an XML document. XSL is a

language for expressing stylesheets. It consists of two parts:

■ A language for transforming XML documents (XSLT), and

■ An XML vocabulary for specifying formatting semantics (XSL:FO).

An XSL stylesheet specifies the presentation of a class of XML documents by

describing how an instance of the class is transformed into an XML document that

uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying

formatting semantics.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a

transformation language to convert one XML document into another.

HTML

See Hypertext Markup Language.
Glossary-6



HTTP

See Hypertext Transport Protocol.

hypertext

The method of creating and publishing text documents in which users can navigate

between other documents or graphics by selecting words or phrases designated as

hyperlinks.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves

as the basis of the World Wide Web. The next version of HTML will be called

xHTML and will be an XML application.

Hypertext Transport Protocol (HTTP)

The protocol used for transporting HTML files across the Internet between Web

servers and browsers.

IDE

See Integrated Development Environment.

iFS

See Internet File System.

Integrated Development Environment (IDE)

A set of programs designed to aide in the development of software run from a

single user interface. JDeveloper is an IDE for Java development as it includes an

editor, compiler, debugger, syntax checker, help system, and so on to permit Java

software development through a single user interface.

Internet File System ( iFS)

The Oracle file system and Java-based development environment that either runs

inside the Oracle8i database or on a middle tier and provides a means of creating,

storing, and managing multiple types of documents in a single database repository.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as

the Internet.
Glossary-7



instantiate

A term used in object-based languages such as Java and C++ to refer to the creation

of an object of a specific class.

inter Media

The term used to describe the collection of complex data types and their access

within Oracle8i. These include text, video, time-series, and spatial data types.

Java

A high-level programming language developed and maintained by Sun

Microsystems where applications run in a virtual machine known as a JVM. The

JVM is responsible for all interfaces to the operating system. This architecture

permits developers to create Java applications and applets that can run on any

operating system or platform that has a JVM.

Java Bean

An independent program module that runs within a JVM, typically for creating

user interfaces on the client. The server equivalent is called an Enterprise Java Bean

(EJB). See also Enterprise Java Bean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through

the SQL language. JDBC drivers are written in Java for platform independence but

are specific to each database.

Java Developer’s Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code

for a version of Java that makes up a Java development environment. JDKs are

designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a

platform. JREs are designated by versions, and Java 2 is used to designate versions

from 1.2 onward.

Java Server Page (JSP)

An extension to the servlet functionality that enables a simple programmatic

interface to Web pages. JSPs are HTML pages with special tags and embedded Java

code that is executed on the Web or application server providing dynamic
Glossary-8



functionality to HTML pages. JSPs are actually compiled into servlets when first

requested and run in the server’s JVM.

Java virtual machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine

language of the platform and runs it. JVMs can run on a client, in a browser, in a

middle tier, on a Web, on an application server such as OAS, or in a database server

such as Oracle 8i.

JDBC

See Java Database Connectivity.

JDeveloper

Oracle’s Java IDE that enables application, applet, and servlet development and

includes an editor, compiler, debugger, syntax checker, help system, etc. In version

3.1,JDeveloper has been enhanced to support XML-based development by

including the Oracle XDK for Java integrated for easy use along with XML support

in its editor.

JDK

See Java Developer’s Kit.

JServer

The Java Virtual Machine that runs within the memory space of the Oracle8i

database. In Oracle 8i Release 1 the JVM was Java 1.1 compatible while Release 2 is

Java 1.2 compatible.

JVM

See Java virtual machine.

LAN

See local area network.

local area network (LAN)

A computer communication network that serves users within a restricted

geographical area. LANs consist of servers, workstations, communications

hardware (routers, bridges, network cards, etc.) and a network operating system.

listener

A separate application process that monitors the input process.
Glossary-9



Large Object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External

LOBs. Internal LOBs include BLOBs, CLOBS, and NCLOBs while External LOBs

include BFILES. See also BFILES, Binary Large Object, Character Large Object.

LOB

See Large Object.

namespace

The term to describe a set of related element names or attributes within an XML

document. The namespace syntax and its usage is defined by a W3C

Recommendation. For example, the <xsl:apply-templates/ > element is identified as

part of the XSL namespace. Namespaces are declared in the XML document or DTD

before they are used be using the following attribute syntax:-

xmlns:xsl="http://www.w3.org/TR/WD-xsl".

NCLOB

See national character Large Object.

mode

In XML, the term used to denote each addressable entity in the DOM tree.

national character Large Object

The LOB datatype whose value is composed of character data corresponding to the

database national character set.

NOTATION

In XML, the definition of a content type that is not part of those understood by the

parser. These types include audio, video, and other multimedia.

N-tier

The designation for a computer communication network architecture that consists

of one or more tiers made up of clients and servers. Typically two-tier systems are

made up of one client level and one server level. A three-tier system utilizes two

server tiers, typically a database server as one and a Web or application server

along with a client tier.

OAG

Open Applications Group.
Glossary-10



OAI

Oracle Applications Integrator. Runtime with Oracle iStudio development tool that

provides a way for CRM applications to integrate with other ERP systems besides

Oracle ERP. Specific APIs must be "message enabled." It uses standard extensibility

hooks to generate or parse XML streams exchanged with other application systems.

In development.

OAS

See Oracle Application Server.

OASIS

See Organization for the Advancement of Structured Information.

Object View

A tailored presentation of the data contained in one or more object tables or other

views. The output of an Object View query is treated as a table. Object Views can be

used in most places where a table is used.

object-relational

The term to describe a relational database system that can also store and manipulate

higher-order data types, such as text documents, audio, video files, and

user-defined objects.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on

clients and between objects on servers. ORBs pass the action request and its

parameters to the object and return the results back. Common implementations are

CORBA and EJBs. See also CORBA.

OE

Oracle Exchange.

Oracle Application Server (OAS)

The Oracle server that integrates all the core services and features required for

building, deploying, and managing high-performance, n-tier, transaction-oriented

Web applications within an open standards framework.

Oracle Integration Server (OIS)

The Oracle server product that serves as the messaging hub for application

integration. OIS contains an Oracle 8i database with AQ and Oracle Workflow and
Glossary-11



interfaces to applications using Oracle Message Broker to transport XML-formatted

messages between them.

ORACLE_HOME

The operating system environmental variable that identifies the location of the

Oracle database installation for use by applications.

OIS

See Oracle Integration Server.

ORB

See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information

standards through conferences, seminars, exhibits, and other educational events.

XML is a standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child

element. For example, <Parent><Child></Child></Parent> illustrates a parent

element wrapping its child element.

parser

In XML, a software program that accepts as input an XML document and

determines whether it is well-formed and, optionally, valid. The Oracle XML Parser

supports both SAX and DOM interfaces.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag

or nonparsed data.

PCDATA

See Parsed Character Data.

PDAs

Personal Digital Assistants, such as Palm Pilot.

RDF

Resource Definition Framework.
Glossary-12



PL/SQL

The Oracle procedural database language that extends SQL to create programs that

can be run within the database.

prolog

The opening part of an XML document containing the XML declaration and any

DTD or other declarations needed to process the document.

PUBLIC

The term used to specify the location on the Internet of the reference that follows.

renderer

A software processor that outputs a document in a specified format.

result set

The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is

between the optional prolog and epilog. An XML document is only permitted to

have one root element.

SAX

See Simple API for XML.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based

applications.

schema

The definition of the structure and data types within a database. It can also be used

to refer to an XML document that support the XML Schema W3C recommendation.

servlet

A Java application that runs in a server, typically a Web or application server, and

performs processing on that server. Servlets are the Java equivalent to CGI scripts.

session

The active connection between two tiers.
Glossary-13



SGML

See Structured Generalized Markup Language.

Structured Generalized Markup Language (SGML)

An ISO standard for defining the format of a text document implemented using

markup and DTDs.

Structured Query Language (SQL)

The standard language used to access and process data in a relational database.

Server-side Include (SSI)

The HTML command used to place data or other content into a Web page before

sending it to the requesting browser.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet, which utilizes a public key/private

key form of encryption between browsers and servers.

SQL

See Structured Query Language.

SSI

See Server-side Include.

SSL

See Secure Sockets Layer.

Stylesheet

In XML, the term used to describe an XML document that consists of XSL

processing instructions used by an XSL processor to transform or format an input

XML document into an output one.

SYSTEM

The term used to specify the location on the host operating system of the reference

that follows.
Glossary-14



tag

A single piece of XML markup that delimits the start or end of an element. Tags

start with < and end with >. In XML, there are start-tags (<name>), end-tags

(</name>), and empty tags (<name/>).

TCP/IP

See Transmission Control Protocol/Internet Protocol.

thread

In programming, a single message or process execution path within an operating

system that supports multiple operating systems, such as Windows, UNIX, and

Java.

Transmission Control Protocol/Internet Protocol (TCP/IP)

The communications network protocol that consists of the TCP which controls the

transport functions and IP which provides the routing mechanism. It is the

standard for Internet communications.

Transviewer

The Oracle term used to describe the Oracle XML Java Beans included in the XDK

for Java. These beans include an XML Source View Bean, Tree View Bean,

DOMParser Bean, Transformer Bean, and a TransViewer Bean.

user interface (UI)

The combination of menus, screens, keyboard commands, mouse clicks, and

command language that defines how a user interacts with a software application.

Uniform Resource Identifier (URI)

The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are

used by browsers to navigate the World Wide Web and consist of a protocol prefix,

port number, domain name, directory and subdirectory names, and the file name.

For example http://technet.oracle.com:80/tech/xml/index.htm specifies the

location and path a browser will travel to find OTN’s XML site on the World Wide

Web.

URI

See Uniform Resource Identifier.
Glossary-15



URL

See Uniform Resource Locator.

valid

The term used to refer to an XML document when its structure and element content

is consistent with that declared in its referenced or included DTD.

W3C

See World Wide Web Consortium (W3C).

WAN

See wide area network.

Web Request Broker (WRB)

The cartridge within OAS that processes URLs and sends them to the appropriate

cartridge.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML

version declared in its XML declaration. This includes having a single root element,

properly nested tags, and so forth.

wide area network (WAN)

A computer communication network that serves users within a wide geographic

area, such as a state or country. WANs consist of servers, workstations,

communications hardware (routers, bridges, network cards, etc.), and a network

operating system.

Working Group (WG)

The committee within the W3C that is made up of industry members that

implement the recommendation process in specific Internet technology areas.

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the

World Wide Web. It is located at www.w3c.org.

Wrapper

The term describing a data structure or software that wraps around other data or

software, typically to provide a generic or object interface.
Glossary-16



XML Developer’s Kit (XDK)

The set of libraries, components and utilities that provide software developers with

the standards-based functionality to XML-enable their applications. In the case of

the Oracle XDK for Java, the kit contains an XML Parser, XSL Processor, XML Class

Generator, the Transviewer Java Beans and the XSQL Servlet.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks

in XML documents. These rules are being developed by the XML Linking Group

under the W3C recommendation process. This is one of the three languages XML

supports to manage document presentation and hyperlinks (XLink, XPointer, and

XPath).

XML

See eXtensible Stylesheet Language.

XML query

The W3C’s effort to create a standard for the language and syntax to query XML

documents.

XML schema

The W3C’s effort to create a standard to express simple data types and complex

structures within an XML document. It addresses areas currently lacking in DTDs,

including the definition and validation of data types. Oracle XML Schema Processor

automatically ensures validity of XML documents and data used in e-business

applications, including online exchanges. It adds simple and complex datatypes to

XML documents and replaces DTD functionality with an XML Schema definition

XML document.

XPath

The open standard syntax for addressing elements within a document used by XSL

and XPointer. XPath is currently a W3C recommendation. It specifies the data

model and grammar for navigating an XML document utilized by XSLT, XLink and

XML Query.

XPointer

The term and W3C recommendation to describe a reference to an XML document

fragment. An XPointer can be used at the end of an XPath-formatted URI. It
specifies the identification of individual entities or fragments within an XML

document using XPath navigation.
Glossary-17



XSL

See eXtensible Stylesheet Language.

XSLFO

See eXtensible Stylesheet Language Formatting Object.

XSLT

See eXtensible Stylesheet Language Transformation.

