Oracle 8-

Oracle8i Application Developer’s Guide - XML

Release 3 (8.1.7)

September 2000
Part No. A86030-01

ORACLE

Oracle8i Application Developer’s Guide -XML, Release 3 (8.1.7)
Part No. A86030-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.
Primary Author: Shelley Higgins

Graphics: Valerie Moore

Contributing Authors: Sandeepan Banerjee, Kishore Bhamidipati, Stefan Buchta, Dipto Chakravarty
(Artesia Technologies, Inc.), Robert Dell'immagine, Brajesh Goyal, Robert Hall, Karun K, Stefan
Kiritzo,Vishu Krishnamurthy, Murali Krishnaprasad, Olivier LeDiouris, Bryn Llewellen, Roger Medlin
(Artesia Technologies, Inc.), Steve Muench,Visar Nimani, Paul Nock, Rajesh Raheja, Tomas Saulys, Mark
Scardina, Flora Sun, Prabhu Thukkaram

Contributors: Ari Adler, Omar Alonso, Phil Bates, Mark Bauer, Ravinder Booreddy, Steve Cave, Steve
Corbett, Claire Dessaux, Janet Lee, Shailendra Mishra, Andy Page, Rahul Pathak, Padmini Ranganathan,
Den Raphaely, Jim Rawles, David Saslav, Chitra Sharma, Ena Singh, Keith Swartz, Kurt Thompson,
Melanie Watson, Jon Wilkinson

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Press®, Oracle8i ™, PL/SQL ™ , Pro*C ™ , Pro*C/C++ ™,
Pro*COBOL®, SQL*Plus® , JDeveloper™, JServer™, Oracle® Discoverer™,SQL*Loader®, Oracle/2000
™ are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of
their respective owners.

Other trademarks used in this manual are TEAMS™ of Artesia Technologies, Inc.

Contents

Send US YOUr COMMENTS ...ttt XXXiX
PIEIACE ...ttt e xli
F N oo 10 | 1 a1 53K CTU T T [TSRS xlii
INEENAEA AUGIENCE ...t b et et e et e e beebeebeesbesaeesbesaeesbeeseesbeerbesteens xliii
Prerequisite KNOWIBAQE.cciii ettt sttt eeae et e te e aeetentesresrees xliii
REIALEA IMANUAIS.........ooiiiii ettt e e st e st e e st e s b e et e sbeebesbeeeesreesrenreas xliii
Feature Coverage and AVailabilitycccooiiiii s xliii
HOow this BOOK iS OrganizZedcccoeiueiiiiieieieceeeees ettt re s resre e nre xliii
Conventions Used iN thiS GUIE...........cuiiiiiiiicccece ettt Xlvii
ACTONYIM LEST ..ttt bbb bbbt b ettt ettt Xlvii
HOW t0 Order thisS MAnUALc..coviiiiiicicse ettt seenaeneas xlix

Part1 Introducing Oracle XML

1 Introduction to Oracle XML

TNEFOAUCTION 1.ttt bbbt b et b et nn e 1-3
Oracle XML in Action: APPHICALIONS. ..ot 1-3
Authored XML Or GeNerated XMLcooviererieieeieceeese e sre s 1-3
(O] = Tod S0)Y | BN o] o1 1T 1 (o] o 1RSSR 1-3
Roadmap Of thisS IMaNUAL ..ot 1-5
L@ T To] 1= 1Y/ | SRS 1-7
WHhat IS OFaCIE XIML? ...ttt 1-7
Oracle XML COMPONENTS ..ottt sttt se et seesb e s e ese b e s e abeebesbesbesbeneas 1-7

When to Use Oracle XML Components: How They Work Together...........cccoceoeiinicnns 1-10

OraCle8i XIMIL FRATUTES.......cviieiieieie sttt sttt ettt sttt st sttt ettt eneanesnennas 1-10
WHhY USE OracCle8i XIMIL? ...ttt sttt s neenenrennenne s 1-13
The Oracle Suite of Integrated TOOISccoiiiie i 1-13

Oracle JDeveloper 3.2 and Oracle Business Objects for Java (BC4J)ccoververecreennns 1-13

INternet File SYStEM (IFS)oiiiiiiiie et neere e s 1-14

POrtal (WEDDB)oecceee ettt ettt et e s e s te et e sae et sraenre e e ntenraen 1-14

OraCle EXCRANGE. ...ttt ettt b ettt b et n e en e 1-15

Other INITIALIVESoviiiiice ettt b bbb eb e e b e b e ebe e 1-15

Indexing and Searching XML Documents with Oracle interMedia Text..........c.ccccevvvuennen. 1-16

Messaging Hubs and Middle Tier COMPONENTScccviiiiiiiieineies e 1-16

Back-End to Database to Front-End Integration ISSUESc.ccocevevereniercicneeeeeee s 1-17

Oracle XML Parser Provides the Two Most Common APIs: DOM and SAX.........cccce.... 1-18

Writing Custom XML APPIICATIONSc.ooviiiiiiiiec e 1-18

Loading XML into @ Databasecccceieiiriiieiceceiesie et e e snesnens 1-19
Storing and Extracting XML Data from Oracle8i...........ccccocviiiiiiii i 1-20
Oracle8i: Object-Relational INTrastruCtUreccoeiiciiiiiiee e 1-20
Oracle8i: EXtenSible ArChItECTUIEcooviiicecec e 1-20

Oracle8i SUPPOITS NALIVE JAVAccciiiiiiiieieiieee e 1-21
XML in the Database: Generated and Authored XMLccccoviiiiiiinnineneeeeeeeeee 1-23

GENETALEA XML ..ottt ettt b et eb e b et ebe e 1-23

Example: Using XML-SQL Utility to Get the XML Representation of the Result of

AN SQL QUETY ..ttt ettt bbb e bt s e b e st e s bt e b e ebe e bt ehe e sbe e Rt e b e e bbeebe e st e st e enb e bt enes 1-23
DAY IS (o] 7 Vo [T @ 1 o] 1 T] o -SSR 1-26

LOB Storage: Stores "Authored XML" DOCUMENTS........cccccveiiiiiiiieiiee e 1-26

Object-Relational Storage: Stores "Generated XML" DOCUMENTSccccoverereerieinrenenennne. 1-26
Storage of Structured XML Documents ("Generated XML")......cccccocvvvverereinieicieeece e 1-27

XML-SQL Utility Stores XML Data By Preserving XML Structure............cccocveevivevieinenen. 1-27

Example: Using XML-SQL Utilitiy’s JAVA API to Insert XML into the Database........... 1-27

XML Document Object-Relational Storage: Advantages..........ccocvovvivvieveneneneneieiese e 1-28

XML Document Object-Relational Storage: Disadvantages..........ccccceevevvevieieccieseesesnenne. 1-28
Storage of Unstructured XML Documents ("Authored XML") ... 1-29

interMedia Text Example: Searching Text and XML Data Using CONTAINS.................. 1-29
Use a Hybrid Storage Approach for Better Mapping Granularitycccoceoevniciniincne, 1-30

A Hybrid Approach Allows for User-Defined Granularity for Storage............ccccccvvvenen. 1-30

Hybrid Storage AdVanTagES..........cocveiuiiiiiicie et ste ettt sbe e sre e e sreannes 1-31

Generated XML: XML TransformMationscooieeiiiiiiiiiscse e 1-32
Transforming Query ResSUIts USING XSLT ..o i e e 1-32
XML Schemas and Mapping 0f DOCUMENTS.........ccoiiiiiiiiiee e 1-32
XML Schema Example 1: Defining a Simple Data TYPe......c.ccoierieninensenseneesee e 1-33
XML Schema Example 2: Using XML Schema to Map Generated XML Documents
1O UNAErIYiNg SCREMIAcoooiie et sre s 1-33
"Authored XML": Storing XML Documents as DOCUMENTSccccveriiirieniineinieiniecneens 1-36
Generating and Storing XML DOCUMENTESc.cieiveieieieieer s se e seesie e seeeesseese e ssessesnens 1-37
Combining XML Documents and Data USiNg VIEWScccccceviviiiiieiie e 1-38
How to Generate a Web FOrm’s INfrasStruCture...........c.oovvviviiiiiinine e 1-38
XML-SQL ULHITY SEOFQQ0E . .ocvviveiieiieieisieie ettt s ena e neenesrennesnens 1-38
General XML Design Issues for Data Exchange Applications ... 1-40
Use a Hybrid Storage Approach for Better Mapping Granularity.........c.ccccoccoveiiciiicnienns 1-41
Sending XML Data from a Web Form to a Databasec.cccocvvvvviievinens e 1-41
Communicating XML Documents Among APPliCatioNnsS..........cccveiinineniiecenceceeseie 1-42
Oracle XML Samples and DEMOS........cccoiiiiiiiiiiieinieit st 1-43
What'’s Needed to Run Oracle XML COMPONENTS........cccovvieiireiesenere e 1-43
XML Technical SUPPOrtis Free 0N OTN ..o 1-43

Business Solutions Using Oracle XML

Applications that Use Oracle XIML..........ccciiiii e 2-2
Content and Document Man@gEIMENT..........ooiiiiiriiirieiree bbb 2-3
Customizing Presentation Of Datacccccvevviviireiicinnie e 2-3
Scenario 1. Content and Document Management: Creating and Publishing Composite
Documents USIiNG Oracle XIMIL ..ottt sreeae s anes 2-6
Scenario 2. Content and Document Management: Delivering Personalized Information
L8 YT 0T @ = Tod L= 1Y, | S 2-8
Scenario 3. Content Management: Using XML to Customize Data Driven Applications.. 2-10
Business-to-Business/Consumer (B2B/B2C) MESSAQINGccerveireerieireerieenieesenesesesneneas 2-11
Business-to-Business/Consumer (B2B/B2C) Messaging With XML.: Scenarios............... 2-11
Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML 2-12
Scenario 5. B2B Messaging: Using XML and Oracle Advanced Queueing for a
a1 (=T g T=Y AN o] o FTor: U o] o IS 2-14

vi

Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing Messaging for
Multi-Application INTEGIatiON.cciiiiiiie e e 2-16

Oracle XML Components and General FAQs

Oracle XML COmMPONENtS: OVEIVIEWcc.cuiiiieiieiiiieeieeiesie ettt sbe b b snen 3-2
Development Tools and Other XML-Enabled Oracle8i Features...........ccocoveveeieninenenenecnnn, 3-2
XDK FOF JAVA ... ettt bbbttt bbbt b et bt b et b et 3-3
D S {0 SO 3-3
D S (0] O SRRSO 3-3
XDK FOF PLZSQL ...ttt bbbttt ettt bbbttt 3-4
KIMIL PAISEIS ...ttt bbb bbbt he e bt e et e bt e et e b e e b e et e et e nb s e b e eneenneenes 3-4
XSL Transformation (XSLT) PrOCESSONcouiiiiiiiiiieiirieit sttt 3-6
XIMIL ClaSS GENEIALONcviiviiiiteiiiteeste ettt sttt b ettt st ettt e et st esb b e abesesbe e ebe e 3-6
XML TranSVIEWET JAVA BEANSccuiiiiiiiiiiiie ettt ettt sttt sbe s 3-7
Oracle XSQL Page Processor and SEIVIET..........ccociiiiiiiiiiiieie et 3-8
Servlet Engines that SUPPOrt XSQL Serviet.......ccoo i 3-8
JavaServer Pages (JSP) Platforms that Support XSQL ServIet ... 3-9
Oracle XML-SQL ULIHTITY (XSU) ..ottt s 3-12
Generating XML from QUEIY RESUILSoieiiiiicec e 3-13
XML Document Structure: Columns Are Mapped to Elements.........cccoce e 3-13
Oracle INTEIMEAIA TEXL.....c.oiiiiiiieriere ettt bbb st b et e e bt e e st en e e s e e seeneebeneeee 3-15
Tools for Building Oracle XML APPLICAtIONS........cccoeviicieiecicise e 3-16
Oracle XML Components: Generating XML DOCUMENTScccooeiirinineicieceeeeeeiee 3-17
Using Oracle XML Components to Generate XML Documents: Javaccccceveeeeeenencnnenne. 3-17
Using Oracle XML Components to Generate XML Documents: C.........cccceeevevvevvcnnienneennnn, 3-19
Using Oracle XML Components to Generate XML Documents: C++ccooevvinennnennn, 3-21
Using Oracle XML Components to Generate XML Documents: PL/SQLccccceovivivenenne. 3-23
Frequently Asked Questions (FAQS) - General XMLccccoovviviivininin i 3-25
HOW do | Start Writing XIML?.......cooiiie e et 3-25
XML and Required Oracle TOOISooiiiiiiiiiiiee s 3-25
Collecting Purchase Orders in XML: Creating an RFP in XML?c.cccocveivvevciciecneenn, 3-26
Portability: Using Parsers from Different VENdOrs?..........ccccveieiieviii e 3-27
Browsers that SUPPOIT XIML........ccoiiiiiiiieniee et 3-27
XML SUPPOIt FOr OracCle 8.0.Xcvieiiiisieiire ettt erenns 3-28
S 1B o T 1D, OSSOSO 3-28

What Oracle Tools Support B2B EXChANQES? ..o 3-29

Oracle’s Direction Regarding XIML? ..o e 3-30
XML and BLOB (inside XML MESSAQE)crueeerreeeerieiresresieseesiesieseessesseseeseessesessesssssssesessens 3-31
MaXIMUM CLOB SIZE?......coieie ettt ettt e et esbe et e saeente e e nreanees 3-31
Oracle 7.3.4: Data Transfers to Other Vendors Using XMLcccccovevninnennenseseeee 3-31
What Do | Need to Insert Data Into Tables Via XML?........cccccoovivvinienievincseceeeee s 3-32
Building an XML Application: Software Needed?............ccociviiininiiinincieceeee 3-32
Standard DTDs to Use for Orders, SNIPMENt, ..o 3-33
DTD t0 Database SCREMIA........ccovviiiiieiesirese et e e eneereanearenns 3-34
SCHEMA MAP 10 XML ...ttt ettt sne s 3-34
XML in the Database: PErfOrMancCe ... 3-35
Faster RECOIrd RELIEVAISccciiiii e e re e 3-35
Translating From Other FOrmats t0 XIMLccocoiiiiiiiiiii e 3-35
XML File Size LIMITAtIONS ...c.voivicieciccc ettt et sne s be et steesresraens 3-36
Maximum Size XML DOCUMENT?ccoiiiiire et ne e sne e 3-36
Generating Database Schema From a Rational ROSe TOOL...........cccccevvviiiviie v 3-36
FUMNEE RETEIENCES ... ettt et ar e st e et e s be e e e sbeeeesbaesrestaestesreeas 3-37
OThEr XIMIL FAQS ..ottt ettt ettt et s b e et s be e tesbe e s be s ae e s bestaesbestaesbeerbesbeenbesreenns 3-37
Recommended XIMLZXSL BOOKScccoiiiiiiiii sttt ettt 3-37

Part Il XML-SQL Utility (XSU): Storing and Retrieving XML From the Database

4

Using XML-SQL Utility (XSU)

ACCESSING XIML-SOQL ULTHTILY ..ooiiiceecee ettt s 4-3
Using XML-SQL ULIHTITY (XSU) ..ottt 4-4
When to Use XIML-SQL ULty (XSU) ..oiiieiicccece e 4-4
Where Can You Run XML-SQL Utility (XSU)?.....cccoiiiiice e 4-6
Running XML-SQL Utility in the Databasec.ccoveiiiiiiniieeee e 4-6
Running XML-SQL Utility in the Middle TIerc.ccoiiiv i 4-7
Running XML-SQL Utility in @ WeD SEIVEFcccooveiiiiee e 4-8
What Does XML-SQL Utility WOrk With?..........cccooviiiiiiiiiccsee s 4-9
XSU FALUIES ...ttt bbb bbbttt e e e bt b e et bt bbb anens 4-9
XSU USAQE GUIAEIINES......ociiciecee ettt sttt be et e teesaesbeeneenneenes 4-11
MAPPING PIIMEE ...t b bbbt ekt b e b et et b b 4-11
Mapping: Generating XML from SQL.......cccooerviiieieeircese s 4-11

Vii

viii

Mapping: Storing SQL From XMLcoooiiiiienesse et 4-14

Client-Side: XSU Command LiNe USAQEc.coceieirieineiriee ettt 4-16
Generating XML With XSU: getXIMIL ...c.ooiiiecccs e 4-17
STOFING XML PUEXIMIL. ...ttt bbb bbbttt b e b 4-19
XML-SQL ULHHEY TOF JAVA......ciiiiiiiiiiiieice ettt 4-21
GENEFALING XML ..o ettt et se e e e e e e neereeneaneerenrn 4-21
XSU: Basic Generation of XML From SQL QUEKIEScccceeieiieiisiesie e se e sie e e sve s 4-21
XSU Example 1: Generating a String From emp table ... 4-22
XSU Example 2: Generating DOM From emp table (Java)........c.ccoovevvevvenerevenceiesneenn, 4-25
Paginating Results: SkipROWS and MaxROWS ... 4-27
XSU Example 3. Paginating Results: Generating an XML Page When Called (Java)....... 4-28
Generating XML from ResUltSet ODjJECEScocvciiiiicice e 4-30
XSU Example 4: Generating XML from JDBC ResultSets (Java)ccccocevevveiieiniecinnnienn 4-30
XSU Example 5: Generating XML from Procedure Return Values
(REF CURSORS) (JAVA) ...vevviverieeiieicsieiisieiesie sttt sttt s 4-31
RaiSING NO ROWS EXCEPTION ..ottt ettt sbe e 4-33
XSU Example 6: NO ROWS EXCEPLION (JAVA)......c.ucirieireiiiriieinieisieieieesie et 4-34
ST (0T T o €A SRS 4-34
YT o o Tot 1T | Vo PSSR 4-35
XSU Example 7: Inserting XML Values into all Columns (Java)c.ccoveereiniinennnenn 4-35
XSU Example 8: Inserting XML Values into Only Certain Columns (Java)...........ccccocvo.... 4-37
UPAALE PFOCESSING. ...ecueeiiiiiitieieie ettt b bbbt bbb bbb e e e e e e et e b e e be bt ebe e 4-38
XSU Example 9: Updating Using the keyColumns (Java)ccccoervinninnincincneenns 4-38
XSU Example 10: Updating a Specified List of Columns (Java)ccocevceveverveieiesnennnn, 4-39
(D= [(R o 0Tttt 1 T USSR 4-41
XSU Example 11: Deleting Operations Per ROW (JAVA)ccovvviiieriinieenieineesieeseeeseens 4-41
XSU Example 12: Deleting Specified Key Values (Java)c..ccocvvvvivriereneneseseeieseenenns 4-42
Using the XML-SQL Utility fOr PL/ISQLcoooiiiiiiiceseses e 4-43
Generating XML with DBMS_XMLQUETYccociiiiiiiiiitieie e 4-43
XSU Example 13: Generating XML From Simple Queries (PL/SQL)cccocvvevevvevvevennnnn. 4-43
XSU Example 13a: Printing CLOB to Output BUffer............ccocoiiiiinniccce 4-44
XSU Example 14: Changing ROW and ROWSET Tag Names (PL/SQL)cccccovveveenene. 4-44
XSU Example 15: Paginating Results Using setMaxRows() and setSkipRows()............... 4-45
Setting Stylesheets iN XSU (PL/SQL) ..ottt 4-46

Binding Values in XSU (PL/ISQL) ...ccioiiiiiie ettt sttt ste e steesae e sre e saennaens 4-46

XSU Example 15a: Binding Values to the SQL Statementcccooveniennieneienceneeee 4-47
Storing XML in the Database Using DBMS_XMLSAVEccccvcvrvreninene e seseanens 4-48
XSU Insert Processing iN PL/SQLocv oottt 4-49

XSU Example 16: Inserting Values into All Columns (PL/SQL).....c.cccovireiineieniieneeee 4-49

XSU Example 17: Inserting Values into Only Certain Columns (PL/SQL)c.cccecvvvnene 4-50
UPAALE PFOCESSING ...ttt sttt b et b e bbb bbb et s e bt e b e ebe b et e 4-51

XSU Example 18: Updating an XML Document Using keyColumns(PL/SQL) 4-51

XSU Example 19: Specifying a List of Columns to Update (PL/SQL) ..cccoevvevvvvcveivinnnne 4-52
(D= [(B o 0Tt Tt | T PSS 4-53

XSU Example 20: Deleting Operations per ROW (PL/SQL)......cccoeiienniniinneseneee 4-53

XSU Example 21: Deleting by Specifying the Key Values (PL/SQL)ccccoevvvveiveivinnnnns 4-54

XSU Example 22: ReUsing the Context Handle (PL/SQL) ..o, 4-55
Advanced Usage TEChNIQUEScccoiiiiiee ettt 4-57

Exception HaNdliNg iN JAVAcccocviiiiiie ettt e sre e 4-57

Exception Handling iN PLZSQLcooiiiiiece et 4-58
Frequently Asked Questions (FAQS): XML-SQL Utility (XSU) ..o 4-60

What Schema Structure to Use With XSU to Store XIML?ccocvivviiniiniineiiese e 4-60

Storing XML Data ACrosS TaBIESccveiiviiiiice s 4-61

Using XML-SQL Utility to Load XML Stored in AttribULeS...........ccooovvvinvinniincinens 4-62

XML-SQL Utility is Case Sensitive: Use ignoreCase Or...ccocvvvvererereneenieinieseeesesesnens 4-62

Generating Database Schema from aDTD ... 4-63

Using XML-SQL Utility Command LiNe..........cccociiiiiiiniiiicinesesieseee s 4-63

Does XML-SQL Utility Commit After INSERT, DELETE, UPDATE?cccocvcevvivieiiieas 4-63

Part Il Managing Content and Documents with XML

5

Using inter Media Text to Search and Retrieve Data from XML Documents

INtroducing INTErMEAIA TEXL.....ccvieiiiiere e eenesresresresre e s 5-3
Overview Of INTErMEdIa TEXE......ccoiiii et sbe s 5-3
INStAlliNG INTENMEAIA TEXL.. ..ottt 5-4
interMedia Text USers and ROIES ... 5-4
Querying With the CONTAINS OPEIAtOrccuciiiiiiiiiie ittt 5-5

CONTAINS EXAMPIE L.ttt 5-6

CONTAINS Example 2: Using Score Operator with a Labelcccccccevevveiccivicvcnincecen, 5-6

CONTAINS Example 3: Using the SCORE OPEratorccccoirirereneienieieeeeeeees e 5-6

Assumptions Made in this Chapter’s EXamPIes ... 5-6
Using interMedia Text to Search XML DOCUMENTScccovvviininierinese e 5-8
INTEIMEAIA TEXE INUEXES......ciiiieiie e bbb bbbttt ettt sbe e 5-8
Using the CTX_DDL PL/SQL PACKAGEccoceriiiiiiieiieiinieieseie sttt 5-9
Listing the Required Roles for Each CTX Packageccoovvvvivrieiinineiesceee e 5-9
(O I G B 1 T I o o ot To U] = USSR 5-10
XML_SECTION_GROUP Attribute SECLIONS.ccoiiiiiiiicieiere e 5-11
AUTO_SECTION_GROUP ..ottt ettt 5-13
Creating an interMedia TEXE INAEXcoveiiiieieceec et 5-14
1 Determine the Role you Need and GRANT ctxapp Privilege..........ccccooniiniinennnn. 5-14
2 Setup Data, if Not Already Available..........cccooveiciiiir e 5-14
3 Creating an interMedia Text Index in Order to use CONTAINSccccoeiiiveieinenn, 5-15
4 Creating a Preference: You Need to Express the Parameterization with

AU PIEIEIEICE" ...t 5-15
5 Parameterizing the Prefe@renCe ... 5-16

interMedia Text Example 1: Creating an Index — Creating a Preference and
Correctly Parameterizing itccoovoiiiiiiiriie e ene 5-17

interMedia Text Example 2: Creating a Section Group with AUTO_SECTION_GROUP 5-18
interMedia Text Example 3: Creating a Section Group with XML_SECTION_GROUP.. 5-18

Further Examples for Creating Section Group INAeXES?ccccvvverererereiereeeeesie e 5-19
Building Query Applications with interMedia TeXt..........ccociiiiininineieee e 5-20
TEXE QUETY EXPIESSION ...eviiiitiietiieete ettt eb et b ek skt et bbbt b e ebe e ene e 5-20

interMedia Text Example 4; Using Text Query EXPressionsccocovveverereneenesinsiesesnnns 5-20
Querying With Attribute SECTIONS ..o e 5-28

Constraints for Querying Attribute SECTIONSccooi it 5-28
Querying SECTION GROUPS ..ottt s s e neerenne s 5-30

Distinguishing Tags ACIrOSS DOCTYPEScucueirieieiireieetese ettt st sne s 5-30

Specifying Doctype Limiters to Distinguish BEtWeen Tagscccvevvreieneineincneeneeeas 5-30

Doctype-Limited and Unlimited Tags in a SECtion GroUpccoceveverervenierieieereeinsiesennens 5-31
Procedure for Building a Query Application with interMedia TeXt..........ccccooeiiiiiiinnene, 5-32

Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES VieW........ccccceevvervirennnnn, 5-32
L1 Create @ PrefErenCe ..ottt 5-33
2 Set the Preference’s AIIDULESooo i 5-34

2.1 Using CTX _DDL.add_Z0Ne SECLION......cccciiiiieieieiieese et 5-34

2.2 Using CTX_DDL.AdA_ALr_SECHIONccveiiciieiece e 5-35

2.3 Using CTX_DDL.add_field_SECHION........c.coiiiiiiieieecee st 5-36
2.4 Using CTX _DDL.add_special_SECLION.......ccccvciviiviiiiriesise e 5-38
2.5 Using CtX_DDL.AAA_StOP_SECLIONceciiiiiiiiiiiesesiere sttt 5-38
3 Creating YOUr QUETY SYNTAXccuiiiiiiitiiitiietiseeie ettt se et sb et b e sn bt se st sn et nne e nnenes 5-39
interMedia Text Example 4: Querying a... DOCUMENT.........c.cccocvvievinieneriniere e 5-40
interMedia Example 5: Creating an Index and Performing a Text QUeryccccoceene. 5-41
Creating Sections in XML Documents that are Document Type Sensitiveccccocecvneene. 5-44
T 0 1=T= 1 (=T BT cTot 1 o LSS 5-44
OVErIaPPING SECLIONS ...ttt bbb et e et e e bt sbe b 5-45
INESTEA SECLIONS ...ttt b ettt e b e st es e e e eneebeebesbeseeneas 5-45
Presenting the Results Of YOUF QUETYcccviviiiiiieiecees s 5-46
Frequently Asked Questions (FAQS): interMedia TeXEccccvireiineieneie e 5-47
Inserting XML data and Searching with interMedia TeXt..........ccocooevniiiienninsineieeeee 5-47
interMedia Text: Handling AttriDULES.........ccov e 5-47
CTXSYS/CTXSYS id and PaSSWOIAcccoveieiiiiiieiinene sttt sne e 5-48
Querying an XML DOCUMENTccciiiiiiiieinieisies bbb 5-48
interMedia Text aNd OFaCIE8i.........ccoviiiiiiiicie s 5-49
interMedia XML INAEXINGocvoiiiiiecce ettt sre e nre s 5-50
Searching CLOBS UsiNg iNterMedia TeXE..........coiiiiiiieiseseeseesee e 5-50
Managing Different XML Documents With Different DTDs: Storing and Searching
XML in CLOBS -- INtErMedia TEXEcoiiiieiiiieieieeee e 5-51
interMedia Text Role (ORA-01919: role 'CTXSYS’ d0Oes NOt EXISt)ccvrvevreririeirieinienns 5-53
Searching XML Documents and Returning @ ZONE.........ccccvvvvvvererenereseesiesisiessesesesesnens 5-53
Storing an XML Document in CLOB: Using interMedia TeXt........ccccocovevivnievveiene e, 5-54
Loading XML Documents into the Database and Searching with interMedia Text 5-56
Searching XML wWith WITHIN OPEIratOr..........cccccveiiiiviiiisinsisise e e e sese e 5-56
interMedia TeXt AN XMLcooiiiiiiiiiieie e et 5-57
interMedia Text and XML: Add_field_Section ...t 5-57
interMedia and XML SUPPOIT.......cccviiiiieieicceee et nesneeresre e 5-58
Oracle8i Lite 4.0.0.2.0: interMedia Text is NOot SUPPOItedccocevereiiiiicinieneeie 5-60
SQL iN INtErMedia CONTEXTocuiiiiiieieiieie ettt sne s 5-61
XML and INtErMEIa TEXL......ccuiiiiiiiiiiiei bbbt 5-61
Creating an Index 0N Three COIUMNS?.........ccociiiciiic e 5-62
Searching Structured and UnStructured Data.............coccereeneinieineineeseeseese e 5-62

Xi

Xii

Customizing Content with XML: Dynamic News Application

Introduction to the Dynamic News APPHICAtION ..o 6-2
Dynamic NeWs Main TaSKScccviiiiiiiiiiie it st eene e nesre e 6-2
Overview of the Dynamic News APPLICAtIONcooiiiiiiiiiiiiee e 6-2
Dynamic News SQL Example 1: Item Schema, NiSetup.Sqlccccooviriineiieniiceseee 6-4
DYNAMIC NEWS SEIVIETS........coe ittt et s e e neenesresresrenes 6-4
How Dynamic News WOrKS: Bird’s EYE VIEWcccccviiiiiiie ettt 6-5
SEALIC PAGES ... etttk e bbbt bt bt b etk e bbbt b bttt b et b e re e 6-7
SEMI-DYNAMIC PAJES.....cuiiiiiiiecie sttt ettt sttt et e e e esaeseeneeseesesnearenresrennens 6-9
(DY F= T | o o>V 1= USSR 6-11
PersONaliZiNg CONTENT......coiuiiiiie bbbttt bbb 6-13
1 Get ENA-USEI PrefEIENCES.oviviiitiiciiie sttt 6-14

From a Client-Side COOKIE.co.oiiiiiice e e 6-14

QuUErying the Database.ccociiiiiie e 6-15
2 Pull News Items from the Database.cccovviiieiiniiiieiiee e 6-18
3 Combine News Items to Build a DOCUMENTccoiiiiiiiiiiiiie e 6-20
4 CuStOMIZING PreSeNTatiONccooviiiiiirieirieireet ettt 6-21
Importing and EXPOrting NEWS TTEMIScccvvv it 6-24

Personalizing Data Display With XML: Portal-to-Go

Introduction to Oracle POrtal-t0-GoOccciiiiiiiiiiiee s 7-2
POrtal-TO-GO 1.0.2 FEATUIES......c.eiuiitiiie ettt bbb e b ettt et et et sbe b e 7-3
What's Needed t0 RUN POMTal-t0-GO........cccciiiiiiiieieiee st 7-3
Portal-To-Go: Supported Devices and GAatEWaYSccccvvvrvrerinierenesesiesiesieseeseessesesesseseenes 7-4
HOW POFal-t0-G 0 WOTKS ...t et 7-5
POrtal-to-G0O COMPONENTSc.oiiiiiiieiiiieiiiee ettt b ettt ettt et 7-6
POrtal-t0-GO SEIVICES ..ottt bbbttt sttt sb bbb et abe e 7-6
POrtal-t0-GO AQAPTIEIS .. .ottt ettt ettt bbb e 7-7
POrtal-to-GO TraNSTOIMIEISoouiiiiiee ettt sae b e 7-8
Exchanging Data via XML: Source to XML, XML to Target with Portal-to-Go....................... 7-9
= (o AT Lo @]] (=] o | AU 7-10
Web Integration Developer: A "SCreen SCrapercciiiireireiineiseesese e 7-11
L070] V=T o 4 o i (o 10 €AV, | RSP 7-13
Why Use an Intermediate XML FOrMAat?cccocveiiiiiiiiiicce e 7-13
Using the SIMPIe RESUIT DTD ..ot e 7-13

Adapters Map the Source Content to the DTD Element ..., 7-16

SAMPIE AAPLEN CIASSESeeciieciiieiee ettt bt nn st 7-18
Portal-to-Go Adapter Example 1: Converts Stock Quotes and Headlines to XML 7-18
Portal-to-Go Adapter Example 2: Greets Users by Name ... 7-19

Transforming XML to the Target Markup LaNQUAGEccoveriiriineineisese e 7-23

Portal-to-Go: Java TranSTOIMErS.ccoiiiiirieese et be b 7-24
Portal-to-Go Java Transformer Example 1: Converting Simple Result Elements to

YN gTo] 1 g 1=1 gl o ¢ T- | SRRSO 7-24
Portal-to-Go: XSL Stylesheet TranSfOrmMEers ... 7-27
Portal-to-Go XSL Stylesheet Transformer Example 1: Converting Simple Resu
DOCUMENTES 10 PIAIN TOXLE....ciuiiiieiieieie ettt sne 7-27
Each Markup Language Requires a Unique Transformer.........ccccoovveveneienicieinsieensnnens 7-28
Portal-To-Go Stylesheet Transformer Example 2: Customizing a WML1.1
Transformer StYIESNEET ..o s 7-30
Portal-to-Go Case Study 1: Extending Online Drugstore’s Reachcccccccovveicinvicvcnnnnn, 7-31
Portal-to-Go Case Study 2: Expanding Bank ServicCes..........ccocuviiinineneneieneieesese e 7-31

Customizing Presentation with XML and XSQL: Flight Finder

XML Flight Finder Sample Application: INtroduction............ccccoeiiiiiiiincicce e 8-2
REQUITEA SOTIWAIEeiiitiiitit bbbttt bbbt bbbt 8-2
HOW FHGt FINAEE WOTKSccoiiiieiiee ettt aenesne e srenrennennens 8-3
Flight Finder Queries the Database — Converts Results to XML.........cccccccovvvivevieiecve e, 8-6
Using XSQL Servlet to Process Queries and Output Result as XML.........ccccoceoveriennennnn 8-6
Formatting XML With StylESHEELSccoiiiiiiieic e s 8-10
One Stylesheet, ONe Target DEVICE.........cccvciiiicie e 8-10
Many Stylesheets, Many Target DEVICES.cooeiiiiiiiiieieeneie et 8-12
[0 Tor=1 T4 T O 10 1 o LU | OSSP 8-14
XML 10 DAADASE ... ettt ettt bbbt bbb ettt b bt ene e 8-18
1 Taking the USEr'S INPULoo.oiiiiiiii s 8-18
2 Assign Values Acquired From User to Code Parameters.........ccocvvevevevveieieeiveinsinninsnnns 8-20
3 Let User Know if Operation SUCCEEAEMcouiiiiiiiiiiniie e 8-20
(@1 1ol [l o] =1 K (0 o F TSSOSO UR PSRRI 8-22

Xiii

Part IV Data Exchange Using XML

9

Using Oracle Advanced Queuing (AQ) in XML Data Exchange

WAL IS AQ? oottt ettt bbb st s et s b et b e bR e bR bR bRt bt Rt Rt r et e 9-2
How do AQ and XML Complement Each Other?...........ccccvov i 9-2
AQ Example 1 (PL/SQL): XML Message as a CLOB in an AQ MesSSage........ccceovvveererennenne 9-4
Setting Up the AQ ENVIFONMENTcoiiiiiiiii s 9-4
AQ Example 1: Tasks PErformMed.......ccccoivieiiieieicieceeese s e 9-5
AQ Example 1: The PLZSQL COUEouiiiiiieieeeee et 9-5
AQ Example 2 (Java): Processing an XML Message Using JMS (Publish - Subscribe)......... 9-8
AQ Example 2: Processing an XML Message Using JIMS —Tasks Performed 9-8
AQ Example 2: Processing an XML Message Using JIMS — Java Codeccccceovvnincnne. 9-9
Frequently Asked Questions (FAQs): XML and Advanced QUeUINg........cccceoerrievnenennenne. 9-11
Multiple Format Messages: Create an Object Type and Store as Single Message 9-11
Adding New Recipients After Messages are Enqueued. ... 9-12
DAY L U To 1 X TSRS 9-12
Retrieving and Parsing JMS Clients with XML Content From AQ.......ccccceveveveiveivevennnn, 9-13
Ensuring that an ENqueue iS SUCCESSTUI? ... 9-14

10 B2B: How /Procurement Uses XML to Offer Multiple Catalog Products to

Users
Introduction to Oracle Internet Procurement (iProcurement)..........cccocovveeneiicnnenncnnenens 10-2
Various Suppliers Load Their Catalogs into the Unified Catalog Tablesccccoeuenene 10-2
Oracle Internet Procurement SOIUTION ..o 10-2
More Information About Internet Procurement and Related Productsc.ccccevienene 10-3
BUYEr-HOSTEA CONTENTccoeiiieicee e r e neenenns 10-3
Supplier-Hosted Catalogs and Marketplaces..........cccooeiiiiiiiiiiiin e 10-4
iProcurement: XIML Parser TOr JAVAccccooiiiiiiiiie et sne 10-6
21U V=T o o [0 1] (=T I @1 -1 oo -SSP 10-9
Document Type Definition (DTD)ccooo oot 10-9
iProcurement Example 1: DTD for Buyer-Hosted Catalogccccooeevinneneiineicnecnne, 10-10
DTD Admininistrative Information: KADMIN> ... 10-11

Xiv

DTD Schema Information: SSCHEMAS ... s
iProcurement Example 2: DTD <SCHEMA> — Adding a Category and Descriptor
L0 R L Lol @1 =T o] oY RSP
iProcurement Example 3: DTD <SCHEMA>: Deleting a Category or Descriptor..........
iProcurement Example 4: DTD <SCHEMA> — Updating Category or Descriptor.......
DTD: Iem INFOIMALIONoviiiiiicie bbb
iProcurement Example 5: DTD ITEM — Adding Items Using
SITEM ACTION"ADD ">coi ittt sttt sttt sttt sttt s b e b e b e aens
iProcurement Example 6;: DTD ITEM — Deleting Items Using
<ITEM ACTIONZ"DELETE">iiit ettt s
iProcurement Example 7: DTD ITEM — Updating Items Using
<ITEM ACTIONZ"UPDATE") ..ottt s
Supplier Hosted Catalogs and Marketplaces ...
Data Element DefinitioN.o e
DB INITIONS. ...ttt bbbt bbbt b bbbt
STANAANT COUES ...t bbb bbb e bbbttt eene bt e
Contract Data EIBMENTScoiiiiieiiiee et sttt
Item Data EIBMENTSoouiiiiee bbb bbb
Category Data EIBMENTScccoo it
Price Data EIBMENTS.......coiiiiiie et ettt re s
Supplier Data EIBMENTScociiiic ettt re e
AdAItIoNal ALIFIDULES ..o e ne
Order Line XML DeFINITIONcviiiiiiieiiie e e
Enclose All Data in CDATA TGS ...vcvvirereieerieieeeieeeeese e ste e sressessessessesesaessessessssesssssesses
iProcurement Example 8: Order Line XML SChemaccccovevininiiinene e
iProcurement Example 9: XML — One Order Line for the Full Schema Specification..
iProcurement Example 10: XML — Two-Item Transaction Example.........ccccccvervevennnn.
HTML SPECITICATION ...ttt bbb bbb ettt sbe e
Sending Selected Item to iProcurement: External Catalog’s HTML File Format...............
HTML Elements EXPIAINEd ..ottt e ene s
iProcurement Example 11: HTMLZ/ZXML File......cccooiiiiiiiiiiiie e
USEr AULNENTICALION ...ttt bbb b et n e e s eneens
iProcurement XML Example 12: Valid Session XML Documentccccocevevverieivenennnnn.

XV

11

XVi

Authenticated XIML SCNEMIAccoiiiiiiiiiic e 10-45
iProcurement Example 13: Authenticated XML Schema — Returned Requisition

USEI XML DOCUIMENT. ...ttt bbb 10-45
iProcurement Example 14: Authenticated User: Sample Returned XML Document..... 10-46
Unauthenticated XML SCREMIA........ccoiiiiiiiiiee e 10-47
iProcurement Example 15: Unauthenticated User — XML Schema........cc.cccccovvvevcrenenn, 10-47
iProcurement Example 16: Unauthenticated User — Sample XML document............... 10-47

Customizing Discoverer 3i Viewer with XSL

DiSCOVEIrer3i VIEWET: OVEIVIEWooiiiiiiiiiiiie ittt b e bbb et e et sne s 11-2
DiSCOVErer 3i VIEWET: FEATUIESccuiiiiiiiiiieiie ettt sttt st sttt ne e snesne s 11-3
Discoverer 3i Viewer: ArChITECIUIE. ...t 11-4
HOW DiSCOVErer 31 VIEWET WOTKS.......ciiiiiiiiieiiiieie ettt s ettt sne 11-5
Replicating Discoverer APPlCAtiON SEIVET ..ot 11-6
Using Discoverer 3i Viewer for Customized Web Applicationsccccevvvvevevicccivsnennn, 11-7
Step 1: BrOWSEE SENAS URL ..ottt 11-7
Step 2: Serviet GeNerateS XMLco ittt 11-7
Discoverer XML Example 1: Three Workbook Report Data.......cc.ccocevevevieierecivcineinnnnnnns 11-8
Step 3: XSL-T Processor Applies an XSL Stylesheet ..., 11-8
Step 4: XSL-T Processor GenerateS HTMLocooiiiiiiiiiiie s 11-8
Customizing Style by Modifying an XSL Stylesheet File: style.Xsl.........cccccocevvveveivinennn. 11-10
Discoverer 3i Viewer: Customization Example Using XML and XSLcccccoooeiiiiiinnnnnn 11-10
SEEP 11 THE XIMIL FHlE....iiiiiieiee bbbt 11-10
Step 2: XSL File, eXamMPIELXSI....cviiiiiiie e neene s 11-11
StEP 3 XIMLAXSL = HTIML ..ottt s bbbt 11-12
Step 4: Customizing the XSL Stylesheet (example2.XS1).......ccococviviiiiineiniineieee 11-13
Frequently Asked Questions (FAQS): Discoverer 3i VIEWETccccvcvvvvereneneieeieieresinanens 11-18
EXPIAINING SEIVIETS ... et 11-18
How Discoverer 3i Viewer Communicates With BrOWSEIScccvcvieieieneierieeeeeee 11-18
Why HTML is OULPUL tO the BrOWSENcveieieeeeeeieece et 11-19
Discoverer 3i VIEWEr aNd XIML........ooiiiiiiiiiieiesee et 11-19
AUISCOBIV.XIM ...ttt ettt sttt e b et e e e et eneereaneeneas 11-19
DiISCOVEIEE 31 AN XSL ...ttt 11-20
SUPPOITEA XSL-T PrOCESSOIS.....ccueiuiitiitirieitisteste sttt ettt sttt sbe b b e bt se e e e e e sneanea 11-20
Specifying the XSL-T Processor in the Servlet’s Classpath............cccconeiniinciicniennnen, 11-20

XS EITOTS .t 11-21

CUSTOMIZING STYIESNEETS.... .ot 11-21
Viewing Changes to a Modified StyleSheet..........cccovveiiieiii s 11-22
Browser Displays BIank SCIEENcoiiiiiiiiiieee e 11-22
More information 0N XIML and XSLccooiiiiiiieeeeee e 11-23

12 Phone Number Portability Using XML Messaging

Introduction to Phone Number Portability MesSaging ... 12-2
Requirements for Building a Phone Number Portability Applicationc.ccccccevevnee 12-3
Number Portability and Messaging Architecture within SDP..........c..ccocoiiiiiieicvnccec, 12-4
Communication ProtoCOl AGAPLETcciriiiiiiirieiseee e 12-4
Order ProCessSing ENQGINEccocvviiieiiiiie et e ettt snesenaeeeneanens 12-4
WOTKFIOW ENQINE.. .ottt e e e s ae et e sne e teeneenreanees 12-5
FUITITIMENT ENQINE ..ot 12-5
A= Y F= T =T T PSSR 12-5
SDP REPOSITONY ...ttt sttt ettt bbbt b bbbt e e et e bt e bt bt ebenbesbesre s 12-5
The Number Portability ProCeSS. ...ttt 12-6
What Happens Behind the Scenes When You Order a New Telephone Service.............. 12-6
What Happens Behind the Scenes When You Change Local Service Providers............... 12-6
XML is the Data Format. Advanced Queuing is Used at Each Pointcc.cccoeceneennen. 12-7
Why XML is Used for this MESSAgINGcccceieriirieieiececesiese s 12-8
Provisioning a Network EIEMENTccv i 12-9
Using Event Manager to Send and Receive Messages Asynchronously ... 12-9
Example Code t0 SENA MESSAGEScivirireriiieieeeeeeee s e sttt se e esae e eneerennes 12-10
Using Internet Message Studio (iMessage) to Create an Application Message Set.......... 12-11
(0 To [©1:T o =T =1 o] o ISR PRSPPI 12-11
DefiNiNg MESSAJE SELScviiiieicese sttt sttt s e e e e e e enaenaaneanens 12-11

Part V Developing Oracle XML Applications: A - Z

13 B2B XML Application: Step by Step

Introduction to the B2B XML ApPPHICAtION........cccoviiciiiice e 13-3
Requirements for Running the B2B XML Application..........cccooviiiiininineiccecee 13-3
Building the B2B XML ApPlication: OVEIVIEWccccceiiiiiiiiiinecneeneee e 13-3

XVii

Xviii

Why Transform Data to XIMIL?.......cooiiiiiicccce sttt 13-5

Why Use Advanced QUEUEING (AQ)? ..ottt 13-6
B2B XML Application; Main COMPONENTSccceveieiiieisese s e e sre e 13-7
Overview of Tasks to Run the B2B XML AppPlicationc.ccoiiiiiininineicccceeee 13-8
1 Set Up Your Environment to Run the B2B XML Applicationccccoceevneiineiiicnnnnn. 13-10
2 RUN the B2B APPHCALION ..o st e e eneas 13-11
3 End the B2B APPLICAtION SESSION.......ciiiiiiiieiiiieie ettt e 13-11
XML B2B Application: Setting Up the Database Schema..........c.ccoevevvineiineieneiieicee 13-12
SQL CalliNg SEQUENCEoecieieeciiriesie ettt e st be e st esae e se et e e see e enseneeneenearenres 13-13
Create and Build the Retailer and Supplier SChemas............cccccooeinniienne e, 13-14
SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql 13-14
SQL Example 2: Create and Populate the Retailer-Supplier Schema —
BUIIASCREMA.SOL ... e 13-15
Create the AQ Environment and Queue Tables..........ccccooiiiiiiii e 13-20
SQL Example 3: Set Up the Environment for AQ — mKAQUSser.sgl........ccccoovveverviinnnns 13-20
SQL Example 4: Call the AQ Queue Creation Scripts — mKQ.Sql.......ccooevireiiiciniinnns 13-21

SQL (PL/SQL) Example 5: Create Table, AppOne_QTab — mkQueueTableAppl.sgl. 13-21
SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab — mkQueueTableApp2.sql 13-21
SQL (PL/SQL) Example 7: Create Table, AppThree_QTab —

MKQUEUETADIEAPP3.SOL ... 13-21
SQL (PL/SQL) Example 8: Create Table, AppFour_QTab — mkQueueTableApp4.sql 13-22
Create the Broker Schema Including XSL Stylesheet Table............cccooeveiiiiiiiccnnccccn, 13-23
SQL Example 9: Create Broker Schema — mKSSTables.sqlcccoeviveineiineiiciice, 13-23
SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the
Broker Schema — SEtUP.SOL ..o 13-25
Cleaning Up Your Environment and Preparing to Rerun Applicationc.ccccoceevneene. 13-26
SQL Example 11: Stops and Drops Queue Applications. Starts Queue
APPHICAIONS — FESEL.SAL ...eeieieeie e 13-27
StOP QUEUE SQL SCHIPTS ...ttt ettt 13-27
Drop QUEUE SQL SCHIPTS.....viiiiiirieiirieiesiesieiesee et es e et e ettt sre st te e e e e eneeneesesneens 13-28
Create QUEUE SQL SCIIPESoueiuiiiii ittt et e eneas 13-28
Start QUEUE SQL SCIIPTS. ..ottt sttt sttt st b et st sae b et eneeseaneenea 13-29
Lo [0] oL@ o =] = | TSRS 13-29
B2B XML Application: Data EXChange FIOW ... 13-31

Retailer-SUpplier TraNSACTIONS.coiiiiiiiii ettt 13-32

1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog.........cc.ccoceoeviveiennnne. 13-32
2 REtailer PIACES OFUENccuiiiiiiiicieee ettt 13-32
3 Retailer Confirms and Commits to Sending the Order.........ccccccoovvieviiicce s, 13-32
4 AQ Broker-Transformer Transforms the XML Document According to the
T U] o] o] TT=T sl o T | SRR 13-33
5 Supplier Application Parses Incoming Reformatted XML Order Document. Inserts
Order into the Supplier Database............ccoieiiiiiiiiiee e 13-34
6 Supplier Application Alerts Supplier of Pending Order.........ccccocvivvievvvcicvcvecieeeen 13-34
7 AQ Broker-Transformer Transforms the XML Order According to Retailer
0] 1 0 F- LSOO PRSPPSO 13-34
8 Retailer Application Updates the Ord and Line_ltem Tables........c.ccccevvvvverevvcivennnnn, 13-35
Running the B2B XML Application: Detailed Procedure...........ccccoovininininiicnceccee 13-36
1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog.........c.ccccooeieinininnnne. 13-37
XSQL Script Example 2: Checking the ID of Users Logging In: getlogged.xsql......... 13-41
XSQL Script Example 1: Displays First Hi-Tech Mall Screen — index.xsql 13-43
XSQL Script Example 3: Lists Catalog Products — inventory.Xsgl..........cccccceevnennnn. 13-44
XSQL Script Example 4: Enter a Quantity — order.Xsqlccccoevvvveveieieciereeieeeeeses 13-46
2 Retailer PIACES OFAEN ... bbb ettt 13-49
3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order.. 13-50
XSQL Script Example 5: Starts B2B Process — placeorder.Xsql........ccccocevevervvivevnnnnnnn, 13-50
Java Example 1: Action Handler Called by placeOrder.xsql —
Retail ACIONHANAIEN JAVA ..o e 13-51
Java Example 2: Maintains Session Context for
Retail ActionHandler.java — SessionHolder.java...........c.ccccvvieiiiicceiecse e 13-69
4 AQ Broker-Transformer Transforms XML Document According to Supplier’s
FOMIMAL ..ottt b bt bt bR b e nn et e e b 13-71
5 Supplier Application Parses the XML Document and Inserts the Order into the
SUPPHEr DAADASE ... 13-75
6a Supplier Application Alerts Supplier of Pending Orderc.ccoovovvvvevevcierieieee e, 13-76
6b Supplier Decides to Ship the Product(s) to the Retailer ... 13-78
6¢ Supplier Application Generates a New XML Message to Send to AQ Broker........... 13-79
7 AQ Broker-Transformer Transforms XML Order into Retailer’s Format 13-80
8 Retailer Application Updates the Ord Table and Displays the New Order Status
oI L] 7 UL =] SRRSO PSR PRPR 13-81

Xix

To Stop the B2B XML APPHCATIONoiviiiiiiiiiiiieeeeees e 13-81

Check Your Order Status Directly Using vieworder.sgl...........ccccoooviniineineincniee, 13-82
Java Examples - Calling SEQUENCE...........ovv i ens 13-83
XSL and XSL Management SCIIPTSccuiiiiiiieririene ettt s 13-85

XSL Stylesheet Example 1: Converts Results to HTML — html.xsl ... 13-85

XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl.............. 13-91

Java Example 3: Stylesheet Management— GUIInterface.java........c.ccccoovenineiniciennn, 13-97

Java Example 4: GUIInterface_ AboutBoxPanel.javacccccovoieiicniensienneneee 13-114

Java Example 5: GUISEYIESNEEt.JaVa........ccccvviieieicicccc e 13-115
XML Process and Management SCHIPTS ..o e 13-117

Java Example 6: MaindAXMLEIODMLVZ2.JAVA........cccoiiiiiiieiiecsec e 13-117

Java EXample 7: ParserTEST.JAVAccccirireieriiieieieee ettt sttt anesnenns 13-120

Java Example 8: TableINDOCUMENTJAVAccciiiiiiiiiie s 13-122

Java Example 9: XMLFFAME.JAVA..........coiiiiriiirieiniesee et e 13-123

Java Example 10: XMLPrOAUCET.JAVA.......ccccoveieieeeieisese e sie e sne e 13-124

Java Example 11: XMLEIODIMLVZ.JAVAccccoiiiiiieieiiniesie et 13-126

Java Example 12: XMLGENJAVA.......cccoiiiiiiiinieisiese ettt e 13-134

Java Example 13: XMLUTILJAVAcccoiiiiiccccec e 13-136

Java Example 14: XSLTWIFAPPEIJAVA ...cc.coueviiiieieiieiisiesie ittt sttt sne s 13-137
Other Scripts Used in the B2B XML ApPHICatioNccoeiiiiiiieiieeseese e 13-142

XML Example 1: XSQL Configuration — XSQLConfig.Xmlccccccevvvvrerverveireinninnnnns 13-142

Java Example 15: Message Header Script — MessageHeaders.javaccccoeovvennenne. 13-149

Java Example 16: Hold Constants for Use by Message Broker — AppCste.java......... 13-150
=Y - V] [ol | o) £SO SSSPR 13-150

Java Example 17: Retailer Waits for Status Update Sent from Supplier —

UPAALEMASTEN JAVA.cueviiiitiiitiieiee ettt 13-150
AQ Broker-Transformer and Advanced QUEUING SCrPLS......cccvivrererieriereerieenese e 13-157

Java Example 18: AQ Broker Listens on One AQ Thread — BrokerThread.java......... 13-158

Java Example 19: MeSSageBrOKEr JAVA...........coiiiiriiiiiieeeee e 13-163

Java Example 20: AQREAUEI.JAVAccevverueiieieieieet et sne e 13-169

Java Example 21: AQWIITEI JAVAcoueiuiiiiiiieieieeeeiete ettt 13-171

Java Example 22: B2BMESSAQE.JAVA.......ccrueiriiiriiirieisieieie ettt 13-174

Java Example 23; ReadStruCtAQ JAVAcoevveieieiei et sne e 13-175

Java Example 24: StOPAIIQUEUESJAVAc..oviuiiiiiiiieiieiere et 13-176

Java Example 25: WriteStrUCLAQ.JAVAcviviiriiirieiiieiee ettt 13-177

14

S U] o] o] L T=T GRS el g 1 0] iSSP UURUPURPR 13-180

Java Example 26: SUPPHEIFramME.JAVAcccveriiiriiirieiieses e 13-180
Java Example 27: Agent Wakes Up with Order Received from
Retailer — SUPPHErWALCNEr JAVAcooiiiiiiii s 13-186
Using JDeveloper to Build Oracle XML Applications
INtrodUCING JDEVEIOPET 3.2t ettt sbe s 14-2
Business Components for Java (BCA) ...t 14-2
Oracle JDeVEloPEr XIMIL STrateQYcceoeiverierieeeeeeeesiesestesestessesieseesseseseeseesseseesessessessessessens 14-3
What’s Needed t0 RUN JDEVEIOPET 3.2.......oiiiiiiiciieee ettt 14-3
ACCESSING JDEVEIOPET 3.2....eiceeieieieee ettt ettt bbb b b 14-3
XML in Business Components for Java (BCAJ) ..o 14-4
Building XSQL Clients with Business Components for Java (BC4J)ccccocevviiiiniinnenn 14-6
ODJECE GAIIETY ... bbbt bbbt 14-6
XSQL EIEMENT WIZATGc.ocoviiieiece ettt re e b e eereenns 14-7
e To (I T= [Tot (o] VAV T U o TSRS 14-9
XML Features in JDEVEIOPET 3.2ciiiiiiiecttieete et 14-10
Oracle XDK and Transviewer Beans INtegration.............ccocvevvivrienienennsie e 14-10
Oracle XML Parser fOr JAVA.........cooiireieiieieieeeeees ettt 14-10
Oracle XSQL SEIVIET......cc.i ettt ettt et e 14-11
XML Data Generator WeD BEaNccooiiiiiiiniiieesesese s 14-12
Mobile Application Development with Portal-To-Go and JDeveloper...........cccoceovvenene 14-13
Building XML Applications With JDEVEIOPETcccviiiiiiiiiiieee e 14-14
JDeveloper XML Example 1: BC4J Metadata...........ccccevvereeiivinsnnie e 14-14
Procedure for Building Applications in JDeveloper 3.2 ... 14-14
Using JDeveloper’s XML Data Generator Web Bean ... 14-16
Using XSQL Serviet from JDEVEIOPETccvivieiiee et sne e 14-19
JDeveloper XSQL Example 2: Employee Data from Table emp: emp.xsql........cccceeunee. 14-19
JDeveloper XSQL Example 3: Employee Data with Stylesheet Added..............ccccoeunee. 14-20
Creating a Mobile Application in JDEVEIOPETcovcveviiiicse e 14-22
1 Create the BCAJ APPHCATIONoouiiiiiiiiiii e 14-23
2 Create JSP Pages Based on BC4J APPliCation ... 14-24
3 Create XSLT Stylesheets According to the Devices Needed to Read The Data........... 14-25
Frequently Asked Questions (FAQSs): Using JDeveloper to Build XML Applications 14-29
Constructing an XML DOCUMENT IN ISPccoiiiiiiiiicseeeee s 14-29

XXi

Using XMLData From BCAJ ..ottt e sra et 14-30

Running XML Parser for Java in JDeveloper 3.0.......ccccciiiiiiiiiiiseseeeeese e 14-30
Moving Complex XML Documents to a Databasecccccocvvvvivveveninnie e 14-33
15 Using Internet File System (iFS) to Build XML Applications
Introduction to Internet File System (IFS)ccccviiiiiiice e 15-2
WOrKIiNg WIth XIML IN TS ..ottt ettt sre e sre s 15-2
SUPPIlY @ DOCUMENT DESCIIPTONc.vcviieiiieeiiiieeseete ettt 15-2
USING ThE TS PAISEIS ...t ettt sttt te st e e et e e e eneeneeneanearenrn 15-3
Standard iFS Parsers and CUSTOM PAISEISccoiiiiiiiiiiiiise et 15-3
USING IFS STANAAIT PAISEIS.......iiiiiiitiiciiieiete bbbt 15-4
[T T O o)1 o] 1SS 15-4
USING IFS CUSTOM PAISEIS ...ocuiiiiiicie sttt be et esae e aeste e ste e e teasaesteeneestaeneesneenes 15-5
HOW IFS XML Parsing WOIKScoiiiiiiiiiiiee ettt 15-5
Wrriting a Parser APPLICALIONcocv v ane s 15-6
ReNderinNg XIML INTFS ..ot te et te s e s ta e enneenes 15-7
XML and BUuSiness INTEIIIGENCE. ..ot 15-7
Configuring iIFS With XIMIL FIlESccvieieceecee s 15-7
16 Building n-Tier Architectures for Media-Rich Management using XML.:
ArtesiaTech
Introduction to Building N-Tier ArChiteCtUIES ... 16-2
XML-Based, Multi-Tier COmMMUNICALION..........ccoeieiieiiiire ettt ettt sree e es 16-2
Function Shipping: Separating Logical and Physical Tiers..........ccocvvvviviieninereieiieesese e 16-3
Object-Oriented Messaging With XIMIL ..o 16-4
Should XML be Used for MESSagiNg?..........ccceiieiiiiiiiieiieienieie et 16-6
USING XML OF IDL? ..ottt sttt sttt enaenenneeneenenns 16-6
Message Processing With XIMIL.........ccooiiiiiiiicie ettt 16-8
SCHPTING WITH XIML.....oiiiiiii bbb 16-9
INter-Tier COMMUINICATIONoooiiiiiee et bbb 16-12
Transaction State Management for Web-Based Servicescccovvevvveiieiieeieseece e 16-14
XML-Based Software QUAlity ASSUFANCEccceiireiiieiiei e 16-14
XML-Based Data DiSSEMINALION. ...t 16-15

XXii

XML-Centric Digital Asset ManagemeENnt...........cccccviiriiiieiieie e sre e e sre e e 16-16

Digital Asset Aggregation Facilitating End-User Personalization............cccocecveincnen. 16-16
Digital Asset Aggregation Addressing Bandwidth Implications...........cc.cccccocevviiiiiinnnnns 16-17
10 [0] 00 F= U2 PR TRTP TSP 16-18

Part VI XDK for Java

17 Using XML Parser for Java

XML Parser FOr JAVa: FEATUIEScoci ittt sbe e 17-2
XSL Transformation (XSL-T) PrOCESSONcccciriirieirieinieesiee ettt 17-3
NPT g TeES] o (ot IR TH o] o Yo] o PSS 17-4
Validating and Non-Validating Mode SUPPOIT........ccceiiiiiiiiine e 17-4

Parsers Access XML Document’s Content and STIUCLUFE. ..o 17-5

DOM AN SAX APIS ..ottt bbbt bbbttt e bbb nnne 17-6
DOM: Tree-Based APL........oo ettt 17-6
SAX: EVENT -BASEU AP ...ttt 17-6
Guidelines for Using DOM and SAX APIS ..o e 17-7

Running the XML Parser for Java SamPIes ... 17-8
XML Parser for Java - XML Sample 1: Class.Xml ..o 17-9
XML Parser for Java - XML Example 2: Using DTD employee — employee.xml 17-9
XML Parser for Java - XML Example 3: Using DTD family.dtd — family.xml............... 17-10
XML Parser for Java - XSL Example 1: XSL (iden.Xsl)......ccccooveininniniieeeceee 17-10
XML Parser for Java - DTD Example 1: (NSEXample)cccoovivviviievinnieieeeeeeeeeses 17-10

Using XML Parser for Java: DOMPArSer() Classcccccveveiieiiiieie e 17-12
XML Parser for Java Example 1: Using the Parser and DOM APl (DomSample.java).. 17-14
Comments on DOMParser() EXample L......ccccovovoioiieieicciese e 17-18

Using XML Parser for Java: DOMNamespace() Class........ccoovviiiiinineneneicceeeeeiee 17-20
XML Parser for Java Example 2: Parsing a URL — DOMNamespace.java 17-20

Using XML Parser for Java: SAXPArser() Class.......ccccoceveieiiiiiiiniesie e seseseseeseeessese e 17-25
XML Parser for Java Example 3: Using the Parser and SAX API (SAXSample.java)..... 17-25

Using XML Parser for Java: XSL-T PrOCESSOIcccureiireiireiienisie et 17-30
XML Parser for Java Example 4: (XSLSamPIe.java).........cccevvvrvrererenienereeniesiereeseeesesens 17-31
XML Parser for Java Example 5: Using the DOMAPI and XSL-T Processor 17-34
Comments 0N XSL-T EXAMPIE 5...c.ooviiiiiiiieirercs s 17-36

XXili

XXV

Using XML Parser for Java: SAXNamespace() Class.........cccooviiriririenininenenese e 17-38

XML Parser for Java Example 6: (SAXNaMESPACE.JAVA)........coviveiriineriierisie e 17-38
XML Parser for Java: Command Line INterfaces.........cccoviiiiiiiiniensesense e 17-42
OraxXmMl - OFaCle XIML PAISETcoiiiiiirie ittt bbb st eneas 17-42
OFaXS| - Oracle XSL PrOCESSOLceiueiirieiirieieriee ettt ettt sttt ettt 17-42
XML Extension FUNCtions fOr XSL-T ProCeSSINGccccviviivierienieseseseseseseseeseeseseenessassennes 17-45
XSL-T Processor Extension Functions: INtroductionccoccocvneneninenencneeeeeee 17-45
Static Versus Non-static Methods ... 17-45
Constructor EXteNSioN FUNCLION ..ot 17-46
Return Value EXteNSiON FUNCHION..........c.ccoiiiiiiieiieeeee e 17-46
XML Parser for Java XSL Example 3: Return Value Extension Function...............c.c....... 17-46
Datatypes EXtENSION FUNCLIONcccoviiieiicecececs ettt 17-47
XML Parser for Java Example 4: Datatype Extension FUNCLION..........c.ccooeveiineinicicene, 17-47
Frequently Asked Questions (FAQS): XML Parser for Java.........cccccoeerineineineincnnens 17-48
D I 5 1 OO OSSPSR 17-48
Checking DTD Syntax: Suggestions for EitOrs..........ccccccvviiviiieie i 17-48
DTD File in DOCTYPE Must be Relative to XML Document Location............c.cccceeuee. 17-50
Validating an XML File Using EXternal DTDc.cccooviiviiiniiie s 17-50
[I Yo o 1 T USSR 17-50
Recognizing EXIErNAl DTScccoiiiiiiiiitiisieie et 17-51
Loading external DTD’S from @ jar Filecccooveiiiciie e 17-52
Can | Check the Correctness of an XML Document Using their DTD?............cccccevvvenee. 17-52
Parsing a DTD Object Separately from XML DOCUMENTccceoiviriiniineeneeee e 17-53
Case-Sensitivity in Parser Validation againsSt DTD?cccccvvvvivininnn e sesieeeseseenens 17-53
Extracting Embedded XML From a CDATA SeCtiONccccoevveiiivieeceee e 17-54
DOM AN SAX APIS ...ttt ettt sttt bt st et e st e s e sb e e sb e e e be e ete e etesneteseete e 17-56
USING the DOM AP ..ottt e ettt sttt et e e e e e eneene e 17-56
HOW DOM PArSer WOTKS.......ccuiiiiiiiiieie ittt sttt 17-56
Creating a Node With Value to be Set Later...........cccviiieniennieeeeeee e 17-56
Traversing the XIML TTEE.......cc ittt sttt e e e neeneenes 17-57
Extracting Elements from XML File.........ccooviii i 17-57
Does a DTD Validate the DOM TrEE?.......coiiiiiieieieeee ettt 17-57
First Child Node EIement ValUe...........cocooiiiiiiniieseee e 17-57
Creating DOCTYPE NOGE ..ot bbb e eneas 17-58
XMLNode.selectNodes() MEthOd. ..ot 17-58

Using SAX API to Get the Data ValUe...........ccoov e 17-59

SAXSAMPIEJAVA ...ttt bbbttt 17-60
Does DOMParser implement Parser interfaceccooeveiviiviiiievie s 17-60
Creating an New Document Type Node Via DOM ..o 17-60
Querying for First Child Node’s Value of a Certain Tag.........ccocooevvirrineineinenesenns 17-61
XML Document Generation From Data in Variables...........ccccovviviiininiinnicnen 17-61
Printing Data in the Element Tags: DOM APl ... 17-62
Building XML Files from Hashtable Value Pairs...........cccccviiniiiiiiiissc e 17-63
XML Parser for Java: wrong_document_err on Node.appendChild()ccccceovvrvevennnene. 17-63
Creating Nodes: DOMException when Setting Node Value............cccocooeiiciiiiinennn 17-65
211 Lo F=1 1 T] o TSRS RSPRPRTRN 17-66
DTD: Understanding DOCTYPE and Validating Parsercc.ccocvevvivvenenenenieiesiesinnnnns 17-66
Can Multiple Threads Use Single XSLProcessor/Stylesheet?cccooveveiciiicinnnnn 17-66
Is it Safe to Use Document Clones in Multiple Threads? ... 17-67
CRATACLEE SESiiiiiiiteete bbb bbbt et b et e s bt b e e b e e ebe et e ebe e et e 17-68
ENncoding iS0-8859-1 iN XMIPAISEEcc.eiuiriiiiiieieieieieetes ettt 17-68
Parsing XML Stored in NCLOB With UTF-8 ENCOAING........cccoveiiiiiiiiiiicisic e 17-68
NLS SUPPOIt WIthin XIML........coviiiiiiinse ettt ne e ene s 17-70
UTF-16 Encoding with XML Parser for Java V2 ..o 17-70
Adding XML Document as @ Chilld..........ccocoiiiiiiiicc e 17-71
Adding an XMLDocument as a Child to Another Element..........c..ccocoivvvvvnicrevcceenenn, 17-71
Adding an XMLDocumentFragment as a Child to XMLDocument.............c.cccccovevvvenenn. 17-72
UNINSTATTING PAISEIS ..ottt bbbt 17-74
Removing XML Parser from the Databasecccceveiviieiiinienie s 17-74
XML Parser for Java: INSTAllation.........c.cooiiiiiiii e 17-74
XMLPARSER Fails t0 INSTAllocuoiiiiiiiieieee e 17-74
General XML Parser Related QUESTIONS.ccveiiiiieiieiiccie ettt st s sbe e 17-76
HOW the XIML Parser WOTKScoiiiiiiiiiie ettt 17-76
Converting XML Files to HTML FilEScociiiiiiiiiiceee s 17-76
Validating Against XML SCheM@ ...t ene 17-76
Including Binary Data in an XML DOCUMENT..........ccccoeiiieieiiein e 17-77
What iS XIML SCREMATY ...t et ene s 17-77
Oracle’s Participation in Defining the XML/SQL Standardcccccccevievvvcicrcnncicennn, 17-77
XDK VErsion NUMDEIScoiiiii e 17-78
Inserting <, >, >= and <= iN XML DOCUMENLScccceriiiririiiinine e 17-78

XXV

XXVi

Are Namespace and Schema SUPPOITEd ..ot 17-78

Using JDK 1.1.x with XML Parser for JAVA V2cccccieiiiiiiniesese e 17-78
Sorting the ReSUIt ON the PAQeccv i 17-79
Is Oracle8i Needed to Run XML Parser for Java? ... 17-79
Dynamically Setting the Encoding in an XML File.........ccocociiiiiiiiiiinceescns 17-79
o ST o I 1] 1 1 T [PPSR 17-80
Displaying an XIML DOCUMENTcoiiiiiiieieieieeeese it 17-80
System.out.primtin() and Special CharaCters ... 17-80
Obtaining Ampersand from Character Dataccccoveveieiieiiieninse e 17-81
Parsing XML from Data of TYPE SIING......ccccuiiiiiiiiieeee e 17-81
Extracting Data from XML Document into @ StriNg........ccccoeevernennennenseneeseeseenee 17-81
DYET=To] [TaTo @ IU] o101 al =Tor=1 o 1 o [F PP 17-82
Using the XML Parser for Java with Oracle 8.0.5...........cccooov i, 17-82
Delimiting Multiple XML DOCUMENTS ..ottt 17-82
XML and Entity-references: XML Parser for Java.........cccocveviivnieinninne s 17-83
Can | Break up and Store an XML Document without a DDL Insert?............cccccceoviees 17-83
Merging XML DOCUMENTS ..ottt 17-84
Getting the Value Of @ Tagcccviiiiiiiese s e e eneas 17-86
Granting JAVASYSPRIV 10 USEIccoiiieiiciei ettt sttt 17-86
Including an External XML File in Another XML File: External Parsed Entities............ 17-87
OFAXSL PAFSEE ...ttt b bbbt b b e b b r e e e e ene s 17-89
XSL-T Processor and XSL StyleSheEets.........cccccciiviiiiiiiiciee st 17-90
HTIML EFTOE 0N XSL 1ttt ettt st sttt n e 17-90
Is <xsl:output method="htmI"/> SUPPOIted?cccciiriiriririrrr e 17-91
Netscape 4.0: Preventing XSL From Outputing <meta> Tag........ccoceerereneneiieieeeeenen 17-92
XSL EFTOE IMIBSSAQESceviiieiieiesie sttt ettt bt en e ene s 17-93
Generating HTML: "<" CharaCter........cccciiviiiiiiineie s a e aneas 17-94
HTML "<" Conversion Works in oraxsl but not XSLSample.java?..........ccccoveiiiiinnnnne 17-94
XSL-T EXAMPIES ..ottt ekttt b et b et bt eb e ne b e b b 17-96
XSL-T FRATUIES ...ttt bbbt sh e b bbb e e e aneene s 17-96
Using XSL To Convert XML Document To Another FOrmcccooevvvveveiicce s, 17-96
INFOrMATION ON XSL 2.ttt bbb e ebeens 17-98
XSLProcessor and MuUltiple OULPULS?........ccviiiiceicceese e eneas 17-98
GOO0d BOOKS TOF XIMLZXSL ...ttt bbb et 17-98
Version NUMDBDEE OF XDK?......coiiii ettt ene s 17-99

Including Binary Data in an XML DOCUMENL...........cccccoveiiiieiisiesc e 17-99
Converting XML t0 HTIML ..ot 17-100
XML Developer Kits for HPZUX PlatfOormcccccvcveiviiiniiic s 17-100
18 Using XML Java Class Generator
Accessing XML Java Class GENEIALONcccrveiveeeieisiese e se sttt ere e e ere e snesrenees 18-2
Using XML Class GeNerator fOr JAVA.........cccooveieiiiiiiieie st 18-2
XML Java Class Generator EXAMPIES.........cccciiiiiiiiiieseee et 18-5
oG o] [T LT 01U A 0 I 0 TS 18-5
XML Java Class Generator DTD Example 1: Employee Data.........ccccoceeeiciiiiiiiinicncecne, 18-5
XML Java Class Generator Example 1: Processing the DTD to Generate Java Classes.... 18-6
XML Java Class Generator Example 2: Creating a Valid XML Document from
JAVA CHASSES. ...ttt ettt ettt b bbbt bbbt bbbttt et b e bbb e nae 18-8
XML Java Class Generator Example 3: Resulting XML Document Built by a Java
W AN o]] 1oz 4 o o 1SS 18-10
XML Java Class Generator Sample Files in sample/..........ccooiiiiiiininceeeeesee 18-11
How to Run the XML Java Class Generator Samples in sample/.........ccccoovnniiniinennn, 18-11
XML Java ClLass Generator, DTD Example 1: DTD Input — widl.dtdcccoennnee. 18-12
XML Java CLass Generator, XML Example 1: XML Input —widl.xmlcccccee. 18-13
XML Java CLass Generator, Java Example 1: SampleMain.javac.ccocooeneienciinciinne. 18-13
XML Java CLass Generator, Java Example 2: TestWidl.java.........ccccocvrivvvreiernnecincnnnnnn, 18-16
XML Java CLass Generator, XML Example 2: DTD Input — widl.outccccoeenee. 18-17
Frequently Asked Questions (FAQSs) : Class Generator for Java.........c.ccoceevveveicinencennne, 18-19
Y AN} (0] o= L (ol =0 o T - Ui o] o PP 18-19
XML t0 Java ODjJECt MAPPING......cciiiiiitirierie sttt bbb 18-19
DTD Class Generator: Which Child Classes WOrK...........ccociiiiiininieieienee e 18-20
INstalling XML ClasS GENEIALOFccccvvvriririererieeeeeee e se st sa e e e e ere e e 18-20
Role of the XML Class GENEerator fOr JAVA ..ot 18-21
Automatic Instantiation of Objects Based on XML File: Using the XML Class
LCT=T 0 1= -1 (o TP TP RSP PROPPRP 18-21
Which DTD’S are SUPPOITEA?oiiiiiiiie ettt 18-22
Using the XML Class Generator SAMPIEScccviiiriiircineeneesee st 18-22
Class Generator: Cannot Create Root Object More than ONce.........cccccevvvevericiececennenn, 18-22
Class Generator:Creating XML Files from Scratch, Using the DOM APIc.......... 18-23

XXVil

19

XXViii

Using XSQL Servlet
ACCESSING XSQL SEIVIEL.......oiiiiiiiiieiie bbbt 19-3
What’s Needed t0 RUN XSQL SEIVIEL.........ccovoiiiiiiict ettt 19-3
XSQL SEIVIEL FEALUIESveiviceieieceste ettt et et e st e st e s aeeaesreestesneestesneeseenneens 19-3
Introducing Oracle XSQL PAGEScceiiiiiiiriiiieirieini sttt 19-3
Oracle XSQL Pages: Setup and EXaMPIESccccovciveiiicisese s 19-12
Setting the CLASSPATH COITECLIY....c.iiieicecr ettt 19-14
Setting Up the Connection DEfiNItiONS ..o 19-15
XSQL Page COMIMON TAGS ..veuveiieeiriieeiirrieesiesieesiesseestesseesseaseesseessesseessssseesssssesssessesssessesssesseees 19-16
Additional XSQL Page EXamPIe.......cccooiiiiiiiiiiie e 19-16
Built-in XSQL ACION EIBMENTScoiiiiieiecieie e 19-17
Using the XSQLComMaNdLINEG ULty ..o 19-18
XSQL Page ProCeSSOI USAQE.uuiiiieiiiiiieiiee st sieesae et ste et st stesssaessbeessaessbasssaesbeessseanseessneans 19-19
XSQL USAGE OVEINVIBWviiiiieiiieeiestet ittt ettt etttk s ettt ab et b e b b e b nn b nn b e 19-19
XSQL Page Processor ArChITECIUIEcccviviieieeeiees st ereens 19-22
XSQL Page Processor iN ACLION.........c.cov ittt re e sttt e e s 19-24
XSQL Serviet EXampPles iN MmO/ ..o 19-26
Setting Up the demo/ Data ... e nenns 19-29
USING XSQL SEIVIET ...ttt ettt et e estesaeestesneestearaesteeneens 19-30
REGUITEIMENTS. ...ttt bbbttt b bbb 19-30
USING XSQL PAJESeevveeeieiieieee sttt e et te st sbe st et s a e beste e et e nee e ensenaeneaneanens 19-30
Producing Dynamic XML Documents from SQL Queries with <xsgl:query>................ 19-30
Customizing Your Query with XML-SQL Utility Query Attribute Options................... 19-32
BUIIE-TN ACHION HANAIET ...t 19-33
How XSQL Page Processor Processes ActionHandler ACtionS..........ccccoccevveveiieenccienie e, 19-36
XSQL ACLION HANAIEE EFTOFS ..ottt 19-37
Using JavaServer Pages (JSP) and XSQL PageS.......cccocerueieerieirenseseseseseeseesieseeseeeesensens 19-38
Using <xsgl:query> Tag AtLIHDULES ...t 19-38
Using the XSQL Page Processor Programmatically...........cccooiriiniiniiiiinciincces 19-39
Customizing XSQL ACtion HANAIEIScccoiieciece e 19-40
Built-in XSQL Action Elements and Action Handler Classes.........ccccccovevevvevecienieceennn, 19-40
Using a Custom XSQL Action Handler in an XSQL Pageccccovvriiniiniiniineseens 19-42
Defining Custom XSQL Action Element for your Handler............cccccocvvvvviicicvccccce, 19-43
Using XSQLConfig.xml to Tune Your ENVIrONMENTcccov e 19-44
Modifying XSQL Configuration SEtHINGScccuvriiieiiiiieee s 19-44

[T 0 1L 71 o] F R 19-45

HTTP Parameters with Multibyte Names ..o 19-45
CURSOR() Function in SQL StatemMents.........cccocveveieieiiesesiese e siesiesie e seeseeee e sessessesneens 19-45
Frequently Asked Questions (FAQS) - XSQL Serviet..........cccooiiiiininininiieeeeeeeee 19-46
NoClassDefFoundError When Running XSQL Servilet DEMOS.........ccoccovveieneeneienennnens 19-46
Specifying a DTD While Transforming XSQL Output to a WML Document................. 19-47
XSQL: Using the CURSOR Operator for Nested StruCture...........ccocevveeneneneieicieeeen 19-47
XSQL Serviet Conditional StatemMeNtS........ccccociiiiiieieeeere e 19-48
Multiple Query in an .xsql File: Page Parameters..........cccccooviivieieniennneseneseseeseeeeesnenens 19-49
XSQL, URN, XSESCIIPE ..ttt bbbttt 19-50
XSQL Servlet: Connecting to Any Database With JDBC SUPPOIt.........ccoveivieieinccnne. 19-50
XSQL Demos: Using the Correct Version JDK ... 19-51
From XML To Table Creation? ... e 19-52
XSQL Serviet: ACCESS t0 JSEIV PrOCESS.ciiiiiieiieieeieieieee sttt 19-53
Calling xmlgen via XSQL Servlet on Java Web SErverccccoovvivenienieiencieieeeeeesens 19-54
SUPPOIrting Other DatahasES..........coiieiiieieeee e 19-55
XSQL Servlet: Connecting to Remote Database............cccovvieiniiiiennenseseeee e 19-55
YN o T Uod LT T o PSS 19-56
DOCUMENT CrEALION ...ttt bbb bbb et et eb e ene s 19-57
XSQL WILN JRUN Lottt b et b e na s 19-58
XSQL ON OFACIE8I LITE.....iiveiiieiieitecie ettt ettt be e beent e be e sbeenees 19-58
b0 | o] g Cl U] o I = o OSSO PO PR PRSPPI 19-59
Multiple Parameters in the XSQL SErvIet ... 19-59
XSQL Servlet and OFaCle 7.3cve ottt et err e sbe e be e s re e 19-59
Passing Parameters Between XSQL and XSLccccciiieiiiieiieie e 19-60
CoNAILIONAl QUETYviiiiiieiieeet bbb bbbt et e et ettt 19-60
XSQL Servilet and INSERTS OF UPDATES.coiiiiiiiiiiite ettt s 19-61
XSQL Serviet and DYNamiC SQLccuoiiiiiiiiiie ettt re e sne s 19-61
XSQL Servlet and Other Relational Databases............ccoeieiiiiiiinienienie e 19-62
Out Variable Not Supported in <XSQL:DML>.......c.cccooviiviviiiie e 19-63
Running XSQL Page Processor on Java Web SErver? ... 19-64
SID AN JIDK EFTOFS ...oiiiitiiieiieite sttt ettt sttt st sttt bbb e e e e st e e eneeneerenre e 19-64
Using Custom Action Elements: XSQLActionHandlerImpl........c..ccocvvvvivevcicrcieccnennn, 19-65
XSQL Servlet: Writing an Action Element (Handler) to Set a Browser Cookie 19-66
Installing XSQL Serviet on HS With JRUN.........cccoiiiiiiieeeeee e 19-67

XXiX

20

XXX

Writing an XSQL Action Handler to Acquire HTTP Request Parameters....................... 19-68

Converting HTML Key Value Pairs to XML: <xsgl:insert-request>.............c.ccccoervrerenne. 19-68
Running a Procedure from the XSOl File ... 19-69
XSQL File Launching from JDEVEIOPETc.oviiieiiieiieesr e 19-70
Can | Load Multiple Forms to My Database UsSing XML?ccccocoiiniineineineee 19-71
Getting and Storing XML Documents in a Database: Testing Functionality 19-72
Using XML Transviewer Beans
Accessing Oracle XML TranSVIEWETN BEANScccccverieriirieieeei e se e e e ssesse s 20-2
XDK for Java: XML Transviewer Bean FEAtUIESccccoiiiiiininieiine e 20-2
Database CONNECTIVILYceiiiiiiirieiieiie bbbt 20-2
XML TranSVIEWET BEANS.......c.ocirieiirieierieiisieesie sttt et ettt see bbbt sb e sbe e b e b seene e 20-2
Using the XML TranSVIEWET BEANSccceeiiiieieiiese ettt sttt sae st sne e 20-4
Using DOMBuUIlder Bean (ASYNC AP ..ottt 20-5
Used for Asynchronous Parsing in the Background...........c..ccocvvviie i 20-5
DOMBuUilder Bean Parses Many FileS Fastccccccviieii e 20-5
DOMBUIIAEr BEAN USAQE.c.civiiiiiiiiiiiitiieiinieit ettt 20-5
Using XSL Transformer Bean (oracle.Xxml.async AP ... 20-10
Many Files to Transform? Use XSL Transformer Beancccoccevvvievvcievneciese e, 20-10
Need a responsive User Interface? Use XSL Transformer Beanccocoeevevincinenneee 20-10
XSL Transviewer Bean Scenario 1: Regenerating HTML Only When Underlying
(DT U7 WO o P T T SO 20-10
XSL Transformer BeaN USAQJEcoviiiieiiiiiiie ettt nnene e 20-11
Using Treeviewer Bean (XMLTIEEVIEW() AP ..o 20-14
Using XMLSourceView Bean (oracle.xml.srcviewer API)ccccvivciiiicve e 20-16
XMLSOUTICEVIEW BEAN USAQE .. .c.eiviiiiiiiiiieiiterieie ettt sttt 20-16
Using XMLTransformPanel() Bean (oracle.xml.transviewer API)........cccccocvvieieiciiciininannns 20-20
XMLTransformPanel BEan FEALUIEScooiiiieiiiicieeee e 20-20
TrANSVIEWET BEAN ...ttt ettt sttt sttt eneeneeneenenras 20-20
Running the Transviewer Bean Samples SUPPlIed.........c.coooiiviiiiiiieiiinie s 20-22
Installing the Transviewer Bean Samples.........coiii e 20-23
Setting Up Your Environment to Run the Samples...........ccoccoiininnnseeeeseee 20-24
RUNNING MAKETIIE ... 20-24
Transviewer Bean Example 1: AsyncTransformSample.java..........cccovoinnincncicinccene, 20-25
Transviewer Bean Example 2: ViewSample.java ... 20-32

Transviewer Bean Example 3: XMLTransformPanelSample.java.........ccccocooeieiiiininiennns 20-36
Part VIl XDK for C

21 Using XML Parser for C

ACCESSING XIML ParSEr FOIr C ...ttt et et e sre s 21-2
XML PArser FOr € FEALUIEScoiiiiiiiiieiie ettt sttt ettt et bestesne e neas 21-2
R3] Lo o= o g < SRS 21-2
V[T gTo] YA AN | [oTor 1 1 To] o S OSSPSR 21-2
TRFEAA SAFELY.....ce ettt 21-3
[L= N Y o L= TSI 1 T [S S 21-3
Error MESSAQE FIlES ..ottt ettt nre e 21-3
XML PArSer FOr € USAQE.couiiiuiuiiiiiitiieieiet ettt b ettt 21-4
XML Parser for C XSLT (DOM INterface) USAQEcoveiviveiiinieiinesiesesesieseeeeseresesessessesnens 21-7
DefaUlt BERAVIOLo ettt be et 21-9
DOM AN SAX APIS ...ttt ettt b bttt bbb bbb e et 21-10
USING ThE SAX AP ..ot ettt s e e e neenennen 21-10
USING thE DOM AP ...ttt sttt ettt ebeneete e 21-11
INVOKING XML PArSer TOF C......oouiiiiiiiiiee ettt 21-12
ComMMAN LINE USAQEvviviiiiiiiieiie sttt sttt sa e ense e e e eneeresnenns 21-12
Writing C Code to Use SUPPHEA APIS ..ot 21-12
Using the Sample Files Included with Your SOFtWarec.cooeininiineienene e 21-13
Running the XML Parser for C Sample Programs...........cccooeveiviniinsnninneseneseseeseesnese s 21-14
Building the Sample Programs ... 21-14
SAMPIE PrOGIAIMS. ...ttt bbbttt 21-14
XML Parser for C Example 1: XML — ClasS.XMl........ccccvoovviviiiiininievesece e 21-14
XML Parser for C Example 2: XML — cleo. XMl ... 21-15
XML Parser for C Example 3: XSL — iden.XSl......cccccooiiiiiiiiiiieeee e 21-18
XML Parser for C Example 4: XML — FUlIDOM.XMI (DTD).....cccovvvvivierieneiereeeeeeeneens 21-19
XML Parser for C Example 5: XML — NSExample.Xml........cccccoonniniineneieeeen 21-19
XML Parser for C Example 6: C— DOMSaMPIE.C.....ccvrviiiiriiiiireeeee e 21-20
XML Parser for C Example 7: C — DOMSample.stdccccvvvvivvievenienieieniceneeeee e 21-22
XML Parser for C Example 8: C — SAXSAMPIE.C..c.vovveiiiieiiiiiiieeee e 21-22
XML Parser for C Example 9: C — SAXSamPple.std ... 21-25
XML Parser for C Example 10;: C — DOMMNAaMESPACE.Cocvrvrrrereereerieriereereeiereaseeesensenns 21-26

XXXI

XML Parser for C Example 11: C — DOMMNamMeSPace.std.........cocvevererereneneieeeeeee 21-30

XML Parser for C Example 12: C — SAXNAMESPACE.C.....cerveververirreinreieiieriereneereseeieseeieneas 21-31
XML Parser for C Example 13; C — SAXNamMeSPace.std.........ccoovvvvivrereneriereenierieieanannns 21-36
XML Parser for C Example 14: C — FUIIDOM.Ccooiiiiiiiiiiiisie e 21-37
XML Parser for C Example 15: C — FUIIDOM.SEcccoeiieiiiiiiiiiece e 21-47
XML Parser for C Example 16: C — XSLSaMPIE.C..cvovevveeeieicecr s 21-53
XML Parser for C Example 17: C — XSLSample.std ..., 21-55

Part VIII XDK for C++

22

XXX

Using XML Parser for C++
ACCESSING XML ParSer FOr CA ..ottt sre s 22-2
XML PArser FOr CHd FEATUIES.c.ooiiieiiiie ettt st neebenre e 22-2
R3] Lo o= o g <SSR 22-2
V[T 0 gTo] YA AN | [oTor 1 4 To] o SRR 22-2
TRFEAA SAFELY ...t bbbt b 22-3
Data TYPES INUEXveieciieiicie ettt sttt sae e e e et e s eneeseeneeneerennenreas 22-3
Error MESSAQE FlES.......ociiiici ettt e re et s te e sre e e stenraen 22-3
XML PArser fOr CH USAQERccuiieiiieiiiieiinieie ettt etttk sr et sb et sn e ebe b 22-4
XML Parser for C++ XSLT (DOM INterface) USAgEccovvvvvvvririenene e 22-7
DefaUlt BERAVIOK ... bbb bbb ettt be bbb 22-9
DOM AN SAX APIS ...ttt ettt sttt saete s b et e st e s e sb e e eb e e e be e ebe e etesseteseete e 22-10
USING The SAX AP ..ttt e e e e e eneene e 22-10
USING thE DOM AP ..ottt bbbt 22-11
INVOKING XML Parser TOr C ..ot 22-12
CoMMAN LINE USAQE.....cveeiiceieiie st st e ettt tesrestesaesaebe e see s eneeneaneeneas 22-12
Writing C++ Code to Use SUPPHEA APIS.......cooiiiicrer e 22-12
Using the Sample Files Included with Your SOFtWare ... 22-13
Running the XML Parser for C++ Sample Programs..........cccocvvvirvieninieninncneneseeeeereseenens 22-14
Building the Sample Programs 22-14
SAMPIE PrOGIAIMS ...ttt ettt bbbt r et 22-14
XML Parser for C++ Example 1: XML — ClasS. XMl ..o 22-14
XML Parser for C++ Example 2: XML — cleo.Xml ... 22-15
XML Parser for C++ Example 3: XSL — iden. XSlcocoiiiiniiiniiiciiees e 22-17
XML Parser for C++ Example 4: XML — FUlIDOM.XMI (DTD)cccovvvveneneienieiereenannns 22-18

XML Parser for C++ Example 5: XML — NSExample.Xmlccccocoiiinininiiinicn 22-18

XML Parser for C++ Example 6: C++ — DOMSamMPIe.CPP ...coovvverrenniseneenee e 22-18
XML Parser for C++ Example 7: C++ — DOMSample.stdcccccecvvivievenciericieceeenen 22-22
XML Parser for C++ Example 8: C++ — SAXSAMPIE.CPP «ovvrververerierinerienieieieeeeieiee 22-23
XML Parser for C++ Example 9: C++ — SAXSample.std.........cccoevviniinnieneinecneee 22-27
XML Parser for C++ Example 10;: C++ — DOMNaMESPACE.CPP .evrvrrrervrreevererreerenennenns 22-29
XML Parser for C++ Example 11: C++ — DOMNamespace.std.........c.ccocevevereieinennenn 22-32
XML Parser for C++ Example 12: C++ — SAXNAMESPACE.CPP -..vevvrvrvrrerrnrenieienierenieeneens 22-33
XML Parser for C++ Example 13; C++ — SAXNamespace.stdccccovvvvververiervevennnnnns 22-37
XML Parser for C++ Example 14: C++ — FUIIDOM.CPP ...vovrvervirerinieneiieniee e 22-38
XML Parser for C++ Example 15: C++ — FUlIDOM.Std...........cccooeiiiinninneeeecee 22-47
XML Parser for C++ Example 16; C++ — XSLSample.CPP ..oovvvvrvrervrierieicieeeeeeeesens 22-54
XML Parser for C++ Example 17: C++ — XSLSample.stdccocvveviiiieniiiiice 22-56

23 Using XML C++ Class Generator

ACCESSING XML C++ Class GENEIALOrccveieiieeiecte ettt re e sra e sre s 23-2
USING XML CH+ Class GENEIALOLc.oceiiiiiieiieieiieee ettt seesne e 23-2

EXEErNAl DTD PArSING .ocvovcviiiiesiese e sese ettt a et ste st sttt st et e e e e e eneeseeneanessensenes 23-2

Error MESSAQE FIlESccviiecii ettt ettt 23-2
XML C++ Class GENErator USAJEccuiueuirieiiriiirieisieisie ettt 23-3
D] [0 T T T RSP 23-4
Using the XML C++ Class Generator Examples in sample/........cccocoeiiiiiinciiiniie 23-5

XML C++ Class Generator Example 1: XML — Input File to Class Generator, CG.xml. 23-5
XML C++ Class Generator Example 2: DTD — Input File to Class Generator, CG.dtd.. 23-6
XML C++ Class Generator Example 3: CG Sample Programccccoceeeveiiieininnienenenne. 23-6

Part IX XDK for PL/SQL

24 Using XML Parser for PL/SQL

AcCesSiNg XML Parser fOr PLISQLcoviiiiicic ettt 24-2
What’s Needed to Run XML Parser for PL/ISQLcccooiiiiiiiiiieieee e 24-2
Using XML Parser for PL/SQL (DOM INterface).......ccccoeiviviviivsiesinsesesesesesee e eeese e 24-2

XML Parser for PL/SQL: Default BeRaVIOrccccoo v 24-5

XXXiii

XXXIV

Using the XML Parser for PL/SQL: XSL-T Processor (DOM Interface)c.cccooevvvveiennnene 24-7

XML Parser for PL/SQL: XSLT Processor — Default Behaviorcccccoceveeiieciinnnn 24-9
Using XML Parser for PL/SQL Examples in Sample/.........ccoooovviiivieniinienienincne e 24-10
Setting Up the Environment to Run the sample/ Sample Programs.........c.cccccoceoeininnns 24-10
RUNNING OMSAMIPIE ...t bbbt 24-11
RUNNING XSISAMPIE ...ttt reene e 24-12
XML Parser for PL/SQL Example 1: XML — family.xml........c.ccoccoonininininiiiie, 24-14
XML Parser for PL/SQL Example 2: DTD — family.dtdccccooeoiiiiiniciicieciees 24-14
XML Parser for PL/SQL Example 3; XSL — iden.XSl.......ccccvevvvivvivivninie e 24-14
XML Parser for PL/SQL Example 4: PL/SQL — domsample.sgl.........ccccoconeiiiiiinnnn. 24-15
XML Parser for PL/SQL Example 5: PL/SQL — xslsample.sql.........ccoooriiniiiiniincinnnns 24-18
Frequently Asked Questions (FAQS): XML Parser for PL/SQLcccccocvvcvvirerevcreierisnannns 24-21
Exception in Thread Parser EFTOr ...t 24-21
Encoding '8859_1" is not currently supported by the JavaVM ..o, 24-21
XmMIdom.GetNodeValue iN PLZSQLcoooiiieieic ettt sbe e 24-21
XDK fOr PLZSQL TOOIKIL ..ottt 24-23
Parsing DTD contained in @ CLOB (PL/SQL) XMLccooiiiiiiiiiirineeeeeese e 24-23
XML Parser fOr PLZSQLooviiiiie ettt ettt sbe et sttt st et sra e beenae s 24-25
Security: ORA-29532, Granting JavaSySPriV 10 USEr.........ccccccvvivivieiieeie e 24-25
Installing XML Parser for PL/SQL: JServer(JVM) Option.........ccccoeiiieiiersincciecneenas 24-26
XML Parser for PL/ZSQL: dOMSamMPIEccocvieiiiieccceece e 24-27
XIMIL TN CLOBS ..ottt bbbttt bbbttt b ettt bt 24-28
Out of memory errors in Oracle. XML ParSer ... 24-28
Is There a PL/SQL Parser Based 0N C?c..cceoivieeiiiiie ettt ettt sre e 24-30
Memory Requirements When Using the Parser for PL/SQL........cccoeiiiiniiiiiiciee 24-30
JServer (JVM) , Is It Needed to Run XML Parser for PL/SQL? ..o 24-30
USING the DOM AP ..ottt ettt e e e reene e 24-31
USING The SAMPIE ...ttt 24-36
XML Parser for PL/SQL: Parsing DTD in @ CLOB ...t 24-36
Errors When Parsing @ DOCUMENT...........ccoiviiieieiieeseece et 24-40
PLXML: Parsing @ GiVen URL?ccv ittt 24-41
Using XML Parser t0 Parse HTIML? ..o 24-41
Oracle 7.3.4: Moving Data to a Web Browser (PL/SQL)cccoovvivivvivieveneneseseieieseennas 24-42
Oracle 7.3.4 N XMLoiiiiiii e bbb et ene 24-42
getNodeValue(): Getting the Value of DOMNOCE...........ccooiiiiiiiiniee e 24-43

Retrieving all Children or Grandchilden of a NOdEe...........ccceievieiiiiiie e 24-43

An XML Primer

WAL IS XIMIL 2.ttt sttt b ettt e et et e et et ebe st et e st et e sberesbarenbereas A-2
W3C XML ReCOMMENAALIONScoiuiiiiiiieieieeeeees ettt b st seesre e e A-2
XML FRATUIES ...ttt n e aR et ar e et R e et R e nenr e renne e n e e nre s A-4
HOW XML Differs From HTIMIL ..ot s A-5
Presenting XML UsiNg StyIESNEETS ... A-8

eXtensible Stylesheet Language (XSL).....ccoiviieiiiiieinre st A-8

Cascading Style SNEEtS (CSS) ...ttt nae e nre s A-9
Extensibility and Document Type Definitions (DTD)cccoviiiineineinesicscseeeeeees A-9

Well-Formed and Valid XML DOCUMENTSccoviiriieriieiieienieie e A-10
WY USE XIMIL? ...ttt b et b ettt ettt sttt se ettt nnns A-11
AdAItIONAl XIML RESOUICEScuiitiiiiitiie ettt sttt st st st be e e e st e st eseeresseasesbeneees A-12

Comparing Oracle XML Parsers and Class Generators by Language

Comparing the Oracle XIML PArSErS........ccoiiiiiiieinicniesiese e B-2
Comparing the Oracle XML Class GENEIAtOrsS.........cccovvieriirieriesesesesesieseseeseeeesesessessessessesees B-4

XDK for Java: Specifications and Cheat Sheets

XML Parser for Java Cheat SNEELS ..o e C-2
oraxsl Command Line INTEITACE ..o e C-4
ACCESSING XML PArSEE TOI JAVA.civiiitiiitiiieiirieti sttt C-5
Installing XML Parser for Java, VEISION 2.........cccviiiiiieiise s C-5
XML Parser for Java, Version 2 SPecifiCationsccocoiiiiiiiiie i C-6
REGUITEIMENTS ..ottt bbb bbbt bbbt bttt C-6
ONlIiNE DOCUMENTALION.cviiiiiiiiiieiiitese ettt ettt C-7
Release SPECITIC INOLES........oiiiiie e ettt sbe e sen C-7
Standards CONTOIMANCEcc..iiiii e ettt e e s re et saeesreareas C-7
Supported Character Set ENCOUINGScviveieieieeicese st e e snenes C-7
Oracle XML Parser V1 and V2.......coooi ettt sttt sbe st sne s C-8
NEW CLASS STRUCTURE ..ottt C-8
XML Parser for Java Release HiStOrY ... e C-11
XDK for Java: XML Java Class GENEIALOXccccoereieieieieiieieeie ettt st C-19

XXXV

XXXVI

Installing XML Java Class GENEIAtOrccccvviieieiie et C-19

XML Java Class Generator: Windows NT Installation............ccccocoiiiiiininniieneen, C-19
XML Java Class Generator: UNIX Installation ... C-19
XML Java Class Generator Cheat SREEt............ccoiiiiiiiii e C-20
XDK for Java: Transviewer Bean Cheat SNeet ... C-23
XDK for Java: XSQL SEIVIETcooiiieiicecece ettt re b sbe et snee b C-25
Installing Oracle XSQL SEIVIETcvoii e C-25
Downloading and Installing XSQL SErvIet..........ccccoviiiiiiiiiiiciieee e C-25
Windows NT: Starting the Web-t0-g0 SEIVET ..o C-26
Setting Up the Database Connection Definitions for Your Environmentc.ccoce.... Cc-27
UNIX: Setting Up Your Servlet Engine to Run XSQL Pages.........ccccveireininieniineennns Cc-27
XSQL Serviet SPeCIfiCatiONScocvveieicieiee e et C-28
ChRAraCter SEL SUPPOIT ...ttt b ettt b b b e b e C-28
XDK for Java: XSQL Serviet Cheat SNEetS........cociviiiiiiiieieeee e e C-29

XDK for C: Specifications and Cheat Sheets

XML Parser for C SPeCITiCAtIONS.oiiiiiiiiee et D-2
Validating and Non-Validating Mode SUPPOItcccceieiiieeieeeeese e D-2
EXAMPIE COAE ...ttt ettt b e bbb b b e e e D-2
ONliNE DOCUMENTALIONccuiiiiieiie ettt re e s te e s beebesreenee e D-3
REIEASE SPECITIC NOLES ..o ettt se e neens D-3
Standards CONTOIMANCEccooiiiiiiieie et b bbbt sr s D-3
Supported Character SEt ENCOOINGSovoiiiiiiiiiiienese e D-3
REIEASE SPECITIC NOLES ..o ettt se e neens D-4
Standards CONTOIMANCEccooiiiiiiieie et b bbbt sr s D-4

XML Parser for C ReVISION HISTOY ..ot D-6

XML Parser for C: Parser FUNCLIONS. ... D-9

XML Parser for C: DOM AP FUNCLIONS ..ottt D-10

XML Parser for C: Namespace APl FUNCLIONS ..ot D-13

XML Parser for C: XSLT API FUNCLIONSccociiiiieiieeses et D-13

XML Parser for C: SAX AP FUNCLIONS. ..ottt D-14

XDK for C++: Specifications and Cheat Sheet

XML Parser for C++ SPeCITICATIONS........cviiiiiiiiieic e E-2
Validating and Non-Validating Mode SUPPOITccceoiiriinieneeeeesese e E-2

EXAMPIE COAR ...t bbb ettt b bbb nae b e E-2

ONliNE DOCUMENTALION........ciiiiiiiee et ettt e s e be e e saeentesaeesreareas E-3
ReIEaSE SPECITIC NOLES.......ci it eese e e snesrenrenrens E-3
Standards CONTOIMANCEoiiiiieiiie e ettt sttt sbe e E-3
Supported Character St ENCOTINGScccoviiiiiiiiiiieieeree e E-3
XML Parser for C++ ReViSION HISTOIY ... E-5
XML Parser for C++: XIMLPArSer() APL........oo sttt E-9
XML Parser for CH+: DOM AP ...ttt st sttt E-10
XML Parser fOr CH+: XSLT AP ..ottt E-14
XML Parser FOr CH+: SAX AP ...t sbe s E-16
XML C++ Class Generator SPeCITiCAtIONS ..o e E-18
Input to the XML C++ Class GENEIALONcceivevierieieieeeese e se e sie e e ne e sresneanens E-18
Output to XML CH+ ClasS GENEIALONc.cveiiiiieiieiiresieetesie sttt E-19
Standards CONTOIMANCEcoiiiii ittt b e re e sneas E-19
LT =Tot o) V] € 0 (o1 (6] - OSSP E-19

XDK for PL/SQL: Specifications and Cheat Sheets

XML Parser TOF PLISQLc.ooviiiiii ittt ettt st s be et st sbesba et e bt e nbeenreebeenns F-2
Oracle XIML Parser FEATUIESc.couiiieieieieiieeee ettt sttt ettt bbb F-2
NAMESPACE SUPPOIT ..ottt ettt sn e er e F-3
Validating and Non-Validating Mode SUPPOIt ..o F-3
EXAMPIE COAR ...t bbb b ettt b bbbt bt e F-3
IXML Parser for PL/SQL DireCtory StTUCTUIEcouieiiieiieiie ettt F-3
DOM N0 SAX APIS ..ottt ettt ettt e bt ne e F-4

XML Parser for PL/SQL SPECITICAtIONSooviiiiiiiieiiecsere e e F-5

XML Parser for PL/SQL: Parser() AP ... F-7

XML Parser for PL/SQL: XSL-T Processor APl ...t F-9

XML Parser for PL/SQL: W3C DOM API — TYPES ...oceiiiirerieiiene et F-10

XML Parser for PL/SQL: W3C DOM API — Node Methods, Node Types, and DOM

QL= o - ToT T Y 0 1= SRS F-11
INOAE METNOAS. ...t bbb bbbt ettt be b e F-11
DOM NOGE TYPES. ...oeeeiiiteiiiteieteie ettt sttt sttt sttt sb et b et b et b et eb et eb e bbb bt et e nb et e sbebeareseare e F-13
DOMEXCEPLION TYPES ..uievieriiieetesiestesiestestessestesaessesseseeassaasessessessessessessessessessessessessensasesessessenses F-13
DOM INTEITACE TYPES ..ttt sttt ettt b e bbb b e bt e et et e bt et e beebe e F-14

XXXVii

G XML-SQL Utility (XSU) Specifications and Cheat Sheets
INStalling XIML-SQL ULHTYcviiiiiiiii et G-2
Contents of the XSU DiStribDULIONccoiiiiiiiiie e G-2
Installing XML-SQL ULility: ProCeAUIEcocovi et G-2
Requirements for Running XML-SQL UTIItY........cccoceoiiiiiiiniiiieece e G-3
XSU REQUITEMENTSciiiceieieeeiees ettt sttt s e e e s e e sessesaestestesaesteseeseensenaeseeneanens G-3
EXEract the XSU FIIES ..c.eoiiee bbb e G-3
Setting Up the Correct XSU Environment: Client Side ..., G-3
Setting Up the Correct XSU Environment: Server Side ... s s G-4
XML-SQL Utility (XSU) for Java Cheat SNEetsSccccveiviiiececeee e G-6
XML-SQL Utility (XSU) for PL/SQL Cheat SNEets..........cccovieiriiniiinieeeeseeeec e G-10
Glossary
Index

XXXViii

Send Us Your Comments

Oracle8 i Application Developer’'s Guide - XML, Release 3 (8.1.7)
Part No. A-86030-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev@us.oracle.com
« FAX: (650) 506- 7228 Attn: Server Technologies, Information Development
« Postal service:

Oracle Corporation

Server Technologies - Information development

500 Oracle Parkway MS4op12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXXIX

xl

The Preface has the following sections:

About this Guide

Intended Audience

Prerequisite Knowledge

Related Manuals

Feature Coverage and Availability
How this Book is Organized
Conventions Used in this Guide
Acronym List

How to Order this Manual

Preface

xli

About this Guide

xlii

This manual introduces you to Oracle XML technology and presents several ways
of implementing the technology. It includes case studies, numerous examples and
sample applications. The case studies are presented according to their main
function, namely, whether they are primarily used for either of the following:

« Content or Document Management
« Data Exchange and Business--to-Business purposes.

