
Oracle9 i Application Server

Migrating from Oracle Application Server

Release 1.0.2.1

February 2001

Part No. A83709-05

Oracle9i Application Server Migrating from Oracle Application Server, Release 1.0.2.1

Part No. A83709-05

Copyright © 2001, Oracle Corporation. All rights reserved.

Primary Author: Sanjay Singh

Contributors: Kai Li, Beth Roeser, Susan Gordon, Matthieu Devin, Pushkar Kapasi, Baogang Song

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and the Oracle Logo, Oracle9i Application Server, Oracle8i, Oracle9i,
Oracle Enterprise Manager, Oracle Internet Directory, and PL/SQL are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

This product includes software developed by the Apache Group for use in the Apache HTTP server
project (http://www.apache.org/).

This product includes software developed by the OpenSSL project for use in the OpenSSL Toolkit
(http://www.openssl.org/). This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

This product includes software developed by Ralf S. Engelschall (rse@engelschall.com) for use in the
mod_ssl project (http://www.modssl.org/).

Contents

Send Us Your Comments

Preface

1 Introduction to Oracle9 i Application Server

What is Oracle9i Application Server?... 1-2
Oracle Application Server Component Migration Options ... 1-2
Enterprise Services Migration .. 1-3

Overview.. 1-3
Scalability... 1-3
Availability and Fault Tolerance .. 1-4
Load Balancing.. 1-4
Administration.. 1-5
Security... 1-6

2 Migrating JWeb Applications to Apache JServ

What is Apache JServ? ... 2-2
Migrating Oracle Application Server JServlets to Apache JServ Servlets 2-2

JWeb and Apache JServ 1.1 Differences ... 2-2
Architecture ... 2-2
Life cycle .. 2-5
Threading... 2-6
Sessions .. 2-7
Dynamic Content Generation in HTML Pages .. 2-7
iii

Code Modifications for JWeb Applications ... 2-7
Session Control.. 2-8
Application Threads... 2-8
Logging... 2-9

3 Migrating Oracle Application Server Cartridges

Cartridge Types and Corresponding Apache Modules ... 3-2
PL/SQL Migration... 3-2

File Upload/Download ... 3-3
Uploaded File Document Format... 3-3
Using the oas2ias Tool.. 3-5
Custom Authentication.. 3-7
Flexible Parameter Passing.. 3-7
Positional Parameter Passing.. 3-8
Executing SQL Files.. 3-8

Perl Migration.. 3-8
Perl Applications under Oracle Application Server.. 3-8
Migrating Perl Cartridge Scripts .. 3-10
Variations from Oracle Application Server Perl Cartridge .. 3-11

LiveHTML Migration... 3-12
SSI.. 3-12
Scripts ... 3-13

CWeb Migration .. 3-14

4 Migrating EJB, ECO/Java and JCORBA Applications

Migrating EJBs... 4-2
Deployment Descriptors.. 4-2
Client Code .. 4-3
Logging (Server Code) ... 4-4

Migrating ECO/Java ... 4-4
Remote Interface ... 4-4
Home Interface.. 4-4
Implementation Class .. 4-4
iv

Migrating JCORBA to EJB .. 4-5
Remote Interface ... 4-5
Home Interface.. 4-5
Object Implementation .. 4-6
Make Parameters Serializable... 4-6

Index
v

vi

Send Us Your Comments

Oracle9 i Application Server Migrating from Oracle Application Server, Release 1.0.2.1

Part No. A83709-05

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail - iasdocs_us@oracle.com

■ Fax - (650) 654-6206 Attn: Oracle9i Application Server Documentation Manager

■ Postal service:

Oracle Corporation

Oracle9i Application Server Documentation Manager

500 Oracle Parkway, M/S 6op4

Redwood Shores, CA 94065 USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
vii

viii

Preface

This guide describes the process of migrating your system from Oracle Application

Server to Oracle9i Application Server Release 1.0.2.1.

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions
ix

Audience
This guide is for system administrators and application developers who will be

migrating their system from Oracle Application Server to Oracle9i Application

Server.

To use this document, you need to be familiar with the configuration, operation,

and development of Oracle Application Server and other system administration

tasks.

Organization
This document contains:

Chapter 1, "Introduction to Oracle9i Application Server"

This chapter provides an introduction to Oracle9i Application Server and migration

options for Oracle Application Server users.

Chapter 2, "Migrating JWeb Applications to Apache JServ"

This chapter discusses migration options for Oracle Application Server JWeb

Cartridge users.

Chapter 3, "Migrating Oracle Application Server Cartridges"

This chapter discusses the migration options for the other Oracle Application Server

cartridge types including the PL/SQL cartridge.

Chapter 4, "Migrating EJB, ECO/Java and JCORBA Applications"

This chapter discusses the migration options for the Oracle Application Server IIOP

components.

Related Documentation
For more information, see these Oracle resources:

■ Oracle9i Application Server Documentation Library CD-ROM

■ Oracle9i Application Server Platform Specific Documentation on Oracle9i
Application Server Disk 1

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/
x

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://technet.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://technet.oracle.com/docs/index.htm

For additional information, see:

■ Third-Party Book by (insert first and last names of authors). (insert name of

publisher), (insert publication date).

(In this section, list all third-party documentation, including Web sites, that you

refer to in the document. References to Web sites should use Type 13 and Type 14

markers so that the URL will become a link in HTML when the file is filtered.)

Conventions
This section describes the conventions used in the text and code examples of the

this documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.
xi

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

The C datatypes such as ub4, sword, or
OCINumber are valid.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Oracle8i Concepts

You can specify the parallel_clause.

Run Uold_release .SQL where old_release
refers to the release you installed prior to
upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database using the BACKUP
command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Specify the ROLLBACK_SEGMENTS parameter.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.
xii

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , col n FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as it is shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates variables for
which you must supply particular values.

CONNECT SYSTEM/system_password

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr
xiii

xiv

Introduction to Oracle9i Ap
1

Introduction to Oracle9 i Application Server

This chapter provides a general discussion of the Oracle9i Application Server

characteristics in comparison to those of Oracle Application Server. It includes a

mapping of Oracle Application Server components to their equivalent functionality

in Oracle9i Application Server. The topics include:

■ What is Oracle9i Application Server?

■ Oracle Application Server Component Migration Options

■ Enterprise Services Migration
plication Server 1-1

What is Oracle9i Application Server?
What is Oracle9 i Application Server?
Oracle9i Application Server is a middle-tier application server designed to enable

scalability of web and database-centric applications beyond the limits of a single

database instance. It offers:

■ A deployment model with multiple deployment options.

■ A variety of methods for generating web content, including PL/SQL and PSPs,

Java servlets and JSPs, and Perl.

■ Conformance to existing (and evolving) standards such as Java, J2EE, and

CORBA.

Oracle Application Server Component Migration Options
The table below shows Oracle Application Server components and their

corresponding functionality in Oracle9i Application Server.

Table 1–1 Comparison of Application Models

Oracle Application Server Oracle9 i Application Server

JWeb application Apache JServ application

JServlet application Apache JServ application

LiveHTML application Apache SSI and OracleJSP applications

Perl application mod_perl application

JCORBA application Oracle8i JVM EJB application

ECO/Java application Oracle8i JVM EJB application

EJB application Oracle8i JVM EJB application

CWeb application Custom Apache Modules, CGI, Java JNI and PL/SQL Callouts

PL/SQL application mod_plsql application
1-2 Migrating from Oracle Application Server

Enterprise Services Migration
Enterprise Services Migration
This section discusses enterprise services, characteristics of a web site of concern to

administrators and developers. It describes scalability, availability, fault tolerance,

load balancing, and administration in Oracle Application Server and how they will

work after you migrate your site to Oracle9i Application Server.

Overview
Oracle Application Server consists of the HTTP layer, the server layer, and the

application layer. The HTTP listener layer is made up of the HTTP server and the

dispatcher. The Server layer provides a common set of components for managing

these applications. These components include load balancing, logging, automatic

failure recovery, security, directory, and transaction components. The application

layer is made up of applications, cartridges, and cartridge servers. When a request

arrives, the dispatcher routes the request to the application server layer and if a

cartridge instance is available, the request will be serviced by that instance,

otherwise a new instance will be created.