XSQL

The designation used by the Oracle Servlet providing the ability to produce

dynamic XML documents from one or more SQL queries and optionally transform

the document in the server using an XSL stylesheet.
Glossary-18



Index

A
access control

making services visible to an application, 18-6

Adding New Recipients After Enqueue, 9-43

adding XML document as a child, 20-81

Advanced Queuing, definition, 9-2

aggregating XML data

other methods, 5-77

rollup, see aggregating XML data, 5-77

WINDOWING function, 5-77

ampersand from character data, obtaining, 20-89

API, Glossary-1

application profile registry, 18-6

Application Program Interface,

definition, Glossary-1

application server, Glossary-1

applications, 2-17

communicating XML documents, 2-12

applying in XML

multiple report definitions, 14-7

report definition in PL/SQL, 14-8

report definition stored in a file, 14-8

report definition stored in memory, 14-8

AQ scenario, 9-2

AQ XML documents, 9-11

AQXMLServlet, iDAP, 9-33

asynchronous parsing, 23-5

attribute, definition, Glossary-1

Auditing, 9-5

authored XML, 2-2

AUTO_SECTION_GROUP

how to use, 8-10

automatic population, 22-30

B
B2B

data exchange, 14-2

definition, Glossary-2

messaging, 2-25, 2-27, 2-30

B2C

definition, Glossary-2

messaging, 2-25

batch

modifications to reports, 14-12

BC4J

advantages, 12-3

building XML applications, 12-4

building XSQL clients, 12-5

definition, Glossary-1

features, 12-2

flexible deployment, 12-3

framework, 12-2

JDeveloper, 12-2

XSQL clients, 11-8, 12-5

BC4J (Business Components for Java), 11-6, 12-4

binary data, 20-85

Binary Large Object, definition, Glossary-2

binding

clearBindValues(), 7-47

setBindValue, 7-43

values to queries in XSU PL/SQL API, 7-43

BLOB, definition, Glossary-2

Built-in Action Handler, 10-68

Built-in Action Handler, XSQL, 10-68

Business Components for Java

definition, Glossary-1

XSQL clients, 11-8, 12-5
Index-1



Business components for Java (BC4J), 11-6, 12-4

Business-to-Business, Glossary-2

Business-to-Consumer, definition, Glossary-2

C
C Parser, 24-1

specifications, E-2

C++ Parser, 26-1

callback, definition, Glossary-2

cartridge, definition, Glossary-2

Cascading Style Sheets, definition, Glossary-3

cascading style sheets, see CSS, 4-5

case-sensitivity, parser, 20-60

CDATA Section, 20-61

CDATA, definition, Glossary-3

CGI, defintion, Glossary-3

Channel Definition Format, definition, Glossary-2

character sets

XML Parser for Java, supported by, C-15

XML Schema Processor for Java, supported

by, 21-6

Cheat Sheet

XDK for C++, F-1

XDK for Java, C-1

XDK for PL/SQL, G-1

CHUNK clause

of CREATE TABLE, 5-11

Class Generator

definition, Glossary-3

for Java, 22-2

complexType, 22-4

generate() method, 22-5

oracg, 22-3

SchemaClassGenerator class, 22-5

simpleType, 22-4

using with DTDs, 22-8

XML Schema, 22-4

Java FAQs, 22-30

XML C++, 28-1

Class Generators

compared, B-4

for Java, explained, 22-30

classes

CGXSDElement, 22-7

DOMBuilder(), 23-5

DTDClassGenerator(), 22-8

SchemaClassGenerator(), 22-5

setSchemaValidationMode(), 21-8

XMLTreeView(), 23-15

CLASSPATH, 10-16

configuring to run XSU, 7-17

definition, Glossary-3

settings for class generator for Java, 22-31

clearBindValues(), 7-47

clearUpdateColumnNames(), 7-50

client-server, definition, Glossary-3

CLOB, definition, Glossary-4

CLOBs, XML in, 29-27

command line arguments

CUSTOMIZE, 14-6, 14-7, 14-12, 14-16

REPORT, 14-16

command line interface

oracg, 22-3

oraxml, 20-45

command line utilities

oracg, 22-3

commands

RWCLI60, 14-7, 14-16

RWRUN60, 14-7, 14-16

Common Object Request Broker API,

definition, Glossary-4

Common Oracle Runtime Environment,

definition, Glossary-4

communication

between service consumer application and

Dynamic Services engine, 18-6

supported protocols, 18-7

compound services

Dynamic Services, 18-14

compression of XML, 20-10

connecting

to a database with a thin driver, 7-23

to the database, 7-22

Connection Definitions, 10-17

CONTAINS operator, 5-31

content and document management, 2-17

content management, 2-17

context, creating one in XSU PL/SQL API, 7-56

conventional path load, 2-15
Index-2



CORBA, definition, Glossary-4

CORE, definition, Glossary-4

creating a node, 20-65

creating context handles

getCtx, 7-43

creating report definitions

XML, 14-15

CSS and XSL, 4-5

cube,see aggregating XML data, 5-77

customization file

using in Oracle9iAS Reports Services, 14-7

CUSTOMIZE

Oracle9iAS Reports Services, 14-6

customizing

data presention, 2-17

XML report definition, 14-15

D
DAD, definition, Glossary-4

data compression, XML Parser for Java, 20-10

data exchange applications, 2-11

database

XML support in, 1-7

Database Access Descriptor, definition, Glossary-4

datagram, definition, Glossary-4

DB Access Bean, 23-4

DBMS_XMLGEN

example to generate complex XML, 5-53

summary, 5-2

DBMS_XMLQuery

bind, 7-43

cheat sheet, H-24

clearBindValues(), 7-47

getXMLClob, 7-47

DBMS_XMLQuery(), 7-43

DBMS_XMLSave, 7-48

cheat sheet, H-24

deleteXML, 7-49

getCtx, 7-48

insertXML, 7-49

updateXML, 7-49

DBMS_XMLSave(), 7-48

DBUri, 6-5

and object references, 6-12

syntax guidelines, 6-8

URL specification, 6-7

XPath expressions in, 6-8

DBUri-refs, 6-2, 6-4

HTTP access, 6-25

scenarios, 6-9

where it can be used, 6-12

DBUriType, 6-3

examples, 6-16

DBViewer Bean, 23-4

Default SQL to XML Mapping, 7-8

delete

using XSU, 7-16, 7-41

delete processing, 7-41, 7-53

demos, 1-18

design issues, 2-11

development tools, 3-3

direct-path load, 2-14

DISABLE STORAGE IN ROW clause

of CREATE TABLE, 5-11

DocType Node, Creating, 20-67

DOCTYPE, definition, Glossary-4

document clones in multiple threads, 20-76

document management, 2-17

document mapping, 2-8

Document Object Model, definition, Glossary-5

Document Type Definition, definition, Glossary-5

documents

C, 3-20

C++, 3-22

Java, 3-17

PL/SQL, 3-24

DOM

API, 20-65

definition, Glossary-5

interface, 29-6

tree-based API, 20-8

using API, 29-30

DOM and SAX APIs, 20-8, 24-9, 26-9

guidelines for usage, 20-9

DOMBuilder Bean, 23-2, 23-5

asynchronous parsing, 23-5

DOMException when Setting Node Value, 20-74

DOMNamespace() class, 20-23

domsample, 29-10
Index-3



downgrading

to Oracle release 8.1, 20-12

DTD, 20-55

caching, 20-57

definition, Glossary-5

limitations, 21-3

using with Class Generator for Java, 22-8

Dynamic Services

client library, 18-6

communication, 18-6

compound services, 18-14

conditional services, 18-15

consumer application example, 18-19

developing services, 18-17

engine, 18-6

failover, 18-14

framework, 18-9

ICE, 18-11

iIntegrating with other Oracle products, 18-16

multiple channel capabilities, 18-11

OSS, 18-18

service registry, 18-6

SOAP, 18-11

Wireless Edition, 18-11

Dynamic Services Content Provider Adapter

(DSCPA), 19-7

E
EJB, definition, Glossary-5

Electronic Data Interchange, definition, Glossary-5

element, definition, Glossary-5

elements

complexType, 22-4

simpleType, 22-4

empty element, definition, Glossary-5

ENABLE STORAGE IN ROW clause

of CREATE TABLE, 5-11

Enterprise Java Bean, definition, Glossary-5

entity, definition, Glossary-6

errors when parsing a document, 29-38

errors, HTML, 20-100

eXtensible Markup Language

XML, A-2

eXtensible Stylesheet Language Formatting Object,

definition, Glossary-6

eXtensible Stylesheet Language Transformation,

definition, Glossary-6

eXtensible Stylesheet Language,

definition, Glossary-6

extracting XML, 1-6

F
factory method, 6-17

failover services

Dynamic Services, 18-14

FAQ, 3-26

JDeveloper, 11-21

Oracle Text, 8-51

XML applications, 11-27

XSU, 7-59

FAQs, XML and AQ, 9-42

features, XML, A-5

first child node’s value, 20-70

Frequently Asked Questions

Class Generator for Java, 22-30

XML Parser for PL/SQL, 29-20

XSQL Servlet, 10-74

Frequently Asked Questions, XML and AQ, 9-42

further references, 3-40

G
generated XML, 2-2, 2-7, 3-26

customizing, 7-12

generating

simpleType element classes, 22-7

top level complexType element classes, 22-7

generating XML, 7-17, 7-30

using DBMS_XMLQuery, 7-43

using XSU command line, getXML, 7-17

getCtx, 7-43, 7-48

getDocType(), 22-8

getNodeValue(), 29-41

getXML, 7-17

getXMLClob, 7-47
Index-4



H
HASPATH operators, 8-11

hierarchical mapping, 20-99

HP/UX, 20-110

HTML

definition, Glossary-7

errors, 20-100

parsing, 29-39

HTTP

access for DBUri-refs, 6-25

definition, Glossary-7

to access AQ XML Servlet, 9-33

http

//otn.oracle.com/tech/xml/, 24-2

HttpUriType, 6-3

Hub-and-Spoke Architecture, 9-4

hybrid storage, 2-5

Hypertext Markup Language,

definition, Glossary-7

Hypertext Transport Protocol,

definition, Glossary-7

hypertext, definition, Glossary-7

I
ICE

Dynamic Services and Oracle Syndication

Server, 18-11

iDAP, 9-6

AQXMLServlet, deploying and creating, 9-33

architecture, 9-6

HTTP used to access AQXMLServlet, 9-33

interface explained, 9-6

payload or method invocation, 9-10

SMTP, 9-8

IDE, definition, Glossary-7

IIOP, definition, Glossary-7

Information and Content Exchange (ICE)