After introducing you to the main criteria to consider when designing your
database-based application using the Oracle XML components, the manual then
suggests some application scenarios and describes how to use the XML components
together.

Examples and Sample Code

Many examples in the manual are provided with your software in the SORACLE_
HOME/xdk/java/demo/ or sample/ directory, or the $ORCLE_
HOME/rdbms/demo directory.

One detailed application is described in Chapter 13, "B2B XML Application: Step by
Step". This application illustrates how to implement an XML data exchange and
customized presentation application.

Pre-Authored XML or Generated XML
XML documents are processed in one of two ways:

« Pre-Authored XML stored in LOBs

« Generated XML stored in relational tables with XML tags mapped to the
respective columns in tables

XML Components
The Oracle XML components are available in four language implementations:

« Java, with the XDK for Java and XML-SQL Utility for Java

« PL/SQL, with the XDK for PL/SQL and XML-SQL Utility for PL/SQL
« C, with the XDK for C

« C++, with the XDK for C++

How to use each XML component is described in Chapter 4, "Using XML-SQL
Utility (XSU)" and in Parts VI through IX.

Intended Audience

This guide is intended for developers building XML applications on Oracle8i.

Prerequisite Knowledge

An understanding of XML and XSL is helpful but not essential to use this manual.
For your convenience, an XML primer is included in the appendix.

Many examples provided here are in either Java, PL/SQL, SQL, C, or C++, hence a
working knowledge of one or more of these languages is presumed.

Related Manuals

Refer to the following manuals for more information:

Getting to Know Oracle8i for information about the differences between Oracle8i
and the Oracle8i Enterprise Edition and the available features and options. That
book also describes all the features that are new in Oracle8i.

The JDeveloper Guide

Oracle8i Application Developer’s Guide - Fundamentals
Oracle8i Application Developer’s Guide - Advanced Queuing
Oracle Integration Server Overview

Oracle8i XML Reference

Feature Coverage and Availability

Information in this manual represents a snapshot of information on Oracle XML
technology components. These are changing rapidly. In order to view the latest
information, refer to Oracle Technology Network (OTN) site:
http://technet.oracle.com/tech/xml

How this Book is Organized

The book is organized into 9 parts, 24 chapters, and 7 appendixes. It includes an
index and glossary.

xliii

http://technet.oracle.com/tech/xml

xliv

Part | Introducing Oracle XML

Chapter 1, "Introduction to Oracle XML", introduces you to the Oracle XML
components, tools used to build XML applications, interMedia Text. It also
describes and the issues for building XML applications on Oracle8i. This
chapter includes a 'roadmap’ to the information presented in this manual.

Chapter 2, "Business Solutions Using Oracle XML", briefly describes how Oracle
XML components can be used in typical content/document management and
business-to-business messaging applications.

Chapter 3, "Oracle XML Components and General FAQs", introduces you to the
Oracle XML components, the XML Development Kits and XML-SQL Utility. It
also summarizes the different ways you can generate XML documents for each
language, Java, C, C++, and PL/SQL. It also provides Frequently Asked
Questions (FAQs) that include a variety of general questions about Oracle XML.

Part Il XML-SQL Utility (XSU)

Chapter 4, "Using XML-SQL Urtility (XSU)", describes how to use XML-SQL
Utility Java and PL/SQL versions to generate and ’store’ XML documents, how
to INSERT/UPDATE/DELETE XML documents in the database, use the
command line tool, map elements to columns. Examples in this chapter are
available from $ORACLE_HOME/rdbms/demo/xsu. This chapter also
provides Frequently Asked Questions (FAQS).

Part Ill Managing Content and Document with XML

Chapter 5, "Using interMedia Text to Search and Retrieve Data from XML
Documents”, introduces you to interMedia Text, using the CONTAINS operator,
how to create an interMedia Text index, how to build a query, and text query
expressions. It also describes some basics about using the PL/SQL supplied
package, CTX_DDL and the XML_SECTION_GROUP and its attributes, and the
AUTO_SECTION_GROUP. This chapter also provides Frequently Asked
Questions (FAQS).

Chapter 6, "Customizing Content with XML: Dynamic News Application”,
describes the Dynamic News application, the three servlets used in the
application, how XML-SQL Utility is used to access news data from Oracle8i,
the three levels of user customization — static, semi-dynamic, and dynamic.
This chapter also includes details about customizing data presentation.

Chapter 7, "Personalizing Data Display With XML: Portal-to-Go", describes the
portal-to-go components and how they are used to extract content from a

browser web site, convet this to XML, and transform this for display on a
variety of devices.

Chapter 8, "Customizing Presentation with XML and XSQL: Flight Finder",
describes how Flight Finder generates XML to and from the database and uses
XSQL Servlet to process queries and output the results as XML. It also discusses
how Flight Finder formats XML data using stylesheets. This demo and
application is available on Oracle Technology Network (OTN).

Part IV Data Exchange Using XML

Chapter 9, "Using Oracle Advanced Queuing (AQ) in XML Data Exchange",
introduces you to some Advanced Queueing concepts and describes how AQ
and XML complement each other. It includes one Java AQ example and one
PL/SQL AQ example. This chapter also provides several FAQs.

Chapter 10, "B2B: How iProcurement Uses XML to Offer Multiple Catalog
Products to Users", describes the main components of iProcurement and how
iProcurement uses XML Parser for Java to parser and check incoming 3rd party
catalogs and generally provide catalog content management. The DTD used by
iProcurement is described in detail. The "unified" catalog is extracted form the
database, loaded, and sent to Oracle Applications using a PL/SQL program.

Chapter 11, "Customizing Discoverer 3i Viewer with XSL", describes how
Discoverer 3i Viewer is used to customize web applications and customize
presentation using stylehseets. It includes several FAQs.

Chapter 12, "Phone Number Portability Using XML Messaging", introduces you
the Phone Number Portability application and summarizes how XML
messaging is used in iMessage Studio, Event Manager, and Adapters.

Part V Developing Applications Using Oracle XML

Chapter 13, "B2B XML Application: Step by Step", describes in detail how to
build and implement a B2B XML application using XSQL servlet and transform
the XML message according to different user devices. This application also uses
simple AQ messaging.

Chapter 14, "Using JDeveloper to Build Oracle XML Applications", introduces
you using JDeveloper for building XML applications, using XSQL servlet from
JDeveloper, and steps to take when about building a Mobile application with
JDeveloper. This chapter includes FAQs.

Chapter 15, "Using Internet File System (iFS) to Build XML Applications",
introduces you to Internet File System (iFS) and its XML features.

xlv

xlvi

« Chapter 16, "Building n-Tier Architectures for Media-Rich Management using
XML: ArtesiaTech”, describes an advanced multi-tier XML messaging
architecture for managing digital assets, such as video clips. It discusses
object-oriented messaging with XML and compares XML and IDL.

Part VI XDK for Java
« Chapter 17, "Using XML Parser for Java", describes ways of using XML Parser

for Java and XSLT Processor. It lists the examples provided with the software.
This chapter includes FAQs.

« Chapter 18, "Using XML Java Class Generator", describes ways of using XML
Java C;ass Generator. It lists the examples provided with the software. This
chapter includes FAQs.

« Chapter 19, "Using XSQL Servlet", provides some insite on using XSQL Servlet.
It includes diagrams that explain how the XSQL Page Processor works.This
chapter includes FAQs.

« Chapter 20, "Using XML Transviewer Beans", discusses the XML Transviewer
Beans and how to use them. It lists the examples provided with the software.

Part VII XDK for C

« Chapter 21, "Using XML Parser for C", describes ways of using XML Parser for
C and XSLT Processor. It lists the examples provided with the software.

Part VIII XDK for C++

« Chapter 22, "Using XML Parser for C++", describes ways of using XML Parser
for C++ and XSLT Processor. It lists the examples provided with the software.

« Chapter 23, "Using XML C++ Class Generator", describes ways of using XML
C++ Class Generator. It lists the examples provided with the software.

Part IX XDK for PL/SQL

« Chapter 24, "Using XML Parser for PL/SQL", describes ways of using XML
Parser for PL/SQL and XSLT Processor. It lists the examples provided with the
software. This chapter includes FAQs.

Appendix A, "An XML Primer", introduces you to some basic and background
information about XML.

Appendix B, "Comparing Oracle XML Parsers and Class Generators by Language",
compares the Oracle XML Parsers and Class Generators according to
implementation language.

Appendix C, "XDK for Java: Specifications and Cheat Sheets", describes the XDK for
Java component specifications. Includes several top level class and method listings.

Appendix D, "XDK for C: Specifications and Cheat Sheets", describes the XDK for C
specifications. Includes top level function listings.

Appendix E, "XDK for C++: Specifications and Cheat Sheet”, describes the XDK for
C++ component specifications. Includes several top level class and method listings.

Appendix F, "XDK for PL/SQL: Specifications and Cheat Sheets", describes the XDK
for PL/SQL specifications. Includes several top level function listings.

Appendix G, "XML-SQL Utility (XSU) Specifications and Cheat Sheets", describes
the XML-SQL Utility (XSU) for Java and PL/SQL specifications. Includes several
top level method and function listings.

Conventions Used in this Guide

Acronym List

This section explains the conventions used in this book:

Text

The text in this reference adheres to the following conventions:

UPPERCASE Uppercase text calls attention to SQL keywords,
filenames, and initialization parameters.

italics Italicized text calls attention to parameters of SQL
statements.

boldface Boldface text calls attention to definitions of terms.

names of monospaced font text callas attention to names of

methods, methods, functions, and other executables.

functions,

executables, ...

The following table lists acronyms used thoughout this manual. For further
explanation of these terms refer to the "Glossary".

Acronym Description

API Application Program Interface

xIvii

xlviii

Acronym

Description

B2B Business-to-Business applications

B2C Business-to-Consumer applications

BC4) Business Components for Java

CDF Channel Definition Format. Provides a way to exchange
information about channels on the internet.

CsS Cascading Style Sheets

DDT Document Type Definition

DOM Document Object Model

EDI. Electronic Data Interchange

HTML Hypertext Markup Language

OAG Open Applications Group

OAl Oracle Applications Integrator

OE Oracle Exchange.

PDA Personal Digital Assistant

RDBMS Relational Database Management System

RDF Resource Definition Framework

SAX Simple API for XML

SGML Standard Generalized Mark Up Language

W3C World Wide Web Consortium

WBEM Web-Based Enterprise Management

XDK Oracle XML Development Kit

XLink XML Linking Language

XML eXtensible Markup Language

XMLQuery W3C effort to specify a query language for XML
documents

XML Schema W3C specification. XML Schema Processor automatically
ensures validity of XML documents and data.

XPath W3C recommendation specificying data model and

grammar for navigating an XML document

Acronym Description

XPointer W3C recomendation that specifies the identification of
individual entities or fragments within an XML
document

XSL (W3C) eXtensible Stylesheet Language

XSL Stylesheet Specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed

XSL-T XSL Transformation

How to Order this Manual

To order this manual, carry out these steps:

If you are not an Oracle employee, go to the following site:
http://store.oracle.com

At the top of the home page, select Database > Documentation. Under Oracle8i
Documentation, select Release 8.1.7 and scroll down to find this manual,
"Application Developer’s Guide-XML". Enter the quantity you need. Select
"Buy". Follow the instructions.

If you are an Oracle employee, to order this manual, go to the following site:
http://store-inside.us.oracle.com

At the top of the home page, select Database > Documentation. Under Oracle8i
Documentation, select Release 8.1.7 and scroll down to find this manual,
"Application Developer’s Guide-XML". Enter the quantity you need. Select
"Buy". Follow the instructions.

xlix

http://store.oracle.com
http://store-inside.oracle.com

Part |

Introducing Oracle XML

Part | of the book introduces you to XML, Oracle XML and features, where you can
use the Oracle XML components, demonstrations and example scenarios, and the
Oracle XML components.

It contains the following chapters:

« Chapter 1, "Introduction to Oracle XML"

« Chapter 2, "Business Solutions Using Oracle XML"

« Chapter 3, "Oracle XML Components and General FAQs"

Introduction to Oracle XML

This chapter describes the following sections:

« Introduction

« Oracle XML in Action: Applications

« Roadmap of this Manual

« Oracle XML

« Why Use Oracle8i XML?

« The Oracle Suite of Integrated Tools

« Storing and Extracting XML Data from Oracle8i

« Oracle8i: Object-Relational Infrastructure

« Oracle8i: Extensible Architecture

« XML in the Database: Generated and Authored XML

« XML Storage Options

« Storage of Structured XML Documents ("Generated XML")

« Storage of Unstructured XML Documents ("Authored XML")
« Use a Hybrid Storage Approach for Better Mapping Granularity
« Generated XML: XML Transformations

« XML Schemas and Mapping of Documents

« "Authored XML": Storing XML Documents as Documents

« Generating and Storing XML Documents

« General XML Design Issues for Data Exchange Applications

Introduction to Oracle XML 1-1

« Oracle XML Samples and Demos
« What’s Needed to Run Oracle XML Components
« XML Technical Support is Free on OTN

1-2 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle XML in Action: Applications

Introduction

This manual describes Oracle8i’'s XML-enabled database technology, how XML data
can be stored, managed, and queried in the Oracle8i database, and how to use
Oracle8i XML technology and the appropriate Oracle development tools to build
applications.

Oracle XML in Action: Applications

Authored XML or Generated XML

This manual focuses on describing information that will assist you in building
database XML applications using Oracle XML technology. Be aware, that in general,
your application will be processing XML documents that are in one of two overall
formats:

=« Authored XML Documents: These are XML documents stored as XML
documents, in CLOBS, in the database.

« Generated XML Documents: These are XML documents that are stored as
relational data in tables or views the database. This data can then be generated
back into XML format, dynamically, when necessary.

Oracle XML Applications

There are many potential uses of XML in Internet applications. This manual focuses
on the following two database-centric application areas where Oracle XML
components are well suited:

Content and Document Management

Content and document management includes customizing data presentation. These
applications typically process mostly 'authored’ XML documents. Several case
studies are described in the manual.

Introduction to Oracle XML 1-3

Oracle XML in Action: Applications

See: Content and Document Management Chapters:

« Chapter 6, "Customizing Content with XML: Dynamic News
Application”

« Chapter 7, "Personalizing Data Display With XML: Portal-to-Go"

« Chapter 8, "Customizing Presentation with XML and XSQL: Flight
Finder"

Business-to-Business (B2B) or Business-to-Consumer (B2C) Messaging

B2B and B2C messaging involves exchanging data between business applications.
These applications typically process 'generated’ XML documents or a combination
of generated and pre-authored XML documents.

See: B2B Chapters:

Chapter 9, "Using Oracle Advanced Queuing (AQ) in XML Data
Exchange"

Chapter 10, "B2B: How iProcurement Uses XML to Offer Multiple
Catalog Products to Users"

Chapter 11, "Customizing Discoverer 3i Viewer with XSL"
Chapter 12, "Phone Number Portability Using XML Messaging"
Chapter 13, "B2B XML Application: Step by Step"

1-4 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Roadmap of this Manual

Roadmap of this Manual

Figure 1-1, "Oracle XML Components and e-Business Solutions: Roadmap"lists a
few XML-based business solutions for content and document management as well
as B2B and B2C messaging.

The figure depicts an SQL query being placed by a user from a browser or
application. The query being processed by a ’black box’, called "XML
Application".The XML application accesses Oracle8i. The application then produces
XML documents which may or may not be passed via a web interface as part of a
data exchange solution, to provide services, or for content and document
management and presentation versatility to other businesses or applications within
the same business.

Besides introducing you to the main components involved in Oracle XML,

Figure 1-1 also serves as a roadmap for this manual. The figure maps all the main
"stops"” in the manual. In the online versions of this manual, if you click on these
"stops" you will go directly to the chapters of interest.

« Beginning with the introductory and basic information about using Oracle8i
and where to use the Oracle XML components (Chapters 1,2, and 3), and how to
apply interMedia Text to search and retrieve information from XML documents.

« Typical XML-based business solutions, involving content management and
presentation are covered in Chapters 6, 7,and 8.

« Typical XML-based business solutions, involving B2B and data exchange are
covered in Chapters 9, 10, 11, and 12.

« Some introductory information about using JDeveloper and iFS, as well as a
detailed step by step code intensive application implementation are covered in
Chapters 13, 14, and 15.

» Last but first in importance, the roadmap shows the "how to use" the various
Oracle XML components, in the "XML Application" box. The "how to use"
information is covered in Chapter 4 and Chapters 16 through 23. Not included
in the roadmap are the Appendixes which are really just more information
about Chapters 4, 16 through 23.

The one chapter not shown in this roadmap is the chapter discussing strategy for
building n-tier XML applications, Chapter 16, "Building n-Tier Architectures for
Media-Rich Management using XML: ArtesiaTech".

Introduction to Oracle XML 1-5

Roadmap of this Manual

0]

Figure 1-1 Oracle XML Components and e-Business Solutions: Roadmap

Typical XML-Based
Oracle Development Tools: Business Solutions

User / Browser / - IFS Chapter 15
Client / Application - JDeveloper and BC4J Chapter 14 Business Data Exchanges with
(Business or Consumer) - portal (WebDb) XML
sSQL - B2B XML Application Step by Step
Query Chapter 13
L B2B or B2C
* Messaging
L Using AQ
XML Application Chapter 9
XDK for Java
part VI
Web
Interface
XDK for C XML =
part VIl Documents =] Services provided with XML:
= - iProcurement Chapter 10
e —— - Discoverer 3i Viewer Chapter 11
XDK for C++ — — - Phone Number Portability
part VIII > = Chapter 12
XDK for PL/SQL =
part IX
— Content and Document
XML-SQL Utility management with XML
(Java or PL/SQL) - Dynamic News Chapter 6
Chapter 4 - Portal-to-Go Chapter 7

- Flight Finder Application Chapter 8

Middle Tier

interMedia
Using Text
Oracle8 Chapter 5
and XML
Chapter 1
Chapter 2
Chapter 3

1-6 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle XML

Oracle XML

Appendix A, "An XML Primer", describes some introductory information about
XML, the W3C XML recommendations, differences between HTML and XML, and
other XML syntax topics. It also discusses reasons why XML, the internet standard
for information exchange is such an appropriate and necessary language to use in
database applications.

What is Oracle XML?

XML models structured and semi-structured data and is now the accepted primary
model for internet data.

Oracle8i has evolved to support complex, structured, unstructured, and
semi-structured data. It is also XML-enabled and facilitates the storage, query,
presentation, and manipulation of XML data.

For more information on how Oracle8i XML supports structured and
semi-structured data, read on.

Chapter 4, "Using XML-SQL Utility (XSU)" will cover in detail how to generate
XML documents from a database and how to store the documents back into the
database. Further techniques are discussed in Chapters 16 through 23. In particular,
Chapter 19, "Using XSQL Servlet" gives many practical guidelines for using Oracle
XML technology and components with Oracle8i.

Oracle XML Components
Figure 1-2 shows the Oracle XML components in the box "XML Application”.

Oracle XML components are comprised of the following:
. XDK! for Java

« XML Parser for Java and XSL-T Processor

« XML Java Class Generator

« XSQL Servlet

« XML Transviewer Beans

« XML Schema Processor?

« XDKforC

1 XDK - XML Developer’s Kit

Introduction to Oracle XML 1-7

Oracle XML

« XML Parser for C
« XDK for C++
« XML Parser for C++
« XML C++ Class Generator
« XDK for PL/SQL
« XML Parser for PL/SQL
« XML-SQL Utility (XSU) for Java and PL/SQL
Figure 1-2 also lists the following typical XML-based business solutions:
« Business Data Exchanges with XML
« Buyer-Supplier Transparent Trading Automation
« Seamless integration of partners and HTTP-based data exchange

« Database inventory access and integration of commercial transactions and
flow

« Services provided with XML. These also fall under
* Self-service procurement, such as using Oracle iProcurement
* Data mining and reporting with Oracle Discoverer 3i Viewer
* Oracle Exchange and Applications
* Phone number portability

These data exchanges use Oracle Advanced Queuing (AQ).

« Content and Document Management with XML
« Personalized publishing and portals

« Customized presentation. Dynamic News case study, Portal-to-Go, and
Flight Finder

2 The Oracle XML Schema processor will be described in future versions of this manual.

You can currently read about it and download it from])
http://technet.oracle.com/tech/xml. C, C++, and PL/SQL versions are forthcoming.

1-8 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http:www.OTN.oracle.com/tech/xml
http:www.OTN.oracle.com/tech/xml

Oracle XML

Figure 1-2 Oracle XML Components and e-Business Solutions: What's Involved

T

Oracle Development Tools:

User / Browser / - iIFS (Internet file System)
Client / Application - JDeveloper and BC4J
(Business or Consumer) - portal (WebDb)
SQL
Query
1 B2B or B2C
* Messaging
L Using AQ
XML Application
XDK for Java
Web
XDK for C Interface
XML E
Documents
XDK for C++
XDK for PL/SQL =
v =
XML-SQL Utility E
JDBC (Java or PL/SQL) =
or
OCl
or 4
OcCcl
or
Pro*C/C++ Middle Tier:
- OIS (Oracle Integration Server)
- IAS (Internet Application Server)
- Apache Server
- Java enabled web server
v
Object
Relational
data interMedia | To search and retrieve
' Text I XML documents stored
= in CLOBS

XML Doc in CLOB

Oracle8 i or other database

Data stored:
- In relational tables in LOBs
- As XML documents in CLOBs

Typical XML-Based
Business Solutions

Business Data Exchanges with
XML (data stored in or out of
database in relational tables

or LOBSs):

- Buyer-Supplier Transparent
Trading Automation [See Retailer
places on order and views status
from any device]

- Seamless integration of partners

- HTTP-Based commercial and other
data exchanged

- Inventory database access and
sharing

- Integration of commercial
transactions and work flow

Services provided with XML:

- Self-service ordering, for your
procurement department
[see iProcurement]

- Data mining and report-generation
[See Discoverer 3i Viewer]

- Oracle Exchange and Oracle
Applications

- Phone number portability

Content and Document

management with XML

(XML documents stored in or out

of database):

- Personalized publishing and
portals

- Customized presentation according
to customer [see Dynamic News]

- Dynamically creating composite
documents from fragments

- Data displayed on different
devices (cell phones, palm pilots,
browsers, . . .) [see Portal-to-go]

- Customizing presentation:
Flight finder

XML Application in
the database or
middle Tier

Introduction to Oracle XML 1-9

Oracle XML

Figure 1-2 also shows the following:

Oracle Development Tools

Internet File System (iFS), JDeveloper, and Portal (WebDB) can be used to build
XML applications. These tools are summarized here "The Oracle Suite of Integrated
Tools" on page 1-13.

Database and Middle Tier

The XML application can either reside on the database or a middle tier, such as OIS,
iAS, Apache Server, or other Java enabled web server.

Data Stored in the Database

Data is stored as relational tables or as XML documents in CLOBSs. interMedia Text
used to search and retrieve from XML document stored in CLOBs.

When to Use Oracle XML Components: How They Work Together

For descriptions of the Oracle XML components and how they work together see
Chapter 2, "Business Solutions Using Oracle XML" and Chapter 3, "Oracle XML
Components and General FAQs".

The remaining sections of this manual, describe how to use the Oracle XML
components, Oracle development tools, and how to build web-based, database
applications with these tools.

Oracle8 i XML Features

Oracle8i XML features include the following:

« Based on XML Open Standards

« Deployment and Application

« Supports Multiple Languages and Platforms
« Scalability and Performance

« Supports applications and servers

Based on XML Open Standards
Oracle XML components are based on the following W3C XML recommendations:

« XML 1.0 Core

1-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle XML

« DOM1.0
« XSLT10
« XML Namespaces 1.0

« XML Schema. This component is available for download from
http://technet/tech/xml however it is not described in this version of the
manual. It will be described in a forthcoming release.

« XPath. This recommendation has not been made publicly available with this
release of Oracle XML.

For further information on W3C activities, see http://www.w3c.org

Deployment and Application

Oracle XML technology provides a versatile infrastructure for use in flexible
deployment architectures. It uses any combination of the following:

« Relational databases
« Middle tier systems:
« Web servers, such as iAS (Internet Application Server)
« Integration servers, such as Oracle Integration Server — OIS

« Thin or thick clients

Supports Multiple Languages and Platforms
Oracle XML supports the following:

« Platform independent languages:
« Javaand Java2
. PL/SQL
« Platform dependent languages:
. C++
« C
« Platforms

« All Oracle8i platforms, including Solaris, Win32, Linux, and HP-UX

Introduction to Oracle XML 1-11

http://w3c.org

Oracle XML

Scalability and Performance
Oracle8i XML supports the following scalability and performance related features:

On-demand presentation through the application of stylesheets at runtime.
Client-server performance through the use of server-side processing.

Intelligent caching. Individual XML components cache stylesheets, DTDs, and
documents, and work seamlessly with middle-tier caches such as iCache.

Integrated load-balancing. The XML components are architected in a tiered
approach to reduce bottle-necks and handle dynamic loading.

Connection pooling. The XML components have integrated support for
maintaining a pool of connections that enhance scalability.

1-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

The Oracle Suite of Integrated Tools

Why Use Oracle 8i XML?

Oracle8i is well-suited for building XML database applications for the following
reasons:

The Oracle Suite of Integrated Tools

Indexing and Searching XML Documents with Oracle interMedia Text
Messaging Hubs and Middle Tier Components

Back-End to Database to Front-End Integration Issues

Oracle XML Parser Provides the Two Most Common APIs: DOM and SAX
Loading XML into a Database

Oracle XML Samples and Demos

The Oracle Suite of Integrated Tools

Oracle8i provides an integrated suite of tools for building e-business applications:

Oracle JDeveloper 3.2 and Oracle Business Objects for Java (BC4J)
Internet File System (iFS)

Portal (webDB)

Oracle Exchange

XML Gateway

This suite of tools ensure that exchanging data and document objects is simplified
for application development and that multiple serializations is eliminated.

Oracle JDeveloper 3.2 and Oracle Business Objects for Java (BC4J)

Oracle JDeveloper 3.2 is an integrated environment for building, deploying, and
debugging applications leveraging Java and XML on Oracle8i. It facilitates working
inJava 1.1 or 1.2 with CORBA, EJB, and Java Stored Procedures. With it you can do
the following:

Directly access Oracle XML components to build multi-tier applications
Create and debug Java Servlets that serve XML information in a snap

Build portable application logic with JDeveloper and BC4J components

Introduction to Oracle XML 1-13

The Oracle Suite of Integrated Tools

Examples of applications built using Oracle JDeveloper include:

« iProcurement (Self Service Applications) including Self-Service Web-Expensing.
See Chapter 10, "B2B: How iProcurement Uses XML to Offer Multiple Catalog
Products to Users".

« Content Delivery for PDAs. See Chapter 7, "Personalizing Data Display With
XML: Portal-to-Go".

« Online Marketplaces

» Retailer - Supplier transaction using XML and AQ messaging. See Chapter 13,
"B2B XML Application: Step by Step".

See Chapter 14, "Using JDeveloper to Build Oracle XML Applications” for more
information on JDeveloper and XML applications.

Oracle Business Components for Java (BC4J) Business Components for Java (BC4J) is an
Oracle8i application framework for encapsulating business logic into reusable
libraries of Java components and reusing the business logic through flexible,
SQL-based views of information.

Internet File System (iFS)

Access to Oracle8i Internet File System (iFS) facilitates organizing and accessing
documents and data using a file- and folder-based metaphor through standard
Windows & Internet protocols such as SMB, HTTP, FTP, SMTP, and IMAP4.

iFs facilitates building and administering web-based applications. It is an
application interface for Java and can load a document, such as a Powerpoint .PPT
file, into Oracle8i (0817) and display the document from a web server, such as iAS
or Apache Web Server. See also Chapter 15, "Using Internet File System (iFS) to
Build XML Applications".

iFS is a simple way for developer's to work with XML, where iFS serves as the
repository for XML. iFS automatically parses XML and stores content in tables and
columns. iFS renders the content when a file is requested delivering select
information, for example, on the web.

For more information see http://technet.oracle.com/products/ifs/

Portal (webDB)

Portal can for example input XML-based Rich Site Summary (RSS) format
documents, then merge the information with an XSL stylesheet so that it can be

1-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://technet.oracle.com/products/ifs/

The Oracle Suite of Integrated Tools

rendered in a browser. This design efficiently separates the rendition of information
from the information itself and allows for easy customization of the look-and-feel
without risk to data integrity.

Portal is part of Oracle Portal: ~ Oracle Portal is software for building and deploying
enterprise portals, the Web sites that power an e-business. The browser interface
delivers an organized, personalized view of business information, web content, and
applications needed by each user. It includes site-building and self-service Web
publishing functionality of WebDB 2.2 and adds new enterprise portal features such
as single sign-on, personalization, and content classification. Oracle Portal uses
Oracle8i and is deployed on Oracle iAS. It is packaged with iAS.

Portlets: Portlets are reusable interface components that provide access to
web-based resources. Any web page, application, business intelligence report,
syndicated content feed, hosted software service or other resource can be accessed
through a portlet, allowing it to be personalized and managed as a service of Oracle
Portal. Companies can create their own portlets and select portlets from third-party
portlet providers. Oracle provides a Portal Developer's Kit (PDK) for developers to
easily create portlets using PL/SQL, Java, HTML, or XML.

Oracle Exchange

The Oracle Exchange platform is based on Oracle8i. It offers all necessary business
transactions to support an entire industry's or a company's supply chain. Oracle
Exchange is based on Oracle's e-Business Suite, which supports a supply chain from
the initial contact with the prospect, to manufacturing planning and execution, to
post sales on-going service and support.

Oracle Exchange uses XML as its data exchange format and message payload, and
Advanced Queueing.

Other Initiatives
Besides these tools, the following initiatives are underway:

XML Metadata Interchange (XMI): Managing and Sharing Tools and Data
Warehouse Metadata

Support for XML Metadata Interchange (XMI) specification proposed by Oracle,
IBM, and Unisys. This enables application development tools and data
warehousing tools from Oracle and others to exchange common metadata, insuring

Introduction to Oracle XML 1-15

The Oracle Suite of Integrated Tools

that you can choose any tool without having to modify your application and
warehouse design.

Advanced Queueing XML Support: Using the Internet for Reliable, Asynchronous
Messaging

Oracle Advanced Queueing (AQ) will allow reliable propagation of asynchronous
messages, including messages with XML documents or document sections or
fragments as their "payload", over (Secure) HTTP. This enables dynamic trading
and eliminates delays and startup costs to establish inter-company or inter-agency
links.

Indexing and Searching XML Documents with Oracle inter Media Text

interMedia Text provides powerful search and retrieval options for XML stored in
CLOBs and other documents. It can index and search XML documents and
document ’sections’ of any size up to 4 Gigabytes each stored in a column in a table.

interMedia Text XML document searches include hierarchical element
containership, doctype discrimination, and searching on XML attributes. These
XML document searches can be used in combination with standard SQL query
predicates or with other powerful lexical and full-text searching options.

XML documents or document sections saved into "text CLOBs" in the database can
be enabled for indexing by Oracle8i interMedia Text’s text-search engine.
Developer's can pinpoint searches to data within a specific XML hierarchy as well
as locate name-value pairs in attributes of XML elements.

Since interMedia Text is seamlessly integrated into the database and the SQL
language, developers can easily use SQL to perform queries that involve both
structured data and indexed document sections.

See Also: Chapter 5, "Using interMedia Text to Search and
Retrieve Data from XML Documents" and Oracle8i interMedia Text
Reference

Messaging Hubs and Middle Tier Components

1-16

Also included in the Oracle XML are the following components:

« XML-Enabled Messaging Hubs, such as Oracle XML Gateway. These hubs are
vital in business-to-business applications that interface with non-Oracle
systems. See also Chapter 9, "Using Oracle Advanced Queuing (AQ) in XML
Data Exchange".

Oracle8/ Application Developer’s Guide - XML, Release 3 (8.1.7)

The Oracle Suite of Integrated Tools

« Middle Tier Systems: XML-enabled application, web, or integrated servers, such
as Oracle Integration Server (OIS) and Internet Application Server (iAS).

Oracle 8/ JVM (Java Virtual Machine)

Built from the ground up on Oracle Multi-threaded Server (MTS) architecture,
Oracle8i JVM (Jserver) is a Java 1.2 compliant virtual machine that data server
shares memory address space. This allows the following:

« Java and XML-processing code to run with in-memory data access speeds using
standard JDBC interfaces.

« Natively compile Java byte codes to improve performance of server-side Java,
with linear scalability to thousands of concurrent users.

Oracle8i JVM supports native CORBA and EJB standards as well as Java Stored
Procedures for easy integration of Java with SQL and PL/SQL.

Oracle Integration Server (OIS)

Oracle Integration Server sends and receives XML payload messages using Oracle
Advanced Queueing. Oracle Message Broker packages and delivers the XML
messages using JMS wrappers.

Oracle Internet Application Server (iAS)

Oracle Internet Application Server 8i (Oracle iAS), offers services for both intranet
and Internet web applications. It is integrated with Oracle8i and offers advanced
services like data caching and Oracle Portal.

Back-End to Database to Front-End Integration Issues

A key development challenge is integrating back-end ERP and CRM systems from
multiple vendors, with systems from partners in their supply chain, and with
customized Data Warehouses.

Such data exchange between different vendors’ relational and object-relational
databases is simpler using XML. One example of a data exchange implementation
using XML and AQ is provided in Chapter 13, "B2B XML Application: Step by
Step".

Oracle XML and Oracle XML-enabled tools, interfaces, and servers provide building
blocks for most data and application integration challenges.

Introduction to Oracle XML 1-17

The Oracle Suite of Integrated Tools

Higher Performance Implications

Not only are these building blocks available, but their use implicates higher
performance implementations for the following reasons:

= Processing database data and XML together on the same server, helps eliminate
network traffic for data access.

« Exploiting the speed of the Oracle8i's query engine and Oracle8i JVM, iAS, or
OIS further enhances data access speed.

Hence developers can build XML-based web solutions that integrate Java and
database data and facilities in many ways.

Oracle XML Parser Provides the Two Most Common APIs;: DOM and SAX

Oracle XML Parser is implemented in four languages, Java, C, C++, and PL/SQL.
The Java version runs directly on Oracle8i JVM (Java virtual machine). It supports
the XML 1.0 specification and is used as a validating or non-validating parser.

The Parser provides the two most common APIs that developers need for
processing XML documents:

« DOM: W3C-recommended Document Object Model (DOM) interface. This
provides a standard way to access and edit a parsed document’s element
contents.

« SAX: Simple API for XML interface.

For more information, see Chapter 17, "Using XML Parser for Java"'. See
Appendix B, "Comparing Oracle XML Parsers and Class Generators by Language",
for a comparison of the Oracle XML parsers and generators.

Writing Custom XML Applications

Hence writing custom applications that process XML documents can be simpler in
an Oracle8i environment. This enables you to write portable standards-based
applications and components in your language of choice that can be deployed on
any tier.

The XML parser is part of the Oracle8i platform on every operating system where
Oracle8i is ported.

Oracle XML Parser is also implemented in PL/SQL. Hence, existing PL/SQL
applications can be extended to take advantage of Oracle XML technology.

1-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

The Oracle Suite of Integrated Tools

Loading XML into a Database

You can to use the following options to load XML data or DTD files into Oracle8i:
« Use PL/SQL stored procedures for LOB, such as dbms_lob

« Write Java (Pro*C, C++) custom code

« Use sql*loader

« Use Oracle intermedia

« XML-SQL Utility

You can also use Internet File System (iFS) to put an XML document into the
database. However, it does not support DTDs. It will however be supporting XML
Schema which is the standard that will replace DTD.

Introduction to Oracle XML 1-19

Storing and Extracting XML Data from Oracle8i

Storing and Extracting XML Data from Oracle8 i

XML has emerged as the standard for data interchange on the web. Oracle8i is
XML-enabled to handle the current needs of the market.

Oracles8i is capable of storing the following:
« Structured XML data as object-relational data
« Unstructured XML document as interMedia Text data

Oracle8i provides the ability to automatically extract object-relational data as XML.
Efficient querying of XML data is facilitated using standard SQL.

It also provides the ability to access XML documents using the DOM (Document
Object Model) API.

Oracle 8i: Object-Relational Infrastructure

Oracle has evolved its database to an object-relational engine following the
SQL:1999 standard. Oracle’s object-relational engine allows you to define object
types, collections of types, and references to object types.

This object-relational infrastructure provides the support for storing structured
object instances in the database. XML, inherently being a structured data format,
can be easily mapped to object-relational instances. This mapping will be discussed
in "XML Schemas and Mapping of Documents".

Oracle 8i: Extensible Architecture

Normally, the database provides a set of services - for example, a basic storage
service, a query processing service, services for indexing, query optimization, and
soon.

Extensible Services

In Oracle8i, these services are made extensible so that data cartridges can provide
their own implementations. When some aspect of a native service provided by the
database is not adequate for a specific domain, a developer can build a
domain-specific implementation.

For example, if you build a Spatial data cartridge for Geographical Information
Systems, you may need the capability to create spatial indexes. To do this, you
would implement routines that create a spatial index, insert an entry into the index,
update the index, delete from it, and so on. The server would then automatically

1-20 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle8i: Extensible Architecture

invoke your implementation every time indexing functionality was needed for
spatial data. In effect, you would have extended the Indexing Service of the server
to handle spatial data.

Extensibility and XML

Extensibility enables special indexing on XML (including Text indexes for section
searching), special operators to process XML, aggregation of XML, and special
optimization of queries involving XML.

inter Media Text Searching

An example of the extensibility infrastructure is interMedia Text searching. The text
kept in LOBs is indexed using the extensibility indexing interface. interMedia text
provides operators such as CONTAINS which you can use to search within the text
for substring matches.

The Oracle8i extensibility framework provides the infrastructure for specialized
XML cartridges to be built, where indexing and optimization access to XML is
accomplished by the cartridge.

Oracle8i Supports Native Java

Oracle8i provides native support for Java in the DBMS, by providing a native Java
VM that is closely integrated with the database for high performance and
scalability. In addition, the database system natively supports JDBC, SQLJ, an ORB
and the EJB framework. In addition, Oracle8i also comes with a HTTP listener,
which means that it can act as a web server as well.

The object-relational framework provides a more natural way to maintain a
consistent structure between a set of Java classes at the application level and the
data model at the data storage level. In Oracle8i, the object-relational facilities have
been tightly integrated with the Java environment in the following ways:

« Server object-relational schema can be mapped to java classes. The JPublisher
utility can generate this mapping automatically.

« Javais one of the language choices for implementing object type methods and
data cartridges.

« Objects can be manipulated (stored and retrieved) using JDBC or SQLJ.

Support for Java within the database is vital, since a lot of the XML infrastructure,
such as parsers etc. are available in Java and can be readily used inside the server.

Introduction to Oracle XML 1-21

Oracle8i: Extensible Architecture

Also, the components for XML built in Java can be run inside the server or outside
in the application tier.

1-22 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML in the Database: Generated and Authored XML

XML in the Database; Generated and Authored XML

Oracle8i supports different aspects to using XML in the database.

« "Generated XML": Using XML as an Interchange Format. The most common
way of using XML in the database is to use XML as a interchange format where
existing business data is wrapped in XML structures. In this case the XML
format is used only for the interchange process itself and is transient.

« "Authored XML™": Store and query XML documents in the database.

Generated XML

XML can be generated from the data stored in your database tables and views using
the XML-SQL Utility (XSU). The XML-SQL Uctility consits of a command line front
end, aJava API, and a PL/SQL API. The XML-SQL Utility is also available for
download from the Oracle Technology Network (OTN).

XML-SQL Utility (XSU) Converts SQL Query Results into XML

This utility converts the result of an SQL query into XML by mapping the query
alias’ or column names into the element tag names and preserving the nesting of
object types. The XML-SQL Utility can return the XML in a string or DOM tree
(Document Object Model) representation, where the latter is a format very
convenient for further manipulation.

Mapping Between XML and the Database

There is a clean relationship between structured XML instances and
object-relational types:

« Columns map to top level elements.
« Scalar values map to a elements with text only content.

« Object types are mapped to elements, and the attributes of the object type make
up sub-elements. Collections map to lists of elements.

Example: Using XML-SQL Utility to Get the XML Representation of the Result of an
SQL Query

The following example uses XML-SQL Utility’s Java API. In the example we
specify a SQL Query which is then applied against the database. The result of the
query is returned as XML.

Introduction to Oracle XML 1-23

XML in the Database: Generated and Authored XML

public void testXML()
{
DriverManager.registerDriver(
new oracle.jdbc.driver.OracleDriver());

Iinitialize a JIDBC connection
Connection conn=
DriverManager.getConnection(
“idbc:oracle:oci8:scottiger@");

Iinitialize the OracleXMLQuery;
OracleXMLQuery qry =
new OracleXMLQuery(conn,
"select * from purchaseOrderTab’);

I setthe rowset element name
qry.setRowsetTag(‘PurchaseOrderList’);

I set the row element name
qry.setRowTag(‘PurchaseOrder’);

Il getthe XML result

String xmiString = qry.getXMLString();

I/ print result

System.outprintin(* CUPUT IS:\n"+xmiString);

Running the above code results in the following XML document:

<?xmlversion="1..0'?>
<PurchaseOrderList>
<PurchaseOrder num="1">
<purchaseNo>1001</purchaseNo>
<purchaseDate>10-Jan-1999</purchaseDate>
<customer>
<custNo>100</custNo>
<custName>Hose</custName>
<custAddr>
<sfreet>200 Redwood Shrs</street>
<city>Redwood City</city>
<state>CA</state>
<Zip>94065</zip>
<fcustAddr>
<fcustomer>
<lineltemList>
<lineltem>
<lineltemNo>901</lineltemNo>

1-24 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML in the Database: Generated and Authored XML

<lineltemName>Chair</ineltemName>
<lineltemPrice>234.55</lineltemPrice>
<lineltemQuan>10</lineltemQuan>
<flineltem>
<lineltem>
<lineltemNo>991</lineltemNo>
<lineltemName>Desk</lineltemName>
<lineltemPrice>3456.63</lineltemPrice>
<lineltemQuan>20</lineltemQuan>
<flineltem>
<fineltemList>
</PurchaseOrder>
<PurchaseOrder>
<I-more purchase orders. —>
</PurchaseOrder>
</PurchaseOrderList>

The XML document created is an exact structural replica of the queried database
object(s). You can also use object-relational views to get structured XML (like
above) from data stored in a flat relational schema, without using XSLT.

Introduction to Oracle XML 1-25

XML Storage Options

XML Storage Options

There are several options available for storing XML data:
« LOB Storage: Stores "Authored XML" Documents

« Object-Relational Storage: Stores "Generated XML" Documents

LOB Storage: Stores "Authored XML" Documents

Oracle8i supports the storage of ‘large objects’ or LOBs as ‘character LOBs’ (CLOB),
‘binary LOBs’ (BLOB), or externally stored ‘binary files’ (BFILE). LOBs are used to
store "Authored or Native XML" documents.

Use CLOBs or BFILEs to Store Unstructured Data

CLOBs, which can store large character data, can be useful for storing unstructured
XML documents. Although more useful for multi-media data, BFILES which are
external file references can also be used. In this case the XML is stored and managed
outside the RDBMS, but can be used in queries on the server. The metadata for the
document can be stored in object-relational tables in the server for fast indexing and
access.

inter Media Text Indexing Supports Searching Content in XML Elements

Oracle8i allows the creation of interMedia text indexes on these LOB columns, in
addition to URLSs that point to external documents. This text cartridge leverages the
extensibility mechanism and provides full text indexing of these documents.
Oracle8i has extended this mechanism to work on XML data as well.

The text cartridge can recognize XML tags, and section and sub-section text
searching have been extended to support searching within an XML element content.
The result is that queries can be posed on unstructured data and restricted to certain
sections or elements within a document.

Object-Relational Storage: Stores "Generated XML" Documents

A natural way to store XML is as object-relational instances. The object-relational
type system can fully capture and express the nesting and list semantics of XML.
Complex XML documents can be stored as object-relational instances and indexed
efficiently. With the extensibility infrastructure, new types of indices, such as path
indices, can be created for faster searching through XML documents.

1-26 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Storage of Structured XML Documents ("Generated XML")

Storage of Structured XML Documents ("Generated XML")

Data may be in the form of structured XML documents, where the structure is well
defined and is the same for all instances. In this case, the document can be stored in
relational or object-relational structures. In this case as well, the object-relational
type system can provide a direct mapping to the XML document.

This mapping is relatively straight forward and Oracle XML-SQL Utility (XSU)
offers an insert mechanism that can map an XML document directly into a given
table or view.

XML-SQL Utility Stores XML Data By Preserving XML Structure

To reiterate, XML-SQL Utility stores XML data by preserving XML structure as
follows:

« Tag names are mapped to columns
« Text-only data (elements) are mapped to scalar columns
« Elements which have sub-elements are mapped to object types

« Element with lists of sub-elements are mapped to collections...

Example: Using XML-SQL Utilitiy’s JAVA API to Insert XML into the Database

The program below illustrates a simple use of XSU’s JAVA API with the goal of
inserting an XML document into a database table:

public void testinsertXML()
{
DriverManager.registerDriver(
new oracle.jdbc.driver.OracleDriver());

[initiglize a JDBC connection
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:scottfiger@");

llcreate a URL object for the file/url containing the xml

URL url = sav.getURL("sample xml");

OracleXMLSave sav = new OracleXMLSave(conn, purchaseOrderTab");
System.out printin(‘Rows inserted: "+sav.insertXML(xmIDoc));

Introduction to Oracle XML 1-27

Storage of Structured XML Documents ("Generated XML")

XML Document Object-Relational Storage: Advantages

The advantage of storing an XML document as an object-relational instance is that
the structure of the document is preserved in the database as well. This allows the
XML document to be viewed and traversed in SQL in a way similar to an XPath
traversal on the document.

For instance an XPath traversal such as,
lfpurchase_orderpono=101}/shipaddr/street

can be easily represented as an attribute traversal in SQL.:

SELECT po.shipaddr.street
FROM purchase_order_tab po
WHERE po.pono =100;

Mapping to Object-Relational storage enables existing database applications to
work against XML data. Also, functionality provided by Oracle8i on
Object-Relational columns, such as indexing, partitioning, and parallel query, can be
leveraged.

XML Document Object-Relational Storage: Disadvantages

However, using such a mapping, the original document is not exactly reproducible.
For instance, comments are lost. But this can be avoided by storing a copy of the
original document in a CLOB as discussed in the following section, and using the
object-relational mapped data for query efficiency purposes.

Another potential problem could arise due to the ordering amongst the elements. In
order to preserve the element ordering, you can have a special column in the
underlying table and order the results using that column.

1-28 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Storage of Unstructured XML Documents ("Authored XML")

Storage of Unstructured XML Documents ("Authored XML")

If the incoming XML documents do not conform to one particular structure, then it
might be better to store such documents in CLOBs. For instance, in an XML
messaging environment, each XML message in a queue might be of a different
structure.

Oracle8i provides interMedia Text for indexing CLOB columns. This uses the
extensibility mechanism to implement operators such as CONTAINS to search the
text data. This has been extended to support searching of XML documents,
including section and subsection searches.

inter Media Text Example: Searching Text and XML Data Using CONTAINS

This interMedia Text example presume you have already created the appropriate
index.

SELECT*
FROM purchaseXMLTab
WHERE CONTAINS(po_xml,’street WITHIN addr’) >=1;

See Also: Chapter 5, "Using interMedia Text to Search and
Retrieve Data from XML Documents” for more information on
interMedia Text.

XML Document Unstructured Storage ("Authored XML"): Advantages

A CLOB storage is ideal if the structure of the XML document is unknown,
arbitrary, or dynamic.

XML Document Unstructured Storage ("Authored XML"): Disadvantages

Much of the SQL functionality on object-relational columns cannot be exploited.
Concurrency of certain operations such as updates may be reduced. However, an
exact copy of the document is retained.

Introduction to Oracle XML 1-29

Use a Hybrid Storage Approach for Better Mapping Granularity

Use a Hybrid Storage Approach for Better Mapping Granularity
In the previous section we discussed the following:
« How structured XML documents can be mapped to object-relational instances
= How unstructured XML documents can be stored in LOBs
However, in many cases, you need better control of the mapping granularity.

For instance, when mapping a text document, such as a book, in XML, you may not
want every single element to be exploded and stored as object-relational. Storing
the font information and paragraph information for such documents in an
object-relational format, does not serve any useful purpose with respect to
querying.

On the other hand, storing the whole text document in a CLOB reduces the effective
SQL queriability on the entire document.

A Hybrid Approach Allows for User-Defined Granularity for Storage

The alternative is to have user-defined granularity for such storage. In the book
example, you may want the following:

« To query on top-level elements such as chapter, section, title, and so on, so these
can be stored in object relational tables

« To query the book’s contents in each section, and these can be stored in a CLOB.

You can specify the granularity of mapping at table definition time. The server can
automatically construct the XML from the various sources and decompose queries
appropriately.

Figure 1-3 illustrates the Hybrid approach to storage.

1-30 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Use a Hybrid Storage Approach for Better Mapping Granularity

Figure 1-3 Hybrid Approach: Querying Top Level Elements in Tables While Contents

are ina CLOB

XML Document

<?xml version = '1.0'?>
<BOOK>
<TITLE>Oracle PL/SQL</TITLE>
<AUTHOR>Steve Feuerstein<k/AUTHOR>
<TABLE_OF_CONTENTS>
<CHAPTER>
<CHAPTER_NUM>1</CHAPTER_NUM>
<TITLE>Introduction</TITLE>
<SECTIONS>

<SECTIONS>
</CHAPTER>

</TABLE_OF_CONTENTS>
<DETAILS>
<CHAPTER no="1">
<SECTION no="1" name"What is PL/SQL?">
PL/SQL is a programming language that
Oracle supports.
</SECTION>

</CHAPTER>
</DETAILS>
</BOOK>

Hybrid Storage Advantages

Top level
elements
mapped to
columns

Object_Relational Storage

Title
Author

Table_of_Contents

Chapter
Title

Details

Chapter no ="1"
Section no ="1"

[

These can be
tables or

v views

LOB storage

language that Oracle
supports.

PL/SQL is a programming

The advantage of the hybrid storage approach for storing XML documents, is the

following:

« It gives the flexibility of storing useful and queryable information in
object-relational format while not decomposing the entire document.

« Saves time in reconstructing the document, since the entire document is not

broken down.

« Enables text searching on those parts of the document stored in LOBs.

Introduction to Oracle XML 1-31

Generated XML: XML Transformations

Generated XML: XML Transformations

XML generated from the database is in a canonical format that maps columns to
elements and object types to nested elements. However, applications might require
different representations of the XML document in different circumstances.

Transforming Query Results Using XSLT

This involves querying on the original document and transforming the result into a
form required by the end-user or application. For instance, if an application is
talking to a cellular phone using WML, it might need to transform the XML

generated into WML or other similar standard suitable for communicating with the
cellular phone.

This can be accomplished by applying XSLT transformations on the result ing XML
document. The XSLT transformations can be pushed into the generation phase itself
as an optimization. A scalable, high performance XSLT transformation engine
within the database server would be able to handle large amounts of data.

XML Schemas and Mapping of Documents

W3C has chartered a Schema working group to provide a new, XML based notation
for structural schema and datatypes as an evolution of the current Document Type
Definition (DTD) based mechanism. XML Schemas can be used for the following:

« XML Schemal: Constraining document structure (elements, attributes,
namespaces)

« XML Schema2: Constraining content (datatypes, entities, notations)

Datatypes themselves can either be primitive (such as bytes, dates, integers,
sequences, intervals) or user-defined (including ones that are derived from existing
datatypes and which may constrain certain properties -- range, precision, length,

mask -- of the basetype.) Application-specific constraints and descriptions are
allowed.

Note: The XML Schema API is not provided with the software of
this release. However, it is available for download from OTN.

XML Schema provides inheritance for element, attribute, and datatype definitions.
Mechanisms are provided for URI references to facilitate a standard, unambiguous

1-32 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML Schemas and Mapping of Documents

semantic understanding of constructs. The schema language also provides for
embedded documentation or comments.

For example, you can define a simple data type as shown in "XML Schema Example
1: Defining a Simple Data Type".

XML Schema Example 1: Defining a Simple Data Type
This is an example of defining a simple data type in XML Schema:

<simpletype name="positivelnteger”
basetype="integer’/>
<minExclusive> 0 </minExclusive>
</lsmpletype>

It is clear even from the simple example above that XML Schema provides a
number of important new constructs over DTDs -- such as a basetype, and a
‘minimum value’ constraint.

When dynamic data is generated from a database, it is typically expressed in terms
of a database type system. In Oracle, this is the object-relational type system
described above, which provides for much richness in data types -- such as
NULL-ness, variable precision, such as, NUMBER(7,2), check constraints,
user-defined types, inheritance, references between types, collections of types and
so on. XML Schema can capture a wide spectrum of schema constraints that go
towards better matching generated documents to the underlying type-system of the
data.

XML Schema Example 2: Using XML Schema to Map Generated XML Documents to
Underlying Schema

Consider the simple Purchase Order type expressed in XML Schema:

<type name="Address" >
<element name="street" type="string" />
<elementname="city" type="string" />
<element name="state" type="string" />
<elementname="zip" type="string" />
<type>

<type name="Customer”>
<element name="custNo”
type="positivelnteger’/>
<element name="custName” type="string” />

Introduction to Oracle XML 1-33

XML Schemas and Mapping of Documents

<element name="custAddr” type="Address” />
<hype>

<type name="ltems™>
<element name="lineltem” minOccurs="0" maxOccurs="*">
<type>
<element name="lineltemNOo" type="positivelnteger” />
<element name="lineltemName” type="string” />
<element name="lineltemPrice” type="number" />
<element name="LineltemQuan™>
<datatype basetype="integer’>
<minExclusive>0</minExclusive>
</datatype>
</element>
<type>
</element>
<type>

<type hame="PurchaseOrderType">
<element name="purchaseNo"
type="positivelnteger" >
<element name="purchaseDate" type="date" />
<element name="customer” type="Customer” />
<element name="lineltemList" type="ltems" />

<type>

These XML Schemas have been deliberately constructed to match closely the
Object-Relational purchase order example described above in"Running the above
code results in the following XML document:" on page 1-24.

The point is to underscore the close match between the proposed constructs of XML
Schema with SQL.:1999-based type systems. With such a close match, it is easy for us
to map an XML Schema to a database Object-Relational schema, and map
documents that are schema-valid according to the above schema to row objects in
the database schema. In fact, the greater expressiveness of XML Schema over DTDs
greatly facilitates the mapping.

The applicability of the schema constraints provided by XML Schema is not limited
to data-driven applications. There are more and more document-driven
applications that exhibit dynamic behavior.

A simple example might be a memo, which is routed differently based on markup
tags. A more sophisticated example is a technical service manual for an
intercontinental aircraft. Based on complex constraints provided by XML Schema,
you can ensure that the author of such a manual always enters a valid part-number,

1-34 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML Schemas and Mapping of Documents

and you might even ensure that part-number validity depends on dynamic
considerations such as inventory levels, fluctuating demand and supply metrics, or
changing regulatory mandates.

Introduction to Oracle XML 1-35

"Authored XML": Storing XML Documents as Documents

"Authored XML": Storing XML Documents as Documents

Storing an intact XML document in a CLOB or BLOB is a good strategy if the XML
document contains static content that will only be updated by replacing the entire
document.

Authored XML Examples

Examples include written text such as articles, advertisements, books, legal
contracts, and so on.

Documents of this nature are known as document-centric and are delivered from
the database as a whole. Storing this kind of document intact within Oracle8i gives
you the advantages of an industry-proven database and its reliability over file
system storage.

Storage Outside the Database

If you choose to store an XML document outside the database, you can still use
Oracle8i features to index, query, and efficiently retrieve the document through the
use of BFILES, URLs, and text-based indexing.

1-36 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Generating and Storing XML Documents

Generating and Storing XML Documents

If the XML document has a well-defined structure and contains data that is
updateable or used in other ways, the document is data-centric. Typically, the XML
document contains elements or attributes that have complex structures.

Generated XML Examples

Examples of this kind of document include sales orders and invoices, airline flight
schedules, and so on.

Oracle8i, with its object-relational extensions has the ability to capture the structure
of the data in the database using object types, object references, and collections.
There are two options for storing and preserving the structure of the XML data in
an object-relational form:

« Store the attributes of the elements in a relational table and define object views
to capture the structure of the XML elements

« Store the structured XML elements in an object table

Once stored in the object-relational form, the data can be easily updated, queried,
rearranged, and reformatted as needed using SQL.

XML-SQL Utility (XSU) provides the means to then store an XML document by
mapping it to the underlying object-relational storage, and conversely, provides the
ability retrieve the object-relational data as an XML document.

When the XML Document Structure Needs Transforming

If an XML document is structured, but the structure of the XML document is not
compatible with the structure of the underlying database schema, you must
transform the data into the correct format before writing it to the database. You can
achieve this in one of the following ways:

« Use XSL stylesheets or other programming approaches
« Store the data-centric XML document as an intact single object

« Define object views corresponding to the various XML document structure and
define instead-of triggers to perform the appropriate transformation and
update the base data.

Introduction to Oracle XML 1-37

Generating and Storing XML Documents

Combining XML Documents and Data Using Views

Finally, if you have a combination of structured and unstructured XML data, but
still want to view and operate on it as a whole, you can use Oracle8i views.

Views enable you to construct an object on the "fly" by combining XML data stored
in a variety of ways. You can do the following:

« Store structured data, such as employee data, customer data, and so on, in one
location within object -relational tables.

« Store related unstructured data, such as descriptions and comments, within a
CLOB.

When you need to retrieve the data as a whole, simply construct the structure from
the various pieces of data with the use of type constructors in the view's select
statement. XML-SQL Utility then enables retrieving the constructed data from the
view as a single XML document.

How to Generate a Web Form’s Infrastructure

To generate a web form’s infrastructure, you can do the following:

1. Use XML-SQL Utility to generate a DTD based on the schema of the underlying
table being queried.

2. Use the generated DTD as input to the XML Java Class Generator, which will
generate a set of classes based on the DTD elements.

3. Write Java code that use these classes to generate the infrastructure behind a
web-based form.

4. Based on this infrastructure, the web form can capture user data and create an
XML document compatible with the database schema.

5. This data can then be written directly to the corresponding database table or
object view without further processing.

XML-SQL Utility Storage

1-38

If you use XML-SQL Utility to store XML data, it can map XML into any table or
view. It canonically maps elements to and from columns.

« Advantages
« Can handle objects, LOBs and all Oracle types

« Object views can map any structured documents into multiple tables

Oracle8/ Application Developer’s Guide - XML, Release 3 (8.1.7)

Generating and Storing XML Documents

« Disadvantages

« Provides only canonical mapping back, but does allow registering of XSLTs;
thus transforming the XML document on the fly as it generates it.

Introduction to Oracle XML 1-39

General XML Design Issues for Data Exchange Applications

General XML Design Issues for Data Exchange Applications

This section describes the following XML design issues for applications that
exchange data.

« Use a Hybrid Storage Approach for Better Mapping Granularity
« Sending XML Data from a Web Form to a Database

« Communicating XML Documents Among Applications

1-40 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Sending XML Data from a Web Form to a Database

Use a Hybrid Storage Approach for Better Mapping Granularity

This was already discussed in "Use a Hybrid Storage Approach for Better Mapping
Granularity" on page 1-30.

Figure 1-3 illustrates the Hybrid approach to storage.

Sending XML Data from a Web Form to a Database

One way to ensure that data obtained via a web form will map to an underlying
database schema is to design the web form and its underlying structure so that it
generates XML data based on a schema-compatible DTD. This section describes
how to use the XML-SQL Utility and the XML Parser for Java to achieve this. This
scenario has the following flow:

1. AlJavaapplication uses the XM- SQL Utility to generate a DTD that matches the
expected format of the target object view or table.

2. The application feeds this DTD into the XML Class Generator for Java, which
builds classes that can be used to set up the web form presented to the user.

3. Using the generated classes, the web form is built dynamically by a JavaServer
Page, Java servlet, or other component.

4. When a user fills out the form and submits it, the servlet maps the data to the
proper XML data structure and the XML-SQL Utility writes the data to the
database.

You can use the DTD-generation capability of the XML SQL Utility to determine
what XML format is expected by a target object view or table. To do this, you can
perform a SELECT * FROM an object view or table to generate an XML result.

This result contains the DTD information as a separate file or embedded within the
DOCTYPE tag at the top of the XML file.

Use this DTD as input to the XML Class Generator to generate a set of classes based
on the DTD elements. You can then write Java code that use these classes to
generate the infrastructure behind a web-based form. The result is that data
submitted via the web form will be converted to an XML document that can be
written to the database.

Introduction to Oracle XML 1-41

Communicating XML Documents Among Applications

Communicating XML Documents Among Applications

There are numerous ways to transmit XML documents among applications. This
section presents some of the more common approaches.

In this discussion:
« The sending application transmits the XML document
« The receiving application receives the XML document

« File Transfer. The receiving application requests the XML document from the
sending application via FTP, NFS, SMB or other file transfer protocol. The
document is copied to the receiving application's file system. The application
reads the file and processes it.

« HTTP. The receiving application makes an HTTP request to a servlet. The
servlet returns the XML document to the receiving application, which reads and
processes it.

« Web Form. The sending application renders a web form. A user fills out the
form and submits the information via a Java applet or Javascript running in the
browser. The applet or Javascript transmits the user's form in XML format to the
receiving application, which reads and processes it. If the receiving application
will ultimately write data to the database, the sending application should create
the XML in a database compatible format. One way to do this using Oracle
XML products is described in the section Sending XML Data from a Web Form
to a Database.

« Advanced Queuing. An Oracle8i database sends an XML document via Net8
and JDBC to the one or more receiving applications as a message through
Oracle Advanced Queueing (AQ). The receiving applications dequeue the XML
message and process it.

See Also:

« Chapter 9, "Using Oracle Advanced Queuing (AQ) in XML
Data Exchange"

« Chapter 13, "B2B XML Application: Step by Step"

« Oracle Integration Server Overview

1-42 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML Technical Support is Free on OTN

Oracle XML Samples and Demos

This manual contains examples to illustrate the use of the Oracle XML components.
The examples do not conform to one schema. Where the examples are available for
download or supplied with the $ORACLE_HOME/rdbms/demo or SORACLE
HOME/xdk/.../sample, this is indicated.

What's Needed to Run Oracle XML Components

Oracle8i includes native support for Internet standards, including Java and XML.
You can run Oracle XML components and applications built with them inside the
database itself using Oracle JServer, Oracle8i's built-in Java Virtual Machine.

Use Oracle8i Lite to store and retrieve XML data, for devices and applications that
require a smaller database footprint.

Oracle XML components can be downloaded for free from
http://technet.oracle.com/tech/xml

Requirements
The following are requirements for XDK for Java and XDK for PL/SQL:

« XDK for Java requires JDK/JRE 1.1 or high VM for Java
« XDK for PL/SQL requires Oracle8x or PL/SQL cartridge

Requirements are also discussed in the XDK chapters and Appendixes.

XML Technical Support is Free on OTN

Technical support for Oracle XML platform and utilities is available for free via the
XML Discussion Forum on Oracle Technical Network (OTN):

http://technet.oracle.com/tech/xml

You do not need to be a registered user of OTN to post or reply to XML related
guestions on the OTN technical forum. To use the OTN technical forum follow these
steps:

1. In the left-hand navigation bar, of the OTN site select Support > Discussions.
2. Click on Enter a Technical Forum.

3. Scroll down to the Technologies section. Select XML.

4

Post any questions, comments, requests, or bug reports there.

Introduction to Oracle XML 1-43

: http://www.OTN.us.oracle.com/tech/xml
http://www.OTN.oracle.com/tech/xml

XML Technical Support is Free on OTN

Download the Latest Software From OTN

You will find the latest information about the Oracle XML components and can
download them from OTN:

http://technet.oracle.com/software/tech/xml

At the top, under "Download Oracle Products, Drivers, and Utilities", in the "Select
a Utility or Driver" pull down menu, scroll down and select any of the XML utilities
listed. For the latest XML Parser for Java and C++, select v2.

What's New with Oracle and XML Schema, XML Query, XLink, and Xpointer?

For the latest information about XML Schema, XML Query, XLink, and XPointer go
to the OTN XML site:

http://technet.us.oracle.com/tech/xml

1-44 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

: http://www.OTN.us.oracle.com/tech/xml
http://www.OTN.us.oracle.com/tech/xml

2

Business Solutions Using Oracle XML

This chapter contains the following sections:

« Applications that Use Oracle XML

« Content and Document Management

Scenario 1. Content and Document Management: Creating and Publishing
Composite Documents Using Oracle XML

Scenario 2. Content and Document Management: Delivering Personalized
Information Using Oracle XML

Scenario 3. Content Management: Using XML to Customize Data Driven
Applications

« Business-to-Business/Consumer (B2B/B2C) Messaging

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design
Using XML

Scenario 5. B2B Messaging: Using XML and Oracle Advanced Queueing for
an Internet Application

Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing
Messaging for Multi-Application Integration

Business Solutions Using Oracle XML 2-1

Applications that Use Oracle XML

Applications that Use Oracle XML
There are many potential uses for XML in Internet applications.

Two database-centric application areas where Oracle XML components are well
suited are:

« "Content and Document Management", including customizing data
presentation

« "Business-to-Business/Consumer (B2B/B2C) Messaging" for data exchange
among inter or intra system applications

and any combinations of these. This manual focuses on these two application areas.
Some typical scenarios in each of these two areas have been identified and are
described here.

2-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Content and Document Management

Content and Document Management

Customizing Presentation of Data

XML is increasingly used to enable customized presentation of data for different
browsers, devices, and users. By using XML documents along with XSL stylesheets
on either the client, middle-tier, or server, you can transform, organize, and present
XML data tailored to individual users for a variety of client devices, including the
following:

« Graphical and non-graphical web browsers

« Personal digital assistants (PDAS) like the Palm Pilot
« Digital cell phones and pagers

=« TBD... and others.

In doing so, you can focus your business applications on business operations,
knowing you can accommodate differing output devices easily.

Using XML and XSL also makes it easier to create and manage dynamic web sites.
You can change the look and feel simply by changing the XSL stylesheet, without
having to modify the underlying business logic or database code. As you target new
users and devices, you can simply design new XSL stylesheets as needed. This is
illustrated in Figure 2-1.

Business Solutions Using Oracle XML 2-3

Content and Document Management

Figure 2-1 Content Management: Customizing Your Presentation

Java Web
Server

Z222] XML-Formatted
ZIIZI] SQL Queries
~ | (xsqlfile)

XSQL Servlet

Serviletruns in a
servlet-compatible

web server, as listed below

SQL Queries
<XML Parser for Java XML-SQL
— . Utility for
XSL-T Processor M Java
Personal
Digital
Assistant
Data Query
P — returns
: Oracle8 i
Browser N

L..A
=

— L=

Query Result
Transformed by

— 2 Java program or

XSL stylesheet
target device
Graphical or

non-graphical
browser

i
=

i
=

2-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Content and Document Management

See Also: «

« Chapter 7, "Personalizing Data Display With XML:
Portal-to-Go"

« Chapter 17, "Using XML Parser for Java"

Consider the following content management scenarios:

« Scenario 1. Content and Document Management: Creating and Publishing
Composite Documents Using Oracle XML

« Scenario 2. Content and Document Management: Delivering Personalized
Information Using Oracle XML

« Scenario 3. Content Management: Using XML to Customize Data Driven
Applications

These scenarios use Oracle XML components. The scenarios include a description of
each business problem, solution, main tasks, and Oracle XML components used.

These scenarios are further illustrated with several case studies in Part 3.

Business Solutions Using Oracle XML 2-5

Scenario 1. Content and Document Management: Creating and Publishing Composite Documents Using Oracle XML

Scenario 1. Content and Document Management: Creating and
Publishing Composite Documents Using Oracle XML

Problem. Company X has humerous document repositories of SGML and XML
marked up text fragments. Composite documents must be published dynamically.

Solution. Company X can use XSL stylesheets to assemble the document sections or
fragments and deliver the composite documents electronically to users. See
Figure 2-2.

Main Tasks Involved. These are the main tasks involved in Scenario 1:
1. Break up the documents into desired small usable sections or fragments.
2. Store these sections or fragments in CLOBs and BLOBs in the database.

3. Create XSL Stylesheets to render the sections or fragments into complete
documents

Oracle XML Used:
« XML Parser with XSL-T

« XSU to move sections or fragments into and out of the database

2-6 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Scenario 1. Content and Document Management: Creating and Publishing Composite Documents Using Oracle XML

Figure 2-2 Scenario 1. Using XML to Create and Publish Composite Documents

Document fragments
in XML
XML
XML Parser Composite Ready for viewing
Document or publishin
sl PO S O I LN
Processor*
/Y 7
XML L _r-v-
i
- L - r-
3

XSL stylesheets

*XSL-T Processor
can also be used to
break up composite
documents into
document
fragment.

Business Solutions Using Oracle XML 2-7

Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML

Scenario 2. Content and Document Management: Delivering
Personalized Information Using Oracle XML

Problem. A large news distributor receives data from various news sources. This
data must be stored in a database and sent to all the distributors and users on
demand so that they can view specific and customized news at any time, according
to their contract with the news distributor. The distributor uses XSL to normalize
and store the data in a database. The stored data is used to back several websites
and portals. These websites and portals receive HTTP requests from various wired
and unwired clients.

« Solution: Use XSL stylesheets in conjunction with the XSQL Servlet to
dynamically deliver appropriate rendering to the requesting service. See
Figure 2-3.

« Main Tasks Involved. These are the main tasks involved in Scenario 2:
1. Data model for database schema is designed for optimum output.

2. XSL Stylesheets are created for each information source to transform to
normalized format. It is then stored in the database.

3. XSL Stylesheets are created along with XSQL pages to present the data on a
web site.

See also Chapter 6, "Customizing Content with XML: Dynamic News
Application".

« Oracle XML Used:
« XML Parser for Java v2
. XML-SQL Utility (XSU)
« XSQL Servlet

2-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML

Figure 2-3 Scenatrio 2. Using XML to Deliver Customized News Information

Normalize
XML

SQL

XML-SQL
Utility
(XSU)

SQL

v

International | XML
News Service) _
Middle Tier
Domestic XML —)
News Service _l_> XML Parser
XSL-T
Weather XML Processor
Reports > ‘
International | XML
News Service
stylesheets
l B
{3
— M ‘q. =
Cell User / Application Request
Phone
Web Server v
XSQL Servlet
HTML
XSL-T
Processor [| *SY
Personal
Digital
Assistant
HTML
Browser <
stylesheets

Graphical or il ;

non-graphical

browser

Business Solutions Using Oracle XML 2-9

Scenario 3. Content Management: Using XML to Customize Data Driven Applications

Scenario 3. Content Management: Using XML to Customize Data Driven
Applications

Problem. Company X needs data and interactivity delivered to a thin client.

« Solution. Data is queried from a database and rendered dynamically through
one or more XSL stylesheets for sending to the client application. The data is
stored in a relational database in LOBs and materialized in XML.

« Main Tasks Involved: See Chapter 11, "Customizing Discoverer 3i Viewer with
XSL".

« Oracle XML Used:

« XML Parser for Java

2-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Business-to-Business/Consumer (B2B/B2C) Messaging

Business-to-Business/Consumer (B2B/B2C) Messaging

A challenge for business application developers is to tie together data generated by
applications from different vendors and different application domains. XML makes
this kind of data exchange among applications easier to do by focusing on the data
and its context without tying it to specific network or communication protocols.

Via XML and XSL transformations, applications can interchange data without
having to manage and interpret proprietary or incompatible data formats.

Business-to-Business/Consumer (B2B/B2C) Messaging With XML: Scenarios

Consider the following business-to-business/consumer (B2B/B2C) messaging
scenarios:

« Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using
XML

« Scenario 5. B2B Messaging: Using XML and Oracle Advanced Queueing for an
Internet Application

« Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing
Messaging for Multi-Application Integration

These scenarios use Oracle XML platform components. Each of these is described
briefly including the problem at hand, the solution, and main tasks used to resolve
the problem.

These scenarios are further illustrated with detailed case studies in Parts 4, and 5.

Business Solutions Using Oracle XML 2-11

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design

Using XML

Problem. Company X needs to build an online shopping cart the products on which
come from various vendors. Company X want to receive orders online and then
according to what product is ordered funnel the order to the correct vendor
accordingly.

Solution. Use XML to deliver a more integrated online purchasing application.
While a user is completing a new purchase requisition for new hardware, they
can go directly to the computer manufacturer’s web site to browse the latest
models, configuration options, and negotiated prices. The user’s site sends a
purchase requisition reference number and authentication information to the
vendor’s web site.

At the vendor site, the user adds items to their shopping basket, then clicks on a
button to indicate that they are done shopping. The vendor sends back the
contents of the shopping basket to the Company X’s application as an XML file
containing the part numbers, quantities, and prices that the user has chosen.

Items from the "shopping basket" are automatically added to the new purchase
requisition as line items.

Customer orders are compiled into XML and delivered to the appropriate
vendor databases for processing. XSL is used to transform and divide the cart
for compliant transfers. Data is stored in a relational database and materialized
using XML. See Figure 2-4.

Main Tasks Involved. For examples of similar implementations see:

« Chapter 10, "B2B: How iProcurement Uses XML to Offer Multiple Catalog
Products to Users"

« Chapter 13, "B2B XML Application: Step by Step"

Oracle XML Components Used: Oracle XML Parser, XML-SQL Utility, XSQL
Servlets, XML-SQL Utility, and custom Java code for authenticating the
"Shopping Cart" it receives from the vendor web sites.

2-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML

Figure 2—4 Scenatrio 4. Online Multivendor Shopping Cart Design Using XML

XML messages Warehouse Inventory
Look up table Database
Sports Wear | Stock request -1
Retailer — Take
stock | SQL_, [xmL-sqL
Utility
Golf Club Return request o p—
Retailer > Free up
stock
Tennis Racket |_Stock order
Retailer Free Up .
Stock
) Stock
toc
AOgioesioe Nacded
Message Queue
Processing v
- Stock Status Displayed XSQL Servlet
- Transaction Acknowledgement Displayed XSLT
Processor

XSL
stylesheets

Business Solutions Using Oracle XML 2-13

Scenario 5. B2B Messaging: Using XML and Oracle Advanced Queueing for an Internet Application

Scenario 5. B2B Messaging: Using XML and Oracle Advanced Queueing
for an Internet Application

Problem. A multi client-to-server and server-to-server application stores a data
resource and inventory in a database repository. This repository is shared across
enterprises. Company X needs to know every time the data resource is accessed and
all the users and customers on the system need to know when and where data is
accessed.

« Solution. When a resource is accessed or released this triggers an ’availability
XML message’. This in turn transforms the resource, using XSL, into multiple
client formats according to need. Conversely, a resource acquisition by one
client sends an XML message to other clients, hence signalling removal.
Messages are stored in LOBs. Data is stored in a relational database and
materialized in XML. See Figure 2-5.

« Main Tasks Involved. See also Chapter 12, "Phone Number Portability Using
XML Messaging".

« Oracle XML Used:
« XML Parser
« XSL-T Processor

2-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Scenario 5. B2B Messaging: Using XML and Oracle Advanced Queueing for an Internet Application

Figure 2-5 Scenario 5. Using XML and Oracle Advanced Queueing Messaging for an
Internet B2B Application

Client Tier
e B
‘ q o — > Browser
Customer
Dynamically
generated
Web Form

o

Accountant

L

Shipping Clerk

Browser

Dynamically
generated
Web Form

Ship product
to

customer

Middle
Virt

- Queries database
- Submits order

- Presents data via
XSL stylesheet

- Queries customer d

- Approve or reject
order

Presents shipping
data using XSL
stylesheet

Tier or Oracle8 | Server Tier
ual Middle-Tier

Web Sales
Application

AN

Product Database

P Information, prices,
—_— OCrt:iet?gwser product codes
— | XML

b

/

Accounting
Application

Accounting Database
Customers billing information,
Approved accounting histories
order as
XML

AN

/

Inventory
and Shipping
Application

Shipping Database
Product inventory
and localization
in warehouse

Business Solutions Using Oracle XML 2-15

Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing Messaging for Multi-Application Integration

Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing
Messaging for Multi-Application Integration

Problem. Company X needs several applications to communicate and share data in
order to integrate the business work flow and processes.

« Solution. XML is used as the message payload. It is transformed via the XSL-T
Processor, enveloped and routed accordingly. The XML messages are stored in
an 'AQ Broker’ Database in LOBs. This solution also utilizes content
management i.e., presentation customization using XSL stylesheets. See
Figure 2-6.

« Main Tasks Involved.

1. The user or application places a request. The resulting data is pulled from
the corporate database using XSU.

2. Datais transformed via XSL-T Processor and sent to the AQ Broker

3. AQ Broker reads this message and determines accordingly, what action is
needed. It issues the appropriate response to (or from) from Application 1,
2, and 3, for further processing.

« Oracle XML Used:
« XML Parser
« XSL-T Processor
. XML-SQL Utility (XSU)

2-16 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing Messaging for Multi-Application Integration

Figure 2—6 Scenatrio 6. Using XML and Oracle Advanced Queueing Messaging for

Multi-Application Integration

&1

User / Client /

Application LOBs
XML Parser
Corporate xmLsQL XM [xsLT
HQ Utility Processor
Database
AQ Broker XML
<
Lob
Lob H Lob XML Messages
stored in LOBs
AQ JAQ JAQ
v
Application Application
1 3
Stock 4 v Request
status for sales
request Application analysis
2 results
from
satellite
ALERT stores
satellite
iteovzes of Data sent to AQ Broker
stock determines
arrivals - Which action occurs
- Which action
v v receives data

Business Solutions Using Oracle XML 2-17

Scenario 6. B2B Messaging: Using XML and Oracle Advanced Queueing Messaging for Multi-Application Integration

2-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

3

Oracle XML Components and General FAQs

This chapter contains the following sections:

« Oracle XML Components: Overview

« Development Tools and Other XML-Enabled Oracle8i Features

« XML Parsers

« XSL Transformation (XSLT) Processor

« XML Class Generator

« XML Transviewer Java Beans

« Oracle XSQL Page Processor and Servlet

« Oracle XML-SQL Utility (XSU)

« Oracle interMedia Text

« Tools for Building Oracle XML Applications

« Oracle XML Components: Generating XML Documents

« Using Oracle XML Components to Generate XML Documents: Java
« Using Oracle XML Components to Generate XML Documents: C

« Using Oracle XML Components to Generate XML Documents: C++
« Using Oracle XML Components to Generate XML Documents: PL/SQL
« Frequently Asked Questions (FAQSs) - General XML

Oracle XML Components and General FAQs 3-1

Oracle XML Components: Overview

Oracle XML Components: Overview

Oracle8i provides several components, utilities, and interfaces you can use to take
advantage of XML technology in building your web-based database applications.
Which components you use depends on your application requirements,
programming preferences, development, and deployment environments.

The following XML components are provided with Oracle8i:

« XML Developer’s Kits (XDKs)*. There are Oracle XDKs for Java, JavaBeans, C,
C++, and PL/SQL. These development kits contain building blocks for reading,

manipulating, transforming, and viewing XML documents.

« XML-SQL Utility (XSU). XML-SQL Utility for Java and PL/SQL: Generates
(gets) and stores (puts) XML data to and from the database from SQL queries or
result sets or tables. It achieves data transformation, by mapping canonically

any SQL query result to XML and vice versa.

Table 3-1 lists the Oracle XML components and associated languages.

Table 3-1 Languages Available for XDK and XSU

Language Java C C++ PL/SQL
Parser Yes Yes Yes Yes
XSLT Processor Yes Yes Yes Yes
Class Generator Yes Yes
XSQL Yes N/A N/A N/A
Transviewer Beans Yes N/A N/A N/A
XML-SQL Utility Yes Yes

This chapter provides an overview of the XML components.

Development Tools and Other XML-Enabled Oracle8

| Features

« Oracle8i interMedia Text: An application interface in Java where data can be

viewed as documents and documents can be treated as data.

! Oracle XDK is fully supported and comes with a commercial redistribution

license.

3-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Development Tools and Other XML-Enabled Oracle8i Features

« Oracle JDeveloper: An integrated development tool for building Java
web-based applications

« Oracle8i Internet File System (iFS): An application interface in Java where data
can be viewed as documents and the documents can be treated as data.

XDK for Java

XDK for Java is comprised of the following:

XDK for C

XML Parser for Java: Creates and parses XML using industry standard
DOM and SAX interfaces. Includes an XSL Transformation (XSLT)
Processor that transforms XML to XML or other text-based formats, such
as, HTML.

XML Java Class Generator: Generates Java classes.

XML Transviewer Java Beans: View and transform XML documents and
data via Java

XSQL Servlet: Processes SQL queries embedded in an XSQL file, xxxx.xsq|l.
Returns results in XML format. Uses XML-SQL Utility and XML Parser for
Java.

XDK for C is comprised of the following:

XDK for C++

XML Parser for C: Creates and parses XML using industry standard DOM
and SAX interfaces. Includes an XSL Transformation (XSLT) Processor that
transforms XML to XML or other text-based formats, such as, HTML.