Similarly in Oracle9i Application Server, the Oracle HTTP Server and mod_jserv

run in the same process. Apache JServ is a pure Java servlet engine and runs in a

separate process. The Apache Web Server uses mod_jserv to route requests to an

Apache JServ process, much like the dispatcher in Oracle Application Server.

Scalability
Oracle Application Server can be deployed in single or multi-node environments.

Similarly, the Oracle HTTP Server and Apache JServ can be configured for single or

multi-node environments.

HTTP Server
In Oracle Application Server, each listener can accommodate a maximum number

of concurrent connections. This number varies based on operating system

restrictions. To distribute the request load on a site, you can create multiple

listeners, each listening on a different TCP port.

On UNIX platforms, Oracle HTTP Server creates a pool of child processes ready to

handle incoming client requests, on start-up. As the requests are processed and the

load increases, the server spawn new processes for subsequent requests. The initial

and maximum size of the pool, and the min/max number of spare server processes,

is configured with the StartServers , MaxClients , MinSpareServers and

MaxSpareServers directives respectively.
Introduction to Oracle9i Application Server 1-3

Enterprise Services Migration
On Windows NT, Oracle HTTP Server runs as a multi-threaded process. The

number of simultaneous connections is configured with the ThreadsPerChild
directive, which is analogous to both the StartServers and MaxClients
directives for UNIX.

You can configure Oracle HTTP Server to run multiple instances on the same host,

each of them using a different IP address/TCP port combination, or on different

hosts.

Servlet Engine
In Oracle Application Server, as the number of requests increases, the system

creates new cartridge servers and new instances in them.

In Oracle HTTP Server, mod_jserv receives requests from the server and routes

them to Apache JServ, the servlet engine.

Apache Jserv runs all servlets within servlet zones. Some of the advantages are:

better security, the ability to run multiple JVMs, and support for multiple virtual

hosts.

Availability and Fault Tolerance
When a component such as a listener or a cartridge server fails, Oracle Application

Server detects the failure and restarts the failed component, restoring any preserved

state information when possible.

In Oracle HTTP Server, if there is more than one server host, or more than one JServ

host, and one of them stops, the system will still work as long as there is one server

and one JServ running. A last known status is maintained for every JServ, and any

Oracle HTTP Server instance can route a request to any Apache JServ.

In Apache, the administrator is responsible for restarting any failed Apache Web

Server or Apache Jserv instances.

Load Balancing
Oracle Application Server allocates system resources and prioritizes requests based

on two types of load balancing methods: priority-based and min/max.

In priority mode, the system manages and allocates resources automatically, based

on the priority level you set for your applications and cartridges. The number of

processes, threads, and instances is automatically determined based on the request

load and priority level of the application and components.
1-4 Migrating from Oracle Application Server

Enterprise Services Migration
In min/max mode, you set the number of instances, threads and client parameters

for each cartridge at the cartridge level.

In Oracle HTTP Server, you define the number of JServ hosts, host weight, and a

logical set of these hosts in your configuration file. The system assigns incoming

requests to JServ instances. If a JServ instance fails, requests are redirected to the

other members of the logical set.

Administration
Oracle Application Server provides GUI tools and built-in support for

administering and monitoring your site, listeners, and applications. The

configuration data from the OAS Manager tool is stored in various configuration

files.

In Oracle HTTP Server, you perform site administration and maintenance by

editing the Apache server and Apache JServ configuration files. The difference from

Oracle Application Server in the number and type of configuration files is

significant.

Table 1–2 Configuration Files

Oracle Application Server Listener Oracle HTTP Server (Apache)

owl.cfg - list of registered listeners and
their configuration settings

httpd.conf - Primary (or sole)
server-wide configuration file.

(You have the choice of maintaining file
location and translation information in
srm.conf , and security information in
access.conf — or maintaining all
directives in one file.)

site.app - site configuration file (no equivalent)

sv listenerName .cfg - listener
configuration file

(no equivalent)

wrb.app - process and cartridge
configuration file

(no equivalent)

resources.ora - configuration file for
ORB

(no equivalent)
Introduction to Oracle9i Application Server 1-5

Enterprise Services Migration
Security
Oracle Application Server supports a number of different security schemes for both

user and host authentication, SSL, and the Oracle Wallet Manager.

In Oracle9i Application Server, Apache JServ can run behind a firewall (the AJP

protocol uses only one TCP port). It uses ACL (allowing AJP requests only from

hosts with ACL) and supports SSL.

Migrating Certificates
Oracle9i Application Server includes a tool to migrate Oracle Application Server

private key files into OpenSSL PEM format private key files. The full path to the

tool is ORACLE_HOME/Apache/bin/pconvert (UNIX) or

drive :\Oracle\iSuites\Apache\bin\pconvert.exe (Windows).

The syntax for running pconvert is

pconvert -s oas_private_key_file -d ias_private_key_file

The following steps guide you through the process of converting an Oracle

Application Server private key to a Oracle9i Application Server private key.

1. Convert the Oracle Application Server key file using pconvert. For example:

prompt> pconvert -s oaskey.der -d iaskey.pem
Thank you! Your OAS private key has been converted to OPENSSL private key!

2. The converted private key file is not encrypted. If you want to add a pass

phrase, use the opensll tool with the rsa argument. The full path to the tool

is ORACLE_HOME/Apache/open_ssl/bin/openssl (UNIX) or

drive :\Oracle\iSuites\Apache\open_ssl\bin\openssl.exe
(Windows).

prompt> openssl rsa -in iaskey.pem -des3 -out iaskey_enc.pem
read RSA key
writing RSA key
Enter PEM pass phrase: (input not shown)
Verifying password - Enter PEM pass phrase: (input not shown)

3. Move the converted private key file to the ssl.key directory. The full path of

the directory is ORACLE_HOME/Apache/Apache/conf/ssl.key/ (UNIX) or

drive :\Oracle\iSuites\Apache\Apache\conf\ssl.key\ (Windows).

See Also: http://www.openssl.org/docs for documentation

on the opensll command
1-6 Migrating from Oracle Application Server

Enterprise Services Migration
4. Move the Oracle Application Server certificate file to the ssl.crt directory.

The full path of the directory is

ORACLE_HOME/Apache/Apache/conf/ssl.crt/ (UNIX) or

drive :\Oracle\iSuites\Apache\Apache\conf\ssl.crt\ (Windows).

5. In the Apache configuration file, make the following changes:

a. Set the value of the SSLCertificateFile parameter to the full path and

filename of the Oracle Application Server certificate file from step 4. For

example:

(UNIX)
SSLCertificateFile ORACLE_HOME/Apache/Apache/conf/ssl.crt/ oascert .crt

(Windows)
SSLCertificateFile conf\ssl.crt\ oascert .crt

b. Set the value of the SSLCertificateKeyFile to the full path and

filename of the converted private key file from step 3.

(UNIX)
SSLCertificateKeyFile ORACLE_HOME/Apache/Apache/conf/ssl.key/ iaskey .pem

(Windows)
SSLCertificateKeyFile conf\ssl.key\ iaskey .pem

6. Restart Oracle HTTP Server. The server will use the new private key and

certificate files.

See Also: Oracle9i Application Server Installation Guide for

instructions on restarting Oracle HTTP Server
Introduction to Oracle9i Application Server 1-7

Enterprise Services Migration
1-8 Migrating from Oracle Application Server

Migrating JWeb Applications t
2

Migrating JWeb Applications to Apache

JServ

This chapter discusses migration of JWeb applications from Oracle Application

Server to Apache JServ in the Oracle9i Application Server. It includes a discusssion

of functional differences between JWeb and Apache JServ, and provides code

examples for migrating. The topics include:

■ What is Apache JServ?