protocol, 19-4

INPATH operator, 8-11

insert, XSU, 7-14

inserting XML

using XSU, 7-36

insertXML, 7-49

install

Oracle Text, 8-4

installing

class generator for Java, 22-30

instantiate, definition, Glossary-8

Integrated Development Environment,

definition, Glossary-7

Integrated tools, 1-14

interMedia, 3-16, 8-3

CONTAINS operator, 8-6

querying, 8-6

interMedia, definition, Glossary-8

Internet Data Access Presentation (iDAP), 9-6

Internet File System, definition, Glossary-7

Internet-Data-Access-Presentation, see iDAP, 9-6

J
Java Bean, definition, Glossary-8

Java Beans, 3-9

Java Class Generator, 22-1

Java Database Connectivity, definition, Glossary-8

Java Runtime Environment, definition, Glossary-8

Java, definition, Glossary-8

JAVASYSPRIV, granting, 20-96

JDBC driver, 7-22

JDBC, definition, Glossary-8, Glossary-9

JDeveloper, 11-1, 12-1

3.2, 11-2

BC4J, 12-2

definition, Glossary-9

FAQ, 11-27

introduction, 11-2

mobile application, 11-21

support for XDK for Java Beans, 23-2

using XSQL servlet from, 11-18

what’s needed, 11-5

XML data generator web bean, 11-15

XML features, 11-11

JDK, 20-87

definition, Glossary-8

JRE, definition, Glossary-8

JServer(JVM) Option, 29-25

JServer, definition, Glossary-9

JSP, definition, Glossary-8
Index-5



JVM, 29-25

definition, Glossary-9

K
keepObjectOpen(), 7-28, 7-45

L
LAN, definition, Glossary-9

Linux, 29-31

listener, definition, Glossary-9

loading XML documents, 2-14

LOB, definition, Glossary-10

LOBFILE, syntax, 2-14

LOBs

in-line storage, 5-11

number of bytes manipulated in, 5-11

local area network, definition, Glossary-9

M
management

content and document, 2-17

mapping

hierarchical, 20-99

primer, XSU, 7-8

maxRows, 7-27

memory errors, 29-27

Merging XML Documents, 20-94

Message Retention, 9-5

message server, 9-3

message transformation, XML AQ, 9-39

messaging

B2B and B2C, 2-25

method

getDocument(), DOMBuilder Bean, 23-6

methods

addXSLTransformerListener(), 23-11

DOMBuilder Bean, 23-5

domBuilderError(), 23-6

DOMBuilderOver(), 23-6

domBuilderStarted(), 23-6

generate(), 22-5, 22-8

getDocType(), 22-8

getPreferredSize(), TreeViewer Bean

(XML), 23-15

setType, 22-6

setXMLDocument(doc), 23-15

updateUI(), TreeViewer Bean (XML), 23-15

Mining, 9-5

mobile application

JDeveloper, 11-21

mode, definition, Glossary-10

multiple outputs, 20-109

multiple XML documents, delimiting, 20-92

MULTISET operator

using with SYS_XMLGEN selects, 5-68

N
naa, Newspaper Association of America, A-15

namespace

feature in XML Class Generator for Java, 22-4

namespaces

XML, 20-5, A-4

xmlns, 4-3

national character Large Object,

definition, Glossary-10

no rows exception, 7-33

Non-SAX Callback Functions, E-13

NOTATION, definition, Glossary-10

N-tier, definition, Glossary-10

O
OAG, definition, Glossary-10

OAI, definition, Glossary-11

OAS, definition, Glossary-11

OASIS, definition, Glossary-12

object references and DBUri, 6-12

Object View, definition, Glossary-11

object-relational, definition, Glossary-11

OE, definition, Glossary-11

OIS, definition, Glossary-11

OMB, 16-4

Open Applications Group, definition, Glossary-10

operators

HASPATH, 8-11

INPATH, 8-11
Index-6



ora

node-set, 20-50

output, 20-50

oracg, 22-3

oracg command line utility, 22-3

Oracle Application Server, definition, Glossary-11

Oracle Exchange

ATP, 16-5

definition, Glossary-11

OMB, 16-4

transactions use xml formats, 16-2

webMethods, 16-4

XML delivery formats, 16-4

XML Message Designer, 16-9

Oracle Integration Server, definition, Glossary-11

Oracle interMedia, 3-16

Oracle Internet Directory server, 18-6

Oracle Syndication Server (OSS)

architecture, 19-5

content providers, 19-7

content subscribers, 19-7

Dynamic Services, 18-18

ICE protocol, 19-4

Oracle Syndication Services

Dynamic Services Content Provider Adapter

(DSCPA), 19-7

Oracle Text, 8-3

CONTAINS and XMLType, 5-31

users and roles, 8-5

Oracle XML, 1-2

Oracle XML Parsers, comparison, B-2

ORACLE_HOME, definition, Glossary-12

Oracle9i Reports Services

report definitions at runtime, 14-6

Oracle9iAS Reports Services, 14-1

batch report modifications, 14-12

customizing reports at runtime, 14-8

OracleText

query applications, 8-24

querying, 8-30

OracleXML

putXML, 7-20

XSU command line, 7-17

OracleXMLNoRowsException, 7-57

OracleXMLQuery, 7-20

OracleXMLSave, 7-20, 7-35, 7-36, 7-38, 7-41

OracleXMLSQLException, 7-57

OraDBUriServlet

installing, 6-27

security, 6-26

OraDbUriServlet

servlet mechanism, 6-25

oraxml, 20-45

oraxsl, 20-46

command line interfaces

oraxsl, 20-46

OraXSL Parser, 20-99

ORB, definition, Glossary-11

out of memory errors, 29-27

Out Variable, 10-79

Output Escaping, 20-92

P
paginating results, 7-27

parent element, definition, Glossary-12

parser case-sensitivity, 20-60

Parser for C, 24-1

specifications, E-2

Parser for C++, 26-1

Parser for Java, 20-1

constructor extension functions, 20-48

oraxsl command line interfaces

oraxsl, 20-46

return value extension function, 20-49

validation modes, 20-5

Parser for PL/SQL, 29-1

parser, definition, Glossary-12

parsers

uninstalling, 20-83

Parsers, XML, 20-2

parsing

errors, 29-38

HTML, 29-39

string, 20-88

URLs, 29-38

PATH_SECTION_GROUP

how to use, 8-10

PCDATA, definition, Glossary-12

PCTVERSION parameter
Index-7



of CREATE TABLE, 5-11

performing batch modifications in XML, 14-12

Personal Digital Assistant, definition, Glossary-12

PL/SQL

binding values in XSU, 7-47

definition, Glossary-13

generating XML with DBMS_XMLQuery, 7-43

parser, 29-1

XSU, 7-43

point-to-point, 9-2

processing

delete, 7-53

insert, 7-36

insert in PL/SQL, 7-49

update, 7-38, 7-51

prolog, definition, Glossary-13

properties

setGeneraterComments(), 22-8

setJavaPackage(string), 22-8

setOutputDirectory(string), 22-8

PUBLIC, definition, Glossary-13

publish/subscribe, 9-2

putXML, 7-19

Q
query

results, 8-42

query application, 8-30

query, XML, A-4

querying

XML documents indexed with OracleText, 8-25

queues

XMLType, 9-37

R
recommendations, W3C, A-4

renderer, definition, Glossary-13

reports, generating in XML, 14-1

Resource Definition Framework,

definition, Glossary-12

result set objects, 7-30

result set, definition, Glossary-13

roadmap, xlviii

root element, definition, Glossary-13

root objects, creating multiple with class

generator, 22-31

running

XML

report definition by itself, 14-16

report definitions, 14-16

runtime

customization

XML report definition, 14-15

S
samples, 1-18

SAX, 20-2

event -based API, 20-8

SAX API, 20-8, 20-68, 24-9, 26-9, F-16

SAX API Function, E-13

SAX Functions, E-13

SAX, definition, Glossary-13

SAXNamespace() Class, 20-41

SAXParser() class, 20-27

SAXSample.java, 20-69

schema, definition, Glossary-13

Schema, XML, definition, 20-86

SchemaClassGenerator, 22-5

search

XML documents, 8-17

section preference

creating a, Oracle Text index, 8-18

section_group

deciding which to use, Oracle Text, 8-20

security

OraDBUriServlet, 6-26

select

with XSU, 7-14

sending XML data, 2-11

Server-side Include, definition, Glossary-14

services

compound,Dynamic Services, 18-14

conditional, Dynamic Services, 18-15

failove,Dynamic Services, 18-14

Servlet Conditional Statements, 10-74

servlet, definition, Glossary-13

servlet, XSQL, 10-1
Index-8



session, definition, Glossary-13

setBindValue, 7-43

setKeyColumn, 7-42

setKeyColumn(), 7-54

setMaxRows, 7-45

setRaiseNoRowsException(), 7-45

setSkipRows, 7-45

setStylesheetHeader(), 7-46

setUpdateColumnName(), 7-50, 7-53

setUpdateColumnNames()

XML SQL Utility (XSU)