XDK for C++ is comprised of the following:

XML Parser for C++: Creates and parses XML using industry standard
DOM and SAX interfaces. Includes an XSL Transformation (XSLT)
Processor that transforms XML to XML or other text-based formats, such
as, HTML.

XML C++ Class Generator: Generates C++ classes.

Oracle XML Components and General FAQs 3-3

XML Parsers

XDK for PL/SQL
XDK for PL/SQL is comprised of the following:

« XML Parser for PL/SQL: Creates and parses XML using industry standard
DOM and SAX interfaces. Includes an XSL Transformation (XSLT)
Processor that transforms XML to XML or other text-based formats, such
as, HTML.

XML Parsers

Oracle's XML parser includes implementations in C, C++, PL/SQL, and Java for the
full range of platforms on which Oracle8i runs.

Based on conformance tests, xml.com published Oracle's parser ranked in the top

two validating parsers for its conformance to the XML 1.0 specification, including

support for both SAX and DOM interfaces. The SAX and DOM interfaces conform
to the W3C recommendations 1.0.

Version 2 (v2) of the Oracle XML parser provides integrated support for the
following features:

« XPath?

« Incremental XSL transformation of document nodes. XSL transformations are
compliant with version 1.0 of the W3C recommendations. This support enables
the following:

« Transformations of XML documents to another XML structure
« Transformations of XML documents to other text-based formats
The parsers are available on all Oracle platforms.

Figure 3-1 illustrates the Oracle XML Parser for Java. Figure 3-2 illustrates the
Oracle XML parsers’ overall functionality.

1 Xxpath is.the W3C recommendation that specifies the data model and grammar for
navigating an XML document utilized by XSLT, XLink and XML Query.

3-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XML Parsers

See Also:

Chapter 17, "Using XML Parser for Java" and

Appendix C, "XDK for Java: Specifications and Cheat Sheets".

Figure 3—1 The Oracle XML Parser for Java

Original

XML

Document

XML Parser for Java

—

— < DOM / SAX Parser>

—

I I

XML
document
or DTD

Stylesheet
Figure 3-2 The XML Parsers: Java, C, C++, PL/SQL
Parsers
|
I

XML Parser for Java [===p-| DOM / SAX for Java | <P

XML Parser for PL/SQL [===pp| DOM for PL/SQL 4
XML Parser for C++ - | DOM / SAX fOr C++ | Gy

XML Parser for C Py DOM /SAX for C)

X
a1l

Parsed XML ﬁ
XSL-T Processor femp| —
I Transfered
Parsed XSL * XML
Commands Document

Java Application

PL/SQL Application

C++ Application

C Application

Oracle XML Components and General FAQs 3-5

XSL Transformation (XSLT) Processor

XSL Transformation (XSLT) Processor

The Oracle XSLT engine fully supports the W3C 1.0 XSL Transformations
recommendation. It has the following features:

« Enables standards-based transformation of XML information inside and outside
the database on any platform.

= Supports Java extensibility and for additional performance comes natively
compiled into the Oracle8i Release 3 (8.1.7) database.

The Oracle XML Parsers, Version 2 include an integrated XSL Transformation
(XSLT) Processor for transforming XML data using XSL stylesheets. Using the XSLT
processor, you can transform XML documents from XML to XML, HTML, or
virtually any other text-based format.

How to use the XSLT Processor is described in Chapter 17, "Using XML Parser for
Java".

See Also: Appendix C, "XDK for Java: Specifications and Cheat
Sheets".

XML Class Generator

The XML Class Generator creates a set of Java or C++ classes for creation of XML
documents conformant with the input DTD.

Figure 3-3 shows the Oracle XML Class Generator overall functionality.
How to use the XML Class Generators is described in the following chapters:
« Chapter 18, "Using XML Java Class Generator"

« Chapter 23, "Using XML C++ Class Generator"

3-6 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XML Transviewer Java Beans

DTD

ey | XML Parser for Java

Figure 3-3 Oracle XML Java Class Generator

Parsed
DTD
Jc JI }]L
XML Class Generator c—> P Ju—
for Java e 0 Java Application |egp (——
Jc
Valid XML
document
based on
Java classes based DTD

on DTD
(one class per element)

XML Transviewer Java Beans

Oracle XML Transviewer Java Beans are a set of XML components that constitute
the "XML for Java Beans". These are used for Java applications or applets to view
and transform XML documents.

They are visual and non-visual Java components that are integrated into Oracle
JDeveloper to enable the fast creation and deployment of XML-based database
applications. In this release, the following four beans are available:

DOM Builder Bean. This wraps the Java XML (DOM) parser with a bean
interface, allowing multiple files to be parsed at once (asynchronous parsing).
By registering a listener, Java applications can parse large or successive
documents having control return immediately to the caller.

XML Source Viewer Bean. This bean extends JPanel by enabling the viewing of
XML documents. It improves the viewing of XML and XSL files by
color-highlighting XML and XSL syntax. This is useful when modifying an
XML document with an editing application. Easily integrated with the DOM
Builder Bean, it allows for pre and post parsing and validation against a
specified DTD.

XML Tree Viewer Bean. This bean extends JPanel by enabling viewing XML
documents in tree form with the ability to expand and collapse XML parsers. It

Oracle XML Components and General FAQs 3-7

Oracle XSQL Page Processor and Servlet

displays a visual DOM view of an XML document, enabling users to easily
manipulate the tree with a mouse to hide or view selected branches.

« XSL Transformer Bean. This wraps the XSLT Processor with a bean interface
and performs XSL transformations on an XML document based on an XSL
stylesheet. It enables users to transform an XML document to almost any
text-based format including XML, HTML and DDL, by applying an XSL
stylesheet. When integrated with other beans, this bean enables an application
or user to view the results of transformations immediately. This bean can also
be used as the basis of a server-side application or servlet to render an XML
document, such as an XML representation of a query result, into HTML for
display in a browser.

« XML TransPanel Bean. This bean uses the other beans to create a sample
application which can process XML files. This bean includes a file interface to
load XML documents and XSL stylesheets. It uses the beans as follows:

« Visual beans to view and optionally edit them

« Transformer bean to apply the stylesheet to the XML document and view
the output

As standard JavaBeans, they can be used in any graphical Java development
environment, such as Oracle JDeveloper. The Oracle XML Transviewer Beans
functionality is described in Chapter 3, "Oracle XML Components and General
FAQs".

Oracle XSQL Page Processor and Servlet

XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.
This processor is implemented as a Java servlet and takes as its input an XML file
containing embedded SQL queries. It uses XML Parser for Java, XML- SQL Ultility,
and Oracle XSL Transformation (XSLT) Engine to perform many of its operations.

You can use XSQL Servlet to perform the following tasks:

« Build dynamic XML "datapages" from the results of one or more SQL queries
and serve the results over the Web as XML datagrams or HTML pages using
server-side XSLT transformations.

« Receive XML posted to your web server and insert it into your database.

3-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Oracle XSQL Page Processor and Servlet

Servlet Engines that Support XSQL Servlet

XSQL Servlet has been tested with the following servlet engines:

Allaire JRun 2.3.3

Apache 1.3.9 with JServ 1.0 and 1.1

Apache 1.3.9 with Tomcat 3.1 Betal Servlet Engine

Apache Tomcat 3.1 Betal Web Server + Servlet Engine

Caucho Resin 1.1

NewAtlanta ServletExec 2.2 for [1IS/PWS 4.0

Oracle8i Lite Web-to-Go Server

Oracle Application Server 4.0.8.1 (with "JSP Patch")

Oracle8i 8.1.7 Beta "Aurora" Servlet Engine

Sun JavaServer Web Development Kit (JSWDK) 1.0.1 Web Server

JavaServer Pages (JSP) Platforms that Support XSQL Servlet

JavaServer Pages can use <jsp:forward> and/or <jsp:include> to collaborate with
XSQL Pages as part of an application. The following JSP platforms have been tested
to support XSQL Servlet:

Apache 1.3.9 with Tomcat 3.1 Betal Servlet Engine

Apache Tomcat 3.1 Betal Web Server + Tomcat 3.1 Betal Servlet Engine
Caucho Resin 1.1 (Built-in JSP 1.0 Support)

NewAtlanta ServletExec 2.2 for 11S/PWS 4.0 (Built-in JSP 1.0 Support)
Oracle8i Lite Web-to-Go Server with Oracle JSP 1.0

Oracle8i 8.1.7 Beta "Aurora" Servlet Engine with Oracle JSP 1.0

Any Servlet Engine with Servlet APl 2.1+ and Oracle JSP 1.0

In general, it should work with the following:

Any servlet engine supporting the Servlet 2.1 Specification or higher

Oracle JSP 1.0 reference implementation or functional equivalent from another
vendor

Oracle XML Components and General FAQs 3-9

Oracle XSQL Page Processor and Servlet

XSQL Servlet is a tool that processes SQL queries and outputs the result set as XML.
This processor is implemented as a Java servlet and takes as its input an XML file
containing embedded SQL queries. It uses XML Parser for Java and XML-SQL
Utility to perform many of its operations.

Figure 3-4 shows how data flows from a client, to the servlet, and back to the client.
The sequence of events is as follows:

1.

The user enters a URL through a browser, which is interpreted and passed to
the XSQL Servlet through a Java Web Server. The URL contains the name of the
target XSQL file (.xsqgl) and optionally, parameters, such as values and an XSL
stylesheet name. Alternatively, the user can invoke the XSQL Servlet from the
command line, bypassing the browser and Java web server.

The servlet passes the XSQL file to the XML Parser for Java, which parses the
XML and creates an API for accessing the XML contents.

The page processor component of the servlet uses the API to pass XML
parameters and SQL statements (found between <query></query> tags) to
XML-SQL Utility. The page processor also passes any XSL processing
statements to the XSLT Processor.

XML-SQL Utility sends the SQL queries to the underlying Oracle8i database,
which returns the query results to the utility.

XML-SQL Utility returns the query results to the XSLT Processor as XML
formatted text. Results are embedded in the XML file in the same location as the
original <query> tags.

If desired, the query results and any other XML data are transformed by the
XSLT Processor using a specified XSL stylesheet. The data can be transformed
to HTML or any other format defined by the stylesheet. The XSLT Processor can
selectively apply different stylesheets based on the type of client that made the
original URL request. This HTTP_USER_AGENT information is obtained from
the client through an HTTP request.

The XSLT Processor passes the completed document back to the client browser
for presentation to the user.

3-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle XSQL Page Processor and Servlet

Figure 3—4 Oracle XSQL Page Processor and Servlet Functional Diagram

Servlet-Compatible Web Server

Browser 2] XML Formatted
> SQL Queries
L -
User Web Form XSQL Servlet
0 XML Parser
for Java
— |, Query *
—— | Results
— ! XSQL Page
——| in XML,
— | HrmL Processor 9
or Other
ﬁ Format XSL Tags l l SQL Queries
XSLT XML SQL
POrcessor | <mm— Parser
@ Query
[| \ Results

6]

11111 -

Stylesheet

Oracle XML Components and General FAQs 3-11

Oracle XML-SQL Utility (XSU)

Oracle XML-SQL Utility (XSU)
Oracle XML-SQL Utility (XSU) supports Java and PL/SQL.

« XML-SQL Utility is comprised of core Java class libraries for automatically and
dynamically rendering the results of arbitrary SQL queries into canonical XML.
It includes the following features:

= Supports queries over richly-structured user-defined object types and object
views.

« Supports automatic "XML Insert" of canonically-structured XML into any
existing table, view, object table or object view. By combining with XSLT
transformations, virtually any XML document can be automatically
inserted into the database.

XML-SQL Utility Java classes can be used for the following tasks:

« Generate from an SQL query or Result set object a text or XML document, a
Document Object Model (DOM), or a Document Type Definition (DTD).

« Load data from an XML document into an exisitng database schema or
view.

« XML-SQL Utility for PL/SQL is comprised of a PL/SQL package that wraps
the XML-SQL Utility for Java.

Figure 3-5 shows the Oracle XML-SQL Utility overall functionality.

Figure 3-5 Oracle XML-SQL Utility Functional Diagram

L | MLsQLuily [y

for Java

XML
Document

XML SQL Utility for Java consists of a set of Java classes that perform the following
tasks:

« Pass a query to the database and generate an XML document (text or DOM)
from the results or the DTD which can be used for validation.

« Write XML data to a database table

3-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle XML-SQL Utility (XSU)

Generating XML from Query Results

Figure 3-6 shows how XML SQL Utility processes SQL queries and returns the
results as an XML document.

Figure 3—-6 XMI-SQL Utility Processes SQL Queries and Returns the Result as an XML

Document
XML-SQL Utility —»
for Java

. A
SQL or Object XML Document of

Queries Query Results as a
string or DOM tree

Store and retrieve
XML documents
in the database

\

XML Document Structure: Columns Are Mapped to Elements

The structure of the resulting XML document is based on the internal structure of
the database schema that returns the query results:

« Columns are mapped to top level elements
« Scalar values are mapped to elements with text-only content
« Object types are mapped to elements with attributes appearing as sub-elements.

= Collections are mapped to lists of elements.

XSU Generates the XML Document as a String or DOM Element Tree
The XML-SQL Utility (XSU) generates either of the following:

« Astring representation of the XML document. Use this respresentation if you
are returning the XML document to a requester.

Oracle XML Components and General FAQs 3-13

Oracle XML-SQL Utility (XSU)

« Anin-memory XML DOM tree of elements. Use this representation if you are
operating on the XML programmatically, for example, transforming it using the
XSLT Processor using DOM methods to search or modify the XML in some way.

XSU Generates a DTD Based on Queried Table’s Schema

You can also use the XML-SQL Utility (XSU) to generate a DTD based on the
schema of the underlying table or view being queried. You can use the generated
DTD as input to the XML Class Generator for Java or C++. This generates a set of
classes based on the DTD elements. You can then write code that uses these classes
to generate the infrastructure behind a web-based form. See also "XML Class
Generator".

Based on this infrastructure, the web form can capture user data and create an XML
document compatible with the database schema. This data can then be written
directly to the corresponding database table or object view without further
processing.

See Also: Chapter 4, "Using XML-SQL Utility (XSU)" and
Chapter 13, "B2B XML Application: Step by Step", for more
information about this approach.

Note: To write an XML document to a database table, where the
XML data does not match the underlying table structure, transform
the XML document before writing it to the database. For techniques
on doing this, see Chapter 4, "Using XML-SQL Utility (XSU)".

3-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Oracle interMedia Text

Oracle interMedia Text

interMedia Text extends Oracle8i by indexing any text or documents stored in
Oracle8i.

You can use interMedia Text to perform searches on XML documents stored in
Oracle8i by indexing the XML as plain text, or as document sections for more
precise searches, such as find "Oracle WITHIN title" where "title" is a section of the
document.

See Also: Chapter 5, "Using interMedia Text to Search and
Retrieve Data from XML Documents”, for more information on
using interMedia Text and XML.

Oracle XML Components and General FAQs 3-15

Tools for Building Oracle XML Applications

Tools for Building Oracle XML Applications
Tools you can use to develop Oracle XML applications are:

« Jdeveloper. See Chapter 14, "Using JDeveloper to Build Oracle XML
Applications"

« Internet file System (iFS). See Chapter 15, "Using Internet File System (iFS) to
Build XML Applications"

3-16 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using Oracle XML Components to Generate XML Documents: Java

Oracle XML Components: Generating XML Documents

Figure 3-7 through Figure 3-10 illustrate the relationship of the Oracle XML
components and how they work together to generate XML documents from
Oracle8i via an SQL query. The options are depicted according to language used:

« Java

« C

. C++

« PL/SQL

Using Oracle XML Components to Generate XML Documents: Java

Figure 3-7 shows the Oracle XML Java components and how they can be used to
generate an XML document. Available XML Java components are:

« XDK for Java:
« XML Parser for Java, Version 2 including the XSLT
« XML Class Generator
« XSQL Servlet
« XML Transviewer Beans
« XML-SQL Utility (XSU) for Java

In the Java environment, when a user or client or application sends a query (SQL),
there are three possible ways of processing the query using the Oracle XML
components:

A. By the XSL Servlet (this includes using XSU and XML Parser)
B. Directly by the XSU (this includes XML Parser)
C. Directly by JDBC which then accesses XML Parser

Regardless of which way the stored XML-ized data is generated from the database,
the resulting XML document output from the XML Parser is further processed,
depending on what you or your application needs it for.

The XML document is formatted and customized by applying stylesheets and
processed by the XSLT.

Oracle XML Components and General FAQs 3-17

Using Oracle XML Components to Generate XML Documents: Java

Figure 3—7 Using Oracle XML Components to Generate an XML Document - Java Options

i

User / Browser /
Client Application

Q SQL Query

—

XML-SQL Utility

XML
Parser

Checks for

Data Out
v

HTML
Text
XML
Browser /| <2
Application
XSQL Servlet
XML-SQL | | XML XML
Utility Parser A A 1
——| XML Document
A —| with or without
—— | aDTD
|
Class
DOM or String Generator | errors
XML Document from LOB

I
Creates Java
source files
|

Query In Stream) XML L.DOM or Sax
< Parser| - parsed DTD Transviewer | Also
@Lk=Pp | pBC objects Beans Integrated in
* - Parsed HTML Jdeveloper
1 I
l XML Parser is *
within the user _ ey
Object application p— XSLT X'SI'_-ThAPl
Relational . - oo Processor stll\r}lt e
data | | interMedia o eer
—'— 36 Text I—
| I v v
Q LOBs —
Oracle8 i or other database — —
XML documents stored: XSL
- As single object with tags Formatted Stylesheet

in CLOB or BLOB
- As data distributed
untagged across tables
- Via views that combine
the documents and data

and customized
XML Document

3-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using Oracle XML Components to Generate XML Documents: C

Using Oracle XML Components to Generate XML Documents: C

Figure 3-8 shows the Oracle XML C language components used to generate an
XML document. The C XML components are:

« XML Parser/XSLT Processor

Your SQL queries are sent to the database via OCI or as embedded statements in the
Pro*C precompiler.

The resulting XML data can be processed in the following ways:
« Via XML Parser
» From the CLOB as an XML document

This XML data is optionally transformed by the XSLT processor, viewed directly by
an XML-enabled browser, or sent for further processing to an application or AQ
broker.

Oracle XML Components and General FAQs 3-19

Using Oracle XML Components to Generate XML Documents: C

Figure 3-8 Using Oracle XML Components to G enerate an XML Document - C

Options
\q !
User / Browser / >
Client Application Browser /
Application
XML
—eeey
A A
—— | XML Document
—| with or without
— | aDTD
XSL-T API
XSL-T is in the
XML Document from LOB Processor XML
| .\ Parser
Stream DOM or Sax &
soL _» XML v -
or Parser| . parsed DTD — —
Qu_y> OCl or objects i —
Pro*CIC++ 4 pasedHTML | T—
1 XSL
| . Formatted Stylesheet
XML Parser is and customized
within the user — XML Document
Object application jp— I
Relational DD
data interMedia
g- Text
— —
Q LOBs

Oracle8 or other database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

3-20 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using Oracle XML Components to Generate XML Documents; C++

Using Oracle XML Components to Generate XML Documents: C++

Figure 3-9 shows the Oracle XML C++ components used to generate an XML
document. Available XML C++ components are:

« XDK for C++:
« XML Parser for C++, Version 2 including the XSLT
« XML C++ Class Generator

In the C++ environment, when a user or client or application sends a query (SQL),
there are two possible ways of processing the query using the Oracle XML
components in C++:

« Directly via JDBC which then accesses the XML Parser
« Via OCCI or Pro*C/C++ Precompiler

Oracle XML Components and General FAQs 3-21

Using Oracle XML Components to Generate XML Documents: C++

Figure 3-9 Using Oracle XML Components to G enerate an XML Document - C++

Options

!

User / Browser /
Client Application

XML Document from LOB

XML
Parser

Browser /| <2
Application

XML Document
with or without

Stream
SQL
Query p | occior
Pro*C/C++
l XML Parser is
within the user
Object application
Relational
data interMedia
C3H Text
- —
Q*LOBS

Oracle8/ or other database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

3-22 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

A

lw)
21

and customized
XML Document

aDTD
p—
Class Checks for
Generator errors
I—
Creates C++
= source files
XSL-T API
XSL-T is in the
Processor XML
T .\ Parser
DOM or Sax v t p—
- Parsed DTD fp— =
objects — —
- Parsed HTML —
XSL
Formatted Stylesheet

Using Oracle XML Components to Generate XML Documents: PL/SQL

Using Oracle XML Components to Generate XML Documents: PL/SQL

Figure 3-10 shows the Oracle XML PL/SQL components used to generate an XML
document. Available XML PL/SQL components are:

« XDK for PL/SQL:
« XML Parser for PL/SQL, Version 2 including XSLT
« XML-SQL Utility (XSU) for PL/SQL

In the PL/SQL environment, when a user or client or application sends a query
(SQL), there are two possible ways of processing the query using the Oracle XML
components:

« Directly via JDBC which then accesses the XML Parser
« Via XML-SQL Utility

Oracle XML Components and General FAQs 3-23

Using Oracle XML Components to Generate XML Documents: PL/SQL

Figure 3—-10 Using Oracle XML Components to Generate an XML Document - PL/SQL
Options

!

User / Browser /

Client Application ABrOI\'NS?'” <
pplication
XML
—
A A
——| XML Document
—— | with or without
—| aDTD
SQL
Query » XML-SQL Utility
XML) fr—
DOM or Strin -
Parser g XSLT xisli_nTth/-épl
XML Document from LOB Processor XML
| \ Parser
JDBC / SQL &
Access Stream » [xmL DOM or Sax A 4 —
Parser| . parsed DTD |— —
objects — —
* - Parsed HTML —
1 XSL
) . Formatted Stylesheet
XML Parser is and customized
within the user — XML Document
Object application p— I
Relational
data interMedia DTD
Text
- —

LOBs

Oracle8 i or other database

XML documents stored:

- As single object with tags
in CLOB or BLOB

- As data distributed
untagged across tables

- Via views that combine
the documents and data

3-24 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs) - General XML

Frequently Asked Questions (FAQs) - General XML
This section includes general FAQs about Oracle XML technology.

There are also FAQs at the end of many chapters in the manual.

How do I Start Writing XML?

Question
I read some articles about XML, but how do I start writing it. If it is C,

1. inunix | open vi

2. include header files

3. open main

4. write some code

5. close main

6. compile (cc -0 example example.c)

How do we do this in XML? XML is discussed in many journals, but there is no
mention of how to start.

Answer

The easiest way to get started is to use the Oracle XSQL Servlet to leverage your
understanding of SQL to begin experimenting with XML and XSLT
Transformations. If you wait a day or so, a new release (0.9.8.6) with lots more
tutorial info will be available, but the current release (0.9.6.2) is good to get started
with and has extensive release notes to help you get started.

See our http://technet.oracle.com/tech/xml page and click on "Oracle XSQL
Servlet".

XML and Required Oracle Tools

Question

I am exploring options to use Oracle's XML technology for generating data files.
The generated data (XML) files would then be converted to "client specific" EDI text
files using a "translator".

Oracle XML Components and General FAQs 3-25

Frequently Asked Questions (FAQs) - General XML

The translator would be used until such time that the client is ready to accept XML
documents.

1. What is the latest version of database Il need to use? We have 8.0.6. Do we need
Oracle8i?

2. Isthere a translator already available to convert XML to text files? Is XSL such a
tool?

3. Where and how would the translation mapping be stored?

Answer

You only need Oracle8i if you would like to generate the XML directly from the
database instead of using a middle tier.

You can make Java calls to XML- SQL Utility from PL/SQL.

XML files are text files, but you can use XSL to transform the XML to almost any
text-based format by creating the appropriate stylesheet.

Collecting Purchase Orders in XML: Creating an RFP in XML?

Question

I am going to develop a small application using XML and Oracle8i. Here is the
scenario...Company A is having a central purchasing system. It has department B,
C,D. And company A gets purchase order in XML format from B, C, D.

Now Company A needs to collect all Purchase orders and it has to store it in
ORACLESI database. And from that it has to create another "Request for proposal”
for it’s preferred vendors in XML.I am writing queries to insert or update into the
Database. Tell me what are all the components | need to install in ORACLES..

Answer

Assuming you are using Java to implement you need the XML Parser and XML
SQL Utility. If you are using a Java-based front-end to generate the purchase orders
the XML Class Generator can provide you with the classes you need to populate
your purchase orders. Finally, the XSQL Servlet can help you build a web interface.

3-26 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs) - General XML

Portability: Using Parsers from Different Vendors?

Question

I am currently investigating SAX. | understand that both the Oracle and IBM
parsers use DOM and SAX from W3.

« What's the difference between the parsers from different vendors like Oracle
and IBM for example?

« If l use the Oracle XML Parser now, and for some reason, | decide to switch to
parser by other vendor, do | have to change my code?

Answer

Not if you stick to SAX interfaces and/or DOM interfaces for your implementation.
That's what the standard interfaces are in place to assist you with.

Browsers that Support XML

Question
Is there a list of browsers that support XML?

Answer
The following browsers support the display of XML:

« Opera. XML, in version 4.0 and higher

« Citec Doczilla. XML and SGML browser

« Indelv. Will display XML documents only using XSL

« Mozilla Gecko. Supports XML, CSS1, and DOM1

« HP ChaiFarer. Embedded environment that supports XML and CSS1

« ICESoft embedded browser. Supports XML, DOM1, CSS1, and MathML
« Microsoft IE5. Has a full XML parser, IE5.x or higher

« Netscape 5.x or higher

Oracle XML Components and General FAQs 3-27

Frequently Asked Questions (FAQs) - General XML

XML Support for Oracle 8.0.x

EDI and XML

Question

I have a customer who is currently architecting some of their future systems to run
on XML based interfaces. The customer is a large Wall Street Institution. However
their current systems are all running 8.0.6, and they would like to have some of
their XML concepts implemented on the existing systems due to high demand.

The customer would like to know if there is currently or in the future any plans to
support XML based code within the database or if there are any adapters /
cartridges that they can use to get by.

Answer

All of our XML Developer's Kit components, including the XML Parser, XSLT
Processor, XSQL Servlet, and utilities like the XML SQL Utility all work just fine
outside the database against 8.0.6. It's just that they won't be able to:

« Run XML components inside the database
« Use interMedia *XML* Searching

which are both Oracle8i-only features.

Question

We are considering implementing EDI to communicate requirements with our
vendors and customers. However, | understand that XML is a cheaper alternative
for smaller companies. Do you have any information on the advantages of XML
over EDI?

Answer
Here are some thoughts on the subject:

« EDIis adifficult technology: EDI allows machine-to-machine communication in
a format that developers cannot really read and understand.

« EDI messages are very difficult to debug. XML documents are readable and
easier to apprehend.

« High training costs for EDI developers.

3-28 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs) - General XML

« EDIis not flexible: It is very hard to add a new trading partner as part of an
existing system, each new trading partner requires its own mapping. XML is
extremely flexible with the ability to add new tags on demand and to transform
an XML document into another XML document to map for example two
different formats of PO#s.

« EDI is expensive: Expensive in training (see above) and in deployment too
where EDI requires very powerful servers and imposes high requirements on
specialized network (EDI runs on VANs and VAN are expensive). XML works
with inexpensive Web servers over existing internet connections.

The next question then becomes: Is XML going to replace EDI? Probably not. We are
going to see a coexistence of these two - at least for a while. Large companies with
an existing investment in EDI won't switch. They are probably going to use XML as
a way to extend their existing EDI-based implementation, which raises the new
guestion of XML/EDI integration.

XML is a very compelling approach for smaller organizations and applications
where EDI is inflexible.

What Oracle Tools Support B2B Exchanges?

Question

What B2B XML standards does Oracle support (ebXML, cxml, BizTalk, ...)? What
tools does Oracle offer to create B2B exchanges?

Answer
Oracle participates in several B2B standard bodies:

« OBI (Open Buying on the Internet)

« ebXML (Electronic Business XML)

» RosettaNet (E-Commerce for Supply Chain in IT Industry)

« OFX (Open Financial Exchange for Electronic Bill Presentment and Payment)

For B2B exchanges, Oracle provides several alternatives depending on customer
needs, such as the following:

« Oracle Exchange delivers an "out-of-the-box" solution for implementing
electronic marketplaces

Oracle XML Components and General FAQs 3-29

Frequently Asked Questions (FAQs) - General XML

« Oracle Integration Server (and primarily Message Broker) for in-house
implementations

« Oracle Gateways for exchanges at data level

« Oracle XML Gateway to extract in and out XML-based messages from our
e-business suite.

In general, Oracle Internet Platform as a whole provides an integrated and solid
platform for B2B exchanges.

Oracle’s Direction Regarding XML?

Question
What is Oracle’s direction regarding XML?

Answer

Oracle’s XML strategy is to enable using XML in ways which exploit all of the
benefits of Oracle’s current technology stack. Today you can combine Oracle XML
components with the Oracle8i database and Advanced Queueing (AQ) to achieve
some degree of conflict resolution, transaction verification, and so on. Oracle is
working to make future Oracle8i releases more seamless with regard to conflict
resolution, transaction verification, distributed 2 Phase Commit transactions,....

XML data is stored either object-relationally in tables or view, or as CLOBs. XML
transactions are transactions with one of these data types and are handled using the
standard Oracle mechanisms, including rollback segments, locking, logging,...

For future releases, Oracle plans to support sending XML payloads using AQs. This
involves making XML queriable from SQL. This is being implemented.

Oracle is active in all XML standards initiatives, including W3C XML Working
Groups, Java Extensions for XML, Open Applications Group, and XML.org for
developing and registering specific XML schemas.

XML Query

Oracle is participating in the W3C Working Group for XML Query. Oracle is
considering plans to implement a language that allows querying XML data, such as
in the XQL proposal. While XSLT provides static XML transformation features, a
qguery language will add data query flexibility similar to what SQL does for
relational data.

3-30 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs) - General XML

Oracle has representatives participating actively in the following 3C Working
Groups related to XML/XSL: XML Schema, XML Query, XSL, XLink/XPointer,
XML Infoset, DOM,and XML Core.

XML and BLOB (inside XML message)

Question

Is there any support for XML messages enclosing BLOBSs, or | should do it on an
application level by encoding my binary objects in a suitable text format such as
UUENCODE with a MIME wrapper?

Answer

XML requires all characters to be interpreted, therefore there is no provision for
including raw binary data in an XML document. That being said, you could
UUENCODE the data and include it in a CDATA section. The limitation on the
encoding technique is to be sure it only produces legal characters for a CDATA
section.

Maximum CLOB Size?

Question

If we store XML files as CLOBSs in the Oracle8i database, what is the maximum file
size?

Answer

2 Gigabytes. See the "Oracle8i Application Developer's Guide - Large Objects
(LOBs)" at http://technet.oracle.com/doc/server.815/a68004/toc.htm for lots more
info on LOB's and CLOBs as well as http://technet.oracle.com/tech/java/sqlj_
jdbc/index2.htm?Code&files/advanced/advanced.htm for sample code.

Oracle 7.3.4: Data Transfers to Other Vendors Using XML

Question

My company has release 7.3.4 and my group is thinking of using XML for some
data transfers between us and our vendors. From what | could see from this web
site, it looks like we would need to move to Oracle8i in order to do so. Is there any

Oracle XML Components and General FAQs 3-31

Frequently Asked Questions (FAQs) - General XML

way of leveraging version 7 to do XML? I’'m sure we’ll move up to ver 8 sometime
in the future but I don’t know if we will within our timeline (next 3-4 months) for
the next phase of the project I'm working on.

Answer

As long as you have the appropriate JDBC 1.1 drivers for 7.3.4 you should be able to
use the XML SQL Utility to extract data in XML.

For JDBC drivers, please take a look at http://technet.oracle.com/tech/java/sqlj_
jdbc/ Take a look at: Oracle 7 JDBC OCI and JDBC Thin Drivers

What Do | Need to Insert Data Into Tables Via XML?

Question

In order to select data for display and insert data to tables via XML what software
do | need? We are using Oracle8i on Solaris.

Answer
You need the following:

« XML-SQL Utility

=« XML Parser for Java,V2

« JDBCdriver

« JDK

The first three can be obtained from Oracle.

The fourth from SUN.

If you want to do this from a browser, you'll also need the following:
« AlJava compliant web server

« XSQL Servlet

Building an XML Application: Software Needed?

Question

I have a CGI-PERL-Oracle7 application on Solaris 2.6 and | want to convert it to
XML/XSL-JAVA-Oracle. | know most parts of the technologies, for example, SGML,

3-32 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs) - General XML

XML, JAVA etc., but | don't know how to start it in Oracle. What software | need
from Oracle?

1.

2
3.
4

Can | use Apache instead of Oracle's web server? if so, how?
How far can | go with Oracle 7.3?
Do I still need an XML Parser if all XML were created by my programs?

What should be between the WWW server and Oracle DB server? XSQL
Servlet? Parser? JAVA VM? EJB? CORBA? SQLJ? JDBC? Oracle packages such
as UTL_HTTP?

Answer

1.

Yes you can. The Apache web server must now interact with Oracle through
JDBC or other means. See the XSQL servlet. This is a servlet that can run on any
servlet-enabled web server. This runs on Apache and connects to the database
through a JDBC driver to the Oracle database.:

How far can | go with Oracle 7.3? You can go a long way. The only problem
would be that you cannot run any of the java programs inside the server. i.e.
you cannot load all the XML tools into the server. But you can connect to the
database by downloading the Oracle JDBC utility for ORacle 7 and run all the
programs as client-side utilities.:

Do I still need an XML Parser if all XML were created by my: programs? That
depends on what you intend to do with the XML generated. If all your task is
just to generate XML and send it out then you might not need it. But if you
wanted to generate an XML DOM tree then you would need the parser. Also
you would need it if you have incoming XML documents and you want to
parse and store them somewhere. See the XML SQL utility for some help on this
front.:

What should be between the WWW server and Oracle DB server? As
explained before in question 1) you would need to have a servlet (or CGI)
which interacts to Oracle through OCI or JDBC

Standard DTDs to Use for Orders, Shipment,...

Question

We have implemented Oracle8i and the XDK. Where can we find just basic,
standard DTDs to build on for Orders, Shipments, and Acknowledgements?

Oracle XML Components and General FAQs 3-33

Frequently Asked Questions (FAQs) - General XML

Answer

A good place to start would be http://xml.org which is being set up for this
purpose.

DTD to Database Schema

Question
Is there a tool that goes from a DTD to a database schema?

Answer

Currently we do not have a tool to go from a DTD to a database schema as there is
no way to specify datatypes until we have XML Schema. With our XML- SQL
Utility available on OTN with our other XML components you can generate a DTD
from a database schema which can then be fed into the Class Generator. You should
try an approach your solution from that angle since a database is involved. Check
out our OTN resource including the XML Discussion Forum for further assistance
at http://technet.oracle.com/tech/xml.

Schema Map to XML

Question
My project required converting master-details data to XML for clients.

1. Isthere a best way to design tables and generate XML? (flat tables or
objects/collections)

2. Can | use XML SQL Utilities in Pro*C? 3. What is limited size for generating
XML doc. out from database? (If | can use Pro*C to call XSU)

Answer

1. It really depends on what your application calls for. The generalized approach
is to use object views and have the schema define the tag structure with
database data as the element content.:

2. | am not aware of any limits beyond those imposed by the object view and the
underlying table structure.

3-34 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs) - General XML

XML in the Database: Performance

Question

I would like to know if there is a whitepaper which discusses the performance of
XML and Oracle.

Answer

Currently, we do not have any official performance analyses due to the lack of a
performance standard/benchmark for XML products.

Faster Record Retrievals

Question

I have a database with millions of records. | give a query based on some 4/5
parameters, and retrieve the records corresponding to that, | have added indexes in
the database for faster retrieval of the same, but since the number of records
returned is quite high and | planned to put a previous and next link to show only 10
records at a time, | had to get the count(*) of the number of records that match

Since there are so many records, and count(*) doesn't consider index, it takes nearly
20-30 seconds for the retrieved list to be seen on the browser windowy, if | just
remove that count(*), the retrieval is quite fast, but then there is no previous and
next as | had linked them to count(*).

Answer
| presume you are referring on a faster way to retrieve XML documents. The
solution is to use SAX interface instead of DOM.

Make sure to select the COUNT() of an indexed column (the more selective the
index the better), this way the optimizer can satisfy the count query with a few 10's
of the index blocks instead of a full-table scan.

Translating From Other Formats to XML

Question

Are there any utilities in the XDK that translate data from a given format to XML? |
know that the XSLT will translate from XML to XML, HTML, or another text-based
format. What about the other way around?

Oracle XML Components and General FAQs 3-35

Frequently Asked Questions (FAQs) - General XML

Answer

For HTML, you can use utilities like Tidy or JTidy to turn HTML into well-formed
HTML that can be transformed using XSLT.

For random text formats, you can try utilities like XFlat at
http://www.unidex.com/xflat.ntm. | saw a presentation on XFlat at XML99 and it
seemed to be good but | haven't tried it myself.

XML File Size Limitations

Question
Are there any limitations in the size of an XML file?

Answer
There are no XML limitations to an XML File size.

Maximum Size XML Document?

Question

1. Isthere a maximum size for an XML document to provide data for PL/SQL (or
SQL) across tables, provided that no CLOB are used?

2. The maximum size of XML document generated from Oracle8i to an XML
document?

Answer
1. The limit should be what can be inserted into an object view.

2. The limit should be what can be retrieved from an object view.

Generating Database Schema From a Rational Rose Tool

Question

It is possible to generate database schema in Oracle8i via a script with CREATE
TABLE..., from an XML file generated by a Rational Rose design tool?

3-36 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Further References

Answer

All the parser/generator (petal files, xml...) are developed in our project. All the
components are designed for reuse, but developed in the context of a lager
Framework. You have to follow some guidelines, such as modeling in UML,... and
you must use the base class to get any benefit from our work.

Oracle only generates object types and delivers full object oriented features such as
inheritance in the persistence layer. If you did not need this, the Rational Rose
(Petal-File) parser and Oracle’s own packages as the base of the various generators
may interest you.

Further References

Other XML FAQs

Here are some other XML FAQ sites of interest:
« http://www.ucc.ie/xml/

« http://www.oasis-open.org/cover/

Recommended XML/XSL Books

Question
Can you, please, recommend a good XML/XSL book?

Answer

A publisher group by the name of WROX has a number of helpful books, one of
which is titled, "XML Design and Implementation” by Paul Spencer covers XML,
XSL and development pretty well.

Comment

Although I do not have this book, my impression that it is good one on XML and
XSL: The XML Bible. I read the updated chapter 14 from:

http://metalab.unc.edu/xml/books/bible/

and it gave me a good understanding of XSLT. Downloading this chapter is free so
you can get a good impression.

Oracle XML Components and General FAQs 3-37

http://www.ucc.ie/xml/
http://www.oasis-open.org/cover/xml.html#faq
http://www.oasis-open.org/cover/
http://metalab.unc.edu/xml/books/bible/

Further References

3-38 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Part ||

XML-SQL Utility (XSU): Storing and
Retrieving XML From the Database

Part Il of this manual focuses on storing XML data in, and retrieving XML data
from the Oracle8i database, and how to use XML-SQL Utility (XSU), to do these

tasks.
It contains the following chapter:
Chapter 4, "Using XML-SQL Utility (XSU)"

A

Using XML-SQL Utility (XSU)

This chapter contains the following sections:

Accessing XML-SQL Utility

Using XML-SQL Utility (XSU)

Where Can You Run XML-SQL Utility (XSU)?
XSU Usage Guidelines

« Mapping Primer

« Using the XSU Command Line Front End

« Generating XML from ResultSet Objects
XML-SQL Utility for Java

« Paginating Results: skipRows and maxRows
« Generating XML from ResultSet Objects

« Raising No Rows Exception

« Storing XML

« Insert Processing

« Update Processing

« Delete Processing

Using the XML-SQL Utility for PL/SQL

« Setting Stylesheets in XSU (PL/SQL)

« Binding Values in XSU (PL/SQL)

« Storing XML in the Database Using DBMS_XMLSave

Using XML-SQL Utility (XSU) 4-1

« XSU Insert Processing in PL/SQL
« Update Processing
« Delete Processing
« Advanced Usage Techniques
« Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)

4-2 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Accessing XML-SQL Utility

Accessing XML-SQL Utility

XML-SQL Utility (XSU) is provided with Oracle8i and it is made up of three files:

$ORACLE_HOME/rdbms/jlib/xsul2.jar -- contains all the java classes which
make up the XSU. The xsul2 requires JDK1.2.x or and JDBC2.x. This is the
version of the xsu loaded into the database itself.

$ORACLE_HOME/rdbms/jlib/xsulll.jar -- contains the same classes as
xsul2.jar except that xsulll requires JDK1.1.x and JDBC1.x.. JDK1.1.8 is the
official JDK version supported by Oracle on the client side.

$ORACLE_HOME/rdbms/admin/dbmsxsu.sql -- this is the SQL script which
builds the XSU’s PL/SQL API. xsul2.jar need to be loaded into the database
before dbmsxsu.sql is executed. This script is automatically

By default the Oracle8i installer will install the XSU on your hard drive (in the
locations specified above) as well as load it into the database. In the case that
during initial installation you asked the installer not install the XSU, you can always
run the installer later and have it install just the XSU and its dependent
components. In this case the XSU will not be automatically loaded into the
database; instead, you will have to take the following steps:

If you haven’t yet loaded the xmlparser for java into the database, go to
$ORACLE_HOME/xdk/lib. Here you will find xmlparserv2.jar which you will
need to load into the database. For how to accomplish this see "Loading JAVA
Classes" in the "Oracle8i Java Stored Procedures Developer's Guide"

Next go to SORACLE_HOME/admin and execute the catxsu.sql script.

Note that the Oracle XML SQL Utility (XSU) is also available on OTN site: http:
//technet.oracle.com/tech/xml. You can check here for XSU updates.

Using XML-SQL Utility (XSU) 4-3

http: technet.oracle.com/tech/xml

Using XML-SQL Utility (XSU)

Using XML-SQL Utility (XSU)

XML has rapidly become the format for data interchange. Today, a substantial
amount of business data resides in object-relational databases. It is therefore
necessary to transform this "relational” data to XML for purposes of
communication. XML-SQL Utility (XSU) provides a simple way of achieving this
data transformation, by mapping canonically any SQL query result to XML and vice
versa.

For example, to retrieve the results of the employee table in scott’s schema (which is
available in all databases as a default schema), we can supply the query,

select* from scott.emp

to the utility and with the default settings will result in an XML document as shown
below:-

<?xmlversion="1..0'?>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0:0:.0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
<[ROW>
<l- additional rows ... =
</ROWSET>

You can take a similar document and also insert it back in to the same table. XSU
also provides APIs for updating and deleting XML documents.

When to Use XML-SQL Utility (XSU)

The XML-SQL Utility (XSU) provides the basic functionality to get and put data to
and from the database. The utility provides a canonical mapping back and forth
with some simple transformations (such as changing the name of the ROW tag
generated for each row). Any complex transformations can be achieved by applying
an industry standard XSL (XML Stylesheet Language) transformation over the
document. Oracle XML Parser V2 supports a powerful XSL processor, XSLT, to
perform transformations. XSL transformations can be also registered with the XSU
directly, thus the XML generated by the XSU will be automatically transformed.

4-4 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Using XML-SQL Utility (XSU)

Note: If the primary focus of your application is to generate XML pages

to web sources, then you can consider using the XSQL servlet. This is a
standard Java servlet that can automate this process and provide a simpler
XML template-like language to specify the transformations.

Using XML-SQL Utility (XSU) 4-5

Where Can You Run XML-SQL Utility (XSU)?

Where Can You Run XML-SQL Utility (XSU)?

The XML-SQL Utility is written in Java and can be run in any tier that supports Java, such
as the following:

« Inthe database

« In Middle Tier Application servers which support Java -- call XSU from middle
tier servers

« In Web Servers -- call the XSU Java APIs from within servlets running inside
web servers.

= On the client -- use the XSU’s Java API in your Java applications or use XSU’s
command line front end.

Running XML-SQL Utility in the Database

The java classes which make up the XSU can be loaded into the8Dd8#sever;

furthermore, the XSU contains a PL/SQL wrapper which published the XSU’s Java API to
PL/SQL creating a PL/SQL API. This way one can write new java applications which run
inside the database and which directly access the XSU’s Java API; one can write PL/SQL
applicatons which access XSU through its PL/SQL API; or one can access the XSU’s
funtionality directly through SQL. Note that to load and run Java code inside the database
you need a java enabled Oracle8i Sever.

Figure 4-1 shows how a typical architecture for such a system. XML generated from
XSU running inside the database can be placed in advanced queues in the database
to be queued to other systems or clients. The XML can be used from within stored
procedures inside the database or shipped outside via web servers or application
servers.

Note in the figure that all lines are bi-directional. Since XSU can generate as well as
put data, data can come from various sources to XSU running inside the database
and can be put back in the appropriate database tables.

4-6 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Where Can You Run XML-SQL Utility (XSU)?

Figure 4-1 Running XML-SQL Utility in the Database

Middle Tier
Oracle8 i Application Web
Server Server
Advanced
Queuing | [] e m
(AQ) P Application
_B
4 ———1 H
SQL l |
Tables XML-SQL Utility —_
and «¢ P (Java / PL/SQL) — User
Views —
f XML*
XML*
Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, UML, . ..

Running XML-SQL Utility in the Middle Tier

Your application architecture might force the use of an 'application server’ in the middle tier
that is separate from the database. This application tier could be an Oracle database, an
Oracle "application server’, or a third party application server that supports Java programs.

You may want to generate XML in the middle tier from SQL queries or ResultSets for
various reasons. For example, to integrate different JDBC data sources in the middle tier. In
this case, you can use the Java version of XSU and then call the XSU Java API directly from
Java programs running in the middle tier.

Figure 4-2 shows how a typical architecture for running XSU in a middle tier. Data from
JDBC sources is converted by XSU in the middle tier and then sent to web servers or other
systems. Again, the whole process is bi-directional and the data can be put back into the
JDBC sources (database tables or views) using XSU. If an Qiatd¢abase itself is used as

the application server, then you can also use the PL/SQL front-end instead of Java.

Using XML-SQL Utility (XSU) 4-7

Where Can You Run XML-SQL Utility (XSU)?

Figure 4-2 Running XML-SQL Utility in the Middle Tier

Middle Tier

Application Server

or

Oracle8i (Java or Web

PL/SQL front end) Server
Database
SQL data E Application XML* XML o .
(via JDBC) Logic Por—
| b ——l—> —\
XML-SQL Utility —
(Java) User
]:IJ
XML*
Other Database, * XML, HTML,
Messaging Systems, . . . XHTML, UML, . ..

Running XML-SQL Utility in a Web Server

The Java version of XSU can also be run in the web server itself, as long as the web server
supports Java servlets. XSU can be directly called by Java servlets and the XML can be
generated and put back from the web server itself. The XSQL servlet is a standard servlet
provided by Oracle which calls the utility to generate and save XML data. If this is the
primary intent for using this product, then consider using the XSQL servlet, as it eliminates
a lot of servlet coding and provides a simpler template approach for XML processing from
the web server.

See: Chapter 19, "Using XSQL Servlet" for information about
using the XSQL Servlet.

4-8 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Where Can You Run XML-SQL Utility (XSU)?

Web Server
(running Servlets)

[

[Servlets SML*
XSQL servlets

u) > —>
XML-SQL Utility 3
(Java) User

Any
Database SQL data
(via JDBC)

e
A

* XML, HTML,
XHTML, UML, . . .

What Does XML-SQL Utility Work With?

XML-SQL Utility needs the following components in order to function:

« A Data Source. XML-SQL Utility (XSU) needs the JDBC drivers. The utility can
work with any JDBC drivers but is optimized for Oracle’s JDBC drivers. Oracle,
does not make any guarantees or provide support for the XSU running against
non-Oracle databases.

« XML Parser. XSU needs the Oracle XML Parser, Version 2. This is provided as
part of the Oracle8i install, and is also available as part of the XSU install
downloadable from Oracle Technology Network (OTN) web site.

XSU Features
XSU consists of a command line front end, a Java APl and a PL/SQL API. The main
features of the XSU are as follows:

« Supports generation of XML documents from any SQL query. It virtually
supports all the datatypes supported in the Oracle8i database server.

= Supports dynamic generation of DTDs (Document Type Definitions). In the
future we will support XMLSchemas as well.

= Supports simple transformations in the generation such as modifying the
default tag names for the ROW element etc. One can also register a XSL
transformation which is then applied to the generated XML documents on the

fly.
« Can generate XML documents in their string or DOM representations.

Using XML-SQL Utility (XSU) 4-9

Where Can You Run XML-SQL Utility (XSU)?

« Supports insertion of XML into database tables/views. It also can update
records or delete records from a database object, given an XML document.

« Complex nested XML documents can be easily generated and stored in to
relational tables by creating object views over these flat tables and querying
over these views. Object views can create structured data from existing
relational data using Oracle8i’s object-relational infrastructure.

4-10 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Mapping Primer

XSU Usage Guidelines

This section describes the basic usage steps for the various flavors of XSU, including
the client side command line, Java APIs, and PL/SQL APIs. A comprehensive
example and usage is described in the next section under usage patterns. The usage
topics covered include the following:

Mapping Primer

Mapping Primer

« Mapping: Generating XML from SQL

« Mapping: Storing SQL from XML - inserts, updates, deletes
Using the XSU Command Line Front End

Using the XSU Java API

Using the XSU PL/SQL API -- dbms_xmlquery & dbms_xmlsave

Before explaining the steps involved in the usage of the various APIs, you need to
know what the default mapping is from SQL to XML (Generating XML) and back
(Storing XML). As explained earlier, XML-SQL Utility (XSU) provides a canonical
mapping from SQL data to XML data and back. The following mappings are
explained below:

Mapping: Generating XML from SQL
Mapping: Storing SQL from XML

Mapping: Generating XML from SQL

Given a SQL query, a canonical mapping is made to create an XML document.
Consider a table, emp in the scott schema which has the structure,

CREATE TABLE emp
(
EMPNO NUMBER,
ENAME VARCHAR2(20),
JOB VARCHAR2(20),
MGR NUMBER,
HIREDATE DATE,
SAL NUMBER,
DEPTNO NUMBER

Using XML-SQL Utility (XSU) 4-11

Mapping Primer

To convert the table elements to XML, we can fire off a query through one of the APIs
available from the utility,

select * from scott.emp;

On executing this query, the utility will generate an XML document which contains a
ROWSET tag to enclose the results of all the rows. Each ROW is encapsulated within a
ROW tag. The ROW tag also contains an attribute "num" which identifies the row number

for each element. Each scalar element maps to an XML element. Column names become the
tag names for the element. In the present case, any column which cannot be a valid XML
identifier name (such as empno$ or empno#) has to be changed to a valid XML name by
supplying an alias in the select query:

<?xml version=1.07>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0:0.0<HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
</ROW>
<l- additional rows ... =
</ROWSET>

The default mapping can be changed by using the various options through the APIs. Scalar
values map to flat XML documents.

Oracle8i supports the notion of object types, collections and object references. These
provide structural modelling within the server. The mapping to XML for these
preserve the structure. For example, consider department table which contains a
department address structure and a list of employees.

The AddressType is an object type which defines the structure of an address object.

CREATE TYPE AddressType AS OBJECT (
STREET VARCHAR2(20),

CITY VARCHAR2(20),

STATE CHAR(2),

ZIP VARCHAR2(10)

)
/

4-12 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Mapping Primer

An employee type is also present which defines the structure of an employee. Note how the
employee’s address is defined using the address type.

CREATE TYPE EmployeeType AS OBJECT
(
EMPNO NUMBER,
ENAME VARCHAR2(20),
SALARY NUMBER,
EMPADDR AddressType
)
/
Now, we can create a list of employees by defining a list type.

CREATE TYPE EmployeelListType AS TABLE OF EmployeeType;

/
And finally, the department table is created with a department address and the list of
employees. Each row of this table contains a nested collection of employee objects each of
which contains the employee’s descriptions including their name, salary and address.

CREATE TABLE Dept

(

DEPTNO NUMBER,
DEPTNAME VARCHAR2(20),
DEPTADDR AddressType,
EMPLIST EmployeeListType
)

Assuming that valid values are stored in the department table, we can map the results of a
select query on the table into an XML document shown below:-

<?xmlversion="1..0'?>
<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>Sports</DEPTNAME>
<DEPTADDR>
<STREET>100 Redwood Shores Pkwy</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
</DEPTADDR>
<EMPLIST>
<EMPLOYEE TYPE num="1">
<EMPNO>7369</EMPNO>
<ENAME>John</ENAME>
<SALARY>10000</SALARY>

Using XML-SQL Utility (XSU) 4-13

Mapping Primer

<EMPADDR>
<STREET>300 Embarcadero</STREET>
<CITY>Palo Alto</CITY>
<STATE>CA</STATE>
<ZIP>94056</ZIP>
</EMPADDR>
<EMPLOYEE_TYPE>
<l- additional employee types within the employee list —>
</EMPLIST>
<[ROW>
<l- additional rows ... =
</ROWSET>

You can see from the example above, how the object type attributes map to nested elements
in the XML document and collection types map to XML lists. The same nesting can also be
achieved by using CURSOR subqueries. With the use of object views you can realize the
same structures from existing relational tables.

Mapping: Storing SQL from XML

The XML-SQL utility provides the ability to map the XML documents to table rows and

also provides the ability to update top level columns and to delete rows. The storage uses a
simple mapping to map the element tag names to columns. XML strings are converted to the
appropriate data types through default mappings. If the XML element is structured, you can
map it to a SQL object type.

Inserts

For example, thEEPTADDRelement would get mapped to thddressTyp&QL type

when inserting into thBepttable. When mapping to object types and collections, only the
structure and the names need to match. So one can generate the XML from a column of the
AddressTypeand map it to a column of typeddressTyp@rovided the structure of the
Addresselement is the same for both the types and the SQL type attribute names also match.

The insert case is handled simply by firing an insert statement and binding all the values of
the elements in the VALUES clause of the insert statement. We would map the contents of
each ROW element as a separate set of values to be inserted. So, if you take the XML
document shown in the previous section, and ask XSU to insert it infefitéable, the

XSU will generate an insert statement of the form:

INSERT INTO Dept (DEPTNO, DEPTNAME, DEPTADDR, EMPLIST) VALUES (?,2,2,?

and bind the values ,
DEPTNO<-100

4-14 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Mapping Primer

DEPTNAME <- SPORTS
DEPTADDR <- AddressType("100 Redwood Shores Pkwy',Redwood Shores’,
'CA,/94065)

EMPLIST <- EmployeeListType(EmployeeType(7369, John’, 100000,
AddressType('300 Embarcadero’,Palo Alto’, CA','94056),...)

If there is more than one ROW element in the XML document, then for each ROW, the XSU
bind the values and executes the statement. The insert processing can be optimized to inse
in batches, commit in batches all of which is explained irfltheert Processing’on

page 4-35.

Updates

Updates and deletes differ from insert in that they can affect more than one row in the
database table. In the case of insert, each ROW element of the XML document can affect at
most one row in the table, provided that there are no triggers or constraints on the table.
However, in the case of updates and deletes, the XML element might match more than one
row if the matching columns are not key columns in the table.

In case of updates, the user is expected to provide a list of key columns which the XSU wiill
use to identify the row to update. For example, to update the DEPTNAME to SportsDept
instead of Sports, you can have an XML document such as,

<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>SportsDept</DEPTNAME>
</ROW>
</ROWSET>

and supply the DEPTNO as the key column. This would fire off the following update
statement:

UPDATE DEPT SET DEPTNAME =? WHERE DEPTNO =?

and bind the values,

DEPTNO <- 100
DEPTNAME <- SportsDept

In the update case, you can also opt to update only a set of columns and not all the element:
present in the XML document.

Using XML-SQL Utility (XSU) 4-15

Using the XSU Command Line Front End

Deletes

In the case of deletes, the user can opt to give a set of key columns for the delete to identify
the rows. If the set of key columns are not given, then the delete statement will try to match
all the columns given in the document. Given a document such as:

<ROWSET>
<ROW num="1">
<DEPTNO>100</DEPTNO>
<DEPTNAME>Sports</DEPTNAME>
<DEPTADDR>
<STREET>100 Redwood Shores Pkwy</STREET>
<CITY>Redwood Shores</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
</DEPTADDR>
<[ROW>
<l- additional rows ... =
</ROWSET>

to delete, the utility will fire off a delete statement (one per ROW element) which would
look like the following:

DELETE FROM Dept WHERE DEPTNO = ? AND DEPTNAME =? AND DEPTADDR = ?
binding,

DEPTNO <- 100

DEPTNAME <- Sports

DEPTADDR <- AddressType("200 Redwood Shores Pkwy';Redwood

City’,CA’,/94065)

Exact usage of all of these is explained in the "Basic Usage and advanced usage" sections.
(**** cross reference this properly)

Using the XSU Command Line Front End

XSU comes with a simple command line front-end which gives user a quick access to
XSU’s XML generation and XML insertion functionalities. At this point, the XSU front end
does not publish the update and delete functionalities of the XSU.

The command line options are provided through the java class OracleXML . Invoke
it by calling:

java OracleXML

The above call will result the front-end usage information to be printed.

4-16 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Generating XML using XSU’s Front-End

To be able to run the XSU front-end, you first need to specify where is the
executable located. To do this add the XSU java library (xsul2.jar or xsulll.jar) to
your CLASSPATH.

Now, since the XSU has a dependency on the Oracle XML Parser and the JDBC
drivers, for the XSU to run, you need to make the location of these components also
known. To do this, your CLASSPATH needs to include the locations of the Oracle
XML Parser java library (xmlparserv2.jar) and the JDBC library (classes12.jar if
using xsul2.jar or classes1ll.jar if using xsulll.jar).

Generating XML using XSU's Front-End

To use the generation capabilities, call XSU with the getXML parameter. For
example, to generate an XML document by querying the emp table under scott
schema,

java OracleXML getXML -user "scottftiger” "select * from emp"

This performs the following tasks:

« Connects to the current default database
« Executes the query "select * from emp"

« Converts the result to XML

« Displays the result

getXML supports a wide range of options which are explained in the following
section.

OracleXML - getXML Options
= -user "<username>/<password>"

Used to specify the user name and password to connect to the database. If this

is not specified, the user defaults to "scott/tiger". Note that he connect string is
also being specified, the user name and password can be specified as part of the
connect string.

« -conn "<JDBC_connect_string>"

Used to specify the JDBC database connect string. By default the connect string
is: "jdbc:oracle:oci8:@"):

« -withDTD

Using XML-SQL Utility (XSU) 4-17

Generating XML using XSU'’s Front-End

Instructs the XSU to generate the DTD along with the XML document.
« -rowsetTag "<tag_name>"

Used to specify rowset tag (i.e. the tag that encloses all the XML elements
corresponding to the records returned by the query) The default rowset tag is
ROWSET. Specifying an empty string for the rowset tells the xsu to completely
omit the rowset element.

« -rowTag "<tag_name>"

Used to specify the row tag (the tag used to enclose the data coresponding to a
database row). The default row tag is ROW. Specifying an empty string for the
row tag tells the xsu to completely omit the row tag.

« -rowldAttr "<row_id-attribute-name>"

Used to name the attribute of the ROW element keeping track of the cardinality
of the rows. By default this attribute is called "num®”. Specifying an empty
string (i.e. ™) as the row id attribute will tell the XSU to omit the attribute.

. -rowldColumn "<row Id column name>"

Used to specify that the value of one of the scalar columns from the query
should be used as the value of the row id attribute.

« -collectionldAttr "<collection id attribute name>"

Used to name the attribute of a XML list element keeping track of the
cardinality of the elements of the list (note: the generated XML lists correspond
to either a cursor query, or collection). Specifying an empty string (i.e. ™) as the
row id attribute will tell the XSU to omit the attribute..

« -useNullAttrid

Used to tell the XSU to use the attribute "NULL (TRUE/FALSE)" to indicate the
nullness of an element.

« -styleSheet "<stylesheet URI>"

Used to specify the stylesheet in the XML PI (Processing Instruction).
« -StylesheetType "<stylesheet type>"

Used to specify the stylesheet type in the XML PI (Processing Instruction).
« -errorTag "<error tag name>"

Used to specify the error tag -- the tag to enclose error messages which are
formated into XML.

4-18 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Inserting XML using XSU’s Front End

« -raiseNoRowsException
Used to tell the XSU to raise an exception if no rows are returned.
« -maxRows "<maximum number of rows>"

Used to specify the maximum number of rows to be retreived and converted to
XML.

« -skipRows "<number of rows to skip>"
Used to specify the number of rows to be skipped.
« -encoding "<encoding name>"
Used to specify the characterset encoding of the generated XML.
« -dateFormat "<date format>"
Used to specify the date format for the date values in the XML document.
« -fileName "<SQL query fileName>" | <sql query>

Used to specify the file name which contains the query or specify the query
itself.

Inserting XML using XSU’s Front End

To put an XML document in to themptable undescottschema, use the following syntax:

java OracleXML putXML -user "scottfiger” -fileName "Amp/tempxml* "emp”

This performs the following tasks:

« Connects to the current database

« Reads the XML document from the given file

« Parses it, matches the tags with column names

« Inserts the values appropriately in to the "emp" table

Note: The XSU'’s Front End putXML currently only publishes XSU’s
insert functionality and may be expanded in the future to also publish
XSU’s update and delete functionality.

OracleXML - putXML Options
The following lists the putXML options:

Using XML-SQL Utility (XSU) 4-19

Inserting XML using XSU’s Front End

« -user "<username>/<password>"

Used to specify the user name and password to connect to the database. If this

is not specified, the user defaults to "scott/tiger". Note that he connect string is
also being specified, the user name and password can be specified as part of the
connect string.

« -conn "<JDBC_connect_string>"

Used to specify the JDBC database connect string. By default the connect string
is: "jdbc:oracle:oci8:@"):

« -batchSize "<batching size>"

Used to specify the batch size, which control the number of rows which are
batched together and inserted in a single trip to the database. Batching
improves performance.

« -commitBatch "<commit size>"

Used to specify the number of inserted records after which a commit is to be
executed. Note that if the autocommit is true (default), then setting the
commitBatch has no consequence.

« -rowTag "<tag_name>"

Used to specify the row tag (the tag used to enclose the data coresponding to a
database row). The default row tag is ROW. Specifying an empty string for the
row tag tells the XSU that no row enclosing tag is used in the XML document.

« -dateFormat "<date format>"
Used to specify the date format for the date values in the XML document.
« -ignoreCase

Used to make the matching of the column names with tag names case
insensitive (e.g. "EmpNo" will match with "EMPNO" if ignoreCase is on).

« -fileName "<file name>" | -URL "<url>" | -xmIDoc "<xml document>"

Used to specify the XML document to insert. The fileName option specifies a
local file, the URL specifies a URL to fetch the document from and the xmlIDoc
option inlines the XML document as a string on the command line.

« <tableName>

The name of the table to put the values into.

4-20 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XML-SQL Utility for Java

XML-SQL Utility for Java

The following two XSU classes are useful for the Java APl programmer:

» oracle.xml.sgl.query.OracleXMLQuery : Generates a XML document
given a SQL query.
« oracle.xml.sqgl.dml.OracleXMLSave : Puts a XML document into tables
and views
Generating XML

TheOracleXMLQuery class makes up the XML generation part of the XSU’s Java API.
Figure 4-3 illustrates the basic steps in the usage of OracleXMLQuery.

Perform these steps when generating XML:

1. First create a connection

2. Create an OracleXMLQuery instance by supplying a SQL string or a
ResultSet object

3. Get the result as either a DOM tree or as an XML string

Figure 4-3 Generating XML With XML-SQL Utility for Java: Basic Steps

SQL DOM
Query getXMLDOM object
——p | Create JDBC » | OraclexMLQuery [Further
Connection instance rocessin
p g
| JDBC Result [P . ML
SQL Set getXMLString v
Query String

The following example, shows how a simple XML document can be generated.

XSU: Basic Generation of XML From SQL Queries

These examples illustrate how using the XSU you can get a XML document in its DOM or
string representation given a SQL query. Biggire 4—4

Using XML-SQL Utility (XSU) 4-21

XML-SQL Utility for Java

1

User / Browser /
Client /
Application

Figure 4-4 Generating XML With the XML-SQL Ultility: Process and Options

REGISTER
Query

set
the options

-

bind
values

Generated
XML
as DOM

Generated
XML
as String

Generating XML from the Database using the XML-SQL Utility

XSU Example 1: Generating a String From emp table

The first step before getting the XML is to create a connection to the database. The
connection can be obtained by supplying the JDBC connect string. You have to first
register the Oracle JDBC class and then create the connection.

/limport the Oracle driver..

import oracle jdbc.driver;

I/ Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

Il Create the connection.

Connection conn=

DriverManager.getConnection(jdbc:oracle:oci8:@","scott", tiger”);

Ll

User / Browser /
Client /
Application

Here, the connection is done using the OCI8 JDBC driver. You can connect to the
scott schema supplying the password tiger. It connects to the current database
(identified by the ORA_SID environment variable). You can also use the JDBC thin

4-22 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XML-SQL Utility for Java

driver to connect to the database. The thin driver is written in pure Java and can be
called from within applets or any other Java program.

See Also: Oracle8i Java Developer’s Guide for more details on this

Connecting With the Thin Driver
Here’s an example of connecting using the thin driver.

/I Create the connection.
Connection conn =
DriverManager.getConnection(jdbc:oracle:thin:@disun489:1521:ORCL",
"scott”,"tiger");

The thin driver requires the specification of the host name (dIsun489), port number
(1521) and the oracle SID (ORCL) which identifies a specific Oracle instance on the
machine.

No Connection Needed When Run In the Server

In the case of writing server side Java code, i.e., code that will run inside the server,
you need not establish a connection using a username and password, since the
server-side internal driver runs within a default session. You are already
"connected". In that case you call the defaultConnection() on the
oracle.jdbc.driver.OracleDriver() class to get the current connection.

import oracle jdbc.driver;
I/ Load the Oracle JDBC driver

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn= new oracle.jdbc.driver.OracleDriver ().defaultConnection ();

The rest of the notes will either assume the OCI8 connection from the client or that
you already have a connection object created. Use the appropriate connection
creation based on your needs.

Creating an OracleXMLQuery Class Instance

Once you have registered your connection, create an OracleXMLQuery class
instance by supplying a SQL query to execute,

llimport the query class in to your class
import oracle xml.sgl.query.OracleXMLQuery;,

OracleXMLQuery qry = new OracleXMLQuery (conn, "select * from emp');

Using XML-SQL Utility (XSU) 4-23

XML-SQL Utility for Java

You are now ready to use the query class.

XML String Output: ~ You can get a XML string for the result by:
String xmiString = gry.getXMLString();

DOM Object Output: If, instead of a string, you wanted a DOM object instead, you can
simply ask for a DOM output,

orgw3c.DOM.Document domDoc = qry.getXMLDOM();

and use the DOM traversals.

Here’s a complete listing of the program to extract the XML string. This program
gets the string and prints it out to the standard output.

Import oracle jdbc.driver;

import oracle xml.sgl.query.OracleXMLQuery;
import java.lang.*;

import java.sgl.*;

Il class to test the String generation!
class testXMLSQL {

public static void main(String(] argv)
{

ty{
I/ create the connection

Connection conn = getConnection('scott”, tiger");

I/ Create the query class.
OracleXMLQuery gry = new OracleXMLQuery(conn, "select * from emp');

Il Getthe XML string
String str = qry.getXMLString();

I/ Print the XML output
System.out.printin(* The XML output is\n"+str);
I Aways close the query to get rid of any resources..
qry.close();
Jeatch(SQLException e){
System.out.printin(e-toString();
}
}

4-24 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XML-SQL Utility for Java

/] Get the connection given the user name and password..!
private static Connection getConnection(String usemame, String password)
throws SQLException

{
I register the JDBC driver..

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

I/ Create the connection using the OCI8 driver
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" ,usemame,password);

retumn conn;

}
}

How to Run This Program?

To run this program, carry out the following:

1. Store this in a file called testXMLSQL .java
2. Compile it using javac-the Java compiler

3. Eexecute it by specifying "java testXMLSQL"

You must have the CLASSPATH pointing to this directory for the java executable to
find the class. Alternatively use various visual Java tools including Oracle’s
JDeveloper to compile and run this program.

When run, this program prints out the XML file to the screen.

XSU Example 2: Generating DOM From emp table (Java)

A DOM (Document Object Model) is a standard defined by the W3C committee which
represents an XML document in a parsed-tree like form. Each XML entity becomes a DOM
node. Thus XML elements, attributes become DOM nodes and their children become child
nodes.

To generate a DOM tree from the XML generated by the utility, it is efficient to directly ask
for a DOM Document from the utility, as it saves the overhead of creating a string
representation of the document and then parse it to generate the DOM tree.

Using XML-SQL Utility (XSU) 4-25

XML-SQL Utility for Java

XSU calls the parser to directly construct the DOM tree from the data values. The
example is shown below to get the DOM tree. The example "walks" through the
DOM tree and prints all the nodes one by one.

import orgw3c.dom*;

import oracle.xml.parser.v2.*;

import java.sgl.;

import oracle xml.sql.query.OracleXMLQuery;,
import javaio*;

class domTest{

public static void main(String]] argv)
{

ty{
// create the connection

Connection conn = getConnection("scott", tiger");

Il Create the query class.
OracleXMLQuery gry = new OracleXMLQuery(conn, "select * from emp');

I/ Get the XML DOM object. The actual type is the Oracle Parser's DOM
I representation. (XMLDocument)
XMLDocument domDoc = (XMLDocument)qry.getXMLDOM();

I/ Print the XML output directly from the DOM
domDoc print(System.out);

I/'fyou instead want to print it to a string buffer you can do
this..!

StringWhiter s = new String\Whiter(10000);

domDoc print(hew PrintWhiter(s));

System.out.printin(* The string version —> "+s.toString());

gry.close(); // You should always close the query!!
Jcatch(Exception e){
System.out printin(e.toString());
}
}

/] Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{

4-26 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Paginating Results: skipRows and maxRows

DriverManager.registerDriver(hew oracle jdbc.driver.OracleDriver());
Connection conn =

DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

Paginating Results: skipRows and maxRows

In the examples shown so far, the XML-SQL Utility (XSU) takes the ResultSet or the query
and generates the whole document from all the rows of the query. For getting say, 100 rows
at a time, the user would then have to fire off different queries to get the first 100 rows, the
next 100 and so on. Also it is not possible to skip say the first 5 rows of the query and then
generate the Result. For getting these desired results, use XSU'’s skipRows and maxRows
settings.

The skipRows parameter when set will force the generation to skip the desired number of
rows before starting to generate the result. The maxRows on the other hand, would limit the
number of rows that are converted to XML. If you set the skipRows to a value of 5 and
maxRows to a value of 10, then the utility would skip the first 5 rows, and then generate the
XML for the next 10 rows.

Keeping the Object Open

In web scenarios, you might want to keep the query object open for the duration of the user’s
session. For example, take the case of a web search engine which gives the results of a
user’s search in a paginated fashion. The first page lists 10 results, the next page lists 10
more results and so on. To achieve this, ask the utility to convert 10 rows at a time and to
keep the ResultSet state alive, so that the next time we ask it for more results, it will start
generating from the place the last generation finished.

When the Number of Rows or Columns in a Row Are Too Large
There is also the case that the number of rows, or the number of columns in a row may be
very large. In this case, you can generate multiple documents each of a smaller size.

These cases can be handled by using the maxRows parameter and using the keepObjectOpe
functionality.

keepObjectOpen Function

Typically, as soon as all results are generated, OracleXMLQuery internally closes the
ResultSet, if it created one using the SQL query string given, since it assumes you no longer

Using XML-SQL Utility (XSU) 4-27

Paginating Results: skipRows and maxRows

want any more results. However, in the case described above, we need to maintain that state,
so we need to call the keepObjectOpen function to keep the cursor alive.

XSU Example 3. Paginating Results: Generating an XML Page When Called (Java)

The following example, writes a simple class which maintains the state and
generates the next page every time it is called.

import orgw3c.dom.*;

import oracle xml.parser.v2.%;

import java.sgl.;

import oracle xml.sql.query.OracleXMLQuery;,

import java.io*;

public class pageTest

{
Connection conn;
OracleXMLQuery qry;
ResultSet rset;
Statement stmt,
intlastRow=0;

public pageTest(String sqlQuery)
{
ty{
conn =getConnection('scott", tiger");
I/stmt = conn.createStatement(ResultSet TYPE_SCROLL SENSITIVE,

I ResultSet CONCUR_READ_ONLY)// create a scrollable Rset
JIstmt = conn.createStatement(ResultSet TYPE_SCROLL_INSENSITIVE,
I ResultSet CONCUR_READ_ONLY)// create a scrollable Rset

stmt = conn.createStatement();
ResultSet rset = stmt.executeQuery(sglQuery); // get the result set..
rsetfirst();
gry = new OracleXMLQuery(conn,rset); // create a OracleXMLQuery instance
grykeepCursorState(true); // Don't lose state after the first fetch
gry.setRaiseNoRowsEXxception(true);
gry.setRaiseException(true);
Jeatch(SQLEXxception e)
System.outprintin(e.toString());
}
}

I Retums the next XML page..!
public String getResult(int startRow, int endRow) throws SQLEXception

{
Ifrsetrelative(lastRow-startRow); // scrollinside the result set

4-28 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Paginating Results: skipRows and maxRows

Ifrsetabsolute(startRowi); // scroll inside the result set
gry.setMaxRows(endRow-startRow); // set the max # of rows to retrieve..!
lISystem.out.printin('before getxml”);
retum gry.getXMLString();

}

I Function to still perform the next page.
public String nextPage() throws SQLException
{
String result = getResult(lastRow,lastRow+10);
lastRow+=10;
retum result;

}

public void close() throws SQLException

{
stmt.close(); // close the statement..
conn.close(); // close the connection
gry.close(); //close the query..

}

public static void main(String]] argv)

{
String str;

try{
pageTest test = new pageTest('select e.* fromemp e");

inti=0;
while ((str = testgetResult(i,i+10))!= null)

System.out.printin(str);
i+=10;
}
test.close();
Jcatch(Exception e}
e.printStackTrace(System.out);
}

}
Il Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

Using XML-SQL Utility (XSU) 4-29

Generating XML from ResultSet Objects

Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}

Generating XML from ResultSet Objects

We saw how we can supply a SQL query and get the results as XML. In the last example, we
saw how we can retrieve results in a paginated fashion. However in web cases, we might
want to retrieve the previous page and not just the next page of results. To provide this
scrollable functionality, we can use the Scrollable ResultSet. Use the ResultSet object to
move back and forth within the result set and use the utility to generate the XML everytime.

XSU Example 4: Generating XML from JDBC ResultSets (Java)

We will show how to use the JDBC ResultSet and generate XML from that. Note that using
the ResultSet might be necessary in cases which are not handled directly by the utility (for
example, setting the batch size, binding values,...) We will extend the previously defined
pageTest class so that we handle any page.

public class pageTest()
{
Connection conn;
OracleXMLQuery qry;
ResultSet rset;
intlastRow=0;

public pageTest(String saiQuery)
{
conn = getConnection("scott", tiger”);
Staterment stmt = conn.createStatement(sglQuery);/ create a scrollable
Rset

ResultSet rset = stmt.executeQuery(); // get the result set..

gry = new OracleXMLQuery(conn,rsef); // create a OracleXMLQuery
instance

gry.keepObjectOpen(true); / Don't lose state after the first fetch

I Retums the next XML page..!
public String getResult(int startRow, int endRow)

4-30 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Generating XML from ResultSet Objects

{

rset.scroll(lastRow-startRow); // scrollinside the result set
gry.setMaxRows(endRow-startRow); / set the max # of rows to
retrieve..!
retum gry.getXMLString();
}

/I Function to still perform the next page.

public String nextPage()

{
String result = getResult(lastRow,lastRow+10);
lastRow+=10;
retum resul;

}

public void close()

stmt.close(); // close the statement..
conn.close(); // close the connection

gry.close(); / closethe query..
}

public void main(String[] argv)

{
pageTest test = new pageTest('select * from emp');

inti=0;

while ((str = test.getResult(,i+10))!= null)
{ System.out.printn(str);
i+=10;
}
test.close();
}
}

XSU Example 5: Generating XML from Procedure Return Values (REF CURSORS)
(Java)

The OracleXMLQuery class provides XML conversion only for query string or for
ResultSets. But in your application if you had PL/SQL procedures which returned REF
cursors, how would you do the conversion?

Using XML-SQL Utility (XSU) 4-31

Generating XML from ResultSet Objects

In this case, you can use the above mentioned ResultSet conversion mechanism to
perform the task. REF cursors are references to cursor objects in PL/SQL. These
cursor objects are valid SQL statements which can be iterated upon to get a set of
values. These REF cursors are converted in to OracleResultSet objects in the
Java world.

You can execute these procedures, get the OracleResultSet object and then send
that in to the OracleXMLQuery object to get the desired XML.

Take this PL/SQL function which defines a REF cursor and returns it:

CREATE OR REPLACE package body testRef is

function testRefCur RETURN empREF is
aempREF;
begin
OPEN a FOR select * from scott.emp;
retum a;
end;
end;
/

Now, everytime this function is called, it opens a cursor object for the query, "select * from
emp" and returns that cursor instance. If you wanted to convert this to XML, you can do the
following:

import orgw3c.dom*;
import oracle xml.parser.v2.%;
import java.sgl.*;
import oracle jdbc.driver.¥;
import oracle xml.sql.query.OracleXMLQuery;,
import java.io*;
public class REFCURtest
{
public static void main(String] argv)
throws SQLException
{
String str;
Connection conn = getConnection('scott”, tiger"); // create connection
I/ Create a ResultSet object by calling the PL/SQL function
CallableStatement stmt =
conn.prepareCall("begin ? .= testReftestRefCur(); end;';

stmtregisterOutParameter(1,0racle Types.CURSORY); // set the define type

4-32 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Raising No Rows Exception

stmtexecute(); // Execute the statement.
ResultSet rset = (ResultSet)stmt.getObject(1); // Get the ResultSet

OracleXMLQuery gry = new OracleXMLQuery(conn,rset); // prepare Query class
qry.setRaiseNoRowsEXxception(true);
qry.setRaiseException(true);
qry.keepCursorState(true); // set options (keep the cursor alive..
while ((str = qry.getXMLString())!= null)
System.out printin(str);

qry.close(); // close the query..!

I/ Note since we supplied the statement and resultset, closing the

I/ OracleXMLguery instance will not close these. We would need to
Il explicitly close this ourselves..!

stmt.close();

conn.close();

}
/] Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLEXxception
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

To apply the stylesheet on the other hand, usapply/Stylesheet() command. This
forces the stylesheet to be applied before generating the output.

Raising No Rows Exception

When there are no rows to process the utility simply returns a null string. But it might be
desirable to get an exception everytime there are no more rows present, so that the
application can process this through exception handlers. When the
setRaiseNoRowsException () is set, then whenever there are no rows to generate for
the output the utility raises a oracle.xml.sgl.OracleXMLSQLNoRowsException. This is a
run time exception and need not be caught unless needed. The following code extends the
previous examples to use the Exception instead of checking for null strings.

Using XML-SQL Utility (XSU) 4-33

Storing XML

XSU Example 6: No Rows Exception (Java)

Storing XML

public class pageTest{
.... I rest of the class definitions....

public void main(String[] argv)

{
pageTest test = new pageTest('select * from emp");

testquery.setRaiseNoRowsException(true); // ask it to generate
exceptions
ry
{
while(true)
System.out printin(test.nextPage());

}
catch(oracle.xml.sgl. OracleXMLNoRowsException)

{
System.outprintin(* END OF OUTPUT "),

test.close();
}
}
}

Note how the condition to check the termination changed from checking for the result to be
null to an exception handler.

Now that we have seen how queries can be converted to XML, let see how we can put the
XML back into the tables or views using the utility. The class
oracle.xml.sqgl.dml.OracleXMLSave provides such functionality. It provides methods to
insert the XML into tables, update existing tables with the XML document and to delete
rows from the table based on the XML element values.

In all these cases the given XML document is parsed, the elements examined to match the
tag names to those of the column names in the target table or view. The elements are then
converted to the SQL types and then bound to the appropriate statement. The process and
options for storing XML using the XSU are showrFigure 4-5

4-34 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Insert Processing

Figure 4-5 Storing XML in the Database Using the XML-SQL Utility: Process and
Options

Storing XML in the Database

e B
—_— REGISTER
l I] the table

User / Browser /
Client/
Application

set

the options

insert
XML into
table

The document is assumed to contain a list of ROW elements each of which constitute a
separate DML operation, namely, insert, update or delete on the table or view.

Insert Processing

The steps to insert a document into a table or view is to simply supply the table or the view
name and then the document. The utility parses the document (if a string is given) and then
creates an insert statement which it binds all the values into. By default, the utility inserts
values into all the columns of the table or view and an absent element is treated as a NULL
value. The following code shows how the document generated from the emp table can be put
back into it with relative ease.

XSU Example 7: Inserting XML Values into all Columns (Java)
This example inserts XML values into all columns:

Using XML-SQL Utility (XSU) 4-35

Insert Processing

import java.sgl.;
import oracle xml.sgl.dml.OracleXMLSave;
public class testinsert
{
public static void main(String argv(])
throws SQLException
{
Connection conn = getConnection('scott”, tiger”);
OracleXMLSave sav = new OracleXMLSave(conn, "scott.emp”);
Il Assume that the user passes in this document. Save itin to the table.!
sav.insertXML(argv{1]);
sav.close();
}
I/ Get the connection given the user name and password..!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(hew oracle jdbc.driver.OracleDriver());
Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;
}
}

An insert statement of the form,
insertinto scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,2,2,2,2,?);

will be generated and the element tags in the input XML document matching the
column names will be matched and their values bound. For the code snippet shown
above, if we send it the XML document,

<?xml version=1.07>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0.0.0</HIREDATE>
<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
<ROW>
<l additional rows ... —>
</ROWSET>

4-36 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Insert Processing

we would have a new row in the emp table containing the values (7369, Smith,
CLERK, 7902, 12/17/1980,800,20). Any element absent inside the row element
would have been taken as a null value.

XSU Example 8: Inserting XML Values into Only Certain Columns (Java)

In certain cases, you may not want to insert values into all columns. This may be
true when the values that we are getting is not the complete set and we need
triggers or default values to be used for the rest of the columns. The code below
shows how this can be done.

Assume that we are getting the values only for the employee number, name and job
and the salary, manager, deptno and hiredate field gets filled in automatically. First

create a list of column names that we want the insert to work on and then pass it to

the OracleXMLSave instance.

import java.sgl.*;
import oracle xml.sgl.dml.OracleXMLSave;
public class testinsert
{
public static void main(String argv{])
throws SQLException
{
Connection conn = getConnection('scott”, tiger");
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp’);

String [] colNames = new String[5);
colNames[1] ="EMPNO";
colNames[2] ="ENAME";
colNames[3]="JOB",

sav.setUpdateColumnList(colNames); // set the columns to update..!

Il Assume that the user passes in this document as the first argument!
sav.insertXML(argv{1]);
sav.close();

}

Il Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn =

DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);

Using XML-SQL Utility (XSU) 4-37

Update Processing

retum conn;

}
}

An insert statement of the form,

insertinto scott.emp (EMPNO, ENAME, JOB) VALUES (?,?, ?);

is generated. Note that in the above example, if the inserted document contains
values for the other columns (JOB, HIREDATE etc.), those will be ignored.

Also an insert is performed for each ROW element that is present in the input.
These inserts are batched by default.

Update Processing

Now that we know how to insert values into the table from XML documents, let us
see how to update only certain values. If we get an XML document to update the
salary of an employee and also the department that she works in,

<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<SAL>1800</SAL>
<DEPTNO>30</DEPTNO>
<[ROW>
<ROW>
<EMPNO>2290</EMPNO>
<SAL>2000</SAL>
<HIREDATE>12/31/1992<HIREDATE>
<l additional rows ... —>
</ROWSET>

we can call the update processing to update the values. In the case of update, we
need to supply the utility with the list of key column names. These form part of the
where clause in the update statement. In the emp table shown above, the employee
number (EMPNO) column forms the key and we use that for updates.

XSU Example 9: Updating Using the keyColumns (Java)

This example updates the emp table using keyColumns:

import java.sgl.;
import oracle xml.sgl.dml.OracleXMLSave;
public class testUpdate

4-38 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Update Processing

{
public static void main(String argv{])
throws SQLEXxception
{
Connection conn = getConnection('scott’, tiger");
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp”);

String [] keyColNames = new String[1];
keyColNames|[1] ="EMPNO";
sav.setkeyColumnList(keyColNames);

I Assume that the user passes in this document as the first argument!
sav.updateXML (argv1]);

sav.close();

}
Il Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException
{

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=

DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

In this example, two update statements would be generated. For the first ROW
element, we would generate an update statement to update the SAL and JOB fields
as shown below:-

update scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

and for the second ROW element,
update scott.emp SET SAL =2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;

XSU Example 10: Updating a Specified List of Columns (Java)

However, in a lot of cases we might want to specify the list of columns to update.
This would speed up the processing since the same update statement can be used
for all the ROW elements. Also we can ignore other tags which occur in the
document. Note that when we specify a list of columns to update, an element
corresponding to one of the update columns, if absent, will be treated as NULL.

Using XML-SQL Utility (XSU) 4-39

Update Processing

If we know that all the elements to be updated are the same for all the ROW
elements in the XML document, then we can use the setUpdateColumnNames ()
function to set the list of columns to update.

import java.sgl.*;
import oracle xml.sgl.dml.OracleXMLSave;
public class testUpdate
{
public static void main(String argv(])
throws SQLException
{
Connection conn = getConnection('scott”, tiger”);
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp”);

String [] keyColNames = new String[1];
keyColNames[1] ="EMPNO";
sav.setkeyColumnList(keyColNames);

I/ we create the list of columns to update..!

I/ Note that if we do not supply this, then for each ROW element in the

/I’ XML document, we would generate a new update statement to update all
I/the tag values (other than the key columns)present in that element.

String[] updateColNames = new String[2];

updateColNames[1] ="SAL";

updateColNames[2] ="JOB",
sav.setUpdateColumnList(updateColNames); // set the columns to update..!

I Assume that the user passes in this document as the first argument!
sav.updateXML (argv1]);
sav.close();

}

Il Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=

DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);

retum conn;

}

}

4-40 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Delete Processing

Delete Processing

In the case of delete, you can set the list of key columns. These columns will be put
as part of the where clause of the delete. If the key column names are not supplied,
then a new delete statement will be created for each ROW element of the XML
document where the list of columns in the where clause of the delete will match
those in the ROW element.

XSU Example 11: Deleting Operations Per ROW (Java)

Consider the delete example shown below,

import java.sql.*;
import oracle xml.sgl.dml.OracleXMLSave;
public class testDelete
{
public static void main(String argvi])
throws SQLEXxception
{
Connection conn = getConnection('scott’, tiger");
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp');

Il Assume that the user passes in this document as the first argument!
sav.deleteXML(argV{1]);
sav.close();

}
/] Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

Connection conn =
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;

}
}

If we use the same XML document shown for the update example, we would end
up with two delete statements,

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;

DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The delete statements were formed based on the tag names present in each ROW
element in the XML document.

Using XML-SQL Utility (XSU) 4-41

Delete Processing

XSU Example 12: Deleting Specified Key Values (Java)

If we instead want the delete to only use the key values as predicates, we can use
the setKeyColNames function to set this.

import java.sgl.;
import oracle xml.sgl.dml.OracleXMLSave;
public class testDelete
{
public static void main(String argv{])
throws SQLEXxception
{
Connection conn = getConnection("scott", tiger”);
OracleXMLSave sav = new OracleXMLSave(conn, "scottemp’);

String [] keyColNames = new String[1];
keyColNames[1] ="EMPNO";
sav.setkeyColumnList(keyColNames);

Il Assume that the user passes in this document as the first argument!
sav.deleteXML(argV{1]);
sav.close();
}
I/ Get the connection given the user name and password..!
private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;
}
}

Here a single delete statement of the form,

DELETE FROM scottemp WHERE EMPNO="?

will be generated and used for all ROW elements in the document.

4-42 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Using the XML-SQL Utility for PL/SQL

Using the XML-SQL Utility for PL/SQL

The XML-SQL Utility PL/SQL API reflects the Java API in the generation and
storage. The DBMS_XMLQueryand DBMS_XMLSavare the two packages that
reflect the functions in the java classes - OracleXMLQuery and OracleXMLSave .

Both these packages have a context handle associated with them. Create a context
by calling one of the constructor-like functions to get the handle and then use the
handle in all subsequent calls.

Generating XML with DBMS_XMLQuery

Generating XML results in a CLOB that contains the XML document. The steps
involved in using the generation engine follow:

1. Create a context handle by calling the DBMS_XMLQuery.getCtx function and
supplying it the query (either as a CLOB or a VARCHAR?2)

2. Bind possible values to the query using the DBMS_XMLQuery.bind function.
The binds work by binding a name to the position. For example, the query can
be something like, select * from emp where empno = :EMPNO_VAR. Here the
user binds the value for the EMPNO_VAR using the setBindValue function.

3. Set optional arguments like the ROW tag name, the ROWSET tag name or the
number of rows to fetch etc.

4. Fetch the XML as a CLOB using the getXML() functions. The getXML can be
called to generate the XML with or without a DTD.

5. Close the context.

Here are some examples that use this PL/SQL package.

XSU Example 13: Generating XML From Simple Queries (PL/SQL)

In this example, we will try to select rows from the emp table and get a XML
document as a CLOB. We first get the context handle by passing in a query and then
call the getXMLClob routine to get the CLOB value. The document will be in the
same encoding as that of the database character set.

declare
queryCtx DBMS_XMLquery.ctXType;
result CLOB;

begin

- set up the query context...!

Using XML-SQL Utility (XSU) 4-43

Using the XML-SQL Utility for PL/SQL

queryCtx :=DBMS_XMLQuery.newContext(select * from emp));

- getthe result.!
result:= DBMS_XMLQuery.getXML(queryCix);
- Now you can use the result to put it in tables/send as messages..
printClobOut(result);
DBMS_XMLQuery.closeContext(queryCtx); —you must close the query handle..
end;
/

XSU Example 13a: Printing CLOB to Output Buffer

The printClobOut () is a simple procedure that prints the CLOB to the output
buffer. If you run this PL/SQL code in SQL*Plus, you will see the result of the
CLOB being printed out to screen. Set the serveroutput ~ to on in order to see the
results.

The printClobOut is shown below:-

ICREATE OR REPLACE PROCEDURE printClobOut(result IN OUT NOCOPY CLOB)is
Xmistr varchar2(32767);
line varchar2(2000);
begin
xmistr :=dbms_lob.SUBSTR(result,32767);
loop
exit when xmistr is null;
line := substrxmistr,1,instr(xmistr,chr(10))-1);
doms_outputput_line(] |line);
xmistr := substr(xmistr,instr(xmistr,chr(10))+1);
end loop;
end,;
/

XSU Example 14: Changing ROW and ROWSET Tag Names (PL/SQL)

The PL/SQL APIs also provide the ability to change the ROW and the ROWSET tag
names. These are the default names that are put around each row of the result and
around the whole document respectively. The procedures, setRowTagName and
setRowSetTagName accomplish this as shown below:

—Setting the ROW tag names
declare

queryCtx DBMS_XMLQuery.ctXType;
result CLOB;

4-44 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Using the XML-SQL Utility for PL/SQL

begin
- set the query context.
queryCtx := DBMS_XMLQuery.newContext(select * from emp);

DBMS_XMLQuery.setRowTag(queryCtx, EMP); — sets the row tag name
DBMS_XMLQuery.setRowSetTag(queryCtx, EMPSETY; — sets rowset tag name

result := DBMS_XMLQuery.getXML(queryCix); — get the result

printClobOuit(resultt); — print the result..!
DBMS_XMLQuery.closeContext(queryCtx); — close the query handle;
end;
/

The resulting XML document has an EMPSET document element and each row
separated using the EMP tag.

XSU Example 15: Paginating Results Using setMaxRows() and setSkipRows()

The results from the query generation can be paginated by using the setMaxRows
and setSkipRows functions. The former sets the maximum number of rows to be
converted to XML. This is relative to the current row position from which the last
result was generated. The skipRows parameter specifies the number of rows to skip
before converting the row values to XML. For example, to skip the first 3 rows of
the emp table and then print out the rest of the rows 10 at a time, we can set the
skipRows to 3 for the first batch of 10 rows and then set skipRows to 0 for the rest of
the batches.

As in the case of the XML-SQL Utility Java API, call the keepObjectOpen() function to
make sure that the state is maintained between fetches. The default behavior is to
close the state after a fetch is done. In the case of multiple fetches, we need to figure
out when there are no more rows to fetch. This can be done by setting the
setRaiseNoRowsException (). This causes an exception to be raised if no rows
are written to the CLOB. This can be caught and used as the termination condition.

— Pagination of results

declare
queryCtx DBMS_XMLquery.ctXType;
result CLOB;

begin

- set up the query context...!
queryCtx :=DBMS_XMLQuery.newContext(select * from emp));

Using XML-SQL Utility (XSU) 4-45

Setting Stylesheets in XSU (PL/SQL)

DBMS_XMLQuery.setSkipRows(queryCix,3); — set the number of rows to skip
DBMS_XMLQuery.setMaxRows(queryCtx,10); — set the max number of rows per fetch

result ;= DBMS_XMLQuery.getXML(queryCtx); — get the first resultt..!

printClobOut(resultt); — print the resutt out.. This is you own routine...!
DBMS_XMLQuery.setSkipRows(queryCtx,0); - from now don' skip any more rows..!

