
Oracle® Reports Services

Publishing Reports to the Web with Oracle9 i Application Server

Release 1.0.2 for Windows NT and UNIX

Part No. A86784-02

November 2000

Publishing Reports to the Web with Oracle9i Application Server, Release 1.0.2

Part No. A86784-02

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Frank Rovitto

Contributing Author: Pat Hinkley

Contributors: Chan Fonseka, Shaun Lin, Paul Narth, Padma Hariharan, Ashok Natesan, Danny
Richardson, Ravikumar Venkatesan, Viswanath Dhulipala, and Jeff Tang

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Developer, Oracle Reports, Oracle9i Application Server,
Express, Oracle Report Services, Oracle9i Developer Suite, Oracle Universal Installer, and Oracle Installer
are trademarks or registered trademarks of Oracle Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Portions copyright @ Blue Sky Software Corporation. All rights reserved. All other products or company
names are used for identification purposes only, and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

Oracle Reports Services New Features and Changes.. xiii
Intended Audience .. xiv
Structure.. xiv
Related Documents.. xiv
Notational Conventions... xv

Part I Publishing Reports

1 Publishing Architecture and Concepts

1.1 Oracle Reports Services .. 1-1
1.2 Oracle Reports Services Architecture ... 1-2
1.2.1 Web Architecture: Server Configurations .. 1-3
1.2.1.1 Processing Web Reports... 1-4
1.2.2 Non-Web Architecture: Server Configuration... 1-6
1.2.2.1 Processing Reports.. 1-6
1.3 Oracle Reports Services Configuration Choices ... 1-7
1.3.1 Enable Web and Non-Web Requests... 1-7
1.3.2 Choose the Oracle Reports Services Server CGI or Servlet...................................... 1-8
1.3.3 Choose the Location of Oracle Reports Services ... 1-8
 iii

2 Installing Oracle9i Application Server with Oracle Reports Services

2.1 About the Oracle Universal Installer .. 2-1
2.2 About the Oracle HTTP Server powered by Apache .. 2-2

3 Configuring the Oracle Reports Services Server on Windows NT and UNIX

3.1 Starting and Stopping the Oracle Reports Services Server.. 3-1
3.1.1 Starting the Oracle Reports Services Server ... 3-1
3.1.1.1 Starting the Oracle Reports Services Server on Windows NT.......................... 3-2
3.1.1.2 Starting the Oracle Reports Services Server on UNIX 3-2
3.1.2 Starting the Oracle Reports Services Server on Windows NT as a Non-Service .. 3-3
3.2 Stopping the Oracle Reports Services Server .. 3-3
3.2.1 Stopping or Deinstalling the Oracle Reports Services Server on Windows NT ... 3-4
3.2.2 Stopping the Oracle Reports Services Server on UNIX .. 3-4
3.3 Configuring the Oracle Reports Services Server Servlet ... 3-4
3.3.1 Configuring the Oracle Reports Services Server Servlet with JSDK....................... 3-5
3.3.2 Configuring the Oracle Reports Services Server Servlet with JServ....................... 3-7
3.4 Configuring the Oracle HTTP Server powered by Apache Listener 3-8
3.5 Configuring the Web Server .. 3-9
3.5.1 Configuring the Oracle Reports Services Server CGI ... 3-10
3.5.1.1 Configuring the Oracle Reports Services Server CGI 3-10
3.5.1.2 Creating a Service Entry for the Oracle Reports Services Server 3-11
3.5.1.3 Setting the Default Oracle Reports Services Server (Optional) 3-11
3.5.1.3.1 Windows NT... 3-12
3.5.1.3.2 UNIX .. 3-12
3.6 Configuring the Oracle Reports Services Server with Environment Variables.......... 3-12
3.6.1 Configuring the Oracle Reports Services Server in Windows NT with Environment

Variables 3-12
3.6.1.1 Setting the Environment Variables (Optional) ... 3-13
3.6.1.2 Starting the Oracle Reports Services Server .. 3-13
3.6.2 Configuring the Oracle Reports Services Server on UNIX with Environment

Variables 3-14
3.6.2.1 Setting the Environment Variables (Optional) ... 3-14
3.6.2.2 Starting the Oracle Reports Services Server on UNIX 3-15
3.7 Environment Variables ... 3-15
iv

3.8 Running a Report Request from a Web Browser.. 3-16
3.8.1 Other Steps .. 3-17
3.9 Modifying the Oracle Reports Services Server Configuration (Optional) 3-17
3.9.1 Updating the Database with Job Queue Activity .. 3-18
3.9.1.1 On the Oracle Reports Services Server Machine .. 3-18

4 Running Report Requests

4.1 Report Request Methods .. 4-1
4.2 Duplicate Job Detection.. 4-3
4.2.1 Usage Notes .. 4-3
4.3 Using a Key Map File.. 4-4
4.3.1 Enabling Key Mapping ... 4-5
4.3.2 Mapping URL Parameters .. 4-6
4.4 Specifying Report Requests ... 4-6
4.4.1 Building a Report ... 4-7
4.4.2 Specifying a Report Request from a Web Browser ... 4-8
4.4.3 Scheduling Reports to Run Automatically... 4-9

5 Oracle Reports Services Security with Oracle Portal

5.1 Overview .. 5-2
5.1.1 Creating a Security DLL for Oracle Reports Services 6i Security in a Windows

Environment ... 5-3
5.1.2 Creating a Security Library for Oracle Reports Services 6i Security in a UNIX

Environment ... 5-4
5.2 Database-Level Security ... 5-4
5.3 Application-Level Security .. 5-7
5.4 Integration with Oracle Portal... 5-8
5.4.1 Sharing Authentication Information Between Oracle Portal and Oracle Reports

Services Servers .. 5-9
5.5 Oracle Portal Integration Architecture... 5-9
5.6 Installing Oracle Reports Services Security in Oracle Portal .. 5-10
5.6.1 Step 1: Installing Oracle Portal Into an Oracle Database.. 5-10
5.6.2 Step 2: Installing Oracle Reports Services .. 5-10
v

5.7 Configuring the Security Environment .. 5-11
5.7.1 Step 1: Enabling Oracle Reports Services Security within Oracle Portal 5-11
5.7.1.1 RW_ADMINISTRATOR .. 5-12
5.7.1.2 RW_DEVELOPER ... 5-12
5.7.1.3 RW_POWER_USER .. 5-12
5.7.1.4 RW_BASIC_USER... 5-12
5.7.2 Step 2: Adding SECURITYTNSNAMES and PORTALUSERID Parameters 5-13
5.7.3 Step 3: Starting Oracle Portal .. 5-14
5.8 Printer Access... 5-14
5.9 Creation of an Oracle Portal Content Area.. 5-15
5.10 Setting Up and Deploying a Report.. 5-16
5.11 Creating and Enabling an Oracle Portal User to Administer Security 5-16
5.11.1 Creating and Enabling User REPORTSDEV to Administer Security 5-17
5.12 Setting Up Access Controls in Oracle Portal ... 5-22
5.13 Registering a Report.. 5-22
5.13.1 Registering a Server ... 5-23
5.13.2 Creating Report Definition File Access ... 5-27
5.14 Deploying a Report ... 5-38
5.14.1 Deploying a Report to an Oracle Portal Content Area ... 5-39
5.15 Running a Report... 5-46
5.16 Publishing Report Outside of Oracle Portal .. 5-49

6 Configuring Oracle Reports Services Server Clusters

6.1 Clustering Overview... 6-2
6.2 Configuring Oracle Reports Services Servers in a Cluster Example.............................. 6-3
6.2.1 Enabling Communication Between Master and Slaves.. 6-4
6.2.2 Configuring the Master Server ... 6-5
6.2.3 Running Reports in a Clustered Configuration... 6-7
6.2.4 Resubmitting Jobs When an Engine Goes Down .. 6-7
6.2.5 Adding Another Slave Server to the Master .. 6-8
vi

7 Customizing Reports at Runtime

7.1 Overview .. 7-2
7.1.1 Creating and Using XML Report Definitions .. 7-2
7.2 Creating an XML Report Definition ... 7-3
7.2.1 Required Tags ... 7-4
7.2.2 Partial Report Definitions ... 7-5
7.2.2.1 Formatting Modifications Example.. 7-7
7.2.2.2 Formatting Exception Example... 7-9
7.2.2.3 Program Unit and Hyperlink Example ... 7-10
7.2.2.4 Data Model and Formatting Modifications Example 7-11
7.2.3 Full Report Definitions .. 7-12
7.3 Running XML Report Definitions... 7-19
7.3.1 Applying an XML Report Definition at Runtime.. 7-20
7.3.1.1 Applying One XML Report Definition .. 7-20
7.3.1.2 Applying Multiple XML Report Definitions .. 7-20
7.3.1.3 Applying an XML Report Definition in PL/SQL... 7-21
7.3.1.3.1 Applying an XML Definition Stored in a File.. 7-21
7.3.1.3.2 Applying an XML Definition Stored in Memory...................................... 7-21
7.3.2 Running an XML Report Definition by Itself... 7-25
7.3.3 Performing Batch Modifications .. 7-25
7.4 Debugging XML Report Definitions .. 7-26
7.4.1 XML Parser Error Messages ... 7-26
7.4.2 Tracing Options.. 7-26
7.4.3 RWBLD60 .. 7-28
7.4.4 TEXT_IO .. 7-29
7.5 XML Tag Reference ... 7-30
7.5.1 <!-- comments --> ... 7-30
7.5.2 <![CDATA[]]>.. 7-31
7.5.3 <condition>... 7-32
7.5.4 <customize>.. 7-34
7.5.5 <data> .. 7-36
7.5.6 <dataSource> ... 7-37
7.5.7 <exception>... 7-39
7.5.8 <field>.. 7-41
7.5.9 <formLike> ... 7-46
vii

7.5.10 <formula>.. 7-47
7.5.11 <function> ... 7-50
7.5.12 <group> ... 7-51
7.5.13 <groupAbove>.. 7-53
7.5.14 <groupLeft> .. 7-54
7.5.15 <labelAttribute> ... 7-56
7.5.16 <layout>... 7-58
7.5.17 <link> ... 7-61
7.5.18 <matrix> .. 7-64
7.5.19 <matrixCell> ... 7-67
7.5.20 <matrixCol> .. 7-68
7.5.21 <matrixRow> .. 7-69
7.5.22 <object>.. 7-70
7.5.23 <programUnits>... 7-72
7.5.24 <properties>.. 7-73
7.5.25 <property> .. 7-75
7.5.26 <report> ... 7-78
7.5.27 <section>.. 7-80
7.5.28 <select> .. 7-82
7.5.29 <summary> ... 7-83
7.5.30 <tabular> ... 7-88

Part II Appendixes

A Controlling User Access to Reports by Defining Calendars

A.1 Creating Availability Calendars.. A-1
A.2 Availability Calendar Example ... A-2
A.2.1 Creating a Daily Calendar... A-2
A.2.2 Creating the Maintenance Calendar.. A-3
A.2.3 Creating the Christmas Calendar... A-4
A.2.4 Creating a Combined Availability Calendar.. A-5
viii

B RWCLI60 Command Line Arguments

B.1 Syntax.. B-1
B.2 Usage Notes.. B-1

C Oracle Reports Services Configuration Parameters

D Environment Variables

E Database Connection Strings

F Migrating from Web Cartridge to CGI

F.1 Benefits of Migrating to CGI.. F-1
F.2 Steps for Migrating to CGI... F-2
F.2.1 Step 1. Installing the Software .. F-2
F.2.2 Step 2. Configuring OAS... F-3
F.2.3 Step 3. Configuring the CGI ... F-3
F.2.4 Step 4. Setting Environment Variables (Optional) .. F-4
F.2.4.1 Windows NT.. F-4
F.2.4.2 UNIX ... F-5
F.2.5 Step 5. Renaming the Map Files (Optional).. F-5
F.2.6 Step 6. Running a Report Using the CGI URL... F-5
F.2.7 Updating the Report Links on Your Web Page ... F-6

G Troubleshooting

Glossary

Index
ix

x

Send Us Your Comments

Publishing Reports to the Web with Oracle9i Application Server, Release 1.0.2

Part No. A86784-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, then where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, then please indicate the
chapter, section, and page number (if available). You can send comments to us at:

■ E-mail - oddoc@us.oracle.com
xi

xii

Preface

This manual describes the different options available for publishing reports with
Oracle Reports Services as well as how to configure the Oracle Reports Services
software for publishing reports.

Oracle Reports Services New Features and Changes
The following features are new for this release:

New Features and Changes See

HTTP powered by Apache. The httpds.conf file has
changed to httpd.conf.

Chapter 3, "Configuring the
Oracle Reports Services Server
on Windows NT and UNIX"

Oracle Portal. Oracle Reports Services 6i security with
Oracle Portal.

Chapter 5, "Oracle Reports
Services Security with Oracle
Portal"
xiii

Intended Audience
This manual is intended for anyone who is interested in publishing reports with
Oracle Reports Services. Perhaps you have built reports yourself and now want to
publish them to a wider audience in your organization. Or perhaps someone else
built the reports for you and you now want to deploy them for other users to access.
To configure Oracle Reports Services software for publishing reports, you should
have a thorough understanding of the operating system (for example, Windows NT
or Solaris) as well as Net8. If you are planning to deploy reports dynamically on the
Web, then you should also be knowledgeable about your Web server configuration.

Structure
This manual contains the following chapters:

Related Documents
For more information on building reports, Oracle Portal, or the Oracle Report
Services, refer to the following manuals:

■ Oracle Reports Developer Building Reports, A73172-01

■ Oracle Reports Developer Getting Started for Windows, A73156-02

■ Oracle Portal 3.0: Tutorial, A86188-01

■ Deploying Forms to the Web with Oracle9i Application Server, A83591-01

Chapter 1 Introduces the architecture of the Oracle Reports Services and
choices that you need to make before you configure the report.

Chapter 2 Provides information about installing.

Chapter 3 Describes how to configure the Oracle Reports Services server.

Chapter 4 Describes the various methods for running reports to the Oracle
Reports Services server.

Chapter 5 Describes how the Oracle Reports Services can be integrated with
Oracle Portal to control user access to reports.

Chapter 6 Describes how to configure the Oracle Reports Services with
clustering to enhance performance and reliability.

Chapter 7 Describes how to use XML to apply customizations to reports at
runtime.
xiv

Notational Conventions
The following conventions are used in this book:

Convention Meaning

boldface text Used for emphasis. Also used for menu items,
button names, labels, and other user interface
elements.

italicized text Used to introduce new terms.

courier font Used for path and file names, and for code and text
that you type.

COURIER CAPS Used for file extensions (.PLL or .FMX) and SQL
commands

CAPS Used for environment variables, built-ins and
package names, and executable names
xv

xvi

Part I

 Publishing Reports

Chapter 1, "Publishing Architecture and Concepts"

Chapter 2, "Installing Oracle9i Application Server with Oracle Reports Services"

Chapter 3, "Configuring the Oracle Reports Services Server on Windows NT and
UNIX"

Chapter 4, "Running Report Requests"

Chapter 5, "Oracle Reports Services Security with Oracle Portal"

Chapter 6, "Configuring Oracle Reports Services Server Clusters"

Chapter 7, "Customizing Reports at Runtime"

 Publishing Architecture and Con
1

Publishing Architecture and Concepts

In today’s fast-moving, competitive business world, clear and up-to-date
information is needed for the accurate, expedient decision making requirements of
an often geographically distributed workforce. The timely distribution of that
information must be reliable, cost effective, and accessible to everyone who requires
it. Oracle Reports Services provides an unbounded, easy-to-use, scalable, and
manageable solution for high-quality database publishing and reporting.

Oracle Reports Services is a powerful Enterprise reporting tool used by information
system (IS) developers to create sophisticated dynamic reports for the Web and
across the enterprise.

The Oracle Reports Services server-based architecture means report consumers
require only a Web browser to view reports in industry standard formats. The
Oracle Reports Services supports on-demand delivery of high-quality reports over
the Web through native generation of HTML with Cascading Style Sheets and the
Adobe Portable Document Format (PDF). Maintenance overhead is cut as reports
are administered and maintained centrally and there is no requirement to install
complex software on every user’s PC.

1.1 Oracle Reports Services
The Oracle Reports Services enables you to implement a multi-tiered architecture
for running your reports. With Oracle Reports Services, you can run reports on a
remote application server.
cepts 1-1

Oracle Reports Services Architecture
When used in conjunction with the Oracle Reports Services server CGI or Oracle
Reports Services server servlet, Oracle Reports Services also enables you to run
reports from a Web browser using standard URL syntax. Oracle Reports Services
can be installed on Windows NT, Windows 95, or UNIX. It handles client requests to
run reports by entering all requests into a job queue. When one of the server’s
runtime engines becomes available, the next job in the queue is dispatched to run.
As the number of jobs in the queue increases, the server can start more runtime
engines until it reaches the maximum limit specified when the server process was
started. Similarly, idle engines are shut down after having been idle for longer than
a specified period of time.

Oracle Reports Services keeps track of a predefined maximum number of past jobs.
Information on when the jobs are queued, started, and finished is kept, as well as
the final status of the report. This information can be retrieved and reviewed on
Windows from the Oracle Reports Services Queue Manager (RWRQM60) or
through the API. The Oracle Reports Services Queue Manager can reside on the
same machine as Oracle Reports Services or on a client machine. On UNIX, you can
use the Oracle Reports Services Queue Viewer (RWRQV60) to view the Oracle
Reports Services queue.

1.2 Oracle Reports Services Architecture
Oracle Reports Services can be configured in a number of ways depending upon
your requirements. When used in a Web environment, the Oracle Reports Services
architecture consists of four tiers1:

■ The thin client tier

■ The Web server tier

■ The Oracle Reports Services tier

■ The database tier

The range of possible configurations runs from having all of these tiers on one
machine to having each of these tiers on a separate machine. The most common
configurations typically have the tiers spread across three or four machines. The
graphics that follow provide a conceptual view of these common configurations.

1 The term tier refers to the logical location of the components that comprise the Oracle
Reports Services architecture. Each of the tiers, though, could reside on the same or
different machines.
1-2 Publishing Reports to the Web with Oracle9i Application Server

Oracle Reports Services Architecture
1.2.1 Web Architecture: Server Configurations
The diagrams that follow illustrate two of the most common configurations for
Oracle Reports Services in a Web environment. The key difference between the two
configurations is whether Oracle Reports Services and Web server tiers are on the
same or different machines. In the first case, the Web server and Oracle Reports
Services reside on the same machine. In the second case, they are on different
machines. The latter case requires a slightly different setup from the first.

Figure 1–1 Web Architecture, Three Machine Configuration

Note: In the non-Web case, which will be discussed later, there are
only three tiers because the Web server tier is not necessary.
Publishing Architecture and Concepts 1-3

Oracle Reports Services Architecture
Figure 1–2 Web Architecture, Four Machine Configuration

1.2.1.1 Processing Web Reports
Web reports are processed as follows:

1. The client requests the report from their Web browser either by typing a URL or
clicking a hyperlink. The Web browser passes the URL to the Web server.

2. To handle the request, the Web server invokes either the Oracle Reports Services
server CGI or Oracle Reports Services server servlet, depending upon which
one you have configured.
1-4 Publishing Reports to the Web with Oracle9i Application Server

Oracle Reports Services Architecture
3. The Oracle Reports Services server CGI or servlet parses the request. If
necessary, users are prompted to log on. The Oracle Reports Services server CGI
or servlet converts the request to a command line that can be executed by
Oracle Reports Services and submits it to the specified Oracle Reports Services
server.

4. If the request includes a time tolerance2, then Oracle Reports Services checks its
output cache to determine whether it already has output that satisfies the
request. If it finds acceptable output in its cache, then it will immediately return
that output rather than executing the report.

5. Oracle Reports Services receives the job request and queues it. When one of its
runtime engines becomes available,3 it sends the command line to that runtime
engine for execution.

6. The runtime engine runs the report.

7. The Oracle Reports Services server CGI or servlet receives the report output
from Oracle Reports Services and sends it to the Web server.

8. The Web server sends the report output to the client’s Web browser.

2 For any job request that you send to the Oracle Reports Services, you can include a
TOLERANCE argument. TOLERANCE defines the oldest output that the requester would
consider acceptable. For example, if the requester specified five minutes as the
TOLERANCE, Oracle Reports Services would check its cache for duplicate report output
that had been generated within the last five minutes.

3 When you configure Oracle Reports Services, you can specify the maximum number of
runtime engines it can use. If Oracle Reports Services is under this maximum, then it can
start new runtime engines to handle requests. Otherwise, the request must wait until one
of the current runtime engines completes its current job.
Publishing Architecture and Concepts 1-5

Oracle Reports Services Architecture
1.2.2 Non-Web Architecture: Server Configuration
The non-Web architecture differs from the Web architecture in that there is no Web
browser or Web server. Report requests are sent to Oracle Reports Services from a
thin client such as the Oracle Reports Services Launcher or command line,
RWCLI60. The non-Web architecture is useful to those who cannot use the Web to
deploy their reports for some reason.

Figure 1–3 Non-Web Architecture

1.2.2.1 Processing Reports
In a non-Web environment, reports are processed as follows:

1. The client requests the report using the command line (RWCLI60), the Oracle
Reports Services Queue Manager, or the Oracle Reports Services Launcher
(ActiveX control). If necessary, users are prompted to log on.

2. Oracle Reports Services receives the job request and queues it. When one of its
runtime engines becomes available, it sends the request to that runtime engine
for execution.

3. The runtime engine runs the report.
1-6 Publishing Reports to the Web with Oracle9i Application Server

Oracle Reports Services Configuration Choices
4. Oracle Reports Services is notified that the job has been completed.

5. If Oracle Reports Services was called synchronously, then it signals the client
that the job has been completed. If the destination type (DESTYPE) for the
command line client is set to localfile in the job request, then the output is
transferred to the client.

1.3 Oracle Reports Services Configuration Choices
The configuration of Oracle Reports Services can vary widely depending upon the
requirements of your system. Before attempting to configure Oracle Reports
Services, you must make a number of important decisions based upon your
requirements. By making these decisions beforehand, you can greatly simplify the
configuration process. These decisions are discussed in the following sections.

1.3.1 Enable Web and Non-Web Requests
As you saw in Section 1.2, "Oracle Reports Services Architecture", Oracle Reports
Services can accept job requests from both Web and non-Web thin clients. In the
Web case, users run reports by clicking or typing a URL in their Web browser and,
depending on the URL, the report output is served back to them in their browser or
sent to a specified destination (for example, a printer). In the non-Web case, users
launch job requests using client software installed on their machines (that is, Net8
and the Oracle Reports Services Thin Client, which is comprised of the Oracle
Reports Services Launcher, the Oracle Reports Services Queue Manager, and
RWCLI60).

To enable users to launch reports from a Web client, you need to install either the
Oracle Reports Services server CGI or servlet with your Web server to communicate
between the Web server and Oracle Reports Services. The CGI or servlet is required
for your Web server to process report requests from Web clients. For more
information, refer to the Section 1.3.2, "Choose the Oracle Reports Services Server
CGI or Servlet". To enable users to launch reports from a non-Web client, you need
to install the required client software (that is, Net8 and the Oracle Reports Services
Thin Client) on each machine from which you plan to launch report requests.
Publishing Architecture and Concepts 1-7

Oracle Reports Services Configuration Choices
From the perspective of configuration, the key differences between enabling Web
and non-Web requests is as follows:

■ Enabling Web requests requires that you install some additional software with
your Web server, namely the Oracle Reports Services server CGI or servlet, but
obviates the need to install any client software beyond a Web browser.

■ Enabling non-Web requests requires that you install and maintain client
software on each machine from which you want to send job requests to Oracle
Reports Services.

The Web case is clearly the most cost effective because it reduces client maintenance
costs, but there might be cases where launching non-Web requests is a necessity for
other reasons. Oracle Reports Services supports both Web and non-Web requests
and they are not mutually exclusive.

1.3.2 Choose the Oracle Reports Services Server CGI or Servlet
As discussed in Section 1.3.1, "Enable Web and Non-Web Requests", to use Oracle
Reports Services in a Web environment, you must install and configure the Oracle
Reports Services server CGI or servlet to handle the transmission of job requests
and output between your Web server and Oracle Reports Services. The key
consideration in this choice is the following:

■ If you are using a CGI-aware Web server (for example, Oracle9i Application
Server or Oracle Portal Listener), then choose the Oracle Reports Services server
CGI.

■ If you are using a Java-based Web server, then choose the Oracle Reports
Services server servlet.

1.3.3 Choose the Location of Oracle Reports Services
As described in the Section 1.2, "Oracle Reports Services Architecture", you can
place Oracle Reports Services on the same machine as your Web server or on a
different machine. As you make this decision, you should consider the following:

■ Having Oracle Reports Services and the Web server on the same machine, of
course, requires more of the machine’s resources. If you plan to have both on
the same machine, then you need to take that into account when determining
the machine’s resource requirements (that is, memory and disk space).
1-8 Publishing Reports to the Web with Oracle9i Application Server

Oracle Reports Services Configuration Choices
■ Having Oracle Reports Services and the Web server on the same machine
reduces network traffic. The Oracle Reports Services server CGI or servlet must
reside on the same machine as the Web server. If Oracle Reports Services is on a
different machine, then its transmissions to the Oracle Reports Services server
CGI or servlet must travel across a network. If it is on the same machine, then
the transmissions do not have to travel across the network.

Chapter 3, "Configuring the Oracle Reports Services Server on Windows NT and
UNIX" provides guidelines for configuring Oracle Reports Services using the Oracle
Reports Services server servlet.
Publishing Architecture and Concepts 1-9

Oracle Reports Services Configuration Choices
1-10 Publishing Reports to the Web with Oracle9i Application Server

Installing Oracle9i Application Server with Oracle Reports Se
2

Installing Oracle9i Application Server with

Oracle Reports Services

The Oracle Reports Services is installed as part of the Enterprise Edition of Oracle9i
Application Server. The Enterprise Edition is recommended for medium to large
sized Web sites that handle a high volume of transactions.

For your convenience, the Oracle HTTP Server powered by Apache, a Web listener
that supports the Common Gateway Interface (CGI), is provided. The Oracle HTTP
Server powered by Apache can be installed through the Oracle Universal Installer,
which is provided with the Oracle9i Application Server.

For more detailed information about installing Oracle Reports Services, refer to the
Oracle9i Application Server Installation Guide. All necessary requirements and tasks
are documented in this manual.

2.1 About the Oracle Universal Installer
The Oracle9i Application Server uses the Oracle Universal Installer, a Java-based
tool to configure environment variables and to install components. The installer
guides you through each step of the installation process, so you can choose different
configuration options.

The installer includes features that perform the following tasks:

■ Explore and provide installation options for the product.

■ Detect preset environment variables and configuration settings.

■ Set environment variables and configuration settings during installation.

■ Deinstall the product.
rvices 2-1

About the Oracle HTTP Server powered by Apache
2.2 About the Oracle HTTP Server powered by Apache
The Oracle9i Application Server uses the Oracle HTTP Server powered by Apache
Web server technology. Using the Apache Web server technology offers the
following:

■ Scalability

■ Stability

■ Speed

■ Extensibility

The Apache server delegates the handling of HTTP requests to its modules (mods),
which add functionality not included in the server by default. Using the Apache
APIs, it is easy to extend the Apache functionality. A large number of mods have
already been created and are included on your CD-ROM. Although the default
Apache HTTP server supports only stateless transactions,1 you can configure it to
support stateful transactions2 by leveraging the functionality supplied by Apache
JServ (mod_jserv), which is described in the Oracle9i Applications Server Overview
Guide.

Additional information about the Oracle HTTP Server powered by Apache can also be
found in the Oracle9i Application Server Installation Guide and the Apache Web Server,
Release 1.3 manual on your CD-ROM.

1 A stateless transaction consists of a request and a response. In a stateless transaction, no
information about the user (the requestor) is tracked by the system, and each transaction is
unrelated to those that precede or follow it.

2 Stateful transactions are similar to database sessions because information abut the user (the
initiator of the transaction) is tracked by the system for one or more phases of the
transaction. In addition to user information, with a stateful transaction, the system also
keeps track of the state (the set of conditions at a moment in time) of one or more
preceding events in the sequence of a transaction.
2-2 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Oracle Reports Services Server on Windows NT and
3

Configuring the Oracle Reports Services

Server on Windows NT and UNIX

When you install the Oracle9i Application Server with the Oracle HTTP Server
powered by Apache, the Oracle Reports Services server servlet and the Oracle Reports
Services server CGI are automatically configured for you in the Windows NT and
UNIX environments. This chapter describes how to manually change the
configurations that were provided by default.

This chapter also describes how to start and stop the Oracle Reports Services server
and the configuration environment variables.

3.1 Starting and Stopping the Oracle Reports Services Server
Throughout this chapter you are asked to start, stop, and restart the Oracle Reports
Services server. Following are the instructions for doing this.

3.1.1 Starting the Oracle Reports Services Server
The following sections describe how to start the Oracle Reports Services server on
Windows NT or on UNIX.
 UNIX 3-1

Starting and Stopping the Oracle Reports Services Server
3.1.1.1 Starting the Oracle Reports Services Server on Windows NT
Proceed with the following steps to start the Oracle Reports Services server on
Windows NT:

1. On the Oracle Reports Services server machine desktop, choose
Start→Settings→Control Panel and double-click (Services) on the Control
Panel.

2. In the Services dialog box, choose Oracle Reports Server [repserver] (where
repserver is the name of the Oracle Reports Services server instance) and
click Startup, which gives you the Services dialog window.

3. From the startup dialog, select This Account in the Log On As section, and
select an operating system user name and password. This specifies that the
server is run as that user.

If you want to output to PostScript or to a printer, then ensure the user running
the Oracle Reports Services server service has access to a default printer.
Typically, the System Account does not have access to printers.

4. Set the Startup Type of the service to Automatic when the system is started.

5. Click OK.

6. Click Start. A Service Control message box indicates when your Oracle Reports
Services server has started. If your Oracle Reports Services server cannot start,
then refer to Appendix G, "Troubleshooting" for more information.

When you start the Oracle Reports Services server for the first time, an Oracle
Reports Services server configuration file (for example, repserver.ora) is
created in the ORACLE_HOME\REPORT60\SERVER directory. The setting for
your Oracle Reports Services server cache is set by default. You can change the
cache directory, or set the report’s source path by modifying the configuration
file. If you modify the configuration file, then stop and restart the Oracle
Reports Services server for the changes to take effect.

3.1.1.2 Starting the Oracle Reports Services Server on UNIX
Do the following steps to start the Oracle Reports Services server on UNIX:

1. From the $ORACLE_HOME/BIN directory, run the following command line to
run the Oracle Reports Services server in the foreground:

rwmts60 name=repserver
3-2 Publishing Reports to the Web with Oracle9i Application Server

Stopping the Oracle Reports Services Server
Run the following command to run the Oracle Reports Services server in the
background:

rwmts60 name=repserver &

2. From the $ORACLE_HOME/BIN directory, run the following command line to
ensure the Oracle Reports Services server is running:

rwrqv60 server=repserver

Status columns (for example, NAME, OWNER, and DEST) for the Oracle
Reports Services server are displayed. Currently, though, no status information
is available since no jobs are running.

If you want to output to PostScript or to a printer, then the printer must be
configured in the uiprint.txt file (this file is located in the
$ORACLE_HOME/guicommon6/tk60/ADMIN directory).

3.1.2 Starting the Oracle Reports Services Server on Windows NT as a Non-Service
Run the following command:

rwmts60 -listen repserver

Or in batch mode:

rwmts60 -listen repserver batch=yes

The repserver does not need to have the domain qualifier (for example, .world)
appended to it.

3.2 Stopping the Oracle Reports Services Server
The following sections discuss how to stop the Oracle Reports Services Server on
Windows NT and UNIX.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-3

Configuring the Oracle Reports Services Server Servlet
3.2.1 Stopping or Deinstalling the Oracle Reports Services Server on Windows NT
To stop the Oracle Reports Services server on Windows NT, you do the following:

1. On the Oracle Reports Services server machine desktop, choose Start→Run.

2. Type the following command line argument:

rwmts60 -uninstall repserver

Or in batch mode:

rwmts60 -uninstall repserver batch=yes

The repserver does not need to have the domain qualifier (for example,
.world) appended to it.

3.2.2 Stopping the Oracle Reports Services Server on UNIX
Do one of the following to stop the Oracle Reports Services server:

■ If the Oracle Report Services server is running in the foreground, then ensure
that the focus is in the correct window and press ctrl-C.

■ If the Oracle Report Services server is running in the background, then enter the
following at the command line:

ps -ef |grep ’rwmts60’

You would then enter:

kill -9 process_number

3.3 Configuring the Oracle Reports Services Server Servlet
With the Oracle HTTP Server powered by Apache, there are two Oracle Reports
Services server servlet configurations that you can manually change:

■ Oracle Reports Services server servlet with JSDK

■ Oracle Reports Services server servlet with JServ
3-4 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Oracle Reports Services Server Servlet
3.3.1 Configuring the Oracle Reports Services Server Servlet with JSDK
The following configuration assumes that the Oracle HTTP Server powered by
Apache is installed in the following directory:

/private1/ias

It also assumes that the Oracle Reports Services server is installed in the following
directory:

/private1/ias/6iserver

You do the following steps to configure the Oracle Reports Services server servlet
with JSDK:

1. Add the following entry to the Oracle Reports Services server servlet properties
file, servlet.properties, (for example, the Oracle Reports Services server
servlet properties file located in /private1/ias/Apache/Jsdk/examples):

servlet.RWServlet.code=oracle.reports.rwcgi.RWServlet

2. Create the directory hierarchy oracle/reports/rwcgi in your Web server
Java class directory:

/private1/ias/Apache/Jsdk/examples/oracle/reports/rwcgi

You then copy into this new directory the RWServlet.class file found in:

/private1/ias/6iserver/reports60/java

3. Add the root directory from the previous step into your CLASSPATH
environment variable, located in /private1/ias/Apache/Ojsp. Also add
Ojsp/lib/servlet.jar to the CLASSPATH environment variable. For
example:

setenv CLASSPATH/private1/ias/Apache/jdk/bin:
/private1/ias/Apache/jdk/lib/classes.zip:
/private1/ias/Apache/Jsdk/examples:/private1/ias/Apache/Ojsp/lib/servlet.jar

4. Set the PATH variable by entering the following:

setenv PATH /private1/ias/6iserver/bin:/private1/ias/Apache/Apache/bin:
private1/ias/Apache/jdk/bin:
private1/ias/Apache/jsdk/bin:$PATH

5. Start the Oracle Reports Services server.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-5

Configuring the Oracle Reports Services Server Servlet
6. Start the Oracle Reports Services server servlet runner by running the following
command:

servletrunner &

7. Verify that the Oracle Reports Services server servlet is running by doing the
following:

a. Running the following from your browser to ensure the installation and
setup are okay:

http://hostname:portno/servlet/RWServlet/help?

where:

This shows you that the Help page is active.

b. Run the following from your browser to ensure the Oracle Reports Services
server is up:

http://hostname:portno/servlet/RWServlet/showjobs?
server=repserver

c. Enter the following from your browser to run a report:

http://hostname:portno/servlet/RWServlet?server=repserver+
report=ReportName+destype=cache+userid=ConnectString+desformat=htmlcss

You can also use the cgicmd.dat file for key mapping.

If you modify the configuration file, then you need to stop and restart the Oracle
Reports Services server to acknowledge the changes.

hostname is the machine name where the Apache listener is
running.

portno is the port number that where the Apache listener is
started.
3-6 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Oracle Reports Services Server Servlet
3.3.2 Configuring the Oracle Reports Services Server Servlet with JServ
You do the following to configure the Oracle HTTP Server powered by Apache to run
the Oracle Reports Services server servlet with JServ. The changes are made in the
ias_home/Apache/Jserv/etc/jserv.properties file, where ias_home is
the location where you installed Oracle9i Application Server:

1. Add the following line:

wrapper.classpath=ias_home/Apache/Jserv/servlets

2. Change the wrapper.env=ORACLE_HOME=ias_home line to the following:

wrapper.env=ORACLE_HOME=ias_home/6iserver

3. Change the wrapper.env=LD_LIBRARY_PATH=ias_home/lib line to the
following:

wrapper.env=LD_LIBRARY_PATH=ias_home/lib:ias_home/6iserver/bin:ias_home/
6iserver/lib

4. Add the following line to the Apache/Jserv/etc/zone.properties file:

servlet..RWServlet.code=oracle.reports.rwcgi.RWServlet

5. Copy the RWServlet.class file to the following directory (you might need to
create the directory):

ias_home/Apache/Jserv/servlets/oracle/reports/rwcgi

The http://host:port/servlet/RWServlet URL runs the servlet.

6. Start the Oracle Reports Services server.

7. Start the Oracle HTTP Server powered by Apache listener using the following
command:

httpdctl start
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-7

Configuring the Oracle HTTP Server powered by Apache Listener
8. Verify the Oracle Reports Services server is running by:

a. Run the following from your browser to ensure the installation and setup
are okay:

http://hostname:portno/servlets/RWServlet/help?

This shows you that the Help page is active.

b. Run the following from your browser to ensure the Oracle Reports Services
server is up:

http://hostname:portno/servlets/RWServlet/showjobs?
server=repserver

c. Enter the following from your browser to run a report:

http://hostname:portno/servlets/RWServlet?server=repserver+
report=ReportName+destype=cache+userid=ConnectString+desformat=htmlcss

You can also use the cgicmd.dat file for key mapping.

If you modify the configuration file, then you need to stop and restart the Oracle
Reports Services server to acknowledge the changes.

3.4 Configuring the Oracle HTTP Server powered by Apache Listener
You do the following to change the default configuration for the Oracle HTTP
Server powered by Apache listener to run the Oracle Reports Services server CGI:

1. Add the following entry to the file httpd.conf (found in
/private1/ias/Apache/Apache/conf):

ScriptAlias /cgi-bin/ "/private1/ias/6iserver/bin"

2. Start the Oracle Reports Services server.

3. Start the Oracle HTTP Server powered by Apache listener using the following
command:

httpdctl start
3-8 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Web Server
4. Verify the Oracle Reports Services server CGI is running by:

a. Run the following from your browser to ensure the installation and setup
are okay:

http://hostname:portno/cgi-bin/rwcgi60/help?

This shows you that the Help page is active.

b. Run the following from your browser to ensure the Oracle Reports Services
server is up:

http://hostname:portno/cgi-bin/rwcgi60/showjobs?
server=repserver

c. Enter the following from your browser to run a report:

http://hostname:portno/cgi-bin/rwcgi60?server=repserver+
report=ReportName+destype=cache+userid=ConnectString+desformat=htmlcss

You can also use the cgicmd.dat file for key mapping.

If you modify the configuration file, then you need to stop and restart the Oracle
Reports Services server to acknowledge the changes.

3.5 Configuring the Web Server
In order to make this configuration example meaningful, it is necessary to make
several assumptions:

■ You are configuring the Oracle Reports Services server to enable Web requests.

■ You are using the Oracle Reports Services server CGI with the CGI-aware Web
server with Oracle HTTP Server powered by Apache.

■ The Oracle Reports Services server is installed on a different machine than the
Web server.

The CGI-BIN directory on your Web server contains CGI executables. The following
are performed on the Web server machine:

1. Start your Web server by entering the following:

2. Start your browser.

3. Create a listener.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-9

Configuring the Web Server
4. Configure your Web server mapping and note the physical and virtual
directories. For example:

The physical directory depends on directory settings chosen during the
installation of your Web server software.

Refer to your vendor’s Web server documentation for more information on
configuring your Web server.

3.5.1 Configuring the Oracle Reports Services Server CGI
The following steps are performed on the Web server machine.

3.5.1.1 Configuring the Oracle Reports Services Server CGI
To configure the Oracle Reports Services server CGI copy rwcgi60.exe (located in
the ORACLE_HOME\BIN directory) to your CGI-BIN directory.