setUpdateColumnNames(), 7-40

SGML, definition, Glossary-14

Simple API for XML, definition, Glossary-13

simpleType, 22-4

generating element class, 22-7

skipRows, 7-27

SMTP

iDAP, 9-8

SOAP, 18-11

special characters, 20-89

SQL*Loader

conventional path load, 2-15

direct-path load, 2-14

LOBFILE, 2-14

SQL, definition, Glossary-14

SSI, definition, Glossary-14

SSL, definition, Glossary-14

storing XML, 1-6, 7-35

using XSU command line, putXML, 7-19

storing XML in the database, 7-48

Stylesheet, definition, Glossary-14

stylesheets

template processing, F-15

XSLT, F-14

XSU, 7-46

SYS_DBURIGEN function, 6-20

examples, 6-22

inserting database references, 6-22

returning partial results, 6-22

RETURNING Uri-refs, 6-24

SYS_XMLAGG, 5-72

aggregating all POs into one XML

document, 5-75

aggregating XMLType fragments,

example, 5-74

aggregating XMLType instances stored in

tables, 5-74

summary, 5-3

SYS_XMLGEN

summary, 5-3

SYS_XMLGEN function

converting a UDT to XML, 5-67

converting XMLType instances, 5-68

generating XML in SQL queries, 5-10

static member function create, 5-66

using with object views, 5-70

XMLGenFormatType object, 5-64

SYSTEM, definition, Glossary-14

System.out.primtln(), 20-89

SYS.UriFactoryType, 6-3

T
tag, definition, Glossary-15

TCP/IP, definition, Glossary-15

thin driver

connecting XSU, 7-23

thread safety, 26-3

thread, definition, Glossary-15

Tracking, 9-5

transactions

inbound in Oracle Exchange, 16-2

outbound in Oracle Exchange, 16-2

pass through in Oracle Exchange, 16-2

stored, in Oracle Exchange, 16-2

transformations, 2-7

Transviewer Beans, 23-1

Transviewer, definition, Glossary-15

Treeviewer Bean, 23-3, 23-13

Tuning with XSQL, 10-54

U
UI, definition, Glossary-15

Uniform Resource Identifier,

definition, Glossary-15

Uniform Resource Locator, definition, Glossary-15

uninstalling parsers, 20-83

update processing, 7-51
Index-9



update, XSU, 7-15

updating

table using keyColumns, XSU, 7-39

using XSU, 7-38

upgrading

scripts

XMLU815.SQL, 20-11

XMLU816.SQL, 20-11

XMLU817.SQL, 20-11

XDK for Java, 20-11

XDK for Java to Oracle9i, 20-11

XML, 20-11

URI, definition, Glossary-15

UriFactory package, 6-17

configuring to handle DBUri-ref, 6-37

factory method, 6-17

registering ecom protocol, 6-18

Uri-ref,see also Uri-reference, 6-2

Uri-reference

database and session, 6-12

datatypes, 6-3

DBUri, 6-5

DBUri and object references, 6-12

DBUri syntax guidelines, 6-8

DBUri-ref, 6-2, 6-4

DBUri-ref uses, 6-12

DBUriType, 6-3

DBUriType examples, 6-16

explained, 6-2

HTTP access for DBUri-ref, 6-25

HttpUriType, 6-3

UriFactory package, 6-17

UriType, 6-3

URIType examples, 6-15

URITypes, 6-14

URIType, 6-14

examples, 6-15

UriTypes, 6-3

benefits, 6-4

summarized, 5-3

URL, definition, Glossary-15

usage techniques, 7-57

user interface, definition, Glossary-15

useStyleSheet(), 7-47

UTF-16 Encoding, 20-79

V
valid, definition, Glossary-16

validating against XML schema, 20-85

validation

non-validating mode, 20-5

partial validation mode, 20-5

schema validation mode, 20-6

validating Mode, 20-5

value of a tag, obtaining, 20-96

W
W3C DOM API, G-11

W3C XML recommendations, A-4

W3C, definition, Glossary-16

WAN, definition, Glossary-16

Web bean

XML data generator, 11-15

Web Request Broker, definition, Glossary-16

Web to database, 2-11

webMethods, 16-4, 16-5

well-formed, definition, Glossary-16

WG, definition, Glossary-16

why use Oracle8i XML?, 1-11

wide area network, definition, Glossary-16

WINDOWING function,see aggregating XML

data, 5-77

Wireless Edition

and Dynamic Services, 18-11

World Wide Web Consortium,

definition, Glossary-16

Wrapper, definition, Glossary-16

WRB, definition, Glossary-16

wrong_document_err, 20-72

X
XDK for C, E-1

XDK for C++, Specifications, F-1

XDK for Java

upgrading, 20-11

XDK for PL/SQL Toolkit, 29-22

XDK Version Numbers, 20-86

XDK, definition, Glossary-17

XLink, definition, Glossary-17
Index-10



XML

applying

multiple report definitions, 14-7

report definition in PL/SQL, 14-8

report definition stored in a file, 14-8

report definition stored in memory, 14-8

authored, 2-2

business components for Java, 11-6, 12-4

creating

report definition, 14-15

design issues, 2-11

generated, 2-2

good references, 20-109

Oracle XML, 1-2

report definitions

applying, 14-6

applying via PL/SQL, 14-8

batch modifications, 14-12

running, 14-16

running

report definition by itself, 14-16

report definitions, 14-16

serialization/compression, 20-10

upgrading, 20-11

XML applications, 11-1, 12-1

JDeveloper, 11-27

with JDeveloper, 11-14

XML AQ message transformation

AQ

XML message transformation, 9-39

XML C++ Class Generator, 28-1

XML Class Generator, 3-8

oracg utility, 22-3

XML Class Generator for Java, 22-2

XML Class Generators, compared, B-4

XML components, 3-2

generating XML documents, 3-17

XML data

sending, 2-11

XML data generator, 11-15

XML Developer’s Kit, definition, Glossary-17

XML document, added as a child, 20-81

XML documents, 3-17

communicating, 2-12

interMedia, 8-17

sections, 8-40

XML Documents, Merging, 20-94

XML Family, A-5

XML features, A-5

in JDeveloper 3.2, 11-11

XML in CLOBs, 29-27

XML Message Designer

Oracle Exchange, 16-9

XML messaging services

Oracle Exchange, 16-9

XML Namespaces, 20-5

XML namespaces, A-4

XML Parser

oraxml command line interface, 20-45

XML Parser for C, 24-1

sample programs, 24-13

specifications, E-2

XML Parser for C++, 26-1

XML Parser for Java, 20-1

compression

XML data, using XML Parser for Java, 20-10

XML Parser for PL/SQL, 29-1

FAQs, 29-20

XML parsers, 3-6

XML Parsers and Class Generators,

comparing, B-1

XML query, A-4

XML query, definition, Glossary-17

XML Schema, A-4

compared to DTD, 21-2

DTD limitations, 21-3

explained, 21-2

features, 21-3

processor for Java

how to run the sample program, 21-9

supported character sets, 21-6

usage, 21-8

processor for Java features , Oracle’s, 21-6

XML schema, 2-8

XML schema, definition, 20-86, Glossary-17

XML SQL Utility (XSU), 3-14, 7-43

advanced techniques, exception handling

(PL/SQL), 7-58

binding values

PL/SQL API, 7-47
Index-11



clearBindValues() with PL/SQL API, 7-47

command line usage, 7-17

connecting to the database, 7-22

connecting with a thin driver, 7-23

connecting with OCI* JDBC driver, 7-22

customizing generated XML, 7-12

DBMS_XMLQuery, 7-43

DBMS_XMLSave(), 7-48

deletes, 7-16

deleting from XML documents, 7-41

dependencies and installation, 7-4

explained, 7-2

for Java, 7-20

getXML command line, 7-17

getXMLClob, 7-47

how it works, 7-14

inserting with command line and putXML, 7-19

inserting XML into database, 7-36

inserts, 7-14

keepObjectOpen function, 7-28

mapping primer, 7-8

OracleXLlQuery API, 7-20

OracleXMLSave API, 7-20

putting XML back in database with

OracleXMLSave, 7-35

selects, 7-14

setKeycolumn function, 7-42

setRaiseNoRowsException(), 7-45

setting stylesheets, PL/SQL, 7-46

updates, 7-15

updating, 7-39

updating XML documents in tables, 7-38

XML SQL Utility XSU)

useStyleSheet(), 7-47

XML SQL Utility(XSU)

creating context handles with getCtx, 7-43

XML streams

how to become a supplier of live

(reports), 14-20

XML to Java Object Mapping, 22-30

XML Transviewer Java Beans, 3-9, 23-2

XML Tree, Traversing, 20-66

XML, definition, Glossary-6

XML, loading, 2-14

XML_SECTION_GROUP

how to use, 8-9

XMLAGG, 5-72

XML-based standards, A-5

xmlcg usage, 28-4

XMLGEN, is deprecated. See DBMS_XMLQUERY

and DBMS_XMLSAVE, 7-4

XMLGenFormatType object, 5-64

XMLNode.selectNodes() Method, 20-67

XMLParser() API, F-9

XMLSourceView Bean, 23-3, 23-15

XMLTransformPanel() Bean, 23-3, 23-20

XMLType

CONTAINS operator, 5-31

database support, 1-7

interaction with other SQL constructs, 5-7

queues, 9-37

storage characteristics, 5-10

summary, 5-2

Xpath support, 5-31

XMLU815.SQL script, 20-11

XMLU816.SQL script, 20-11

XMLU817.SQL script, 20-11

XPath, A-4

basics, 4-5

definition, Glossary-17

support, 5-31

XPointer, A-4

XPointer, definition, Glossary-17

XSL

and CSS, 4-5

basics, 4-2

converting a string to a nodeset, 4-13

converting a tag to a link in HTML, 4-16

converting XML to HTML, 4-7

ensuring the DTD file can be located, 4-18

error XSL-1009 attribute ’XSL Version’ not found

in HTML, 4-21

frequently asked questions, 4-6

good references, 20-109

IF statement, 4-6

passing a parameter from a Java program to a

stylesheet, 4-20

preventing namespace definition from being

repeated, 4-19

selecting specific attributes, 4-7
Index-12



specifying NULL indicators, 4-10

transfering tag names, 4-11

using XSL headers in WML

transformations, 4-18

working with whitespace, 4-9

XSL stylesheets

in reports, 14-5

setStylesheetHeader() in XSU PL/SQL, 7-46

useStyleSheet() with XSU PL/SQL, 7-47

XSL Transformation (XSLT) Processor, 3-8, 20-4

XSL, definition, Glossary-6

XSLFO, definition, Glossary-6

xslsample, 29-11

XSLT, 20-4

1.1 specification, 4-4

explained, 4-4

ora

node-set built in extension, 20-50

output built in extension, 20-50

XSLTransformer bean, 23-9

XSLT API, F-14

XSLT API Functions, E-12

XSLT Processor, 29-6

XSLT Processor API, G-9

XSLT, definition, Glossary-6

XSLTransformer Bean, 23-3, 23-9

XSQL

action handler errors, 10-72

built-in action handler elements, 10-68

clients, building with BC4J, 12-5

pluggable data source in reports, 14-19

XSQL Clients with BC4J, 12-5

XSQL Page Processor, 3-10

XSQL servlet, 3-10, 10-1, 11-18

FAQs, 10-74

XSQL, definition, Glossary-18

XSQLCommandLine Utility, 10-18

XSQLConfig.xml, 10-54

XSU, 3-14

client-side, 7-17

FAQ, 7-59

generating XML, 7-17

generating XML strings from a table,

example, 7-22

insert processing in PL/SQL, 7-49

mapping primer, 7-8

PL/SQL, 7-43

stylesheets, 7-46

usage guidelines, 7-8

using, 7-2

where you can run, 7-5
Index-13



Index-14


	Send Us Your Comments
	Preface
	About this Guide
	Audience
	Feature Coverage and Availability
	How this Manual is Organized
	Related Documentation
	How to Order this Manual
	Downloading Release Notes, Installation Guides, White Papers,...
	How to Access this Manual On-Line
	Conventions
	Documentation Accessibility

	What’s New in Oracle XML-Enabled Technology?
	XML Features Introduced with Oracle9i, Release 1 (9.0.1)
	XML Features Introduced with Oracle8i Release 3 (8.1.7)

	Part I� Introducing Oracle XML-Enabled Technology
	1 Oracle XML-Enabled Technology
	What is XML ?
	What are Oracle XML-Enabled Technologies?
	Oracle XML Components

	Storing and Retrieving XML Data from Oracle9i
	XML Support in the Database
	XML and URI Data Types
	Extensibility and XML
	Oracle Text Searching

	Oracle-Based XML Applications
	When to Use Oracle XML Components: How They Work Together

	Oracle XML-Enabled Technology Components and Features
	Indexing and Searching XML Documents with Oracle Text (interMedia Text)
	Messaging Hubs and Middle Tier Components
	Back-End to Database to Front-End Integration Issues
	Oracle XDKs Provide the Two Most Common APIs: DOM and SAX
	Writing Custom XML Applications

	The Oracle Suite of Integrated Tools and Components
	Oracle JDeveloper and Oracle Business Components for Java (BC4J)
	Oracle9i Internet File System (Oracle 9iFS or 9iFS)
	Oracle Portal
	Oracle Exchange
	XML Gateway
	Metadata API
	Other XML Initiatives

	Oracle XML Samples and Demos
	What Is Needed to Run Oracle XML Components
	Requirements for XDK
	Which XML Components are Included with Oracle9i Database and Oracle9i Application Server?

	XML Technical Support

	2 Modeling and Design Issues for Oracle XML Applications
	XML Data can be Stored as Generated XML or Composed XML
	Generated XML
	Composed (Authored/Native) XML
	Storing Composed XML Data in CLOBs or BFILEs
	Oracle Text (interMedia Text) Indexing Enables Fine Grain Searching of XML Element Content
	Advantages of Using Composed (Authored) XML Storage
	Disadvantages of Using Composed XML Storage

	Using a Hybrid XML Storage Approach for Better Mapping Granularity
	A Hybrid Approach Allows for User-Defined Storage Granularity
	Hybrid Storage Advantages

	Transforming Generated XML
	Combining XML Documents and Data Using Views
	Indexing and Querying Transformations
	Indexing Approaches
	XML Schemas and Mapping of Documents
	XMLSchema Example 1: Defining a Simple Data Type
	XMLSchema Example 2: Using XMLSchema to Map Generated XML Documents to Underlying Schema

	General XML: Design Issues for Data Exchange Applications
	Generating a Web Form from XML Data Stored in the Database
	Sending XML Data from a Web Form to the Database

	Sending XML Documents Applications-to-Application
	Loading XML into a Database
	Using SQL*Loader
	Loading XML Documents Into LOBs With SQL*Loader

	Applications that Use Oracle XML -EnabledTechnology
	Content and Document Management with Oracle XML-Enabled Technology
	Customizing Presentation of Data

	Scenario 1. Content and Document Management: Publishing Composite Documents Using XML-Enabled Ora...
	Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML...
	Scenario 3. Content Management: Using Oracle XML Technology to Customize Data Driven Applications
	Business-to-Business and Business-to-Consumer Messaging
	Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML
	Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Invent...
	Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integ...

	3 Oracle XML Developer Kits (XDKs) and Components: Overview and General FAQs
	Oracle XML Components: Overview
	Development Tools and Other XML-Enabled Oracle9i Features
	XDK for Java
	XDK for Java Beans
	XDK for C
	XDK for C++
	XDK for PL/SQL

	XML Parsers
	XSL Transformation (XSLT) Processor
	XML Class Generator
	XML Transviewer Java Beans
	Oracle XSQL Page Processor and Servlet
	Servlet Engines that Support XSQL Servlet
	JavaServer Pages Platforms that Support XSQL Servlet

	Oracle XML SQL Utility (XSU)
	Generating XML from Query Results
	XML Document Structure: Columns Are Mapped to Elements

	Oracle Text
	Oracle XML Components: Generating XML Documents
	Using Oracle XML Components to Generate XML Documents: Java
	Using Oracle XML Components to Generate XML Documents: C
	Using Oracle XML Components to Generate XML Documents: C++
	Using Oracle XML Components to Generate XML Documents: PL/SQL
	Frequently Asked Questions (FAQs): Oracle XML-Enabled Technology
	General XDK Questions
	What XML Components Do I Need to Install?
	Building an XML Application: What Software Is Needed?
	DTD to Database Schema
	Schema Map to XML
	Are There XDK Utilities That Translate From Other Formats to XML?
	Can Oracle Generate a Database Schema From a Rational Rose Generated XML File?
	Does Oracle Offer Any Tools to Create and Edit XML Documents?
	How Can I Format XML Documents as PDF?
	How Do I Load a Large XML Document Into the Database?

	Portability and XML Support in Older Oracle Releases
	Can I Use Parsers from Different Vendors?
	Is There XML Support in Oracle 8.0.x?
	Oracle 7.3.4: Data Transfers to Other Vendors Using XML
	If I Use Versions Prior to Oracle8i Can I use Oracle XML Tools?

	Browsers that Support XML
	Which Browsers Support XML?

	Standards
	Are there Advantages of XML Over EDI?
	What B2B Standards and Development Tools Does Oracle Support?
	What is Oracle Corporation’s Direction Regarding XML?
	Are There Standard DTDs that We Can Use for Orders, Shipments, and So On?

	XML, CLOBs, and BLOBs
	Is There Support for XML Messages in BLOBs?

	Maximum FileSizes
	What is the Maximum XML File Size When Stored in CLOBs?
	XML File Size Limitations
	Maximum Size for an XML Document

	Inserting XML Data Into Tables
	What Do I Need to Insert Data Into Tables Using XML?

	XML in the Database: Performance
	Where Can I Find Information about the Performance of XML and Oracle?
	How Can I Speed Up the Record Retrieval in XML Documents?

	Using XML With Different Languages
	Further References
	Other XML Frequently Asked Questions
	Recommended XML and XSL Books


	4 Using XSL and XSLT
	Introducing XSL
	The W3C XSL Specification
	Namespaces in XML
	XSL Stylesheet Architecture

	XSL Transformation (XSLT)
	XSLT 1.1 Specification

	XML Path Language (Xpath)
	CSS Versus XSL
	XSL References
	Frequently Asked Questions: XSL and XSLT
	How Do I Write an IF Statement in XSL That Tests for Values Within Tags?
	In an XSL Document, How Can We Select Specific Attributes?
	When Converting XML to HTML, Why Do I get "Unexpected EOF"?
	Whitespace: Why are my Resulting Values Multiplied by 2?
	How Can I Specify a NULL Indicator in XSL?
	How Can Transfer Tag Names in XSLT?
	How Do I Convert A String to a Nodeset in XSL?
	In XSL, How Can I Correctly Convert an XML Document Tag to a Link in HTML?
	Am I Using the Correct XSL Headers for my WML Transformation?
	In an XSL Transformation, How Do I Ensure that the DTD File Can be Located?
	In XSL, How Do I Prevent the Namespace Definition from Being Repeated For Each Element?
	How Do I Pass a Parameter from a Java Program to an XSL Stylesheet?
	How Can I Resolve the Error XSL-1009 Attribute ’XSL Version’ Not Found in HTML?
	What XPath Expression Will Retrieve Only Terminal Child Elements?
	Child Attributes are Not Returned After Applying XSL Stylesheet



	Part II� Storing and Retrieving XML From the Database
	5 Database Support for XML
	What are the Oracle9i Native XML Database Features?
	XMLType Datatype
	How to use XMLType
	Guidelines for using XMLType Columns

	Benefits of XMLType
	When to use XMLType
	XMLType Storage in the Database
	Specifying Storage Characteristics on XMLType Columns
	Specifying Constraints on XMLType Columns

	XMLType Functions
	Manipulating XML Data in XMLType Columns
	Inserting XML Data into XMLType Columns
	Updating XML Data in XMLType Columns
	Deleting XML Data
	Using XMLType Inside Triggers

	Selecting and Querying XML Data
	Selecting XML data
	Querying XML data
	Querying XMLType Data using Text Operators

	Indexing XMLType columns
	Java Access to XMLType (oracle.xdb.XMLType)
	Installing and using oracle.xdb.XMLType class

	Native XML Generation
	DBMS_XMLGEN
	SYS_XMLGEN
	XMLGenFormatType Object

	SYS_XMLAGG
	Other Aggregation Methods

	TABLE Functions
	Using Table Functions with XML
	Table Functions Example 1: Exploding the PO to Store in a Relational Table

	Frequently Asked Questions (FAQs): XMLType

	6 Database Uri-references
	Uri-reference (Uri-ref) Concepts
	What is a Uri-ref?
	Advantages of Using DBUri-ref

	New Datatypes Store Uri-references
	Benefits of Using UriTypes

	DBUri-refs, Intra-Databases References
	Formulating the DBUri
	The DB-Uri Specification
	DBUri Syntax Guidelines
	Some Common DBUri-ref Scenarios
	How DBUri’s Differ from Object References
	DBUri-ref Applies to a Database and Session
	Where Can DBUri-ref be Used?

	Using Uri-ref Types (URITypes)
	Storing Pointers to Documents with UriType
	URIType Examples
	Using HttpUriType and DBUriType
	DBUriType Examples

	UriFactory Package
	UriFactory Example: Registering the ecom Protocol

	Why Use Different Uri-refs?
	SYS_DBURIGEN() SQL Function
	SYS_DBURIGEN Example 1: Inserting Database References
	SYS_DBURIGEN Example 2: Returning Partial Results
	SYS_DBURIGEN Example 3: RETURNING Uri-refs

	Accessing DBUri-refs From Your Browser Using Servlets
	oracle.xml.dburi.OraDbUriServlet() Servlet Mechanism
	OraDBUriServlet Security
	Installing OraDBUri Servlet
	DBUri Servlet Example 1: First Create a DBUriServer Web Service [tkxmsrv.ssh]
	DBUri Servlet Example 2: Creating DBUridomain — Publishing OraDbUriServlet Under SYS [tkxmsys.ssh]
	DBUri Servlet Example 3: Publishing OraDbUriServlet Under SYS [tkxmsysd.ssh]
	DBUri Servlet Example 4: Publishing OraDbUriServlet Under ADAMS with Class Under SYS [tkxmadam.ssh]
	DBUri Servlet Example 5: Publishing OraDbUriServlet Under SCOTT [tkxmsctd.ssh]
	DBUri Servlet Example 6: Creating and Mapping dburirealm — Publishing OraDbUriServlet Under SYS [...
	DBUri Servlet Example 7: Publishing OraDbUriServlet Under the ADAMS Schema Using the Class Under ...
	DBUri Servlet Example 8: Publishing OraDbUriServlet Under the ADAMS Schema Using the Class Under ...
	Configuring the UriFactory Package to Handle DBUri-refs


	7 XML SQL Utility (XSU)
	What is XML SQL Utility (XSU)?
	XSU Features
	XSU Oracle9i Features

	XSU Dependencies and Installation
	Dependencies
	Installation

	XML SQL Utility and the Bigger Picture
	XML SQL Utility in the Database
	XML SQL Utility in the Middle Tier
	XML SQL Utility in a Web Server
	XML SQL Utility In The Client Tier

	SQL-to-XML and XML-to-SQL Mapping Primer
	Default SQL-to-XML Mapping
	Customizing the Generated XML: Mapping SQL to XML
	Default XML-to-SQL Mapping

	How XML SQL Utility Works
	Selecting with XSU
	Inserting with XSU
	Updating with XSU
	Deleting with XSU

	Using the XSU Command Line Front End,OracleXML
	Generating XML Using the XSU Command Line
	XSU’s OracleXML getXML Options
	Inserting XML Using XSU’s Command Line (putXML)
	XSU OracleXML putXML Options

	XSU Java API
	Generating XML with XSU’s OracleXMLQuery
	Generating XML From SQL Queries Using XSU
	XSU Generating XML Example 1: Generating a String From Table emp (Java)
	XSU Generating XML Example 2: Generating DOM From emp table (Java)

	Paginating Results: skipRows and maxRows
	Keeping the Object Open For the Duration of the User’s Session
	When the Number of Rows or Columns in a Row Are Too Large
	keepObjectOpen Function
	XSU Generating XML Example 3. Paginating Results: Generating an XML Page When Called (Java)

	Generating XML from ResultSet Objects
	XSU Generating XML Example 4: Generating XML from JDBC ResultSets (Java)
	XSU Generating XML Example 5: Generating XML from Procedure Return Values (REF CURSORS) (Java)

	Raising No Rows Exception
	XSU Generating XML Example 6: No Rows Exception (Java)

	Storing XML Back in the Database Using XSU OracleXMLSave
	Insert Processing Using XSU (Java API)
	XSU Inserting XML Example 7: Inserting XML Values into All Columns (Java)
	XSU Inserting XML Example 8: Inserting XML Values into Only Certain Columns (Java)

	Update Processing Using XSU (Java API)
	XSU Updating XML Example 9: Updating a Table Using the keyColumns (Java)
	XSU Updating XML Example 10: Updating a Specified List of Columns (Java)

	Delete Processing Using XSU (Java API)
	XSU Deleting XML Example 11: Deleting Operations Per ROW (Java)
	XSU Deleting XML Example 12: Deleting Specified Key Values (Java)

	XSU PL/SQL API
	Generating XML with DBMS_XMLQuery()
	XSU Generating XML Example 13: Generating XML From Simple Queries (PL/SQL)
	XSU Generating XML Example 13a: Printing CLOB to Output Buffer
	XSU Generating XML Example 14: Changing ROW and ROWSET Tag Names (PL/SQL)
	XSU Generating XML Example 15: Paginating Results Using setMaxRows() and setSkipRows()

	Setting Stylesheets in XSU (PL/SQL)
	Binding Values in XSU (PL/SQL)
	XSU Generating XML Example 15a: Binding Values to the SQL Statement

	Storing XML in the Database Using DBMS_XMLSave
	Insert Processing Using XSU (PL/SQL API)
	XSU Inserting XML Example 16: Inserting Values into All Columns (PL/SQL)
	XSU Inserting XML Example 17: Inserting Values into Only Certain Columns (PL/SQL)

	Update Processing Using XSU (PL/SQL API)
	XSU Updating XML Example 18: Updating an XML Document Using keyColumns (PL/SQL)
	XSU Updating XML Example 19: Specifying a List of Columns to Update (PL/SQL)

	Delete Processing Usingh XSU (PL/SQL API)
	XSU Deleting XML Example 20: Deleting Operations per ROW (PL/SQL)
	XSU Example 21: Deleting by Specifying the Key Values (PL/SQL)
	XSU Deleting XML Example 22: ReUsing the Context Handle (PL/SQL)

	Advanced XSU Usage Techniques
	XSU Exception Handling in Java
	XSU Exception Handling in PL/SQL

	Frequently Asked Questions (FAQs): XML SQL Utility (XSU)
	What Schema Structure Should I Use With XSU to Store XML?
	Can XSU Store XML Data Across Tables?
	Can I Use XML SQL Utility to Load XML Stored in Attributes?
	Is XML SQL Utility Case Sensitive? Can I Use ignoreCase?
	Will XSU Generate Database Schema from a DTD?
	Can You Provide a Thin Driver Connect String Example for XSU?
	Does XML SQL Utility Commit After INSERT, DELETE, UPDATE?
	Can You Explain How to Map Table Columns to XML Attributes Using XSU?
	How Can I Use XMLGEN.insertXML with LOBs?


	8 Searching XML Data with Oracle Text
	Introducing Oracle Text
	Assumptions Made in this Chapter’s Examples
	Oracle Text Users and Roles
	Querying with the CONTAINS Operator
	Using a Simple SELECT Statement
	Using the Score Operator with a Label to Obtain the Relevance
	Using the WITHIN Operator to Narrow Query Down to Document Sections
	Using INPATH or HASPATH Operators for Query Searching With XPath-like Expressions

	Using Oracle Text to Search XML Documents
	Step 1. Create a Section Preference
	Step 2. Create an Index Using the Section Preference Created in Step 1
	Oracle Text Example 1: Creating an Index Using XML_SECTION_GROUP
	Oracle Text Example 2: Creating an Index Using AUTO_SECTION_GROUP
	Oracle Text Example 3: Creating an Index Using PATH_SECTION_GROUP

	Building XML Query Applications with Oracle Text
	Querying XML Documents
	Distinguishing Tags Across DocTypes
	Specifying Doctype Limiters to Distinguish Between Tags
	Doctype-Limited and Unlimited Tags in a Section Group
	Querying Within Attribute Sections
	XML_SECTION_GROUP Attribute Sections
	Constraints for Querying Attribute Sections

	Procedure for Building a Query Application with Oracle Text
	Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View

	Step 1. Create a Preference
	Step 2. Set the Preference’s Attributes
	2.1 Using CTX_DDL.add_zone_section
	2.2 Using CTX_DDL.Add_Attr_Section
	2.3 Using CTX_DDL.add_field_section
	2.5 Using CtX_DDL.Add_Stop_Section

	Step 3. Create Your Query Syntax
	Oracle Text Example 4: Querying a... Document
	Oracle Text Example 5: Creating an Index and Performing a Text Query

	Creating Sections in XML Documents that are Document Type Sensitive
	Repeated Sections
	Overlapping Sections
	Nested Sections

	Presenting the Results of Your Query
	Case Study: Searching an Online FAQ List Using Oracle Text
	1 Create and Populate Your FAQ Table. Create an Auto Section Group and Oracle Text Index
	2 Compile showxml.psp
	3 Compile faqsearch.psp

	Frequently Asked Questions (FAQs): Oracle Text
	Searching Attribute Values
	Can I Build Indexes on Attribute Values?

	General Oracle Text Questions
	Can XML Documents Be Queried Like Table Data?
	Can we Search Based on Structural Conditions?
	How Can I Searching XML Documents and Return a Zone?
	Loading XML Documents into the Database and Searching with Oracle Text
	How Do I Search XML using the WITHIN Operator?
	Oracle Text (intermedia Text) and XML
	Oracle Text (intermedia Text) and XML: Add_field_section
	Can I Do Range Searching with Oracle Text?
	Can Oracle Text Do Section Extraction?
	Can I Create a Text Index on Three Columns?
	How Fast is Oracle9i at Indexing Text and Can I Just Enable Boolean Searches?
	How Can We Index XML Documents in Different Languages?

	Searching XML Documents in CLOBs
	How Do I Search CLOBs Using Oracle Text?
	How Can I Search Different XML Documents Stored in CLOBs With Different DTDs?
	Storing an XML Document in CLOB: Using Oracle Text (intermedia Text)
	Can We Only Insert Structured When The Table is Created?



	Part III� Data Exchange Using XML
	9 Exchanging XML Data Using Oracle AQ
	What is AQ?
	How do AQ and XML Complement Each Other?
	Internet-Data-Access-Presentation (IDAP)
	XML and the IDAP Interface

	IDAP Architecture
	IDAP Method Invocation
	IDAP Message Structure
	IDAP Method Invocation Body: “IDAP Payload”

	IDAP Message Body is an AQ XML Document
	IDAP Client Requests for Enqueue
	Message Payloads
	IDAP Enqueue Request Example1 — Sending an ADT Message to a Single-Consumer Queue
	IDAP Enqueue Request Example 2 — Publishing an ADT Message to a Multiconsumer Queue
	IDAP Enqueue Request Example 3 — Sending a Message to a JMS Queue
	IDAP Enqueue Request Example 4 — Sending/Publishing and Committing the Transaction

	IDAP Client Requests for Dequeue
	IDAP Dequeue Request Example 1— Receiving Messages from a Single-Consumer Queue
	IDAP Dequeue Request Example 2 — Receiving Messages that Satisfy a Specific Condition
	IDAP Dequeue Request Example 3 — Receiving Messages and Committing
	IDAP Dequeue Request Example 4 — Browsing Messages

	IDAP Client Requests for Registration
	IDAP Register Request Example 1— Registering for Notification at an Email Address
	Commit Request
	Rollback Request

	IDAP Server Response to Enqueue
	IDAP Server Request Example 1 — Enqueuing a Single Message to a Single-Consumer Queue
	IDAP Server Request Example 2— Enqueuing to a Multiconsumer Queue

	Server Response to a Dequeue Request
	IDAP Server Dequeue Response Example 1 — Receiving Messages from an ADT Queue (AQXmlReceiveResponse)

	Server Response to a Register Request
	Commit Response
	Rollback Response

	Notification
	IDAP and AQ XML Schemas
	AQXMLServlet
	Accessing AQXMLServlet with HTTP

	XMLType Queues
	Storing and Querying XML Documents with Advanced Queueing (AQ)
	Structuring and Managing Message Payloads with Object Types
	Creating Message Payloads Queues Containing XMLType Attributes
	XMLType Queues Example 1: Creating XMLType Queue Tables for a Queue Object Type Containing Messag...

	AQ XML Message Format Transformation
	AQ Message Transformation Example 1: Creating a Single PL/SQL Function that Returns an XMLType Ob...

	Frequently Asked Questions (FAQs): XML and Advanced Queuing
	Can we Store AQ XML Messages with Many PDFs as One Record?
	Can We Add New Recipients After Messages are Enqueued?
	How Does Oracle Enqueue and Dequeue and Process XML Messages?
	How Can We Parse Messages with XML Content From AQ Queues?
	Can we Prevent the Listener From Stopping Until the XML Document is Processed?



	Part IV� Tools and Frameworks for Building Oracle-Based XML Applications
	10 XSQL Pages Publishing Framework
	XSQL Pages Publishing Framework Overview
	What Can I Do with Oracle XSQL Pages?
	Where Can I Obtain Oracle XSQL Pages?
	What’s Needed to Run XSQL Pages?

	Overview of Basic XSQL Pages Features
	Producing XML Datagrams from SQL Queries
	Transforming XML Datagrams into an Alternative XML Format
	Transforming XML Datagrams into HTML for Display

	Setting Up and Using XSQL Pages in Your Environment
	Using XSQL Pages With Oracle JDeveloper
	Setting the CLASSPATH Correctly in Your Production Environment
	Setting Up the Connection Definitions
	Using the XSQL Command Line Utility

	Overview of All XSQL Pages Capabilities
	Using All of the Core Built-in Actions
	Aggregating Information Using <xsql:include-xsql>
	Handling Posted Information
	Using Custom XSQL Action Handlers

	Description of XSQL Servlet Examples
	Setting Up the Demo Data

	Advanced XSQL Pages Topics
	Understanding Client Stylesheet-Override Options
	Controlling How Stylesheets are Processed
	Using XSQLConfig.xml to Tune Your Environment
	Using the FOP Serializer to Produce PDF Output
	Using XSQL Page Processor Programmatically
	Writing Custom XSQL Action Handlers
	Writing Custom XSQL Serializers
	Writing Custom XSQL Connection Managers
	Formatting XSQL Action Handler Errors

	XSQL Servlet Limitations
	HTTP Parameters with Multibyte Names
	CURSOR() Function in SQL Statements

	Frequently Asked Questions (FAQs) - XSQL Servlet
	Specifying a DTD While Transforming XSQL Output to a WML Document
	XSQL Servlet Conditional Statements
	Using Value Retrieved in One Query in Another Query’s Where Clause
	Working with Non-Oracle Databases
	XSQL Servlet: Access to JServ Process
	XSQL on Oracle8i Lite
	Handling Multi-Valued HTML Form Parameters
	XSQL Servlet and Oracle 7.3
	Out Variable Not Supported in <xsql:dml>
	Unable to Connect Errors
	Using Other File Extensions Besides *.xsql
	Avoiding Errors for Queries Containing XML Reserved Characters


	11 Using JDeveloper to Build Oracle XML Applications
	Introducing JDeveloper9i
	Business Components for Java (BC4J)
	Oracle JDeveloper XML Strategy
	Further Information About JDeveloper

	What’s Needed to Run JDeveloper9i
	Accessing JDeveloper9i

	XML in Business Components for Java (BC4J)
	Building XSQL Clients with Business Components for Java (BC4J)
	Object Gallery
	XSQL Element Wizard
	Page Selector Wizard

	XML Features in JDeveloper9i
	Oracle XDK and Transviewer Beans Integration
	Oracle XML Parser for Java
	Oracle XSQL Servlet
	XML Data Generator Web Bean
	Mobile Application Development with Portal-To-Go and JDeveloper

	Building XML Applications with JDeveloper
	JDeveloper XML Example 1: BC4J Metadata
	Procedure for Building Applications in JDeveloper9i

	Using JDeveloper’s XML Data Generator Web Bean
	Using XSQL Servlet from JDeveloper
	JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql
	JDeveloper XSQL Example 3: Employee Data with Stylesheet Added

	Creating a Mobile Application in JDeveloper
	1 Create the BC4J Application
	2 Create JSP Pages Based on a BC4J Application
	3 Create XSLT Stylesheets According to the Devices Needed to Read The Data

	Frequently Asked Questions (FAQs): Using JDeveloper to Build XML Applications
	Constructing an XML Document in JSP
	Using XMLData From BC4J
	Running XML Parser for Java in JDeveloper 3.0
	Moving Complex XML Documents to a Database


	12 Building BC4J and XML Applications
	Introducing Business Components for Java (BC4J)
	BC4J Features
	BC4J Advantages

	Building BC4J XML Applications in JDeveloper
	Building XSQL Clients with BC4J
	Ease of Code Generation and Management when Building XML and Java Applications


	13 13 Using Metadata API
	Introduction to Metadata API
	Previous Methods Used to Extract Metadata
	Metadata API Components
	Metadata API Features
	Internet Computing

	What is DBMS_METADATA?
	DBMS_METADATA and Security

	DBMS_METADATA Programmatic Interface
	DBMS_METADATA.FETCH_XML
	DBMS_METADATA.FETCH_DDL()
	Performance Tips

	DBMS_METADATA Browsing Interface
	Metadata API Example: Retrieving DDL for Tables and their Indexes, Grants and Triggers
	mddemo.sql
	PAYROLL_DEMO Output


	14 Oracle9iAS Reports Services and XML
	Introducing Oracle9iAS Reports Services and XML
	B2B Data Exchange: Why Use XML in Reports?
	What’s Needed to Run Oracle9iAS Reports Services

	Creating XML Output "On the Fly’ Using Oracle9iAS Reports Services
	XML as a Data InterChange Format
	Formatting XML Output Using XSL Stylesheets

	Customizing Report Definitions at Runtime
	Applying an XML Customization
	Customizing Reports at Runtime with XML
	Customizing Reports with XML, Example 1: Modifying F_EMPNO and Setting its Color to Red
	Customizing Reports with XML, Example 2: Changing Text Color of F_EMPNO to Red and Setting Date F...
	Customizing Reports with XML, Example 3: Modifying Boilerplate Text Objects
	Customizing Reports with XML, Example 4: Replacing a SELECT * Query with a SELECT * FROM... WHERE...
	Customizing Reports with XML, Example 5: Adding a Trigger to Field S_SAL

	Performing Batch Report Modifications by Applying XML Report Definitions
	Creating Mutated RDFs Out of One Master
	Creating Multi-Version Reports Out of a Single RDF
	Customizing Reports with XML Example 6: Creating Different Language Versions from One Report Defi...

	Creating Report Definitions in XML
	Customizing Reports with XML, Example 7: Creating a Report from XML Definitions Only
	Running XML Report Definitions
	Running an XML Report Definition by Itself
	XML Used in JSP for Storing Report Definitions

	Using XML as a Datasource
	Pluggable Data Source, XML-PDS
	Using XML for Oracle9iAS Reports Services Configuration Files
	How Reports9i XML-PDS Supports XSQL Servlet

	Reports Case Studies
	How to Become a Supplier of Live XML Streams
	How to Take Advantage of Supplied XML-Data

	Frequently Asked Questions: Reports and XML
	Can We Output XML From Our Year End Reports Through a Database Interface?
	Changing the Report Template
	REP-6106:Error in the XML report definition at line 1 in 'c:\am01.xml' Start of root element expe...


	15 Using the PDK for Visualizing XML Data in Oracle Portal
	Introducing Oracle Portal
	What are Portlets?

	Common Portlet Applications
	Oracle Portal Development Kit (PDK)
	PDK Integration Services (PDKIS)

	PDK URL Services
	What’s Needed to Run URL Services

	PDK URL Services Overview
	Creating a URL Portlet
	Web Provider

	URL Services Architecture
	URL Services Interface
	URL Services Runtime

	Provider.xml
	Using provider.xml

	Configuring provider.xml
	Provider Tag
	Portlet Tag

	Integrating Technologies into Oracle 9iAS Portal

	16 How Oracle Exchange Uses XML
	Oracle Exchange and XML
	Stored Transactions
	Pass Through Transactions
	XML Delivery Formats
	E-Business Solution Architecture
	ATP (Availability to Promise) for Oracle Exchange
	The webMethods Services
	Exchange - Supplier XML

	XML Messaging Services
	XML Message Designer and Runtime Execution Engine
	Generating XML that Conforms to New Schema


	17 Introducing Oracle XML Gateway
	What is XML Gateway?
	Oracle XML Gateway Services
	Oracle XML Gateway Architecture
	XML Gateway Services - Message Designer
	XML Gateway Services - Message Set Up
	XML Gateway Services - Execution Engine
	A Word About XML Standards


	Part V� Oracle9i Dynamic Services (DS) and Oracle Syndication Server (OSS)
	18 Using Oracle9iAS Dynamic Services and XML
	Introducing Oracle9iAS Dynamic Services
	How Dynamic Services (DS) Helps Developers
	For Further Information

	What is Needed to Run Oracle9iAS Dynamic Services?
	Dynamic Services (DS) Architecture Overview
	Dynamic Services (DS) Implementation Overview
	Dynamic Services Java Deployment
	Dynamic Services PL/SQL Deployment
	Dynamic Services Java HTTP/Java Messaging Services (JMS) Deployment
	Multiple Channel Capabilities of DS

	Dynamic Services Features
	Service Management and Administration
	Service Discovery
	Service Execution

	Dynamic Services Integrates with Other Oracle Products
	How Service Consumers Use Dynamic Services
	Developing Services For Dynamic Services
	Oracle Syndication Server (OSS)
	Dynamic Services Consumer Application: Stock Portfolio Example
	Compiling SampleStock.java
	Dynamic Services Example 1: SampleStock (Java)

	Frequently Asked Questions (FAQs): Dynamic Services
	What is the Best Way that I Can Set Up a Language of Queuing and Sequencing Commands?
	Other FAQs?


	19 Oracle Syndication Server (OSS) and XML
	Introducing Oracle Syndication Services (OSS)
	OSS Features: e-Business Content Aggregation, Exchange, and Syndication
	Content Syndication

	Information and Content Exchange (ICE) Protocol
	OSS Architecture
	Interacting with Content Providers
	Dynamic Services Content Provider Adapter (DSCPA)

	Interacting With Content Subscribers
	Delivering content to subscribers



	Part VI� XDK for Java
	20 Using XML Parser for Java
	XML Parser for Java: Features
	XSL Transformation (XSLT) Processor
	Namespace Support
	Oracle XML Parsers Support Four Validation Modes

	Parsers Access XML Document’s Content and Structure
	DOM and SAX APIs
	DOM: Tree-Based API
	SAX: Event -Based API
	Guidelines for Using DOM and SAX APIs

	XML Parser and Data Compression
	XML Serialization/Compression

	Upgrading XDK for Java
	Upgrading XDK for Java from a Previous Release to Oracle9i

	Downgrading to Oracle Release 8.1
	Running the XML Parser for Java Samples
	XML Parser for Java - XML Sample 1: class.xml
	XML Parser for Java - XML Example 2: Using DTD employee — employee.xml
	XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml
	XML Parser for Java — XSL Example 1: XSL (iden.xsl)
	XML Parser for Java - DTD Example 1: (NSExample)

	Using XML Parser for Java: DOMParser() Class
	XML Parser for Java Example 1: Using the Parser and DOM API (DomSample.java)
	Comments on DOMParser() Example 1

	Using XML Parser for Java: DOMNamespace() Class
	XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java

	Using XML Parser for Java: SAXParser() Class
	XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)

	Using XML Parser for Java: XSLT Processor
	XML Parser for Java Example 4: (XSLSample.java)
	XML Parser for Java Example 5: Using the DOM API and XSLT Processor
	Comments on XSLT Example 5

	Using XML Parser for Java: SAXNamespace() Class
	XML Parser for Java Example 6: (SAXNamespace.java)

	XML Parser for Java: Command Line Interface
	oraxml - Oracle XML parser
	oraxsl - Oracle XSL processor

	XML Extension Functions for XSLT Processing
	XSLT Processor Extension Functions: Introduction
	Static Versus Non-static Methods
	Constructor Extension Function
	Return Value Extension Function
	Datatypes Extension Function
	ora XSLT Built In Extensions: ora:node-set and ora:output

	Frequently Asked Questions (FAQs): XML Parser for Java
	DTDs
	Checking DTD Syntax: Suggestions for Editors
	DTD File in DOCTYPE Must be Relative to XML Document Location
	Validating an XML File Using External DTD
	DTD Caching
	Recognizing External DTDs
	Loading external DTD’s from a jar File
	Can I Check the Correctness of an XML Document Using their DTD?
	Parsing a DTD Object Separately from XML Document
	Case-Sensitivity in Parser Validation against DTD?
	Extracting Embedded XML From a CDATA Section
	Why Am I Getting an Error When I Call DOMParser.parseDTD()?
	Is There a Standard Extension To Use for External Entities References in an XML Document?

	DOM and SAX APIs
	Using the DOM API
	How DOM Parser Works
	Creating a Node With Value to be Set Later
	Traversing the XML Tree
	Extracting Elements from XML File
	Does a DTD Validate the DOM Tree?
	First Child Node Element Value
	Creating DocType Node
	XMLNode.selectNodes() Method
	Using SAX API to Get the Data Value
	SAXSample.java
	Does DOMParser implement Parser interface
	Creating an New Document Type Node Via DOM
	Querying for First Child Node’s Value of a Certain Tag
	XML Document Generation From Data in Variables
	Printing Data in the Element Tags: DOM API
	Building XML Files from Hashtable Value Pairs
	XML Parser for Java: wrong_document_err on Node.appendChild()
	Creating Nodes: DOMException when Setting Node Value
	With SAX, How Can I Force the Parser to Not Discard Whitespace?

	Validation
	DTD: Understanding DOCTYPE and Validating Parser
	Can Multiple Threads Use Single XSLProcessor/Stylesheet?
	Is it Safe to Use Document Clones in Multiple Threads?

	Character Sets
	Encoding iso-8859-1 in xmlparser
	Parsing XML Stored in NCLOB With UTF-8 Encoding
	NLS support within XML
	UTF-16 Encoding with XML Parser for Java V2
	How Can I Read in Accented Characters?

	Adding XML Document as a Child
	Adding an XMLDocument as a Child to Another Element
	Adding an XML DocumentFragment as a Child to XMLDocument

	Uninstalling Parsers
	Removing XML Parser from the Database

	XML Parser for Java: Installation
	XMLPARSER Fails to Install

	General XML Parser Related Questions
	How the XML Parser Works
	Converting XML Files to HTML Files
	Does XML Parser Validate Against XML Schema?
	Including Binary Data in an XML Document
	What is XML Schema?
	Oracle’s Participation in Defining the XML/SQL Standard
	XDK Version Numbers
	Inserting <, >, >= and <= in XML Documents
	Are Namespace and Schema Supported
	Using JDK 1.1.x with XML Parser for Java v2
	Sorting the Result on the Page
	Is Oracle9i Needed to Run XML Parser for Java?
	Dynamically Setting the Encoding in an XML File
	Parsing a String
	Displaying an XML Document
	System.out.println() and Special Characters
	Obtaining Ampersand from Character Data
	How Can We Use Special Characters in the Tags?
	Parsing XML from Data of Type String
	Extracting Data from XML Document into a String
	Disabling Output Escaping
	Using the XML Parser for Java with Oracle 8.0.5
	Delimiting Multiple XML Documents
	XML and Entity-references: XML Parser for Java
	Can I Break up and Store an XML Document without a DDL Insert?
	Merging XML Documents
	Getting the Value of a Tag
	Granting JAVASYSPRIV to User
	Including an External XML File in Another XML File: External Parsed Entities
	Where Can I Download OraXSL, The Parser’s Command Line Interface?
	Will Oracle Support Hierarchical Mapping?

	XSLT Processor and XSL Stylesheets
	HTML Error in XSL
	Is <xsl:output method="html"/> Supported?
	Netscape 4.0: Preventing XSL From Outputting <meta> Tag
	XSL Error Messages
	Generating HTML: “<“ Character
	HTML “<“ Conversion Works in oraxsl but not XSLSample.java?
	XSLT Examples
	XSLT Features
	Using XSL To Convert XML Document To Another Form
	Information on XSL?
	XSLProcessor and Multiple Outputs?
	What Good Books for XML/XSL Can You Recommend?
	XML Developer Kits for HP/UX Platform

	Compressing Large Volumes of XML Documents
	How Can I Generate an XML Document Based on Two Tables?


	21 Using XML Schema Processor for Java
	Introducing XML Schema
	How DTDs and XML Schema Differ
	XML Schema Features
	Oracle XML Schema Processor for Java Features
	Supported Character Sets
	What’s Needed to Run XML Schema Processor for Java
	XML Schema Processor for Java Directory Structure

	XML Schema Processor for Java Usage
	How to Run the XML Schema for Java Sample Program
	MakeFile
	XML Schema for Java Example 1: cat.xsd
	XML Schema for Java Example 2: catalogue.xml
	XML Schema for Java Example 3: catalogue_e.xml
	XML Schema for Java Example 4: report.xml
	XML Schema for Java Example 5: report.xsd
	XML Schema for Java Example 6: report_e.xml
	XML Schema for Java Example 7: XSDSample.java
	XML Schema for Java Example 8: XSDSetSchema.java


	22 22 XML Class Generator for Java
	Accessing XML Class Generator for Java
	XML Class Generator for Java: Overview
	Oracg Command Line Utility
	Class Generator for Java: XML Schema
	Namespace Features

	Using XML Class Generator for Java with XML Schema
	Generating Top Level Element Classes
	Generating Top Level ComplexType Element Classes
	Generating SimpleType Element Classes

	Using XML Class Generator for Java with DTDs
	Examples Using XML Java Class Generator with DTDs and XML Schema
	Running XML Class Generator for Java — DTD Examples
	Running XML Class Generator for Java — XML Schema Examples
	XML Class Generator for Java, DTD Example 1a: Application — SampleMain.java
	XML Class Generator for Java, DTD Example 1b: DTD Input — widl.dtd
	XML Class Generator for Java, DTD Example 1c: Input — widl.xml
	XML Class Generator for Java, DTD Example 1d: TestWidl.java
	XML Class Generator for Java, DTD Example 1e: XML Output — widl.out
	XML Class Generator for Java, Schema Example 1a: XML Schema, car.xsd
	XML Class Generator for Java, Schema Example 1b: Application, CarDealer.java
	XML Class Generator for Java, Schema Example 2a: Schema — book.xsd
	XML Class Generator for Java, Schema Example 2b: Application — BookCatalogue.java
	XML Class Generator for Java, Schema Example 3a: Schema — po.xsd
	XML Class Generator for Java, Schema Example 3b: Application — TestPo.java

	Frequently Asked Questions (FAQs): Class Generator for Java
	How Do I Install XML Class Generator?
	What Does XML Class Generator for Java Do?
	Which DTD’s are Supported?
	How do I Solve the Classes not Found Error When Running XML Class Generator Samples?
	In XML Class Generator, How Do I Create the Root Object More than Once?
	How Can I Create XML Files from Scratch Using the DOM API?
	Can I Create an XML Document in a Java Class?



	Part VII� XDK for Java Beans
	23 Using XML Transviewer Beans
	Accessing Oracle XML Transviewer Beans
	XDK for Java: XML Transviewer Bean Features
	Database Connectivity
	XML Transviewer Beans

	Using the XML Transviewer Beans
	Using DOMBuilder Bean
	Used for Asynchronous Parsing in the Background
	DOMBuilder Bean Parses Many Files Fast
	DOMBuilder Bean Usage

	Using XSLTransformer Bean
	Many Files to Transform? Use XSLTransformer Bean
	Need a responsive User Interface? Use XSLTransformer Bean
	XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Underlying Data Changes
	XSLTransformer Bean Usage

	Using Treeviewer Bean
	Using XMLSourceView Bean
	XMLSourceView Bean Usage

	Using XMLTransformPanel Bean
	XMLTransformPanel Bean Features

	Using DBViewer Bean
	DBViewer Bean Usage

	Using DBAccess Bean
	DBAcess Bean Usage

	Running the Transviewer Bean Samples
	Installing the Transviewer Bean Samples
	Using Database Connectivity
	Running Makefile
	Transviewer Bean Example 1: AsyncTransformSample.java
	Transviewer Bean Example 2: ViewSample.java
	Transviewer Bean Example 3: XMLTransformPanelSample.java
	Transviewer Bean Example 4a: DBViewer Bean — DBViewClaims.java
	Transviewer Bean Example 4b: DBViewer Bean — DBViewFrame.java
	Transviewer Bean Example 4c: DBViewer Bean — DBViewSample.java



	Part VIII� XDK for C
	24 Using XML Parser for C
	Accessing XML Parser for C
	XML Parser for C Features
	Specifications
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files
	Validation Modes

	XML Parser for C Usage
	XML Parser for C, XSLT (DOM Interface) Usage
	XML Parser for C, Default Behavior
	DOM and SAX APIs
	Using the SAX API
	Using the DOM API

	Invoking XML Parser for C
	Command Line Usage
	Writing C Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XML Parser for C Sample Programs
	Building the Sample programs
	Sample Programs
	XML Parser for C Example 1: XML — class.xml
	XML Parser for C Example 2: XML — cleo.xml
	XML Parser for C Example 3: XSL — iden.xsl
	XML Parser for C Example 4: XML — FullDOM.xml (DTD)
	XML Parser for C Example 5: XML — NSExample.xml
	XML Parser for C Example 6: C — DOMSample.c
	XML Parser for C Example 7: C — DOMSample.std
	XML Parser for C Example 8: C — SAXSample.c
	XML Parser for C Example 9: C — SAXSample.std
	XML Parser for C Example 10: C — DOMNamespace.c
	XML Parser for C Example 11: C — DOMNamespace.std
	XML Parser for C Example 12: C — SAXNamespace.c
	XML Parser for C Example 13: C — SAXNamespace.std
	XML Parser for C Example 14: C — FullDOM.c
	XML Parser for C Example 15: C — FullDOM.std
	XML Parser for C Example 16: C — XSLSample.c
	XML Parser for C Example 17: C — XSLSample.std


	25 Using XML Schema Processor for C
	Oracle XML Schema Processor for C
	Oracle XML Schema for C Features
	Requirements
	Standards Conformance
	Using the Supported Character Sets
	XML Schema Processor for C: Software

	Invoking XML Schema Processor for C
	XML Schema Processor for C Usage Diagram
	How to Run XML Schema for C Sample Programs
	XML Schema for C Example 1: xsdtest.c
	XML Schema for C Example 2: car.xsd
	XML Schema for C Example 3: car.xml
	XML Schema for C Example 4: car.std
	XML Schema for C Example 5: aq.xsd
	XML Schema for C Example 6: aq.xml
	XML Schema for C Example 7: aq.std
	XML Schema for C Example 8: pub.xsd
	XML Schema for C Example 9: pub.xml
	XML Schema for C Example 10: pub.std



	Part IX� XDK for C++
	26 Using XML Parser for C++
	Accessing XML Parser for C++
	XML Parser for C++ Features
	Specifications
	Memory Allocation
	Thread Safety
	Data Types Index
	Error Message Files
	Validation Modes

	XML Parser for C++ Usage
	XML Parser for C++ XSLT (DOM Interface) Usage
	Default Behavior
	DOM and SAX APIs
	Using the SAX API
	Using the DOM API

	Invoking XML Parser for C++
	Command Line Usage
	Writing C++ Code to Use Supplied APIs

	Using the Sample Files Included with Your Software
	Running the XML Parser for C++ Sample Programs
	Building the Sample programs
	Sample Programs
	XML Parser for C++ Example 1: XML — class.xml
	XML Parser for C++ Example 2: XML — cleo.xml
	XML Parser for C++ Example 3: XSL — iden.xsl
	XML Parser for C++ Example 4: XML — FullDOM.xml (DTD)
	XML Parser for C++ Example 5: XML — NSExample.xml
	XML Parser for C++ Example 6: C++ — DOMSample.cpp
	XML Parser for C++ Example 7: C++ — DOMSample.std
	XML Parser for C++ Example 8: C++ — SAXSample.cpp
	XML Parser for C++ Example 9: C++ — SAXSample.std
	XML Parser for C++ Example 10: C++ — DOMNamespace.cpp
	XML Parser for C++ Example 11: C++ — DOMNamespace.std
	XML Parser for C++ Example 12: C++ — SAXNamespace.cpp
	XML Parser for C++ Example 13: C++ — SAXNamespace.std
	XML Parser for C++ Example 14: C++ — FullDOM.cpp
	XML Parser for C++ Example 15: C++ — FullDOM.std
	XML Parser for C++ Example 16: C++ — XSLSample.cpp
	XML Parser for C++ Example 17: C++ — XSLSample.std


	27 Using XML Schema Processor for C++
	Oracle XML Schema Processor for C++ Features
	Requirements
	Standards Conformance
	Using the Supported Character Sets
	XML Schema Processor for C++: Provided Software

	Invoking XML Schema Processor for C++
	XML Schema Processor for C++ Usage Diagram
	Running the Provided XML Schema Sample Application
	Error Messages are in English
	XML Schema for C++ Example 1: xsdtest.cpp
	XML Schema for C++ Example 2: car.xsd
	XML Schema for C++ Example 3: car.xml
	XML Schema for C++ Example 4: car.std
	XML Schema for C++ Example 5: aq.xsd
	XML Schema for C++ Example 6: aq.xml
	XML Schema for C++ Example 7: aq.std
	XML Schema for C++ Example 8: pub.xsd
	XML Schema for C++ Example 9: pub.xml
	XML Schema for C++ Example 10: pub.std


	28 Using XML C++ Class Generator
	Accessing XML C++ Class Generator
	Using XML C++ Class Generator
	External DTD Parsing
	Error Message Files

	XML C++ Class Generator Usage
	xmlcg Usage
	Using the XML C++ Class Generator Examples in sample/
	XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml
	XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd
	XML C++ Class Generator Example 3: CG Sample Program



	Part X� XDK for PL/SQL
	29 Using XML Parser for PL/SQL
	Accessing XML Parser for PL/SQL
	What’s Needed to Run XML Parser for PL/SQL
	Using XML Parser for PL/SQL (DOM Interface)
	XML Parser for PL/SQL: Default Behavior

	Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)
	XML Parser for PL/SQL: XSLT Processor — Default Behavior

	Using XML Parser for PL/SQL Examples in sample/
	Setting Up the Environment to Run the sample/ Sample Programs
	Running domsample
	Running xslsample
	XML Parser for PL/SQL Example 1: XML — family.xml
	XML Parser for PL/SQL Example 2: DTD — family.dtd
	XML Parser for PL/SQL Example 3: XSL — iden.xsl
	XML Parser for PL/SQL Example 4: PL/SQL — domsample.sql
	XML Parser for PL/SQL Example 5: PL/SQL — xslsample.sql

	Frequently Asked Questions (FAQs): XML Parser for PL/SQL
	Exception in Thread Parser Error
	Encoding '8859_1' is not currently supported by the JavaVM?
	xmldom.GetNodeValue in PL/SQL
	XDK for PL/SQL Toolkit
	Parsing DTD contained in a CLOB (PL/SQL) XML
	XML Parser for PL/SQL
	Security: ORA-29532, Granting JavaSysPriv to User
	Installing XML Parser for PL/SQL: JServer(JVM) Option
	XML Parser for PL/SQL: domsample
	XML in CLOBs
	Out of memory errors in oracle.xml.parser
	Is There a PL/SQL Parser Based on C?
	Memory Requirements When Using the Parser for PL/SQL
	JServer (JVM), Is It Needed to Run XML Parser for PL/SQL?
	Using the DOM API
	Using the Sample
	XML Parser for PL/SQL: Parsing DTD in a CLOB
	Errors When Parsing a Document
	PLXML: Parsing a Given URL?
	Using XML Parser to Parse HTML?
	Oracle 7.3.4: Moving Data to a Web Browser (PL/SQL)
	Oracle 7.3.4 and XML
	getNodeValue(): Getting the Value of DomNode
	Retrieving all Children or Grandchildren of a Node
	What Causes ora-29532 "Uncaught java exception:java.lang.ClassCastException?



	A An XML Primer
	What is XML?
	Basic Rules for XML Markup

	W3C XML Recommendations
	XML Features
	How XML Differs From HTML
	Presenting XML Using Stylesheets
	eXtensible Stylesheet Language (XSL)
	Cascading Style Sheets (CSS)

	Extensibility and Document Type Definitions (DTD)
	Well-Formed and Valid XML Documents

	Why Use XML?
	Additional XML Resources

	B Comparing Oracle XML Parsers and Class Generators by Language
	Comparing the Oracle XML Parsers
	Comparing the Oracle XML Class Generators

	C XDK for Java: Specifications and Cheat Sheets
	XML Parser for Java Cheat Sheets
	Accessing XML Parser for Java
	Installing XML Parser for Java, Version 2
	XML Parser for Java, Version 2 Specifications
	Requirements
	Online Documentation
	Release Specific Notes
	Standards Conformance
	Supported Character Set Encodings

	Oracle XML Parser V1 and V2
	NEW CLASS STRUCTURE

	XDK for Java: XML Schema Processor
	XDK for Java: XML Class Generator for Java
	Installing XML Class Generator for Java
	XML Class Generator for Java: Windows NT Installation
	XML Class Generator for Java: UNIX Installation

	XML Class Generator for Java Cheat Sheet
	oracg Command Line Utility

	XDK for Java: XSQL Servlet
	Downloading and Installing XSQL Servlet
	Windows NT: Starting the Web-to-go Server
	Setting Up the Database Connection Definitions for Your Environment
	UNIX: Setting Up Your Servlet Engine to Run XSQL Pages

	XSQL Servlet Specifications
	Character Set Support

	XDK for Java: XSQL Servlet Cheat Sheets
	XML SQL Utility for Java Cheat Sheet

	D XDK for Java Beans: Specifications and Cheat Sheets
	XDK for Javabeans: Transviewer Bean Cheat Sheet
	DOMBuilder Bean Cheat Sheet
	XSLTransformer Bean Cheat Sheet
	XMLTreeView Bean Cheat Sheet
	XMLTransformPanel Cheat Sheet
	DBViewer Bean Cheat Sheet
	XMLSourceView Bean Cheat Sheet
	DBAccess Bean Cheat Sheet

	E XDK for C: Specifications and Cheat Sheets
	XML Parser for C Specifications
	Validating and Non-Validating Mode Support
	Example Code
	Online Documentation
	Release Specific Notes
	Standards Conformance
	Supported Character Set Encodings

	XML Parser for C Revision History
	XML Parser for C: Parser Functions
	XML Parser for C: DOM API Functions
	XML Parser for C: Namespace API Functions
	XML Parser for C: XSLT API Functions
	XML Parser for C: SAX API Functions

	F XDK for C++: Specifications and Cheat Sheet
	XML Parser for C++ Specifications
	Validating and Non-Validating Mode Support
	Example Code
	Online Documentation
	Release Specific Notes
	Standards Conformance
	Supported Character Set Encodings

	XML Parser for C++ Revision History
	XML Parser for C++: XMLParser() API
	XML Parser for C++: DOM API
	XML Parser for C++: XSLT API
	XML Parser for C++: SAX API
	XML C++ Class Generator Specifications
	Input to the XML C++ Class Generator
	Output to XML C++ Class Generator
	Standards Conformance
	Directory Structure


	G XDK for PL/SQL: Specifications and Cheat Sheets
	XML Parser for PL/SQL
	Oracle XML Parser Features
	Namespace Support
	Validating and Non-Validating Mode Support
	Example Code
	IXML Parser for PL/SQL Directory Structure
	DOM and SAX APIs

	XML Parser for PL/SQL Specifications
	XML Parser for PL/SQL: Parser() API
	XML Parser for PL/SQL: XSLT Processor API
	XML Parser for PL/SQL: W3C DOM API — Types
	XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM Interface Types
	Node Methods
	DOM Node Types
	DOMException Types
	DOM Interface Types


	H XML SQL Utility (XSU) Specifications and Cheat Sheets
	Installing XML SQL Utility
	Contents of the XSU Distribution
	Installing XML SQL Utility: Procedure
	Installing XSU Downloaded from OTN

	Requirements for Running XML SQL Utility
	XSU Requirements
	Extract the XSU Files

	XML SQL Utility (XSU) for Java, Cheat Sheets
	XML SQL Utility (XSU) for PL/SQL, Cheat Sheets
	DBMS_XMLQuery PL/SQL Package
	DBMS_XMLSave PL/SQL Package