DBMS_XMLQuery.setRaiseNoRowsException(queryCtx true);
— raise no rows exception..!
begin
loop —loop forever..!
result := DBMS_XMLQuery.getXML(queryCtx); — get the next batch
printClobOuit(resut); - print the next batch of 10 rows..!
end loop;
exception
when others then
—dbms_output.put_line(sglemm);
null; - termination condition, nothing to do;
end;
DBMS_XMLQuery.closeContext(queryCtx); — close the handle..!
end;
/

Setting Stylesheets in XSU (PL/SQL)

The PL/SQL API provides the ability to set the stylesheet header in the result XML
or apply a stylesheet itself to the result XML document, before generation. The
latter is a huge performance win since otherwise the XML document has to be
generated as a CLOB, sent to the parser again and then the stylesheet applied. In
this case, internally the utility generates a DOM document, calls the parser, applies
the stylesheet and then generates the result. The procedure

setStylesheetHeader () sets the stylesheet header in the result. This simply adds
the XML processing instruction to include the stylesheet. The useStyleSheet ()
procedure on the other hand uses the stylesheet to generate the result.

Binding Values in XSU (PL/SQL)

The PL/SQL API provides the ability to bind values to the SQL statement. The SQL
statement can contain named bind variables. The variables have to start with a "’ in
front of them to signal that they are bind variables. The steps involved in using the

bind variable is as follows,

4-46 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Binding Values in XSU (PL/SQL)

1. Initialize the query context with the query containing the bind variables. For
example, the following statement registers a query to select the rows from the
emp table with the where clause containing the bind variables :EMPNO and
:ENAME which we will bind the values for employee number and employee
name later.

queryCtx = DBMS_XMLQuery.getCtx('select * from emp where empno = :EMPNO and
ename = :ENAME);

2. Setthe list of bind values. The clearBindValues () clears all the bind
variables set. The setBindValue () sets a single bind variable with a string
value. For example, we will set the empno and ename values as shown below:-

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx, EMPNO',20);
DBMS_XMLQuery.setBindValue(queryCtx, ENAME', John);

3. Fetch the results. This will apply the bind values to the statement and then get
the result corresponding to the predicate empno = 20 and ename = *John’.
DBMS_XMLQuery.getXMLClob(queryCtx);

4. Re-bind values if necessary, For example to change the ENAME alone to "scott"
and re-execute the query,

DBMS_XMLQuery.setBindValue(queryCtx, ENAME’,'Scott);

The rebinding of ENAME will now use Scott instead of John.

XSU Example 15a: Binding Values to the SQL Statement
The following example illustrates the use of bind variables in the SQL statement:

declare
queryCtx DBMS_XMLquery.ctXType;
result CLOB;

begin

queryCtx := DBMS_XMLQuery.newContext(
'select * from emp where empno = :EMPNO and ename = :ENAME)),

DBMS_XMLQuery.clearBindValues(queryCtx);
DBMS_XMLQuery.setBindValue(queryCtx,EMPNO', 7566);
DBMS_XMLQuery.setBindValue(queryCtx, ENAME'/JONES);

result := DBMS_XMLQuery.getXML(queryCtx);

Using XML-SQL Utility (XSU) 4-47

Storing XML in the Database Using DBMS_XMLSave

—printClobOut(resutt);

DBMS_XMLQuery.setBindValue(queryCtx, ENAME', Scott);

result := DBMS_XMLQuery.getXML(queryCtx);

—printClobOut(resut);

end;

/

Storing XML in the Database Using DBMS_XMLSave

The steps involved in using the XML-SQL Utility storage engine follow:

1.

2.

4.
5.

Create a context handle by calling the DBMS_XMLSave.getCtx function and
supplying it the table name to use for the DML operations.

In case of inserts, you can set the list of columns to insert into using the
setUpdateColNames function. The default is to insert values into all the
columns.

For updates, the list of key columns must be supplied. Optionally the list of
columns to update may also be supplied. In this case, the tags in the XML
document matching the key column names will be used in the WHERE clause
of the update statement and the tags matching the update column list will be
used in the SET clause of the update statement.

For deletes the default is to create a WHERE clause to match all the tag values
present in each ROW element of the document supplied. To override this
behavior you can set the list of key columns. In this case only those tag values
whose tag names match these columns will be used to identify the rows to
delete (in effect used in the WHERE clause of the delete statement).

Supply an XML document to the insertXML , updateXML or deleteXML
functions to insert, update and delete respectively.

You can repeat the last operation any number of times.

Close the context.

Use the same examples as for the Java case, OracleXMLSave class examples.

4-48 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XSU Insert Processing in PL/SQL

XSU Insert Processing in PL/SQL

The steps to insert a document into a table or view is to simply supply the table or
the view name and then the document. The utility parses the document (if a string
is given) and then creates an insert statement which it binds all the values into. By
default, the utility inserts values into all the columns of the table or view and an
absent element is treated as a NULL value. The following code shows how the
document generated from the emp table can be put back into it with relative ease.

XSU Example 16: Inserting Values into All Columns (PL/SQL)

This example creates a procedure, insProc, which takes in an XML document as a
CLOB and a table name to put the document into and then inserts the document:

create or replace procedure insProc(xmiDoc IN CLOB, tableName IN VARCHAR?) is
insCtx DBMS_XMLSave.ctXType;
rows number,

begin

insCix := DBMS_XMLSave.newContext(tableName); — get the context handle
rows ;= DBMS_XMLSave.insertXML(insCtx,xmlDoc); — this inserts the document
DBMS_XMLSave.closeContext(insCtx); —this closes the handle

end;

/

This procedure can now be called with any XML document and a table name. For
example, a call of the form,

insProc(xmiDocument, 'scott.emp’);

will generate an insert statement of the form,

insertinto scott.emp (EMPNO, ENAME, JOB, MGR, SAL, DEPTNO) VALUES(?,?,2,?,2,2);

and the element tags in the input XML document matching the column names will
be matched and their values bound. For the code snippet shown above, if we send it
the XML document,

<?xmlversion="1..0'?>
<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<ENAME>Smith</ ENAME>
<JOB>CLERK</JOB>
<MGR>7902</MGR>
<HIREDATE>12/17/1980 0:0.0</HIREDATE>

Using XML-SQL Utility (XSU) 4-49

XSU Insert Processing in PL/SQL

<SAL>800</SAL>
<DEPTNO>20</DEPTNO>
<[ROW>
<l- additional rows ... =
</ROWSET>

we would have a new row in the emp table containing the values (7369, Smith,
CLERK, 7902, 12/17/1980,800,20). Any element absent inside the row element
would have been taken as a null value.

XSU Example 17: Inserting Values into Only Certain Columns (PL/SQL)

In certain cases, we may not want to insert values into all columns. This might be
true when the values that we are getting is not the complete set and we need
triggers or default values to be used for the rest of the columns. The code below
shows how this can be done.

Assume that we are getting the values only for the employee number, name and job
and the salary, manager, deptno and hiredate field gets filled in automatically. We
create a list of column names that we want the insert to work on and then pass it to
the DBMS_XMLSaveorocedure. The setting of these values can be done by calling
the setUpdateColumnName () procedure repeatedly, passing in a column name to
update every time. The column name settings can be cleared using the
clearUpdateColumnNames ().

create or replace procedure testinsert(xmiDoc IN clob) is
insCtx DBMS_XMLSave.ctXType;
doc clob;
rows number;

begin
insCtx := DBMS_XMLSave.newContext(scott.emp); — get the save context..!
DBMS_XMLSave.clearUpdateColumnList(insCtx); — clear the update settings
- set the columns to be updated as a list of values..
DBMS_XMLSave.setUpdateColumn(insCtx, EMPNOY);
DBMS_XMLSave.setUpdateColumn(insCtx, ENAME);
DBMS_XMLSave.setUpdatecolumn(insCtx, JOB);
— Now insert the doc. This will only insert into EMPNO,ENAME and JOB columns

rows := DBMS_XMLSave.insertXML(insCtx, xmIDoc);
DBMS_XMLSave.closeContext(insCtx);

4-50 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Update Processing

end;

/

If we call the procedure passing in a CLOB as a document, an insert statement of the
form,

insertinto scottemp (EMPNO, ENAME, JOB) VALUES (2, 2, ?);

is generated. Note that in the above example, if the inserted document contains
values for the other columns (JOB, HIREDATE etc.), those will be ignored.

Also an insert is performed for each ROW element that is present in the input.
These inserts are batched by default.

Update Processing

Now that we know how to insert values into the table from XML documents, let us
see how to update only certain values. If we get an XML document to update the
salary of an employee and also the department that she works in:

<ROWSET>
<ROW num="1">
<EMPNO>7369</EMPNO>
<SAL>1800</SAL>
<DEPTNO>30</DEPTNO>
<ROW>
<ROW>
<EMPNO>2290</EMPNO>
<SAL>2000</SAL>
<HIREDATE>12/31/1992</HIREDATE>
<l- additional rows ... =
</ROWSET>

we can call the update processing to update the values. In the case of update, we
need to supply the utility with the list of key column names. These form part of the

where clause in the update statement. In the emp table shown above, the employee
number (EMPNO) column forms the key and we use that for updates.

XSU Example 18: Updating an XML Document Using keyColumns(PL/SQL)

create or replace procedure testUpdate (xmiDoc IN clob) is
updCix DBMS_XMLSave.cixType;

Using XML-SQL Utility (XSU) 4-51

Update Processing

rows number;

begin
updCtx := DBMS_XMLSave.newContext(scottemp); — get the context
DBMS_XMLSave.clearUpdateColumnList{updCtx); — clear the update settings..

DBMS_XMLSave.setkeyColumn(updCtx, EMPNOY; — set EMPNO as key column
rows := DBMS_XMLSave.updateXML(updCtx,xmiDoc); - update the table.
DBMS_XMLSave.closeContext(updCtx); — close the context..!

end;
/

In this example, when the procedure is executed with a CLOB value that contains
the document described above, two update statements would be generated. For the
first ROW element, we would generate an update statement to update the SAL and
JOB fields as shown below:-

update scott.emp SET SAL = 1800 and DEPTNO = 30 WHERE EMPNO = 7369;

and for the second ROW element,
update scott.emp SET SAL =2000 and HIREDATE = 12/31/1992 WHERE EMPNO = 2290;

XSU Example 19: Specifying a List of Columns to Update (PL/SQL)

However, in a lot of cases we might want to specify the list of columns to update.
This would speed up the processing since the same update statement can be used
for all the ROW elements. Also we can ignore other tags which occur in the
document. Note that when we specify a list of columns to update, an element
corresponding to one of the update columns, if absent, will be treated as NULL.

If we know that all the elements to be updated are the same for all the ROW
elements in the XML document, then we can use the setUpdateColumnName ()
procedure to set the column name to update.

create or replace procedure testUpdate(xmiDoc IN CLOB) is
updCtx DBMS_XMLSave.ctXType;
rows number,

begin

updCix := DBMS_XMLSave.newContext('scott.emp));
DBMS_XMLSave.setkeyColumn(updCtx, EMPNOY; — set EMPNO as key column

4-52 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Delete Processing

- set list of columnst to update.
DBMS_XMLSave.setUpdateColumn(updCtx,'SAL);
DBMS_XMLSave.setUpdateColumn(updCtx, JOB);

rows := DBMS_XMLSave.updateXML(updCtx,xmIDoc); — update the XML document..!
DBMS_XMLSave.closeContext(updCtx); — close the handle

end;
/

Delete Processing

In the case of delete, you can set the list of key columns. These columns will be put
as part of the where clause of the delete. If the key column names are not supplied,
then a new delete statement will be created for each ROW element of the XML
document where the list of columns in the where clause of the delete will match
those in the ROW element.

XSU Example 20: Deleting Operations per ROW (PL/SQL)
Consider the delete example shown below,

create or replace procedure testDelete(xmiDoc IN clob) is
delCtx DBMS_XMLSave.ciXType;
rows number;

begin

delCix = DBMS_XMLSave.newContext(scott.emp);
DBMS_XMLSave.setkeyColumn(delCtx, EMPNO);

rows := DBMS_XMLSave.deleteXML(delCtx,xmIDoc);
DBMS_XMLSave.closeContext(delCtx);

end;

/

If we use the same XML document shown for the update example, we would end
up with two delete statements,

DELETE FROM scott.emp WHERE empno=7369 and sal=1800 and deptno=30;

DELETE FROM scott.emp WHERE empno=2200 and sal=2000 and hiredate=12/31/1992;

The delete statements were formed based on the tag names present in each ROW
element in the XML document.

Using XML-SQL Utility (XSU) 4-53

Delete Processing

XSU Example 21: Deleting by Specifying the Key Values (PL/SQL)

If we instead want the delete to only use the key values as predicates, we can use
the setKeyColNames function to set this.

create or replace package testDML AS
saveCtx DBMS_XMLSave.ciXType :=null; —asingle static variable

procedure insertXML(xmiDoc in clob);
procedure updateXML(xmIDoc in clob);
procedure deleteXML(xmIDoc in clob);

end;
/

create or replace package body testDML AS
rows number,

procedure insertXML(xmiDoc in clob) is
begin

rows = DBMS_XMLSave.insertXML(saveCtx,xmiDoc);
end;

procedure updateXML(xmIDoc in clob) is
begin

rows ;= DBMS_XMLSave.updateXML(saveCtx,xmIDoc);
end;

procedure deleteXML(xmiDoc in clob) is
begin

rows := DBMS_XMLSave.deleteXML(saveCtx,xmIDoc);
end;

begin
saveCtx = DBMS_XMLSave.newContext(scottemp); — create the context once..!
DBMS_XMLSave.setkeyColumn(saveCtx, EMPNO));, - set the key column name.
end;
/
Here a single delete statement of the form,

DELETE FROM scottemp WHERE EMPNO="?

will be generated and used for all ROW elements in the document.

4-54 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Delete Processing

XSU Example 22: ReUsing the Context Handle (PL/SQL)

In all the three cases described above, insert, update and delete, the same context
handle can be used to do more than one operation. i.e. one can perform more than
one insert using the same context provided all of those inserts are going to the same
table that was specified when creating the save context. The context can also be
used to mix updates, deletes and inserts.

For example, the following code shows how one can use the same context and
settings to insert, delete or update values depending on the user’s input.

The example uses a package static variable to store the context so that the same
context can be used for all the function calls.

create or replace package testDML AS
saveCtx DBMS_XMLSave.ctxHandle := null; —a single static variable

procedure insert(xmiDoc in clob);
procedure update(xmiDoc in clob);
procedure delete(xmiDoc in clob);

end;
/

create or replace package body testDML AS

procedure insert(xmiDoc in clob) is
begin

DBMS_XMLSave.insertXML(xmIDoc);
end;

procedure update(xmiDoc in clob) is
begin

DBMS_XMLSave.updateXML(xmIDoc);
end;

procedure delete(xmiDoc in clob) is
begin

DBMS_XMLSave.deleteXML(xmIDoc);
end;

begin
saveCix := DBMS_XMLSave.getCix('scott.emp’); — create the context once..!
DBMS_XMLSave.setkeyColumnName(EMPNQO));, - setthe key column name.
end;
end;

Using XML-SQL Utility (XSU) 4-55

Delete Processing

/

In the above package, we create a context once for the whole package (thus the
session) and then reuse the same context for performing inserts, udpates and
deletes. Note that the key column CEMPNO”) would be used both for updates and
deletes as a way of identifying the row.

The users of this package can now call any of the three routines to update the emp
table.

testDML.delete(xmiclob);
testDML.update(xmiclob);

All of these calls would use the same context. This would improve the performance
of these operations, particularly if these operations are performed frequently.

4-56 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Advanced Usage Techniques

Advanced Usage Techniques

Exception Handling in Java

OracleXMLSQLException class

The utility catches all exceptions that occur during processing and throws an
oracle.xml.sql.OracleXMLSQLException which is a run time exception. The
calling program thus does not have to catch this exception all the time. If the
program can still catch this exception and do the appropriate action. The exception
class provides functions to get the error message and also get the parent exception,
if any. For example, the program shown below, catches the run time exception and
then gets the parent exception.

OracleXMLNoRowsException class

This exception is generated when the setRaiseNoRowsException is set in the
OracleXMLQuery class during generation. This is a subclass of the
OracleXMLSQLException class and can be used as an indicator of the end of row
processing during generation.

import java.sql.*;
import oracle xml.sgl.query.OracleXMLQuery;,

public class testException

{
public static void main(String argv{])
throws SQLException

{
Connection conn = getConnection("scott", tiger”);

I/Iwrong query this will generate an exception
OracleXMLQuery gry = new OracleXMLQuery(conn, "select * from emp where sd
=322323"%;

qry.setRaiseException(true); // ask it to raise exceptions..!

y

String str = qry.getXMLString();
Jeatch(oracle.xml.sgl.OracleXMLSQLException €)
{

/I Get the original exception

Exception parent = e.getParentException();

Using XML-SQL Utility (XSU) 4-57

Advanced Usage Techniques

if (parent instanceof java.sgl. SQLException)
{
Il perform some other stuff. Here we simply print it out..
System.out printin(* Caught SQL Exception:"+parent.getMessage());
}
else
System.out.printin(* Exception caught..I"+e.getMessage());
}

}
Il Get the connection given the user name and password..!

private static Connection getConnection(String user, String passwd)
throws SQLException
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
Connection conn=
DriverManager.getConnection(jdbc:oracle:oci8:@" user,passwd);
retum conn;
}
}

Exception Handling in PL/SQL
Here is a PL/SQL exception handling example:

declare
queryCtx DBMS_XMLQuery.ctXType;
result clob;
erorNum NUMBER;
errorMsg VARCHAR2(200);
begin

queryCtx := DBMS_XMLQuery.newContext(select * from emp where df = dfdf);

- set the raise exception to true..
DBMS_XMLQuery.setRaiseException(queryCtx, true);
DBMS_XMLQuery.setRaiseNoRowsException(queryCtx, true);

- set propagate original exception to true to get the original exception..!
DBMS_XMLQuery.propagateOriginalException(queryCtx,true);
result := DBMS_XMLQuery.getXML(queryCtx);

exception
when others then
— get the original exception
DBMS_XMLQuery.getExceptionContent(queryCix,errorNum, errorisg);

4-58 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Advanced Usage Techniques

dbms_output.put_line(Exception caught ' || TO_CHAR(errorNum)
[| emorMsg);
end,;
/

Using XML-SQL Utility (XSU) 4-59

Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)

Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)
What Schema Structure to Use With XSU to Store XML?

Question
I have the following XML in my customer.xml file:

<ROWSET>
<ROW num="1">
<CUSTOMER>
<CUSTOMERID>1044</CUSTOMERID>
<FIRSTNAME>Paul</FIRSTNAME>
<LASTNAME>Astoria< ASTNAME>
<HOMEADDRESS>
<STREET>123 Cheny Lane</STREET>
<CITY>SF</CITY>
<STATE>CA</STATE>
<ZIP>94132</ZIP>
</HOMEADDRESS>
</CUSTOMER>
<ROW>
</ROWSET>

What database schema structure should | use to store this xml with XSU?

Answer

Since your example is more than one level deep (i.e. has a nested structure), you
should use an object-relational schema. The XML above will canonically map to
such a schema. An appropriate db. schema would be the following:

create type address _type as object
(

street varchar2(40),

city varchar2(20),

state varchar2(10),

Zip varchar2(10)

)

/

create type customer_type as object
(

customerid number(10),

firstname varchar2(20),

4-60 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)

lastname varchar2(20),

homeaddress address_type

)

/

create table customer_tab (customer customer_type);

In the case you wanted to load customer.xml via the XSU into a relational schema,
you could still do it by creating objects in views on top of your relational schema.

For example, you would have a relational table which would contain all the
information:

create table cust_tab

((customerid number(10),
firsmame varchar2(20),
lastname varchar2(20),
state varchar2(40),
city varchar2(20),
state varchar2(20),

Zip varchar2(20)

)

Then you would create a customer view which contains a customer object on top of
it, as in:

create view customer_view as

select customer_type(customerid, firstname, lastname,
address_type(state,street,city,zip))

from cust_tab;

Finally, you could flatten your XML using XSLT and then insert it directly into your
relational schema. This is the least recommended option.

Storing XML Data Across Tables

Question
Can XML- SQL Utility store XML data across tables?

Answer

Currently XML-SQL Utility (XSU) can only store to a single table. It maps a
canonical representation of an XML document into any table/view. But of course
there is a way to store XML with the XSU across table. One can do this using XSLT

Using XML-SQL Utility (XSU) 4-61

Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)

to transform any document into multiple documents and insert them separately.
Another way is to define views over multiple tables (object views if needed) and
then do the inserts ... into the view. If the view is inherently non-updatable
(because of complex joins, ...), then one can use INSTEAD-OF triggers over the
views to do the inserts.

Using XML-SQL Utility to Load XML Stored in Attributes

Question

I would like to use the XML-SQL Utility to load XML where some of the data is
stored in attributes; yet, the XML-SQL Utility seems to ignore the XML attributes.
What can | do?

Answer

Unfortunately, for now you will have to use XSLT to transform your XML
document (i.e. change your attributes into elements). The XML-SQL Utility does
assume canonical mapping from XML to a db. schema. This takes away a bit from
the flexibility, forcing the user to sometimes resort to XSLT, but at the same time, in
the common case, it doesn’t burden the user with having to specify a mapping.

XML-SQL Utility is Case Sensitive: Use ignoreCase or...

Question
I am trying to insert the following XML document (dual.xml):

<ROWSET>
<row>
<DUMMY>X</DUMMY>
<row>
</ROWSET>

Into the table "dual” using the command line front end of the XSU, like in:
java OracleXML putxml -filename dualxml dual

and | get the following error:

oraclexml.sgl.OracleXMLSQLException: No rows to modify — the row enclosing tag
missing. Specify the correct row enclosing tag.

4-62 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)

Answer

By default the XML SQL Utility is case sensitive, so it looks for the record separator
tag which by default is "ROW"; yet, all it can find is "row". Another related common
mistake is to case mismatch one of the element tags. For example if in dual.xml the
tag "DUMMY" was actually "dummy" than the XML SQL Utility would also raise
an error complaining that if couldn’t find a matching column in the table "dual”. So
user has two options -- use the correct case or use the "ignoreCase" feature.

Generating Database Schema from a DTD

Question
Given a DTD, will the XML SQL Utility generate the database schema?

Answer

No. Due to a number of shortcomings of the DTD, this functionality is not available.
Once XML Schema standard is finalized this functionality will become feasible.

Using XML-SQL Utility Command Line

Question

I am using the XML SQL Utility’s command line front end, and | am passing a
connect string but | get a TNS error back. Can you provide examples of a thin driver
connect string and an OCI8 driver connect string?

Answer

An example of an JDBC thin driver connect string is:
"jdbc:oracle:thin:<user>/<password>@<hostname>:<port number>:<DB SID>";
furthermore, the db. has to have a active TCP/IP listener. A valid OCI8 connect
string would be: "jdbc:oracle:oci8:<user>/<password>@<hostname>".

Does XML-SQL Utility Commit After INSERT, DELETE, UPDATE?

Question

Does XML SQL Utility commit after it’s done inserting/deleting/updating? What
happens if an error occurs.

Using XML-SQL Utility (XSU) 4-63

Frequently Asked Questions (FAQs): XML-SQL Utility (XSU)

Answer

By default the XML SQL Utility executes a number of insert (or del or update)
statements at a time. The number of statements batch together and executed at the
same time can be overridden using the "setBatchSize " feature.

By default the XML SQL Utility does no explicit commits. If the autocommit is on
(default for the JDBC connection) then after each batch of statement executions a
commit happens. The user can override this by turning autocommit off and then
specifying after how many statement executions should a commit occur which can
be done using the "setCommitBatch " feature.

Finally, what happens if an error occurs... Well, the XSU rolls back to either the
state the target table was before the particular call to the XSU, or the state right after
the last commit made during the current call to the XSU.

4-64 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Part |l

Managing Content and Documents with
XML

Part 111 of this manual describes how to use interMedia Text to enhance and
turbocharge the search and retrieval of your XML database application. interMedia
Text can also be used to search and retrieve from non-database applications.

It includes an interMedia Text case study as well as several case studies illustrating
XML-based content management.

Part 11l contains the following chapters;

« Chapter 5, "Using interMedia Text to Search and Retrieve Data from XML
Documents"

« Chapter 6, "Customizing Content with XML: Dynamic News Application”
« Chapter 7, "Personalizing Data Display With XML.: Portal-to-Go"
« Chapter 8, "Customizing Presentation with XML and XSQL.: Flight Finder"

D

Using inter Media Text to Search and
Retrieve Data from XML Documents

This chapter contains the following sections:

Introducing interMedia Text

Overview of interMedia Text

Installing interMedia Text

interMedia Text Users and Roles
Querying with the CONTAINS Operator

Assumptions Made in this Chapter’s Examples

Using interMedia Text to Search XML Documents

interMedia Text Indexes
Using the CTX_DDL PL/SQL Package

Creating an interMedia Text Index

Building Query Applications with interMedia Text

Text Query Expression

Querying with Attribute Sections

Querying SECTION GROUPS

Procedure for Building a Query Application with interMedia Text
Creating Sections in XML Documents that are Document Type Sensitive

Presenting the Results of Your Query

Using interMedia Text to Search and Retrieve Data from XML Documents 5-1

« Frequently Asked Questions (FAQs): interMedia Text

5-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Overview of interMedia Text

Introducing

Overview of

inter Media Text
This chapter describes the following aspects of interMedia Text:
« Creating an Index

« Building an XML Query Application with interMedia Text

Note: interMedia Text is strictly a server-based implementation.

See Also: http://technet.oracle.com/products/intermedia/

inter Media Text

interMedia Text can be used to search XML documents. It extends Oracle8i by
indexing any text or document stored in Oracle8i. It can also search documents in
the operating system (flat files) and URLSs.

interMedia Text enables the following:

« Content-based queries, such as, finding text and documents which contain
particular words, using familiar, standard SQL.

« File-based text applications to use Oracle8i to manage text and documents in an
integrated fashion with traditional relational information.

« Concept searching of English language documents

« Theme analysis of English language documents using the CTX_DOC PL/SQL
package

« Highlighting hit words. With interMedia Text, you can render a document in
different ways. For example, you can present documents with query terms
highlighted, either the "words" of a word query or the "themes" of an ABOUT
guery in English. Use the CTX_DOC.MARKUP or HIGHLIGHT procedures for
this.

« With interMedia Text PL/SQL packages for document presentation and
thesaurus maintenance

interMedia Text is packaged with the other interMedia products, namely, image,
audio, video, and geographic location services for web content management
applications.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-3

http://technet.oracle.com/products/intermedia/

Installing interMedia Text

Users can query XML data stored in the database directly, without using interMedia
Text. However, Intermedia Text is useful for boosting query performance.

See: Oracle8i interMedia Text Reference for more information about
interMedia Text.

Installing inter Media Text

interMedia, including interMedia Text, is a standard feature that comes with every
Oracle8i Standard, Enterprise, and Personal edition license. However, it needs to be
selected during installation. No special installation instructions are required.

interMedia Text is essentially a set of schema objects owned by CTXSYS. These
objects are linked to the Oracle kernel. The schema objects are present when you
perform an Oracle8i installation.

inter Media Text Users and Roles

With interMedia Text you can use CTXSYS user to administer users and CTXAPP
role to create and delete interMedia Text preferences and use interMedia Text PL/SQL
packages:

CTXSYS User

This user is created at install time. Administer interMedia Text users as this user. It
has the following privileges:

« Modify system-defined preferences
« Drop and modify other user preferences

« Call procedures in the CTX_ADM PL/SQL package to start servers and set
system-parameters

« Start a ctxsrv server
« Query all system-defined views

« Perform all the tasks of a user with the CTXAPP role

CTXAPP Role

Any user can create an interMedia Text index and issue a Text query. For additional
tasks, use the CTXAPP role. This is a system-defined role that allows users to
perform the following tasks:

5-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Querying with the CONTAINS Operator

« Create and delete interMedia Text preferences
« Use interMedia Text PL/SQL packages, such as the CTX_DDL package

Querying with the CONTAINS Operator

InterMedia Text’s main purpose is to provide an implementation for the
CONTAINS operator. The CONTAINS operator is used in the WHERE clause of a
SELECT statement to specify the query expression for a Text query.

See Also: "Building Query Applications with interMedia Text".

CONTAINS Syntax

Here is the CONTAINS syntax:
CONTAINS(

[schema.]column,

text query VARCHARZ,

label NUMBER])
RETURN NUMBER;

where:

Table 5-1 CONTAINS Operator: Syntax Description

Syntax Description

[schema.]Jcolumn Specify the text column to be searched on. This column must
have a Text index associated with it.

text_query Specify the query expression that defines your search in
column.

label Optionally specify the label that identifies the score generated

by the CONTAINS operator.

Returns For each row selected, CONTAINS returns a number between
0 and 100 that indicates how relevant the document row is to
the query. The number 0 means that Oracle found no matches
in the row.

You can obtain this score with the SCORE operator.

Note: You must use the SCORE operator with a label to obtain
this number.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-5

Assumptions Made in this Chapter’'s Examples

CONTAINS Example 1

The following example illustrates how the CONTAINS operator is used in a
SELECT statement:

SELECT id FROM my_table
WHERE
CONTAINS (my_column, receipts’) >0

The 'receipts’ parameter of the CONTAINS function is called the "Text Query
Expression". See "Text Query Expression” for an example of how to use this.

Note: The SQL statement with the CONTAINS function requires a
text index in order to run.

CONTAINS Example 2: Using Score Operator with a Label

The following example searches for all documents in the text column that contain
the word Oracle. The score for each row is selected with the SCORE operator using
a label of 1:

SELECT SCORE(2), tile from newsindex
WHERE CONTAINS(text, ‘oracle’, 1) > 0;

The CONTAINS operator must always be followed by the > 0 syntax which
specifies that the score value calculated by the CONTAINS operator must be greater
than zero for the row to be selected.

CONTAINS Example 3: Using the SCORE Operator

When the SCORE operator is called, such as in a SELECT clause, the operator must
reference the label value as in the following example.

SELECT SCORE(1), tittle from newsindex
WHERE CONTAINS(text, ‘oracle’, 1) >0 ORDER BY SCORE(1) DESC;

Assumptions Made in this Chapter's Examples

XML text is aVARCHAR?2 or CLOB type in an Oracle8i database table with
character semantics.

interMedia Text can also deal with documents on a file system or on URLs. We do
not consider these document types here.

5-6 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Assumptions Made in this Chapter's Examples

To simplify the examples included in this chapter we consider a subset of the
interMedia Text options.

We have made the following assumptions here:
« All XML data here is represented using US-ASCII, a 7 bit character set.

« Issues about whether a character such as "*" is treated as white space or as part
of a word are not included.

« Storage characteristics of the Oracle schema object that implement the TEXT
index are not considered.

« We focus here on the SECTION GROUP parameter in the CREATE INDEX or
ALTER INDEX statement®. Here is an example of using SECTION GROUP in
CREATE INDEX:

CREATE INDEX my_index
ON my_table (my_column)
INDEXTYPE IS ctxsys.context
PARAMETERS ('SECTION GROUP my_section_group') ;
« Specifically, we focus on using AUTO_SECTION_GROUP and XML _
SECTION_GROUP.

« Tagged or marked up data. We focus here on how to handle XML data.
interMedia Text handles many other kinds of data.

! Other parameter types are available for
DATASTORE, FILTER, LEXER, STO

oo

INDEX and ALTER INDEX. These are

Using interMedia Text to Search and Retrieve Data from XML Documents 5-7

Using interMedia Text to Search XML Documents

Using interMedia Text to Search XML Documents
To search and retrieve data from XML documents you need to do the following:
« Create an interMedia Text Index
« Build a query application

These procedures are described in the following sections.

inter Media Text Indexes
To create an index for interMedia Text follow these steps:

1. Determine the role you need to use and GRANT ctxapp privilege. See
"interMedia Text Users and Roles".

Set up the tables and data, if not already available
Create an interMedia Text index to use CONTAINS in the query

Create a preference for parameterization of the interMedia Text index

o &~ w0 DN

Parameterize the interMedia Text index using the CTX_DDL package’s Create
Section_Group and Add_Field_Section procedures.

5-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Using the CTX_DDL PL/SQL Package

Using the CTX_DDL PL/SQL Package

The CTX_DDL PL/SQL supplied package creates and manages the objects required
for interMedia Text indexes. The detailed list of CTX_DDL package’s stored
procedures and functions can be found in Oracle8i interMedia Text Reference. Use the
CTXAPP role when executing the CTX_DDL package.

The following CTX_DDL procedures are used in this chapter:
= create_preference

= create_section_group

« add_attr_section

« add_field_section

« add_special_section

« add_zone_section

Listing the Required Roles for Each CTX Package

If you are uncertain which role to use with the CTX packages, run the following
script. This lists the roles required for each CTX package:

connect cixsys/ctxsys
column "Package" format al5
column "Role needed to execute Package' format a30

selectdba_objects.object name "Package”,
dba_tab privs.grantee "Role needed to execute Package™
from dba_objects, dba._tab_privs
where dba_objects.object name =dba_tab_privs.table_name (+)
and dba_objects.object_type in ('PACKAGE', PROCEDURE', 'FUNCTION')
and dba_objects.object_name like CTX_%'
order by "Role needed to execute Package”;

This results in the following output:
Package Role needed to execute Package

Ctx Dd CTXAPP
Ctx Output CTXAPP
Ctx_ Thes CTXAPP
Ctx_Contains PUBLIC
Ctx_Query PUBLIC

Using interMedia Text to Search and Retrieve Data from XML Documents 5-9

Using the CTX_DDL PL/SQL Package

Ctx Doc PUBLIC
Ctx_Adm

CTX_DDL Procedures

The following lists the CTX_DDL procedures used in this chapter, along with each
procedure’s arguments and descriptions.

procedure create_preference

argument name type infout default?
preference_name varchar2 in

object_ name varchar2 in

procedure create_section_group

argument name type infout default?
group_name varchar2 in
group_type varchar2 in

procedure add_attr_section

argument name type infout default?
group_name varchar2 in
section_name varchar2 in

tag varchar2 in

procedure add _field_section

argument name type infout default?
group_name varchar2 in
section_name varchar2 in

tag varchar2 in

visible boolean in default
procedure add_special_section

argumentname type infout default?
group_name varchar2 in
section_name varchar2 in

procedure add_zone_section
argument name type infout default?

5-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using the CTX_DDL PL/SQL Package

group_name varchar2 in
section_name varchar2 in
tag varchar2 in

XML _SECTION_GROUP Attribute Sections

In Oracle8i versions higher than 8.1.5, the XML section group offers the ability to
index and search within attribute values. Consider a document with the following
lines:

<comment author="jeeves">
| really like interMedia Text
</comment>

Now XML section group offers an attribute section. This allows the inclusion of

attribute values to index. For example:
ctx_ddladd_atir_section(mysg,author,comment@author);

The syntax is similar to other add_section calls. The first argument is the name of

the section group, the second is the name of the section, and the third is the tag, in

the form <tag_name>@<attribute_name>. This tells interMedia Text to index the
contents of the author attribute of the comment tag as the section "author".

Query syntax is just like for any other section:
WHERE CONTAINS (... jeeves WITHIN author......)..

and finds the document.

Attribute Value Sensitive Section Search

Attribute sections allow you to search the contents of attributes. They do not allow
you to use attribute values to specify sections to search. For instance, given the
document:

<comment author="jeeves">
I really like interMedia Text
</comment>

You can find this document by asking:

jeeves within comment@author

which is equivalent to "find me all documents which have a comment element
whose author attribute's value includes the word jeeves".

Using interMedia Text to Search and Retrieve Data from XML Documents 5-11

Using the CTX_DDL PL/SQL Package

However, there is no way to ask for something like:
interMedia within comment where (@author ="jeeves’)

in other words, "find me all documents where interMedia appears in a comment
element whose author is jeeves". This feature -- attribute value sensitive section
searching -- is planned for future versions of the product.

Dynamic Add Section

Because the section group is defined before creating the index, 8.1.5 is limited in its
ability to cope with changing structured document sets; if your documents start
coming with new tags, or you start getting new doctypes, you have to re-create the
index to start making use of those tags.

8.1.6 and higher allows you to add new sections to an existing index without
rebuilding the index, using alter index and the new add section parameters string
syntax:

add zone section <section_name>tag <tag>
add field section <section_name> tag <tag> visible | invisible]
For instance, to add a new zone section named tsec using the tag title:
alter index <indexname> rebuild
parameters (add zone section tsec tag titie)
To add a new field section named asec using the tag author:
alter index <indexname> rebuild
parameters (add field section asec tag author)
This field section would be invisible by default, just like when using add_field_
section. To add it as visible field section:
alter index <indexname> rebuild

parameters (add field section asec tag author visible')

Dynamic add section only modifies the index meta-data, and does not rebuild the
index in any way. This means that these sections take effect for any document
indexed after the operation, and do not affect any existing documents -- if the index
already has documents with these sections, they must be manually marked for
re-indexing (usually with an update of the indexed column to itself).

5-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using the CTX_DDL PL/SQL Package

This operation does not support addition of special sections. Those would require
all documents to be re-indexed, anyway. This operation cannot be done using
rebuild online, but it should be a fairly quick operation.

AUTO_SECTION_GROUP

Use AUTO_SECTION_GROUP group type to automatically create a zone section
for each start-tag/end-tag pair in an XML document. The section names derived
from XML tags are case-sensitive as in XML.

Attribute sections are created automatically for XML tags that have attributes.
Attribute sections are named in the form attribute@tag.

Stop sections, empty tags, processing instructions, and comments are not indexed.
The following limitations apply to automatic section groups:
« You cannot add zone, field or special sections to an automatic section group.

« Automatic sectioning does not index XML document types (root elements.)
However, you can define stop-sections with document type.

« The length of the indexed tags including prefix and namespace cannot exceed
64 characters.

« Tags longer than this are not indexed.

Automatic Sectioning in XML Documents

The following command creates a section group called auto with the AUTO _
SECTION_GROUP group type. This section group automatically creates sections
from tags in XML documents.

begin

ctx_ddl create section_group(auto’,'’AUTO_SECTION_GROUPY;

end;

create index myindex on docs(htmilfile) indextype is ctxsys.context

parameters(fiter ctxsys.null_filter section group auto);

Using interMedia Text to Search and Retrieve Data from XML Documents 5-13

Creating an interMedia Text Index

Creating an

1

inter Media Text Index

The following example illustrates how to create an interMedia Text index. The
example is presented in tutorial fashion. Creating an interMedia Text index involves
the following steps:

1 Determine the Role you Need and GRANT ctxapp Privilege
2 Set up Data, if Not Already Available
3 Creating an interMedia Text Index in Order to use CONTAINS

4 Creating a Preference: You Need to Express the Parameterization with a
"Preference”

5 Parameterizing the Preference

Determine the Role you Need and GRANT ctxapp Privilege

Determine the role you need. See "Listing the Required Roles for Each CTX
Package" and grant the appropriate privilege.

CONNECT system/manager
GRANT ctxapp to scott;
CONNECT scottfiger

2 Setup Data, if Not Already Available

5-14

The following example creates a table, my_table, and inserts data into the table.

— Setup some data
CREATE TABLE my_table (id number(5) primary key, my_column clob);

INSERT INTO my_table VALUES (1,

‘<author>Fred Smith</author>' ||

‘<document>I had a nice weekend in the mountains.</document>');
INSERT INTO my_table VALUES (2,

‘<author>Jack Jones</author>'||

‘<document>My month at the coast was relaxing.</document>');
INSERT INTO my_table VALUES (3,

‘<publisher>Dog House</publisher>'||

‘<document>His year in Provence was fuffiling.</document>' ||

'Sjunk>banana</unk>');
COMMIT;

Oracle8/ Application Developer’s Guide - XML, Release 3 (8.1.7)

Creating an interMedia Text Index

3 Creating an inter Media Text Index in Order to use CONTAINS

The following example shows that you need a Text index in order to use
CONTAINS.

3.1 You Need an inter Media Text Index in Order to Use CONTAINS

This example shows that you need an interMedia Text index in order to use
"CONTAINS":

SELECT my_column FROM my_table
WHERE CONTAINS
(my_column, 'smith WITHIN author
)>0;

The following error message is obtained:

DRG-10599: column is not indexed

3.2 Creating a Default Parameterized inter Media Text Index

This example shows that a default parameterized interMedia Text index does not
support XML functionality:

CREATE INDEX my_index ON my_table (my_column)
INDEXTYPE IS Cixsys.Context /* implies defaults */;

SELECT my_column FROM my_table
WHERE CONTAINS
(my_column, 'smith WITHIN author
)>0;
The following error message is obtained:

DRG-10837: section author does not exist

See "5 Parameterizing the Preference".

4 Creating a Preference: You Need to Express the Parameterization with a
"Preference"

Consider a preference, "my_section_group"”. It must be created before we can refer
to it! This example shows that you need to express parameterization with a
preference:

Using interMedia Text to Search and Retrieve Data from XML Documents 5-15

Creating an interMedia Text Index

DROP INDEX my_index;

CREATE INDEX my_index ON my_table (my_column)
INDEXTYPE IS Cixsys.Context
PARAMETERS ('SECTIONGROUP my_section_group ');

The following error message is obtained:

DRG-12203: section group my_section_group does not exist

5 Parameterizing the Preference

You need to do more than just CREATE 'my_section_group', you need to
parameterize it too. Use CTX_DDL.Create_Section_Group

5.1 Parametrizing the Preference, my_section_group
This example shows the need to parameterize the my_section_group preference:

DROP INDEX my_index;

BEGIN

Ctx_Ddl.Create_Section_Group
(group_name =>'my_section_group),

group_type =>xml_section_group'

)

end;

/

CREATE INDEX my_index ON my_table (my_column)
INDEXTYPE IS Cixsys.Context
PARAMETERS ('SECTION GROUP my_section_group');

SELECT my_column FROM my_table
WHERE CONTAINS
(my_column, 'smith WITHIN author'
)>0;

The following error message is obtained:
DRG-10837: section author does not exist

5.2 Parameterize the Preference, 'my_section_group', Correctly Using CTX_
DDL.Create_Section_Group and CTX_DDL.Add_Field_Section

This example shows that after creating the interMedia Text index and the
preference, my_section_group, you need to parameterize the preference correctly.

5-16 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Creating an interMedia Text Index

« Firstuse the CTX_DDL.create_section_group to create the section group.

« Thenuse CTX_DDL.Add_Field_Section for every tag used after WITHIN in
your query statement.

See Also: Using Table CTX_OBJECTS and CTX_OBJECT_
ATTRIBUTES View for a brief description of the CTX_DDL
package, and Oracle8i interMedia Text Reference for detailed notes on

CTX_DDL.:

inter Media Text Example 1: Creating an Index — Creating a Preference and Correctly

Parameterizing it

DROP INDEX my_index;

BEGIN

Ctx_Ddl.Drop_Section_Group
(group_name =>'my_section_group'
)
END;
/

BEGIN
Ctx_Ddl.Create_Section Group /* We're dealing here with XML, not say HTML */

(group_name =>'my_section_group',
group_type =>'xml_section_group'
)

Ctx_Ddl.Add_Field_Section # THISISKEY */
(' group_name =>my_section_group’,
section_name =>author'/* do this for EVERY tag used after "WITHIN"*/
tag =>'author'
)

Ctx_Ddl.Add_Field_Section # THIS ISKEY */
(group_name =>my_section_group,,
section_name =>document /#do this for EVERY tag after "WITHIN" */
tag =>document
)

END;
/

CREATE INDEX my_index ON my_table (my_column)

Using interMedia Text to Search and Retrieve Data from XML Documents 5-17

Creating an interMedia Text Index

INDEXTYPE IS Cixsys.Context
PARAMETERS ('SECTION GROUP my_section_group');

SELECT my_column FROM my_table
WHERE CONTAINS
(my_column, 'smith WITHIN author
)>0;

The last example is correct.

inter Media Text Example 2: Creating a Section Group with AUTO_SECTION_GROUP

The following command creates a section group called autogroup with the AUTO _
SECTION_GROUP group type. This section group automatically creates sections
from tags in XML documents.

BEGIN
ctx_ddl.create_section_group(autogroup’, AUTO_SECTION_GROUP);
END;

To index your documents you can use the following statement:

CREATE INDEX myindex ON docs(htmifile) INDEXTYPE IS ctxsys.context
parameters(fitter ctxsys.null_filter section group autogroup);

Note: You can add attribute sections only to XML section groups.
When you use AUTO_SECTION_GROUP, attribute sections are
created automatically. Attribute sections created automatically are
named in the form tag@attribute.

inter Media Text Example 3: Creating a Section Group with XML_SECTION_GROUP

The following command creates a section group called xmlgroup with the XML _
SECTION_GROUP group type.

BEGINE
ctx_ddl.create_section_group(xmigroup', XML_SECTION_GROUP);
END,;

You can add sections to this group using CTX_DDL.ADD_SECTION
To index your documents, you can use the following statement:
CREATE INDEX myindex ON docs(htmifile) INDEXTYPE IS ctxsys.context

5-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Creating an interMedia Text Index

parameters(filter ctxsys.null_filter section group xmigroup);

Further Examples for Creating Section Group Indexes?
Further examples for creating section group indexes are at the following site:

http:// technet.oracle.com

Then select the following:

« Internet Servers. This is under Products on the side navigation bar.
« interMedia. This is under Oracle8i towards the top of the page.

« Training. This is on the top navigation bar.

« Oracle8i interMedia Text 8.1.5/8.1.6 - Training or similar.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-19

http:// technet/products/intermedia

Building Query Applications with interMedia Text

Building Query Applications with inter Media Text

Building query applications with interMedia Text includes the following topics:

Text Query Expression

Querying with Attribute Sections

Querying SECTION GROUPS

Procedure for Building a Query Application with interMedia Text

Creating Sections in XML Documents that are Document Type Sensitive

Text Query Expression

Text Query Expression allows you to do the following:

Express all word-based criteria that are standard in the text retrieval industry,
such as, boolean word combinations, proximity, and phrases searches.

Perform theme based search criteria, for example, (...CONTAINS (my_
column,’ About (customizing XML presentations)’)...). Here, the phrase,
‘customizing XML presentations’ typically, does not occur in the retrieved
document.

See Also: Oracle8i interMedia Text Reference for more information on Text
Query Expression.

inter Media Text Example 4: Using Text Query Expressions

This example shows the set up and usage of the text query expression in a SELECT
statement:

Creating a Thesaurus
Creating Table christie

Creating Table ctx_mutab

Creating a Thesaurus
—runas ctxsys

begin
Cix_Thes.Drop_Thesaurus (‘default');
exception
when others then
Fnotan error f...

5-20 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Text Query Expression

DRG-11701: thesaurus default does not exist */
ifinstr (SQLERRM, DRG-11701") =0
then
null;
else
raise_application_error (-20000, SQLERRM);
endff;
end;
/
begin
Cix_Thes.Create_Thesaurus (
name =>'default,
casesens =>false);

Ctx_Thes.Create_Phrase (
tname =>'default,
phrase =>'crime');
Cix_Thes.Create_Phrase (
tname =>'default,
phrase =>'murder,

rel =>'NT,

relname =>'crime’);
Cix_Thes.Create_Phrase (
thame =>'default,
phrase =>'death,

rel =>'RT,

relname =>'murder’);
Ctx_Thes.Create_Phrase (
tname =>'default,
phrase => kil

rel =>'RT,

relname =>'murder’);
Ctx_Thes.Create_Phrase (
tname =>'default,
phrase =>'strangling/,

rel =>'NT,

relname =>'murder’);
Cix_Thes.Create Phrase (
tname =>'default,
phrase =>thirteen');
Cix_Thes.Create_Phrase (
thame =>'defaullt,
phrase =>"13,

rel =>'SYN,

relname => ‘thirteen');

Using interMedia Text to Search and Retrieve Data from XML Documents 5-21

Text Query Expression

end;
/

Creating Table christie
Set Define Off
begin
execute immediate
'drop table christie’;
exception
when others then
f*notan errorff...
ORA-00942: table or view does not exist */
ifinstr (SQLERRM, 'ORA-00942') =0
then
null;
else
raise_application_error (-20000, SQLERRM);
endf;
end;
/

create table christie (id number, tile varchar2(700));
insertinto christie (tite) values ('<T>Thirteen At Dinner</T> - <A>Agatha
Christie');
insertinto christie (tile) values ('<T>The 4:50 from Paddington</T> -
<A>Agatha Christie');
insertinto christie (tite) values ('<T>Blue Geranium</T> - <A>Agatha
Christie');
insert into christie (tile) values ('<T>The ficton of Agatha Christie</T> -
<A>John Smith");
insertinto christie (tile) values ('<T>Caribbean with quite a few
intervening words between it and Mystery</T> - <A>Agatha Christie');
commit;
update christie setid = rownum,;
commit;
alter table christie
add constraint christie_pk primary key (id)
using index;
create unigque index christie_title on christie (tite);
drop index christie_title;

begin
Ctx_Ddl.Drop_Preference (‘my_basic_lexer');
exception

5-22 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Text Query Expression

when others then
f*notan error ff...
preference does not exist */
ifinstr (SQLERRM, DRG-10700") =0
then
null;
else
raise_application_error (-20000, SQLERRM);
endff;
end;
/
begin
Cix_Ddl.Drop_Section Group (‘my_basic_section_group');
exception
when others then
Fnotan error ...
section group does not exist */
ifinstr (SQLERRM, DRG-12203') =0
then
null;
else
raise_application_error (-20000, SQLERRM);
endif;
end;
/
begin
Ctx_Ddl.Create_Preference (‘my_basic_lexer, 'basic_lexer);
Ctx_Ddl.Set Attibute ('my_basic_lexer’, index_themes), false');
Citx_Ddl.Set Attibute ('my_basic_lexer’, index_text, ‘true');
Cix_Ddl.Create_Section_Group
(
group_name =>'my_basic_section_group,
group_type =>'basic_section_group'
)
Citx_Ddl.Add_Field_Section
(
group_name =>'my_basic_section_group,
section_name => itle',
g =t
visble =>true
)
Citx_Ddl.Add_Field_Section
(
group_name =>'my_basic_section_group,
section_name =>"author’,

Using interMedia Text to Search and Retrieve Data from XML Documents 5-23

Text Query Expression

tg =>4,
vishle =>tue
)

end;
/
create index christie_title on christie (tite)

indextype is ctxsys.context

parameters (lexer my_basic_lexer section group my_basic_section_group');
begin

Ctx_Ddl.Drop_Preference (‘my_basic_lexer');

Ctx_Ddl.Drop_Section_Group (‘'my_basic_section_group');
end;
/

Creating Table ctx_mutab

Set Define Off
begin
execute immediate
'drop table ctx_mutab;
exception
when others then
f*notan errorff...
ORA-00942: table or view does not exist */
ifinstr (SQLERRM, 'ORA-00942') =0
then
null;
else
raise_application_error (-20000, SQLERRM);
end f;
end;
/
create table ctx_mutab
(
query_id number constraint ctx_mutab_pk primary key,
document clob

)

begin
execute immediate
'drop sequence ctx_mutab_sed|;
exception
when others then
Fnotan error ...

5-24 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Text Query Expression

ORA-02289: sequence does not exist */
ifinstr (SQLERRM, 'ORA-02289') =0
then
null
else
raise_application_error (-20000, SQLERRM);
endff;
end;
/
create sequence ctx_mutab_seq start with 1;

Accepting Text Query Expression and Running the Query

This accepts a Text Query Expression, runs the query, and for each hit displays the
output of Ctx_Doc.Markup.

Set Define Off
create or replace procedure Qry_And_Markup

(
p_gry in varchar2 defautt null

is
v_query_id number;
v_document clob;
v_amount number;
v_nof_hits integer :=0;
begin
if p_qryis notnull
then
forjin
(
select score(0) s, id from christie
where contains (tite, p_gry,0)>0
order by s desc
)
loop
select ctx_mutab_seq.nextval
intov_query_id
from dual;
Ctx_Doc.Markup
(
index_name =>'christie_title’,
textkey =>to char(jid),
text_query =>p_qry,
restab =>'ctx_mutab),

Using interMedia Text to Search and Retrieve Data from XML Documents 5-25

Text Query Expression

query id =>v_query id,

Starttag => Show.Start_Tag,
endtag =>ShowEnd Tag
)

select document
intov_document
from ctx_mutab
where query_id=v_query id;

v_amount :=4000;
Show.Table_Row

p_cel 1=>to char(js),
p_cel 2=>
Dbms_Lob.Substr

lob_loc =>v_document,
amount =>Vv_amount,
offset =>1
)
)
v_nof_hits:=v_nof_hits +1;
end loop;

ifv_nof hits<1
then
Show.Table_Row

(
p_cell 1=>"Nohits'
)
endif;
else
forjin

select tile from christie
)

loop
Show.Table_Row

(
p_cel 1=>jtile
)
end loop;
endif;

5-26 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Text Query Expression

end Qry_And_Markup;
/
Show Errors

Using interMedia Text to Search and Retrieve Data from XML Documents 5-27

Querying with Attribute Sections

Querying with Attribute Sections

You can query within attribute sections when you index with either XML_
SECTION_GROUP or AUTOMATIC_SECTION_GROUP as your section group
type.

Assume you have an XML document as follows:

<book tite="Tale of Two Cities">lt was the best of times.</book>
You can define the section title@book to be the attribute section title. You can do so

with the CTX_DLL.ADD_ATTR_SECTION procedure or dynamically after indexing
with ALTER INDEX.

Note: When you use the AUTO_SECTION_GROUP to index XML
documents, the system automatically creates attribute sections and
names them in the form attribute@tag.

If you use the XML_SECTION_GROUP, you can name attribute
sections anything with CTX_DDL.ADD_ATTR_SECTION.

To search on Tale within the attribute section title, issue the following query:
Tale WITHIN tite'

Constraints for Querying Attribute Sections
The following constraints apply to querying within attribute sections:

« Regular queries on attribute text do not hit the document unless qualified in a
within clause. Assume you have an XML document as follows:

<book tile="Tale of Two Cities">It was the best of imes.</book>
A query on Tale by itself does not produce a hit on the document unless

qualified with WITHIN title@book. This behavior is like field sections when
you set the visible flag set to false.

= You cannot use attribute sections in a nested WITHIN query.
« Phrases ignore attribute text. For example, if the original document looked like:

Now is the time for all good <word type="noun"> men <Avord> to come to the
aid.

5-28 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Querying with Attribute Sections

Then this document would hit on the regular query good men, ignoring the
intervening attribute text.

WITHIN queries can distinguish repeated attribute sections. This behavior is like
zone sections but unlike field sections. For example, for the following document;

<book tile="Tale of Two Cities">It was the best of times.</book>

<book tite="Of Human Bondage">The sky broke dull and gray.</book>

Assume the book is a zone section and book@author is an attribute section.
Consider the query:

(Tale and Bondage) WITHIN book@author

This query does not hit the document, because tale and bondage are in different
occurrences of the attribute section book@author.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-29

Querying SECTION GROUPS

Querying SECTION GROUPS

Distinguishing Tags Across DocTypes

In previous releases, the XML section group was unable to distinguish between
tags in different DTD's. For instance, perhaps you have a DTD for storing contact
information:

<IDOCTYPE contact>
<contact>
<address>506 Blue Pool Road</address>
<email>dudeman@radical.com</email>
</contact>

Appropriate sections might look like:

ctx_ddl.add field_section(mysg',email, ‘email);
ctx_ddl.add field_section(mysg',address’,'address);

This is fine until you have a different kind of document in the same table:

<IDOCTYPE mail>

<mail>
<address>dudeman@radical.com</address>

</mail>

Now your address section, originally intended for street addresses, starts picking
up email addresses, because of tag collision.

Specifying Doctype Limiters to Distinguish Between Tags

Oracle8i release 8.1.5 and higher allow you to specify doctype limiters to distinguish
between these tags across doctypes. Simply specify the doctype in parentheses
before the tag as follows:

ctx_ddl.add_field_section(mysg',email,'email);
ctx_ddl.add_field_section(mysg',address’, (contact) address);
ctx_ddladd field_section(mysg',email, (mail) address);

Now when the XML section group sees an address tag, it will index it as the address
section when the document type is contact , or as the email section when the
document type is mail .

5-30 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Querying SECTION GROUPS

Doctype-Limited and Unlimited Tags in a Section Group
If you have both doctype-limited and unlimited tags in a section group:
ctx_ddladd field_section(mysg',secl typel)tagl);
ctx_ddl.add field_section(mysg','sec2,tagl);
Then the limited tag applies when in the doctype, and the unlimited tag applies in
all other doctypes.

Querying is unaffected by this -- the query is done on the section name, not the tag,
so querying for an email address would be done like:

radical WITHIN email

which, since we have mapped two different kinds of tags to the same section name,
finds documents independent of which tags are used to express the email address.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-31

Procedure for Building a Query Application with interMedia Text

Procedure for Building a Query Application with inter Media Text

To build the query application with interMedia Text carry out the following
indexing steps first. These steps are described in a previous section, "interMedia
Text Indexes".

1.
2.
3.
4.

Grant ctxapp permission to the user
Create a parameterized Text index.
Index the documents

Present the documents that satisfy the query

The next step is to build your query application. To do so follow these steps:

1.

3.

Create a preference using the procedure, CTX_DDL.create_preference. See "1
Create a Preference”

Set preference’s attributes using CTX_DDL.Add_Attr_Section and so on. See "2
Set the Preference’s Attributes".

Create your query syntax

You can query within attribute sections when you index with either XML _
SECTION_GROUP or AUTOMATIC_SECTION_GROUP as your section group

type.

Note:

« Not everything in your document may be searchable. You must
first state what is searchable using the......add_....._section

« The more sections you add to your index the longer the search
will take!

Nested tag searching is supported in interMedia Text.

Using Table CTX_OBJECTS and CTX_OBJECT_ATTRIBUTES View

The CTX_OBIJECT_ATTRIBUTES view displays attributes that can be assigned to
preferences of each object. It can be queried by all users.

Check out the structure of CTX_OBJECTS and CTX_OBJECT_ATTRIBUTE view,
with the following DESCRIBE commands. Because we are only interested in

5-32 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

1 Create a Preference

guerying XML documents in this chapter, we focus on XML_SECTION_GROUP
and AUTO_SECTION_GROUP.
Describe ctx_objects

SELECT obj class, obj name FROM ctx_objects

ORDRRBY obj_class, obj name;

The result is:

SECTION_GROUP AUTO_SECTION_GROUP <<=
SECTION_GROUP BASIC_SECTION_GROUP
SECTION_GROUP HTML_SECTION_GROUP
SECTION_GROUP NEWS_SECTION GROUP
SECTION_GROUP NULL_SECTION_GROUP
SECTION_GROUP XML_SECTION_GROUP <<=

Describe ctx_object_attributes

SELECT oat_attribute FROM cix_object_attrioutes
WHERE oat_object="XML_SECTION_GROUP",

The result is:

OAT_ATTRIBUTE

ATTR
FIELD
SPECIAL
ZONE

SELECT oat_attribute FROM cix_object_attrioutes
WHERE oat_object="AUTO_SECTION_GROUP"

The result is:

OAT_ATTRIBUTE

STOP

1 Create a Preference

The first thing you must do is create a preference. To do this, use the CTX_
DDL.Create_Preference procedure.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-33

2 Set the Preference’s Attributes

For example:

CTX_DDL.Create_Preference

CTX _DDL.Create Preference (

preference_name =>'books' /* or whatever you want to call it */

object name =>XML_SECTION GROUP' #* either XML_SECTION_GROUP or AUTO _
SECTION_GROUP %),

To drop this preference use the following syntax:

CTX_DDL.Drop_Preference (
preference_name =>books));

2 Set the Preference’s Attributes

To set the preference’s attributes for XML_SECTION_GROUP, use the following
procedures:

« Add_Zone_Section

« Add_Attr_Section

« Add_Field_Section

« Add_Special_Section

To set the preference’s attributes for AUTO_SECTION_GROUP, use the following
procedures:

« Add_Zone_Section
« Add_Attr_Section
« Add_Field_Section

There are corresponding CTX_DDL.drop sections and CTX_DDL.remove section
syntax.

2.1 Using CTX DDL.add zone_section
The syntax for CTX_DDL.add_zone_section follows:

CTX_DDL.Add_Zone_Section (

group_name =>'my_section_group' *whatever you called it above */
section_name =>'author /what you want to call this section */

tag =>'my_tag' /what represents itin XML */);

5-34 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

2 Set the Preference’s Attributes

where 'my_tag’ implies opening with <my_tag> and closing with </my_tag>.

add_zone_section Guidelines
add_zone_section guidelines are listed here:

« Call CTX DDL.Add_Zone_Section for each tag in your XML document that
you need to search on.

2.2 Using CTX_DDL.Add_Attr_Section
The syntax for CTX_DDL.add_attr_section follows:
CTX DDL.Add_Atlr_Section (/* call this as many times as you heed to describe
the attribute sections */
group_name =>'my_section_group' *whatever you did call it above */
section_name =>'author' /what you want to call this section*/
tag =>'my_tag'/* what represents it in XML */);

where 'my_tag’ implies opening with <my_tag> and closing with </my_tag>.

add_attr_section Guidelines
add_attr_section guidelines are listed here:

« Consider meta_data attribute author:
<meta_data author = "John Smith" title="How to get to Mars">
The more sections you add to your index, the longer your search will take.

add_attr_section adds an attribute section to an XML section group. This procedure
is useful for defining attributes in XML documents as sections. This allows you to
search XML attribute text with the WITHIN operator.

The section_name:

« Isthe name used for WITHIN queries on the attribute text.
« Cannot contain the colon (;) or dot (.) characters.

« Must be unique within group_name.

« Is case-insensitive.

« Can be no more than 64 bytes.

The tag specifies the name of the attribute in tag@attr format. This is case-sensitive.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-35

2 Set the Preference’s Attributes

Note: Inthe add_attr_section procedure, you can have many tags
all represented by the same section name at query time. Explained
in another way, the names used as the arguments of the keyword
WITHIN can be different from the actual XML tag names. That is
many tags can be mapped to the same name at query time. This
feature enhances query usability.

2.3 Using CTX_DDL.add field section

The syntax for CTX_DDL.add_field_section follows:
CTX_DDL.Add_Field_Section (

group_name =>'my_section_group' *whatever you called it above */
section_name =>'qq /¥ what you want to call this section */

tag

=>'my_tag' /* what represents itin XML */);

visble =>TRUEorFALSE);

add_field_section Guidelines
add_field_section guidelines are listed here:

add_field_section and add_zone_section attributes differ in performance.

In a document, tags can be repeated two or more times, however some tags,
such as "title", occur only once. A DTD (or XML Schema) define how many
times the tags occur.

Visible attribute: This is available in add_field_section but not available in the
add_zone_section. If VISIBLE is set to TRUE then a query such as "...
CONTAINS cat... becomes irrelevant if cat occurs in title or paragraph.

Consider again the query, "... CONTAINS cat...". You may not get a hit if you
use VISIBLE=TRUE. If VISIBLE=FALSE, the index will be smaller. You may lose
some functionality but your performance will be improved, compared to if you
set VISIBLE =TRUE.

. If you set up your index using the add_zone_section....

« If you set up your index using the add_field_section....

5-36 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

2 Set the Preference’s Attributes

Note: Constructing an index is harder if you have to cater for the
fact that there could be more than one occurrence of any one tag.

« Ifthe tag in your XML document occurs only once, use the
single add_field_section procedure. For example, "....
CONTAINS cat and dog WITHIN title......

« Ifthe tag in your XML document occurs more than once, use
the add_zone_section procedure. For example, ".... CONTAINS
cat and dog WITHIN paragraph....". This has many
possibilities.

How Attr_Section Differs From Field_Section
Attribute section differs from field section in the following ways:

Attribute text is considered invisible, though, so the following:
WHERE CONTAINS (..., "... jeeves.,..)...

does NOT find the document, somewhat like field sections. Unlike field
sections, however, attribute section within searches can distinguish between
occurrences. Consider the document:

<comment author="jeeves">
| really like interMedia Text
</comment>
<comment author="bertram'>
Me too
</comment>

the query:

WHERE CONTAINS (..., cryil and bertram) WITHIN author’, ...)...

will NOT find the document, because "jeeves" and "bertram™ do not occur
within the SAME attribute text.

Attribute section names cannot overlap with zone or field section names,
although you can map more than one tag@attr to a single section name.
Attribute sections do not support default values. Given the document:

<IDOCTYPE foo|
<IELEMENT foo (bar)>
<IELEMENT bar (#PCDATA)>

Using interMedia Text to Search and Retrieve Data from XML Documents 5-37

2 Set the Preference’s Attributes

<IATTLIST bar
rev CDATA"8i">
>
<foo>
<bar>whatever</bar>
<ffoo>

and attribute section:
ctx_ddl.add_attr_section(mysg',barrev,bar@rev);

the query:

8i within barrev does not hit the document, although in XML semantics, the
"bar" element has a default value for its "rev" attribute.

2.4 Using CTX_DDL.add_special_section
The syntax for CTX_DDL.add_special_section follows:

CTX_DDL.Add_Special_Section (
group_name =>'my_section_group' *whatever you called it above */
section_name =>'qq'*what you want to call this section */);

add_special_section Guidelines

add_special_section guidelines are listed here:

Here the tag option is not present. A section not defined with an open and close tag
has an implicit definition.Use this section when your document is composed, for

example, of mostly non-tagged sentences and paragraphs that you need to search.
These are explicitly defined.

For example, if your query could be "... CONTAINS cat and dog WITHIN
sentence"...

2.5 Using CtX_DDL.Add_Stop_Section

CtX_DDL.Add_Stop_Section (
group_name =>'my_section_group' *whatever you called it above */
section_name =>'qq' *what you want to call this section */);

5-38 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

3 Creating Your Query Syntax

3 Creating Your Query Syntax

See the section, "Querying with the CONTAINS Operator" for information about
how to use the CONTAINS operator in query statements.

Querying Within Attribute Sections

You can query within attribute sections when you index with either XML_
SECTION_GROUP or AUTO_SECTION_GROUP as your section group type.

Assume you have an XML document as follows:
<book tite="Tale of Two Cities">It was the best of imes.</book>
You can define the section title@book as the attribute section title. You can do so

with the CTX_DLL.Add_Attr_Section procedure or dynamically after indexing with
ALTER INDEX.

Note: When you use the AUTO_SECTION_GROUP to index XML
documents, the system automatically creates attribute sections and
names them in the form attribute@tag.

If you use the XML_SECTION_GROUP, you can hame attribute sections anything
with CTX_DDL.Add_Attr_Section.

To search on Tale within the attribute section title, issue the following query:
WHERE CONTAINS (..., Tale WITHIN titie', ...

Using XML_SECTION_GROUP and add_attr_section to Aid Querying
Consider an XML file that defines the BOOK tag with a TITLE attribute as follows:

<BOOK TITLE="Tale of Two Cities">

Itwas the best of times. </BOOK>

<Author="Charles Dickens'">

Bom in England in the town, Stratford _Upon_Avon </Author>

Recall the CTX_DDL.Add_Attr_Section syntax is:
CTX _DDL.Add_Attr_Section (group_name, section_name, tag);

To define the title attribute as an attribute section, create an XML_SECTION _
GROUP and define the attribute section as follows:

ctx_ddl_create_section_group(myxmigroup, XML_SECTION_GROUPY);

Using interMedia Text to Search and Retrieve Data from XML Documents 5-39

3 Creating Your Query Syntax

ctx_ddladd_attr_section(myxmigroup’, booktitie', book@titie);
ctx_ddladd_atir_section(myxmigroup’, ‘authors), ‘author’;
end;

When you define the TITLE attribute section as such and index the document set,
you can query the XML attribute text as follows:

... WHERE CONTAINS (..., Cities WITHIN booktite,)...

When you define the AUTHOR attribute section as such and index the document
set, you can query the XML attribute text as follows:

... WHERE 'England WITHIN authors'

interMedia Text Example 4: Querying a... Document
This example does the following:

1. Creates and populates table res_xml

2. Creates an index, section_group, and preferences
3. Paramaterizes the preferences

4. Runs a test query against res_xml

drop table res_xml;

CREATE TABLE res xm (
pk NUMBER PRIMARY KEY,
tet CLOB

)

insertinto res_xml values(111,

'ENTITY chap8 "Chapter 8, <g>Keeping it Tidy: the XML Rule Book </g>"> this is
the document section);
commit;

— scriptto create index onres_xml

— cleanup, in case we have run this before
DROP INDEX res_index ;
EXEC CTX _DDL.DROP_SECTION_GROUP (‘res_sections') ;

— create a section group

5-40 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

3 Creating Your Query Syntax

BEGIN
CTX_DDL.CREATE_SECTION_GROUP (res_sections, XML_SECTION_GROUFP');
CTX_DDLADD_FIELD _SECTION ('res_sections, ‘chap8, '<g>);

END;

/

begin
ctx_ddl.create_preference
(
preference_name =>'my_basic_lexer,
object name =>'basic_lexer
)
ctx_ddlset_attribute
(
preference_name =>'my_basic_lexer’,
attribute_name => index_text,
attribute_value => true'
)
ctx_ddl.set_attribute
(
preference_name =>'my_basic_lexer’,
attribute_name =>index_themes,
attribute_value => false);
end;
/

CREATE INDEX res_index
ON res_xmi(text)
INDEXTYPE IS ctxsys.context
PARAMETERS ('lexer my_basic_lexer SECTION GROUP res_sections') ;

Test the above index with a test query, such as:
SELECT pk FROM res_xml WHERE CONTAINS(text, 'keeping WITHIN chap8' >0 ;

interMedia Example 5: Creating an Index and Performing a Text Query

Creating Table explain_ex to Use in this Example
drop table explain_ex;

create table explain_ex

(

Using interMedia Text to Search and Retrieve Data from XML Documents 5-41

3 Creating Your Query Syntax

id number primary key,
text varchar(2000)
)

insertinto explain_ex (id, text)
values (1, thinks thinking thought go going goes gone went || chr(10) ||

‘oracle orackle oricle dog cat bird' [l chr0) ||
‘President Clinton');
insertinto explain_ex (id, text)
values (2, 'Last summer | went to New England' || chr(20) ||
Thiked a lot' [chr(20) ||
| campedabit');
Ccommit;

Creating an Index for themes

begin
Cix_Ddl.Drop_Preference (my_lexer);

end,;

/

begin
Cix_Ddl.Create_Preference (‘'my_lexer, 'basic_lexer);
Cix_Ddl.Set Attribute (‘my_lexer’, ‘index_text, true');

F Experiment with 'index_themes' = false'*/

Citx_Ddl.Set Attibute ('my_lexer’, ‘index_themes, ‘rue');
end,
/

begin

Ctx_Ddl.Drop_Stoplist (‘my_stoplist);
end;
/

begin

Cix_Ddl.Create_Stoplist ('my_stoplist');

Citx_Ddl.Add_Stopword

(
stoplist_name =>'my_stoplist,

stopword =>'because’
)
Cix_Ddl.Add_Stopword ('my_stoplist, ‘and');
Ctx_Ddl.Add_Stopword ('my_stoplist, ‘in');
Ctx_Ddl.Add_Stopword ('my_stoplist, t0');
Ctx_Ddl.Add_Stopword ('my_stoplist, a');

5-42 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

3 Creating Your Query Syntax

Cix_Ddl.Add_Stopword ('my_stoplist, I');
end;
/

drop index explain_ex_text;
selecterr_text from ctx_user_index_erors;
create index explain_ex_text on explain_ex (text)
indextype is ctxsys.context
parameters (lexer my_lexer stoplist ctxsys.empty_stoplist');
selecter_text from ctx_user_index_enors;

begin
Cix_Ddl.Drop_Preference (my_lexer);
Cix_Ddl.Drop_Stoplist (‘my_stoplist);
end,;
/

Text Query Using "ABOUT" in the Text Query Expression
Set Define Off
select text
from explain_ex
WHERE CONTAINS (text,
($(think &go) , ?oracle) & (dog, (cat & bird)) & about(mammal
during Bill Clinton)') > 0;

select text

from explain_ex
WHERE CONTAINS (text, 'about (camping and hiking in new england)’) >0;

Using interMedia Text to Search and Retrieve Data from XML Documents 5-43

Creating Sections in XML Documents that are Document Type Sensitive

Creating Sections in XML Documents that are Document Type Sensitive

Consider an XML document set that contains the <book> tag declared for different
document types. You need to create a distinct book section for each document type.
Assume that mydocname is declared as an XML document type (root element) as
follows:

<IDOCTYPE mydocname

Within mydocname, the element <book> is declared. For this tag, you can create a
section named mybooksec that is sensitive to the tag's document type as follows:
begin

ctx_ddl.create_section_group(myxmigroup, XML _SECTION_GROUP);

ctx_ddladd_zone_section(myxmigroup', mybooksec, ‘mydocname(book));
end;

Note:

« Oracle8i knows what the end tags look like from the group
type parameter you specify when you create the section group.
The start tag you specify must be unique within a section
group.

« Section names need not be unique across tags. You can assign
the same section name to more than one tag, making details
transparent to searches.

Repeated Sections

Zone sections can repeat. Each occurrence is treated as a separate section. For
example, if <H1> denotes a heading section, they can repeat in the same documents
as follows:

<H1> The Brown Fox <H1>
<H1> The Gray Wolf <H1>

Assuming that these zone sections are named Heading.
The query:
WHERE CONTAINS (..., Brown WITHIN Heading, ...)...

returns this document.

5-44 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Creating Sections in XML Documents that are Document Type Sensitive

But the query:
WHERE CONTAINS (..., (Brown and Gray) WITHIN Heading'....)...

does not.

Overlapping Sections

Zone sections can overlap each other. For example, if and <I> denote two
different zone sections, they can overlap in document as follows:

plain bold <I> bold and italic only italic </I> plain

Nested Sections
Zone sections can nest, including themselves as follows:

<TD>
<TABLE>
<TD>nested cel</TD>
</TABLE>

</TD>

Using the WITHIN operator, you can write queries to search for text in sections
within sections.

Nested Section Query Example

For example, assume the BOOK1, BOOK2, and AUTHOR zone sections occur as
follows in documents docl and doc2:

docl:
<book1><author>Scott Tiger</author> This is a cool book to read.</book1>

doc2:
<book2> <author>Scott Tiger</author> This is a great book to read.</book2>

Consider the nested query:
‘Scott WITHIN author WITHIN book1'

This query returns only docl.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-45

Presenting the Results of Your Query

Presenting the Results of Your Query

A Text query application allows you to view the documents returned by a query.
You typically select a document from the hitlist and then your application presents
the document in some form.

With interMedia Text, you can render a document in different ways. For example,
with the query terms highlighted. Highlighted query terms can be either the words
of a word query or the themes of an ABOUT query in English. This rendering uses
the CTX_DOC.HIGHLIGHT or CTX_DOC.MARKUP procedures.

You can also obtain theme information from documents with the CTX_
DOC.THEMES PL/SQL package. Besides these there are several other CTX_DOC
procedures for presenting your query results.

See Also: Oracle8i interMedia Text Reference f for more information
on the CTX_DOC PL/SQL package.

5-46 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): interMedia Text

Frequently Asked Questions (FAQs): inter Media Text

Inserting XML data and Searching with interMedia Text

Question

Although InterMedia doesn't understand the hierarchical XML structure, can | do
something like this...

<report>
<day>yesterday</day> there was a disaster <cause>huricane</cause>
<lreport>

I would like to search the LOB's where cause was hurricane, is this possible?

Answer

You can perform that level of searching with the current release of interMedia.
Currently to break a document up you would have to use our XML Parser with
XSLT to create a stylesheet that transforms the XML into DDL. iFS gives you a
higher level interface.

Another technique is to use a JDBC program to insert the text of the document or
document fragment into a CLOB or LONG column, then do the searching using the
CONTAINS() operator after setting up the indexes...

interMedia Text: Handling Attributes

Question

Currently interMedia Text has the option to create indexes based on the content of a
section group. But most XML Elements are of the type of Element. So, the only
option for searching would be attribute values. So, | am wondering if there is any
way to build indexes on attribute values.

Answer

Releases from 8.1.6 and higher allow attribute indexing. See the following site:
http://technet.oracle.com/products/intermedia/Zhtdocs/text_training_
816/Samples/imt_816_techover.htmI#SCN

Using interMedia Text to Search and Retrieve Data from XML Documents 5-47

http://technet.oracle.com/products/intermedia/htdocs/text_training_816/Samples/imt_816_techover.html#SCN

Frequently Asked Questions (FAQs): interMedia Text

CTXSYS/CTXSYS id and password

Question

We are installing the XSQL demos at http://technet.oracle.com//tech/xml/xsql_
servlet/htdocs/relnotes.htm#ID3376.

At step 3, we are unable to access the database via user/password
CTXSYS/CTXSYS. We cannot access this via running SQLPLUS from the web
server's root directory or by accessing SQL PLUS normally. We can access either
SCOTT/TIGER or SYSTEM/MANAGER via either method. Is there a step we
missed somewhere where we need to add this user/permissions, etc.? If there is,
can you tell us where to find the instructions on this? The error message we receive
is:

ERROR:OCA-30017: emor logging on to non-Oracle database[POL-5246] User does not
exist.
We are using Oracle 8iLite, Win NT 4 SP 4.

Answer

Oracle8i Lite does not support Intermedia Text, so you can ignore this step.
CTXSYS/CTXSYS is the default username/password for the Intermedia Text
schema owner. The demos are designed to run against a regular Oracle8i database,
so you may encounter other problems running them with Oracle8i Lite. The Servlet
works fine for reading data out of Oracle8i Lite, however, it's just that the demos are
not targeting the "lite" version.

Querying an XML Document

Question

I know that an intact XML documents are stored in a CLOB or BLOB with ORACLE
XML solution.

1. XML documents stored in a CLOB/BLOB are able to be queried like table
schema? For example:

[XML document stored in BLOB]J..<name id="1111"><first>lee</ffirst>
<sencond>jumee</second></name>...

Is value(lee, jumee) able to be queried by elements, attributes and structure of
XML document?

5-48 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://technet.oracle.com/products/intermedia/htdocs/text_training_816/Samples/imt_816_techover.html#SCN

Frequently Asked Questions (FAQs): interMedia Text

2. If some element or attribute is inserted/updated/deleted, all document must be
updated? Or can insert/update/delete like table schema?

3. About locking, if someone manages an XML document stored in a
BLOB/CLOB, nobody can access the same XML document? Is this true?

Answer
1. Using interMedia Text, you can find this document with a query like this:

lee within first or this;jumee within second or this: 1111 within name@id

you can combine these like this:

lee within first and jumee within secondor this:(lee within first) within
name.

For more information, please read the "interMedia Text Technical Overview" for
8.1.5 and 8.1.6 available on OTN.

2. interMedia Text indexes CLOB/BLOB, and this has no knowledge about XML
specifically, so you cannot really change individual elements. You have to edit
the document as a whole.

3. Just like any other CLOB, if someone is writing to the CLOB, they have it locked
and nobody else can write to the CLOB. Other users can READ it, but not write.
This is basic LOB behavior.

Another alternative is to decompose the XML document and store the
information in relational fields. Then you could modify individual elements,
have element-level simultaneous access, and so on. In this case, using
something called the USER_DATASTORE, you can use PL/SQL to reconstitute
the document to XML for text indexing. Then, you get text search as if it were
XML, but data management as if it were relational data. Again, see interMedia
Text Technical Overview for more information.

inter Media Text and Oracle8i

Question

Is interMedia Text included in Oracle8i? What is the name of this package? Does the
package insert and search XML documents into the database?

Using interMedia Text to Search and Retrieve Data from XML Documents 5-49

Frequently Asked Questions (FAQs): interMedia Text

Answer

Context Cartridge is now called interMedia Text and is part of the Oracle8i
interMedia option. Details are at
http://www.oracle.com/database/options/intermedia.html. interMedia Text will
not help you insert XML documents into the database, only search them.

inter Media XML Indexing

Question
Is it possible for interMediaText to index XML such as:

2/7/1968
and then process a query such as:

Who has brown hair, that is, select name from person where hair.color = "BROWN"

Answer

Searches based on structural conditions are not yet available through interMedia
Text. Attribute searches are supported from release 8.1.6. For reference you should
not put data in attributes as that will not be compliant with XML Schema when it
becomes a recommendation.

Searching CLOBs Using inter Media Text

Question

How would | define interMedia parameters so that | would be able to search my
CLOB column for records that contained "aorta" and "damage". For example using
the following XML (DTD implied):

WelKnownFileName.gif echocardiogram aorta

This is an image of the vessel damage. It would be nice to see a simple (or
complicated) example of an XML interMedia implementation.

| assume there is no need to setup the ZONE or FIELDS.....Is this the case?

5-50 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://www.oracle.com/database/options/intermedia.html

Frequently Asked Questions (FAQs): interMedia Text

Answer

If you save an XML Document fragment in a CLOB, and enable an interMedia Text
XML index on it, then you can do a SQL query which uses the CONTAINS()
operator as the following query does:

Assume you have a document like an insurance claim...

77804

1999-01-01 00:00:00.0 8895 1044
Paul Astoria

123 Cheny Lane SF CA 94132

1999-01-05 00:00:00.0 7600 JCOX

It was becase of Faulty Brakes

If you store the content as a document fragment in a CLOB, then you can do a query
like the following (assuming everything else you store in relational tables):

REM Select the SUM of the amounts of

REM all setlement payments approved by "JCOX"

REM for claims whose relates to Brakes.

select sum(n.amount) as TotalApprovedAmount
frominsurance_claim_view v, TABLE(v.setlements) n
where n.approver ='JCOX'
and contains(damageReport, Brakes within Cause’) >

Managing Different XML Documents With Different DTDs: Storing and Searching XML
in CLOBs -- interMedia Text

Question

It was suggested that | store XML in CLOBs and use the DOM or SAX to reparse the
XML later as needed. | agree that this was the best solution for my problem (which
was how to manage many different XML documents using many different DTDs in
a document management system) The big problem was searching this document
repository to locate relevant information.

This is where interMedia Text seems ideal. It would be nice to see an example of
setting this up using intermedia in Oracle8i, demonstrating how to define the XML _
SECTION_GROUP and where to use a ZONE as opposed to a FIELD etc.

For example:

How would | define Intermedia parameters so that | would be able to search my
CLOB column for records that had the "aorta" and "damage" in the using the

Using interMedia Text to Search and Retrieve Data from XML Documents 5-51

Frequently Asked Questions (FAQs): interMedia Text

following XML (DTD implied) WellKnownFileName.gif echo cardiogram aorta
This is an image of the vessel damage

Answer

You can't do XML structure-based searches with interMedia. You can search for text
within a given element, but nothing more complicated than that. It also does not do
attributes.You could load up each doc with the DOMParser and search that way, but
that wouldn't scale very well.We are working on a project with a similar
requirement. We are resorting to creating columns in the table for each bit of xml
data we want to do serious searching on and loading it up from an initial XML
parse. Of course that doesn't help if you need to do structured searches on arbitrary
elements.

Question 2

Releases from 8.1.6 allow searching within attribute text. That's something like: dog
within book@author. We are working on attribute value sensitive search, more like
the following:

dog within book[@author = "Eric"]:

begin ctx_ddl.create_section_group(mygm),basic_section_group));

ctx_ddl.add field_section(mygrp’, keyword', keyword);

ctx_ddl.add field_section(mygrp',caption’/caption);
end;
create index myidx on mytab(mytxcolumn)indextype is cixsys.contextparameters
(section group mygrp);
select * from mytab where contains(mytxtcolumn, ‘aorta within keyword)>0;
options:

« Use XML section group instead of basic section group if your tags have
attributes or you need case-sensitive tag detection

« Use zone sections instead of field sections if your sections overlap, or if you
need to distinguish between instances. For instance, keywords. If keywords is a
field section, then (aorta and echo cardiogram) within keywords finds the
document. If it is a zone section, then it does not, because they are not in the
SAME instance of keywords.

It is not so clear. It looks to me like his example is trying to find instances of
elements containing "damage" that have a sibling element containing "aorta" within
the same record. It's not clear what exactly he means by "record".

5-52 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): interMedia Text

If each record equates to the in his example, and there can be multiple records in a
single XML LOB, than | don't see how you could do this search with interMedia.

If there is only one per CLOB/row, than perhaps you could find it by ANDing two
context element queries. But that would still be a sloppy sort of xml search relying
on some expected limitations of the situation more so than the structural
composition actually called for.

Answer 2

What | meant by record was the obvious thing. The whole XML example was stored
in a CLOB column in a table, therefore the Record was the row in the table that
contained the XML code.

inter Media Text Role (ORA-01919: role 'CTXSYS' does not exist)

Question

With reference to your documentation, Oracle8i interMedia Text Migration, Part No.
A67845-01, section "Roles and Users", it says Oracle8i interMedia Text provides the
two roles for system administrators and application developers as CTXSYS Role
and CTXAPP Role.

But when | issue a GRANT command to grant the CTXSYS role to a user it says
ORA-01919: role '"CTXSYS’ does not exist. When | queried the sys.dba_roles view, it
does not give CTXSYS role.

Could you please reply me and help me out to solve the problem. | have installed
the Oracle8I from the free CD shipped be you.

Answer

You might not have the interMedia Text installed? Did you take the "starter"
database, or create one from scratch? If the latter, did you select interMedia Text
during the install?

Searching XML Documents and Returning a Zone

Question

I need to store a large XML file in Oracle8i, search it, and return a specific tagged
area. | have not found a clear way to store a large XML file, index it, allow searching

Using interMedia Text to Search and Retrieve Data from XML Documents 5-53

Frequently Asked Questions (FAQs): interMedia Text

on it AND return Tagged sections from it based on a search.Using interMedia Text
some of this is possible:

« | can store an XML file in a CLOB field
« | canindex it with ctxsys.context

« | can create <Zones> and <Fields> to represent the Tags in my XML fileEx. ctx_
ddl.add_zone_section(xmlgroup,“dublincore”, dc);

« | can search for text within a Zone or fieldEx. Select title from mytable where
CONTAINS(textField,"some words WITHIN dublincore")

What | need to know is how do | return a zone or a field based on a text search?

Answer

interMedia Text will only return the "hits". You will need to subsequently parse the
CLOB to extract a section.

Storing an XML Document in CLOB: Using inter Media Text

Question

I need to store XML files(that are present on the file system as of now) into the
database. | want to store the whole document. What | mean is that | do not want to
break the document as per the tags and then store the info in separate tables/fields.
Rather | want that | should have a universal table, that | can use to store different
XML documents. | think internally it will be stored in a CLOB type of field in my
case. My XML files will always contain ASCII data.

Can this be done using interMedia. Should we be using interMedia Text or
interMedia Annotator for this? | downloaded Annotator from OTN, but | could not
store XML document in the database.

I am trying to store XML document into CLOB column. Basically | have one table
with the following definition(shown in red color below):

CREATE TABLE xml_store_testing

(
xml_doc_id NUMBER,
xml_doc CLOB)

I want to store my XML document in xml_doc field.

5-54 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): interMedia Text

I have written another PL/SQL procedure shown below, to read the contents of the
XML Document. The XML document is available on the file system. XML document
contains just ASCII data - no binary data.

CREATE OR REPLACE PROCEDURE FileExec
(
p_Directory INVARCHAR2,
p_FileName INVARCHAR2)
AS v_CLOBLocator CLOB;
v_FileLocator BFILE;
BEGIN
SELECT xml_doc
INTO v_CLOBLocator
FROM xml_store_testing
WHERE xml_doc id=1
FOR UPDATE;
v_FileLocator := BFILENAME(p_Directory, p_FileName);
DBMS_LOB.FILEOPEN(v_FileLocator, DBMS_LOB.FILE READONLY);
dbms_outputput_line(to_char(DBMS_LOB.GETLENGTH(v_FileLocator)));
DBMS_LOB.LOADFROMFILE(v_CLOBLocator, v_FileLocator,
DBMS_LOB.GETLENGTH(v_FileLocator));
DBMS_LOB.FILECLOSE(v_FileLocator);
END FileExec;

Answer

Put the XML documents into your CLOB column, then add an interMedia Text
index on it using the XML section-group. See the documentation and overview
material at http://technet.oracle.com/products/intermedia.

Question 2

When | execute this procedure, it executes successfully. But when | select from the
table | see unknown characters in the table in CLOB field. Could this be because of
the reason of the character set difference between operating system (where XML file
resides) and database (where CLOB data resides).

Answer 2

Yes. If the character sets are different then you probably have to pass the data
through UTL_RAW.CONVERT to do a character set conversion before writing to
the CLOB.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-55

http://technet.oracle.com/products/intermedia
http://technet.oracle.com/products/intermedia

Frequently Asked Questions (FAQs): interMedia Text

Loading XML Documents into the Database and Searching with inter Media Text

Question
How do | insert XML documents into a database?

Specifically | need to insert the XML document "as is" in column of datatype CLOB
into a table.

Answer

Oracle's XML-SQL Utility for Java offers a command-line utility that can be used for
Loading XML data. More information can be found on the XML-SQL Utility at:
http://technet.oracle.com/tech/xml

You can insert the XML documents as you would any text file. There is nothing
special about an XML-formatted file from a CLOB perspective.

Question 2

I understand that Oracle interMedia Text can be used to index and search XML
stored in CLOB:s. Is this true? Any advice on how to get started with this?

Answer 2

Prior versions of interMedia Text only allowed tag-based searching. The current
version, Release 3 (8.1.7) of Oracle8i, allows for XML structure and attribute based
searching. There is documentation on how to have the index built and the SQL
usage in the Oracle8i interMedia documentation.

See Also: Oracle8i interMedia Text Reference.
Searching XML with WITHIN Operator

Question
I have this xml:

<person>
<name>efrat</name>
<childrens>
<chilo>
<id>1<fic>
<name>keren</name>
</child>
</childrens>

5-56 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): interMedia Text

</person>

How do | find the person who has a child name keren but not the person's name
keren? Assuming | defined every tag with the add_zone_section that can be nested
and can include themselves.

Answer

Use selectSingleNode or selectNodes with XPATH string as a parameter.eg.
selectSingleNode("//child/name[.='keren'])Also, | reccommend making id as an
attribute instead of a tag.

inter Media Text and XML

Question
Where can | get good samples of using XML with interMedia.

Answer
See the following sites for more information:

http://technet.oracle.com/sample_code/products/intermedia/htdocs/text_
samples/imt_815_techover.html and

http://technet.oracle.com/sample_code/products/intermedia/htdocs/text_
samples/imt_816_techover.html

For the moment these are the best resources.There's also some new interMedia
utilities and add-ons that could help you at:
http://technet.oracle.com/software/products/intermedia/software_index.htm

More XML samples ave been added to the 8.1.6 interMedia Text Doc, Oracle8i
interMedia Text Reference.

inter Media Text and XML: Add_field section

Question

Regarding XML with interMedia Text: Is there a way to feed an XML document into
interMedia Text and have it recognize the tags, or do | have to use the add_field
section command for each tag in the XML document. My XML documents have
hundreds of tags. Is there an easy way to do this?

Using interMedia Text to Search and Retrieve Data from XML Documents 5-57

http://technet.oracle.com/sample_code/products/intermedia/htdocs/text_samples/imt_815_techover.html
http://technet.oracle.com/sample_code/products/intermedia/htdocs/text_samples/imt_816_techover.html
http://technet.oracle.com/software/products/intermedia/software_index.htm

Frequently Asked Questions (FAQs): interMedia Text

Answer
Which version of the database are you using? | believe you need to do it for 8.1.5
but not 8.1.6.

You can use AUTO_SECTION_GROUP in 8.1.6

inter Media and XML Support

Question

Is there someone out there who can provide some real world examples of
performing this simple task. I have an XML document that | want to feed into
Oracle8i and search by content using tags. My XML document has over 100 tags, do
I have to sit their and do an ADD_FIELD_SECTION for every tag....If not, where is
this documented.

Answer

XSQL Servlet ships with a complete (albeit simple from the interMedia standpoint)
example of a SQL script that creates a complex XML Datagram out of Object Types,
and then creates an interMedia Text index on the XML Document Fragment stored
in the "Insurance Claim" type.

If you download the XSQL Servlet, and look at the file ./xsql/demo/insclaim.sql
you'll be able to see the interMedia stuff at the bottom of the file. One of the key
new features in interMedia in 8.1.6 as outlined in one of the URL | posted in my
previous reply is the AUTO Sectioner for XML. In 8.1.5, you do have to manually
created your field sections.

Question 2

Is there a "Hello World" sample available anywhere? | am getting a javascript error
on the XSQL servlet download page.

Answer 2

What follows is the content of the aforementioned demo file. It sets up the tables,
types, and object views for the XSQL Insurance Claim Demo that you try live on
our OTN demo site at http://technet.oracle.com/tech/xml/demo/demol.htm

The interMedia Text-related part starts at the line that reads:

ctx_ddl.drop_preference()

5-58 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://technet.oracle.com/tech/xml/demo/demo1.htm

Frequently Asked Questions (FAQs): interMedia Text

In this example, an insurance claim has a "DamageReport" which is an XML
Document fragment. The interMedia code at the end shows how to setup an XML
searching index on the <CAUSE> and <MOTIVE> tags in this "DamageReport"
document fragment.

set scan offset echo onset termout onREMREM $Author; smuench $REM $Date:
1999/11/27 14:48:10 $REM $Source: C:\evsroot/xsqlisre/demolinsclaim.sql,y $REM
$Revision: 1.3 $REMdrop synonym claim;drop table setlement_payments;drop view
insurance_claim_view;drop table insurance_claim;drop view poalicy_view;drop table
policy;drop view policyholder_view;
drop table policyholder;drop type insurance_claim_t;
drop type settlements_t;
drop type payment;
drop type policy_t;
drop type policyholder t;
drop type address t;
create type address _t as object(Street varchar2(80), City Varchar2(80), State
VARCHAR2(80),Zip NUMBER);
JIcreate type policyholder_t as object(Customerid number,

FirstName varchar2(80),

LastName varchar2(80),

HomeAddress address t);
Jcreate type policy _t as object(

policylD number, primaryinsured policyholder_t);
Jcreate type payment as object(

PayDate DATE, Amount NUMBER, Approver VARCHAR2(8));
Jcreate type setiements_t as table of payment;
Jcreate type insurance_claim_tas object (

claimid number/filed date, claimpolicy policy t,

setflements setlements_t, damageReport varchar2(4000) 4 XML);
Jcreate table policyholder(Customerid number,

FirstName varchar2(80), LastName varchar2(80),

HomeAddress address t, constraint policyholder_pk primary key (customerid));
insertinto policyholder values (1044, 'Paul,/Astoria,,

ADDRESS_T(123 Cheny Lane,'SF,'CA94132));
insertinto policyholder values (1045, 'Martina, Boyie',

ADDRESS_T(55 Belden Place,'SF,CA|'94102));
create or replace force view policyholder_view of policyholder _t

with object OID

create or replace force view insurance_claim_view of insurance_claim t
with object OID (claimid)
as select c.claimid,cfiled,
(SELECT value(pv)

Using interMedia Text to Search and Retrieve Data from XML Documents 5-59

Frequently Asked Questions (FAQs): interMedia Text

from policy_view pv
WHERE pv.poalicyid = c.claimpolicy),
CAST(MULTISET(SELECT PAYMENT (sp.paydate,sp.amount,sp.approver)
as Payment from settlement_payments sp
WHERE sp.claimid = c.claimid) AS settiements_t),c.damagereport
from insurance_claim c;commit;
begin ctx_ddl.drop_preference(Demo);
end;
/egin ctx_ddl.create_preference(Demoa’, basic_lexer);
ctx_ddl.set_attribute (Demoa, ‘index_themes, '0);
ctx_ddl.set_attribute (Demo, index_text, '1);
ctx_ddl.create_section_group(demo_xml, xml_section_group));
ctx_ddladd_zone_section(demo_xml, CAUSE, ' CAUSE);
ctx_ddladd zone_section(demo_xml, MOTIVE, MOTIVE);
end;
[create index
ctx_xml_ioninsurance_claim(damagereport)indextype is
ctxsys.contextparameters(LEXER Demo SECTION GROUP demo_xml);
create synonym claim for insurance_claim_view;

Oracle8i Lite 4.0.0.2.0: inter Media Text is Not Supported

Question
| cannot initialize the database and run the SQL scripts for the demo programs:

1. | cannot connect as CTXSYS/CTXSYS. What is the source of the interMedia Text
packages? Should user CTXSYS exist in a default installation?