In Table 3–1, " CGI-BIN Physical and Virtual Directories" the CGI physical directory
is C:\your_webserver\bin, or if you are using the Apache Web Server,
C:\Program Files\Apache Group\Apache\cgi-bin.

The CGI-BIN directory is defined in your Web server configuration. The Oracle
Reports Services server CGI must be in a path mapped as a CGI directory. The
Oracle Reports Services RDF files must be in a path only accessible to the Oracle
Reports Services server. If you choose the default installation of Oracle Reports
Services 6i server and the Oracle Portal Listener, then you will find the
rwcgi60.exe file in the following path:

D:\orant\bin\rwcgi.exe

Table 3–1 CGI-BIN Physical and Virtual Directories

Directory
Description Physical Directory example

Virtual
Directory
Example

Permissions
Required

CGI-BIN c:\orant\oas\bin /CGI-BIN execute

Apache Web
server CGI-BIN

c:\program files\Apache
Group\Apache\cgi-bin

/CGI-BIN execute
3-10 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Web Server
3.5.1.2 Creating a Service Entry for the Oracle Reports Services Server
If the Web server is on a different machine than your Oracle Reports Services server,
then you must add the Oracle Reports Services server service entry. This service
entry was created on the Oracle Reports Services server machine in the
tnsnames.ora file. The tnsnames.ora file is located on your Web server
machine. This enables the CGI executable to communicate with the Oracle Reports
Services server.

If you do not remember the service entry settings for the Oracle Reports Services
server, then open the tnsnames.ora file located in the
ORACLE_HOME\NET80\ADMIN directory on your Oracle Reports Services server
machine. Copy or make note of the service entry.

1. On your Web server machine, open the tnsnames.ora file (located in the
ORACLE_HOME\NET80\ADMIN directory) in a text editor.

2. Add the following Oracle Reports Services server service entry:

repserver.world =(ADDRESS = (PROTOCOL = TCP)(Host =
repserver_machine.mydomain)(Port = 1949))

where:

3.5.1.3 Setting the Default Oracle Reports Services Server (Optional)
You can, optionally, set defaults for the Oracle Reports Services server on both the
Windows NT platform or the UNIX platform.

repserver.world is the name of the server instance
and.world is the domain specified in
the NAMES.DEFAULT_DOMAIN setting
in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is
not defined in the sqlnet.ora, then
omit .world from the name of the server
instance.

repserver_machine.mydomain is the host name or IP address of the
machine.

1949 is the port number to which the server is
listening.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-11

Configuring the Oracle Reports Services Server with Environment Variables
3.5.1.3.1 Windows NT For Windows NT, perform the following steps.

1. On your desktop, navigate to Start→Run.

2. Type regedit to have the Registry Editor displayed.

3. From the menu, expand Hkey_Local_machine→Software→Oracle.

4. First choose the Edit→New→String value to add the following registry entry:

REPORTS60_REPORTS_SERVER

Then double click on the REPORTS60_REPORTS_SERVER to enter the
repserver value, where repserver is the name of the Oracle Reports
Services server that you are configuring (the TNSnames service entry name of
the Oracle Reports Services server).

3.5.1.3.2 UNIX For UNIX, set the REPORTS60_REPORTS_SERVER environment
variable to the name of the Oracle Reports Services server.

You might want to create a shell script that sets environment variables on your Web
server machine. To do this, create a file that contains the command described below,
where repserver is the name of the Oracle Reports Services server that you are
configuring (the TNSnames service entry name of the Oracle Reports Services
server):

setenv REPORTS60_REPORTS_SERVER repserver

3.6 Configuring the Oracle Reports Services Server with Environment
Variables

This section discusses how you can configure and start the Oracle Reports Services
server with environment variables

3.6.1 Configuring the Oracle Reports Services Server in Windows NT with
Environment Variables

There are two primary steps for configuring the Oracle Reports Services server in
Windows NT with environment variables:

1. Setting the environment variables (optional)

2. Starting the Oracle Reports Services server
3-12 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Oracle Reports Services Server with Environment Variables
3.6.1.1 Setting the Environment Variables (Optional)
You can set two optional environment variables. The first lets the Oracle Reports
Services server know where the requested report is located. You can set the report’s
source path in the REPORTS60_PATH environment variable. The second sets the
location of the tnsames.ora file.

1. Create a directory for your source reports (for example, /WEB_REPORTS).

2. Set the REPORTS60_PATH environment variable to locate the reports:

setenv REPORTS60_PATH /WEB_REPORTS

Alternatively, after the Oracle Reports Services server is installed, you can set
the source path in the Oracle Reports Services server configuration file. See the
SOURCEDIR parameter in Appendix C, "Oracle Reports Services Configuration
Parameters" for more information.

3. Set the TNS_ADMIN environment variable to point to the location of the
tnsnames.ora file:

setenv TNS_ADMIN $ORACLE_HOME/NET80/ADMIN

3.6.1.2 Starting the Oracle Reports Services Server
To start the Oracle Reports Services server, you do the following:

1. On the Oracle Reports Services server machine desktop, choose
Start→Settings→Control Panel and double-click (Services) on the Control
Panel.

2. In the Services dialog box, choose Oracle Reports Server [repserver] (where
repserver is the name of the Oracle Reports Services server instance) and
click Startup, which gives you the Services dialog window.

3. From the startup dialog, select This Account in the Log On As section and
select an operating system user name and password. This specifies that the
server is run as that user.

If you want to output to PostScript or to a printer, then ensure the user running
the Oracle Reports Services server service has access to a default printer.
Typically, the System Account does not have access to printers.

4. Set the Startup Type of the service to Automatic when the system is started.

5. Click OK.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-13

Configuring the Oracle Reports Services Server with Environment Variables
6. Click Start. A Service Control message box indicates when your Oracle Reports
Services server has started. If your Oracle Reports Services server cannot start,
then refer to Appendix G, "Troubleshooting" for more information.

When you start the Oracle Reports Services server for the first time, an Oracle
Reports Services server configuration file (for example, repserver.ora) is
created in the ORACLE_HOME\REPORT60\SERVER directory. The setting for
your Oracle Reports Services server cache is set by default. You can change the
cache directory, or set the report’s source path by modifying the configuration
file. If you modify the configuration file, then stop and restart the Oracle
Reports Services server for the changes to take effect.

3.6.2 Configuring the Oracle Reports Services Server on UNIX with Environment
Variables

There are two primary steps for configuring the Oracle Reports Services server on
UNIX with environment variables:

1. Setting environment variables (optional)

2. Starting the Oracle Reports Services server

3.6.2.1 Setting the Environment Variables (Optional)
You can set two environment variables, REPORTS60_PATH and TNS_ADMIN. The
REPORTS60_PATH is the search path for the Oracle Reports Services server source
files (for example, RDFs, TDFs, and PLLs), and TNS_ADMIN overrides the default
location for tnsnames.ora and sqlnet.ora. To set these do the following:

1. Create a directory for your source reports (for example, /WEB_REPORTS).

2. Set the REPORTS60_PATH environment variable to locate the reports. For
example, using the C shell syntax:

setenv REPORTS60_PATH /WEB_REPORTS

Alternatively, after the Oracle Reports Services server is installed, you can set
the source path by using the SOURCEDIR parameter. See Appendix C, "Oracle
Reports Services Configuration Parameters" for more information.

3. Set the TNS_ADMIN environment variable to point to the location of the
tnsnames.ora file. For example, using the C shell syntax:

setenv TNS_ADMIN $ORACLE_HOME/NET80/ADMIN
3-14 Publishing Reports to the Web with Oracle9i Application Server

Environment Variables
3.6.2.2 Starting the Oracle Reports Services Server on UNIX
Do the following steps to start the Oracle Reports Services server on UNIX:

1. From the $ORACLE_HOME/BIN directory, run the following command line to
run the Oracle Reports Services server in the foreground:

rwmts60 name=repserver

Run the following command to run the Oracle Reports Services server in the
background:

rwmts60 name=repserver &

2. From the $ORACLE_HOME/BIN directory, run the following command line to
ensure the Oracle Reports Services server is running:

rwrqv60 server=repserver

Status columns (for example, NAME, OWNER, and DEST) for the Oracle
Reports Services server are displayed. Currently, though, no status information
is available since no jobs are running.

If you want to output to PostScript or to a printer, then the printer must be
configured in the uiprint.txt file (this file is located in the
$ORACLE_HOME/guicommon6/tk60/ADMIN directory).

3.7 Environment Variables
Environment variables are the configuration parameters that are used to control or
customize the behavior of the Oracle Reports Services server. Variables can be set
using a command line for Windows NT and a shell script for UNIX.

Variable Description

REPORTS60_COOKIE_EXPIRE Determines the expire time of the cookie in minutes.
The default value is 30.

Cookies save encrypted user names and passwords
on the client-side when users log on to a secured
Oracle Reports Services server to run report
requests. When users successfully log on, their
browser is sent an encrypted cookie. When a cookie
expires, subsequent requests (that is, ones that are
sent to a secured Oracle Reports Services server),
user must re-authenticate to run the report.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-15

Running a Report Request from a Web Browser
3.8 Running a Report Request from a Web Browser
You do the following to run a report request from a Web browser:

1. Ensure the Oracle Reports Services server is configured properly. In a Web
browser, make the following request:

http://your_webserver/cgi-bin/rwcgi60.exe?report=your_report.rdf+
userid=username/password@my_db+desformat=html+destype=cache

where:

REPORTS60_DB_AUTH Specifies the database authentication template used
to log on to the database. The default value is
dbauth.htm.

REPORTS60_ENCRYPTION_KEY Specifies the encryption key used to encrypt the user
name and password for the cookie. The encryption
key can be any character string. The default value is
reports6.0.

REPORTS60_REPORTS_SERVER Specifies the default Oracle Reports Services server
for Web requests. When this parameter is set, you
can omit the SERVER command line argument in
report requests to process them using the default
server, or you can include the SERVER command
line argument to override the default.

REPORTS60_SSLPORT If you are using SSL and you want to use a port
number other than 443, then you can use this
variable to set a different port number. The default
value is 443.

REPORTS60_SYS_AUTH Specifies the authentication template used to
authenticate the user name and password when
users run report request to a secured Oracle Reports
Services server. The default value is sysauth.htm.

username/password is replaced with a valid database logon.

my_db is replaced with tnsnames.ora entry you created
for earlier for the Oracle Reports Services server
(Section 3.5.1.2, "Creating a Service Entry for the
Oracle Reports Services Server").

Variable Description
3-16 Publishing Reports to the Web with Oracle9i Application Server

Modifying the Oracle Reports Services Server Configuration (Optional)
Notice that the SERVER command line argument is missing from the request. It
is not required if you set the REPORTS60_REPORTS_SERVER environment
variable on your Web server machine.

If the report does not run or if you receive an error message, then refer to
Appendix G, "Troubleshooting" for more information.

2. View the status of the request (optional):

■ For Windows NT, start the Oracle Reports Services Queue Manager, choose
to view the repserver queue. See the Oracle Reports Services Queue
Manager online help for more information.

■ For UNIX run the following command:

rwrqv60 server=repserver showjobs=current

3.8.1 Other Steps
You can also perform the following, additional, steps:

1. Tune the Oracle Reports Services server (optional) to optimize performance or
implement additional features, such as access control. Doing this step
eliminates the need to show all of the parameters as shown in Section 3.8,
"Running a Report Request from a Web Browser"; thus protecting your user
name and password information.

2. Make reports available to users. See Chapter 4, "Running Report Requests" for
more information on how to specify run requests and make them available
to users.

3.9 Modifying the Oracle Reports Services Server Configuration
(Optional)

When you start the Oracle Reports Services server for the first time, the Oracle
Reports Services server is set with default configuration settings (for example,
maximum and minimum engines). At some point, you might want to modify the
Oracle Reports Services server configuration to tune performance, set up
monitoring controls, or implement additional features.

■ To update the database with job queue information, refer to Section 3.9.1,
"Updating the Database with Job Queue Activity" for more information.

■ To control user access to reports, refer to Chapter 5, "Oracle Reports Services
Security with Oracle Portal" for more information
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-17

Modifying the Oracle Reports Services Server Configuration (Optional)
■ To configure the Oracle Reports Services server for load balancing, refer to
Chapter 6, "Configuring Oracle Reports Services Server Clusters" for more
information.

■ To modify a report at runtime based on the audience, refer to Chapter 7,
"Customizing Reports at Runtime" for more information.

■ To modify the Oracle Reports Services server configuration file, see
Appendix C, "Oracle Reports Services Configuration Parameters" for more
information about the available configuration parameters.

■ Modify environment variables, refer to Appendix D, "Environment Variables"
for more information.

3.9.1 Updating the Database with Job Queue Activity
You can set up your database to take snapshots of the Oracle Reports Services
server queue activity whenever jobs are run. When you start the Oracle Reports
Services server, a connection to the database is made. By default, the Oracle Reports
Services server calls an API to delete queue information when the server restarts
and to update the queue information in the database table.

You can edit the source for the API in the rw_server.sql script to override the
defaults (for example, to prevent the queue from being deleted when restarting the
Oracle Reports Services server). The prototype of the procedure (the procedure
name and the parameters it expects) should not be edited.

If you change the contents of the script, then you have to run it as that user, and
then restart the Oracle Reports Services server for the changes to take effect.

3.9.1.1 On the Oracle Reports Services Server Machine
To update the database with job queue activity on the Oracle Reports Services
server machine, you do the following:

1. Open the repserver.ora configuration file (located on the
ORACLE_HOME\REPORT60\SERVER directory) in a text editor.

2. The repserver_schema must have, at a minimum, create table and create
package privileges to run the rw_server.sql script from the command line.
At the command line prompt, type:

cd C:\ORACLE_HOME\REPORT60\SQL <RETURN>
plus80 username/password@my_db <RETURN>
@rw_server.sql <RETURN>
quit <RETURN>
3-18 Publishing Reports to the Web with Oracle9i Application Server

Modifying the Oracle Reports Services Server Configuration (Optional)
3. Add the following configuration parameter, where the connection string to the
schema in your database that takes snapshots of queue activity of the specified
Oracle Reports Services server is repserver_schema/password@my_db. In
this case, repserver_schema is the schema for repserver queue activity.

REPOSITORYCONN="repserver_schema/password@my_db"

If you want to take snapshots of queue activity from many Oracle Reports
Services servers, then it is recommended that you create a different schema in
your database for each Oracle Reports Services server that requires snapshots.
This prevents you from losing queue activity data when you restart the Oracle
Reports Services server.

4. Stop and restart the Oracle Reports Services server to accept the changes made
to the configuration file. When the Oracle Reports Services server starts up, it
connects to the database.

Note: When you restart your Oracle Reports Services server,
queue activity in the database is deleted by default. You can
override the default by editing the API.
Configuring the Oracle Reports Services Server on Windows NT and UNIX 3-19

Modifying the Oracle Reports Services Server Configuration (Optional)
3-20 Publishing Reports to the Web with Oracle9i Application Server

Running Report Req
4

Running Report Requests

This chapter discusses various ways to specify report requests. The following topics
are covered:

■ Report request methods

■ Duplicate job detection

■ Using a mapping file to simplify run requests

■ Specifying URL run requests

■ Scheduling reports requests to run automatically

4.1 Report Request Methods
You can run report requests using various request methods, described below:

■ The RWCLI60 command line enables you to run a report request from the
command line prompt. RWCLI60 is an executable file that parses and transfers
the command line to the specified Oracle Reports Services server. It uses a
command line similar to the Oracle Reports Services Runtime executable file
(RWRUN60). An RWCLI60 command line request is made using a non-Web
architecture. A typical command line request looks like the following:

RWCLI60 REPORT=my_report.rdf USERID=username/password@my_db SERVER=repserver
DESTYPE=HTML DESFORMAT=cache

See Appendix B, "RWCLI60 Command Line Arguments" for a list of valid
RWCLI60 command line arguments.
uests 4-1

Report Request Methods
■ The URL syntax enables you to run a report request from a Web browser. The
CGI and servlet converts the URL syntax into an RWCLI60 command line
request that is processed by Oracle Reports Services. When the report has
finished processing, the output is sent to an HTML or PDF file in a location
known to the Web server, which is served back to the requesting Web browser.
You can provide users the URL syntax needed to make the report request from
their browser, or you can add the URL syntax to a Web site as a hyperlink. The
remainder of this chapter discusses this method in more detail.

■ The Oracle Portal component enables you to add a link as an Oracle Portal
component to an Oracle Portal site. This link points to a packaged procedure
that contains information about the report request. Oracle Reports Services
system administrators use Oracle Portal wizards to create the packaged
procedure making it more convenient and secure to publish the report via the
Web. Authorized users accessing the Oracle Portal site simply click the link to
run the report. System administrators can run the report directly from the
wizard. See Chapter 5, "Oracle Reports Services Security with Oracle Portal" for
more information.

■ ActiveX control exposes Oracle Reports Services through industry-standard
ActiveX technology enabling you to run reports from any ActiveX container.
The Oracle Reports Services Launcher is an example of an ActiveX container.
Refer to the ActiveX and Oracle Reports Services Launcher online help for more
information.

■ The SRW.RUN_REPORT is a packaged PL/SQL procedure that runs an Oracle
Reports Services Runtime command. When you specify the
SRW.RUN_REPORT command line, set the SERVER argument to Oracle
Reports Services TNS service entry name to cause the SRW.RUN.REPORT
command to behave as though you executed an RWCLI60 command. Refer to
the Oracle Reports Services Builder online help for more information.
4-2 Publishing Reports to the Web with Oracle9i Application Server

Duplicate Job Detection
4.2 Duplicate Job Detection
When you run a report with the DESTYPE set to cache or the TOLERANCE set to
any number of minutes (that is, 0 or greater), a copy of the report output is saved in
the Oracle Reports Services cache. Subsequently, if an identical report is run (that is,
with the exact command line arguments), then the current request is recognized as a
duplicate job. Oracle Reports Services reuses the output from the cache instead of
executing the report again if it is requested within the specified tolerance (for
example, TOLERANCE=10). When the prior job is finished, or if it has already
finished, the cached output will be used for the subsequent report, too. If one of the
jobs is canceled (for example, canceled from the Oracle Reports Services Queue
Manager), then the runtime engine will run the other report normally.

Refer to Appendix B, "RWCLI60 Command Line Arguments" for more information
about the DESTYPE and TOLERANCE command line arguments.

4.2.1 Usage Notes
You might find the following usage notes helpful:

■ The following command line arguments are compared to detect duplicate jobs:
REPORT, USERID, DESFORMAT, PARAMFORM, CURRENCY, THOUSANDS,
DECIMAL, PAGESIZE, ORIENTATION, MODE, and all user parameters.

■ To distribute the output of a report to multiple destinations, you can run the
report once on a server, and then submit the same command to the same server
with a different destination and tolerance. Oracle Reports Services detects the
duplicate job and redistribute the cached file to the new destination.

■ Duplicate job detection operates independently on each instance of a
repeated job.

■ You can set the cache size through the Oracle Reports Services Queue Manager
or manually by setting the CACHESIZE parameter in the Oracle Reports
Services configuration file. Oracle Reports Services attempts to keep the total
size of cache files below this limit, deleting the least recently used files from the
cache first. In addition, you can empty the cache through the Oracle Reports
Services Queue Manager.

Refer to the Oracle Reports Services Queue Manager online help, or see
Appendix C, "Oracle Reports Services Configuration Parameters" for more
information on setting the cache.
Running Report Requests 4-3

Using a Key Map File
■ If a report is being processed when an identical job is submitted, then Oracle
Reports Services reuses the output of the currently running job even if
TOLERANCE is not specified or is equal to zero. Suppose that job_1 is currently
being run by one of the Oracle Reports Services engines and someone else
submits job_2, which is identical to job _1. Oracle Reports Services uses the
output from job_1 for job_2. In this case, processing job_2 is significantly faster
since job_2 is not sent to an engine for execution.

4.3 Using a Key Map File
If you choose to provide users with the URL syntax or add the URL syntax as a
hyperlink to any Web site, then you can use a key map file to simplify or hide
parameters in your URL requests. Key mapping is useful for:

■ Shortening the URL, making it more convenient to use.

■ Remapping the URL run configuration without having to change the original
URL.

■ Standardizing several typical run configurations for the organization.

■ Hiding certain parameters from users (for example, the database connect
string).

■ Restricting the parameters users can use to run a report.

A more convenient and secure way to publish reports on a Web site is to create an
Oracle Portal component. See Chapter 5, "Oracle Reports Services Security with
Oracle Portal" for more information.

A map file takes a URL parameter and maps it to the command line arguments that
govern the report request. For example, one argument in the URL request syntax
could map to all of the command line arguments needed to run the report. By using
key mapping, the command line arguments are all hidden from the user.
4-4 Publishing Reports to the Web with Oracle9i Application Server

Using a Key Map File
 Below is an example of a key mapping for a restricted run with a Parameter Form.

A submission of:

http://your_webserver/cgi-bin/rwcgi60.exe?key+par1+par2+parN

where the key mapping file contains:

KEY: module=myreport deptno=%1 myparam=%2 %*

generates the equivalent of the following command line request:

RWCLI60 module=myreport deptno=par1 myparam=par2 parN

4.3.1 Enabling Key Mapping
Key mapping is enabled when either of the two following conditions are met:

■ The REPORTS60_CGIMAP (CGI) environment variable on the Web server
machine specifies the name of a valid key map file. See Appendix D,
"Environment Variables" for more information.

■ A valid file with the standard file name, cgicmd.dat, is present in the
ORACLE_HOME\REPORT60 directory on the Web server machine.

Usage Notes
The following usage notes might be helpful for key mapping:

■ When key mapping is enabled, all RWCGI60 URLs are treated as if the first
argument is a key. The key map file searches for this key. If the key is found,
then its defined value is substituted into the command line for Oracle Reports
Services. If it is not found, then an error is generated.

■ When submitting a URL through an HTML form, the key is coded as an input
of type hidden.
Running Report Requests 4-5

Specifying Report Requests
4.3.2 Mapping URL Parameters
This section describes how to add key mapping entries to a key map file.

On the Web server machine:

1. Open the cgicmd.dat (CGI) file, located in the ORACLE_HOME\REPORT60
directory, in a text editor.

Tip: Type: http://your_webserver/cgi-bin/rwcgi60.exe/showmap?
in your Web browser to verify the name of the mapping file that is being used.

2. Add a key mapping entry. A basic key mapping entry looks similar to the
following, where key1 is the name of the key:

key1: REPORT=your_report.rdf USERID=user_name/password@mydb DESFORMAT=html
SERVER=repserver DESTYPE=cache

Except for the special parameters that are described in the file itself, the
command line arguments follow the syntax rules of RWCLI60. See Appendix B,
"RWCLI60 Command Line Arguments" for more information about the
RWCLI60 command line arguments.

If you set the REPORTS60_REPORTS_SERVER environment variable and are
sending the request to the default server, then you can omit the SERVER
command line argument. See Appendix D, "Environment Variables" for more
information.

3. Add or update the hyperlinks on your Web page. See Section 4.4.2, "Specifying
a Report Request from a Web Browser".

4.4 Specifying Report Requests
You can specify reports by:

■ Building a report

■ Specifying a report request from a Web browser

■ Scheduling reports to run automatically
4-6 Publishing Reports to the Web with Oracle9i Application Server

Specifying Report Requests
4.4.1 Building a Report
To build a report, you do the following:

1. On the machine where your Oracle Reports Services is located, create the
reports source directory (for example, C:\WEB_REPORTS) for saving the reports
using the path. Ensure that this directory is set in the SOURCEDIR parameter in
the Oracle Reports Services configuration file. See Appendix C, "Oracle Reports
Services Configuration Parameters".

The reports source path can also be set in the REPORTS60_PATH environment
variable. See Appendix D, "Environment Variables" for more information.

Start the Oracle Reports Services Builder and build a report. You can save this
report as an RDF or REP file. Be sure to copy this report definition file to the
reports source directory on Oracle Reports Services machine (for example,
C:\WEB_REPORTS). Refer to the Building Reports manual or Oracle Reports
Services Builder online help for more information about building a report. To
access Oracle Reports Services Builder only help, click on the icon and do
the following steps:

2. Make this report available to users. See Section 4.4.2, "Specifying a Report
Request from a Web Browser" for more information.

1. For online help on this task, choose Help→Report Builder Help
Topics.

2. On the Index page, type the following:

report, building

3. Then click Display to view the following help topic:

Building a standard report
Running Report Requests 4-7

Specifying Report Requests
4.4.2 Specifying a Report Request from a Web Browser
You can provide the user with the URL syntax needed to make a report request, or
you can add the URL syntax to a Web page as a hyperlink.

A more convenient and secure way to publish reports on a Web site is to create an
Oracle Portal component. See Chapter 5, "Oracle Reports Services Security with
Oracle Portal" for more information.

URL syntax can be presented in the following forms:

■ Full URL request that looks similar to the following:

http://your_webserver/cgi-bin/rwcgi60.exe?report=your_report.rdf
+userid=user_name/password@mydb+server=repserver+desformat=html
+destype=cache

If you require additional command line arguments, then refer to Appendix B,
"RWCLI60 Command Line Arguments" for a list of valid RWCLI60 command
line arguments.

■ Simplified URL request using key mapping that looks similar to the following:

http://your_webserver/cgi-bin/rwcgi60.exe?report=key1

If you set the REPORTS60_REPORTS_SERVER environment variable and are
sending the request to the default server, then you can omit the SERVER command
line argument. See Appendix D, "Environment Variables" for more information.

To add the URL syntax to a Web page as a hyperlink:

1. Request as a hyperlink to your Web page your syntax would look similar to the
following:

My report>

2. Provide users the Web site URL that publishes the report request. Users click
the link to run the report.

If the report does not run or display in Web browser as expected, then refer to
Appendix G, "Troubleshooting" for more information.
4-8 Publishing Reports to the Web with Oracle9i Application Server

Specifying Report Requests
4.4.3 Scheduling Reports to Run Automatically
You can also use the server to run reports automatically from the Oracle Reports
Services Queue Manager or from Oracle Portal. The scheduling feature enables you
to specify a time and frequency for the report to run.

Refer to the Oracle Reports Services Queue Manager online help for more
information about scheduling your reports.

If you publish your reports on an Oracle Portal site as an Oracle Portal component,
then you can schedule these report requests to run automatically and push the
resulting reports to specified folders on the site. Refer to Chapter 5, "Oracle Reports
Services Security with Oracle Portal" for more information.
Running Report Requests 4-9

Specifying Report Requests
4-10 Publishing Reports to the Web with Oracle9i Application Server

 Oracle Reports Services Security with Oracle
5

Oracle Reports Services Security with

Oracle Portal

Oracle Reports Services uses Oracle Portal to perform a security check that ensures
that users have the necessary privileges (access control) to run reports on restricted
Oracle Reports Services servers and printers. Access control determines the
following:

■ What report definition files (RDFs), Oracle Reports Services servers, and
printers are restricted.

■ Who has access privileges to run requested reports on a restricted Oracle
Reports Services servers and output to a restricted printer.

■ When RDFs, Oracle Reports Services servers, and printers are available to run.

■ How report output is delivered by restricting report request options (that is,
required and optional parameters) that are available to users at runtime. This
includes specifying Oracle Reports Services server and printers that are
available to users.

Oracle Portal stores information about the RDF (that is, how to run the report) as a
packaged procedure. In order to run a report, Oracle Portal also needs to store
access control information about the restricted Oracle Reports Services server that
accepts the request, and any printers that are used to print report output. These
access controls are added using Oracle Reports Services security wizards in Oracle
Portal.
Portal 5-1

Overview
You can make report requests available to users on the Web by doing the following:

■ Adding a link as an Oracle Portal component to an Oracle Portal content area
that points to the report’s packaged procedure.

■ Scheduling a request to run automatically and push the report output to an
Oracle Portal content area for users to view.

■ Adding standard URL syntax to a Web content area as a hyperlink.

5.1 Overview
There are two levels of security that need to be managed:

■ Database-level security

■ Application-level security

Database-level security defines the users or roles that can access data within the
database. The DBA grants this security. This database-level security must be
established and in place when configuring your reports environment.

To further define your reporting environment, application-level security can be put
in place to specify which report requests the users or groups can generate. This
application-level security is very important to ensure only those authorized users or
groups can generate a specific report.

Oracle Reports Services 6i introduces an open infrastructure for report
administration and security with an out-of-the-box implementation using Oracle
Portal release 3.0 (previously known as Oracle WebDB). All Oracle Portal content is
stored in a repository in an Oracle database, making the access control data easy to
enter, backup, and retrieve. This chapter discusses configuring and establishing
your security policies for deploying Oracle Reports Services 6i via Oracle Portal
release 3.0. All Oracle Portal users are lightweight users and have application-level
security privileges. They do not have database-level security privileges.

With the Oracle Reports Services out-of-the-box implementation, Oracle Portal
stores the application-level access control data that can be utilized by any existing
Oracle Reports Services server. The deployment model is open to allow for access to
report generation via an Oracle Portal content area or a custom portal. In either
scenario, the security access control data stored within the Oracle Portal repository
is used for authorizing an end user. Both Oracle Reports Services and Oracle Portal
are part of your license for Oracle9i Application Server.
5-2 Publishing Reports to the Web with Oracle9i Application Server

Overview
When deploying your Oracle Reports Services outside of an Oracle Portal content
area, you might utilize the security access control data stored in Oracle Portal by
passing report requests through a registered, secured Oracle Reports Services
server. You can do this by using either of the following:

■ RWCGI60 (an Oracle Reports Services CGI executable passed through a URL)
or a servlet

■ RWCLI60 (an Oracle Reports Services command line interface to an Oracle
Reports Services server)

If you choose another security model other than Oracle Portal, an open C API is
provided so you can write a custom link to your own access control server. The API
can be rewritten to talk to another security server. (for example, to look at a custom
security schema written in an Oracle database). Doing this requires that you write a
C interface as detailed in the following steps. The instructions assume that your
security implementation has already been created; if it has not, then this must be
done first. There are separate instructions for Windows and UNIX environments.

5.1.1 Creating a Security DLL for Oracle Reports Services 6i Security in a Windows
Environment

The following steps are necessary to create a security DLL for Oracle Reports
Services 6i security in a Windows environment:

1. Using a Win32 C compiler (for example, Visual C++), create a new project and
specify that you will be creating a DLL.

2. Create a file called RWKSS.C and include the RWKSS.H header file, which is
located in the %ORACLE_HOME%\report60\server\security directory.

3. Implement the functions named in the RWKSS.H header file, which are called
by the Oracle Reports Services server, to perform the security check against
your security repository.

4. Create the DLL and link in the RWK60.DEF file, which contains the list of
exported functions. This file is located in the
%ORACLE_HOME%\report60\server\security directory. Give the DLL the
file name ’rwk60.dll’.

5. Rename the existing RWK60.DLL, which is located in the
%ORACLE_HOME%\bin directory, and copy your DLL to this location.

6. Restart the Oracle Reports Services server.
 Oracle Reports Services Security with Oracle Portal 5-3

Database-Level Security
5.1.2 Creating a Security Library for Oracle Reports Services 6i Security in a UNIX
Environment

The following steps are necessary to create a security library for Oracle Reports
Services 6i security in a UNIX environment:

1. Create a file called rwkss.c and include the rwkss.h header file, which is located
in the $ORACLE_HOME/reports60/pub directory.

2. Implement the functions named in the RWKSS.H header file, which are called
by the Oracle Reports Services server, to perform the security check against
your security repository.

3. Compile and make a dynamic library. For example:

cc -c rwkss.c
ld -dy -G -o rwk60.so rwkss.o

4. Check that the library is dynamic by entering the following:

file rwk60.so

Ensure the response says that the library is dynamic.

5. Rename the existing rwk60.so, which is located in the $ORACLE_HOME/bin
directory, and then put your new dynamic library in this location.

6. Restart the Oracle Reports Services server.

5.2 Database-Level Security
Database-level security is what determines if you have access to the data within a
specified database. You can store a user name and password in the key mapping file
(cgicmd.dat) or you can be prompted for the specific user ID and password.

Unless the user name and password are hard coded into the key map file (or
supplied as part of the URL), any user accessing Oracle Reports Services is required
to identify themselves for authentication purposes. As the HTTP release 1.0 protocol
is stateless (that is, each call to the server is effectively independent of all others), it
would result in the user needing to authenticate themselves for each report request.
5-4 Publishing Reports to the Web with Oracle9i Application Server

Database-Level Security
To solve this issue and to allow you to authenticate only once, the report makes use
of client-side cookies to store the required authentication information within the
browser for the current session. Once you are authenticated, an encrypted cookie is
created in the browser, allowing for multiple report jobs to be submitted without the
need to re-authenticate at each request.

Within a given Web application, you frequently access reports that run against
multiple instances of an Oracle database (or ODBC data sources). To minimize the
number of times a you must be authenticated (once to each different server), an
encrypted cookie is created. The cookie contains database authentication
information for many database instances, allowing connections to multiple
instanced of an Oracle database.

Database connection information is supported by specifying the USERID parameter.
For example, when a report is submitted using USERID=<$username> in
conjunction with a Net8 database alias, then connections are created in the browser
for each referenced database instance. For example, the following key map file
entries would result in you being authenticated against two different database
instances through one encrypted cookie created in the browser (this cookie is for
both ORCL and for PROD):

Rep1: report=Rep1.rdf userid=$username@ORCL destype=CACHE desformat=HTML

Rep2: report=Rep1.ref userid=$username@PROD destype=CACHE desformat=HTML

With any subsequent request, the user name and password are retrieved from the
appropriate cookie and used to authenticate you against that database. If no connect
string is defined in the command line (that is, a user ID is not specified in the
command line), then the Oracle Reports Services CGI executable uses the last
database connect string that achieved a successful connection.

Note: If there is a requirement to force a re-authentication on the
submission of a given report, use the SHOWAUTH and
AUTHTYPE command line arguments or include a %D in the
respective report entry in the key map file (use of %D forces the
you to reenter you user name and password each time the report is
called.
 Oracle Reports Services Security with Oracle Portal 5-5

Database-Level Security
The cookie is removed when you close the browser session, but it might also be
important to limit the lifetime of the cookie within a given session. For example,
you might have logged in and then gone to lunch, leaving the browser session open
for an extended period of time. To control this type of security breach, the
administrator can define the REPORTS60_COOKIE_EXPIRE environment variable
for the CGI or servlet. When the Oracle Reports Services executable receives a job
request from the client, it compares the time saved in the cookie with the current
system time. If the time is longer than the number of minutes defined in the
environment variable (for example, 30 minutes), then the cookie is rejected and you
are again required to identify yourself for authentication. The following table shows
the environment variables that affect database user authentication:

Table 5–1 Environment Variables for User Authentication

REPORTS60_COOKIE_EXPIRE Determines the expiration time of the cookie,
in minutes, for the Oracle Reports Services
CGI or servlet. The default value is 30.

Cookies save encrypted user names and
passwords on the client side when you log
into a secured Oracle Reports Services server
to run report requests. When you successfully
log in, the browser is sent an encrypted
cookie. When a cookie expires, you must be
re-authenticated to run subsequent report
requests (that is, ones that are sent to a
secured Oracle Reports Services server.
5-6 Publishing Reports to the Web with Oracle9i Application Server

Application-Level Security
5.3 Application-Level Security
Application-level security is a requirement to ensure that you have the appropriate
access to the resources needed to run particular reports. This does not mean that
you have access to the data in the database (that is, database-level security
privileges). The authorization scheme for application-level security necessitates the
following criteria:

■ Who has access to each report.

■ When can a report be run.

■ Which servers or printers can be accessed to run or print the report and when it
can be accessed.

■ Which parameters a particular user can use with a particular report.

REPORTS60_DB_AUTH Points to an HTML file that sets the database
authentication window template name used
to log into the database, but no the entire path
since it is placed in the following directory for
Windows NT:

%ORACLE_HOME%\REPORT60

For UNIX it is placed in the following
directory:

$ORACLE_HOME/reports60

The default value is dbauth.htm.

Using the REPORTS60_DB_AUTH
environment variable allows you to
customize the database authentication HTML
form.

REPORTS60_ENCRYPTION_KEY Specifies the encryption key used to encrypt
the user name and password for the cookie.
The encryption key can be any character
string. The default value is reports6.0.
 Oracle Reports Services Security with Oracle Portal 5-7

Integration with Oracle Portal
5.4 Integration with Oracle Portal
Oracle Portal is a browser-based, Web content publishing and developing solution
that allows end users and developers to instantly publish information and build
data-driven departmental portals.

Oracle Portal release 3.0 is tightly integrated with Oracle Reports Services to create a
robust and secure reporting environment. New wizards have been added to Oracle
Portal for Oracle Reports Services security, permitting an authorized user to define
access controls to reports, Oracle Reports Services servers, printers, output formats,
and report parameters.

The content area building capabilities of Oracle Portal provide an easy mechanism
with which to publish reports for end user access via the Web, though this is not a
requirement for publishing your reports via the Web.

Once the access control information is defined within Oracle Portal, it is stored in
the Oracle Portal repository. As an Oracle Portal user, you can then, optionally, add
the registered RDF to be accessed from an Oracle Portal content area. As an Oracle
Portal user, you can make a request to run a given report, the Oracle Portal
repository is used to verify the Oracle Portal your access privileges to run a
particular report using the specified Oracle Reports Services server. If you are not
utilizing Oracle Portal to publish your reports, you can still take advantage of the
security model to secure all of your reports. You can easily accomplish this by
following the steps outlined in Section 5.16, "Publishing Report Outside of Oracle
Portal".

Oracle Reports Services leverages the Oracle Login Server Single-Signon feature
and the concept of lightweight users. Each Oracle Portal page can include data from
any different portlet providers, each of which can have their own login procedures.
To prevent you from being constantly confronted with user ID requests for each
portlet provider, Oracle Portal provides a single-signon feature. When you log in,
Oracle Portal automatically logs you into all registered portlet providers and
subsystems. Refer to the Oracle Portal documentation for more information about
Login Server Single-Signon.

In Oracle Portal release 2.2, users were synonymous with the database user
accounts. By default, an Oracle Portal release 2.2 developer could create a
component or object in his own database schema. In Oracle Portal release 3.0, users
are typically mapped to a database schema for administrative purposes only. The
ability to create a component in Oracle Portal release 3.0 no longer depends on
whether the developer has privileges to build components in a schema, but instead
on whether the developer has privileges to build a component in an application.
5-8 Publishing Reports to the Web with Oracle9i Application Server

Oracle Portal Integration Architecture
Groups replace roles in Oracle Portal release 3.0. A group is a collection of users or
other groups that share a common interest or responsibility, and, therefore, have
common privileges. Anyone who is logged into Oracle Portal can create a group,
not just the Oracle Portal administrator.

How the Oracle Portal users or groups are defined within Oracle Portal defines the
accessibility of a particular function or object either from within an Oracle Portal
content area or your own custom portal. Since Oracle Reports Services security
borrows Oracle Portal users and groups to implement authentication and
authorization (meaning Oracle Reports Services security defines who can access
what), Oracle Reports Services security can still answer Access Control List (ACL)
check questions if you are using your own custom portal.

Refer to the Oracle Portal release 3.0 documentation for more information about
users and groups.

5.4.1 Sharing Authentication Information Between Oracle Portal and Oracle Reports
Services Servers

Before configuring your security environment, you need to be familiar with the
AUTHID command line argument. You use the AUTHID command line argument
to authenticate an application user. The AUTHID command line argument is not an
Oracle Portal-specific parameter. If you want to run a report against a secure Oracle
Reports Services server, then this authentication information is required.