■ JWeb and Apache JServ 1.1 Differences

■ Code Modifications for JWeb Applications
o Apache JServ 2-1

What is Apache JServ?
What is Apache JServ?
Oracle9i Application Server uses the Oracle HTTP Server to service HTTP requests

from clients. Apache JServ 1.1, a Servlet 2.0 compliant servlet engine, is bundled

with Oracle9i Application Server. If you have JWeb applications deployed on Oracle

Application Server 4.x and wish to migrate to Oracle9i Application Server, you

need to migrate your JWeb applications to the Servlet 2.0 specification.

Migrating Oracle Application Server JServlets to Apache JServ Servlets
Apache JServ 1.1 is compatible with Apache 1.3.x, JDK 1.1 or later, and JSDK 2.0.

Oracle Application Server 4.0.8 JServlets are compliant with the Servlet 2.1

specification. If you are migrating JServlets to Apache, we recommend that you

plan the migration to Oracle8i JVM servlets because of the differences between 2.0

and 2.1 compliant servlets.

JWeb and Apache JServ 1.1 Differences
This section describes the differences between JWeb and Apache JServ 1.1

applications.

Architecture
JWeb applications execute within the Oracle Application Server cartridge

infrastructure, while Apache JServ 1.1 servlets run with the Oracle HTTP Server and

in JVM(s).

JWeb Architecture
In Oracle Application Server, the HTTP listener receives a request for a JWeb

cartridge. The listener passes the request to the dispatcher, which communicates

with the Web Request Broker (WRB). The WRB uses URL mapping to identify the

cartridge instance to which the request should be sent. If no cartridge instances exist

for the requested cartridge, the cartridge server factory creates a cartridge server

process to instantiate the cartridge. In JWeb, the cartridge server process loads a

JVM, which runs a JWeb application (of the Oracle Application Server application

paradigm). Figure 2–1 depicts these components graphically.

See Also:

■ http://java.apache.org for more information on Apache JServ

■ http://java.sun.com for more information on the Servlet
specifications
2-2 Migrating from Oracle Application Server

JWeb and Apache JServ 1.1 Differences
Figure 2–1 Oracle Application Server Cartridge Infrastructure

Apache JServ Architecture
Apache JServ consists of two functional components: mod_jserv and a servlet

engine. mod_jserv is an Apache Server module and directs incoming requests for

Java Servlets to a servlet engine. The Apache JServ Protocol (AJP) facilitates

communication between the two components.

Figure 2–2 illustrates a one-to-many configuration. In a one-to-many configuration,

there is one Apache listener and multiple servers. Each server can run one or more

servlet engines. In this figure, a single Apache instance is communicating to two

servers. Server 1 is running two servlet engines and server 2 is running one servlet

engine. Three AJP connections are open between the servlet engines and a single

mod_jserv in the Apache instance.

HTTP Listener

Dispatcher

Web Request
Broker

JWeb Request

Cartridge
Instances

Cartridge Server Process
(JWeb application)

routes request to
available
cartridge
instance
Migrating JWeb Applications to Apache JServ 2-3

JWeb and Apache JServ 1.1 Differences
Figure 2–2 Apache JServ Architecture (one-to-many example)

mod_jserv, which is implemented in C, is an Apache module that runs in the same

process as the Apache web server. It functions like a dispatcher in that it receives a

request from the Apache HTTP listener and routes it to a servlet engine. It does not

execute any servlet business logic.

A servlet engine provides the runtime environment to execute servlets

implementing the Servlet 2.0 API. It runs in a JVM process, in the same or different

node as the Apache web server. Each JVM has one servlet engine, and the number

of servlet engines is not proportional to the number of web servers (mod_jserv

modules). One mod_jserv can work with more than one servlet engine and vice

versa. Or, multiple mod_jserv modules can work with multiple servlet engines.

Apache JServ Protocol
Because Apache JServ servlet engines do not run in-process with mod_jserv (or

possibly not even on the same physical machine as the module), a protocol is

required for the two components to communicate. A proprietary protocol called

Apache JServ Protocol (AJP) 1.1, is used. AJP 1.1 communicates using sockets, and

implements an authentication algorithm using MD5 hashing without strong

cryptography.

See Also:

http://java.apache.org/jserv/protocol/AJPv11.html

Servlet Engine

Apache

mod_perl mod_jserv mod_ssl

AJP AJP

Servlet Engine

Server 1 Server 2

Servlet Engine

AJP
2-4 Migrating from Oracle Application Server

JWeb and Apache JServ 1.1 Differences
Single Node Configuration
When a servlet engine is located on the same machine as the web server, the mod_

jserv module can be set up to start or stop the servlet engine and JVM when the web

server starts or stops, respectively. The module performs all the necessary tasks to

gracefully shut down the JVM. In this scenario, mod_jserv can also perform failover

by checking JVM status regularly and starting another JVM if the first crashes.

Multi-Node Configuration
Automatic lifecycle control is not available when mod_jserv and a servlet engine

exist on different machines. The engine and JVM must be started manually with a

customizable script (each servlet engine requires its own script to start). This means

that each engine can be started with a custom environment. There is a limit of 25

servlet engines that can be addressed by a single mod_jserv.

mod_jserv and servlet engine instances can have one-to-one, one-to-many,

many-to-one, and many-to-many relationships. Multiple servlet engines can also

reside on one node (in which case the JVMs must be assigned different port

numbers so that mod_jserv can differentiate them).

Servlet Zones
Apache JServ implements a servlet virtualization paradigm called servlet zones.

Servlet zones can be equated with virtual hosts of web servers. Each zone provides

a logical demarcation from the physical relationships (locations) of servlet classes.

Hence, each servlet zone can be assigned a common context, including a common

URI, regardless of where its member servlets are located (for example, on different

hosts). However, the current implementation of Apache JServ does not provide

sandbox security for each zone.

Life cycle
JWeb classes and Apache JServ servlets have different life cycles.

JWeb Life Cycle
JWeb classes use the standard main() entry point to start their execution logic.

Their life cycle resembles that of a standard Java class in loading, linking,

initializing, and invoking main() .

a

See Also:

http://java.sun.com/docs/books/vmspec/index.html
Migrating JWeb Applications to Apache JServ 2-5

JWeb and Apache JServ 1.1 Differences
Apache JServ Life Cycle
In Apache JServ, Servlet life cycle is compliant with Servlet 2.0 specifications. The

life cycle is defined by the javax.servlet.Servlet interface, which is

implemented directly or indirectly by all servlets. This interface has methods which

are called at specific times by the servlet engine in a particular order during a

servlet’s lifecycle. The init() and destroy() methods are invoked once per

servlet lifetime, while the service() method is called multiple times to execute

the Servlet’s logic.

Figure 2–3 depicts the servlet life cycle.

Figure 2–3 JServlet life cycle

Threading
The JWeb cartridge and Apache JServ servlet engine support single or multiple

threads of execution, but the threading implementations are different.

JWeb Threading
Threading for the JWeb cartridge is defined in the Oracle Application Server

cartridge configuration by toggling the Stateless parameter (true or false). If true, a

cartridge instance is shared by more than one client. If false, it is not shared, and

only one client can access it at any one time. Also, if Oracle Application Server is in

min/max mode, the min/max cartridge servers and min/max threads values can

be varied to change the way multi-threading is implemented for the cartridge.

Instantiation

Implementation
service()

Destruction
destroy()

Initialization
init()

Servlet

(multiple calls)
2-6 Migrating from Oracle Application Server

Code Modifications for JWeb Applications
Apache JServ Threading
The Apache JServ servlet engine is multi-threaded by default. The servlet container

in the engine manages the threads that service client requests. Each instance of a

servlet class can be given multiple threads of execution. In this case, a servlet

instance is shared between more than one client. Alternatively, you can specify a

class to execute only one thread at a time by having that class implement the

javax.servlet.SingleThread interface. In this case, a pool of instances of this

Servlet class is maintained and each instance is assigned to one client only at any

one time (instances are not shared).

Sessions
In the JWeb cartridge, you can enable client sessions using the OAS Manager. In

Apache JServ, in accordance with Servlet 2.0 specifications, only programmable

sessions are available. Consequently, if you are migrating a JWeb application that

was session-enabled by a means other than code, you need to implement the

session mechanism programmatically using the servlet session API. See "Session

Control" on page 2-8.

Dynamic Content Generation in HTML Pages
A JWeb Toolkit feature is available for generating dynamic content in HTML pages.

The JWeb Toolkit embeds special placeholders in an HTML page. When this file is

imported into a JWeb class as an oracle.html.HtmlFile object, the

setItemAt() method places the data generated from the code at the placeholder

locations.

Since this is a JWeb specific feature, it is not available in Apache JServ. If you would

like to embed dynamic information in HTML pages (scripting), consider using

JavaServer Pages with OracleJSP in Oracle9i Application Server.

Code Modifications for JWeb Applications
To migrate JWeb applications to Apache JServ, you will have to modify code in

these areas:

■ Session Control

■ Application Threads

■ Logging
Migrating JWeb Applications to Apache JServ 2-7

Code Modifications for JWeb Applications
Session Control
You can session-enable a JWeb application with the cartridge’s Client Session

parameter in the Node Manager Web Parameters form. This allows the static

parameters of an invoked class to contain per client data across calls. In the Servlet

1.0 API, session state is not kept in static variables of servlet classes. Instead, a

session object is explicitly obtained to store session state using named attributes.

In Apache JServ, there is no configurable sessions support, so you have to enable

sessions in code using the getSession() method in javax.servlet.http.
HttpServletRequest , as shown below:

HttpSession session = request.getSession(true);

State information for a session can then be stored and retrieved by the putValue()
and getValue() methods, respectively, of javax.servlet.http.HttpSession.

session.putValue(“List”, new Vector());
Vector list = (Vector) session.getValue(“List”);

JServ Session Time-out
You can specify the time-out value for a session in the session.timeout
parameter in the jserv.properties file. You can also expire a session by

invoking invalidate() in the servlet session API.

The JWeb session time-out callback is not available in Apache JServ.

Application Threads
In JWeb, an application can manage threads using the oracle.owas.wrb.
WRBRunnable class. This class allows application threads to access request and

response information. For Apache JServ, only standard Java thread management is

needed to manage application threads (the java.lang.Runnable interface is

used). For both JWeb and Apache JServ, using application threads is not

recommended because multi-threaded applications limit the effectiveness of the

load balancer.

Note: Do not use static data members to maintain session state in

Apache JServ (although this is common practice in JWeb). Instead,

use the servlet session API. The latter allows the servlet engine to

use memory more efficiently.
2-8 Migrating from Oracle Application Server

Code Modifications for JWeb Applications
Logging
JWeb applications log messages using the Oracle Application Server logger service

provided by the WRB. This service allows applications to write messages to a

central repository, such as a file system or database. The oracle.owas.wrb.
services.logger.OutputLogStream class interfaces with the logger service.

In Apache JServ, messages are written to two log files. Messages generated by mod_

jserv are recorded in the file specified by the ApJServLogFile directive in the

Oracle HTTP Server http.conf configuration file. The default value for this

directive is <ORACLE_HOME>/Apache/Jserv/logs/mod_jserv.log . Messages

generated by the servlet engine are recorded in the file specified by the log.file
parameter in jserv.properties file. The default value for this directive is

<ORACLE_HOME>/Apache/Jserv/logs/jserv.log).

The messages generated by servlet applications, like exception stack traces, are

recorded into jserv.log . In code, you can write to this log file using the javax.
servlet.ServletContext.log() or javax.servlet.GenericServlet.
log() methods.

The jserv.properties file allows you to select specific functional parts of the

servlet engine to log. In jserv.log , these parts are referred to as channels.

Table 2–1 Channels in jserv.log

Channel Type of Message

log.channel.authentication Authentication messages from the AJP protocol.

log.channel.exceptionTracing Exception stack traces caught by the servlet engine.

log.channel.init Initialization messages from servlet engine.

log.channel.requestData Data obtained from HTTP requests. For example,
parameters from GET or POST HTTP methods.

log.channel.responseHeaders Header information from HTTP responses.

log.channel.serviceRequest Request processing messages.

log.channel.servletLog Messages from the javax.servlet.ServletContext.
log and javax.servlet.GenericServlet.log
methods.

log.channel.servletManager Messages from the servlet manager. These include
messages for loading/unloading servlet zones and
automatic class reloading.

log.channel.signal System signal messages.
Migrating JWeb Applications to Apache JServ 2-9

Code Modifications for JWeb Applications
JWeb Toolkit Packages (JWeb API)
The JWeb cartridge in Oracle Application Server includes a JWeb toolkit of Oracle

proprietary Java packages. If you used any of those packages in JWeb applications

that will migrate to Oracle9i Application Server, you must modify the code to use

Servlet 2.0 equivalent classes and methods. If no equivalent functionality is

available, you must rewrite the code to implement the functionality provided by the

JWeb packages.

Because some of the JWeb toolkit packages were designed specifically to interact

with Oracle Application Server components such as the WRB, the functionality in

these packages is not reproducible in the standard servlet API. Consequently, the

migration process may also include some redesign of applications.

The following tables list JWeb methods and their functional equivalents for the

following servlet API classes:

■ Table 2–2, "JWeb Equivalents for javax.servlet.http.HttpServletRequest Class

Methods"

■ Table 2–3, "JWeb Equivalents for javax.servlet.ServletRequest Class Methods"

■ Table 2–4, "JWeb Equivalents for javax.servlet.ServletResponse Class Methods"

■ Table 2–5, "JWeb Equivalents for javax.servlet.ServletContext Class Methods"

■ Table 2–6, "JWeb Equivalents for javax.servlet.http.HttpUtils Class Methods"

log.channel.terminate Messages generated when servlet engine terminates.

Table 2–2 JWeb Equivalents for javax.servlet.http.HttpServletRequest Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getHeader(String) getHeader(name)

oracle.owas.wrb.services.http.getCGIEnvironment(“AUTH_TYPE”) getAuthType()

oracle.owas.wrb.services.http.HTTP.getHeaders()1 getHeaderNames()2

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“PATH_INFO”) getPathInfo()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“PATH_TRANSLATED”) getPathTranslated()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“QUERY_STRING”) getQueryString()

Table 2–1 Channels in jserv.log

Channel Type of Message
2-10 Migrating from Oracle Application Server

Code Modifications for JWeb Applications
oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REQUEST_METHOD”) getMethod()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_USER”) getRemoteUser()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SCRIPT_NAME”) getServletPath()
1 A hashtable of header names and values is returned.
2 An enumeration of header names is returned.

Table 2–3 JWeb Equivalents for javax.servlet.ServletRequest Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“CONTENT_TYPE”) getContentType()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“CONTENT_LENGTH”) getContentLength()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_PROTOCOL”) getProtocol()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_ADDR”) getRemoteAddr()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_HOST”) getRemoteHost()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_NAME”) getServerName()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_PORT”) getServerPort()

oracle.owas.wrb.services.http.HTTP.getPreferredAcceptCharset() getCharacterEncoding()

oracle.owas.wrb.services.http.HTTP.getURLParameter(name) getParameter(name)

oracle.owas.wrb.services.http.HTTP.getURLParameters(name) getParameterValues(name)1

1 where there are multiple values for “name”

Table 2–4 JWeb Equivalents for javax.servlet.ServletResponse Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.WRBWriter getWriter()

Table 2–2 JWeb Equivalents for javax.servlet.http.HttpServletRequest Class Methods

JWeb Method Servlet Method
Migrating JWeb Applications to Apache JServ 2-11

Code Modifications for JWeb Applications
Table 2–5 JWeb Equivalents for javax.servlet.ServletContext Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment getServerInfo()

Use oracle.OAS.Services.Logger log(Exception, String)

log(String)

Table 2–6 JWeb Equivalents for javax.servlet.http.HttpUtils Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getURLParameters(Hashtable) parsePostData(int, ServletInputStream)

oracle.owas.wrb.services.http.HTTP.getURLParameters(Hashtable) parseQueryString(String)

oracle.html.HtmlStream.print javax.servlet.ServletOutputStream.print

oracle.html.HtmlStream.println avax.servlet.ServletOutputStream.println

oracle.owas.wrb.services.http.MultipartElement javax.servlet.ServletInputStream.readLine
2-12 Migrating from Oracle Application Server

Migrating Oracle Application Se
3

Migrating Oracle Application Server

Cartridges

This chapter compares Oracle Application Server cartridge functionality to

corresponding functionality, and discusses considerations for migrating cartridges

to the Oracle9i Application Server infrastructure. The topics include:

■ Cartridge Types and Corresponding Apache Modules

■ PL/SQL Migration

■ Perl Migration

■ LiveHTML Migration

■ CWeb Migration
rver Cartridges 3-1

Cartridge Types and Corresponding Apache Modules
Cartridge Types and Corresponding Apache Modules
The table below shows the Oracle HTTP Server equivalent for each Oracle

Application Server cartridge type:

The migration strategy for each application cartridge is detailed in the following

sections.

PL/SQL Migration
Oracle Application Server PL/SQL Cartridge applications can be migrated to

Oracle9i Application Server PL/SQL Gateway, which provides similar support for

building and deploying PL/SQL based applications on the web.

mod_plsql is bundled into the PL/SQL Gateway and runs as an Oracle HTTP

Server module. It delegates the servicing of HTTP requests to PL/SQL programs

which execute their logic inside of Oracle databases.

Users who are planning to migrate PL/SQL applications from Oracle Application

Server to Oracle9i Application Server are encouraged to read Using the PL/SQL
Gateway in the Oracle9i Application Server Documentation Library and familiarize

themselves with the features in this module.

Support for the following Oracle Application Server PL/SQL Cartridge features has

changed in Oracle9i Application Server PL/SQL Gateway. The rest of this section

provides details on how to migrate Oracle Application Server applications that use

these features.

Table 3–1 Cartridge Types and Apache Modules

Oracle Application Server Cartridge Type Oracle HTTP Server Equivalent

Perl mod_perl

LiveHTML Apache SSI and OracleJSP

PL/SQL PL/SQL Gateway

CWeb Custom Apache Modules, CGI, Java JNI
and PL/SQL Callouts
3-2 Migrating from Oracle Application Server

PL/SQL Migration
File Upload/Download
The following table lists the file upload/download features supported by Oracle

Application Server and Oracle9i Application Server.

Note that all Oracle Application Server features except file

compression/decompression are supported in Oracle9i Application Server. Users

with compressed uploaded files in Oracle Application Server do not need to

decompress their files manually. They will be automatically decompressed and

uploaded in uncompressed format into the Oracle9i Application Server document

table by the oas2ias file migration tool that is documented in "Using the oas2ias

Tool" on page 3-5.

Uploaded File Document Format
Oracle Application Server PL/SQL Cartridge and Oracle9i Application Server

PL/SQL Gateway both support uploaded files. However, they use different

document table schemas. Users with uploaded files on Oracle Application Server

Table 3–2 File Upload/Download Features Comparison

File Upload/Download Feature

Oracle
Application
Server Support

Oracle9 i
Application
Server Support

Upload/Download of file as raw byte streams
without any character conversion

Yes Yes

Upload of file into column type: LONG RAW Yes Yes

Upload of file into column type: BLOB No Yes

Upload of file into column type: CLOB, NCLOB No Yes

Specify tables for upload of file for each database
access descriptor (DAD)

No - Uploads into
WEBSYS schema
only

Yes

Compression/Decompression of file during file
upload/download

Yes No

Upload multiple files per form submission Yes Yes

See Also: Using the PL/SQL Gateway in the Oracle9i Application

Server Documentation Library for more information on additional

file upload features.
Migrating Oracle Application Server Cartridges 3-3

PL/SQL Migration
who wish to migrate to Oracle9i Application Server will need to convert their files

using the oas2ias migration tool.

The oas2ias tool performs two functions:

■ Mapping data from the Oracle Application Server tables to the Oracle9i
Application Server tables while maintaining the uploaded content and the

content description.

■ Deflating compressed content in Oracle Application Server before migrating to

Oracle9i Application Server. This version of Oracle9i Application Server does

not support compression/decompression for uploaded files (see the previous

section for further details).

The oas2ias tool is implemented in C, using the OCI library. The tool reads all the

rows from the OWS_CONTENT table and populates the content and all it’s attributes

to a document table specified by the user.

Table 3–3 shows how the columns in the Oracle9i Application Server document

table derive their values from Oracle Application Server.:

The content from Oracle Application Server will always be stored in the BLOB_
CONTENT column of the Oracle9i Application Server document table. The tool will

also ensure that the data loaded into the Oracle9i Application Server doc table is

always uncompressed data. To do this, if the data is compressed (this is verified by

checking the entries in the OWS_ATTRIBUTES table), the data is uncompressed

using the zlib library, and then loaded to the document table in Oracle9i
Application Server.

Table 3–3 Derived Column Values

Column in Oracle9 i Application Server
Document Table

Oracle Application Server table.column
Value

NAME ows_object.name

MIME_TYPE ows_fixed_attrib.content_type

DOC_SIZE ows_content.length

DAD_CHARSET ows_fixed_attrib.character_set

LAST_UPDATED ows_object.last_modified

CONTENT_TYPE “BLOB”

CONTENT NULL

BLOB_CONTENT OWS_CONTENT.content
3-4 Migrating from Oracle Application Server

PL/SQL Migration
Using the oas2ias Tool
The oas2ias tool need only be run once to convert all Oracle Application Server

files to Oracle9i Application Server format. The following steps should be followed:

1. Make sure you have a current backup of all Oracle Application Server uploaded

files.

2. Create the document table for Oracle9i Application Server. You can create this

under any database user.

SQL> CREATE TABLE my_doc_table (
 NAME VARCHAR2(128) UNIQUE NOT NULL,
 MIME_TYPE VARCHAR2(128),
 DOC_SIZE NUMBER,
 DAD_CHARSET VARCHAR2(128),
 LAST_UPDATED DATE,
 CONTENT_TYPE VARCHAR2(128),
 CONTENT LONG RAW,
 BLOB_CONTENT BLOB);

3. Verify the environment

■ Oracle Application Server Release 4.0.7.1 or later

■ Oracle9i Application Server Release 1.0.0 or later

■ Oracle database version 8.1.x

■ ORACLE_HOME is set to Oracle9i Application Server

ORACLE_HOME

■ (Windows only) The system path contains %ORACLE_HOME%\bin

■ (UNIX only) The PATH environment variable contains

$ORACLE_HOME/bin

■ (UNIX only) The LD_LIBRARY_PATH environment variable contains both

$ORACLE_HOME/lib and /usr/java/lib

4. Create TNS aliases to the Oracle Application Server database (where the websys

schema exists) and the Oracle9i Application Server database (where the

Oracle9i Application Server user schema with the my_doc_table table exists).

Store the aliases in $ORACLE_HOME/network/admin/tnsnames.ora (UNIX)
Migrating Oracle Application Server Cartridges 3-5

PL/SQL Migration
or %ORACLE_HOME%\network\admin\tnsnames.ora (Windows NT). The

format for a TNS alias in this file is:

<alias> =
(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(Host = <hostname>)
(Port = <port_number>))
(CONNECT_DATA = (SID = <sid>))

)

See your database documentation for more information on TNS aliases.

5. Run the oas2ias tool which can be found in the bin directory under

ORACLE_HOME in your Oracle9i Application Server installation. The tool will

prompt for the following parameters:

The following is a sample run of oas2ias :

Welcome to the OAS to iAS migration Utility
Please enter the following parameters:
WEBSYS password: manager
OAS database connect string (<ENTER if local database>: orc8
iAS database user: oracle
iAS database user's password: welcome
iAS database connect string <ENTER if local database>: orc8
iAS doc table: my_doc_table

Parameter Description

websys_password password for the websys user

websys_connstr connect string for the Oracle Application Server database

ias_user_name database user name for the schema containing the Oracle9i
Application Server document table created in step 2

ias_password password for <ias_user_name>

ias_connstr connect string for the PL/SQL Gateway database

ias_doc_table name of the Oracle9i Application Server doc table created in step
2

3-6 Migrating from Oracle Application Server

PL/SQL Migration
Transferred file : C:\TEMP\upload.htm
Length of file : 422
Transferred file : C:\Tnsnames.ora
Length of file : 2785
Transferred file : C:\rangan\mails1.htm
Length of file : 717835
Freeing handles ...

6. This completes the transfer of the files to an Oracle9i Application Server

document table and the files are now available for access using Oracle9i
Application Server PL/SQL Gateway.

Custom Authentication
Custom Authentication is used in Oracle Application Server for applications that

want to control the access themselves (that is within the application itself). The

application authenticates the users in its own level and not within the database

level.

The PL/SQL Gateway also supports custom authentication.

Flexible Parameter Passing
The flexible parameter passing scheme allows you to overload PL/SQL procedures.

This allows you to reuse the same procedure name but change the procedure’s

behaviour depending on how many parameters a form passes to the procedure.

Both Oracle Application Server and Oracle9i Application Server support flexible

parameter passing. To use flexible parameter passing in the PL/SQL Gateway,

prefix the procedure name with an exclamation point (!) in the invoking URL.

For example, if the following URL invokes your Oracle Application Server

procedure:

http:// <host> / <virtual_path> /procedure?x=1&y=2

Then the URL that invokes your PL/SQL Gateway procedure will be:

http:// <host> / <virtual_path> / ! procedure?x=1&y=2

See Also: Using the PL/SQL Gateway in the Oracle9i Application

Server Documentation Library for more information on

authentication
Migrating Oracle Application Server Cartridges 3-7

Perl Migration
Positional Parameter Passing
The Oracle Application Server PL/SQL cartridge supports a positional parameter

passing scheme. This feature is not supported in Oracle9i Application Server and

cannot be used.

Executing SQL Files
In addition to running PL/SQL procedures stored in the database, the Oracle

Application Server PL/SQL cartridge can run PL/SQL source files from the file

system. The source file contains an anonymous PL/SQL block that does not define

a function or procedure. This feature enables users to execute PL/SQL statements

without storing them in the database. This is useful when prototyping PL/SQL

code since it saves having to reload procedures into the database each time they are

edited.

This feature is not supported in Oracle9i Application Server. Users will need to

assign names to the anonymous blocks and compile them as stored procedures in

the database.

Perl Migration
This section explains how Perl cartridge applications are implemented in the Oracle

Application Server, and how they can be migrated to Oracle9i Application Server.

Perl Applications under Oracle Application Server
There are two types of Perl applications that can run under Oracle Application

Server:

■ Perl scripts running as a CGI scripts

■ Perl scripts using the Perl cartridge

See Also: Using the PL/SQL Gateway in the Oracle9i Application

Server Documentation Library for more information flexible

parameter passing

See Also: Using the PL/SQL Gateway in the Oracle9i Application

Server Documentation Library for more information on supported

parameter passing schemes
3-8 Migrating from Oracle Application Server

Perl Migration
Perl scripts that run under Oracle Application Server as CGI scripts use a standard

Perl interpreter that must be installed on the system as a Perl executable, separate

from the Oracle Application Server installation.

Perl scripts that run under Oracle Application Server using the Perl cartridge use a

Perl interpreter contained in the cartridge, and based on standard Perl version

5.004. The interpreter is built as either:

■ (UNIX only) libperlctx.so , a shared object

■ (Windows only) perlnt40.dll , a shared library

The Perl cartridge links with the shared object or library at runtime.

Differences between Cartridge Scripts and CGI Scripts
Scripts written for the Perl cartridge differ from scripts written for a CGI

environment, because of how the cartridge runs the interpreter. The Perl cartridge:

■ Maintains a persistent interpreter, and pre-compiles and caches Perl scripts

(thus achieving better performance).

■ Redirects stdin and stdout to the WRB client I/O (i.e., the browser).

■ Redirects stderr to the WRB logger.

■ Returns additional CGI environment variables to the Perl interpreter whenever

it calls for system environment variables.

■ Supports the system call instead of the fork call. The system call modifies the

implementation of the Perl interpreter to redirect child process output to the

WRB client I/O.
Migrating Oracle Application Server Cartridges 3-9

Perl Migration
■ Supports error logging.

■ Supports performance instrumentation.

Perl scripts developed under Oracle Application Server to run as CGI scripts can

run in Oracle9i Application Server as CGI scripts without modification. However,

Perl scripts developed to run under the Perl cartridge in Oracle Application Server

may need to be modified to run under Oracle9i Application Server.

Migrating Perl Cartridge Scripts
This section includes a discussion of Oracle Application Server and Oracle9i
Application Server Perl implementations, and code modifications for migrating Perl

scripts to Oracle9i Application Server.

The Oracle9 i Application Server Perl Environment
The Oracle9i Application Server Perl environment is based on the Apache Perl

distribution (mod_perl). Like the Oracle Application Server implementation, mod_

perl provides a persistent Perl interpreter embedded in the server and a code

caching feature that loads and compiles modules and scripts only once, serving

them from the cache. Like the Oracle Application Server Perl cartridge, mod_perl

redirects stdout to the listener.

Installation Requirements
The Perl DBI and DBD modules are not part of the standard Oracle9i Application

Server distribution, and must be installed separately. Refer to the Release Notes for

details on version requirements, download sites, and installation instructions.

Perl Modules
Table 3–4 lists Perl modules shipped with Oracle Application Server. These

modules are not a part of the standard Oracle9i Application Server distribution. In

order to migrate applications that use these modules from Oracle Application

Server to Oracle9i Application Server, you must acquire these modules and install

them. The files are available from:

http://www.cpan.org

See Also: the mod_perl documentation in the Oracle9i
Application Server Documentation Library
3-10 Migrating from Oracle Application Server

Perl Migration
Variations from Oracle Application Server Perl Cartridge
The following points should be noted between the Oracle Application Server Perl

cartridge and Oracle9i Application Server mod_perl.

Namespace Collision
In Oracle Application Server and Oracle9i Application Server, compiled Perl scripts

are cached. If not properly handled, the caching of multiple Perl scripts can lead to

namespace collisions. To avoid this, both Oracle Application Server and Oracle9i
Application Server translate the Perl script file name into a unique packaging name,

and then compile the code into the package using eval. The script is then available

to the Perl application in compiled form, as a subroutine in the unique package

name.

Oracle Application Server and Oracle9i Application Server form the package name

differently. Oracle Application Server cannot cache subroutines with the same

name. Oracle9i Application Server creates the package name by prepending

Apache::ROOT:: and the path of the URL (substituting "::" for "/ ").

Using cgi-lib.pl
Oracle Application Server Perl scripts that use cgi-lib.pl must be modified to

use a version of the library customized for the Perl cartridge. This is not necessary

for Oracle9i Application Server.

Table 3–4 Perl Modules in Oracle Application Server

Module Version

DBI 0.79

DBD::Oracle 0.44

LWP or libwww-perl 5.08

CGI 2.36

MD5 1.7

IO 1.15

NET 1.0502

Data-Dumper 2.07
Migrating Oracle Application Server Cartridges 3-11

LiveHTML Migration
Pre-loading modules
Oracle Application Server Perl scripts may contain instructions that need not be

executed repetitively for each request of the script. Performance improves if these

instructions are run only once, and only the necessary portion is run for each

request of the Perl script.

In Oracle Application Server, perlinit.pl pre-loads modules and performs

initial tasks. This file is executed only once when the cartridge instance starts up. By

default, there are no executable statements in this file. This file is specified by the

Initialization Script parameter in the Perl Cartridge Configuration form.

There is no corresponding functionality in Apache mod_perl.

LiveHTML Migration
In Oracle Application Server, you can generate dynamic content using the

LiveHTML cartridge by embedding Server-Side Includes (SSI) and scripts in HTML

pages. If you are migrating LiveHTML applications to Oracle9i Application Server,

you need to migrate LiveHTML SSI to Apache SSI. Currently the only equivalent to

LiveHTML embedded scripts in Oracle9i Application Server is JavaServer Pages.

SSI
SSIs provided by Apache and LiveHTML do not have equivalent elements. The

following table lists the SSIs available in Apache and LiveHTML.

See Also: ■

■ http://cgi-lib.stanford.edu/cgi-lib for more information on
cgi-lib.pl

■ Oracle9i Application Server Release Notes for information about
modifying cgi-lib.pl

Table 3–5 List of SSIs in Apache and LiveHTML

Apache SSIs LiveHTML SSIs

config config

echo echo

exec exec

fsize fsize
3-12 Migrating from Oracle Application Server

LiveHTML Migration
The syntax for specifying an SSI in Apache or LiveHTML is the same. For example:

<!--#config sizefmt="bytes" -->

SSI in Apache is implemented by the mod_include module. This module is

compiled into the Apache Server by default.

In addition to the elements shown in the table above, Apache SSI also includes

variable substitution and flow control elements.

Scripts
In Oracle Application Server, you can use the LiveHTML cartridge to embed Perl

scripts in HTML files. Because LiveHTML is a proprietary Oracle Application

Server component, it does not have equivalent functionality in Oracle9i Application

Server. However, JavaServer Pages allow you to embed Java code in HTML files.

The JavaServer Pages 1.0 (JSP) model is implemented in Oracle9i Application Server

as OracleJSP.

To migrate your LiveHTML application to Oracle9i Application Server, you must

do the following:

■ Migrate from the LiveHTML application model to the JSP application model.

■ Migrate LiveHTML tags to JSP tags.

■ Rewrite the Perl code as Java code.

flastmod flastmod

include include

printenv -

set -

- request

Note: The space before the closing terminator (-->) is required.

See Also: the Apache Server documentation in the Oracle9i
Application Server Documentation Library

Table 3–5 List of SSIs in Apache and LiveHTML (Cont.)

Apache SSIs LiveHTML SSIs
Migrating Oracle Application Server Cartridges 3-13

CWeb Migration
If your LiveHTML application uses Web Application Objects in Oracle Application

Server, you must implement this functionality as embedded Java code, or as

JavaBean classes, and declare them with the <jsp:useBean> tag in JSPs.

CWeb Migration
In Oracle Application Server, you can use the CWeb (or C) Cartridge to:

■ create custom cartridges

■ develop applications that other cartridges invoke

There is no simple migration path from Oracle Application Server CWeb Cartridges

to Oracle9i Application Server. If you used CWeb to create custom cartridges you

should consider creating a custom Apache module.

If you use CWeb to invoke C programs, you have the following options:

■ CGI scripts: standalone C programs generating web content with println
statements.

■ Java JNI: Java Servlets or JavaServer Pages that call C routines from Apache

JServ or Oracle8i JVM

■ PL/SQL callouts: PL/SQL applications that call C routines from Oracle

Database Cache or Oracle8i.

The Web Request Broker (WRB) and C APIs are not available in Oracle9i
Application Server.

See Also: Oracle JavaServer Pages Developer’s Guide and Reference in

the Oracle9i Application Server Documentation Library
3-14 Migrating from Oracle Application Server

Migrating EJB, ECO/Java and JCOR
4

Migrating EJB, ECO/Java and JCORBA

Applications

This chapter provides information on migrating EJB, ECO for Java and JCO

applications from the Oracle Application Server to Oracle8i JVM EJB objects.

Oracle8i JVM is the Oracle9i Application Server component that provides a runtime

environment for EnterpriseJava Bean applications. The topics include:

■ Migrating EJBs

■ Migrating ECO/Java

■ Migrating JCORBA to EJB
BA Applications 4-1

Migrating EJBs
Migrating EJBs
To migrate EJBs from Oracle Application Server 4.0.8 (or later) to Oracle8i JVM, you

will need to modify code in the following areas:

■ Deployment Descriptors

■ Client Code

■ Logging (Server Code) (if applicable)

The following sections describe these changes.

Deployment Descriptors
Oracle8i JVM allows you to put deployment information in a text file that you can

run through the ejbdescriptor command line tool to create the serialized

deployment descriptors. The format of this text file resembles Java. The example

below shows the basic structure, in which ejb.test.server is the package that

contains the implementation of the bean class ExampleBean .

SessionBean ejb.test.server.ExampleBeanImpl
{

<attribute>=<value>
...

}

The required attributes are:

■ BeanHomeName

■ HomeInterfaceClassName

■ RemoteInterfaceClassName

Common additional attributes include:

■ StateManagementType (to define whether the bean is stateful or stateless)

■ TransactionAttribute (to set the transaction attribute value)

■ RunAsMode (to specify the privileges allowed to the bean)

■ RunAsIdentity (to specify the privileges allowed to the bean)

■ AllowedIdentities (to state who has access to the bean)

You can also use this format to set Java environment variables for the bean.
4-2 Migrating from Oracle Application Server

Migrating EJBs
Client Code
Changes to the client code are made in the initial context call using JNDI. The

hashtable passed to the initial context call must contain all of the properties listed in

the table below.

You must also change the URL that accesses your EJB home to the Oracle 8i format

of:

sess_iiop://<host>:<port>:<SID>/<path>/<bean>

For example:

sess_iiop://myhost:2481:ORCL/test/myBean

Note: You can also use serialized deployment descriptors instead

of the text file.

See Also: Oracle8i Enterprise JavaBeans and CORBA Developer’s
Guide in the Oracle9i Application Server documentation library

Table 4–1 Hashtable Values

Property Value

javax.naming.Context.
URL_PKG_PREFIXES

oracle.aurora.jndi

javax.naming.Context.
SECURITY_AUTHORIZATION

One of:

■ oracle.aurora.sess_iiop.
ServiceCtx.NON_SSL_LOGIN

■ oracle.aurora.sess_iiop.
ServiceCtx.SSL_CREDENTIAL

■ oracle.aurora.sess_iiop.
ServiceCtx.SSL_LOGIN

javax.naming.Context.
SECURITY_PRINCIPAL

The database or Oracle Database Cache
username, for example, scott.

javax.naming.Context.
SECURITY_CREDENTIALS

The user password, for example, tiger.
Migrating EJB, ECO/Java and JCORBA Applications 4-3

Migrating ECO/Java
Logging (Server Code)
If application logging was done in Oracle Application Server, remove all references

to oracle.oas.ejb.Logger from your EJB code. In Oracle8i JVM, you can use

the println function for simple logging, or you can log to the database.

Migrating ECO/Java
When migrating ECO for Java (ECO/Java) to Oracle8i JVM, you can choose

between migrating to EJB, or to CORBA. As the ECO model is very similar to EJB,

the easiest migration is to EJB. You will need to change server code as described in

the sections below in addition to changes for deployment descriptors and client

code described in the sections above for EJB migration.

To modify your ECO for Java components to be compatible with Oracle8i JVM EJBs,

you must modify the implementation file, the remote interface file, and the home

interface file.

Remote Interface
Change the remote interface to extend javax.ejb.EJBObject instead of

oracle.oas.eco.ECOObject . Each method must throw java.rmi.
RemoteException .

Home Interface
Change the home interface to extend javax.ejb.EJBHome instead of oracle.
oas.eco.ECOHome .

The create method must throw javax.ejb.CreateException and java.rmi.
RemoteException instead of oracle.oas.eco.CreateException .

Implementation Class
Make the following changes to the implementation class:

1. Remove all occurrences of, and references to, oracle.oas.eco.Logger .

2. Change all occurrences of oracle.oas.eco.* to javax.ejb.* .

3. Change ECOCreate method to ejbCreate method.

4. Change ECORemove method to ejbRemove method.

5. Change ECOActivate method to ejbActivate method.
4-4 Migrating from Oracle Application Server

Migrating JCORBA to EJB
6. Change ECOPassivate method to ejbPassivate method.

Migrating JCORBA to EJB
Oracle Application Server versions 4.0.6 and 4.0.7 provided a component model

called Java CORBA Objects (JCO), a precursor to the ECO for Java (ECO/Java)

model. This section discusses migrating from JCO in Oracle Application Server to

EJB in Oracle8i JVM.

To migrate to EJB, you must modify the server and client code as discussed in the

following sections. To modify the server code, you must modify the remote

interface, create a home interface, modify the JCORBA object implementation, and

make parameters serializable. You must also modify the deployment descriptors as

discussed in "Deployment Descriptors" on page 4-2.

Remote Interface
Make the following changes to the remote interface:

1. Convert all occurrences of org.omg.CORBA.Object or oracle.oas.jco.
JCORemote to javax.ejb.EJBObject .

2. Throw java.rmi.RemoteException for all methods in the interface.

Home Interface
You will need to create a home interface as defined in the EJB specification. An

example is shown below.

import javax.ejb.*;
import java.rmi.RemoteException;
public interface ServerStackHome extends EJBHome
{
 public ServerStackRemote create() throws CreateException, RemoteException;
}

Migrating EJB, ECO/Java and JCORBA Applications 4-5

Migrating JCORBA to EJB
Object Implementation
Complete the following to migrate the implementation class:

1. Change import oracle.oas.jco.* to import javax.ejb.* .

2. Check that the class implements javax.ejb.SessionBean .

3. Remove any logger references.

4. Move any initialization operations to the ejbCreate() method.

5. Save the session context passed into the setSessionContext() method in an

instance variable.

6. Ensure that all public methods in the class throw the java.rmi.
RemoteException exception.

7. Change any ObjectManager type to SessionContext type. The table below

maps the methods in the ObjectManager class to methods in the SessionContext

class.

Make Parameters Serializable
If any user defined parameters are being passed in the remote interface, ensure that

the classes implement java.io.Serializable .

Note: The JCORBA Lifecycle is not supported within EJB; if the

JCORBA object implements oracle.oas.jco.Lifecycle , you

must remove it.

Table 4–2 ObjectManager and SessionContext Methods

SessionContext Method ObjectManager Method

getEnvironment() getEnvironment()

Parameter passed to setSessionContext() getObjectManager()

getEJBObject() getSelf()

getEJBObject().remove() revokeSelf()

getUserTransaction() getCurrentTransaction()
4-6 Migrating from Oracle Application Server

Index

A
Apache JServ

communication protocol, 2-4

defined, 2-2

logging, 2-9

security, 2-5

Apache modules, 3-14

application threads, 2-8

attributes, bean, 4-2

availability, 1-4

C
C API, 3-14

C cartridge, 3-14

certificates, 1-6

CGI environment variables, 3-9

CGI module in OAS, 3-11

CGI scripts, 3-14

channels, 2-9

classes, 2-8, 2-9

configuration files, 1-5

CORBA

migrating to, 4-4

custom cartridges, 3-14

CWeb, 3-14

D
data members, 2-8

Data-Dumper, 3-11

DBD, 3-11

DBI, 3-11

deployment descriptors, 4-2

E
ejbdescriptor tool, 4-2

environment variables, 4-2

eval, 3-11

F
flexible parameter passing, 3-7

H
home interface file, 4-4

HTML

dynamic content, 2-7

HTTP

listener, 2-3

methods, 2-9

server, 1-3

http.conf, 2-9

I
Initialization Script parameter, 3-12

IO, 3-11

J
Java

environment variables, 4-2

standards, 1-2

Java JNI, 3-14
Index-1

JNDI, 4-3

JServ

communication protocol, 2-4

defined, 2-2

logging, 2-9

security, 2-5

JServlets, 2-2

JWEB

cartridge

enabling sessions, 2-7

Client Session parameter, 2-8

logging, 2-9

session timeout, 2-8

session-enabled applications, 2-7

toolkit, 2-7, 2-10

L
libperlctx.so, 3-9

libwww-perl, 3-11

load Balancing, 1-4

logger service, 2-9

LWP, 3-11

M
MD5, 3-11

methods

create, 4-4

ECO, 4-4

ejb, 4-4

HTTP, 2-9

javax.servlet.http.HttpServletRequest class, 2-10

javax.servlet.http.HttpSession, 2-8

javax.servlet.http.HttpUtils class, 2-12

javax.servlet.ServletContext class, 2-12

javax.servlet.ServletRequest class, 2-11

ObjectManager, 4-6

public, 4-6

SessionContext, 4-6

mod_jserv

configuration, 2-5

defined, 2-3

failover, 2-5

in Apache JServ architecure, 2-4

mod_perl

and OAS Perl, 3-10

in Apache JServ architecture, 2-4

pre-loading, 3-12

mod_plsql

authentication, 3-7

derived column values, 3-4

file upload and download features, 3-3

oas2ias tool, 3-4, 3-5

SQL files, 3-8

mod_ssl

in Apache JServ architecture, 2-4

N
NET, 3-11

O
OAS

cartridge types and Apache modules, 3-2

components, 2-10

deployment descriptors, 4-2

Java CORBA object (JCO), 4-5

logger service, 2-9, 4-2, 4-4, 4-6

migrating EJBs from, 4-2

migrating JCO to EJB, 4-5

migrating JServlets from, 2-2

Node Manager, 2-7, 2-8

Perl Cartridge Configuration, 3-12

Perl implementation, 3-8

Web Parameters form, 2-8

oas2ias migration tool, 3-3

OpenSSL, 1-6

oracle.owas.wrb.services.logger.OutputLogStream

class, 2-9

oracle.owas.wrb.WRBRunnable class, 2-8

P
package name, 3-11

parameter passing, 3-7, 3-8

parameters

serializable, 4-6

user-defined, 4-6
Index-2

password, 4-3

pconvert, 1-6

Perl modules, 3-10

Perl scripts

namespace collision, 3-11

performance, 3-9

run as CGI, 3-9

using Perl cartridge, 3-9

perlinit.pl, 3-12

perlnt40.dll, 3-9

PL/SQL

flexible parameter passing, 3-7

positional parameter passing, 3-8

PL/SQL callouts, 3-14

positional parameter passing, 3-8

private keys, 1-6

protocol, 2-4

R
remote interface file, 4-4

S
scalability, 1-3

security

certificates, 1-6

serializable parameters, 4-6

serialized objects, 4-2

servlet

applications, 2-9

engine, 2-3, 2-4

engine messages, 2-9

life cycle, 2-5

message log, 2-9

zones, 2-5

Servlet 2.1 specifications, 2-2

session

context, 4-6

state, 2-8

sockets, 2-4

static data members, 2-8

T
threads, application, 2-8

tools

pconvert, 1-6

U
URI, 2-5

W
Web Request Broker (WRB)

cartridge requests and, 2-2

client, 3-9

defined, 2-2

logger service, 2-9

OAS components and, 2-10

WRB API, 3-14
Index-3

Index-4

	Send Us Your Comments
	Preface
	1 Introduction to Oracle9i Application Server
	What is Oracle9i Application Server?
	Oracle Application Server Component Migration Options
	Enterprise Services Migration
	Overview
	Scalability
	Availability and Fault Tolerance
	Load Balancing
	Administration
	Security

	2 Migrating JWeb Applications to Apache JServ
	What is Apache JServ?
	Migrating Oracle Application Server JServlets to Apache JServ Servlets

	JWeb and Apache JServ 1.1 Differences
	Architecture
	Life cycle
	Threading
	Sessions
	Dynamic Content Generation in HTML Pages

	Code Modifications for JWeb Applications
	Session Control
	Application Threads
	Logging

	3 Migrating Oracle Application Server Cartridges
	Cartridge Types and Corresponding Apache Modules
	PL/SQL Migration
	File Upload/Download
	Uploaded File Document Format
	Using the oas2ias Tool
	Custom Authentication
	Flexible Parameter Passing
	Positional Parameter Passing
	Executing SQL Files

	Perl Migration
	Perl Applications under Oracle Application Server
	Migrating Perl Cartridge Scripts
	Variations from Oracle Application Server Perl Cartridge

	LiveHTML Migration
	SSI
	Scripts

	CWeb Migration

	4 Migrating EJB, ECO/Java and JCORBA Applications
	Migrating EJBs
	Deployment Descriptors
	Client Code
	Logging (Server Code)

	Migrating ECO/Java
	Remote Interface
	Home Interface
	Implementation Class

	Migrating JCORBA to EJB
	Remote Interface
	Home Interface
	Object Implementation
	Make Parameters Serializable

	Index