2. | geta syntax error when attempting to execute GRANT QUERY REWRITE TO
SCOTT.

3. lalso get syntax errors when running some of the scripts, such as, airport.sql,
although others, such as, index.sgl, complete fine. I'm running a fresh
installation of Oracle8i Lite 4.0.0.2.0.

Answer
1. interMedia Text is a feature of Oracle8i. If you're using Oracle8i Lite, then it is
not available.

2. QUERY REWRITE is a privilege supported in Oracle8i, not Oracle8i Lite. So this
failure is also explainable.

5-60 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): interMedia Text

3. AIRPORT.SQL fails on the very last statement which is creating a
FUNCTIONAL INDEX on UPPER(description). Functional indexes are an
Oracle8i feature not available in 8i Lite. Also, if doing a fresh install, you will
get some error messages during SQL script execution. If you look at the script,
you'll find that it tries to delete a table before creating it. On a fresh install, these
tables will not exist, so you'll get an error.

SQL in inter Media context

Question

I have an XML document that | have stored in CLOB. | have also created the
indexes on the tags using section_group, and so on. One of the tags is <SALARY>
</SALARY> | want to write an SQL statement so as to select all the records that
have salary lets say > 5000.

How do | do this? | cannot use WITHIN operator. | want to interpret the value
present in this tag as a number. This could be floating point number also since this
is salary.

Answer

You can't do this in interMedia Text. Range search is not really a text operation. The
best solution is to use the other Oracle XML parsing utilities to extract the salary
into a NUMBER field -- then you can use interMedia Text for text searching, and
normal SQL operators for the more structured fields, and achieve the same results.

XML and inter Media Text

Question

We are storing all our documents in XML format in a CLOB. Are there utilities
available in Oracle perhaps interMedia to retrieve the contents a field at a time, that
is given a field name, get the text between tags, as opposed to retrieving the whole
document and traversing the structure?

Answer
interMedia does not do section extraction. See XM-SQL Utility for this.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-61

Frequently Asked Questions (FAQs): interMedia Text

Creating an Index on Three Columns?

Question

I have created a view based on 7-8 tables and it has columns like, custordnumber,
product_dscr, qty, prdid,shipdate, ship_status, and so on. | need to create an
interMedia index on the three columns:

« custordnumber
« product_dsc
« ship_status

Is there a way to create a text index on these columns?

Answer

The short answer is yes. You have two options:

1. Usethe USER_DATASTORE object to create a concatenated field on the fly
during indexing;

2. Concatenate your fields and store them in an extra CLOB field in one of your
tables. Then create the index on the CLOB field. If you're using Oracle 8.1.6,
then you also have the option of placing XML tags around each field prior to
concatenation. This gives you the capability of searching WITHIN each field.

Searching Structured and Unstructured Data

Question
We need to insert data in the Database from an XML file. Currently we only can
insert structured data with the table already created. Is this true?

We are working in a law project where we need to store laws that have structured
data and unstructured data, and then search the data using interMedia text.

Can we insert unstructured data too? Or do we need to develop a custom
application to do it? Then if we have the data stored with some structured parts and
some unstructured parts, can we use interMedia Text to search it?

If we stored the unstructured part in a CLOB, and the CLOB has some tags, how
can we search only the data in an specific tag?

5-62 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): interMedia Text

Answer

Consider using iFS which allows you to break up a document storing it across
tables and in a LOB. Currently interMedia Text can perform data searches with tags
but is not knowledgeable about the hierachical XML structure. From release 8.1.6,
interMedia Text has this capability along with name/value pair attribute searches.

Question 2

So, if I understand your answer this document breaking is not possible in these
moments if | don't create a custom development? Although interMedia does not
understand hierachical XML structure, can | do something like this?

<report>
<day>yesterday</day> there was a disaster <cause>hurricane</cause>
<lreport>

Indexing with interMedia | would like to search the LOBs where cause was
hurricane, is this possible?

Answer 2

You can perform that level of searching with the current release of interMedia Text.
Currently to break a document up you would have to use the XML Parser with
XSL-T to create a stylesheet that transforms the XML into DDL. iFS gives you a
higher level interface.

Another technique is to use a JDBC program to insert the text of the document or
document fragment into a CLOB or LONG column, then do the searching using the
CONTAINS() operator after setting up the indexes.

Using interMedia Text to Search and Retrieve Data from XML Documents 5-63

Frequently Asked Questions (FAQs): interMedia Text

5-64 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Customizing Content with XML: Dynamic
News Application

This chapter contains the following sections:

« Introduction to the Dynamic News Application
« Dynamic News Main Tasks

« Overview of the Dynamic News Application

« Dynamic News SQL Example 1: Item Schema, nisetup.sql
« Dynamic News Servlets

« How Dynamic News Works: Bird’s Eye View

« Static Pages

« Semi-Dynamic Pages

« Dynamic Pages

« Personalizing Content

« 1 Get End-User Preferences

= 2 Pull News Items from the Database

« 3 Combine News Items to Build a Document

« 4 Customizing Presentation

« Importing and Exporting News Items

Customizing Content with XML: Dynamic News Application 6-1

Introduction to the Dynamic News Application

Introduction to the Dynamic News Application

It uses Oracle XML platform components together with the Oracle8i database to
build a web-based news service.

The combination of Java, XML, XSL, HTML, and Oracle8i makes Dynamic News
flexible and robust.

« With news items in the database, you can personalize content by executing
queries based on user input.

« XML, XSL, and HTML allow you to customize the presentation for multiple
platforms.

« The Dynamic News application pregenerates XML documents when possible to
improve performance.

Problem: To customize news received at a browser according to user user requests.

Solution: The solution uses Oracle XML Components, Oracle8i database, and
custom servlets. The solution is described in this chapter.

Oracle XML Components Used: XML Parser for Java, XML-SQL Utility (XSU) for
Java

Dynamic News Main Tasks
Dynamic News application shows you how to do the following tasks:
« Store news headlines in the database
« Output the news in XML
« Apply XSL stylesheets to format new headlines

Overview of the Dynamic News Application

Dynamic News pulls news items (headlines) from the database to build HTML
pages. The HTML pages are customized according to user preferences.

The pages present lists of items, with each item hyperlinked to a
complete article. Each news item has attributes including:

« Category, such as Sports or Technology
« Subcategory, such as Baseball or Software

« Type, such as Feature or Review.

6-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Overview of the Dynamic News Application

Three Levels of Customization: Static, Semi-Dynamic, and Dynamic
Dynamic News uses these attributes to offer three levels of customization:

« Static
« Semi-dynamic
« Dynamic

Table 6-1 describes these usage choices.

Table 6-1 Dynamic News: Three Levels of Customization

Customization
Level

Description

Static

Static pages are not customized.

IAn end-user at this level gets a page listing all items from each category, sub-category, and
type.

IThe news system administrator uses the Administration servlet to generate static XML
documents periodically (for example, every hour on the hour).

The application could build such pages on demand, but it's faster to serve up a
pregenerated page than to run a query and build the same page for each user who
requests it.

Semi-Dynamic

Semi-dynamic pages combine pregenerated lists of items.

/An end-user chooses one or more categories, and Dynamic News builds a page listing the
items from those categories. The news admin uses the Administration servlet periodically
to pregenerate the lists of items in each category.

Like static pages, semi-dynamic pages are built from pregenerated documents to improve
performance.

Dynamic

Dynamic pages are built when end-users request them. Content comes directly from the
database; nothing is pregenerated.

First, an end-user invokes a servlet to choose categories, sub-categories, and types. Next,
Dynamic News queries the database for items matching that criteria and uses the result
set to build an XML document. Then, as with static and semi-dynamic pages, it applies an
IXSLT transformation to generate HTML.

Customizing Content with XML: Dynamic News Application 6-3

Dynamic News SQL Example 1: Iltem Schema, nisetup.sql

Note: The term "dynamic" and "static" refer to the page contents

not its behavior.

Dynamic News SQL Example 1: ltem Schema, nisetup.sq

Here's the SQL from nisetup.sql, that defines the structure of a news item:

)

CREATE TABLE newsNEWS_[TEMS
(ID NUMBER NOT NULL,

TILE VARCHAR2(200),

URL VARCHAR2(200),
DESCRIPTION VARCHAR2(2000),
ENTRY DATE DATE,
CATEGORY ID NUMBER,
SUB_CATEGORY _ID NUMBER,
TYPE ID NUMBER,
SUBMITTED_BY_ID NUMBER,
EXPIRATION_DATE DATE, A
APPROVED_FLAG VARCHAR2(L)

Dynamic News Servlets

provide entry points to the application logic:

Table 6-2 Dynamic News Servlets

Table 6-2 lists the servlets used in the Dynamic News application. These servlets

Servlet

Description

ile Name

Administration

« Adds news items to the database.
« Maintains lists of users, types, and categories.

« Generates XML and HTML for a static
(non-customized) news page.

xmlnews/admin/AdminServlet.java

Semi-Dynamic

Generates lists of news items in categories
chosen by the end-user.

xmlnews/dynamic/SemiDynam
icServlet.java

Dynamic

Retrieves news items from the database to
generate custom pages based on end-user
preferences.

xmlnews/dynamic/DynamicServlet.
java

6-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

How Dynamic News Works: Bird's Eye View

How Dynamic News Works: Bird's Eye View

Generating XML Documents to Build HTML Pages
Dynamic News generates XML documents to build HTML pages:

Static Pages: Built from XML documents pregenerated at intervals set by the
news system administrator.

Semi-Dynamic Pages: Built from pregenerated XML documents that list the
items in categories chosen by the user.

Dynamic Pages: Built on demand from XML documents that list items by
categories, subcategories, and types chosen by the user.

Figure 6-1 gives an overview of how Dynamic News performs these steps:

1.

Calls Oracle XML-SQL Utility (XSU) . This queries the database for news items
and writes the results to an XML document. This happens as follows:

« In batch mode for Static pages
« Inbatch mode for Semi-Dynamic pages
« On demand for Dynamic pages

Uses the XSL-T Processor of the Oracle XML Parser for Java to transform the
XML into HTML via one of three XSL stylesheets: one for Netscape Navigator,
one for Internet Explorer, or a general stylesheet for all other browsers.

Delivers the HTML page to the user through a Web server.

Customizing Content with XML: Dynamic News Application 6-5

How Dynamic News Works: Bird's Eye View

Figure 6-1 Dynamic News

N
N

News (=P

Database

XML
T Document

XML Parser

iill
v

XSL-T
Processor

@ xvso
Utility

ik

* HTML
XSL Stylesheets page

Dynamic
News
Servlet

6-6 Oracle8/ Application Developer's Guide - XML, Release 3 (8.1.7)

Static Pages

Static Pages

Dynamic News generates static pages to display all available news items. These
pages are built at intervals set by the news system administrator, for example, every
hour on the hour; otherwise, they don't change.

When to Use Static Pages?

Static pages are useful in any application where data doesn't change very often. For
example, when publishing daily summaries from ERP or customer applications.
Because the content is static, it's more efficient to pregenerate a page than to build
one for each user who requests it.

How Static Pages Works

The admin executes a batch process, implemented from the Administration servlet,
that queries the database and generates an XML document. When an end-user
invokes Dynamic News to display all news, a servlet gets the browser type from the
user-agent header of the HTTP request, then reads the XML document, and applies
the appropriate XSL stylesheet.

Finally, it returns an HTML page formatted for the end-user's browser, as shown in
Figure 6-2.

Another approach would be to apply XSL stylesheets as part of the batch process,
generating one HTML file for each stylesheet. In this case, you end up with more
files to manage, but the runtime servlet is smaller.

Customizing Content with XML: Dynamic News Application 6-7

Static Pages

Figure 6-2 Dynamic News: Static Pages - Generating XML Documents

Executes batch process to

[4
‘! o generate updated news XML
documents at intervals
l | eg. every hour

Administrator

Dynamic News

Admin Servlet

XSL stylesheets

o B Browser type
=T displayed
News dis|
< p

I
I
N I
| I
| I
Queries the I XML applied according !
< database I document to user's browser !
. I
| — I
| > p— !
| _— |
| I
Oracle8 i or other database | |
| I
| I
R ts N ' |
equests News I
[> I
L . |
I > !
T
I
I

User

6-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

I
IMIE

Semi-Dynamic Pages

Semi-Dynamic Pages

The application builds semi-dynamic pages by combining pregenerated lists. The
lists of items per category are pregenerated by the administrator (one XML file for
each category), but pages that contain them are customized for each user. End-users
choose categories such as Sports, Business, and Entertainment.

When to Use Semi-Dynamic Pages

The semi-dynamic approach is useful when the data doesn't change very often and
you want to give the end-user a relatively small number of choices. An application
that offers more choices has to pregenerate more documents, and benefits degrade
proportionally.

How Semi-Dynamic Pages Work
Figure 6-3 shows how semi-dynamic generation works. There are two phases:

« Phase 1 - Static Processing Phase: An administrator uses the Administration
Servlet periodically to pregenerate XML files and store them in CLOBs in the
database. You could also store them in a simple flat-file system, trading the
benefits of the database for potential performance gains.

« Phase 2 - Dynamic Processing Phase: This phase begins when an end-user
requests news items from specified categories. A servlet pulls CLOBs from the
database and combines them into one XML document. It stores user preferences
both in the database and in a client-side cookie, and reads them from the cookie
where possible to improve performance. It then transforms the XML document
into an HTML page using a XSL stylesheet matched to the end-user's browser.
As with static pages, the servlet gets the browser type from the user-agent
header of the HTTP request.

Customizing Content with XML: Dynamic News Application 6-9

Semi-Dynamic Pages

Figure 6-3 Dynamic News: Semi-Dynamic Pages - Generating XML Documents

—_— e e e e e e m ==y

Oracle8 i Pre-generate
and store news
category XML
files in
database
CLOBs.

Admin Servlet

Executes the
generation of
an XML file for

Gets end-user preferences from
cookie or CLOBs in database.
Combines corresponding XML

Apply XML stylesheet based on
browser type.

| |
| |
| |
| |
| |
each news | documents from database into |
category | one XML file. |
chosen. | |
® ! | Semi-Dynamic Servlet :
q‘ = XSL stylesheets
|
\- I | : HTML | News (4] =
o T — | Displayed
Administrator ! > — b _ D
: f— | End User /
| | Browser
| I Requests news
| | from specified
| < | categories e
| |
| < : Browser type
: |
| |
| |

6-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Dynamic Pages

Dynamic Pages

The application builds dynamic pages on demand by pulling items directly from
the database. End-users access the "Create/Edit User Preference Page" to choose
categories, subcategories, and types (for example, Entertainment - Movies -
Review).

When to Use Dynamic Pages

Dynamic pages are useful for delivering up-to-the-minute information, such as
breaking news. They are also useful for delivering historical data, such as the
closing price of any specified stock on any day in the last 10 years. It would be
impractical to pregenerate documents for every possible request, but
straightforward and efficient to pull the figures from the database.

How Dynamic Pages Works

Figure 6-4 shows how dynamic generation works. Unlike the other runtime
models, the administrator does not pregenerate XML documents. Instead, the
Dynamic Servlet queries the database for news items based on the end-user's
customization choices.

The servlet stores user preferences both in the database and in a client-side cookie,
and reads them from the cookie where possible to improve performance. Using the
query results, the servlet generates an XML file and transforms it using an XSL
stylesheet into an HTML page for the user's browser. As with the other approaches,
the application gets the browser type from the user-agent header of the HTTP
request.

Customizing Content with XML: Dynamic News Application 6-11

Dynamic Pages

Figure 6-4 Dynamic News: Dynamic Pages - Generatng XML Documents

Dynamic Servlet

9) XML XSL
Oracle Queries document stylesheets
database
< p—
Gene{?tes J—
XML files j—
(3] g

News Database

6-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

- Queries news database
- Generates XML files
- Transforms XML files using

XSL stylesheets

I
|\||| =

News e

D|sp|ayed

q

End User /
Browser
Requests news
(customized
preferences)

A A

Browser type
No pregeneration of
XML documents by
Administrator

Personalizing Content

Personalizing Content

Oracle8i makes Dynamic News flexible. Because news items are stored in the
database, Dynamic News can customize content on demand. The code examples in
this section show how the application personalizes pages by retrieving news items
in categories specified by the end-user. The main tasks are:

1. Getend-user preferences.

2. Pull news items from the database.

3. Combine news items to build a document.
4

After assembling personalized content, the application customizes presentation
of the page, formatting it for the end-user's browser as described later in this
document.

Customizing Content with XML: Dynamic News Application 6-13

1 Get End-User Preferences

1 Get End-User Preferences

Logic for processing preferences is distributed throughout the application, which
stores the data both in the database and in client-side cookies. The application reads
preference data from a cookie whenever possible to improve performance. If it can't
get the data from a cookie (for example, because the end-user is visiting the site for
the first time, or the end-user's browser does not accept cookies), the application
reads preference data from the database.

From a Client-Side Cookie

The two methods below show how the application processes preference data stored
in a cookie. Both methods come from xmlInews.common.UserPreference. Here's a
sample cookie:

DynamicServiet=3$0$0#4$2$1*242

The cookie uses dollar signs to separate preference values, pound signs to separate
categories, and three asterisks as a token to separate user ID and preference data.
The sample cookie above shows that user 242 wants items from categories 3 and 4.
In category 3, the user wants items of all types in all subcategories (a value of 0
selects all items). In category 4, the user wants items from subcategory 2 only, and
within that subcategory, only items of type 1.

The sample app processes such cookies in two steps:

1. First, getNewsCookie gets the "DynamicServlet" cookie from the browser that
issued the HTTP request.

2. Then loadPreferenceFromCookie parses it to get a String that contains that
user's ID and preferences.

public Cookie getNewsCookie(HtipServietRequest request)
throws Exception {
Cookie cf] = request.getCookies();
Cookie |_retumCookie = null;
for (inti=0; (c'= null) && (i< clength); i++) {
if (cfi].getName().equals('DynamicServiet")) {
|_retumCookie = c[i];
}

}
retum|_retumCookie;

}
public Vector loadPreferenceFromCookie(Cookie p_cookie) throws Exception {
Vector|_prefld = new Vector(2);

6-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

1 Get End-User Preferences

String |_Preferences = p_cookie.getValue();
StringTokenizer |_stToken = new StringTokenizer(_Preferences, "),
Sting |_userld="";
while (|_stToken.hasMoreTokens()) {
I/ First Token is User Preference.
|_Preferences =|_stToken.nextToken();
Il Second Tokenis User ID.
| userld =|_stToken.nextToken();
}
|_prefid.addElement(l_Preferences);
|prefid.addElement(_userld);

retum |_prefid;
}
Querying the Database
If it can't read preferences from a cookie, the application queries the database. The
class xmlnews.common.GenUltility implements methods that connect to the

database and fetch news categories, sub-categories, and types.

The semi-dynamic servlet and the dynamic servlet both call these methods and the
methods loadInitalPreference and constructUserPreference . These are
both implemented in xmlInews/common/UserPreference.java.

Method loadInitalPreference calls getSubCategories , then loops through
the result set, combining category values with separator characters to build a
preference string.

public String loadinitialPreference(Vector p_category, Vector p_subcategory,
Vector p_types, Connection p_con)

throws Exception {

GenUtility m_general = new GenUftility();

for (inti=0; i< p_category.size(); i++) {
Sting|_catff] = (String [[) p_category.elementA();
|_category =1_cat{O];
Vector|_subcategory =m_general.getSubCategories(p_con,|_cat[0]);

for(int]_j=0,1 k=0;1 j<| subcategory.size();|_j++,| k++)
{

Il Append the next preferences to the constructed string
|_userPref=1_userPref+'#+_category+'$"+_subCat+"$"+_typeStr,
}
}

Customizing Content with XML: Dynamic News Application 6-15

1 Get End-User Preferences

retum|_userPref;

}

public static Vector getSubCategories(Connection p_conn, String p_categoryld)
throws Exception {
Vector|_subCats = new Vector();

PreparedStatement |_pstmt=p_conn.prepareStatement(
"Select id, name from sub_categories where category id="?");
|_pstmt.setString(1, p_categoryld);
ResultSet|_rset=1_pstmt.executeQuery();

while (I_rsetnext()) {
String[] |_subCat = new String[2];
|_subCat{0] = new String(l_rsetgetString(1));
|_subCat{1] = new String(_rsetgetString(2));
|_subCats.addElement(_subCat);
}

|_pstmt.close();

retum |_subCats;

}

For example, the following code comes from
xmlnews.dynamic.DynamicServlet.service

It calls these methods to read end-user preferences from the database, then uses the
preferences to build an HTML page.

public void service(HttpServietRequest p_request,

HttpSenvietResponse p_ response)
throws ServietException {

I The following are declared elsewhere as class variables
lland initialized in the senviet's init method.
Il GenUtility m_general = null;

//'m_general = new GenUiility();
Il UserPreference m_userPreference = null;
IIm_userPreference = new UserPreference();

I/'if the database connection has been closed, reopen it
if (M_connection = null || m_connection.isClosed())
m_connection =m_general.dbConnection();

6-16 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

1 Get End-User Preferences

String |_preference =m_userPreference.loadlnitialPreference(
m_general.getCategories(m_connection),
nul, m_general.getTypes(m_connection),

m_connection);

m_userPreference = m_userPreference.constructUserPreference
(I_preferencem_status);

I/ Display the Dynamic Page
this.sendDynamicPage(_browserType, p_response,
|_userName, m_userPreference,
m_senietPath +"?REQUEST_TYPE=SET_ADVANCED USER PREFS",
m_senvetPath +"?REQUEST TYPE=LOGIN REQUEST",
m_senetPath +"?REQUEST TYPE=LOG_OUT REQUEST",
m_senvietPath);

Customizing Content with XML: Dynamic News Application 6-17

2 Pull News Items from the Database

2 Pull News Items from the Database

The following code, from

xmlnews.admin.AdminServlet.performGeneration and
xmlnews.admin.AdminServlet.staticProcessingHtml , shows how the
application queries the database for news items in each available category and
converts each result set to a XML document.

The database stores the XML for each category as a CLOB (Character Large OBject),
so the application can handle very long lists.

public void performGeneration(String p_user, String p_genType,
HitpSenvietResponse p_response)
throws ServietException, IOException {

try{
String|_fleSep = System.getProperty('file.separator”);
String |_message ="; // Holds status message

if (p_genType.equals('BATCH_GEN")) {// Batch Generation
String |_htmlFile ="BatchGeneration";

String |_xslFile ="BatchGeneration”;

String | xmiFile ="BatchGeneration”;

I/ Generate the XML and HTML content and save itin afile
this.staticProcessingHtmI(
m_dynNewsEnv.m_dynNewsHomeH_fileSepH_htmiFile+"html",
m_dynNewsEnv.m_dynNewsHome+H_fileSep+m_dynNewsEnv.m_batchGenXSL,
m_dynNewsEnv.m_dynNewsHomeH _fileSep+ xmliFile+"xml"

)
.

The method xmlnews.admin.AdminServlet.staticProcessingHtml

defines and executes a query to fetch the news items. Then it uses the Oracle
XML-SQL Utility (XSU) to build an XML document from the result set and create an
HTML page by applying an XSLT transformation.

public void staticProcessingHImI(String p_htmiFile,String p_xsfile,
String p_xmlfile) throws Exception {
Sting |_query ="select aid, atile, a.URL, a DESCRIPTION, " +
"to_char@.ENTRY_DATE, DD-MON-YYYY'), a.CATEGORY_ID, b.name,
aSUB_CATEGORY_ID, cname, a.Type_Id, d.name, "+

6-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

2 Pull News Items from the Database

"a.Submited By Id, ename, to_char(a.expiration_date, DD-MON-YYYY'),
aapproved flag" +

"from news_items a, categories b, sub_categories ¢, types d, users e where " +

"a.category_idis not nulland a.sub_category _id is not null and "+

"atype_idis not nulland a. EXPIRATION_DATE is not null and "+

"acategory_id=h.id ANDa.SUB_CATEGORY_ID=c.id AND a.Type_ID=d.d
AND"+

"aSUBMITTED _BY_ID=e.id AND"+

"aEXPIRATION_DATE > SYSDATE AND "+

"aAPPROVED_FLAG =VA' ORDER BY h.name, c.name";

Statement |_stmt=m_connection.createStatement();
ResultSet|_resutt=1_stmtexecuteQuery(_query);
/I Construct the XML Document using Oracle XML SQL Utility
XMLDocument | xmiDocument =m_xmlHandler.constructXMLDoc(l_result);

|stmt.close();

1 Get the HTML String by applying corresponding XSL to XML.
String |_htmiString = m_xmiHandler.applyXSLtoXML(_xmiDocument,p_xsffile);

File | file = new File(p_htmiFile);

FileOutputStream |_fileout = new FileOutputStream(]_file);

FileOutputStream | xmifileout = new FileOutputStream(new File(p_xmiffile));.
| fileoutwrite(l_htmiString.getBytes();

| xmiDocument.print(_xmifileout);

| fleout.close();

| xmifileout.close();
}

Customizing Content with XML: Dynamic News Application 6-19

3 Combine News Items to Build a Document

3 Combine News Items to Build a Document

The final step in personalizing content is converting XML documents into HTML
pages according to end-user preferences.

The following code comes from
xmlnews.generation.SemiDynamicGenerate.dynamicProcessing

It retrieves the CLOBSs corresponding to categories chosen by the user, converts each
CLOB to an XML document, then combines them into one XML document. The
process of converting the XML document to an HTML page is described in the next
section.

public XMLDocument semiDynamicProcessingXML(Connection p_conn, UserPreference p_
prefs)
throws Exception

{

String |_htmiString = null ;

XMLDocument | combinedXMLDocument =null ;

XMLDocument]] | XMLAray = new XMLDocument]p_prefsm_categories.size()];

int|_arraylndex=0;

PreparedStatement |_selectStmt =p_conn.prepareStatement(
" SELECT PREGEN_XML FROM CATEGORIES_CLOB WHERE CATEGORY_ID =
7,
Il Process each preference.
for (; |_amaylndex <p_prefs.m_categories.size(); +H_arrayindex
|_selectStmt.setString(1, p_prefs.m_categories.elementAt(_
arraylndex).toString();
OracleResultSet|_selectRst = (OracleResultSet)l
selectStmt.executeQuery();
if (_selectRstnext() {
CLOB|_clob=1_selectRst.getCLOB(L);
| XMLAmay[l_arrayindex] = convertFileToXML(_clob.getAsciiStream());
}else
| XMLAray[l arrayindex]=null;
}
|_selectStmt.close();

XMLDocHandler | xmiHandler = new XMLDocHandler();

| combinedXMLDocument =|_xmiHandler.combineXMLDocunemts(l_XMLArray);
retum|_combinedXMLDocument ;

6-20 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

4 Customizing Presentation

4 Customizing Presentation

After fetching news items from the database, Dynamic News converts them to XML
documents. XML separates content from presentation, making it easy to build
custom HTML pages.

Dynamic News uses different XSL stylesheets to convert XML documents into
HTML pages customized for various browsers:

« One for Netscape Navigator

« One for Microsoft Internet Explorer

« Ageneric stylesheet for other browsers.
It's a four-step process:

1. Get the user's browser type.

2. Get news items.

3. Build an XML document.

4. Convert XML to HTML.

Each time it receives an HTTP request, the application inspects the user-agent
header to find out what kind of browser made the request. The following lines from
xmlnews.dynamic.DynamicServlet.service show how the servlet creates a
RequestHandler object (implemented in xmInews/common/RequestHandler.java)
and parses the request to get the browser type. Then the servlet uses this
information to return an HTML page based on the end-user's preferences and
browser type.

public void service(HttpServietRequest p_request, HitpSenietResponse p_
response)
throws SenvietException {

Il nstantiate a Request Handler (declared elsewhere)

m_regHandler = new RequestHandler(m_userPreference, m_generalm_
status);

RequestParams|_reqParams =m_reqHandler.parseRequest(p_request, m_
connection);

String |_browserType =1 _regParams.m_browserType;

I/ Display the Dynamic Page
this.sendDynamicPage(_browserType,p_response,l_userName,m _
userPreference,
m_sendetPath+"?REQUEST_TYPE=SET_ADVANCED_USER _

Customizing Content with XML: Dynamic News Application 6-21

4 Customizing Presentation

PREFS",
m_senvietPath+*?REQUEST TYPE=LOGIN REQUEST",
m_senvietPath+*?REQUEST TYPE=LOG_OUT REQUEST",
m_senietPath);

}

The code that actually extracts the browser type from the user-agent header resides
in xmInews.common.GenUtility.getBrowserType , Which follows:

public String getBrowserType(HttpServietRequest p_request) throws
Exception {

I/ Get all the Header Names associated with the Request
Enumeration |_enum = p_request.getHeaderNames();

Sting|_Version =null;
String |_browValue =nul;
String |_browserType = null;

while (_enum.hasMoreElements()) {
String |_name = (String)l_enum.nextElementy();
if (_name.equalsignoreCase('user-agent"))
| browValue =p_requestgetHeader(_name);
}

I/ If the value contains a String "MSIE" then it is Intemet Explorer
if (_browValue.indexOf{'MSIE") > 0) {
StringTokenizer |_st = new StringTokenizer(_bronValue, ";");
Il Parse the Header to get the browser version.
|_browserType ="IE";
while (|_sthasMoreTokens()) {
String |_tempStr=1_stnextToken();
if (_tempStr.indexOf"'MSIE") >0) {
StringTokenizer |_st1 = new StringTokenizer(_tempStr, ");
|_stl.nextToken();
| Version=|_stl.nextToken();
}

}
I'f the value contains a String "en’* then it is Netscape

}else if (I_browValue.indexOf("en) > 0) {
|_browserType ="NET";
String |_tVersion =1_browValue.substring(8);
int]_tempind =1_tVersion.indexOf(T");
|_Version =|_tVersion.substring(0, |_templnd);

6-22 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

4 Customizing Presentation

}

/I Retum the Browser Type and Version after concatenating
retum|_browserType +|_Version;

}

After getting the end-user's browser type, the DynamicServlet's service method
passes it to xmInews.dynamic.DynamicServlet.sendDynamicPage

This method generates HTML by fetching XML documents from the database and
converting them to HTML by applying an XSL stylesheet appropriate for the
end-user's browser type.

public void sendDynamicPage(String p_browserType,HitpSenietResponse p_response,
String p_userName,UserPreference p_pref,String p_userPrefURL,
String p_signOnNURL,String p_logout,
String p_senetPath) throws Exception {
String |_finaHTML ="; // Holds the html
if (;p_browserType.startsWith('IE4") || (p_browserType.startsWith('IES"))) {
I/ Send the XML and XSL as parameters to get the HTML string.
| finaHTML =m_handler.applyXSLtoXML(
this.dynamicProcessingXML(m_connection, p_pre),
m_dyEnv.m_dynNewsHome + "/DynamiclE.xs!"
)
String |_thishit=m_general.postProcessing(l_finaHTML,p_userName,
p_userPrefURL,p_signOnURL,p_logoutp_senvietPath);
PrintWiiter |_output =p_response.getWhiter();
| output.print(_thishit);
|_output.close);
}
else if (p_browserType.startsWith("NET4") ||
(p_browserType.startsWith('NET5")) {
I/ Do the same thing, but apply the stylesheet "/DynamicNS xsl"

/I'When the Browser is other than IE or Netscape.
}else{
1/ Do the same thing, but apply the stylesheet "/Dynamic.xsl"

}

The key methods are:

« xmilnews.dynamic.DynamicServlet.dynamicProcessingXML

Customizing Content with XML: Dynamic News Application 6-23

Importing and Exporting News Items

This queries the database for news items that match the end-user's preferences.
It converts the result set into an XML document by calling
xmlnews.common.XMLDocHandler.constructXMLDoc

« xmlnews.common.XMLDocHandler.applyXSLtoXML

This converts an XML document into HTML using a specified XSL stylesheet. It
uses XSL Transformation capabilities of Oracle XML Parser Version 2.0. More
specifically, it uses the Document Object Model (DOM) parser to create a tree
that represents the structure of the XML document. To build the final HTML
string, it creates an element to serve as the root of the tree, then appends the
parsed DOM document.

Importing and Exporting News Items

Dynamic News can also import and export XML documents that conform to the
Resource description framework Site Summary (RSS) standard. Developed by
Netscape as a way to share data channels, RSS is used at Web sites such as
my.netscape.com and slashdot.org.

An application can use RSS to syndicate its news pages (making them available to
RSS hosts) and to aggregate news from other RSS sites. For example, Dynamic
News includes the xmlnews.admin.RSSHandler class. It uses a specified DTD
to parse and extract news items from a specified file, and then it stores the items in a
Hashtable. The class also provides a method that returns the elements in that
Hashtable.

6-24 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

v

Personalizing Data Display With XML.:
Portal-to-Go

This chapter contains the following sections:

« Introduction to Oracle Portal-to-Go

« Portal-To-Go 1.0.2 Features

=« What’s Needed to Run Portal-to-Go

« Portal-To-Go: Supported Devices and Gateways

=« How Portal-to-Go Works

« Portal-to-Go Components

« Exchanging Data via XML: Source to XML, XML to Target with Portal-to-Go
« Extracting Content

« Converting to XML

« Sample Adapter Classes

« Transforming XML to the Target Markup Language

« Portal-to-Go: Java Transformers

« Portal-to-Go: XSL Stylesheet Transformers

« Portal-to-Go Case Study 1: Extending Online Drugstore’s Reach
« Portal-to-Go Case Study 2: Expanding Bank Services

Personalizing Data Display With XML: Portal-to-Go 7-1

Introduction to Oracle Portal-to-Go

Introduction to Oracle Portal-to-Go

Most Web clients are PCs, but according to the Meta Group, “By 2003, over 50% of
internet access will be by non-PCs.”

Oracle Portal-to-Go (Portal-to-Go) enables the following services:

« Itallows virtually any wireless device to access any existing Web or database
application or content, including secure e-business applications.

« Itenables wireless carriers to become broad-range e-commerce service
providers.

Portal-to-Go, a component of the Oracle Internet Platform, is a server product that
provides everything you need to deliver Web content to any capable device. It
transforms existing content to a device's native format, and provides a portal
interface for the end-user.

XML is the Key

XML is the key for content providers to reach an audience of mobile users with data
delivered in many different formats. XML isolates the source content format from
the target device format, enabling content providers to take data from any source
and deliver it to any target. Use these XML-based techniques in applications that
convert data from one format to another, such as:

« Enterprise application integration
« Customization of content delivery based on user profile

« Content and services aggregation in the form of a marketplace supplier
exchanges

Portal-to-Go Components
A Portal-to-Go portal includes the following components:

« Services that deliver data to mobile devices
« Adapters that convert HTML and RDBMS content to XML
« Transformers that convert XML to the appropriate markup language

This chapter describes how Portal-to-Go uses XML to make Web content available
to any device. It describes a stock quote service and the role XML takes as an
intermediate format for the data exchange.

7-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

What's Needed to Run Portal-to-Go

Oracle XML Components

The XML Parser for Java, V2 is used in the Portal-to-Go Adapters and Transformers.
The XSL-T package of the XML Parser for Java is also used.

Portal-To-Go 1.0.2 Features

The Portal-To-Go 1.0.2 features include the following:

Apache and Apache JServ Support
Explicit content-type setting on a per service basis

Improved customization of device output, such as explicit settings of output
variable names

Support for optional input parameters

Improved handling of multibyte character sets
Improved handling of special characters, such as "$"
Enhancements to existing WML transformers

A single WML transformer replaces a number of separate transformers from
previous releases

Bookmarks functionality to allow external sites to be included within a
Portal-to-Go portal

Improvements to allow the creation of portals using multibyte character sets

See Also: the Portal-to-Go Installation Guide for more details on
repository upgrades.

What's Needed to Run Portal-to-Go

Portal-to-Go requires the following:

Oracle8i, Release 8.1.5 or above

One of the following servers:

« IAS (Internet Application Server)

« Apache Web Server 1.3.9 and Apache JServ 1.1

Java Configuration Requirements

Personalizing Data Display With XML: Portal-to-Go 7-3

Portal-To-Go: Supported Devices and Gateways

« Service Designer. The Portal-to-Go Service Designer requires JDK 1.2.2. You
can install JDK 1.2.2 from the Portal-to-Go CD-ROM.

« Web Integration Developer. The Web Integration Developer includes its
own Java Virtual Machine (JVM). It does not require any Java setup.

« Server Component. The Portal-to-Go server component runs with JDK 1.1
or 1.2. J]DK 1.2 has improved performance.

Portal-To-Go: Supported Devices and Gateways

Transformers

Portal-to-Go provides transformers for the latest WAP-compliant devices from the
following vendors:

« Alcatel

« Ericsson (including R320)

« Motorola (including Timeport)
« Neopoint (including NP1000)
« Nokia (including 7100)

« Samsung

You can also create your own transformers and extend Portal-to-Go support to
other devices.

WAP Gateways
Portal-to-Go has been successfully tested with the following WAP gateways:

« Phone.com UP.link Gateway

« Nokia WAP Gateway

« Ericsson WAP Gateway

« Infinite Technologies WAPL.ite

7-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

How Portal-to-Go Works

How Portal-to-Go Works

Figure 7-1 shows how Portal-to-Go works. When an end-user requests a
Portal-to-Go service, the following actions transpire:

1.

a M 0D

6.

Portal-to-Go’s Request Manager performs user-level preprocessing, including
authentication.

Request Manager sends a request to the corresponding Master Service.
Master Service invokes an adapter to retrieve the requested content.
Adapter returns the content in XML.

Transformer converts the XML content into a format appropriate for the target
device.

Request Manager returns the information to the device.

XML and related technologies are at the core of Portal-to-Go’s functionality as
follows:

XML separates presentation and content
A DTD maps XML tags to User Interface (Ul) elements

XSL stylesheets define rules for formatting, sorting, and filtering results

Figure 7-1 How Portal-to-Go Works

HTML
or other format
Cell o 9 e
Phone =
| ——> renes o[o =l 5=
- Manager 4— 4_ Service 4— ‘)y —
e Required e XML 9 XML —
format Adapter Data Source
-web pages
Transformer - JDBC-enabled
data source
- database
Personal . XML source
Digital C
Assistant

Personalizing Data Display With XML: Portal-to-Go 7-5

Portal-to-Go Components

Portal-to-Go Components

Portal-to-Go Services

A Portal-to-Go service encapsulates a unit of information requested by, and
delivered to, a Portal-to-Go client. Examples of services include:

« Stock quotes

« News
« Maps
« Email

You can build services from an existing Web site, a query to any database, or any
XML source.

Master Service

A Master Service is a Portal-to-Go object that implements a service and invokes a
specific adapter. The end-user typically sees a service as a menu item on a handset
or a link on a Web page. End-users invoke Master Services by choosing menu items
in their device interface. The Master Service returns the following kinds of data:

« Static text, such as a movie review

« Anapplication, such as an airline booking system

7-6 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Portal-to-Go Components

Figure 7-2 How an End-User Sees Services as Menu Items. Master Service is Invoked
When You Select a Menu Item

Menu items

Portal-to-go
Cliarlt.g |

§ scott
23 my Home
E-_] news
#, Phenebook
#, SF vellow Page
%y, ry Mail
I} Gold Members
& -] Travel
o E_]Finanee
o B] Business

My Home
Traveal
Financea

Business

By mapping an Adapter to device Transformers, master services link Portal-to-Go
content sources to the delivery platforms. Each Master Service is based on one
Adapter. A Master Service creates its own instance of the Adapter it uses. Therefore,
several services can use the same type of Adapter, and each can pass the Adapter its
service-specific argument values.

Portal-to-Go Adapters

A Portal-to-Go Adapter is a Java application that retrieves data from an external
source and renders it in Portal-to-Go XML. When invoked by a Master Service, an
Adapter returns an XML document that contains the service content. Adapters
provide the interface between the Portal-to-Go server and the content source.

An Adapter does the following:

« Connects to a data source

« Retrieves content

« Converts the content to Portal-to-Go XML

Portal-to-Go provides pre-built Adapters for popular content sources, including
Web pages and JDBC-enabled data sources, and adapters you can modify to work
with other content sources.

All adapters must generate Portal-to-Go XML. This is a well-formed, valid XML
document that complies with the Portal-to-Go DTD.

Personalizing Data Display With XML: Portal-to-Go 7-7

Portal-to-Go Components

Portal-to-Go Transformers

Portal-to-Go Transformers are Java programs or XSL-T stylesheets that convert an
XML document into the target or another Portal-to-Go format. They can also
rearrange, filter, and add text. The Transformers enable you to present content in a
format best suited to your target device. Portal-to-Go supplies transformers for the
following markup languages:

WML 1.1 - The wireless markup language defined by the WAP Forum.

Tiny HTML - A subset of HTML, suitable for handheld devices (not phones)
such as Palm Pilots.

VoxML - The Motorola markup language that enables voice interaction with
applications.

TTML - The Tagged Text Mark-up Language is a subset of HTML developed by
Nokia.

HDML - The Handheld Devices Markup Language is a simplified version of
HTML designed specifically for handheld devices.

Plain Text - Converts content for Short Message Service-capable devices and
email applications.

Figure 7-3 illustrates these markup languages and their derivation.

Figure 7-3 Portal-to-Go Supports Several HTML- and XML-based Markup Languages

SGML
/ Structure \
_ HTML XSL XML XLL
Links + Data + Presentation Data Links
Presentation
HTML TTML VoxML WML fpadavin
Phone.com (UP) Nokia Motorola WAP Forum Forum

Use Transformers to optimize content presentation for any device, and support new
device platforms. In most cases, you can simply modify or re-use an existing
Transformer.

7-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Exchanging Data via XML: Source to XML, XML to Target with Portal-to-Go

Exchanging Data via XML: Source to XML, XML to Target with
Portal-to-Go

With XML as an intermediate format, you can take data from any source and
deliver it to any device. Suppose you have a Web application that provides stock
guotes and headlines, and you want to deliver the information to a mobile phone
and a PDA (Personal Digital Assistant, such as a Palm Pilot).

Because each device has specific requirements for formatting content, you cannot
send the same data to each device. How would you do it? Portal-to-Go defines an
intermediate data format in XML. It also provides tools that allow content providers
to perform the following tasks:

« Extract source content
« Convert source content to XML

« Transform XML to the markup language for each device

Personalizing Data Display With XML: Portal-to-Go 7-9

Extracting Content

Extracting Content

Hand-held devices cannot display as much information as a desktop monitor, so
you have to be selective. Figure 7-4 shows two, deliberately undecipherable, Web
pages from a Stock Data application.

« A —Thefirst page is a form where you enter a company's ticker symbol. For
example, ORCL is the ticker symbol for Oracle Corporation.

« B — The second page displays the stock price, and other information about the
company.

Both pages are full of ads, buttons, hyperlinks, related articles, and more. Your first
step would be to identify the elements of a Web page that you want to make
accessible to your service.

7-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Extracting Content

Figure 7-4 Extracting Elements from HTML Pages For Display on Wireless Devices

Ticker Symibol: =
L 2=

[Text Input Field |
| Get Quotes button |

-

Extracting content:

Web pages Aand B
Paortals- n-?c's have tog
miech detail for display on
wireless devices.

Web Integration Developar
can extract only those
elemants from HTML
forms and pages to build
manus and display data
on wirelass davicas

ORCLS =0y —

* Dracle surges,
* NASDAQ ends highet

drin Frma Bl

L W g T et e e) i
do
e g T T T R T

. L L s R L R
i T

& Wbt W gei 142 Lnlona Fln
bl reses, Bip Do Mudud o

= Sgerwc Dk Machry Do

= Towhmulage JaSewy, labrws Teius

& Narsiage: JprL Dabiing bk

" i o N e T - Y SR
S ——

B e

Feptegmm b i T i

el G |1

* LS stocks bol Memi =

Web Integration Developer: A "Screen Sc
Portal-to-Go provides a GUI

[o -

o=

raper"
tool called the Web Integration Developer. It's a "screen

scraper" that extracts user interface (Ul) elements from a Web page. Using Web

Integration Developer tools

and functions, you choose Ul elements and define

corresponding output and input parameters.

Personalizing Data Display With XML: Portal-to-Go 7-11

Extracting Content

Figure 7-5 shows a corner of Web Integration Developer. The Document Browser
panel includes the following items:

« The URL of the source page

« A Document node that represents the contents of the source page: paragraphs,
images, links, lists, and tables

« A FirstForm node that represents an HTML form. The Web Integration
Developer creates a form node for each form in the source page.

« A StockData node that represents the Portal-to-Go service.

The next step is to convert the extracted elements to XML.

Figure 7-5 Using Web Integration Developer to "Scrape the Screen”

=9 Oracle Portal-to-Go Web Integration Developer

File Edt View Genersta Tools Help

EDNEEEENR

UAL of source :

page——— 1) = hitpfguote yaho 0 %l x

A doc node 2) —=—p # Document

First form node——23) ——& # FirstForm MNAME
represants HTML

form J"’f} —» 0 StockData | CoSymbaol

StockData node
raprasants tha
portal-to-go
sarvice

7-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Converting to XML

Converting to XML

A Portal-to-Go Adapter retrieves content from the source. In the example illustrated
here, it pulls specific quotes and headlines from a Web page. Then the Adapter
converts the content to XML.

Why Use an Intermediate XML Format?

Why not go straight to the target device format? Two reasons: flexibility and
extensibility. To go straight from source to target, you must effectively create an
adapter and transformer for each source-target pair. With XML as an intermediate
format, you only need one adapter for each source, and one transformer for each
device. For example if there are, say two content sources and three target devices

= Source to Target, without XML: You will need six adapter-transformer pairs,
namely twelve components altogether

= Source to Target, with XML: You will need only five components altogether, two
adapters and three transformers.

Using the Simple Result DTD

Adapter output must be XML to be generic. The key is to define an XML document
type that can represent any data type you might want to display on any device. The
document type is defined by a Document Type Definition (DTD). A DTD is a file
that provides a grammar for a class of XML documents by describing the elements
it can contain.

To create a truly universal intermediate data format, Portal-to-Go uses the Simple
Result DTD. Elements in the Simple Result DTD represent the elements of an
abstract user interface. These include the following:

« Textitems

« Menus
« Forms
« Tables

Figure 7-6 illustrates the Simple Result DTD content model.

Personalizing Data Display With XML: Portal-to-Go 7-13

Converting to XML

Figure 7-6 Simple Result DTD Content Model

— SimpleContainer -|

—| SimpleText H SimpleTextltem |

J-I SimpleMenu H SimpleMenultem |J

l SimpleForm I-I SimpleFormitem |

SimpleResult [

-I SimpleFormSelect H SimpleFormOption

-I SimpleTableHeader | SimpleCol

—| SimpleTable

H simpleTableBody | SimpleRow

Following is a portion of SimpleResult.dtd that shows the elements used in our
Stock Data example.

<
Entity: "GENATTR" contains generic attributes for most elements.
Attribs: "name” is the name of the element.

"title" is the fitle of the element.

-

<IENTITY % GENATTR "
name CDATA #IMPLIED
titte CDATA #IMPLIED
">

<l-

Element "SimpleResult' is the result element.
Usage: This element contains the result.
Children: "SimpleText"is a text resullt.

>
<IELEMENT SimpleResult ((SimpleContainer|SimpleText|SimpleMenul|

SimpleForm|SimpleTable|Simplelmage|SimpleBreak)+)>
<IATTLIST SimpleResult %GENATTR;>

7-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Converting to XML

<-

Element "SimpleText" for displaying one or more blocks of text.
Usage: Used for plain text.

Children: "SimpleTextltem" is a block of text.

-

<IELEMENT SimpleText (SimpleTextltem+)>
<IATTLIST SimpleText %GENATTR;>

<

Element: "SimpleTextitem" is a block of text

Usage: Holds one block of text - normally a single paragraph.
Children: "#PCDATA"is the actual text.

-

<I[ELEMENT SimpleTextltem (#PCDATA)>
<IATTLIST SimpleTextltem %GENATTR;>

<l-
Element: "SimpleForm" for displaying one or more input fields.
Usage: Asadata-entry form.
Children: "SimpleFormltem"” for each input field.
Attribs: "target"is the link target for this form.
"section” is the section identifier

*rxxex A special case for the WIDL adapter *****

-
<IELEMENT SimpleForm ((SimpleFormltem|SimpleFormSelect)+)>
<IATTLIST SimpleForm %GENATTR;
target CDATA #REQUIRED
section CDATA #IMPLIED>
<l-
Element: "SimpleFormitem" is a single input item in a simple form.
Usage: For getting input from a user.
Children: "#PCDATA" contains pre-filed input from the server.

*ekxek This overrides the default attribute, ****x**

Attribs: "default’ provides a default value for optional fields.

Personalizing Data Display With XML: Portal-to-Go 7-15

Converting to XML

**xx% The default value should only be used if the field is empty:.
"mandatory"” indicates that the form item is mandatory.

"maxLength” provides a maximum input length.

-

<IELEMENT SimpleFormitem (#PCDATA)>

<IATTLIST SimpleFormitem %GENATTR,;
default CDATA #IMPLIED
mandatory(yes|no) "no"
maxLength CDATA #MPLIED>

Adapters Map the Source Content to the DTD Element

Portal-to-Go Adapters map the source content to the appropriate Simple Result
element.

« Input bindings specify any data required to complete the request through form
<input> tags and variables in the service URL.

« Output bindings are the results returned to the requester. They select only the
relevant pieces of HTML for the service and device.

For example, Table 7-1 shows the XML for an input form (text label, input field, and
submit button) and results page (ticker symbol, stock price, and headlines)
generated by a hypothetical StockData Adapter.

7-16 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Converting to XML

Table 7-1 XML for Input and Results Page Generated by StockData Adapter

XML for Input Page

XML Results Page: Quote and Headlines Page

<SimpleResult>
<SimpleText>
<SimpleTextltem name = "TickerField">
Ticker Symbol:
</SimpleTextltem>
</SimpleText>
<SimpleForm title="Input Form">
<SimpleFormltem name="Ticker">
</SimpleFormltem>
<SimpleFormButton hame="submitBtn">
Get Quote
</SimpleFormButton>
</SimpleForm>
</SimpleResult>

<SimpleResult>
<SimpleText title="Quote Results">
<SimpleTextltem name="Ticker">
ORCL
</SimpleTextltem>
<SimpleTextltem name="Price">
90 3/8
</SimpleTextltem>
</SimpleText>
<SimpleText title="Headlines">
<SimpleTextltem name = "Headlinel">
* Oracle surges.
</SimpleTextltem>
<SimpleTextltem name = "Headline2">
* NASDAQ closes higher.
</SimpleTextltem>
<SimpleTextltem name = "Headline3">
* US stocks bolt ahead.
</SimpleTextltem>
</SimpleText>
</SimpleResult>

Personalizing Data Display With XML: Portal-to-Go 7-17

Sample Adapter Classes

Sample Adapter Classes

The following two code examples show how Adapters are implemented in Java.
Study them to learn how Adapters work. You can modify them to create your own
Adapters for custom content sources.

« "Portal-to-Go Adapter Example 1: Converts Stock Quotes and Headlines to
XML" shows how an Adapter class converts stock quotes and headlines to
XML. For clarity, auxiliary methods are omitted.

« "Portal-to-Go Adapter Example 2: Greets Users by Name" is a simple, but
complete, Adapter implementation that greets users by name.

Portal-to-Go Adapter Example 1: Converts Stock Quotes and Headlines to XML

Consider an Adapter class that must implement several methods. The key method
isinvoke . Master Service calls invoke every time a client makes a request. This
example illustrates the Adapter class invoke method that generates the XML result
for the quote and headlines page shown in Table 7-1.

public class StockQuoteAdapter implements Adapter {

public Element invoke (ServiceRegquest sr)
throws AdapterException {
Element result = XML.makeElement("SimpleResultt");
resultsetAttribute(tile”, "Stock Data');

Element quote = XML makeElement("SimpleText);
quote.setAttribute(ile”, "Quote”);

Element tickerSymbol = XML.makeElement("Simple Textitem");
tickerSymbol.setAttribute (“title”, "Ticker");

String t = sr.getArguments().getinputValue(Ticker");

Text ticker = XML.makeText(t);
tickerSymbol.appendChildticker);
quote.appendChild(tickerSymbol);

Element stockPrice = XML.makeElement('Simple Textitem");
tickerSymbol.setAttribute (“title”, "Price”);

String p = sr.getArguments().getinputValue('Price");

Text price = XML.makeText(p);
stockPrice.appendChild(price);
quote.appendChild(stockPrice);

result.appendChild(quote)

7-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Sample Adapter Classes

Element headlines = XML makeElement("SimpleText);
headlines.setAttribute (‘tiie”, "Headlines');
Element headline = XML.makeElement("Simple Textitem");
inti=0;
String argBase ="headline";
Stingh="",
while (h = null) {
h = sr.getArguments().getinputValue(argBase +i);
headline.setAtribute('name”, argbase +i);
Text headText = XML.makeText(h);
headiine.appendChild(headText);
headiines.appendChild(headline);
i+
}
resultappendChild(headlines);
retum result;

}
.

Portal-to-Go Adapter Example 2: Greets Users by Name

Consider a simple Adapter for a service that greets users by name. It has the
following inputs:

« Aninitialization parameter, the string used for the greeting
= An input parameter, the name of the user

Example 2’s Adapter uses the invoke method to build a Simple Result document
using methods in the following packages:

« org.w3c.dom .Element

« org.w3c.dom.Text

The invoke method performs the following tasks:
1. Creates the root result element

2. Creates a SimpleText element. Sets its title attribute, and appends the element to
the root element. As defined in the Simple Result DTD, a SimpleTextltem is a
required child element of SimpleText.

3. Retrieves the input parameter value, appends it to the result document

4. Returns the result

Personalizing Data Display With XML: Portal-to-Go 7-19

Sample Adapter Classes

Here is the Adapter implementation:

import orgw3c.dom.Element;

import orgw3c.dom.Text,

import oracle.panama.Argument;

import oracle. panama.Arguments;

import oracle. panama.ServiceRequest;

import oracle.panama.adapter.Adapter;

import oracle.panama.adapter.AdapterDefinition;
import oracle.panama.adapter.AdapterException;
import oracle.panama.adapter.AdapterHelper;

public class HelloAdapter implements Adapter {
private boolean initialized = false;
private String greeting ="Hello";
public static final String GREETING = "greeting”;
public static final String NAME ="name”;

I/ Called once, when the adapter is instantiated.
public void init (Arguments args) throws AdapterException {
synchronized (this) {
if(tinitialized) {
initialized = true;
greeting = args.getinputValue(GREETING);
}
}

public Element invoke (ServiceRequest sr)
throws AdapterException {
Element result = XML.makeElement('SimpleResult");
Element st = XML makeElement('SimpleText");
stsetAttribute (‘title",
"Oracle Portal-to-Go Server HelloAdapter Sample”);

resultappendChild (st);
Element sti = XML.makeElement("SimpleTextitemn";
sti.setAttribute (‘name”, "message”);
sti.setAttribute ('ile”, "Portal-to-Go says:");
st.appendChild (sti);
Il ServiceRequest sr contains input parameters (ike NAME, below).
String name = sr.getArguments().getinputValue(NAME);
Text txt = XML.makeText(greeting + " "' + name +"1");
sti.appendChild (txt);
retum result;

}

/I This method enables master services to determine

7-20 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Sample Adapter Classes

I/the initialization parameters used by the adapter.

private AdapterDefinition initDef = null;

public AdapterDefinition getinitDefinition() {

if (initDef == null) {
synchronized (this) {
if (inttDef == null) {

initDef = AdapterHelper.createAdapterDefinition();
initDef.createlnit Argument. SINGLE_LINE,

GREETING,
"Greeting phrase”,
null);
}
}
}
retum initDef,
}

/I This method defines the adapter’s runtime input parameters.
private AdapterDefinition adpDef = null;
public AdapterDefinition getAdapterDefinition() throws AdapterException {
if (adpDef ==null) {
synchronized (this) {
if (@dpDef == null) {
if (intDef = null)
throw new AdapterException ("Adapter is
not properly initialized');
adpDef = initDef;
adpDef.createlnput(Argument. SINGLE_LINE,
NAME,
"Name to greet’,
null);

When invoked with an input parameter of "Dolly", the above Adapter returns the
following XML result:

<SimpleResult>
<SimpleText tite="Oracle Portal-to-Go Server Hello Sample™>
<SimpleTextitem name="message" tile="Portal-to-Go says:">
Hello Dolly!
</SimpleTextitem>

Personalizing Data Display With XML: Portal-to-Go 7-21

Sample Adapter Classes

</SimpleText>
</SimpleResult>

7-22 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Transforming XML to the Target Markup Language

Transforming XML to the Target Markup Language

Portal-to-Go Transformers convert XML documents into the markup language for
the target device. By using a generic internal XML format, such as SimpleResult, to
represent information, you can take full advantage of each client device's Ul
capabilities.

The Transformers use the SimpleResult DTD to map abstract Ul elements to the
target format. You can implement a Transformer using Java or XSL-T, depending on
what you need to do:

« Java.lJava lets you add device-specific behavior, such as a Repeat function for a
VOX device, which isn't needed for a device that writes to the screen. See
"Portal-to-Go Java Transformer Example 1: Converting Simple Result Elements
to Another Format".

« XSL -T. XSL Style sheets can include complex pattern matching and result
handling logic. They typically include literal result elements, such as the
target format markup tags. Portal-to-Go uses XSL style sheets by default. See
"Portal-to-Go XSL Stylesheet Transformer Example 1: Converting Simple Result
Documents to Plain Text".

Personalizing Data Display With XML: Portal-to-Go 7-23

Portal-to-Go: Java Transformers

Portal-to-Go: Java Transformers
You can create Java Transformers using either of the following two interfaces:

« Document Object Model (DOM) interface, which manipulates the tree-based
document object model

« Simple API for XML (SAX) interface, which interacts directly with events in the
parsing process.

These two interfaces are illustrated in Figure 7-7.

Figure 7-7 The DOM and SAX Interfaces

SAX DOM

t | <course> | [<course> |

i [<Name> | <Name> | Javai101 |
E | sava 101 | LI <Dept> | eecs |
' [<oes |

v [Ecs | v

Portal-to-Go includes a Java Transformer that converts Simple Result documents to
plain text. The Transformer does not create markup tags in the resulting document,
but it does apply simple text formatting elements, such as line breaks and tabs.

Portal-to-Go Java Transformer Example 1: Converting Simple Result Elements to
Another Format

Though simple, this example shows how you can convert Simple Result elements
into another format.

package oracle.panama.core.xform;
import orgw3c.dom.NodeList;

import orgw3c.dom.Element,

import oracle. panama.PanamaException;
import oracle.panama.core.LogicalDevice;
import oracle.panama.core.Service;

7-24 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Portal-to-Go: Java Transformers

import oracle. panama.Arguments;
import oracle.panama.core.parm.PanamaRequest;
import oracle.panama.core. parm.AbstractRequest;

public class SimpleResultToText implements Transform {
public SimpleResuttToText() {}

private String format(Element el) {
if (el == null) {
retum",
}
StringBuffer buf = new StringBuffer();
String name = el.getTagName();
if (name = null && name.length() > 0) {
buf.append(name);
} buf.append(". "),
buf.append(el.getNodeValue();
retum buf.toString();

}

public String transform(Element element, LogicalDevice device)
throws PanamaException {
PanamaRequest req = AbstractRequest.getCurrentRequest();
Service service = req.getService();
StringBuffer buf =
new StringBuffer((service =null) ?™': service.getName());
NodeList list = element.getElementsBy TagName(*";
Elementel;
String tag;
boolean newRow =false;
for (inti=0;i
el = (Element)listitem(j);
tag = el.getTagName();
if (tag.equals("SimpleRow)) {
newRow = true;
buf.append(n");
}else if (tag.equals("'SimpleCal”)) {
if (InewRow) {
buf.append(*t’),
}else{
newRow =false;
}
buf.append(format(el));
}else if (tag.equals('Simple Text”) ||

Personalizing Data Display With XML: Portal-to-Go 7-25

Portal-to-Go: Java Transformers

tag.equals("SimpleForm”) ||

tag.equals('SimpleMenu)) {
newRow = true;
buf.append(\n’);

}else if (tag.equals('SimpleTextitem") ||
tag.equals('SimpleFormitem”) ||
tag.equals('SimpleMenultem”)) {

if (InewRow) {
buf.append(\n’);
}else{
newRow = false;
}
} buf.append(format(el));

}
retum buf.toString();

}
}

7-26 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Portal-to-Go: XSL Stylesheet Transformers

Portal-to-Go: XSL Stylesheet Transformers

XSL stylesheets are XML documents that specify the processing rules for other
XML documents. An XSL stylesheet, like a Java Transformer, is specific to a
particular DTD, and should handle all elements declared in that DTD. When it
finds an element in a source document, it follows the rules defined for the element
to format its content.

Portal-to-Go XSL Stylesheet Transformer Example 1: Converting Simple Result
Documents to Plain Text

This XSL Transformer example is included in the Portal-to-Go initial repository and
is the XSL version of the Java Transformer shown above. It converts Simple Result
documents to plain text.

<xslstylesheet xmins:xsi="http/imww.w3.org/XSL/ Transform/1.0">
<xsltemplate match="/">
<xsl:apply-templates></xsl:apply-templates>
</xsltemplate>
<xsltemplate match="SimpleTextiter | SimpleFormitem | SmpleMenultem>
<xsltext>
</xsltext>
<xslvalue-of select=""></xslvalue-of>
</xsltemplate>
<xsltemplate match="SimpleRow'">
<xsltext></xsltext>
<xsl-for-each select="/SimpleCol >
<xsltext></xsltext>
<xslvalue-of select=""></xslvalue-of>
</xslfor-each>
</xsltemplate>
</xsl:stylesheet>

In this example. the XSL stylesheet performs the following tasks:

1. Selects a Simple Result element using pattern-matching semantics. The
element "/", for example, matches the document's root element.

2. Uses apply-templates to process the contents of that element.

3. Descends the source element tree, selecting and processing each sub-element.
Character instructions, such as value-of and for-each , manipulate the
content of matching elements.

« The value-of element extracts the actual content of the element.

Personalizing Data Display With XML: Portal-to-Go 7-27

Portal-to-Go: XSL Stylesheet Transformers

« Thefor-each element applies iterative processing.

Each Markup Language Requires a Unique Transformer

Each unique markup language requires a unique Transformer. The Stock Data
example assumes that the PDA and cell phone use different markup languages
(Tiny HTML and WML), so we need two Transformers. Once they're built, though,
these Transformers can process content from any Adapter that generates Simple
Result XML.

Table 7-2 lists the Adapter’s SimpleResult XML code and the markup language
generated by two transformers:

« Tiny HTML for the PDA, which can format and display both quotes and
headlines

« WML for the cell phone, which can only display quotes.

7-28 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Portal-to-Go: XSL Stylesheet Transformers

Table 7-2 Using Unique Transformers to Transform the Adapter’s Simple Result XML

Adapter’s Simple Result XML

Unique Transformers

<SimpleResult>
<SimpleText title="Quote">
<SimpleTextltem name="Ticker">

ORCL

</SimpleTextltem>

<SimpleTextltem name="Price">
90 3/8

</SimpleTextltem>

</SimpleText>

<SimpleText title="Headlines">
<SimpleTextltem name = "Headline1">
* Oracle surges.
</SimpleTextltem>
<SimpleTextltem name = "Headline2">
* NASDAQ closes higher.
</SimpleTextltem>
<SimpleTextltem name = "Headline3">
* US stocks bolt ahead.
</SimpleTextltem>
</SimpleText>
</SimpleResult>

Tiny HTML for PDA
<html>
<p>Quote</p>
<p>Ticker: ORCL</p>
<p>Price: 90 3/8</p>
<p>Headlines:</p>
<p>* Oracle surges.</p>
<p>* NASDAQ closes higher.</p>
<p>* US stocks bolt ahead.</p>
</html>

WML for Cell Phone
<?xml version "1.0"?>
<IDOCTYPE WML PUBLIC "-//WAPFORUM/DTD WML
1.0//EN" "http:/www.wapforum.org.DTD.wml.xml">
<WML>
<CARD NAME="QUQOTE_CARD" TITLE="Quote Card">
ORCL
90 3/8
</CARD>
</WML>

Personalizing Data Display With XML: Portal-to-Go 7-29

Portal-to-Go: XSL Stylesheet Transformers

Portal-To-Go Stylesheet Transformer Example 2: Customizing a WML1.1 Transformer
Stylesheet

WML Browsing on Phone.com Browsers

When using the Phone.com browser the navigation model requires you to select the
[Link] option before proceeding. You can customize the stylesheet to change this
behavior. For example, you can add the following to the WML1.1 Transformer
stylesheet:

| The SimpleForm Mapping

+—>

<xsltemplate match="SimpleForm">
<p>

<xslvariable name="theTarget>
<xslvalue-of select="@target >
<xslfor-each select="SimpleFormitem | SimpleFormSelect>
<xsltext>8#38;</xsltext>
<xslvalue-of select="@name"/>
<xsltext>=$(</xsltext>

<xslvalue-of select="@name'/>
<xsltext>)</xsltext>

</xslfor-each>

</xslvariable>
<xslapply-templates/>

<I- Ensure [LinK] is selected —
<select>

<option>

<onevent type="onpick">

<go href="{$the Target}'/>
</onevent>

<xsl.choose>

<xslwhen test="boolean(@submit)>
<xslvalue-of select="@submit />
</xslwhen>
<xslotherwise>Submit</xsl:.otherwise>
</xsl:choose>

</option>

</select>

<p>

<l-Ensure [Link] is selected ends —
<

7-30 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Portal-to-Go Case Study 2: Expanding Bank Services

<xsl.choose>
<xslwhen test="boolean(@submit)>
<xslvalue-of select="@submit'/>
</xslwhen>
<xsl:otherwise>Submit</xsl:otherwise>
</xsl.choose>
<fa>

<p>
-
</xsltemplate>

Portal-to-Go Case Study 1: Extending Online Drugstore’s Reach

An online drugstore is using Oracle® Portal-to-Go wireless Internet software to
extend its reach to customers, providing convenience and around-the-clock access
to its online drugstore through hand-held devices.

Oracle Portal-to-Go extends the existing Internet site to hand-held wireless devices.
In this case Portal-to-go integrates with the online store, which is built on Oracle
Internet Platform. The solution allows consumers to purchase the full line of
drugstore products from virtually anywhere.

Portal-to-Go renders any Internet content devices independent, hence allowing
existing content designed for PCs to be made accessible from virtually any device
connected to the Internet, such as personal digital assistants (PDAS), wireless
application protocol (WAP) phones, or even pagers.

Portal-to-Go Case Study 2: Expanding Bank Services

A bank is now offering online services to its customers through mobile phones and
uses the Oracle wireless Internet server product, Oracle® Portal-to-Go.

The bank’s customers have access to financial quotes, a search facility for finding
the nearest branch office, a loan repayment calculator, an events calendar, and
weather reports from either their WAP (wireless application protocol)-enabled
phones, or standard GSM phones.

The bank is also adding transactional banking services to their wireless Internet
offering. With this, the bank’s new WAP platform will also allow access to the
bank’s online information and services through customer mobile phones.

Personalizing Data Display With XML: Portal-to-Go 7-31

Portal-to-Go Case Study 2: Expanding Bank Services

7-32 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

8

Customizing Presentation with XML and
XSQL: Flight Finder

This chapter contains the following sections:

« XML Flight Finder Sample Application: Introduction

« Required Software

« Required Software

« Flight Finder Queries the Database — Converts Results to XML

« Using XSQL Servlet to Process Queries and Output Result as XML
« Formatting XML with Stylesheets

« XML to Database

« Oracle Portal-to-Go

Customizing Presentation with XML and XSQL: Flight Finder 8-1

XML Flight Finder Sample Application: Introduction

XML Flight Finder Sample Application: Introduction

XML Flight Finder fetches data about airline flights and customizes the results for
the client device (PC, cell phone, PDA,...). It is built on Oracle8i and leverages
Oracle XSQL Servlet, hence this application can submit SQL queries and define
output formats using XML, XSL, and XSQL text files — no Java programming is
required, and there is no code to compile. This application is easy to build,
customize, and maintain.

Download the source code for XML Flight Finder to study and modify. You can also
read an article that describes how the Flight Finder uses Oracle XML products and
technologies, and there's a page of links to sites where you can download software
that lets you simulate, for example, a cell phone on your PC.

This information and the application download is also available at:
http://technet.oracle.com/sample_code/index.htm

http://technet.oracle.com/tech/xml/xsql_serviet/index.htm then select Sample
Code

Required Software
To build and run the XML Flight Finder application you need the following:
« Java 1.2 or higher.
« Oracle8i 8.1.5 or higher.
« A version of SQL*Plus compatible with your database.

« Oracle XSQL Servlet (includes Web-to-Go personal Web server for Windows
NT). Download the latest version from OTN.

« Flight Finder files. Download fly.zip.

« A Web browser. For best results, use one that can process XML (such as Internet
Explorer 5).

« (Optional) Software that simulates other devices (such as a cell phone) on a
computer.

« (Optional) Apache or iAS Web Server. While Web-to-Go is all you need to run
the Flight Finder on your own machine under Windows NT, you can also run
the Flight Finder under Apache or iAS.

8-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

http://technet.oracle.com/sample_code/index.htm
http://technet.oracle.com/tech/xml/xsql_servlet/index.htm

How Flight Finder Works

How Flight Finder Works

Flight Finder queries the database for information about flights from one city to
another, then returns the results in a format customized for your end-user's device.
Built on Oracle8i, Flight Finder uses the following products and technologies:

« SQL, the standard for accessing business data

« Oracle XSQL Servlet, which processes queries defined in XSQL pages. XSQL
pages are XML documents that contain SQL code. XSQL Servlet outputs the
result set as XML.

« XSLT, which defines an open standard for transforming XML for target devices.

This chapter describes how Flight Finder application was implemented. You can
use these techniques in any Web-based application that:

« Receives requests from any client device on the Web.
« Delivers database content to multiple devices.
« Writes input from multiple devices back to the database.

Figure 8-1 shows how Flight Finder works.

Customizing Presentation with XML and XSQL: Flight Finder 8-3

How Flight Finder Works

Figure 8-1 XML Flight Finder

XSL Stylesheets

Parse XSQL page (4] -

and query
database Oracle8 i
> [-= 9> EEEL XSQL Servlet
<o = — XML
Personal XSQL Page —
Digital ——— —_
Assistant —[< =
Web Server Customized
\
XML S
Browser Stylesheets
a7

Graphical or i ;

non-graphical

browser

Client
Ora form,

specify start point
and destination

1. Using any supported client device, an end-user fills out a form to specify a
starting point and a destination. The form's source code specifies an XSQL page
to execute when the end-user submits the form.

2. The Web server invokes the XSQL Servlet with an XSQL Page.

3. The XSQL Servlet parses the XSQL page and queries the database.

4. The database returns the query results, which the XSQL Servlet converts to an

XML document.

5. The XSQL Servlet transforms the XML by applying an XSL stylesheet
appropriate for the end-user's client device.

8-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

How Flight Finder Works

6. The Web server returns the customized document to the client.

With Oracle8i, you can run Oracle XML components and applications built with
them inside the database. For devices and applications that require a smaller
database footprint, you can use Oracle8i Lite to store and retrieve XML data. You
can also run these components on a middle tier such as Oracle Internet Application
Server 8i, or on the client.

Customizing Presentation with XML and XSQL: Flight Finder 8-5

Flight Finder Queries the Database — Converts Results to XML

Flight Finder Queries the Database — Converts Results to XML

This section describes how Flight Finder queries the database and converts the
result set to an XML document. Flight Finder application consists of XSQL Pages
and XSL stylesheets:

« XSQL Pages define queries
= XSL stylesheets format the query results.

There is no Java code in the Flight Finder--it delegates processing chores to Oracle
XSQL Servlet.

Flight Finder stores flight data in two tables, AIRPORTS and FLIGHTS.
« In AIRPORTS, the CODE column is the primary key.

« InFLIGHTS, the CODE column is the primary key, and the CODE_FROM and
CODE_TO columns are foreign keys that reference AIRPORTS.CODE.

The following SQL code shows the structures of these tables (column names in bold
are primary keys, column names in italics are foreign keys).

create table airports

code varchar2(3),
name varchar2(64)

)

create table flights
(

code varchar2(6),
code_from varchar2(3),
code_tovarchar2(3),
schedule date,
status varchar2(1),
gate varchar2(2)
)

Using XSQL Servlet to Process Queries and Output Result as XML
XSQL Servlet processes SQL queries and outputs the result set as XML.

It is implemented as a Java servlet and takes as input an XSQL page. This is an XML
file containing embedded SQL queries. It uses XML Parser for Java and XML- SQL
Utility for Java to perform many of its operations.

8-6 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Flight Finder Queries the Database — Converts Results to XML

For example, the following code is from fly.xsq|l . It is XML with some special
<xsql> tags for the XSQL Servlet to interpret.

flightFinderResult tag defines a structure that assigns values to parameters in
a query. The tag also identifies a namespace for defining the xsql keyword and tells
the XSQL servlet to use the (predefined) database connection named fly.

The code uses the <xsql:query> tag to define a query (the XSQL Servlet
download includes a Help System that describes the syntax and options for each
XSQL tag). The code uses two other parameters (FROM and TO) in the body of the
guery statement to store the names of cities chosen by the end-user.

Note: XSQL pages use the XSLT syntax {@param} to indicate a
parameter.

Figure 8-2 shows the Flight Finder browser form and how it is used to enter FROM
information (Los Angeles) and TO information (San Francisco).

Figure 8-2 Using XSQL Serviet to Process Queries and Output Result as XML:
Entering FROM and TO on the Flight Finder Browser Form

. [Inl Faporitan [| Halp Figgdrmm E_'llq:..'-‘lo.c.al\. 'l-
e QAN QED D v O

ORACLE

Flight Fnder

FROM
Wihsre s yem departing frem} IWI M
Wihere ae y 5":-"WI
N TO

Fistch Flet foomlnble Flights |

<?ml version="1.0"?>
<flightFinderResult xmins:xsg="um:oracle-xsql" connection="fly"'

lang="english">
<xsglset-stylesheetparam name="lang" value="{@lang} />

Customizing Presentation with XML and XSQL: Flight Finder 8-7

Flight Finder Queries the Database — Converts Results to XML

<xsgl:query tag-case="upper>
<I[CDATAl
select F.code, F.code_from, Al.name as "depart_airport’,
F.code_to, To_char(F.schedule, HH24:MI) as "Sched",
A2.name as "amive_airport’,
Decode(F.Status, ‘A, ‘Available', B, 'Full’, ‘Available’)
as "Stat",F.Gate
from flights I, airports A1, airports A2
where to_number(To_Char(F.schedule, HH24MI')) >
to_number(To_Char(sysdate, HH24MI)) and
F.code_from ={@FROM} and F.code_to={@TO} and
F.code_from = Al.code and F.code_to =A2.code

>
<xsqgl:query>
<flightFinderResult>

The listing below shows a portion of the XML returned by the XSQL Servlet by
processing the following URL. This is case-sensitive.

http:/localhost: 7070/fly xsql?FROM=LAX&TO=SFO&xml-stylesheet=none

This URL tells the server to invoke the XSQL Servlet and process the file fly.xsql
to find flights from LAX (Los Angeles) to SFO (San Francisco) without applying a
stylesheet (a useful debugging technique because it shows the raw XML code,
including error messages, if any, from the database).

The result is an XML document containing data from the rows in the result set (the
following excerpt shows only the first row).

Tags ROWSET and ROW are defined by the XSQL Servlet. The tags for each row in
a rowset (for example, CODE, CODE_FROM, and DEPART_AIRPORT) come from
the names of columns in database tables.

<?xmlversion="1.0" 7>
<flightFinderResult lang="english">
<ROWSET>
<ROW NUM="1">

<CODE>0OAQ307</CODE>
<CODE_FROM>LAX</CODE_FROM>
<DEPART_AIRPORT>Los Angeles</DEPART_AIRPORT>
<CODE_TO>SFO</CODE_TO>
<SCHED>12:04</SCHED>
<ARRIVE_AIRPORT>San Francisco</ARRIVE_AIRPORT>
<STAT>Available</STAT>

8-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Flight Finder Queries the Database — Converts Results to XML

<GATE>05</GATE>
<ROW>

</ROWSET>
<flightFinderResult>

An XML document contains data and tags that describe the data, but no
information about how to format the data for presentation. This may seem like a
limitation at first glance, but it's actually a feature, and it's what makes XML so

flexible. Once you have data in an XML document, you can format it any way you
like.

Customizing Presentation with XML and XSQL: Flight Finder 8-9

Formatting XML with Stylesheets

Formatting XML with Stylesheets

Flight Finder applies an XSLT transformation to render the XML results in a format
suitable for the end-user's client device. This section describes the process.

For general information about the relationships between XML, XSLT, and XSQL
Servlet, see XSQL Pages and XSQL Servlet Release Notes on Oracle Technology
Network (OTN), http://technet.oracle.com/tech/xml

One Stylesheet, One Target Device

Flight Finder uses XSL stylesheets to format the XML documents that represent
query results. A stylesheet is itself an XML document that specifies how to process
the nodes of another XML document. The processing instructions are defined in
structures called templates, and a stylesheet formats a document by applying these
templates to selected nodes.

For example, the XML document above contains nodes named ROWSET, ROW,
CODE, etc. The following code (from flyHTMLdefault.xsl) shows how the
stylesheet selects the CODE, DEPART_AIRPORT, and ARRIVE_AIRPORT nodes for
each ROW in a ROWSET, and it applies templates to format the output.

<?xml version="1.0"?>
<xslstylesheet xmins:xsi="http/Amwv.w3.0rg/1999/XSL/Transform" version=1.0>

<xsltemplate match="/">
<htmb>

<xslfor-each select="fightFinderResut ROWSET/ROW">
<>
<td><xslapply-templates select="CODE"/></td>
<td><xsl:apply-templates select="DEPART_AIRPORT/><fd>
<td><xslapply-templates select="ARRIVE_AIRPORT"/></td>

<fr>
<xslfor-each>

<htmi>
</xsltemplate>
<xsltemplate match="CODE">Fly Oracle Airlines <xsl:value-of select=""/>
</xsltemplate>
<xsltemplate match="DEPART _AIRPORT">Leaving <xslvalue-of select=""/>
</xsltemplate>
<xsltemplate match="ARRIVE_AIRPORT">
for <xslvalue-of select="">

8-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://technet.oracle.com

Formatting XML with Stylesheets

</xsltemplate>
</xslstylesheet>

In this example, the formatting is simple: it just prepends a string to the contents of
each node. For example, when the XSLT processor gets to the CODE node, it
prepends the string "Fly Oracle Airlines " to the value of that node. The resulting
HTML looks like this:

<IDOCTYPE HTML PUBLIC "/MW3C//DTD HTML 4.0 Transitional/EN">
<HTML>

<TR>

<TD>Hly Oracle Airines OA0309</TD>
<TD>Leaving Los Angeles</TD>
<TD>for San Francisco</TD>

</TR>
<HTML>

In a browser (enter the URL
http://localhost:7070/fly/fly.xsqI?FROM=LAX&TO=SFO&xml-stylesheet=flyHTM
Ldefault.xsl).

Figure 8-3 shows the results displayed on the browser after the stylesheet has been
applied to the XML.

Customizing Presentation with XML and XSQL: Flight Finder 8-11

Formatting XML with Stylesheets

Figure 8-3 Flight Finder: Results After Formatting the XML with Stylesheets

Py Firner - | e Hiewks - M 1 e fapliae [[E1] =]
Fle [i flew Fgewber Jook Help | Agdem |g] BT 05 e -..-.l.-.-.n,.-..-lr_.,,u.a-.-j -

sttt BE B - JOORE I

Oracle Airlines available Flights

faur nixd 8 i

Fllqghi = F s L Hi Sranim Degaiding
Fiy Cracle Asnes OAONS Lewing Los Angeles 20 San Francisco st 1404 Svadabbe Gabe 06
Fly Oracle Astnes QAT Leavrg Los Angeles tor San Francaco o 1504 Segilsbis Gabe 05

Fly Crache Ao OWI311 Learang Las Angeles dor San Francisco e 16004 Somdabibs Debe 05

Fly Oracle Asbnes OA031F Lesarsg Los Arsjebes for Sen Francmco o 1704 Sepdabls Goabe 05

Fly Oracle fstevid OA0313 Lewwng Los Andeles 20 San Francmoo st 18704 Avadable Gebe 05
Fly Cracle Arines OA0314 Leaang Las Angeles Jor San Francico o 1904 Sepdabls Gabe 05
Fly Orache Aarlevees O3S Lo Los dagibe-s 30 San Francmco o 0004 Seadabds Gabs 05

Many Stylesheets, Many Target Devices

XSL stylesheets are the key to multiple devices, languages, and user interfaces. You
can include multiple <?xml-stylesheet?> tags at the top of an XSQL Page, and
each of those tags can define media and href attributes to associate a user agent
with an XSL stylesheet (an HTTP request includes a user-agent header that
identifies the device making the request). A processing instruction without a media
attribute matches all user agents so it can be used as the fallback/default.

For example, the following XML code comes from fly.xsql. It includes several
<?xml-stylesheet?> tags, including one that maps the stylesheet flyVox.xsl

to the Motorola Voice Browser agent, and one that maps the flyPP.xsl stylesheet
to the HandHTTP (Palm Pilot) agent.

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" media="MSIE 5.0" href="flyHTML xsI"?>
<?xml-stylesheet type="text/xsl" media="Motorola \Voice Browser"
href="fiyVox xsI"?>

<?xml-stylesheet type="text/xsI" media="UP.Browser" href="fyWWML xsl'?>
<?xml-stylesheet type="text/xsl" media="HandHT TP" href="flyPP xs"?>
<?xml-stylesheet type="text/xsl" href="flyH TMLdefault xsI"?>

<flightFinderResult xmins:xsgl="um:oracle-xsql" connection="fiy"*
lang="english">

<xsgl:stylesheetparam name="lang" value="{@lang} />
<xsgl:query tag-case="upper">

8-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Formatting XML with Stylesheets

</xsgl:query>

<fightFinderResult>

The two listings below show the XSLT code to format one result set row each for a
Palm Pilot (flyPP.xsl) and a voice browser device (flyVox.xsl).

XSLT Code From flyPP.xsl:

<xslfor-each select="fightFinderResut/ ROWSET/ROW">
<tr>

<td>
<a>
<xsl:attribute name="href>
#<xslvalue-of select="CODE"/>
<[xsl:attribute>
<xslvalue-of select="CODE'"/>
<fa>
<ftd>
<td><xsl-apply-templates select="SCHED"/></td>

<td><xslapply-templates select="GATE"/></td>
<fr>

</xslfor-each>

<xsltemplate match="CODE">
<xslvalue-of select=""/>
</xsltemplate>
<xsltemplate match="SCHED'">
at <xslvalue-of select="">
</xsltemplate>
<xsltemplate match="GATE >
gate <xslvalue-of select="."/>
</xsltemplate>

XSLT Code from flyVox.xsl:

<xslfor-each select="fightFinderResut/ROWSET/ROW">
<step><xsl:attribute name="name">
step<xslvalue-of select="position()'/>

<Ixslattibute>

<prompt>

Customizing Presentation with XML and XSQL: Flight Finder 8-13

Formatting XML with Stylesheets

<xslapply-templates select="CODE'/>
<xslapply-templates select="SCHED"/>,
<xsltext>Do you take that one?</xsltext>
</prompt>
<input type="OPTIONLIST" name="FLIGHT>
<xsl:choose>
<xslwhen test="position() = @NUM">
<option>
<xslattribute name="next">
#<xslvalue-of select="CODE"/>
<Ixslattribute>
<xsltext>Yes</xsltext>
</option>
<xslif test="position() ⁢ last()">
<option>
<xslattribute name="next">#step<xslvalue-of select="position() + 1'/>
<Ixslattribute>
<xsltext>Next</xsltext>
</option>
</xslif>
<xslif test="position() > 1">
<option>
<xslattribute name="next">#step<xsl:value-of select="position() - 1'"/>
<Ixslattribute>
<xsltext>Previous</xsltext>
</option>
</xslif>
</xslwhen>
</xsl:choose>
<finput>
</step>
</xslfor-each>

Localizing Output

When you invoke the Flight Finder through its portal (index.html), you can choose
a language for prompts and labels.

The Flight Finder supports in English, French, Spanish, and German. To do this, it
uses a parameter to identify the end-user's language of choice and passes it from
HTML to XSQL to XSL, then it selects the appropriate text from a file of translated
messages. For example, here is an overview of how the application tracks a user's
language preference (French) and selects a label in that language:

8-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Formatting XML with Stylesheets

1. index.html (The user clicks a link to choose a language):
Francais

2. index.xsql (The XSQL Page stores the user's choice in a parameter):

<xsgl:set-stylesheetparam name="lang" value="{@lang} />

3. flyHTML.xsl (The stylesheet uses the language choice parameter to select a
message from the message file):

<xslvalue-of select= "document(messages.xml)messages/msg[@id=101 and
@lang=$lang]'>

4. messages.xml (The message file stores the translated messages):

<msg id="101" lang="french">Prochains vols sur Oracle Airlines</msg>

The following listings show these steps in context.

index.html displays HREF links that invoke index.xsql with URLSs for each
supported language.

For Web-to-Go

<l- Assumes default install to c:\xsgl and Flight Finder files in c:\xsgl\fly
-
<ub>
<litype="disc">
English
<fi>
<litype="disc">
Français
<fli>
<litype="disc*>
Español

<litype="disc'>
Deutsch
<fi>

Customizing Presentation with XML and XSQL: Flight Finder 8-15

Formatting XML with Stylesheets

Next, the user's choice is extracted from the URL and plugged into a parameter in
index.xsql. If the URL does not specify a language, a line in the following code sets
it to English by default. This XSQL Page also defines a query (not shown here),
which the XSQL Servlet sends to the database.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" media="Mozilla" href="indexHTML xsI"?>

<index xmins:xsgl="um:oracle-xsql" connection="fly’' lang="english">
<xsgl:set-stylesheetparam name="lang" value="{@lang} />

<findex>

When the database returns the query results, the XSQL Servlet formats them by
applying an XSLT transformation. The following code is from the stylesheet
flyHTML.xsl. It includes a line that opens the message file (messages.xml) and
selects message 101 for a specified language.

<?xml version="1.0"?>
<xslstylesheet xmins:xsi="http/Amwv.w3.0rg/1999/XSL/Transform" version="1.0>
<xsl.output media-type="texthtm!" method="html'/>
<xslparam name="lang" select="@lang'/>
<xsltemplate match="/">
<htmb>

<body>

<l- Next available fiights —>
<xslvalue-of select=
"document(messages.xml)messagesimsg[@id=101 and @lang=$lang]’>
</body>
<htmi>
</xsltemplate>

</xslstylesheet>

The XML code below comes from messages.xml. In this file, a message represents
information (such as a label or a prompt) that the Flight Finder sends to the client.
Messages are identified by ID numbers, and each message is translated into each
supported language. The code below shows four translations of message 101.
Notice that translations can include code for international character sets, as in the
German version of the message. You may need to set your browser to display such

8-16 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Formatting XML with Stylesheets

characters; for example, in Internet Explorer, choose View > Encoding > Western
European (Windows).

<?xmlversion="1.0"?>
<messages>

<msg id="101" lang="english">Oracle Aifines available flights</msg>
<msg id="101" lang="french">Prochains vols sur Oracle Airlines</msg>
<msg id="101" lang="spanish">Proximos vuelos sobre Oracle Ailines</msg>
<msg id="101" lang="geman">Mö,gliche FIüge mit Oracle Airines</msg>

</messages>

Customizing Presentation with XML and XSQL: Flight Finder 8-17

XML to Database

XML to Database

This section describes how the Flight Finder takes input from a user, converts it to
XML, then writes it to the database.

1 Taking the User’s Input
The first step is getting user input.

Figure 8-4 shows an HTML form that displays the results of a query about flights
from Los Angeles to San Francisco, and provides drop-down lists of customer
names and flight codes. The user chooses a name and a code, then clicks the OK
button to book that flight for that customer, and the application writes the
information to the database. This part of the application is only implemented for
HTML and English.

Figure 8-4 Flight Finder: HTML Form Displaying Results of a Query About Flights
From Los Angeles, to San Francisco

D G Wen Fpotm Took bep | |agdmm 8] naposcdn Ted e g - I

Ja - G2y DS A ik S0 SO0 BHE FEek T L

Oracle Alrlines available flights

Ersglizh wrmion
Fauwr ned Teghts
Fligha & Fiaas To i Saates Beadding
Fligiht Oiscla Alines 0ADIT Laawing Los Asgalas art 1784 Agailabla gata #5
Fligiht Oigcla Allines 0ADT Laasing Los Asgalas ar 1884 Availabla gara ¥5
Flight Oiecla Aslines 0ADFH Laasing Los Asgalas ar 1984 Agailabla gara ¥5
Fligiht Oigcla Allines 0ADIY Laasing Los Asgalas at 2088 Agailabla gara #5
Fligiht Digcla Adlings OADNTHE Ladving Lo Amgalas al 2188 Agailabla gata #5
Fligiht Digcla Adlings OADNIT Ladsing Los Amgalas al 22848 Agailabla gana #5

1K

Custogstiegs] Fran Fheer =
FlghiZ s w0112 "|

0K

Here is the code from fly.xsql that populates drop-down lists named
CustomerName and FlightCode with values from the database. The <form> tag

8-18 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML to Database

includes an action attribute that specifies bookres.xsql as the file to execute to
process the values when the user submits the form.

The file flyHTML.xsl (not listed), provides the XSLT instructions for formatting
the form as shown in the figure above.

<form action="bookres.xsq" method="post">
<field name="CustomerName">
<xsgl:query rowset-element="dropDownList"
row-element="listElem">
<[CDATA
select unique name as "listitem”
from customers
order by name
I
</xsql.query>
<ffield>
<field name="FlightCode">
<xsgl:query rowset-element="dropDownList"
row-element="listElem">
<|[CDATAl
select F.code as "listitem”,
F.code as "itemid",
Al.name as "depart_airport’,
A2.name as "arive_airport"
from fiights F,
airports A,
airports A2
whereto_number(To_Char(F.schedule, HH24MI)) >
to_number(To_Char(sysdate, HH24MI)) and
F.code_from ={@FROM} and
F.code_to={@TO} and
F.code_from=Al.code and
F.code_to=A2.code
>
</xsqlquery>
<ffield>

<sendRequest type="button" label="OK"/>
<florm>

Customizing Presentation with XML and XSQL: Flight Finder 8-19

XML to Database

2 Assign Values Acquired From User to Code Parameters

After getting values from the user, the next step is to assign those values to
parameters in code. The following code comes from bookres.xsq|l

It stores the user's choices in parameters named CustomerName and FlightCode,
and defines parameters named cust and code for passing the values to XSLT
stylesheets. It also uses the <xsqgl:dml> tag to define a SQL statement that inserts a
row into the CUSTOMERS table.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xslI" media="Mozilla" href="bookresHTML xsl"?>
<?xml-stylesheet type="text/xsl" media="MSIE 5.0" href="bookresHTML xsI"?>
<bookFlight xmins:xsgl="um:oracle-xsql" connection="fly">
<xsgl:set-stylesheetparam name="cust' value="{@CustomerName} />
<xsgl:set-stylesheet-param name="code" value="{@HFlightCode} />
<xsgl:dmb>
<|[CDATA
insertinto customers values
({@CustomerName}, tripseq NEXTVAL, {@FlightCode})
>
</xsgl:dmi>

<JbookFiight>

3 Let User Know if Operation Succeeded

The last step is to let the user know whether the operation succeeded, in this case,
whether the flight was booked as shown in.

8-20 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML to Database

Figure 8-5 Flight Finder: Notifying User that Flight Was Booked

<=3 Flight Finder - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help
- D0 QGES

Booked flight #0A0312 for Fran Flyer.

Home Page

@ Daone

The following code is from bookresHTML.xsl

It declares parameters named cust and code to store values passed to it from
bookres.xsql, then it uses those parameters to display a message to the user. The
XSLT syntax for using such parameters is $param.