Oracle Portal integration uses the information that was entered when you logged
into Oracle Portal. The Oracle Reports Services CGI uses the Oracle Portal user
name and session ID as a replacement for the AUTHID command line argument
when running the report from within Oracle Portal or outside of Oracle Portal. This
works for both Oracle Portal and the content area builder.

5.5 Oracle Portal Integration Architecture
The Oracle Reports Services Web configuration and components remain the same as
in previous releases, with the ability to execute reports through the CGI or servlet
interfaces. The communication between Oracle Reports Services and the Oracle
Portal repository is accomplished via a C API, which by default communicates with
the Oracle database, where the Oracle Portal repository resides. The Oracle Portal
repository is examined to validate Oracle Portal users and to check for accessibility
of the report requests.
 Oracle Reports Services Security with Oracle Portal 5-9

Installing Oracle Reports Services Security in Oracle Portal
Because this architecture employs the use of an open API, you can choose to
re-implement the security checks against your own security system. This openness
permits you to authenticate users against your Lightweight Directory Access
Protocol (LDAP) server or any other custom security server set in place. Refer to the
Oracle Portal documentation for more information.

5.6 Installing Oracle Reports Services Security in Oracle Portal
This section describes how to install Oracle Reports Services security and Oracle
Portal on one machine. Oracle Reports Services security and Oracle Portal can also
be installed on separate machines. They do not have to reside on the same machine
to take advantage of the functional security model in place via Oracle Portal. Refer
to Chapter 6, "Configuring Oracle Reports Services Server Clusters" for information
about configuring Oracle Reports Services servers and Oracle Portal on multiple
servers.

Following are the steps to install Oracle Reports Services 6i security and Oracle
Portal.

❏ Step 1: Install Oracle Portal into an Oracle database.

❏ Step 2: Install Oracle Reports Services.

Refer to the Oracle9i Application Server Installation Guide for more information about
installation.

5.6.1 Step 1: Installing Oracle Portal Into an Oracle Database
Install Oracle Portal release 3.0 into a separate ORACLE_HOME with an Oracle
database release 8.1.6 or higher. Oracle Portal is an option to the Oracle database
that can only be accessed via a Web browser. Oracle Portal release 3.0 is installed
though the Oracle9i Application Server. Refer to the Oracle9i Application Server
Installation Guide for more information.

5.6.2 Step 2: Installing Oracle Reports Services
Install the Oracle Reports Services component. The installer automatically analyzes
the dependencies for your machine and then configures the Oracle Reports Services
based on the options you choose. Oracle Reports Services is installed through the
Oracle9i Application Server.

If you need to use the Oracle Reports Services Builder, then you need to installed it
through the Oracle9i Developer Suite.
5-10 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Security Environment
5.7 Configuring the Security Environment
To configure your security environment for Oracle Reports Services 6i, perform the
following steps:

❏ Step 1: Enable Oracle Reports Services security within Oracle Portal.

❏ Step 2: Add SECURITYTNSNAMES and PORTALUSERID parameters.

❏ Step 3: Start Oracle Portal.

5.7.1 Step 1: Enabling Oracle Reports Services Security within Oracle Portal
You can manually enable Oracle Reports Services security within Oracle Portal by
running the RWWWVINS.SQL script found in the following directory for Windows
NT:

%ORACLE_HOME%\REPORT60\SERVER\SECURITY\3.0

You can manually enable Oracle Reports Services security within Oracle Portal by
running the RWWWVINS.SQL script found in the following directory for UNIX:

$ORACLE_HOME/reports60/server/security

Run the following script as the Oracle Portal administrator:

sqlplus> @rwwwvins.sql <portal30 schema owner>

When installing, you are prompted to enter the following for your Oracle Portal
schema owner (for example, portal30/portal30@orcl):

username/password@connectstring

This script creates the appropriate object definitions, menu entries, and groups. The
following groups are created:

■ RW_ADMINISTRATOR

■ RW_DEVELOPER

■ RW_POWER_USER

■ RW_BASIC_USER

These four group are created when enabling Oracle Portal and Oracle Reports
Services security. Each Oracle Portal user, for which the security authentication is
checked, must be assigned to one of these groups.
 Oracle Reports Services Security with Oracle Portal 5-11

Configuring the Security Environment
5.7.1.1 RW_ADMINISTRATOR
An Oracle Portal user assigned to this group (for example, an Oracle Reports
Services administrator, an Oracle Portal administrator, or a Login Server
administrator) can CREATE, UPDATE, and DELETE the registered report definition
files, servers, and printer objects in Oracle Portal. The Oracle Reports Services
administrator can assign security privileges for other people and receive full error
messages from Oracle Reports Services. Refer to the Oracle Portal documentation
for information about how to create and manage a user.

This user also has access to the administrator’s functionality in Oracle Reports
Services Queue Manager, which means they can manage the server queue,
including rescheduling, deleting, reordering jobs in the server, and shutting down a
server.

5.7.1.2 RW_DEVELOPER
In addition to the privileges of the RW_POWE_USER and RW_BASIC_USER
groups, an RW_DEVELOPER can run all of the CGI commands, such as
SHOWENV and SHOWMAP, which show the system environment. This group
might be assigned to a developer who needs to do testing and needs to retrieve
detailed error messages.

5.7.1.3 RW_POWER_USER
In addition to the privileges of the RW_BASIC_USER group, an Oracle Portal user
with RW_POWER_USER group privileges can see more detailed error messages if
the security check fails. For example, the message received if they try to run to
HTML and this is not permitted might be:

Cannot run report to HTML

5.7.1.4 RW_BASIC_USER
When Oracle Portal creates an Oracle Portal user, they automatically become part of
the RW_BASIC_USER group. An Oracle Portal with these privileges can only run a
report if they have been given the privilege to run it. This Oracle Portal user can see
very simple error messages should the security check fail. The message received is:

Security Check Error
5-12 Publishing Reports to the Web with Oracle9i Application Server

Configuring the Security Environment
5.7.2 Step 2: Adding SECURITYTNSNAMES and PORTALUSERID Parameters
This step is done by a user with database-level security privileges.

You must first shut down the Oracle Reports Services server if it is running. Then
add the SECURITYTNSNAMES=<"tnsname"> parameter and the
PORTALUSERID=<portal_username>/<portal_password> in the Oracle
Reports Services server configuration file (for example,
rep60_<machinename>.ora) found in the following directory for Windows NT:

%ORACLE_HOME%\REPORT60\SERVER

For UNIX, this configuration file is found in the following directory:

$ORACLE_HOME/reports60/server

where:

Ensure you have the correct alias in the tnsnames.ora file on the machine where
Oracle Reports Services is located.

Oracle Reports Services server requires the SECURITYTNSNAMES and
PORTALUSERID entries to know where to look for the access control information
when a user submits a job request. The server must be told the name of the database
instance in which Oracle Portal and the Oracle Reports Services security framework
are installed. Once the SECURITYTNSNAMES and PORTALUSERID entries have
been added to the Oracle Reports Services server configuration file, the access
control information in the Oracle Portal repository is enforced. Oracle Portal users
who request to run a report against this Oracle Reports Services server are now
required to identify themselves.

Note: With Oracle Reports Services 6i and Oracle Portal 3.0, the
Authentication Cookie Domain is no longer used. Oracle Reports
Services uses a PL/SQL call to pass the session ID and the user ID
to the CGI or servlet.

tnsname is the TNSname of the instance where Oracle Portal is
installed.

portal_username is the name of the database user where Oracle Portal is
installed.

portal_password is the password of the database user where Oracle Portal
is installed.
 Oracle Reports Services Security with Oracle Portal 5-13

Printer Access
As an Oracle Portal, when you successfully log into an Oracle Portal content area to
run your reports, this login information (user name and session ID) is used as the
alternative to the AUTHID command line parameter and verified by the Oracle
Reports Services server via Oracle Portal.

5.7.3 Step 3: Starting Oracle Portal
Start Oracle Portal through your Web browser and log into Oracle Portal as the user
you identified during the installation. This user has application-level security
privileges.

5.8 Printer Access
In your environment, you can have many networked or local printers accessible to
your Oracle Portal users. However, you might want to confine Oracle Portal users
to a subset of those printers, constraining the use of the printer for certain periods of
time, or identify a particular printer to be used for printing output of certain
reports. For example, you can have a monthly report that is very lengthy and for
which you want output generated to only a fast, high-volume printer in the
information technology (IT) department.

Printer access stores information about the following:

■ What printers are available to print report output from within Oracle Portal.

■ Who has access privileges to print report output.

■ When the printer is available for processing by assigning an availability
calendar.

As with availability calendars, it is not a requirement to register a printer within the
security framework of Oracle Portal.

Once printers are registered within Oracle Portal, you can choose to associate them
with an Oracle Reports Services server. Many printers can be registered. However,
only printers associated with a particular Oracle Reports Services server are
available to print when you register an RDF file and choose to print to a printer.
5-14 Publishing Reports to the Web with Oracle9i Application Server

Creation of an Oracle Portal Content Area
When defining access to an RDF, you can choose to restrict even further the
registered subset of printers to which the report output can be sent. For example, an
Oracle Reports Services server might be connected to the printer in the office of the
CEO, but it should not be a selection by employees running the general ledger
report unless it is the CEO who is running the report. This subset of printers can
then be listed to the Oracle Portal user running a report request to select where
output should be sent.

5.9 Creation of an Oracle Portal Content Area

Oracle Portal provides a creation wizard to step you through the automatic creation
of a Web content area, which is contained entirely within the Oracle Portal
repository. To create a content page, log into Oracle Portal and click on the Oracle
Portal Navigator icon, click on the Content Area tab, and click on the Create button.
When creating the content area, a content owner or DBA can add items or links to
the Oracle Portal content area. An item could be a URL, a text item, an image map, a
file, a PL/SQL call, a link to a folder, or any other Oracle Portal component. Once
registered within Oracle Portal, an RDF is treated as any other Oracle Portal
component and can be added in the same way to your Web content area.

You can choose to have this link run the report immediately, where the user is
authenticated via Oracle Portal and output is generated in the authorized or chosen
format. Alternatively, you can choose to schedule the report and push the output to
an existing Oracle Portal content area. Refer to Appendix A, "Controlling User
Access to Reports by Defining Calendars" for more information about scheduling
reports.

Note: All of the information that follows is for Oracle Portal users.
All Oracle Portal users have application-level security privileges,
but not database-level security privileges.
 Oracle Reports Services Security with Oracle Portal 5-15

Setting Up and Deploying a Report
5.10 Setting Up and Deploying a Report
Once you have installed Oracle Reports Services security and Oracle Portal, and set
up an Oracle Portal content area, you can begin setting up a user and deploying a
report through Oracle Portal. The following sections take you through the steps
necessary to set up an Oracle Portal user and how to deploy a report:

■ Creating and enabling an Oracle Portal user to administer security.

■ Setting up access controls in Oracle Portal.

■ Registering a report.

■ Deploying a report.

■ Running a report.

The following assumptions are made:

■ An Oracle Reports Services server has already been installed and configured for
Web reporting and can be reached through a URL. For example:

http://mycomputer.domain/cgi-bin/rwcgi60.exe

■ An Oracle Portal content area already exists. This content area is accessed with
the Oracle Portal Navigator.

■ The SECURITYTNSNAME=<"tnsname"> parameter has been added to the
Oracle Reports Services server configuration file. The tnsname references the
instance where Oracle Portal is installed.

■ The PORTALUSERID=<portal_username>/<portal_password>
parameter has been added to the Oracle Reports Services server configuration
file, where <portal_username>/<portal_password> is a valid user name
and password of the database where Oracle Portal is installed.

5.11 Creating and Enabling an Oracle Portal User to Administer
Security

This step needs to be performed for any Oracle Portal user that can register reports,
servers, or printers, and authorize or grant other Oracle Portal users access to these
objects.
5-16 Publishing Reports to the Web with Oracle9i Application Server

Creating and Enabling an Oracle Portal User to Administer Security
Overview
This example covers giving an Oracle Portal user the ability to administer Oracle
Reports Services security by granting privileges, assigning the DBA group, and
assigning the RW_ADMINISTRATOR group.

Assumptions
The following assumptions are made for this example:

■ The Oracle Portal administrator opens Oracle Portal using the appropriate URL.

■ The Oracle Portal administrator logs in.

5.11.1 Creating and Enabling User REPORTSDEV to Administer Security
The following steps must be performed:

1. From the Oracle Portal home page, click on the Administer tab.

2. From the Administer page, click on Create New Users from the Users portlet.
The following screen appears:
 Oracle Reports Services Security with Oracle Portal 5-17

Creating and Enabling an Oracle Portal User to Administer Security
3. Under the User Details heading, type REPORTSDEV in the User Name,
Password, and Confirm Password fields. Then click on the Create button. The
following screen appears:
5-18 Publishing Reports to the Web with Oracle9i Application Server

Creating and Enabling an Oracle Portal User to Administer Security
4. Click on REPORTSDEV to edit the user. The following screen appears:

5. Scroll through this screen to the Group Membership heading and select the
DBA and PORTAL_ADMINISTRATORS (Non-DBA Privileged
Administrators) groups as shown in the following screen:

6. Click on the Apply button.
 Oracle Reports Services Security with Oracle Portal 5-19

Creating and Enabling an Oracle Portal User to Administer Security
7. Click on the Privileges tab. The following screen appears:

8. Scroll through this screen to the Content Areas Privileges heading and select
Manage from the Privileges drop down list.

9. Continue scrolling through this screen to the Application Privileges heading
and select Manage from the Privileges drop down list for All Applications and
All Shared Components.

10. Click on the Apply button.

11. Click on the OK button. You are returned to the Administer page.

12. Click on the List button to select the DBA and RW_ADMINSTRATOR groups
from the list.

Note: You can select more than one object by holding the Ctrl key
down and clicking on your choices.
5-20 Publishing Reports to the Web with Oracle9i Application Server

Creating and Enabling an Oracle Portal User to Administer Security
13. Click on the Edit button. The following screen appears:

14. Click on the Members tab. The following screen appears:

15. Under the Group Members heading, type REPORTSDEV in the Name field, or
click on the Browse Users button to select REPORTSDEV from the list.
 Oracle Reports Services Security with Oracle Portal 5-21

Setting Up Access Controls in Oracle Portal
16. Click on the Add Members to List button. After doing this, scroll through this
screen to the Group Member List heading and you can see that REPORTSDEV
has been added. You have now given REPORTDEV privileges for the DBA and
RW_ADMINISTRATOR groups.

17. Click on the OK button. You are returned to the Oracle Portal Administer page.

18. You now need to log out as the Oracle Portal administrator so that you can log
in as REPORTSDEV and administer security.

REPORTSDEV has now been created and can administer security for Oracle
Reports.

5.12 Setting Up Access Controls in Oracle Portal
The integration of Oracle Reports Services and Oracle Portal provides an
out-of-the-box administrative interface to restrict access to reports that are run
through Oracle Reports Services. The security checks performed ensure that Oracle
Portal users have the necessary access control.

Keep in mind that the access control data stored in the Oracle Portal repository
refers to the functional or application-level security, that is the ability of an Oracle
Portal user to access a particular report. The data security can be handled through
the USERID parameter, can be passed at runtime, or the Oracle Portal user can be
prompted.

All of the utilities employ wizards for creating, editing, or deleting access control
information. Once entered, the Oracle Portal repository stores the access control
information as metadata. Only those Oracle Portal users who have Oracle Reports
Services system administrator privileges (the DBA and RW_ADMINISTRATOR
group) can access this security information in Oracle Portal.

5.13 Registering a Report
Now that REPORTSDEV has been created with the ability to administer security, he
can do the following:

■ Secure reports

■ Secure servers

■ Secure printers

■ Define availability calendars

■ Authorize users to run and access reports, servers, and printers
5-22 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
Overview
This example walks you through the following:

■ Registering a server

■ Creating RDF access

Assumptions
The following assumptions have been made for this example:

■ Oracle Portal has been opened using the appropriate URL for your Oracle
Portal installation.

■ REPORTSDEV is logged into Oracle Portal.

■ REPORTSDEV is registering a report called accounting.rdf.

■ REPORTSDEV is authorizing users SCOTT and BJ (who are already Oracle
Portal users) to run the report.

■ An Oracle Reports Services server called PUBSVR has already been set up and
is available.

5.13.1 Registering a Server
Oracle Reports Services server access stores information about the following:

■ What Oracle Reports Services servers are available for processing job requests.

■ What registered printers are available for printing output through the registered
Oracle Reports Services server.

■ Who has privileges to submit report requests to a given Oracle Reports Services
server.

■ When the Oracle Reports Services server is available for processing job requests.

■ Whether a given Oracle Reports Services server can run any report or only
those reports that have been registered for secure access.

The actual Oracle Reports Services server within the Oracle Portal framework
already exists and must be configured to run report requests.
 Oracle Reports Services Security with Oracle Portal 5-23

Registering a Report
Do the following to define server access:

1. From the Oracle Portal home page, click on the Administer tab.

2. Click on Oracle Reports Security Settings from the Oracle Reports Security
portlet.

3. Click on Create Reports Server Access. The following screen appears:

4. In the Server Name field type NEWSERVER.

5. In the Reports Server TNS Name field type PUBSVR (this name is the name of
your Oracle Reports Services server).

6. In the Description field type Local reports server.

7. In the Oracle Reports Web Gateway URL enter the location of the Oracle
Reports Services CGI or servlet. For example:

http://mycompany.docmain/cgi-bin/rwcgi60.exe
5-24 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
8. Leave Run Only Registered Report Definition Files and Printers blank. They
are not being created for this example. You are not choosing any printers for this
example. However, if you had registered printers, then you could associate one
or more printers with this Oracle Reports Services server.

9. If you had secured printers within Oracle Portal, then you could associate one
or more printers for this RDF file; however, in this example you have not
registered printers and this RDF can be printed on any printer. The Printers
field can contain printers that were created earlier; however, they are not
needed for this example. Refer to Section 5.8, "Printer Access" for more
information about printers.

10. After filling in all the fields, click on the Next button. The following screen
appears:

11. Under the Grant Access heading, type SCOTT (USER) in the Grantee field, or
click on the Browse Users button to select SCOTT from the list.

Note: If you put a check mark in the Run Only Registered Report
Definition Files, then you are telling the Oracle Reports Services
server not to run any reports that have been secured within Oracle
Portal.
 Oracle Reports Services Security with Oracle Portal 5-25

Registering a Report
12. Select View from the pull down list and then click the Add button.

13. Scroll to the Change Access heading and you see that the user has been granted
access to the server.

14. Now you need to grant access to BJ. Repeat steps 11 through 13, typing BJ
(USER) in the Grantee field, or by selecting him from the Browse Users list.

15. Click on the Next button to continue. The following screen appears:

Leave this screen blank for this example. Refer to Appendix A, "Controlling
User Access to Reports by Defining Calendars" for more information about
availability calendars.

Note: If you want to restrict the days or times this server is
available for Oracle Portal reporting, then you would create an
availability calendar and then select it from here.
5-26 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
16. Click on the Finish button. The following screen appears:

17. Click on the Close button. You are returned to the Oracle Reports Security
Setting page.

You have now registered an Oracle Reports Services server. Now you need to
register a report.

5.13.2 Creating Report Definition File Access
Report Definition File (RDF) access stores information about the following:

■ What Oracle Reports Services files (RDF, REP, REX, and XML) have been
registered for secure access. You can put the full path to the report. However,
Oracle Corporation recommends that you use just the RDF, REP, REX, or XML
without the path as the file name and either add the location to the file in the
REPORTS60_PATH environment variable or the SOURCEDIR path.

■ What is the name by which this instance of the report is known within Oracle
Portal (only applicable within Oracle Portal).

■ Who has access privileges to run this instance of the report.
 Oracle Reports Services Security with Oracle Portal 5-27

Registering a Report
■ When this instance of the report is available to run.

■ Which Oracle Reports Services servers can be used to process requests for the
particular report.

■ How the report is delivered with use of parameters, specified formats (PDF,
HTML, or HTMLCSS), and validation triggers.

■ Which printers this report can print on.

Once an RDF is registered within Oracle Portal it creates an Oracle Portal
component. Oracle Corporation does not recommend registering multiple instances
of the same RDF file.

Besides designating the Oracle Portal users that have access to specific reports, you
might want to specify how Oracle Portal users are to interact with the reports. In
addition to the parameters you might have specified in the report, you can also
create a parameter form when registering your report in Oracle Portal.

The Oracle Portal parameter form is used to set security restrictions, such as having
only limited report output formats that are valid for a given report and having the
parameter form only display with these valid formats. The security information is
stored in the Oracle Portal repository.

The parameter form for Oracle Reports Services allows you to add additional
restrictions, such as attaching a PL/SQL trigger. Oracle Corporation recommends
that you use only one of the parameter forms, the Oracle Portal parameter form or
the Oracle Reports Services parameter form, to avoid conflicts.

This optional parameter form can be used to restrict the values to which users have
access or for any additional parameters needed to run this report. For example,
forcing page streaming for an HTML report, displaying data based on specific
values, or a defined LOV. Furthermore, you might want to specify which
parameters are exposed to a user during job submission, which allows different
users to apply different options to the same report. For example, you might want
the user to specify whether the report output is HTML, HTMLCSS, or PDF.

In the Parameter Entry Form, you can specify whether a parameter is visible along
with the values for selection. To do this, you select the Customize link from the
Manage Component screen. You then check those parameters that you would like
to make visible to the end user.
5-28 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
You do the following to create RDF access and register your report:

1. Return to the Oracle Reports Security screen.

2. Click on Create Reports Definition File Access from the Reports Definition
File Access portlet. The following screen appears:

The Application, Report Name, and Reports Server fields are already filled in
for you.

3. Change the Report Name field to say Financial.

4. Select NEWSERVER in the Reports Server field. If you have only one Oracle
Reports Services server, you must still select it to continue. You can also
highlight more than one server by holding down the Ctrl button and clicking
on each server you want to use.

5. In the Oracle Reports File Name field type accounting.rdf. It is assumed that
the RDF can be found along the REPORTS60_PATH; however, you can hard
code the full path to it.

6. The Description field is optional. In this example, type in Financial statement.
 Oracle Reports Services Security with Oracle Portal 5-29

Registering a Report
7. Click on the Next button. The following screen appears:

8. Under the Grant Access heading type SCOTT (USER) in the Grantee field, or
click on the Browse Users button to select SCOTT from the list.

9. Select Manage in the drop down list.

10. Click on the Add button.

11. Scroll through this screen to the Change Access heading and you see that the
user has been granted access to the RDF file.

12. Now you need to grant access to BJ. Repeat steps 8 through 11, selecting BJ
(USER) as the user.
5-30 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
13. Click on the Next button. The following screen appears:

Since we do not wish to specify availability, you leave this screen blank.
 Oracle Reports Services Security with Oracle Portal 5-31

Registering a Report
14. Click on the Next button. The following screen appears:

15. This screen lets you select the Destination information. These are Types,
Formats, Printers, and Parameter Form Template. For this example, you select
Cache for Types, and HTMLCSS and PDF for Formats.

Note: You select more than one object by pressing the Ctrl key
down and clicking on your choices.
5-32 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
16. Click on the Next button. The following screen appears:

17. For this example, you are going to further restrict access by restricting the
department number passed to the report. Type P_DEPTNO in the Parameter
Name field.
 Oracle Reports Services Security with Oracle Portal 5-33

Registering a Report
18. Click on the Next button. The following screen appears:

A validation trigger is used to create conditional restrictions that cannot be
defined on either the Required Parameters page or the Optional Parameters
page. Validation triggers are PL/SQL functions. A validation trigger is run
when users accept the Runtime Parameter Form.
5-34 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
19. You change the information in the Validation Trigger screen so that it looks like
the following screen. SCOTT can only run this report for department 10. There
is no such restriction for other users.
 Oracle Reports Services Security with Oracle Portal 5-35

Registering a Report
20. Click the Finish button. The following screen appears:
5-36 Publishing Reports to the Web with Oracle9i Application Server

Registering a Report
21. Click on the Customize link. The following screen appears:

22. On this screen, under the check boxes for Visible to user, select Desformat and
P_DEPTNO. In the P_DEPTNO field, type 10.

23. Click on the Save Parameters button. You must do this to save the changes you
have made. A confirmation appears, ’Parameters Saved’, confirming your
changes.

24. Click on the Run Report button. The following screen appears:
 Oracle Reports Services Security with Oracle Portal 5-37

Deploying a Report
25. Type SCOTT in the User Name field, TIGER in the Password field, and ORCL
in the Database field. Then click on the Submit button. The following screen
appears, confirming that the report has run successfully.

You have successfully registered a report and given privileges to REPORTSDEV
(this happens automatically), SCOTT, and BJ.

5.14 Deploying a Report
You are now ready to deploy a report.

Overview
This example walks you through deploying a report in an Oracle Portal content
area.

Assumptions
For this example, the following assumptions have been made:

■ Oracle Portal has been opened using the appropriate URL for the Oracle Portal
installation.

■ REPORTSDEV is logged into Oracle Portal.

■ A content area called Reports Security Test already exists.
5-38 Publishing Reports to the Web with Oracle9i Application Server

Deploying a Report
5.14.1 Deploying a Report to an Oracle Portal Content Area
Do the following steps to deploy a report to an Oracle Portal content area:

1. From any page, click on the Navigator icon. The following screen appears:
 Oracle Reports Services Security with Oracle Portal 5-39

Deploying a Report
2. Click on the Content Areas tab. The following screen appears:

3. Click on Reports Security Test. The following screen appears:
5-40 Publishing Reports to the Web with Oracle9i Application Server

Deploying a Report
4. Click on General. The following screen appears:

5. Click on Edit Category. The following screen appears:

6. Click on Add item. The following screen appears:
 Oracle Reports Services Security with Oracle Portal 5-41

Deploying a Report
7. Select Application Component from the Item Type drop down list. Then click
on the Next button. The following screen appears:

8. Under the Folder Region heading, click the appropriate radio button. In this
case, Regular Items.

9. Scroll to the Primary Item Attributes heading and select EXAMPLE_APP:
FINANCIAL from the Application Component drop down list.

10. Type Financial report in the Display Name field.

11. Select Reports Security Test from the Folder drop down list.

12. Select General from the Category drop down list.

13. Enter Financial report for a department in the Description field. Then click on
the Next button. Your screen now looks like the following:
5-42 Publishing Reports to the Web with Oracle9i Application Server

Deploying a Report
14. Click on the Next button. The following screen appears:

15. There are two ways that SCOTT can display the report.
 Oracle Reports Services Security with Oracle Portal 5-43

Deploying a Report
■ The first is to click on the Financial report link found by navigating to the
Content Areas, then to Reports Security Test as shown in the following
screen:

■ The second way gives SCOTT additional options. Continue from Step 14
and scroll to the Display Options heading and select Display Parameter
Form. Then click on the Finish button. The following screen appears and
you can see that your report has been added.
5-44 Publishing Reports to the Web with Oracle9i Application Server

Deploying a Report
16. Click on Financial report. The following screen appears:

17. Click on the Run Report tab. The following screen appears confirming that the
report ran successfully.

18. REPORTSDEV can now log out.

Your report, FINANCIAL, has now been successfully deployed to the Reports
Security Test content area in Oracle Portal.
 Oracle Reports Services Security with Oracle Portal 5-45

Running a Report
5.15 Running a Report
Now that REPORTSDEV has registered a report, given SCOTT and BJ permission to
run the report, and deployed the report to the Reports Security Test content area,
the report is ready to be run by the Oracle Portal users.

Overview
This example walks you through the following:

■ Finding the report

■ Running the report

Assumptions
For this example, the following assumptions have been made:

■ BJ is logged in.

■ BJ has navigated to the Report Security Test content area.

■ BJ is going to run a report called Financial.

To run the report do the following steps:

1. From the Content Areas tab, select Reports Security Test. The following screen
appears:
5-46 Publishing Reports to the Web with Oracle9i Application Server

Running a Report
2. Click on Financial report. The following screen appears:

3. Click on the Schedule tab. The following screen appears:
 Oracle Reports Services Security with Oracle Portal 5-47

Running a Report
Scroll through this screen and fill in the following information:

4. Click on the Submit button.

Return to the Welcome BJ folder page and you see that the Result Folder has been
created. Every hour the report results appear in this folder and BJ can see them each
time he clicks on the folder.

Start Select Immediately.

Repeat Select Every and type 1 in the empty field. This runs the
report every hour.

Destination Fill out the following:

Content Area Reports Security Test is already entered for
you.

Log File
Folder

Type Log File. This folder contains
information related to the actual running of
the report.

Result Title Type Financial information.

Result Folder Type Result Folder. The report output is
pushed to this folder.

Expiration Select Permanent from the drop down list.

Overwrite
Previous
Result

By clicking on this, the previous results are
overwritten; otherwise, they would be saved.
5-48 Publishing Reports to the Web with Oracle9i Application Server

Publishing Report Outside of Oracle Portal
5.16 Publishing Report Outside of Oracle Portal
To publish the reports you have registered within the Oracle Portal repository, you
are not forced to use Oracle Portal as the deployment mechanism. You can create
links on any Web content area or Oracle Portal content area from which users can
invoke report requests.

The following steps describe how to implement application-level security outside of
the Oracle Portal content area:

1. The SECURITYTNSNAME parameter and the PORTALUSERID parameter
must be added to the rep60_<machinename>.ora file pointing to the
instance where the access control information exists (that is,
PORTALUSERID=<portal_username>/<portal_password> and
SECURITYTNSNAME=<tnsnames>). Without this entry, the Oracle Reports
Services server does not authenticate the users against the access control
information that exists in the Oracle Portal repository.

2. The CGI or servlet key mapping file (cgicmd.dat) can utilize the AUTHID
command line parameter. You can add the AUTHID parameter to the report
request command lines. AUTHID identifies the application user that has been
created in Oracle Portal. The AUTHID=username/password can be added to
any report entry in the key map file to hard code a user name and password. In
this case, the user is prompted for application-level security.

If you want the users to be prompted to authenticate every time they run report
requests, then add the SHOWAUTH and AUTHTYPE=S entry into the URL, or
include the %S argument in the key mapping report entry. For example, an
entry in the key map file might look like the following:

emp: server=repserver report=emp.rdf userid=scott/tiger@orcl destype=CACHE
desformat=HTMLCSS %S
 Oracle Reports Services Security with Oracle Portal 5-49

Publishing Report Outside of Oracle Portal
In the above example, the database user name, password, and connect string
(scott/tiger@orcl) are hard coded so the user is only required to enter their
user name and password for the application-level security. Meaning the user
name and password stored in Oracle Portal are used to identify if they have
access to run the selected report. You only see the User Name and Password
fields for the system authentication dialog as shown in the following:

You only see the User Name and Password fields for the system authentication
dialog box as in the above. If you omit the USERID parameter from the key
mapping entry, then you are also prompted for the database authentication as
shown in the following screen:

Another way to enforce database authentication is to add the %D argument to
the report key mapping entry. For example:

emp: server=repserver report=emp.rdf destype=CACHE desformat=HTMLCSS %S %D

You can edit the authentication template file as long as the authentication
HTML file contains all comment tags that are marked as Please do not
edit this line.
5-50 Publishing Reports to the Web with Oracle9i Application Server

Publishing Report Outside of Oracle Portal
3. Specify the REPORTS60_COOKIE_EXPIRE value. Each time a user successfully
logs into the application to run a report request, the browser is sent an
encrypted cookie. When a cookie expires, users must re-authenticate to run
subsequent requests. An administrator can define the
REPORTS60_COOKIE_EXPIRE environment variable on the server. Remember
to stop and restart the server for this change to become effective.

The cookie is automatically removed when the client browser is closed.
However, in the case where a browser can remain open for an extended period
of time, this environment variable helps to control the length of a session. When
the Oracle Reports Services CGI executable receives a job request, the amount of
time saved in the cookie is compared with the current system time. If the time is
longer than the number of minutes defined in the environment variable (by
default, 30 minutes), then the cookie is rejected and the user is again requested
to identify themselves for authentication.

Refer to Table 5–1, "Environment Variables for User Authentication" for a list of
environment variables that apply to user authentication.

If you want users to authenticate and remain authenticated until the cookie
expires, then omit the AUTHID parameter or the %S argument from the key
mapping file.
 Oracle Reports Services Security with Oracle Portal 5-51

Publishing Report Outside of Oracle Portal
5-52 Publishing Reports to the Web with Oracle9i Application Server

 Configuring Oracle Reports Services Server Clu
6

Configuring Oracle Reports Services Server

Clusters

This chapter will show you how to configure Oracle Reports Services servers in a
cluster to improve performance and loading balancing. This becomes important as
the need to deliver information to a rapidly growing user base becomes more
demanding.

Oracle Reports Services servers clustering addresses this demand by leveraging
your organization’s existing hardware investment by plugging in additional
application servers as they are needed. This enables the processing capabilities of
your Oracle Reports Services servers to grow as your organization grows.

Before you begin to configure your Oracle Reports Services servers for clustering,
you should be familiar with the basic Oracle Reports Services architecture. See
Chapter 1, "Publishing Architecture and Concepts" for more information. You must
also have already set up your Oracle Reports Services using a basic configuration.
See Chapter 3, "Configuring the Oracle Reports Services Server on Windows NT
and UNIX" for more information.
sters 6-1

Clustering Overview
6.1 Clustering Overview
Suppose that you have three machines configured as Oracle Reports Services
servers that you want to cluster. These machines are described below:

For step-by-step instructions on configuring Oracle Reports Services servers in a
cluster as described in this overview, see Section 6.2, "Configuring Oracle Reports
Services Servers in a Cluster Example".

You will designate NT-1 as the master, then set the CLUSTERCONFIG parameter to
enable this server to recognize NT-2 and SUN-1 as slaves. To simplify this example,
the MAXENGINE parameter and MINENGINE parameter for the master and each
slave server are set to the number of CPUs available on each machine.

Once the machines are configured, you will send report requests to the master
server (that is, SERVER=NT-1) which redirects the reports to the slaves. When the
master server is started, it checks the configuration file. The master contacts each of
the slave servers in the order that they are listed in the configuration file and
notifies them to start up the defined number of engines (for example, two engines
each). When the slave engines are started, they are under the control of the master,
which allocates jobs to them using a round-robin algorithm.

Suppose that the master server (that is, NT-1) receives seven report requests. The
master uses its four engines to run the first four reports. For the fifth and sixth
reports, the master redirects the requests to the two NT-2 engines to run them.
When the master receives the seventh report, it redirects the request to the first
SUN-1 engine to run it. All output is written to a central cache (that is, one that is
shared by all servers). The master sends the output back to the requestor (for
example, a Web browser).

Table 6–1 Example Server Machines Descriptions

Machine/Server TNS name Description Master/Slave

NT-1 4 CPU NT server Master

NT-2 2 CPU NT server Slave

SUN-1 2 CPU Sun Solaris workstation Slave

Note: The decision to make the NT-1 machine the master server
was arbitrary. The number of CPUs was not a determining factor.
6-2 Publishing Reports to the Web with Oracle9i Application Server

Configuring Oracle Reports Services Servers in a Cluster Example
It is possible for slave servers to remain fully functional Oracle Reports Services
servers in their own right if they can start engines independently of the master
server. Suppose that the MAXENGINE and MINENGINE parameters of the NT-2
Oracle Reports Services configuration are set to three. This means that three engines
are dedicated to the NT-2 Oracle Reports Services servers and can receive requests
without the master’s knowledge. When configured as a slave server (that is, the
MAXENGINE and MINENGINE parameters in the master configuration for NT-2
are set to two), the NT-2 Oracle Reports Services has a total of five engines started:
three engines that are dedicated to the NT-2 server and two engines are dedicated
slaves to the master.

6.2 Configuring Oracle Reports Services Servers in a Cluster Example
This section provides step-by step instructions for configuring Oracle Reports
Services server clusters. This example describes the following:

■ Enabling communication between the master and slaves

■ Configuring the master server

■ Running report requests to clustered servers

■ Resubmitting jobs when an engine goes down

■ Adding a server to an existing configuration

In this example, you will configure the server machines for clustering as described
in Table 6–1, " Example Server Machines Descriptions".

The following assumptions have also been made for each machine:

■ The Oracle Reports Services component has been installed.

■ Oracle Reports Services has been configured using the machine name as the
TNS service entry name (for example, NT-1) in the tnsames.ora file.
Configuring Oracle Reports Services Server Clusters 6-3

Configuring Oracle Reports Services Servers in a Cluster Example
■ A central file server is running and set up with two directories: a Source
directory (where report definition files are stored) and a cache directory (where
all cached report output is sent).

All engines must write their output to a central cache and all engines read
report definition files from a central source directory. A central source directory
guarantees that all engines are running the same reports. This also eliminates
copying updated report definition files to various locations. A central cache
enables the master server to serve duplicate jobs and jobs run within the
specified tolerance without going to each slave server’s local disk.

■ All engines see the same aliases for printers (unless the output is always being
sent to the default printer).

6.2.1 Enabling Communication Between Master and Slaves
On the NT-1 machine (master) you open the tnsnames.ora located in the
ORACLE_HOME\NET80 directory in a text editor, and add the following. The
nt-2.world and sun-1.world are the names of the server instances and .world
is the domain specified in the NAMES.DEFAULT_DOMAIN setting in the
sqlnet.ora file. If the NAMES.DEFAULT_DOMAIN setting is not defined in the
sqlnet.ora, then omit .world from the name of the server instance:

nt-2.world=(ADDRESS=(PROTOCOL=tcp)(HOST=nt-2)(PORT=1949))
sun-1.world=(ADDRESS=(PROTOCOL=tcp)(HOST=sun-1)(PORT=1949))

On the NT-2 machine (slave) you do the following:

1. Open the tnsnames.ora located in the ORACLE_HOME\NET80 directory in a
text editor, and add the following, where nt-1.world is the name of the server
instance and .world is the domain specified in the
NAMES.DEFAULT_DOMAIN setting in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is not defined in the sqlnet.ora, then
omit .world from the name of the server instance:

nt-1.world=(ADDRESS=(PROTOCOL=tcp)(HOST=nt-1)(PORT=1949))

2. Open the nt-2.ora (the Oracle Reports Services configuration file) located in
the ORACLE_HOME\REPORT60\SERVER directory, and set the INITEGINE
parameter to 0. This ensures that the only engines created at startup are the
ones started by the master.

3. Repeat steps 1 and 2 on the SUN-1 server machine. In step 2, edit the
sun-1.ora configuration file.
6-4 Publishing Reports to the Web with Oracle9i Application Server

Configuring Oracle Reports Services Servers in a Cluster Example
6.2.2 Configuring the Master Server
In this section your will configure the master using the following settings:

■ Edit the master server configuration file to identify the slave servers to the
master and to control the number of engines associated with master server.

■ Set the parameters in the master server configuration file that defines the
following:

■ Engine settings are defined that identify the cache and source directories.

■ Since there are four CPUs on this machine, you will use four local engines
to start at the same time as the server.

■ These four engines will shut down if they are idle for 60 minutes, and will
restart after running 50 jobs.

■ The number of processes that can communicate with the server at one time
is set to the maximum number of 4096.

■ Set the CLUSTERCONFIG parameter to identify the slave servers to the master.
In this example, you will start two engines on each slave server when the
master is started.

The ENGLIFE and MAXIDLE parameters for the master server’s engines are
implied for all slave engines. The unit of measure for the MAXIDLE parameter is
minutes and the ENGLIFE parameter is the number of engines.

On the NT-1 server machine (master) you do the following:

1. Open nt-1.ora (the Oracle Reports Services configuration file) located on
ORACLE_HOME\REPORT60\SERVER directory.

2. Edit the configuration file according to settings below:

maxconnect=4096
sourcedir="X:\Source"
cachedir="X:\Cache"
cachesize=50
minengine=0
maxengine=4
initengine=4
maxidle=60
englife=50

The NT-1 machine is mapped to the central server on the X: drive.
Configuring Oracle Reports Services Server Clusters 6-5

Configuring Oracle Reports Services Servers in a Cluster Example
3. Edit the configuration file according to the settings below:

clusterconfig="(server=nt-2
minengine=0
maxengine=2
initengine=2
cachedir="W:\Cache")
(server=sun-1
minengine=0
maxengine=2
initengine=2
cachedir="/share/Cache")"

where:

Usage Notes
When configuring the master server, you should consider the following:

■ Each slave definition must be surrounded by parenthesis.

■ The cache directory setting for the NT and the UNIX machines are different.
Not all servers need to see the shared file system by the same definition (that is,
the master is mapped to the X: drive, while the slave is mapped to W: drive).

■ The slave servers must have their REPORTS60_PATH environment variable
set to /share/Source (for the SUN-1 server machine) and set to
W:\Source (for the NT-2 machine).

■ Shut down and restart the master server so that the master server can recognize
the new configuration.

This completes the configuration. Eight engines will start when the master server is
started.

server is the TNS service entry name of the slave server.

minengine is the minimum number of runtime engines this master
server should have available to run reports.

maxengine is the maximum number of runtime engines this master
server has available to run reports.

initengine is the initial number of runtime engines started by this
master server.

cachedir is the central cache directory for this master server.
6-6 Publishing Reports to the Web with Oracle9i Application Server

Configuring Oracle Reports Services Servers in a Cluster Example
6.2.3 Running Reports in a Clustered Configuration
To run report requests to Oracle Reports Services servers that have been configured
for clustering, you specify the master server in the SERVER command line
argument (that is, SERVER=NT-1)along with any other relevant arguments for the
thin client executable. The master server assigns incoming jobs to the engines on the
slave servers.

If you set the REPORTS60_REPORTS_SERVER environment variable to the master
server, then you can omit the SERVER command line argument. See Appendix D,
"Environment Variables" for more information.

See Chapter 4, "Running Report Requests" for more information on the various
report request methods you can use.

See Section 6.2.4, "Resubmitting Jobs When an Engine Goes Down" if you have
problems submitting report requests to the server cluster.

The master server’s jobs can be monitored by using the Oracle Reports Services
Queue Viewer in the Queue Manager. Refer to the Oracle Reports Services Queue
Manager online help for more information.

6.2.4 Resubmitting Jobs When an Engine Goes Down
If an engine goes down while a report is running, then the Retry settings defined in
the SCHEDULE command line argument dictate whether the job will be re-run. If
no Retry settings have been specified, then the job is lost. This job failure, however,
will be logged against the server log file, and displayed in the list of jobs in the
Queue Manager. If the command line includes retry settings, then the master server
will re-run the job with the next available engine.

Suppose that you have submitted a job with the Retry option set to 2 in the
SCHEDULE command line argument. The master server starts the report request on
the second slave engine on the NT-2 server. However, the NT-2 server runs out of
temporary space and the job terminates. The master server will resubmit the job.
Assuming that no other jobs have been submitted, this job is assigned to the first
engine on the SUN-1 server.

The retry option is useful for giving you fail-over support, but should be used with
caution. For example, setting the retry to a large number might not solve the
problem. The resubmitted job might always fail if the underlying problem is with
the report itself, not the engine.
Configuring Oracle Reports Services Server Clusters 6-7

Configuring Oracle Reports Services Servers in a Cluster Example
6.2.5 Adding Another Slave Server to the Master
You want to add another slave server to the existing cluster configuration as defined
in the following table:

This example assumes that this machine has already been configured as an Oracle
Reports Services server. The TNS service entry name for Oracle Reports Services
server is the machine name.

On the SUN-2 server machine (slave), open the sun-2.ora (the Oracle Reports
Services configuration file) located in the ORACLE_HOME\REPORT60\SERVER
directory and add the following, where nt-1.world is the name of the server
instance and .world is the domain specified in the NAMES.DEFAULT_DOMAIN
setting in the sqlnet.ora file. If the NAMES.DEFAULT_DOMAIN setting is not
defined in the sqlnet.ora, then omit .world from the name of the server
instance:

nt-1.world=(ADDRESS=(PROTOCOL=tcp)(HOST=nt-1)(PORT=1949))

On the NT-1 server machine (master), do the following:

1. Open the tnsnames.ora file located in the ORACLE_HOME\NET80\ADMIN
directory and add the following entry, where sun-2.world is the name of the
server instance and .world is the domain specified in the
NAMES.DEFAULT_DOMAIN setting in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is not defined in the sqlnet.ora, then
omit .world from the name of the server instance:

sun-2.world=(ADDRESS=(PROTOCOL=tcp)(HOST=sun-1)(PORT=1949))

Table 6–2 Additional Server Machine Description

Machine/Server TNS name Description Master/Slave

SUN-2 4 CPU Sun Solaris server Slave
6-8 Publishing Reports to the Web with Oracle9i Application Server

Configuring Oracle Reports Services Servers in a Cluster Example
2. Open the nt-1.ora (the Oracle Reports Services configuration file) and add
the following bold text to the already existing CLUSTERCONFIG parameter:

clusterconfig="(server=nt-2
minengine=0
maxengine=2
initengine=2
cachedir="W:\Cache")
(server=sun-1
minengine=0
maxengine=2
initengine=2
cachedir="/share/Cache")
(server=sun-2
minengine=0
maxengine=4
initengine=4
cachedir="/share/Cache")"

3. Shut down and restart the master server so that the master server can recognize
the newly configured slave server.

Suppose that while you were configuring the SUN-2 machine as a slave server,
another administrator took down the NT-2 machine (for example, to perform a
backup). While the NT-2 machine is still down, you restart the Oracle Reports
Services server on the NT-1 machine. The NT-1 machine was able to start the slave
engines on the two Sun machines, but could not start the slave engines on the NT-2
machine because it was down.

Because the NT-1 server is polling all the slave servers, once the NT-2 machine is
brought back up and Oracle Reports Services started, the NT-2 machine will be
detected automatically by the NT-1 server. When the four slave engines start, they
are available to receive jobs from the master.
Configuring Oracle Reports Services Server Clusters 6-9

Configuring Oracle Reports Services Servers in a Cluster Example
6-10 Publishing Reports to the Web with Oracle9i Application Server

Customizing Reports at Ru
7

Customizing Reports at Runtime

Oracle Reports Services can run report definitions built with XML tags and merge
them with other report definitions. In previous releases, a report had to be built and
saved in the Oracle Reports Services Builder in order to be run by Oracle Reports
Services. With the 6i release, you can build a report definition using XML tags. This
XML report definition can be run by itself or applied to another report at runtime to
customize the output for a particular audience.

Using XML report definitions you can:

■ Apply customizations to reports at runtime without changing the original
report. By creating and applying different XML report definitions, you can alter
the report output on a per user or user group basis. The advantage of this
scenario is that you can use the same report to generate different output
depending upon the audience.

■ Apply batch updates to existing reports. When you apply an XML report
definition to another report, you have the option of saving the combined
definition to a file. As a result, you can use XML report definitions to make
batch updates to existing reports. The advantage of this is that you can quickly
update a large number of reports without having to open each file in the Oracle
Reports Services Builder to manually make the changes.

■ Create complete report definitions in XML. The advantage of this is that you
can build reports on the fly without using the Oracle Reports Services Builder. If
you can generate XML tags, then you can create a report definition that can be
run by Oracle Reports Services.
ntime 7-1

Overview
7.1 Overview
Using XML tags, you can build a full or partial report definition that can serve as
either a customization file or a completely self-contained report. A full report
definition specifies a complete data model and layout in XML and can be run
separately or applied to another report to customize it. A partial definition can
contain far less information and can only be used in conjunction with another report
(that is, it cannot be run by itself).

A customization file is a report definition that is applied to an existing report (RDF
or XML). It can change certain characteristics of existing report objects, such as the
field’s date format mask or background color. A customization file can also be used
to add entirely new objects to another report. Customization files can be full or
partial report definitions.

In order to be run by itself, an XML report must contain a full report definition. A
self-contained XML report is one that is run without being applied to another
report.

7.1.1 Creating and Using XML Report Definitions
The steps below outline the process of building and using XML report definitions:

1. Create a full or partial report definition using the XML tags described in
Section 7.5, "XML Tag Reference". You can create this definition manually with
an editor or you can create it programmatically.1 The following is a sample of a
partial report definition:

<report name="emp" DTDVersion="1.0">
 <layout>
 <section name="main">
 <field name="f_sal" source="sal" textColor="red"/>
 <field name="f_mgr" source="mgr" fontSize="18" font="Script"/>
 <field name="f_deptno" source="deptno" fontStyle="bold"
 fontEffect="underline"/>
 </section>
 </layout>
</report>

1 Creating the definition programmatically would allow you to build up a report definition
on the fly based on user input.
7-2 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
This sample would change the formatting characteristics of some fields when
applied to another report. This XML could not be run by itself because it does
not contain a full report definition. It contains no data model definition and
only a partial layout definition. In order to be run by itself, it would need to
contain a complete data model and layout definition.

For more information on this step, refer to Section 7.2, "Creating an XML Report
Definition".

2. Store the XML report definition in a location that is accessible to Oracle Reports
Services.2

3. Apply the XML report definition to another report (using the CUSTOMIZE
command line argument or the PL/SQL built-in SRW.APPLY_DEFINITION) or
run the XML report definition by itself (using the REPORT command line
argument).

For more information on this step, refer to Section 7.3, "Running XML Report
Definitions".

The remainder of this chapter describes in greater detail the steps for building and
using XML report definitions, and includes a reference section for the XML tags
used to build a definition.

7.2 Creating an XML Report Definition
The best way to understand how to build an XML report definition is to work our
way up from just the required tags to a partial definition and, finally, to a complete
definition (that is, one that does not require an RDF file in order to be run). This
section describes the following XML definitions:

■ Section 7.2.1, "Required Tags"

Some XML tags are required regardless of whether you are building a partial or
full report definition in XML. This XML report definition shows you the
minimum set of XML tags that a report definition must have in order to be
parsed correctly.

2 You can also use XML report definitions with the Oracle Reports Services Runtime and
Oracle Reports Services Builder.
Customizing Reports at Runtime 7-3

Creating an XML Report Definition
■ Section 7.2.2, "Partial Report Definitions"

This type of XML report definition contains less than a complete report
definition. As a result, it can only be applied to another report as a
customization file. It cannot be run by itself.

■ Section 7.2.3, "Full Report Definitions"

This type of XML report definition contains a complete report definition. As a
result, it can be applied to an RDF file or it can be run by itself.

7.2.1 Required Tags
Every XML report definition, full or partial, must contain the following required tag
pair:

<report></report>

For example, the following is the most minimal XML report definition possible:3

<report name="emp" DTDVersion="1.0">
</report>

The <report> tag indicates the beginning of the report, its name, and the version of
the Document Type Definition (DTD) file that is being used with this XML report
definition.4 The </report> tag indicates the end of the report definition.

A full report definition requires both a data model and a layout and therefore also
requires the following tags and their contents:

■ <data></data>

■ <layout></layout>

3 It should be noted that this XML report definition would have a null effect if applied to
another report because it contains nothing. It can be parsed because it has the needed tags,
but it is only useful to look at this definition to see the required tags.

4 DTD files are what give XML tags their meanings. Oracle Reports Services includes a DTD
file that defines the XML tags that can be used in a report definition. For more information
about the supported XML tags, refer to Section 7.5, "XML Tag Reference".
7-4 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
7.2.2 Partial Report Definitions
One of the primary uses of XML report definitions is to make modifications to
another report at runtime. The XML report definition enables you to easily change
the data model or formatting of another report at runtime, without permanently
affecting the original report.5 The advantage of this is that it enables you to use a
single report to serve multiple audiences. For example, you can build one RDF file
and apply different partial XML report definitions to it to customize it for different
audiences. The XML report definition can be very simple, containing only a few
tags to change the appearance of a few objects, or very complex, affecting every
object in the report and possibly adding new objects.

To help you understand the kind of modifications possible in customization files, it
is helpful to see some examples. The Building Reports manual contains descriptions
of how to build several example reports using Oracle Reports Services Builder. The
finished RDF files for these reports are located in the
ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory. For the purposes of this
chapter, an XML report definition that modifies some of these reports has been
placed in this directory with the RDF files. The table that follows describes each of
these XML report definitions in greater detail.

5 It is possible to save the combined RDF file and XML report definition as a new RDF file.
This technique is discussed later in this chapter.

Table 7–1 XML Report Definitions for Building Reports

XML File RDF File Description

cond.xml cond.rdf cond.xml changes:

■ The format mask of F_trade_date to
MM/DD/RR.

■ The fill colors of
F_Mincurrent_pricePersymbol and
F_Maxcurrent_pricePersymbol.

cond.xml adds:

■ HTML in the report escapes to be inserted
when generating HTML output.

Refer to Section 7.2.2.1, "Formatting
Modifications Example", for more
information.
Customizing Reports at Runtime 7-5

Creating an XML Report Definition
You can apply the XML customizations by running the RDF files with one
additional argument. For example:

rwrun60 userid=scott/tiger report=cond.rdf
 customize=e:\orant\tools\doc60\us\rbbr60\cond.xml

temp.xml temp.rdf temp.xml changes:

■ The field labels for F_high_365 and
F_low_365.

temp.xml adds:

■ A formatting exception to F_p_e to
highlight values greater than 10.

■ A formatting exception to F_p_e1 to
highlight values greater than 10.

Refer to Section 7.2.2.2, "Formatting Exception
Example", for more information.

sect.xml sect.rdf sect.xml adds:

■ Program units to the report.

■ Link destinations to the detail records in
the main section of the report.

■ Hyperlinks from the employee summary
in the header section to the detail records
in the main section.

Refer to Section 7.2.2.3, "Program Unit and
Hyperlink Example", for more information

ref.xml ref.rdf ref.xml adds:

■ A new query, Q_summary, to the data
model.

■ A header section to the report that uses
the data from the new query, Q_summary.

Refer to Section 7.2.2.4, "Data Model and
Formatting Modifications Example", for more
information.

Table 7–1 (Cont.) XML Report Definitions for Building Reports

XML File RDF File Description
7-6 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
Refer to Section 7.3, "Running XML Report Definitions" for more information

Take a few moments to run these RDF files with and without the customization file.
In the next section, we examines the XML used to achieve these modifications.

7.2.2.1 Formatting Modifications Example
The XML in the cond.xml file modifies some basic formatting characteristics of the
cond.rdf file and adds some HTML code to be inserted at the beginning and end
of the report when generating HTMLCSS output.

Tips on this Example
The following tips are useful when looking at this example:

■ In this case the name attribute on the <report> tag matches the name of the RDF
file. You could also use a different name, for example, condnew.

■ The name attributes on the <field> and <section> tags match the names of
fields and the section that exist in the RDF file. As a result, the other attributes
on the <field> tag are applied to those existing fields in the main section of the
layout defined in the RDF file.

■ The code inside of the <customize> tag modifies the before and after report
escapes. The beforeReportType property indicates that the contents of the before
report escape are located in a file. The beforeReportValue property indicates the
name of the file, header_example.html, and its path (you might need to
change this path if the file is located elsewhere on your machine).

The afterReportType property indicates that the contents of the second report
escape are located in the afterReportValue property. Note the use of the
<!CDATA[]]> tag around the HTML for the afterReportValue property. When
using characters in your XML report definition that could be confused with
XML tags, you should always enclose those segments in the <!CDATA[]]> tag.

■ The header_example.html file contains a reference to a graphic orep.gif.
This graphic must be located in the same path as the HTML generated from the
report.

■ To see the effects of the code in the <customize> tag, you need to generate
HTML output. This report’s output is best viewed with HTMLCSS output
(DESFORMAT=HTMLCSS) and page streaming (PAGESTREAM=YES).
Customizing Reports at Runtime 7-7

Creating an XML Report Definition
<report name="cond" DTDVersion="1.0">
 <layout>
 <section name="main">
 <field name="f_trade_date"
 source="trade_date"
 formatMask="MM/DD/RR"/>
 <field name="F_Mincurrent_pricePersymbol"
 source="Mincurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 <field name="F_Maxcurrent_pricePersymbol"
 source="Maxcurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 </section>
 </layout>
 <customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\orant\tools\doc60\us\rbbr60\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>
</report>
7-8 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
7.2.2.2 Formatting Exception Example
The XML in temp.xml adds formatting exceptions to two fields in temp.rdf.

Tips on this Example
The following tips are useful when looking at this example:

■ Note the usage of the <exception> tag to define the formatting change. This
formatting exception is only applied when the criteria defined by the
<condition> tag is met.

■ The <object> tags inside of the <customize> section enable you to change the
labels of an existing field in the layout. If you are creating a new field, then you
can specify the label using the label attribute of the <field> tag.

<report name="temp" DTDVersion="1.0">
 <layout>
 <section name="main">
 <field name="f_p_e" source="p_e" alignment="right"
 formatMask="NNN0.00">
 <exception textColor="red">
 <condition source="p_e" operator="gt" operand1="10"/>
 </exception>
 </field>
 <field name="f_p_e1" source="p_e" alignment="right"
 formatMask="NNN0.00">
 <exception textColor="blue">
 <condition source="p_e" operator="gt" operand1="10"/>
 </exception>
 </field>
 </section>
 </layout>
 <customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
 </customize>
</report>
Customizing Reports at Runtime 7-9

Creating an XML Report Definition
7.2.2.3 Program Unit and Hyperlink Example
The XML in sect.xml adds two program units to sect.rdf and uses the
program units to add a header section.

Tips on this Example
The following tips are useful when looking at this example:

■ When the parameter form appears, you should enter 100 for the parameter.

■ The program units are created outside of the data model and layout, inside the
<programUnits> tag.

■ The functions are referenced by name from the formatTrigger attribute of the
<field> tag.

■ Notice the usage of the <![CDATA[]]> tag around the PL/SQL function. This is
necessary because of the special characters used within the PL/SQL code.

■ This report is best viewed in PDF. To generate PDF output, you use the
following command line:

rwrun60 userid=scott/tiger@nt805 report=sect.rdf customize=sect.xml
destype=file desformat=htmlcss desname=d:\sect.pdf

Open the PDF file and roll your mouse over the values in the SSN column. Click a
value to be see to the details on that record.

<report name="sect" DTDVersion="1.0">
 <layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn1"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
 </layout>
7-10 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
 <programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 </programUnits>
</report>

7.2.2.4 Data Model and Formatting Modifications Example
The XML in ref.xml adds a new query to the data model of ref.rdf and adds a
header section.

Tips on this Example
The following tags are useful when looking at this example:

■ This XML report definition can be run by itself or applied to ref.rdf. The
reason it can be run by itself is that it has both a data model and a complete
layout.

■ Notice the use of aliases in the SELECT statement. In general, it is a good idea to
use aliases in your SELECT lists because it guarantees the name that is assigned
to the report column. If you do not use an alias, then the name of the report
column is defaulted and could be something different from the name you
expect (for example, portid1 instead of portid). This becomes important when
you must specify the source attribute of the <field> tag because you have to use
the correct name of the source column.
Customizing Reports at Runtime 7-11

Creating an XML Report Definition
■ Also notice the use of the <labelAttribute> tag. This tag defines the formatting
for the field labels in the layout. Because it lies outside of the <field> tags, it
applies to all of the labels in the tabular layout. If you wanted it to pertain to
only one of the fields, then you place it inside of the <field></field> tag pair. Be
aware that if there is both a global and local <labelAttribute>, the local one
overrides the global one. Refer to Section 7.5.8, "<field>", for more information

<report name="ref" DTDVersion="1.0">
 <data>
 <dataSource name="Q_summary">
 <select>
 select portid ports, locname locations from portdesc
 </select>
 </dataSource>
 </data>
 <layout>
 <section name="header">
 <tabular name="M_summary" template="corp2.tdf">
 <labelAttribute font="Arial"
 fontSize="10"
 fontStyle="bold"
 textColor="white"/>
 <field name="F_ports"
 source="ports"
 label="Port IDs"
 font="Arial"
 fontSize="10"/>
 <field name="F_locations"
 source="locations"
 label="Port Names"
 font="Arial"
 fontSize="10"/>
 </tabular>
 </section>
 </layout>
</report>

7.2.3 Full Report Definitions
Another use of XML report definitions is to make an entire report definition in XML
that can be run independently of another report. The advantage of this is that you
can build a report without using the Oracle Reports Services Builder. In fact, you
could even use your own front end to generate the necessary XML and allow your
users to build their own reports dynamically.
7-12 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
The following example illustrates a complete report definition in XML. This XML
report definition is named videosales.xml and can be found in the
ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory.

Tips on this Example
The following tips are useful when looking at this example:

■ This XML report definition is complete and can be run by itself. It contains a full
data model and layout. This report is best viewed in PDF.

■ The first query in the data model (Q_1) is used to populate a summary tabular
layout in the header section of the report. The second query (Q_2) is used for
the matrix break layout in the main section of the report. The <group>,
<matrixRow>, <matrixCol>, and <matrixCell> tags define both the layout and
the data model structure needed to support it. Based on which fields are inside
these tags, the groups and columns are arranged within the data model. To get a
better sense of the data model, you can run the report to the Oracle Reports
Services Builder and look at the Oracle Data Model view of the Oracle Reports
Services Editor:

rwbld60 userid=scott/tiger report=videosales.xml

■ The quarter and city values in the header section are linked to the quarter and
city values in the main section. This is accomplished by associating format
triggers with each of the fields that contain quarter and city values. The
PL/SQL for the triggers is located inside the <programUnits> tag at the end of
the report definition. When the report is used to generate PDF or HTMLCSS
output, the user can click on values in the summary in the header section to
jump to the details in the main section of the report.

<report name="videosales" author="Generated" DTDVersion="1.0">
 <data>
 <dataSource name="Q_1">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.SALES_REGION,
 VIDEO_CATEGORY_BY_QTR.STATE, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
Customizing Reports at Runtime 7-13

Creating an XML Report Definition
 </dataSource>
 <dataSource name="Q_2">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <summary name="SumTOTAL_SALESPerCITY1" source="total_sales1"/>
 <summary name="SumTOTAL_COSTPerCITY1" source="total_cost1"/>
 <summary name="SumTOTAL_PROFITPerCITY1" source="total_profit1"/>
 <summary name="SumTOTAL_SALESPerQUARTER" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerQUARTER" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerQUARTER" source="total_profit"/>
 <summary name="SumTOTAL_SALESPerCITY" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerCITY" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerCITY" source="total_profit"/>
 <formula name="Profit_Margin" source="FormulaProfitMargin"
 datatype="number" width="9"/>
 </data>
 <layout>
 <section name="header">
 <groupLeft name="M_video_sales_summary" template="corp1.tdf">
 <group>
 <field name="f_quarter1" source="quarter1" label="Quarter"
 font="Arial" fontSize="8"
 formatTrigger="F_quarter1FormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </group>
 <group>
 <field name="f_city1" source="city1" label="City"
 font="Arial" fontSize="8"
 formatTrigger="F_city1FormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
7-14 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
 <field name="f_SumTOTAL_SALESPerCITY1"
 source="SumTOTAL_SALESPerCITY1"
 label="Sales" font="Arial" fontSize="8"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY1"
 source="SumTOTAL_COSTPerCITY1"
 label="Costs" font="Arial" fontSize="8"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY1"
 source="SumTOTAL_PROFITPerCITY1"
 label="Profits" font="Arial" fontSize="8"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_Profit_Margin" source="Profit_Margin"
 label="Margin%" font="Arial" fontSize="8"
 formatMask="N0%">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </group>
 </groupLeft>
 </section>
 <section name="main">
 <matrix name="M_video_sales" template="corp10.tdf">
 <group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
Customizing Reports at Runtime 7-15

Creating an XML Report Definition
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8"
 fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER"
 source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_ PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8"
 fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY"
 source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
7-16 Publishing Reports to the Web with Oracle9i Application Server

Creating an XML Report Definition
 <field name="f_SumTOTAL_COSTPerCITY"
 source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY"
 source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </matrixCol>
 <matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
 </matrixRow>
 <matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total
Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total
Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 </matrixCell>
 </matrix>
 </section>
 </layout>
Customizing Reports at Runtime 7-17

Creating an XML Report Definition
 <programUnits>
 <function name="F_quarter1FormatTrigger">
 <![CDATA[
 function F_quarter1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#QUARTER_DETAILS_&<’ || LTRIM(:quarter1) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_quarterFormatTrigger">
 <![CDATA[
 function F_quarterFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’QUARTER_DETAILS_&<’ || LTRIM(:quarter) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_city1FormatTrigger">
 <![CDATA[
 function F_city1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#QTR_CITY_DETAILS_&<’ || LTRIM(:quarter1)
||
 LTRIM(:city1) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_cityFormatTrigger">
 <![CDATA[
 function F_cityFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’QTR_CITY_DETAILS_&<’ || LTRIM(:quarter) ||
 LTRIM(:city) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
7-18 Publishing Reports to the Web with Oracle9i Application Server

Running XML Report Definitions
 <function name="FormulaProfitMargin">
 <![CDATA[
 FUNCTION FormulaProfitMargin RETURN number IS
 BEGIN
 return ((:TOTAL_PROFIT1 / (:TOTAL_SALES1 - (0.07 * :TOTAL_SALES1)))
* 100);
 END;
]]>
 </function>
 </programUnits>
</report>

7.3 Running XML Report Definitions
Once you have created your XML report definition, you can use it in the following
ways.

■ Section 7.3.1, "Applying an XML Report Definition at Runtime"

You can apply XML report definitions to RDF or other XML files at runtime by
specifying the CUSTOMIZE command line argument or the
SRW.APPLY_DEFINITION built-in.

■ Section 7.3.2, "Running an XML Report Definition by Itself"

You can run an XML report definition by itself (without another report) by
specifying the REPORT command line argument.

■ Section 7.3.3, "Performing Batch Modifications"

You can use RWCON60 to make batch modifications using the CUSTOMIZE
command line argument.

The sections that follow describe each of the above cases in more detail and provide
examples.
Customizing Reports at Runtime 7-19

Running XML Report Definitions
7.3.1 Applying an XML Report Definition at Runtime
To apply an XML report definition to an RDF or XML file at runtime, you can use
the CUSTOMIZE command line argument or the SRW.APPLY_DEFINITION
built-in. CUSTOMIZE can be used with RWCLI60, RWRUN60, RWBLD60,
RWCON60, and URL report requests. Refer to Section 7.3.3, "Performing Batch
Modifications", for more information about using CUSTOMIZE with RWCON60.

7.3.1.1 Applying One XML Report Definition
The following command line sends a job request to Oracle Reports Services that
applies an XML report definition, emp.xml, to an RDF file, emp.rdf:

rwcli60 report=emp.rdf customize=e:\myreports\emp.xml
 userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
 server=repserver

If you were using Oracle Reports Services Runtime, then the equivalent command
line would be:

rwrun60 userid=username/password@mydb report=emp.rdf
 customize=e:\myreports\emp.xml destype=file desname=emp.pdf
 desformat=PDF

When testing your XML report definition, it is sometimes useful to run your report
requests with additional arguments to create a trace file. For example:

tracefile=emp.log tracemode=trace_replace traceopt=trace_app

The trace file provides a detailed listing of the creation and formatting of the report
objects.

7.3.1.2 Applying Multiple XML Report Definitions
You can apply multiple XML report definitions to a report at runtime by providing
a list with the CUSTOMIZE command line argument. The following command line
sends a job request to Oracle Reports Services that applies two XML report
definitions, emp0.xml and emp1.xml, to an RDF file, emp.rdf:

rwcli60 report=emp.rdf
 customize="(e:\corp\myreports\emp0.xml,
 e:\corp\myreports\emp1.xml)"
 userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF
 server=repserver
7-20 Publishing Reports to the Web with Oracle9i Application Server

Running XML Report Definitions
If you were using Oracle Reports Services Runtime, then the equivalent command
line would be:

rwrun60 report=emp.rdf
 customize="(e:\corp\myreports\emp0.xml,
 e:\corp\myreports\emp1.xml)"
 userid=username/password@mydb destype=file desname=emp.pdf desformat=PDF

7.3.1.3 Applying an XML Report Definition in PL/SQL
To apply an XML report definition to an RDF file in PL/SQL, you use the
SRW.APPLY_DEFINITION and SRW.ADD_DEFINITION built-ins in the
BeforeForm or AfterForm trigger.

7.3.1.3.1 Applying an XML Definition Stored in a File To apply XML that is stored in the
file system to a report, you can use the SRW.APPLY_DEFINITION built-in in the
BeforeForm or AfterForm triggers of the report:

SRW.APPLY_DEFINITION (’d:\orant\tools\doc60\us\rbbr60\cond.xml’);

When the report is run, the trigger executes and the specified XML file is applied to
the report.

7.3.1.3.2 Applying an XML Definition Stored in Memory To create an XML report
definition in memory, you must add the definition to the document buffer using
SRW.ADD_DEFINITION before applying it using SRW.APPLY_DEFINITION.

The following example illustrates how to build up several definitions in memory
based upon parameter values entered by the user and then apply them. The
PL/SQL in this example is actually used in the AfterParameterForm trigger of an
example report called videosales_custom.rdf that can be found in the
ORACLE_HOME\TOOLS\DOC60\US\RBBR60 directory.

The videosales_custom.rdf file contains PL/SQL in its AfterParameterForm
trigger that does the following:

■ Conditionally highlights fields based upon parameter values entered by the
user at runtime.

■ Changes number format masks based upon parameter values entered by the
user at runtime.
Customizing Reports at Runtime 7-21

Running XML Report Definitions
Tips on this Example
The following tips are useful when looking at this example:

■ Each time you use SRW.APPLY_DEFINITION, the document buffer is flushed
and you must begin building a new XML report definition with
SRW.ADD_DEFINITION.

■ Notice the use of the parameters hilite_profits, hilite_costs, hilite_sales, and
money_format to determine what to include in the XML report definition. The
hilite_profits, hilite_costs, and hilite_sales parameters are also used in the
formatting exceptions to determine which values to highlight.

■ Because of the upper limit on the size of VARCHAR2 columns, you might need
to spread very large XML report definitions across several columns. If so, then
you might have to create several definitions in memory and apply them
separately rather than creating one large definition and applying it once.

function AfterPForm return boolean is
begin
SRW.ADD_DEFINITION(’<report name="vidsales_masks"
author="Generated" DTDVersion="1.0">’);
IF :MONEY_FORMAT=’$NNNN.00’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_PROFIT"
 source="TOTAL_PROFIT" formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_SALES"
 source="TOTAL_SALES" formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_COST"
 source="TOTAL_COST" formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_PROFITPerCITY"
 source="SumTOTAL_PROFITPerCITY"
formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_SALESPerCITY"
 source="SumTOTAL_SALESPerCITY"
formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_COSTPerCITY"
 source="SumTOTAL_COSTPerCITY"
formatMask="LNNNNNNNNNNN0D00"/>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
7-22 Publishing Reports to the Web with Oracle9i Application Server

Running XML Report Definitions
ELSIF :MONEY_FORMAT=’$NNNN’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_PROFIT"
 source="TOTAL_PROFIT" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_SALES"
 source="TOTAL_SALES" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_COST"
 source="TOTAL_COST" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_PROFITPerCITY"
 source="SumTOTAL_PROFITPerCITY"
formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_SALESPerCITY"
 source="SumTOTAL_SALESPerCITY"
formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ <field name="F_SumTOTAL_COSTPerCITY"
 source="SumTOTAL_COSTPerCITY" formatMask="LNNNNNNNNNNN0"/>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION(’<report name="vidsales_hilite_costs"
author="Generated" DTDVersion="1.0">’);
IF :HILITE_COSTS <> ’None’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_COST"
 source="TOTAL_COST">’);
 SRW.ADD_DEFINITION(’ <exception textColor="red">’);
 SRW.ADD_DEFINITION(’ <condition source="TOTAL_COST"
 operator="gt" operand1=":hilite_costs"/>’);
 SRW.ADD_DEFINITION(’ </exception>’);
 SRW.ADD_DEFINITION(’ </field>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION(’<report name="vidsales_hilite_sales"
author="Generated" DTDVersion="1.0">’);
Customizing Reports at Runtime 7-23

Running XML Report Definitions
IF :HILITE_SALES <> ’None’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_SALES"
 source="TOTAL_SALES">’);
 SRW.ADD_DEFINITION(’ <exception textColor="red">’);
 SRW.ADD_DEFINITION(’ <condition source="TOTAL_SALES"
 operator="gt" operand1=":hilite_sales"/>’);
 SRW.ADD_DEFINITION(’ </exception>’);
 SRW.ADD_DEFINITION(’ </field>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
SRW.ADD_DEFINITION(’<report name="vidsales_hilite_profits"
author="Generated" DTDVersion="1.0">’);
IF :HILITE_PROFITS <> ’None’ THEN
 SRW.ADD_DEFINITION(’ <layout>’);
 SRW.ADD_DEFINITION(’ <section name="main">’);
 SRW.ADD_DEFINITION(’ <field name="F_TOTAL_PROFIT"
 source="TOTAL_PROFIT">’);
 SRW.ADD_DEFINITION(’ <exception textColor="red">’);
 SRW.ADD_DEFINITION(’ <condition
 source="TOTAL_PROFIT" operator="gt"
operand1=":hilite_profits"/>’);
 SRW.ADD_DEFINITION(’ </exception>’);
 SRW.ADD_DEFINITION(’ </field>’);
 SRW.ADD_DEFINITION(’ </section>’);
 SRW.ADD_DEFINITION(’ </layout>’);
END IF;
SRW.ADD_DEFINITION(’</report>’);
SRW.APPLY_DEFINITION;
return (TRUE);
end;
7-24 Publishing Reports to the Web with Oracle9i Application Server

Running XML Report Definitions
7.3.2 Running an XML Report Definition by Itself
To run an XML report definition by itself, you send a request with an XML file
specified in the REPORT argument. The following command line sends a job
request to Oracle Reports Services to run a report, emp.xml, by itself:

rwcli60 userid=username/password@mydb
 report=e:\corp\myreports\emp.xml
 destype=file desname=emp.pdf desformat=PDF
 server=repserver

If you were using Oracle Reports Services Runtime, then the equivalent command
line would be:

rwrun60 userid=username/password@mydb
 report=e:\corp\myreports\emp.xml
 destype=file desname=emp.pdf desformat=PDF

When running an XML report definition in this way, the file extension must be
XML. You could also apply an XML customization file to this report using the
CUSTOMIZE argument.

7.3.3 Performing Batch Modifications
If you have a large number of reports that need to be updated, then you can use the
CUSTOMIZE command line argument with RWCON60 to perform modifications in
batch. Batch modifications are particularly useful when you need to make a
repetitive change to a large number of reports (for example, changing a field’s
format mask). Rather than opening each report and manually making the change in
Oracle Reports Services Builder, you can run RWCON60 once and make the same
change to a large number of reports at once.

The following example applies two XML report definitions, translate.xml and
customize.xml, to three RDF files, inven.rdf, inven2.rdf, and manu.rdf,
and saves the revised definitions to new files, inven1_new.rdf,
inven2_new.rdf, and manu_new.rdf.

rwcon60 username/password@mydb
 stype=rdffile
 source="(inven1.rdf, inven2.rdf, manu.rdf)"
 dtype=rdffile
 dest="(inven1_new.rdf, inven2_new.rdf, manu_new.rdf)"
 customize="(e:\apps\trans\translate.xml,
 e:\apps\custom\customize.xml)" batch=yes
Customizing Reports at Runtime 7-25

Debugging XML Report Definitions
7.4 Debugging XML Report Definitions
The following features can help you to debug your XML report definitions:

■ Section 7.4.1, "XML Parser Error Messages"

■ Section 7.4.2, "Tracing Options"

■ Section 7.4.3, "RWBLD60"

■ Section 7.4.4, "TEXT_IO"

7.4.1 XML Parser Error Messages
The XML parser catches most syntax errors and displays an error message. The
error message contains the line number in the XML where the error occurred as well
as a brief description of the problem.

7.4.2 Tracing Options
When testing your XML report definition, it is sometimes useful to run your report
requests with additional arguments to create a trace file. For example:

rwrun60 username/password@mydb
 report=e:\corp\myreports\emp.xml
 tracefile=emp.log
 tracemode=trace_replace
 traceopt=trace_app

The last three arguments in this command line generates a trace file that provides a
detailed listing of the fetching and formatting of the report. Below is a segment of
an example trace file for a successfully run report.

LOG :
 Report: d:\xml_reps\test1.xml
 Logged onto server:
 Username:
LOG :
 Logged onto server: nt805
 Username: scott
7-26 Publishing Reports to the Web with Oracle9i Application Server

Debugging XML Report Definitions
+--+
| Report customization/generation begins |
+--+
 Processing XML report definition 1 of 1.
 *** Parsing the XML document ***
 Creating XML parser object...
 XML Parser Created!
 Parsing report definition from:
 d:\xml_reps\test1.xml
 Report definition parsed successfully!
 *** Setting Application Property ***
 Setting module name to "test"...
 Done with application level properties modification.
 *** Creating PL/SQL Program Units ***
 *** Defaulting the Data Model ***
Created query Q_depemp.
 Applying SQL to query Q_depemp and creating columns...
 Done with queries and columns creation/modification.
 Done with groups creation/modification.
 *** Defaulting the Layout ***
 Start defaulting layout for main section...
 Defaulting field f_deptno for column deptno...
 Defaulting field f_mgr for column mgr...
 Defaulting field f_job for column job...
 Layout defaulted into new frame M_empform.
 *** Modifying report objects’ properties ***
+---+
| Report customization/generation finished successfully |
+---+
11:22:59 APP (Frame
11:22:59 APP . (Text Boilerplate B_DATE1_SEC2
11:22:59 APP .) Text Boilerplate B_DATE1_SEC2
11:22:59 APP . (Text Boilerplate B_PAGENUM1_SEC2
11:22:59 APP .) Text Boilerplate B_PAGENUM1_SEC2
11:22:59 APP . (Text Field F_DATE1_SEC2
11:22:59 APP .. (Database Column Name unknown
11:22:59 APP ..) Database Column Name unknown
11:22:59 APP .) Text Field F_DATE1_SEC2
11:22:59 APP) Frame
11:22:59 APP (Frame
11:22:59 APP . (Frame M_G_1_GRPFR
11:22:59 APP .. (Frame M_G_1_HDR
11:22:59 APP ... (Text Boilerplate B_DEPTNO
11:22:59 APP ...) Text Boilerplate B_DEPTNO
11:22:59 APP ... (Text Boilerplate B_MGR
Customizing Reports at Runtime 7-27

Debugging XML Report Definitions
11:22:59 APP ...) Text Boilerplate B_MGR
11:22:59 APP ... (Text Boilerplate B_JOB
11:22:59 APP ...) Text Boilerplate B_JOB
11:22:59 APP ..) Frame M_G_1_HDR
11:22:59 APP .. (Repeating Frame R_G_1
11:22:59 APP ... (Group G_1 Local Break: 0 Global
Break: 0
11:22:59 APP (Query Q_depemp
11:22:59 SQL EXECUTE QUERY : select * from emp
11:22:59 APP) Query Q_depemp
11:22:59 APP ...) Group G_1
11:22:59 APP ... (Text Field F_DEPTNO
11:22:59 APP (Database Column DEPTNO
11:22:59 APP) Database Column DEPTNO
.
.
.
+-------------------------------------+
| Report Builder Profiler statistics |
+-------------------------------------+
 TOTAL ELAPSED Time: 11.00 seconds
 Reports Time: 10.00 seconds (90.90% of TOTAL)
 ORACLE Time: 1.00 seconds (9.09% of TOTAL)
 UPI: 0.00 second
 SQL: 1.00 seconds
 TOTAL CPU Time used by process: N/A

7.4.3 RWBLD60
When designing an XML report definition, it is sometimes useful to open it in
Oracle Reports Services Builder. In Oracle Reports Services Builder, you can quickly
determine if the objects are being created or modified as expected. For example, if
you are creating summaries in an XML report definition, then opening the
definition in Oracle Reports Services Builder enables you to quickly determine if the
summaries are being placed in the appropriate group in the data model.