<?xml version="1.0"?>
<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/ Transform'* version="1.0">
<xsl:output media-type="texthtml"/>
<xslparam name="cust'/>
<xslparam name="code"/>
<xsltemplate match="/">
<htm>
<head>
<tite>Flight Finder<fitie>
<head>
<body>
Booked flight #<xslvalue-of select="$code'/>
for <xsl:value-of select=$cust/>.
<hrf>
<xsl:apply-templates select="bookFlightretumHome"/>
<body>
<htmb>
</xsltemplate>

</xs.I.:.stersheet>

Customizing Presentation with XML and XSQL: Flight Finder 8-21

Oracle Portal-to-Go

Oracle Portal-to-Go

Instead of writing XSQL and XSL code yourself, you can use Oracle Portal-to-Go.

A component of the Oracle Internet Platform, Portal-to-Go provides everything you
need to deliver Web content to any capable device. It transforms existing content to
a device's native format, and it provides a portal interface for the end-user and can
be developed on Oracle JDeveloper.

Portal-to-Go uses XML to isolate content acquisition from content delivery.
A Portal-to-Go portal includes the following components:

« Services that deliver data to mobile devices

« Adapters that convert HTML and RDBMS content to XML

« Transformers that convert XML to the appropriate markup language, including
HTML, WML, TinyHTML, and voice mark-up language (VoxML).

For more information, including white papers, product documentation, and a free,
downloadable version of the software, visit OTN's Portal-to-Go page.

See Also: Chapter 7, "Personalizing Data Display With XML:
Portal-to-Go".

8-22 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Part |V

Data Exchange Using XML

Part IV begins with a description of Oracle Advanced Queuing and how its is used
in B2B messaging applications. Several case studies are included to describe ways of
implementing XML based data exchanges in B2B and B2C applications.

This part contains the following chapters:
« Chapter 9, "Using Oracle Advanced Queuing (AQ) in XML Data Exchange"

« Chapter 10, "B2B: How iProcurement Uses XML to Offer Multiple Catalog
Products to Users"

« Chapter 11, "Customizing Discoverer 3i Viewer with XSL"

« Chapter 12, "Phone Number Portability Using XML Messaging"

Using Oracle Advanced Queuing (AQ) in
XML Data Exchange

This chapter contains the following sections:

« Whatis AQ?

« How do AQ and XML Complement Each Other?

« AQExample 1 (PL/SQL): XML Message as a CLOB in an AQ Message

« AQ Example 2 (Java): Processing an XML Message Using JMS (Publish -
Subscribe)

« Frequently Asked Questions (FAQs): XML and Advanced Queuing

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-1

What is AQ?

What is AQ?

Oracle Advanced Queuing (AQ) provides database integrated message queuing
functionality. AQ :

« Enables and manages asynchronous communication of two or more
applications using messages.

« Supports point-to-point and publish/subscribe communication models.

Integration of message queuing with Oracle8i database brings the integrity,
reliability, recoverability, scalability, performance, and security features of Oracle8i
to message queuing. Integration with Oracle8i also facilitates the extraction of
intelligence from message flows.

How do AQ and XML Complement Each Other?

A key strength of XML is that you can use it as a common format for data exchange
between applications. XML is self-describing and an application can share its data
without any predefined knowledge of the applications receiving the data. XML is
used to define messages communicated between two or more applications, while
AQ is used to enable and manage that communication.

Figure 9-1 shows an Oracle8i database using AQ to communicate with three
applications, with XML as the message payload. The main tasks performed by AQ
in this scenario are:

« Message flow using subscription rules
« Message management
« Extracting business intelligence from messages

This is an intra-business scenario where XML messages are passed asynchronously
among applications within an organization via AQ. Examples of this kind of
scenario include sales order fulfillment and supply-chain management.

A similar scenario can apply to inter-business processes in which multiple
integration hubs communicate over the Internet backplane. Examples of
inter-business scenarios include travel reservations, coordination between
manufacturers and suppliers, transferring of funds between banks, and insurance
claims settlements, among others. Oracle uses this in its enterprise application
integration products. XML messages are sent from applications to an AQ hub, here
shown as an OIS hub. This serves as a "message server” for any application that
wants the message. Through this hub and spoke architecture, XML messages can be
communicated asynchronously to multiple loosely-coupled receiving applications.

9-2 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

How do AQ and XML Complement Each Other?

Figure 9-1 Advanced Queueing and XML Message Payloads

Accounting
Application

?
iill

XML

|

Oracle

Accounting Database
(customer billing information,
account histories)

Net8

Message

OIS Hub

AQ tasks

- Message flow with
subscription rules

- Message Management

- Business Intelligence
from messages

Web Sales
Application

Oracle8 i

Net8

==,

?

Oracle8 i

Advanced
Queuing

LIIA
—H—
"_.

Product Database
(information, prices, images)

XML
Message

Net8

To other database

systems and
applications

— Inventory and
— | Shipping
Application
XML
Message

Oracle8 i

Shipping Database
(product inventory and
location in warehouse)

AQ Enables Hub-and-Spoke Architecture for Application Integration

A critical challenge facing enterprises today is application integration. Application
integration involves getting multiple departmental applications to cooperate,
coordinate, and synchronize in order to execute complex business transactions.

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-3

AQ Example 1 (PL/SQL): XML Message as a CLOB in an AQ Message

Advanced Queuing enables hub-and-spoke architecture for application integration.
It makes integrated solution easy to manage, easy to configure, and easy to modify
with changing business needs.

Messages Can be Retained for Auditing, Tracking, and Mining

Message management provided by AQ is not only used to manage the flow of
messages between different applications, but also, messages can be retained for
future auditing and tracking, and extracting business intelligence.

Viewing Message Content With SQL Views

AQ also provides SQL views to look at the messages. These SQL views can be used
to analyze the past, current, and future trends in the system.

Advantages of Using AQ

AQ provides the flexibility of configuring communication between different
applications.

An XML message can be communicated using AQ in the following ways:

« Stored as an XML message in the AQ payload, as a VARCHAR or CLOB, or it
can be compressed and stored as a BLOB.

« Using JMS, stored as a TextMessage or BytesMessage. It can also be processed
into an object and stored as an ObjectMessage or an SQL ADT message.

AQ Example 1 (PL/SQL): XML Message as a CLOB in an AQ Message

This example shows you how to process an XML message stored in a CLOB in an
AQ message. This example is in PL/SQL.

See Also: Oracle8i Application Developer’s Guide - Advanced Queuing

Setting Up the AQ Environment

In order to set up the AQ environment, perform the following:

« Grant EXECUTE privileges on the PL/SQL packages DBMS_AQADM and
DBMS_AQ

« Create the following tables:

« Schema

9-4 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

AQ Example 1 (PL/SQL): XML Message as a CLOB in an AQ Message

« Queue tables

« Queues

AQ Example 1: Tasks Performed

This AQ example performs the following tasks:
1. Creates xml_payload_type to store XML messages in a CLOB
Creates AQ Queuetable to hold xml_payload_type messages

2

3. Creates AQ Queue
4. Adds Subscribers
5

Starts Queue for enqueue and Dequeue

Enqueuing a Message
1. Enqueues an empty CLOB

2. Selects CLOB locator using the enqueued message id
3. Populates the CLOB using DBMS_LOB package

Dequeuing a Message
1. Dequeues the message

2. Uses DBMS_LOB package to read the message

AQ Example 1: The PL/SQL Code

Here is the example:

CONNECT scottftiger; — User should have execute privileges on packages DBMS
AQADM and DBMS_AQ.

— Create an Oracle Object type to store an XML message

CREATE OR REPLACE TYPE xml_payload_type AS OBJECT (

—if needed the message can also be parsed to extract some attributes to do
content-based routing on an AQ queue

xml_message CLOB;

)

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-5

AQ Example 1 (PL/SQL): XML Message as a CLOB in an AQ Message

— CREATE an AQ Queuetable with XML payload

BEGIN

dbms_agadm.create_queue_table(

queue_table =>'xmimsg_queuetable’,
sort_list=>"priority,enq_time,
comment =>‘demonstrate XML message in an AQ queue’,
multiple_consumers => TRUE,
queue_payload_type =>xml_payload_type’,
compatible =>'8.1Y;

END;

/

— CREATE an AQ Queue for XML messages

BEGIN
doms_agadm.create_queue (
queue_name =>‘xmimsg_queue’,
queue_table =>‘xmimsg_queuetable’);
END;

/

— Add an subscriber to XML message queue
BEGIN

dbms_agadm.add_subscriber(
queue_name =>xmimsg_queue’,
subscriber => ‘xml_subscriber);

END;

/

— Start queue for enqueuing and dequeuing
BEGIN
doms_agadm.start_queue(xmimsg_queue’);
END;

/

— Enqueue an XML message

DECLARE

engopt doms_ag.enqueue_options t;
msgprop doms_ag.message_properties_t;
eng_msgidRAW(40);

sales order xml_payload_type;

order loc CLOB;

XML msg VARCHAR2(200);
msgsize Number,

BEGIN

sales_order :=xml_payload type (empty_clob());

9-6 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

AQ Example 1 (PL/SQL): XML Message as a CLOB in an AQ Message

dbms_ag.enqueue(
queue_name =>xmimsg_queue, — IN
enqueue _options =>enqopt, —IN
message_properties =>msgprop, —IN
payload =>sales_order, - IN
msgid =>enq_msgid); - OUT

SELECT tuser_dataxml_message INTO order_loc
FROM xmimsg_queuetable t
where tmsgid =enq_msgid;

- Putan XML message inthe lob
XML_msg :='<xml> <xmb>";
doms_lobwrite(order_loc, 12, 1, XML_msg);

OMMIT;
END;
/

— Dequeue an XML message
declare
dequeue_options dbms_ag.dequeue_options t;
message_properties doms_agmessage_properties t;
message_handle RAW(16);
message xml_payload_type;
buffer varchar2(100);
msglen number,
begin
dequeue_options.consumer_name :=xml_subscriber’;
dequeue_options.wait =dbms_agq.NO_WAIT;
dbms_ag.dequeue(
queue_name =>xmimsg_queue’,
dequeue_options =>dequeue_options,
message_properties =>message_properties,
payload =>message,
msgid =>message_handle);
COMMIE;
msglen :=dbms_lob.getlength(messagexml_message);
dbms_lob.read(messagexml_message, msglen, 1,
buffer);
dbms_outputput_line(buffer);
end;
/

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-7

AQ Example 2 (Java): Processing an XML Message Using JMS (Publish - Subscribe)

AQ Example 2 (Java): Processing an XML Message Using JMS (Publish

- Subscribe)

AQ Example 2:

XML messages can be enqueued and dequeued from an AQ queue using JMS (Java
Messaging Standard). Example 2 shows you how to publish and subscribe an XML
message as a JMS TextMessage. Refer to Oracle8i Application Developer’s Guide -
Advanced Queuing for more examples.

Processing an XML Message Using JMS —Tasks Performed

Setting Up the AQ JMS Environment

See Oracle8i Application Developer’s Guide - Advanced Queuing Chapter 13, "JMS
Administrative Interface- Basic Operations" for information on setting up the AQ
JMS environment.

Publish (Enqueue) an XML Message using JMS

The following lists the tasks performed by Example 2 using JMS to publish an XML
message:

Gets the name and location of Topic on a certain subject

Gets ConnectionFactory for JMS provider that hosts desired topic
Opens a Connection to the JMS provider using ConnectionFactory
Creates a JMS Session

Gets a Topic object using the JMS Session

Creates the Message to be published

Creates a TopicPublisher to send messages

© N o 0~ w N PR

Publishes the Message to the Topic

Receive (Dequeue) an XML Message using JMS

The following lists the tasks performed by Example 2 using JMS to receive
(subscribe) an XML message:

1. Gets the name and location of Topic on certain subject
2. Gets a ConnectionFactory of JMS provider that hosts desired Topic

3. Opens a Connection to the JMS provider using ConnectionFactory

9-8 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

AQ Example 2 (Java): Processing an XML Message Using JMS (Publish

- Subscribe)

AQ Example 2:

Creates a JMS Session
Gets a Topic object using the JMS Session

Creates a TopicSubscriber to receive desired message

N o &

Waits for messages - using blocking receive call or by registering
MessageL.istener

Processing an XML Message Using JMS — Java Code
Here is the Java code listing using JMS to process an XML message.

public void publishXMLMessage (String host, String ora._sid, int port, String
driver) throws JMS Exception

{

TopicConnectionFactory tc_fact;

TopicConnection t_conn;

TopicSession jms_sess;

Topic mimsg_topic;

TextMessage xmimsg;

TopicPublisher ~ xmimsg_publisher,

I create a ConnectionFactory

tc_fact = AQjmsFactory.create TopicConnectionFactory(
host, ora_sid, port, driver);

llcreate a Topic Connection

t conn=tc_fact.createTopicConnection ('scott’, "tiger”);

llcreate a IMS Session

jms_sess=t_conn.createTopicSession(true, 0);

/| Get a Topic object

xmimsg_topic = (AQmsSession)jms_sess).getTopic('scott”, "xmimsg_topic");
llcreate Topic publisher

xmimsg_publisher = jms_sess.createPublisher(null);

I create XML text message

xmimsg 5jms_sess.create TextMessage();

/IPublish message

xmimsg_publisher.publish(xmimsg_topic, xmimsg);

jms_sess.commit();

}

public void receiveXMLMessage (String host, String ora_sid, int port, String
driver) throws JMS Exception

{
TopicConnectionFactorytc_fact;

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-9

AQ Example 2 (Java): Processing an XML Message Using JMS (Publish - Subscribe)

TopicConnectiont_conn;
TopicSessionjms_sess;
Topicxmimsg_topic;
TextMessagexmimsg;
TopicSubscriberxmimsg_subscriber;

/I create a ConnectionFactory

tc_fact = AQjmsFactory.create TopicConnectionFactory(
host, ora._sid, port, driver);

llcreate a Topic Connection

t conn=tc_fact.createTopicConnection ('scott’, "tiger”);

llcreate a IMS Session

jms_sess=t_conn.createTopicSession(true, 0);

I/l Geta Topic object

xmimsg_topic = ((AQjmsSession)jms_sess).getTopic("'scott”, "xmimsg_topic”);
llcreate Topic subscriber

xmimsg_subscriber = jms_sess.createDurableSubscriber(xmimsg_topic, "XmiMsg_
Subscriber”);

Il create XML text message

xmimsg =(TextMessage)xmimsg_subscriber.receive();

IIProcess Text Message

jms_sess.commit();

}

9-10 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): XML and Advanced Queuing

Frequently Asked Questions (FAQs): XML and Advanced Queuing

Multiple Format Messages: Create an Object Type and Store as Single Message

Question

We are exchanging XML documents from one business area to another using Oracle
Advanced Queuing. Each message received or sent includes an XML header, XML
attachment (XML data stream), DTDs, and PDF files. We need to store all this
information, including some imagery files, in the database table, in this case, the
gueuetable.

Can we enqueue this message into an Oracle queue table as one record or one
piece? Or do we have to enqueue this message as multiple records, such as one
record for XML data streams as CLOB type, one record for PDF files as RAW type,

Then somehow specify these set of records are correlated? Also we want to ensure
that we dequeue this.

Answer
You can achieve this in the following ways:

= You can either define an object type with (CLOB, RAW,...) attributes, and store it
as a single message

= You can use the AQ message grouping feature and store it in multiple
messages. But the message properties will be associated with a group. To use
message grouping feature, all messages must be the same payload type.

Question 2

Does this mean that we specify the payload type as CLOB first, then enqueue and
store all the pieces, XML message data stream, DTDs, and PDF,... as a single
message payload in the Queue table? If so, how can we separate this single message
into individual pieces when we dequeue this message?

Answer 2
No. You create an object type, for example:

CREATE TYPE mypayload_type as OBJECT (xmiDataStream CLOB, dtd CLOB, pdf BLOB);

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-11

Frequently Asked Questions (FAQs): XML and Advanced Queuing

Then store it as a single message.

Adding New Recipients After Messages are Enqueued

XML and AQ

Question

We want to use the queue table to support message assignments. For example,
when other business areas send messages to Oracle, they do not know who should
be assigned to process these messages, but they know the messages are for Human
Resources (HR). So all messages will go to the HR supervisor.

At this point, the message has been enqueued in the queue table. The HR
supervisor is the only recipient of this message, and the entire HR staff have been
pre-defined as subscribers for this queue). Can the HR supervisor add new
recipients, namely additional staff, to the message_properties.recipient_list on the
existing the message in the queue table?

We do not have multiple consumers (recipients) when the messages are enqueued,
but we want to replace the old recipient, or add new recipients after the message
has already been in the queue table. This new message will then be dequeued by
the new recipient. Is this workable? Or do we have to remove the message from old
recipient, then enqueue the same message contents to the new recipient?

Answer
You cannot change the recipient list after the message is enqueued. If you do not

specify a recipient list then subscribers can subscribe to the queue and dequeue the
message.

In your case, the new recipient should be a subscriber to the queue. Otherwise, you
will have to dequeue the message and enqueue it again with the new recipient.

Question

In the OTN document, "Using XML in Oracle Database Applications, Part 4,
Exchanging Business Data Among Applications” Nov. 1999, it says that an Oracle
database can enqueue and dequeue XML messages and process them. How does it
do this?

Do I have to use XML-SQL Utility (XSU) in order to insert an XML file into a table
before process it, or can | enqueue an XML file directly, parse it, and dispatch its

9-12 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): XML and Advanced Queuing

messages via the AQ process? Must | use XML-SQL Utility every time | want to
INSERT or UPDATE XML data into an Oracle Database?

Answer

AQ supports enqueing and dequeing objects. These objects can have an attribute of
type CLOB containing an XML Document, as well as other interested "factored out”
metadata attributes that might make sense to send along with the message. Refer to
the latest AQ document, Oracle8i Application Developer’s Guide - Advanced Queuing, to
get specific details and see more examples.

Retrieving and Parsing JMS Clients with XML Content From AQ

Question

We need a tool to parse messages, JMS clients with XML content, from an AQ queue
and then update tables and fields in an ODS (Operational Data Store). In short, we
want to retrieve and parse XML documents and map specific fields to database
tables and columns.

Is intermedia Text a solution?

Answer

The easiest way to do this is using Oracle XML Parser for Java and Java Stored
Procedures in tandem with AQ inside Oracles8i.

Question 2

We can use XML-SQL Utility if we go with a custom solution. Our main
concentration is supply-chain. We want to get metadata information such as, AQ
enqueue/dequeue times, JMS header information,.... based on queries on certain
XML tag values. Can we just store the XML in a CLOB and issue queries using
intermedia Text?

Answer 2

Your question said "parsing" messages, so that threw me off. It also mentioned
putting message metadata in regular tables.

« If you store XML as CLOBs then you can definitely search it using interMedia
Text, but this only helps you find a particular message that matches a criteria.

Using Oracle Advanced Queuing (AQ) in XML Data Exchange 9-13

Frequently Asked Questions (FAQs): XML and Advanced Queuing

« If you need to do aggregation operations over the metadata, view the metadata
from existing relational tools, or use normal SQL predicates on the metadata,
then having it "only" stored as XML in a CLOB is not going to be good enough.

You can combine interMedia Text XML searching with some amount of redundant
metadata storage as "factored out” columns and use SQL statements that combine
normal SQL predicates with the interMedia Text CONTAINS() clause to have the
best of both.

Ensuring that an Enqueue is Successful?

Question

I am looking for ways to ensure the enqueue is successful. | am deploying AQ on
Oracle8i. After successfully executing the enqueue statement in a PL/SQL
procedure, | found that the queue had not actually started. Also, there was no error
message returned after the enqueue. | have somehow lost the message.

Is there a way to deal with this situation?

Answer
Try the following:

1. After creating the queue, issue the dbms_agadm.start_queue command.

2. After enqueuing a message, issue a COMMIT.

9-14 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

10

B2B: How /Procurement Uses XML to Offer
Multiple Catalog Products to Users

This chapter contains the following sections:

« Introduction to Oracle Internet Procurement (iProcurement)
= iIProcurement: XML Parser for Java

« Buyer-Hosted Catalogs

« DTD Admininistrative Information: <ADMIN>
« DTD Schema Information: <SCHEMA>

« DTD: Item Information

« Supplier Hosted Catalogs and Marketplaces

« Data Element Definition

=« Order Line XML Definition

« HTML Specification

« User Authentication

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-1

Introduction to Oracle Internet Procurement (iProcurement)

Introduction to Oracle Internet Procurement (/Procurement)

Oracle iProcurement is a web-based catalog content exchange application that
helps users find and order available products and services. It helps automate the
entire purchasing life-cycle from sourcing to procurement to payment.
iProcurement also has a web-shopping interface with Express and Power checkout
options and a built-in Internet Procurement Connector for transactions with third
party ERP systems.

iProcurement supports several catalog content management methods. Users can
choose any combination of the following:

« Buyer-hosted content
« Supplier- hosted content
« Third party hosted marketplace

All of these content-management methods use XML for their web-based data
(content) exchange technology. This chapter describes each of these
content-management methods and associated XML documents. It also provides
several examples.

Various Suppliers Load Their Catalogs into the Unified Catalog Tables

iProcurement uses XML to load catalogs received from various suppliers or catalog
service providers, into "unified catalog tables" in the iProcurement database. See
Figure 10-1.

XML also transfers security or authentication objects when communicating with
external catalog sourcing companies.

« Problem: Build a catalog that seamlessly offers multiple supplier catalogs of
goods and services to users via the web.

« Business Solution: iProcurement with Oracle Applications including, Oracle
Exchange, Oracle XML technology, PL/SQL programs, XML interface.

« Oracle XML Components Used: XML Parser for Java

Oracle Internet Procurement Solution

Oracle’s Internet Procurement solution leverages the combined power of
Oracle Internet Procurement, Oracle Supplier Network, and Oracle
Exchange. Companies can buy all types of goods and services at the best value,

10-2 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Introduction to Oracle Internet Procurement (iProcurement)

make better strategic decisions, and improve the bottom line. This solution helps
automate and centralize procurement functions such as sourcing, approval routing,
and payments while decentralizing the requisitioning and receiving processes.

Oracle Exchange is anopen business-to-business online marketplace that allows
companies to buy and sell goods and services using any purchasing method, with
content and related services provided by the Oracle Supplier Network. Oracle
Exchange is accessible by any company, regardless of size or industry, and does not
require any Oracle software.

More Information About Internet Procurement and Related Products
You can find more information about iProcurement at the following sites:

http://www.oracle.com/products/
http://www.oracle.com/applications/internetprocurement/index.html
You can find more information about Oracle Exchange at:

http://www.oracle.com/applications/exchange/index.html

Buyer-Hosted Content

With buyer-hosted content management, you can request items by searching for
products or services in a single "unified catalog" without having to first select a
supplier. Content in the unified catalog is received from either of the following
sources:

« Loaded directly from Oracle Applications, including the following:
= Item Master
« Approved Supplier List
« Requisition Template
« Contract information

« From any third party content provider via the XML interface described in this
chapter. One Oracle partner, for example, uses the XML interface to publish
private, high-quality electronic supplier catalogs.

The use of XML in the buyer-hosted catalog exchange process is illustrated in
Figure 10-1.

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-3

http://www.oracle.com/products/
http://www.oracle.com/applications/internetprocurement/index.html
http://www.oracle.com/applications/exchange/index.html

Introduction to Oracle Internet Procurement (iProcurement)

Figure 10-1 Buyer-Hosted Content Management

Supplier 2

Supplier 1
Supplier n
I
sends catalog

A2 /

[3
=2
— U XML - Parses
o Parser - Checks if well-formed
User (and valid)
Order and
Requisition | «¢ > XML catalog
Application
Retrieved Loaded

Oracle Applications

Order Templates
Extracted and
loaded directly
using PL/SQL
Contracts program
(such as blanket CONIACES | e— Unified
Catalog

and catalog gquotes)

Item Master and
Approved Supplier List

Oracle Applications data is extracted and loaded directly into the unified catalog by
a PL/SQL concurrent program. Hence in this case, it is not necessary to generate

and parse the XML document.

Supplier-Hosted Catalogs and Marketplaces
While creating a requisition, users can also navigate to and select items from

external third party catalogs. These can be hosted by a supplier or catalog provider.
In this case, users select a link for the desired catalog, select items and then return to

10-4 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Introduction to Oracle Internet Procurement (iProcurement)

iProcurement where they can request additional items, make changes, or complete
their order.

You can use Oracle XML interface, which encompasses secure user authentication
and item selection to link any externally hosted catalog to iProcurement. This XML
interface is used to provide access to a secure, private catalog that aggregates
high-quality content from multiple suppliers.

Figure 10-2 Supplier-Hosted Catalog XML Exchange

!

User

Requests products
from external
catalog

@ User requests link to
external catalog

> <4 Supplier a

http

IIIIIIIIIIIIIIIIIIIII%
® @ @ @

@ Authenticate user
request

Externally 4= Supplier b
Hosted

Catalog

iProcurement

e Authentication response
via XML document

@ Authenticated user
selects items

A

<= Supplier z

I
XML interface

Figure 10-2 illustrates the data exchange process when users select items from
supplier-hosted on-line catalogs. While shopping in iProcurement, the following
exchange protocol occurs:

1. Requestor (user) selects a link and navigates to an external catalog. At this
time, encrypted session information and an authentication URL are provided.

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-5

iProcurement: XML Parser for Java

2. The external catalog asks iProcurement, via a secure HTTP call, to authenticate
the user.

3. iProcurement responds to the authentication request with an XML document
indicating whether the user was successfully authenticated. If so, additional
information about the requestor is sent.

4. The authenticated user shops at the external site, selects items, and finally
indicates that they are ready to add their items to the requisition. This triggers
the external catalog to transmit the selected items to iProcurement in an XML
document that is parsed and converted to requisition lines. The user returns to
iProcurement to complete their order.

IProcurement: XML Parser for Java

iProcurement includes Oracle’s XML Parser for Java (installed on the middle tier
but separate from the Internet Application Server (iAS). This parser checks if an
XML document is well-formed, and optionally, if it is valid.

Internationalization

iProcurement is fully NLS compliant, however, the product does not support
multiple languages in releases 10.7 and 11. For this reason, XML document data
must be specified in the base language of the installation.

Note: To avoid character set conversion data loss between the
XML document and the database, specify a character set encoding
that is both supported by the Oracle XML Parser and compatible
with the database installation character set.

Language Identification

Both XML documents support language specification using the xml:lang attribute
as described in the Extensible Markup Language (XML) 1.0 W3C recommendation.
Refer to http://www.w3.0rg/ TR for all published, draft, or proposed
recommendations.

The following table, extracted from the XML 1.0 specification, describes in general
terms how language is identified:

LanguagelD:=Langcode (- Subcode)*
Langcode:=ISO639Code | lanaCode | UserCode
1SO639Code:=(a-Z] | [A-Z]) (a-Z] | [A-Z))

10-6 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://www.w3.org/TR
http://www.w3.org/TR

iProcurement: XML Parser for Java

lanaCode:=(7 | 1) - (aZ] | [A-Z)) +

UserCode:= (X | 'X) ~ ([a-Z] | [A-Z]) +

SubCode=(a-Z] | [A-Z]) +

According to the XML 1.0 specification, Langcode can be any of the following:

« Atwo-letter language code as defined by ISO 639, “Codes for the representation
of the names of languages”

« Alanguage identifier registered with the Internet Assigned Numbers Authority
(IANA)

« Alanguage identifier agreed on between parties in private use

There may be any number of Subcode segments, however, if the first subcode exists
and consists of two letters then it must be a country code from ISO 3166, “Codes for
the representation of names of countries.”

iProcurement Language Identification

To convert from the XML document language specification to Oracle Applications
language codes, specify the following:

« AnISO 639 language code
« An ISO 3166 country code

The following example shows how to set the language to English and the country to
the United States:

<exmllang="EN-US™>
The xml:lang declaration applies all attributes and content of the element where it
is specified, unless overridden with another instance of xml:lang on a specific

attribute. Since releases 10.7 through 11i of iProcurement expect a single language,
this should be specified for the root element in each document type.

iProcurement Character Set Encoding

The XML Parser processor is informed of the character set used in an XML
document via the encoding parameter of the XML declaration:

<?xml...encoding=UTFS8'...?>

If no document encoding is specified in the XML declaration, UTF-8 is assumed.

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-7

iProcurement: XML Parser for Java

Any other ASCII or EBCIDIC based encodings supported by the JDK can be used,
however, they must be specified in the format required by JDK instead of as official
character set names defined by IANA.

See http://0OTN.oracle.com/tech/xml for the latest XML Parser supported
character sets. Current support character sets and other Parser specifications also
listed in Appendix C, "XDK for Java: Specifications and Cheat Sheets".

10-8 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://OTN.oracle.com/tech/xml

Buyer-Hosted Catalogs

Buyer-Hosted Catalogs

This section describes the XML specification for loading the iProcurement unified
catalog from external sources. The specification supports the following
functionality:

« Catalog schema (item classification data) modifcation

« Add, rename, or delete a category

« Add, rename, or delete a descriptor (a category attribute)
« Item addition and category assignment

« Item deletion and modification

Document Type Definition (DTD)

Special characters and non-XML markup must be escaped for the XML parser to
function correctly. Specifically, the & and <> characters must be escaped with a
CDATA tag.

<|[CDATA[yourdata here > inserted in any tag for special characters.

<SCHEMA>
<CATEGORY ACTION="DELETE™>
<NAME><[[CDATA[Pen & Pencil Gits Sets[[></NAVE>
</CATEGORY>
</SCHEMA>

Also, if there are any " (double quote) characters within the data itself, these should
be replaced by the following character sequence: "

For example:

<itemDescription><![CDATA[6" diameter pipe></itemDescription>

Catalog information is divided into three main categories:

« DTD Admininistrative Information: <ADMIN> on page 10-11

« DTD Schema Information;: <SCHEMA> on page 10-11

« DTD: Item Information on page 10-15

Figure 10—3shows the DTD hierarchical diagram of the catalog:

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-9

Buyer-Hosted Catalogs

Figure 10-3 Buyer-Hosted Catalog: DTD Hierarchical Diagram

Catalog
]
1 1 1
ADMIN SCHEMA DATA
Name Information Category Description Item

iIProcurement Example 1. DTD for Buyer-Hosted Catalog
Here is the Buyer-Hosted catalog DTD:

<?xmlversion="1.0"?>
<IDOCTYPE CATALOG[

<IELEMENT CATALOG (ADMIN, SCHEMA?, DATA?) >
<IATTLIST CATALOG xmllang NMTOKEN #IMPLIED >

<IELEMENT ADMIN (NAME, INFORMATION) >
<IELEMENT SCHEMA (CATEGORY | The DESCRIPTOR)* >
<IELEMENT DATA (ITEM)*>

<IELEMENT NAME #PCDATA) >

<IELEMENT INFORMATION (DATE, SOURCE) >
<IELEMENT DATE (#PCDATA) >

<IELEMENT SOURCE (#PCDATA) >

<IELEMENT CATEGORY (NAVE | KEY | TYPE | UPDATE)*>

<IATTLIST CATEGORY ACTION (ADD|DELETE|UPDATE) #REQUIRED>
<IELEMENT DESCRIPTOR (NAME | KEY | UPDATE | OWNER | TYPE)*>
<IATTLIST DESCRIPTOR ACTION (ADD|DELETEJUPDATE) #REQUIRED>
<IELEMENT OWNER (NAME?, KEY?) >

<IELEMENT KEY (#PCDATA) >

<IELEMENT TYPE (4PCDATA) >

<IELEMENT ITEM (OWNER?, NAMEVALUE*, UPDATE) >
<IATTLIST ITEM ACTION (ADD | DELETE | UPDATE) #REQUIRED>

10-10 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

DTD Schema Information: <SCHEMA>

<IELEMENT UPDATE (NAME | KEY | NAMEVALUE)* >

<IELEMENT NAMEVALUE (NAME, VALUE) >
<IELEMENT VALUE (#PCDATA)* >
P

Note: iProcurement does not validate the DTD during the parsing
process and therefore does not require a copy of the DTD in the
code tree. Itis provided here for reference only.

DTD Admininistrative Information: <ADMIN>

The <ADMIN> section is used to identify the catalog. This section is required.

<ADMIN>
<NAME>Business Essential Reference Catalog</NAME>
<INFORMATION>
<DATE>[CDATA[02-FEB-99]</DATE>
<SOURCE>eContent Manager</SOURCE>
<INFORMATION>
</ADMIN>

Information contained in this section is source catalog-specific and does not impact

the loading of data for other catalogs. The <ADMIN> fields are described in
Table 10-1.

Table 10-1 DTD: <ADMIN> Fields

Field Required COMMENT
Name Required This is the name of the catalog
Date Required This is the catalog creation or modification date.

Note: This should match the default database
format for the Applications instance.

Source Required This is the company, person, or tool that
authored the XML document.

DTD Schema Information: <SCHEMA>

In the catalog, the schema consists of categories and descriptors.

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-11

DTD Schema Information: <SCHEMA>

« Categories: Categories and the items they contain also have associated
descriptive attributes. A category can be thought of as an item classification,
such as pens, paper, books, and software.

« Descriptors: Every catalog has two kinds of descriptors: “base” and “local.”

« Base descriptors apply universally to all items in the catalog regardless of
category, such as, Item Description, SKU, Price, and so on.

« Local descriptors are relevant only for items belonging to a specific
category, such as, “CPU Speed” for the category “Computer”, or “Ink
Color” for the category “Pens”.

A category or a descriptor can consist of a name, a key, or both. When a key is
provided, it is given precedence in identifying the category or descriptor. the DTD’s
<SCHEMA-> caegory and descriptor fields are described in Table 10-2.

Table 10-2 DTD: <SCHEMA> Category and Descriptor Fields

Field Required COMMENT

Name Conditionally required Descriptive name for the category or
(one of the 2 must be descriptor
provided)

Key Unique identifier for the category or

descriptior

Owner Required for For descriptors, this is the category (name
descriptors; optional or key) with which you want to associate
for categories the descriptor. Setting the owner value to

“Root” or 0 designates the descriptor as
being applicable for all items/categories.
This is known as a “base” or “root”
descriptor.

For categories, defining the Owner creates a
hierarchical relationship that can be
expressed in the Table of Contents.

10-12 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

DTD Schema Information: <SCHEMA>

Type Optional If used for a Descriptor, this field indicates
that data type of the descriptor value. Valid
options include:

« STRING (Default)
. NUMBER

« INTERNATIONAL (indicates that this
descriptor value will ultimately have
translations when MLS is
implemented)

The catalog schema can be modified by the following sequence. A <SCHEMA> tag
has an attribute that specifies a command and sub-tags that define a key and
actionable data. The commands are:

« ADD
« UPDATE
« DELETE

The examples below are enclosed in the <SCHEMA> tag.

iProcurement Example 2: DTD <SCHEMA> — Adding a Category and Descriptor to
the Category

The following example adds a new category and descriptors to the new category.

<SCHEMA>
<CATEGORY ACTION="ADD">
<NAME>Pen Gift Sets</NAME>
<KEY>PEN_GIFT_SETS</KEY>
</CATEGORY>
<DESCRIPTOR ACTION="ADD">
<OWNER>
<NAME>Pen Gift Sets</NAME>
</OWNER>
<NAME>Package Type</NAME>
<TYPE>String</TYPE>
</DESCRIPTOR>
</SCHEMA>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-13

DTD Schema Information: <SCHEMA>

iIProcurement Example 3: DTD <SCHEMA>: Deleting a Category or Descriptor

Categories and descriptors require a NAME, or KEY, tag to identify what is to be
deleted. For descriptors, this identity is required for the category that contains the
descriptor.

<SCHEMA>

<CATEGORY ACTION="DELETE"™>
<NAME>Pen Gifts Sets</NAME>

</CATEGORY>

<CATEGORY ACTION="DELETE™>
<NAME>Pen Gift Collections</NAME>
<KEY>3245</KEY>

</CATEGORY>

<CATEGORY ACTION="DELETE">
<KEY>Laptop Computer</KEY>
</CATEGORY>

<DESCRIPTOR ACTION="DELETE™>
<OWNER>
<NAME>Pens</NAME>
</OWNER>
<NAME>Barrel Color</NAME>
</DESCRIPTOR>

<DESCRIPTOR ACTION=DELETE™>
<OWNER>
<KEY>22343</KEY>
</OWNER>
<NAME>Barrel Color</NAME>
<KEY>887665</KEY>

</DESCRIPTOR>

</SCHEMA>

iProcurement Example 4. DTD <SCHEMA> — Updating Category or Descriptor

Categories and descriptors require a name, or key, tag to identify what is to be
updated. For descriptors, the name, or key, tag is required for the category that
contains the descriptor. Here is an example:

<SCHEMA>
<CATEGORY ACTION="UPDATE">
<NAME>Pen Gifts Set</NAME>
<UPDATE>

10-14 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

DTD: Item Information

<NAME>Pen Gift Sets</NAME>
</UPDATE>
</CATEGORY>

<CATEGORY ACTION="UPDATE">
<KEY>C440911</KEY>
<UPDATE>
<NAME>Compressor Motors</NAME>
</UPDATE>
</CATEGORY>
</[SCHEMA>

DTD: Item Information
Table 10-3 lists the DTD’s ITEM information fields.

Table 10-3 DTD ITEM> Information

Field Required COMMENT

Owner Optional if the action Associates an item with a specific
is Delete; Required category.
for other actions

Name/Value - Required Associates an item with a

Name descriptor. The following base
descriptor names are seeded by
Oracle iProcurement and can be
used when adding items:

« Description

« UOM

« Sup Part Num
« Mfg Part Num
« Sup Name

« Mfg Name

« Price

// What about Long Description
and Picture? Not seeded by Oracle
but certainly handled specially by
Requisite in the user interface

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-15

DTD: Item Information

Name/Value - Required Associated value for the specified
Value descriptor name.

Data items can be added to a category, deleted, and modified. All data items must
be placed between the <DATA></DATA> tag. The identity feature (specifying a
<NAME> and/or <KEY>) allows the wholesale change of values by effectively
wildcarding updates. The update example below provides a method to change all
items with a manufacturer Bic to Bic, Inc.

iProcurement Example 5: DTD ITEM — Adding Items Using <ITEM ACTION"ADD">

This is an example of adding items to the iProcurement DTD using <ITEM
ACTION="ADD"> marker.

<DATA>

<ITEM ACTION="ADD"™>
<OWNER>
<NAME>Pens</NAME>
</OWNER>
<NAMEVALUE>
<NAME>Mfg Name</NAME>
<VALUE>Bic<VALUE>
<INAMEVALUE>
<NAMEVALUE>
<NAME>Barrel Color</NAME>
<VALUE>Blue<\VALUE>
</NAMEVALUE>

</ITEM>

<ITEM ACTION="ADD">
<OWNER>
<NAME>Pencils</NAME>
</OWNER>
<NAMEVALUE>
<NAME>Mfg Name</NAME>
<VALUE>Bic<\VALUE>
<INAMEVALUE>

</ITEM>
</DATA>

10-16 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

DTD: Item Information

iIProcurement Example 6: DTD ITEM — Deleting Iltems Using <ITEM
ACTION="DELETE">

This is an example of deleting items from the iProcurement DTD using <ITEM
ACTION="DELETE"> marker.

<DATA>

<ITEM ACTION="DELETE">
<OWNER>
<NAME>Pens</NAME>
</OWNER>
<NAMEVALUE>
<NAME>Mfg Name</NAME>
<VALUE>Bic<NVALUE>
<INAMEVALUE> <!--removes allitems by Bic mfg from Pens - ->
<NAMEVALUE>
<NAME>Barrel Color</NAME>
<VALUE>Blue<\VALUE>
</NAMEVALUE>

<ITEM>
</DATA>

iIProcurement Example 7: DTD ITEM — Updating Iltems Using <ITEM
ACTION="UPDATE")

This is an example of updating items from the iProcurement DTD using <ITEM
ACTION="UPDATE"> marker.

When updating and item, the owner tag is optional. This allows for updates of
multiple items with a specific value.

<DATA>

<~ Updating ltem by ltem —>

<ITEM ACTION="UPDATE">

<OWNER>

<NAME>Pens</NAME>

</OWNER>

<NAMEVALUE>
<NAME>Mfg Name</NAME>
<VALUE>BIic <NALUE>

</NAMEVALUE>

<NAMEVALUE>
<NAME>Barrel Color</NAME>
<VALUE>Blue<\VALUE>

</NAMEVALUE>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-17

DTD: Item Information

<UPDATE>
<NAMEVALUE>
<NAME>Mfg Name</NAME>
<VALUE>Bic Inc.<NALUE>
</NAMEVALUE>
<NAMEVALUE>
<NAME>Barrel Color</NAME>
<VALUE>Red<NALUE>
</NAMEVALUE>
</UPDATE>
</ITEM>
<~ This section below updates items with Mfg Name= Bic —
<ITEM ACTION="UPDATE">
<NAMEVALUE>
<NAME>Mfg Name</NAME>
<VALUE>Bic <NALUE>
</NAMEVALUE>
</ITEM>
</DATA>

10-18 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Definitions

Supplier Hosted Catalogs and Marketplaces

This section describes the specifications (data elements and file format) for any
external catalog to transmit selected item information to Oracle. It describes the
following, and is divided into 4 parts:

Data Element Definition
Order Line XML Definition
"HTML Specification" and format for transmitting the XML data

User Authentication

Data Element Definition

This section describes the data elements for the requisition order line file that is
transmitted from the 3" party catalog to Oracle once the user has completed item
selection in the remote catalog. The data elements are grouped into 6 logical
segments:

Definitions

Contract - identifies contract information for the selected item
Item - identifies the item, order quantity and other descriptive item information

Category - identifies the item’s category code and catalog source (catalog
provider or host)

Price - identifies unit price information (in catalog currency or the user’s
functional currency) for the item

Supplier - identifies the item’s supplier

Additional Attributes - lets you specify additional, custom information about
the item (this maps to the Descriptive Flexfield columns in the Requisition Lines
table)

All data elements are either optional, required or conditional.

Table 10-4 Data Elements are Optional, Required, or Conditional

Data Element type Description

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-19

Definitions

Required

Optional

Conditional

Type

Cross-Reference

Standard Codes

Required fields must be provided by the 3rd party. This data
should be sufficient to complete the transaction.

Optional fields will improve the accuracy of the transaction,
however, the system will derive, cross-reference, calculate or
defaul the values

This status indicates that under certain conditions, the data must
be provided. These conditions are specified in the ‘Required’
column

Possible values are:

« Number (real or integer)

« Character (the string length is defined for every field. If the
submitted string is longer than the specified length, it will be
truncated)

« Date (all dates should be in the format YYYYMMDD

Indicates if a cross-reference to the Oracle EDI Gateway is
necessary to obtain a recognized value.

Table 10-Hists the standard codes referenced in the Order Line.

Table 10-5 Standard Codes Referenced in the Order Line

Code

D-U-N-S®
Number

UN/SPSC

Description

Dun & Bradstreet has developed a nine-digit identification
sequence commonly used as a company identifier in EDI and
global electronic commerce transactions. A large organization is
likely to have many different D&B D-U-N-S numbers since each
business location may have its own unique identifier.

For more information on Dun & Bradstreet, Inc. visit
http://www.dnb.com.

The United Nations Development Programme and Dun &
Bradstreet’s have combined to define a standardized, open system
for classifying products and services: UN/Standard Product &
Service Code (UN/SPSC). The system uses a hierarchical
structure with 5 levels and approximately 8,000 total
classifications.

For more information on the UN/SPSC codes, visit
http://www.unspsc.org

10-20 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

Definitions

Contract Data Elements

Table 10-6 Contract Data Elements

Field Required Type Comment
Supplier Conditiontal: Character (25) Contract number as defined in the
Contract at least one of supplier’s system.
Number these contract
numbers must
Buyer Contract be specified Character (20) Contract number as defined in the
Number buyer’s system.
Buyer Contract Optional Number Contract line item number in the
Line Number buyer’s system

This can be derived from the ASL
sourcing rules.

Catalog Type Optional Character (25) Specify one of the following values:
‘CONTRACTED’
‘NONCONTRACTED’

[tem Data Elements

Table 10-7 Item Data Elements

Field Required Type Comment

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-21

Definitions

Line Type

Supplier Item
Number

Manufacturer
Item Number

Buyer Item
Number

Buyer Item
Revision

Item Description
Quantity

Buyer Unit of
Measure

Supplier Unit of
Measure

Supplier Unit of
Measure
Quantity

Optional

Conditional:
at least one
of the 3 item
numbers
must

be specified
(Supplier,
Manufacture
r or Buyer)

Optional

Required
Optional

Conditional:
at least one
of these 2
fields must
be provided

Optional

Character (25)

Character (25)

Character (25)

Character (25)

Character (3)

Character (240)
Number

Character (25)

Character (25)

Number

Specify one of the following values:

‘GOODS’ - specify the price,
guantity and unit of measure. This
is the default value

‘SERVICES QUANTITY’ - for
rate-based services. Similar to
goods; specify the price per unit of
service and the quantity

‘SERVICES AMOUNT’ - for
amount-based services. In Oracle
Purchasing, the Price is set to 1 and
the actual amount is entered in the
Quantity field

Manufacturer Name is required if
Manufacturer Item Number is
specified

Item number as defined in the
buyer’s system

Item revision as defined in the
buyer’s system

Defaults to 1

Unit of measure code or description
as defined in the buyer’s system.

Cross reference: EDI Gateway

Unit of measure code or description
as defined in the supplier’s system.

Cross reference: EDI Gateway

A quantity associated with the
supplier’s unit of measure.

Cross reference: EDI Gateway

10-22 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Definitions

Manufacturer Conditional Character (40) Required if Manufacturer Item
Name Number is specified.

Hazard Class Optional Character (40) UN and Department of
Transportation provides standards.

Cross reference: EDI Gateway

Category Data Elements

Table 10-8 Category Data Elements

Field Required Type Comment
SPSC Category Conditional: Character (30) Category code as defined in the
Code at least of 1 UN/SPSC standard
of these 3)
values is Cross reference: EDI Gateway
required
Supplier Character (30) Category code in the supplier
Category Code system.
Buyer Category Character (50) Category code in the buyer system.
Code
Catalog Source Required Character (30) Name or code for the catalog

provider or host (which could be
different from the item’s supplier).
This value is labeled “Catalog
Trading Partner” in the XML
Schema code

Price Data Elements

Table 10-9 Price Data Elements

Field Required Type Comment

Currency Optional Character (30) Defaults to the functional (user’s)
currency as defined in the buyer’s
system.

The codes are as defined in ISO.
Cross reference: EDI Gateway

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-23

Definitions

Unit Price Required Number

Rate Optional Number

Rate Date Conditional: Date
Required
only if rate is
provided

Rate Type Conditional:
Required
only if Rate is
provided

The price should match the current
effective contract if one exists

Conversion rate from catalog
currency to the user’s functional
currency. If the specified currency
does not = the functional currency;,
the rate will be determined as
follows:

If the item is contracted and a fixed
conversion rate is specified in the
contract, this rate is used

The supplier can provide the rate
information

If this field is left blank and no fixed
rate is specified on the contract, the
rate can be obtained using internal
referencing schemes (e.g. daily
rates)

Use the format YYYYMMDD

Cross reference: EDI Gateway

Supplier Data Elements

Table 10-10 Supplier Data Elements

Field Required Type Comment

Supplier DUNS Conditional: atleast1 Character (30)
of these 4 values must
be specified

Supplier Name Character (80)

Supplier Number Number

Supplier number as defined by Dun &
Bradstreet.

Cross reference: EDI Gateway
Supplier name

Supplier number as defined in the buyer’s

10-24 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Definitions

Supplier Trading
Partner Code

Supplier Site Conditional:

Required if Supplier

Character (30) Custom code assigned to a supplier to set them

up as a trading partner

Character (15)

DUNS is not provided

Contact Name Optional

Contact Phone Optional

Character (80) Contact at the supplier site who can address

questions about this transaction

Character (20) Contact phone humber

Additional Attributes

Table 10-11 Additional Attributes

Field Required Type Comment

Custom Attributel Optional Character (150) Definition determined by buyer and
seller

Custom Attribute2 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute3 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute4 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute5 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute6 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute7 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute8 Optional Character (150) Definition determined by buyer and
seller

Custom Attribute9 Optional Character (150) Definition determined by buyer and
seller

Custom Optional Character (150) Definition determined by buyer and

Attribute10 seller

Custom Optional Character (150) Definition determined by buyer and

Attributell

seller

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-25

Definitions

Custom
Attributel2

Custom
Attributel3

Custom
Attributel4

Custom
Attributel5

Optional

Optional

Optional

Optional

Character (150)

Character (150)

Character (150)

Character (150)

Definition determined by buyer and
seller

Definition determined by buyer and
seller

Definition determined by buyer and
seller

Definition determined by buyer and
seller

10-26 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Order Line XML Definition

Order Line XML Definition

Use the XML schema below as a template for formatting the data elements
discussed in the previous section. The XML file will be passed through the Oracle
XML parser which will extract the data and create requisition lines in iProcurement.

Please note that, although not explicitly stated in the schema, all attribute values
should be enclosed in single quotes. For example, the schema statement:

<attribute name="categoryCodeldentifier’ atttype="ENUMERATION" values “SPSC
SUPPLIER BUYER'/>

should result in the following XML statement:

<category categoryCodeldentifier=SPSC™>

Enclose All Data in CDATA Tags

All data must be enclosed in CDATA tags. Because data can contain special
characters - single quotes, double quotes, and so on, this is necessary to ensure data
integrity for and during parsing. For example, the schema statement:

<elementType id="manufacturerName”>

<sfring/>

<description>the name of the manufacturer</description>
</elementType>

should result in the following XML statement:
<manufacturerName><[CDATA[Bob's Factory]]></manufacturerName>

iProcurement Example 8: Order Line XML Schema

<?xml version=1.0"7>
<s:schema id="OrderLinesDataltems’>
<elementType id="catalog TradingPartner’>
<string/>
<description>Unique trading partner code in requiisition
system</description>
</elementType>

<elementType id="contractNumber’>

<string/>

<description>contract in which the item exists</description>
<lelementType>
<elementType id="buyerContractLineNum”>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-27

Order Line XML Definition

<sfring/>
<description> line number of the item on the buyer contract </description>
</elementType>
<elementType id="catalogType"™>
<string/>
<description>catalog type: CONTRACTED/NONCONTRACTED</description>
<elementType>
<elementType id="supplierContract’>
<elementType ="#contractNumber’/>
<description>supplier contract identifier for the line item </description>
</elementType>
<elementType id="buyerContract’>
<elementType ="#contractNumber’/>
<description>buyer contract identifier for the line item </description>
</elementType>
<elementType id="contract™>
<attribute name="contractNumberidentifier” atttype="ENUMERATION" values=
“KNOWN UNKNOWN INFORMATIONAL NONE'/>
<group groupOrder="OR">
<elementType ="#supplierContract’/>
<elementType ="#buyerContract’/>
<elementType ="#buyerContractLineNumber’/>
<elementType ="#catalogType” occurs “OPTIONAL />
</group>
<description>contract information for the line item </description>
<lelementType>

<elementType id="temID">

<string/>

<description>the item number in the chosen catalog/system</description>
<elementType>
<elementType id="supplieritemNumber”>

<elementType =#itemID"/>

<description>supplier item number information</description>
</elementType>
<elementType id="manufacturerName”>

<sfring/>

<description>the name of the manufacturer</description>
</elementType>
<elementType id=" manufacturertemNumber’>

<elementType ="#itemID"/>

<elementType ="#manufacturerName'/>

<description>manufacturer iterm number information</description>
<elementType>
<elementType id="buyeritemRevision™>

10-28 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Order Line XML Definition

<string/>
<description> the buyer’s item revision code(optional)</description>
</elementType>
<elementType id="buyeritemNumber>
<elementType ="#itemID"/>
<elementType ="#buyerltemRevision"/>
<description>buyer item number information</description>
<elementType>
<elementType id="temNumber”>
<group groupOrder="OR™>
<elementType ="#suppliertemNumber’/>
<elementType ="#manufactureritemNumber’/>
<elementType ="#buyeritemNumber’/>
</group>
<description>the item number in the chosen catalog/system</description>
</elementType>
<elementType id="itemDescription™>
<string/>
<description>the description of the item</description>
<elementType>
<elementType id="quantity>
<number/>
<description> quantity of the item (optional)</description>
</elementType>
<elementType id="buyerUnitOfMeasure™>
<sfring/>
<description> unit of measure of the item on buyer system</description>
</elementType>
<elementType id="suppliertUOMType™>
<string/>
<description> unit of measure of the item on supplier system</description>
<lelementType>
<elementType id="suppliertUOMQuantity”>
<number/>
<description> quantity associated with supplier unit of measure
(optional)</description>
<lelementType>
<elementType id="supplierUnitOfVieasure™
<elementType =*#suppliertUOMType'/>
<elementType ="#suppliertJOMQuantity” occurs “OPTIONAL />
<description> item information on supplier system equivalent to buyer unit
of measure</description>
<lelementType>
<elementType id="UnitOfMeasure”>
<group groupOrder="OR™>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-29

Order Line XML Definition

<elementType ="#buyerUnitOfMeasure’/>
<elementType ="#supplierUnitOfMeasure’/>
</group>
<description> unit of measure of the item</description>
</elementType>
<elementType id="hazardClass™>
<sfring/>
<description>the hazard class ID (optional)</description>
</elementType>
<elementType id="ttem™>
<attribute name =lineType” atitype="ENUMERATION" values="“GOODS
AMOUNTBASEDSERVICES RATEBASEDSERVICES “ default="GOODS">
<elementType ="#itemNumber'/>
<elementType ="#itemDescription’/>
<elementType ="#quantity” occurs “OPTIONAL >
<default>1</default>
<elementType>
<elementType =*#unitOfMeasure” />
<elementType ="#hazardClass” occurs “OPTIONAL />
<description>identifies the item</description>
</elementType>

<elementType id="categoryCode™>

<string/>

<description>the code for the category</description>
<lelementType>
<elementType id="category”>

<attribute name="categoryCodeldentifier’ atttype="ENUMERATION" values “SPSC

SUPPLIER BUYER'/>

<elementType ="#categoryCode’/>

<description>indicates item source catalog & category code</description>
<elementType>

<elementType id="currency™>

<string/>

<description>ISO currency code</description>
<lelementType>
<elementType id="unitPrice™>

<number/>

<description>the price per unit of measure</description>
</elementType>
<elementType id="rateDate”>

<datef>

<description> date of rate shown</description>
</elementType>

10-30 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Order Line XML Definition

<elementType id="rateType™>

< Sting/>

<description> type of rate</description>
</elementType>
<elementType id="rate">

<attribute name="rateDefinition” atttype="ENUMERATION" values “FUNCTIONAL
CONTRACT SUPPLIER BUYER'/>

<numberf>

<elementType ="#rateDate’/>

<elementType ='#rateType'l>

<description> conversion rate between currencies</description>
</elementType>
<elementType id="price™>

<elementType ="#currency’/>

<elementType =*#unitPrice’/>

<elementType ="#rate” occurs “OPTIONAL />

<description>item unit price in appropriate currency</description>
</elementType>

<elementType id="supplierSite™>

<sfring/>

<description>the supplier's site</description>
</elementType>
<elementType id="supplierDUNS">

<string/>

<description>the suppliers DUNS number</description>
</elementType>
<elementType id="supplierName™>

<string/>

<elementType ="#supplierSite’/>

<description>the supplier's name</description>
<elementType>
<elementType id="supplierNumber™>

<number/>

<elementType ="#supplierSite’/>

<description>supplier number as described in buyer system</description>
<lelementType>
<elementType id="supplierTradingPartner’>

<sfring/>

<description>supplier trading partner code</description>
</elementType>
<elementType id="contactName">

<sfring/>

<description> contact person at supplier site</description>
</elementType>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-31

Order Line XML Definition

<elementType id="contactPhone”™>
<sfring/>
<description>phone number of contact</description>
</elementType>
<elementType id="supplier>
<group groupOrder="OR">
<elementType ="#supplierDUNS’/>
<elementType ="#supplierName/>
<elementType ="#supplierNumber’/>
<elementType ="#supplierTradingPartner’/>
</group>
<elementType ="#contactName” occurs “OPTIONAL “/>
<elementType ="#contactPhone” occurs “OPTIONAL />
<description>identifies suppliers</description>
</elementType>

<elementType id="languageCode™>
<string/>
<description>the language code</description>
<lelementType>
<elementType id="language™>
<elementType ="#languageCode” occurs “OPTIONAL />
<description>language used to enter information for this item</description>
</elementType>

<elementType id="attribute1">

<sfring/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="attribute2’>

<sfring/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="attribute3">

<string/>

<description>optional extra line attribute</description>
<lelementType>
<elementType id="atfribute4™>

<sfring/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="attribute5™>

<string/>

<description>optional extra line attribute</description>
</elementType>

10-32 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Order Line XML Definition

<elementType id="attribute6™>

<sfring/>

<description>optional extra line attrbute</description>
</elementType>
<elementType id="attribute 7>

<string/>

<description>optional extra line attribute</description>
<elementType>
<elementType id="attribute8™>

<sfring/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="attribute9”>

<sfring/>

<description>optional extra line attrbute</description>
</elementType>
<elementType id="attribute10”>

<string/>

<description>optional extra line attribute</description>
<elementType>
<elementType id="attribute11">

<sfring/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="attribute12">

<sfring/>

<description>optional extra line attrbute</description>
</elementType>
<elementType id="attribute13">

<string/>

<description>optional extra line attribute</description>
<lelementType>
<elementType id="attribute14">

<string/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="attribute15">

<sfring/>

<description>optional extra line attribute</description>
</elementType>
<elementType id="additionalAttributes™>

<elementType ="#attribute1” occurs “OPTIONAL “/>

<elementType ="#attribute?” occurs “OPTIONAL “/>

<elementType ="#attribute3” occurs “OPTIONAL “/>

<elementType ="#attrbute4” occurs “OPTIONAL />

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-33

Order Line XML Definition

<elementType ="#attribute5” occurs “OPTIONAL “/>
<elementType ="#attribute6” occurs “OPTIONAL “/>
<elementType ="#attribute7” occurs “OPTIONAL “/>
<elementType ="#attribute8” occurs “OPTIONAL />
<elementType ="#attribute9” occurs “OPTIONAL />
<elementType ="#attribute10” occurs “OPTIONAL “/>
<elementType ="#attribute11” occurs “OPTIONAL “/>
<elementType ="#attribute12” occurs “OPTIONAL />
<elementType ="#attribute13” occurs “OPTIONAL />
<elementType ="#attribute14” occurs “OPTIONAL />
<elementType ="#attribute15” occurs “OPTIONAL />
<description>additional information about the item</description>
<elementType>

<elementType id="orderLine™>

<elementType ="#contract’/>

<elementType ="#item"/>

<elementType ="#category’/>

<elementType ="#price’/>

<elementType ="#supplier’/>

<elementType ="#language’/>

<elementType ="#additionalAttributes’/>

<description>Order line sent to requisition server</description>
</elementType>

<elementType id="OrderLinesDataElements™
<elementType ="#catalogTradingPartner’/>
<elementType ="#orderLine” occurs “ZEROORMORE'/>
<description>complete order line sent to requiisition server</description>
</elementType>
</s:'schema>

Note: In this example, the ‘catalogTradingPartner’ in the XML
header maps to the ‘catalog source’ field for each requisition line.

For an explanation of all the terms used in the schema, see the XML Data Spec:
http://www.w3.0rg/TR/1998/NOTE-XML-data-0105/

Oracle tailored several definitions, for example enumeration. Enumeration is used
as a case statement switch in some elements of the above schema. This decides what
data the element will contain. For example, in “contract” the enumerated attribute
value can be either KNOWN, UNKNOWN, INFORMATIONAL or NONE. Itis
these values that decide what the element will contain as values.

10-34 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

http://www.w3.org/TR/1998/NOTE-XML-data-0105/

Order Line XML Definition

« Ifitis KNOWN or INFORMATIONAL.: It can contain either the buyer contract
information, the supplier contract information or both.

« Ifitis UNKNOWN or NONE: There are simply no fields.

iProcurement Example 9: XML — One Order Line for the Full Schema Specification

This is an example of one order line covering the full schema specification including
optional tags. It has approximately 50 tags and is 2.5K bytes.

<?xml version="1.0'?>
<OrderLinesDataElements xmllang=EN-US™>
<catalogTradingPartner><[[CDATAJABCCatalogServices]|></catalogTradingPartner>
<orderLine>
<contract contractNumberidentifier=KNOWN™>
<supplierContract>
<contractNumber><{[CDATA[12323634634][></contractNumber>
</supplierContract>
<buyerContract>
<contractNumber><![CDATA[987654321]></contractNumber>
</buyerContract>
<buyerContractlineNumber><[CDATA[99]></buyerContractl ineNumber>
<catalog Type><![CDATA[CONTRACTED]></catalogType>
</contract>

<itemn lineType=GOODS™>
<itemNumber>
<supplierttemNumber>
<itemID><{[CDATAB1324]></itemID>
</supplierttemNumber>
<manufactureritemNumber>
<itemID></[CDATAX456]><fitemID>
<manufacturerName><[CDATA[Bob's Factory][></manufacturerName>
</manufacturerttemNumber>
<buyeritemNumber>
<itemID><{[CDATA[2222XY]}><fitemID>
<buyeritemRevision><![CDATA[4]></buyeritemRevision>
</buyeritemNumber>
<ftemNumber>
<itemDescription><![CDATA[Purple and Red[J></itemDescription>
<quantity><[CDATA[999]]></quantity>
<unitOfMeasure>
<buyerUnitOfMleasure><![CDATAJea][></buyerUnitOfMieasure>
<supplierUnitOfVieasure>
<suppliertUOMType ><[[CDATA[each[[></supplierUOMType>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-35

Order Line XML Definition

<supplierUOMQuantity><![CDATA[1]}></supplierUOMQuantity>
</supplierUnitOfVieasure>
</unitOfMeasure>
<hazardClass><|[CDATA[2768][]></hazardClass>
<ftem>

<category categoryCodeldentifier=SPSC™>
<categoryCode><|[CDATA[5149-9908-00]></categoryCode>

</category>

<price>
<currency><[CDATAJUSD]></currency>
<unitPrice><![CDATAS0.99[></unitPrice>
<rate rateDefiniion="CONTRACT>
<rateDate><![CDATA[19981210]}></rateDate>
<rate Type><!|[CDATA|comporate[></rate Type>
<rate>
<Jprice>

<supplier>
<supplierName><I[CDATAJACME Hot Air Balloons[></supplierName>
<supplierSite><![CDATA[Kinshasa][></supplierSite>
<supplierTradingPartner><[[CDATA[Traders R Us</supplierTradingPartner>
<contactName><[CDATA[Ramanujam Kondetimmanahallif></contactName>
<contactPhone><I[CDATA[3015061111]}></contactPhone>

</supplier>

<language>
<languageCode><![CDATAJAMENglish]></languageCode>
<language>

<additionalAttributes>
<attribute1><![CDATA[additional information 1 [></attribute1>
<attribute2><![CDATA[additional information 2 [[></attribute2>
<attribute3><![CDATA[additional information 3 [j></attribute3>
<attribute4><[CDATA[additional information 4 [j></attribute4>
<attribute5><[[CDATA[additional information 5 [j></attribute5>
<attribute6><[CDATA[additional information 6 [}></attribute6>
<attribute7><![CDATAJadditional information 7 T></attribute7>
<attribute8><![CDATA[additional information 8 [j></attribute8>
<attribute9><![CDATA[additional information 9 [j></attribute9>
<attribute10><![CDATA[additional information 10[></attribute10>
<attribute11></[CDATA[additional information 11]></attribute11>
<attribute12><I[CDATA[additional information 12][></attribute12>
<attribute13><![CDATAJadditional information 13[[></attribute13>

10-36 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Order Line XML Definition

<attribute14><![CDATAJadditional information 14]></attribute14>
<attribute15><![CDATA[additional information 15]></attribute15>
</additionalAttributes>

<forderLine>
</OrderLinesDataElements>

iProcurement Example 10: XML — Two-Item Transaction Example
This is an example of a typical two-item transaction with the following items:

« Firstitem is a “Hard drive - 540MB IDE” with a price of 485.99, quantity of 34,
supplier name of A-1 Lighting.

« Second item is a “High speed assembly machine” with a price of 12575.99,
guantity of 9, supplier name of JCN Technologies.

“ABC Catalog Services” is the external third party catalog service sending the data
for the two items into the Oracle system. For both items, the following data is
provided:

« Supplier contract number

« Supplier part number

= Supplier unit of measure

UNZ/SPSC is the category code used for both items.

<?ml version="1.0'?>
<OrderLinesDataElements>
<catalogTradingParner><![CDATAJABCCatalogServices]></catalog TradingPartner>

<orderLine>
<contract contractNumberldentifier=KNOWN>
<supplierContract>
<contractNumber><[CDATA[111111112767-1]}></contractNumber>
<contractLineNumber><|[CDATA[12]]></contractLineNumber>
</supplierContract>
</contract>

<itemn lineType=GOODS>
<itemNumber>
<supplierttemNumber>
<itemID><{[CDATA[C13139[></itemID>
</supplierttemNumber>
<ftemNumber>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-37

Order Line XML Definition

<itemDescription><![CDATA[Hard drive-540MB IDE]}></itemDescription>
<quantity><[CDATA34]></quantity>
<unitOfMeasure>
<supplierUnitOfVieasure>
<supplierUOMType ></[CDATAEach[></supplierUOMType>
<supplierUOMQuantity><![CDATA[1]}></supplietJOMQuantity>
</supplierUnitOfMieasure>
<unitOfMeasure>
<ftem>

<category categoryCodeldentifier=SPSC™>
<categoryCode><|[CDATA[5149-9908-00]></categoryCode>
</category>

<price>
<currency><![CDATA[USD][></currency>
<unitPrice><[[CDATA[485.99]></unitPrice>
<Jprice>

<supplier>
<supplierName><I[CDATAJA-1 Lighting[[></supplierName>
<supplierSite><![CDATA|Washington[l></supplierSite>
</supplier>
</orderLine>

<orderLine>
<contract contractNumberldentifier=KNOWN™>
<supplierContract>
<contractNumber><|[CDATA[222222225678-2]></contractNumber>
<contractLineNumber><{[CDATA[15]}></contractLineNumber>
</supplierContract>
</contract>

<item lineType=GOODS>
<itemNumber>
<supplieritemNumber>
<itemID><I[CDATA[P22378]]></itemID>
</supplierttemNumber>
<ftemNumber>
<itemDescription><[CDATA[High speed assembly machine[[></itemDescription>
<quantity><[CDATAQ[></quantity>
<unitOfMeasure>
<supplierUnitOfMeasure>
<supplierUOMType ><|[CDATA[Each[></suppliertUOMType>
<supplierUOMQuantity><|[CDATA[1]></supplierJOMQuantity>

10-38 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Order Line XML Definition

</supplierUnitOfVieasure>
<unitOfMeasure>
<ftem>

<category categoryCodeldentifier=SPSC™>
<categoryCode><|[CDATA[5149-9908-00]></categoryCode>
</category>

<price>
<currency><![CDATAJUSD[></currency>
<unitPrice><[CDATA[12575.99]></unitPrice>
</price>

<supplier>
<supplierName><![CDATA[JCN Technologies[></supplierName>
<supplierSite><![CDATANew York[[></supplierSite>

</supplier>

<forderLine>
</OrderLinesDataElements>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-39

HTML Specification

HTML Specification

The HTML format for an external catalog source to transmit the user’s selected item
data to iProcurement in XML is presented below. The format requires fragmenting
the XML file into segments.

Sending Selected Item to iProcurement: External Catalog's HTML File
Format

This is the HTML format used to send selected items from the external catalog to
iprocurement:

<HTML>
<BODY onLoad="document.orderForm.submit()">
<FORM ACTION=""URL ofthe Web Requisitions "METHOD="POST"
NAME="orderForm>
<INPUT type="hidden" name="REQ_TOKEN" value=" Requisition token >
<INPUT type="hidden" name="NO_OF_DATA SEGMENTS" value=" N>
<INPUT type="hidden" name="TTEM_XML_DATA I"value=" First data segment >
<INPUT type="hidden" name="TTEM_XML_DATA Z'vaue=" Seconddatasegment ">
<INPUT type="hidden" name="ITEM_XML_DATA Nvalue=" Mthdatasegment ">
</[FORM>
</BODY>
<HTML>

HTML Elements Explained

Table 10-12 lists HTML elements grouped under their corresponding HTML tag
names.

10-40 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Sending Selected Item to iProcurement: External Catalog's HTML File Format

Table 10-12 HTML Elements

HTML

Element ormat escription

<BODY> onLoad="document.orderForm.submit()" Provides HTTP redirect from client browser to

iProcurement.

<FORM> ACTION="URL of the Web Action attribute of the orderForm should be set to the URL
Requisitions " that is provided by Self-Service Purchasiing.
METHOD="POST" Form submit type.
NAME="orderForm" Name of the form that is submitted.

<INPUT> <INPUT type="hidden" Creates a hidden form element for Requisition Token. This
name="REQ_TOKEN" __ token is sent to the 3" party catalog provider after a
value="Requisition token > successful authentication process and, without change, is

sent back to iProcurement. It contains internal
system-related data.

<INPUT type="hidden" Creates a hidden form element to send number of data

name="NO_OF_DATA_SEGMENTS"segments that is transferred between two systems. The value

value=" N> N should contain the number of ITEM_XML_DATA form
elements.

<INPUT type="hidden" Creates a hidden form element to transfer a data segment.

name="ITEM_XML_DATA\' The data segments are formed by dividing the XML file into

value=" Nth data segment "> smaller portions. The setting for the size of each segment
should be a variable. Current recommended value for this
variable is 2000 characters. The last character of the name
determines the index of the corresponding data segment.
The index starts from 1 and is increased by one up to NO_
OF_DATA_SEGMENTS value N.

iProcurement Example 11: HTML/XML File

This example uses the HTML elements defined in Table 10-12.

<HTML>
<BODY onLoad="document.orderForm.submit()">
<FORM ACTION="' htip/ap411sun.us.oracle.com:9999/0A JAVA
SERVMpd/integrate/apps.Order "METHOD="POST" NAME="orderFForm'>
<INPUT type="hidden" name="REQ_TOKEN"
value=" template=tpn,action=addLines,function=addToOrder,por_req_session
id=1,...... ">
<INPUT type="hidden" name="NO_OF DATA_SEGMENTS" value=" 2>
<INPUT type="hidden" name="ITEM_XML_DATA1" value=" <2ml
version="1.0'?><OrderlinesDataElements><catalog TradingPartner><{[CDATAJABCCatalo

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-41

Sending Selected Item to iProcurement: External Catalog’s HTML File Format

gSenices]></catalogTradingPartner ><orderLines.....
<INPUT type="hidden" name="ITTEM_XML_DATA2" value="
</orderLine>
<orderLine>
<contract

</OrderlinesDataElements> ">
</[FORM>
</BODY>
<HTML>

10-42 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

User Authentication

User Authentication

When you first log into iProcurement, a random user identification number for the
session is generated (a session “ticket™), encrypted with a one-way encryption (has)
and stored in Oracle Procurement Server.

When you select a link for an externally hosted catalog, the encrypted session ticket,
and URL for the user’s authentication is sent. The following example shows the call
that the catalog provider may expect:

https:/Amwwv.extsupplier.com?ur=oas.us.oracle.comir41102/plsqlicx_ext
supplier.authenticate_user&ticket=128019274

where:
« www.extsupplier.comis the URL provided by the external catalog

« ias.us.oracle.com/wr41102/plsql/icx_ext_supplier.authenticate usés the return
customer URL (ias.us.oracle.com is the URL for the application server located
outside the firewall)

The catalog provider then makes an HTTP call to the Procurement Server, using
SSL, requesting verification of this encrypted ticket at the URL address sent with the
user:

https:/fias.us.oracle.comr41102/plsqlicx_ext_supplier.authenticate
user?ticket=128019274

This is actually a call to a PL/SQL package stored in the database behind the client
site firewall.

The external catalog provider makes a connection to an application server outside
the firewall, which authenticates the catalog provider’s digital certificate. It then
allows the call to be made to the internal application server. Here the encrypted
session ticket is verified against a stored version in the table, and the rest of the user
information is returned to the catalog provider.

iProcurement XML Example 12: Valid Session XML Document

If the session ticket is valid, iProcurement pass your login back. This includes your
name, delivery information, company, operating unit, requisition number, and a
return URL to the Requisition Server as illustrated below:

<2xml version=1.07>
<RequisitionUser>
<userName>CBLACK</userName>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-43

User Authentication

<company>VIOP</company>

<operatingUnit>Organization</operatingUnit>

<shipTo>Philadelphia</shipTo>

<deliverTo>Philadelphia</deliverTo>

<reqToken>Req_Token<freqToken>

<retumURL>ap411sun.us.oracle.com:5555/F]_JAVA SERV/aboujaw/PShpn
redirect</retumURL>

</RequisiionUser>

10-44 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Authenticated XML Schema

Authenticated XML Schema

When the external catalog provider requests user authentication, iProcurement calls
a PL/SQL procedure, with a session ticket as the encrypted parameter, to
authenticate the user.

iProcurement Example 13: Authenticated XML Schema — Returned Requisition User
XML Document

The following XML schema shows the returned Requisition User XML document.

<?xml version="1.0'?>
<s:schema id="RequisitionUser>
<elementType id="userName">

<sfring/>

<description>Unique user name of person in the requiisition
system</description>
<elementType>
<elementType id="company">

<sfring/>

<description>Unique company name in the requisition systems</description>
</elementType>
<elementType id="operatingUnit">

<sfring/>

<description>Unique operating unit name in the requisition
system</description>
</elementType>
<elementType id="shipTo">

<string/>

<description>shipTo account for the requisition</desctiption>
<elementType>
<elementType id="deliverTo">

<sfring/>

<description> deliverTo account for the requisition </description>
</elementType>
<elementType id="regToken">

<sfring/>

<description>Unique requisition ID used in the requisition
system</description>
</elementType>
<elementType id="retumURL">

<string/>

<description>URL that ReqLines should be redirected to</description>
</elementType>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-45

Authenticated XML Schema

<elementType id="RequisitionUser">
<elementType ="#userName"/>
<elementType ="#company' />
<elementType ="#organisation” occurs "OPTIONAL'/>
<elementType ="#reqToken"/>
<elementType ="#shipTo" occurs "OPTIONAL"/>
<elementType ="#deliverTo" occurs "OPTIONAL"/>
<elementType ="#retumURL"/>
<description>object sent to extemal supplier for user
identification</description>
</elementType>
</s:schema>

iProcurement Example 14: Authenticated User: Sample Returned XML Document

This example has data. It illustrates a typical returned XML document generated for
an authenticated user.

<?xml version="1.0"?>
<RequisitionUser>
<userName>Fred Bloggs</userName>
<company> Oracle Corporation</company>
<operatingUnit-Manufacturing</operatingUnit>
<shipTo>Oracle HQ</shipTo>
<deliverTo>Kevin Miller</deliverTo>
<reqToken> 1245</reqToken>
<retumURL>http:/fregs.us.oracle.com/order/75<fretumURL>
</RequisitionUser>

10-46 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Unauthenticated XML Schema

Unauthenticated XML Schema

For the case when the userID sent from the external supplier is not valid, the
following schema represents the generated XML.:

iProcurement Example 15: Unauthenticated User — XML Schema

<?xml version=1.0"7>
<s:schema id="InvalidUser>
<elementType id="message">
<sfring/>
<description>Message generated when an invalid sessionID is sent</description>
<lelementType>

iIProcurement Example 16: Unauthenticated User — Sample XML document

This example illustrates a typical returned XML document generated for an
unauthenticated user.

<InvalidUser>
<message>Invalid user</message>
</nvalidUser>

B2B: How iProcurement Uses XML to Offer Multiple Catalog Products to Users 10-47

Unauthenticated XML Schema

10-48 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

11

Customizing Discoverer 3i Viewer with XSL

This chapter contains the following sections:

« Discoverer3i Viewer: Overview

« Discoverer 3i Viewer: Features

« Discoverer 3i Viewer: Architecture

« How Discoverer 3i Viewer Works

« Using Discoverer 3i Viewer for Customized Web Applications

« Customizing Style by Modifying an XSL Stylesheet File: style.xsl

« Discoverer 3i Viewer: Customization Example Using XML and XSL

« Frequently Asked Questions (FAQs): Discoverer 3i Viewer

Customizing Discoverer 3i Viewer with XSL 11-1

Discoverer3i Viewer: Overview

Discoverer3i Viewer: Overview

XML Components Used: Oracle XML Parser for Java, Version 2

What is Discoverer?

Discoverer Business Intelligence solutions transform an organization’s data into
information. Oracle Discoverer for the Web allows you to access this information
using a Web browser interface.

What is Discoverer 3i Viewer?

Oracle Discoverer 3i Viewer makes the information available anywhere on the
Internet or Intranet, and allows the information to be transparently embedded in
Web pages or accessed from corporate Portals. Oracle Discoverer 3i Viewer can be
customized, to fit any Web site using standard Web Technologies such as XML and
XSL.

Discoverer allows you to make queries, while Reports lets you publish reports in
different formats, including HTML, Adobe's Portable Document Format (PDF), and
XML.

Customizing Oracle Discoverer™ 3i Viewer

This chapter provides customization examples and describes strategies for using
Discoverer 3i Viewer.

« XML and XSL: Discoverer3i Viewer uses industry standard XML to represent
data and application states, and the XSL style sheet language to format the User
Interface. Standard XSL tools can be used to customize the User Interface or to
produce a complete embedded Business Intelligence application.

« HTML: You can specify HTML formatting attributes in a single customization
file. Fonts, colors, and graphics are easily changed especially if you are familiar
with HTML formatting.

Discoverer3i Viewer can be driven and accessed by middle-tier B2B applications.

More Information on Discoverer 3i Viewer
For more information on Discoverer3i Viewer see:

http://technet.oracle.com/docs/products/discoverer/doc_index.htm

11-2 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

http://technet.oracle.com/docs/products/discoverer/doc_index.htm

Discoverer 3i Viewer: Features

Discoverer 3i Viewer: Features

Discoverer 3i Viewer allows you to:

Run Reports

Dynamically run reports saved in the database.
Enter parameters at runtime.

Run scheduled reports.

Cancel a query.

Page between dimension values on the page axis.
Change workbook and database options.

Print reports.

Export reports to various file formats such as HTML, Excel, and other PC
file formats.

Analyse Data

Perform drill down analysis.
Drill through different levels of summarized data.

Drill out to data held in other applications, such as web pages, MS Word
documents etc.

Control Queries

Control query execution time. If a query is still running when the time
threshold is reached, the query is automatically terminated.

Display a query estimate. If a query is predicted to take longer than a
predefined time threshold, Discoverer Viewer warns you and allows you to
determine if the query should be run.

Automatically redirect queries to summary tables. Requests for
summarized data are automatically redirected to a summary table
containing pre-summarized data.

Secure Data Access

Leverage the security features of the web server and database.
Go through multiple firewalls

Support SSL, x.509 and other standard web security protocols

Customizing Discoverer 3i Viewer with XSL 11-3

http://technet.oracle.com/docs/products/discoverer/doc_index.htm

Discoverer 3i Viewer: Architecture

Support disconnected access to the data

Use Browser Options to:

Bookmark favorite reports
Embed reports in other web pages
Change font sizes and link styles by changing browser options

Export output to other formats, such as Excel for further spreadsheet
analysis.

View reports offline (Internet Explorer 5)

Discoverer 3i Viewer uses no Java, no Javascript, and no frames, enabling even
low specification browsers to be used.

Discoverer reports can be embedded:

In existing Web Pages by specifying a URL that defines the workbook and
worksheet to be included. When the link is clicked the database is queried
and the latest data is displayed in HTML.

In portals such as Oracle Portal (also known as iPortal and previously
known as WebDB) and can take on the look and feel of the hosting portal.

Used to build complete custom Web applications or deliver data to other
middle tier web systems.

Discoverer 3i Viewer can be used in the following ways:

As a standalone Business Intelligence tool

To integrate database output into your Web site and portal

Customized to fit in with your Web site look and feel, to incorporate your
companies logo or other artwork, or to build custom Discoverer applications for
the Web.

Discoverer 3 / Viewer: Architecture

The Discoverer 3i Viewer architecture is shown in Figure 11-1.

Discoverer 3i Viewer components are listed below:

Oracle Discoverer Application Server: The engine for Discoverer Web solutions

Web Server and servlet container, such as, Apache and Apache JServ (JVM)

Oracle XML Parser for Java v2. This includes the XSL-T Processor

11-4 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

How Discoverer 3i Viewer Works

Discoverer 3i Viewer Servlet
Discoverer Server interface, a Java module

Oracle8i database

How Discoverer 3 | Viewer Works

See Figure 11-1 to understand how Discoverer 3i Viewer works:

1.

Discoverer 3i Viewer is invoked via a URL from a standard Web Browser, just
like any other Web Site. The URL is processed by the 3i Viewer Servlet running
on the Web Server.

The servlet uses Discoverer Server Interface (Model) to communicate with the
Discoverer Application Server. Discoverer Server Interface and Discoverer
Application Server are both also used by Discoverer User Edition:

Discoverer Server Interface. This is an applet but here it is running on the Web
Server, rather than in the client’s JVM as in Discoverer User Edition. The 3i
Viewer Servlet communicates with Discoverer Application Server using Corba
I1OP protocol.

Discoverer 3i Viewer andDiscoverer User Edition use the same Discoverer
Application Server.

Discoverer 3i Viewer Servlet interprets the HTTP request from the client
browser, and makes the necessary calls to the Discoverer Application Server.
The server response is represented in XML generated by the servlet and is sent
to the XML/ XSL processor (XSL-T Processor).

This combines the XML with an XSL configuration file that defines the
representation of the User Interface and,

XSL-T Processor generates HTML to send back to the browser.

It is the XSL file that allows the User Interface of Discoverer 3i Viewer to be
customized for individual sites.

Customizing Discoverer 3i Viewer with XSL 11-5

How Discoverer 3i Viewer Works

Figure 11-1 Discoverer 3i Viewer Architecture

Discoverer 3i Viewer

Web Server

XML Parser
O HTvL
Browser QR XSL-T
Processor

Client

HTTP XML

XSL
stylesheets

3i Viewer
Servlet

Discoverer
Server Interface
(Model)

4

lnop

] . Discoverer
grf%%ee%’ 2Ly | Application

database Server

End User Layer /
Application Data

Replicating Discoverer Application Server

The Web Server and the Discoverer 3i Viewer Servlet container can be replicated
using standard web farming and virtual hosting techniques.

In a real system there would be many users using each web and application server.

Discoverer allows you to determine exactly how you want the load spread across
available machines.

11-6 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using Discoverer 3i Viewer for Customized Web Applications

Using Discoverer 3 i Viewer for Customized Web Applications

Discoverer 3i Viewer generates HTML by using the following XML components:
« XML, which describes the information available

« XSLT Processor and XSL stylesheets which define how that information should
be represented in HTML

XSL configuration file (stylesheet) defines simple attributes, such as the fonts and
colors to use, but it also defines the layout of each page, and the interactions with
the user. By customizing the XSL stylesheet, specific Discoverer applications can be
built and delivered on the Web.

Note: The application described here was run on Internet Explorer
5.x browser.

Step 1: Browser Sends URL

After login, assume a Discoverer Viewer has asked for a list of workbooks that these
workbooks are allowed to be opened in order to analyse their business. The URL
issued is http://ukpl14910.uk.oracle.com/disco/disco3iv?us=video&db=Disco

The URL specifies the machine the servlets are installed on, the username, and
database connection string to use. The password is not normally shown on the URL
for security reasons.

Step 2: Servlet Generates XML

Discoverer 3i Viewer Servlet processes the URL. It instructs the Discoverer
Application Server to check the security setting for this user and return details of
the workbooks that this user is allowed to access.

Security settings are held in the End User Layer tables in the database. After this
information is returned from the Discoverer Application Server, the servlet
generates the following XML in which you can see information about the three
workbooks being returned:

» Store and Band Analysis workbook
« Video Sales Analysis workbook

« Annual Sales Report workbook

Customizing Discoverer 3i Viewer with XSL 11-7

Using Discoverer 3i Viewer for Customized Web Applications

Discoverer XML Example 1: Three Workbook Report Data

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xs!" href="examplel.xsI"?>
<discoverer version="3.5.8.12" login_method="discoverer">
<account name="myname@mydatabase" ref="MYNAME%o40mydatabase>
<user>MYNAME</user>
<database>mydatabase</database>
<eul default="true" name="myeul">
<workbook name="Store and Band Analysis" ref="Store~20and~20Band~20Analysis™>
<description>Shows sales by Store, broken into sales bands</description>
<Mvorkbook>
<workbook name="Video Sales Analysis" ref="Video~20Sales~20Analysis >
<description>General purpose analysis of the business</description>
<orkbook>
<workbook name="Annual Sales Report' ref="Annual~20Sales~20Report™>

<description>Shows yearly and quarterly sales of products</description>
<Mvorkbook>

<leu>
<faccount>
</discoverer>

Note: Tere is no information in the XML about how these

workbooks names and descriptions should be displayed to the user.
This is the function of the XSL file.

Step 3: XSL-T Processor Applies an XSL Stylesheet

XSL is the industry standard stylesheet language defined by W3C. It allows a

selection of elements from an XML file to be combined with an HTML template to
generate HTML output for a Web Browser.

Discoverer 3i Viewer User Interface is entirely defined in XSL. This means it can be
customized or copied to define alternative User Interface (Ul) styles using standard

Web development tools, such as HTML editors, XSL editors, or even simple text
editors.

Step 4: XSL-T Processor Generates HTML
The XSL and XML .

Using the XML generated in Step 2 and the standard Discoverer 3i Viewer XSL
configuration file (stylesheet), these are combined in the XSL-T processor in the

11-8 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using Discoverer 3i Viewer for Customized Web Applications

XML Parser for Java,v2. This then generates the HTML version of the XML
document.

This HTML is sent back to the browser in response to the initial URL.

In Discoverer 3i Viewer, the generated HTML does not use frames or Javascript,
and therefore makes minimal demands on the browser or internet device. Hence it
is easy to integrate with other web applications or portals.

Customizing Discoverer 3i Viewer with XSL 11-9

Customizing Style by Modifying an XSL Stylesheet File: style.xsl

Customizing Style by Modifying an XSL Stylesheet File: style.xsl

You need to be able to easily modify fonts and colors to fit in with your corporate
standards, or to display the company logo to add branding. These global changes
can be made in a single XSL stylesheet file "style.xsl" that defines special ‘tags’ for
each style that can be modified. For example:

« Inserting Logos: To insert a logo change the following line :

<xslvariable name="logo_src"> </xsl:variable name>
to

<xslvariable name="logo_src"> httpmww.mycompany.comimages/mylogo.gif
</xslvariable name>

« Changing the Text Color: To change the color of the text, change the following
line and add the appropriate color code.

<xslvariable name="text_color">#000000</xsl.variable>

Many global style changes can be made in this way, but the overall operation of the
User Interface remains unchanged. This is only one way of customizing Discoverer

3i Viewer. In fact, using XSL allows a complete customized application to be made,
as the next example shows.

Discoverer 3i Viewer: Customization Example Using XML and XSL

You can use the XML and XSL fragments below to experiment with customization
in a Web Browser.

Step 1: The XML File

The data is a standard XML file, similar to the previous "Discoverer XML Example
1™

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xs!" href="examplel.xsI"?>

<discoverer version="3.5.8.12" login_method="discoverer>

<account name="myname@mydatabase" ref="MYNAME%o40mydatabase'>
<user>MYNAME</user>

<database>mydatabase</database>

<eul default="true" name="myeul">

<workbook name="Store and Band Analysis" ref="Store~20and~20Band~20Analysis">
<description>Shows sales by Store, broken into sales bands</description>

11-10 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Discoverer 3i Viewer: Customization Example Using XML and XSL

<fworkbook>
<workbook name="Video Sales Analysis" ref="Video~20Sales~20Analysis™>
<description>General purpose analysis of the business</description>
<Morkbook>
<workbook name="Annual Sales Report' ref="Annual~20Sales~20Report™>
<description>Shows yearly and quarterly sales of products</description>
<fworkbook>
<leu>
</account>
</discoverer>

The XML file starts by specifying the XML version. The 2nd line specifies the XSL
file to be applied to process the data, "examplel.xsl" and the rest of the file is
generated from the Discoverer 3i Viewer.

The first two lines have been added here so that you can type the text into a file
using a text editor and then open it in a Web Browser to see the results visually as
the XSL is changed. Save the file with the extension "xml" if you want to try this.

Step 2: XSL File, examplel.xsl
XSL file, "examplel.xsl", looks like this :

<?xml version="1.0" encoding="UTF-8"?>
<xslstylesheet version="1.0" xmins:xsl="http:/Ammw.w3.0rg TRAWD-xsI">
<xsltemplate match="/">
<htmb>
<body bgcolor="#ffffff" link="#663300" text="#000000">
<i>Choose a Workbook:</i>

<table border="2">
<xsl-for-each select="/discoverer/account/eulivorkbook >
<>
<td width="242">

<xslvalue-of select="@name"/>

<ftd>
<td>
<xslvalue-of select="description/>
<fd>
<fr>
</xslfor-each>
<table>

<lbody>

Customizing Discoverer 3i Viewer with XSL 11-11

Discoverer 3i Viewer: Customization Example Using XML and XSL

<htmi>
</xsltemplate>
</xsl:stylesheet>

Step 3: XML+XSL = HTML

Figure 11-2 shows what you see on a Browser when the XML file is opened in the
Browser, the Browser reads in the XSL stylesheet (examplel.xsl), and generates
HTML.

Figure 11-2 List of Workbooks Viewed on Browser, XML+ examplel.xsI=HTML —
Before Modification

Choose a Workbaok :

IStore and Band Analysis |Shows sales by Store, broken into sales bands
I"u'ideo Sales Analysis |Ganeral purpose analysis of the Business
IAnnuaI Sales Report |Sh-::-ws vearly and quarterly sales of products

Table 11-1 examines the XSL file, examplel.xsl, from line 5. It describes how the
HTML is generated. The file starts by specifying the XML version. The 2nd line says
that this file is a stylesheet. The HTML template starts with the <HTML> tag on line

4,

Table 11-1 Explaining examplel.xsl — Before Modifying the XSL File

examplel.xsl code The code means ...
<body bgcolor="#ffffff" link="#663300" text="#000000"> This line defines the colors to be used
<p><i>Choose a Workbook :</i> This is just more HTML. It sets a bold italic font and

inserts the text "Choose a workbook :"

<table border="2"> An HTML table is started, with a 2 line border.

11-12 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Discoverer 3i Viewer: Customization Example Using XML and XSL

Table 11-1 Explaining examplel.xsl (Cont.) — Before Modifying the XSL File (Cont.)

examplel.xsl code

The code means ...

<xsl:for-each select="discoverer/account/eul/workbook">

This is the first real XSL code. It means :

Go through the XML data file and for each workbookinfo
tag perform all the following steps until you reach the
end tag : </xsl:for-each>.

So for every workbook that appears in the XML file the
following XSL is processed, and a row is inserted into the
HTML table for every workbook found :

<tr>
<td width="242">

<xsl:value-of select="@name"/>

<tr> starts a new row in the table

<td> defines the table data to be inserted for the first
column. The width of the column is set to 242 pixels and
the font is set to sans-serif.

The XSL line inserts the text from the XML file for the

 <NAME> tag under each workbookinfo section.
<ftd>
<td> These lines define the 2nd column in the HTML table
. _n P and insert the text for the workbook description using
<xsl: - = . A .
xslvalue-of select="description"’> the <DESCRIPTION> tab in the XML file. So each row in
</td> the HTML table will contain the workbook name, made

<[tr>

into a link to click on, and the workbook description as
text. Since there are three workbooks in the XML file,
there will be three rows in the table.

Note:

« This example is not exactly how the Discoverer 3i Viewer shows
the list of workbooks. It has been simplified here for clarity, but
it illustrates how the XSL stylesheet controls the appearance of
the output. See Figure 11-4 for a more typical rendition.

« In Discoverer 3i Viewer, the XML and XSL are combined in the
XSL-T Processor on the middle tier, and not in the Web

Browser.

Step 4: Customizing the XSL Stylesheet (example2.xsl)
The XSL stylesheet is modified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmins:xs="http/Amww.w3.0rg TRAWD-xsI >

Customizing Discoverer 3i Viewer with XSL 11-13

Discoverer 3i Viewer: Customization Example Using XML and XSL

<xsltemplate match="/">
<htmb>
<body bgcolor="#ffff" link="#663300" text="#000000">
<table border="0">
<>
<td>width="500" height="100" background="disco_banner.gif>

Performance Reports
<ffont>
<ftd>
<fr>
<table>
<table border="0">
<xslfor-each select="/discoverer/faccount/eulivorkbook>
<>
<td>

<xsl:attribute name="alt">
<xslvalue-of select="description'/>
</xslattribute>

<Ja>

<ffont>
<td>
<td>

<xslvalue-of select="@name"/>
<ffont>
<fd>
<fr>
</xsl-for-each>
<table>
<body>
<htmb>
</xsltemplate>
<Ixslstylesheet>

When this is combined with the same XML, it appears as shown in Figure 11-3.

11-14 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Discoverer 3i Viewer: Customization Example Using XML and XSL

Figure 11-3 Displayed Workbook List Using Same XML with a Modified XSL
Stylesheet

Performance reports

4 Store and Band Analysis

—LFS‘}"DWS sales by Store, broken into sales bands]|

Wideo Sales Analysis

Annual Sales Report

Now the appearance of the User Interface is completely different, as it takes on a
more graphical look and feel. Instead of text links there are graphical buttons for

running the reports, each with a dynamic ‘tool tip’ that pops up when you position
the mouse over the button.

The modified XSL file is described in Table 11-2.

Figure 11-4 shows a typical web-based rendition of this sample application.

Customizing Discoverer 3i Viewer with XSL 11-15

Discoverer 3i Viewer: Customization Example Using XML and XSL

Table 11-2 Explaining example2.xsl — After Modifying the XSL File

example2.xsl code

The code means ...

<table border="0">
<tr>
<td width="500" height="100" background="disco_banner.gif">

Performance reports
<[font>
<ftd>
<ftr>
<[table>

These lines create a table and insert a graphic
and the heading "Performance Reports"

<table border="0">
<xsl:for-each select="discoverer/account/eul/workbook">

This starts the main table that the workbook
names will be displayed in, as before, but now
there is no border around the table and the
rows are defined differently:

<tr>
<td>

<xsl:attribute name="alt">
<xsl:value-of select="description"/>
</xsl:attribute>
<fimg>
<fa>

<[font>

The first table data column is defined as a
hyperlink again, but this time with the image
"button2.gif* as an image, rather than a text
link. The font used is "sans-serif".

To get a "tooltip" to appear over an image the
HTML "alt" attribute is used.

Normally the alt attribute is used with a
simple text string :

<img src="button2.gif" alt="Tooltip text to appear when a
mouse is over the image">

but since we want the tool tip to be dynamic
we generate the alt tag by getting the text from
the <description> tab in the XML file. The
<xsl:attribute> tag does this.

<xsl:value-of select="description"/> The second data
column selects the name of the workbook to
display, by using XSL to get it from the XML
file as before.

11-16 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Discoverer 3i Viewer: Customization Example Using XML and XSL

Figure 11-4 Discoverer 3i Viewer. Typical Web-Based Rendition as a Business
Solution

B hscmenim i Viswsr Vidan 5 sl Anskaiy -3 Bl wa i adaa | s ke bain| - Hicican® |nismel [epleie

| F ES Wew Fpols Tek beb
..ﬂdﬂlﬂjﬂl{'n*#'ﬂﬂ.

Ak 7 Rebgsh Home | Feoch Fawsiss Mol Wyl Sue Fad Bl
L e Vo 'uou'am:--i (ks e mmﬁhmeMcM~mmmmw-=mn*s-a-ut:-n-l-!-.:- w--l:j e Il-h'

e

Video Sales Analysis

R |

e shéeds

Salmr BB | -
Dpart=ant | Heserage | Jurs | Laser | Bracko | Vides §'v'icke Fum
Feantal | Dis Resnal | Eale
Feng
¥ Ragian | F Cicy
[N e e) i
B Chricags Jalif Jri o | ¥ s BEARI Q) BiJakE | BEIA
[=Ter— [s] wone] wsn]] we] s | wo
¥ Cullss = B B wil scpal wram | mesm
¥ Lamdaeils : yHal el sl AET] RIGAR) 806 Ad7 | e R
F Ktinewapshio | FTAY WOTOQ 40 T ey | 86 RE7 | AvE B | a0 s]

Customizing Discoverer 3i Viewer with XSL = 11-17

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

Explaining Servlets

Question
What is a servlet?

Answer

Servlets are modules of Java code that run in a server application (hence the name
"Servlets", similar to "Applets" on the client side) to answer client requests. Servlets
are not tied to a specific client-server protocol but they are most commonly used
with HTTP and the word "Servlet" is often used in the meaning of "HTTP Servlet".

Servlets make use of the Java standard extension classes in the packages
javax.servlet (the basic Servlet framework) and javax.servlet.http (extensions of the
Servlet framework for Servlets that answer HTTP requests). Since Servlets are
written in the highly portable Java language and follow a standard framework, they
provide a means to create sophisticated server extensions in a server and operating
system independent way.

Typical uses for HTTP Servlets include:
« Processing and storing data submitted by an HTML form.

« Providing dynamic content, such as returning the results of a database query to
the client.

« Managing state information on top of the stateless HTTP, such as for an online
shopping cart system which manages shopping carts for many concurrent
customers and maps every request to the right customer.

How Discoverer 3 | Viewer Communicates with Browsers

Question
What does Discoverer 31 Viewer use to communicate with the user’s browser?

Answer
HTTP and HTML.

11-18 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

Why HTML is Output to the Browser

Question
Why does Discoverer 3i Viewer only output HTML to the user’s browser?

Answer

Discoverer 3i Viewer outputs 100% HTML so that it can support the widest possible
range of browsers. Using this architecture also avoids the need for an end user to
perform an install or download.

Discoverer 3i Viewer and XML

disco3iv.xml

Question
How is XML used by Discoverer 31 Viewer?

Answer

XML is generated by the middle-tier and represents the application state.
Discoverer 3iViewer Servlet interprets an HTTP request from the user’s browser,
and makes the necessary calls to the Discoverer Server.

The server response is represented in XML generated by the Servlet. XSL is applied
to this XML, producing the HTML that is displayed by the users browser.

By using XML and XSL together, the underlying data and the look and feel are
separated allowing easy customization.

Question
What does the disco3iv.xml file do?

Answer

You can use disco3iv.xml file to configure various options to make Discoverer 3i
Viewer behave the way you want to. For example, you can specify the Discoverer
Session that it should connect to.

XSL

Customizing Discoverer 3i Viewer with XSL 11-19

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

Discoverer 3i and XSL

Question
How is XSL used by Discoverer 3i Viewer?

Answer

Discoverer 31 Viewer uses XSL (or more specifically XSL-T) to transform the XML
generated by the middle-tier into the HTML that is sent to the user’s browser. By
editing the XSL files, you gain complete control over the style and presentation of
the ULI.

Supported XSL-T Processors

Question
What XSL processors can be used by Discoverer 3i Viewer?

Answer
Discoverer 3i Viewer can be configured to use:

« Oracle XSL -TProcessor (default, part of the XML Processor for Java)
« James Clark’s XT (not supplied)

Specifying the XSL-T Processor in the Servlet's Classpath

Question
How can you specify which XSL processor Discoverer 3i Viewer uses?

Answer

By default Discoverer 3i Viewer uses Oracle XSL-T Processor. If you prefer you can
use James Clark’s XT. The Servlet can be reconfigured to use the James Clark XSL
processor as follows;

1. Include the XT processor in the servlet's classpath. The XT processor is available
as a Zip file, xt.zip, from http://www.jclark.com/xml/xt.html

2. Unpack the Zip file to access the xt.jar file

11-20 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

XSL Editors

The JAR should be included in either the class path of the Servlet engine or the
classpath for the Servlet engine zone. Different servlet engines have different
ways of doing this.

For example, for Apache JServ the servlet engine's class path is setup in the
wrapper.classpath entry of the JServ.properties file. The classpath for the servlet
zone is specified as a repository in the servlet zone properties.

For details on how to set up each servlet engine read the section in the
Discoverer Installation and Administration Guide on how Visibroker jar files are
installed for that servlet engine. The process for installing the XT processor Jar
file is identical.

Modify the Discoverer Viewer configuration file. Include the following line
should in the <document> element of the disco3iv.xml configuration file:

<argument name="xs|_processor">com.jclark xsl.sax XSLProcessor</argument>

Restart the web server.

Question
What tools are available to edit XSL Stylesheets?

Answer

You can use any text editor to edit XSL files however the following applications are
designed especially for editing XSL:

eXcelon Stylus
IBM XSL Editor

Customizing Stylesheets

Question
What is commonly changed in order to customize a stylesheet?

Answer
To customize a styelsheet, edit the following items:

Customizing Discoverer 3i Viewer with XSL 11-21

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

disco3iv.xsl to define the types of HTML pages and the rules for when they are
displayed

page_layouts.xsl to define the overall layout of each type of HTML page

gui_components.xsl to define the look of each GUI component used in the page
layouts

style.xsl to define the style of various fonts used in Discoverer 3i Viewer
errors.xsl to create your own custom error messages

functions.xsl (not recommended) to change the behavior of the core functions
used by the other XSL files

Viewing Changes to a Modified Stylesheet

Question
When | customize my own XSL Stylesheet, why can’t | see my changes?

Answer

By default, the XSL-T Processor caches the XSL files in its memory for better
performance. You have two options for viewing the changes:

Restart the servlet (by restarting the web server) every time you want to see
your new changes. This makes the servlet re-read the XSL files from disk.

Disable XSL caching. To do this, add the following line to the <document>
section of the disco3iv.xml file and restart the web server.

<argument name="xsl_cache">false</argument>

Browser Displays Blank Screen

Question
Why does my browser display a blank screen?

Answer
This is usually because you have done either of the following:

Called an XSL template that does not exist

11-22 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

« Tried to use a variable that does not exist

More information on XML and XSL

Question
Where can | find more information on XML and XSL?

Answer
« http://java.sun.com/docs/books/tutorial/servlets/overview/index.html

« http://www.w3.org/Style/XSL/

« http://www.w3.0rg/ XML/

« http://www.builder.com/Authoring/XmlSpot/?tag=st.cn.srl.ssr.bl_xml

« http://zvon.vscht.cz/ZHTMLonly/XSLTutorial/Books/Book1/bookinOne.html

« http://www.arbortext.com/Think_Tank/Norm_s_Column/lssue_One/Issue_
One.html

Customizing Discoverer 3i Viewer with XSL 11-23

http://java.sun.com/docs/books/tutorial/servlets/overview/index.html
http://www.w3.org/Style/XSL/
http://www.w3.org/XML/
http://www.builder.com/Authoring/XmlSpot/?tag=st.cn.sr1.ssr.bl_xml
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/bookInOne.html
http://www.arbortext.com/Think_Tank/Norm_s_Column/Issue_One/Issue_One.html

Frequently Asked Questions (FAQs): Discoverer 3i Viewer

11-24 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

12

Phone Number Portability Using XML
Messaging

This chapter introduces you to the Phone Number Portability application that uses
XML as the message payload.

This chapter contains the following sections:

« Introduction to Phone Number Portability Messaging

« Requirements for Building a Phone Number Portability Application

« The Number Portability Process

« Provisioning a Network Element

« Using Event Manager to Send and Receive Messages Asynchronously

« Using Internet Message Studio (iMessage) to Create an Application Message Set

Phone Number Portability Using XML Messaging 12-1

Introduction to Phone Number Portability Messaging

Introduction to Phone Number Portability Messaging

This chapter provides an overview of the Phone Number Portability message based
product, referred to here as Number Portability.

Number Portability is a mechanism by which consumers can keep their telephone
numbers when they switch between telecommunication service providers, move
from one physical location to another or change their services. The concept is driven
by regulatory authorities working to jump start competition, citing that consumers
are more interested in moving between service providers when they can keep their
telephone numbers. Number Portability is widely cited as a key driver for the
explosive growth in the US competitive long distance market.

The Number Portability message-based application uses iMessage Studio, Event
Manager, and Adapters. The application uses XML as the message payload to
communicate between two service providers using a Business-to-Business protocol
that is common in the telecommunications industry.

It illustrates the messaging and event management features of the Oracle Service
Delivery Platform (OSDP or SDP) in Oracle CRM Applications 11i. This isa CRM
feature.

Number Portability Allows Fast Configuring
The Number Portability product allows consultants to:

« Implement the product quickly by configuring an XML message DTD in the
application

« Be able to assign the different nodes of the XML message to an Oracle data
source, an SQL query or a stored procedure.

« Nest SQL queries

For example, to get list of depts and all emps in each dept in an XML message can
be performed by doing the following:

1. Writing two queries in the Number Portability application
2. Configuring the message in the supplied GUI with no coding at all

Advanced Queueing in Number Portability will use XML messages as a standard
format for communication between the database and external system adapters.

What are External Adapters?
External adapters are Java programs running "listening" to the following:

12-2 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Introduction to Phone Number Portability Messaging

« Database pipe for commands to perform
« Advanced Queuing (AQ) for messages to process (in multiple threads)

The commands are sent in XML format to the method,
performControlMessageProcessing. This allows for a dynamic number of
parameters to be passed to the adapter.

For example, to start an adapter up with a default of three threads for performance,
the STARTUP command could be as follows:

<COMMAND>
<MESSAGE CODE>STARTUP</MESSAGE _CODE>
<INITIAL_ THREADS>5</INITIAL_ THREADS>
</COMMAND>

This gives more control and flexibility to you if you need to customize adapters.
You can also define your own commands. You are not restricted in any way when
parsing XML messages.

See Also:
« PL/SQL User’s Guide and Reference

« "Oracle Number Portability 11i User’s Guide" for information on
the user interface and iMessage Studio.

« Implementing Oracle SDP Number Portability

Terms Used in This Chapter
The following defines terms used in this chapter:

« NPAC.Number Portability Administration Center
« NRC. Number Registration Center. Another name for NPAC.
« SDP. Oracle Service Delivery Platform (SDP)

Requirements for Building a Phone Number Portability Application
To build a Number Portability application, you need the following:
« Oracle Applications 11i
« Oracle SDP Number Portability 11i Release 2

« Oracle8i

Phone Number Portability Using XML Messaging 12-3

Number Portability and Messaging Architecture within SDP

Number Portability and Messaging A rchitecture within SDP

The Number Portability and messaging architecture in the Oracle Service Delivery
Platform (SDP) framework comprises the following components. Event Manager is
the core component.

« Communication Protocol Adapter
« Order Processing Engine

« Workflow Engine

« Fulfillment Engine

« Event Manager

« SDP Repository

Communication P rotocol Adapter

Communication Protocol Adapter interfaces between SDP and external systems. It
handles the following message flow:

« Incoming orders are taken by the appropriate Communication Protocol Adapter
and passed to SDP.

« Out going messages are passed from SDP to an external system.
It supports the following adapters:

« File/FTP. This supports a batch mode processing.

« HTTP

« Script

« Interactive Adapter, such as, Telnet sessions

Order Processing Engine

Orders from an order management system are converted to SDP Work Items or
logical line items. Orders are also created internally from processing the messages.

These line items created are analyzed by Dependency Manager or Order Analyzer.
It creates a final set of Normalized Work Items for execution.

12-4 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Number Portability and Messaging Architecture within SDP

Workflow Engine

This module specifies the actual flow of actions (known as Fulfillment Actions) to
be executed to satisfy an application functionality. This module can re-use the
Fulfillment Actions to customize any new functionality such as NP Service Provider
Mediation or the NRC itself.

The Workflow Engine would determine the Fulfillment Actions to execute for each
Work Item and determine the Network Elements that it would need to talk to. The
Workflow engine also picks and executes an appropriate fulfillment procedure
based on the fulfillment element type, software version of the fulfillment element
type and the adapter type.

The fulfillment procedures then use the Internet Message Studio generated code to
send and process messages. Once it gets an event notification of the outcome of the
execution of the Fulfillment Action (by the Event Manager), the engine would
proceed to complete the Work Item and pick the next Work Item in the queue for
the given order. This component uses the Oracle Workflow engine.

Fulfillment Engine

The Fulfillment Actions and the Network Elements on which they need to be
applied are used by SDP’s provisioning engine to determine which Fulfillment
Program to execute.This essentially uses the PL/SQL engine in the database
currently to execute user defined procedures.

Event Manager

The Event Manager is a generic Publish-Subscribe module which registers interest
of various subscribers to different event types. The subscriber could be the SDP
Translator (in which case the event gets propagated as a new order), Workflow
Engine (in which case the event restarts a Workflow which is waiting on an external
event) or an API. Event Manager builds asynchronous application messaging. It has
a versatile set of API’s which can be used by a developer to build asynchronous
message based application.

SDP Repository

The core SDP repository allows the user to create orders and configure network
elements. An example would be Work Item, Fulfillment Action, Fulfillment
Program and Network Element definitions. The NP database contains entities for
storing NP specific data such as, Subscription Version, Service Providers, Routing
Numbers,...

Phone Number Portability Using XML Messaging 12-5

The Number Portability Process

The Number Portability Process

Number Portability performs the following tasks:

1.

Links the XML or DTD elements to either a SQL table or a PL/SQL stored
function.

Dynamically creates and builds the stored procedure in the background. It also
enqueues the XML message for further processing. It builds the XML by
extracting/querying values from the table or by dynamically executing the
stored function associated with the element.

At run time the user or program executes this dynamically executed procedure
which then has the intelligence to create the XML message and enqueue it for
further processing.

Number Portability product serves as a work flow manager. It is used for
provisioning services requested by customers.

What Happens Behind the Scenes When You Order a New Telephone Service

For example, when you order a new telephone service, the telephone company
takes the order and captures the order information using the Oracle Order
Management application.

Here is the flow of events that transpire. The Number Portability application is used
in all of the following steps and serves as an instance in the process:

1.
2.

A customer places an order for a service such as a new telephone installation

The Provisioning application captures the sales order and starts the specified
validating and authorization process

The Provisioning application then communicates with external systems. For
example, it checks the customer credit rating or interacts with a third party for
other actions.

This communication could use a protocol defined between the two systems in
XML format. Oracle Work Flow is used so that consultants can configure and
view business process in a graphical format even at runtime.

What Happens Behind the Scenes When You Change Local Service Providers

Number Portability is also in action when you switch local telephone service
providers. Here is the process:

1.

A customer contacts the local service provider.

12-6 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

The Number Portability Process

2. The local service provider validates your request with your old service
provider. This is done through an independent third mediating party. In the
United States, this third party mediator is the NPAC (Number Portability
Administration Center).

3. When switching long distance carriers, the mediating party comes online via
voice. When switching local provider service, this is done through electronic
messaging.

4. The new service provider sends a message to NPAC so that it NPAC can
validate the request and then an approval or authorization can be granted to the
new service provider so that they can gain this new customer.

5. NPAC sends a message to the old provider ("donor"). The donor reviews and
approves the order and sends a message back to NPAC again using XML.

6. NPAC sends the authorization to the new service provider ("recipient”).

7. The order is now approved on both sides.

Note: All the messaging taking place here uses XML as the main
format within the SDP Number Portability product. If another
protocol is required, then a custom Adapter could be plugged in to
perform the transformation using XSL or custom code.

8. On the actual day that the customer wants to switch, NPAC sends a broadcast
message to all the telephone service providers throughout the country. At this
time, all telephone carriers and companies must update their network elements
(network databases) in the process within the system.

XML is the Data Format. Advanced Queuing is Used at Each Point

XML is the data format used for all the messaging. Advanced Queueing (AQ) is
used at each point in the process (and system).

The "Message Builder” module creates and enqueues the XML messages. The
Communication Protocol Adapter ("Adapter") starts dequeueing the messages and
sends them to the external systems.

AQ is essentially used simply to store the messages in queues. It serves as a First In
First Out (FIFO) queueing system. The protocol used to send the messages differs
with every system and is end-user specified, such as Flat File/CORBA,

To summarize then:

Phone Number Portability Using XML Messaging 12-7

The Number Portability Process

« When an order is received to switch local or long distance carriers, the order
request is sent as XML or transformed messages to NPAC

« On approval and authorization to make the change, NPAC sends an XML
message to all telephone carriers throughout the country. These carriers then
provision their own network elements.

Why XML is Used for this Messaging

XML is used because it is a flexible format that can be modified or transformed into
any other format required.

For example, one country may need a flat file message format to distribute the
messages and provision (update) their network elements (databases). It is a simple
matter to use XSL or custom code to transform the generated XML into the required
flat file format.

This Number Portability application has been successfully deployed in Belgium
where it is used in this manner. Belgium requires a flat file message format.

12-8 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Using Event Manager to Send and Receive Messages Asynchronously

Provisioning a Network Element

There are other network elements in the telephone system that can be provisioned
(updated) besides individual end-user phone numbers. Examples of other network
elements, include switches, Service Control Points (SCP), routers, LDAP servers,....

Here is another example of how the SDP Provisioning application is used:
1. Allocal telephone service provider requests to have a switch provisioned
2. A Mediation Layer talks to the switches

3. Service Delivery Platform (SDP) which may be an XML-enabled legacy system,
sends a message to the Mediation Layer.

4. SDP receives a response back from the Mediation Layer once the provisioning
(updating) has completed.

This messaging also uses XML as the message payload and Advanced Queueing
(AQ). Here AQ is used mainly as storage medium for the XML queues. Future
releases may use the JMS interface over AQ to provide a standard interface.

Using Event Manager to Send and Receive Messages Asynchronously

SDP can send and receive messages asynchronously using Event Manager.
Table 12-1 lists the queues and services in SDP that implement Event Management.

Table 12-1 SDP Queues and Services that Implement Event Management

Queue Name Service Name Remarks
Inbound Message Queue Message Server Processes all incoming messages.
Internal Events Queue Event Server Events generated for internal

consumption are enqueued on
the internal events queue for
speedy processing.

Outbound Message Queue Communication Adapters Dequeues messages from the
Outbound Message queue and
passes it to the peer system.

The Event Manager handles all messages entering the application system. Messages
coming into the system can be responses to request messages or event notifications
from remote systems.

Phone Number Portability Using XML Messaging 12-9

Using Event Manager to Send and Receive Messages Asynchronously

Example Code to Send Messages

Here is an example code fragment that constructs a PORT_IN message and sends it
to the NRC consumer. The NRC consumer is a SDP adapter that delivers the
message to the NRC system.

DECLARE
| eror_codeNUMBER;
|_emor_messageVARCHAR2(2000) ;
|_msg_headerXNP_MESSAGE.MSG_HEADER REC_TYPE;
|_msg_textVARCHAR2(4000) ;
|_fnd_messageVARCHAR2(4000) ;
BEGIN
P
Create a PORT_IN request message
*
PORT_IN.CREATE_MSG(XNP$TN=>3037505639
XNP$PORTING_ID=>1001,
x_msg_header=>|_msg_header,
X_msg_text=>] msg_text,
X_emor_code=>| emor_code,
X_emor_message=>|_error_message,
p_sender_name=>TELIA);
F
Notify the customer care system and get concurrence
before sending the message to NRC
*
IF(I_emor_code=0) THEN

I

Custom procedure to notify the customer care system

*

NOTIFY_CUSTOMER_CARE(_msg_header,

|_msg_text,

|_emor_code,

|_emor_message) ;

IF (I_emor_code =0) THEN
XNP_MESSAGE.PUSH(P_MSG_HEADER=>| msg_header,
P_BODY_TEXT=>| msg_text,
P_QUEUE_NAME=>XNP_EVENT.C_OUTBOUND_MSG _Q,
P_RECIPIENT_LIST=>NRC_ADAPTER');

Messages can also be enqueued on the inbound messages queue or the internal

events queue, however these queues are single consumer queues. Each queue can
be shared by applications using correlation identifiers.

12-10 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Using Internet Message Studio (iMessage) to Create an Application Message Set

Using Internet Message Studio (/Message) to Create an Application
Message Set

Internet Message Studio (iMessage) utility is used to define the message set of the
Number Portability application or enterprise. It provides for an easy way to
develop a message based application and generates all the necessary code to
construct, publish, validate and process application messages.

It also enables sharing of messages between applications and prevents redefining
the same message in various applications across the enterprise. The application can
execute the generated procedures at run time for all its messaging needs. It also
provides the necessary hooks or customization points for including business
specific logic. Messages are generated using standard XML.

Code Generation

For every message defined, the iMessage creates a package with the name of the
message and the following procedures as part of the package.

. CREATE_MSG()

. SEND()

. PUBLISH()

. VALIDATE()

. PROCESS()

. DEFAULT_PROCESS()

Defining Message Sets

Figure 12-1, "Using iMessage’s Data Source Window to Define the Data Source for
XML Message Elements (in Oracle Developer Forms)" shows how you can use
iMessage to define an XML message. This screenshot also illustrates the XML
message elements and structure as well as the associated source SQL query.

A number of steps are involved when using iMessage to define your XML message
sets. These include the following:

« Defining Messages. Messages can be defined by specifying all the elements
(attributes) and their structural relationships. Other constraints like mandatory
or optional, maximum data length and default values can also be specified.

Phone Number Portability Using XML Messaging 12-11

Using Internet Message Studio (iMessage) to Create an Application Message Set

« Adding Message Details. The Type Field. The Internet Message Studio can also
be used to define application events. The key difference between messages and
events are that messages are used for communication between application
systems and events can be used to broadcast or multi-cast state changes in
business objects. In addition, the studio also helps to define timer messages.

Events defined using the Internet Message Studio are published to both
external and internal application systems. "Internal applications” can register a
PL/SQL callback procedure via the "event Publisher" screens or the above
defined API and will get executed when an event is published. "External
Applications” by definition do not register callback procedures but will have an
adapter running to relay the published event to the remote system. External
applications can register for an event using the default subscribers screen. A
good example for internal applications is Oracle’s SDP and Installed Base
running on a single Oracle instance.

« Description. The description provides the context in which the message will be
used.

« Display Name. The Display Name is the descriptive name of the message.
« Adding Message Elements

« Building Message Structure. The structure of the message defines the
hierarchical relationship of the message elements. Only predefined elements
can be part of this hierarchy. Please refer to the user guide for more information
on building the message structure. The message structure can be viewed as an
inverted tree, with the root as the top most element.

« Root Element. By default the Internet Message Studio includes ‘MESSAGE’ as a
root element and the message being defined is the child of the root element.
Please note that the root element is not visible and is implicitly defined by the
Internet Message Studio. The root element should never be deleted. Elements
not in the structure will not appear in the message.

« Defining Data Source. The next step in defining a message is to define the data
source for message elements. Message elements can get their values from
PL/SQL function calls and SQL queries. In addition, data can also be obtained
as SDP Order parameters, SDP Work Item parameters or a Fulfillment Action
parameters. See Table 12-1.

12-12 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Using Internet Message Studio (iMessage) to Create an Application Message Set

Figure 12-1 Using iMessage’s Data Source Window to Define the Data Source for
XML Message Elements (in Oracle Developer Forms)

Data Source

P'EH:EIIM | Data Source
—([NEW SP_DUE DATE Cardinality [
- ((yDONCR_SP_ID

—((RECIPIENT SP_ID
([ORDER_RESULT
~(DROUTING_NUMBER e NEW. 5P DUE_DATE|
([N CUSTOMER_NAME REC CODE,
L ((HADDRESS_LINET ROUTING_NUMBER,

Editljr' e s

T¥Pe | SQL Query

Reference ’

MEW_SP_DIUE_DATE,DON_CODE, REC_CODE,
ROUTING_NUMBER,

CUSTOMER_MAME,

ADDRESS_LINET,

PRICE_PER_MIMNUTE PRICE_PER_CALL,
PRICE_CODE

FROM ¥NP SV S04 VL

bl HEEE WNaE

Supported datatypes include

« PL/SQL Functions. A PL/SQL function can be executed at runtime to obtain
the value of a message element. The specified PL/SQL function call can pass
arguments by referring to any of the defined message elements. The PL/SQL
function can also refer to any of the selected columns defined as a data source

Phone Number Portability Using XML Messaging 12-13

Using Internet Message Studio (iMessage) to Create an Application Message Set

on some upper level message elements. The function should be specified in the
source field of the user interface and the return type should be same as the type
specified for the message element.

« SQL Queries. A SQL query can be used to derive data for the message elements.
The columns in the SQL query can be used as a reference for other message
elements provided those message elements are defined at a lower level in the
tree hierarchy.

Other data types are SDP Order Parameters, SADP Work Item Parameters, and SDP
Fulfilment Action Parameters.

12-14 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Part V

Developing Oracle XML Applications: A - Z

This section includes a detailed step by step explanation of how to build a B2B XML
application from start to finish. This B2B XML application also illustrates how to
present the same information to different devices.

Other chapters in Part V describe how to use JDeveloper and Internet File System
(iFS) to build XML-based applications.

Part V contains the following chapters:

« Chapter 13, "B2B XML Application: Step by Step"

« Chapter 14, "Using JDeveloper to Build Oracle XML Applications”

« Chapter 15, "Using Internet File System (iFS) to Build XML Applications"

« Chapter 16, "Building n-Tier Architectures for Media-Rich Management using
XML: ArtesiaTech"

13

B2B XML Application: Step by Step

This chapter contains the following topics:
« Introduction to the B2B XML Application
« Requirements for Running the B2B XML Application
« Building the B2B XML Application: Overview
« Why Transform Data to XML?
« Why Use Advanced Queueing (AQ)?
« B2B XML Application: Main Components
« Overview of Tasks to Run the B2B XML Application
« XML B2B Application: Setting Up the Database Schema
« SQL Calling Sequence
« Create and Build the Retailer and Supplier Schemas
« Create the AQ Environment and Queue Tables
« Create the Broker Schema Including XSL Stylesheet Table
« Cleaning Up Your Environment and Preparing to Rerun Application
« B2B XML Application: Data Exchange Flow
« Retailer-Supplier Transactions
« Running the B2B XML Application: Detailed Procedure
« 1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

« 2 Retailer Places Order

B2B XML Application: Step by Step 13-1

« 3 "Validate" Commits the Transaction. Retailer Application Produces the
XML Order

« 4 AQ Broker-Transformer Transforms XML Document According to
Supplier’s Format

« 5 Supplier Application Parses the XML Document and Inserts the Order
into the Supplier Database

« 6a Supplier Application Alerts Supplier of Pending Order
« 7 AQ Broker-Transformer Transforms XML Order into Retailer’s Format

« 8 Retailer Application Updates the Ord Table and Displays the New Order
Status to Retailer

« Java Examples - Calling Sequence

« XSL and XSL Management Scripts

« XML Process and Management Scripts

« Other Scripts Used in the B2B XML Application

« Retailer Scripts

« AQ Broker-Transformer and Advanced Queuing Scripts

« Supplier Scripts

13-2 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Building the B2B XML Application: Overview

Introduction to the B2B XML Application

This chapter describes all the steps and scripts you need to build your demo B2B
XML application.

These scripts are available for download from the Oracle Technology Network
(OTN) site: http://technet.oracle.com/tech/xml.

Requirements for Running the B2B XML Application

The following lists requirements to build and run the B2B XML application:

Client:

Operating system: Windows NT. The three .bat files used in this application
are Windows specific. However you could rewrite these in shell script for
UNIX systems.

Tools: JDeveloper 3.1 or higher: 208Mb
XML and XSL editors: Any editor. You can also use any text editor

Browser: Such as IE5.0, Netscape 5, or higher, and a PDA browser, such as
HandWeb.

Middle Tier:

Development environment needs 513Kb

Runtime environment only needs 135Kb

XSQL Servlet including the XML Parser for Java and XSU for Java
HTTP Listener

Server:

Any Oracle and Java enabled server, such as Oracle8i Release 3 (8.1.7) or
higher

Building the B2B XML Application: Overview

This XML application and demo illustrates a content management and B2B
Messaging implementation. The main transactions in this application are as follows:

A Retailer (R) places an order from any device, such as a browser, cell phone, or
PDA (Personal Digital Assistant)

B2B XML Application: Step by Step 13-3

http://technet.oracle.com

Building the B2B XML Application: Overview

The Supplier (S) is alerted that an order is received. After verifying inventory
and the retailer’s credit, the Supplier then clicks on the "Ship" button.

Retailer and Supplier views the order’s shipping status from any device

Problem

Retailers (R) need to automate the ordering of goods from several suppliers
(Supplier (S)) and be able to place the order view the order status from any device.

Solution
This solution implements the following:

Oracle XML components. To transform the HTML (or other format) order data
received from the Retailer’s web site into XML documents.

Oracle8i Database(s). This solution assumes both the Retailer and Supplier are
storing their data in Oracle8i databases.

An AQ Broker -Transformer. This AQ application manages the flow of orders
between the Retailer and Supplier. The Retailer submits the order in an AQ
gueue. The interested Supplier picks up (READS or dequeues) the order from
the queue. AQ is also used to extract intelligence regarding the flow of orders.
Each order is an XML message. This message is transformed into formats
recognizable by both the Retailer and Supplier.

Tasks Identified
The main tasks are shown in Figure 13-2.

1.

The Retailer enters an order from their Browser, Personal Digital Assistant
(PDA), or cell phone.

When the Retailer validates his order, the order is transformed into XML using
the XSQL Servlet.

The Retailer application sends the XML order to the AQ Broker.

AQ messaging is used to send the XML order data. The retailer views their
order status as "Pending". AQ Broker reformats the XML order into a format
understood by the Supplier.

The Supplier application inserts the order into the Supplier database.

The Supplier application parses the order and sends an alert to the Supplier that
an order has been received and is waiting processing.

13-4 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Why Transform Data to XML?

7. Once the Supplier hits "Shipped" on his screen, AQ messaging is used to return
the XML order status data to the AQ Broker. The AQ Broker transforms the
returned XML Order status into a format recognized by the Retailer.

8. The Supplier receives the reformatted XML order status message. The Retailer
application updates the Retailer database with the new order status. The
Retailer views the order status, which is now "Shipped".

The detailed tasks involved, screens viewed, and scripts used, are described in
"Running the B2B XML Application: Detailed Procedure". and illustrated in
Figure 13-2, "B2B XML Application: Main Components”

XML and Oracle Components Used

« XSQL Servlet. This includes the XML-SQL Utility (XSU), XML Parser for Java
Version 2, and XSL-T Processor

« Oracle8i

Tools Used
JDeveloper

Note: No pre-authored (static) XML documents are used in this
B2B XML application. All XML documents in this application are
dynamically generated from the database.

Why Transform Data to XML?

Retailers and Suppliers use different formats.

Because Retailers use different order form formats, the Retailer’s order data is
transformed into XML so that any Supplier can recognize and process their orders.

Suppliers use different formats for their order status and acknowledgement data.
This data is converted to XML so that any Retailer can recognize the order status
and acknowledgement.

B2B XML Application: Step by Step 13-5

Why Use Advanced Queueing (AQ)?

Note: This solution uses a finite set of two predetermined
customer order document formats.

Retailer’s Order Data: The order data, stored in the Retailer Database R, is
transformed by the AQ Broker using the appropriate XSL stylesheet into a
format recognized by the specific Supplier.

Supplier’s Order Status Data: This data is transformed by the AQ Broker using
the appropriate XSL stylesheet into a format recognized by the specific Retailer.

Note: The Transformer API and associated tables can reside
anywhere, including the Retailer’s or Supplier database.

Figure 13-1 illustrates the overall flow of the Retailer-Supplier transaction. The
Retailer enters the order.

In an ideal world, if the order document format of every Retailer and every
Supplier were the same, the process would be simply as shown in A.

In the real world, order document formats of each Retailer and Supplier
typically differ. Making these transactions seamless is possible by converting
the data to XML. By applying XSL stylesheets the data format can then
customized and displayed by any device and in multiple formats.

Why Use Advanced Queueing (AQ)?

Using AQ in this application has the following advantages:

AQ manages the flow of orders from Retailers to Suppliers and order status
updates and acknowledgements from Suppliers to Retailers.

AQ separates the Retailer from Supplier so that any Retailer can place their order in
the same queue and any Supplier can simply pick up the orders from that same
gueue. In other words it facilitates a simple implementation of a many-to-many
scenario.

AQ can also extract intelligence about the orders being processed

13-6 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

B2B XML Application: Main Components

Figure 13-1 Why Transform Data to XML ?: Retailer’s Order Data Can be recognized
by Any Supplier - Supplier’s Order Status and Acknowledgement Can be Recognized

by any Retailer
Retailer
0 Database
R
Retailer
e Database
R

In an ideal world, all

retailers and suppliers Supplier
have the same data
format
Order sent
Order status returned Dataé)ase
No document
formatting is
needed
AQ broker Supplier
(Order Management)
Transformer
XML Order sent ‘I XML order sent
> ’ Database
S
XML Order status XML Order status

returned returned

In the real world:

- Retailers and suppliers use different
data formats

- Transformation of data between
R and S is needed

- Data can be easily transformed to and
from XML. See next figure to check
out how this is done

B2B XML Application: Main Components

Figure 13-2 shows the main components used in this B2B XML application. The
Retailer orders good from a Supplier and receives a confirmation from the Supplier
that the goods have been shipped. The detailed transaction diagram of the process
is illustrated in Figure 13-5.

B2B XML Application: Step by Step 13-7

Overview of Tasks to Run the B2B XML Application

Personal
Digital
Assistant

Browser

Figure 13-2 B2B XML Application: Main Components

‘g

Retailer AQ Broker- Supplier
Transformer
Retailer AQ Broker Supplier
Application Reformatted Application
e e XML order e XML order 6
— —
Reformatted XML order
- XML order supplied

Browser

Supplier
Database
S

Transformer
Database
T

Retailer
Database
R

<~

Overview of Tasks to Run the B2B XML Application

The schemas used in the B2B XML application you are about to build, are illustrated
in Figure 13-3.

To run the B2B XML application carry out the following tasks as described:
« 1 Set Up Your Environment to Run the B2B XML Application

« 2 Run the B2B Application

« 3 End the B2B Application Session

The details for running the B2B XML application including what you will see on
your browser, are provided in "Running the B2B XML Application: Detailed
Procedure” on page 13-36. You will also see typical screenshots of what the Retailer
and Supplier see.

13-8 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

Overview of Tasks to Run the B2B XML Application

Figure 13-3 BZ2B XML Retailer (Customers) and Supplier Schema

Customers
id (pk) F -
name
status
web_site

Ord
id (pk) .
OrderDate X
contactName '
trackingNo X
status '
customer_id (fk) T

Line_item

id (pk)
quantity
item_id
ord_id
discount

(k)

Suppliers
---|id (p
name
web_site

k)

Inventory item
id

description
price

onhand

supplier_id (fk)

(PK)

Figure 13-4 B2B XML AQ Broker Schema: Stylesheets

Applications

- code varchar(16) not null (pk)
descr varchar(16)

Tasks

code_app (pk) (k) |f_____
code (pk)

descr

Stylesheets
appFrom
appTo

T Op

xsl

varchar2(16) not null
varchar2(16) not null
varchar2(16) not null

clob

(PK)
(9
(PK)

(fk)
(fk)
(fk)

B2B XML Application: Step by Step 13-9

Overview of Tasks to Run the B2B XML Application

1 Set Up Your Environment to Run the B2B XML Application

1.

2
3.
4

Start your Apache or other Web Server.
Start your Browser, such as IE5
Log on

To set up all the schemas you will need to run the B2B XML application, follow
these steps:

Create the Retailer and Supplier schemas. See "B2B XML Application: Main
Components"

« Connect to the database however you like.

« Run buildAll.sql. The script will ask you for your system password to
create the requested users.

Create the AQ Schema

« Onaconvenient machine, run the SQL script, mkAQUser.sgl.

« Connected as agMessBrok/aqgMessBrok, run the script, mkQ.sql
Create the XSL Tables

« Still connected, run the script, mkSSTables.sql

« Run setup.sql to install the XSL Stylesheets in the database.

« Test it by running the GUIStylesheet java class, after changing the
connections as described in the next step.

Modify the connections
« Modify the JIDBC Connection parameters in the following files:
* AppCste.java
* retail.bat
* supplier.bat
* PlaceOrder.xsql

« Finally, modify XSQLConfig.xml to create a connection named retail on
retailer/retailer.

« Recompile all the files before going on.

Before running the B2B XML application, run the script named reset.sql to reset
the AQ environment.

13-10 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Overview of Tasks to Run the B2B XML Application

9. Modify and run the three bat files for the Broker, Suppler, and Retailer

« Modify the .bat files: There are three mains used and these are launched
from the following .bat files:

* Broker.bat for the message broker

* Supplier.bat for the supplier

* Retail.bat for the retailer

First modify the .bat files for your environment as follows:

* verbose: If set to y or true, gives a lot of detail about the received
messages.

* step: If set to y or true, asks the user to hit return after each processing
step. If step has a numeric value, it'll be considered, in milliseconds, as
the time to wait between each step before going on

Retail.bat and Supplier.bat also accept a -dbURL parameter,
describing the URL used to get you connected to the database in question.
The default URL is : jdbc:oracle:thin:@localhost:1521:ORCL.

2 Run the B2B Application

1. Run broker.bat, supplier.bat, and retailer.bat
2. Check the StyleSheet utility by running GUIStylesheet.class
These stylesheets are used by the Broker to process the documents it receives.

Details for running the B2B XML application including what you will see on your
browser, are provided in "Running the B2B XML Application: Detailed Procedure".

3 End the B2B Application Session
1. To finish the B2B XML application

Run the Java class, stopAllQueues, or the script named stopQ.bat

2. Stop Apache or your Web Server.

B2B XML Application: Step by Step 13-11

XML B2B Application: Setting Up the Database Schema

XML B2B Application: Setting Up the Database Schema

The following schema scripts are provided here in the order in which they should
be executed:

« Create and Build the Retailer and Supplier Schemas

« SQL Example 1: Set up the Retailer and Supplier Environment —
BuildAll.sql

« This calls, SQL Example 2: Create and Populate the Retailer-Supplier
Schema — BuildSchema.sql

« Create the AQ Environment and Queue Tables
« SQL Example 3: Set Up the Environment for AQ — mkAQUser.sql
« SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sql. This calls:

* SQL (PL/SQL) Example 5: Create Table, AppOne_QTab —
mkQueueTableAppl.sql

* SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab —
mkQueueTableApp2.sql

* SQL (PL/SQL) Example 7: Create Table, AppThree_QTab —
mkQueueTableApp3.sql

* SQL (PL/SQL) Example 8: Create Table, AppFour_QTab —
mkQueueTableApp4.sql

» Create the Broker Schema Including XSL Stylesheet Table
« SQL Example 9: Create Broker Schema — mkSSTables.sql.
This calls:

« SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker
Schema — setup.sql

« Cleaning Up Your Environment and Preparing to Rerun Application

« SQL Example 11: Stops and Drops Queue Applications. Starts Queue
Applications — reset.sql

13-12 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

SQL Calling Sequence

SQL Calling Sequence

The following list provides the SQL example calling sequence. The .sgl extension for
each file has been omitted. The notation "<---" implies "calls", for example,
BuildAllsgl <----- BuildSchema implies that BuildAllsgl calls BuildSchema.

BuildAll.sgl <---- BuildSchema.sq]l
mkAQuser.sql

mkQ.sql

« <---- mkQueueTableAppl
» <---- mkQueueTableApp2
« <---- mkQueueTableApp3
» <----mkQueueTableApp4
mKkSSTables.sql <---- setup.sql
reset.sql

» <---- stopQueueAppl

» <---- stopQueueApp2

» <---- stopQueueApp3

» <---- stopQueueApp4

« <----dropQueueAppl

» <----dropQueueApp2

« <----dropQueueApp3

» <----dropQueueApp4

» <---- createQueueAppl

« <---- createQueueApp2

« <---- createQueueApp3

» <---- createQueueApp4

» <---- startQueueAppl

. <---- startQueueApp2

. <---- startQueueApp3

B2B XML Application: Step by Step 13-13

Create and Build the Retailer and Supplier Schemas

. <---- startQueueApp4

Create and Build the Retailer and Supplier Schemas

These schema scripts set up the Retailer and Supplier environment, users,
tablespaces, quota, and so on. They also create and then populate the schemas.

« SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql.
This calls:

« SQL Example 2: Create and Populate the Retailer-Supplier Schema —
BuildSchema.sql

SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql

BuildAll.sql sets up the environment for the Retailer and Supplier schema. It
calls BuildSchema.sql ~ which creates the Retailer and Supplier schemas and then
populates them with data.

— buildall.sgl builds all the schemas

accept sysPswd prompt ‘Enter the system password

>'hide

accept cStr prompt ‘Enter the connect sting if any, including "@" sign (ie
@atp-1)>

connect system/&sysPswd&cStr

drop user retailer cascade

/

drop user supplier cascade

/

col tablespace_name head "Available Tablespaces"

select tablespace_name from dba_tablespaces

/

prompt

accept userThsp prompt What is the DEFAULT Tablespace name ? >'
accept tempThsp prompt What is the TEMPORARY Tablespace name ?>'

prompt

create user retailer identified by retailer

default tablespace &userTbsp

temporary tablespace &tempTbsp

quota unlimited on &userThsp

/

grant connect, resource, create any directory to retailer

13-14 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Create and Build the Retailer and Supplier Schemas

/

create user supplier identified by supplier
default tablespace &userThsp

temporary tablespace &empTbsp

quota unlimited on &userThsp

/

grant connect, resource, create any directory to supplier
/

prompt Now populating Supplier, hit [Retum]
pause

connect supplier/supplier&cStr
@buidSchema

prompt Now populating Retailer, hit [Retum]
pause

connect retailer/retailer&cStr
@buildSchema

prompt done!

SQL Example 2: Create and Populate the Retailer-Supplier Schema —
BuildSchema.sq

BuildSchema.sql is called from BuildAll.sql . It creates, populates, and builds
the Retailer and Supplier schema.

This script creates and populates the following five tables:
=« Customers

« Suppliers

« Inventory_item

« Ord

« Line_item

See Figure 13-3 for an illustration of this schema.

- buildSchema.sgl drops then creates all the tables for the B2B XML Application
drop trigger line_item_insert_trigger;

drop table line_itern;

drop table ord;

drop table customer;

drop table inventory_item;

B2B XML Application: Step by Step 13-15

Create and Build the Retailer and Supplier Schemas

drop table supplier;

drop sequence ord_seq;

drop sequence customer_seq;
drop sequence line_item_seq;

drop sequence supplier_seq;
drop sequence inventory_item_seq;

prompt
prompt Creating sequences...

prompt

prompt

prompt Creating sequence ORD_SEQ
create sequence ord_seq start with 101;

prompt Creating sequence CUSTOMER_SEQ
create sequence customer_seq start with 201;

prompt Creating sequence LINE_ITEM_SEQ
create sequence line_item_seq start with 1001;

prompt Creating sequence SUPPLIER_SEQ
create sequence supplier_seq start with 301;

prompt Creating sequence INVENTORY_ITEM_SEQ
Create sequence inventory_item_seq start with 401;

prompt
prompt
prompt Creating tables...
prompt
prompt

—*ex Create table CUSTOMERS

prompt Creating table CUSTOMER
create table customer(
id number,
name varchar2(30),
status varchar2(8),
web_site varchar2(40),
constraint
customer_pk
primary key (id)

13-16 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Create and Build the Retailer and Supplier Schemas

— *44x Cregte table SUPPLIERS **

prompt Creating table SUPPLIER
create table supplier(
id number,
name varchar2(30),
web_site varchar2(40),
constraint
supplier_pk
primary key (id)

—#4x Create table INVENTORY _ITEM #x
prompt Creating table INVENTORY_ITEM
create table inventory _item(
id number,
description varchar2(30),
price number(8,2),
onhand number,
supplier_id number,
constraint
inventory_item_pk
primary key (id),
constraint
supplied_by
foreign key (supplier_id) references supplier
)

— #44x Cregte table ORD
prompt Creating table ORD
create table ord (
id number,
orderDate date,
contactName varchar2(30),
trackingNo varchar2(20),
status varchar2(10),
customer_id number,
constraint
ord_pk
primary key (i),
constraint
order_placed by
foreign key (customer_id) references customer

B2B XML Application: Step by Step 13-17

Create and Build the Retailer and Supplier Schemas

)

prompt Creating table LINE_ITEM
create table line_item(
id number,
quantty number,
tem id number,
ord id number,
discount number,
constraint
line_item_pk
primary key (id),
constraint
item_ordered_on
foreign key (ord_id) references ord,
constraint
order_for_item
foreign key (tem_id) references inventory_item

)

prompt

prompt

prompt Inserting data..

prompt

prompt

prompt Inserting values into SUPPLIER and INVENTORY_ITEM
prompt

insertinto supplier values(supplier_seq.nextval, DELL ', http:/dell.com);
insertinto inventory_item values(inventory _item_seq.nextval, Optiplex GXPro',
1500, 27, supplier_seg.currval);

insertinto inventory_item values(inventory_item_seq.nextval,Inspiron 7000,
2500, 49, supplier_seq.cunval);

insertinto inventory_item values(inventory_item_seq.nextval, PowerEdge 6300,
7500, 16, supplier_seq.cunval);

insertinto inventory _item values(inventory_item_seq.nextval, Inspiron 3000,
2500, 0, supplier_seq.cunval);

insertinto inventory_item values(inventory_item_seq.nextval,Inspiron 2000,
2500, 0, supplier_seq.cunval);

insertinto supplier values(supplier_seq.nextval,'HP", 'http:/hp.com);
insertinto inventory_item values(inventory_item_seq.nextval, LaserJet 6MP,
899, 123, supplier_seq.currval);

insertinto inventory_item values(inventory_item_seq.nextval, ‘Jomada 2000,
450, 1198, supplier_seq.cunval);

13-18 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Create and Build the Retailer and Supplier Schemas

insertinto inventory_item values(inventory_item_seq.nextval, HP 12C', 69,

801, supplier_seq.cunmval);

insert into inventory_item values(inventory_item_seq.nextval, 'LaserJet 2, 69,
3, supplier_seq.cunval);

insertinto inventory _item values(inventory_item_seq.nextval,Jaz PCMCIA
adapter, 125, 54, supplier_seq.currval);

insertinto inventory _item values(inventory_item_seq.nextval,8860 Digital
phone', 499, 12, supplier_seq.cunval);

insertinto inventory_item values(inventory_item_seg.nextval, Jaz carrying
bag}, 20, 66, supplier_seq.cunval);

insertinto inventory_item values(supplier_seq.nextval, Intel,
‘http/Awwv.intel.com’);

prompt Inserting values into CUSTOMER

prompt

insertinto ord values(ord_seq.nextval, sysdate, 'George', 'AX|jord_
seq.cunval, 'Pending, 201);

insertinto line_item values (line_item_seq.nextval, 2, 410,0rd_seg.curmval, 0);
insertinto line_item values (line_item_seq.nextval, 1, 402,0rd_seg.curmval, 0);
insertinto line_item values (line_item_seq.nextval, 1, 406,ord_seg.curval, 0);

insertinto ord values(ord_seq.nextval,sysdate, Elaine’, AX|lord_seq.cunval,
create trigger line_item _insert_trigger
before insert on line_item for each row
begin
selectline_item_seq.nextval into :new.id from dual ;
end,
/

commit;

B2B XML Application: Step by Step 13-19

Create the AQ Environment and Queue Tables

Create the AQ Environment and Queue Tables
Run the AQ schema scripts as follows:
« SQL Example 3: Set Up the Environment for AQ — mkAQUser.sql
« SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sql. This calls:

« SQL (PL/SQL) Example 5: Create Table, AppOne_QTab —
mkQueueTableAppl.sql

« SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab —
mkQueueTableApp2.sql

« SQL (PL/SQL) Example 7: Create Table, AppThree_QTab —
mkQueueTableApp3.sql

« SQL (PL/SQL) Example 8: Create Table, AppFour_QTab —
mkQueueTableApp4.sql

SQL Example 3: Set Up the Environment for AQ — mkAQUser.sq

The following SQL script sets up the environment for using AQ, creates user
aqMessBrok, creates default and temporary tablespace, grants execute privileges on
the AQ PL/SQL packages dbms_agadm and dbms_aq to aqgMessBrok.

setver off

setscanon

prompt Creating environment for Advanced Queuing

accept mgrPsw prompt ‘Please enter the SYSTEM password

>'hide

acceptcStr prompt Please enter the the DB Alias if any, WITH the @ sign (ie
@Ora8i)>'

connect system/&mgrPsw&cStr

col tablespace_name head "Available Tablespaces"

select tablespace_name from dba_tablespaces

/

Prompt

accept userThsp prompt What is the DEFAULT Tablespace name ? >'
accept tempThsp prompt What is the TEMPORARY Tablespace name ?>'

prompt

prompt Creating agMessBrok
create user agMessBrok identified by agMessBrok
defautt tablespace &userThsp

temporary tablespace &empTbsp

13-20 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Create the AQ Environment and Queue Tables

quota unlimited on &userThsp

/grant connect, resource, aq._administrator_role, create any directory to
agMessBrok

/grant execute on dbms_agadm to agMessBrok

/grant execute on dbms_aq to agMessBrok

/

SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sq|

This script calls four scripts to create the AQ queue tables.

@mkQueueTableAppl
@mkQueueTableApp2
@mkQueueTableApp3
@mkQueueTableApp4

SQL (PL/SQL) Example 5: Create Table, AppOne_QTab — mkQueueTableAppl.sql

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 1, AppOne_QTab.

execute doms_agadm.create_queue_table (queue_table =>'AppOne_QTab), queue_
payload_type =>RAWY);

SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab — mkQueueTableApp2.sq

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 2, AppTwo_QTab.

execute doms_agadm.create_queue_table (queue_table =>‘AppTwo_QTab', queue
payload type =>RAWY);

SQL (PL/SQL) Example 7: Create Table, AppThree_QTab — mkQueueTableApp3.sql

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 3, AppThree_QTab.

execute doms_agadm.create_queue_table (queue_table =>'AppThree_QTab), queue_

B2B XML Application: Step by Step 13-21

Create the AQ Environment and Queue Tables

payload_type =>'RAW);

SQL (PL/SQL) Example 8: Create Table, AppFour_QTab — mkQueueTableApp4.sql

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 4, AppFour_QTab.

execute doms_agadm.create_queue_table (queue_table =>'AppFour_QTab), queue_
payload type =>'RAWY);

13-22 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Create the Broker Schema Including XSL Stylesheet Table

Create the Broker Schema Including XSL Stylesheet Table

Run the following scripts to create and populate the stylesheets, tasks, and
applications tables:

« SQL Example 9: Create Broker Schema — mkSSTables.sql.
This calls:

« SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker
Schema — setup.sql

SQL Example 9: Create Broker Schema — mkSSTables.sql

Run mkSSTables.sql to create the Broker schema. It creates and populates the
following three tables:

« Stylesheets

« Tasks

« Applications

This schema is illustrated in Figure 13-4. This script then calls setup.sql

prompt Building Stylesheets management tables.

prompt Must be connected as agMessBrok (like the borker)
accept cStr prompt 'ConnectString (WITH @ sign, like @Ora8i) >
connect agMessBrok/agMessBrok&cStr

drop table styleSheets
/

drop table tasks

/

drop table applications

/

create table applications

(
code varchar2(16) not null,
descr varchar2(256)

)

/

alter table applications
add constraint PK_APP
primary key (code)

/

create table tasks

B2B XML Application: Step by Step 13-23

Create the Broker Schema Including XSL Stylesheet Table

(
code_app varchar2(16) not null,

code varchar2(16) not nul,
descr varchar2(256)
)
/
alter table tasks
add constraint PK_TASKS
primary key (code_app,code)
/
alter table tasks
add constraint TASK_FK_APP
foreign key (code_app)
references applications(code) on delete cascade
/
create table styleSheets
(
appFrom varchar2(16) not null,
appTo varchar2(16) not null,
op varchar2(16) not null,
xsl clob
)
/
alter table styleSheets
add constraint PK_SS
primary key (appFrom,appTo,op)
/

alter table styleSheets
add constraint SS_FK_FROM
foreign key (appFrom)
references applications(code)

/

alter table styleSheets
add constraints SS_FK_TASK
foreign key (appTo,op)
references tasks(code_app,code)

/

@setup

13-24 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Create the Broker Schema Including XSL Stylesheet Table

SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker Schema —
setup.sql

setup.sql installs stylesheet data into the XSL column (CLOB) of the stylesheets
table. This script creates a procedure, loadlob . The script also uses PL/SQL
packages dbms_lob and dbms_output

prompt Instaliing the stylesheets
—accept cStr prompt ‘ConnectString (WITH @ sign, like @Ora8i) >*
— connect agMessBroklagMessBrok&cStr
prompt Creating LoadLob procedure
create or replace procedure loadLob (imgDir in varchar2,
fname in varchar2,
app_Frominvarchar2,
app_Toinvarchar2,
oper invarchar2) as
tempClob CLOB;
fleONOS BFILE := bfilename(imgDir, fname);
ignore INTEGER;
begin
dbms_lob.fleopen(fleOnOS, doms_lob.file_readonly);
selectxs|
into tempClob
from StyleSheets S
where SAPPFROM =app_Fromand
SAPPTO=app Toand
S.OP =oper
for UPDATE;
doms_outputput_line(Extemal file size is: ' || doms_lob.getlength(fleOnOS));
dboms_lob.loadfromfile(tempClob, fileOnOS, doms_lob.getiength(fileOnOS));
doms_lobfileclose(fleOnOS);
dbms_outputput_line(Intemal CLOB size is: || dbms_lob.getlength(tempClob));
exception
When Others then
dbms_output.put_line(Oooops :' || SQLERRM);
end LoadLob;
/
show enrors
set scan off

create or replace directory "LOB_DIR" as 'D:xmi817\references\olivier_new’
/

insertinto applications values (RETAIL', ‘Origin’)

/

insert into applications values (SUPPLY’, 'Destination’)

B2B XML Application: Step by Step 13-25

Cleaning Up Your Environment and Preparing to Rerun Application

/

insertinto tasks values (SUPPLY", NEW ORDER,, Insert a new Order)

/

insertinto tasks values (RETAIL','UPDATE ORDER, 'Update an Order Status))
/

set serveroutput on

begin
insert into StyleSheets values (RETAIL,'SUPPLY'NEW ORDER'EMPTY_CLOB());
loadLob(LOB_DIR', 'one.xsl, RETAIL',/SUPPLY'NEW ORDERY);
insert into StyleSheets values (SUPPLY',RETAIL,UPDATE ORDER'EMPTY_CLOB());
loadLob(LOB_DIR', ‘two.xsl,'SUPPLY'/RETAIL,UPDATE ORDERY);

exception
when others then
dbms_outputput_line(Emor Occurred : ' || chr(10) || SQLERRM);

end;

/

commit

/

Cleaning Up Your Environment and Preparing to Rerun Application
Run reset.sql to clean up your environment and rerun this application.

« SQL Example 11: Stops and Drops Queue Applications. Starts Queue
Applications — reset.sql

This calls the following 16 PL/SQL scripts:
« stopQueueAppl.sql

« stopQueueApp2.sql

« stopQueueApp3.sql

« stopQueueApp4.sql

« dropQueueAppl.sql
« dropQueueApp2.sql
« dropQueueApp3.sql
« dropQueueApp4.sql
« createQueueAppl.sql
« createQueueApp2.sql

13-26 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Cleaning Up Your Environment and Preparing to Rerun Application

« createQueueApp3.sql
« createQueueApp4.sql
« startQueueAppl.sql
« startQueueApp2.sql
« startQueueApp3.sql
« startQueueApp4.sql

SQL Example 11: Stops and Drops Queue Applications. Starts Queue Applications —
reset.sq

reset.sql script first stops all four queue applications by calling the
stopQueueAppl through 4, then drops them by calling dropQueueApp1l through 4,
and restarts them by calling startQueueApp1 through 4.

The script also prompts you to Hit Return to Exit.

connect agMessBroklagMessBrok
start stopQueueAppl
start stopQueueApp2
start stopQueueApp3

start stopQueueApps4
start dropQueueAppl

start dropQueueApp2
start dropQueueApp3
start dropQueueApp4
start createQueueAppl
start createQueueApp2
start createQueueApp3
start createQueueApp4
start startQueueAppl
start startQueueApp2
start startQueueApp3
start startQueueApp4
prompt Press [Retum] to exit !
pause

exit

Stop Queue SQL Scripts

These four scripts are called from reset.sql. They use PL/SQL procedure dbms_
agadm.stop_queue to stop the queues.

B2B XML Application: Step by Step 13-27

Cleaning Up Your Environment and Preparing to Rerun Application

stopQueueAppl.sql
execute dbms_agadm.stop_queue(queue_name=>AppOneMsgQueue);
stopQueueApp2.sql
execute dbms_agadm.stop_queue(queue_name=>AppTwoMsgQueue);
stopQueueApp3.sql
execute dbms_agadm.stop_queue(queue_name=>AppThreeMsgQueue);
stopQueueApp4.sql
execute dbms_agadm.stop_queue(queue_name=>'AppFourMsgQueue’);
Drop Queue SQL Scripts
These four scripts are called from reset.sql . They use PL/SQL procedure dbms_

agadm.drop_queue to drop the queues.

dropQueueAppl.sql
execute dbms_agadm.drop_queue (queue_name=>AppOneMsgQueue);

dropQueueApp2.sql
execute dbms_agadm.drop_queue (queue_name=>AppTwoMsgQueue);

dropQueueApp3.sql
execute doms_agadm.drop_queue (queue_name=>AppThreeMsgQueue);

dropQueueApp4.sql
execute doms_agadm.drop_queue (queue_name=>AppFourMsgQueue);

Create Queue SQL Scripts

These four scripts are called from reset.sql . They use PL/SQL procedure, dbms_
aqgadm.create_queue to create the queues.

createQueueAppl.sql

execute doms_agadm.create_queue (queue_name=>AppOneMsgQueue’, queue
table=>'AppOne_QTab);

13-28 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Cleaning Up Your Environment and Preparing to Rerun Application

createQueueApp2.sql

execute dbms_agadm.create_queue (queue_name=>AppTwoMsgQueue', queue_
table=>'AppTwo_QTab);

createQueueApp3.sql

execute dbms_agadm.create_queue (queue_name=>'AppThreeMsgQueue, queue_
table=>AppThree_QTab);

createQueueApp4.sql

execute doms_agadm.create_queue (Queue_name=>AppFourMsgQueue’, queue_
table=>'AppFour_QTab);

Start Queue SQL Scripts

These four scripts are called from reset.sql . They use PL/SQL procedure, dbms_
agadm.start_queue to start the queues.

startQueueAppl.sql
execute doms_agadm.start_queue(queue_name=>AppOneMsgQueue);

startQueueApp2.sql
execute dbms_agadm.start_queue (queue_name=>AppTwoMsgQueue);

startQueueApp3.sql
execute dbms_agadm.start_queue (queue_name=>AppThreeMsgQueue);

startQueueApp4.sql
execute dbms_agadm.start_queue (queue_name=>'AppFourMsgQueue’);

dropOrder.sql

This SQL script deletes orders from the Retailer-Supplier database Customers table
according to the customer’s ID.

setver off
accept CustName prompt ‘Drop all for customer named >*

Delete LINE_ITEM |

B2B XML Application: Step by Step 13-29

Cleaning Up Your Environment and Preparing to Rerun Application

Where L.ORD_IDin
(SelectO.ID
FromORD O
Where O.CUSTOMER_IDiin
(SelectC.ID
From CUSTOMER C
Where Upper(C.NAME) = Upper(&CustName))))
/

Delete ORD O

Where O.CUSTOMER _IDin

(SelectC.ID

From CUSTOMER C

Where Upper(C.NAME) = Upper(&CustName))
/

13-30 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

B2B XML Application: Data Exchange Flow

B2B XML Application: Data Exchange Flow

Figure 13-5 shows the detailed transaction diagram of the process when the Retailer
orders good from a Supplier and receives a confirmation from the Supplier that the

goods have been shipped.

Figure 13-5 Inter-Business Data Exchange: Using XML and AQ to send Retailer’s
Order to a Supplier and Receive Order Status and Acknowledgement from the Supplier

Retailer AQ Broker- Supplier
Transformer
On commit, e Alert Suppliers of
produce order pending.
"XML order" S decides to ship.
Retailer browses Retailer Transforms XML
supplier's catalog places document to Browser
(in R database) order Supplier's
format

AQ Broker
D Retailer -'lz-g?m: Z Ship ;:%

Application .
Task: ? S App. 4
Personal XSL-T Reformatted > XML
Digital)s(gr%te t =|Action Processor | XML order Parser
Assistant Handler f *
! 7 / Update S
Parse XML \(/i%t%%asg
]] XML document. Order
Browser < order Insert order Status is
XML) into S changed to
Query XSL Via XSL database. ‘shipped'.
stylesheets JDBC stylesheets
Transaction v l
inserts into
database
Retailer Transformer Supplier
Database | = Database Database
T S
v
stylesheets
Reformatted XML Order

XML Order l e Shipped l

Update form

Update Order ‘

Request Master Transform the XML
Table in R Order according to
Database Retailer's format

B2B XML Application: Step by Step 13-31

Retailer-Supplier Transactions

Retailer-Supplier Transactions

Figure 13-5 shows the business flow of the Retailer - Supplier transactions. These
transactions are summarized here.

» 1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
» 2 Retailer Places Order
« 3 Retailer Confirms and Commits to Sending the Order

« 4 AQ Broker-Transformer Transforms the XML Document According to the
Supplier’s Format

« 5 Supplier Application Parses Incoming Reformatted XML Order Document.
Inserts Order into the Supplier Database

« 6 Supplier Application Alerts Supplier of Pending Order

« 7 AQ Broker-Transformer Transforms the XML Order According to Retailer’s
Format

« 8 Retailer Application Updates the Ord and Line_ltem Tables

The detailed transactions and how to run the B2B XML application is provided in
"Running the B2B XML Application: Detailed Procedure" on page 13-36.

1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

The following Retailer transactions occur:
1. The Retailer logs in from their web site using XSL Servlet.

2. Retailer browses the Supplier’s on-line catalog. Retailer selects a product and
guantity.

2 Retailer Places Order

When the Retailer places the order, the Retailer then needs to either confirm the
order and cost, by clicking on "Place Order", or cancel "Give Up" the order.

3 Retailer Confirms and Commits to Sending the Order

If Retailer confirms the order by clicking on, "Place Order", this triggers the
generation of an XML document containing the order data. The Retailer application
sends this XML order document to the Supplier by way of the AQ
Broker-Transformer application.

13-32 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Retailer-Supplier Transactions

The Action Handler "XSQL Script Example 5: Starts B2B Process — placeorder.xsql"
of the XSQL Servlet is the key component in the whole process. It ensure that this
transaction is inserted into the retailer database table, Ord.

The Action Handler also sends the XML order on to the AQ Broker-Transformer.

4 AQ Broker-Transformer Transforms the XML Document According to the Supplier's

Format

When the AQ Broker-Transformer receives the XML document the following
actions transpire:

1. The AQ Broker-Transfomer waits for the queue [READS] from the Retailer that
they have sent an order. See Figure 13-6.

Figure 13-6 B2B XML Application: AQ Messaging Flow

Waiting for Queue

AQ Message
Broker

Retailer Supplier

" There are 4 queues
Waiting for Queue Broker reads and

writes at the
same time

@ Reads Queue
O writes to Queue

2. The AQ Broker receives the XML document order message, and determines the
following information from the message:

« FROM: From where the message is coming (from which Retailer)
« TO: To where the message is going (to which Supplier)

« OPERATION or TASK: What operation is needed to process this message

3. The AQ Broker-Transformer refers to the Stylesheets table and according to the

From, To, and Task criteria, selects the appropriate XSL stylesheet. The
stylesheets are stored in CLOBs in the Stylesheets table in the XSL column. AQ
Broker-Transformer accesses the database and stylesheets by means of JDBC.

B2B XML Application: Step by Step 13-33

Retailer-Supplier Transactions

4. XSL-T Processor is informed by AQ Broker-Transformer application to apply
the selected and retrieved XSL stylesheet to the XML document containing the
order data. The XSL-T Processor outputs the reformatted XML order.

5. AQ Broker-Transformer uses AQ to send [WRITE] the transformed XML
document to the "TO" Supplier destination.

Note: Ifa DTD (XML Schema) is used, it would be applied before
processing in the AQ Broker phase. In this example, for simplicity,
we assume that the document is always sent in the same format.

The schema used by the AQ Broker-Transformer is shown inFigure 13-4.

5 Supplier Application Parses Incoming Reformatted XML Order Document. Inserts
Order into the Supplier Database

When the Supplier receives the reformatted XML order document from the AQ
Broker-Transformer, the following protocols transpire:

1. The Supplier waits for the queue from the AQ Broker-Transformer that a order
is pending from a Retailer. The Supplier dequeues the AQ message.

2. The Supplier parses the XML document and INSERTSs the order into the
Supplier database by means of JDBC.

6 Supplier Application Alerts Supplier of Pending Order

When the Supplier application has inserted the XML document into the Supplier
database the following actions transpire:

1. Supplier Application Alerts the Supplier of the Order. The order status is kept
at "pending".

2. The Supplier, after checking if the product(s) ordered are available, and the
Retailer’s credit, decides to ship the product(s). Supplier clicks on "Ship".

3. The Supplier application updates the Supplier database Ord table’s status
column to "shipped".

7 AQ Broker-Transformer Transforms the XML Order According to Retailer's Format
1. AQ Broker-Transformer waits [READS] for a queue from the Supplier.

13-34 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Retailer-Supplier Transactions

When the XML Order Shipped document is received, the AQ
Broker-Transformer refers to the Stylesheets table in the Transformer database,
and according to the From, To, and Task criteria, selects the appropriate XSL
stylesheet. The stylesheets are stored in CLOBs in the Stylesheets table in the
XSL column. AQ Broker-Transformer accesses the database and stylesheets by
means of JDBC.

AQ Broker-Transformer uses AQ to send [WRITE] the reformatted XML order
update document to the "TO" Retailer destination.

8 Retailer Application Updates the Ord and Line_ltem Tables

1.

Retailer application updates the Retailer database with new "shipped" order
status information. The Ord table is updated.

This information is viewed by the Retailer from any device. The status is seen as
"Shipped".

B2B XML Application: Step by Step 13-35

Running the B2B XML Application: Detailed Procedure

Running the B2B XML Application: Detailed Procedure

Figure 13-5 shows the detailed transaction and flow of the B2B XML application.
The XML order document is sent from the Retailer through the AQ
Broker-Transformer, to the Supplier and back to the Retailer.

Before running the B2B XML application, ensure that you have run the schema
creation scripts described in "Overview of Tasks to Run the B2B XML Application”.

The following steps explain the process and how to run this application.

1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
2 Retailer Places Order

3 "Validate" Commits the Transaction. Retailer Application Produces the XML
Order

4 AQ Broker-Transformer Transforms XML Document According to Supplier’s
Format

5 Supplier Application Parses the XML Document and Inserts the Order into
the Supplier Database

6a Supplier Application Alerts Supplier of Pending Order
7 AQ Broker-Transformer Transforms XML Order into Retailer’s Format

8 Retailer Application Updates the Ord Table and Displays the New Order
Status to Retailer

13-36 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall* Catalog

See Figure 13-5 for the detailed procedural flow of the B2B XML application.

Note: We assume here that a copy of the Supplier’s catalog is in
the Retailer’s database.

1. Check the StyleSheet utility to ensure it works by invoking SS.bat
Stylesheet Batch File: SS.bat

@echo off

@echo Stylesheet Util

Di\jdev31\avalbinjava -mx50m -classpath "D:xmi81 7\references\olivier_new;
Di\jdev31\ib\dev-t.zip;

D:\dev31\dbclib\oracle8.1.6\classes111.zip;
D:\[dev31\ib\connectionmanager.zip;

D:\dev31\ib;

D:\dev31\ib\oraclexsgljar;

D:\dev3\ib\oraclexmisgljar;

Di\jdev3ibxmlparserv2_2027 jar;

D:\dev31\fclib\swingall jar;

D\dev31\swdk-1.0.1\ib\senvietjar;

D:\Ora8ivdbmsljib\agapill ar;

D:\Ora8ivdbmslib\agapi jar;

D:\XMLWorkshopmicomp jar;

Di\jdev31\avalib\classes.zip" B2BDemo.StyleSheetUtil. GUIStylesheet

Using this utility you can browse the actual table, Stylesheets , in which the

stylesheets are stored. These stylesheets are used by the AQ Broker-Transformer
to process the documents it received. See Figure 13-7.

B2B XML Application: Step by Step 13-37

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

Figure 13-7 Checking the StyleSheet Utility

[Style Sheets Management =l E3
File Help
B

X5 Style Sheel

=Tl wversion="1.0"7=

=il stylesheet xminsxsl="http s w3 araf1 9995 LMransform®
version="1.0"=

=x¥sltemplate match="M=
=ROWESET=
=xslfor-each select="Resultslordview"=
=ROW=<xslattribute name="kLIM"==xslvalue-of select="position "= =Msl attribute=

=xslapph-templates select="Id|Orderdate|Contacthame[Trackingno|Status|Custan
=IROVY=

=fhistfor-each=
=[ROWVYSET=
=Mzl templates

=xsltermplate match="1d"=
=|D==xslvalue-of select=""r==/D=
=fsltemplates

(4]

| IF 3 L=t PPN T PO | N P N

L)

Fron Application :,RI_:_FAIL :
To Application : SUPPLY
Operation : NEW ORDER

Enter Query New = s Validate

Ready Tor 2 recornds

13-38 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

2. Start the Retailer application by running retailer.bat. See Figure 13-8.

Figure 13-8 Starting the Retailer Application

uilly crosbrd.
Tikls

3. Start the AQ Broker-Transformer application by running broker.bat. See
Figure 13-9.

Figure 13-9 Starting the AQ Broker-Transformer Application

r F

BB Capmecliss apaaed
Sewuion spmcensfully created.
Bt Capaccliss apeacd
| Sedpian sagicsstal Iy areatsd,
scciaafal geileeaslakls
sccewsful geifenes
spmrcliss spea
I fesulan snaeentnlly areaisd,
BL Captieclims apsnrd
| Semsian seccosstully croatad.
Hacerssind getjeraclakie
Haidriaful deillmsas
ClhrpadaluThie L M

. : o

4. Start the Supplier application by running supplier.bat. See Figure 13-10.

B2B XML Application: Step by Step 13-39

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

Figure 13-10 Starting the Supplier Application: "Supplier Watcher"

The three batch files for the Retailer, AQ Broker-Transformer (Broker), and
Supplier applications are listed here:

retailer.bat

@echo off

@echo Retail Side

D:\dev31\avalinjava -mx50m -classpath
"Dxmi817\references\Ora817DevGuide;

Di\jdev31\ib\dev-t.zip;

D:\dev31\dbclib\oracle8.1.6\classes111.zip;
D:\[dev31\ib\connectionmanager.zip;

D:\dev31\ib;

D:\dev31\ib\oraclexsgljar;

D:\dev3\ib\oraclexmisgljar;

Di\jdev3ibxmlparserv2_2027 jar;

D:\dev31\fclib\swingall jar;

D:\dev31\swdk-1.0.1\ib\senvietjar;

D:\Ora8ivdbmsljib\agapill ar;

D:\Ora8ivdbmsljib\agapi.jar;

D:XMLWorkshopWmilcomp.jar;

Di\jdev31\avalib\classes.zip" B2BDemo.Retailer.UpdateMaster -step=1000
-verbose=y -dbURL=jdbc:oracle:thin:@atp-1.us.oracle.com:1521:ORCL

broker.bat

@echo off
@echo Broker
Di\dev31\javalbinjava -mx50m -classpath

13-40 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

"D:xmi817\references\Ora817DevGuide;
D:\dev31\ib\dev-1t.zip;
D:\dev31\dbclibloracle8.1.6\classes111.zip;
D:\dev31\ib\connectionmanager.zip;
Di\jdev31\ib;D:\dev3\ib\oraclexsal jar;
D:\dev3\ib\oraclexmisgljar;
D:\dev3\ibmiparserv2_2027 jar,
D:\dev31\fclib\swingall jar;
D:\dev31\swdk-1.0.1\ib\senviet jar;
D:\Ora8ivdbmsljib\agapill ar;
D:\Ora8\rdbmsljib\agapi jar;
D:\XMLWorkshopmicomp jar;
D:\dev31\avallib\classes.zip" B2BDemo.Broker.MessageBroker -step=1000
-verbose=y

supplier.bat

@echo off

@echo Supplier

Di\jdev31\javalbinjava -mx50m -classpath
"D:xmlI817\references\Ora817DevGuide;

D:\dev31\ib\dev-rt.zip;

D:\dev31\dbclibloracle8.1.6\classes111.zip;
D:\dev31\ib\connectionmanager.zip;
Di\jdev31\ib;D:\dev3\ib\oraclexsal jar;

D:\dev3\ib\oraclexmisgl jar;

D:\dev3\ibmiparserv2_2027 jar;

D:\dev31\fclib\swingall jar;

D:\dev31\swdk-1.0.1\ib\senviet jar;

D:\Ora8ivdbmsljib\agapill ar;

D:\Ora8\rdbmsljib\agapi jar;

D:\XMLWorkshopmicomp jar;

Di\dev31\avalib\classes.zip" B2BDemo.Supplier.SupplierWatcher -step=1000
-verbose=y -dbURL=dbc:oracle:thin:@atp-1.us.oracle.com:1521:ORCL

5. Finally, start the Client, from a browser, a PDA such as Palm Pilot, cell phone, or
other device.

6. [Retailer] Log in. You will see a Welcome! screen. See Figure 13-11.

XSQL Script Example 2: Checking the ID of Users Logging In: getlogged.xsql

<?xml version="1.0"?>

<

B2B XML Application: Step by Step 13-41

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

| Second script to be called.

| Check if the user in known in the database.

| $Author: olediour@us $

| $Revision: 1.1 $

+—>

<?xml-stylesheet type="text/xsl' media="HandHTTP" href="PP.xsl"?>
<?xml-stylesheet type="text/xsl" media="Mozila" href="HTMLxsl"?>

<loginResult xmins:xsgl="um:oracle-xsg"
connection="retail"
custName="XXX">
<pageTitle>Hi-Tech Mall</pageTite>
<xsgl:query tag-case="upper>
<I[CDATA]
select C.ID, CNAME
from CUSTOMER C
where Upper(C.NAME) = Upper({@custName})
>
<xsglno-rows-query>
Select {@custName} as "unknown' from dual
</xsgl:no-rows-query>
</xsql.query>
<nextStep>inventory xsgl</nextStep>
<retumHome>index xsal</retumHome>

</loginResulit>

This XSQL script calls the following XSL scripts:

=« pp-xsl. See "XSL Stylesheet Example 1: Converts Results to HTML — html.xsl"

« html.xsl. See "XSL Stylesheet Example 2: Converts Results for Palm Pilot

Browser — pp.xsl*

13-42 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

Figure 13-11 [Retailer]: Logging in from a Browser or PDA

Hi-Tech Mall

¥our I o]

7. [Retailer]: Click on 'Please Enter the Mall'.

XSQL Script Example 1: Displays First Hi-Tech Mall Screen — index.xsql

<?xml version="1.0"?>

<

| Thisis the entry point in the application.

| Notice that this script does not access the database.

| $Author: olediour@us $

| $Revision: L1$

+->

<?xml-stylesheet type="text/xsI" media="HandHTTP" href="PP.xsI'?>
<?xml-stylesheet type="text/xsI" media="Mozila" href="HTMLxsI"?>

<index xmins:xsql="um:oracle-xsql">
<pageTite>Hi-Tech Mall</pageTitie>
<form action="getl_ogged.xsql" method="post">
<field type="text" name="custName" prompt="Your ID"/>
<button type="submit" label="Log In"/>
<fflorm>
<findex>

8. [Retailer]: The resulting screen displays the Hi-Tech Mall Catalog product
listing. Click on the product you are interested in. See Figure 13-12.

B2B XML Application: Step by Step 13-43

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

XSQL Script Example 3: Lists Catalog Products — inventory.xsql

<?xmlversion="1.0"?>

<

| This is the third script called.

| It produces the catalog from the Retailer’s database.

I

| $Author; olediour@us $

| $Revision: 1.1 $

+—>

<?xml-stylesheet type="text/xsI media="HandHTTP" href="PP.xgI"?>
<?xml-stylesheet type="text/xsl' media="Mozila" href="HTML xsI"?>

<inventory xmins:xsgl="um:oracle-xsql"
connection="retail"
custid="000">
<pageTite>Hi-Tech Mall</pageTite>
<form action="orderxsql" method="post">
<hiddenFields>
<xsglinclude-param name="custid'/>
<hiddenFields>
<theMart>
<xsgl:query tag-case="upper>
<I[CDATA]
select LID,
.DESCRIPTION,
1PRICE,
SNAME
from INVENTORY_ITEM |,
SUPPLIER S
where LSUPPLIER_ID=S.ID
>
<xsglno-rows-query>
Select No items ' as "Wow'" from dual
</xsgl:no-rows-query>
</xsql.query>
<ftheMart>
<fform>
<retumHome>index xsgl</retumHome>

</inventory>

13-44 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

Figure 13-12 [Retailer] Enter the Hi-Tech Mall (Mart) Catalog

| Bl N en Frwie Lok He :

oI A o DY RN, S - | | [,
ﬁhﬁ i 2 ramion i Ao i3 olscde oo Tl el 7wl o B ipdd=T17 :’ ,;:“Hl

Hi-Tech Mall

This is the hlart content

Frodw= Pradnee Prwre Spplisd boe
401 Opipleg TPre 1500 DELL
402 [asparon OO0 2500 DELL
403 PoyesrEdge $300 1500 DELL

9. [Retailer]: Enter the quantity you need and click the "Place Order" button. See

Figure 13-13.

B2B XML Application: Step by Step 13-45

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

Figure 13-13 [Retailer]: Enter the Quantity and Click on "Place Order”

| Ele Ede Wiew Favortes Tock Hep |E
n : P A » o»
‘ @ 0= 9 9 el Links @ He
| Back e Stop Refiesh Home | Seawch |
_|-'5‘=E|E|IESS ITEI Folediourdap.uz. araclecom/0rall 7Aarder segl?custl d=2128prodld=410 L‘ -(‘> Go
Hi-Tech Mall
Thank you Oliv for shopping with us !
Please enter the quantity
!La_ptop lock at $25 each supplied by DELL i
| Cuantity ||1 |
| Flace Order |
&
‘&1 Dere. o | T Localintanet 7

10. [Retailer] Click "Go On", or "Give Up". See Figure 13-14.

XSQL Script Example 4: Enter a Quantity — order.xsq|

<?xmlversion="1.0"?>

<l-

| This is the fourth script called.

| It prompts you to enter a quantity.
I

| $Author: olediour@us $

| $Revision: 1.1$
+—>

13-46 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

1 Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

<?xml-stylesheet type="text/xsI' media="HandHTTP" href="PP.xg["?>
<?xml-stylesheet type="text/xsI' media="Mozila" href="HTMLxsI'?>

<order xmins:xsgl="um:oracle-xsql"
connection="retail"
custld="000"
prodld="000">
<pageTite>Hi-Tech Mall</pageTitie>
<xsglquerytag-case ="upper"
rowset-element=""
row-element ="cust™>
<|[CDATA
select C.ID,
CNAME
from CUSTOMER C
where C.ID ={@custd}f
>
<xsglno-rows-query>
Select {@custid} as "unknown™ from dual
</xsgl:no-rows-query>
</xsql.query>

<xsgl:query tag-case="upper"
rowset-element="'
row-element="prod">
<|[CDATAl
selectLID,
.DESCRIPTION,
1.PRICE,
SNAME
from INVENTORY_ITEM |,
SUPPLIER S
where .SUPPLIER _ID=S.ID and
11D = {@prodidy
I
<xsglno-rows-query>
Select {@prodid} as "unknown" from dual
</xsgl:no-rows-query>
</xsql.query>

<retumHome>index xsgl</retumHome>
</order>

B2B XML Application: Step by Step 13-47

1 Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

Figure 13-14 [Retailer}: Click "Go On"

e e | e

_Skp Mewe o Sesch

Hi-Tech Mall

Sl b e woer Ovder ber 1 memda)

o
G e |

13-48 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

2 Retailer Places Order

2 Retailer Places Order

The Retailer selects "Go On", then validates the order by selecting "Validate". See
Figure 13-15 and Figure 13-16.

Figure 13-15 [Retailer]: Click "Validate"

T N sl Applicalisn - Hizisaoll Inbasmel | eploirr asyided b
| Be [Yew Pt Lot | = |
e I [~ S - | * ke
LT S Sk Pafwh Hors Sech ([.‘
ﬁhm PR T PR TP P TIE) P o G Jo SN R PR :j .;:"Bl
H
Hi-Tech NMIall
Laseft S eddhnl
ot |
|

Figure 13-16 [Retailer]: Commit Successful. Table Ord has Been Updated

O Isiaill Applicalizn Hicisaodl Infasasl I cphod s peayeied b
| Be [ew Pl Lot | |
Lo S : : ul .
-t - s
ﬁhm iy 2 ramon i Aap a0 olcle o T el T 7 pimeal e wagl :j {:“Hl
X

Hi-Tech Mall

Copml guctesshill for soder #5206 Eor Ord

Bl pe Logen

B2B XML Application: Step by Step 13-49

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

3 "Validate" Commits the Transaction. Retailer Application Produces the
XML Order

1. Once "Validate" is clicked, this triggers the main B2B process by means of the
XSQL Servlet Action Handler. This is the end of client’s interaction.

The following scripts are executed by the B2B application (demo):
« XSQL Script Example 5: Starts B2B Process — placeorder.xsql

« Java Example 1: Action Handler Called by placeOrder.xsql —
Retail ActionHandler.java

« Java Example 2: Maintains Session Context for Retail ActionHandler.java —
SessionHolder.java

XSQL Script Example 5: Starts B2B Process — placeorder.xsq

<?xml version="1.0"?>

<

| This is the fifth and last, but not least, script called.

| This script actually fires the whole B2B process.

| It uses the Action Handler facility of XSQL Senviet.

I

| SAuthor: olediour@us $

| $Revision: 1.1 $

+—>

<?xml-stylesheet type="text/xsI' media="HandHTTP" href="PP.xgI"?>
<?xml-stylesheet type="text’xsI' media="Mozila" href="HTMLxslI"?>

<placeOrder xmins:xsgl="um:oracle-xsq"

connection="retail"

dbUr ='jdbc:oracle:thin:@atp-1.us.oracle.com:1521:0RCL"

usemame ='retailer”

password ="retailer"

entty ="Ord"

operation =insert"

custid ="

odd =

prodid ="
ay ="
<xsglinclude-request-params/>
<pageTitle>Hi-Tech Mall</pageTite>
<pageSeparator/>

13-50 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

<xsgl:action handler ="B2BDemo.XSQLActionHandler.RetailActionHandler"
doud ={@dbUr}"
usemame ="{@usemame}’
password ="{@password}"
enty ={@entity}'
operation ="{@operation}"*
custld ={@custld}"
odld ={@ordld}"
prodid ={@prodid}'
ay ={@ay}’>
<pageSeparator/>
<bottomLinks>
<alink href="placeOrder.xsql?operation=rollback>Rollback</aLink>
</bottomLinks>
<retumHome>index xsql</retumHome>
</placeOrder>

Java Example 1: Action Handler Called by placeOrder.xsqgl —
RetailActionHandler.java

Note: This example traverses almost 20 pages.

package B2BDemo.XSQLActionHandler;

fex

* Action Handler called by the placeOrder.xsql script.

* Actually fires the B2B process itself.

* Uses SessionHolder to maintain transaction state.

*

* @see SessionHolder

* @see placeOrder.xsql

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Corp.
i

import oracle xml.xsgl*;

import oracle xmlxsgl.actions. XSQLIncludeXSQLHandler;
import javax.serviet http.*;

import javax.senviet*;

import orgw3c.dom.*;

import java.sgl.*;
import javaio®;

B2B XML Application: Step by Step 13-51

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

import oraclexml.parser.v2.%;

import B2BDemo.AQUIil.*;
import B2BDemo.*,
import B2BDemo. XMLUHl.*;

public class RetailActionHandler extends XSQLActionHandlerimpl
{

private static final boolean verbose =false;

private static final boolean debugFile =false;

private Connection actionConnection = null;

private String appur =",
private String appUser =",
private String appPassword =",

public static final Sting DBURL ~ ="dbUH",
public static final Sting USERNAME ="usemame";
public static final String PASSWORD ="password";

public static final String OPERATION ="operation”;
public static final String ENTITY ="entity";

public static final Sting ORDID ~ ="ordlId",

public static final String ORDERDATE ="orderDate";
public static final String CONTACTNAME ="contactName";
public static final String TRACKINGNO ="trackingNo";
public static final Sting STATUS ~ ="stafus";

public static final String CUSTID ~ ="custid";

public static final Sting QTY ~ ="qty";
public static final String PRODID ="prodid",

public static final String SELECT = "select”,
public static final Sting INSERT ~ ="insert";
public static final Sting BEGIN ~ ="begin";
public static final Sting COMMIT = "commit",
public static final String ROLLBACK ="rollback’,

XSQLActionHandler nestedHandler = null;
String operation = null;

Stingentty =null;

13-52 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Stingordid =null;
String orderDate = null;
String contactName = null;
String trackingNo = null;
Stingstatus =null;
Stingcustid =nul;
String qty =nul;
Stingprodid ~ =nul;

HitpSenvietRequest request =null;
HitpSenvietResponse response =nul;
HttpSession session = nul;

public void init(XSQLPageRequest xspRequest, Element action)
{

super.init(xspRequest, action);

I/ Retrieve the parameters

if (verbose)

appun = getAttributeAllowingParam(DBURL, action);
appUser = getAttributeAllowingParam(USERNAME, action);
appPassword = getAttributeAllowingParam(PASSWORD, action);

operation = getAttributeAllowingParam(OPERATION, action);
entty = getAttributeAllowingParam(ENTITY, action);

ordld = getAttributeAllowingParam(ORDID, action);

orderDate = getAttributeAllowingParam(ORDERDATE, action);

contactName = getAttributeAllowingParam(CONTACTNAME, action);

trackingNo = getAttributeAllowingParam(TRACKINGNO, action);

status =getAttributeAllowingParam(STATUS, action);

custid = getAttributeAllowingParam(CUSTID, action);

prodid =getAttibuteAllowingParam(PRODID, action);

qy =getAtributeAllowingParam(QTY, action);

I

if (verbose)

{
System.out.printin(‘OrdID >" + ordid);
System.out.printin(‘CustiD > " + custid);
System.out.printn(*ProdID >" + prodid);

}

final String HOLDER _NAME ="XSQLActionHandler.connection”,

B2B XML Application: Step by Step 13-53

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

try
{
if (xspRequest.getRequestType().equals("Senvet "))
{
XSQLSenetPageRequest xspr = (XSQLSenetPageRequest)xspRequest;
HttpSenvetRequestreq = xspr.getHttpSenietRequest();
session = req.getSession(true); // true : Create if missing !!!
if (verbose)
System.out.printin(*Session Id =" + session.getld() + " - new : " +
session.isNew());
SessionHolder sh = (SessionHolder) session.getValue(HOLDER_NAME);
if (sh =null)
{
if (verbose)
System.out printin('New SessionHandler > Getting connected at " +
(new javauutil. Date()));
actionConnection = getConnected(appUr, appUser, appPassword);
sh =new SessionHolder(actionConnection);
session.putValue(HOLDER_NAME, shy;
}
actionConnection = sh.getConnection();
if (verbose)
{
System.out.printin('Reusing Connection at " + (new java.util.Date()) +
" - Opened at " + sh.getOpenDate().toString());
System.outprintin('Driver :"+
actionConnection.getMetaData().getDriverName());
System.out.printin("Sessionld : " + session.getid();
System.out.printin("AutoCommit : " +
actionConnection.getAutoCommit());
}
}

catch (Exception €)
{
System.err.printin("Error in retrieving session context \n" + €);
e.printStackTrace();
}
}

I/ The resultis the out parameter
public void handleAction(Node resutt) throws SQLException
{

XSQLPageRequest xpr = getPageRequest();

if (xpr.getRequestType().equals("Serviet))

13-54 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

I/ Get the serviet context and components
XSQLSenetPageRequest xspr = (XSQLSenetPageRequest)xpr;
request = xspr.getHtpSenvietRequest();

response = xspr.getHttpServietResponse();

Document doc = null;

I/ Display CLASSPATH
XMLDocument myDoc = new XMLDocument();
try
{
Element root = myDoc.createElement(‘root');

myDoc.appendChild(root);

Element cp = myDoc.createElement('ClassPath’);
root.appendChild(cp);

/I The textis a descendant of its node

Node cpTxt = myDoc.create TextNode("text);
cpTxtsetNodeValue(System.getProperty(‘java.class.path™));
cp.appendChild(cpTxt);

Element e = myDoc.getDocumentElementy();
e.getParentNode().removeChild(e);
resuttappendChild(e); // Append child to result before retuming it.

}
catch (Exception €)

System.err.printin(‘Building XMLDoc");
e.printStackTrace();

ry

{
/I Add a node to hold operation value
XMLDocument xmiDoc = new XMLDocument();
Element elmt =xmlIDoc.createElement(requiredOperation’);
xmiDoc.appendChild(elmt);
Node theText = xmiDoc.create TextNode(text#);
theText.setNodeValue(operation);
elmt.appendChild(theText);
Il Append to result
Element e = xmiDoc.getDocumentElement();

e.getParentNode().removeChid(e);
resuttappendChild(e); // Append child to result before retuming it.

B2B XML Application: Step by Step 13-55

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

}
catch (Exception €)
{
System.err.prinin('Building XMLDoc (2)");
e printStackTrace();
}
try
{
/I Dispatch
if (operation.equals(SELECT))
F* doc =manageSelect() */;
else if (operation.equals(INSERT))
doc = managelnsert();
else if (operation.equals(BEGIN))
doc =doBegin();
else if (operation.equals(COMMIT))
doc =doCommit();
else if (operation.equals(ROLLBACK))
doc = doRollback();
else // Wrong operation
{
XMLDocument xmiDoc = new XMLDocument();
Element elmt = xmlIDoc.createElement(“unknownOperation”);
xmiDoc.appendChild(elmt);
Node theText = xmIDoc.create TextNode(text#");
theText.setNodeValue(operation);
elmtappendChild(theText);
11 Append to result
Element e = xmiDoc.getDocumentElement();
e.getParentNode().removeChild(e);
resultappendChild(e); / Append child to resutt before retuming it.
}

}
catch (Exception ex)

{

Il file:/fhis.reportEmor(e);
XMLDocument xmiDoc = new XMLDocument();
Element eimt =xmlIDoc.createElement(*‘operationProblem”);
xmiDoc.appendChild(elmt);
Node theText = xmiDoc.create TextNode(text#);
theText.setNodeValue(ex.toString());
elmt.appendChild(theText);
/I Append to result
Element e = xmiDoc.getDocumentElement();

13-56 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

e.getParentNode().removeChild(e);
resuttappendChild(e); // Append child to result before retuming it.