To open a full report definition in Oracle Reports Services Builder, you use the
REPORT keyword. For example:

rwbld60 userid=username/password@mydb
 report=e:\corp\myreports\emp.xml
7-28 Publishing Reports to the Web with Oracle9i Application Server

Debugging XML Report Definitions
To open a partial report definition in Oracle Reports Services Builder, you use the
CUSTOMIZE keyword. For example:

rwbld60 userid=username/password@mydb report=emp.rdf
 customize=e:\myreports\emp.xml

In both cases, the Oracle Reports Services Builder is opened with the XML report
definition in effect. You can then use the various views (including the Live
Previewer) of the Oracle Reports Services Editor to quickly determine if the report is
being created or modified as you expected.

7.4.4 TEXT_IO
If you are using SRW.ADD_DEFINTION to build an XML report definition in
memory, then it can be helpful to write the XML to a file for debugging purposes.
Following is an example of a procedure that writes each line that you pass it to the
document buffer in memory and, optionally, to a file that you give it.

PROCEDURE addaline (newline VARCHAR, outfile Text_IO.File_Type) IS
BEGIN
 SRW.ADD_DEFINITION(newline);
 IF :WRITE_TO_FILE=’Yes’ THEN
 Text_IO.Put_Line(outfile, newline);
 END IF;
END;

For this example to work, the PL/SQL that calls this procedure would need to
declare a variable of type TEXT_IO.File_Type. For example:

custom_summary Text_IO.File_Type;

You would also need to open the file for writing and call the addaline procedure,
passing it the string to be written and the file to which it should be written. For
example:

custom_summary := Text_IO.Fopen(:file_directory || ’vid_summ_per.xml’, ’w’);
addaline(’<report name="video_custom" author="Generated" DTDVersion="1.0">’,
 custom_summary);
Customizing Reports at Runtime 7-29

XML Tag Reference
7.5 XML Tag Reference
The Document Type Definition (DTD) file incorporated into Oracle Reports Services
defines the tags that can be used in an XML report definition. The sections that
follow describe each of the tags and their syntax, and provide examples of their
usage. The tags are listed in hierarchical order (from outermost to innermost).

7.5.1 <!-- comments -->

Description
<!-- --> tag enables you to include comments within your XML report definition.
The parser ignores any text between the comment delimiters. If you are using
PL/SQL (SRW.ADD_DEFINITION) to build your XML report definition, then you
can incorporate comments in the program unit using the PL/SQL comment
delimiters (for example, -- or /* */).

Syntax
Following is the syntax for this tag:

<!--
 comment_content
-->

Example
The following example shows a segment of an XML report definition that uses the
<!-- --> tag to include a comment.

<report name="cond" DTDVersion="1.0">
<!-- This report assumes that the file
 named header_example.html is located
 in d:\ORANT\TOOLS\DOC60\US\RBBR60.
 If it it not located there, the report
 will not run properly.
-->

WARNING: THE XML TAGS AND THEIR ATTRIBUTES ARE
CASE SENSITIVE, AND SHOULD BE ENTERED IN THE CASE
SHOWN IN THE SYNTAX DESCRIPTIONS.
7-30 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
7.5.2 <![CDATA[]]>

Description
The <!CDATA[]> tag enables you to include special characters within your XML
report definition. The parser ignores any special characters it encounters within the
<!CDATA[]> tag. This is particularly useful when including PL/SQL program units
or SQL queries that might require special characters.

Syntax
Following is the syntax for this tag:

<![CDATA[
 content
]]>

Examples
The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a PL/SQL function that adds a hyperlink and
hyperlink destination to an object in a report.

 <programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERlink(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_linkTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
 </programUnits>
Customizing Reports at Runtime 7-31

XML Tag Reference
The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign.

<select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
</select>

7.5.3 <condition>

Description
The <condition> tag defines the conditions under which a formatting exception is
applied to a field. The <condition> tag must be nested within an <exception> tag.

Refer to Section 7.5.7, "<exception>" for more information.

Syntax
Following is the syntax for this tag:

<condition
 source="source_column_name"
 operator="eq | lt | lteq | neq | gt | gteq | btw | notBtw | like | notLike
 | null | notNull"
 [operand1="comparison_value"]
 [operand2="comparison_value"]
 [relation="and | or"]
/>
7-32 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Attributes
The following table describes the attributes of the <condition> tag:

Table 7–2 <condition> Tag Attributes

Attribute Required or Optional Description

source Required Is the name of the source column to be used in
the condition.

operator Required Is the operator to use in comparing other
values to the source column. The valid
operators are:

■ eq (equal)

■ lt (less than)

■ lteq (less than or equal)

■ neq (not equal)

■ gt (greater than)

■ gteq (greater than or equal)

■ btw (between)

■ notBtw (not between)

■ like

■ notLike

■ null

■ notNull

operand1 Optional Is the value to which the source column is
being compared. If the operator is null or
notNull, then no operands are required. If the
operator is btw or notBtw, then you must also
specify operand2.

operand2 Optional Is the second value to which the source
column is being compared. You only need to
use operand2 if the operator requires two
values for comparison (that is, if the operator
is btw or notBtw)
Customizing Reports at Runtime 7-33

XML Tag Reference
Usage Note
Two conditions can be joined by entering the relation attribute in the first condition
tag, which must include either of the operators and or or.

Example
The following example shows two formatting exceptions for field f_ename. The
first exception changes the text color to red if both of its conditions are met. The
second exception changes the text color to blue if its condition is met.

<field name="f_ename" source="ename" label="Employee" textColor="green">
 <exception textColor="red">
 <condition source="deptno" operator="btw" operand1="20"
 operand2="30" relation="and"/>
 <condition source="sal" operator="gt" operand1="1000"/>
 </exception>
 <exception textColor="blue">
 <condition source="deptno" operator="eq" operand1="30"/>
 </exception>
</field>

7.5.4 <customize>

Description
The <customize> tag delimits any object properties that you want to specify as part
of the report definition. The tags nested within the <customize> tag (<object>
<properties> and <property>) enable you to set properties for certain objects in the
report.

relation Optional Defines whether there are multiple conditions
and, if there are, how they should be related.

■ The and means that the formatting
exception is applied only if both are met.

■ The or means that the formatting
exception is applied if either condition is
met.

Table 7–2 (Cont.) <condition> Tag Attributes

Attribute Required or Optional Description
7-34 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Syntax
Following is the syntax for this tag:

<customize>
 content_of_data_model
</customize>

Examples
The following example shows the object property segment of an XML report
definition.

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>
Customizing Reports at Runtime 7-35

XML Tag Reference
The following example shows a segment of an XML report definition that changes
some boilerplate text. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>

7.5.5 <data>

Description
The <data> tag delimits the beginning and ending of the data model of the report
definition.

Syntax
Following is the syntax for this tag:

<data>
 content_of_data_model
</data>

Example
The following example shows the data model segment of an XML report definition:

<data>
 <dataSource name="q_category">
 <select>
 SELECT ic.category,
 SUM (h.sales),
 AVG (h.high_365),
 AVG (h.low_365),
 AVG (h.div),
 AVG (h.p_e)
 FROM stock_history h, indcat ic
7-36 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 WHERE h.symbol=ic.symbol
 GROUP BY ic.category
 </select>
 </dataSource>
 </data>

The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign:

<data>
 <dataSource name="Q_1">
 <select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
 </select>
 </dataSource>
</data>

7.5.6 <dataSource>

Description
The <dataSource> tag delimits the beginning and ending of a query in the data
model. The <dataSource> tag must be nested within the <data> tag. All of the data
sources supported by Oracle Reports Services (SQL and Express) are supported by
this tag.

Syntax
Following is the syntax for this tag:

<dataSource>
 content_of_data_source
</dataSource>
Customizing Reports at Runtime 7-37

XML Tag Reference
Examples
The following example shows the data model segment of an XML report definition:

<data>
 <dataSource name="q_category">
 <select>
 SELECT ic.category,
 SUM (h.sales),
 AVG (h.high_365),
 AVG (h.low_365),
 AVG (h.div),
 AVG (h.p_e)
 FROM stock_history h, indcat ic
 WHERE h.symbol=ic.symbol
 GROUP BY ic.category
 </select>
 </dataSource>
 </data>

The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign:

<data>
 <dataSource name="Q_1">
 <select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
 </select>
 </dataSource>
</data>
7-38 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
7.5.7 <exception>

Description
The <exception> tag delimits a formatting exception that you want to apply to a
field (for example, the field should turn red when the value exceeds some limit).
The <exception> tag must be nested within a <field> tag. It must also have a
<condition> tag nested within it that defines the condition under which to apply
the formatting exception.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.3, "<condition>"

Syntax
Following is the syntax for this tag:

<exception
 [lineColor="color_name | noLine"]
 [fillColor="color_name | noFill"]
 [textColor="color_name"]
 [hide="yes | no"]
 [font="font_name"]
>
 condition_definition
</exception>

Attributes
The following table describes the attributes of the <exception> tag:

Table 7–3 <exception> Tag Attributes

Attribute Required or Optional Description

lineColor Optional Is the name of the border color to apply when
the condition is met. If noLine is specified,
then the border is transparent (that is,
invisible).

fillColor Optional Is the name of the fill color to apply when the
condition is met. If noFill is specified, then the
background is transparent.
Customizing Reports at Runtime 7-39

XML Tag Reference
Usage Notes
The following usage notes apply:

■ Exceptions are processed in the order they appear in the field.

■ Each exception can have up to three conditions.

textColor Optional Is the name of the text color to apply when the
condition is met.

hide Optional Determines whether to hide the field when the
condition is met.

■ A yes means the field is hidden when the
condition is met.

■ A no means the field is not be hidden
when the condition is met.

font Optional Is the name of the font to apply when the
condition is met.

fontSize Optional Is the size of the font to be used when the
condition is met.

fontStyle Optional Is the style of the font to be used when the
condition is met. The valid styles are:

■ regular

■ italic

■ bold

■ boldItalic

fontEffect Optional Is the effect of the font to be used when the
condition is met. The valid values are:

■ regular

■ strikeout

■ underline

■ strikeoutUnderline

Table 7–3 (Cont.) <exception> Tag Attributes

Attribute Required or Optional Description
7-40 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
■ There is no limit on the number of exceptions that can be applied to a field,
except for the PL/SQL maximum length restriction for the resulting format
trigger.

■ If multiple exceptions exist, then they are controlled by an implicit OR relation,
which means that as soon as one of the exceptions has been applied (that is,
satisfied), no other exceptions will be processed.

Example
The following example shows two formatting exceptions for field f_ename. The
first exception changes the text color to red if both of its conditions are met. The
second exception changes the text color to blue if its condition is met.

<field name="f_ename" source="ename" label="Employee" textColor="green">
 <exception textColor="red">
 <condition source="deptno" operator="btw" operand1="1"
 operand2="20" relation="and"/>
 <condition source="sal" operator="gt" operand1="1000"/>
 </exception>
 <exception textColor="blue">
 <condition source="deptno" operator="eq" operand1="30"/>
 </exception>
</field>

7.5.8 <field>

Description
The <field> tag defines a field in the layout of the report definition and assigns
attributes to it. The <field> tag must be nested within the <layout> tag. Most of the
other layout tags require a <field> nested within them (for example, <tabular>,
<group>, and <matrixCell>). The <field> tag modifies existing fields in an RDF file,
if you use the same field name. Otherwise, it can be used to create an entirely new
field in the report.

The <field> tag can also contain the <labelAttribute> and <exception> tags.
Customizing Reports at Runtime 7-41

XML Tag Reference
You can end the <field> tag with /> or </field>. The latter is the method you must
use if you are including an <exception> or <labelAttribute> inside the <field> tag.
The example below illustrates both methods of ending the <field> tag.

<field name="f_deptno" label="Department" source="deptno"/>
<field name="f_mgr" label="Manager" source="mgr">
 <labelAttribute textColor="red" alignment="center"/>
</field>

For more information refer to:

■ Section 7.5.7, "<exception>"

■ Section 7.5.15, "<labelAttribute>"

Syntax
<field
 name="field_name"
 source="source_column"
 [label="field_label"]
 [currency="currency_symbol"]
 [tsep="separator_character"]
 [formatTrigger="plsql_program_unit"]
 [font="font_name"]
 [fontSize="point_size"]
 [fontStyle="regular | italic | bold | boldItalic"]
 [fontEfffect="regular | strikeout | underline | strikeoutUnderline"]
 [lineColor="color_name | noLine"]
 [fillColor="color_name | noFill"]
 [textColor="color_name"]
 [alignment="start | left | center | right | end"]
 [hyperlink="URL"]
 [linkdest="hyperlink_target"]
 [formatMask="mask"]
/> | >[other_tags]</field>
7-42 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Attributes
The following table describes the attributes of the <field> tag:

Table 7–4 <field> Tag Attributes

Attribute Required or Optional Description

name Required Is the identifier for the field. If the name
matches that of a field in an RDF file to which
the XML is being applied, then the attributes
specified overrides those in the RDF file.

source Required, for creating
new fields

Optional, for
modifying existing
fields

Is the source column from which the field gets
its data. The source column must exist in the
data model.

label Optional Is the boilerplate text to be associated with the
field. To control the formatting attributes of
the label, you must use the <labelAttribute>
tag. Refer to Section 7.5.15,
"<labelAttribute>", for more information.

The label attribute only affects new fields, it
does not change the label of an existing field
in the RDF file. To change the label of an
existing field, you can use the <object> tag.
Refer to Section 7.5.22, "<object>", for more
information.

currency Optional Is the currency symbol to be used with the
field (for example, $). You must still specify
the formatMask attribute to indicate where
you want the currency symbol placed.

tsep Optional Is the separator character that you want to use
when generating delimited output. The most
commonly used delimiter is a tab, which can
be read by spreadsheet programs such as
Microsoft Excel.

formatTrigger Optional Is the name of a PL/SQL program unit that is
to be used as the format trigger for the field.
Format triggers must be functions. For more
information refer to the Oracle Reports
Services Builder online help system and look
for format trigger in the index.
Customizing Reports at Runtime 7-43

XML Tag Reference
font Optional Is the name of the font to be used for the field
contents.

fontSize Optional Is the size of the font to be used for the field
contents.

fontStyle Optional Is the style of the font to be used for the field
contents. The valid values are:

■ regular

■ italic

■ bold

■ boldItalic

fontEffect Optional Is the effect of the font to be used for the field
contents. The valid values are:

■ regular

■ strikeout

■ underline

■ strikeoutUnderline

lineColor Optional Is the name of the color to be used for the
border of the field. If noLine is specified, then
the field’s border is transparent (that is,
invisible).

fillColor Optional Is the name of the color to be used as the
background for the field. If noFill is specified,
then the background is transparent.

textColor Optional Is the name of the color to be used for the field
contents.

alignment Optional Is how the text should be justified within the
field. The valid values are:

■ start

■ left

■ center

■ right

■ end

Table 7–4 (Cont.) <field> Tag Attributes

Attribute Required or Optional Description
7-44 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Examples
The following example shows a section in the layout of a report definition that
defines fields within two break groups for a matrix report:

<group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER" source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>

hyperlink Optional Is a URL to be associated with the field
contents when HTML or PDF output is
generated. This attribute is ignored for other
types of output such as PostScript or ASCII.

linkdest Optional Is the target to be used when hyperlinking to
this field’s contents. This attribute is only used
when generating HTML or PDF output. It is
ignored for other types of output such as
PostScript or ASCII.

formatMask Optional Is the mask to be applied when displaying the
field’s contents. For more information on the
format mask syntax, refer to the Oracle
Reports Services Builder online help system
and look under format mask in the index.

Table 7–4 (Cont.) <field> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 7-45

XML Tag Reference
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>
<group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>

The following example shows a section in the layout of a report definition that
defines a field within a break group for a group left report. The formatTrigger
attribute points to a function that would be defined within the <programUnits> tag.

<group>
 <field name="f_quarter1" source="quarter1" label="Quarter"
 font="Arial" fontSize="8"
 formatTrigger="F_quarter1FormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
</group>

7.5.9 <formLike>

Description
The <formLike> tag delimits a form style within a section of the report’s layout. If
you use the <formLike> tag, then you must also nest <field> tags to list the fields
you want to include in the form layout.

Refer to Section 7.5.8, "<field>" for more information on the <field> tag
7-46 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Syntax
Following is the syntax for this tag:

<formLike>
 <field>
 </field>
 [...]
</formLike>

Example
The following example shows a segment of an XML report definition that defines a
section with a form layout inside of it:

<section name="main">
 <formLike name="M_empform" template="corp2.tdf">
 <labelAttribute textColor="green" alignment="center"/>
 <field name="f_deptno" source="deptno" label="Department"/>
 <field name="f_mgr" source="mgr" label="Manager">
 <labelAttribute textColor="red" alignment="center"/>
 </field>
 <field name="f_job" label="Job" source="job"/>
 </formLike>
</section>

7.5.10 <formula>

Description
The <formula> tag defines a formula column in the data model of the report
definition. A formula column uses a PL/SQL function to perform an operation,
typically a complex calculation of some kind. If you are performing a common
calculation (for example, sum, percent of total, or standard deviation), then you can
use the <summary> tag, which requires no PL/SQL.

Refer to Section 7.5.29, "<summary>" for more information.
Customizing Reports at Runtime 7-47

XML Tag Reference
Syntax
Following is the syntax for this tag:

<formula
 name="column_name"
 source="plsql_function_name"
 dataType="number | character | date"
 width="number"
/>

Attributes
The following table describes the attributes of the <formula> tag:

Table 7–5 <formula> Tag Attributes

Attribute Required or Optional Description

name Required Is the name of the formula column.

source Required Is the name of a PL/SQL function defined
within the <programUnits> tag that performs
the desired operation for the formula.

dataType Optional Is the type of data that is generated by the
formula. For example, if the formula performs
a mathematical operation, then the result is a
number. The possible values for dataType are:

■ number

■ character

■ date

width Optional Is the number of characters wide of the result
of the formula.
7-48 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
data model with a formula column in it. The defaulting algorithm places the
column in the appropriate group based on where you place its associated fields in
the <layout> section.

<data>
 <dataSource name="Q_1">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.SALES_REGION,
 VIDEO_CATEGORY_BY_QTR.STATE, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST,VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <dataSource name="Q_2">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <formula name="Profit_Margin" source="FormulaProfitMargin"
 datatype="number" width="9"/>
</data>
<programUnits>
 <function name="FormulaProfitMargin">
 <![CDATA[
 FUNCTION FormulaProfitMargin RETURN number IS
 BEGIN
 return ((:TOTAL_PROFIT1 / (:TOTAL_SALES1 - (0.07 * :TOTAL_SALES1))) *
100);
 END;
]]>
 </function>
</programUnits>
Customizing Reports at Runtime 7-49

XML Tag Reference
7.5.11 <function>
The <function> tag defines a PL/SQL function that you want to add to the report
definition. The <function> tag must be nested within a <programUnits> tag. To
reference a function, you use the formatTrigger attribute of the <field> tag.

For more information refer to:

■ Section 7.5.23, "<programUnits>"

■ Section 7.5.8, "<field>"

Syntax
Following is the syntax for this tag:

<function
 name="function_name"
>
 PLSQL_function
</function>

Attributes
The following table describes the attributes of the <function> tag:

Example
The following example shows a segment of an XML report definition that defines
some PL/SQL functions. The functions are referenced from fields in the layout
through the formatTrigger attribute.

<layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn1"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>

Table 7–6 <function> Tag Attributes

Attribute Required or Optional Description

name Required Is the identifier for the function. This is the
name that should be used when referencing
the function (for example, from the
formatTrigger attribute of the <field> tag).
7-50 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
</layout>
<programUnits>
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
</programUnits>

7.5.12 <group>

Description
The <group> tag delimits the master group in a master-detail style layout. The
<group> tag can only be nested within a <groupLeft>, <groupAbove>, or <matrix>
tag. You must nest <field> tags within the <group> tag to list the fields you want to
include in the master group.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.13, "<groupAbove>"

■ Section 7.5.14, "<groupLeft>"

■ Section 7.5.18, "<matrix>"
Customizing Reports at Runtime 7-51

XML Tag Reference
Syntax
Following is the syntax for this tag:

<group>
 master_group_content
</group>

Example
The following example shows a section in the layout of a report definition that
defines fields within two break groups for a matrix report.

<group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER" source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>
7-52 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
<group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
</group>

7.5.13 <groupAbove>

Description
The <groupAbove> tag delimits a master-detail style within a section of the report’s
layout. The master records are placed above the detail records. If you use the
<groupAbove> tag, then you must also nest a <group> tag to identify the master
group as well as <field> tags to list the fields you want to include in the group
above layout.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.12, "<group>"

Syntax
Following is the syntax for this tag:

<groupAbove
 name="style_name"
>
 <group>
 master_group_content
 </group>
 detail_group_content
</groupAbove>
Customizing Reports at Runtime 7-53

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
section with a <groupAbove> layout inside of it:

<section name="main">
 <groupAbove name="m_emp">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"/>
 <group>
 <field name="f_deptno" source="deptno" label="Department "
 font="Arial" fontSize="10"/>
 <field name="f_sumsal" label="Total Salary" source="sumsal"
 textColor="red" font="Arial" fontSize="10"
 fontStyle="bold">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"
 textColor="red"/>
 </field>
 </group>
 <field name="f_ename" source="ename" label="Name"
 font="Arial" fontSize="10"/>
 <field name="f_sal" source="sal" label="Salary"
 font="Arial" fontSize="10"/>
 </groupAbove>
</section>

7.5.14 <groupLeft>

Description
The <groupLeft> tag delimits a master-detail style within a section of the report’s
layout. The master records are placed to the left of the detail records. If you use the
<groupLeft> tag, then you must also nest a <group> tag to identify the master
group as well as <field> tags to list the fields you want to include in the
<groupLeft> layout.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.12, "<group>"
7-54 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Syntax
Following is the syntax for this tag:

<groupLeft
 name="style_name"
>
 <group>
 master_group_content
 </group>
 detail_group_content
</groupLeft>

Example
The following example shows a segment of an XML report definition that defines a
section with a group left layout inside of it:

<section name="main">
 <groupLeft name="m_emp">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"/>
 <group>
 <field name="f_deptno" source="deptno" label="Department "
 font="Arial" fontSize="10"/>
 <field name="f_sumsal" label="Total Salary" source="sumsal"
 textColor="red" font="Arial" fontSize="10"
 fontStyle="bold">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"
 textColor="red"/>
 </field>
 </group>
 <field name="f_ename" source="ename" label="Name"
 font="Arial" fontSize="10"/>
 <field name="f_sal" source="sal" label="Salary"
 font="Arial" fontSize="10"/>
 </groupLeft>
</section>
Customizing Reports at Runtime 7-55

XML Tag Reference
7.5.15 <labelAttribute>

Description
The <labelAttribute> tag defines the formatting attributes for field labels. The
<labelAttribute> tag can be nested within a <field> tag or within a layout style tag
(for example, <tabular> or <matrix>). If <labelAttribute> is nested inside a <field>
tag, then it applies only to the labels for that field.

The <labelAttribute> tag only affects new fields, it does not change the label of an
existing field in the RDF file. To change the text of an existing label, you should use
the textSegment attribute of the <property> tag.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.25, "<property>"

Syntax
Following is the syntax for this tag:

<labelAttribute
 [font="font_name"]
 [fontSize="point_size"]
 [fontStyle="regular | italic | bold | boldItalic"]
 [fontEfffect="regular | strikeout | underline | strikeoutUnderline"]
 [lineColor="color_name | noLine"]
 [fillColor="color_name | noFill"]
 [textColor="color_name"]
 [alignment="start | left | center | right | end"]
>
</labelAttribute>

Attributes
The following table describes the attributes of the <labelAttribute> tag:

Table 7–7 <labelAttribute> Tag Attributes

Attribute Required or Optional Description

font Optional Is the name of the font to be used for the field
label.

fontSize Optional Is the size of the font to be used for the field
label.
7-56 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
fontStyle Optional Is the style of the font to be used for the field
label. The valid values are:

■ regular

■ italic

■ bold

■ boldItalic

fontEffect Optional Is the effect of the font to be used for the field
contents. The valid values are:

■ regular

■ strikeout

■ underline

■ strikeoutUnderline

lineColor Optional Is the name of the color to be used for the
border of the field. If noLine is specified, then
the field’s border is transparent (that is,
invisible).

fillColor Optional Is the name of the color to be used as the
background for the field. If noFill is specified,
then the background is transparent.

textColor Optional Is the name of the color to be used for the field
contents.

alignment Optional Is how the text should be justified within the
field. The valid values are:

■ start

■ left

■ center

■ right

■ end

Table 7–7 (Cont.) <labelAttribute> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 7-57

XML Tag Reference
Example
The following example shows a segment of an XML report definition that defines a
section with a group left layout inside of it. The first <labelAttribute> tag would
apply to all of the fields in the layout except for f_sumsal, which has its own
embedded <labelAttribute> tag.

<section name="main">
 <groupLeft name="m_emp">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"/>
 <group>
 <field name="f_deptno" source="deptno" label="Department "
 font="Arial" fontSize="10"/>
 <field name="f_sumsal" label="Total Salary" source="sumsal"
 textColor="red" font="Arial" fontSize="10"
 fontStyle="bold">
 <labelAttribute font="Arial" fontSize="10" fontStyle="bold"
 textColor="red"/>
 </field>
 </group>
 <field name="f_ename" source="ename" label="Name"
 font="Arial" fontSize="10"/>
 <field name="f_sal" source="sal" label="Salary"
 font="Arial" fontSize="10"/>
 </groupLeft>
</section>

7.5.16 <layout>

Description
The <layout> tag delimits the beginning and ending of the layout of the report
definition.

Syntax
Following is the syntax for this tag:

<layout>
 content_of_layout
</layout>
7-58 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Examples
The following example shows the layout segment of an XML report definition. This
is not a complete layout model and would have to be applied as a customization to
an RDF file:

<layout>
 <section name="main">
 <field name="f_trade_date"
 source="trade_date"
 formatMask="MM/DD/RR"/>
 <field name="F_Mincurrent_pricePersymbol"
 source="Mincurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 <field name="F_Maxcurrent_pricePersymbol"
 source="Maxcurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 </section>
 </layout>

The following example shows another layout segment of an XML report definition.
This is a complete layout and, assuming the appropriate data model is in place, it
could stand by itself, without being applied to an RDF file.

<layout>
 <section name="main">
 <matrix name="M_video_sales" template="corp10.tdf">
 <group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8"
 fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
Customizing Reports at Runtime 7-59

XML Tag Reference
 <field name="f_SumTOTAL_COSTPerQUARTER"
 source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY" source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY" source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
7-60 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <field name="f_SumTOTAL_PROFITPerCITY"
 source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </matrixCol>
 <matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
 </matrixRow>
 <matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 </matrixCell>
 </matrix>
 </section>
 </layout>

7.5.17 <link>

Description
The <link> tag defines a link between data sources in the data model. The <link>
tag must be nested within the <data> tag. Data sources are linked by columns.
Hence each column link requires parent and child column attributes and a
condition attribute that relates the columns. In order to join two tables or views, the
foreign key columns must have a column alias in the SELECT statements. (These
aliases are used to reference the parent and child column in the column link
specification.)
Customizing Reports at Runtime 7-61

XML Tag Reference
Syntax
Following is the syntax for this tag:

<link
 parentGroup="parent_group_name"
 parentColumn="parent_column_name"
 childQuery="child_query_name"
 childColumn="child_column_name"
 condition="eq | lt | lteq | neq | gt | gteq | like | notLike"
 sqlClause="startWith | having | where"
 name="link_name"
>
</link>

Attributes
The following table describes the attributes of the <link> tag:

Table 7–8 <link> Tag Attributes

Attribute Required or Optional Description

parentGroup Required for group
links

Optional for column
links

Is the name of the parent group that you want
to relate to the child query.

parentColumn Required for column
links

Ignored for group
links

Is the name of a column in the parent query
that relates to a column in the child query
(that is, child column).

childQuery Required for group
links

Optional for column
links

Is the name of the child query that relates to
the parent group.

childColumn Required for column
links

Ignored for group
links

Is the name of a column in the child query that
relates to a column in the parent query (that is,
parent column).
7-62 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Example
The following example shows the data model segment of a report definition with a
link between two queries:

<data>
 <dataSource name="Q_dept">
 <select>
 select deptno deptno_dept from dept
 </select>
 </dataSource>
 <dataSource name="Q_emp">
 <select>
 select deptno deptno_emp, ename, empno, sal from emp
 </select>
 </dataSource>

condition Required Is a SQL operator that defines the relationship
between parent column and child column.
Condition can have the following values:

■ eq (equal to)

■ lt (less than)

■ lteq (less than or equal to)

■ neq (not equal to)

■ gt (greater than)

■ gteq (greater than or equal to)

■ Like (means that the condition is true
when the value in one column matches
the pattern in the other column. The
pattern can contain % and _ as wildcard
characters.)

■ notLike (means that the condition is true
when the value in one column does not
match the pattern in the other column.
The pattern can contain % and _ as
wildcard characters.)

sqlClause Required Is the type of SQL clause that relates the
parent group to the child query. The default is
a WHERE clause.

Table 7–8 (Cont.) <link> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 7-63

XML Tag Reference
 <link parentColumn="deptno_dept"
 childColumn="deptno_emp"
 condition="eq"
 sqlClause="where"/>
</data>

7.5.18 <matrix>

Description
The <matrix> tag delimits a matrix style within a section of the report’s layout. If
you use the <matrix> tag, then you must also nest <matrixRow>, <matrixCol>, and
<matrixCell> tags to identify the parts of the matrix as well as <field> tags to list the
fields you want to include in the matrix layout.

A <group> tag can also be used in conjunction with <matrix> tags to create a matrix
with group style.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.12, "<group>"

■ Section 7.5.20, "<matrixCol>"

■ Section 7.5.21, "<matrixRow>"

■ Section 7.5.19, "<matrixCell>"

Syntax
Following is the syntax for this tag:

<matrix
 name="style_name"
>
 [<group>
 master_group_content
 </group>]
 <matrixCol>
 matrix_column content
 </matrixCol>
 <matrixRow>
 matrix_row_content
 </matrixRow>
7-64 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <matrixCell>
 matrix_cell_content
 </matrixCell>
</matrix>

Example
The following example shows a segment of an XML report definition that defines a
matrix with group layout:

<matrix name="M_video_sales" template="corp10.tdf">
 <group>
 <field name="f_quarter" source="quarter" label="Quarter:"
 font="Arial" fontSize="8"
 formatTrigger="F_quarterFormatTrigger">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_SALESPerQUARTER"
 source="SumTOTAL_SALESPerQUARTER"
 label="Qtrly: Sales: " font="Arial" fontSize="8"
 fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_COSTPerQUARTER" source="SumTOTAL_COSTPerQUARTER"
 label="Costs: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerQUARTER"
 source="SumTOTAL_PROFITPerQUARTER"
 label="Profits: " font="Arial" fontSize="8" fontStyle="bold"
 formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
Customizing Reports at Runtime 7-65

XML Tag Reference
 <group>
 <field name="f_state" source="state" label="State:"
 font="Arial" fontSize="8">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="black"/>
 </field>
 </group>
 <matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY" source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY" source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_PROFITPerCITY" source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 </matrixCol>
 <matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
 </matrixRow>
 <matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
7-66 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <field name="f_total_profit" source="total_profit" label="Total Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 </matrixCell>
</matrix>

7.5.19 <matrixCell>

Description
The <matrixCell> tag delimits the cells in a matrix style layout. The <matrixCell>
tag can only be nested within a <matrix> tag. You must nest <field> tags within the
<matrixCell> tag to list the fields you want to include as matrix cells.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.18, "<matrix>"

Syntax
Following is the syntax for this tag:

<matrixCell>
 master_group_content
</matrixCell>

Example
The following example shows a segment of an XML report definition that defines a
matrix cell:

<matrixCell name="g_total_sales">
 <field name="f_total_sales" source="total_sales" label="Total Sales"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_cost" source="total_cost" label="Total Cost"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
 <field name="f_total_profit" source="total_profit" label="Total Profit"
 font="Arial" fontSize="8" lineColor="noLine"
 formatMask="LNNNGNNNGNNNGNN0D00"/>
</matrixCell>
Customizing Reports at Runtime 7-67

XML Tag Reference
7.5.20 <matrixCol>

Description
The <matrixCol> tag delimits the column fields in a matrix style layout. The
<matrixCol> tag can only be nested within a <matrix> tag. You must nest <field>
tags within the <matrixCol> tag to list the fields you want to include as matrix
columns.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.18, "<matrix>"

Syntax
Following is the syntax for this tag:

<matrixCol>
 master_group_content
</matrixol>

Example
The following example shows a segment of an XML report definition that defines
the column dimension of a matrix layout:

<matrixCol name="g_city">
 <field name="f_city" source="city" label="City: "
 font="Arial" fontSize="8" textColor="yellow"
 formatTrigger="F_cityFormatTrigger"/>
 <field name="f_SumTOTAL_SALESPerCITY" source="SumTOTAL_SALESPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
 <field name="f_SumTOTAL_COSTPerCITY" source="SumTOTAL_COSTPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
7-68 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <field name="f_SumTOTAL_PROFITPerCITY" source="SumTOTAL_PROFITPerCITY"
 label="Sales: " font="Arial" fontSize="8" fontStyle="bold"
 textColor="yellow" formatMask="LNNNGNNNGNNNGNN0D00">
 <labelAttribute font="Arial" fontSize="8"
 fontStyle="bold" textColor="yellow"/>
 </field>
</matrixCol>

7.5.21 <matrixRow>

Description
The <matrixRow> tag delimits the row fields in a matrix style layout. The
<matrixRow> tag can only be nested within a <matrix> tag. You must nest <field>
tags within the <matrixRow> tag to list the fields you want to include as matrix
rows.

For more information refer to:

■ Section 7.5.8, "<field>"

■ Section 7.5.18, "<matrix>"

Syntax
Following is the syntax for this tag:

<matrixRow>
 master_group_content
</matrixRow>

Example
The following example shows a segment of an XML report definition that defines
the row dimension of a matrix layout:

<matrixRow name="g_product_category">
 <field name="f_product_category" source="product_category"
 label="Product Category" font="Arial" fontSize="8"/>
</matrixRow>
Customizing Reports at Runtime 7-69

XML Tag Reference
7.5.22 <object>

Description
The <object> tag identifies an object in the report whose properties you want to
change. The <object> tag typically has <properties> and <property> tags nested
within it.

Syntax
Following is the syntax for this tag:

<object
 name="object_name"
 type="REP_REPORT | REP_GROUP | REP_COL_MAP | REP_GRAPHIC_TEXT"
>
 property_definitions
</object>

Attributes
The following table describes the attributes of the <object> tag:

Table 7–9 <object> Tag Properties

Attribute Required or Optional Description

name Required Is the identifier for the object to which you
want to apply the properties.

type Required Is the kind of object to which you want to
apply the properties:

■ REP_REPORT is the report itself.

■ REP_GROUP is a group in the data model
of the report.

■ REP_COL_MAP is a column in the data
model of the report.

■ REP_GRAPHIC_TEXT is a boilerplate
object in the layout of the report.
7-70 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Examples
The following example shows a segment of an XML report definition that defines
some object properties:

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>

The following example shows a segment of an XML report definition that changes
some boilerplate text. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>
Customizing Reports at Runtime 7-71

XML Tag Reference
7.5.23 <programUnits>

Description
The <programUnits> tag delimits any PL/SQL that you want to add to the report
definition. The <programUnits> tag typically has <function> tags nested within it.

Refer to Section 7.5.11, "<function>" for more information.

Syntax
Following is the syntax for this tag:

<programUnits>
 program_unit_definitions
</programUnits>

Example
The following example shows a segment of an XML report definition that defines
some PL/SQL. The <programUnits> tag is outside of the <layout> tag and that the
functions are referenced from fields in the layout through the formatTrigger
attribute.

<layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn1"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
</layout>
<programUnits>
7-72 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <function name="F_ssn1FormatTrigger">
 <![CDATA[
 function F_ssn1FormatTrigger return boolean is
 begin
 SRW.SET_HYPERLINK(’#EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) ||
’>’);
 return (TRUE);
 end;
]]>
 </function>
 <function name="F_ssnFormatTrigger">
 <![CDATA[
 function F_ssnFormatTrigger return boolean is
 begin
 SRW.SET_LINKTAG(’EMP_DETAILS_&<’ || LTRIM(TO_CHAR(:SSN)) || ’>’);
 return (TRUE);
 end;
]]>
 </function>
</programUnits>

7.5.24 <properties>

Description
The <properties> tag delimits the properties of the object. The <properties> tag
must be nested inside of the <object> tag and typically has <property> tags nested
within it.

Syntax
Following is the syntax for this tag:

<properties>
 property_definitions
</properties>
Customizing Reports at Runtime 7-73

XML Tag Reference
Examples
The following example shows a segment of an XML report definition that defines
an object’s properties:

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>

The following example shows a segment of an XML report definition that changes
some boilerplate text. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>
7-74 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
7.5.25 <property>

Description
The <property> tag delimits a single property of the object. The <property> tag
must be nested inside of the <properties> tag and typically has some text nested
within it to define the value of the property.

Syntax
Following is the syntax for this tag:

<property
 name="xmlTag | xmlAttribute | xmlSuppress | prologType | prolog |
 beforeReportValue | beforeReportType | afterReportValue | afterReportType |
 beforePageValue | beforePageType | afterPageValue | afterPageType
 beforeFormValue | beforeFormType | afterFormValue | afterFormType |
 pageNavigationControlValue | pageNavigationControlType | textSegment
>
 property_value
</property>

Attributes
The following table describes the attributes of the <property> tag:

Table 7–10 <property> Tag Attributes

Attribute Required or Optional Description

name Required Is the name of the property that you want to
specify. The available properties vary
depending upon the type of object. Refer to
the "Usage Notes" for more information.
Customizing Reports at Runtime 7-75

XML Tag Reference
Usage Notes
The following table lists the properties that are available for each type of object:

Table 7–11 Valid Properties for Object Types

Object Valid Properties

Report object (REP_REPORT) ■ xmlTag

■ xmlAttribute

■ xmlSuppress

■ prologType

■ prolog

■ beforeReportValue

■ beforeReportType

■ afterReportValue

■ afterReportType

■ beforePageValue

■ beforePageType

■ afterPageValue

■ afterPageType

■ beforeFormValue

■ beforeFormType

■ afterFormValue

■ afterFormType

■ pageNavigationControlValue

■ pageNavigationControlType

Group object (REP_GROUP) ■ xmlTag

■ xmlAttribute

■ outerXMLTag

■ outerXMLAttribute

■ xmlSuppress

Column object (REP_COL_MAP) ■ xmlTag

■ xmlAttribute

■ XMLSuppress

■ containXML
7-76 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Examples
The following example shows a segment of an XML report definition that defines
an object’s properties.

<customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>

The following example shows a customization section that changes the text in a
boilerplate object. This is useful for changing labels for existing fields.

<customize>
 <object name="B_high_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">High</property>
 </properties>
 </object>

Boilerplate object (REP_GRAPHIC_TEXT) ■ textSegment

Table 7–11 (Cont.) Valid Properties for Object Types

Object Valid Properties
Customizing Reports at Runtime 7-77

XML Tag Reference
 <object name="B_low_365" type="REP_GRAPHIC_TEXT">
 <properties>
 <property name="textSegment">Low</property>
 </properties>
 </object>
</customize>

7.5.26 <report>

Description
The <report> tag delimits the beginning and ending of the report definition. You
can append attributes that apply to the entire report to the <report> tag.

Syntax
Following is the syntax for this tag:

<report DTDVersion=1.0"
 [name="report_name"]
 [title="report_title"]
 [author="author_name"]
>
 content_of_report
</report>

Example
This example shows an XML customization document designed to be applied to an
RDF file named cond.rdf. This example does not touch the data model. It only
changes the formatting of some of the fields in the layout.

<report name="cond" DTDVersion="1.0">
<!-- This report assumes that the file
 named header_example.html is located
 in d:\ORANT\TOOLS\DOC60\US\RBBR60.
 If it it not located there, the report
 will not run properly.
-->
7-78 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <layout>
 <section name="main">
 <field name="f_trade_date"
 source="trade_date"
 formatMask="MM/DD/RR"/>
 <field name="F_Mincurrent_pricePersymbol"
 source="Mincurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 <field name="F_Maxcurrent_pricePersymbol"
 source="Maxcurrent_pricePersymbol"
 lineColor="black"
 fillColor="r100g50b50"/>
 </section>
 </layout>
 <customize>
 <object name="videosales" type="REP_REPORT">
 <properties>
 <property name="beforeReportType">File</property>
 <property name="beforeReportValue">
 d:\xml_reps\header_example.html
 </property>
 <property name="afterReportType">Text</property>
 <property name="afterReportValue">
 <![CDATA[
 <center>

 Send questions to YourNameHere.

 </center>
 </body>
 </html>
]]>
 </property>
 </properties>
 </object>
 </customize>
</report>
Customizing Reports at Runtime 7-79

XML Tag Reference
Attributes
The following table describes the attributes of the <report> tag:

7.5.27 <section>

Description
The <section> tag delimits the beginning and ending of a section in the layout of the
report definition. The <section> tag must be nested within the <layout> tag. A
report might have up to three sections in its layout.

For each section, you might also define a layout style using the following tags:

■ Section 7.5.30, "<tabular>"

■ Section 7.5.18, "<matrix>"

■ Section 7.5.9, "<formLike>"

■ Section 7.5.13, "<groupAbove>"

■ Section 7.5.14, "<groupLeft>"

Table 7–12 <report> Tag Attributes

Attribute Required or Optional Description

name Optional Records the name of the report. If the name
is not specified, then the default is
UNTITLED. If you plan to apply the report
definition to an RDF file, then this name
should be the same as the file name without
the RDF extension.

dtdVer Required Records the version of the Oracle Reports
Services DTD used to generate this XML
report definition. Since the DTD can change
between versions, any new reports
definition must include information about
which version was used. This permits
backward compatibility in future releases.

title Optional Places the specified title at the beginning of
the report. When applying the definition
title at an RDF file, this title overrides the
existing report title.

author Optional Records the name of the author.
7-80 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Syntax
Following is the syntax for this tag:

<section
 name= "header | main | trailer"
 width="section_width"
 height="section_height"
>
 section_contents
</section>

Attributes
The following table describes the attributes of the <section> tag:

Example
The following is an example of a <section> definition:

<layout>
 <section name="header">
 <field name="F_ssn1"
 source="ssn"
 formatTrigger="F_ssn1FormatTrigger"/>
 </section>
 <section name="main">
 <field name="F_ssn"
 source="ssn"
 formatTrigger="F_ssnFormatTrigger"/>
 </section>
 </layout>

Table 7–13 <section> Tag Attributes

Attribute Required or Optional Description

name Required Is the section’s name: header, main, or trailer.

width Optional Is the width of one physical page (including
the margin) in the unit of measurement of the
report (for example, 8.5 inches).

height Optional Is the height of one physical page (including
the margin) in the unit of measurement of the
report (for example, 11 inches).
Customizing Reports at Runtime 7-81

XML Tag Reference
7.5.28 <select>

Description
The <select> tag delimits the beginning and ending of a SELECT statement within
the data model. <select> must be nested within the <dataSource> tag.

Syntax
Following is the syntax for this tag:

<select>
 content_of_SELECT
</select>

Examples
The following example shows the data source segment of an XML report definition:

<data>
 <dataSource name="q_category">
 <select>
 SELECT ic.category,
 SUM (h.sales),
 AVG (h.high_365),
 AVG (h.low_365),
 AVG (h.div),
 AVG (h.p_e)
 FROM stock_history h, indcat ic
 WHERE h.symbol=ic.symbol
 GROUP BY ic.category
 </select>
 </dataSource>
 </data>

A user parameter is automatically generated for you if you include it as a bind
reference in a SELECT statement. For example:

<select>
 select * from dept where deptno > :p_dept;
</select>

This SELECT statement would cause a user parameter named p_dept to be
automatically generated. Therefore, you would not need to manually create it in the
report definition.
7-82 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
The following example shows a segment of an XML report definition that uses the
<![CDATA[]]> tag to protect a SQL statement that contains a greater than sign:

<select>
 <![CDATA[
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE (VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 AND VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT>2000)
]]>
</select>

7.5.29 <summary>

Description
The <summary> tag defines a summary column in the data model of the report
definition. Summary columns are used to perform some mathematical function on
the data values of another column. If you want to perform a function that is not one
of the standard summary functions, then you can use the <formula> tag to create a
formula column that uses PL/SQL to perform more complex calculations.

Refer to Section 7.5.10, "<formula>" for more information.

Syntax
Following is the syntax for this tag:

<summary
 source="src_col_name"
function="sum|average|minimum|maximum|count|first|last|pctTotal|stddeviation
 |variance"
 compute="group+names"
 reset="group_name"
 productOrder="group_name"
 nullval="value_if_null"
/>
Customizing Reports at Runtime 7-83

XML Tag Reference
Attributes
The following table describes the attributes of the <summary> tag:

Table 7–14 <summary> Tag Attributes

Attribute Required or Optional Description

source Required Is the name of the column whose values are
summarized.

function Optional Is the mathematical operation to be applied to
produce the summary values:

■ average calculates the average of the
column’s values within the reset group.

■ count counts the number of records within
the reset group.

■ first prints the column’s first value fetched
for the reset group.

■ last prints the column’s last value fetched for
the reset group.

■ maximum calculates the column’s highest
value within the reset group.

■ minimum calculates the column’s lowest
value within the reset group.

■ pctTotal calculates the column’s percent of
the total within the reset group.

■ stddeviation calculates the column’s positive
square root of the variance for the reset
group.

■ sum calculates the total of the column’s
values within the reset group.

■ variance sums the squares of each column
value’s distance from the mean value of the
reset group and divides the total by the
number of values minus 1.
7-84 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
compute Optional Is the group over which a % of Total summary
column is computed. Compute is used only for
columns with a function of % of Total. This value
determines the total of which each source column
value is a percentage. When you calculate a
percentage, you divide a value by a total (for
example, SMITH’s salary/total department
salaries). Compute defines the total for a
percentage calculation. For matrix reports,
Compute At can be multiple groups.

You can also set this attribute to page or report if
you want to compute percentages over the total
values on each page or over the entire report.

reset Optional Is the group at which the summary column value
resets to zero (if Function is Count), null (if
Function is not Count), or nullval (if the
summary has one). Reset determines if the
summary is a running summary or a periodic (for
example, group-level) summary.

You can also set this attribute to page or report if
you want to compute percentages over the total
values on each page or over the entire report.

productOrder Optional Is the order in which groups are evaluated in the
cross product for a summary. ProductOrder also
defines the frequency of a summary, formula, or
placeholder in a cross product group. That is, the
summary, formula, or placeholder has one value
for each combination of values of the groups in
its productOrder. The productOrder attribute is
used only for columns owned by cross-product
groups. Because a cross product relates multiple
groups, the groups in the cross product could be
evaluated in any one of many different orders.
Therefore, when creating a summary for a cross
product, you must use productOrder to specify
which group should be evaluated first, which
second, and so on. You must also use
productOrder to specify the frequency of a
summary, formula, or placeholder within the
cross product.

Table 7–14 (Cont.) <summary> Tag Attributes

Attribute Required or Optional Description
Customizing Reports at Runtime 7-85

XML Tag Reference
Default Values
Typically, you should not need to specify anything for the optional attributes of the
<summary> tag because their values are defaulted at runtime. The only time you
should need to specify the optional values is when you want to override their
defaults. The following tables describe the defaulting for each of the optional
attributes for each layout style.

nullval Optional Is a value to be substituted for any null values of
the column. For example, if you enter X in this
field, then an X is displayed for null values
fetched for the column. If left blank, then no
substitution is done for null values.

Table 7–15 Default Values for Summaries in Break Groups

Optional Attribute Default Value

function sum

compute The parent group of the summary column’s group

reset The parent group of the summary column’s group

Table 7–16 Default Values for Summaries in a Matrix Report

Optional Attribute Default Value

function sum

compute The cross product group

productOrder ■ The group containing the summary (for dimension
summaries)

■ A list of groups that define the matrix row (for cell
summaries)

reset The highest frequency group of the productOrder

Table 7–14 (Cont.) <summary> Tag Attributes

Attribute Required or Optional Description
7-86 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
Example
The following is an example of some summaries for a data model that contains two
queries. The first three summaries are for a tabular layout and the last six are for a
matrix break report. Because only the name, source column, and function are
specified, the defaulting algorithm will place the columns in the appropriate groups
based on where we place their associated fields in the layout.

<data>
 <dataSource name="Q_1">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER,
 VIDEO_CATEGORY_BY_QTR.SALES_REGION,
 VIDEO_CATEGORY_BY_QTR.STATE, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <dataSource name="Q_2">
 <select>
 SELECT ALL VIDEO_CATEGORY_BY_QTR.QUARTER, VIDEO_CATEGORY_BY_QTR.CITY,
 VIDEO_CATEGORY_BY_QTR.PRODUCT_CATEGORY,
 VIDEO_CATEGORY_BY_QTR.TOTAL_PROFIT,
 VIDEO_CATEGORY_BY_QTR.TOTAL_SALES,
 VIDEO_CATEGORY_BY_QTR.TOTAL_COST
 FROM SCOTT.VIDEO_CATEGORY_BY_QTR
 WHERE VIDEO_CATEGORY_BY_QTR.SALES_REGION=’West’
 </select>
 </dataSource>
 <summary name="SumTOTAL_SALESPerCITY1" source="total_sales1"/>
 <summary name="SumTOTAL_COSTPerCITY1" source="total_cost1"/>
 <summary name="SumTOTAL_PROFITPerCITY1" source="total_profit1"/>
 <summary name="SumTOTAL_SALESPerQUARTER" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerQUARTER" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerQUARTER" source="total_profit"/>
 <summary name="SumTOTAL_SALESPerCITY" source="total_sales"/>
 <summary name="SumTOTAL_COSTPerCITY" source="total_cost"/>
 <summary name="SumTOTAL_PROFITPerCITY" source="total_profit"/>
 <formula name="Profit_Margin" source="FormulaProfitMargin"
Customizing Reports at Runtime 7-87

XML Tag Reference
datatype="number"
 width="9"/>
</data>

7.5.30 <tabular>

Description
The <tabular> tag delimits a tabular style within a section of the report’s layout. If
you use the <tabular> tag, then you must also nest <field> tags to list the fields you
want to include in the tabular layout.

Refer to Section 7.5.8, "<field>" for more information.

Syntax
Following is the syntax for this tag:

<tabular>
 <field>
 </field>
 [...]
</tabular>

Example
The following example shows a segment of an XML report definition that defines a
section with a tabular layout inside of it:

<section name="header"> "
<tabular name="M_summary" template="corp2.tdf">
 <labelAttribute font="Arial"
 fontSize="10"
 fontStyle="bold"
 textColor="white"/>
 <field name="F_ports"
 source="ports"
 label="Port IDs"
 font="Arial"
 fontSize="10"/>
7-88 Publishing Reports to the Web with Oracle9i Application Server

XML Tag Reference
 <field name="F_locations"
 source="locations"
 label="Port Names"
 font="Arial"
 fontSize="10"/>
</tabular>
</section>
Customizing Reports at Runtime 7-89

XML Tag Reference
7-90 Publishing Reports to the Web with Oracle9i Application Server

Part II

 Appendixes

Appendix A, "Controlling User Access to Reports by Defining Calendars"

Appendix B, "RWCLI60 Command Line Arguments"

Appendix C, "Oracle Reports Services Configuration Parameters"

Appendix D, "Environment Variables"

Appendix E, "Database Connection Strings"

Appendix F, "Migrating from Web Cartridge to CGI"

Appendix G, "Troubleshooting"

Controlling User Access to Reports by Defining Cale
A

Controlling User Access to Reports by

Defining Calendars

As discussed in Chapter 5, "Oracle Reports Services Security with Oracle Portal"
access control enables you to restrict user access to reports that are run with Oracle
Reports Services. Oracle Reports Services uses Oracle Portal to perform a security
check that ensures that users have the necessary privileges to run reports on
restricted Oracle Reports Services servers and printers. Defining calendars is an
optional step that allows you to further restrict access to report definition
files (RDFs), servers, and printers by determining when they can and cannot be
accessed.

A.1 Creating Availability Calendars
An availability calendar determines when RDFs, Oracle Reports Services servers,
and printers are available for processing. Availability calendars are not necessary if
the RDFs, Oracle Reports Services servers, and printers are always available for
processing.

You can create two types of availability calendars:

n Simple

A simple availability calendar defines a single availability rule (for example,
daily, Sunday through Saturday from 12:00 a.m. to 10:00 p.m.).

n Combined

A combined availability calendar combines two or more availability calendars
(for example, combining the Daily calendar with a Maintenance calendar) into a
single availability calendar.
ndars A-1

Availability Calendar Example
You can associate only one availability calendar with an RDF, Oracle Reports
Services servers, or printer. If your production environment requires more than one
availability rule, then you need to combine availability calendars.

A.2 Availability Calendar Example
In this example, you need to create a Production calendar that determines the
availability for every day of the week, days with scheduled maintenance, and
holidays. To do this Production calendar, you need to create the following
availability calendars:

n A simple Daily calendar with an availability period of every Sunday through
Saturday from 12:00 a.m. to 10:00 p.m.

n A simple Maintenance calendar with an availability period of every Saturday
from 3:00 p.m. to 10:00 p.m.

n A simple Christmas calendar with an availability period starting on December
25th at 12:00 a.m. and ending on December 26th at 12:00 a.m.

n A Production calendar that combines all the above calendars, and then excludes
the maintenance and Christmas calendars. Excluding these calendars prohibits
processing based on their availability rules.

A.2.1 Creating a Daily Calendar
Create a Daily calendar with an availability period of Sunday through Saturday
from 12:00 a.m. to 10:00 p.m. by doing the following:

1. Access Oracle Portal and log on. You must have RW_ADMINISTRATOR and
DBA privileges to access Oracle Reports Services security wizards.

2. On the Oracle Portal home page, click the Administer tab.

3. On the Administer page under the Oracle Reports Security portlet, click
Oracle Reports Security Settings.

4. On the Oracle Reports Security Settings page under the Reports Calendar
Access portlet, click on Create Simple Calendar Access to create a simple
calendar.

5. On the Create Simple Availability Calendar page, type Daily in the Calendar
Name field. If the Daily calendar already exists, then append your initials to it
(for example, DailyAA).

6. Click on the Next button to continue.
A-2 Publishing Reports to the Web with Oracle9i Application Server

Availability Calendar Example
7. This screen is where the Date/Time Availability is set. Under Duration specify
today’s date as the start month, date, and year, and 12:00 a.m. as the start time.
Specify today’s date as the end month, date, and year, and 10:00 p.m. as the end
time.

8. Choose Daily as the Repeat option. This repeats the Duration pattern every
day. For example, if the start date is Monday, January 4, 2000, then this pattern
repeats every day starting on this date until the pattern is completed.

9. Click on the Next button to continue.

10. Optionally, on the Show Simple Availability Calendar Summary page, click
Show Calendar to view a visual representation of the Daily calendar. Green
indicates availability. Close the calendar when you are finished reviewing it.

11. Click on the Finish button.

12. The Manage Component screen appears. Click on the Close button.

A.2.2 Creating the Maintenance Calendar
Create a Maintenance calendar with an availability period of every Saturday from
3:00 p.m. to 10:00 p.m. In a later step, you will add this calendar to the Production
calendar and then exclude it to prohibit processing based on the date and time
specified.

1. From the Oracle Reports Security page under the Reports Calendar Access
portlet, click Create Reports Simple Calendar Access option to create a simple
calendar.

2. On the Create Simple Availability Calendar page, type Maintenance in the
Calendar Name field. If the Maintenance calendar already exists, then append
your initials to it (for example, MaintenanceAA).

3. Click on the Next button to continue.
Controlling User Access to Reports by Defining Calendars A-3

Availability Calendar Example
4. Define the following for Date/Time Availability:

5. Click on the Next button to continue.

6. Optionally, on the Show Simple Availability Calendar Summary page, click
Show Calendar to view a visual representation of the Maintenance calendar.
Green indicates availability. Close the calendar when you are finished
reviewing it.

7. Click on the Finish button.

8. The Manage Component screen appears. Click on the Close button.

A.2.3 Creating the Christmas Calendar
Create a Christmas calendar with an availability period of every December 25th
from 12:00 a.m. to December 26th at 12:00 a.m. In a later step, you will add this
calendar to the Production calendar and then exclude it to prohibit processing
based on the date and time specified.

1. From the Oracle Reports Security page under the Reports Calendar Access
portlet, click Create Reports Simple Calendar Access option to create a
calendar.

2. On the Create Simple Availability Calendar page, type Christmas in the
Calendar Name field. If the Christmas calendar already exists, then append
your initials to it (for example, MaintenanceAA).

3. Click on the Next button to continue.

Table A–1 Maintenance Calendar Rule

Field Value

Duration

Start Specify a date starting on a Saturday (for example, January 8,
2000), and time starting at 3:00 p.m.

End Specify the same date defined as the start date, and time ending at
10:00 p.m.

Repeat Choose Weekly.
A-4 Publishing Reports to the Web with Oracle9i Application Server

Availability Calendar Example
4. Define the following for Date/Time Availability:

5. Click on the Next button to continue.

6. Optionally, on the Show Simple Availability Calendar Summary page, click
Show Calendar to view a visual representation of the Christmas calendar.
Green indicates availability. Close the calendar when you are finished
reviewing it.

7. Click on the Finish button.

8. The Manage Component screen appears. Click on the Close button.

A.2.4 Creating a Combined Availability Calendar
In this example, you create a Production calendar that combines the Daily,
Maintenance, and Christmas calendars, then excludes the Maintenance and
Christmas calendars, which prohibits processing based on their availability rules.

1. From the Oracle Reports Security page, click the Create Reports Combined
Calendar Access to create the calendar that combines the three calendars you
created into one.

2. On the Create Combined Availability Calendar page, type Production in the
Calendar Name field. If the Production calendar already exists, then append
your initials to it (for example, ProductionAA).

3. Click on the Next button to continue.

4. On the Select Availability Calendars page, ctrl-click on the Daily,
Maintenance, and Christmas calendars in the Availability Calendars list box.

5. Click on the right arrow to move the selected calendars to the Selected
Availability Calendars list box, or click on the double right arrow to select all
available calendars.

6. Click on the Next button to continue.

Field Value

Duration

Start Specify December 25th and 12:00 a.m.

End Specify December 26th and 12:00 a.m.

Repeat Choose Yearly.
Controlling User Access to Reports by Defining Calendars A-5

Availability Calendar Example
7. On the Exclude Availability Calendars page, ctrl-click on the Maintenance
and Christmas calendars in the Availability Calendars list box.

8. Click on the right arrow to move the Maintenance and Christmas calendars to
the Excluded Availability Calendars list box. Doing so prohibits processing on
the date and time specified in each calendar.

9. Click on the Next button to continue.

10. On the Show Combined Availability Calendar Summary page, click Show
Calendar to view a visual representation of the availability calendar. Green
indicates availability. Close the calendar when you are finished reviewing it.

It is s good practice to check the combined calendar at this point. You can verify
that the calendars you prohibited processing on are excluded during the period
specified. Scroll to December to ensure that December 25th is excluded from
processing. Choose the Day option and scroll to a Saturday to ensure that
processing is unavailable from 3 p.m.

11. Click on the Finish button.

12. On the Manage Component page, click on the Close button.

You have now successfully created both Simple and Combined calendars. You can
now use these calendars to further restrict access to RDFs, Oracle Reports Services
servers, and printers. Refer to Chapter 5, "Oracle Reports Services Security with
Oracle Portal" for more information about restricting RDFs, Oracle Reports Services
servers, and printers.
A-6 Publishing Reports to the Web with Oracle9i Application Server

RWCLI60 Command Line Argum
B

RWCLI60 Command Line Arguments

This appendix contains descriptions of RWCLI60 command line arguments.
RWCLI60 parses and transfers the command line to the specified Oracle Reports
Services (RWMTS60). It uses a command line very similar to RWRUN60.

B.1 Syntax
Following is the syntax for the RWCLI60 command line, where keyword=value is
a valid command line argument:

RWCLI60 MODULE|REPORT=runfile USERID=userid
[[keyword=]value|(value1, value2, ...)] SERVER=tnsname

B.2 Usage Notes
The following usage notes apply to the RWCLI60 command line:

■ All file names and paths specified in the client command line refer to files and
directories on the server machine, except for command file.

■ If the command line contains CMDFILE=, then the command file is read and
appended to the original command line before being sent to Oracle Reports
Services. The runtime engine will not re-read the command file.
ents B-1

Usage Notes
MODULE|REPORT

Description MODULE|REPORT is the name of the report to run. (REPORT is
allowed for backward compatibility.)

Syntax [MODULE|REPORT=]runfile

Values Any valid runfile (that is, a file with an extension of RDF, REP, or XML). If
you do not enter a file extension, then Oracle Reports Services Runtime searches
first for a file with extension REP, then extension RDF, then XML, and then no
extension. Oracle Reports Services Runtime will use its file path search order to find
the file.

USERID

Description USERID is your ORACLE user name or placeholder user name (that
is, $username) and password with an optional database name, Net8
communication protocol to access a remote database, or ODBC datasource name (if
accessing a non-Oracle datasource). If the password is omitted, then a database
logon form is provided.

If you want users to log on to the database, then omit the USERID command line
argument from the report request. If you want users to log on every time they run
report requests, then use the CGI command SHOWAUTH and AUTHTYPE=S in the
report URL, or include the %D argument to the key mapping entry in the
cgicmd.dat (CGI) file.

Values The logon definition must be in one of the following forms and cannot
exceed 512 bytes in length:

username[/password]
username[/password][@database]
[user[/password]]@ODBC:datasource[:database] or [user[/password]]@ODBC:*

<$username>[/password]
<$username>[/password][@database]

See Appendix E, "Database Connection Strings" for a list of valid connection strings.
B-2 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
PARAMFORM

Description If PARAMFORM is specified, then it must be NO.

Syntax [PARAMFORM=]NO

CMDFILE

Description CMDFILE is a file that contains arguments for the RWRUN60
command. This option enables you to run a report without having to specify a large
number of arguments each time you invoke RWRUN60.

Syntax [CMDFILE=]cmdfile

Values Any valid command file.

Restrictions The following restrictions apply:

■ A command file might reference another command file.

■ Command file syntax for RWRUN60 arguments is identical to that used on the
command line.

■ Values entered on the command line override values specified in command
files. For example, suppose that you specify RWRUN60 from the command line
with COPIES equal to 1 and CMDFILE equal to RUNONE (a command file). In
RUNONE, COPIES is set to 2. Only one copy of the report would be generated
in this case.

■ The argument or arguments for this keyword might be operating
system-specific.

TERM

Description TERM is the type of terminal on which you are using RWRUN60.
TERM is useful for the Runtime Parameter Form and Runtime Previewer only. This
keyword is only used in character mode.

Syntax [TERM=]termtype

Values Any valid terminal type.
RWCLI60 Command Line Arguments B-3

Usage Notes
Default Installation dependent. (See your Oracle Reports Services system
administrator for a compatible definition.)

Usage Note The argument or arguments for this keyword might be case sensitive,
depending on your operating system.

ARRAYSIZE

Description ARRAYSIZE is the size (in kilobytes) for use with ORACLE array
processing. Generally, the larger the array size, the faster the report will run.

Syntax [ARRAYSIZE=]n

Values A number from 1 through 9,999. This means that Oracle Reports Services
Runtime can use this number of kilobytes of memory per query in your report.

Default The default array size is 10K. For details about the ORACLE array
processing, see the Oracle8i Server Administrator’s Guide.

DESTYPE

Description DESTYPE is the type of device that will receive the report output.

Syntax [DESTYPE=]{CACHE|LOCALFILE|FILE|PRINTER|SYSOUT|MAIL}

Values

CACHE Sends the output directly to Oracle Reports Services cache.
DESTYPE=CACHE is not compatible with the DISTRIBUTE
keyword. If the server encounters DISTRIBUTE on the command
line, then it is ignored the DESTYPE=CACHE command line
argument.

LOCALFILE Sends the output to a file on the client machine and forces a
synchronous call, regardless of the BACKGROUND value.

FILE Sends the output to the file on the server machine named in
DESNAME.

PRINTER Sends the output to the printer on the server machine named in
DESNAME. You must have a printer that the Oracle Reports
Services server can recognize installed and running.
B-4 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Default Taken from the Initial Value property of the DESTYPE parameter.

Usage Note Screen and Preview cannot be used for DESTYPE with RWCLI60.

DESNAME

Description DESNAME is the name of the file, printer, or e-mail ID (or
distribution list) to which the report output will be sent. To send the report output
by e-mail, specify the e-mail ID as you do in your e-mail application (any
MAPI-compliant application on Windows or your native mail application on
UNIX). You can specify multiple user names by enclosing the names in parentheses
and separating them by commas (for example, (name, name, . . .name)).

Syntax [DESNAME=]desname

Values Any valid file name, printer name, or e-mail ID not to exceed 1K in length.
For printer names, you can optionally specify a port. For example:

DESNAME=printer,LPT1:
DESNAME=printer,FILE:

Default Taken from the Initial Value property of the DESNAME parameter. If
DESTYPE=FILE and DESNAME is an empty string, then it defaults to
reportname.lis at runtime.

Usage Notes The following usage notes apply:

■ This keyword is ignored if DESTYPE is SCREEN.

■ If DESTYPE is PREVIEW, then Oracle Reports Services Builder uses DESNAME
to determine which printer’s fonts to use to display the output.

■ The argument or arguments for this keyword might be case sensitive,
depending on your operating system.

In some cases, this parameter might be overridden by your operating system.

MAIL Sends the output to the mail users specified in DESNAME. You
can send mail to any mail system that is MAPI compliant or has
the service provider driver installed. The report is sent as an
attached file.

SYSOUT Sends the output to the client machine’s default output device
and forces a synchronous call.
RWCLI60 Command Line Arguments B-5

Usage Notes
DESFORMAT

Description In bit-mapped environments, DESFORMAT specifies the printer
driver to be used when DESTYPE is FILE. In character-mode environments, it
specifies the characteristics of the printer named in DESNAME.

Syntax [DESFORMAT=]desformat

Values Any valid destination format not to exceed 1K in length. Examples of valid
values for this keyword are, for example, hpl, hplwide, dec, decwide, decland,
dec180, dflt, wide. Ask your System Administrator for a list of valid destination
formats.

Default Taken from the Initial Value property of the DESFORMAT parameter. For
bit-mapped Oracle Reports Services Builder, if DESFORMAT is blank or dflt, then
the current printer driver (specified in File→Choose Printer) is used. If nothing has
been selected in Choose Printer, then PostScript is used by default.

PDF Means that the report output is sent to a file that can be read by a PDF
viewer. PDF output is based upon the currently configured printer for
your system. The drivers for the currently selected printer is used to
produce the output; you must have a printer configured for the
machine on which you are running the report.

HTML Means that the report output is sent to a file that can be read by an
HTML 3.0 compliant browser (for example, Netscape 2.2).

HTMLCSS Means that the report output sent to a file includes style sheet
extensions that can be read by an HTML 3.0 compliant browser that
supports cascading style sheets.

HTMLCSSIE Means that the report output sent to a file includes style sheet
extensions that can be read by Microsoft Internet Explorer 3.x.

RTF Means that the report output is sent to a file that can be read by
standard word processors (such as Microsoft Word). When you open
the file in MS Word, you must choose View→Page Layout to view all
the graphics and objects in your report.

DELIMITED Means that the report output is sent to a file that can be read by
standard spreadsheet utilities, such as Microsoft Excel. If you do not
choose a delimiter, then the default delimiter is a TAB.

XML Means that the report output is an XML document, saved as a separate
file with the XML extension. This report can be opened and read in an
XML-supporting browser, or your choice of XML viewing application.
B-6 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Usage Notes The following usage notes apply:

■ This keyword is ignored if DESTYPE is SCREEN.

■ The value or values for this keyword might be case sensitive, depending on
your operating system.

CACHELOB

Description CACHELOB specifies whether to cache retrieved Oracle8 large object
or objects in the temporary file directory (specified by REPORTS60_TMP).

Values YES means to cache the LOB in the temporary file directory. NO means to
not cache the LOB in the temporary file directory.

Default YES

Usage Notes The following usage notes apply:

■ You can only set this option on the command line.

■ If the location of the temporary file directory does not have sufficient available
disk space, then it is preferable to set this value to NO. Setting the value to NO,
however, might decrease performance, as the LOB might need to be fetched
from the server multiple times.

COPIES

Description COPIES is the number of copies of the report output to print.

Syntax [COPIES=]n

Values Any valid integer from 1 through 9,999.

Default Taken from the Initial Value property of the COPIES parameter.

Usage Notes The following usage notes apply:

■ This keyword is ignored if DESTYPE is not Printer.

■ If COPIES is left blank on the Runtime Parameter Form, then it defaults to one.
RWCLI60 Command Line Arguments B-7

Usage Notes
CURRENCY

Description CURRENCY is the currency character to be used in number formats.

Syntax [CURRENCY=]currency_symbol

Values Any valid alphanumeric string not to exceed 1K in length.

Default The default for ORACLE is determined by the ORACLE National
Language Support facilities. You can also set a default of up to four characters in the
Initial Value property of the CURRENCY parameter.

Usage Note A CURRENCY value entered in Property Palette overrides any
CURRENCY value entered on the command line.

THOUSANDS

Description THOUSANDS is the thousands character to be used in number
formats.

Syntax [THOUSANDS=]thousands_symbol

Values Any valid alphanumeric character.

Default The default for ORACLE is determined by the ORACLE National
Language Support facilities. You can also set a default of up to four characters in the
Initial Value property of the THOUSANDS parameter.

Usage Notes The following usage notes apply:

■ A THOUSANDS value entered on the Parameter property sheet overrides any
THOUSANDS value entered on the command line.

■ The alphanumeric character defined as the THOUSANDS value is the actual
value that is returned. For example, if you define "," as the THOUSANDS value,
then "," is returned.

DECIMAL

Description DECIMAL is the decimal character to be used in number formats.

Syntax [DECIMAL=]decimal_symbol
B-8 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Values Any valid alphanumeric character.

Default The default for ORACLE is determined by the ORACLE National
Language Support facilities. You can also set a default in the Initial Value property
of the DECIMAL parameter.

Usage Notes The following usage notes apply:

■ A DECIMAL value entered on the Parameter property sheet will override
any DECIMAL value entered on the command line.

■ The alphanumeric character defined as the DECIMAL value is actual value
that is returned. For example, if you define "." as the DECIMAL value, then
"." is returned.

READONLY

Description READONLY requests read consistency across multiple queries in a
report. When accessing data from ORACLE, read consistency is accomplished by a
SET TRANSACTION READ ONLY statement (refer to your Oracle8i Server SQL
Language Reference Manual for more information on SET TRANSACTION READ
ONLY).

Syntax [READONLY=]{YES|NO}

Values YES requests read consistency. NO means do not provide read consistency.

Default NO

Usage Note This keyword is only useful for reports using multiple queries,
because ORACLE automatically provides read consistency, without locking, for
single query reports.

Restriction In the Report trigger order of execution, notice where the SET
TRANSACTION READONLY occurs.
RWCLI60 Command Line Arguments B-9

Usage Notes
LOGFILE

Description LOGFILE is the name of the file to which File→Print Screen output
is sent. If the specified file already exists, then output is appended to it. This
keyword is only used in character mode.

Syntax [LOGFILE=]logfile

Values Any valid file name.

Default dfltrep.log in the current directory.

BUFFERS

Description BUFFERS is the size of the virtual memory cache in kilobytes. You
should tune this setting to ensure that you have enough space to run your reports,
but not so much that you are using too much of your system’s resources.

Syntax [BUFFERS=]n

Values A number from 1 through 9,999. For some operating systems, the upper
limit might be lower.

Default 640K

Usage Note If this setting is changed in the middle of you session, then the
changes does not take effect until the next time the report is run.

BATCH

Description If BATCH is specified, then it must be YES.

Syntax [BATCH=]YES

PAGESIZE

Description PAGESIZE is the dimensions of the physical page (that is, the size of
the page that the printer outputs). The page must be large enough to contain the
report. For example, if a frame in a report expands to a size larger than the page
dimensions, then the report is not run.

Syntax [PAGESIZE=]width x height
B-10 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Values Any valid page dimensions of the form: page width x page height, where
page width and page height are zero or more. The maximum width and height
depends upon the unit of measurement. For inches, the maximum width and height
is 512 inches. For centimeters, it is 1312 centimeters. For picas, it is 36,864 picas.

Default For bitmap, 8.5 x 11 inches. For character mode, 80 x 66 characters. If the
report was designed for character mode and is being run or converted on bitmap,
then the following formula is used to determine page size if none is specified:
(default page size * character page size)/default character page size. For example, if
the character page size is 80 x 20, then the bit-mapped page size would be: (8.5 *
80)/80 x (11 * 20)/66 = 8.5 x 3.33.

Usage Notes The following usage notes apply:

■ On some printers the printable area of the physical page is restricted. For
example, the sheet of paper a printer takes might be 8.5 x 11 inches, but the
printer might only be able to print on an area of 8 x 10.5 inches. If you define a
page width x page height in Oracle Reports Services Builder that is bigger than
the printable area your printer allows, then clipping might occur in your report
output. To avoid clipping, you can either increase the printable area for the
printer (if your operating system allows it) or you can set the page width x page
height to be the size of the printable area of the page.

■ If this keyword is used, then its value overrides the page dimensions of the
report definition.

■ A PAGESIZE value entered on the Runtime Parameter Form overrides any
PAGESIZE value entered on the command line.

PROFILE

Description PROFILE is the name of a file in which you want to store
performance statistics on report execution. If you specify a file name, then Oracle
Reports Services Builder calculates statistics on the elapsed and CPU time spent
running the report. PROFILE calculates the following statistics:

■ TOTAL ELAPSED TIME is the amount of time that passes between when you
issue RWBLD60 and when you leave the designer. TOTAL ELAPSED TIME is
the sum of Oracle Reports Services Builder Time and ORACLE Time.

■ Time is the amount of time spent in Oracle Reports Services Builder.

■ ORACLE Time is the amount of time spent in the database and is composed of
the following:
RWCLI60 Command Line Arguments B-11

Usage Notes
■ UPI is the amount of time spent to do such things as connect to the database,
parse the SQL, and fetch the data.

■ SQL is the amount of time spent performing SRW.DO_SQL.

■ TOTAL CPU Time used by process is the CPU time spent while in the designer.

Syntax [PROFILE=]profiler_file

Values Any valid file name in the current directory.

RUNDEBUG

Description RUNDEBUG is whether you want extra runtime checking for logical
errors in reports. RUNDEBUG checks for things that are not errors but might result
in undesirable output. RUNDEBUG checks for the following:

■ Frames or repeating frames that overlap but do not enclose another object. This
can lead to objects overwriting other objects in the output.

■ Layout objects with page-dependent references that do not have fixed sizing.
Oracle Reports Services Builder makes such objects fixed in size regardless of
the Vertical and Horizontal Elasticity properties.

■ Bind variables referenced at the wrong frequency in PL/SQL.

Syntax [RUNDEBUG=]{YES|NO}

Values YES means perform extra runtime error checking. NO means do not
perform extra runtime error checking.

Default YES

ONSUCCESS

Description ONSUCCESS is whether you want a COMMIT or ROLLBACK
performed when a report is finished executing.

Syntax [ONSUCCESS=]{COMMIT|ROLLBACK|NOACTION}

Note: For some operating systems, the Oracle Reports Services
Builder time includes the database time because the database is
included in the Oracle Reports Services Builder process.
B-12 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Values COMMIT means perform a COMMIT when a report is done. ROLLBACK
means perform a ROLLBACK when a report is done. NOACTION means do
nothing when a report is done.

Default COMMIT, if a USERID is provided. NOACTION, if called from an
external source (for example, Oracle Forms Services) with no USERID provided.

Usage Note The COMMIT or ROLLBACK for ONSUCCESS is performed after the
after report trigger fires. Other COMMITs and ROLLBACKs can occur prior to this
one. For more information, see the READONLY command.

ONFAILURE

Description ONFAILURE is whether you want a COMMIT or ROLLBACK
performed if an error occurs and a report fails to complete.

Syntax [ONFAILURE=]{COMMIT|ROLLBACK|NOACTION}

Values COMMIT means perform a COMMIT if a report fails. ROLLBACK means
perform a ROLLBACK if a report fails. NOACTION means do nothing if a report
fails.

Default ROLLBACK, if a USERID is provided. NOACTION, if called from an
external source (for example, Oracle Forms Services) with no USERID provided.

Usage Note The COMMIT or ROLLBACK for ONFAILURE is performed after the
after fails. Other COMMITs and ROLLBACKs can occur prior to this one. For more
information, see the READONLY command.

KEYIN

Description KEYIN is the name of a keystroke file that you want to run at
runtime. KEYIN is used to run the keystroke files created with KEYOUT. Since
KEYIN is used to run a keystroke file, it is only relevant when running in a
character-mode environment.

Syntax [KEYIN=]keyin_file

Values Any valid key file name in the current directory.
RWCLI60 Command Line Arguments B-13

Usage Notes
KEYOUT

Description KEYOUT is the name of a keystroke file in which you want Oracle
Reports Services Runtime to record all of your keystrokes. You can then use KEYIN
to run the keystroke file. KEYOUT and KEYIN are useful when you have certain
keystrokes that you want to do each time you run a report. They are also useful for
debugging purposes. Since KEYOUT is used to create a keystroke file, it is only
relevant when running reports in a character-mode environment.

Syntax [KEYOUT=]keyout_file

Values Any valid file name.

ERRFILE

Description ERRFILE is the name of a file in which you want Oracle Reports
Services Builder to store error messages.

Syntax [ERRFILE=]error_file

Values Any valid file name.

LONGCHUNK

Description LONGCHUNK is the size (in kilobytes) of the increments in which
Oracle Reports Services Builder retrieves a LONG column value. When retrieving a
LONG value, you might want to retrieve it in increments rather than all at once
because of memory size restrictions. LONGCHUNK applies only to Oracle7 and
Oracle8.

Syntax [LONGCHUNK=]n

Values A number from 1 through 9,999. For some operating systems, the upper
limit might be lower.

Default 10K
B-14 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
ORIENTATION

Description ORIENTATION controls the direction in which the pages of the
report will print.

Syntax [ORIENTATION=]{DEFAULT|LANDSCAPE|PORTRAIT}

Values DEFAULT means use the current printer setting for orientation.
LANDSCAPE means landscape orientation. PORTRAIT means portrait orientation.

Default DEFAULT

Usage Notes The following usage notes apply:

■ If ORIENTATION=LANDSCAPE for a character mode report, then you must
ensure that your printer definition file contains a landscape clause.

■ Not supported when output to a PCL printer on Motif.

BACKGROUND

Description BACKGROUND is whether the call is synchronous
(BACKGROUND=NO) or asynchronous (BACKGROUND=YES). A synchronous
call means that the client waits for the report to queue, be assigned to a runtime
engine, run, and finish. An asynchronous call means that the client simply sends the
call without waiting for it to complete. If the client process is killed during a
synchronous call, then the job is canceled.

Syntax [BACKGROUND=]{YES|NO}

Values YES or NO

Default NO

MODE

Description MODE specifies whether to run the report in character mode or
bitmap. This enables you to run a character-mode report from bit-mapped Oracle
Reports Services Builder or vice versa. For example, if you want to send a report to
a PostScript printer from a terminal (for example, a vt220), then you could invoke
character-mode RWRUN60 and run the report with MODE=BITMAP. On Windows,
specifying MODE=CHARACTER means that the Oracle Reports Services Builder
ASCII driver is used to produce editable ASCII output.
RWCLI60 Command Line Arguments B-15

Usage Notes
Syntax [MODE=]{BITMAP|CHARACTER|DEFAULT}

Values The following values apply:

■ BITMAP

■ DEFAULT means to run the report in the mode of the current executable being
used.

■ CHARACTER

Default DEFAULT

PRINTJOB

Description PRINTJOB specifies whether the Print Job dialog box should be
displayed before running a report.

Syntax [PRINTJOB=]{YES|NO}

Values YES or NO

Default NO

Usage Notes The following usage notes apply:

■ When a report is run as a spawned process (that is, one executable, such as
RWRUN60, is called from within another executable, such as RWBLD60), the
Print Job dialog box does not appear, regardless of PRINTJOB.

■ When DESTYPE=MAIL, the Print Job dialog box does not appear, regardless of
PRINTJOB.

TRACEFILE

Description TRACEFILE is the name of the file in which Oracle Reports Services
Builder logs trace information.

Syntax [TRACEFILE=]tracefile

Values Any valid file name.
B-16 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Usage Notes The following usage notes apply:

■ Trace information can only be generated when running an RDF file. You cannot
specify logging when running a REP file.

■ If you specify LOGFILE or ERRFILE as well as TRACEFILE, then all of the trace
information is placed in the most recently specified file. For example, in the
following case, all of the specified trace information would be placed in the
err.log because it is the last file specified in the RWRUN60 command:

RWRUN60 MODULE=order_entry
USERID=scott/tiger
TRACEFILE=trace.log LOGFILE=mylog.log
ERRFILE=err.log

TRACEMODE

Description TRACEMODE indicates whether Oracle Reports Services Builder
should add the trace information to the file or overwrite the entire file.

Syntax [TRACEMODE=]{TRACE_APPEND|TRACE_REPLACE}

Values TRACE_APPEND adds the new information to the end of the file.
TRACE_REPLACE overwrites the file.

Default TRACE_APPEND

Usage Note Trace information can only be generated when running an RDF file.
You cannot specify logging when running a REP file.

TRACEOPTS

Description TRACEOPTS indicates the tracing information that you want to be
logged in the trace file when you run the report.

Syntax
[TRACEOPTS=]{TRACE_ERR|TRACE_PRF|TRACE_APP|TRACE_PLS|TRACE_SQL
|TRACE_TMS|TRACE_DST|TRACE_ALL|(opt1, opt2, ...)}
RWCLI60 Command Line Arguments B-17

Usage Notes
Values The following values apply:

■ A list of options in parentheses means you want all of the enclosed options to
be used. For example, TRACE_OPTS=(TRACE_APP, TRACE_PRF) means you
want TRACE_APP and TRACE_PRF applied.

■ TRACE_ALL means log all possible trace information in the trace file.

■ TRACE_APP means log trace information on all the report objects in the trace
file.

■ TRACE_BRK means list breakpoints in the trace file.

■ TRACE_DST means list distribution lists in the trace file. You can use this
information to determine which section was sent to which destination. The
trace file format is very similar to the DST file format, so you can cut and past to
generate a DST file from the trace file.

■ TRACE_ERR means list error messages and warnings in the trace file.

■ TRACE_PLS means log trace information on all the PL/SQL objects in the trace
file.

■ TRACE_PRF means log performance statistics in the trace file.

■ TRACE_SQL means log trace information on all the SQL in the trace file.

■ TRACE_TMS means enter a timestamp for each entry in the trace file.

Default TRACE_ALL

Usage note Trace information can only be generated when running a RDF file.
You cannot specify logging when running a REP file.

AUTOCOMMIT

Description Specifies whether database changes (for example, CREATE) should
be automatically committed to the database. Some non-ORACLE databases (for
example, SQL Server) require that AUTOCOMMIT=YES.

Syntax [AUTOCOMMIT=]{YES|NO}

Values YES or NO

Default NO
B-18 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
NONBLOCKSQL

Description NONBLOCKSQL specifies whether to allow other programs to
execute while Oracle Reports Services Runtime is fetching data from the database.

Syntax [NONBLOCKSQL=]{YES|NO}

Values YES means that other programs can run while data is being fetched. NO
means that other programs cannot run while data is being fetched.

Default YES

ROLE

Description ROLE specifies the database role to be checked for the report at
runtime. ROLE is ignored for RWBLD60.

Syntax [ROLE=]{rolename/[rolepassword]}

Values A valid role and (optionally) a role password.

DISABLEPRINT

Description DISABLEPRINT specifies whether to disable File→Print, or
File→Choose Printer (on Motif) and the equivalent toolbar buttons in the Runtime
Previewer.

Syntax [DISABLEPRINT=]{YES|NO}

Values YES or NO

Default NO when there are blank pages in your report output that you do not
want to print.

DISABLEMAIL

Description DISABLEMAIL specifies whether to disable the Mail menu and the
equivalent toolbar buttons in the Runtime Previewer.
RWCLI60 Command Line Arguments B-19

Usage Notes
Syntax [DISABLEMAIL=]{YES|NO}

Values YES or NO

Default NO

DISABLEFILE

Description DISABLEFILE specifies whether to disable the File→Generate to File
menu in the Runtime Previewer.

Syntax

[DISABLEFILE=]{YES|NO}

Values YES or NO

Default NO

DISABLENEW

Description DISABLENEW specifies whether to disable the View→New
Previewer menu to prevent the ability to display a new instance of the Runtime
Previewer.

Syntax [DISABLENEW=]{YES|NO}

Values YES or NO

Default NO

DESTINATION

Description The DESTINATION keyword allows you to specify the name of a
DST file that defines the distribution for the current run of the report.

Syntax [DESTINATION=]filename.DST

Values The name of a DST file that defines a report or report section distribution.

Usage Note To enable the DESTINATION keyword, you must specify
DISTRIBUTE=YES on the command line.
B-20 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
DISTRIBUTE

Description DELIMITER specifies the character or characters to use to separate
the cells in your report output.

DISTRIBUTE enables or disables distributing the report output to multiple
destinations, as specified by the distribution list defined in the report distribution
definition or a DST file.

Syntax [DISTRIBUTE=]{YES|NO}

Values YES means to distribute the report to the distribution list.

NO means to ignore the distribution list and output the report as specified by the
DESNAME and DESFORMAT parameters. This is fundamentally a debug mode to
allow running a report set up for distribution without actually executing the
distribution.

Default NO

Usage Note To enable the DESTINATION keyword, you must specify
DISTRIBUTE=YES.

PAGESTREAM

Description PAGESTREAM enables or disables page streaming for the report
when formatted as HTML or HTMLCSS output, using the navigation controls set by
either of the following:

■ The Page Navigation Control Type and Page Navigation Control Value
properties in the Report Property Palette.

■ PL/SQL in a Before Report trigger (SRW.SET_PAGE_NAVIGATION_HTML)

Syntax [PAGESTREAM=]{YES|NO}

Values YES means to stream the pages. NO means to output the report without
page streaming.

Default NO
RWCLI60 Command Line Arguments B-21

Usage Notes
BLANKPAGES

Description BLANKPAGES specifies whether to suppress blank pages when you
print a report. Use this keyword when there are blank pages in your report output
that you do not want to print.

Syntax [BLANKPAGES=]{YES|NO}

Values YES means print all blank pages. NO means do not print blank pages

Default YES

Usage Note BLANKPAGES is especially useful if your logical page spans multiple
physical pages (or panels), and you wish to suppress the printing of any blank
physical pages.

SERVER

Description SERVER is the TNS service entry name of Oracle Reports Services.

Syntax [SERVER=]tnsname

Values Any valid TNS service entry name.

Usage Note If you set the REPORTS60_REPORTS_SERVER environment variable
on your Web server machine, then you can omit the SERVER command line
argument to process requests using the default server, or you can include the
SERVER command line argument to override the default.

JOBNAME

Description JOBNAME is the name for a job to appear in the Oracle Reports
Services Queue Manager. It is treated as a comment and has nothing to do with the
running of the job. If it is not specified, then the queue manager shows the report
name as the job name.

Syntax [JOBNAME=]string
B-22 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
SCHEDULE

Description SCHEDULE is a scheduling command. The default is now. To
eliminate the need for quoting the scheduling command, use underscore (_) instead
of a space. For example:

schedule=every_first_fri_of_month_from_15:53_Oct_23,_1999_retry_3_after_1_hour
schedule=last_weekday_before_15_from_15:53_Oct_23,_1999_retry_after_1_hour

Syntax Following is the correct syntax:

[SCHEDULE=]string

where the string is:

[FREQ from] TIME [retry {n} + after LEN]

TOLERANCE

Description TOLERANCE is the time tolerance for duplicate job detection in
minutes. TOLERANCE determines the maximum acceptable time for reusing a
report’s cached output when a duplicate job is detected. Setting the time tolerance
on a report reduces the processing time when duplicate jobs are found.

See Section 4.2, "Duplicate Job Detection" for more information on duplicate job
detection.

Note: Earlier forms of the SCHEDULE syntax are supported, but
only the current SCHEDULE syntax is documented here.

FREQ hourly | daily | weekly | monthly | {every LEN | DAYREPEAT}} | {last
{WEEKDAYS | weekday | weekend} before {n}+}

LEN {n}+ {minute[s] | hour[s] | day[s] | week[s] | month[s]}

DAYREPEAT {first | second | third | fourth | fifth} WEEKDAYS of month

WEEKDAYS mon | tue | wed | thu | fri | sat | sun

TIME now | CLOCK [DATE]

CLOCK h:m | h:mm | hh:m | hh:mm

DATE today | tomorrow | {MONTHS {d | dd} [,year]}

MONTHS jan | feb | mar | apr | may | jun | jul | aug | sep | oct | nov | dec
RWCLI60 Command Line Arguments B-23

Usage Notes
Syntax [TOLERANCE=]number

Values Any number of minutes starting from 0

Usage Notes The following usage notes apply:

■ If tolerance is not specified, then Oracle Reports Services reruns the report even
if a duplicate report is found in the cache.

■ If a report is being processed (that is, in the current job queue) when an
identical job is submitted, then Oracle Reports Services reuses the output of the
currently running job even if TOLERANCE is not specified or is set to zero.

DELIMITER

Description DELIMITER specifies the character or characters to use to separate
the cells in your report output.

Syntax [DELIMITER=]value

Values Any alphanumeric character or string of alphanumeric characters, such as:

You can also use any of these four reserved values:

You can also use escape sequences based on the ASCII character set, such as:

Default Tab

Usage Note This argument can only be used if you have specified
DESFORMAT=DELIMITED.

, means a comma separates each cell

. means a period separates each cell

tab means a tab separates each cell

space means a space separates each cell

return means a new line separates each cell

none means no delimiter is used

\t means a tab separates each cell

\n means a new line separates each cell
B-24 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
CELLWRAPPER

Description CELLWRAPPER specifies the character or characters that displays
around the delimited cells in your report output.

Syntax [CELLWRAPPER=]value

Value Any alphanumeric character or string of alphanumeric characters.

You can also use any of these four reserved values:

You can also use escape sequences based on the ASCII character set, such as:

Default None.

Usage Notes The following usage notes apply:

■ This argument can only be used if you have specified
DESFORMAT=DELIMITED.

■ The cell wrapper is different from the actual delimiter.

" means a double quotation mark displays on each side of the
cell

’ means a single quotation mark displays on each side of the
cell

tab means a tab displays on each side of the cell

space means a single space displays on each side of the cell

return means a new line displays on each side of the cell

none means no cell wrapper is used

\t means a tab displays on each side of the cell

\n means a new line displays on each side of the cell
RWCLI60 Command Line Arguments B-25

Usage Notes
DATEFORMATMASK

Description DATEFORMATMASK specifies how date values display in your
delimited report output.

Syntax [DATEFORMATMASK=]mask

Values Any valid date format mask

Usage Note This argument can only be used if you have specified
DESFORMAT=DELIMITED

NUMBERFORMATMASK

Description NUMBERFORMATMASK specifies how number values display in
your delimited report output.

Syntax [NUMBERFORMATMASK=]mask

Values Any valid number format mask

Usage Note This argument can only be used if you have specified
DESFORMAT=DELIMITED.

EXPRESS_SERVER

Description EXPRESS_SERVER specifies the Express Server to which you want to
connect.

Syntax
EXPRESS_SERVER="server=[server]/domain=[domain]/user=[userid]/
password=[passwd]"

Syntax with RAM

EXPRESS_SERVER="server=[server]/domain=[domain]/
user=[userid]/password=[passwd]/ramuser=[ramuserid]/
rampassword=[rampasswd]/ramexpressid=[ramexpid]/
ramserverscript=[ramsscript]/rammasterdb=[ramdb]/
ramconnecttype=[ramconn]"
B-26 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
Values A valid connect string enclosed in double quotes (") where:

server is the Express Server string (for example,
ncacn_ip_tcp:olap2-pc/sl=x/st=x/ct=x/sv=x/).
See below for more details on the server string.

domain is the Express Server domain.

user is the user ID to log on to the Express Server.

password is the password for the user ID.

ramuser is the user ID to log into the RDBMS.

rampassword is the password for the RDBMS.

ramexpressid is the Oracle Sales Analyzer database user ID. This is
required for Oracle Sales Analyzer databases only.

ramserverscript is the complete file name (including the full path) of the
remote database configuration file (RDC) on the server.
This file specifies information such as the location of code
and data databases. Using UNC (Universal Naming
Convention) syntax allows multiple users to use the same
connection to access the data without having to map the
same drive letter to that location. UNC syntax is
\\ServerName\ShareName\ followed by any subfolders
or files.

rammasterdb is the name of the Relational Access Manager database to
attach initially. You must specify only the database file
name. This database must reside in a directory that is
included in the path list in ServerDBPath for Express
Server. You can check the ServerDBPath in the File I/O tab
of the Express Configuration Manager dialog box.

ramconnecttype is the type of Express connection. Always specify 0 for a
direct connection.
RWCLI60 Command Line Arguments B-27

Usage Notes
Parameters The server value contains four parameters that correspond to settings
that are made in the Oracle Express Connection Editor and stored in connection
(XCF) files. All four parameters are required and can be specified in any order. The
following table describes the parameters and their settings:

Usage Notes The following usage notes apply:

■ You can have spaces in the string if necessary (for example, if the user ID is John
Smith) because the entire string is inside of quotes.

■ If a forward slash (/) is required in the string, then you must use another
forward slash as an escape character. For example, if the domain were tools or
reports, then the command line should be as follows:

EXPRESS_SERVER="server=ncacn_ip_tcp:olap2-pc/sl=0/
st=1/ct=0/sv=1/ domain=tools//reports"

■ You can use single quotes within the string. It is not treated specially because it
is enclosed within double quotes.

Parameter Description Setting

sl Server Login -2: Host (Domain Login)

-1: Host (Server Login)

0: No authentication required

1: Host (Domain Login) and Connect security

2: Host (Domain Login) and Call security

3: Host (Domain Login) and Packet security

4: Host (Domain Login) and Integrity security

5: Host (Domain Login) and Privacy security

Note: Windows NT uses all the settings. UNIX systems
use only the settings 0, -1, and -2.See the Express
Connection Editor Help system for information on these
settings.

st Server Type :1: Express Server

ct Connection
Type

0: Express connection

sv Server Version 1: Express 6.2 or greater
B-28 Publishing Reports to the Web with Oracle9i Application Server

Usage Notes
AUTHID

Description AUTHID is the user name and password used to authenticate users
to the restricted Oracle Reports Services server. User authentication ensures that the
users making report requests have access privileges to run the requested report.
When users successfully log on, their browser is sent an encrypted cookie that
authenticates them to the secured Oracle Reports Services server registered in
Oracle Portal. By default, the cookie expires after 30 minutes. When a cookie
expires, subsequent requests (that is, ones sent to a secured Oracle Reports Services
server) must be re-authenticated.

You can use the REPORTS60_COOKIE_EXPIRE environment variable to change the
expiration time of the authentication cookie. See Appendix D, "Environment
Variables" for more information.

If you want users to authenticate and remain authenticated until the cookie expires,
then omit the AUTHID command line argument from the report request. If you
want users to authenticate every time they run report requests, then use the CGI
command SHOWAUTH and AUTHTYPE=S in the report URL, or include the %S
argument to the key mapping entry in the cgicmd.dat (CGI) file.

Syntax [AUTHID=]username/password

Values Any valid user name and password created in Oracle Portal. See your
DBA to create new users accounts in Oracle Portal.

CUSTOM

Description CUSTOMIZE specifies an XML file that you want to apply to the
report when it is run. The XML file contains customizations (for example, font
changes or color changes) that change the report definition in some way.

Syntax [CUSTOMIZE=]filename.xml | (filename1.xml,
filename2.xml, . . .)

Values A file name or list of file names that contain a valid XML report definition,
with path information prefixed to the file name or file names if necessary.
RWCLI60 Command Line Arguments B-29

Usage Notes
SAVE_RDF

Description SAVE_RDF specifies a file to which you want to save a combined
RDF file and XML customization file. This argument is most useful when you have
an RDF file to which you are applying an XML file with the CUSTOMIZE keyword
and want to save the combination of the two to a new RDF file.

Syntax [SAVE_RDF=]filename.rdf

Values Any valid file name.
B-30 Publishing Reports to the Web with Oracle9i Application Server

Oracle Reports Services Configuration Param
C

Oracle Reports Services Configuration

Parameters

This appendix contains a comprehensive list of Oracle Reports Services
configuration parameters:

Parameter Description

CACHEDIR CACHEDIR is the cache for Oracle Reports Services. CACHEDIR
can be set to any directory or logical drive on the machine. If it is
not specified, then the default is
ORACLE_HOME\REPORT60\SERVER\CACHE. For example:

CACHEDIR="C:\ORACLE_HOME\Report60\cache"

CACHESIZE CACHESIZE is the size of the cache in megabytes. If you expect to
store the output of many of your reports in Oracle Reports
Services cache, then you might want to increase this setting. If you
do not expect to store a lot of output in the cache and have limited
system resources, then you might want to reduce it. Once the
cache grows beyond the set size, Oracle Reports Services cleans
up the cached files on a first in, first out basis. The default value is
50.

Note: You can set this parameter from the Queue Manager. Open
the Queue Manager and log on as the administrator. Choose
Queue→Properties, and then change the CACHESIZE (MB)
setting.
eters C-1

CLUSTERCONFIG CLUSTERCONFIG is the configuration of slave servers to the
master server. Clustering allows you to run reports on multiple
Oracle Reports Services. The master server can identify available
slave servers and start their engines as needed. You can set up
many servers as slaves to the master server. Use the following
syntax in the master server configuration file:

Clusterconfig="(server=<servername> minengine=<minimum number of master
engines> maxengine=<maximum number of master engines> initengine=<initial
number of master engines> cachedir=<directory of central cache>)"

Note: Each slave definition must be enclosed in parentheses.

See Chapter 6, "Configuring Oracle Reports Services Server
Clusters" for detailed instructions.

ENGLIFE ENGLIFE is the maximum number of reports that an engine runs
before shutting itself down. Oracle Reports Services then brings
up fresh engines for new requests. The default value is 50.

FAILNOTEFILE FAILNOTEFILE is path and file name of the notification message
template that is sent to specified email addresses for jobs that fail
to run. For example:

FAILNOTEFILE="C:\ORACLE_HOME\Report60\failnote.dat"

IDENTIFIER IDENTIFIER is an internal setting that contains the encrypted
queue administrator user ID and password. You should not
attempt to modify it. If IDENTIFIER is not specified or is deleted
or the configuration file is not present, then anyone can supply
any user ID and password from the Oracle Reports Services
Queue Manager to log on as the queue administrator. Once
someone has logged on in this way, the user ID and password
they specified becomes the queue administrator user ID and
password until it is changed from the Oracle Reports Services
Queue Manager.

INITENGINE INITENGINE is the initial number of runtime engines started by
Oracle Reports Services. The server process spawns this many
engines when it is started. It waits two minutes for these engines
to connect to it and shuts itself down if they fail to do so. If the
engines cannot connect in this amount of time, then there is
usually some setup problem. The default value is 1.

LOGOPTION LOGOPTION is the type of log information you want inserted
into the log file. The options are alljob, failedjob, and
succeededjob. For example:

LOGOPTION="alljob"

Parameter Description
C-2 Publishing Reports to the Web with Oracle9i Application Server

MAILPROFILE If DESTYPE=MAIL, then Oracle Report Services sends your mail
to a specific destination. MAILPROFILE allows you to specify the
mail profile and password to be used when mailing reports from
Oracle Report Services. For example:

MAILPROFILE="mailprofileid/password"

This parameter is only applicable for Windows NT. Windows NT
has it’s own Windows message system, and MS Exchange uses
this system (specifically, MAPI). For MAPI to work, you need to
provide a profile entry that corresponds to the entry created in MS
Exchange so that MAPI knows the sender information.

If you are using Netscape 4.7 or later, you do not need to setup the
MAILPROFILE parameter. You do need to create entries in the
Netscape phone book for all receivers.

MAXCONNECT MAXCONNECT is the maximum number of processes that can
communicate with the server process at any one time. This setting
is the sum of the number of engines and clients, and must be
greater than two (at least one engine and one client). The default
value is 20.

MAXENGINE MAXENGINE is the maximum number of runtime engines
available to Oracle Reports Services to run reports. The server
process attempts to keep no more than this many engines active.
Ensure you have sufficient memory and resources available to
accommodate this number of engines. The default value is 1.

Note: You can set this parameter from the Oracle Reports Services
Queue Manager. Open the Oracle Reports Services Queue
Manager and log on as the administrator. Choose
Queue→Properties, and then change the Simultaneous running
engines Max setting.

MAXIDLE MAXIDLE is the maximum amount of time an engine is allowed
to be idle before being shut down. Oracle Reports Services does
not shut down the engine if doing so would reduce the number of
available engines to less than those defined in the MINENGINE. T
default value is 30 minutes.

Note: You can set this parameter from the Oracle Reports Services
Queue Manager. Open the Oracle Reports Services Queue
Manager and log on as the administrator. Choose
Queue→Properties, and then change the MAXIDLE time
(minutes) before engine shutdown setting.

Parameter Description
Oracle Reports Services Configuration Parameters C-3

MINENGINE MINENGINE is the minimum number of runtime engines Oracle
Reports Services should have available to run reports. The server
process attempts to keep at least this many engines active. Ensure
that you have sufficient memory and resources available to
accommodate this many engines. The default value is 0.

Note: You can set this parameter from the Oracle Reports Services
Queue Manager. Open the Oracle Reports Services Queue
Manager and log on as the administrator. Choose
Queue→Properties, and then change the change the
Simultaneous running engines Min setting.

PERSISTFILE PERSISTFILE indicates the location of Oracle Reports Services
DAT file, which contains the details of scheduled jobs. If
PERSISTFILE is not specified, then the default is
ORACLE_HOME\REPORT60\SERVER. For example:

PERSISTFILE="C:\ORACLE_HOME\Report60\repserver.dat"

REPOSITORYCONN REPOSITORYCONN is the database connection string that
connects Oracle Reports Services to the database when the server
starts up. The database takes a snapshot of Oracle Reports
Services queue activity (that is, scheduled jobs) whenever jobs are
run.

To create a queue activity table in your database, you must run
rw_server.sql script. For example:

REPOSITORYCONN="repserver_schema/password@mydb"

SECURITY SECURITY is the security level (0, 1, 2, or 3) for accessing cached
output files through the Oracle Reports Services Queue Manager.
A 0 means that anyone can access a job’s cached output. A 1
means that only a user whose user ID is identical to that of the
user who ran the job can access the job’s cached output. A 2 means
that only the same process that sent the job can access the job’s
cached output. A 3 means that the cached output cannot be
accessed.

The default value is 1.

Parameter Description
C-4 Publishing Reports to the Web with Oracle9i Application Server

SECURITYTNSNAME SECURITYTNSNAME is the TNS name of the Oracle Portal
database that is used for authenticating users to Oracle Reports
Services. Oracle Reports Services uses Oracle Portal to perform a
security check and to ensure that users have access privileges to
run the report to the restricted Oracle Reports Services servers
and, if requested, output to a restricted printer.

When the SECURITYTNSNAME parameter is set, you must add
information about Oracle Reports Services servers, printers, and
reports in Oracle Portal to process report requests through Oracle
Reports Services. For example:

SECURITYTNSNAME="sec_db"

See Chapter 5, "Oracle Reports Services Security with Oracle
Portal" for more information.

SOURCEDIR SOURCEDIR is a path to be searched before REPORTS60_PATH
when searching for reports and other runtime files. This setting is
useful when you have more than one Oracle Reports Services
sharing the same ORACLE_HOME because each Oracle Reports
Services can search different directories. For example:

SOURCEDIR="C:\my_reports"

SUCCNOTEFILE SUCCNOTEFILE is the path and file name of the notification
message template that is sent to specified email addresses for jobs
that run successfully. For example:

SUCCNOTEFILE="C:\ORACLE_HOME\REPORT60\succnote.dat"

TEMPDIR TEMPDIR is a directory that will be used instead of
REPORTS60_TMP when creating temporary files. TEMPDIR can
be set to any directory or logical drive on the machine. For
example

TEMPDIR="C:\ORACLE_HOME\Report60\temp"

Parameter Description
Oracle Reports Services Configuration Parameters C-5

C-6 Publishing Reports to the Web with Oracle9i Application Server

Environment Vari
D

Environment Variables

This appendix contains detailed explanations of environment variables and
configuration parameters that pertain to Oracle Reports Services. See the table
below for a list of CGI and servlet environments variables.

Environment variables are the configuration parameters used to control or
customize the behavior of Oracle Reports Services. For Windows NT, environment
variables are set using the Registry Editor. For UNIX, variables can be set using a
shell script.

Variable Description

REPORTS60_COOKIE_EXPIRE Determines the expire time of the cookie in minutes.
The default value is 30.

Cookies save encrypted user names and passwords
on the client-side when users log on to a secured
Oracle Reports Services server to run report requests.
When users successfully log on, their browser is sent
an encrypted cookie. When a cookie expires,
subsequent requests (that is, ones that are sent to
secured Oracle Reports Services servers), users must
re-authenticate to run the report.

REPORTS60_DB_AUTH Specifies the database authentication template used to
log on to the database. The default value is
dbauth.htm.

REPORTS60_ENCRYPTION_KEY Specifies the encryption key used to encrypt the user
name and password for the cookie. The encryption
key can be any character string. The default value is
reports6.0.
ables D-1

REPORTS60_CGIDIAGBODYTAGS For the Oracle Reports Services server CGI, specifies
HTML tags that are inserted as a <BODY…> tag in
the RWCGI60 diagnostic/debugging output. For
example, you might want to use this environment to
set up text and background color or image.

REPORTS60_CGIDIAGHEADTAGS For the Oracle Reports Services server CGI, specifies
HTML tags to insert between <HEAD> …</HEAD>
tags in the RWCGI60 diagnostic and debugging
output. For example, you might want to use this
environment to set up <TITLE> or <META…> tags.

REPORTS60_CGIHELP For the Oracle Reports Services server CGI, defines
URL and URI of the RWCGI60 help file, which is
navigated to when RWCGI60 is invoked with the
empty request:

http://your_webserver/rwcgi60?.

For example., setting it to http://www.yahoo.com
goes to that URL; setting it to myhelpfile.htm
displays the file:

 http://your_webserver/myhelpfile.htm

If this parameter is not defined, then a default help
screen is displayed.

REPORTS60_CGIMAP For the Oracle Reports Services server CGI, defines
fully qualified file name and location of the RWCGI60
map file if map file configuration is used. For
example:

C:\ORANT\REPORT60\cgicmd.dat)

REPORTS60_CGINODIAG For the Oracle Reports Services server CGI, when
defined, disables all debugging and diagnostic
output, such as help and showmap, from RWCGI60.
For example, the following does not work when
REPORTS60_CGINODIA is defined:

http://your_webserver/rwcgi60/help?

REPORTS60_REPORTS_SERVER Specifies the default Oracle Reports Services server
for CGI requests. When this environment variable is
set, you can omit the SERVER command line
argument in report requests to process them using the
default server, or you can include the SERVER
command line argument to override the default.

Variable Description
D-2 Publishing Reports to the Web with Oracle9i Application Server

REPORTS60_SSLPORT If you are using SSL and you want to use a port
number other than 443, then you can use this variable
to set a different port number.The default value is 443.

REPORTS60_SYS_AUTH Specifies the authentication template used to
authenticate the user name and password when users
run report request to a restricted Oracle Reports
Services server.

Variable Description
Environment Variables D-3

D-4 Publishing Reports to the Web with Oracle9i Application Server

Database Connection S
E

Database Connection Strings

This appendix lists typical database connection strings that you or users can use
when specifying report requests using the CGI or servlet. A database connection
string is the value used in the USERID command line argument to connect to the
database.

See Appendix B, "RWCLI60 Command Line Arguments" for more information
about the USERID command line argument.

Database Connection String
Oracle Reports
Services Response User Action

No USERID specified Returns the database
authentication form.

Types the Oracle or
placeholder user
name and password.

Oracle username@database Looks for the Oracle
user name and
database pair in the
connection string
table to get the
password. If Oracle
Reports Services finds
the password, then
the report is run.

None.

If the password
cannot be found, then
Oracle Reports
Services returns the
database
authentication form.

Types the database
password.
trings E-1

Oracle username/password@database Accepts the
connection string and
runs the report.

None.

Oracle username/password Uses the local
database and runs the
report.

None.

If there is no local
database, then Oracle
Reports Services
returns the database
authentication form.

Types the Oracle
database.

<$username>@database Looks for the
placeholder user
name in the
connection string
table. If the user name
cannot be found, then
Oracle Reports
Services returns the
database
authentication form.

Types the Oracle
user name and
password.

If Oracle Reports
Services can find the
placeholder user
name in the table,
then it looks for the
Oracle user name and
database name pair in
the table to get the
password. If Oracle
Reports Services finds
the password, then
the report is run.

None.

If the password
cannot be found in the
table, then Oracle
Reports Services
returns the database
authentication form.

Types the database
password.

Database Connection String
Oracle Reports
Services Response User Action
E-2 Publishing Reports to the Web with Oracle9i Application Server

<$username>/password@database Looks for the
placeholder user
name in the
connection string
table. If the user name
is found, then Oracle
Reports Services runs
the report.

None.

If the placeholder user
name cannot be
found, then it returns
the database
authentication form.
The user must
authenticate to run
the report.

Types the Oracle
user name and
password.

Database Connection String
Oracle Reports
Services Response User Action
Database Connection Strings E-3

E-4 Publishing Reports to the Web with Oracle9i Application Server

Migrating from Web Cartridge t
F

Migrating from Web Cartridge to CGI

This appendix contains step-by-step instructions on how to migrate from the Web
cartridge to a CGI. For the purposes of this appendix, it is assumed that you have
an existing Oracle Reports Services server that is configured on the Oracle
Application Server (OAS) using the Web Cartridge.

F.1 Benefits of Migrating to CGI
CGI is a component of the Web HTTP protocol. It is a standard,
platform-independent way to dynamically communicate with the Oracle Reports
Services server. Benefits include the following:

■ Openness

Most Web servers support CGI. It is the most common implementation.

■ Easy implementation

CGI is faster and easier to implement than the Web Cartridge.

Note: If you configured the Oracle Reports Services server using
the Oracle Portal Listener, any CGI-enabled Web server, or any
Java-aware servlet, then you have already configured the Oracle
Reports Services server CGI. Migration is not necessary.
o CGI F-1

Steps for Migrating to CGI
F.2 Steps for Migrating to CGI
Migrating to CGI involves the following steps:

1. Installing the software.

2. Configuring OAS

3. Configuring the CGI

4. Setting environment variables (optional)

5. Renaming the map files (optional)

6. Running a report using the CGI URL

7. Updating the report links on your Web pages

These steps are performed on your OAS machine and assume that you have an
existing Oracle Reports Services server using the Web Cartridge.

F.2.1 Step 1. Installing the Software
You need to do the following to install the software:

1. Install the Oracle Reports Services Developer Thin Client, if you have not
already done so.

2. Ensure that a TNSnames service entry exists for the Oracle Reports Services in
the tnsnames.ora file that is used by the CGI to communicate with the Oracle
Reports Services server.

■ If OAS is installed on a different machine than the Oracle Reports Services,
then check the tnsnames.ora file to ensure that a TNSnames service entry
exists for the Oracle Reports Services server in the OAS ORACLE_HOME.

■ If OAS release 4.0.8 is installed on the same machine as the Oracle Reports
Services, but in a different Oracle home, then you will need to add a
TNSnames service entry for the Oracle Reports Services server in the
tnsnames.ora file in the OAS ORACLE_HOME.

■ If OAS release 4.0 (previous to OAS 4.0.8) is installed on the same machine
as the Oracle Reports Services and is in the same ORACLE_HOME, then no
additional TNSnames entries are required.
F-2 Publishing Reports to the Web with Oracle9i Application Server

Steps for Migrating to CGI
F.2.2 Step 2. Configuring OAS
To configure OAS, you do the following:

1. Start your browser

2. Click OAS Manager in the Oracle Application Server Welcome page.

3. Click the + icon beside the Web home site icon in the OAS Manager
navigational tree.

4. Expand the HTTP listener node.

5. Create a listener if necessary or expand the listener you want to use.

6. Click Directory and configure the OAS directory mapping using the
information in the following table.

F.2.3 Step 3. Configuring the CGI
To configure the CGI, you do the following:

1. On Windows, copy the rwcgi60.exe file (located in the ORACLE_HOME\BIN
directory) to your CGI-BIN directory. On UNIX, copy the rwcgi60 file (located
in the ORACLE_HOME\BIN directory) to your CGI-BIN directory. The CGI-BIN
directory is defined in the OAS directory mapping. In this example it is
C:\OAS\BIN.

2. If OAS and Oracle Reports Services are in different home directories, then you
also need to copy the Oracle Reports Services home into the OAS home.

On Windows, if the Oracle Reports Services home is D:\ORANT\REPORTS60
and the OAS home is E:\ORANT\OAS, then you need to create a REPORTS60
subdirectory in E:\ORANT\OAS and move the template files from
D:\ORANT\REPORTS60 to E:\ORANT\OAS\REPORTS60.

Directory
Description

Physical Directory
Example

Virtual Directory
Example Permissions Required

BIN C:\OAS\BIN /CGI-BIN read and execute
Migrating from Web Cartridge to CGI F-3

Steps for Migrating to CGI
On UNIX, if the Oracle Reports Services home is
/private1/oracle6i/reports60 and OAS is /private1/oas, then you
would run the following commands:

cd/private1/oas
mkdir reports60
cd reports60
cp /private1/oracle6i/reports60/dbauth.htm
cp /private1/oracle6i/reports60/sysauth.htm
cp /private1/oracle6i/reports60/dbsysdif.htm
cp /private1/oracle6i/reports60/dvsyssam.htm

F.2.4 Step 4. Setting Environment Variables (Optional)
If you set any Web cartridge environment variables (for example,
REPORTS60_OWSHELP to specify the location of the map or help file), then you
need to set environment variables for CGI (for example, REPORTS60_CGIHELP).

To display the Web Cartridge environment variables that are currently in use, start
your browser and type your OAS Cartridge URL with the snow environment
variables command. For example, enter the following:

http://my_webserver/rwows?showenv

F.2.4.1 Windows NT
Before you begin, Oracle Corporation recommends that you back up the registry
before making any changes. Do the following steps:

1. Choose Start→Run on your desktop.

2. Type regedit to display the Registry Editor.

3. Expand Hkey_Local_machine→Software→Oracle.

4. Choose the Edit→New→String value to add the CGI environment variable.

Refer to your operating system’s documentation for more information.
F-4 Publishing Reports to the Web with Oracle9i Application Server

Steps for Migrating to CGI
F.2.4.2 UNIX
You might want to create a shell script that sets environment variables on your OAS
machine. To do this, you create a file that contains the following command for each
environment variable that you want set. For example:

setenv REPORTS60_CGIHELP myhelp.html

F.2.5 Step 5. Renaming the Map Files (Optional)
If you use a key mapping file to simplify or hide parameters, then you will need to
rename the key mapping file (for example, owscmd.dat) that was for the Web
cartridge to file name that CGI can recognize (for example, cgicmd.dat). You can
copy and rename the owscmd.dat file (located in ORACLE_HOME\REPORTS60) to
cgicmd.dat.

This completes the migration from Web cartridge to CGI.

F.2.6 Step 6. Running a Report Using the CGI URL
You need to test that you have successfully migrated to CGI. You can test the
configuration so ensure that it can communicate with the Oracle Reports Services
server. The URL for CGI is different than the URL for the Web cartridge. Run a test
using the following CGI URL. For this example, it is assumed that the
REPORTS60_REPORT_SERVER environment variable was set to point to a default
Oracle Reports Services server. The SERVER command line argument is not needed
in this case.

http://your_webserver/CGI-BIN/RWCGI60.EXE?REPORT=your_report.RDF+userid=username/password@
mydb+DESFORMAT=HTML+DESTYPE=CACHE

Notice that instead of using the RWOWS60 executable (for Web Cartridge) you are
calling the RWCGI60 executable (for CGI) from the CGI-BIN path (that was defined
in Step 2) to call the URL. The arguments that follow the ? (question mark) are the
same, regardless of whether you are using Web cartridge or CGI to communicate
with the Oracle Reports Services server.
Migrating from Web Cartridge to CGI F-5

Steps for Migrating to CGI
F.2.7 Updating the Report Links on Your Web Page
If you maintain a Web page with links to run report requests, then you will need to
change the URL reference to call the RWCGI60 executable from the CGI-BIN path.

If you configured your Oracle Reports Services server for access control using
Oracle Portal, then you will need to change the Web gateway value in the Oracle
Reports Services server access control, which was created for the Oracle Reports
Services server.
F-6 Publishing Reports to the Web with Oracle9i Application Server

Troublesho
G

Troubleshooting

This appendix contains information on how to troubleshoot your Oracle Reports
Services configuration.

Problem Description Probable Cause and Solution

Oracle Reports Services
appears to hang when you
start it.

You might have made a syntactical error in the
tnsnames.ora file and Oracle Reports Services cannot
resolve the TNSname.

Alternatively, you could try rebooting in case the cause is a
memory problem.

You get the error "Daemon
failed to listen to port."

If you start up an Oracle Reports Services that is listening to
the same port as an already running Oracle Reports Services,
then you receive this error. It could also be a problem with
your Net8 or TCP/IP setup.

You get an error about
being unable to initialize
the printer (REP-3002).

Ensure Oracle Reports Services has access to printers. For
Windows NT, the System Account does not usually have access
to printers. It could be that you installed Oracle Reports
Services as an NT service and used the System Account or
another account without printer access in the Log On As field.
You must specify an account in the Log On As field that has a
default printer access. This printer does not have to exist, but
the driver must be installed.

For UNIX, configure the printer in the uiprint.txt file.
oting G-1

Upon starting Oracle
Reports Services, you get
server specific error 186.

Typically this indicates a problem in tnsnames.ora or
sqlnet.ora. Check the entry for Oracle Reports Services in
tnsnames.ora. A typical entry should look something like
the following:

repserver.world = (ADDRESS=(PROTOCOL=tcp)
(HOST=144.25.87.182)(PORT=1951))

In this example .world is appended to the name because it is
the domain specified in the sqlnet.ora file. If the
NAMES.DEFAULT_DOMAIN setting is not defined in the
sqlnet.ora, then omit .world from the name of the server
instance.

If your tnsnames.ora file appears to be correct, then check
your sqlnet.ora file. Good default settings to use in this file
are:

TRACE_LEVEL_CLIENT=OFF names.directory_path = (TNSNAMES)
names.default_domain = world name.default_zone = world

If your protocol is TCP, then ensure the Net8 TCP/IP adapter
and Net8 have been installed. Lastly, be sure that your installed
version of Net8 is not older than the version that came with
Oracle Reports Services.

Error reported when
opening the report.

Check the name and extension carefully. On UNIX machines,
the actual report name must be in the same case as specified in
the URL. If you are using Windows Explorer in Windows, then
do not hide extensions for the displayed files that you are
copying and renaming. (Check View→Options in the Explorer
window.) This prevents you from creating files with names like
your_report.rdf.txt. Alternatively, use a DOS window
for file manipulation.

Alternatively, ensure the report is located in the path defined
by the REPORTS60_PATH environment variable.

Problem Description Probable Cause and Solution
G-2 Publishing Reports to the Web with Oracle9i Application Server

Problems running Oracle
Reports Services as a
Windows NT Service.

If you install Oracle Reports Services service to run under a
user other than SYSTEM, then ensure the user account:

■ Has the Password Never Expires option selected in the
User Manager.

■ Has membership in the appropriate groups to run Oracle
Reports Services and access the report files.

■ Has at least print permission to a default printer.

■ Can log on to a service. Choose
Start→Programs→Administrative Tools→User Manager,
then Policies User Rights. Check Show Advanced User
Rights. From the Right list, choose Log on as a service. If
the user is not already in the Grant To list, then click the
Add.

When starting the service, you might need to explicitly specify
the domain as well as the user name (user name and domain).
If you get a Windows NT error reporting that the service failed
and returning the error message number, then you can look up
the message number in the Oracle Reports Services Builder
online help.

ops$ account is not
working.

For security reasons, ops$ accounts are not supported by
Oracle Reports Services. If you pass a command line with
USERID=/ to Oracle Reports Services, then an error is
generated because it tries to use the user name of Oracle
Reports Services process rather than the user name of the
client.

Database roles not
working as expected.

If you are using database roles, then Oracle Reports Services
gets and then sets the default roles for the job request’s
database connection. If the default roles require a password,
then Oracle Reports Services logs off and then back on to the
database. As a result, it is best to include roles that require
passwords in the report itself using the Role Name report
property. Since Oracle Reports Services gets and then sets the
default roles on a per job basis, you cannot share roles between
jobs. This is done to preserve security.

Problem Description Probable Cause and Solution
Troubleshooting G-3

URL mapping is not
working.

Ensure you have a valid key mapping file. It must be named
cgicmd.dat (for the Oracle Reports Services server CGI or
servlet) in the REPORT60 directory, or named according to the
value set in the REPORTS60_CGIMAP environment variable.

To ensure the key mapping file can be found, first try the
following (a CGI example) and verify that your key entry has
been correctly parsed in the resulting page:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe/showmap?

Then try, running the report using the key map entry, where
your_key is a valid key entry in the key mapping file:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe?your_key

Cannot shutdown the
queue from the Oracle
Reports Services Queue
Manager.

You should not leave the user name and password blank the
first time that you log in as the administrator. The first time
that you log in as the queue administrator from the Oracle
Reports Services Queue Manager
(Options→Privileges→Administrator), you can specify any
user name and password. The user name and password that
you specify the first time are the administrator’s until you
change it.

Cannot run Oracle Reports
Services as an NT Service
under LocalSystem.

If Oracle Reports Services is to be run as an NT service under
the LocalSystem user ID, then the system administrator must
ensure that the following line is in the sqlnet.ora file,
otherwise the server cannot be accessed:

sqlnet.authentication_services=(NONE)

Problems finding files. Since network drives are mapped to a drive letter on a per user
basis, these mappings are no longer in effect when the
Windows NT user logs off. Oracle Reports Services must not
refer to these drives through their drive letters. Instead you
should use UNC path names. For example:

 \\SALES\DOCUMENTS\REPORTS)

This applies to Oracle Reports Services parameters, CGI and
servlet command mappings, and each hard-coded path name
in each report being run.

Problem Description Probable Cause and Solution
G-4 Publishing Reports to the Web with Oracle9i Application Server

The Web server reports an
error opening the report
output.

If the Web server reports an error opening the report output,
then check the name and extension carefully. On UNIX
machines, the actual report name must have the same case as
specified in the URL. If you are on Windows using the
Windows Explorer, then be sure not to hide extensions for
displayed files (View→Options) in the Explorer window that
you are copying and renaming. This prevents you from
creating files with names like your_report.rdf.txt.
Alternatively, use a DOS window for file manipulation.

Report runs fine on design
platform (for example,
Windows), but fails on
server platform (for
example, UNIX).

Check whether the release you are using on the design
platform is the same as that on the server. If they are not the
same, then it could be that a difference between the two
releases is causing the problem.

An invalid package was
created when trying to
create access to an Oracle
Reports Services report
definition file in Oracle
Portal.

In Oracle Portal, verify the access controls that you defined for
the printer, Oracle Reports Services server, and report
definition file.

Check for the following:

■ The OS Printer name defined in the Printer Access wizard
is correct. If the printer does not appear in the Required
Parameters page of the Report Definition File Access
wizard, then it is possible that you incorrectly entered the
OS Printer name.

■ Access to Oracle Reports Services server and optionally,
the printer has been created.

■ Users who require access to the report definition files,
servers, and printer have been given access to them.

Make the necessary changes and then try to create a valid
production package for the report definition file. You must
create a valid production package in order to run this restricted
report to a restricted Oracle Reports Services server.

Problem Description Probable Cause and Solution
Troubleshooting G-5

Reports are not running
when the URL is
requested.

Check for the following:

■ Ensure the Web server is responding (for example, by
trying to bring up your Web server administration page).
Refer to your Web server installation documentation.

■ Ensure your CGI or servlet executable has been found and
is responding. For Windows 95 and Windows NT, type
one of the following in your browser URL field:

http://your_webserver/your_virtual_cgi_dir/rwcgim60.exe or
http://your_webserver/rwows

For UNIX, type:

http://your_webserver/your_virtual_cgi_dir/rwcgi60 or
http://your_webserver/rwows

A help page should appear. If it does not, then check the
mapping of your_virtual_cgi_dir (usually called
cgi-bin) in your Web server configuration file. It should
be mapped to an existing physical directory on your Web
server. You must have a copy of the RWCGI60 executable
in this physical directory.

■ Ensure that the REPORTS60_CGINODIAG (for CGI or
servlet) environment variable is not defined, otherwise all
diagnostic output is disabled. Test this by typing one of
the following:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe/ showenv?

http://your_webserver/rwows/showenv?

This also allows you to view the other parameters or
environment variables.

Problem Description Probable Cause and Solution
G-6 Publishing Reports to the Web with Oracle9i Application Server

■ Ensure the REPORTS60_PATH environment variable is
defined. Check the environment variable by typing one of
the following:

http://your_webserver/you_virtual_cgi_dir/rwcgi60.exe/
showenv?http://your_webserver/rwows/showenv?

■ Try running a simple report to your browser, by typing
one of the following:

http://your_webserver/your_virtual_cgi_dir/rwcgi60.exe?s
erver=your_repserver+report=your_report.rdf+
userid=scott/tiger@mydb+desformat=html
http://your_webserver/rwows?server=your_repserver+
report=your_report.rdf+userid=scott/tiger@my_db+
desformat=html

If the report does not display, then check to ensure that:

■ Your_report.rdf runs correctly from Oracle Reports
Services Builder or Oracle Reports Services Runtime
Your_report.rdf is located in a directory specified
under REPORTS60_PATH.

■ The database connection string is correct.

■ The Oracle Reports Services server you are trying to run
your report to might be restricted. If so, then you need to
be given access privileges to the server. Contact your
Oracle Reports Services system administrator.

■ The report you are trying to run might be restricted. If so,
then you need to be given access privileges to run it to a
restricted Oracle Reports Services server. Contact your
Oracle Reports Services system administrator.

Remember that the Oracle Reports Services server must have
access to the report and any external files used by the report.

When sending a report to the Oracle Reports Services server,
you should only use the In Report value for parameters if they
have their values explicitly set in the report definition. For
example, suppose that you are launching a report from the
Oracle Reports Services Queue Manager (Job→New). If you
specify In Report for the Report Mode and Orientation
parameters, and neither of them has a value specified in the
report definition, then the job fails.

Report does not output to
the printer.

You might have access privileges to run a report to restricted
Oracle Reports Services Server, but might not have access
privileges to the printer you are trying to output to. Contact the
Oracle Reports Services system administrator.

Problem Description Probable Cause and Solution
Troubleshooting G-7

Host name lookup failure. You typed an incorrect URL when trying to run a report
request. Resubmit the report request using the correct URL. If
you are unsure of the URL, then contact your system
administrator.

If you trying to run your report to a restricted Oracle Reports
Services server, then the Web Gateway URL defined in the
Server Access in Oracle Portal might be incorrect.

In Oracle Portal, click Administrator from the Oracle Portal
main menu. Then, click Oracle Reports Developer Security
and Server Access. Search for the Oracle Reports Server Access
you want to edit. Confirm the Web Gateway URL on the
Server Name and Printers page of the Server Access
wizard.

Note: Only users with Oracle Reports Services system
administrator privileges can access Oracle Reports Services
Security in Oracle Portal.

Problem Description Probable Cause and Solution
G-8 Publishing Reports to the Web with Oracle9i Application Server

Glossary

Authentication

The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to allowing access to resources in a system.

Cache

A temporary storage place for database data that is currently being accessed or
changed by users, or for data that the Oracle Reports Services server requires to
support users. The terms are often used interchangeably.

CGI (Common Gateway Interface)

The industry-standard technique for running applications on a Web server. CGI
enables a program running on the Web server to communicate with another
computer to dynamically generate HTML documents in response to user-entered
information.

Cookie

A cookie is a special text file that a Web server puts on the users hard disk so that it
can remember something about the user at a later time. When users run report
requests to a secured Oracle Reports Services server, they must authenticate. If they
successfully log on, then their browser is sent an encrypted cookie. When a cookie
has expired, subsequent requests (that is, ones that sent to a secured Oracle Reports
Services server) must re-authenticate.
Glossary-1

CSS (Cascading Style Sheets)

HTML with CSS allows developers to control the style and layout of multiple Web
pages all at once. A style sheet works like template, a collection of style information,
such as font attributes and color. Cascading refers to a set of rules that Web
browsers use to determine how to use the style information. Navigator 4.0, or later,
and Internet Explorer 4.0, or later, support cascading style sheets.

Domain

A grouping of network objects, such as databases, that simplifies the naming of
network services.

Fail-over

The ability to reconfigure a computing system to utilize an alternate active
component when a similar component fails.

HTML (Hypertext Markup Language)

A tag-based ASCII language used to specify the content and links to other
documents on Web servers on the Internet. End users with Web browsers view
HTML documents and follow links to display other documents.

HTTP (Hypertext Transfer Protocol)

The protocol used to carry Web traffic between a Web browser computer and the
Web server being accessed.

IP (Internet Protocol)

The basic protocol of the Internet. It enables the delivery of individual packets from
one host to another. It makes no guarantees about whether or not the packet is
delivered, how long it takes, or if multiple packets arrive in the order they were
sent. Protocols built on top of this add the notions of connection and reliability.

Net8

This is the Oracle remote data access software that enables both client-server and
server-server communications across any network. Net8 supports distributed
processing and distributed database capability and runs over and interconnects
many communication protocols.
Glossary-2

Oracle9i Application Server

Oracle9i Application Server is a strategic platform for network application
deployment. By moving application logic to application servers and deploying
network clients, organizations can realize substantial savings through reduced
complexity, better manageability, and simplified development and deployment.
Oracle9i Application Server provides the only business-critical platform that offers
easy database web publishing and complete legacy integration while transition
from traditional client-server to network application architectures.

ORACLE_HOME

An alternate name for the top directory in the Oracle directory hierarchy on some
directory-based operating systems. An environment variable that indicates the root
directory of Oracle products.

PDF (Portable Document Format)

A file format (native for Adobe Acrobat) for representing documents in a manner
that is independent of the original application software, hardware, and operating
system used to create the documents. A PDF file can describe documents containing
any combination of text, graphics, and images in a device-independent and
resolution independent format.

Placeholder user name

A placeholder user name enables users to log on to the database using their
personal user name rather than the Oracle database user name (for example,
$user_name@database). A placeholder user name allows:

■ Users to log on only once to run multiple reports from the same database.

■ Multiple end users to run the same report with personalized results (for
example, one user might receive East coast sales results and another might
receive West coast sales results).

The first time users log on to the database, however, they must log on using the
Oracle user name and password. For subsequent requests, Oracle Reports Services
looks for the user’s personal user name in the database connection table. If it is
found, then the Oracle Reports Services server gets the corresponding password
from the cookie and runs the report.

Port

A number that TCP uses to route transmitted data to and from a particular
program.
Glossary-3

Push delivery

The delivery of information on the Web that is initiated by the server rather than by
a client request. Oracle Reports Services can push reports to an Oracle Portal site by
scheduling the report request to run automatically on a secured Oracle Reports
Services server. The end user clicks the link on the Oracle Portal site to view the
report.

Oracle Portal

Oracle Portal is an HTML-based development tool for building scalable, secure,
extensible HTML applications and Web sites. Oracle Reports Services uses Oracle
Portal to control end user access to reports published on the Web by storing
information about report requests, the secured server, and any Oracle Reports
Services printer used to print report output.

Oracle Portal component

A PL/SQL stored procedure created by an Oracle Portal component wizard (for
example, a chart, form, or Oracle Reports Services report definition file package).
Running the stored procedure creates the HTML code used to display the
component.

Oracle Reports Services Queue Manager

Enables you to monitor and manipulate job requests that have been sent to Oracle
Reports Services.

Oracle Reports Services Launcher

An application that utilizes the functionality provided by the Oracle Reports
Services ActiveX control, such submitting a request to run the specified report to
Oracle Reports Services.

Oracle Reports Services

Enables you to run reports on a remote server in a multi-tier architecture. It can be
installed on Windows NT, Windows 95, or UNIX. Oracle Reports Services handles
client requests to run reports by entering all requests into a job queue.

Oracle Reports Services Server Servlet

An interface between a Java-based Web server and Oracle Reports Services
Runtime, enabling you to run report dynamically from your Web browser.
Glossary-4

Oracle Reports Services Server CGI

An interface between a CGI-aware Web server and Oracle Reports Services
Runtime, enabling you to run a report dynamically from your Web browser.

RWCLI60

An executable that parses and transfers the command line to the specified Oracle
Reports Services (RWMTS60).

TCP/IP (Transmission Control Protocol based on Internet Protocol

An Internet protocol that provides for the reliable delivery of streams of data from
one host to another.

tnsnames.ora

A Net8 file that contains connect descriptions mapped to service names. The file can
be maintained centrally or locally, for use by all or individual clients.

URI (Uniform Resource Identifier)

A compact string representation of a location (URL) for use in identifying an
abstract or physical resource. URI is one of many addressing schemes, or protocols,
invented for the Internet for the purpose of accessing objects using an encoded
address string.

URL (Uniform Resource Locator)

A URL, a form of URI, is a compact string representation of the location for a
resource that is available through the Internet. It is also the text string format clients
use to encode requests to Oracle9i Application Server.

Web browser

A program that end users utilize to read HTML documents and programs stored on
a computer (serviced by a Web server).

Web Server

A server process (http daemon) running at a Web site which sends out Web pages
in response to http requests from remote Web browsers.
Glossary-5

Glossary-6

Index

Symbols
<!-- --> XML tag reference, 7-30
<![CDATA[]]> XML tag reference, 7-31
<condition> XML tag reference, 7-32
<customize> XML tag reference, 7-34
<data> XML tag reference, 7-36
<dataSource> XML tag reference, 7-37
<exception> XML tag reference, 7-39
<field> XML tag reference, 7-41
<formLike> XML tag reference, 7-46
<formula> XML tag reference, 7-47
<function> XML tag reference, 7-50
<group> XML tag reference, 7-51
<groupAbove> XML tag reference, 7-53
<groupLeft> XML tag reference, 7-54
<labelAttribute> XML tag reference, 7-56
<layout> XML tag reference, 7-58
<link> XML tag reference, 7-61
<matrix> XML tag reference, 7-64
<matrixCell> XML tag reference, 7-67
<matrixCol> XML tag reference, 7-68
<matrixRow> XML tag reference, 7-69
<object> XML tag reference, 7-70
<programUnits> XML tag reference, 7-72
<properties> XML tag reference, 7-73
<property> XML tag reference, 7-75
<report> XML tag reference, 7-78
<section> XML tag reference, 7-80
<select> XML tag reference, 7-82
<summary> XML tag reference, 7-83
<tabular> XML tag reference, 7-88

A
access control

availability calendars, A-1
ActiveX request method, 4-2
adding

another slave server to the master, 6-8
Apache, 3-9, 3-10
Apache server See Oracle HTTP Server powered by

Apache
applying in XML

multiple report definitions, 7-20
report definition at runtime, 7-19
report definition in PL/SQL, 7-21
report definition stored in a file, 7-21
report definition stored in memory, 7-21

architecture
Oracle Reports Services, 1-2
Oracle Reports Services tier, 1-2

database, 1-2
thin client, 1-2
Web server, 1-2

Web server configurations, 1-3
authentication cookie

expiring, B-29
availability calendar, A-1
Index-1

B
batch

modifications to reports, 7-25
reporting

from an Oracle Portal site, 4-9

C
cache

size, C-1
CACHESIZE parameter, 4-3
CLUSTERCONFIG parameter, 6-2, 6-5
clustering

configuring
master server, 6-5
Oracle Reports Services, 6-3
Oracle Reports Services servers, 6-3

enabling communication between master and
slave, 6-4

overview, 6-2
resubmitting, 6-7
running reports, 6-7

combined availability calendar, A-5
command line arguments, B-1

AUTHID, B-29
CURRENCY, 4-3
CUSTOMIZE, 7-3, 7-19, 7-20, 7-25
DECIMAL, 4-3
DESFORMAT, 4-3
DESTYPE, 4-3, B-4
mapping URL parameter, 4-4
MODE, 4-3
ORIENTATION, 4-3
PAGESIZE, 4-3
PARAMFORM, 4-3
REPORT, 4-3, 7-3, 7-19
RWCLI60, 4-6, 4-8, B-1
SCHEDULE, 6-7
SERVER, 3-16, 3-17, 4-2, 4-6, 4-8, 6-7, B-22, D-2,

F-5
THOUSANDS, 4-3
TOLERANCE, 4-3
USERID, 4-3, B-2, E-1

commands
line arguments, 1-5
Oracle Reports Services Runtime, 4-2
READONLY, B-9, B-13
RWCLI60, 4-1, 4-2, 7-20, 7-25
RWRUN60, 7-10, 7-21, 7-25, B-3, B-17
SCHEDULE, B-23
setenv, 3-12
SHOWAUTH, B-2, B-29
SRW.RUN.REPORT, 4-2

concepts, 1-1
configuring

master server clustering, 6-5
Oracle Reports Services, 1-7
Oracle Reports Services server

modifying, 3-17
UNIX with environment variables, 3-14
Windows NT with environment

variables, 3-12
with environment variables, 3-12

Oracle Reports Services server CGI, 3-8, 3-10
Oracle Reports Services server clustering, 6-1,

6-3
Oracle Reports Services server servlet, 3-4

with JSDK, 3-5
with JServ, 3-7

Web server, 3-9
creating

a service entry for Oracle Reports Services
server, 3-11

availability calendar, A-1
combined availability calendar, A-5
daily calendar, A-2
maintenance calendar, A-3
XML

report definition required tags, 7-4
report definitions, 7-2, 7-3

CURRENCY command line argument, 4-3
CUSTOMIZE

command line argument, 7-3
keyword, 7-29

customizing
overview, 7-2
reports at runtime, 7-1
XML report definition, 7-3
Index-2

D
daily calendar, A-2
database tier, Oracle Reports Services, 1-2
debugging

tracing options, 7-26
XML report definitions, 7-26

DECIMAL command line argument, 4-3
default printer, set access, 3-3, 3-15
DESFORMAT

command line argument, 4-3
DESTYPE

command line argument, 4-3
directories

ORACLE_HOME/guicommon6/tk60/ADMIN,
3-15

ORACLE_HOMEREPORT60, 4-5
ORACLE_HOMEREPORT60SERVER, 3-14

duplicate job detection
multiple output destinations, 4-3
Oracle Reports Services handling, 4-3, B-23

E
ENGLIFE parameter, 6-5
environment variables

configuration, 3-15
REPORTS_PATH, 3-14
TNS_ADMIN, 3-14

REPORTS_REPORTS_SERVER, 3-17
REPORTS60_CGIMAP, 4-5
REPORTS60_COOKIE_EXPIRE, 3-15
REPORTS60_DB_AUTH, 3-16
REPORTS60_ENCRYPTION_KEY, 3-16
REPORTS60_PATH, 3-13, 3-14, 4-7
REPORTS60_REPORT_SERVER, F-5
REPORTS60_REPORTS_SERVER, 3-12, 3-16,

4-6, 4-8, 6-7
REPORTS60_SSLPORT, 3-16
REPORTS60_SYS_AUTH, 3-16
TNS_ADMIN, 3-13, 3-14

examples
<!-- --> XML tag reference, 7-30
<![CDATA[]]> XML tag reference, 7-31
<condition> XML tag reference, 7-34
<customize> XML tag reference, 7-35

<data> XML tag reference, 7-36
<dataSource> XML tag reference, 7-38
<exception> XML tag reference, 7-41
<field> XML tag reference, 7-45
<formLike> XML tag reference, 7-49
<formula> XML tag reference, 7-47
<function> XML tag reference, 7-50
<group> XML tag reference, 7-52
<groupAbove> XML tag reference, 7-54
<groupLeft> XML tag reference, 7-55
<labelAttribute> XML tag reference, 7-58
<layout> XML tag reference, 7-59
<link> XML tag reference, 7-63
<matrix> XML tag reference, 7-65
<matrixCell> XML tag reference, 7-67
<matrixCol> XML tag reference, 7-68
<matrixRow> XML tag reference, 7-69
<object> XML tag reference, 7-71
<programUnits> XML tag reference, 7-72
<properties> XML tag reference, 7-74
<property> XML tag reference, 7-77
<report> XML tag reference, 7-78
<section> XML tag reference, 7-81
<select> XML tag reference, 7-82
<summary> XML tag reference, 7-87
<tabular> XML tag reference, 7-88
full URL syntax, 4-8
key mapping, 4-5, 4-6
RWCLI60 command line request, 4-1
simplified URL syntax, 4-8
XML report definitions

additional objects, 7-11
formatting, 7-7
formatting exception, 7-9
full, 7-12
hyperlink, 7-10
PL/SQL, 7-10

F
files

RDF, 4-7
REP, 4-7
RWRUN60 executable, 4-1
uiprint.txt, 3-15
Index-3

I
installing

Oracle9i Application Server, 2-1
starting as a non-service in Windows NT, 3-3
starting Oracle Reports Services server on

UNIX, 3-2, 3-13, 3-14, 3-15

K
key map file

cgicmd.dat CGI, 4-5
enabling, 4-5
example, 4-5, 4-6
mapping entries, 4-6
mapping URL parameters, 4-6
using, 4-4
when to use, 4-4

keywords
CUSTOMIZE, 7-29
REPORT, 7-28

L
load balancing

resubmitting jobs, 6-7
running reports, 6-7

M
maintenance calendar, A-3
MAXENGINE parameter, 6-2, 6-3
MAXIDLE parameter, 6-5
migration from Web cartridge to CGI, F-1
MINENGINE parameter, 6-2, 6-3
MODE command line argument, 4-3

O
OAS (Oracle Application Server), F-1
Oracle Application Server (OAS), F-1
Oracle HTTP Server powered by Apache, 2-2
Oracle Portal

component request method, 4-2

Oracle Reports Services
architecture, 1-2
configuring

for clustering, 6-1
parameters, C-1

duplicate job detection, 4-3
tier, 1-2
view job status on UNIX, 3-3, 3-15

Oracle Reports Services Queue Manager
monitoring job status, 3-17
scheduling jobs to run, 4-9

Oracle Reports Services server
configuring

UNIX with environment variables, 3-14
Windows NT with environment

variables, 3-12
with environment variables, 3-12

creating a service entry, 3-11
database queue, 3-18
setting the default, 3-11, 3-12

UNIX, 3-12
Windows NT, 3-12

starting, 3-1
UNIX, 3-2, 3-13, 3-14
Windows NT, 3-2
Windows NT as a non-service, 3-3

stopping, 3-1, 3-4
UNIX, 3-4
Windows NT, 3-4

Oracle Universal Installer, 2-1
ORACLE_HOME/guicommon6/tk60/ADMIN

directory, 3-15
ORACLE_HOMEREPORT60 directory, 4-5
ORACLE_HOMEREPORT60SERVER

directory, 3-14
ORIENTATION command line argument, 4-3
overviews

clustering, 6-2
XML, 7-2
Index-4

P
PAGESIZE command line argument, 4-3
parameters

CACHESIZE, 4-3
CLUSTERCONFIG, 6-2, 6-5
ENGLIFE, 6-5
MAXENGINE, 6-2, 6-3
MAXIDLE, 6-5
MINENGINE, 6-2, 6-3
Oracle Reports Services configuration, C-1
RWCLI60 command line arguments, B-1
SOURCEDIR, 3-13, 3-14, 4-7

PARAMFORM command line argument, 4-3
parser error messages for XML, 7-26
performing batch modifications in XML, 7-25
processing

reports, 1-6
Web reports, 1-4

Q
queue activity, database, 3-18

R
RDF

file, 4-7
registry entries, D-1
REP file, 4-7
REPORT

command line argument, 4-3, 7-3
keyword, 7-28

report definitions, XML, 7-1
report requests

building reports, 4-7
duplicate job detection, 4-3
methods

ActiveX, 4-2
Oracle Portal component, 4-2
RWCLI60 command line, 4-1
SRW.RUN_REPORT, 4-2
URL syntax, 4-2

running from a browser, 4-8
specifying request, 4-7
when servers are clustered, 6-7

report source path setting, 3-13
REPORTS_PATH configuration environment

variable, 3-14
REPORTS60_CGIMAP environment variable, 4-5
REPORTS60_COOKIE_EXPIRE environment

variable, 3-15
REPORTS60_DB_AUTH environment

variable, 3-16
REPORTS60_ENCRYPTION_KEY environment

variable, 3-16
REPORTS60_PATH environment variable, 3-13,

3-14, 4-7
REPORTS60_REPORT_SERVER environment

variable, F-5
REPORTS60_REPORTS_SERVER environment

variable, 3-12, 3-16, 3-17, 4-6, 4-8
REPORTS60_REPORTS_SERVER environment

variables, 6-7
REPORTS60_SSLPORT environment variable, 3-16
REPORTS60_SYS_AUTH environment

variable, 3-16
resubmitting jobs, 6-7
running

a report request from a Web browser, 3-16
reports in a clustered configuration, 6-7
XML

report definition by itself, 7-25
report definitions, 7-19

runtime
customization

overview, 7-2
XML report definition, 7-3

rw_server.sql script, 3-18
RWCLI60

command, 4-1, 4-2
command line argument, 4-6, 4-8, B-1
command line request, 4-1

RWRUN60 executable file, 4-1

S
SCHEDULE command line argument, 6-7
script, rw_server.sql, 3-18
security, 5-1
Index-5

SERVER
command line argument, 3-16, 3-17, 4-2, 4-6,

4-8, 6-7, F-5
servlet, 1-5
setting

default Oracle Reports Services server, 3-11
UNIX, 3-12
Windows NT, 3-12

SOURCEDIR parameter, 3-13, 3-14, 4-7
specifying report requests, 4-6

by building a report, 4-7
by scheduling to run automatically, 4-9
from a Web browser, 4-8

SRW.RUN_REPORT request method, 4-2
SRW.RUN.REPORT command, 4-2
starting Oracle Reports Services server, 3-1

UNIX, 3-2
Windows NT, 3-2
Windows NT (non-service), 3-3

stopping Oracle Reports Services server, 3-1
UNIX, 3-4
Windows NT, 3-4

T
tags

reference, XML, 7-30
XML for report definitions, 7-30

text conventions, xv
thin client tier, Oracle Reports Services, 1-2
THOUSANDS command line argument, 4-3
TNS_ADMIN

configuration environment variable, 3-14
environment variable, 3-13

tolerance, B-23
TOLERANCE command line argument, 4-3
tracing options for XML, 7-26

U
uiprint.txt file, 3-15
UNIX, Oracle Reports Services server

configuring with environment variables, 3-14
setting the default, 3-12
starting, 3-2
stopping, 3-4

URL syntax
adding as a hyperlink, 4-8
full syntax example, 4-8
hiding command line arguments, 4-4
report request method, 4-2
running from a browser, 4-8
simplified syntax example, 4-8
simplifying requests, 4-4

USERID
command line argument, 4-3

using, XML report definitions, 7-2

W
Web

CGI, 1-5
key map file, 4-5
server tier, Oracle Reports Services, 1-2
server, configuring, 3-9

Windows NT, Oracle Reports Services server
configuring with environment variables, 3-12
setting the default, 3-12
starting, 3-2
starting as a non-service, 3-3
stopping, 3-4
Index-6

X
XML

applying
multiple report definitions, 7-20
report definition at runtime, 7-19
report definition in PL/SQL, 7-21
report definition stored in a file, 7-21
report definition stored in memory, 7-21

creating
report definition, 7-3
report definition required tags, 7-4
report definitions, 7-2

debugging report definitions, 7-26
parser error messages, 7-26
report definitions, 7-1

additional objects, 7-11
applying, 7-20
applying via PL/SQL, 7-21
batch modifications, 7-25
debugging, 7-26
for building reports, 7-5
formatting example, 7-7
formatting exception example, 7-9
full, 7-12
hyperlink example, 7-10
overview, 7-2
parser, 7-26
partial, 7-5
PL/SQL example, 7-10
required tags, 7-4
running, 7-25
running to Oracle Reports Services

Builder, 7-28
tags, 7-30
writing to files, 7-29

running
report definition by itself, 7-25
report definitions, 7-19

RWBLD60, 7-28
tag reference, 7-30
TEXT_IO, 7-29
tracing options, 7-26
using report definitions, 7-2
Index-7

Index-8

	Send Us Your Comments
	Preface
	Part I� Publishing Reports
	1 Publishing Architecture and Concepts
	1.1� Oracle Reports Services
	1.2� Oracle Reports Services Architecture
	1.2.1� Web Architecture: Server Configurations
	1.2.1.1� Processing Web Reports

	1.2.2� Non-Web Architecture: Server Configuration
	1.2.2.1� Processing Reports

	1.3� Oracle Reports Services Configuration Choices
	1.3.1� Enable Web and Non-Web Requests
	1.3.2� Choose the Oracle Reports Services Server CGI or Servlet
	1.3.3� Choose the Location of Oracle Reports Services

	2 Installing Oracle9i Application Server with Oracle Reports Services
	2.1� About the Oracle Universal Installer
	2.2� About the Oracle HTTP Server powered by Apache

	3 Configuring the Oracle Reports Services Server on Windows NT and UNIX
	3.1� Starting and Stopping the Oracle Reports Services Server
	3.1.1� Starting the Oracle Reports Services Server
	3.1.1.1� Starting the Oracle Reports Services Server on Windows�NT
	3.1.1.2� Starting the Oracle Reports Services Server on UNIX

	3.1.2� Starting the Oracle Reports Services Server on Windows NT as a Non-Service

	3.2� Stopping the Oracle Reports Services Server
	3.2.1� Stopping or Deinstalling the Oracle Reports Services Server on Windows NT
	3.2.2� Stopping the Oracle Reports Services Server on UNIX

	3.3� Configuring the Oracle Reports Services Server Servlet
	3.3.1� Configuring the Oracle Reports Services Server Servlet with JSDK
	3.3.2� Configuring the Oracle Reports Services Server Servlet with JServ

	3.4� Configuring the Oracle HTTP Server powered by Apache Listener
	3.5� Configuring the Web Server
	3.5.1� Configuring the Oracle Reports Services Server CGI
	3.5.1.1� Configuring the Oracle Reports Services Server CGI
	3.5.1.2� Creating a Service Entry for the Oracle Reports Services Server
	3.5.1.3� Setting the Default Oracle Reports Services Server (Optional)

	3.6� Configuring the Oracle Reports Services Server with Environment Variables
	3.6.1� Configuring the Oracle Reports Services Server in Windows NT with Environment Variables
	3.6.1.1� Setting the Environment Variables (Optional)
	3.6.1.2� Starting the Oracle Reports Services Server

	3.6.2� Configuring the Oracle Reports Services Server on UNIX with Environment Variables
	3.6.2.1� Setting the Environment Variables (Optional)
	3.6.2.2� Starting the Oracle Reports Services Server on UNIX

	3.7� Environment Variables
	3.8� Running a Report Request from a Web Browser
	3.8.1� Other Steps

	3.9� Modifying the Oracle Reports Services Server Configuration (Optional)
	3.9.1� Updating the Database with Job Queue Activity
	3.9.1.1� On the Oracle Reports Services Server Machine

	4 Running Report Requests
	4.1� Report Request Methods
	4.2� Duplicate Job Detection
	4.2.1� Usage Notes

	4.3� Using a Key Map File
	4.3.1� Enabling Key Mapping
	4.3.2� Mapping URL Parameters

	4.4� Specifying Report Requests
	4.4.1� Building a Report
	4.4.2� Specifying a Report Request from a Web Browser
	4.4.3� Scheduling Reports to Run Automatically

	5 Oracle Reports Services Security with Oracle Portal
	5.1� Overview
	5.1.1� Creating a Security DLL for Oracle Reports Services 6i Security in a Windows Environment
	5.1.2� Creating a Security Library for Oracle Reports Services 6i Security in a UNIX Environment

	5.2� Database-Level Security
	5.3� Application-Level Security
	5.4� Integration with Oracle Portal
	5.4.1� Sharing Authentication Information Between Oracle Portal and Oracle Reports Services Servers

	5.5� Oracle Portal Integration Architecture
	5.6� Installing Oracle Reports Services Security in Oracle Portal
	5.6.1� Step 1: Installing Oracle Portal Into an Oracle Database
	5.6.2� Step 2: Installing Oracle Reports Services

	5.7� Configuring the Security Environment
	5.7.1� Step 1: Enabling Oracle Reports Services Security within Oracle Portal
	5.7.1.1� RW_ADMINISTRATOR
	5.7.1.2� RW_DEVELOPER
	5.7.1.3� RW_POWER_USER
	5.7.1.4� RW_BASIC_USER

	5.7.2� Step 2: Adding SECURITYTNSNAMES and PORTALUSERID Parameters
	5.7.3� Step 3: Starting Oracle Portal

	5.8� Printer Access
	5.9� Creation of an Oracle Portal Content Area
	5.10� Setting Up and Deploying a Report
	5.11� Creating and Enabling an Oracle Portal User to Administer Security
	5.11.1� Creating and Enabling User REPORTSDEV to Administer Security

	5.12� Setting Up Access Controls in Oracle Portal
	5.13� Registering a Report
	5.13.1� Registering a Server
	5.13.2� Creating Report Definition File Access

	5.14� Deploying a Report
	5.14.1� Deploying a Report to an Oracle Portal Content Area

	5.15� Running a Report
	5.16� Publishing Report Outside of Oracle Portal

	6 Configuring Oracle Reports Services Server Clusters
	6.1� Clustering Overview
	6.2� Configuring Oracle Reports Services Servers in a Cluster Example
	6.2.1� Enabling Communication Between Master and Slaves
	6.2.2� Configuring the Master Server
	6.2.3� Running Reports in a Clustered Configuration
	6.2.4� Resubmitting Jobs When an Engine Goes Down
	6.2.5� Adding Another Slave Server to the Master

	7 Customizing Reports at Runtime
	7.1� Overview
	7.1.1� Creating and Using XML Report Definitions

	7.2� Creating an XML Report Definition
	7.2.1� Required Tags
	7.2.2� Partial Report Definitions
	7.2.2.1� Formatting Modifications Example
	7.2.2.2� Formatting Exception Example
	7.2.2.3� Program Unit and Hyperlink Example
	7.2.2.4� Data Model and Formatting Modifications Example

	7.2.3� Full Report Definitions

	7.3� Running XML Report Definitions
	7.3.1� Applying an XML Report Definition at Runtime
	7.3.1.1� Applying One XML Report Definition
	7.3.1.2� Applying Multiple XML Report Definitions
	7.3.1.3� Applying an XML Report Definition in PL/SQL

	7.3.2� Running an XML Report Definition by Itself
	7.3.3� Performing Batch Modifications

	7.4� Debugging XML Report Definitions
	7.4.1� XML Parser Error Messages
	7.4.2� Tracing Options
	7.4.3� RWBLD60
	7.4.4� TEXT_IO

	7.5� XML Tag Reference
	7.5.1� <!-- comments -->
	7.5.2� <![CDATA[]]>
	7.5.3� <condition>
	7.5.4� <customize>
	7.5.5� <data>
	7.5.6� <dataSource>
	7.5.7� <exception>
	7.5.8� <field>
	7.5.9� <formLike>
	7.5.10� <formula>
	7.5.11� <function>
	7.5.12� <group>
	7.5.13� <groupAbove>
	7.5.14� <groupLeft>
	7.5.15� <labelAttribute>
	7.5.16� <layout>
	7.5.17� <link>
	7.5.18� <matrix>
	7.5.19� <matrixCell>
	7.5.20� <matrixCol>
	7.5.21� <matrixRow>
	7.5.22� <object>
	7.5.23� <programUnits>
	7.5.24� <properties>
	7.5.25� <property>
	7.5.26� <report>
	7.5.27� <section>
	7.5.28� <select>
	7.5.29� <summary>
	7.5.30� <tabular>

	Part II� Appendixes
	A Controlling User Access to Reports by Defining Calendars
	A.1� Creating Availability Calendars
	A.2� Availability Calendar Example
	A.2.1� Creating a Daily Calendar
	A.2.2� Creating the Maintenance Calendar
	A.2.3� Creating the Christmas Calendar
	A.2.4� Creating a Combined Availability Calendar

	B RWCLI60 Command Line Arguments
	B.1� Syntax
	B.2� Usage Notes

	C Oracle Reports Services Configuration Parameters
	D Environment Variables
	E Database Connection Strings
	F Migrating from Web Cartridge to CGI
	F.1� Benefits of Migrating to CGI
	F.2� Steps for Migrating to CGI
	F.2.1� Step 1. Installing the Software
	F.2.2� Step 2. Configuring OAS
	F.2.3� Step 3. Configuring the CGI
	F.2.4� Step 4. Setting Environment Variables (Optional)
	F.2.4.1� Windows NT
	F.2.4.2� UNIX

	F.2.5� Step 5. Renaming the Map Files (Optional)
	F.2.6� Step 6. Running a Report Using the CGI URL
	F.2.7� Updating the Report Links on Your Web Page

	G Troubleshooting
	Glossary
	Index