}
try

if (doc !=null)
{
Element e = doc.getDocumentElement();
e.getParentNode().removeChild(e);
result.appendChild(e); // Append child to resutt before retuming it.
}

}
catch (Exception €)

try
{
SenletOutputStream out = response.getOutputStream();
out.printin(e.toString());

catch (Exception ex) {}

}
}
else //Command line ?
{

System.out.printin("‘Request type is [" + xpr.getRequestType() +'T);
}

}

e
* Removed because uselezss in this demo.
*
private Document manageSelect() throws Exception
{
Document doc = null;
String cStmt="";

if (custld '= null && custid length() > 0)
vo.setWhereClause('Customer_Id ="'+ custid +"™);
else
vo.setWhereClause(null);
vo.executeQuery();
doc = data.getXMLDocument(); // Query implicitly executed !
retum doc;

B2B XML Application: Step by Step 13-57

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

*
private Document managelnsert() throws Exception

{
Document doc =null;

if (entity.equals('Ord"))
doc =insertinOrd();
else if (entity.equals(‘Lineltem))
doc = insertinLine();
else
{
doc = new XMLDocument();
Element elmt = doc.createElement("'operationQuestion');
Alir attr = doc.createAttribute(‘op Type");
attr.setValue(insert);
elmt.setAttributeNode(attr);
doc.appendChild(elmt);
Node txt = doc.create TextNode("text#');
elmtappendChild(bx);
txt.setNodeValue("Don't know what to do with * + entity);
}

retum doc;

}

private Document insertinOrd()
{

Document doc = null;

if (custld = null || custid.length() = 0)

{
doc = new XMLDocument();
Element elmt = doc.createElement("'operationProblem"?);
Allr attr = doc.createAttribute(‘op Type");
attr.setValue('Ordinsert”);
elmt.setAttributeNode(attr);
doc.appendChild(elmt);
Node txt = doc.create TextNode("text#');
elmtappendChild(bxt);
txt.setNodeValue("Some element(s) missing for ord insert (custid)”);

}

else

{
String segStmt ="select Ord_Seq.nextVal from dual”;
String seqval =",
try
{

13-58 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Staterment stmt = actionConnection.createStatement();
ResultSet rSet = stmt.executeQuery(segStmt);

while (rSetnext())
seqVal =rSetgetSting(l);

rSet.close();

stmt.close);
}
catch (SQLException €)
{

System.err.printin("Error reading ORD_SEQ Sequence : " + e.toString());
}
I 1 2 3 4
String cStmt = "insertinto ORD values (?, sysdate, ?,'AX'|| ?,

‘Pending, ?)";

ry
{

if (verbose)

System.out.printin(“Inserting Order # " + seqVal);
PreparedStatement pStmt = actionConnection.prepareStatement(cStmt);
pStmt.setString(1, seqVal);
pStmt.setString(2, "Ora817"); // Default value !
pStmt.setString(3, seqVal);
pStmt.setString(4, custd);
pStmt.execute();
pStmt.close();
P
try

{
Statement stmt = actionConnection.createStatement();

ResultSet rSet = simt.executeQuery("SELECT * FROM ORD WHERE ID ="+
seqval);
inti=0;
while (rSetnext())
i+
if (verbose)
System.out.printin(+ " record found for "' + seqVal);
rSet.close();
stmt.close();
}
catch (SQLException €)
{
System.err.printn("Error : "' + e.toString());
}
*
doc = new XMLDocument();

B2B XML Application: Step by Step 13-59

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Element eimt = doc.createElement("operationResult’);
Atir attr = doc.createAttribute(‘op Type");
attr.setValue(insert’;

elmt.setAttributeNode(attr);

attr = doc.createAttribute('Step”);
attr setValue(entity);
elmt.setAttributeNode(attr);

doc.appendChid(elmt);

Node txt = doc.create TextNode(' text#);

elmt.appendChild(bxt);

txt.setNodeValue("About to insert your Order for " + gty +" item(s)");

Element nextElmt = doc.createElement("nextStep’);
elmt.appendChild(nextElImt);

attr = doc.createAttribute('Label");

attr.setValue('Go on');
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action”);
nextEimt.setAttributeNode(attr);
attr.setValue("placeOrder.xsq");
Element pList = doc.createElement(“prmList’);
nextEimt.appendChild(pList);

I viewobject

Element prm = doc createElement(“prm"Y);
pListappendChid(pm);

attr = doc.createAttribute("name”);
attr.setValue('entity”);
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue('Lineltem"?);
prm.setAttributeNode(attr);

Il custid

prm = doc.createElement("'prm’);
pListappendChid(pm);

attr = doc.createAttribute(“name’);
attr.setValue('custid”);
prm.setAttributeNode(atr);

attr = doc.createAttribute('value');
attr.setValue(custid);
prm.setAttributeNode(attr);

Il prodid

prm = doc.createElement("prm");

13-60 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

pListappendChid(pm);

attr = doc.createAttribute(“name”);
attr.setValue('prodid");
prm.setAttributeNode(attr);

attr = doc.createAttribute('value');
attr.setValue(prodid);
prm.setAttributeNode(attr);

aty

prm = doc.createElement("prm"”);
pListappendChid(pm);

attr = doc.createAttribute("name’);
attr.setValue('qty’);
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue(qty);
prm.setAttributeNode(attr);
/lordid

prm = doc.createElement("prm’);
pListappendChid(pm);

attr = doc.createAttribute(“name”);
attr.setValue(“ordld");
prm.setAttributeNode(attr);

attr = doc.createAttribute('value');
attr.setValue(seqVal);
prm.setAttributeNode(attr);

nextElmt = doc.createElement('nextStep”);

elmt.appendChild(nextElimt);

attr = doc.createAttribute(‘'Label”);
attr.setValue("Give up”);
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action”);
nextEimt.setAttributeNode(attr);
attr.setValue("placeOrderxsq");
pList = doc.createElement(‘prmList’);
nextElmt.appendChild(pList);

I viewobject

prm = doc.createElement("prm"”);
pList.appendChild(pm);

attr = doc.createAttribute("name’);
atir.setValue(“operation”);
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue('rollback’);

B2B XML Application: Step by Step 13-61

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

prm.setAttributeNode(attr);

}

catch (Exception €)

{
doc = new XMLDocument();
Element eimt = doc.createElement("operationProblem?);
Atir attr = doc.createAttribute(‘op Type");
attr.setValue(insert’);
elmt.setAttributeNode(attr);

attr = doc.createAttribute("Step”);
attr.setValue(entity);
elmt.setAttributeNode(attr);

doc.appendChid(elmt);

Node txt = doc.create TextNode(' text#);
elmt.appendChild(bx);
txtsetNodeValue(e.toString());

if (verbose)

System.out.printn("Error : " + e.toString();
Element prm = doc createElement("parameters”);
elmt.appendChild(prm);

/D
Element prmVal = doc.createElement('ID");
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(txt);
txt.setNodeValue(ordid);
//CUSTOMER_ID
prmVal = doc.createElement('CUSTOMER_ID');
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(bxt);
txt.setNodeValue(custid);
}
}

retum doc;

}

private Document insertinLine()
{
Document doc = null;
if (custid = null || custid.length() ==0||
gty =null || gty.length() ==0||
prodid == null || prodid.length() =0 |

13-62 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

ordld == null || ordid.length() = 0)
{
doc = new XMLDocument();
Element elmt = doc.createElement("operationProblem");
Attr attr = doc.createAttribute('op Type");
attr.setValue(linelnsert?);
elmtsetAttrbuteNode(attr);
doc.appendChild(elmt);
Node txt = doc.create TextNode("text#);
elmt.appendChid(bx);
txt.setNodeValue("Some element(s) missing for line insert (* +
((custld = null || custid.length() == 0)?"custid ") +
((aty =null || qtylength() = 0)?"qty ") +
((prodid = null || prodid.length() == 0)?"prodid ™) +
((ordld = null || ordid length() == 0)?"ordlId ") +""
)

Element subEImt = doc.createElement(custid”);
elmtappendChild(subEImt);

txt = doc.create TextNode(text#);
subElmt.appendChild(txt);
txt.setNodeValue(custld);

subEImt = doc.createElement('qty’);
elmtappendChild(subEImt);

txt = doc.create TextNode(text#);
subEImt.appendChild(bx);
txt.setNodeValue(qty);

subElmt = doc.createElement(‘prodid");
elmtappendChid(subEImt);

txt = doc.create TextNode(text#);
subEImt.appendChild(bx);
txt.setNodeValue(prodid);

subElmt = doc.createElement(‘ordld");
elmtappendChid(subEImt);
txt = doc.create TextNode(text#);
subElmt.appendChild(txt);
txt.setNodeValue(ordid);
}
else
{
if (verbose)
System.out printin(“Inserting line : Ord>" + ordid +", Prod>" + prodid

B2B XML Application: Step by Step 13-63

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

+,Qy>"+),
e
try
{
Statement stmt = actionConnection.createStatement();
ResultSet rSet = stmt.executeQuery("SELECT * FROM ORDWHERE ID ="+

ordid);
inti=0;
while (rSetnext())
i+
System.out.printin(i + " record found for " + ordid);
rSet.close();
stmt.close);
}
catch (SQLException €)
{
System.err.printn("Error : " + e.toString());
}
*
String cStmt ="insertinto line_item values (Line_item_seq.nextVal, ?, ?,
2,0
try
{

PreparedStatement pStmt = actionConnection.prepareStatement(cStmt);
pStmt.setString(1, qty);

pStmt.setString(2, prodid);

pStmt.setString(3, ordid);

pStmt.execute();

pStmt.close();

doc = new XMLDocument();

Element eimt = doc.createElement("operationResult”);
Attr attr = doc.createAttribute(“opType");
attr.setValue(insert;

elmt.setAttributeNode(attr);

attr = doc.createAttribute("Step”);
attr.setValue(entity);
elmt.setAttributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(text#);
elmt.appendChild(pxt);
txt.setNodeValue('Insert Successful’);

13-64 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Element nextElmt = doc.createElement(“nextStep”);
elmt.appendChild(nextElImt);

attr = doc.createAttribute("Label");
attr.setValue("Validate");
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action”);
nextEimt.setAttributeNode(attr);
attr.setValue(placeOrder.xsql’);
Element pList = doc.createElement(prmList’);
nextEimt.appendChild(pList);

I/ operation

Element prm = doc.createElement(‘prm”Y);
pListappendChid(pm);

attr = doc.createAttribute("name”);
attr.setValue('operation”);
prm.setAttributeNode(attr);

attr = doc.createAttribute('value');
attr.setValue(‘commit');
prm.setAtiributeNode(attr);

/lordid

prm = doc.createElement("prm’”);
pList.appendChild(pm);

attr = doc.createAttribute(“name’);
attr.setValue(“ordld);
prm.setAtiributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue(ordid);
prm.setAttributeNode(attr);

nextElmt = doc.createElement(‘nextStep”);
elmt.appendChild(nextElImt);

attr = doc.createAttribute("Label");
attr.setValue('Cancel”);
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action”);
nextEimt.setAttributeNode(attr);
attr.setValue('placeOrder.xsql');
pList = doc.createElement("prmList”);
nextEimt.appendChild(pList);

I/ operation

prm = doc.createElement("'prm’);
pListappendChid(pm);

attr = doc.createAttribute("name”);

B2B XML Application: Step by Step 13-65

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

attr.setValue(‘operation”);
prm.setAtiributeNode(attr);
attr = doc.createAttribute(value');
attr.setValue(rollback’);
prm.setAttributeNode(attr);

}

catch (Exception €)

if (verbose)
System.out.printin("Error when inserting " + e.toString());

doc = new XMLDocument();

Element eimt = doc.createElement("operationProblem’?);
Alir attr = doc.createAttribute(‘op Type");
attr.setValue(insert;

elmt.setAttributeNode(attr);

attr = doc.createAttribute('Step”);
attr setValue(entity);
elmt.setAttributeNode(attr);
doc.appendChid(elmt);

Node txt = doc.create TextNode(text#");
elmt.appendChild(bxt);
tet.setNodeValue(e.toString());

Element prm = doc createElement("parameters”);
elmt.appendChild(prm);

/D

Element prmVal = doc.createElement("ORD_ID');
prm.appendChild(prmVal);

txt = doc.create TextNode(text#");
prmVal.appendChild(bxt);
txt.setNodeValue(ordid);

QTY

prmVal = doc.createElement('QTY");
prm.appendChild(prmVal);

txt = doc.create TextNode(text#);
prmVal.appendChild(txt);

txt.setNodeValue(qty);

/IITEM_ID

prmVal = doc.createElement('ITEM_ID");
prm.appendChild(prmVal);

txt = doc.create TextNode(text#);
prmVal.appendChild(txt);

13-66 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

txt.setNodeValue(prodid);

}
}

retum doc;

}

private Document doCommit() throws Exception
{
Document doc = null;
actionConnection.commit();

doc = new XMLDocument();

Element elmt = doc.createElement("operationResult’);

Alir attr = doc.createAttribute(‘op Type");

attr.setValue("'commit;

elmt.setAttributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(' dummy’);

elmt.appendChild(bxt);

txt.setNodeValue("Commit successfull for order #' + ordid + " from "' +
entity);

if (ordld '= null && ordid.length() > 0)

{
I/l Generate XML Document to send to AQ
/I Start from Ord with Ordld value -

AQWriter agw = nul;

agw = new AQWriter(AppCste. AQuser,
AppCste.AQpswd,
AppCste. AQDBUH,
"AppOne_QTab’",
"AppOneMsgQueue”);

String doc2send = XMLGen.retumbDocument(actionConnection, ordid);
I/ sending XMLDoc in the Queue
try
{
if (verbose)
System.out.printin(‘Doc : "' + doc2send);
if (debugFile)
{
BufferedWriter bw = new BufferedWiiter(new FileWriter('debug.txt));
bw.write("Rows in " + entity);

B2B XML Application: Step by Step 13-67

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

bw.write(doc2send);
bw fiush();
bw.close();

}

}
catch (Exception ex) {

agw.writeQ(new B2BMessage(MessageHeaders. APP_A,
MessageHeaders. APP_B,

MessageHeaders. NEW_ORDER,
doc2send));
agw.flushQ(); # Commit!

}

retum doc;

}

private Document doRollback() throws Exception
{
Document doc = null;
actionConnection.rollback();

doc = new XMLDocument();

Element eimt = doc.createElement("operationResult’);
Atir attr = doc.createAttribute(‘'op Type");

attr.setValue(rollback’);

elmt.setAtributeNode(atr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(dummy');
elmtappendChild(bxt);

txt.setNodeValue('Rollback successfull’);

retum doc;

}

private Document doBegin() throws Exception
{
Document doc = null;
actionConnection.setAutoCommit(false);

doc = new XMLDocument();

Element eimt = doc.createElement("operationResult’);
Alir attr = doc.createAttribute(‘op Type");
attr.setValue("begin’);

elmt.setAttributeNode(atr);

13-68 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

doc.appendChild(elmt);

Node txt = doc.create TextNode('dummy’);
elmt.appendChild(txt);
txt.setNodeValue('Begin successfull);

retum doc;

}

private static Connection getConnected(String connURL,
String userName,
{ String password)
Connection conn = null;
try
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
conn = DriverManager.getConnection(connURL, userName, password);
conn.setAutoCommit(false);

}
catch (Exception €)

System.err.printn(e);
System.exit(1);
}
retum conn;
}
}

Java Example 2: Maintains Session Context for RetailActionHandler.java —
SessionHolder.java

1 Copyright (c) 2000 Oracle Corporation

package B2BDemo.XSQLActionHandler;

e

* Used to maintain the connection context from the XSQL Action Handler.
* Also closes the connection when serviet expires.
*

* @see RetailActionHandler

i

import javax.serviet*;

import javax.serviet http.*;

import java.sgl.*;

public class SessionHolder implements HitpSessionBindingListener

B2B XML Application: Step by Step 13-69

3 "Validate" Commits the Transaction. Retailer Application Produces the XML Order

{
private Connection c;
private java.util.Date d = null;

public SessionHolder(Connection conn)

{
System.out printin("New SessionHandler");
this.c = conn;
this.d = new java.util. Date();

}

public Connection getConnection()
{

retumthis.c;

}

public java.util. Date getOpenDate()
{

retum this.d;

}

public void valueBound(HttpSessionBindingEvent event)
{
System.out prinin(\nvalueBound ! " + event.getName() + "\nat " + (hew
java.util.Date()) + "\nfor "' + event.getSession().getid();
}

public void valueUnbound(HttpSessionBindingEvent event)
{
System.out printin(\nvalueUnbound ! " + eventgetName() + "\nat " + (new
javautil.Date() + "\nfor ' + event.getSession().getid();
eventgetSession().removeValue('XSQLActionHandler.connection”);
if (this.c '=null)
{
try{this.c.close(); }
catch (Exception €)

System.out printin("Problem when closing the connection from " +
eventgetName() +
“for" +
event.getSession().getid() +
A+
e);

13-70 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

4 AQ Broker-Transformer Transforms XML Document According to Supplier's Format

4 AQ Broker-Transformer Transforms XML Document According to
Supplier's Format
1. AQ Broker-Transformer application is alerted that an XML order is pending.

2. An XML document containing the details of your order has been produced
using the XML-SQL Utility. This document has been sent to the AQ
Broker-Transformer for propagation, using Advanced Queuing.

The AQ Broker application knows the following, based on its Stylesheet table:
=« Who it comes from: Retailer

« Who it goes to: Supplier

« What its for: NEW ORDER

These elements are used to select the correct stylesheet from Stylesheet table.
XSL-T Processor processes the transformation. See Figure 13-17.

Scripts:
« MessageBroker. java calls BrokerThread.java which calls

« BrokerThread.java calls AQReader.java and AQWriter.java

AQReader.java and AQWriter.java both use B2BMessages.java for
their message structure.

B2B XML Application: Step by Step 13-71

4 AQ Broker-Transformer Transforms XML Document According to Supplier's Format

Figure 13-17 [AQ Broker]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles (1 of 3)

!lliﬂli iuuu! ||II!!!! _,|
Bl eEEmEd]

ceensfmlly crosbed. flesnlter
lararTakle ClrdVien pas"1"%
aful aF1facas TdEER LS Tl
fhrderdslpP IRIR-1E-17 OC&PZ50.0
iCantacinane Hirall Pirien b scinane
4Trll:l|in;ﬂ*.lﬂlﬂ']r"ljl:!!?
CEiafanrPeand agldf Slatas>
CCandmmr [dpFUYCS Candamer L
LR [T o]
SLaiw Loellaen BN awns"1"3
E el L A I e
l!!lutllp:lh'.l' mand g
Ll Eemdde W TR [ian bl
Al @ DS 3 Ml rd 1
Mligaamat 04 Misaaanl
LELRTTRRR . FECEE 1)
L amen 1 mel 2 anl

&4l 8 1 oot
Ll T L
INik refimre s cosionss) =|
pl—— " L

3. Hit [Return] in the AQ Broker Console.

4. The correct stylesheet is found inside the Stylesheets table according to contents
in the AppFrom, AppTo, and Op columns. The XSL Transformation proceeds
using the selected stylesheet. We now have a reformatted XML document ready
for the Supplier.

Note: Here XML + XSL = XML

5. Again hit [Return] in the AQ Broker Console. See Figure 13-18. The broker.bat
screen changes as it has been transforming. The result is obtained after the
XSL-T transformation.

See the "AQ Broker-Transformer and Advanced Queuing Scripts"” section for code
listings that run the AQ Broker-Transformer and the Advanced Queuing process.

13-72 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

4 AQ Broker-Transformer Transforms XML Document According to Supplier's Format

Figure 13-18 [AQ Broker]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles (2 of 3)

" bl Bl =
5 T EE -
Liom eprmed CHBSE 13
qrd

lly eresbed. CHly W=
bl & IMEEREAS (e
COEIEABATE FRAD-N6-1F PR;AT-40. 0
SCAHTAL FERHL 8 rsl] fLODRET B TREH
« TRHECE | R HO AR5 24 TRACK | HE W
'!iFITIi'l-Fnln ETRTIE
CCHSTISEN _FR>21T¢ -"ﬂﬂ“t (L H]
11 FIHE2
illﬂh“ “-"I *
FE1E14F 10
lﬂTll'l"l-"l'.l'lllH“Tl':'
LITTH_ MSIRC TIEN Il:l
b BT T
<0 IR [!HIHIJ

1igipled hai

Tronatarmat poa Sass, |
[Nk refimrs s cosdonss) -

O] I

The newly reformatted XML document is sent to the Supplier by means of
Advanced Queuing [WRITE].

B2B XML Application: Step by Step 13-73

4 AQ Broker-Transformer Transforms XML Document According to Supplier's Format

Note: The AQ Broker and Supplier .bat screens should look the
same as both applications are processing the same XML document
at this moment.

Figure 13-19 Sample XML Document Output From AQ Broker-Transformer

Eg’,g Meszsage Broker Hi=]
< ?xml = -
“Results>-
<0rdyiew num=""1">
<Id-14z
< /I
<0rderdate-2000-07-07 09:41:14.0
</0rderdate-
<Contactname>=0radl?y
< /Contactname>-
<Trackingmo-ix]14z2
< /Trackingno-
<S5tatus>Fending
< /Status>-
<CustomerId-Z01
</Customer Td-
<Lineltem\iew-
“Lineltemyiew ROW num="1">
<Id-1059
</ Id-
<luantity>3
< /Quantity>-
<Itemld-404
< /Itemld>-
<0rdId-14:
< /0rdLd-
“Discount>-0
< /Discount-
</Lineltem¥iew ROMT-
</LineTtemyiews-
< /Ordi¥ieswr-
< /Resultss-

13-74 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

5 Supplier Application Parses the XML Document and Inserts the Order into the Supplier Database

5 Supplier Application Parses the XML Document and Inserts the Order
into the Supplier Database

1. The XML document is received by the Supplier application. It now needs to be
parsed for the data it contains, and this data is then inserted into the database.

2. Hit [Return] in the Supplier’s Console. See Figure 13-20.

Figure 13-20 [AQ Broker]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles (3 of 3)

(DEIFABATE P RAD-0R-77 PE;AP-40. 0

(CANTAL FERHL 30 s 017 LO0 D6l TR

 TRREHK 18 Wl R 56 4 TRALK | H il

-:irlTli Fead iag G/ RTRTIE

CCHSTESER _FR>P1T¢ -"f-lﬂl'l:t m=

I FDHS

-:IIE B -
1410

!lﬂTll'u"r'H'.fllIHHTl':-
LITEH_ IR &TDC/ TTER [
LT RS T T B
-:l]ﬂlhTrli.-'I[!I'ilrlI:

Tranatarmad boa Sass,
[0k refimrs Bs cosdonss)

] e Lf:

B2B XML Application: Step by Step 13-75

6a Supplier Application Alerts Supplier of Pending Order

6a Supplier Application Alerts Supplier of Pending Order

1. The document is processed and the data is inserted. The Supplier application
Watcher program sends a wake up message that an order is pending! See
Figure 13-21.

2. Click OK in the Supplier’s Watcher dialog box. See Figure 13-22.

Scripts:
« SupplierWatcher.java calls SupplierFramer.java

Figure 13-21 The Supplier Application Alerts Supplier of Pending Order: "Wake Up!"

Supplier Watcher H=] .
Waiting for Orders

(@ |23 Wake Up ! L,]

Bt Grder

Mew Order Pending |-

SR UIFOeT

13-76 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

6a Supplier Application Alerts Supplier of Pending Order

Figure 13-22 [Supplier]: retail.bat, broker.bat, and supplier.bat Consoles: After Clicking OK to Wake Up

| 5 uppliar sl

u.: EEFEEE
i

CHNRLARS L FImAE-0i-1F M
Ily eresbed.

S CNHTAC THRHE Hirsl 17400 0N Tt THaME
1TIIHIH|H5'“5:|'H|I'TII“'IHH?
CEERTHS Fead lu gt SERTIE

CCHE TISUN_ BN D :r-:n:l::nl.l imr
< ITEWS

L4
AT EAYH 1L AT T
'IEh1|.l:-J|1 # LTEH_ Dnx
(1]

(AT Im

framstarnalsen dune.
Ril reflare o coslapmn]
vaddrdilal geileracTab]e

scarsefal geilleras
Ll

B2B XML Application: Step by Step 13-77

6a Supplier Application Alerts Supplier of Pending Order

6b Supplier Decides to Ship the Product(s) to the Retailer

1. You, the supplier, decide to ship this order. Click "Ship Order" in the dialog box.

See Figure 13-23 and Figure 13-24.
Scripts: Still using SupplierWatcher.java.

Figure 13-23 [Supplier]: Decides to Ship the Order

Order [526] to process for [Oliv]

Brag Qi er

Figure 13-24 [Supplier]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles on "Ship Order"

| vkl Bl

| 5 guplen. bl

jpriafull grifasas

i L T

Framufarmalion dape.

Bil Felarm Ba dasd iner]
sccreafal qeilesusTakle
pccemsfal grifjsees
svcensinll dfarar

Ay e Belail Nedisaed
v > ENFFLY

e ¥ BLIAIL

Fppn * WERRTE AEER
Camleml *
CENEPME TR CFENEr)

|01l refars 8 candonss]
L

s

13-78 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

6a Supplier Application Alerts Supplier of Pending Order

6¢ Supplier Application Generates a New XML Message to Send to AQ Broker
1. i

The Supplier application shipping order generates a new message, sent to the
broker.
2.

Hit [Return] in the Broker’s Console. See Figure 13-25

Figure 13-25 [Supplier]: retailer.bat, broker.bat, and supplier.bat Consoles - Form New XML Document

scersaial geileessiakils
sccrmaful geifm=nes

Framufarnalaem dapn.
Bii Fetarm o oant insae]
accewsfull ddacar

&F [TEH_ B
A ETIHE?

apily e I-ruul R i wavad

Ira-:l !.lr

¥

r"-! ¥ H‘IIIE IERER
Fanlen

SHEF: LHH‘III:F:I
Il refars s cosionas)

i
|

i

B2B XML Application: Step by Step 13-79

7 AQ Broker-Transformer Transforms XML Order into Retailer's Format

7 AQ Broker-Transformer Transforms XML Order into Retailer’'s Format

1. Asin Step 4, a stylesheet is chosen from AQ Broker-Transformer database and
applied to the XML order document to produce a reformatted XML document.

2. Hit [Return] in the Broker’s Console. See Figure 13-26.

Figure 13-26 [AQ Broker]: retailer.bat, broker.bat, and supplier.bat Consoles - Reformat XML Document

T B Ll 0§ Fae
el s resd fran MR 110

maed 2
tPaml werslans"1. 0"

tanlimtylrafiowl smlascaalr"Nlps s e,
wersime=~105F

faglziemplaie maiabs"s] i) qammenill]
imn | ceppl
fuliapply-tamplaios splocl="=i§
dfan lIeapyt
LE R H T

el iniploshenis

Mesmli 2

HERIPFS < P ERIrS

Tranatarmad o Sans, |
[0k refimrs Bs cosdonss) -
PR 2

3. The document is sent to the Retailer application.

4. Hit[Return] in Retailer’s Console. See Figure 13-27. This parses the XML order.

Figure 13-27 [AQ Broker]: retailer.bat, broker.bat, and supplier.bat Consoles - Sending XMLMessage

, Dl Bl 1 G gaplers sl

Tk BBl B P (]
el fa resd frsm W O 110

L -
tPoml wews lans™1 0703

Canliatplrafieel smlasaal-"REipds e,
wersisn="1.0%F

Canlziemplaie matahs"s] fn] iammepiil]
dmslicepyd
sl lapply-tanplaios splock="s]@
dfan Iz eapas
sl lenp latex

hitf reiErn B coml pams]_

fwnliniploshenis

Mesali 2
[CAREPFSTRC ERIR S

Tramatarnad jom dais,
[0t refars s cosdonss)

L e — Ll:'

13-80 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

8 Retailer Application Updates the Ord Table and Displays the New Order Status to Retailer

8 Retailer Application Updates the Ord Table and Displays the New
Order Status to Retailer

1. Retailer application updates the Retailer database "Pending " status with the
new "shipped" order status information. The Ord table is updated.

2. This information is viewed by the Retailer from any device. The status is seen as
"Shipped". See Figure 13-28.

Scripts:
UpdateMaster.java . This receives the message and parses it.

Figure 13-28 [Retailer]: retailer.bat, broker.bat, and supplier.bat Consoles - Updates Status to Shipped

tanlimbybenhont mmban lowB="RELpld e,
wers jae="1.0%

fasgliismplais maich-"u] P=| commenill |
dxnllicepwr
dutllapply-templates sclecic“sjd
-c.l'uL:“‘-,!-
rgmlzlemplabed

L en] ety lesheen >

Fewull 1
CRHEFXE TP SHDPD

Iramsfarnaione duns.
Ril relare s conlapar]
vavdrislal actlerecTalle
seprdefal qeilmess

ol | L

That's it!

To Stop the B2B XML Application
To stop the B2B XML application (demo), run Java Example 3: stopQ.bat.

Java Example 3: stopQ.bat
@echo off

@echo stopping all Qs
D:\dev31\avalhinjava -mx50m -classpath
"D:\xmi817\references\Ora817DevGLide;

B2B XML Application: Step by Step 13-81

8 Retailer Application Updates the Ord Table and Displays the New Order Status to Retailer

D:\dev31\ib\dev-rt.zip;
D:\dev31\dbclib\oracle8.1.6\classes111.zip;
D:\dev31\ib\connectionmanager.zip;
D:\dev31\ib;D:\dev3\ibloraclexsal jar;
D:\dev3\ib\oraclexmisgljar;
Di\jdev3ibxmlparserv2_2027 jar;
D:\dev31\fclib\swingall jar;
D:\dev31\iswdk-1.0.1\ib\senvietjar;
D:\Ora8irdbmsljib\agapill jar;
D:\Ora8ivdbmslib\agapi.jar;
D:\XMLWorkshopmicomp jar;
Di\jdev31\avalib\classes.zip" B2BDemo.AQUIl.StopAllQueues

Check Your Order Status Directly Using vieworder.sq|
To view your order status directly from the database run this SQL script.

setver off
select O.ID as "Order#’,
O.OrderDate as "Order Date",
O.Status as "Status”
From ORD O,
CUSTOMERC
Where O.CUSTOMER _ID=C.IDand
Upper(C.NAME) = Upper(&CustName));

13-82 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

Java Examples - Calling Sequence

Java Examples - Calling Sequence

The following list provides the Java examples’ calling sequence. The .java extension
for each file has been omitted. The notation "<---" implies "calls", for example,
AQReader <----- B2BMessage implies that AQReader calls B2BMessage.

AQReader <---- B2BMessage
AQWriter <---- B2BMessage
UpdateMaster

<---- AQReader <----B2BMessage
<---- B2BMessage

- MessageHeaders
XMLFrame

SupplierWatcher

<---- SupplierFrame

* <---- AQReader <---- B2BMessage

* <----XML2DMLV2 <---- TableInDocument
* <---- TableInDocument

* <---- AQWriter <---- B2BMessage

* <---- B2BMessage

* <---- MessageHeaders

<---- XMLFrame

MessageBroker

<---- AppCste

<---- BrokerThread

* <---- XSLTWrapper

* <---- AQWriter <---- B2BMessage
* <---- AQReader <---- B2BMessage
<---- AQReader <---- B2BMessage
<---- AQWriter <---- B2BMessage

B2B XML Application: Step by Step 13-83

Java Examples - Calling Sequence

« <---- XMLFrame (called by MessageBroker)

. Retail ActionHandler <---- SessionHolder

13-84 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

XSL and XSL Management Scripts

To prevent over complicating the listing of examples in the section, "Running the
B2B XML Application: Detailed Procedure”, the XSL examples are listed separately.

« XSL Stylesheet Example 1: Converts Results to HTML — html.xsl

» XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl
« Java Example 3: Stylesheet Management— GU I Interface.java

« Java Example 4: GUlInterface_AboutBoxPanel.java

« Java Example 5: GUIStylesheet.java

XSL Stylesheet Example 1: Converts Results to HTML — html.xsl

<2xml version="1.0"?>
<l-

| $Author: olediour@us $
| $Date: 04-May-2000

| sl for html

| $Revision: 1.1 $

+—>

<xslstylesheet xmins:xsi="http:/Amwwv.w3.0rg/1999/XSL/Transform"
version="1.0">

<xsloutput media-type="texthtml" method="html" encoding="ISO-8859-1"/>

<xsltemplate match="/">
<htmi>
<head>
<tite>Retail Application<fitie>
<thead>
<body>
<xslif test="/fpageTitle">
<h2><xslvalue-of select="llpageTitle"/><h2>
</xslif>
<xsl.choose>
<xslwhen test="loginResuit>
<xsl:apply-templates select="loginResult'/>
</xslwhen>
<xslwhen test="index>
<xslapply-templates select="index />
</xslwhen>
<xslwhen test="inventory">

B2B XML Application: Step by Step 13-85

XSL and XSL Management Scripts

<xslapply-templates select="inventory'/>
</xslwhen>
<xslwhen test="order">
<xsl:apply-templates select="order"/>
</xslwhen>
<xslwhen test="placeCQrder">
<xslapply-templates select="placeOrder"/>
</xslwhen>
<xslothenwise>
<p align="center">
<h3>This kind of XML Document cannot be processed...<h3>
<Ip>
</xslotherwise>
</xsl.choose>
</body>
<htmi>
</xsltemplate>

<xsltemplate match="loginResult">
<xslif test="ROWSET/ROW/unknown>
<table width="98%">
<tr>
<td bgcolor="yellow'" align="center">
<xslvalue-of select="ROWSET/ROW/unknown'/> is not allowed to log in I</td>
<fr>
<fable>
<Ixslif>
<xslif test="ROWSET/ROW/NAME">
<p align="center">
<h2>Welcome <xslvalue-of select="ROWSET/ROW/NAME"/> I<h2>
<Ip>
<p align="center">
<a>
<xslattribute name="href">
<xslvalue-of select="nextStep'/>?custid=<xsl:value-of select="ROWSET/ROW/ID'/>
</xslattribute>
Please enter the Mall !
<la>
<p>
<Ixslif>
<p>
<a><xslattribute name="href"><xsl.value-of
select="retumHome"/></xsl:attribute>Back to Login
<lp>
</xsltemplate>

13-86 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

<xsltemplate match="index">
<xslfor-each select="form>
<center>

<form>
<xslattribute name="action"><xsl:value-of select="/@action"/></xsl:attribute>

<xsl:attribute name="method"><xsl:value-of select="/@method"/></xsl:atiribute>
<xdlif test="/field">
<table width="98%" border="1">
<xsl-for-each select="/field">
<r>
<td align="right ><xsl:value-of select="/@prompt /></td>
<td>
<input>
<xsl:choose>
<xslwhen test="/@type = text">
<xslattribute name="type">text</xsl:attribute>
</xslwhen>
</xsl.choose>
<xslattribute name="name">
<xslvalue-of select="/@name"/></xsl:attribute>
<finput>
<ftd>
<fr>
</xslfor-each>
<fable>
<fxslif>
<xsl:if test="/button>
<p>
<xsl:for-each select="/button">
<input>
<xsl:choose>
<xslwhen test="/@type = 'submit™>
<xsl:attribute name="type">submit</xsl:attribute>
<xslwhen>
</xsl:choose>
<xsl:atribute name="value">
<xslvalue-of select="/@label"/>
</xsl:attribute>
<finput>
</xslfor-each>
<p>
</xslif>
<fform>
<[center>

B2B XML Application: Step by Step 13-87

XSL and XSL Management Scripts

</xslfor-each>
</xsltemplate>

<xsltemplate match="inventory">
<h2>This is the Mart content</h2>
<table>
<>
<th>Prod #</th>
<th>Product<th>
<th>Price</th>
<th>Supplied by</th>
<fr>
<xslfor-each select="formtheMartROWSET/ROW">
<>
<td><xslvalue-of select="ID"/><fd>
<>
<a>
<xslattribute name="href">
<xslvalue-of
select="../../../.form/@action"/>?custid=<xsl:value-of
select="./..../..florm/hiddenFields/custid"/>&prodid=<xsl:value-of
select="ID"/>
</xsl:attribute>
<xslvalue-of select="DESCRIPTION"/>
<Ja>
<fic>
<td><xslvalue-of select="PRICE"/></td>
<td><xslvalue-of select="NAME"/></td>
<fr>
</xsl-for-each>
<fable>
<p>
<a><xslattribute name="href ><xsl:value-of
select="retumHome"/></xsl:attribute>Back to Login
<p>
</xsltemplate>

<xsltemplate match="order">
<center>
<h2>Thank you <xsl:value-of select="CUST/NAME'/> for shopping with us
<h2>
<hrf>
<h2>Please enter the quantity<h2>
<form action="placeOrder.xsq" method="post ">
<input type="hidden" name="prodId">

13-88 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

<xslatfribute name="value">
<xslvalue-of select="PROD/ID"/>
</xslattribute>
<finput>
<input type="hidden" name="custld">
<xslattribute name="value">
<xslvalue-of select="CUST/ID"/></xsl:attribute>
<finput>
<table border="1">
<>
<td colspan="2"><xsl:value-of select="PROD/DESCRIPTION"/>
at $<xslvalue-of select="PROD/PRICE"/> each
supplied by <xsl:value-of select="PROD/NAME"/></td>

<tr>
<td align="right >Quantity</td>
<td><input type="text" name="gty"/></td>
<>
<ftable>
<p><input type="submit" value="Place Order"/></p>
<florm>
</center>
<p>
<a><xslattribute name="href">
<xslvalue-of select="retumHome"/>
</xslattribute>Back to Login
<p>
</xsltemplate>

<xsltemplate match="placeOrder">
<xslif test="operationResult">
<table width="98%">
<tr><td align="center>

<xslvalue-of select="operationResult/text()"/>
</fd></fr>
<tr>
<{d align="center">
<xslfor-each select="operationResul/nextStep">
<form method="post">
<xslattribute name="action"><xsl.value-of
select="/@Action"/></xsl:atribute>
<xslif test="prmList">
<xslfor-each select="prmlList/prm">
<input type="hidden">

B2B XML Application: Step by Step 13-89

XSL and XSL Management Scripts

<xslattribute name="name"><xsl:value-of
select="/@name"/></xsl:attribute>
<xslatiribute name="value"><xsl.value-of
select="/@value"/></xsl:attribute>
<finput>
</xslfor-each>
</xslif>
<input type="submit>
<xslatiribute name="value"><xsl.value-of
select="/@Label'></xslattribute>
<finput>
<form>
<xslfor-each>
<fto>
<fr>
<ftable>
<Ixslif>
<xslif test="xsqgl-emor">
<table width="98%">
<tr><td><xsl:value-of select="xsgl-error/@action’/><td></tr>
<tr><td><xsl:value-of select="xsql-error/statement /><fd></tr>
<tr><td><xsl:value-of select="xsgl-errorimessage'/><td></tr>
<table>
<Ixslif>
<xslif test="operationProblem">
<table width="98%">
<>
<td colspan="2" align="center">
<xsl:value-of
select="operationProblem/text()'/><ffont>
<fto>
<fr>
<xsl:for-each select="operationProblem/parameters/*>
<tr>
<td align="right"><xsl:value-of select="name()"/><fd>
<td align="left"><xslvalue-of select="."/></td>
<>
</xslfor-each>
<fable>
</xslif>
<xslif test="bottomLinks">
<xsl:choose>
<xslwhen test="operationResult">
</xslwhen>
<xslotherwise>

13-90 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

<p dign="center>
<xsl:for-each select="bottomLinks/aLink>
[<a><xslatiribute name="href ><xsl.value-of
select="/@href'></xsl:attribute><xsl:value-of select="."/>]
</xslfor-each>
<p>
<xslotherwise>
<xsl:choose>
</xslif>
<xsl.choose>
<xslwhen test="operationResult/nextStep">
<fxslwhen>
<xsl.otherwise>
<xslif test="retumHome">
<p>
<a><xslattribute name="href ><xsl:value-of
select="retumHome"/></xsl:attribute>Back to Login
<p>
</xslif>
</xslotherwise>
</xsl.choose>
</xsltemplate>

</xsl:stylesheet>

XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl

<?xml version="1.0"?>

<

| $Author: olediour@us $

| $Date: 04-May-2000

| xsl for html (Palm Pilot, HandWeb browser)
| $Revision: 1L.1$

>

<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/Transform”
version="1.0">
<xsloutput media-type="texthtml" method="html" encoding="1ISO-8859-1"/>

<xsltemplate match="/">
<htmi>
<head>
<tite>Retail Application<fitie>
<fhead>

B2B XML Application: Step by Step 13-91

XSL and XSL Management Scripts

<body>
<xslif test="/pageTite">
<h2><xslvalue-of select="/pageTitle"/><h2>
</xslif>
<xslchoose>
<xshwhen test="loginResult">
<xslapply-templates select="loginResult’/>
</xslwhen>
<xslwhen test="index">
<xsl:apply-templates select="index/>
</xslwhen>
<xslwhen test="inventory>
<xslapply-templates select="inventory'/>
</xslwhen>
<xslwhen test="order">
<xsl.apply-templates select="order"/>
</xslwhen>
<xshwhen test="placeOrder">
<xslapply-templates select="placeOrder"/>
</xslwhen>
<xslotherwise>
<p adlign="center>
<h3>This kind of XML Document cannot be processed...<h3>
<lp>
</xslotherwise>
</xsl:choose>
</body>
<htmk>
<xsltemplate>

<xsltemplate match="loginResult>
<xslif test="ROWSET/ROW/unknown">
<table width="98%">
<tr><td bgcolor="yellow" align="center"><xsl.value-of
select="ROWSET/ROW/unknown'/> is not allowed to log in '</td><fr>
<ftable>
</xslif>
<xslif test="ROWSET/ROW/NAME">
<p aign="center'>
<h2>Welcome <xslvalue-of select="ROWSET/ROW/NAME'/> I<h2>
<lp>
<p align="center">
<a>
<xslattribute name="href"><xsl:value-of
select="nextStep"/>?custid=<xsl:value-of

13-92 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

select="ROWSET/ROWI/ID"/></xsl:attribute>
Please enter the Mall !
<fa>
<p>
</xslif>
<p>
<a><xslattribute name="href"><xsl.value-of
select="retumHome"/></xslatfribute>Back to Login
<p>
</xsltemplate>

<xsltemplate match="index">
<xsl-for-each select="form">
<center>
<form>
<xsl:attribute name="action"><xsl.value-of
select="/@action"/></xsl:attribute>
<xslattribute name="method"><xsl:value-of
select="/@method"/></xsl:attribute>
<xlif test="/field">
<table width="98%" border="1">
<xsl:for-each select="ffield">
<r>
<td align="right><xsl:value-of select="/@prompt'/><fd>
<to>
<input>
<xsl:choose>
<xslwhen test="/@type = text">
<xslattribute name="type">text</xslattribute>
</xslwhen>
</xsl.choose>
<xsl:atribute name="name"><xsl.value-of
select="/@name"/></xsl:attribute>
<finput>
<hd>
<fr>
</xslfor-each>
<ftable>
<fxslif>
<xslif test="/button">
<>
<xsl:for-each select="/button">
<input>
<xsl:choose>
<xslwhen test="/@type = 'submit™>

B2B XML Application: Step by Step 13-93

XSL and XSL Management Scripts

<xslattribute name="type">submit</xsl:attribute>
<xslwhen>
</xsl.choose>
<xsl:attribute name="value"><xsl.value-of
select="/@label"/></xslattribute>
<finput>
</xslfor-each>
<p>
<fxslif>
<fform>
<[center>
</xsl-for-each>
</xsltemplate>

<xsltemplate match="inventory">
<h2>This is the Mart content</h2>
<xsl:for-each select="fom/theMaryROWSET/ROW">
<xslvalue-of select="ID"/>
<xsltext> </xsltext>
<form method="post>
<xslattribute name="action">
<xslvalue-of select="....././.form/@action'/>
</xslattribute>
<input type="hidden" name="custld">
<xslattribute name="value"><xsl:value-of
select="../../../. fform/iddenFields/custid"/></xsl:attribute>
<finput>
<input type="hidden" name="prodld">
<xsl:attribute name="value"><xsl.value-of
select="ID"/></xsl:attribute>
<finput>
<input type="submit">
<xsl:attribute name="value"><xsl.value-of
select="DESCRIPTION"/></xsl:attribute>
<finput>
<fform>
<xsltext> @ $</xsltext><xslvalue-of select="PRICE"/><xsl:text>
each</xsltext>
<xsltext> Supplied by </xsltext><xsl:value-of select="NAME"/>

</xsl-for-each>
<p>
<a><xslattribute name="href"><xsl.value-of
select="retumHome"/></xslatfribute>Back to Login
<p>

13-94 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

</xsltemplate>

<xsltemplate match="order">
<center>
<h2>Thank you <xsl:value-of select="CUST/NAME'/> for shopping with us
<h2>
<hr>
<h2>Please enter the quantity</h2>
<form action="placeOrder.xsq" method="post">
<input type="hidden" name="prodld">
<xslattribute name="value"><xsl.value-of
select="PROD/ID"f></xsl:atfribute>
<finput>
<input type="hidden" name="custld">
<xslattibute name="value"><xsl.value-of
select="CUST/ID"/></xsl:attribute>
<finput>
<p>
<xslvalue-of select="PROD/DESCRIPTION"/>
at $<xslvalue-of select="PROD/PRICE"/> each
supplied by <xslvalue-of select="PROD/NAME"/>
<brf>
Quantity :
<brf>
<input type="text' name="qty"/>
<p>
<p><input type="submit" value="Place Order"/></p>
<fform>
</center>
<p>
<a><xslattribute name="href ><xsl:value-of
select="retumHome"/></xslatfribute>Back to Login
<fp>
</xsl.template>

<xsltemplate match="placeOrder">
<xslif test="operationResult">
<center>

<xslvalue-of select="operationResultftext()"/>

<brf>

<xslfor-each select="operationResul/nextStep">

<form method="post>
<xslattribute name="action"><xsl:value-of
select="/@Action"/></xsl:atiribute>

<xslif test="prmList">

B2B XML Application: Step by Step 13-95

XSL and XSL Management Scripts

<xsl-for-each select="prmListjorm">
<input type="hidden">
<xslattribute name="name"><xsl.value-of
select="/@name"/></xsl:attribute>
<xsl:attribute name="value"><xsl.value-of
select="/@value"/></xslattribute>
<finput>
</xslfor-each>
</xslif>
<input type="submit">
<xsl:attribute name="value"><xsl.value-of
select="/@Label'/></xsl:attribute>
<finput>
<fform>
</xsl-for-each>
</center>
</xslif>
<xslif test="operationProblem">
<table width="98%">
<tr><td align="center"><xsl.value-of
select="operationProblem"/><fd></r>
<fable>
</xslif>
<xslif test="bottomLinks">
<xsl.choose>
<xslwhen test="operationResult">
</xslwhen>
<xsl.otherwise>
<p align="center">
<xsl-for-each select="bottomLinks/aLink">
[<a><xslatiribute name="href"><xsl.value-of
select="/@href /></xslattribute><xsl:value-of select="."/>]
</xsl-for-each>
<p>
</xsl:otherwise>
</xsl:choose>
</xslif>
<xsl:choose>
<xslwhen test="operationResult/nextStep">
<xslwhen>
<xsl.otherwise>
<xslif test="retumHome">
<p>
<a><xsl:attribute name="href"><xsl:value-of
select="retumHome"/></xsl:attribute>Back to Login

13-96 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

<>
<Ixslif>
</xslotherwise>
</xsl:.choose>
</xsltemplate>

</xslstylesheet>

Java Example 3: Stylesheet Management— GUlInterface.java

This script creates and manages the GUI and stylesheets used in the B2B XML
application.

package B2BDemo.StyleSheetUtil;

/‘k*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import javax.swing.*;

import java.awt*,

import java.awtevent,

import java.sgl.*;

import java.util.;

I needed for new CLOB and BLOB classes
import oracle.sgl.;

import oracle jdbc.driver;

import java.beans.*,

import javax.swing.event.;

import B2BDemo.*;
import B2BDemo XMLUil.*;

public class GUInterface extends JFrame
{
private boolean lite =false; // Use O8iLite
private boolean inserting = false;

private final static int UPDATE = 1;
private final static int INSERT =2,

private final static int ENTER_QUERY =1,
private final static int EXEC_QUERY =2;

int queryState = ENTER_QUERY;

B2B XML Application: Step by Step 13-97

XSL and XSL Management Scripts

Stiing sqiStmt ="Select APPFROM, " +
APPTO,"+
OP,"+
" XSL"+
"From styleSheets",

private static String connURL = AppCste. AQDBUI;
private static String userName = AppCste.AQuser;
private static String password = AppCste. AQpswd;
private Connection conn = null;

private Vector recVect = null;
intcurRec=0;
XsIRecord thisRecord = null;

BorderlL_ayout borderLayoutl = new BorderLayout();
JPanel jPanell = new JPanel();

JMenuBar menuBarl = new JMenuBar();

JMenu menuFile = new JMenu();

JMenultem menuFileExit = new JMenultem();
JMenu menuHelp = new JMenu();

JMenultem menuHelpAbout = new JMenultem();
JLabel statusBar = new JLabel();

JToolBar toolBar = new JToolBar();

JButton buttonOpen = new JButton();

JButton buttonClose = new JButton();

JButton buttonHelp = new JButton();

Imagelcon imageOpen;

Imagelcon imageClose;

Imagelcon imageHelp;

JPanel jPanel2 = new JPanel();

Borderl_ayout borderLayout? = new BorderLayout();
JButton firstButton = new JButton();

JPanel jPanel3 = new JPanel();

JPanel jPanel4 = new JPanel();

BorderLayout borderLayout3 = new BorderLayouit();
Borderl_ayout borderl_ayout4 = new Borderlayout();
JPanel jPanel5 = new JPanel();

JTextFeld fromAppValue = new JTextFeld();
JLabel fromApp = new JLabel();

JPanel jPanel6 = new JPanel();

BorderLayout borderLayout5 = new BorderLayouit();
JLabel jLabel2 = new JLabel();

JScrollPane jScrolPanel = new JScrollPane();

13-98 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

JTextArea XSLStyleSheet = new JTextArea();
JButton previousButton = new JButton();
JButton nextButton = new JButton();
JButton lastButton = new JButton();

JButton validateButton = new JButton();
GridLayout gridLayout1 = new GridLayout();
JLabel toApp =new JLabel();

JTextFeld toAppValue = new JTextFeld();
JLabel operationLabel = new JLabel();
JTextField opValue = new JTextField();
JButton newButton = new JButton();
JButton deleteButton = new JButton();
JButton queryButton = new JButton();

public GUInterface()
{
super();
try
{
jpInit();
buttonOpen.seticon(imageOpen);
buttonClose.setlcon(imageClose);
buttonHelp.setlcon(imageHelp);

catch (Exception €)
{
e.printStackTrace();
}
}

private void getConnected() throws Exception
{
try
{
if (lite)
{
Class forName('oracle.lite.poljdbc.POLIDBCDriver');
conn = DriverManager.getConnection(jdbc:Polite:POLite", "system”,
"manager);
}

else

Class.forName (‘oracle.jdbc.driver.OracleDriver”);
conn = DriverManager.getConnection (connURL, userName, password);
}

B2B XML Application

: Step by Step 13-99

XSL and XSL Management Scripts

}
catch (Exception €)

System.err.printin("Get connected failed : " + e);
throw e;
}
}

private void jbinit() throws Exception
{
if (conn ==null)
{
try { getConnected(); }
catch (Exception €)
{
JOptionPane.showMessageDialog(null, e.toString(),
"Connection”,
JOptionPane. ERROR_MESSAGE),
System.exit(1);
}
}
imageOpen = new Imagelcon(GUInterface.class.getResource(openfile.gif'));
imageClose = new Imagelcon(GUInterface.class.getResource("closefile.gif'));
imageHelp = new Imagelcon(GUInterface.class.getResource("help.gif));
this.setTitle("Style Sheets Management”);
this.getContentPane().setlayout(border_ayoutl);
this.setSize(new Dimension(511, 526));
jPanell.setLayout(borderLayout2);
menuFile.setText("File");
menuFileExitsetText("Exit’);
menuFileExitaddActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
fileExit_ActionPerformed(e);
}
b
menuHelp.setText('Help');
menuHelpAbout.setText(‘About’);
menuHelpAbout.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
helpAbout_ActionPerformed(e);
}
b
statusBar.setText('Initializing...");
buttonOpen.setTooTipText("Open File");
buttonClose.setToolTipText("Validate modifications”);

13-100 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

buttonHelp.setToolTipText("About Style Sheet Manager");
firstButton.setText('<<");

jPanel5.setLayout(gridLayoutl);

fromApp.setText('From Application :");
fromApp.setHorizontalAlignment(SwingConstants.RIGHT);
jLabel2 setText("XSL Style Sheet);
previousButton.setText('<');

nextButton.setText(">");

lastButton.setText(">>");

validateButton.setText("Validate');

gridLayoutl.setRows(4);

toApp.setText(To Application : *);

toApp.setHorizontal Alignment(SwingConstants.RIGHT);
operationLabel.setText("Operation :);
operationLabel.setHorizontalAlignment(SwingConstants.RIGHT);
jPanel6.setLayout(borderLayouts);
jPaneld.setLayout(borderLayoutd);
jPanel3.setLayout(borderLayout3);
menuFile.add(menuFileExit);

menuBarl.add(menuFile);
menuHelp.add(menuHelpAbout);
menuBarl.add(menuHelp);

this.setIMenuBar(menuBarl);
this.getContentPane().add(statusBar, BorderLayout SOUTH);
toolBar.add(buttonOpen);

toolBar.add(buttonClose);

toolBar.add(buttonHelp);
this.getContentPane().add(toolBar, Border_ayout NORTH);
this.getContentPane().add(jPanell, BorderLayout. CENTERY);
jPanell.add(Panel2, BorderLayout. SOUTH);
jPanel2.add(queryButton, null);

jPanel2.add(newButton, null);

jPanel2.add(firstButton, null);

jPanel2.add(previousButton, null);

jPanel2.add(nextButton, null);

jPanel2.add(lastButton, null);

jPanel2.add(validateButton, null);
jPanel2.add(deleteButton, null);

jPanell.add(jPanel3, BorderLayout. CENTER);
jPanel3.add(jPanel4, BorderLayout NORTH);
jPanel3.add(jPanel5, BorderLayout. SOUTH);
jPanel5.add(fromApp, null);

jPanel5.add(fromAppValue, null);

jPanel5.add(toApp, null);

jPanel5.add(toAppValue, null;

B2B XML Application: Step by Step 13-101

XSL and XSL Management Scripts

jPanel5.add(operationLabel, null);
jPanel5.add(opValue, null);

jPanel3.add(jPanel6, BorderLayout. CENTERY);
jPanel6.add(jLabel2, BorderLayout NORTH);
jPanel6.add(jScrollPanel, BorderLayout CENTERY);
jScrollPanel.getViewport().add(XSLStyleSheet, null);

I
statusBar.setText('Connected...”);
/I Building Vector of record.
queryButton.setText("Enter Query’);
queryButton.setActionCommand('query’);
queryButton.addActionListener(new java.awtevent.ActionListener()
{
public void actionPerformed(ActionEvent €)
{
queryButton_actionPerformed(e);
}
D
buttonClose.addActionListener(new java.awt.event.ActionListener()
{
public void actionPerformed(ActionEvent €)
{
buttonClose_actionPerformed(e);
}
;
deleteButton.setText('Delete”);
deleteButton.setToolTipText("Delete the current record");
deleteButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
deleteButton_actionPerformed(e);
}
b
newButton.setText('New');
newButton.setToolTipText('Create a new record');
newButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
newButton_actionPerformed(e);
}
;
validateButton.setToolTipText('Validate your modifications');

13-102 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

opValue setEditable(false);
toAppValue. setEditable(false);
fromAppValue.setEditable(false);
validateButton.addActionListener(new java.awtevent. ActionListener()
{
public void actionPerformed(ActionEvent €)
{
validateButton_actionPerformed(e);
}
D
lastButton.addActionListener(new java.awtevent.ActionListener()
{
public void actionPerformed(ActionEvent €)
{
lastButton_actionPerformed(e);
}
M
firstButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
firstButton_actionPerformed(e);
}
D
previousButton.addActionListener(new java.awt.event ActionListener()

{
public void actionPerformed(ActionEvent €)

{
previousButton_actionPerformed(e);
}
b
nextButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
nextButton _actionPerformed(e);
}
D
lastButton.setActionCommand(last’);
lastButton.setToolTipText("Last record”);
nextButton.setActionCommand(‘next’);
nextButton.setToolTipText('Next record”);
previousButton.setActionCommand(‘previous”);
previousButton.setToolTipText(Previous record");
firstButton.setActionCommand(first’);

B2B XML Application: Step by Step 13-103

XSL and XSL Management Scripts

firstButton.setToolTip Text("First record");

Il Execute query and build vector
executeQuery(sqlStmt);

updateStatusBar();
}

void executeQuery(String theSglStmt)
{

recVect =new Vector();

try

{
Statement stmt = conn.createStatement();

ResultSet rSet = stmt.executeQuery(theSqlStmt);
CLOB clob=nul;
while (rSetnext()

clob = ((CracleResultSet)rSet).getCLOB(4);
String strLob = dumpClob(conn, clob);
XslRecord xsIRecord = new XsIRecord(rSet.getString(L),
rSet.getSting(2),
rSetgetString(3),
strLoby);
recVectaddElement(xslRecord);
}
rSet.close();
stmt.close();
I/ Populate form with first record
firstButton.setEnabled(false);
previousButton.setEnabled(false);
nextButton.setEnabled(false);
lastButton.setEnabled(false);
if (recVect.size() > 0)
{
curRec=1;
displayRecord(currRec);
}
if (recVectsize() > 1)
{
nextButton.setEnabled(true);
lastButton.setEnabled(true);

}

catch (Exception €)

13-104 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

{
JOptionPane.showMessageDialog(null, e.toString(),

"Executing request”,
JOptionPane ERROR_MESSAGE),
System.exit(1);
}
}

void displayRecord(int mk)

XslRecord xsIRecord = (XsIRecord)recVect.elementAt(mk-1);
thisRecord = new XsIRecord(xsIRecord FROM,

xslRecord.TO,

xslRecord. TASK,

xslRecord. XSL);
XSLStyleSheet.setText(xslRecord XSL);
fromAppValue.setText(xsIRecord. FROM);
toAppValue.setText(xsIRecord. TO);
opValue setText(xslRecord. TASK);

XSLStyleSheetrequestFocus();
XSLStyleSheet setCaretPosition(0);

// Buttons
firstButton.setEnabled(false);
previousButton.setEnabled(false);
nextButton.setEnabled(false),
lastButton.setEnabled(false);
if (mk > 1)
{
firstButton.setEnabled(true);
previousButton.setEnabled(true);
}
if (mk < recVect.size())
{
nextButton.setEnabled(true);
lastButton.setEnabled(true);
}
}

void updateStatusBar()

{
statusBar.setText("Ready for " + recVectsize() + " records”);

}

B2B XML Application: Step by Step 13-105

XSL and XSL Management Scripts

private static String dumpClob(Connection conn, CLOB clob) throws Exception
{
String retumString =",

OracleCallableStatement cStmt1 = (OracleCallableStatement) conn.prepareCall
("oegin ? := dbms_lob.getLength (?); end;");

OracleCallableStatement cStmt2 = (OracleCallableStatement) conn.prepareCall
("begindbms_lob.read (?, ?, ?, ?); end;”);

cStmtl.registerOutParameter (1, Types.NUMERIC);

cStmt1.setCLOB (2, clob);

cStmtl.execute ();

long length = cStmt1.getLong (2);
longi=0;
int chunk = 80;

while (i < length)

cSIMt2.setCLOB (1, clob);

cStmt2.setlong (2, chunk);
cStmt2.registerOutParameter (2, Types.NUMERIC);
cStmt2.setLong (3,i+ 1);
cStmt2.registerOutParameter (4, Types.VARCHAR);
cStmt2.execute ();

longread_this_time =cStmt2.getLong (2);
retumString += cStmt2.getString (4);
Il System.out.print ("Read " +read_this_time +" chars: ");
Il System.out.printin (string_this_time);
i+=read this time;
}
cStmtl.close ();
cStmt2.close ();
retum retumString;
}

static void filClob (Connection conn, CLOB clob, String str) throws
SQLException

OracleCallableStatement cStmt =
(CracleCallableStatement) conn.prepareCall (*begin doms_lob.write (?, ?,
?,?), end;”);

inti=0;

13-106 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

int chunk = 80;
intlength = str.length();

long ¢, ii;

System.out printin(‘Length: " + length + "\n" + str);
while (i < length)
{
cStmt.setClob (1, clob);
c=chunk;
cStmt.setLong (2, ¢);
i=i+1;
cStmt.setlong (3, i);
cStmt.setString (4, str.substring(, i + chunk));
cStmt.execute ();
i +=chunk;
if (length - i < chunk)
chunk =length - ;
}
cStmt.close ();

}

void fileExit_ActionPerformed(ActionEvent €)
{'rf (conn '=null
{try{conn.close(); } catch (Exception ex) {
}}System-eﬂt(o);

void helpAbout_ActionPerformed(ActionEvent €)

{
JOptionPane.showMessageDialog(this, new GUInterface_AboutBoxPanell(),

"About", JOptionPane.PLAIN_MESSAGE);
}

void nextButton_actionPerformed(ActionEvent €)

checkRecordChange();

cunRec+,

displayRecord(currRec);
}

void previousBution_actionPerformed(ActionEvent €)
{

B2B XML Application: Step by Step 13-107

XSL and XSL Management Scripts

checkRecordChange();

cunrRec—;

displayRecord(cunRec);
}

void firstButton_actionPerformed(ActionEvent)

checkRecordChange();

curRec=1,;

displayRecord(cunrRec);
}

void lastButton_actionPerformed(ActionEvent €)

checkRecordChange();

cunRec =recVectsize();

displayRecord(currRec);
}

void validateButton_actionPerformed(ActionEvent €)
{

validateRec();
}

void validateRec()
{
thisRecord = new XsIRecord(fromAppValue.getText(),
toAppValue.getText(),
opValue.getText(),
XSLStyleSheet.getText();
if (saveChanges(thisRecord, (inserting?INSERT:UPDATE)))
JOptionPane.showMessageDialog(null, "All right!");

}
void deleteRec()
{
thisRecord = new XsIRecord(fromAppValue.getText(),
toAppValue.getText(),
opValue.getText(),
XSLStyleSheet.getText();
String siStmt ="delete styleSheets where fromApp=2and" +
" toApp =?and"+
" op =7
try
{

13-108 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

PreparedStatement pStmt = conn.prepareStatement(sqlStmt);
pStmt.setString(1, thisRecord. FROM);
pStmt.setString(2, thisRecord. TO);
pStmt.setString(3, thisRecord. TASK);
pStmt.execute();
conn.commit();
System.out.printin('Deleted !');
pStmt.close();
I/ Delete from vector...
recVectremoveElementAt(cunRec - 1);
updateStatusBar();
if (cumRec >= recVectsize())
currRec—;
displayRecord(currRec);
JOptionPane.showMessageDialog(null, "All right!");
}
catch (SQLException sqlE)
{
JOptionPane.showMessageDialog(null, sgIE.toString(),
"Deleting record",
JOptionPane ERROR_MESSAGE),
}
catch (Exception €)
{
JOptionPane.showMessageDialog(nul, e.toString(),
"Deleting record",
JOptionPane ERROR_MESSAGE),
}
}

void checkRecordChange()
{
thisRecord = new XsIRecord(fromAppValue.getText(),
toAppValue.getText(),
opValue.getText(),
XSLStyleSheet.getText();
if (thisRecord.equals((XsIRecord)recVect.elementAt(currRec-1)))
{
int result = JOptionPane.showConfirmDialog(null, "Record has changedinDo
you want to save the modifications ?");
if (result = JOptionPane.YES_OPTION)
{
saveChanges(thisRecord, UPDATE);
JOptionPane.showMessageDialog(null, "All right!");
}

B2B XML Application: Step by Step 13-109

XSL and XSL Management Scripts

}
}

boolean saveChanges(XslRecord rec,
int operation)
{
boolean ret = true;
if (operation == this. UPDATE)
{
String theSgIStmt = "update styleSheets set xsl =? where appFrom=? and
appTo=?andop="?"
try
{
PreparedStatement pStmt = conn.prepareStatement(theSqlStmt);
pStmt.setString(1, rec.XSL);
pStmt.setString(2, rec.FROM);
pStmt.setString(3, rec. TO);
pStmt.setString(4, rec. TASK);
pStmt.execute();
conn.commit();
System.outprintin(*Updated I');
pStmt.close();
/I Reinsertin vector...
recVect.setElementAt(rec, curRec - 1);
}
catch (SQLException sqlE)
{
JOptionPane.showMessageDialog(null, sglE.toString(),
"Saving record’,
JOptionPane. ERROR_MESSAGE),
ret =false;

else
{
System.out.printin(‘Inserting new record");
String sgiStmt ="insert into styleSheets " +
" (appFrom, "+
appTo, "+
op, "+
xsl "+
" Jvalues "+
22,27
String sglGetlob = "select xsl from styleSheets " +
"where appFrom=7?and" +

13-110 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

appTo =?and"+
op =7
try
{
PreparedStatement pStmt = conn.prepareStatement(sglStmt);
pStmt.setString(1, rec.FROM);
pStmt.setString(2, rec.TO);
pStmt.setString(3, rec. TASK);
pStmt.setSting(4, ™); // Nullin the LOB, will be filled later
pStmt.execute();
System.out printin(‘inserted ");
pStmt.close();

PreparedStatement filLOBStmt = conn.prepareStatement(sglGetlLob);
filLOBSImt.setString(1, rec. FROM);

fiLOBSmt.setString(2, rec.TO);

filLOBStmt.setString(3, rec. TASK);

ResultSet lobRSet = filLOBStmt.executeQuery();

while (lobRSet.next())

CLOB clob = ((OracleResuitSet)lobRSet).getCLOB(L);
filClob(conn, clob, rec.XSL);
}

conn.commit();

// Add in vector...
recVectaddElement(rec);
cunmRec =recVectsize();
displayRecord(currRec);
}
catch (SQLException sqlE)
{
JOptionPane.showMessageDialog(null, sglE.toString(),
"Inserting record"”,
JOptionPane. ERROR_MESSAGE),
ret =false;
}

inserting = false;

fromAppValue setEditable(false);
toAppValue.setEditable(false);
opValue.setEditable(false);

}
updateStatusBar();

B2B XML Application: Step by Step 13-111

XSL and XSL Management Scripts

retum ret;
}

void buttonClose_actionPerformed(ActionEvent €)
{
validateRec();

}

void newButton_actionPerformed(ActionEvent)

{
fromAppValue.setEditable(true);
toAppValue.setEditable(true);
opValue setEditable(true);
inserting = true;
XSLStyleSheetsetText(™);
fromAppValue.setText(™);
toAppValue.setText(");
opValue.setText(");

}

void deleteButton_actionPerformed(ActionEvent)

deleteRec();
}
void queryButton_actionPerformed(ActionEvent €)
{

if (queryState —ENTER_QUERY)

{

queryState = EXEC_QUERY,;
queryButton.setText("Execute Query”);
fromAppValue setEditable(true);
toAppValue.setEditable(true);
opValue.setEditable(true);

XSLStyleSheet setEditable(false);
statusBar.sefText('Entering query’);
XSLStyleSheet setText(™);
fromAppValue.setText(");

toAppValue.setText(");
opValue.setText(");

newButton.setEnabled(false);

firstButton.setEnabled(false);
previousButton.setEnabled(false);

13-112 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

nextButton.setEnabled(false);
lastButton.setEnabled(false);
validateButton.setEnabled(false);
deleteButton.setEnabled(false);

else

queryState =ENTER_QUERY;
gueryButton.setText("Enter Query'");
statusBar.setText("Executing query”);

fromAppValue setEditable(false);
toAppValue setEditable(false);
opValue.setEditable(false);
XSLStyleSheet setEditable(true);

newButton.setEnabled(true);
firstButton.setEnabled(true);
previousButton.setEnabled(true);
nextButton.setEnabled(true);
lastButton.setEnabled(true);
validateButton.setEnabled(true);
deleteButton.setEnabled(true);

I/ Execute query

String stmt = sgIStmt;

boolean firstCondition = true;

if fromAppValue.getText().length() > 0)
{

fromAppValue.getText() +"");
firstCondition = false;
}
if (toAppValue.getText().length() > 0)
{

toAppValue.getText() +™");
firstCondition = false;
}
if (opValue.getText().length() > 0)
{
stmt += ((firstCondition?" where " and ") + "op like " +
opValue.getText() +™");
firstCondition = false;
}

B2B XML Application: Step by Step 13-113

XSL and XSL Management Scripts

executeQuery(stmt);
updateStatusBar();
displayRecord(cunRec);
}
}
}

Java Example 4: GUIInterface_AboutBoxPanel.java

package B2BDemo.StyleSheetUtil;

Pex

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
¥

import java.awt™;

import javax.swing.*;

import javax.swing.border.*;

import oracle jdeveloper.layout*;

public class GUInterface_AboutBoxPanell extends JPanel
{

JLabel jLabell =new JLabel();

JLabel jLabel2 = new JLabel();

JLabel jLabel3 = new JLabel();

JLabel jLabel4 = new JLabel();

GridBaglLayout gridBagLayoutl = new GridBagLayout();

Border borderl = new EtchedBorder();

public GUInterface_AboutBoxPanel1()
{
try
{
jpinit(;

catch (Exception €)
{
e.printStackTrace();
}
}

private void jbinit() throws Exception

{

jLabell.setText("Stored Style Sheets management.");
jLabel2.setText("Olivier LE DIOURIS";

13-114 Oracle8i Application Developer's Guide - XML, Release 3 (8.1.7)

XSL and XSL Management Scripts

jLabel3.setText("Copyright (c) 1999';

jLabeld.setText("Oracle Corp.");

this.setl_ayout(gridBaglLayoutl);

this.setBorder(borderl);

this.add(jLabel1, new GridBagConstraints2(0, 0, 1, 1, 0.0, 0.0,
GridBagConstraints WEST, GridBagConstraints. NONE, new Insets(5,5,0,5),0,0));

this.add(jLabel2, new GridBagConstraints2(0, 1, 1, 1, 0.0, 0.0,

GridBagConstraints. WEST, GridBagConstraints. NONE, new Insets(0,5,0,5),0,0));

this.add(jLabel3, new GridBagConstraints2(0, 2, 1, 1, 0.0, 0.0,

GridBagConstraints. WEST, GridBagConstraints.NONE, new Insets(0,5,0,5),0,0));

this.add(jLabel4, new GridBagConstraints2(0, 3, 1, 1,0.0, 0.0,

GridBagConstraints WEST, GridBagConstraints. NONE, new Insets(0,5,5,5),0,0));

Java Example 5: GUIStylesheet.java

package B2BDemo.StyleSheetUtil;

/\k*

* A grapical utility to manipulate the stylesheets stored in the database,

*in the AQ Schema. The stylsheets will be used to transform the incoming
* documentinto the outgoing one.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
¥

import java.awt;

import java.awtevent,

import javax.swing.*;
Iimport oracle.bali.ewt.border.UIBorderFactory;
Iimport oracle.bali.ewt.olaf. OracleLookAndFeel;

public class GUIStylesheet

{
private static final boolean useBali = false;

public GUIStylesheet()
{
Frame frame = new GUInterface();
/[Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (rameSize height > screenSize.height)

{
frameSize height = screenSize.height;

B2B XML Application: Step by Step 13-115

XSL and XSL Management Scripts

}

if (rameSize.width > screenSize width)

frameSize width = screenSize width;
}
frame.setlocation((screenSizewidth - frameSizewidth)/2, (screenSize.height

- frameSize.height)/2);

frame.addWindowdListener(new WindowAdapter() { public void
windowClosing(WindowEvent e) { System.exit(0); }});

frame.setVisible(true);

}

public static void main(String]] args)
{
new GUIStylesheet();

}
}

13-116 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

XML Process and Management Scripts

The XML process and management scripts used in the B2B XML application are as
follows:

« Java Example 6: MainAXMLtoDMLV2 java
« Java Example 7: ParserTest.java

« Java Example 8: TableInDocument.java

« Java Example 9: XMLFrame.java

« Java Example 10: XMLProducer.java

« Java Example 11: XMLtoDMLvV2.java

« Java Example 12: XMLGen.java

« Java Example 13: XMLUtil.java

« Java Example 14: XSLTWrapper.java

Java Example 6: Main4XMLtoDMLv2.java

package B2BDemo. XMLUKil;

P

* Amain for tests

*The XMLtoDMLV2 utility takes an XML document that can contain

* data to be inserted in several tables.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import javaio*;

import java.net*;

public class MaindXMLtoDMLV2 extends Object
{

Il Manage user inpLt...

private static BufferedReader _stdin = new BufferedReader(new
InputStreamReader(System.in));

private static String _buf="",

private static String _userinput(String prompt) throws Exception
{
String retString;

System.out.print(prompt);
try{ retString =_stdin.readLine(); }

B2B XML Application: Step by Step 13-117

XML Process and Management Scripts

catch (Exception €)
{
System.out.printin(e);
throw(e);
}
retum retString;
}
Il for tests
public static void main(String args]])
{
XMLtoDMLV2 x2d = new XMLtoDMLV2("scott’, "tiger",

“jdbc:oracle:thin:@olediour-lap.us.oracle.com:1521:0ra8');

String xmidocname =",

try {xmidocname = userinput("XML file name >"); }
catch (Exception) {

String xmidoc = readURL (createURL (xmidocname));

TableinDocument d[] = new TableinDocument]2];
d[0] = new TablelnDocument('ROWSET", "ROW", "DEPT);
d[1] = new TablelnDocument('EMP", "EMP_ROW", "EMP");

fry

{
x2d.insertFromXML(d, xmidoc);

System.out.printin(xmidocname + " processed.”);

}
catch (Exception €)

System.err.printin(‘Ooops:\n” + €);
}

try{_buf=_userinput("End of task..."); } catch (Exceptionioe) {
}

public static URL createURL(String fleName)

{
URL ur =nul;

try

{
url = new URL(fleName);

}
catch (MalformedURLException ex)
{

13-118 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

File f = new File(fleName);

try
{
String path = f.getAbsolutePath();
/I This is a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due
/o inconsistencies in what getAbsolutePath retums.
String fs = System.getProperty(file.separator”);
if (fslength() = 1)
{

char sep =fs.charAt(Q);
if (sep =)
path = path.replace(sep, /);
if (path.charAt(0) '= /)
path =+ path;
}
path ="file://" + path,;
url =new URL(path);
}
catch (MalformedURLException €)
{
System.err.printin(*Cannot create url for; " + fleName);
System.exit(0);
}
}

retum ur;

}

public static String readURL(URL url)
{
URLConnection newURLConn;
BufferedinputStream newBuff;
int nBytes;
byte aByte[];
String resultBuff="";

aByte =new byte[2];
try

{
Il System.out.printin('Calling * + url.toString());
try

{
newURLConn = ur.openConnection();

newBUff = new BufferedinputStream(newURLConn.getinputStream());
resultBuff="",

B2B XML Application: Step by Step 13-119

XML Process and Management Scripts

while ((nBytes = newBUff.read(@Byte, 0, 1)) '=-1)
resultBuff = resultBuff + (char)aByte[0];
}
catch (IOException €)
{
System.err.printin(ur.toString() + "\n : newURLConn failed \n" + €);
}

catch (Exception) {
retum resultBuff;
}

private static String userinput(String prompt) throws Exception
{

String retString;

System.out print(prompt);

try { retString = _stdin.readLine(); }

catch (Exception €)

System.out.printin(e);
throw(e);
}
retum retString;
}
}

Java Example 7: ParserTest.java
package B2BDemo. XMLUKil;

import orgxml.sax.*;
import javalio.®;
import java.util.*;
import java.net;
import java.sqgl.*;

import oraclexml.sgl.query.*;
import oracle xml.sgl.dml;

import orgw3c.dom.*;

import oracle xml.parser.v2.*;
import org.xml.sax*;

e

13-120 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

* Just a main for tests.

* Show how to retrieve the ID and CUSTOMER _ID fro an XML document
*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
il

public class ParserTest extends Object

{

static DOMParser parser = new DOMParser();

static String XMLDoc =
"<ROWSET>"+
" <ROW NUM="I\>" +
" <ID>23321</ID>"+
<ORDERDATE>2000-05-03 00:00:00.0</ORDERDATE>" +
" <CONTACTNAME>JDevBCAJ</CONTACTNAME>" +
" <TRACKINGNO>AX23321</TRACKINGNO>"+
" <STATUS>Pending</STATUS>"+
<ITEMS>"+
<ITEM_ROW NUM=\"1\">"+
<ID>1242</ID>" +
" <QUANTITY>2</QUANTITY>" +
" <ITEM_ID>403</ITEM_ID>"+
" <ORD_ID>23321</ORD_ID>"+
<DISCOUNT>0</DISCOUNT>" +
</ITEM_ROW>"+
<ITEMS>"+
" <ROW>"+
"</ROWSET>"
P
* Constructor
#
public ParserTest()
{
}

public static void main(String[] args)
{
parser.setValidationMode(false);
try
{
parser.parse(new InputSource(new
ByteArrayinputStream(XMLDoc.getBytes())));
XMLDocument xml = parser.getDocument();
XMLElement elmt = (XMLElement)xml.getDocumentElement();

B2B XML Application: Step by Step 13-121

XML Process and Management Scripts

NodeList nl = elmt.getElementsByTagName('ID"); // ORD ID
for (inti=0; i<nl.getlength(); i++)
{
XMLElement ordid = (XMLElement)nl.item(j);
XMLNode theText = (XMLNode)ordld.getFirstChild();
String ordidValue = theText.getNodeValue();
System.out.printin(ordidValue);
break;
}
nl = elmt.getElementsByTagName('CUSTOMER_ID"); / CUSTOMER ID
for (inti=0; i<nl.getlLength(); i++)
{
XMLElement ordid = (XMLElement)nl.item(i);
XMLNode theText = (XMLNode)ordid.getFirstChild();
String custidValue = theText.getNodeValue();
System.out printin(custidValue);
}
}
catch (SAXParseException €)
{
System.out.printin(e.getMessage();
}
catch (SAXException €)
{
System.out.printin(e.getMessage());

catch (Exception €)
{
System.out.printin(e.getMessage();
}
}
}

Java Example 8: TablelInDocument.java

package B2BDemo.XMLUl;

/A-k

* This class is used by the XMLtoDMLV2 java class

* It describes the matching between an XML document and a SQL table.
* Created to managed multi-evel XML documents (Master-Details)

*

* @see XMLtoDMLv2

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

13-122 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

public class TablelnDocument extends Object

public String rowSet="ROWSET";
public Stingrow ="ROW";
public String table ="";

public TablelnDocument (String rset,
Sting r,
String)
{
this.rowSet =rset;
thisrow =r,
thistable =ft;
}
}

Java Example 9: XMLFrame.java

I Copyright (c) 2000 Oracle Corporation
package B2BDemo. XMLUKil;

import javax.swing.*;
import java.awt*;
import oracle xml.srcviewer.*;

import orgw3c.dom*;
import oracle xml.parser.v2.%;
import org.xml.sax*;

/‘k*
* A Swing-based top level window class.
* Implements the Code View of the Transviewer Bean.
* Used in the demo to enhance the XML code propagated from one
* component to another.
*

* @author Olivier LE DIOURIS
'l
public class XMLFrame extends JFrame
{
Borderl_ayout border_ayoutl = new BorderlLayout();
JPanel jPanell = new JPanel();
BorderLayout borderLayout2 = new BorderLayout();
XMLSourceView xmiSourceViewPanel = new XMLSourceView();

B2B XML Application: Step by Step 13-123

XML Process and Management Scripts

private String frameTitle =",
private XSLTWrapper xsltw = new XSLTWrapper();
P

* Constructs a new instance.
*
public XMLFrame(String fTitle)
{

super();

this frameTitle = fTitle;

try

{

jolnit();
}
catch (Exception €)

e.printStackTrace();
}
}

P

* Iniializes the state of this instance.

*

private void jbinit() throws Exception

{
this.getContentPane().setLayout(borderLayoutl);
this.setSize(new Dimension(400, 300));
jPanell.setLayout(borderLayout2);
this.setTitle(this.frameTitle);
this.getContentPane().add(jPanell, BorderLayout. CENTERY);
jPanell.add(xmiSourceViewPanel, BorderLayout CENTERY);

}

public void setXMLDocument(String xmiContent) throws Exception

{
xmiSourceViewPanel.setXMLDocument(xstw.parseDocument(xmiContent));

}
}

Java Example 10: XMLProducer.java

package B2BDemo. XMLUIil;

/**

* A Wrapper around the XML SQL Utility
*Could be called from any java object

13-124 Oracle8i Application Developer’s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

*to produce an XML document after a SQL query,

*not only from a senviet.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
il

e

¥

import java.sgl.;

import oracle xml.sgl.query.*;

public class XMLProducer
{
Connection conn =null;
String rowset = null;
String row = null;

public XMLProducer(Connection conn)
{
this.conn = conn;

}

public String getXMLString(ResultSet rSet)
{

retum getXMLSting(rSet, "N");
}

public String getXMLString(ResultSet rSet,
String DTD)
{
String finalDoc =",

ty
{
boolean dtdRequired =false;
if (OTD '=null && DTD length() > 0 && DTD.toUpperCase().equals("'Y"))
didRequired =true;
1 The SKillt /i
OracleXMLQuery oXmig = new OracleXMLQuery(conn, rSet); //
Il oXmlg.useUpperCaseTagNames(); I
if (this.rowset = null)
oXmig.setRowsetTag(this.rowset);
if (this.row !=null)
oXmig.setRowTag(this.row);
finalDoc = oXmlg.getXMLString(dtdRequired); I
i Thats it A

B2B XML Application: Step by Step 13-125

XML Process and Management Scripts

}
catch (Exception €)

{
System.err.printin(e);
}

retum finalDoc;
}

public void setRowset(String rSet)
{
this.rowset = rSet;
}
public void setRow(String row)
{
this.row =row;
}
}

Java Example 11: XMLtoDMLv2.java

package B2BDemo. XMLUKil;
e
* This class takes an XML document as input to execute
* aninsertinto the database.
Multi level XML documents are supported, but not if
one element has several sons as
<elem1>
<eleml11/>
<elem12/>
<elem1>

*
*
*
*
*
*

*

* @see TablelnDocument

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
¥

import org.xml.sax.*,

import java.io*;

import java.util.*;

import java.net;

import java.sgl.*;

import oracle xml.sgl.query.*;
import oracle xml.sgl.dml.;

import orgw3c.dom*;

13-126 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

import oracle xml.parser.v2.%;
import orgxml.sax.*;

pulblic class XMLtoDMLv2 extends Object
{
static DOMParser parser = new DOMParser();
Connection conn=null;
String usemame =",
String password =",
String connURL =",

public XMLtoDMLV2(String usemame,
String password,
String connURL)

{

this.usemame = usemame;

this.password = password;

this.connURL =connURL;
}

public void insertFromXML(TablelnDocument tinDoc]],
String document) throws Exception
{
if (conn == null)
getConnected();

String xmiString =",

try

{xmiString = readURL (createURL(document)); }
catch (Exception €)

{xmiString = document; }

Il System.out.printin(’xmi2Insert = \n" + xmiString);

I/ The retumed String is tumed into an XML Document
XMLDocument xmiDoc = parseDocument(xmiString);
/Il And we take a reference on the root of this document
XMLElement e = (XMLElement) xmiDoc.getDocumentElement();

I/ Let's walk thru the ROW nodes
NodeList nl = e.getChildrenByTagName(tinDoc[0].row); / "ROW"
Il System.out.printin(This document has " + nl.getLength() + " ROW(S)");

Vector sgiStmt = new Vector();
scanLevel(0, tinDoc, nl, sqiStmt);

B2B XML Application: Step by Step 13-127

XML Process and Management Scripts

/I Now execute all the statements in the Vector, in reverse order (FK...)
inti = sglStmt.size();
Enumeration enum = sglStmt.elements();
while (i>0)
{
=
String s = (String)sgiStmt.elementAt();
Il System.out.printin("Executing " + s);
executeStatement(s);
}
}

I/ This one is recursive

private int scanLevel(int level,
TablelnDocument tinDocf],
NodeList nl,
Vector sgIStmt) throws Exception

int nbRowProcessed =0;

Vector columnNames = new Vector();
Vector columnValues = nul;

String[] colTypes = null;

String columns =", values =",
/lLoopintree...
boolean first_oop =true;
for (int i=0; i<nl.getLength(); i++) / Loop on all rows of XML doc
{
columnValues = new Vector();
XMLElement aRow = (XMLElement) nlitem(j);
Il StingnumVal = aRow.getAttribute(‘'num’);
Il System.out.printin('NUM =" + numVal);
NodeList nlRow = aRow.getChildNodes();
Il System.out.printin(‘a Row has " + nRow.getl_ength() + " children');
for (int j=0; j<nIRow.getLength(); j++)
{
XMLElement anXMLElement = (XMLElement)niRow.item(j);
if @ XMLElement.getChildNodes().getLength() = 1 &&
(Ilevel == (tinDoc.length - 1) || (level < (tnDoc.length - 1) &&
l(@nXMLElement.getNodeName().equalsinDocllevel+1].rowSet)))))
{
Il System.out.prinin(‘Element " + (+1) +"="+
anXMLElementgetNodeName());
Il System.out.print@XMLElement getNodeName());

13-128 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

if (firstLoop)
columnNames.addElement(anXMLElement.getNodeName();
/I Value
XMLNode nodeValue = (XMLNode) anXMLElement.getFirstChild();
Il System.out.printin(\t' + nodeValue.getNodeValue());
columnValues.addElement(nodeValue.getNodeValue());
}
else
{
Il System.out.prinin@nXMLElement.getNodeName() + " has " +
anXMLElement.getChildNodes().getLength() + " children');
I System.out.printin(*Comparing " + anXMLElementgetNodeName() + " and "
+ tinDoclleveh+1].rowSet);
if (evel < (inDoc.length - 1) &&
anXMLElementgetNodeName().equals(tinDocllevel+1].rowSet))
{
Il System.out.printin("Searching for " + tinDoc[level+1].row);
NodeListni2 =
anXMLElement.getChildrenByTagName(tinDocflevel+1].row); / "ROW"
if (N2 == null)
System.out.printin('NI2 is null for " + tinDocflevel+1].row);
scanLevel(level + 1, inDoc, ni2, sgiStmt);
}
}
}
/I System.outprinin(INSERT INTO " + tableName + " (" + columns + ") VALUES
(" +values +"));
try
{
if (firstL_oop)
{
firstLoop = false;
String selectStmt="SELECT "
boolean comma =false;
Enumeration cNames = columnNames.elements();
while (cNames.hasMoreElements()
{
columns += ((comma?”, ") + (String)cNames.nextElement();
if (‘comma)
comma=frue;
}
selectStmt += columns;
selectStmt += (* FROM " + tinDocflevel]table + " WHERE 1 = 2); / No
row retrieved
Statement stmt = conn.createStaternent();

B2B XML Application: Step by Step 13-129

XML Process and Management Scripts

Il System.outprintin('Executing: " + selectStmt);
ResultSet rSet = stmt.executeQuery(selectStmt);
ResultSetMetaData rsmd = rSet.getMetaData();
colTypes = new String[rsmd.getColumnCount()];
for (int ¢i=0; ci<(rsmd.getColumnCount()); ci++)

{
Il System.out.printin("Col " + (ci+1) + " + rsmd.getColumnName(ci+1)
+"," + rsmd.getColumnTypeName(ci+1));
colTypes[ci] = rsmd.getColumnTypeName(ci+1);
}
rSet.close();
stmt.close();
}
// Build Value Part
intvi=0;
Enumeration cVal = columnValues.elements();
boolean comma = false;
while (cVal hasMoreElements())
{
if (comma)
values +=",",
comma=true;
if (colTypes|vil.equals('DATE")
values +=(TO_DATE(SUBSTR(");
values += ("' + cVal.nextElement() +"™);
if (colTypes|vil.equals('DATE")
values +=(", 1, 19), YYYY-MM-DD HH24:MI:SS)");
Vit
}
/1Go!
Il System.outprintin('Stmt" + "INSERT INTO " + tinDocllevelltable + " (*
+ columns +") VALUES (" + values +")");
sgiSmtaddElement("INSERT INTO " + tinDocflevelltable + " (* + columns
+")VALUES (" + values +")";
nbRowProcessed++;
}
catch (Exception execE)
{
Il System.er.printin(*Executing " + execE);
throw execE;

}

values="",

}
Il System.out.printin("End of Loop");
retum nbRowProcessed;

13-130 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

}

public static XMLDocument parseDocument(String documentStream) throws
Exception
{
XMLDocument retumXML = null;
try
{
parser.parse(new InputSource(new
ByteAmayinputStream(documentStream.getBytes())));
retumXML = parser.getDocument();

}
catch (SAXException saxE)

{
Il System.err.printin("Parsing XML\n" + "SAX Exception\n" +
saxE.toString());
Il System.em.printin('For:\n" + documentStream + "\nParse failed SAX : " +
saxE);
throw saxE;

catch (IOException €)
{
Il System.err.printin("Parsing XML\n" + "Exception:\n" + e.toString());
I System.err.printin(*Parse failed : " + €);
throwe;
}
retum retumXML;
}
I/ Create a URL from a file name
private static URL createURL(String fleName) throws Exception
{
URL url =null;
try
{
url = new URL(fleName);

}
catch (MalformedURLException ex) / It is not a valid URL, maybe afie...

File f=new File(fleName);
try
{
String path = f.getAbsolutePath();
/I This is a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due
o inconsistencies in what getAbsolutePath retums.

B2B XML Application: Step by Step 13-131

XML Process and Management Scripts

String fs = System.getProperty(file.separator”);
if (fs.length() = 1)

{
char sep =fs.charAt(0);
if(sep!=7)
path = path.replace(sep, 7);
if (path.charAt(0) ="/
path =1+ pah
}
path = "file://" + path;
url = new URL(path);

}
catch (MalformedURLException €)

{
Il System.em.printin("Cannot create ur for: " + fleName);
throwe; //Its notafile either...

}
}

retum ur;

}

private static String readURL(URL url) throws Exception
{

URLConnection newURLConn;

BufferedinputStream newBuff;

int NBytes;

byte aByte[;

String resultBuff ="

aByte = new byte[2];
try

{
Il System.out.prinin('Calling " + url.toString());
try
{
newURLConn = url.openConnection();
newBuff = new BufferedinputStream(newURLConn.getinputStream());
resuttBuff="",
while ((nBytes = newBuff.read(@Byte, 0, 1)) I=-1)
resultBuff = resuftBuff + (char)aByte[O];
}
catch (IOException €)
{
Il System.em.prinin("Opening locatonn” + e toString());
Il System.em.printin(ur.toString() + "\n : newURLConn failed \n" + €);

13-132 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

throw e;

}

catch (Exception €)

{

1l System.err prinin(*Read URL\n" + e.toSting());
throwe;

}
retum resultBuff,

}

private void executeStatement(String strStmt) throws SQLException, Exception
{
if (conn == null)
throw new Exception("Connection is null”);
try

{
Statement stmt = conn.createStatementy();

stmt.execute(srStmt);
stmt.close();

}

catch (SQLException €)

{
System.err.printin('Failed to execute statementin” + strStm);
throwe;

}

}

private void getConnected() throws Exception
{
try

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

conn = DriverManager.getConnection(connURL, usemame, password);

catch (Exception €)

{
/I System.err.printin(e);

throwe;

}
}
public Connection getConnection()
{

retum conn;

}

B2B XML Application: Step by Step 13-133

XML Process and Management Scripts

Java Example 12: XMLGen.java
package B2BDemo. XMLUIil;

import java.sgl.*;
e
*This class is used by the Action Handler called by the XSQL Serviet
*in placeOrder.xsql. It generates the original XML Document to be
*sent to the broker
*
* @see B2BMessage
* @see XMLProducer
* @see RetailActionHandler
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
i
public class XMLGen extends Object
{
static Connection conn = null;
I/ Default connection parameters
static String appURL = "jdbcoracle:thin:@localhost1521:0RCL"
static String appUser ="retailer";
static String appPassword ="retailer”;

static String XMLStImt =
"SELECT O.ID as\"d\"," +
" O.ORDERDATE as\'Orderdate\", " +
O.CONTACTNAME as \'"Contactname\"," +
O.TRACKINGNO as \'Trackingno\"," +
" O.STATUS as\'Status\’," +
" O.CUSTOMER_ID as\'"Customerld\"," +
CURSOR (SELECT LID as\d\'," +
L.QUANTITY as\'Quantip\’, " +
LITEM_ID as\'ttemid\"," +
LORD_IDas\'OrdId\"" +
" L.DISCOUNT as \'Discount\""' +
FROMLINE_ITEML"+
WHERE LORD_ID =0Q.ID) as \'LineltemView\" " +
"FROMORDO"+
"WHEREO.ID="7",

public static String retumDocument (Connection ¢, String ordid)
{

13-134 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

String XMLDoc ="",
ty

if (¢ '=null)

conn=c,
if (conn == null)

_getConnected(appURL, appUser, appPassword);
XMLProducer xmip = null;
xmlp = new XMLProducer(conny); // The XML Producer
xmip.setRowset('Results');
xmip.setRow("'OrdView'");
PreparedStatement stmt = conn.prepareStatement(XMLStmt);
stmt.setString(1, ordid);
ResultSet rSet = simt.executeQuery();

XMLDoc =xmip.getXMLSting(rSet, "Y");
rSet.close();
stmt.close();
if (¢ == null)
{
conn.close();
conn=null;
}

}
catch (SQLException €)

retumn XMLDoc;
}

private static void _getConnected(String connURL,
String userName,
String password)
{
try
{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
conn = DriverManager.getConnection(connURL, userName, password);

catch (Exception €)
System.err.printin(e);
System.exit(1);

}
}

B2B XML Application: Step by Step 13-135

XML Process and Management Scripts

public static void main (String[] args) / Just for test !!
{
System.out printn(retumDocument(null, “28004'));
}
}

Java Example 13: XMLUtil.java

package B2BDemo. XMLUKil;
e
* Matches a record of the Stylesheet table in the AQ Schema.
*
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*
!
public class XsIRecord
{
public String FROM;
public String TO;
public String TASK;
public String XSL;

public XsIRecord(String FROM,
String TO,
String TASK,
String XSL)
{
this.FROM = FROM;
this.TO=TO;
this. TASK = TASK;
this.XSL =XSL;
}

public boolean equals(XsIRecord X)

if (this. FROM.equals(x. FROM) &&
this.XSL.equals(x XSL) &&
this. TASK equals(x. TASK) &&
this. TO.equals(x.TO))
retum true;
else
retum false;
}
}

13-136 Oracle8i Application Developer’'s Guide - XML, Release 3 (8.1.7)

XML Process and Management Scripts

Java Example 14: