
Oracle Forms Developer and Oracle Reports Developer

Guidelines for Building Applications

Release 6i

January, 2000

Part No. A73073-02

Oracle Forms Developer and Oracle Reports Developer: Guidelines for Building Applications, Release 6i

Part No. A73073-02

Copyright © 1999, 2000 Oracle Corporation. All rights reserved.

Portions copyright © Blue Sky Software Corporation. All rights reserved.

Contributing Authors: Frederick Bethke, Marcie Caccamo, Ken Chu, Frank Rovitto

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent and other intellectual and industrial property laws. Reverse engineering, disassembly
or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is error
free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on behalf of the US
Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE
Programs delivered subject to the DOD FAR Supplement are 'commercial computer software' and use, duplication
and disclosure of the Programs including documentation, shall be subject to the licensing restrictions set forth in the
applicable Oracle license agreement. Otherwise, Programs delivered subject to the Federal Acquisition Regulations
are 'restricted computer software' and use, duplication and disclosure of the Programs shall be subject to the
restrictions in FAR 52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle
Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Express, Oracle7, Oracle8, and PL/SQL are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for identification
purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xiii

Preface... xv

1 Managing Your Applications

1.1 The Software Development Lifecycle: An Overview.. 1-2
1.1.1 Using Project Builder to implement a management strategy.. 1-3
1.1.2 About Project Builder ... 1-3
1.1.2.1 Understanding Project Builder terminology .. 1-4
1.1.2.2 How Project Builder affects existing development roles... 1-6
1.1.3 Exploring Project Builder benefits.. 1-7
1.1.3.1 Associating modules with an application .. 1-7
1.1.3.2 Automating actions based on file types ... 1-7
1.1.3.3 Creating dependencies between modules .. 1-8
1.1.3.4 Assigning default connection strings to modules .. 1-8
1.1.3.5 Designating which modules are to be included in the final install set....................... 1-9
1.1.3.6 Sharing and porting project and subproject registry files .. 1-9
1.1.3.7 Accessing other product components and third party tools 1-9
1.1.3.8 Using source control packages .. 1-9
1.2 Managing Project Documents During Design and Development .. 1-10
1.2.1 Installing Project Builder .. 1-10
1.2.1.1 Installing the project and user registries ... 1-11
1.2.2 Creating a project .. 1-12
1.2.2.1 Creating a project: Project Administrator .. 1-12
1.2.2.2 Creating a project: Team members .. 1-16
1.2.3 Working with projects and project documents ... 1-18
1.2.3.1 Working with projects: Project Administrator... 1-19
1.2.3.2 Working with project documents: Team members.. 1-20
1.2.4 Managing projects and project documents across multiple platforms............................ 1-21
1.2.4.1 Managing projects across multiple platforms: Project Administrator 1-22
 iii

1.2.4.2 Managing project documents across multiple platforms: Team members 1-22
1.3 Managing Project Documents During the Test Phase.. 1-23
1.3.1 On the development side... 1-24
1.3.1.1 The test phase: Project Administrator.. 1-24
1.3.2 On the test side.. 1-24
1.3.2.1 The test phase: Testers ... 1-25
1.4 Managing Project Documents During the Release Phase .. 1-25
1.4.1 On the development side... 1-26
1.4.1.1 The release phase: Project Administrator .. 1-26
1.5 Deploying Completed Applications ... 1-26
1.5.1 Before You Begin ... 1-27
1.5.1.1 Terminology... 1-27
1.5.1.2 The Oracle Installer files.. 1-28
1.5.1.3 The contents of the TEMPLATES directory ... 1-30
1.5.2 Making your application an installable product.. 1-31
1.5.2.1 Deploying your application on Windows .. 1-31

2 Designing Visually Effective Applications

2.1 Understanding the Process .. 2-1
2.1.1 What are the stages?.. 2-3
2.1.2 Defining user requirements ... 2-3
2.1.3 Planning the user interface .. 2-4
2.1.3.1 Creating your standards ... 2-5
2.1.3.2 Considering portability .. 2-6
2.1.3.3 Creating a prototype... 2-6
2.1.4 Building the user interface elements ... 2-9
2.1.5 Gathering user feedback.. 2-9
2.2 Creating an Effective Form .. 2-10
2.2.1 Understanding forms... 2-10
2.2.1.1 What is a module?.. 2-10
2.2.1.2 What are forms, blocks, items, regions, and frames? .. 2-11
2.2.1.3 What are windows and canvases?.. 2-12
2.2.2 Guidelines for building forms ... 2-14
2.2.2.1 Using object libraries ... 2-15
2.2.2.2 Understanding basic design principles .. 2-16
2.2.2.3 Adding color .. 2-18
2.2.2.4 Creating canvases .. 2-19
2.2.2.5 Creating windows .. 2-21
2.2.2.6 Creating regions ... 2-22
2.2.2.7 Adding items to blocks .. 2-23
 iv

2.2.2.8 Designing messages ... 2-27
2.2.2.9 Implementing online help .. 2-29
2.2.2.10 Building effective menus ... 2-29
2.3 Creating an Effective Report.. 2-30
2.3.1 Understanding Reports.. 2-31
2.3.2 Using Templates in Report Builder .. 2-32
2.3.3 Understanding Layout Objects.. 2-33
2.3.4 Controlling Layout Objects in Report Builder.. 2-33
2.3.4.1 Using anchors .. 2-34
2.3.4.2 Using the Print Object On and Base Printing On properties 2-35
2.3.4.3 Understanding Horizontal and Vertical Elasticity ... 2-35
2.3.4.4 Using the Page Break Before and After property .. 2-36
2.3.4.5 Using the Page Protect property .. 2-36
2.3.4.6 Using the Keep with Anchoring Object property .. 2-37
2.4 Creating an Effective Display .. 2-37
2.4.0.7 Choosing the Right Graph ... 2-38

3 Performance Suggestions

3.1 Summary ... 3-1
3.2 Introduction: What Is Performance? .. 3-5
3.2.1 Performance When? .. 3-5
3.2.2 Performance of What? .. 3-5
3.2.3 Interrelationships... 3-6
3.2.4 Trade-offs.. 3-6
3.3 Measuring Performance ... 3-6
3.3.1 Forms Developer- and Reports Developer-Specific Measurements................................. 3-7
3.3.1.1 Forms Measurements ... 3-7
3.3.1.2 Reports Measurements... 3-7
3.3.2 Server- and Network-Specific Measurements ... 3-9
3.4 General Guidelines for Performance Improvement ... 3-9
3.4.1 Upgrades of Hardware and Software .. 3-9
3.4.1.1 Software Upgrades... 3-10
3.4.1.2 Hardware Upgrades ... 3-10
3.4.2 Suggestions for Data Usage ... 3-11
3.4.2.1 Use Array Processing... 3-11
3.4.2.2 Eliminate Redundant Queries .. 3-11
3.4.2.3 Improve Your Data Model... 3-12
3.4.2.4 Use SQL and PL/SQL Efficiently ... 3-12
3.4.2.5 Use Group Filters... 3-13
3.4.2.6 Share Work Between Components ... 3-14
 v

3.4.2.7 Move Wait Time Forward ... 3-14
3.4.3 Forms-Specific Suggestions.. 3-14
3.4.3.1 Tune Your Array Processing ... 3-14
3.4.3.2 Base Data Blocks on Stored Procedures.. 3-14
3.4.3.3 Optimize SQL Processing in Transactions .. 3-17
3.4.3.4 Optimize SQL Processing in Triggers ... 3-17
3.4.3.5 Control Inter-Form Navigation.. 3-17
3.4.3.6 Raise the Record Group Fetch Size ... 3-18
3.4.3.7 Use LOBs instead of LONGs ... 3-18
3.4.3.8 Erase Global Variables ... 3-18
3.4.3.9 Reduce Widget Creation on Microsoft Windows ... 3-18
3.4.3.10 Examine the Necessity of Locking ... 3-19
3.4.4 Reports-Specific Suggestions ... 3-19
3.4.4.1 Areas to Focus On.. 3-19
3.4.4.2 Reduce Layout Overhead... 3-19
3.4.4.3 Use Format Triggers Carefully ... 3-20
3.4.4.4 Consider Linking Tables ... 3-21
3.4.4.5 Control Your Runtime Parameter Settings ... 3-21
3.4.4.6 Turn Off Debug Mode .. 3-21
3.4.4.7 Use Transparent Objects ... 3-21
3.4.4.8 Use Fixed Sizes for Non-Graphical Objects ... 3-22
3.4.4.9 Use Variable Sizes for Graphical Objects .. 3-22
3.4.4.10 Use Image Resolution Reduction ... 3-22
3.4.4.11 Avoid Word Wrapping ... 3-22
3.4.4.12 Simplify Formatting Attributes ... 3-22
3.4.4.13 Limit Your Use of Break Groups ... 3-23
3.4.4.14 Avoid Duplicate Work with Graphics Builder .. 3-23
3.4.4.15 Choose Between PL/SQL and User Exits ... 3-23
3.4.4.16 Use PL/SQL instead of SRW.DO_SQL for DML .. 3-24
3.4.4.17 Evaluate the Use of Local PL/SQL.. 3-25
3.4.4.18 Use Multiple Attributes When Calling SRW.SET_ATTR 3-25
3.4.4.19 Adjust the ARRAYSIZE Parameter .. 3-25
3.4.4.20 Adjust the LONGCHUNK Parameter .. 3-25
3.4.4.21 Adjust the COPIES Parameter .. 3-26
3.4.4.22 Avoid Fetch-Aheads in Previewing .. 3-26
3.4.4.23 Choose Appropriate Document Storage ... 3-27
3.4.4.24 Specify Path Variables for File Searching .. 3-27
3.4.4.25 Use the Multi-Tiered Server ... 3-27
3.4.5 Graphics-Specific Suggestions ... 3-28
3.4.5.1 Pre-Load Your Graphics Files ... 3-28
3.4.5.2 Update Displays Only If Necessary... 3-28
 vi

.
.

..

.

3.4.5.3 Move Display Updates Out of Loops .. 3-28
3.4.5.4 Use Common Elements Wherever Possible ... 3-28
3.4.5.5 Limit the DO_SQL Procedure to DDL Statements .. 3-28
3.4.5.6 Use Handles to Reference Objects .. 3-29
3.4.5.7 Consider Not Using Shortcut Built-ins ... 3-29
3.5 In a Client/Server Structure.. 3-29
3.5.0.8 Choose the Best Installation Configuration .. 3-29
3.5.0.9 Choose a Suitable Application Residence .. 3-30
3.6 In a Three-Tier Structure ... 3-30
3.6.1 Maximizing Tier 1 - Tier 2 Scalability .. 3-30
3.6.1.1 Increase Network Bandwidth... 3-31
3.6.1.2 Minimize Changes to the Runtime User Interface .. 3-31
3.6.1.3 Adjust Stacked Canvases ... 3-31
3.6.1.4 Perform Validation at a Higher Level ... 3-31
3.6.1.5 Avoid Enabling and Disabling Menu items .. 3-31
3.6.1.6 Keep Display Size Small .. 3-31
3.6.1.7 Identify Paths for Graphic URLs ... 3-32
3.6.1.8 Limit the Use of Multimedia .. 3-32
3.6.1.9 Avoid Use of Animations Driven from the Application Server 3-32
3.6.1.10 Take Advantage of Hyperlinks ... 3-32
3.6.1.11 Put Code into Libraries ... 3-32
3.6.1.12 Reduce Start-up Overhead with JAR Files ... 3-32
3.6.1.13 Reduce Start-up Overhead with Pre-Loading ... 3-33
3.6.1.14 Use Just-in-Time Compiling ... 3-33
3.6.2 Maximizing Tier 2 - Tier 3 Scalability ... 3-33
3.6.3 Increase Tier 2 Power — Hardware ...3-33
3.6.4 Increase Tier 2 Power — Software .. 3-33

4 Designing Multilingual Applications

4.1 National Language Support (NLS) ...4-1
4.1.1 The language environment variables ...4-2
4.1.1.1 NLS_LANG...4-2
4.1.1.2 DEVELOPER_NLS_LANG and USER_NLS_LANG... 4-3
4.1.2 Character sets .. 4-4
4.1.2.1 Character set design considerations...4-4
4.1.2.2 Font aliasing on Windows platforms ...4-4
4.1.3 Language and territory ...4-5
4.1.4 Bidirectional support... 4-6
4.1.4.1 Bidirectional support in Form Builder... 4-7
4.1.4.2 Bidirectional support in Report Builder... 4-8
 vii

4.1.5 Unicode ... 4-8
4.1.5.1 Unicode support ... 4-8
4.1.5.2 Font support ... 4-9
4.1.5.3 Enabling Unicode support ... 4-10
4.2 Using National Language Support During Development .. 4-10
4.2.1 Format masks .. 4-10
4.2.1.1 Format mask design considerations ... 4-10
4.2.1.2 Default format masks... 4-11
4.2.1.3 Format mask characters ... 4-11
4.2.2 Sorting character data.. 4-12
4.2.2.1 Comparing strings in a WHERE clause... 4-12
4.2.2.2 Controlling an ORDER BY clause .. 4-13
4.2.3 NLS parameters... 4-13
4.2.3.1 Using ALTER SESSION... 4-13
4.2.3.2 Using NLS parameters in SQL functions .. 4-15
4.2.3.3 Form Builder NLS parameters... 4-15
4.2.3.4 Report Builder report definition files... 4-16
4.3 Translating Your Applications ... 4-17
4.3.1 Translating your applications using Translation Builder .. 4-17
4.3.1.1 Advantages... 4-18
4.3.1.2 Disadvantages .. 4-18
4.3.2 Translating your applications using runtime language switching................................... 4-18
4.3.2.1 Advantages... 4-19
4.3.2.2 Disadvantages .. 4-19
4.3.3 Using PL/SQL libraries for strings in code... 4-19
4.3.4 Screen design considerations .. 4-20

5 Designing Portable Applications

5.1 Before You Begin... 5-2
5.2 Designing Portable Forms.. 5-2
5.2.1 Considering the GUI ... 5-2
5.2.1.1 Choosing a coordinate system ... 5-3
5.2.1.2 Considering monitors... 5-3
5.2.1.3 Using color... 5-4
5.2.1.4 Resolving font issues .. 5-5
5.2.1.5 Using icons .. 5-6
5.2.1.6 Using buttons ... 5-6
5.2.1.7 Creating menus .. 5-7
5.2.1.8 Creating the console... 5-8
5.2.1.9 Miscellaneous .. 5-8
 viii

5.2.2 Considering the operating system ... 5-9
5.2.2.1 Including user exits .. 5-11
5.2.3 Strategies for developing cross-platform forms.. 5-11
5.2.3.1 Creating a single source ... 5-12
5.2.3.2 Subclassing visual attributes .. 5-13
5.2.3.3 Using the get_application_property built-in .. 5-13
5.2.3.4 Hiding objects .. 5-14
5.2.4 Designing forms for character-mode .. 5-14
5.3 Designing Portable Reports.. 5-17
5.3.1 Designing a report for character-mode environments... 5-18
5.3.1.1 Design considerations .. 5-18
5.4 Designing Portable Displays .. 5-19

6 Taking Advantage of Open Architecture

6.1 Working with OLE Objects and ActiveX Controls .. 6-2
6.1.1 What is OLE?.. 6-2
6.1.1.1 When should I use OLE? ... 6-2
6.1.1.2 About OLE servers and containers .. 6-3
6.1.1.3 About embedded and linked objects .. 6-3
6.1.1.4 About the registration database.. 6-4
6.1.1.5 About OLE activation styles.. 6-4
6.1.1.6 About OLE automation.. 6-5
6.1.1.7 OLE support... 6-5
6.1.1.8 OLE guidelines .. 6-13
6.1.1.9 Adding an OLE object to your application.. 6-14
6.1.1.10 Manipulating OLE objects... 6-14
6.1.1.11 OLE examples.. 6-14
6.1.2 What are ActiveX controls? .. 6-17
6.1.2.1 When should I use ActiveX controls? ... 6-17
6.1.2.2 Manipulating ActiveX controls ... 6-18
6.1.2.3 Responding to ActiveX events .. 6-18
6.1.2.4 Deploying your ActiveX control ... 6-18
6.1.2.5 ActiveX support ... 6-19
6.1.2.6 ActiveX guidelines .. 6-20
6.1.2.7 Adding an ActiveX control to your application... 6-23
6.1.2.8 ActiveX examples.. 6-23
6.2 Using Foreign Functions to Customize Your Applications ... 6-25
6.2.1 What are foreign functions? .. 6-25
6.2.1.1 When should I use a foreign function? .. 6-25
6.2.1.2 Foreign function types ... 6-26
 ix

6.2.2 The foreign function interface... 6-26
6.2.2.1 The Oracle Foreign Function Interface (ORA_FFI).. 6-27
6.2.2.2 User exit interface to foreign functions ... 6-27
6.2.2.3 Comparing ORA_FFI and user exits ... 6-27
6.2.3 Foreign function guidelines .. 6-28
6.2.4 Creating a foreign function ... 6-29
6.2.4.1 Creating an ORA_FFI interface to a foreign function... 6-30
6.2.4.2 Creating a user exit interface to a foreign function ... 6-34
6.2.5 Foreign function examples.. 6-37
6.2.5.1 Using ORA_FFI to call Windows help.. 6-37
6.2.5.2 Using ORA_FFI to open the File Open dialog on Windows................................... 6-40
6.2.5.3 Using ORA_FFI to call Unix(SUN) executables with a STDIN/STDOUT type interface

6-42
6.3 Using the Open API to Build and Modify Form Builder Applications 6-51
6.3.1 What is the Open API?.. 6-51
6.3.1.1 When should I use the Open API?... 6-51
6.3.1.2 Open API header files.. 6-51
6.3.1.3 Open API properties .. 6-53
6.3.1.4 Open API functions and macros .. 6-53
6.3.2 Guidelines for using the Open API ... 6-54
6.3.3 Using the Open API .. 6-54
6.3.3.1 Creating and modifying modules using the Open API .. 6-54
6.3.4 Open API examples .. 6-55
6.3.4.1 Modifying modules using the Open API ... 6-55
6.3.4.2 Creating modules using the Open API .. 6-58
6.4 Designing Applications to Run against ODBC Datasources ... 6-69
6.4.1 What is the Oracle Open Client Adapter (OCA)?... 6-69
6.4.1.1 When should I use OCA? .. 6-69
6.4.1.2 OCA architecture ... 6-69
6.4.1.3 Establishing an ODBC connection .. 6-70
6.4.1.4 ODBC drivers .. 6-70
6.4.1.5 OPENDB.PLL ... 6-70
6.4.2 Open datasource guidelines .. 6-71
6.4.3 Configuring your application to run against an ODBC datasource 6-73

Glossary Glossary-1

Index .. Index-1
 x

 xi

 xii

Send Us Your Comments

Forms Developer and Reports Developer: Guidelines for Building Applications

Part No. A73073-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this publication.
Your input is an important part of the information used for revision.

n Did you find any errors?
n Is the information clearly presented?
n Do you need more information? If so, where?
n Are the examples correct? Do you need more examples?
n What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter, section, and
page number (if available), and email them to d2kdoc@us.oracle.com.
 xiii

xiv

es-
loy-
 user
ation.

y on
o

elp
y.

esenta-

ly to

er.
Preface

The guidelines in this book are intended to help you fully exploit some of the powerful fea-
tures available in both Forms Developer and Reports Developer. Whether you’ve been using
these applications for years or are brand new to these products, the concepts and sugg
tions provided in this book should make it easier for you to complete such tasks as dep
ing an existing Form or Report application on the Web, designing an effective graphical
interface, or tracking and managing the disparate modules that make up a single applic

How does this book fit in with the accompanying online help? While you can always rel
the online help to explain how to accomplish a given task or which options are available t
you within a product, this book helps you determine why you’d want to choose one option
over another and to understand the consequences of each decision. Use this book to h
develop your strategy; use the online help for instructions on implementing that strateg

These guidelines represent the combined experience of our customers, marketing repr
tives, sales consultants, and the Oracle Applications group. You may want to use these
guidelines as the basis for developing your own company standards, or use them simp
augment the standards you already have in place.

Intended Audience
This book is intended for anyone who uses either Forms Developer or Reports Develop
The needs of both novice and advanced users are addressed.
 xv

t

s

e
Structure
This book contains the following chapters:

Chapter Description

Chapter 1, “Managing Your Applica-
tions”

Explains how to use the tools currently available
with Forms Developer and Reports Developer to se
up and manage the development of applications.
Topics include:

n Setting up and administering projects

n Enabling team development under a variety of
networking scenarios

n Source-controlling projects

n Exporting projects between platforms

Exporting projects to different environments during
the application lifecycle

Chapter 2, “Designing Visually
Effective Applications”

Presents visual considerations for developing Form
Developer and Reports Developer applications
using Form Builder, Report Builder, and Graphics
Builder.

Chapter 3, “Performance Sugges-
tions”

Detailed suggestions for improving the perfor-
mance of the your applications.

Chapter 4, “Designing Multilingual
Applications”

Explains how to design multilingual applications.

Chapter 5, “Designing Portable
Applications”

Discusses how to develop an application that can b
easily ported across Windows 95, Macintosh, and
UNIX. Also discusses developing for character
mode terminals.
xvi

ts
Notational Conventions
The following conventions are used in this book:

Chapter 6, “Taking Advantage of
Open Architecture”

Discusses how to use Forms Developer and Repor
Developer to:

n Create applications that include OLE objects
and ActiveX controls.

n Customize your applications with foreign func-
tions.

n Build and modify applications using the Open
API.

Run applications against ODBC-compliant data
sources.

Convention Meaning

boldface text Used for emphasis. Also used for button names, labels,
and other user interface elements.

italicized text Used to introduce new terms.

courier font Used for path and file names.

COURIER CAPS Used for:

n File extensions (.PLL or .FMX)

n Environment variables

n SQL commands

n Built-ins/package names

n Executable names

Chapter Description
 xvii

xviii

Managing Your Applic
1

Managing Your Applications

One of the most important aspects of application development is managing the modules that
make up an application. Large applications can consist of literally thousands of modules,
and millions of lines of code. In addition, modules which are important to the project as a
whole but which are not compiled into the application itself (such as design specifications,
test scripts, and documentation) must also be tracked and maintained.

This chapter explains how to use Forms Developer and Reports Developer to help you
manage the application development process.

Section Description

Section 1.1, "The Software
Development Lifecycle: An
Overview"

Briefly covers the major milestones of application development and
discusses Project Builder within that framework.

Section 1.2, "Managing
Project Documents During
Design and Development"

Discusses how to manage documents during development of an
application.

Section 1.3, "Managing
Project Documents During
the Test Phase"

Discusses how to ensure that your QA group tests the correct
configuration of project documents during the test phase.

Section 1.4, "Managing
Project Documents During
the Release Phase"

Discusses how to ensure that an installable version of your
application is delivered to your customers.

Section 1.5, "Deploying
Completed Applications"

Discusses how to turn your own application into one that is
installable by the Oracle Installer.
ations 1-1

The Software Development Lifecycle: An Overview
1.1 The Software Development Lifecycle: An Overview
Application development typically occurs in four phases:

n Design. The initial specification for the application is developed. This specification can
be based on a variety of sources: customer feedback, input of project management or
development team members, requests for enhancement, necessary bug fixes, or systems
analysis.

n Develop. Individual modules are created or modified, possibly incorporating a wide
variety of languages, tools, or platforms.

n Test. The modules are tested. This generally occurs in two stages: unit test and system
test. Unit test is testing at a modular or functional level; for example, testing UI
elements such as menus or buttons. System test tests the integration of major portions of
the code; the backend with the UI, for example.

n Deploy. The modules are packaged together in an installable form and delivered to
customers.

Figure 1–1 The phases of the development lifecycle: input and deliverables

As the application grows in size and complexity, the four phases are repeated iteratively, and
the amount of information produced (actual code, bug reports, enhancement requests, etc.)
grows. Yet all input and deliverables for all phases must be tracked and maintained to ensure
the integrity of the final deliverable: the application your customer installs.
1-2 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

:

and

ers,
ent,

s you
cus

for

er
dules.

fits".

.
oject
This chapter discusses how to use Forms Developer or Reports Developer to manage your
application’s code base and maintain version integrity.

1.1.1 Using Project Builder to implement a management strategy
In any development project, management tasks can be split roughly into two categories

n Project management, which includes allocating the necessary equipment, budget,
person-hours of work necessary to complete the development of the application.

n Software configuration management, which includes assigning modules to develop
determining dependencies among modules, maintaining the code under developm
and version control.

Project Builder, a component of both Forms Developer and Reports Developer, enable
to simplify your software configuration management tasks so you and your team can fo
on your primary objectives: designing, coding, and testing applications.

1.1.2 About Project Builder
To help simplify your software management tasks, Project Builder provides the means
you to:

n Associate modules with an application or component of an application.

n Automate actions based on file types.

n Create dependencies between modules and indicate how changes cascade; in oth
words, show which modules need to be recompiled based on changes to other mo

n Assign default connection strings to modules.

n Designate which modules are to be included in the final install set.

n Share projects and subprojects among team members and port them to different
environments.

n Invoke other tools from the Project Builder user interface.

These features are described in detail in Section 1.1.3, "Exploring Project Builder bene
If you’re unfamiliar with Project Builder terminology, however, it’s a good idea to read
through Section 1.1.2.1, "Understanding Project Builder terminology" before proceeding
This section defines some basic terms which provide the context for a discussion of Pr
Builder’s features.
Managing Your Applications 1-3

The Software Development Lifecycle: An Overview

ize,

 of

,

r a
r
ied

ight

on,
1.1.2.1 Understanding Project Builder terminology
Project Builder is based upon the concepts of projects and subprojects:

n Projects are collections of pointers to the modules and files that are part of your
application.

n Subprojects are projects contained within other projects, providing a finer level of
organizational granularity. Often the organization of files into subprojects mirrors the
organization of files into subdirectories, but this is not a requirement.

In addition to projects and subprojects, these terms are also central to a solid understanding
of Project Builder:

n Types. A type is the basis of every item, and controls the actions that are available in
Project Builder. Project Builder types recognize their associated file types primarily by
default extension; for example, .TXT for text files. Project Builder predefines types for
many commonly used files, such as forms documents (FMB), text files, and C source
files. You can also use the Type Wizard to define types for other applications.

n Project items. The components that make up a project are known as items. An item is
simply a description of a file that is part of a project. Each item is fully described in the
associated Property Palette, which lists the item’s type, location in the file system, s
and when it was last modified. The actions and macros (see below) for the item are also
defined.

It is important to remember that an item is not the file itself; rather, it is a description
the file. So, when you delete an item from a project, you are simply telling Project
Builder that the file is no longer part of the project. The file itself is not deleted.

n Actions. Actions are command strings that apply to files of a given type; for example
the Edit action for a text item may be the command string that invokes Notepad or
WordPad.

n Macros. Macros are variables you can use to modify actions. A macro may be eithe
constant or a simple expression (which, in turn, may contain other constants and/o
expressions). For example, Project Builder inserts all the information you’ve specif
for connecting to a database into the ORACONNECT macro, which is included in all
commands that might require you to connect. The information in the macro is then
inserted into the action so you can log on automatically.

Just as you might use environment variable in scripts or batch files to conveniently
modify a script’s actions without editing the script itself, so you can use macros to
customize actions without having to edit the action themselves. For example, you m
define a macro to determine whether to compile your application in Debug mode or
Optimized mode. In preparation for building the deployment version of the applicati
1-4 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

ment
rite
you would simply change one macro definition to switch off Debug, rather than having
to find and modify every type whose Build command made use of the Debug flag.

n Global registry. The Global Registry contains the pre-defined Project Builder types.

n User registry. Each user has a user registry in which to define new types, redefine
existing types, and modify or create actions or macros.

n Project registry file. The project registry file contains information necessary to track a
project, including pointers to modules contained within the project, default connection
strings, and a pointer to the "home" directory for the project.

The Project Builder interface provides three tools for manipulating the items that make up a
project:

n The Project Navigator furnishes a familiar "navigator" or "explorer" style interface with
which you can view the modules in your application. In addition, you can use Project
Builder’s filtering capabilities to display only the modules you want to see. You can
also launch editing tools directly from the Project Navigator.

n The Property Palette enables you to examine and modify the properties of selected
items.

n The Launcher, a secondary toolbar, provides another means of accessing develop
tools. You can even add buttons to the Launcher and associate them with your favo
third-party tools.
Managing Your Applications 1-5

The Software Development Lifecycle: An Overview

xport
Figure 1–2 depicts all three of these tools.

Figure 1–2 The Project Builder user interface

1.1.2.2 How Project Builder affects existing development roles
Certain roles must be filled to keep the application development effort going smoothly.
Some, such as project manager, development manager, and team leader, are common roles
within development groups and require no definition. However, with Project Builder one
new role exists—that of project administrator.

A project administrator is charged with creating projects and making them available to
developers. The project administrator maintains the Global Registry and modifies it as
necessary, exporting the changes to the developers on the team. He or she may also e
1-6 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

by
 a

ns
tton,

es a
ar.
rent
the project information to different environments, such as test environments, or other
platforms for cross-platform development.

The work the project administrator does when managing projects may affect the roles of the
following team members:

n Developers

n Source control administrator

n Testers (QA)

n Releaser

Of course, the precise duties of each team member vary from development group to
development group. A team member may also take on more than one role; for example, a
team leader may also be a project administrator, or a developer may be in charge of source
control.

1.1.3 Exploring Project Builder benefits
Now that you are familiar with basic Project Builder terminology (see Section 1.1.2.1,
"Understanding Project Builder terminology"), let’s examine the benefits Project Builder
provides.

1.1.3.1 Associating modules with an application
You can associate all of the modules in an application with the application itself simply
adding the modules to the same project. This allows you to track a large application as
single entity, determine the dependencies between modules, and so on.

1.1.3.2 Automating actions based on file types
Project Builder ships with an extensive list of types, to which are assigned default actio
(such as Open, Edit, or Print). When you select a module, then click the right mouse bu
a pop-up menu displays the actions associated with that type. By default, the actions
included in a type definition apply to all modules of that type in a project. You can also
modify and add to these actions.

Actions are simply command strings. One benefit to defining actions with the actual
command strings (besides simplicity, of course) is that an action can be associated
conceptually with several different types. For example, editing a Word document requir
different tool than editing a text document, yet conceptually the two edits are very simil
Project Builder can associate an Edit command with many different types, using a diffe
Managing Your Applications 1-7

The Software Development Lifecycle: An Overview

en
e

us, it
ack

ect

e

a C

ir
ject

 by
en
command string for each. In this way, a single command executes an appropriate action no
matter what type of module you’re working with.

1.1.3.3 Creating dependencies between modules
Knowing which modules depend on which other modules is necessary to determine wh
modules need to be recompiled as a result of a change. It’s also the key to managing th
impact of changes; for example, if a library changes, which forms are now out-of-date?

Project Builder includes the dependencies for module types in their type definitions. Th
can recognize dependencies between existing modules in a project. Since it can also tr
modifications to modules, it automatically recompiles changed modules and the modules
dependent on them.

In fact, Project Builder can recognize dependencies that do not yet exist within the proj
and create markers for them. These markers are called implied items. For example, suppose
your project contains an .FMB file, defined by the Project Builder type "Form Builder
document." The "Form Builder executable," or .FMX file, may not exist—you may not have
generated it yet. But Project Builder knows the existence of this .FMX file is implied by the
existence of the .FMB file, and creates an implied item to mark it.

To determine the existence of an implied item, Project Builder correlates the value of th
property Deliverable Type for each defined type with the input items, or source, required
for the Build From <type> action for each defined type. In our example above, the
Deliverable Type property for the "Form Builder document" type is defined as "Form
Builder executable," or .FMX.The Build From <type> action defined for a Form Builder
executable is "Build From FMB". This means .FMB files are the input items for creating
.FMX files, and, conversely, .FMX files are targets for .FMB source.

The chain of implied items can consist of multiple files. For example, suppose you add
source file to a library file. In this case, Project Builder adds modules of whatever other
types are necessary to get a complete path of Build From <type> actions from one file type
to the other (like an object file).

While Project Builder detects dependencies only between compilable modules and the
resultant executables, you can set dependencies manually by adding modules to a pro
below the item dependent on them. For example, if an .FMB is dependent on a PL/SQL
library, you can add the .PLL to the project below the .FMB, and Project Builder will
recognize the dependency.

1.1.3.4 Assigning default connection strings to modules
With Project Builder, you can define all of your most-used connection strings and store their
definitions under the Connections node. You can then assign a connection to a module
dragging the connection from the Connections node and dropping it on the module. Wh
1-8 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

ect

in

ll

rs

ort

ns:

ing

d
ult

port

ol
you need to edit that module—for instance, a form—you can select the form in the Proj
Navigator and choose Edit from the pop-up menu. Project Builder automatically opens
Form Builder and connects to your database for you.

1.1.3.5 Designating which modules are to be included in the final
install set
Project Builder makes it easy to determine and track the modules that will be included
your final install package (for example, .EXE files, .DLL files, and .HLP files).To earmark a
file for delivery, set the Deliver File property to Yes. When you’re ready to create an insta
package, you can use the Delivery Wizard to package all modules for which the Deliver File
property is set to Yes into a single unit.

Note: You can set the Deliver File property for a type or for individual project items.

1.1.3.6 Sharing and porting project and subproject registry files
Project Builder enables you to export the information about a project to other team membe
and to other platforms. Information about types, actions, macros, and project registry
files—including all the customizations you’ve made—can be written to a text-based exp
file which you can then import to other environments and other platforms. This enables
cross-platform development and testing.

1.1.3.7 Accessing other product components and third party tools
You can access other tools from the Project Builder user interface through several mea

n Actions, which you access by selecting a module in the Project Navigator and click
the right mouse button. A pop-up menu displays all the actions associated with the
selected item; the actions listed invoke whatever tools are specified in the comman
strings. You can also double-click an item in the Project Navigator to invoke its defa
action.

n The Build, Deliver, and source control actions, which launch whatever tools are
associated with them.

n The Launcher toolbar, which launches many components such as Form Builder, Re
Builder, and Graphics Builder. You can also add your own buttons to the Launcher
toolbar and associate them with your favorite third-party tools.

1.1.3.8 Using source control packages
Both Forms Developer and Reports Developer provide interfaces to these source contr
packages:
Managing Your Applications 1-9

Managing Project Documents During Design and Development

ly in
ow
ject
bers
esign
n PVCS from Intersolv

n Clearcase from PureAtria

n Versions, the source control component of StarTeam, from StarBase

You can also use other source control tools by modifying the source control actions provided
with Project Builder to point to them.

Since a variety of source control packages are available and can be used with Forms
Developer and Reports Developer, specific instructions for source-controlling your projects
are beyond the scope of this chapter.However, general guidelines will be provided where
applicable.

1.2 Managing Project Documents During Design and
Development

Much has been written about the importance of design in the success of an
application.Deliverables during the design phase can include design documents and
specifications, meeting minutes, UI prototypes, results from customer surveys (if the
application is new), user tests and lists of enhancement requests (if the application is to be
revised)—all documents that can be added to and tracked within a project.

This means the project administrator for the development effort should be identified ear
the design process and begin creating the project immediately. (See Section 1.1.2.2, "H
Project Builder affects existing development roles" for information on the role of the pro
administrator.) This section describes the role of the project administrator and the mem
of the development team in setting up Project Builder to manage a project during the d
and development phase.Specifically, this section addresses:

n Installing Project Builder

n Creating a project

n Working with projects and project documents

n Managing projects and project documents across multiple platforms

Note: The steps involved in accomplishing simple tasks with Project Builder are in the
Project Builder online help and are not included in this chapter.

1.2.1 Installing Project Builder
Project Builder is automatically installed to ORACLE_HOME\PJ10.Noteworthy files found
in this directory are:
1-10 Guidelines for Building Applications

Managing Project Documents During Design and Development
n Global Registry file (TYPESnn.UPD), where nn indicates the national language

n Default user registry files (PJUSERnn.UPD), where nn indicates the national language

Perhaps the most important issue to address during Project Builder installation is how you
want to make these various files available to team members. Section 1.2.1.1, "Installing the
project and user registries" discusses your options.

1.2.1.1 Installing the project and user registries
Project Builder depends on native file sharing protocols for its security. This can make
project files vulnerable to accidental changes, which is something to keep in mind as you
decide how to configure the Global Registry and user registries. Table 1–1 lists the available
options.

Table 1–1 Registry installation options

Option Pros Cons Recommendation

Install Project Builder
with the Global Registry
on a shared network
drive and the user
registries on local
machines.

If your team is
networked, developers
can access a single
copy of the Global
Registry. This ensures
that all versions of the
Global Registry in use
are up-to-date.

If all team members
have write access to
the Global Registry, it
can be accidentally
overwritten.

To prevent the Global
Registry from being
accidentally
overwritten, install it
in a directory to which
only you have write
access.

Install Project Builder
with copies of the Global
Registry available to
each team member, in
addition to their own
user registries.

You can propagate
updates to the Global
Registry simply by
making a copy of the
changed file available
to your team members
(if they are on the
same platform).

The individual Global
Registries are not safe
from accidental
overwrites or
deletions.

Use Project Builder’s
Export facility to
propagate changed
registry files instead of
providing copies. A
more rigorous process
may help discourage a
casual attitude toward
registry files.

Install Project Builder
with the Global Registry
and a single user
registry shared among
team members.

The types, actions,
projects, and project
modules are at risk for
conflicting
modifications.

Don’t choose this
option. But if you
must, have members of
your development
team edit only the
modules, not the
project itself.
Managing Your Applications 1-11

Managing Project Documents During Design and Development

ject.
1.2.2 Creating a project
This section focuses on the creation of a single project for distribution to a team of
developers. However, this may not be the best option for your group. If the application being
developed is very large or if components are to be split up among team members, you may
choose to create several separate, smaller projects, the contents of each determined by the
responsibilities of each developer or group of developers.

If you decide to distribute a single project, note that Project Builder projects will accept
pointers to modules that do not exist in the specified location. (You can determine whether a
module exists by examining its information in the Property Palette; Time created/modified
and File size (bytes) are blank if the module does not exist). This means you can distribute a
single large project without requiring all team members to have all modules available.

Creating a project is an ongoing task that requires the participation of both the project
administrator as well as each member of the development team. This section describes the
responsibilities unique to each role.

1.2.2.1 Creating a project: Project Administrator
As project administrator, your role goes beyond creating a project registry file and deciding
what to include in the project. Whether you use the Project Wizard provided by Project
Builder to create the project, or create a project registry file and manually edit the various
properties, prior planning is highly recommended before you complete the following tasks:

1. Create the project:

a. Set up the project’s directory structure.

b. Add modules.

c. Establish default actions, macros, and connection strings.

d. Set necessary dependencies manually.

2. Work with the source control administrator to set up a concurrent source control pro

a. Define new types and edit existing ones.

b. Customize actions and macros.

c. Create reusable connections.

3. Make the project available to team members.

The next few topics provide recommendations for completing each of these tasks.

1.2.2.1.1 Step 1: Creating the project
1-12 Guidelines for Building Applications

Managing Project Documents During Design and Development

he

ded

ur

 Add
u

t
; for

ing
 you
The Project Wizard provides an easy-to-use interface for creating a project. You can also
create a new project without the Project Wizard (using the New Project tool on the toolbar)
and set project properties in the Property Palette.

At its simplest, a new project is a default project registry file primed with information about
the Global Registry, but little else. Project Builder needs a bit more information before it can
keep track of your project, as discussed in the next few topics.

Step 1a: Set up the project’s directory structure

The directory structure of a project can have far-reaching consequences. For example,
suppose a project contains modules that are located in a directory that’s not a child of t
project directory. Now suppose you create actions that search for and modify project
modules. How will you find the "orphan" modules? Create alternate actions with hardco
paths? Not portable. Search from the root? Not efficient.

Recommendations:

n Place modules in the project directory or in a directory that’s a child of the project
directory (a good choice when adding subprojects).

n As much as possible, organize your projects and subprojects so that they mirror yo
actual directory structure.

The standard methods for adding modules to a project are the Add Files to Project and
Directory dialogs. Note that the dialogs always insert the full path unless the module yo
want to add is in the project directory; then a relative path name is used.

Step 1b: Add modules

Once you have planned the directory structure, you can add modules to the project.

Recommendation: Use subprojects whenever possible to help organize your project. Bu
don’t simply group together all forms or all reports. Group the modules into components
example, you might create a subproject for all the modules in a large form, including .FMB
files, .FMX files, PL/SQL libraries, menus, bitmaps, icons, etc. This enables you to more
easily create some necessary dependencies not detected by Project Builder.

Step 1c: Establish default actions, macros, and connection strings

This step involves making site-specific edits to actions and macros; for example, chang
build actions to use the compilers and compiler options that are standard at your site. If
have not already done so, you can also create connection strings for commonly used
databases containing test data or necessary tables.

Step 1d: Set necessary dependencies manually
Managing Your Applications 1-13

Managing Project Documents During Design and Development
Project Builder can recognize some dependencies between modules (it knows that .FMX files
are built from .FMB files, which are built from .FMT files), but only the dependencies it can
deduce by cross-referencing the Deliverable Type and the Build From <type> actions.
1-14 Guidelines for Building Applications

Managing Project Documents During Design and Development

l

 the
s,
Other dependencies may exist as well: dependencies on PL/SQL libraries, menus, icons, and
so on. You can tell Project Builder about these dependencies by creating entries for the
modules on which a module is dependent below the item for the dependent module, as
shown in Figure 1–3, "Manually added dependencies".

Figure 1–3 Manually added dependencies

This figure illustrates NAVWIZ.FMB’s dependency upon WIZARD.PLL, NAVIGATE.PLL,
and NAVWIZ.MMB.

1.2.2.1.2 Step 2: Work with the source control administrator

After you create your project, you’re ready to introduce a source control package. Many
third-party source control packages also implement the concept of projects.

Recommendation: Work with your source control administrator to set up a source contro
project that mirrors your development project in Project Builder.

When setting up a project to source control a complex application, remember to include
non-obvious modules as well. For example, when checking in a form, don’t forget menu
PL/SQL libraries, user exits, icons, or special fonts you use. Applications running on
Windows may use OCX or ActiveX controls that should be source-controlled as well.
Managing Your Applications 1-15

Managing Project Documents During Design and Development

y

t
otect
are
 for

d
 on

l team
e
istry

rk. If

ort
n

rror
1.2.2.1.3 Step 3: Make the project available to team members

Once you’ve done the preliminary work of creating the project and establishing source
control, it’s a good idea to export all project information to a project export file and notif
team members of its location. They can then import the project.

It is possible to notify team members of the location of the actual project registry file, bu
remember that Project Builder uses your operating system’s own security features to pr
your project modules from being deleted or overwritten. Simple deletes and overwrites
possible. To maintain the integrity of your projects, follow Project Builder’s own process
updating projects, and always import and export modifications to the project instead of
simply distributing changed registry files.

When you notify your team members of the location of the project export file, you shoul
also notify them of the directory structure you’ve set up so they can mirror that structure
their development machines. The easiest course for setting up the project is to have al
members map the project location to the same project directory on their machines, sinc
mappings to different project locations would require separate copies of the project reg
file with different values for the Project Location: Q:\myproj, R:\, etc.

Team members can then check out the modules they have been assigned.

1.2.2.2 Creating a project: Team members
After the project administrator has completed the tasks described in Section 1.2.2.1,
"Creating a project: Project Administrator", project team members can fine-tune the wo
you are a project team member, you can expect to:

1. Set up your directory structure and import the project

2. Customize your user registry

a. Define new types and edit existing ones

b. Customize actions and macros

c. Create re-usable connections

3. Check out your assigned modules

1.2.2.2.1 Step 1: Set up your directory structure and import the project

When your project administrator informs you that the project is available, it’s time to imp
the project information and set up your working directories with the modules you’ve bee
assigned.

Recommendation: File management is easier if you set up your directory structure to mi
what your project administrator has already created for the project.
1-16 Guidelines for Building Applications

Managing Project Documents During Design and Development

er

f
1.2.2.2.2 Step 2: Customize your user registry

One of the first things to do when setting up a project is to customize your user registry.

Step 2a: Define new types and edit existing ones

If you want to add modules to your project that are of a type not represented in the Global
Registry, you can use the Type Wizard to define your own type in your user registry and
assign actions, macros, and so on to it.

In addition, you may want to override a default command or macro for a particular type in
the Global Registry. An easy way to accomplish this is to copy the type in the Global
Registry, paste it into your user registry, and edit it. Now, all modules of that type in your
project will inherit the modifications from the type in the user registry.

Recommendation: Notify your project administrator when you modify a global type by
copying it into your user registry and editing it. Such a modification might be useful to the
whole team.

Step 2b: Customize actions and macros

While you can customize the actions and macros associated with the types you add to your
user registry, it’s important to remember that you can modify actions and macros at oth
points in the Project Builder hierarchy as well. Where you edit the item depends on the
extent of the influence you want your change to have.

The following table lists all the locations you might find an action or macro, the scope o
that action or macro, and what can override it.

An action or macro
assigned to: Affects: Unless overridden by:

Global Registry All items of type(s) to which it is
assigned in all user registries and
projects beneath the Global
Registry.

Actions or macros in a user registry,
project, subproject, or item.

User registry All items of type(s) to which it is
assigned in all projects beneath the
user registry.

Actions or macros in a project,
subproject, or item.

A project All items of type(s) to which it is
assigned in the project.

Actions or macros in a subproject or
item.

A subproject All items of type(s) to which it is
assigned in the subproject.

Actions or macros in an item.

An item Itself only. Cannot be overridden.
Managing Your Applications 1-17

Managing Project Documents During Design and Development

n add
ated
s item

ing a

late
s

s
 this

t

at
Step 2c: Create reusable connections

If you have your own set of tables with data you’ve created for testing purposes, you ca
your own connections to the list provided by the project administrator. Once you’ve cre
the connections, you can assign a connection to a module by selecting the connection’
in the Project Navigator, dragging it to the project file entries, and dropping it on the item
for the module you’ve chosen. Now, when you select an action that opens a tool requir
database connection, Project Builder logs on for you.

1.2.2.2.3 Step 3: Check out your assigned modules

Once you have your directory structure in place and the project imported, you can popu
your workspace with the modules you’ve been assigned. The source control command
Check In, Check Out, and Source Control Options, accessible from the
File’Administration menu, are associated with actions defined for each type. This mean
you can modify the actions, if necessary, to affect the results of the commands—though
is not recommended for source control.

1.2.3 Working with projects and project documents
When the project enters the development phase, maintaining the integrity of the projec
becomes increasingly important.

Recommendation: Only the project administrator should make changes to the project th
affects multiple team members (such as modifying the Global Registry or adding new
subprojects containing new modules).
1-18 Guidelines for Building Applications

Managing Project Documents During Design and Development

rt the
 is the

le,

p
ntrol
1.2.3.1 Working with projects: Project Administrator
While the application is in development, as project administrator your role is to maintain and
support the project. In addition, you might be in charge of managing development
deliverables, or working with a development manager to do so. You might need to:

n Add new modules and dependencies

n Export modifications to the project registry file

n Apply version labels

1.2.3.1.1 Adding new modules and dependencies

Sometimes new modules must be added to a project after its initial creation, and
dependencies added manually. The process for doing so is the same as when creating the
initial project. For more information, see Section 1.2.2.1.1, "Step 1: Creating the project".

1.2.3.1.2 Exporting modifications to the project registry file

Once you’ve added the new modules and made the necessary changes, you can expo
changes and make them available to members of your team. The process for doing so
same as when exporting the initial project. For more information, see Section 1.2.2.1.1,
"Step 1: Creating the project".

1.2.3.1.3 Applying version labels

Although you can try to keep various revisions synchronized with each other (for examp
through a nightly check-in), often development on one module will be completed while
another needs bugs fixed or headers changed. Synchronous revisions are generally
impractical.

A better method is to synchronize versions by applying a symbolic version label to the grou
of revisions that mark the achievement of a significant milestone. Most major source co
tools enable you to apply a symbolic label to a source control project.
Managing Your Applications 1-19

Managing Project Documents During Design and Development

oke

e
m.

sary,

with
u can

tor.

dule
1.2.3.2 Working with project documents: Team members
When your project is set up and your modules have been assigned, you can use Project
Builder to:

n Edit modules

n Add modules and dependencies manually

n Build your project

n Check modules in and out

1.2.3.2.1 Editing modules

Recommendation: The most efficient way to use Project Builder to edit modules is to
customize the actions associated with the types of modules you’ll be editing so they inv
the tools you want to use with the options you need. In addition, be sure to associate a
connection string with either the individual module or the project. Then you can drag th
connection from its location in your user registry and drop it on the module or project ite
Once your modules are prepared in this fashion, choosing a pop-up menu item or
double-clicking on a project item opens your module in the correct application. If neces
you’ll already be logged on.

You can also use the Launcher to access development tools. The Launcher is shipped
toolbar buttons already set for the Forms Developer or Reports Developer tools, but yo
add a third-party tool by creating a button and associating it with an executable.

Note: If you invoke a tool via the Launcher and then open a module, the tool will not be
aware of any associated connection strings. You will need to log on to the database
manually.

1.2.3.2.2 Adding modules and dependencies manually

See Section 1.2.2.1.1, "Step 1: Creating the project", or contact your project administra

1.2.3.2.3 Building your project

The Build commands—Build Selection, Build Incremental, and Build All—are available
from the Project menu. They are also associated with an action—in this case, the Build
From <type> action.

This means you can select a single command for any different module type and the mo
will be compiled according to the definition of the Build From <type> action—not for that
particular type, but for the target you actually want to build.
1-20 Guidelines for Building Applications

Managing Project Documents During Design and Development
For example, the Build From <type> action for an .FMX file invokes the Form Generator
and creates the .FMX file from the corresponding .FMB.What the Build command compiles is
the .FMB, but how it compiles the .FMB is determined by the action associated with the .FMX
that results.

You can modify the results of the Build commands by modifying the definition of the Build
From <type> action for the corresponding target.

Choose Build Selection to compile selected modules, or force a compile of all compilable
modules by choosing Build All. Because Project Builder can detect when modules are
out-of-date and need to be recompiled, you can compile only out-of-date modules by
selecting the item for the project containing them, then choosing Build Incremental.

Note: The Build commands are also available from the pop-up menu.

1.2.3.2.4 Checking modules in and out

If modules need conversion for source control (for instance, the source control only works
on text and your modules are binary), you can edit the Check file into RCS action to
automate the conversion to text before check-in.

You can also edit the Check file out of RCS action in a similar fashion to convert the
text-based source controlled version of the module back to binary.

1.2.4 Managing projects and project documents across multiple
platforms

Many applications today run on multiple platforms, with development taking place on a
variety of platforms as well. Chapter 5, "Designing Portable Applications" can help you
ensure that the application underlying your project is portable.

To ensure that your project is portable, too, Project Builder supports development on several
major platforms. To do so, it must ship with a Global Registry that reflects the platform; in
other words, the types defined must be found on that platform, and the actions and macros
must be written according to the syntax rules of that platform. This means the Global
Registry, and, by extension, all user registries and project registry files, are not portable.

However, you can export information about a project to a text file and import the text file to
another platform, as discussed in Section 1.1.3.6, "Sharing and porting project and
subproject registry files".
Managing Your Applications 1-21

Managing Project Documents During Design and Development
1.2.4.1 Managing projects across multiple platforms: Project
Administrator
If you are the administrator of a project undergoing development on multiple platforms, you
can expect to:

n Branch off a source control project to contain the code for the platform

n Export projects and project information to alternate platforms

1.2.4.1.1 Branching off a source control project to contain the code for the
platform

Work with your source control administrator to create a branching source control project
that enables your team members to isolate the code for the new platform.

1.2.4.1.2 Exporting projects and project information to alternate platforms

Creating an export file for the purpose of distributing a project to another platform is no
different from creating an export file to distribute to team members on the same platform.
The export file created by Project Builder is a text file, easily transferred to the alternate
platform.

1.2.4.2 Managing project documents across multiple platforms:
Team members
The role of a team member working on development on an alternate or secondary platform
is actually quite similar to the role of a team member developing on the base platform.
However, there is one major difference: when you receive a project already created on a
different platform, you can expect to:

n Revise customized actions and macros to conform to platform requirements

1.2.4.2.1 Revising customized actions and macros to conform to platform
requirements

Equivalent versions of pre-defined actions and macros, where they exist, are provided by
Project Builder for all supported platforms. However, if some actions have been customized
or new actions created, you will either need to edit the actions to make them work on the
new platform or create equivalent new actions.
1-22 Guidelines for Building Applications

Managing Project Documents During the Test Phase
1.3 Managing Project Documents During the Test Phase
Though the test phase is often thought of as separate and distinct from the development
effort—first you develop, then you test—testing is a concurrent process that provides
valuable information for the development team.
Managing Your Applications 1-23

Managing Project Documents During the Test Phase
There are at least three options for integrating Project Builder into the test phase:

n Your testers do not install Project Builder. You use Project Builder functionality to
compile and source-control the modules to be tested and hand them off to the testers,
whose process remains unchanged.

n The testers import the same project or projects that the developers use.

n You create a project based on the development project but customized for the testers
(for example, it does not include support documents, specs, or source), who import it.

Recommendation: A combination of the second and third options works best. Associating
your application with a project can be useful during the testing phase, as well. You can
create actions to automatically run test scripts or add script types and make them dependent
on the modules they are to test.

During unit test, testers can use the same project or projects as the developers, if the project
is organized by functional units, or separate projects have been created for functional
units.The project or projects can also be exported, so unit test can take place in a variety of
environments and on a variety of platforms.

System test might require a new, stripped-down version of the development projects that
includes only the modules being tested, especially if you need to concatenate several smaller
projects.

1.3.1 On the development side
The goal of the development group in this phase of the process is to provide the test group
with the modules to be tested in as smooth a manner as possible.

1.3.1.1 The test phase: Project Administrator
The tasks involved in creating and exporting a project for testing purposes are the same as
the tasks required when creating and exporting a project to a development team:

n Create a test project based on deliverable modules (optional)

n Create the test version

n Export the project to different test environments

1.3.2 On the test side
Although members of the test team generally are not responsible for any modifications to the
modules of an application, they do have input (modules to test) and deliverables (fully-tested
modules and lists of bugs uncovered during the testing phase).
1-24 Guidelines for Building Applications

Managing Project Documents During the Release Phase

o

e as

ay

actions

er

der
Project Builder can help the test team keep track of its input and deliverables in the same
way it helps development team members.Testers can add scripts and logs to a project,
modify actions to include debugging options, and add subprojects containing testing
information.

1.3.2.1 The test phase: Testers
If you have decided to use Project Builder to help test your application, you’ll need to d
some preparatory work that is very similar to that of the developers when they are first
setting up their projects.You may need to:

n Import the test project and set up the testing environment

n Add test scripts and test data to the project

n Modify actions and macros to facilitate testing

1.3.2.1.1 Importing the test project and setting up the testing environment

The process of importing a test project and setting up a testing environment is the sam
the process for importing a project and setting up the environment for development.See
Section 1.2.2, "Creating a project", for more information.

1.3.2.1.2 Adding test scripts and test data to the project

You may need to add some items, such as test scripts, to the project.In addition, you m
need to add connection strings to database accounts containing test data.

Remember that you can automate the running of test scripts just as you can automate
associated with the modules in your application.

1.3.2.1.3 Modifying actions and macros to facilitate testing

If actions specifying "run with debugging" have not already been provided, you can eith
modify existing actions to include a debug flag, or create new actions.

1.4 Managing Project Documents During the Release
Phase

When your application has been thoroughly tested and is ready to release, Project Buil
can help you simplify the process of delivering the application to customers.
Managing Your Applications 1-25

Deploying Completed Applications

the
e,

e the
o

ation

our
1.4.1 On the development side
During the release phase, the development group passes the tested and verified versions of
all modules necessary for installation to the releaser.Because Project Builder marks all
modules to be included in the final application and associates special commands with them,
this hand-off can be automated in the same fashion as other processes, such as compiling
your project and source controlling it.

1.4.1.1 The release phase: Project Administrator
Once your project has been thoroughly tested and is ready for release, you have one
remaining task: package the project.

1.4.1.1.1 Packaging the project

Project Builder provides the Delivery Wizard to help you package your applications as
installable components, as well as to:

n Copy or FTP your completed project to a staging area.From the staging area, you can
copy or archive your files to a distribution medium, or make them available internally.

n Generate the necessary scripts so your project is installable on Windows 95 and NT
through the Oracle Installer.You can even package the Forms Developer or Reports
Developer runtime environments with your project, so your users can install the entire
package—your application, plus the required runtime environment—from a single
invocation of the Oracle Installer.

n Run a customized Deliver action to TAR or ZIP your files.

The modules actually packaged by the Delivery Wizard are determined by the value of
Deliver file property associated with each item (Yes to include the module in the packag
No to leave it out).

1.5 Deploying Completed Applications
After you have packaged your application, you’re ready to make it available to your
customers.In addition to installing your application, your customers will also need to us
Oracle Installer to install the Runtime environment on which your application depends.T
simplify the installation process for your customers, both Forms Developer and Reports
Developer provide the Oracle File Packager, with which you can make your own applic
installable with the Oracle Installer on Windows NT and Windows 95.When you’ve
completed the steps in this section, your customers can install everything they need—y
application, plus the required Runtime environment(s)—using a single mechanism.
1-26 Guidelines for Building Applications

Deploying Completed Applications

elf
1.5.1 Before You Begin
Before discussing how to package your application, it’s a good idea to familiarize yours
with the terminology and background information relevant to the installation/packaging
process:

n Section 1.5.1.1, "Terminology"

n Section 1.5.1.2, "The Oracle Installer files"

n Section 1.5.1.3, "The contents of the TEMPLATES directory"

1.5.1.1 Terminology
This table defines some important terms for the installation/packaging process:

Term Definition

Stage (or staging) area The area on your PC or network where files and
installation scripts are prepared, then copied to the
distribution media.

Distribution media The set of media (for example, tapes, CDs, or
diskettes) from which users install your
application.

Installable component Any product (for example, Forms Runtime, GUI
Common Files, and so on) that has its own set of
Oracle Installer files (MAP, VRF, INS, and DEI).

Product file (PRD file) A file that lists all installable components in a
given staging area.

Oracle File Packager A wizard that creates the product file and all the
Oracle Installer files (MAP, VRF, INS, DEI)
needed to make your Windows application
installable through the Oracle Installer.
Managing Your Applications 1-27

Deploying Completed Applications

r you,
me

s the
ds,
ller.
1.5.1.2 The Oracle Installer files
The Oracle Installer files control how and where an application is installed (and de-installed)
on a user’s machine.While the Oracle File Packager creates the Oracle Installer files fo
you may have to make some slight modifications manually. If you just want to look at so
sample installer files, take a look at:

\TEMPLATES\RELEASE\YOURAPP

\FORMSAPP

FORMSAPP.MAP
FORMSAPP.VRF
FORMSAPP.INS
FORMSAPP.DEI

\DEV2KAPP

DEV2KAPP.MAP
DEV2KAPP.VRF
DEV2KAPP.INS
DEV2KAPP.DEI

All of these files are text files and should be viewable and editable in a text editor.

1.5.1.2.1 The PRD file

The PRD file lists all the installable components in a given staging area. It also identifie
base filename and location for the Oracle Installer files of each component.In other wor
the PRD lists all the files that appear in the Available Products pane of the Oracle Insta
Its name reflects the platform it describes; e.g., WIN95.PRD and NT.PRD.There is one
PRD file per staging area, per platform.

Column Name Description

Product number.You shouldn’t have to modify this.

Product A unique name used to identify your application.

Parent Leave as "root".

Filename Base filename of your MAP, VRF, INS, and DEI installation
scripts.

Version Version number of your application.

Interface Label Name of your application as it appears in the Available Products
window of the Oracle Installer.
1-28 Guidelines for Building Applications

Deploying Completed Applications

nd

rs
1.5.1.2.2 The MAP file

The MAP file is a table that lists all the files that make up your application.

Note: Group, Item, and Command are required only for applications that appear in the Start
menu.To see an example of how these fields are filled in, use your OS search capabilities to
locate DEVDEM60.MAP, the map file for the Forms and Reports Developer demos. (If you
can’t find it, you may have to install "Forms Developer [or Reports Developer] Demos a
Add-ons" from your Oracle distribution media.)

Location Relative path to the directory that contains the installation script
files (MAP, INS, VRF, and DEI) and all the files that make up
your application.

Size Total size of the installable component.Set automatically by the
CHECKMAP utility.

Visible? Makes the component visible (or not) in the Available Products
window of the Oracle Installer.

Selected? Makes the component selected (or not) in the Available Products
window of the Oracle Installer.

Open? Used for parent/child components.You should not need to
modify this field.

Description Describes your application.

Volume Should match what appears in the Filename field.Not used for
CD or LAN installations.

Column Name Description

Source File to be copied to the user’s machine.

Destination Directory to which the file is copied.

Group Program group that will hold the program item(s).

Item Name of the item or icon as it appears in the menu.

Command Command that is executed when the item or icon is invoked.Appea
in the format:

 command line working_directory alternate_icon

Working_directory and alternate_icon are optional, however, if
"command line" appears alone, it must end with a semicolon.

Column Name Description
Managing Your Applications 1-29

Deploying Completed Applications

ion’s
t on a

e
s

works

wn

 95:
1.5.1.2.3 The VRF file

The VRF file VeRiFies that all the correct dependencies are identified and installed. For
example, by specifying that your application depends on Forms Runtime, your applicat
installation process will automatically detect whether Forms Runtime is already presen
user’s machine.If it is not, Forms Runtime will be installed.

The VRF file also prompts the user for information, such as where the product should b
installed.In addition, the VRF file sets up the user’s environment, defining such things a
environment variables in the Windows registry.

1.5.1.2.4 The INS file

The INS file INStalls the files that make up an installable component, sets any needed
environment variables, and registers the product with the Oracle Installer.It works in
coordination with the MAP file and the VRF file.

1.5.1.2.5 The DEI file

The DEI file DEInstalls the files that make up an installable component.It also removes
environment variables and unregisters the component after successful deinstallation.It
in coordination with the MAP file.

1.5.1.3 The contents of the TEMPLATES directory
The TEMPLATES directory provides everything you need to set up and customize your o
staging area. Available on your Oracle distribution media, the TEMPLATES directory
contains:

n The RELEASE subdirectory, which serves as a starting point for creating your own
staging area.

n RELEASE\INSTALLR\INSTALL\WIN95.PRD, a PRD file that lists the installable
components for Forms, Reports, and Graphics Runtime environments on Windows

n Required Support Files

n System Support Files

n GUI Common Files

n Tools Utilities

n Forms Runtime

n Reports Runtime

n Graphics Runtime
1-30 Guidelines for Building Applications

Deploying Completed Applications

red

r

n

nt
n RELEASE\INSTALLR\INSTALL\NT.PRD, a PRD file that lists the installable
components for Forms, Reports, and Graphics Runtime environments on Windows NT
(see the previous bullet for a components list).

1.5.2 Making your application an installable product
This section contains instructions for creating a one-step or a multi-step installation process
for your customers:

n One-step process: Your customers install your application and the Runtime environment
they need from a single PRD file.Another way to think of this is that your customers
install everything they need—your application, plus the required Runtime
environment(s)—from a single invocation of the Oracle Installer.

n Multi-step process: Your customers install applications from many different staging
areas, each of which has its own PRD file. This approach works well if you need to
distribute many Forms Developer or Reports Developer applications, or if the requi
Runtime environment is already available to your customers from a common area.

Whichever process you choose, to make your application installable with the Oracle
Installer, you will:

n Copy the TEMPLATES\RELEASE directory from the Oracle distribution media to you
machine to serve as a starting point for your own staging area.

n Use the Oracle File Packager to create the PRD, MAP, VRF, INS, and DEI files you
need to make your application installable through the Oracle Installer.

n Copy your files from your development area to the staging area.From there you ca
copy the files to your distribution media.

The rest of this chapter contains specific instructions for completing these tasks.

1.5.2.1 Deploying your application on Windows
If your application is installable on Windows 95 and NT, you can use the Oracle File
Packager to create the Oracle Installer files and to copy your files from your developme
area to the staging area. The following steps address both one-step and multi-step
installations.

Step 1: Install the Oracle File Packager

1. From TEMPLATES\OISFP10 (on your Oracle distribution media), click
SETUP.EXE to invoke the Oracle Installer.SETUP.EXE detects which operating
system is running and launches the appropriate Oracle Installer.

2. Select Oracle File Packager from the list of installable products.
Managing Your Applications 1-31

Deploying Completed Applications

oup,

e
3. Complete the installation process as prompted.

Step 2: Prepare your staging area

1. Copy TEMPLATES\RELEASE to a drive on your PC or a networked drive.

2. Create a subdirectory for your application under
TEMPLATES\RELEASE\FORWIN95, even if your application is targeted for the
NT environment.

If you are staging more than one application, create a subdirectory for each.

Step 3: Move your files to the staging area and create the Oracle Installer files.

Repeat this step for each staging area you established in Step 2.

1. From the Start menu, select Oracle for NT or Windows 95, then select Oracle File
Packager.

2. Follow the steps presented in the Oracle File Packager, using the online help to
assist you.

Notes:

n The internal string you specify in Step 3 is prepended to your Oracle Installer files
(MAP, INS, VRF, and DEI).

n When prompted for the Staging Area Location, specify the subdirectory under
TEMPLATES\RELEASE\FORWIN95.

Step 4: Merge your PRD file with NT.PRD and WIN95.PRD

This step creates a one-step installation process.If you’re creating a multi-step
installation, go to Step 5.

1. Copy the line from your own application’s PRD file and paste it into
RELEASE\INSTALLR\INSTALL\WIN95.PRD and/or
RELEASE\INSTALLR\INSTALL\NT.PRD.

Step 5: Modify the Oracle Installer files

1. If you want your application to appear as an icon in the Start menu, add the Gr
Item, and Command fields to the MAP file(s) for your application(s). To see an
example of how to fill in these fields, use your operating system’s search
capabilities to find the Oracle Demos MAP file, DEVDEM60.MAP.

2. If you wish to establish some dependencies for your application, add them to th
VRF file.
1-32 Guidelines for Building Applications

Deploying Completed Applications

r in
n the
D

uch as
gs

For example, if you establish Forms Runtime as a dependency for your application,
the installation process will automatically detect whether Forms Runtime is already
present on a user’s machine. If it is not, Forms Runtime will be installed.

3. In each staging area, click SETUP.EXE to bring up the Oracle Installer. Examine
the files listed in the Available Products pane. If you do not want a file to appea
this pane—for example, a file has already been established as a dependency i
VRF file and does not need to be installed explicitly—edit the staging area’s PR
file and change the file’s "Visible?" value to false.

Step 6: Test your installation

Test your installation on a "clean" machine (a machine with no previously-installed
products) that is representative of the projected end-user environment. Do not rely on
tests conducted on a developer’s machine—that machine may already have files s
icons or libraries that you inadvertently omitted from your map file, or registry settin
that were not included in your INS file. This is one of the most common causes of
installation problems.

1. Install your application and make sure it installs the components it should.

2. Launch the application to make sure it runs correctly.

3. Test removing your application using the Oracle Installer.

Step 7: Copy the staging area to your distribution media

When you are ready to copy your application to CD, tape, diskette, or another
medium—or simply to a LAN or other networked machine—be sure you include the
entire staging area—that is, TEMPLATES\RELEASE in its entirety. If you include
only your subdirectory, the required runtime environment(s) will not be accessible.
Managing Your Applications 1-33

Deploying Completed Applications
1-34 Guidelines for Building Applications

Designing Visually Effective Applic
2

em,

s.
 and
e

,

s

f
Designing Visually Effective Applications

This chapter offers guidelines to help you develop a graphical user interface (GUI):

2.1 Understanding the Process
Even more important than understanding the process for developing an effective GUI is
understanding the people who will use it. In fact, your success is directly related to how well
you understand your users—the tasks they perform, the order in which they perform th
their surroundings, and their expectations.

If you’re like many application developers, this idea may require a profound shift of focu
Applications typically evolve from the inside out: from the datasource itself, to the code,
finally to the GUI. If you are committed to developing an effective GUI, you must revers
this process: first, interview your users; next, design a user interface that supports their
specific tasks; and finally, create the underlying code base that makes it all work.

Section Description

Section 2.1, "Understanding
the Process"

Briefly describes the process for developing a GUI-based application.
(If you’ve developed GUIs in the past, you may want to go directly to
Section 2.1.3, "Planning the user interface".

Section 2.2, "Creating an
Effective Form"

Addresses visual considerations for creating forms. The section
begins with a review of basic Form Builder terminology, discusses
the importance of object libraries as a means of enforcing standards
and presents guidelines for employing forms objects in your GUI.

Section 2.3, "Creating an
Effective Report"

Helps you understand how to control the placement of report object
and where page breaks occur.

Section 2.4, "Creating an
Effective Display"

Presents some visual considerations for graphical representations o
your data.
ations 2-1

Figure 2–1 Thinking about the user first

No set of prepackaged standards or guidelines can serve as a substitute for developing an
accurate understanding of your users’ needs. This chapter can help you develop that
understanding, as well as assist you in creating an interface uniquely tailored to your
particular group of users.

User GUI Code
2-2 Guidelines for Building Applications

2.1 Understanding the Process

es:

ing

 from
n
e
2.1.1 What are the stages?
As shown in the Figure 2–2, the process for developing a GUI consists of four major stag

Figure 2–2 Stages in developing a user interface

The rest of this section offers guidelines for completing each of these stages:

n Section 2.1.2, "Defining user requirements"

n Section 2.1.3, "Planning the user interface"

n Section 2.1.4, "Building the user interface elements"

n Section 2.1.5, "Gathering user feedback"

Note: This chapter is not intended to treat the subject of GUI development exhaustively. If
you require more detail on how to proceed in a given stage, you may want to visit your local
library or computer bookstore. In particular, Jeffrey Rubin’s "Handbook of Usability
Testing" is an excellent source of information on defining user requirements and gather
user feedback.

2.1.2 Defining user requirements
In the first stage of GUI development, you determine what the user needs and expects
your application. While it may be tempting to skip this stage and move right to the desig
phase, it’s risky to do so. Without a clear understanding of the users themselves and th
tasks they must perform, it is virtually impossible to create an effective GUI.
Designing Visually Effective Applications 2-3

ail as

ere
r

at

ider.
 they

at

uy-in

t
To define user requirements:

n Gather documentation. Relevant policies and procedures manuals and existing
documentation about the system (whether previously computerized or not) will help you
formulate the necessary background for conducting user interviews.

n Observe users doing their jobs. Make a list of the tasks users perform and the order in
which they perform them.

n Interview users. Find out what people want from a GUI-based system. When
conducting your interviews:

n Ask not only what users do, but how they work. For example, does a clerk need to
be able to work on several orders at the same time, or just on one?

n Find out what users like and don’t like about the current system (even if it’s not
computerized).

n Ask users how they envision the GUI. Encourage them to provide as much det
possible.

n Get to know the users. Do users typically stay on the job for a long time or is th
high turnover? Will they use the application constantly or only occasionally? Fo
infrequently used applications, you’ll want to provide a lot of buttons, text, and
guidelines to help reduce the amount of familiarization time. For applications th
are used daily, try to provide a lot of shortcuts and accelerator keys to help
experienced users complete their tasks quickly.

n Find out if users have any disabilities or special circumstances you should cons
For example, are users typically standing when they use the application? If so,
won’t have the time or patience for excessive navigation.

n Sample a wide variety of users. Feedback from users at a single customer site are
biased toward their specific experiences.

2.1.3 Planning the user interface
In the second stage, you plan and document how you will implement a user interface th
meets the users’ needs. This involves:

n Developing a set of standards that you will adhere to and, if necessary, obtaining b
from your team. Refer to Section 2.1.3.1, "Creating your standards".

n Considering platform-specific requirements and other restrictions in the deploymen
environment. Refer to Section 2.1.3.2, "Considering portability".
2-4 Guidelines for Building Applications

2.1 Understanding the Process
n Mapping out each screen and deciding which types of interface elements to use in order
to meet user needs effectively. Refer to Section 2.1.3.3, "Creating a prototype".

2.1.3.1 Creating your standards
A set of consistent development standards is crucial to the success of any development
effort. By developing and enforcing standards pertaining to layout, use, and behavior of
various GUI elements, you can ensure that even disparate parts of the application have a
common look and feel. Both Forms Developer and Reports Developer offer several
mechanisms to assist you in developing a consistent set of standards.

Table 2–1 Standards mechanisms

 Mechanism Description

Object Library (Form
Builder)

An object library is a set of objects and standards that you create and
make available to your entire development team. Through the use of
subclassing, each developer can ensure that changes made to the
objects in the object library are propagated throughout all
applications that use them. Object libraries are the preferred
mechanism for standardizing your Form Builder applications.

Form Builder provides two object libraries which you can customize
to meet your own site requirements:

n Standard Object Library, which contains suggested standards
optimized for the Windows 95 environment.

n Oracle Applications Object Library, which contains standards
for cross-platform applications: Windows 95, Solaris,
Macintosh, and character mode.

 For more information, see the Form Builder online help topics
"About object libraries" and "About subclassing".

Object Group (Form Builder) An object group is a container for a group of objects. You define an
object group when you want to package related objects so you can
copy or subclass them in another module.

For example, suppose you build an appointment scheduler using
several types of objects, including a window and canvas, blocks,
items that display dates and appointments, and triggers that contain
the logic for scheduling and other functionality. By packaging these
objects into an object group, you can copy all of them to other forms
in one simple operation.

For more information, see the Form Builder online help topic
"Guidelines for using object groups".
Designing Visually Effective Applications 2-5

nts
,
when
nd
 It
ys.

he
2.1.3.2 Considering portability
If you intend to deploy your application in more than one environment, it’s important to
understand how various GUI elements are rendered on each platform and which eleme
are restricted altogether. For example, due to formatting constraints between platforms
interactive buttons that you create for Windows may shrink and become less readable
displayed on Solaris. Chapter 5, "Designing Portable Applications", helps you understa
platform-specific constraints and provides tips and guidelines for working around them.
also provides considerations for character mode, which restricts the UI in numerous wa

2.1.3.3 Creating a prototype
Prototypes are an extremely effective means for ensuring usability in your application. T
most effective prototypes follow an iterative development model, beginning with a
storyboard and ending with a fully functional application. The process breaks down as
follows:

Visual attributes (Form
Builder)

Visual attributes are the font, color, and pattern properties you set for
form and menu objects that appear in your application’s GUI. Visual
attributes can include the following properties:

n Font properties: Font Name, Font Size, Font Style, Font Width, Font
Weight

n Color and pattern properties: Foreground Color, Background Color,
Fill Pattern, Charmode Logical Attribute, White on Black

For more information, see the Form Builder online help topic
"Guidelines for using visual attributes".

Template (Form Builder,
Report Builder)

In Form Builder, you can create templates to provide other team
members with a default starting point for new forms. Templates
typically include generic objects, such as graphics (like corporate
logos), toolbars, program units, standard window layouts, toolbars,
and menus, and other common objects.

Report Builder not only allows you to create your own templates to
help control the appearance of your reports, but provides a wide
variety of pre-defined templates as well. Using the Report Wizard,
you select the objects you want to include in your report, then select a
template to arrange those objects and apply standard formatting
attributes.

For more information, search the Form Builder or the Report Builder
online help index for "templates".

Table 2–1 Standards mechanisms

 Mechanism Description
2-6 Guidelines for Building Applications

2.1 Understanding the Process
1. Draft a storyboard to give you a clear picture of how the application will actually look
and behave. A storyboard is a frame-by-frame drawing of screens showing transition
and appearance. Include a narrative to describe how the screens relate to the tasks you
identified when you defined the users’ requirements.
Designing Visually Effective Applications 2-7

been
ent

ser

cts
Here is an example of three panels from a storyboard for an ordering application:

Figure 2–3 Example of a storyboard

2. Show the storyboard to users. Verify that your planned application addresses their needs
and supports their tasks the way they perform them.

3. Expand the storyboard into a paper prototype. Whereas a storyboard sketches task and
window flow at a high level, a paper prototype is a fairly detailed illustration of the
entire application. A paper prototype typically contains one piece of paper for each
window you’ve planned, complete with widgets, arrows to represent task flow and
navigation, and so on.

4. Show the paper prototype to users. Most of the organizational issues should have
identified during the storyboard phase, so you can now focus on details: the placem
of buttons, the layout of a supporting dialog, and so on. Section 2.1.5, "Gathering u
feedback" offers some tips for conducting the session with users.

5. Based on user feedback, create a functional prototype using Forms Developer or
Reports Developer. The following sections can help you select the appropriate obje
for your prototype:
2-8 Guidelines for Building Applications

2.1 Understanding the Process

t is,

ur

er or
n Section 2.2, "Creating an Effective Form"

n Section 2.3, "Creating an Effective Report"

n Section 2.4, "Creating an Effective Display"

6. Let users experiment with the functional prototype. Be sure to include users who were
not involved in the earlier sessions so you can determine whether the application is
easily grasped by new users.

7. Repeat steps 5 and 6 until you are satisfied that you have met all the objectives stated in
your user requirements.

2.1.4 Building the user interface elements
Only when you have devoted sufficient time to developing your conceptual model—tha
when you fully understand your users and the tasks they perform and have designed
smoothly flowing dialogs in support of those tasks—only then are you ready to begin
building your user interface. This chapter contains three sections to help you choose yo
user interface elements carefully:

n Section 2.2, "Creating an Effective Form"

n Section 2.3, "Creating an Effective Report"

n Section 2.4, "Creating an Effective Display"

2.1.5 Gathering user feedback
When you have developed a working prototype, either on paper or with Forms Develop
Reports Developer, return to the users you interviewed in the first phase and let them
experiment with it. To gather user feedback effectively:

n Produce instructions for user tests using a task-based approach.

n To ensure a broad perspective, use at least six typical users.

n Record user activity through notes, sound, and video monitoring.

n Question users about the prototype’s performance.

n Get more than one designer to interpret the results.

Remember: only the actual user of your application is qualified to comment if the UI is
appropriate.
Designing Visually Effective Applications 2-9

After testing the prototype on users and gathering their feedback, return to the build stage,
modify the user interface accordingly, then test your changes again. Continue this cycle until
the interface meets the objectives you outlined in the requirement definition phase.

2.2 Creating an Effective Form
This section explains how to build an effective GUI using Form Builder.

Note: The information in this section assumes a Eurocentric viewpoint. (If you are
developing for a non-Western audience, be sensitive to the cultural background of the users.
If practical, have your design reviewed by several members of your target audience.)

2.2.1 Understanding forms
Before addressing specific considerations for forms, it may be helpful to briefly introduce
some basic forms concepts. (Experienced Form Builder users should go to Section 2.2.2,
"Guidelines for building forms".) For more details on these and other related forms topics,
see the Form Builder online help and/or the Forms Developer Quick Tour.

2.2.1.1 What is a module?
When you build an application with Form Builder, you work with individual application
components called modules. There are four types of modules in Form Builder:

 Module Type Description

Form module A collection of objects and code routines. Some of the objects
you can define in a form module include windows, text items
(fields), check boxes, buttons, alerts, lists of values, and
blocks of PL/SQL code called triggers.

Menu module A collection of menus (a main menu object and any number
of submenu objects) and menu item commands.

PL/SQL Library module A collection of user-named procedures, functions, and
packages that can be called from other modules in the
application.

Object Library module A collection of objects that can be used to develop
applications. See Table 2–1, "Standards mechanisms" for
more information.
2-10 Guidelines for Building Applications

2.2 Creating an Effective Form

he
 the
This chapter does not address the use of PL/SQL library modules. For information on this
topic, refer to the Form Builder online help.

2.2.1.2 What are forms, blocks, items, regions, and frames?
Simply put, a form (or form module) is an application that provides access to information
stored in a datasource. When you look at a form, you see interface items such as check
boxes, radio groups, and so on, which enables the user to interact with the datasource. These
interface items belong to a container called a block. In Figure 2–4, the fields Customer ID,
First name, Title, and so on all belong to the same block.

Figure 2–4 Sample form

There are two types of blocks: a data block, which serves as a link between the datasource
and the user, and a control block, which is not associated with a datasource. Each data block
can enable the user to view and access data from one table in the datasource. Blocks can be
single-record blocks, which means that they show one row of data at a time, or multi-record
blocks, which enable users to see many rows of data at once. All of the fields in Figure 2–4
are in single-record blocks.

A region is a rectangle or line that separates a logical grouping of fields from others in t
block. In Figure 2–4, the rectangle that separates the Customer Information fields from
Accounts icons is a region.
Designing Visually Effective Applications 2-11

he

 A
ral
A frame is a pre-defined way of arranging certain items in a block. For example, the block
shown in Figure 2–4 was arranged by a frame that established its margins and offsets, t
distance between the items and prompts, and so on.

2.2.1.3 What are windows and canvases?
A window is the container for all visual objects that make up a Form Builder application.
single form can include any number of windows; all but the simplest of forms have seve
windows associated with them. Several types of windows are available:

Window type Description

Container (MDI) Holds all other windows. It usually, but not always, contains the
toolbar and main menu. (Windows only)

Modeless Enables the user to interact with any other window, as well as the
toolbar and the menu. Modeless windows are used most often in
GUIs when the user is free to choose among many tasks.

Modal Forces the user to work within a single window, then either accept or
cancel the changes they have made. The toolbar and menu are not
accessible. Use a modal window when the user must complete a
particular task before continuing.
2-12 Guidelines for Building Applications

2.2 Creating an Effective Form
Here is an example of a typical Form Builder window:

Figure 2–5 Typical Form Builder window

Like most Windows 95 Form Builder windows, this one contains:

n Window title

n Menu bar and pull-down menus

n Buttons and other control items that do not correspond to the data

n Data items in the blocks

n Console, which includes the message line and status line
Designing Visually Effective Applications 2-13

 a
A canvas is the background object upon which interface items appear. There are four types
of canvases:

Each window may display one or more canvases. You can also conditionally display a
canvas in a window, depending on whether certain conditions are met.

2.2.2 Guidelines for building forms
The following sections offer specific recommendations for building an effective GUI with
Form Builder:

n Section 2.2.2.1, "Using object libraries"

n Section 2.2.2.2, "Understanding basic design principles"

n Section 2.2.2.3, "Adding color"

n Section 2.2.2.4, "Creating canvases"

n Section 2.2.2.5, "Creating windows"

n Section 2.2.2.6, "Creating regions"

n Section 2.2.2.7, "Adding items to blocks"

n Section 2.2.2.8, "Designing messages"

n Section 2.2.2.9, "Implementing online help"

n Section 2.2.2.10, "Building effective menus"

Canvas Type Description

Content canvas Occupies the entire pane of the window in which it
is displayed (and possibly more, if the window
enables scrolling). Every window has at least one
content canvas.

Stacked canvas Displayed atop—or stacked on—the content
canvas assigned to the current window. Stacked
canvases are useful for conditionally obscuring
areas of the content canvas—unpopulated fields,
for example. Through the use of viewports you can
control how much of a stacked canvas is visible.

Tab canvas A set of tabs that enable you to group and display
large amount of related information on a single
dynamic canvas.

Toolbar canvas Used to create toolbars for individual windows.
2-14 Guidelines for Building Applications

2.2 Creating an Effective Form

oper
ghout

rate
needs

rd or
y.
2.2.2.1 Using object libraries
Perhaps the most important means of standardization available to you as a form developer is
the object library. An object library is a set of objects and standards that you create; each
object or standard can determine the appearance and layout of an entire frame, window, or
region. When housed in an object library, these objects become available to all the
developers on your project or site, thus ensuring that even developers working at different
locations can produce an application—or different modules within the same
application—with a common look and feel. Through the use of subclassing, each devel
can ensure that changes made to the objects in the object library are propagated throu
all applications that use them.

A good strategy for using object libraries is to create a separate one for each logical
grouping of standards. For example, you may want to have one object library for corpo
standards that you make available company-wide, and another tailored for the specific
of your project.

To help you get started building your own object libraries, Form Builder provides two
samples:

n Standard Object Library, which contains objects for Windows 95-only deployments
where multi-language support is not a requirement

n Oracle Applications Object Library, recommended for multi-platform deployments

Before you create your object library, it’s a good idea to test the contents of the Standa
Oracle Application Object Libraries to see what works well and what you need to modif

To test: Do this:

The items in the Standard Object
Library in a data block

1. Use the Data Block Wizard to create a data block.

2. Click an item in your control or data block, then
click the right mouse button. A list of Smart Classes
applicable to that item is displayed; click the
SmartClass you want.

The items in the Standard Object
Library in a control block

1. Open STNDRD20.OLB.

2. Drag and drop the item(s) into the block.

Only the visual attributes in the
Standard Object Library

Open the STNDRD20.OLB template form.

The objects in the Oracle
Application Object Library

Open the APPSTDS.OLB template form.
Designing Visually Effective Applications 2-15

If you use the Standard Object Library, be sure to subclass all the attributes under the VAGs
tab to the Visual Attributes node in your form. Many of the standards are based upon these
visual attributes and will not display correctly if the visual attributes are not applied. By
subclassing (rather than copying) the visual attributes, you ensure that you always have
access to the latest definitions.

If you know that you will be using a particular set of visual attribute groups in all or most of
your forms, create a template form that already contains the visual attribute groups
subclassed from the standard object library. Then you can name this template when
prompted by the Layout Wizard.

 For more information on the object libraries, see the help topics "Standard Object Library"
and "Oracle Application Object Library" under "Reusable Components" in the Forms
Developer Demos online help.

2.2.2.2 Understanding basic design principles
Here are some general guidelines for building forms:

n Use a Real Coordinate system with a measurement unit of inches, centimeters, or
points. Choose a single unit and use it across all modules.

n Place users in control by enabling them to enable or disable dialogs wherever it makes
sense to do so. Making this determination requires you to carefully balance your
knowledge of the users with the freedoms or restraints imposed by their working
conditions.

Example: All users should be enabled simple freedoms, like the ability to interrupt an
application and resume it later on. But enabling users the ability to completely rearrange

Points Often the easiest to use, since you can designate sizes
in whole numbers. Since text is always specified in
points, it’s easier to size objects relative to text if the
objects are in points as well.

Inches and
centimeters

Enables you to specify a higher precision than points
(but it’s not as easy to compare the size of objects to
text). Useful if your target environment is exclusively
SVGA or better.

Pixels Strongly discouraged. Use only if you are certain that
all users have identical screens and resolutions and
will continue to have them in the future.

Characters Use only if you intend to deploy to a character mode
platform.
2-16 Guidelines for Building Applications

2.2 Creating an Effective Form

e for

g

t

ions,

g
em
a company-issued invoice may not be wise, since it affords the user power to disregard
company standards.

The extent to which users should have control is also determined by the user’s
experience level. If you are developing an application for both experienced and
inexperienced users, consider providing a wizard to provide step-by-step assistanc
those who want it, along with manual alternatives.

n Make it obvious to users when a task is finished, either by closing a window, openin
another window, or displaying an informational message.

n Make windows only as large as necessary.

n Use blank space as a way to group information.

n Use the frame objects in the Standard Object Library to help you obtain a consisten
layout style across form modules.

n Orient screen layouts based on a top-to-bottom task sequence. Arrange blocks, reg
and items in the order they will be used, from left-to-right, then top-to-bottom.

n In single-record blocks, left-align items where possible. (Right-align fields containin
currency and numbers.) In multi-record blocks, stack items horizontally and align th
along the top.
Designing Visually Effective Applications 2-17

 are

play
e use
olor
2.2.2.3 Adding color
n Use color sparingly, and only to get the user’s attention.

n Use color meaningfully and consistently. Example: Use color coding to differentiate
between required, optional, and display-only fields, making sure that all such fields
color coded the same way.

n Consider enabling users to change the color scheme, if possible.

n Do not rely on color alone for communicating status or other information; always
provide alternative cues, such as sound or other highlights. For example, if you dis
a negative total in red, include parentheses so that the message is clear without th
of color. Also, avoid references to specific colors in messages, as many users are c
blind.

n Use object libraries or Visual Attributes to standardize color usage.

n When choosing colors, remember:

– Red and blue combinations are hard on the eyes.

– Blue text has a receding effect.

– Deep blue backgrounds are hard on the eyes over long periods, as are other bright
colors.

– A significant number of people have color-identification problems, especially with
red-green.

– Colors have different implications in different countries. Follow the cultural color
coding in your target market, observing the needs of different professions,
situations, and so on. For example, while green generally has positive connotations
for most of the western world, to those in chemical-related professions the color
green might mean danger.

Color Implies...

Blue Cool

Black Profit (financial)

Green Go, OK, Danger (for chemists)

Red Hot, Stop, Danger, Loss (financial)

Yellow Warning, Attention
2-18 Guidelines for Building Applications

2.2 Creating an Effective Form

d

er

2.2.2.4 Creating canvases
The following table presents recommendations for creating canvases.

Table 2–2 Recommendations for creating canvases

Canvas Type Recommendation

 General n Provide plenty of white space between items and regions.

n Consider placing optional information on separate canvases.

n Avoid scrolling windows, if possible. Studies have shown that
productivity decreases sharply when the user has to scroll a
window to complete a task.

n Plan separate windows for canvases that need to be viewed
concurrently.

n Although your planned layouts may fit comfortably on a monitor
using Super VGA mode, they may scroll off-screen in different
resolutions, like VGA. Test your layout on all your users’
monitors.

 Content canvas n Set content canvases to Display immediately.

n Remember that the view size for a content canvas is determine
by the current size of its assigned window.

n Consider using non-white canvases so that the bevel effects of
objects on the canvas are maximized. In addition, white
backgrounds are often so bright that they can be tiring.

n Use one content canvas per window. Using more than one can
be confusing if the user does not understand why the entire
window is being replaced. If you do use more than one content
canvas, make sure they are logically related, and require the us
to move between them explicitly. One successful
implementation of multiple content canvases is a word
processing application in which the user chooses between
several views of the same document: print preview, normal, and
outline.
Designing Visually Effective Applications 2-19

 Stacked canvas n Use stacked canvases to hide and display groups of objects,
including boilerplate.

n Size the stacked canvas only large enough to contain the
necessary items.

n Be sure you know how stacked canvases behave before you
implement them. For example, if the user uses Next Field or
Next Record to navigate to a field that is obscured by a stacked
canvas, the stacked canvas seems to disappear--that is, it is
automatically placed beneath the content canvas. To re-display
the stacked canvas, users must either navigate to an item on the
stacked canvas or navigate away from the stacked canvas and
select the Show Canvas action.

 Tabbed canvas n Limit the number of tabs to 4-6.

n Use tabs to organize related information about a single object.
For example, employee information such as salary, benefits, and
job description might work well as a tabbed dialog.

Table 2–2 Recommendations for creating canvases

Canvas Type Recommendation
2-20 Guidelines for Building Applications

2.2 Creating an Effective Form
2.2.2.5 Creating windows
The following table presents recommendations for creating windows.

Table 2–3 Recommendations for windows

Attribute Recommendations

General n Do not use bevels around the edge of the window.

n Inherit color settings from the environment.

n Leave the top and bottom lines of the window blank, except for
buttons and coordination check boxes.

n Leave the left and right edge character cell columns blank,
except for region lines and block boundary lines.

n Use modeless (non-modal) windows to allow scrolling, and for
"leave and come back" navigation (use the STD_DIALOG_
WINDOW_MODELESS object in the Standard Object Library).

n Use modal windows to prevent mouse navigation elsewhere and
for dependent tasks that are part of a procedure (use the STD_
DIALOG_WINDOW_MODAL object in the Standard Object
Library).

Title n Title each window in a form uniquely so that iconified names
and entries in the Windows menu are significant.

Position n Make sure each window is fully visible when it is first opened.

n Make all windows moveable.

n Retain window positions when a form is exited.

Scrollbar n Design your windows so that scrolling is not required by default.
Scrolling is acceptable only when provided as a result of the user
re-sizing the window.

Toolbar n Place the toolbar only on the container window (on Windows) or
the root window (on all other platforms).

n Provide hints for the toolbar buttons in tooltip help displayed
just beneath each button as the mouse passes over it. (See
Section 2.2.2.9.1, "Implementing Tooltips".)
Designing Visually Effective Applications 2-21

2.2.2.5.1 Choosing a title for modeless windows

While the STD_DIALOG_WINDOW_MODELESS object in the Standard Object Library
addresses all issues pertaining to positioning, closing, resizing, and placement, you still have
to choose your own title. When doing so:

n If the window performs a product-specific task, use the format <Verb><Noun>, as in
Transfer Items, Post Journals, and AutoCreate Quotes.

n Pluralize window names—that is, use "Items" instead of "Item"—except when the
window pertains to a single instance of data.

n Provide context for child windows in the form <window title> - <context>, where
context is the topmost master record or, for a new record, [New].

Examples: Assignments (OR1) - [John Doe]

Purchase Order Lines (ABC) - [New]

2.2.2.6 Creating regions
The following table presents recommendations for creating regions.

Table 2–4 Recommendations for regions

Attribute Recommendation

General n Avoid creating regions or adding boilerplate lines to group items
unless doing so is meaningful to the user and improves the
usability of the screen.

n Make the line or rectangle creating the region black, with an
inset bevel.

n Use a frame for regions containing an entire block. A frame has
properties that control the layout of the items within it, such as
the space between the frame and items (margin), spacing, and
visual attributes. Using standard frames ensures the consistency
of your window layout. (Although the Layout Wizard creates a
frame, you can always override it by applying a frame stored in
your object library.)
2-22 Guidelines for Building Applications

2.2 Creating an Effective Form

-

2.2.2.7 Adding items to blocks
The following table should help you decide when to choose one form item over another. It
also presents some guidelines that you can use if you decide to modify an object or standard
in the Standard Object Library. The items are presented in alphabetical order.

 Title n Add a title to the region unless the information contained within
is obvious. Use boldface.

n Position the title on top of the rectangle or line, leaving one
leading and one trailing space in the title text.

n To display the title, use one of these widgets:

• Boilerplate (for static region titles)

• Frame title (for frames)

• Display item, designed to look like boilerplate (for dynamic
region titles)

• Poplists (for alternative regions)

• Check boxes (if an entire region is applicable or non-applica
ble)

Table 2–5 Recommendations for items

 Item When to use Recommendations

Boilerplate
text

n Use for text that is neither a
prompt nor a title.

n Use mixed case.

n Avoid overuse of italics and underlining.

n Use font styles consistently. For example, if you use bold for
emphasis, do not use bold for any other purpose.

n Avoid excessive variations of fonts, sizes and colors.

Table 2–4 Recommendations for regions

Attribute Recommendation
Designing Visually Effective Applications 2-23

n

Buttons
(non-iconic)

n Use as dialog responses (in
modal windows) and for
item-related actions.

n Use one of the STD_BUTTON_type objects in the Standard
Object Library.

n Limit six to a window. Arrange in a single row, if possible, or a
single column.

n Align buttons, leaving 0.1" space between them. Separate
logical groupings of buttons by 0.5".

n Leave 0.1" between the right edge of the rightmost button and
the right edge of the window.

n Capitalize label words; for example, ‘Print Invoice’.

n Use an ellipsis (...) at the end of a button label if the button
opens a modal window or if the user must provide more
information about the action in another window (modal or not)
before the action can be completed.

n Place OK and Cancel buttons together.

n Put affirmative and cancellation buttons first, unique buttons
last.

n Use chevrons (>>) to indicate that the dialog will be expanded.

n For labelled buttons (except OK and Cancel), always provide a
accelerator key (underlined letter).

• Use the first letter of the first or second word in the label ("F"
for "File" or "P" for "Start Posting"). If a stronger link exists
(like "X" for "Exit"), use that letter.

• Use consonants instead of vowels when possible.

• Make access keys unique within a window. Ensure they do
not conflict with the keys used by the top level of the menu.

Check boxes n Use only when the label on
the check box can clearly be
thought of as having "true"
(checked) and "false"
(unchecked) states.
Otherwise, use a radio button
group with two items.

n Use the STD_CHECKBOX object in the Standard Object Library.

n Use positive statement labels:

Not good: Don’t show this alert in the future.

Better: Show this alert in the future.

Display items n Use for display-only fields in
which the user can never
type; for example, the Total
field in a financial
application.

n Use the STD_DISPLAY_ITEM object in the Standard Object
Library.

Table 2–5 Recommendations for items

 Item When to use Recommendations
2-24 Guidelines for Building Applications

2.2 Creating an Effective Form
Icons n Use only for frequent or
critical actions.

n Use where a picture
conveniently conveys a task
or mimics a real-world
object.

n Place frequently used buttons on a toolbar.

n Group related tools together and separate groups with white
space.

n Disable buttons that are unavailable.

n Always provide tooltips, as users are often confused by the
meaning of icons.

n Icons are often cultural. Be aware that you may need to translate
them.

n Avoid "visual puns", such as a running figure for "Run". Their
meanings are not obvious, and will certainly not be understood
in other languages.

Lists (see also
Poplists and
T-Lists)

n Use when it is easier for the
user to select a value than to
type in a value.

n Use for data entry and
display of text values in a
selectable list format.

n Use when displayed value
entries are relatively short (up
to 30 characters each).

n Use the combo-box style if
the user may enter new
values.

n For 15 entries or less, use a poplist. For more than 15 entries,
use an LOV (List of Values). For more than 30 entries with a lot
of real estate, use a T-List.

n Make all related fields the same length.

n Use the color of the canvas background for text items that have
become non-enterable.

LOVs n Use when the user must
select from a list of more than
15 rows or to show several
columns of data.

n Automatically select a row for the user when there is only one
valid value.

n Move the cursor automatically to the next field after a selection
is made.

n If there are more than 100 rows in the LOV, prompt the user to
reduce the list of valid values before making a selection.

Poplists n Use when only one value is
applicable and the list of
choices is 15 or less.

n Before implementing a poplist, consider whether frequent users
can type faster than they can select.

Pop-up menus n Use to associate menu
options with an item, rather
than the whole application.

n Use to provide access to
frequently used commands.

n Use the STD_POPUP_MENU_ITEM object in the Standard
Object Library.

Table 2–5 Recommendations for items

 Item When to use Recommendations
Designing Visually Effective Applications 2-25

Prompts n Use as labels for fields, check
boxes, lists, etc.

n Place toward the top or left of the element they are describing.

n Always place single-record blocks prompts to the left of the
field and multi-record block prompts above the field.

n Use the terms "From" and "To" to identify fields involved in a
range rather than "Start" and "End" or "Low" and "High".

n For percentages, place the percent sign (%) after the field. Do
not include it in the prompt.

Radio
groups

n Use to present mutually
exclusive choices.

n Use to set a ‘mode’, such as
what type of information will
be displayed.

n Use the STD_RADIO_GROUP object in the Standard Object
Library.

n Use vertical orientation instead of horizontal.

n Group related buttons into radio groups with a title.

n If the choices are binary (ON/OFF, YES/NO), use a check box
instead.

n Always provide a default value.

T-Lists n Use only when one value is
applicable and the list of
choices is never expected to
grow beyond 30.

n Always show at least five rows of data.

n Use only in forms with a lot of available real estate.

 Text items n Use for data entry and
display of character values.

n Use for lengthy or
unprepared values (that is,
those that do not appear in a
short, pre-defined list).

n Use the color of the canvas background for text items that have
become non-enterable.

n Use a bevel if the user can enter values in the field.

n Use the STD_TEXT_ITEM or one of the STD_DATE_type
objects in the Standard Object Library.

Table 2–5 Recommendations for items

 Item When to use Recommendations
2-26 Guidelines for Building Applications

2.2 Creating an Effective Form
2.2.2.8 Designing messages
Messages are shown either in the window console area or in popup windows called alerts.
How you display messages depends upon their type and whether a reply is required by the
user. Here are some suggestions:

Table 2–6 Displaying messages

Message Type Recommendations Example

 Errors n To present an error message, use the STD_
ALERT_STOP object under the Alerts tab in the
Standard Object Library.

n Use when an error is serious enough to halt
processing. Include a stop sign icon in the dialog.

n Use sparingly.

"You do not have sufficient authority
to approve this Order."

 Warning n Use the STD_ALERT_CAUTION_1, STD_
ALERT_CAUTION_2, or STD_ALERT_
CAUTION_3 objects under the Alerts tab in the
Standard Object Library. While in the Library,
click the object once to see a description of the
message text.

n Use to present a question that the user must
respond to before processing continues. Include a
yield sign icon (!) in the dialog.

n Keep the warning short and concise. For
example, use "Delete this order?" rather than "Do
you really want to delete this order?"

n Phrase questions positively ("Save changes?"
rather than "Are you sure you don’t want to save
changes?")

"Copy all lines on this invoice?"

Information n Use the STD_ALERT_INFORMATION object in
the Standard Object Library.

n Use to present messages that the user must
acknowledge when no choice is involved. Include
the information icon (the letter "i" in a circle) and
the OK button.

"Line and Shipment Quantities
currently do not match."

"There are items awaiting your
attention."

Hints n Appears on the Form Builder message line in the
Console.

n Use to present messages of very little
consequence, or process indicators that do not
require a response.

"Working..."

"At first record."

"Processed Order line 12 of 37."
Designing Visually Effective Applications 2-27

2.2.2.8.1 Creating Message Text

If possible, error messages should include:

n What was done

n Cause (why it was wrong)

n Action (how to fix it)

Here are some examples of bad and good message text:

When writing message text, try to adhere to these guidelines:

Bad Good

Invalid Date "Please re-enter the date as DD-MON-YY."

Do not enter a start date later than the ending
date

"The start date must be earlier than the end
date."

Error: 1623, constraint violation "Please re-enter a unique value for this field."

You should not receive this message Don’t display the message at all.

Tool lost at sea Replace it with an appropriate message or take
it out altogether

Recommendation Example

Use active voice. "Do this now", not "This will need to be done"

Use imperative voice. "Enter a commission plan", not "You can enter
a commission plan"

Use "can" instead of "may" or "could". "You cannot delete a printed release", not "You
may not delete a printed release"

Refer to actual field names when possible. If a field is labelled "Sales Associate", don’t use
the message "Please enter a different
salesperson".

Use uppercase for commands and keywords.ALTER CLUSTER statement is no longer
supported."

Avoid the use of humor. You made a boo-boo!

Avoid accusatory messages. Do not insinuate
that the user is at fault. Do not mention the
user’s mistake unless it pertains to the
problem’s solution.

Instead of "You didn’t choose a value", try
"Please choose a value".
2-28 Guidelines for Building Applications

2.2 Creating an Effective Form

p

ands

te a

2.2.2.9 Implementing online help
This section discusses using two types of online help:

Tooltips Also known as popup hints and microhelp. Displayed when the
user moves the mouse over an item on the screen.

Online Help Contains context-sensitive help and hypertext links that enable
users to jump to related topics.

2.2.2.9.1 Implementing Tooltips

Each item has a property called Tooltip and another called Tooltip Visual Attribute Group.
In the Property Palette’s Tooltip property field, enter the text you want to display in the
pop-up. To ensure consistency across your application, apply the STD_TOOLTIP visual
attribute from the Standard Object Library. If you don’t apply a visual attribute, the toolti
uses a platform-specific default.

2.2.2.9.2 Implementing Online Help

n Consider using help authoring tools.

n Create standalone topics that are hyperlinked to other topics.

n Keep text short and concise.

n Provide a Help button on each dialog, a Help option on the main menu, and a Help
button on the toolbar.

2.2.2.10 Building effective menus
Form Builder provides a default menu for every form. The default menu includes comm
for all basic database operations, including querying, inserting, and deleting. If your
application has specific requirements not met by the default menu you can quickly crea
custom menu. (See "Creating a menu" in the Form Builder online help for instructions.)
While building a menu, keep the following ideas in mind:

When a message contains instructions, use
"please".

"Please choose a value" is preferred over
"Choose a value".

Address the user as "you", not "the user". Avoid
using "I", "He", or "She".

Instead of "The user should back up his
modules", try "Please back up your modules".

Consider providing context-sensitive help when
errors occur.

See Section 2.2.2.9.2, "Implementing Online
Help".

Recommendation Example
Designing Visually Effective Applications 2-29

’ll
de
unds,

ou

ss

a

g?

ales
e
n Organize commands according to the tasks they belong to.

n Although Forms Developer supports scrolling menubars, try to keep valid items on the
screen where the user can see them.

n Disable items that are unavailable.

n Limit submenus to two levels, if possible.

n Capitalize labels.

n Use the standard menus in the demos and add-ons as models for your own menus.

2.3 Creating an Effective Report
The first steps in using Report Builder to design an effective report are the same as those for
designing an effective form or display. Before reading the rest of this section, it’s a good
idea to read Section 2.1.2, "Defining user requirements", if you haven’t already.

Here are a few questions to help you determine the user requirements for your report:

n What data will people viewing the report want, and in what priority?

n Will users want to "drill down" on data, so they can see more details? If so, you
want to include buttons in your reports. Buttons can have blocks of PL/SQL co
associated with them, so they can invoke secondary reports, play videos or so
and so on.

n Will users want charts in the report to present data visually? If so, what data? Y
can create a chart in Graphics Builder, then pass data to the chart from Report
Builder (instead of performing a second query).

n If users modify data using a form application, will they want to print the data
afterward? If so, you’ll want to call the report from a form, and have the form pa
data to the report.

n Will users want a report to be embedded in a form? If so, you’ll want to design
template that has font and color standards similar to your forms.

n Will users want to view the report in HTML, PDF, or hardcopy? Will they want to
make a few formatting changes in the Live Previewer before (optionally) printin
If so, you will need to specify the report destination parameter (DESTYPE), or
enable your users to do so.

n Will users want to specify parameters for a report, as in "Show only the top 10 s
for the userid SCOTT"? If so, you will need to create user parameters, and hav
users specify their values in a form or the Runtime Parameter dialog.
2-30 Guidelines for Building Applications

2.3 Creating an Effective Report

e
n Based on network traffic and machine performance, should the report run in a
client/server or 3-tiered architecture?

n Do you have a corporate standard that you want to propagate in the reports? If so,
you should define standard templates.

n For Web reports, will the number of reports be static, or do you want to
dynamically generate the Web sites?

2.3.1 Understanding Reports
Before addressing specific considerations for reports, it may be helpful to briefly introduce
some basic reports concepts. (Experienced users of Report Builder should skip this section.)
For more details on these and other related reports topics, see the Report Builder online help
and/or the Report Builder section of the Reports Developer Quick Tour.

When you build a report, you work with two application components:

This section does not address the use of PL/SQL libraries. For information on this topic,
refer to the Report Builder online help.

For some reports, you will use the Report Wizard (to choose a report type, define a data
model, and a layout for the data) and the Report Editor’s Live Previewer (to fine-tune th
report). For other reports, you will use other views of the Report Editor:

Module Type Description

Report module A collection of objects and code routines. Some of the objects you
can define in a report module include repeating frames, frames,
fields, boilerplate, anchors, and blocks of PL/SQL code called
triggers.

PL/SQL Library module A collection of user-named procedures, functions, and packages that
can be called from other modules in the application.

View Used to:

Data Model view Create a report with more than one query.

Layout Model view n Create reports with multiple sections (e.g., a single report with a
tabular and matrix style)

n Add new layout objects (e.g., buttons)

n Control how objects are sized or positioned

Parameter Form view Present users with a dialog in which they can specify parameter
values before running the report.
Designing Visually Effective Applications 2-31

Because this chapter discusses how to create visually effective applications, the remainder of
this section focuses on using the templates, objects, and settings found in the Layout Model
view.

2.3.2 Using Templates in Report Builder
Perhaps the most important means of standardization available to you as a report developer
is the template. A template is a collection of boilerplate objects, and layout and report
settings that determine the appearance of an entire report. Several templates are shipped with
Report Builder, and you can create your own. By creating corporate or group templates and
making them available to your entire development team, you can ensure a common look and
feel. For instructions on how to create a template, see the Report Builder online help.
2-32 Guidelines for Building Applications

2.3 Creating an Effective Report
2.3.3 Understanding Layout Objects
The Layout view of the Report Editor may contain the following objects:

With the exception of anchors, layout objects may have format triggers, such as PL/SQL
blocks that are invoked each time the object is activated.

2.3.4 Controlling Layout Objects in Report Builder
When designing a report, remember that the size of the entire report and the size of many of
its individual objects may vary, which can affect pagination in a printed report. Consider a
report based on this query:

select ename, sal from emp
where sal > 2000

The size of this report and its objects is based on several factors:

n The amount of data that satisfies the query, which can range from a few records, to
hundreds or thousands of records.

n When you run the report. For example, the number of records might change
dramatically the week after pay raises are distributed (for example, the number of
people with salaries above 2000 might increase).

Object Description

Frames Containers that control repeating frames, fields, boilerplate, buttons,
and child frames. Unlike Form Builder frames, Report Builder frames
do not have formatting properties that control the location of child
objects.

Repeating frames Containers that control:

n Fields containing report data

n Other objects owned by the repeating frame

Fields Containers that display the report data, dates, page numbers, and so
on.

Boilerplate Text or graphics that appear as often as required by the object that
surrounds it (the report, frame, or repeating frame), or to which it is
attached.

Anchors Objects that determine how two objects in a report layout relate to
one another (i.e., parent/child relationships and relative positioning).

Buttons Objects that perform an action when users click on them.
Designing Visually Effective Applications 2-33

n Whether group filters or format triggers are used, which exclude data or objects from
the report.

Instances of the same object may also vary in size. For example, suppose you have a
VARCHAR2 column in the database called COMMENTS. For one record, COMMENTS
might contain two sentences. For another, it might contain 10 sentences. The size of the field
in your layout that corresponds to the COMMENTS column must then be able to
accommodate values of different length. In addition, objects around that field may have to
be "pushed" or "pulled" to avoid being overwritten or leaving large gaps in the report.

Fortunately, Report Builder provides a variety of mechanisms in the Layout View of the
Report Editor that enable you to control how objects are sized and positioned. These
mechanisms are described in the following sections:

n Section 2.3.4.1, "Using anchors"

n Section 2.3.4.2, "Using the Print Object On and Base Printing On properties"

n Section 2.3.4.3, "Understanding Horizontal and Vertical Elasticity"

n Section 2.3.4.4, "Using the Page Break Before and After property"

n Section 2.3.4.5, "Using the Page Protect property"

n Section 2.3.4.6, "Using the Keep with Anchoring Object property"

2.3.4.1 Using anchors
Anchors determine how objects in a report layout relate to one another. When two objects
are anchored together, one object is considered the parent and the other the child. By
defining parent-child relationships between objects, anchors establish a hierarchy for the
objects in a report. Based on this hierarchy of objects, Report Builder decides how objects
should be printed in relation to each other, whether it should attempt to keep the two objects
on the same page, and how objects should be pushed or pulled depending on the size of
surrounding objects.

Anchors can be created in one of two ways:

n Automatically, by Report Builder. This is known as an implicit anchor. In most cases,
implicit anchors are the only ones you need.

n By you, using the Anchor Tool in the Layout view of the Report Editor. This is known
as an explicit anchor. Explicit anchors are necessary only when you need to override the
implicit anchors for some reason. See the topic "About anchors" in the Report Builder
online help.
2-34 Guidelines for Building Applications

2.3 Creating an Effective Report
2.3.4.2 Using the Print Object On and Base Printing On properties
The Print Object On property determines the frequency with which an object appears in a
report. The Base Printing On property specifies the object on which to base the Print Object
On property.

For example, if you specify a Print Object On of All Pages and a Base Printing On of
Anchoring Object, the object is triggered to print on every logical page on which its
anchoring object (parent object) appears. Objects created by the Report Wizard have these
properties set for them. In most cases, the values that Report Builder chooses are the best
ones for the object. The only time you should need to set these properties yourself is when
you want to override the default value set by Report Builder.

In applying the Print Object On property, Report Builder considers the first page of an object
to be the first logical page on which some part of the object is printed. Likewise, the last
page is considered to be the last logical page on which some part of the object is printed. For
example, if you specify a Print Object On of First Page and a Base Printing On of Enclosing
Object, the object will be triggered to print on the first logical page on which its enclosing
object appears.

Notes:

n If an object is inside a repeating frame, Base Printing On refers to each instance of the
repeating frame. If the object is outside the repeating frame and explicitly anchored to
it, Base Printing On refers to the repeating frame as a whole.

n Just because an object is triggered to print on a logical page does not mean it will print
on that logical page. Other settings (e.g., Page Break Before) or the amount of space
available on the page may cause Report Builder to print an object on a page other than
the one on which it was initially triggered to print.

For more information, refer to the Report Builder online help, index entries: Print Object On
and Base Printing On.

2.3.4.3 Understanding Horizontal and Vertical Elasticity
The Horizontal and Vertical Elasticity properties determine how the horizontal and vertical
sizes of the object may change at runtime to accommodate the objects or data within it:

n For frames and repeating frames, elasticity defines whether the size of the frame or
repeating frame should vary with the objects inside of it.

n For objects containing text, elasticity defines whether the field or boilerplate should
vary with the size of the text. Fixed size text will wrap within the defined size of the
object and may be truncated if there is not enough room. Number or date data will
appear as asterisks if the data cannot fit within the defined size.
Designing Visually Effective Applications 2-35

n For images, drawings, and chart objects, Report Builder uses proportional scaling. The
elasticity options for images, drawings, and chart objects determine the scaling factor.

Objects created by the Report Wizard have these properties set for them. In most cases, the
values that Report Builder chooses are the best ones for the object. The only time you should
need to set these properties yourself is when you want to override the default value set by
Report Builder.

Different elasticity settings can produce unexpected results in the output. For example, if an
object with variable horizontal elasticity contracts, all objects to the right are moved to the
left, since these objects are implicitly anchored to the variable object.

For more information, refer to the Report Builder online help, index entries: Horizontal
Elasticity and Vertical Elasticity.

2.3.4.4 Using the Page Break Before and After property
Unlike word processing documents, reports and their objects can vary in size and position at
runtime. As a result, page breaks in a report can be difficult to predict.

n Use the Page Break Before property to indicate that you want an object to be formatted
on the page after the page on which it is initially triggered to print. Note that this does
not necessarily mean that all the objects below the object with Page Break Before will
move to the next page. If one of the objects below does not have Page Break Before set
and can fit on the page, it may print above the object which has Page Break Before set.

n Use the Page Break After property to indicate that you want all children of the object to
move to the next page. In other words, any object that is a child object of an anchor
(implicit or explicit) to this object will be treated as if it has Page Break Before set.
Note that this does not necessarily mean that all the objects below the object with Page
Break After will move to the next page. If one of the objects below does not have Page
Break After set and is not a child of the other object, it might print above the object
which has Page Break After set.

For more information, refer to the Report Builder online help, index entries: Page Break
Before and Page Break After.

2.3.4.5 Using the Page Protect property
Use the Page Protect property to try to keep the entire object and its contents on the same
logical page. If the contents of the object cannot fit, they are moved to the next logical page.
Note that this does not necessarily mean that all the objects below the object with Page
Protect set will move to the next page. If one of the objects below can fit on the page, it
might print above the object which has Page Protect set.

For more information, refer to the Report Builder online help, index entry: Page Protect.
2-36 Guidelines for Building Applications

2.4 Creating an Effective Display
2.3.4.6 Using the Keep with Anchoring Object property
Use the Keep with Anchoring Object property to keep an object and the object to which it is
anchored on the same logical page. If the object, its anchoring object, or both cannot fit on
the logical page, they are moved to the next logical page.

If you set Keep with Anchoring Object for a repeating frame, the first instance of the
repeating frame must be able to fit on the same page as its anchoring object. Otherwise, the
Keep With Anchoring Object condition is not satisfied. If you set Keep With Anchoring
Object to Yes for any layout object other than a repeating frame, the object must be able to
format entirely on the same page as its anchoring object.

The anchor between the two objects may be explicit or implicit. Consequently, Keep With
Anchoring Object may have an effect even if you have not explicitly created an anchor
between two objects.

2.4 Creating an Effective Display
Graphics Builder enables you to produce displays for inclusion in both forms and reports. A
display can be an application by itself, or included in a form or report.

Use displays when you want to:

n Show relationships between different categories (number of tennis shoes sold as
compared to dress shoes)

n Show trends rather than specific values

n Provide user interaction with graphical areas and shapes (maps, sectors of images, and
so on). Graphics Builder allows you to respond to mouse interactions with the shapes
that you create in the layout editor. Irregular, transparent buttons can be placed over
areas of a diagram or bitmapped image so that users can effectively make selections
from pictures.

When creating graphics, keep the following guidelines in mind:

n Keep things simple. Displays containing too many lines, bars, slices, and so on can
quickly overwhelm users and render your graph or chart unusable. If you have a lot of
data, summarize it at the highest level and use drill-downs to present more detailed
information. Or, consider breaking up a complicated graph into smaller, individual
graphs, then creating a form from which users can select which graph they want to
view.

n Use 3-D effects only if they help communicate information, as they can be
resource-intensive.
Designing Visually Effective Applications 2-37

.
r in
n Test your graphics on all the display devices in your deployment environment and make
sure they perform well even on the lowest resolution monitor.

n Use colors to show transition; use primary colors to show differences. See
Section 2.2.2.3, "Adding color" for more information on using color.

n Use legends for complicated graphs.

n Remember, you can pass mouse events from forms to graphics modules. For example,
you can create a When-Mouse-Click trigger on a form’s chart item and call the
OG.MouseDown procedure from this trigger to pass mouse information to a display
The display can then return information to the form, including details of which secto
the display was clicked by the user. See the Graphics Builder demo called "Map
Example" in the product’s standard demo set for more information.

2.4.0.7 Choosing the Right Graph
Here are some guidelines for implementing the most commonly used displays:

Table 2–7 Recommendations for displays

Display type When to use: Recommendations

Bar graph Showing relationships between
discrete objects and their
related values.

Limit bars to 20-25.

Pie chart Showing part-to-whole
relationships. Typically used to
show percentage values.

Limit slices to 10.

Line chart Show the cumulative effect of
continuous data.

Limit lines to 6-8.

Double-Y Comparing data within a large
range of values.

Limit plots to 4 or less.

Gantt Scheduling and date duration
data.

Limit bars to 40-50.

High-low Displaying daily temperature
values, stock market values,
and similar data tracking high,
low, and current values.

Limit rows to 30 or less.

Mixed Comparing actual values (bar)
to projected values (line).

Limit rows to 30 or less.

Scatter Showing relationships between
numeric data on the X and Y
axis.

Limit rows to less than 50 per
inch.
2-38 Guidelines for Building Applications

Performance Sugge
3

Performance Suggestions

This chapter details suggestions for improving performance of your applications. It includes
the following sections:

n Summary

n Introduction: What Is Performance?

n Measuring Performance

n General Guidelines for Performance Improvement

n In a Client/Server Structure

n In a Three-Tier Structure

3.1 Summary
The following table summarizes the available performance suggestions, and indicates where
a detailed explanation can be found in this chapter.

Before getting into the details, you should read the introductory information in Section 3.2.
The material on performance measurement in Section 3.3 may also be helpful.

The suggestions are grouped according to their scope, in this sequence:

1. those that apply to any Forms Developer or Reports Developer application, in any
environment

2. those for specific Builder applications (Forms, Reports, or Graphics), in any
environment

3. those for any Forms Developer or Reports Developer application in a client/server
(2-tier) environment
stions 3-1

4. those for any Forms Developer or Reports Developer application in a 3-tier
environment

Performance Suggestion Explanation

For any application:

 Upgrade your software on page 3-10

 Upgrade your hardware on page 3-10

 Use array processing on page 3-11

 Eliminate redundant queries on page 3-11

 Improve your data model on page 3-12

 Choose one of the database server’s optimizers on page 3-12

 Perform your calculations within your query SQL on page 3-13

 Avoid using explicit cursors on page 3-13

 Use group filters on page 3-13

 Share work between components on page 3-14

 Move wait time forward on page 3-14

For any Forms application:
 (all the general suggestions also apply to Forms)

 Tune array processing on page 3-14

 Base data blocks on stored procedures on page 3-14

 Optimize SQL processing in transactions on page 3-17

 Optimize SQL processing in triggers on page 3-17

 Control inter-form navigation on page 3-17

 Raise the record group fetch size on page 3-18

 Use LOBs instead of LONGs on page 3-18

 Erase global variables after use on page 3-18

 Reduce widget creation on page 3-18

 Examine the necessity for locking on page 3-19
3-2 Guidelines for Building Applications

3.1 Summary
For any Reports application:
 (all the general suggestions also apply to Reports)

 Reduce layout overhead on page 3-19

 Use format triggers carefully on page 3-20

 Link your tables on page 3-21

 Control runtime parameter settings on page 3-21

 Turn off debug mode on page 3-21

 Use transparent objects on page 3-21

 Use fixed sizes for non-graphical objects on page 3-22

 Use variable sizes for graphical objects on page 3-22

 Use image resolution reduction on page 3-22

 Avoid word wrapping on page 3-22

 Simplify formatting attributes on page 3-22

 Limit your use of break groups on page 3-23

 Avoid duplicating work with Graphics Builder on page 3-23

 Choose between PL/SQL and user exits on page 3-23

 Use PL/SQL instead of SRW.DO_SQL for DML on page 3-24

 Evaluate the use of local PL/SQL on page 3-25

 Use multiple attributes when calling SRW.SET_ATTR on page 3-25

 Adjust the ARRAYSIZE parameter on page 3-25

 Adjust the LONGCHUNK parameter on page 3-25

 Adjust the COPIES parameter on page 3-26

 Avoid fetch-ahead in previewing on page 3-26

 Choose appropriate document storage on page 3-27

 Specify path variables for file searching on page 3-27

 Use the multi-tiered server on page 3-27

Performance Suggestion Explanation
Performance Suggestions 3-3

For any Graphics application:
 (all the general suggestions also apply to Graphics)

 Pre-load graphics files on page 3-28

 Update displays only if necessary on page 3-28

 Move display updates out of loops on page 3-28

 Use common elements wherever possible on page 3-28

 Limit the DO_SQL procedure to DDL statements on page 3-28

 Use handles to reference objects on page 3-29

 Consider not using shortcut built-ins on page 3-29

For any application in a client/server environment:
 (all the general suggestions earlier also apply to client/server)

 Choose an appropriate installation configuration on page 3-29

 Choose the best application residence on page 3-30

For any application in a 3-tier environment:
 (all the general suggestions earlier also apply to 3-tier)

 Increase network bandwidth between tiers 1 and 2 on page 3-31

 Minimize changes to the runtime user interface on page 3-31

 Adjust stacked canvases (non-visible, raise on entry) on page 3-31

 Perform validation at a higher level on page 3-31

 Avoid enabling and disabling menu items on page 3-31

 Keep display size small on page 3-31

 Identify paths for graphics on page 3-32

 Limit the user of multimedia on page 3-32

 Avoid use of animations driven from the application server on page 3-32

 Take advantage of hyperlinks on page 3-32

 Put code into libraries on page 3-32

 Reduce start-up overhead with JAR files on page 3-32

Performance Suggestion Explanation
3-4 Guidelines for Building Applications

3.2 Introduction: What Is Performance?

hips
-offs

time.
in

s

d its

s.

t is,
, too,
ave an
3.2 Introduction: What Is Performance?
Before setting out to improve performance, it’s helpful to have a clear view of specific
goals, and what is involved in achieving them.

You need to be precise about what areas you want to improve, and how performance in
those areas is perceived or measured.

Additionally, improving performance can involve understanding the many interrelations
and dependencies in today’s computing environment, the costs involved, and the trade
that may occur in improving performance in one area.

3.2.1 Performance When?
The use of Forms Developer and Reports Developer is divided into design time and run
Design time, when programmers are building the applications, is not usually a concern
terms of performance. It is runtime — when the applications are being exercised by
multiple end users in the daily business environment — that is almost always the main
concern. As a result, the rest of this chapter focuses on performance in the runtime
environment.

3.2.2 Performance of What?
There are many ways to view an application’s performance. Its storage requirements, it
coding efficiency, its network loading, and its server usage, are just a few areas. Every
situation is different, and every site and department will have its own set of priorities an
own view of which performance area is most important. In addition, "good" and "bad"
performance in these areas are relative things. There are rarely any absolute standard

Often the most visible area is performance in terms of response time for end users (tha
how long people using the application must wait after making a choice or entry). Here
there are no absolute standards. No matter what the actual response time, users will h
opinion — which will depend in part on what they are accustomed to and what their

 Reduce start-up overhead with pre-loading on page 3-33

 Use just-in-time compiling on page 3-33

 Increase Tier 2 hardware power on page 3-33

 Use multiple Tier 2 components (Web Application Server) on page 3-33

Performance Suggestion Explanation
Performance Suggestions 3-5

ed to
o the
l

der
expectations are. Real numbers are irrelevant. If end users are not happy with the response
time, then that area is certainly a candidate for improvement.

3.2.3 Interrelationships
Applications do not run in a vacuum. In a client/server environment, the application is
dependent on two underlying hardware and operating system configurations, plus a
hardware and software network connection. In a three-tier environment, the situation is even
more complex. In addition, the application is interacting with one or more database servers,
and may also be calling other software components as it runs.

Further, an application is often sharing these hardware and software resources with other
applications. Because of this sharing, an application that is efficient in itself can be adversely
affected by other inefficient applications.

Performance of an application, then, is not just a result of its own design and usages, but a
very complex result of the combined interactions of a great number of different components
and factors.

3.2.4 Trade-offs
Some improvements in performance are straightforward and purely beneficial. Eliminating
useless code in an application would be an example.

Other improvements might not be so clear cut, however. For example, giving one
application a higher network priority by necessity lowers the relative priority of the others.
As another example, we might restructure a database to improve access time for one type of
application, but find that we have actually degraded access time for other important
applications.

At the single application level, a classic trade-off is space versus speed. We might be able to
decrease our main storage requirements by off-loading some components, but that would
most likely degrade the application’s response time (since those components would ne
be loaded when needed). On the other hand, we might move the loading operations int
start-up phase, which would improve later response time, but at the cost of higher initia
start-up overhead.

Before deciding on any particular improvement effort, it’s helpful to understand the broa
implications, and make choices according to your priorities.

3.3 Measuring Performance
How do we tell if our applications are performing adequately?
3-6 Guidelines for Building Applications

3.3 Measuring Performance

ore

 any
.

ou
ts or

e it.
d time,
our

r to

s
In the case of response time, the opinion of our end users is paramount. But in other areas
we would like more tangible data; some hard numbers.

3.3.1 Forms Developer- and Reports Developer-Specific
Measurements

The Ora_Prof built-in package is distributed with both Forms Developer and Reports
Developer. It allows you to examine the PL/SQL in an application, and find out how much
time a specific piece of code takes to run.

The following product-specific measurement tools are also available.

3.3.1.1 Forms Measurements
You can obtain general information about a Forms application by setting the runtime option
STATISTICS=YES.

3.3.1.1.1 PECS

You can use Form Builder’s Performance Event Collection Services (PECS) to gather m
detailed information about an application’s runtime behavior.

You activate the PECS data collection by specifying the runtime option PECS=ON.

The simplest use of PECS is to collect application-wide statistics. This does not require
changes to the existing application (only the activation of PECS via the runtime option)

PECS also allows you to focus on specific areas in your application. PECS provides y
with a number of built-ins that you can insert into your code to identify sections or even
classes that you want to examine in detail.

Once the data has been collected, you can use the PECS Assistant to view and analyz
The Assistant produces various types of reports that let you see such things as elapse
CPU time, events or occurrences reached, usage of your PL/SQL code, and so forth. Y
analysis of the application’s runtime behavior can help you spot potential areas for
improvement. For example, some section of code might be taking considerably longe
execute than the others, and would therefore be a candidate for closer investigation.

3.3.1.2 Reports Measurements
Report Builder offers two measurement tools: the Reports profile option and the Report
trace option.

3.3.1.2.1 Reports Profile
Performance Suggestions 3-7

The Reports profile option, when set, produces a log file that shows where the report spent
its processing time. This may help you identify performance bottlenecks.

To set the profile option, specify PROFILE=<filename>, where <filename> is the
name of the required log file. Profile can be either a report parameter or a command line
argument.

Typical profile output from a sample report is shown below:

From this profile, it is possible to see the execution time (total elapsed time) for the report,
the amount of time that was spent formatting the retrieved data (Reports Time), and the
amount of time spent waiting for the data to be retrieved (Oracle Time). UPI time is the time
spent establishing the database connection, and parsing and executing the SQL. The SQL
time is the time spent while the database server fetches the data, and time spent executing
SRW.DO_SQL() statements (the DML and DDL statements that your application may
contain).

In this example, the profile shows that the majority of the time was spent laying out the data
rather than querying and fetching.

3.3.1.2.2 Reports Trace

The Reports trace option produces a file that describes the series of steps that a report carries
out during the execution of the report. The trace option can be set so that all events are
logged in the file, or only a subset of steps are logged (for example, only SQL execution
steps). The trace file provides an abundance of information that is not only useful for
performance tuning, but also in finding out what executed when.

The trace option can be set either from the main menu (choosing Trace under Tools) or from
the command line arguments TRACEFILE (filename for trace information), TRACEMODE
(either append trace information from future runs to the existing trace file, or replace the
trace file), or TRACEOPTS (a list of the event types where tracing is required).

Total Elapsed Time: 29.00 seconds

Reports Time: 24.00 seconds (82.75% of TOTAL)

Oracle Time: 5.00 seconds (17.24% of TOTAL)

UPI: 1.00 seconds

SQL: 4.00 seconds
3-8 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement
3.3.2 Server- and Network-Specific Measurements
Database servers and network systems often provide measurement and analysis tools that
you can use to obtain performance information in those areas.

For example, an invaluable aid to tuning your SQL is the SQL trace functionality provided
by the Oracle database server. SQL trace enables you to see the SQL sent to the database, as
well as the time taken to parse, execute, and fetch data from the statement. Once a trace file
has been generated, use the TKPROF utility to generate an Explain Plan, which is a map of
the execution plan used by the Oracle Optimizer. The Explain Plan shows, for example,
where full-table scans have been used, which may suggest that the application could benefit
from an index (depending on the performance hit). More information about the Explain Plan
is available in the Oracle SQL Language Reference Manual.

As well as measurement and analysis tools offered by the servers and network systems your
application uses, you should also consult with the administrators of those areas. They may
be able to offer direct assistance, or suggestions for ways to improve application
performance in the existing environment.

3.4 General Guidelines for Performance Improvement
The following performance-improvement guidelines apply to Forms Developer and Reports
Developer in general (all their component Builders), and to both deployment architectures
(client/server and three-tier).

The general guidelines cover these areas:

n Upgrades of hardware and software

n Data design (data modeling)

n Work sharing between components

n Wait time transfer

n Debug mode

3.4.1 Upgrades of Hardware and Software
Perhaps the simplest way to obtain improved performance is to upgrade your hardware
and/or software. While there is effort involved in upgrading, the performance improvements
offered by the newer components often make it worthwhile.
Performance Suggestions 3-9

atic

an

edure
ple,

o
er

t

your
g

or
ver

er and

ous
3.4.1.1 Software Upgrades

3.4.1.1.1 Upgrading Oracle software

Each successive release of Oracle software offers improvements and extensions over its
predecessors. Improvements are in many categories, and vary in nature from release to
release. But often a new release will offer not only new functionality, but also something in
the way of performance enhancements — perhaps additional tuning aids or even autom
performance improvement.

For example, Release 1.6 improves on Release 1.5 by providing a load balancer that c
make efficient use of multiple application servers. Release 2 offers the
returned-table-of-records feature, which allows passing changes once to a stored proc
that in turn distributes them to multiple tables, saving network trips. As yet another exam
Release 6 contains re-written internal code that uses the more efficient OCI language t
interface with the database server, providing improvements without any required custom
action.

Consider upgrading to a later, more efficient release.

3.4.1.1.2 Upgrading Other Software Components

Both Forms Developer and Reports Developer, of course, run with other software, mos
notably the Oracle database server and the PL/SQL language components. Better
performance in associated components will often be reflected in better performance in
applications. More tuning features in those areas may offer more opportunity for makin
improvements in the applications.

The later releases of the associated software almost always offer better performance. F
example, the Oracle8 database server offers a number of performance improvements o
Oracle7: for example, table and index partitioning, enhanced parallel processing, and
deferred constraint checking.

Therefore, to the extent you are able to control or influence the choice of database serv
other associated software, consider upgrading to a higher, more efficient level.

3.4.1.2 Hardware Upgrades
Increasing the capacities and/or speeds of the underlying hardware systems is an obvi
approach to improving performance. This includes not only the desktop and server
machines, but also the network connections between them.
3-10 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

 the
he
ution

 set
r

ich is
e
t
oping

r
3.4.2 Suggestions for Data Usage
Accessing a database is a major activity of typical Forms Developer and Reports Developer
applications. Being efficient in reading and writing that data can have a significant effect on
overall performance.

3.4.2.1 Use Array Processing
Both Forms Developer and Reports Developer are able to take advantage of the Oracle
database server’s array processing capabilities. This allows records to be fetched from
database in batches instead of one at a time, and results in significantly fewer calls to t
database. The downside of array processing is that more space is required on the exec
platform for storing the arrays of records returned.

If load on the network becomes a major bottleneck in the production environment, then
the Developer product’s runtime ARRAYSIZE parameter to as large a value as possible fo
the execution environment.

3.4.2.2 Eliminate Redundant Queries
Ideally, an application should have no redundant queries (queries which return data wh
not required), since they will clearly diminish performance. However, situations can aris
where an application not only needs to produce a different format for different users, bu
also needs to utilize different query statements. Clearly this could be achieved by devel
two different applications, but it may be desirable to have a single application for easier
maintenance.

For example, in a report, you could disable redundant queries by use of the SRW.SET_
MAXROW() procedure. The following code in the Before Report trigger will disable eithe
Query_Emp or Query_Dept, depending on a user parameter:

IF :Parameter_1 = ‘A’ then
SRW.SET_MAXROW(‘Query_Emp’,0);

ELSE
SRW.SET_MAXROW(‘Query_Dept’,0);

END IF;

There are several points to remember when using SRW.SET_MAXROW():

n The only meaningful place to use SRW.SET_MAXROW() is in the Before Report
trigger (after the query has been parsed). If SRW.SET_MAXROW() is called after this
point, then the SRW.MAXROW_UNSET packaged exception is raised.

n The query will still be parsed and bound, but no data will be returned to the report.
Performance Suggestions 3-11

3.4.2.3 Improve Your Data Model
If an application is known to be spending an inordinate amount of time in the database, then
it is often beneficial to review the structure of the data and how it is being used. Both Forms
Developer and Reports Developer are non-procedural tools that are optimized for set-based
logic, and a bad schema design can have a dramatic negative effect. For example, an overly
normalized data model can result in many avoidable joins or queries, while a lack of
appropriate indexes can result in many costly full-table scans.

The specific nature of your application will determine the most efficient data model. A
query-driven application can benefit from de-normalized tables; normalized tables are
usually best for applications that do many updates and inserts.

Efficient design and operation of the database and server will clearly benefit its client
applications. However, because the creation and management of the database is a large
topic, and one usually outside the domain of the application developers, the topic of database
performance is only introduced here. The subject is covered in its own manual: Oracle
Server Tuning. Using that manual and such server tools as SQL trace and the TKPROF
utility, you can determine where your data model could be improved.

Even if that area is outside your direct control, you might still want to consult with the
database server personnel to see if specific performance concerns could be addressed to
mutual advantage.

3.4.2.4 Use SQL and PL/SQL Efficiently
Both Forms Developer and Reports Developer use SQL to talk to the database and retrieve
data, and it is helpful for anyone tuning applications to have a good working knowledge of
SQL and to understand how the database is going to execute these statements.

3.4.2.4.1 Choose an Appropriate Optimizer

Inefficient SQL in your application can severely impact its performance. This is particularly
true in applications that have large queries.

The Oracle database server provides you with two SQL optimizers: cost-based and
rule-based. Using the cost-based optimizer gives you a significant amount of automatic
optimization without having to involve yourself in the complexities of tuning your SQL ; in
addition, hints are provided that allow for additional tuning. Using the rule-based
(heuristic) optimizer allows you to fine-tune your SQL to potentially achieve an even higher
level of optimization, although it does require more work on your part and some
understanding of SQL processing.

For most applications, the cost-based optimizer will give a satisfactory level of optimization.
Indeed, an untuned cost-based optimization is often superior to a hand-tuned rule-based
3-12 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement
optimization. However, a developer who understands the spread of the data and the rules
governing the optimizer, and who wants to attempt to achieve the highest level of efficiency,
can try using the rule-based method.

In any event, it is important to choose one or the other optimizer. Either:

n activate the cost-based optimizer (by either running ANALYZE on the tables or setting
the init.ora parameter), or

n optimize all your SQL following the suggestions and access path choices provided for
you by the rule-based optimizer.

3.4.2.4.2 Perform Calculations within the Query SQL

When performing calculations within an application, the general rule of thumb is that the
more calculations that can be performed within the query SQL the better. When calculations
are included in the SQL, they are performed by the database before the data is returned,
rather than the data being returned and cached before the calculation is performed by the
application. From Oracle 7.1 onwards, you can include server-stored user-defined PL/SQL
function calls in the query select list. This is more efficient then using a local PL/SQL
function (e.g., in a formula column), since the calculated data is returned as part of the result
set from the database, so no further calculations are required.

In Oracle8, calls to methods can use the SELF parameter, which simplifies and speeds the
passing of arguments.

3.4.2.4.3 Avoid Explicit Cursors

Declaring and using explicit cursors in your application gives you complete control over
your database queries. However, such cursors are rarely necessary. (Both Forms Developer
and Reports Developer create any needed cursors implicitly, and manage them for you.)
Explicit cursors also add to network traffic, and therefore should be avoided in most
applications.

3.4.2.5 Use Group Filters
Group filters are available in the Reports and Graphics components.

The main use for group filters is to restrict the number of records being retrieved to be the
first or last n records, although there is also an option to create a PL/SQL filter condition.
When using a group filter of either type, the query is still passed to the database and all data
will still be returned to the application, where the filtering will take place. Therefore, even if
the application displays only the top five records, the result set returned will contain all the
records returned by the query.
Performance Suggestions 3-13

For this reason, it is usually more efficient to try to incorporate the group filter into the
where clause of the query wherever possible. This will restrict the data returned by the
database.

3.4.2.6 Share Work Between Components
Both Forms Developer and Reports Developer offer the ability to construct applications that
use multiple components. For example, data might be fetched and manipulated by Forms,
which then calls Reports to produce some output. Reports, too, could call Graphics to
display some output visually.

While each called component could re-query the data, it is more efficient to have Forms
create a record group to hold the data, and then pass that along as a parameter to Reports,
and Reports similarly to Graphics. (This technique is sometimes referred to as query
partitioning.) Using this technique, the data is queried only once.

3.4.2.7 Move Wait Time Forward
When one component calls another, and the called component is not already in memory,
there is a certain amount time taken to load it. While this load-upon-demand makes more
efficient use of memory, it can cause a perceptible wait for the end user.

It is possible to reduce the wait time by having the called component loaded initially (along
with the calling component). This does lengthen start-up time (as well as use memory
less-efficiently), but a wait at start-up is usually less noticeable than a wait in the middle of
processing.

(This technique is more useful for Forms calling Reports than it is for Reports calling
Graphics.)

3.4.3 Forms-Specific Suggestions
All the general suggestions offered earlier in this chapter also apply to Forms applications.
In addition, consider the following.

3.4.3.1 Tune Your Array Processing
The general value and trade-offs of array processing have already been noted. In Forms, this
setting for querying is controlled in the block property Query Array Size. For
updating/inserting/deleting, the array processing setting is controlled in the block property
DML Array Size.

3.4.3.2 Base Data Blocks on Stored Procedures
If you can, base your data block on a stored procedure.
3-14 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

ed

and
ds
cords
 the

iew,
 better
 that
s

on)
an be

e can

nks
al
 be as
 all
ct
Stored procedures are the most direct way of moving processing to the server. When
correctly designed, stored procedures can also eliminate many network round trips. For
example, by basing a query on a stored procedure, the foreign key lookups and calculations
can be performed on the server rather than in Post-Query triggers. Such triggers typically
add at least one round trip per row, thereby losing the benefit of array fetches.

Similarly, by performing updates through a stored procedure, audit trails or denormalized
data can be written without an additional network round trip; so can validations that might
be necessary before attempting to perform the DML. This eliminates network round trips
that previously might have occurred in Pre-Update, Pre-Insert, and Pre-Delete triggers.

If you are using a release prior to 2.0, you can manually build a data block on a stored
procedure by writing transactional triggers, such as On-Select and On-Fetch Using Release
2.0 or later, you can perform array fetches through stored procedures.

You also have two options for queries through stored procedures. The first option is to base
a data block’s query on a stored procedure that returns a Ref Cursor; the other is a stor
procedure that returns a Table of Records.

3.4.3.2.1 Query Based on Ref Cursor

A Ref Cursor is a PL/SQL construct that allows the stored procedure to open a cursor,
return to the client a "pointer" or reference to the cursor. The client can then fetch recor
from the cursor just as if the client had opened the cursor itself. In the case of Forms, re
are fetched through the Ref Cursor using array fetches exactly as if Forms had opened
cursor itself for a data block based directly on a table or view.

A data block based on a Ref Cursor has many similarities to a data block based on a v
but there are two major advantages to a Ref Cursor. First, a stored procedure provides
encapsulation of the data. By denying direct query access to the tables, you can ensure
applications query the data only in ways that are meaningful (for example, a set of table
might be designed to be joined in a specific way to produce a particular set of informati
or only in ways that are efficient (for example, queried in such a way that the indexes c
used).

The second advantage is that the stored procedure can be more flexible. The procedur
determine at runtime which one of several Select statements to execute in opening the
cursor. This decision might depend on the role or authority of the user. For example, a
manager might see all of the columns in the Emp table, but a clerk would be shown bla
for the salary. Or it might depend on a parameter so that a different set of data - historic
versus current, for instance - can be displayed in a single data block. This decision can
complex as you wish, providing you can write the PL/SQL. The only limitations are that
of the different Select statements must return a compatible set of columns and the Sele
Performance Suggestions 3-15

port

lar to
te
ef

nly
lex

ies for
qual

n the
cal
es a
h very

rn all

ility

 out"
rips if

ch
s
cords
statement cannot be composed dynamically at run time. (The database doesn’t yet sup
Ref Cursors with dynamic SQL).

Note: Use of the REF cursor prevents use of Query-by-Example.

3.4.3.2.2 Query Based on Table of Records

Introduced with PL/SQL release 2.3, a Table of Records is an in-memory structure simi
a database table. The stored procedure can build an in-memory table consisting of, qui
literally, any data at all you can construct, row by row, much like an array. Whereas a R
Cursor allows you to return anything that you know how to construct in SQL, a Table of
Records allows you to return anything that you know how to construct in PL/SQL. Not o
can you perform lookups and calculations on the server side, you can also make comp
decisions about which records to include or exclude from the returned record set.

One example of something relatively easy to do in PL/SQL and very hard to do in SQL
would be to return the employees in each department whose salary is in the top 5 salar
their department. (What makes this hard in SQL is that several people could have the e
fifth high salary. In PL/SQL, it’s a relatively simple loop.)

When called in response to a Forms query, the procedure builds the Table of Records o
server side. It then returns the whole result set to the client at once, using as few physi
network round trips as the network packet size allows. Each record in the Table becom
row in the Forms block. This frees up server resources and uses the network bandwidt
efficiently, at the cost of client resources and potentially wasting network traffic for
unneeded records.

Note that when used for a master/detail query, the Table of Records technique will retu
the detail records on the query. Thus it is suited only for smaller queries.

In summary then, although a Table of Records allows the procedure the greatest flexib
in determining the result set, it should be used with care.

Note: Use of the REF cursor prevents use of Query-by-Example.

3.4.3.2.3 Insert/Update/Delete Based on Table of Records

In Release 2.0, you can also use a Table of Records returned to a stored procedure to
perform inserts, updates and deletes from a block. The stored procedure can then "fan
your changes to as many tables as necessary, potentially saving many network round t
your data model is highly normalized. Writing audit trails is another possible use. This
technique requires that you provide a procedure for each of Insert, Update and Delete.

As with a block based on a regular table, Forms automatically maintains the state of ea
record to determine if it is an inserted, updated or deleted record. At commit time, Form
constructs a Table of Records for all of the inserted records, another for the updated re
3-16 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

QL
ion

date

orm
ents in
on —

and another for deleted records. It then calls each of the procedures, passing it the relevant
Table of Records. As with query, the Table of Records is passed in a "single shot." In this
case, though, there is no disadvantage to sending the whole Table at once, since all the
records have to be sent to the server to be committed anyway.

3.4.3.2.4 Combining Techniques

Finally, it is worth noting that you might combine these other techniques in any way. For
example, you might choose to query through a Ref Cursor while performing DML through a
Table of Records, giving you the best of both worlds.

3.4.3.3 Optimize SQL Processing in Transactions
By default, Forms assigns a separate database cursor for each SQL statement that a form
executes implicitly or as part of posting or querying data. This behavior enhances
processing, because the statements in each cursor need to be parsed only the first time they
are executed in a Runform session — not every time.

Forms does allow you to save some memory by having a single cursor for all implicit S
statements (other than query SELECTs). You would do this by setting the runtime opt
OptimizeTP to No.) However, the memory savings are usually insignificant, and when
you do this, processing is slowed because all Insert, Update, Delete, and Select for Up
statements must be parsed every time they are executed.

Therefore, it is recommended that you avoid using the OptimizeTP=NO setting.

3.4.3.4 Optimize SQL Processing in Triggers
By default, Forms assigns a separate database cursor for each SQL statement that a f
executes explicitly in a trigger. This behavior enhances processing, because the statem
each cursor need to be parsed only the first time they are executed in a Runform sessi
not every time.

Forms also allows you to save some memory by having a single cursor for all SQL
statements in triggers. (You would do this by setting the runtime option OptimizeSQL to
No.) However, the memory savings are usually insignificant, and when you do this,
processing is slowed because the SQL statements must be parsed every time they are
executed.

Therefore, it is recommended that you avoid using the OptimizeSQL=NO setting.

3.4.3.5 Control Inter-Form Navigation
It is often more efficient to divide a large application into multiple small forms, and then
navigate between the various forms as needed.
Performance Suggestions 3-17

You can reduce navigation time if you keep a frequently-used form open after its initial use,
rather than opening and closing it each time it is used. Closing and re-opening a form
involves considerable overhead, which slows performance.

To keep forms open, navigate by using the OPEN_FORM built-in instead of the NEW_
FORM built-in. (NEW_FORM closes the previously-used form when opening the new one.)

3.4.3.6 Raise the Record Group Fetch Size
A larger fetch size reduces the number of fetches required to obtain a record group. If your
application is using record groups (or constructing record groups at runtime), set this size
using the Record Group Fetch Size property.

3.4.3.7 Use LOBs instead of LONGs
If you are using the Oracle8 server, it is more efficient to use the LOB (large object)
datatypes instead of LONG or LONG RAW.

3.4.3.8 Erase Global Variables
Each global variable takes 255 bytes. If an application is creating a large number of these
variables, consider erasing them when they are no longer required. (Use the Erase built-in
for that purpose.)

3.4.3.9 Reduce Widget Creation on Microsoft Windows
The following suggestions may improve resource usage for very large forms running on
Microsoft Windows. (These suggestions differ from standard design practice, and should
only be used in those cases where resource usage is a problem.)

n Have some commands available as entries on the Special menu rather than as buttons on
the form.

n Change horizontal scrolling areas into alternative regions showing only a subset of the
columns at a time.

n Reduce the number of windows by using multiple alternative regions in one window or
by improving the window flow.

n Display multiple rows of certain information (primary key and descriptor fields) and
one row of less important information by using overflow regions or combination blocks.

n Use the Rendered property whenever possible.

n In general, limit the number of native widgets (non-rendered items) used in the form.
3-18 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

 that

tion,

ut
out is

eing

tely

 hence

r
 is
atting
ate
ts is
3.4.3.10 Examine the Necessity of Locking
Whenever a user updates a record, Forms locks the record, and a round-trip to the database
takes place.

If only a single user is updating the data, the locking is not necessary. To turn off locking,
set the Form property Isolation Mode to Serializable; set the block property Locking Mode
to Delayed.

However, the suppression of Forms’ locking should be done only if you are quite certain
there can never be simultaneous use of the data.

3.4.4 Reports-Specific Suggestions
All the general suggestions offered earlier in this chapter also apply to Reports. In addi
consider the following:

3.4.4.1 Areas to Focus On
Once the data has been retrieved from the database, Reports needs to format the outp
following the layout model that the user has created. The time taken to generate the lay
dependent on a number of factors, but it is mostly devoted to preventing an object from
being overwritten by another object, and performing any calculations or functions in the
format triggers. Greater efficiency in these two areas will have the greatest payoff.

3.4.4.2 Reduce Layout Overhead
When generating a default layout, Reports puts a frame around virtually every object to
protect it from being overwritten when the report is run. At runtime, every layout object
(frames, fields, boilerplate, etc.) is examined to determine the likelihood of that object b
overwritten. In some situations (for example, boilerplate text column headings), there is
clearly no risk of the objects being overwritten, and hence you can remove the immedia
surrounding frame. This reduces the number of objects that Reports has to format, and
improves performance.

Similarly, when an object is defined as having an undefined size (variable, expanding o
contracting in either or both the horizontal and vertical directions) then extra processing
required, because Reports must determine that instance of the object’s size before form
that object and those around it. Where feasible, set this sizing to fixed, which will elimin
this additional processing, since the size and positional relationships between the objec
already known.
Performance Suggestions 3-19

3.4.4.3 Use Format Triggers Carefully
It is generally preferable to use declarative format commands rather than format triggers.
However, format triggers are useful for making runtime changes. Specifically:

n Disabling and enabling objects dynamically at runtime.

n Dynamically changing the appearance of an object at runtime.

Care should always be exercised when using format triggers, being aware that the trigger
does not only fire for every instance of its associated object on the output media, but every
time the object is formatted at runtime.

These two purposes noted above may seem like the same thing, but consider the following
example. A tabular report includes a single repeating frame that can expand vertically and
has page protect set on. As this report is formatted, there is room for one more line at the
bottom of the first page. Reports starts to format the next instance of the repeating frame and
fires its associated format trigger. One of the objects inside the repeating frame is found to
have expanded, and this instance of the repeating frame is therefore moved to the following
page, and the format trigger for the repeating frame is fired again. Hence, although the
repeating frame only appears once (at the top of the second page), the format trigger has
fired twice. Had this format trigger contained an INSERT statement, then two rows of the
same data would have been inserted.

Format triggers should also be placed at the highest level possible in the object/frame
hierarchy, so that the trigger fires at the lowest possible frequency. For example, if there are
four fields in a frame, a format trigger at the field level will fire four times, whereas a format
trigger at the frame level will need to fire only once.

If PL/SQL must be used in a format trigger, place it in the trigger of the object with the
lowest frequency possible. For example, PL/SQL in the format trigger of a frame instead of
a field typically makes the report run faster. The PL/SQL in a format trigger is executed for
each instance of its object. The lower the frequency of the object, the fewer times the
PL/SQL will be executed and the faster the report will run.

Because you cannot be sure how many times a format trigger will fire for a particular object,
you should not perform calculations or use DML in a format trigger.

If the display attributes of a field are to change dynamically (for example, to draw attention
to values outside the norm), then all attribute changes can be set in a single call to
SRW.ATTR(), or in multiple calls to SRW.SET built-ins with each call setting a separate
attribute. Although the latter technique makes for more readable code, runtime efficiency is
usually better with a single SRT.ATTR() call — especially if many attributes need to be
set.
3-20 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement
3.4.4.4 Consider Linking Tables
As with most operations, there are a number of ways to create data models that include more
than one table. Consider, for example, the standard case of the department-employee join;
i.e., the requirement is to list all the employees in each department in the company. In
Reports Developer, the programmer can either create a single query, or two queries and use
a master-detail relationship between the two.

On the application side, when designing the data model it is preferable to minimize the
actual number of queries by using fewer, and larger (multi-table) queries rather than more,
and simpler (single-table) queries. Each time a query is issued, Reports Developer needs to
parse, bind and execute a cursor. A single query is therefore able to return all the required
data in a single cursor rather than many. Also be aware with master-detail queries that the
detail query will be re-parsed, re-bound and re-executed for each master record retrieved. In
this instance it is often more efficient in a report to merge the two queries and use break
groups to create the master-detail effect.

It should be noted, however, that the larger and more complex a query becomes, the more
difficult it can be to maintain. Each site needs to decide how to balance its performance and
maintenance requirements.

3.4.4.5 Control Your Runtime Parameter Settings
Having designed a report to run efficiently, you can further improve the overall performance
of a report by setting specific runtime arguments.

The ARAYSIZE and RUNDEBUG settings have been discussed previously.

If a parameter form or on-line previewing of the report is not required, then you can bypass
these functions by setting the PARAMFORM and BATCH system parameters appropriately.

3.4.4.6 Turn Off Debug Mode
When your application is in regular, production use, make sure it is not running in debug
mode.

In debug mode, the runtime products will gather information and perform other internal
operations. Once your application is debugged, these operations are no longer needed and
detract from performance.

In Reports, debug mode is controlled through the runtime parameter RUNDEBUG; this should
be set to NO.

3.4.4.7 Use Transparent Objects
Give layout objects (e.g., frames and repeating frames) a transparent border and fill pattern.
Performance Suggestions 3-21

t
e
n.

 in

inside
iable

n is

en it
ces
,
Transparent objects do not need to be rendered in a PostScript file. As a result, processing is
faster when objects are transparent.

3.4.4.8 Use Fixed Sizes for Non-Graphical Objects
Make your non-graphical layout objects (e.g., boilerplate text or fields with text) fixed in
size — that is, Vertical and Horizontal Elasticity of Fixed. In particular, making repeating
frames and their contents fixed in size can improve performance.

Non-graphical objects that are variable in size require more processing because Repor
Builder must determine their size before formatting them. Non-graphical objects that ar
fixed in size do not require this additional processing because their size is already know

3.4.4.9 Use Variable Sizes for Graphical Objects
Make your graphical layout objects (e.g., images and Oracle Graphics objects) variable
size — that is, Vertical and Horizontal Elasticity of Variable.

Graphical objects that are fixed in size usually need to have their contents scaled to fit
of the object. Scaling an object’s contents requires more processing. If the object is var
in size, it can grow or shrink with the contents, and scaling is not necessary.

3.4.4.10 Use Image Resolution Reduction
Specify Reduce Image Resolution for image objects whose size you reduce. (This optio
available as a drawing option under the Format menu.)

When you reduce the size of an image, it requires less information to display it than wh
was larger. Reduce Image Resolution eliminates the unnecessary information and redu
the amount of space needed to store the image. This can be particularly useful for large
multi-colored images.

3.4.4.11 Avoid Word Wrapping
Make fields that contain text one line long and ensure that their contents fit within their
specified width (e.g., by using the SUBSTR function).

If a field with text spans more than one line, then Report Builder must use its
word-wrapping algorithm to format the field. Ensuring that a field only takes one line to
format avoids the additional processing of the word-wrapping algorithm.

3.4.4.12 Simplify Formatting Attributes
Minimize the use of different formatting attributes (e.g., fonts) within the same field or
boilerplate text.
3-22 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

roup
n the

he

mns

be as
rth

as the
d in the

f
y, the

ng

If text in a field or boilerplate object contains numerous different formatting attributes, it
requires longer to format.

3.4.4.13 Limit Your Use of Break Groups
Ensure that the break order property is set for as few columns in the break group as possible
(break order is indicated by a small triangle to the left of the column name in the group).
Each break group requires at least one column within in to have break order set.

If sorting is necessary for a break group, use an ORDER BY clause in its SQL. This will
cause the rows to be returned already sorted by break order, and improve performance by
reducing the amount of sorting that must be done on the client.

For each column that has break order set, Reports places an extra column into the
appropriate query’s ORDER BY clause. The fewer columns in the ORDER BY, the less
work the database server has to do before returning the data. The creation of a break g
may make the ORDER BY clause defined in the query redundant. If this is the case, the
redundant ORDER BY should be removed, since this will require extra processing on t
database.

Break order columns should be as small as possible, and should also be database colu
(as opposed to summary or formula columns) wherever this is feasible. Both of these
conditions can help the local caching that Reports does before the data is formatted to
efficient as possible. Clearly, these conditions can not always be met easily, but are wo
considering all the same.

3.4.4.14 Avoid Duplicate Work with Graphics Builder
If a Graphics Builder display referenced by a report uses some or all of the same data
report, pass the data from the report to the display. You can specify that data be passe
Property Palette for the display in Report Builder.

If the report and the display use the same data, passing the data reduces the amount o
fetching that needs to be done. If you do not pass the data from the report to the displa
data is actually fetched twice: once for the report and once for the display.

3.4.4.15 Choose Between PL/SQL and User Exits
Depending upon the circumstances, PL/SQL or a user exit may perform better. Followi
are the items you should consider when deciding between PL/SQL and user exits:

n If you need to make many references to Report Builder objects, PL/SQL is typically
faster.
Performance Suggestions 3-23

n If the report needs to be portable, or if the action is executed on the group or report
level, then use PL/SQL.

n If a report does not need to be portable use user exits, instead of PL/SQL, to perform
DML.

n User exits are especially beneficial when the action is executed for each record in a
large report, or requires a large number of complex computations.

PL/SQL is highly recommended, because it allows the code to be procedural and still
portable. PL/SQL also offers performance advantages when referencing report-level objects.
User exits will perform better, but they require linking and are not portable. It makes sense
to include a user exit if the action required will be executed for every record in a very large
report or performs numerous calculations. A PL/SQL procedure makes more sense if the
action is only for each group or at the report level. Furthermore, not everything can be done
in PL/SQL; some actions like controlling external devices have to be done in a C program.

Note: If there is no performance improvement or other good reason to use a user exit, you
should use PL/SQL because it is easier and portable.

3.4.4.16 Use PL/SQL instead of SRW.DO_SQL for DML
Use PL/SQL for DML, unless you want to pass parameters to your DML statements.

SRW.DO_SQL() should be used as sparingly as possible, because each call to SRW.DO_
SQL() necessitates parsing and binding the command and opening a new cursor (just as
with a normal query). Unlike the query, however, this operation will occur once each time
the object owning the SRW.DO_SQL() fires. For example, if a PL/SQL function calls
SRW.DO_SQL(), and the group where the function resides returns 100 records, then the
parse/bind/create cursor operation will occur 100 times. It is therefore advisable to only use
SRW.DO_SQL() for operations that cannot be performed within normal SQL (for example,
to create a temporary table, or any other form of DDL), and to use it in places where it will
be executed as few times as possible (for example, in triggers that are only fired once per
report).

Writing DML statements in PL/SQL is faster than an SRW.DO_SQL call containing the
same statement. The reason to use SRW.DO_SQL for DML statements is that it can
concatenate bind parameters to construct the DML statement. For example, you can have
SRW.DO_SQL create a table whose name is determined by a parameter entered on the
runtime parameter form:

SRW.DO_SQL (‘CREATE TABLE’ || :tname || ‘(ACOUNT NUMBER
 NOT NULL PRIMARY KEY, COMP NUMBER (10,2))’);
3-24 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

r
tches
l the

ts it
Usage Notes: You can also use the dbms_sql package that comes with Oracle 7.1 or later for
DML. Refer to your Oracle database server documentation for more information.

3.4.4.17 Evaluate the Use of Local PL/SQL
Your PL/SQL code can be local (in the Program Units node of your report in the Object
Navigator) or stored externally in a PL/SQL library on the server.

Depending on conditions, local PL/SQL might execute more quickly than a reference to a
procedure or function in an external PL/SQL library. However, even if you determine that
local PL/SQL would run faster under your conditions, you should still weigh that benefit
against the loss of the benefits of the library method (e.g., sharing the code across many
applications).

3.4.4.18 Use Multiple Attributes When Calling SRW.SET_ATTR
Minimize the number of calls to SRW.SET_ATTR setattr>referenc by specifying multiple
attributes in one call. You can specify multiple attributes per call to SRW.SET_ATTR
instead of making a separate call for each attribute.

Rationale: The fewer calls you make to SRW.SET_ATTR, the faster the PL/SQL will run.

3.4.4.19 Adjust the ARRAYSIZE Parameter
The value of array processing has been noted earlier.

For Report Builder’s ARRAYSIZE executable argument (e.g., ARRAYSIZE=10), enter as
large a value as you can. Note that the array size is measured in kilobytes, not rows.
ARRAYSIZE means that Report Builder can use that number of kilobytes of memory pe
query in executing your report. Report Builder uses Oracle’s array processing, which fe
multiple records in batches, instead of one record at a time. As a result, you can contro
amount of data to be fetched by the batch processes.

3.4.4.20 Adjust the LONGCHUNK Parameter
For Report Builder’s LONGCHUNK executable argument (e.g., LONGCHUNK=10), enter as
large a value as you can. Refer to the Oracle installation information for your operating
system for the recommended amount for your machine. LONGCHUNK determines the size of
the increments in which Report Builder will retrieve a LONG value. The LONGCHUNK size
is measured in kilobytes.

By increasing LONGCHUNK as much as possible, you can reduce the number of incremen
takes Report Builder to retrieve LONG values.
Performance Suggestions 3-25

3.4.4.21 Adjust the COPIES Parameter
When printing to PostScript, specify COPIES=1.

If COPIES is set to something greater than 1 for a PostScript report, Report Builder must
save the pages in temporary storage in order to collate them. This can significantly increase
the amount of temporary disk space used by Report Builder, and the additional writing to
files can slow performance.

3.4.4.22 Avoid Fetch-Aheads in Previewing
Report Builder provides you with the ability to display data such as total number of pages,
or grand totals in the report margins or on the header pages. This is an extremely useful
function, but has the requirement that the entire report must be processed before the first
page can be displayed.

Avoiding "fetch-ahead" operations when designing a report for the Previewer or Live
Previewer will help speed the display of the first page of the report.

The following items can result in fetching ahead when referenced before the data on which
they rely:

n total number of pages/panels

n grand totals

n break columns that are formulas

n break columns that have Value if Null specified

When you use a total number of pages field source, Report Builder must save all of the
pages in temporary storage in order to determine the total number of pages. This can
significantly increase the amount of temporary disk space used by Report Builder, and the
additional writing to files can slow performance.

Cross-product groups also cause fetching ahead. In order to cross-tabulate the data in a
cross-product group, Report Builder must first fetch all of the data. It should be noted that
these items are not really performance "problems." They slow down the Previewer or Live
Previewer, but they do not affect performance when writing to a file or some other
destination.

Note: A column can cause fetching ahead even if it is not displayed. For example, a grand
total may not appear in the report output, but, since it is in the report, fetching ahead may
still occur when Report Builder calculates it.
3-26 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

 if
the
 need
3.4.4.23 Choose Appropriate Document Storage
Store documents in files to enhance performance. Store documents in reports and in the
database for security. If you open a report from or save a report to a database, some Report
Builder tables will be put into memory. As a result, you need to ensure that you have enough
resources to cache the tables.

For documents, writing to and reading from files tends to be much faster than the database.

Exception: If you must use a busy network or slow machine to access the files, you may not
realize performance gains from storing in files.

3.4.4.24 Specify Path Variables for File Searching
Specifying path variables may be of some help in speeding up file searching and
creation/access of temporary files. (Report Builder provides two environment variables,
REPORTSnn_PATH and REPORTSnn_TMP, that govern where to search for files and
where to store temporary files. The nn is the Report Builder release level.) For
REPORTSnn_PATH, specify the path in which files referenced by the report are located.
For REPORTSnn_TMP, specify a path that has sufficient free space for temporary files and
is on a device with fast response time (e.g., a RAM disk).

REPORTSnn_PATH is the default path in which Report Builder will search for files (e.g.,
link file boilerplate). By specifying the path in which the files referenced by the report are
located, you can reduce the amount of searching Report Builder needs to perform to retrieve
the files. (By using REPORTSnn_PATH instead of hard-coding the paths in the report
definition, you also maintain the portability of your report.) REPORTSnn_TMP is the path in
which Report Builder will create its temporary files.

If using the server, set the SOURCEDIR= parameter on the server-name.ora file. That
directory will be searched before using the REPORTSnn path.

3.4.4.25 Use the Multi-Tiered Server
The Multi-Tiered Reports Server is a feature designed to efficiently handle large-scale
production reports — reports that are not practical to run on a desktop machine.

With this feature, you can run multiple large reports simultaneously on a robust server
machine more appropriate for the task. The server can invoke multiple Reports engines
desired, thus further maximizing efficiency. In addition, report output can be cached on
server, where it can be available to multiple Reports users in the network (so the report
be generated only once).
Performance Suggestions 3-27

ost
,

s,
ary.

to
d by
y

e

.)

lay.

this

3.4.5 Graphics-Specific Suggestions
The general suggestions offered earlier in this chapter also apply to Graphics applications. In
addition, consider the following:

3.4.5.1 Pre-Load Your Graphics Files
Start-up time for an application that uses graphics will be faster if the OGD graphics files
have been pre-loaded. If it is uncertain which specific files will be needed at runtime, a
dummy OGD can be created and pre-loaded.

3.4.5.2 Update Displays Only If Necessary
Understand and control the damage update flag — which is one of the arguments to m
Graphics PL/SQL built-ins. If you allow the damage flag to default, it will be set to TRUE
which means that redrawing will occur every time the Graphics display list is modified.
Such redrawing may not always be necessary.

3.4.5.3 Move Display Updates Out of Loops
Performance is improved if PL/SQL program units (including button procedures, trigger
and so forth) update the display only once. Don’t include updates in loops if not necess

3.4.5.4 Use Common Elements Wherever Possible
If the Graphics application is called by Forms or Reports, try to design the applications
share as many elements as possible. For example, when charting data already fetche
Forms, pass the same data to the display in record groups (instead of having the displa
re-query the database).

If all data is being shared and the Graphics application has no need to call the databas
server, set the LOGON parameter to NO when the Graphics application is invoked. (If
LOGON is not set to NO, Graphics will reconnect to the server, slowing down its initiation

Also, use the same color palette and same fonts in your form or report and in your disp
In addition, keep the same coordinate system, if possible.

3.4.5.5 Limit the DO_SQL Procedure to DDL Statements
The DO_SQL procedure is useful for executing DDL statements. However, do not use
procedure to execute DML statements. In general, DML statements are executed more
efficiently within program units than with the DO_SQL procedure.
3-28 Guidelines for Building Applications

3.5 In a Client/Server Structure
3.4.5.6 Use Handles to Reference Objects
When you use a built-in subprogram to perform an operation on a Graphics object, you need
to identify the object. If you are going to reference an object multiple times in PL/SQL, it is
more efficient to assign a handle (that is, a pointer) to the object and identify the object by
its handle, rather than to identify the object by its name. Providing the handle reduces
internal search time.

3.4.5.7 Consider Not Using Shortcut Built-ins
Graphics provides a series of built-in subprograms that simplify the process of creating
objects and getting or setting their attributes. Using these built-ins in place of the attribute
record approach reduces development time, and makes program units easier to read and
understand.

However, using these built-ins has an adverse effect on runtime performance. Each call to a
built-in requires Graphics to define and populate a new internal attribute record. It also takes
longer to execute multiple set routines than to execute just one. In addition, using these
built-ins requires your application to rely on default settings.

As a rough guideline, if you need to set three or more attributes, it is more efficient to use
attribute masks or create a library of your own shortcuts with pre-defined defaults.

3.5 In a Client/Server Structure
In the traditional client/server structure, the application runs on the client, and the database
and its software reside on the server. All of the general suggestions offered earlier in this
chapter are applicable in a client/server set-up. In addition, consider the following
client/server-specific suggestions:

3.5.0.8 Choose the Best Installation Configuration
Both Forms Developer and Reports Developer give you an install-time choice in where their
software will reside. Each configuration has assets and drawbacks. Choose the one best
suited for your situation.

n Product kept on the server. This saves disk space on the client, but the software will run
more slowly because the client must run the software over the network.

n Product kept on the client. All product files are fully replicated on the client machine.
This takes up the most client disk space, and adds to installation and maintenance
overhead, but provides the fastest execution.
Performance Suggestions 3-29

plet,
2 is

es
and the

the
t and
 the
d use

e
ses.
3.5.0.9 Choose a Suitable Application Residence
After you have created an application, you have the choice of storing it on the client or on
the server. Storing applications on the server allows shared access to them, and also saves
disk space on the clients. On the other hand, applications stored locally on the clients allow
faster access.

In addition to the space and sharing considerations, storing on the server may offer the
additional advantage of superior security.

Given these considerations, choose the residence best suited to your situation.

3.6 In a Three-Tier Structure
In a three-tier structure, Tier 1 is the runtime user’s desktop machine. It runs a Java ap
which loads part of the Forms runtime product, known as the Forms client portion. Tier
an application server, which runs the remaining portion of the Forms runtime product,
known as the Forms server portion. Tier 3 is the database server. Communication tak
place between the Forms client and Forms server, and also between the Forms server
database server.

The general performance suggestions offered earlier in this chapter also apply here in
three-tier world. For example, the interaction between the application server componen
the database server is essentially the same as that between the application server and
database in the two-tiered client/server environment. Therefore, areas such as improve
of PL/SQL and more efficient use of the database are equally relevant here.

With a three-tier environment, obviously there is communication not just between the
application server and the database (Tiers 2 and 3), but also between the client on the
desktop machine and the application server (Tiers 1 and 2). Therefore, the reduction of
network usage becomes an even more important area on which to focus.

The suggestions below are those that are specific to the three-tier environment.

3.6.1 Maximizing Tier 1 - Tier 2 Scalability
The interactions between the client on the Tier 1 desktop machine and the server on th
application server machine become more significant as the number of end users increa
The following suggestions will help you maximize your application’s scalability. (These
suggestions apply to any Forms Developer or Reports Developer application.)
3-30 Guidelines for Building Applications

3.6 In a Three-Tier Structure
3.6.1.1 Increase Network Bandwidth
The network connection between Tiers 1 and 2 is often heavily used in the three-tier
environment, and therefore network efficiency is an important area for performance.
Increasing the bandwidth here can lead to significant improvements.

3.6.1.2 Minimize Changes to the Runtime User Interface
Changes in the user interface during execution require interactions between the Tier 1 and
Tier 2 machines. Such changes slow down performance (as experienced by the end user).

You can speed up execution by avoiding the following types of runtime activities:

n making dynamic (runtime) visual attribute changes

n using current record visual attributes

n changing item size and position

n changing labels and prompts

n enabling, disabling, hiding objects.

As a general principle, you should limit activities that involve frequent screen refreshing.
For example, avoid the use of short-interval visual timers or clocks. (Timers with intervals
longer than one minute are usually not a problem.) Design your user interfaces so that events
are initiated by user interaction rather than elapsed clock time.

3.6.1.3 Adjust Stacked Canvases
If your application uses stacked canvases, set their Visible property to No, and set their
Raise on Entry property to No. This will minimize runtime interface changes.

3.6.1.4 Perform Validation at a Higher Level
Try to perform validation at a higher level. Application design and scalability decisions
often involve a trade-off; for example, field-level validation will generate significantly more
network traffic than block-level validation, but will be more interactive for users.

3.6.1.5 Avoid Enabling and Disabling Menu items
Enabling and disabling menu items programmatically can reduce performance in Webforms.

3.6.1.6 Keep Display Size Small
If your application uses graphics, limiting the size of the display files will help performance.
To help keep the display size small, you can, for example:
Performance Suggestions 3-31

hat
y.

 of a
er of

 The
er, so
n Limit the number of layers in the display.

n Create objects programmatically.

n Take advantage of stored procedures for data-intensive displays.

3.6.1.7 Identify Paths for Graphic URLs
If your application uses graphics (JPG files), use the environment variables FORMSnn_
MAPPING and FORMSnn_PATH to identify their URL location.

3.6.1.8 Limit the Use of Multimedia
Use multimedia only if it is important for the user interface. Where you do use it, define (or
redefine) button triggers to make a call to a URL that contains media information.

3.6.1.9 Avoid Use of Animations Driven from the Application
Server
Running animations over a network is extremely costly. If such elements are required, look
at using animated graphic files that are client-side based.

3.6.1.10 Take Advantage of Hyperlinks
Take advantage of custom hyperlinks to create hyperlink drill-downs. With this technique,
code is not loaded to the user machine unless it is actually needed.

3.6.1.11 Put Code into Libraries
Put as much code as possible into libraries to maximize code sharing between objects and
applications and to minimize file size during loading.

Beginning with Release 2.0, libraries are shared across multiple forms. This means that
program units don’t have to be re-loaded and unpacked with each form. It also means t
less memory is used, because there is only a single copy of the program unit in memor

3.6.1.12 Reduce Start-up Overhead with JAR Files
When an application begins running on the desktop machine, it requires the availability
number of Java class files. In the typical application, there may be a considerable numb
these files, and downloading them from the server adds to start-up overhead.

Beginning with Release 6.0, some of these Java class files are packaged as JAR files.
JAR files can then be stored on the desktop machine instead of on the application serv
application start-up is faster.
3-32 Guidelines for Building Applications

3.6 In a Three-Tier Structure
You can also place the remaining class files required for your application into JAR files on
the desktop machine. This can be done using the Oracle Java Developer Kit.

3.6.1.13 Reduce Start-up Overhead with Pre-Loading
In some situations where fast user interaction is desired, it may be advantageous to pre-load
the application; that is, to start it before the actual intensive usage will be needed. In this
way, the initial loading phase will already have been completed, and the subsequent
invocations will be faster.

3.6.1.14 Use Just-in-Time Compiling
When the application is invoked from the desktop, the user can choose to have it
downloaded in an uncompiled state, and compiled on the desktop as it begins running. This
option may produce faster overall invocation time.

3.6.2 Maximizing Tier 2 - Tier 3 Scalability
The suggestions for Tier 2 - Tier 3 interaction (interaction between the application server
and database server) are the same as for the client/server environment discussed earlier in
this chapter. For example, you can use the DML Array Size property, use data blocks based
on stored procedures, and so forth. All those earlier suggestions for database interaction
apply here as well.

3.6.3 Increase Tier 2 Power — Hardware
Increasing the power of the underlying hardware anywhere in the three-tier system will
almost certainly have a positive effect on performance.

Some recent test results suggest that the most significant improvements can be obtained by
upgrading the power of the Tier 2 processor. However, each site and situation is unique, and
these results may not be universally applicable.

3.6.4 Increase Tier 2 Power — Software
In a three-tier structure, it is possible to have multiple versions of the Tier 2 component. You
can employ several intermediate server machines, each running a copy of the Forms or
Reports Server component.

You use the Oracle Application Server to coordinate processing. Requests from the client
(Tier 1) machines come to the Oracle Application Server, which passes them to one of the
Tier 2 servers.
Performance Suggestions 3-33

With multiple Tier 2 servers operating and sharing the work load, performance on that tier
can be improved.
3-34 Guidelines for Building Applications

Designing Multilingual Applic
4

Designing Multilingual Applications

This chapter explains how to design multilingual applications.

4.1 National Language Support (NLS)
Oracle’s National Language Support makes it possible to design multilingual applications.
A multilingual application is an application which can be deployed in several different
languages. Oracle supports most European, Middle Eastern, and Asian languages.

National Language Support makes it possible to:

n use international character sets (including multi-byte character sets).

n display data according to the appropriate language and territory conventions.

n extract strings that appear in your application’s user interface and translate them.

Section Description

Section 4.1, "National
Language Support (NLS)"

An overview of National Language Support and its components.

Section 4.2, "Using National
Language Support During
Development"

Instructions on developing applications using National Language
Support.

Section 4.3, "Translating
Your Applications"

Instructions on translating application elements not handled by NLS.
ations 4-1

4.1.1 The language environment variables
You can use the following parameters as language environment variables to specify
language settings:

4.1.1.1 NLS_LANG
The NLS_LANG language environment variable specifies the language settings used by
Forms Developer and Reports Developer.

NLS_LANG specifies:

n the language for messages displayed to the user, such as the "Working..." message

n the default format masks used for DATE and NUMBER datatypes

n the sorting sequence

n the character set

The syntax for NLS_LANG is as follows:

Parameter Specifies

NLS_CALENDAR the calendar system used.

NLS_CREDIT the string used to indicate a positive monetary value.

NLS_CURRENCY the local currency symbol.

NLS_DATE_FORMAT the default format mask used for dates.

NLS_DATE_LANGUAGE the default language used for dates.

NLS_DEBIT the string used to indicate a negative monetary value.

NLS_ISO_CURRENCY the ISO currency symbol.

NLS_LANG the language settings used by Forms Developer and Reports
Developer.

DEVELOPER_NLS_LANG the language for the Builder.

USER_NLS_LANG the language for the Runtime component.

NLS_LIST_SEPARATOR the character used to separate items in a list.

NLS_MONETARY_CHARACTERS the decimal character and thousands separator for monetary
values.

NLS_NUMERIC_CHARACTERS the decimal character and grouping separator for numeric
values.

NLS_SORT the type of sort used for character data.
4-2 Guidelines for Building Applications

4.1 National Language Support (NLS)

e
uld

ill

NG
ameter
Use the

meter

guage
NLS_LANG=language_territory.charset

language specifies the language and its conventions for displaying messages and day and
month names. If language is not specified, the value defaults to American.

territory specifies the territory and its conventions for default date format, decimal
character used for numbers, currency symbol, and calculation of week and day numbers. If
territory is not specified, the value defaults to America.

charset specifies the character set in which data is displayed. This should be a character set
that matches your language and platform. This argument also specifies the character set used
for displaying messages.

For example, let’s say you want your application to run in French. The application will b
used in France. Data will be displayed using the WE8ISO8859P1 character set. You wo
set NLS_LANG as follows:

NLS_LANG=French_France.WE8ISO8859P1

Now let’s say you want your application to run in French, but this time the application w
be used in Switzerland. You would set NLS_LANG as follows:

NLS_LANG=French_Switzerland.WE8ISO8859P1

Note: You are strongly advised to set the language and territory parameters of NLS_LA
to the same values on the server side and the client side. (The value of the charset par
on the server side is specified when the database is created and cannot be changed.)
SQL command ALTER SESSION to change the values of the language and territory
parameters on the server side. For example, this statement changes the language para
to French and the territory parameter to France:

ALTER SESSION
 SET NLS_LANGUAGE = French NLS_TERRITORY = France

4.1.1.2 DEVELOPER_NLS_LANG and USER_NLS_LANG
If you must use two sets of resource and message files at the same time, two other lan
environment variables are available:

n DEVELOPER_NLS_LANG specifies the language for the Builder.

n USER_NLS_LANG specifies the language for the Runtime component.

The syntax of DEVELOPER_NLS_LANG and USER_NLS_LANG is the same as NLS_
LANG.

Use these variables instead of NLS_LANG in the following situations:
Designing Multilingual Applications 4-3

 using
fferent
lues in

he

at
y
cter

racter
 all

at a
ter
pean
n You prefer to use the Builder in English, but you are developing an application for
another language, the two variables allow you to use different language settings for the
Builder and Runtime.

n You are creating an application to run in a language that uses a bidirectional character
set.

n You are creating an application to run in a language for which a local-language version
of the Builder is not currently available.

If these environment variables are not specifically set, they take their default values from
NLS_LANG.

4.1.2 Character sets
The character set component of the language environment variable specifies the character set
in which data is represented in the user’s environment. Net8 ensures that data created
one character set can be correctly processed and displayed on a system that uses a di
character set, even though some characters may be represented by different binary va
the different character sets.

Refer to Section 4.1.1, "The language environment variables" for more information on t
language environment variables.

4.1.2.1 Character set design considerations
If you are designing a multilingual application, or even a single-language application th
will run with multiple character sets, you should determine the character set most widel
used at runtime and generate with the language environment variable set to that chara
set.

If you design and generate an application in one character set and run it in another cha
set, performance may suffer. Furthermore, if the runtime character set does not contain
the characters in the generate character set, question marks will appear in place of the
unrecognized characters.

PDF does not support multi-byte character sets.

Note: For Form Builder, the character set used when generating is used at runtime,
regardless of the character set specified in the runtime environment.

4.1.2.2 Font aliasing on Windows platforms
There may be situations where you create an application with a specific font but find th
different font is being used when you run that application. You are most likely to encoun
this when using an English font (such as MS Sans Serif or Arial) in a non-Western Euro
4-4 Guidelines for Building Applications

4.1 National Language Support (NLS)
environment. This occurs because both Forms Developer and Reports Developer check to
see if the character set associated with the font matches the character set specified by the
language environment variable. If the two do not match, Forms Developer or Reports
Developer automatically substitutes the font with another font whose associated character
set matches the character set specified by the language environment variable. This automatic
substitution assures that the data being returned from the database gets displayed correctly in
the application.

Note: If you enter local characters using an English font, Windows does an implicit
association with another font.

There may be cases, however, where you do not want this substitution to take place. You
can avoid this substitution by mapping all desired fonts to the WE8ISO8859P1 character set
in the font alias file. For example, if you are unable to use the Arial font in your application,
add the following line to your font alias file:

Arial.....=Arial...WE8ISO8859P1

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.1.3 Language and territory
While the character set ensures that the individual characters needed for each language are
available, support for national conventions provides correct localized display of data items.

The specified language determines the default conventions for the following characteristics:

n language for server messages

n language for day and month names and their abbreviations (specified in the SQL
functions TO_CHAR and TO_DATE)

n symbols for equivalents of AM, PM, AD, and BC

n default sorting sequence for character data when ORDER BY is specified (GROUP BY
uses a binary sort, unless ORDER_BY is specified)

n writing direction

n affirmative/negative response strings

For example, if the language is set to French, the messages:

ORA-00942: table or view does not exist
FRM-10043: Cannot open file.
Designing Multilingual Applications 4-5

will appear as:

ORA-00942: table ou vue inexistante
FRM-10043: Ouverture de fichier impossible

The specified territory determines the conventions for the following default date and
numeric formatting characteristics:

n date format

n decimal character and group separator

n local currency symbol

n ISO currency symbol

n week start day

n credit and debit symbol

n ISO week flag

n list separator

For example, if the territory is set to France, numbers will be formatted using a comma as
the decimal character.

4.1.4 Bidirectional support
Bidirectional support enables you to design applications in Middle Eastern and North
African languages whose natural writing direction is right-to-left. Bidirectional support
enables you to control:

n layout direction, which includes displaying items with labels at the right of the item and
correct placement of check boxes and radio buttons.

n reading order, which includes right-to-left or left-to-right text direction.

n alignment, which includes switching point-of-origin from upper left to upper right.

n initial keyboard state, which controls whether Local or Roman characters will be
produced automatically when the user begins data entry in forms (the end user can
override this setting).

When you are designing bidirectional applications, you may wish to use the language
environment variables DEVELOPER_NLS_LANG and USER_NLS_LANG rather than
NLS_LANG. For example, if you want to use an American interface while developing an
Arabic application in a Windows environment, set these environment variables as follows:

DEVELOPER_NLS_LANG=AMERICAN_AMERICA.AR8MSWIN1256
4-6 Guidelines for Building Applications

4.1 National Language Support (NLS)
USER_NLS_LANG=ARABIC_territory.charset

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.1.4.1 Bidirectional support in Form Builder
Four properties are used to specify the appearance of objects in bidirectional applications:
Direction, Justification, Reading Order, and Initial Keyboard State.

Direction is an umbrella property that provides as much functionality for each object as
possible. For all objects except text items and display items, the Direction property is the
only bidirectional property, and its setting controls the other aspects of bidirectional
function. (List items, however, include an Initial Keyboard State property.)

Text items and display items do not have a Direction property; instead, you can specifically
set Justification, Reading Order, and Initial Keyboard State properties for these items.

You may restrict the keyboard state to one language. For example, setting Keyboard State to
Local prevents the end user from switching the keyboard to another language.

When the bidirectional properties are set to Default, those properties inherit their values
from the natural writing direction specified by the language environment variable. In most
cases, this will provide the desired functionality. You only need to specify the bidirectional
properties when you want to override the inherited default values.

Inheritance for bidirectional properties is as follows:

Most properties related to bidirectional function can be retrieved and set programmatically.
For more information, see the appropriate built-in subprogram description. For example, for
information about getting the value of the Direction property for buttons, refer to the
description for GET_ITEM_PROPERTY in the Form Builder online help.

Form Default setting derives value from language environment variable.

All objects, such as Alert,
Block, LOV, Window, and
Canvas-view

Default setting derives value from form.

All items, such as Text Item,
Display Item, Checkbox,
Button, Radio Group, and
List Item

Default setting derives value from canvas-view.
Designing Multilingual Applications 4-7

 to

ode,
tern
ages

ave
4.1.4.2 Bidirectional support in Report Builder
Three properties are used to specify the appearance of objects in bidirectional applications:
Justify, Direction (for an object), and Direction (for the report). The bidirectional properties
are added to objects in the following hierarchy:

Module

Boilerplate

Field

External Boilerplate

Button

Parameter Form Boilerplate

Objects not in this list either do not require bidirectional support (for example, images) or
they are defaulted from one of the above object’s properties.

4.1.5 Unicode
Unicode is a global character set that allows multilingual text to be displayed in a single
application. This enables multinational corporations to develop a single multilingual
application and deploy it worldwide.

Global markets require a character set that:

n allows a single implementation of a product for all languages, yet is simple enough
be implemented everywhere

n contains all major living scripts

n supports multilingual users and organizations

n enables worldwide interchange of data via the Internet

4.1.5.1 Unicode support
Both Forms Developer and Reports Developer provide Unicode support. If you use Unic
you will be able to display multiple languages, both single-byte languages such as Wes
European, Eastern European, Bidirectional Middle Eastern, and multi-byte Asian langu
such as Chinese, Japanese, and Korean (CJK) in the same application.

Use of a single character set that encompasses all languages eliminates the need to h
various character sets for various languages.
4-8 Guidelines for Building Applications

4.1 National Language Support (NLS)
For example, to display a multi-byte language such as Japanese, the NLS_LANG
environment variable must be set to (for Windows platform):

Japan_Japanese.JA16SJIS

To display a single-byte language such as German, NLS_LANG must be set to (for
Windows platform):

German_Germany.WE8ISO8859P1

The obvious disadvantage of this scheme is that applications can only display characters
from one character set at a time. Mixed character set data is not possible.

With the Unicode character set, you can set the character set portion of NLS_LANG to
UTF8 instead of a specific language character set. This allows characters from different
languages and character sets to be displayed simultaneously.

For example, to display Japanese and German together on the screen the NLS_LANG
variable setting must be:

Japan_Japanese.UTF8

or

German_Germany.UTF8

Unicode capability gives the application developer and end user the ability to display
multilingual text in a form. This includes text from a database containing Unicode,
multilingual text, text in GUI objects (for example button labels), text input from the
keyboard, and text from the clipboard. Both Forms Developer and Reports Developer
currently support Unicode on Windows NT 4.0 and Windows 95 (limited support).

Note: If you develop applications for the Web, you can use Unicode because of the Unicode
support provided by Java.

4.1.5.2 Font support
Both Forms Developer and Reports Developer rely on the Windows operating system for the
font and input method for different languages. To enter and display text in a particular
language, you must be running a version of Windows that supports that language. Font
support is limited but not restricted to the Windows NT operating system font support.

Windows NT 4.0 provides True Type Big Fonts. These fonts contain all the characters
necessary to display or print multilingual text. If you try to type, display, or print
multilingual text and see unexpected characters, you are probably not using a Big Font. Big
Fonts provided by Microsoft under NT 4.0 are as follows: Arial, Courier New, Lucida
Designing Multilingual Applications 4-9

Console, Lucida Sans Unicode, and Times New Roman. Third-party Unicode fonts are also
available.

4.1.5.3 Enabling Unicode support
To enable Unicode support, set NLS_LANG as follows:

NLS_LANG=language_territory.UTF8

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.2 Using National Language Support During Development
If you wish to use Form Builder, Report Builder, or Graphics Builder in a language other
than English, simply specify the correct language and territory in the language environment
variable. Messages, menus and menu items, dialog boxes, prompts and hints, and alerts are
displayed in the appropriate language and numbers and dates in default values, ranges, and
parameters are displayed in the appropriate format. If the appropriate message file is not
available, the default is the US message file.

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.2.1 Format masks

4.2.1.1 Format mask design considerations
When working with date and currency fields in multilingual applications, you should make
all screen items (boilerplate, text items, interface objects such as buttons and lists of values)
longer to allow for translation of text and different ways of displaying data. For example, if
you develop an application in American English with a 9-character DD-MON-YY date and
then run the application in Norwegian, you must increase the size of the field to allow for the
10-character Norwegian date DD.MM.YYYY.

You should also consider whether you need to use the format mask characters to create
special format masks or if the default format masks specified by the territory component of
NLS_LANG are acceptable.

For implicit datatype conversions, PL/SQL always expects items in the American_America
default format DD-MON-YY, so if you use an item whose type is territory-specific in PL/S
QL, you must specify the correct format masks. Use TO_DATE to translate
territory-specific items in PL/SQL.
4-10 Guidelines for Building Applications

4.2 Using National Language Support During Development
Avoid hard-coding a string containing a month name. If a hard-coded month name is
essential, avoid using the COPY built-in. If you use COPY, the month name may be
incorrect, depending on which language is specified.

Language-dependent example (not recommended):

:emp.hiredate := ‘30-DEC-97’;
copy (‘30-DEC-97’,’emp.hiredate’);

Language-independent example (recommended):

:emp.hiredate := TO_DATE(‘30-12-1997’,’DD-MM-YYYY’);

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.2.1.2 Default format masks
The language environment variable specifies the set of default format masks used to display
data such as day and month names, numbers, dates, and currency. Specifically, both Forms
Developer and Reports Developer use the default format masks associated with the territory
specified in the current language environment variable:

n in the Builder: When the Builder displays default values for items, ranges, or parameters

n at runtime: If a user enters data in a text item whose type is territory-specific, such as
DATE or NUMBER

For example, suppose the current territory is America. You create an item of type DATE,
and enter a default value of 20-OCT-98. If you then change the territory to Norway, the
default value for the item will automatically change to 20.10.1998.

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.2.1.3 Format mask characters
The following format mask characters allow you to override the default format masks.

Character Returns

D Digit for the day (1-7)

DY Name of the day (abbreviated)

DAY Name of the day (padded with blanks to the length of 9 characters)
Designing Multilingual Applications 4-11

ne
se
es does

BZ,
ry:
4.2.2 Sorting character data
When you are designing multilingual applications, you want to sort character data according
to the alphabetic conventions of a particular language rather than according to the
characters’ binary values. The SQL function NLSSORT makes it possible to do this.

4.2.2.1 Comparing strings in a WHERE clause
Strings in a WHERE clause are compared according to the characters’ binary values: o
character is considered greater than another if it has a higher binary value in the databa
character set. However, because the sequence of characters based on their binary valu
not match the alphabetic sequence for a particular language, these comparisons yield
incorrect results.

For example, suppose you have a column called COL1 that contains the values ABC, A
BCD, and ÄBC. The database character set is ISO 8859/1. You write the following que

SELECT COL1 FROM TAB1 WHERE COL1 > ‘B’

WW Digit for the week, calculated by the algorithm
int((day-jan1)/7)

IW Digit of the ISO week

MON Name of the month (abbreviated)

MONTH Name of the month (padded with blanks to the length of 9 characters)

RM Character for the Roman numeral month

I, IY, IYY, IYYY Last one, two, or three digits of the ISO year or the ISO year,
respectively

BC, AD, B.C., A.D. BC or AD indicator (with or without periods)

AM, PM, A.A., P.M. AM or PM indicator (with or without periods)

Character Returns

C International currency symbol

L Local currency symbol

D Decimal separator

G Group (thousands) separator

Character Returns
4-12 Guidelines for Building Applications

4.2 Using National Language Support During Development

onent
C,

t

a user
The query returns BCD and ÄBC since Ä has a higher numeric value than B.

Now suppose you write this query:

SELECT COL1 FROM TAB1 WHERE NLSSORT(COL1) > NLSSORT(‘B’)

If the language component of the language environment variable is set to German, the query
returns BCD, because Ä comes before B in the German alphabet. If the language comp
of the language environment variable is set to Swedish, the query returns BCD and ÄB
because Ä comes after Z in the Swedish alphabet.

4.2.2.2 Controlling an ORDER BY clause
If the language component of the language environment variable is set correctly, it is no
necessary to use NLSSORT in an ORDER BY clause.

The following query yields a correct result:

SELECT ENAME FROM EMP
ORDER BY ENAME

4.2.3 NLS parameters

4.2.3.1 Using ALTER SESSION
You can use the SQL command ALTER SESSION to override the NLS defaults. For
example, suppose you create some parameters (such as language, territory, etc.), and
specifies values for them: you could then alter the session as they specified.

In Form Builder, you can specify any of the following NLS parameters for the ALTER
SESSION command. However, for Report Builder and Graphics Builder, you can only
specify the NLS_SORT parameter.

Parameter Description

NLS_LANGUAGE Language used by the server to return messages and errors

NLS_TERRITORY Territory used for default date and currency masks

NLS_DATE_FORMAT Default format mask used for dates

NLS_DATE_LANGUAGE Default language used for dates

NLS_NUMERIC_CHARACTERS Decimal character and group separator

NLS_ISO_CURRENCY ISO international currency symbol

NLS_CURRENCY Local currency symbol
Designing Multilingual Applications 4-13

For example, this statement changes the decimal character to a comma and the group
separator to a period:

ALTER SESSION
 SET NLS_NUMERIC_CHARACTERS = ‘,.’

These new characters are returned when you use their number format elements D and G:

SELECT TO_CHAR(SUM(sal), ‘L999G999D99’) Total FROM emp

TOTAL

 FF29.025,00

This statement changes the ISO currency symbol to the ISO currency symbol for the
territory America:

ALTER SESSION
 SET NLS_ISO_CURRENCY = America

The ISO currency symbol defined for America is used:

SELECT TO_CHAR(SUM(sal), ‘C999G999D99’) Total FROM emp

TOTAL

 USD29.025,00

This statement changes the local currency symbol to DM:

ALTER SESSION
 SET NLS_CURRENCY = ‘DM’

The new local currency symbol is returned when you use the L number format element:

SELECT TO_CHAR(SUM(sal), ‘L999G999D99’) Total FROM emp

TOTAL

NLS_SORT Character sort sequence

NLS_CALENDAR Current calendar system

Parameter Description
4-14 Guidelines for Building Applications

4.2 Using National Language Support During Development
 DM29.025,00

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.2.3.2 Using NLS parameters in SQL functions
Wherever you use SQL, you can use the following NLS parameters to override default NLS
behavior.

4.2.3.3 Form Builder NLS parameters
You can use Form Builder built-in functions to obtain the current value of the language
environment variables for use in PL/SQL code:

SQL Function NLS Parameter

TO_DATE NLS_DATE_LANGUAGE

NLS_CALENDAR

TO_NUMBER NLS_NUMERIC_CHARACTERS

NLS_CURRENCY

NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE

NLS_NUMERIC_CHARACTERS

NLS_CURRENCY

NLS_ISO_CURRENCY

NLS_CALENDAR

NLS_UPPER NLS_SORT

NLS_LOWER NLS_SORT

NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

Environment
Variables

DEVELOPER_NLS_LANG
(defaults to NLS_LANG)

USER_NLS_LANG (defaults to
NLS_LANG)

Built-in GET_FORM_PROPERTY GET_APPLICATION_PROPERTY

Parameter MODULE_NLS_LANG USER_NLS_LANG
Designing Multilingual Applications 4-15

Because both USER_NLS_LANG and DEVELOPER_NLS_LANG default to the value of
NLS_LANG, the Form Builder NLS parameters will hold the value of NLS_LANG if either
variable is not specifically set.

Both Form Builder NLS parameters have four variations which allow you to retrieve either
the complete environment variable or a specific portion of it. This table shows the four
parameters of the GET_APPLICATION_PROPERTY built-in that return the USER_NLS_
LANG environment variable:

To retrieve the DEVELOPER_NLS_LANG environment variable, call GET_FORM_
PROPERTY using the MODULE_NLS_LANG parameter.

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.2.3.4 Report Builder report definition files
When using reports in character mode, you should define the physical page width of a report
as one character less than the page width defined in the printer definition file (.PRT file).
Otherwise, multi-byte characters might start on the last character space of a line and have to
overflow to the next line in order to complete. For example, if the physical page width is 80
characters and the width in the printer definition is 80 characters, a multi-byte character
might start on the 80th character. Since multi-byte characters may not be separated, the line
would have to overflow to an 81st character in order to complete the multi-byte character.
To avoid this, the physical page width should be set to 79 for the report.

The following Arabic and Hebrew specific NLS parameters can be set in the printer
definition file:

Parameter Returns

USER_NLS_LANG Entire USER_NLS_LANG variable

USER_NLS_LANGUAGE Language portion only

USER_NLS_TERRITORY Territory portion only

USER_NLS_CHARACTER_SET Character set portion only

Use To Values

nls locale set the locale of printing engine. hebrew or arabic

nls datastorageorder set logical or visual data storage logical or visual

nls contextuallayout perform pre contextual layout for Arabic
printers

no or yes
4-16 Guidelines for Building Applications

4.3 Translating Your Applications
4.3 Translating Your Applications
In any Forms or Reports application, the user sees the following:

n error messages from the database

n runtime error messages produced by Forms Developer or Reports Developer

n messages and boilerplate text defined as part of the application

If the language environment variable is set correctly and the appropriate message files are
available, translation of messages in the first two categories is done for you. To translate
messages in the third category, use one of the methods described in the following sections.

Refer to Section 4.1.1, "The language environment variables" for more information on the
language environment variables.

4.3.1 Translating your applications using Translation Builder
Translation Builder can help you translate menus, boilerplate text, item labels, messages,
and hints defined on item property sheets in your applications. Using Translation Builder,
you can generate separate binary files for each language.

If you plan to use Translation Builder to translate your application, develop the application
in the following stages:

n Create one basic definition (for example, .FMB) in the source language.

n Use Translation Builder to extract strings for translation, translate the strings into one or
more languages, and store the translated strings back into the definition.

n Manually translate messages in PL/SQL libraries. (Refer to Section 4.3.3, "Using
PL/SQL libraries for strings in code" for more information on translating messages that
are displayed programmatically.)

n Use the Generate component to generate a binary version (for example, .FMX) for each
target language.

nls contextualshaping perform pre contextual shaping for Arabic
printers

no or yes

nls pcharste specify the character set of the printer any character set

Use To Values
Designing Multilingual Applications 4-17

4.3.1.1 Advantages
This is the simplest way to implement multiple language applications quickly. With this
approach, you can use Translation Builder for maximum efficiency. If you have a stable
application, this approach will work well for you.

For example, if you create an application in four languages and then change a field label,
you would do the following:

n Make the change in the Builder and save the change in the definition file.

n Use Translation Builder to translate the new field label and insert the new messages into
the definition file.

n Regenerate to create a binary file containing the new label.

4.3.1.2 Disadvantages
If your applications must support multiple languages simultaneously, you must use the
runtime language switching approach instead.

4.3.2 Translating your applications using runtime language switching
A small number of applications must support multiple languages simultaneously. For
example, the application may begin by displaying a window in English which must stay up
throughout the application, while an end user may press a button on that window to toggle
the prompts into French, and then back into English.

If your application requires runtime language switching, you can include more than one
language in a single application as long as they share the same character set, but you cannot
use Translation Builder to locate translatable text if you are dynamically populating the text
at runtime. Instead, you would build case structures (IF...THEN...ELSIF) to change the
application to another language by checking the value of the NLS environment variable
using the GET_FORM_PROPERTY built-in.

Using the runtime language switching approach, you could develop your application in the
following stages:

n Develop the entire application for one language, including libraries.

n Manually translate each library.

n Design boilerplate labels as appropriately sized display items that are dynamically
populated at runtime.

Form Builder supports attaching multiple libraries, so you can use one library specifically
for messages that will be translated, and other libraries for other purposes.
4-18 Guidelines for Building Applications

4.3 Translating Your Applications

, it
 is
d,

 can

e

for

ger
e. At
4.3.2.1 Advantages
The main advantage of this approach is it allows you to support sophisticated applications
which may be highly dynamic. In these cases, this approach avoids some maintenance
problems, because you do not have to generate separate files for each language each time the
application changes.

4.3.2.2 Disadvantages
This approach is more complicated, because it involves considerable effort to create the
language-specific message storage, population, and maintenance involved and to perform
the translation manually. For example, you would set up a
WHEN-NEW-FORM-INSTANCE trigger to set the labels for each button, pulling the
correct labels from an attached library, based on the value of the NLS environment variable.

4.3.3 Using PL/SQL libraries for strings in code
While Translation Builder helps you translate strings in your application’s user interface
cannot pull out string constants in PL/SQL triggers and procedures. Manual translation
required for constant text within a PL/SQL block because that text is not clearly delimite
but is often built up from variables and pieces of strings. To translate these strings, you
use PL/SQL libraries to implement a flexible message structure.

Refer to Section 4.3.1, "Translating your applications using Translation Builder" for mor
information on translating strings in your application’s user interface.

You can use the attachable PL/SQL libraries to implement a flexible message function
messages that are displayed programmatically by the built-in routines MESSAGE or
CHANGE_ALERT_MESSAGE, or by assigning a message to a display item from a trig
or procedure. The library can be stored on the host and dynamically attached at runtim
runtime, based on a search path, you can pull in the library attached to the form. For
example, a library might hold only the Italian messages:

FUNCTION nls_appl_mesg(index_no NUMBER)
RETURN CHAR
IS
 msg CHAR(80);
BEGIN
 IF index_no = 1001 THEN
 msg := ‘L’’impiegato che Voi cercate non esiste...’;
 ELSIF index_no = 1002 THEN
 msg := ‘Lo stipendio non puo essere minore di zero.’;
 ELSIF ...
 :
 ELSE
Designing Multilingual Applications 4-19

 msg := ‘ERRORE: Indice messaggio inesistente.’;
 END IF;
 RETURN msg;
END;

A routine like this could be used anywhere a character expression would normally be valid.
For example, to display an alert with the appropriately translated application message, you
might include the following code in your form:

Change_Alert_Message(‘My_Error_Alert’, nls_appl_mesg(1001));
n := Show_Alert(‘My_Error_Alert’);

To change the application to another language, simply replace the PL/SQL library
containing the nls_appl_msg function with a library of the same name containing the nls_
appl_mesg function with translated text.

4.3.4 Screen design considerations
When you are designing multilingual applications, remember to leave extra space in the base
screen design for widgets and boilerplate labels. To accommodate multiple character sets
and allow for expansion caused by translation, a rule-of-thumb is to leave 30% white space
around fields, borders, and boilerplate text.

Specifically:

n Prompt on left of field: Allow for 30% expansion to the left of the prompt.

n Prompt above field: Allow for 30% expansion to the right of the prompt.

n Buttons, checkboxes, radio groups, and poplists: Allow for 30% expansion.

n Form titles: Size any bounding box so the title can expand to the right by 30%.

n Display-only fields: Size 30% wider than needed for base language.

n All widgets: Make widgets large enough to accommodate translation. For example,
buttons should be large enough to hold translated labels. Check button height as well as
length to be sure the height of the button will accommodate the tallest character you
need to use. Calculate pixels needed to render Kanji characters.
4-20 Guidelines for Building Applications

Designing Portable Applic
5

r of

riate
e a
ive

g
Designing Portable Applications

With both Forms Developer and Reports Developer, deploying a single application on
multiple platforms—Windows, Motif, the Web, even character-mode—is simply a matte
re-compiling. Both Forms Developer and Reports Developer automatically translate the
standard control objects (buttons, check boxes, radio buttons, and so on) to the approp
format for your target platforms. With careful pre-development planning, you can creat
single application that satisfies users across environments, providing each with the nat
look and feel they expect.

This chapter helps you anticipate the issues you will face when developing portable
applications and provides suggestions for ensuring that you can move your application
across platforms with ease.

If you’re using Project Builder to manage your application, see Section 1.2.4, "Managin
projects and project documents across multiple platforms" in Chapter 1.

Section Description

Section 5.1, "Before You
Begin"

Presents some high-level questions you should answer before
developing a portable application.

Section 5.2, "Designing
Portable Forms"

Addresses issues of portability with respect to the GUI and the
operating system. Also discusses an approach for cross-platform
development, as well as considerations unique to the character-mode
environment.

Section 5.3, "Designing
Portable Reports"

Discusses developing a report for maximum portability.

Section 5.4, "Designing
Portable Displays"

Discusses developing a display for maximum portability.
ations 5-1

r

rm,

ese

e

"

m
 in the

ons
ode,
at

GUI
erit
r
rms,
5.1 Before You Begin
Before you begin designing any application—not just those you intend to port—it’s
important that you take time to think about the needs you are trying to address with you
application. At a minimum, you should have answers to the following questions:

n Which platforms are you supporting? If you plan to deploy on more than one platfo
you must consider issues such as fonts, colors, layout, screen size, and screen
resolution, to name a few. Section 5.2.1, "Considering the GUI" helps you tackle th
issues.

n Is character-mode support required? If so, your options are considerably limited.
Consult Section 5.2.4, "Designing forms for character-mode" or Section 5.3.1,
"Designing a report for character-mode environments" for some recommendations.

n What displays must you accommodate? Displays can vary a great deal, even on th
same deployment platform. See Section 5.2.1.2, "Considering monitors" for a
discussion on the limitations monitors can impose.

n Will your application rely on user exits or foreign functions? You’ll probably have to
rewrite them for each of your target platforms. Section 5.2.2.1, "Including user exits
offers some suggestions and workarounds.

5.2 Designing Portable Forms
Whether you’re designing a new form for multiple platforms or preparing an existing for
for a new environment, the issues you face fall into the same two key areas, described
following sections:

n Section 5.2.1, "Considering the GUI"

n Section 5.2.2, "Considering the operating system"

If you’ve never developed for multiple platforms before, you may also wish to read
Section 5.2.3, "Strategies for developing cross-platform forms" for some recommendati
on how to approach cross-platform development. If you’re developing for character-m
see Section 5.2.4, "Designing forms for character-mode" for considerations unique to th
environment.

5.2.1 Considering the GUI
When developing a portable application, the first thing you must decide is whether the
should look the same across all platforms, or if your users expect the application to inh
the native look-and-feel of their own environment. In most cases, you’ll probably opt fo
the latter approach. However, if users are likely to use the application on multiple platfo
5-2 Guidelines for Building Applications

5.2 Designing Portable Forms

rame,
 all

ach

ou
h

s.
being

n the
size.
ning

ct

 The
they’ll probably want it to look the same on all of them, ignoring local conventions. The
only way to determine this is to interview your users, paying close attention to how they
work and which tasks they’re trying to perform. (See Section 2.1.2, "Defining user
requirements" for suggestions on how to determine users’ needs.)

Once you’ve made your decision, the next step is to create an object library for each
platform you’re supporting. An object library is a set of objects and standards that you
create; each object or standard can determine the appearance and layout of an entire f
window, or region. When housed in an object library, these objects become available to
the developers on your project or site, thus ensuring that even developers working at
different locations can produce an application—or different modules within the same
application—with a common look and feel.

To fully exploit the power of the object library, it’s a good idea to create one library for e
of your target platforms. To help you populate your libraries, Form Builder provides the
Oracle Applications Object Library, a set of layouts and items that function well in all of
Forms Developer’s GUI deployment environments (Windows 95, Motif), as well as
character-mode. Test these items and objects one by one on each of your platforms. Y
should be able to add most of the objects to your libraries without modification, althoug
some may need slight adjustment to meet platform-specific requirements.

Section 5.2.3, "Strategies for developing cross-platform forms" provides more details on
how to incorporate your object libraries into an overall development strategy.

5.2.1.1 Choosing a coordinate system
For GUI terminals, use the Real Inch, Real Centimeter, or Real Point coordinate system
These systems allows you to size your objects to the exact shape you want instead of
snapped to the nearest character cell size.

If you’re designing for character-mode, use the Character coordinate system and turn o
grid snap. This will ensure that your objects’ sizes are in multiples of the character cell
See Section 5.2.4, "Designing forms for character-mode" for more information on desig
character-mode applications.

5.2.1.2 Considering monitors
Even on the same platform, monitors of different sizes and resolutions can greatly impa
the usability of your application. For example, while a 6 pt. font on a laptop running
Windows 95 is unreadable, the same font on a 17-inch monitor is perfectly acceptable.
only way to be certain your application is truly portable is to thoroughly test your
application on each of the monitors in the deployment environment.
Designing Portable Applications 5-3

ny
ur

but
e

at

ound
st
rs,
If there are several different sized monitors in your deployment environment, design for the
smallest size. Taking the time to find out which monitors your users have—and how ma
use each size—can help you plan your application more effectively. For example, if yo
mobile sales force uses laptops for lead tracking and sales management applications,
everyone else uses 17-inch SVGA terminals, you can simplify your task by restricting th
window size of only the two critical laptop applications.

5.2.1.3 Using color
Restrain your use of color to three or four basic colors that work well together. Colors th
are typically available on many platforms include blue, red, magenta, cyan, green and
yellow.

Using too many colors can exceed the system’s maximum color limit and cause backgr
objects to snap to strange colors, leaving only the foreground color intact. Be sure to te
your color combination on all target systems, including monochrome, gray-scale monito
to make sure they work as expected.

Table 5–1 Platform restrictions: Monitors

Platform Monitor Restrictions

Windows Size is determined by screen resolution, not by absolute
measurement. For example, widgets developed on a 96 dots per inch
(dpi) 17-inch monitor appear smaller than the same widgets displayed
on a 20-inch 96 dpi monitor, even though the measurement systems
appear to be the same. In other words, an inch is not always an inch
on Windows.

Motif Many Motif users are limited to gray-scale monitors, so you can’t
rely on color for those users.

Table 5–2 Platform restrictions: Color

Platform Color Restrictions

Windows Widgets can be one of 16 colors defined in the system color palette.
If you assign another color, the widget snaps to the closest of the
sixteen.

Motif Many Motif users are limited to gray-scale monitors; do not use color
to make important distinctions.
5-4 Guidelines for Building Applications

5.2 Designing Portable Forms

 type

t on
ither

ust

an’t

fonts
an
5.2.1.4 Resolving font issues
Fonts play a fundamental role in the user’s sense of familiarity and comfort with a GUI
system. Table 5–3 lists the recommended font for each GUI platform:

When developing a portable application, decide early how you’ll use font styles such as
boldface, italics, and underlining. (In general, you shouldn’t need either underlining or
italics; use boldface sparingly, and only for emphasis.) You should also standardize the
size of different display objects. For example, making all labels 10 points will help if you
need to translate a font on a different platform.

To meet users’ expectations, a ported application must be rendered in the expected fon
each platform. To achieve this, you must translate the fonts between platforms using e
of these methods:

n Defining aliases for fonts on each deployment platform

n Defining port-specific classes

The next two sections briefly outline these processes.

Note: On Motif, each different size of a given font is considered a separate entity that m
be explicitly installed from the font file. For example, suppose you want to port a
Windows-based form containing 10, 12, and 28 point Arial fonts to Motif. Rather than
simply verifying that Arial has been installed on Motif, you must ensure that each of the
desired point sizes—10, 12, and 28—have been installed as well. If Forms Developer c
find the font it needs on the target platform, it substitutes another font using a
platform-specific "closest match" algorithm.

5.2.1.4.1 Defining font aliases

Forms Developer provides a font alias file for each platform (UIFONT.ALI,in the
ORACLEHOME\TOOLS\COMMON60 directory). In most cases, the file ensures that fonts
appear consistently across platforms. However, if you employ custom or non-standard
in your applications, some of them may not be recognized on all target platforms. You c
tailor the font alias file to define substitutions for the fonts that are not recognized.

Enter each line in the file in this format:

source_font = destination_font

Table 5–3 Platform recommendations: Fonts

Platform Font

Windows MS Sans Serif

Motif Helvetica
Designing Portable Applications 5-5

en
For each font, you can specify these attributes:

<face>.<size>.<style>.<weight>.<width>.<character_set>

Example:

When porting from MS Windows to Motif, change all MS Sans Serif fonts to Helvetica:

"MS Sans Serif"=Helvetica

See the Form Builder online help for more information and examples of font mapping.

5.2.1.4.2 Using classes

When you require greater control over your font aliasing, use classes. For example, suppose
you want your poplists and text items to have different fonts on Motif, rather than just
imposing a strict conversion of MS Sans Serif to Helvetica. To achieve this:

1. Create two classes, one for poplists and the other for text items.

2. On MS Windows, specify that both classes use MS Sans Serif as the font in
Window.olb. (See Section 5.2.3.1, "Creating a single source" for information on
Window.olb.)

3. In Motif.olb, specify that the poplist class uses the Helvetica 9-point font; specify that
the text item class uses Helvetica 11-point.

This approach allows you to customize the font used for each class of objects in your
application, thus providing a higher level of flexibility.

5.2.1.5 Using icons
Icons are platform-specific. If you use iconic buttons in your application, create a separate
icon directory for each platform. Use the same names for the icons on each platform and set
the respective environment variable to point to the icon directory. On MS Windows and
Motif, this variable is TK25_ICON.

If you include icons in your application, keep the following in mind:

n Icons rendered on small monitors (like laptops) can be too small to read.

n Certain icons have special meanings on certain platforms.

5.2.1.6 Using buttons
In MS Windows, a button’s moat (the emphatic border around a button to designate a
default) is very small compared to that on Motif. Therefore, buttons appear to shrink wh
5-6 Guidelines for Building Applications

5.2 Designing Portable Forms

s to

run on Motif. On Motif, you can avoid this by modifying the Motif resource file,
Tk2Motif in ORACLE_HOME/BIN. (Oracle uses Motif resource files to control the visual
appearance of UNIX-based applications.)

1. Locate the Tk2Motif file for your display type:

n .gs (gray scale)

n .bw (black and white)

n .rgb (color)

2. Edit the Tk2Motif file and set the Tk2Motif expandNonDefaultButtons
property to True.

In general, always provide enough space in your Windows buttons to accommodate the
larger button size in Motif.

To maximize portability, make all buttons non-navigable. In Windows and Motif, clicking a
button means the user actually navigates to the button. Because triggers are often
dependent upon button navigation, this difference across platforms can create significant
behavioral differences in your application.

Note: Making Windows and Motif buttons non-navigable is an excellent example of the
kind of trade-off you might have to make if consistency across platforms is more important
than adhering to standard platform behavior.

5.2.1.7 Creating menus
The placement and behavior of menus varies across platforms, as shown in Table 5–4:

If you are using a version of Windows that supports MDI and you want your application
look the same across all platforms, specify in Motif that you do not want to repeat the parent
window menu on child windows. Then you can design the parent window menu to look
exactly like that on MS Windows.

Table 5–4 Platform restrictions: Menus

Platform Menu Restrictions

Windows Supports Multiple Document Interface (MDI) and Single Document
Interface (SDI). In MDI, all windows belonging to an application are
contained in a single window, and there is only one menu for the
entire application. SDI is similar to Motif in that each window has its
own menu.

Motif Every window has a menu attached. The menu on a parent window
may or may not be repeated on child windows.
Designing Portable Applications 5-7

ur

 to

oy
 are

erful

ilder
Note: To prevent the screen from flashing when switching between form module windows,
combine all the menu options into one single menu application and use the SET_MENU_
ITEM_PROPERTY built-in to dynamically enable/disable the respective menu items
accordingly.

5.2.1.8 Creating the console
Like menus, the placement and behavior of the console also varies across platforms, as
shown in Table 5–5:

To achieve consistency across platforms, place the console on the parent window in yo
Motif application to emulate the behavior of MDI Windows applications.

5.2.1.9 Miscellaneous
n When building a form for multiple platforms, right-align all prompts. Text often

expands when ported to other platforms, and left-aligned prompts can cause fields
shift, creating a ragged margin.

n To provide complex functionality that is completely portable across platforms, empl
one or more reusable components in your application. These reusable components
provided in the Demos and Add-ons, to help you build applications upon such pow
features as:

n Navigator (Explorer) style interface

n Wizard style interface that mimics the Wizards in Forms Developer and other
Windows 95 products

n Calendar window that automatically displays the calendar according to the NLS
settings currently in effect

n Image and icon files

n Standard menu in the Windows style

Refer to "Reusable Components" (under Forms Developer Demos) in the Form Bu
online help for more information.

Table 5–5 Platform restrictions: Console

Platform Console Restrictions

Windows Appears at the bottom of the MDI window only.

Motif Appears on the user-specified window.
5-8 Guidelines for Building Applications

5.2 Designing Portable Forms

ting

ke

e
riable

n Table 5–6 lists other miscellaneous issues related to porting GUIs:

5.2.2 Considering the operating system
No application is truly portable if it depends on functionality unique to a particular opera
system. Here are some general rules to keep in mind:

n Avoid port-specific terminology when writing messages. For example, a message li
"Press F1 for help" is not portable.

n Do not hardcode path names; path names vary across platforms. Instead, use
environment variables to enable Form Builder to find your files during runtime.

Suppose you need to read an image file called OPEN.BMP from your form. In a
Windows-only application, you could simply code the path name in the call to READ_
IMAGE_FILE:

Read_Image_File(‘c:\orawin95\myapp\open.bmp’, ‘BMP’, ‘block1.image3’);
If you want the application to be portable, however, hardcoding won’t work, since th
name of the path is different on each platform. Instead, you can use an external va
to represent the path name.

For example, in Windows95 or WindowsNT:

1. Create a registry entry called path_var under the ORACLE key; in UNIX, create
a shell variable also named path_var.

2. Use the GETVAR procedure in the TOOL_ENV package to retrieve the value
path_var using this platform-independent method:

path_var varchar2(255);
...
Tool_env.getvar(‘MYPATH’, path_var);
Read_Image_File(path_var||’open.bmp’, ‘BMP’,’block1.image3’)’
The platform-specific path name, represented by the variable path_var, is
appended to the name of the image file, OPEN.BMP. On Window95, path_var
resolves to the path name C:\ORAWIN95\MYAPP\. On UNIX, path_var is
something like /oracle_home/myapp/.

Table 5–6 Platform restrictions: General

Platform General Restrictions

Windows A known positioning problem causes two lines forming a right angle
on VGA screens to actually overlap on SVGA. Use bevels to avoid
this problem.

Motif (none)
Designing Portable Applications 5-9

tive

on

ed in

s

s in
n Anything called through the HOST built-in procedure. Host commands execute
port-specific operating system commands. To make your application easier to port:

1. Create a separate procedure library (.PLL) for each platform.

2. Place all operating system commands in the appropriate procedure library.

3. Create a generic procedure library.

4. Rewrite the script file for each platform, ensuring that each script has the same
name.

5. In your form module, make sure all calls refer to the generic procedure library.

6. Before compiling on a given platform, copy that platform’s .PLL to the generic
procedure library.

7. Compile.

Section 5.2.3, "Strategies for developing cross-platform forms" explains how this
handling of procedure libraries fits into the recommended development strategy for
portable applications.

n Context-sensitive help is not portable. If your application uses native context-sensi
help, replace it with Forms Developer’s portable help component, the Online Help
Class. This component enables you provide context-sensitive help in your applicati
similar to Windows 95 help.

The component is built using Form Builder and PL/SQL native capabilities, so it is
portable to all Forms-supported platforms. Because the help text you create is stor
the database, it is accessible to all users, and updates are immediately available to
everyone.

To use the Online Help Class in your application:

1. Install the database objects.

2. Create the help text for your application.

3. Attach a PL/SQL library and add code in your key-help trigger to call the help a
required.

Refer to the help topic About the Online Help Class" under Forms Developer Demo
the Form Builder online help for step-by-step instructions.
5-10 Guidelines for Building Applications

5.2 Designing Portable Forms

port
iding

.

r

 of the

 DLL
call

single

ly
n Avoid including the platform-specific methods listed in Table 5–7.

These objects leave placeholders (empty spaces) on the platforms that do not sup
them. If you must include these objects in your application, see Section 5.2.3.4, "H
objects" for information on how to prevent the placeholders from appearing.

5.2.2.1 Including user exits
A user exit is a 3GL program you write yourself and then link into a form at compile time
User exits are always port-specific.

Before calling a 3GL program from your portable form, verify that the information and
processes on which the program relies are available on all platforms. For example, a
program that depends on information from the Windows registry can’t access this
information on other platforms, which means you may have to re-design the program o
abandon it entirely.

Rather than accessing a 3GL program through the user interface exit, consider the use
ORA_FFI built-in package (Oracle Foreign Function Interface). If you use the user exit
interface to access your foreign functions, you must re-link the user exits or replace the
for each platform each time a 3GL program changes. Because ORA_FFI allows you to
foreign functions through a PL/SQL interface using PL/SQL language conventions,
re-linking isn’t required when you modify a program. For this reason, ORA_FFI is the
preferred method for accessing 3GL programs from your forms.

5.2.3 Strategies for developing cross-platform forms
This section introduces some techniques you can use to develop portable forms:

n Section 5.2.3.1, "Creating a single source" describes an architecture for creating a
source that delivers maximum functionality on each of your deployment platforms.

n Section 5.2.3.2, "Subclassing visual attributes" discusses the importance of explicit
subclassing the visual attributes stored in your object libraries.

Table 5–7 Platform-specific methods to avoid

Platform Method

Windows n VBX controls

n OLE containers

n ActiveX (OCX)

n DLLs (ORA_FFI)

Motif Calls to loadable libraries (ORA_FFI)
Designing Portable Applications 5-11

re

me
n Section 5.2.3.3, "Using the get_application_property built-in" discusses the use of this
Form Builder built-in when developing portable applications.

n Section 5.2.3.4, "Hiding objects" provides sample code for removing the placeholders
that appear when an object is not valid on a particular platform.

5.2.3.1 Creating a single source
While it may be tempting to consider creating a single source that aims at the lowest
common denominator for all deployment platforms, this strategy severely limits the
aesthetics you can provide in your application. A more effective strategy is to create a single
source that delivers applications in each platform’s native look-and-feel. The architectu
depicted in illustrates how you might accomplish this:

Figure 5–1 Port-specific implementation

To model your application on this architecture:

1. Create an object library for all standards and objects (Porting.olb). Refer to
Section 2.2.2.1, "Using object libraries" in Chapter 2 for information on using object
libraries.

2. Create separate object libraries for each deployment platform (Window.olb,
Motif.olb, Mac.olb, Charmode.olb).

3. Create a common library for port-specific code (Porting.pll).

4. Create separate libraries for each platform’s port-specific code (Window.pll,
Motif.pll, Mac.pll, Charmode.pll).

5. In each platform’s UI repository (.OLB) and library (.PLL), develop code to handle the
application objects in the manner ideal for that particular platform. Use the same na
for a given object in each UI repository and library.
5-12 Guidelines for Building Applications

5.2 Designing Portable Forms

I’s

that

fine
at

sses
t
 the
l
your

r

.

n

 the

d, if
tform.
6. Write your application, referring to the standards and objects in the repository and to the
port-specific code in the library.

7. When you’re ready to compile your application for a particular platform, copy that U
repository and library to Porting.olb and Porting.pll and compile.

5.2.3.2 Subclassing visual attributes
Visual attributes are the font, color, and pattern properties you set for form and menu
objects. By carefully defining the visual attributes of your form objects, you can ensure
users on each platform enjoy the native look-and-feel unique to that environment.

Many Form Builder objects, such as items and canvases, refer to visual attributes to de
their appearance. Visual attributes must be defined in the same module as the object th
refers to them.

Visual attributes are usually stored in an object library. It’s a good idea to create subcla
of these visual attributes in each module. When you subclass an object from an objec
library in your form, any changes made to the library object are automatically applied to
form object. However, this does not apply to changes made to the library object’s visua
attributes. So, by subclassing, rather than coping the visual attributes, you ensure that
modules always reflect the latest definition of the visual attributes.

5.2.3.3 Using the get_application_property built-in
The GET_APPLICATION_PROPERTY built-in function returns information about your
application, allowing you to react dynamically at runtime based on the settings of one o
more of these variables:

n DISPLAY_HEIGHT and DISPLAY_WIDTH. Specifies how big the current display is
The unit depends on how you have set up the form coordinate system.

n OPERATING_SYSTEM. Specifies the name of the platform on which the applicatio
currently is running (MSWINDOWS, WIN32COMMON, SunOS, VMS, UNIX, or
HP-UX).

n USER_INTERFACE: Specifies the name of the user interface technology on which
application is currently running (WEB, MOTIF, MSWINDOWS, MSWINDOWS32,
PM, X, VARCHAR2MODE, BLOCKMODE, or UNKNOWN).

Depending on the value of a variable, you can dynamically hide objects that are not
available on that deployment platform, reposition other objects to take up that space an
necessary, alter the attributes of an object to suit the standards on that deployment pla
See Section 5.2.3.4, "Hiding objects" for more information.
Designing Portable Applications 5-13

5.2.3.4 Hiding objects
To prevent users from seeing placeholders on platforms that do not support OLE, VBX, and
ActiveX objects, you can put these objects in a separate window invoked from the menu or a
button and dynamically enable/disable the menu item or button. Or you can use this code
fragment to hide/show the port-specific objects and reposition other objects to take their
place:

WHEN-NEW-FORM-INSTANCE trigger:
declare
ui varchar2(15) ;
begin
ui := get_application_property (user_interface);
if ui = ‘CHARMODE’ or ui = ‘MOTIF’ then
 set_item_property (‘VBXOBJECT1’, displayed, property_false);
 set_item_property (‘OLEOBJECT1’, displayed, property_false);
 set_item_property (‘TEXTITEM1’, position, 43, 4);
end if;
end;

Note: Item prompts are automatically hidden when you hide the associated item.

5.2.4 Designing forms for character-mode
If you are creating an application for both character-mode and bit-mapped environments,
single-sourcing is probably not the best approach. Developing for the lowest common
denominator, character-mode, deprives your GUI users of the ease of use associated with
bit-mapped controls. The "Bit-map Only" column in Table 5–8 lists the functions you’d
have to avoid:

Table 5–8 Character-mode vs. bit-mapped environments

Character Mode Bit-map Only

n Boxes

n Horizontal lines

n Vertical lines

n ASCII text

n Boldface text

n Underlines

n Images

n Color

n Drawings

n Ellipses

n Drill-down buttons (reports)

n Italicized text

n Bit-map patterns

n Diagonal lines

n Multimedia support
5-14 Guidelines for Building Applications

5.2 Designing Portable Forms

r

tings:
While there are methods for disabling these GUI functions in a character-mode environment,
this task can be extremely time-consuming and frustrating for you. So, if you know from the
beginning that you have to support these two widely disparate sets of users, it’s best fo
everyone—you and your users—to simply create two entirely separate applications.

It’s much easier to develop for character-mode if you make Form Builder look like
character-mode as much as possible. Table 5–9 lists some recommended property set
Table 5–9 Property settings that resemble character-mode

Property Recommendations/Notes

Boilerplate font n Windows: FixedSys, Regular, 9 pt

n Motif: Font=Fixed, Size=12.0, Weight=Medium, Style=Plain

Coordinate information n Coordinate system: Real1

n Real Unit: Point

n Character Cell Width: 6

n Character Cell Height: 14

1 Improves portability of the form from character-mode to bit-mapped environments. If the form will be deployed
in character-mode only, use the Character coordinate system.

View n Grid: on

n Grid Snap: on

n Show Canvas: off

View’Settings’Ruler n Units: Character cells

n Character Cell Size Horizontal: 6

n Character Cell Size Vertical: 14

n Grid Spacing: 1

n Snap Points per Grid Spacing: 2
Designing Portable Applications 5-15

ly

s
As you develop your application strictly for character-mode, keep the following in mind:

Table 5–10 Recommendations for character-mode applications

Topic Recommendations/Notes

General n Remember that everything is in monospace font.

n Create keyboard equivalents for each widget, even when the widget
does not have the current focus.

n Avoid scrolling, as it is very hard to use.

n Hide OLE, VBX, and ActiveX objects if you do not want users to see
their placeholders.

n Be sure that widgets have sufficient space to display themselves
entirely, as all UI widgets are rendered in their character-mode
equivalents.

n Because users cannot move an LOV with a mouse, use the set_
lov_property built-in to dynamically position the LOV.

Navigation n Since the user does not have a mouse, users cannot navigate between
windows or forms from within the application. Provide buttons or
menu options for navigating between forms.

n Since windows cannot be repositioned with a mouse, ensure that a
displayed window does not obscure the context required for that
window. When the user is done with a window, disable the window
programmatically, or set the window’s Remove On Exit property to
true.

Layout n There are only 80x24 character cells on the screen. The first line is
used for the menu; the last two at the bottom for the console display
and the message and status lines. Plan your screens carefully to ful
utilize the remaining space.

n Fonts are monospaced and thus consume much more space on
average than proportional fonts. Design your screens so that
boilerplate and textual widgets can be rendered with one character
per cell.

Coordinate system n Use the Character coordinate system and turn on the grid snap. Thi
will ensure that your objects’ sizes are in multiples of the character
cell size.

Menus n Menus are displayed on the first line of the screen.

n Common menu items like Cut, Copy, and Paste not available.

n Define hot keys for commonly used menu items to reduce
cumbersome navigation to the first line of the screen.

Bevels n Not available.
5-16 Guidelines for Building Applications

5.3 Designing Portable Reports

d
5.3 Designing Portable Reports
When preparing a report to run on multiple platforms, consider the following:

n Fonts. Not all font types, styles, and sizes are available on all target GUIs. You can
handle this in one of two ways:

n Use a font that you know exists on the target GUI or one that maps well to the
default font of the target GUI.

n Modify the font mapping file, UIFONT.ALI, to ensure that the fonts map
correctly. See Section 5.2.1.4.1, "Defining font aliases" for more details on using
the UIFONT.ALI file.

Note: Because screen font and printer font metrics are not always the same, your
printed report may not look the same as it did on the screen. In particular, text fields can
expand on the printed page, causing adjacent fields to shift and possibly creating new
and unpredictable page breaks. To avoid this, use expand-only fields and be sure each
field is large enough to accommodate the largest font reasonably possible.

n Colors. If possible, use a color that you know exists on the target GUI; otherwise, use
one that maps well to the default color of the target GUI. The following colors are
typically available on many platforms: blue, magenta, red, cyan, green, yellow. See
Section 5.2.1.3, "Using color" for some recommendations on including color in portable
reports.

Buttons n Avoid use of button palettes; make all actions available from the
menu instead. Because character-mode does not allow the user to
retain context when navigating to a button, buttons do not work well
in this mode.

Icons n Not available. Make sure that all iconic buttons in the GUI
environment are also represented by menu options.

n Iconic buttons display with just the buttons’ labels. Make sure the
labels are meaningful and that there is sufficient space to display
them.

Color n Precede negative numbers with a minus sign since color is not
available.

n On monochrome displays, colors snap to black or white. Avoid using
dark colors for both background and foreground, as both are snappe
to black.

Table 5–10 Recommendations for character-mode applications

Topic Recommendations/Notes
Designing Portable Applications 5-17

in

,
nt
 on

ed

. If
ild
rt to
ting.
n DPI. The dots-per-inch (DPI) that your monitor uses may not be the same as the DPI
used by the person who runs the report. The DPI only affects how alpha-numeric
characters word-wrap on the screen. If you design a report that may be displayed in the
Previewer view, try to use the same DPI as the people who will run it.

n Buttons. If you provide buttons in a report, users viewing the report through the
Previewer can press the buttons to display a multimedia object (sound, video, image) or
to perform an action through PL/SQL code, such as drilling down to another report. See
Section 5.2.1.6, "Using buttons" for some guidelines on creating portable buttons. Note
that if you run a report containing buttons in character-mode, the buttons are simply
ignored; they do not create a placeholder.

5.3.1 Designing a report for character-mode environments
Character-mode reports are often needed in environments where users need to send their
report output to bulletin boards, spreadsheets, dump files, or to character-only printers.
Character-mode output also provides a number of advantages:

n Portability. Because they are strictly ASCII or EBCDIC files, character-mode reports
can be printed or exported anywhere.

n Protecting printer investment. Character-mode reports require no special
formatting—unlike complicated postscript output—thus protecting your investment
older printers.

n Printer code support. Reports Developer provides support for printer escape codes
which enable users to exploit printer-specific features at runtime, such as special fo
sizes, highlighting, and more. Refer to the Report Builder online help for information
printer definition files and printer codes.

n Performance. Character-mode reports run much faster than an equivalent bit-mapp
report. Bit-mapped reports typically require more formatting time and have larger
(Postscript, PCL5) output files.

5.3.1.1 Design considerations
Reports built for bit-mapped environments cannot easily be adapted to character-mode
you know you will need to run a report in a character-mode environment, it is best to bu
the report as a character-mode report. However, if you must convert a bit-mapped repo
character mode, refer to the Report Builder online help, index entry: ASCII report, crea
You will also find step-by-step instructions there for building a character-mode report.
5-18 Guidelines for Building Applications

5.4 Designing Portable Displays

uch

s

a
 for

e.
 chart
g
rt area

tions.

eft

the

e
5.4 Designing Portable Displays
If you have standalone graphics—graphics that are not part of a container application s
as a form or report—porting is fairly straightforward. Most graphics, however, are
embedded within forms and reports, which can introduce problems when moving acros
platforms. When developing graphics for multiple environments, observe the following
guidelines:

n To ensure that text scales uniformly—especially when the graphic is embedded in
form or report—use a scalable truetype font and set the Scalable Fonts flag to true
all text objects except chart labels. The Scalable Fonts flag is not available for text
labels in a chart. As soon as a chart is updated, fonts are re-set to their original siz
Thus, choose a font and size for chart labels that is legible at the greatest range of
sizes. A good bet is small, sharp fonts that display well at 8-10 point sizes. Anythin
larger may cause your chart to become unreadable when embedded in a small cha
of a form or report.

n Timers and drag-and-drop code are supported only in standalone Graphics applica
If you include these functions in a form or report, they are ignored.

n Limit your use of colors to the core 16, which are available in the Designer (upper-l
corner of the palette), as well as through their mnemonic names (red, green, blue,
yellow, magenta, cyan, black, white, gray, darkgray, darkyellow, darkcyan,
darkmagenta, darkblue, darkgreen, and darkred).

n Set colors through the layout editor, rather than through PL/SQL. Colors chosen in
layout editor are automatically adjusted to the nearest available color. Colors set
through code can result in an error if the color is not available on your system at th
current resolution.

n Isolate platform-dependent code with calls to the application property og_get_ap_
platform, and to the built-in subprograms og_append_directory and og_
append_file. Refer to the Graphics Builder online help for more information.
Designing Portable Applications 5-19

5-20 Guidelines for Building Applications

Taking Advantage of Open Archite
6

Taking Advantage of Open Architecture

This chapter offers guidelines to help you take advantage of the open and extensible
development environment available in both Forms Developer and Reports Developer.

Section Description

Section 6.1, "Working with
OLE Objects and ActiveX
Controls"

Describes support for component technologies and provides steps and
guidelines for creating applications that include OLE objects and
ActiveX controls.

Section 6.2, "Using Foreign
Functions to Customize Your
Applications"

Describes how to customize and extend your applications with 3GL
foreign functions.

Section 6.3, "Using the Open
API to Build and Modify
Form Builder Applications"

Introduces the Open API and explains how to use the Open API to
build and modify Form Builder applications.

Section 6.4, "Designing
Applications to Run against
ODBC Datasources"

Discusses ODBC support and provides detailed steps and guidelines
that describe how to run applications against ODBC datasources.
cture 6-1

6.1 Working with OLE Objects and ActiveX Controls
This section describes what OLE and ActiveX are, and how you can exploit this technology.
This section includes these topics:

n Section 6.1.1, "What is OLE?"

n Section 6.1.1.1, "When should I use OLE?"

n Section 6.1.1.9, "Adding an OLE object to your application"

n Section 6.1.1.10, "Manipulating OLE objects"

n Section 6.1.1.11, "OLE examples"

n Section 6.1.2, "What are ActiveX controls?"

n Section 6.1.2.1, "When should I use ActiveX controls?"

n Section 6.1.2.2, "Manipulating ActiveX controls"

n Section 6.1.2.7, "Adding an ActiveX control to your application"

n Section 6.1.2.8, "ActiveX examples"

Note: Support for OLE and ActiveX is limited to the Windows platform.

6.1.1 What is OLE?
Object Linking and Embedding (OLE) is a Microsoft standard that allows you to integrate
and reuse different software components within a single application.

Integrating an application with a Microsoft Excel document, for example, enables you to
offer both Forms Developer (or Reports Developer) and Microsoft Excel features. Your
users can format a Microsoft Excel document with any of the text processing features
provided by Microsoft Excel, while using Forms Developer or Reports Developer features
for displaying and manipulating data from the database.

By incorporating OLE objects within your application, you can seamlessly integrate a
diverse group of specialized components to build full-fledged applications. You no longer
have to build entire applications from the ground up. You can deliver applications in a
shorter amount of time and at a lower cost.

6.1.1.1 When should I use OLE?
Use OLE when:

n You want to leverage an existing OLE-compliant application within your application.
6-2 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

d uses

bject

ts
tore

ce
on

eats
. The
 This
For example, you can enhance your application’s capabilities with word processor
documents, spreadsheet documents, knob controls, video clips, sound, and so on.

n You want to provide your application users with a familiar interface.

On Microsoft Windows, most users are familiar with Microsoft Word and Microsoft
Excel. Rather than creating word processing or spreadsheet functionality to your
application, you could leverage and embed a Word or Excel document within your
application.

n Your applications are primarily deployed on the Windows platform.

6.1.1.2 About OLE servers and containers
OLE uses the concept of client and server. The client is an application that requests an
the services of another application. The server is the one that provides these services.

n OLE Server Application

An OLE server application creates OLE objects that are embedded or linked in OLE
containers. The server application is responsible for the creation, storage, and
manipulation of OLE objects. For example, the server decides how to repaint the o
when certain portions are exposed.

Graphics Builder and Microsoft Word are examples of OLE servers.

n OLE Container Application

Unlike OLE server applications, OLE container applications do not create documen
for embedding and linking. Instead, OLE container applications provide a place to s
and display objects that are created by OLE server applications.

Form Builder and Report Builder are examples of OLE container applications.

6.1.1.3 About embedded and linked objects
You can link or embed OLE objects within your application.

n Embedded Object. An embedded object has both its presentation and native data
stored within your application, or as a LONG RAW column in the database.

n Linked Object. A linked object only contains presentation information and a referen
to its native data. The content of the linked object is not stored within your applicati
or as a LONG RAW column in a database; it is stored in a separate, linked file.

There is no functional difference between linking and embedding. The OLE container tr
the objects equally, by executing the same code, whether they are linked or embedded
only difference is that embedding an OLE object increases the size of your application.
Taking Advantage of Open Architecture 6-3

could eventually lead to performance considerations (particularly on a file server), because
the larger the application, the longer it will take to open and load into memory.

6.1.1.4 About the registration database
Each client machine contains an OLE registration database. The registration database stores
a set of classes that categorize OLE objects. The information in the registration database
determines the object classes that are available for embedding and linking in OLE
containers.

OLE server applications export a set of classes that become members of the registration
database. Each computer has a single registration database. If the registration database does
not already exist when an OLE server application is installed, one is created.

A single OLE server application can add many OLE classes to the registration database. The
process of adding classes to the registration database is transparent and occurs during the
installation of an OLE server application. For example, when you install Microsoft Excel,
several classes are added to the registration database; some of the classes that are installed in
the registration database include Excel Application, Excel Application 5, Excel Chart, Excel
Sheet, ExcelMacrosheet, and ExcelWorkSheet.

6.1.1.5 About OLE activation styles
Activating an OLE object enables you to access features from the OLE server application.
There are two ways to activate an OLE object: in-place activation or external activation.

n In-place Activation. In-place activation enables your users to manipulate the OLE
object within your application without switching to a different window.

During in-place activation, the activated object appears within a hatched border, and the
toolbar, menu and other controls of the activated object temporarily replace standard
menu options. The replacement menu options and toolbars provide access to features
that are available from the OLE server application. Standard menu options and toolbars
re-appear when you deactivate in-place activation. To deactivate in-place activation,
you click anywhere outside the hatched border.

Note: In-place activation is available for embedded objects, but it is not available for
linked objects.

n External Activation. External activation enables your users to manipulate the OLE
object in a separate window. When an OLE object is activated, the object’s OLE server
application is launched, and the OLE object appears in a separate OLE server
application window. The separate window has the menu options and toolbars of the
OLE server application. To deactivate external activation, you must explicitly exit the
OLE server application.
6-4 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
External activation is available for both embedded and linked objects.

When the contents of a linked source file is modified with external activation, a linked
object can be updated manually or automatically. Manual updates require an explicit
instruction for an object to reflect changes from a linked source file. Automatic updates
occur as soon as you modify a linked source file.

Note: Both in-place activation and external activation are dependent on the OLE
activation property settings of the OLE container. If the OLE server application is
accessible, the activation property settings of the OLE container determine whether
in-place activation or external activation occurs when an embedded OLE object is
activated. Linked objects can only be activated with external activation; in-place
activation does not apply to linked objects, even if the in-place activation property is set
to Yes.

6.1.1.6 About OLE automation
Occasionally, you may want to interact with or manipulate the data within an OLE object.
To do so, you use PL/SQL and OLE automation.

OLE automation enables the server application to expose a set of commands and functions
that can be invoked from an OLE container application. By using these commands and
functions, you can manipulate OLE objects from the OLE container environment.

In both Forms Developer and Reports Developer, you use PL/SQL to access any command
or function that is exposed by an OLE server application. Built-ins provide a PL/SQL
Application Programming Interface for creating, manipulating, and accessing OLE
commands and functions.

Note: Many of the options available for manipulating an OLE object in an OLE container
application are determined by the OLE server application. For instance, options from the
OLE popup menu, also known as OLE verbs, are exposed by the OLE server application.
The information contained in the registration database, such as object classes, is also
dependent on the OLE server application.

6.1.1.7 OLE support
Both Forms Developer and Reports Developer provide OLE server and container support as
well as support for OLE automation.

Component Container Server Application OLE2 Automation

Form Builder Yes No Yes

Graphics Builder No Yes Yes
Taking Advantage of Open Architecture 6-5

’t
ays to
6.1.1.7.1 OLE container support

As OLE container applications, Form Builder and Report Builder support the following:

n Embedding and linking of OLE server objects into OLE containers.

n In-place activation of embedded contents in OLE containers (Form Builder only).

In-place activation enables you to access menus and toolbars from OLE server
applications to edit embedded OLE objects while you are in Form Builder.

n Programmatic access to OLE objects, properties, and methods through OLE automation
support from PL/SQL.

Using PL/SQL, you can invoke commands and functions that are exposed by OLE
servers.

n Seamless storage of OLE objects in a database in LONG RAW columns.

You can save OLE objects to a database, as well as query OLE objects from a database.
When linked objects are saved, only the image and the link information are retained in
the database. The contents of a linked object remains in a linked source file. Saving an
embedded object retains all the contents of an embedded object in the database.

6.1.1.7.2 OLE server support

Graphics Builder is an OLE server application. You can embed or link Graphics Builder
displays within your Forms Developer or Reports Developer application.

Recommendation: If you want to add a Graphics Builder display to your application, don
embed or link it as an OLE object. Instead, use the Chart Wizard to add graphical displ
your applications.

6.1.1.7.3 OLE container properties

Procedure Builder No No No

Project Builder No No No

Query Builder No No No

Report Builder Yes No Yes

Schema Builder No No No

Translation Builder No No No

Component Container Server Application OLE2 Automation
6-6 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
OLE container properties determine OLE display attributes, OLE container interaction with
the server, container storage, and so on.

Note: In addition to container properties, you can also set OLE object properties. Each OLE
object can expose several properties. You access OLE object properties by clicking the right
mouse button to display the popup menu.

This section lists the OLE container properties supported by both Forms Developer and
Reports Developer.

Component Property Description

Form Builder n OLE Activation Style Specifies the event that will activate
the OLE containing item, either
double-click, focus-in, or manual.

n OLE Class Determines what class of OLE
objects can reside in an OLE
container.

n OLE In-place Activation Specifies if OLE in-place activation is
used for editing embedded OLE
objects.

n OLE Inside-Out Support Specifies if the OLE server of the
embedded object enables inside-out
object support during in-place
activation. Inside-out activation
enables for more than one embedded
object to have an active editing
window within an OLE container.

n OLE Popup Menu Items Determines which OLE popup menu
commands are displayed and enabled
when the mouse cursor is on the OLE
object and the right mouse button is
pressed. The OLE popup menu
commands manipulate OLE objects.

n OLE Resize Style Determines how an OLE object is
displayed in an OLE container.

n OLE Tenant Aspect Determines how an OLE object
appears in an OLE container, either
content, icon, or thumbnail.

n OLE Tenant Types Specifies the type of OLE objects that
can be tenants of the OLE container,
either embedded, linked, any, static,
or none.
Taking Advantage of Open Architecture 6-7

6.1.1.7.4 OLE/ActiveX built-ins

This section lists the OLE and ActiveX built-ins supported by different components.

n Show OLE Popup Menu Determines whether the right mouse
button displays a popup menu of
commands for interacting with the
OLE object.

n Show OLE Tenant Type Determines whether a border defining
the OLE object type surrounds the
OLE container.

Report Builder Create New Specifies that you want to embed
your OLE object within your report
application.

Create from File Specifies that you want to link your
OLE object within your report
application.

Display as Icon Specifies whether the OLE object
should appear as an icon. By default,
the OLE object appears as an empty
container.

Component Built-in Description

Form Builder n ACTIVATE_SERVER Activates an OLE server associated
with an OLE container and prepares
the OLE server to receive OLE
automation events from the OLE
container.

n ADD_OLEARGS Establishes the type and value of an
argument that will be passed to the
OLE object’s method.

n CALL_OLE Passes control to the identified OLE
object’s method.

n CALL_OLE_<return type> Passes control to the identified OLE
object’s method. Receives a return
value of the specified type.

There are five versions of the function
(denoted by the value in returntype),
one for each of the argument types
CHAR, NUM, OBJ, RAW, and VAR.

Component Property Description
6-8 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
n CLOSE_SERVER Deactivates the OLE server
associated with an OLE container.
Terminates the connection between
an OLE server and the OLE
container.

n CREATE_OLEOBJ In its first form, creates an OLE
object, and establishes the object’s
persistence. In its second form, alters
the persistence of a
previously-instantiated OLE object.

n CREATE_VAR Creates an empty, unnamed variant.

There are two versions of the
function, one for scalars and the other
for arrays.

n DESTROY_VARIANT Destroys a variant that was created by
the CREATE_VAR function.

n EXEC_VERB Causes the OLE server to execute the
verb identified by the verb name or
the verb index. An OLE verb
specifies the action that you can
perform on an OLE object.

n FIND_OLE_VERB Returns an OLE verb index. An OLE
verb specifies the action that you can
perform on an OLE object, and each
OLE verb has a corresponding OLE
verb index.

n GET_INTERFACE_POINTER Returns a handle to an OLE2
automation object.

n GET_OLEARG_<type> Obtains the nth argument from the
OLE argument stack.

There are five versions of the function
(denoted by the value in type), one for
each of the argument types CHAR,
NUM, OBJ, RAW, and VAR.

n GET_OLE_MEMBERID Obtains the member ID of a named
method or property of an OLE object.

n GET_VAR_BOUNDS Obtains the bounds of an OLE
variant’s array.

Component Built-in Description
Taking Advantage of Open Architecture 6-9

n GET_VAR_DIMS Determines if an OLE variant is an
array, and if so, obtains the number of
dimensions in that array.

n GET_VAR_TYPE Obtains the type of an OLE variant.

n GET_VERB_COUNT Returns the number of verbs that an
OLE server recognizes. An OLE verb
specifies the action that you can
perform on an OLE object, and the
number of verbs available depends on
the OLE server.

n GET_VERB_NAME Returns the name of the verb that is
associated with the given verb index.

n INITIALIZE_CONTAINER Inserts an OLE object from a
server-compatible file into an OLE
container.

n INIT_OLE_ARGS Establishes how many arguments are
going to be defined and passed to the
OLE object’s method.

n LAST_OLE_ERROR Returns the identifying number of the
most recent OLE error condition.

n LAST_OLE_EXCEPTION Returns the identifying number of the
most recent OLE exception that
occurred in the called object.

n OLEVAR_EMPTY An OLE variant of type VT_EMPTY.

n PTR_TO_VAR First, creates an OLE variant of type
VT_PTR that contains the supplied
address. Then, passes that variant and
type through the function VARPTR_
TO_VAR.

n RELEASE_OBJ Shuts down the connection to the
OLE object.

n SERVER_ACTIVE Indicates whether or not the server
associated with a given container is
running.

Component Built-in Description
6-10 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
n SET_OLE Changes the value of an OLE
property.

There are three versions of the
procedure, one for each of the
new-value types: NUMBER,
VARCHAR, and OLEVAR.

n SET_VAR Sets a newly-created OLE variant to
its initial value. Or, resets an existing
OLE variant to a new value.

There are four versions of the
procedure, one for each of the new
value types CHAR, NUMBER,
OLEVAR, and table.

n TABLE_FROM_BLOCK Populates a table from a block.

n TO_VARIANT Creates an OLE variant and assigns it
a value.

There are four versions of the
function.

n VARPTR_TO_VAR Changes a variant pointer into a
simple variant.

n VAR_TO_TABLE Reads an OLE array variant and
populates a PL/SQL table from it.

n VAR_TO_<type> Reads an OLE variant and transforms
its value into an equivalent PL/SQL
type.

There are six versions of the function
(denoted by the value in type), one for
each for of the types CHAR, NUM,
OBJ, RAW, TABLE, and VARPTR.

n VAR_TO_VARPTR Creates an OLE variant that points to
an existing variant.

Developer OLE2
Package

n ADD_ARG Adds an argument to a given
argument list.

n CREATE_ARGLIST Creates an argument list to be passed
to an OLE server.

Component Built-in Description
Taking Advantage of Open Architecture 6-11

n CREATE_OBJ Returns a handle to a newly created
OLE object. This is usually used for
OLE objects that do not have a user
interface, such as a spell-checker.

n DESTROY_ARGLIST Destroys the specified argument list.

n GET_CHAR_PROPERTY Returns a character property of the
OLE object.

n GET_NUM_PROPERTY Returns a number property of the
OLE object.

n GET_OBJ_PROPERTY Returns an object type property of the
OLE object.

n INVOKE Executes the specified OLE server
procedure.

n INVOKE_CHAR Executes the specified OLE server
function. This function returns a
character value.

n INVOKE_NUM Executes the specified OLE server
function. This function returns a
number value.

n INVOKE_OBJ Executes the specified OLE server
function. This function returns an
object type value.

n LAST_EXCEPTION Returns an OLE error.

n SET_PROPERTY Sets the OLE property with the
specified value.

n RELEASE_OBJ Deallocates all resources for the
specified OLE object.

Component Built-in Description
6-12 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
6.1.1.8 OLE guidelines
When working with OLE objects, consider these guidelines:

Item Recommendation

Embedding or Linking an
OLE object

You should link an OLE object when:

n Your users prefer to work with the OLE object within the OLE
server environment (your users prefer external activation). You
link your OLE object when your users are more comfortable
editing a spreadsheet, for example, within Microsoft Excel,
rather than within your application.

n The OLE object is used in multiple applications.

n The size of your application is a concern.

You should embed an OLE object when:

n Your users can work with OLE objects within your application;
your users prefer in-place activation.

n You prefer to maintain a single application, rather than
maintaining an application with multiple OLE source files.

n You are not concerned about the size of your application.

OLE Activation Style You should use external activation. Linked objects can only be
activated with external activation.

Display Style for optimum performance, set the Display Style property for your
OLE object to Icon.

Creating OLE objects at
design-time or runtime?

You should create your OLE objects at design-time.

When you create an OLE container in a Form, Form Builder
automatically initializes the OLE object.

In contrast, if you insert an OLE object at runtime, you must initialize
the OLE object manually.

Note: If you manually insert an OLE object during Forms Runtime,
the OLE object appears in the OLE container until the next record
query. For any subsequent record queries, the OLE container appears
in a state as defined in the Form Builder or populated with an OLE
object from the database.

Portability OLE objects are only supported on Microsoft Windows. If portability
is an issue, you should not incorporate OLE objects within your
application. Instead, consider developing the features within Forms
Developer (or Reports Developer), or consider developing a 3GL
foreign function.
Taking Advantage of Open Architecture 6-13

E
e

nd
6.1.1.9 Adding an OLE object to your application
For detailed steps about how to add an OLE object to your application, refer to the online
help.

6.1.1.10 Manipulating OLE objects
OLE server applications expose a set of commands that allow you to manipulate an OLE
object programmatically.

You can manipulate OLE objects by:

n Getting and setting OLE properties.

n Calling OLE methods to perform special commands.

Note: Before you can call an OLE method, you must first import the OLE object’s
methods and properties into Forms Developer or Reports Developer. Importing OL
methods and properties enables you to interact with the OLE object within the nativ
environment.

You can access OLE methods from your application by using the STANDARD (Form
Builder only) and OLE2 built-in packages.

6.1.1.11 OLE examples
This section provides several examples to help you get started with OLE.

6.1.1.11.1 Example 1: setting an OLE property using bind variable syntax
Within your form applications, you can use the :item('item_name').ocx.server_
name.property bind variable syntax to assign or retrieve property values.

For example:

:item(’OLEitem’).OCX.SpreadSheet.CellForeGroundColor:=
:item(’OLEitem’).OCX.SpreadSheet.CellForeGroundColor + 1;

OLEitem is the name of the item, SpreadSheet is the name of the OLE control server, a
CellForeGroundColor is the name of the property.

Setting OLE properties
within Report Builder

Report Builder OLE container properties are only available in the
Create OLE Object dialog; Report Builder does not expose OLE
container properties within the Property Palette. When working
within Report Builder, set OLE properties within the Create OLE
Object dialog.

Item Recommendation
6-14 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
6.1.1.11.2 Example 2: setting an OLE property using property assessors

Within your form applications, you can also use property assessor functions and procedures
to get and set property values.

For example:

Variant OleVar;
Variant := EXCEL_WORKSHEET.ole_Range(:CTRL.interface,
 To_variant(’A1’));

EXCEL_WORKSHEET is the name of the program unit created from the OLE Importer.
OLE_RANGE is the name of the property accessor.

6.1.1.11.3 Example 3: modifying cells in an Excel spreadsheet

This example gets and sets cell values in an Excel spreadsheet.

 PACKAGE spreadsheet IS
 procedure setcell(trow number, col number, val number);
 function getcell(trow number, col number) return number;
 END;

 PACKAGE BODY spreadsheet IS
 obj_hnd ole2.obj_type;/* store the object handle */
 FUNCTION get_object_handle return ole2.obj_type IS
 BEGIN
 /* If the server is not active, activate the server
 and get the object handle.
 */
 if not forms_ole.server_active (’spreadsheet’) then
 forms_ole.activate_server(’spreadsheet’);
 obj_hnd := forms_ole.get_interface_pointer(’spreadsheet’);
 end if;
 return obj_hnd;
 END;
 /*
 Excel cells are accessed with the following syntax in Visual Basic:
 ActiveSheet.Cells(row, column).Value
 In PL/SQL, we need to first get the active sheet using the
 forms_ole.get_interface_pointer built-in. We can then use that to call the
 Cells method with the row and column in an argument list to get a handle to
 that specific cell. Lastly, we access the value of that cell.
 */

 PROCEDURE SETCELL (trow number, col number, val number) IS
Taking Advantage of Open Architecture 6-15

 d ole2.obj_type;
 c ole2.obj_type;
 n number;
 lst ole2.list_type;
 BEGIN
 /* Activate the server and get the object handle
 to the spreadsheet.
 */
 d := get_object_handle;
 /* Create an argument list and insert the specified
 row and column into the argument list.
 */
 lst := ole2.create_arglist;
 ole2.add_arg(lst,trow);
 ole2.add_arg(lst,col);
 /* Call the Cells method to get a handle to the
 specified cell.
 */
 c := ole2.invoke_obj(d,’Cells’,lst);
 /* Set the value of that cell. */
 ole2.set_property(c,’Value’,val);
 /* Destroy the argument list and the cell object
 handle.
 */
 ole2.destroy_arglist(lst);
 ole2.release_obj(c);
 END;

 FUNCTION GETCELL(trow number, col number) return number IS
 c ole2.obj_type;
 d ole2.obj_type;
 n number;
 lst ole2.list_type;
 BEGIN
 /* Activate the server and get the object handle
 to the spreadsheet.
 */
 d := get_object_handle;
 /* Create an argument list and insert the specified
 row and column into the argument list.
 */
 lst := ole2.create_arglist;
 ole2.add_arg(lst,trow);
 ole2.add_arg(lst,col);
 /* Call the Cells method to get the value in the
6-16 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

eX

nal,

ntrol,

and
 specified cell.
 */
 c := ole2.invoke_obj (d,’Cells’,lst);
 n := ole2.get_num_property (c, ’Value’);
 /* Destroy the argument list. */
 ole2.destroy_arglist(lst);
 ole2.release_obj(c);
 return n;
 END;
 END;

To access a cell, use the following code:

 spreadsheet.setcell(3, 5, 91.73);
 :block1.item1 := spreadsheet.getcell(2, 4);

6.1.2 What are ActiveX controls?
ActiveX controls (originally known as OLE or OCX controls) are stand-alone software
components that you embed within your application to provide light-weight user interface
controls.

ActiveX controls differ from OLE objects in several ways:

n An ActiveX control is not a separate application, but a server that plugs into an ActiveX
container—ActiveX controls are self-contained.

n Each ActiveX control exposes a set of properties, methods, and events. Properties define
the ActiveX control's physical and logical attributes, methods define actions that the
ActiveX control can perform, and events denote some change in status in the Activ
control.

n ActiveX controls must be deployed and installed with your applications.

6.1.2.1 When should I use ActiveX controls?
ActiveX controls are typically used to enhance an application by providing some additio
self-contained functionality.

For example, you can enhance your application with a tabbed property sheet, a spin co
a calendar control, a help control, and so on.

A significant amount of effort is required to develop your own ActiveX controls or OLE
servers. It is recommended that you use ActiveX controls and OLE servers developed
distributed by third party vendors.
Taking Advantage of Open Architecture 6-17

age.

ding

hin
6.1.2.2 Manipulating ActiveX controls
Each ActiveX control exposes a set of properties, methods, and events. Properties define the
ActiveX control’s physical and logical attributes, methods define actions that the ActiveX
control can perform, and events denote some change in status in the ActiveX control.

You can manipulate an ActiveX control by:

n Setting and getting ActiveX control properties.

n Calling ActiveX control methods.

Note: Before you can invoke an ActiveX control method, you must first import its
methods and events into Forms Developer. Importing ActiveX methods and events
enables you to interact with the ActiveX control within the native Forms Developer
environment.

n Responding to ActiveX control events.

To manipulate an ActiveX control, you use the STANDARD and OLE2 (both within Forms
Developer) built-in packages.

6.1.2.3 Responding to ActiveX events
You can respond to an ActiveX event by writing your own code within an ActiveX event
package or within the On-Dispatch-Event trigger.

Each ActiveX event is associated with a PL/SQL procedure defined in the events’ pack
When the control fires an event, the code in the procedure is automatically executed.

Procedure names are determined by an internal number that represents the correspon
event. The restricted procedure produced by an event has an application programming
interface similar to the following:

PROCEDURE /*Click*/ event4294966696(interface OleObj);

Note: ActiveX procedures run in restricted mode. When calling the event procedure wit
an On-Dispatch-Event trigger, you can explicitly define whether the procedure is run in
restricted or unrestricted mode by using the FORMS4W.DISPATCH_EVENT call. When
defining a restricted procedure, OUT parameters are not observed.

6.1.2.4 Deploying your ActiveX control
Deploying an application that contains an ActiveX control requires that you deploy the
ActiveX control.

To deploy an ActiveX control, you must:
6-18 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
n Register the ActiveX control on the client-machine.

If you install an ActiveX control by using the installation program supplied with the
ActiveX control, registration occurs automatically.

For manual registration, use regActiveX32.exe or regsvr32.exe; both are
available with Microsoft development tools and from ActiveX control vendors.

n Copy ActiveX DLLs to the client-machine (for example, C:\WINDOWS\SYSTEM).

Most ActiveX controls require a supporting DLL, such as the Microsoft Foundation
Class runtime library (MFC40.DLL). The DLL must be in the \WINDOWS\SYSTEM
directory or in the search path. If the DLL is out of date or missing, your ActiveX
control will not register properly.

Note: ActiveX controls, whether distributed by third party ActiveX control vendors or
bundled with application development tools, may require that you pay additional fees or
obtain additional licenses prior to distributing the ActiveX control.

6.1.2.5 ActiveX support
Support means the ability to create, manipulate, and communicate with ActiveX controls.

6.1.2.5.1 ActiveX properties

This section lists the ActiveX properties supported by Forms Developer.

Component Container

Form Builder Yes

Graphics Builder No

Procedure Builder No

Project Builder No

Query Builder No

Report Builder No

Schema Builder No

Translation Builder No

Component Property Description

Form Builder OLE Class Determines what class of OLE
objects can reside in an OLE
container.
Taking Advantage of Open Architecture 6-19

6.1.2.5.2 ActiveX/OLE built-ins

Refer to Section 6.1.1.7.4 for a list of the ActiveX and OLE built-ins supported by different
components.

6.1.2.6 ActiveX guidelines
This section provides guidelines for working with ActiveX controls.

Control Properties Allows you to set ActiveX control
properties.

You can access the ActiveX
properties dialog through the Property
Palette or by clicking the ActiveX
control, then clicking the right mouse
button.

About Control Displays information about the
ActiveX control

Control Help Displays control-specific help (if
available).

Item Recommendation

Creating your own ActiveX
Control

A significant amount of effort is required to develop your own
ActiveX controls or OLE servers. It is recommended that you use
ActiveX controls and OLE servers developed and distributed by third
party vendors.

Initializing an ActiveX
Control

Use ActiveX controls in blocks with the Single Record property set to
Yes, because single records are immediately initialized when Forms
Runtime starts up.

For multiple records, each record is not initialized until you navigate
to the record.

Without initialization, the ActiveX control item is empty, giving the
impression that no ActiveX control is available.

Component Property Description
6-20 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

Managing OLE Variant
Types

n Some OLE servers such as Microsoft Excel use variant types.
Use the STANDARD built-in package to do the necessary
conversion to and from variant types.

n The lifetime and scope of a variant type is limited to a trigger
(variant memory space is released when a trigger exits). To
extend the lifetime and scope of a variant type, set the persistent
parameter in To_Variant() to TRUE and assign the results to a
global variable.

Note: Global variants must be explicitly destroyed using Destroy_
Variant(). Similarly, OLE objects created with Create_OleObj()
are global in scope (the persistent parameter defaults to TRUE). You
must explicitly call Release_Obj() to release global objects.

Moving ActiveX Files You should maintain your ActiveX files within the “install”
directory; do not move your ActiveX files to a different directory.

At installation, the directories in which the ActiveX control is
installed are registered in the Windows Registration Database in
Windows 95 and Windows NT, making the ActiveX Control visible
to your development environment.

When you move an ActiveX Control to a different directory, or
rename the directory, you invalidate the information in the registry.

If you find it necessary to move the ActiveX Control or rename its
directory, use regsrv32.exe or regActiveX32.exe utilities
provided with most Microsoft development products to re-register the
ActiveX in its new location.

Portability Issues We support ActiveX on the Windows platform only. ActiveX
controls cannot be used on the Web or on UNIX. If portability is an
issue, do not use an ActiveX control.

Item Recommendation
Taking Advantage of Open Architecture 6-21

Debugging ActiveX Calls Given that object types cannot be checked at compile time, it is
possible to call a function on an object which is not defined for the
class of that object. Because the functions are bound by ID rather
than by name, a different function may be called than expected,
leading to unusual errors.

One way to guarantee that you are calling the correct method is to
change the generated function, replacing the hardcoded constant with
a call to GET_OLE_MEMBERID. For example:

Procedure Ole_Add(interface OleObj, TimeBegin
VARCHAR2, TimeEnd VARCHAR2, Text VARCHAR2,
BackColor OleVar := OleVar_Null) IS

BEGIN

 Init_OleArgs (4);

 Add_OleArg (TimeBegin);

 Add_OleArg (TimeEnd);

 Add_Olearg (Text);

 Add_OleArg (BackColor);

 Call_Ole (interface, 2);

END;

Replace the Call_ole() with: Call_Ole (interface,
Get_Ole_MemberID(interface, ‘Add’));

You can check for FORM_SUCCESS after the GET_OLE_
MEMBERID call.

Restrictions n ActiveX event procedures are restricted. In general, GO_ITEM
cannot be called within ActiveX procedure code, unless the
same event applies to multiple items and a GO_ITEM is
necessary. In this case, you can use the GO_ITEM built-in by
doing the following: in the On-Dispatch-Trigger (block or form
level), call DISPATCH_EVENT(RESTRICTED_ALLOWED).
Note: You do not have to explicitly call the event procedure
because it will automatically be called following the
On-Dispatch trigger code.

n Initialization events for ActiveX controls do not fire in Forms
Runtime. These initialization events are intentionally disabled.
Instead, you can use When-New-Item-Instance or
When-New-Record-Instance in place of the control’s native
initialization events.

Item Recommendation
6-22 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls
6.1.2.7 Adding an ActiveX control to your application
For information about how to add an ActiveX control to your application, refer to the online
help.

6.1.2.8 ActiveX examples
This section provides several examples to help you get started with ActiveX controls.

6.1.2.8.1 Example 1: setting ActiveX control properties

In Form Builder, you can use the :item(’item_name’).ocx.server_
name.property bind variable syntax to assign or retrieve ActiveX property values.

For example:

:item(’ActXitem’).OCX.Spindial.spindialctrl.1.Needleposition:=
:item(’ActXitem’).OCX.Spindial.spindialctrl.1.Needleposition + 1;

ActXitem is the name of the item, Spindial.spindialctrl.1 is the name of the
ActiveX control server, and Needleposition is the name of the property.

The following code also works if your system.cursor_item is an ActiveX control:

:form.cursor_item.OCX.spindial.spindialctrl.1.Needlposition :=
:form.cursor_item.OCX.spindial.spindialctrl.1.Needlposition + 1;

6.1.2.8.2 Example 2: getting ActiveX control properties

In Form Builder, you can use the property accessor functions and procedures to get and set
ActiveX properties.

For example:

tblname varchar2;
tblname := table_pkg.TableName(:item(’Oblk.Oitm’).interface);

Table_pkg is the name of the program unit created from the OLE Importer. TableName
is the name of the property accessor. Oblk is the name of the block and Oitm is the name
of the item.

6.1.2.8.3 Example 3: calling ActiveX control methods

This example gets a cell value from a Spread Table ActiveX control by using the
GetCellByColRow method, which is provided in the SpreadTable package.

 DECLARE
 Cur_Row number;
Taking Advantage of Open Architecture 6-23

 Cur_Col number;
 The_OLE_Obj OleObj;
 BEGIN
 Cur_Row:=SpreadTable.CurrentRow(:ITEM(’BLK.ITM’).interface);
 Cur_Col:=SpreadTable.CurrentCol(:ITEM(’BLK.ITM’).interface);
 The_OLE_Obj:=SpreadTable.GetCellByColRow(:ITEM(’BLK.ITM’).interface,
 Cur_Col, Cur_Row);
 END;
6-24 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
6.2 Using Foreign Functions to Customize Your
Applications

You can customize and supplement your applications with foreign functions.

This section addresses:

n Section 6.2.1, "What are foreign functions?"

n Section 6.2.2, "The foreign function interface"

n Section 6.2.3, "Foreign function guidelines"

n Section 6.2.4, "Creating a foreign function"

n Section 6.2.5, "Foreign function examples"

6.2.1 What are foreign functions?
Foreign functions are subprograms written in a 3GL programming language that allow you
to customize your applications to meet the unique requirements of your users.

Foreign functions can interact with Oracle databases, and both Forms Developer and
Reports Developer variables, items, columns, and parameters. You can also call any external
function, such as Windows DLLs or APIs.

6.2.1.1 When should I use a foreign function?
Foreign functions are often used to perform the following tasks:

n Perform complex data manipulation.

n Pass data to Forms Developer or Reports Developer from operating system text files.

n Manipulate LONG RAW data.

n Pass entire PL/SQL blocks for processing by the server.

n Set font and color attributes for applications.

n Send mail directly from an application.

n Display Windows help as part of your application.

n Access the Microsoft Windows SDK.

n Leverage low-level system services, such as pipes.

n Control real time devices, such as a printer or a robot.
Taking Advantage of Open Architecture 6-25

6.2.1.2 Foreign function types
You can develop three types of foreign functions:

6.2.1.2.1 Oracle Precompiler foreign functions An Oracle Precompiler foreign
function is the most common foreign function. Using the Oracle Precompiler, you can create
foreign functions that access Oracle databases as well as Forms Developer or Reports
Developer variables, items, columns, and parameters.

An Oracle Precompiler foreign function incorporates the Oracle Precompiler interface. This
interface enables you to write a subprogram in one of the following supported host
languages with embedded SQL commands: Ada, C, COBOL, FORTRAN, Pascal, and PL/I.

An Oracle Precompiler foreign function source file includes host programming language
statements and Oracle Precompiler statements with embedded SQL statements.
Precompiling an Oracle Precompiler foreign function replaces the embedded SQL
statements with equivalent host programming language statements. After precompiling, you
have a source file that you can compile with a host language compiler.

6.2.1.2.2 Oracle Call Interface (OCI) foreign functions An OCI foreign function
incorporates the Oracle Call Interface. This interface enables you to write a subprogram that
contains calls to Oracle databases. A foreign function that incorporates only the OCI (and
not the Oracle Precompiler interface) cannot access Forms Developer or Reports Developer
variables, items, columns, and parameters.

Note: You can also develop foreign functions that combine both the ORACLE Precompiler
interface and the OCI.

6.2.1.2.3 Non-Oracle foreign functions A non-Oracle foreign function does not
incorporate either the Oracle Precompiler interface or the OCI. For example, a non-Oracle
foreign function might be written entirely in the C language. A non-Oracle foreign function
cannot access Oracle databases, or Forms Developer or Reports Developer variables, items,
columns, and parameters.

6.2.2 The foreign function interface
Both Forms Developer and Reports Developer use PL/SQL as their programming language.
In order to call a foreign function, such as a C function in a Windows DLL, PL/SQL must
have an interface to communicate with the foreign function.

You can communicate with your foreign function through two distinct interfaces, either the
Oracle Foreign Function Interface (ORA_FFI) or the user exit interface.
6-26 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
6.2.2.1 The Oracle Foreign Function Interface (ORA_FFI)

ORA_FFI is a portable and generic mechanism for enabling Forms Developer or Reports
Developer to call 3GL routines from PL/SQL subprograms.

Foreign functions that are invoked from a PL/SQL interface must be contained in a dynamic
library. Examples of dynamic libraries include dynamic link libraries on Microsoft Windows
and shared libraries on UNIX systems.

6.2.2.2 User exit interface to foreign functions

The user exit interface is a platform-specific mechanism for enabling Forms Developer or
Reports Developer to call 3GL routines from PL/SQL subprograms.

The foreign functions that you invoke from a user exit interface must be contained in a
dynamic link library (.DLL) or linked with an application executable.

6.2.2.3 Comparing ORA_FFI and user exits

This section describes the advantages and disadvantages of using ORA_FFI and user exits.

Foreign Function Advantage Disadvantage

User Exit n User exits are linked to an
executable. This “tight binding”
allows you to use and take
advantage of the current
database connection.

n The most significant
disadvantage to using user exits
is the maintenance burden. You
must relink your user exit
whenever you modify your user
exit or upgrade Forms Developer
or Reports Developer.

n User exits are not generic; they
are platform-specific.
Taking Advantage of Open Architecture 6-27

6.2.3 Foreign function guidelines
This section provides guidelines for working with foreign functions.

ORA_FFI n ORA_FFI is a pure PL/SQL
specification. The ORA_FFI
specification exists within a
library (.PLL file), not within a
component of Forms or Reports.
When you upgrade to a higher
version of Forms or Reports or
modify the foreign function, you
don’t have to modify or
regenerate the PLL file.

n ORA_FFI is generic.

n Both Forms and Reports provide
several ORA_FFI packages
(D2KWUTIL.PLL) that allow
you to access libraries that are
already available (Windows API
functions).

n If you are using ORA_FFI and
you are writing your own
external code modules with
Pro*C, you cannot use the
current open database
connection. You must open a
second connection.

n You cannot pass complex
datatypes, such as structures or
arrays. For example, you cannot
use EXEC TOOLS GET or
EXEC TOOLS PUT to interface
with Forms Developer or
Reports Developer.

Item Recommendation

Which foreign function
interface should I use?

Use the Oracle Foreign Function Interface (ORA_FFI). ORA_FFI is
a portable, generic, and requires only minor or no maintenance

Can I perform screen I/O
from a foreign function?

You should not perform host language screen I/O from a foreign
function. This restriction exists because the runtime routines that a
host language uses to perform screen I/O conflict with the routines
that Forms Developer and Reports Developer use to perform screen
I/O. However, you can perform host language file I/O from a foreign
function.

Which host language should I
use to write my user exit?

Your host language is a matter of preference. However, C is the
recommended language.

Note: Some C runtime functions are not available in .DLL files. For
more information, refer to your compiler documentation.

Foreign Function Advantage Disadvantage
6-28 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
For more information about foreign functions, refer to the following publications:

6.2.4 Creating a foreign function
This section provides detailed steps that describe how to create a foreign function interface:

Which precompiler should I
use to precompile my user
exit?

You should use Pro*C version 2.2.4 and 8.0.4.

When precompiling, be sure to specify the following MSVC compiler
flags:

Large, Segment Setup: SS != DS, DSloads on
function entry

Assume ‘extern’ and Uninitialized Data ‘far’
is checked Yes

In Windows Prolog/Epilogue, Generate
prolog/Epilogue for None

Do I have to recompile my
user exit when I upgrade
from a previous version of
Forms Developer or Reports
Developer?

Yes. User exits can create a maintenance burden especially if you
maintain several different executables, each with a different set of
user exits.

When you modify a user exit or upgrade to a higher version of Forms
or Reports, you must relink the user exit with the Forms or Reports
executables.

Can I deploy a foreign
function on the Web?

ORA_FFI and user exits do not function on the Web. On web
deployments, foreign functions interface with the DLLs on the
server-side, not on the browser-side.

ORACLE Precompiler
interface

Programmer’s Guide to the ORACLE Precompilers

Supported host languages The Oracle Installation Guide for your operating system

Operating system-specific
requirements when working
with foreign functions

Online help

OCI Oracle Call Interface Programmer’s Guide

Building DLLs Online help and your compiler documentation

ORA_FFI Online help

User Exits Online help

PL/SQL PL/SQL User’s Guide or online help

Item Recommendation
Taking Advantage of Open Architecture 6-29

n Creating an ORA_FFI interface to a foreign function

n Creating a user exit interface to a foreign function

6.2.4.1 Creating an ORA_FFI interface to a foreign function
The following example creates a PL/SQL package called WinSample. The WinSample
package includes interfaces to the foreign function GetPrivateProfileString in the
dynamic library KRNL386.EXE.

Note: When you create an ORA_FFI interface to a foreign function, you perform two basic
steps. First, you create and associate a subprogram with a foreign function (the dispatcher
function). By associating a PL/SQL subprogram with a foreign function, you can invoke the
foreign function each time you call the associated PL/SQL subprogram. Associating a
foreign function with a PL/SQL subprogram is necessary because both Forms Developer and
Reports Developer use PL/SQL constructs. Second, you create a PL/SQL function which
passes the arguments to the dispatcher function. The dispatcher function invokes the foreign
function.

1. Create a package specification.

Your package spec must represent the library. It must also define the PL/SQL function
that you want to invoke.

For example:

PACKAGE WinSample IS

FUNCTION GetPrivateProfileString
(Section IN VARCHAR2,
Entry IN VARCHAR2,
DefaultStr IN VARCHAR2,
ReturnBuf IN OUT VARCHAR2,
BufLen IN PLS_INTEGER,
Filename IN VARCHAR2)
RETURN PLS_INTEGER;
END;

In this example, you call the WinSample.GetPrivateProfileString PL/SQL
function to invoke the GetPrivateProfileString foreign function in the
dynamic library KRNL386.EXE.

Note: You should check the parameters for the C function
GetPrivateProfileString, and specify the matching PL/SQL parameter types
and the PL/SQL return types. The C datatype int is equivalent to the PL/SQL parameter
IN PLS_INTEGER and the PL/SQL return type PLS_INTEGER. The C datatype char
is equivalent to the PL/SQL parameter IN VARCHAR2.
6-30 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
2. Define the library and its function handles.

For example:

PACKAGE BODY WinSample IS
lh_KRNL386 ORA_FFI.LIBHANDLETYPE;
fh_GetPrivateProfileString ORA_FFI.FUNCHANDLETYPE;

In this step, you declare the handle types for the library and the function. Later you will
load the library and register the function using ORA_FFI.LOAD_LIBRARY and ORA_
FFI.REGISTER_FUNCTION. Each of these functions returns a handle (a pointer) to
the specified library and the function. ORA_FFI.LIBHANDLETYPE and ORA_
FFI.FUNCHANDLETYPE are the PL/SQL datatypes for these handles.

3. Create the dispatcher function. The dispatcher function invokes your foreign function.

For example:

FUNCTION i_GetPrivateProfileString

(funcHandle IN ORA_FFI.FUNCHANDLETYPE,
Section IN OUT VARCHAR2,
Entry IN OUT VARCHAR2,
DefaultStr IN OUT VARCHAR2,
ReturnBuf IN OUT VARCHAR2,
BufLen IN PLS_INTEGER,
Filename IN OUT VARCHAR2)
RETURN PLS_INTEGER;
PRAGMA INTERFACE(C,i_GetPrivateProfileString,11265);

The first argument of the dispatcher function that calls a foreign function must have at
least one parameter, and the first parameter must be a handle to the registered foreign
function that the subprogram invokes.

When you call the dispatcher function from the PL/SQL function, you pass the function
handle as defined in step 2 (fh_GetPrivateProfileString).

When the dispatcher function gets called, the PRAGMA statement passes control to a
memory location (11265 as specified in the above code) that communicates with the
dynamic library.

4. Create the PL/SQL function that calls the dispatcher function. This PL/SQL function is
the function that you defined in the package spec (Step 1).

For example:

FUNCTION GetPrivateProfileString

(Section IN VARCHAR2,
Taking Advantage of Open Architecture 6-31

Entry IN VARCHAR2,
DefaultStr IN VARCHAR2,
ReturnBuf IN OUT VARCHAR2,
BufLen IN PLS_INTEGER,
Filename IN VARCHAR2)
RETURN PLS_INTEGER IS
Section_l VARCHAR2(512) := Section;
Entry_l VARCHAR2(512) := Entry;
DefaultStr_l VARCHAR2(512) := DefaultStr;
ReturnBuf_l VARCHAR2(512) := RPAD(SUBSTR(NVL
(ReturnBuf,’ ’),1,512),512,CHR(0));
BufLen_l PLS_INTEGER := BufLen;
Filename_l VARCHAR2(512) := Filename;
rc PLS_INTEGER;
BEGIN
 rc := i_GetPrivateProfileString
(fh_GetPrivateProfileString,
Section_l,
Entry_l,
DefaultStr_l,
ReturnBuf_l,
BufLen_l,
Filename_l);
ReturnBuf := ReturnBuf_l;
RETURN (rc);
END;

This is the PL/SQL function you call from your application. This function passes the
arguments to the dispatcher function i_GetPrivateProfileString, then i_
GetPrivateProfileString invokes the C function
GetPrivateProfileString in KRNL386.EXE. Recall that the first argument of
a dispatcher function must be a function handle. Here fh_
GetPrivateProfileString is used to pass the function handle declared in Step
2.

5. Build the package body.

The package body must perform four steps to initialize a foreign function:

n Load the library

n Register the functions that are in the library

n Register the parameters (if any)

n Register the return type (if any)
6-32 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
For example:

BEGIN

/* Load the library .*/
 lh_KRNL386 := ORA_FFI.LOAD_LIBRARY
(’location of the DLL here’,’KRNL386.EXE’);

/* Register the foreign function. */
fh_GetPrivateProfileString := ORA_FFI.REGISTER_FUNCTION (lh_
KRNL386,’GetPrivateProfileString’,ORA_FFI.PASCAL_STD);

/* Register the parameters. */
ORA_FFI.REGISTER_PARAMETER
(fh_GetPrivateProfileString,ORA_FFI.C_CHAR_PTR); ORA_FFI.REGISTER_
PARAMETER
(fh_GetPrivateProfileString,ORA_FFI.C_CHAR_PTR); ORA_FFI.REGISTER_
PARAMETER
(fh_GetPrivateProfileString,ORA_FFI.C_CHAR_PTR); ORA_FFI.REGISTER_
PARAMETER
(fh_GetPrivateProfileString,ORA_FFI.C_CHAR_PTR);
 ORA_FFI.REGISTER_PARAMETER
(fh_GetPrivateProfileString,ORA_FFI.C_INT); ORA_FFI.REGISTER_PARAMETER
(fh_GetPrivateProfileString,ORA_FFI.C_CHAR_PTR);

/* Register the return type. */
ORA_FFI.REGISTER_RETURN(fh_GetPrivateProfileString,ORA_FFI.C_INT);
END WinSample;
Taking Advantage of Open Architecture 6-33

Recall that you declared two handles for the library and the function in Step 2. In this
step, you assign values to the handles by using the ORA_FFI.LOAD_LIBRARY and
ORA_FFI.REGISTER_FUNCTION functions.

ORA_FFI.LOAD_LIBRARY takes two arguments: the location and the name of the
dynamic library. ORA_FFI.REGISTER_FUNCTION takes three arguments: the
library handle for the library where the function resides, the function name, and the
calling standard. The calling standard can be either C_STD (for the C calling standard)
or PASCAL_STD (for the Pascal calling standard).

After you load the library and register the function, you must register the parameters
and return types (if there are any).

ORA_FFI.REGISTER_PARAMETER and ORA_FFI.REGISTER_RETURN take two
arguments each: the function handle and the argument type.

6. Within Forms Developer or Reports Developer, create a library file (.PLL) that
includes your package, then attach it to your application.

7. Call the foreign function from your application.

For example:

x := Winsample.GetPrivateProfileString
(’Oracle’, ’ORACLE_HOME’, ’<Not Set>’, ’Value’, 100, ’oracle.ini’);

6.2.4.2 Creating a user exit interface to a foreign function
User exits are not generic; they are platform-specific. Some details of implementing user
exits are specific to each operating system. The following example describes how to create a
user exit on Windows 95.

On Microsoft Windows, a foreign function that can be invoked from a user exit is contained
in a dynamic link library (.DLL). A DLL is a library that loads into memory only when the
contained code is invoked.

6.2.4.2.1 Example: creating a user exit on Windows 95

The following example creates a foreign function that adds an ID column to the EMP table.

This example uses several sample files, including:

n UE_SAMP.MAK is a project file that includes the IAPXTB control structure. Building
this project generates UE_SAMP.DLL.

n IFXTB60.DLL is the default file containing foreign functions that can be invoked from
a user exit interface. This file is a DLL that ships with Form Builder, and does not
initially contain user-defined foreign functions. This file is placed in the ORACLE_
6-34 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
HOME\BIN directory during installation. When you create new foreign functions,
replace the existing IFXTB60.DLL file with a new IFXTB60.DLL.

n UE_XTB.C is a template source file for creating an IAPXTB control structure. UE_
XTB.C contains an example of an entry for the IAPXTB control structure. Modify this
file and add your foreign function entries.

n UE.H is a sample header file that is used to define the IAPXTB control structure.

n IFXTB60.DEF contains definitions you need to build your own DLL. Use
IFXTB60.DEF to export foreign functions. IFXTB60.DEF contains several export
statements. You should not modify these export statements as they are used by Form
Builder to access the user exit interface.

n UEZ.OBJ is an .OBJ file that you link to your own .OBJ files.

The user exit sample files are located in your ORACLE_HOME directory (for example,
C:\ORAWIN95\FORMS60\USEREXIT).

1. Write a foreign function.

For example, create a text file called UEXIT.PC, then add the following:

/* UEXIT.PC file */

/* This foreign function adds an ID column to the EMP table. */
#ifndef UE
#include "ue.h"
#endif
#ifndef _WINDLL
#define SQLCA_STORAGE_CLASS extern
#endif
EXEC SQL INCLUDE sqlca.h;
void AddColumn() {
EXEC SQL alter table EMP add ID varchar(9);
}

2. Precompile the foreign function with the Pro*C precompiler.

For example, use Pro*C to precompile the UEXIT.PC file. When you precompile
UEXIT.PC, Pro*C creates a C file called UEXIT.C.

Note: When precompiling, be sure to specify the following MSVC compiler flags:

Large, Segment Setup: SS != DS, DSloads on function entry

Assume ‘extern’ and Uninitialized Data ‘far’ is checked Yes
Taking Advantage of Open Architecture 6-35

In Windows Prolog/Epilogue, Generate prolog/Epilogue for
None

3. Create your header files.

Your header file must define your foreign function.

For example, modify the sample header file, UE.H, by adding the following:

extern void AddColumn();

4. Create the IAPXTB control structure.

For example, modify the sample file, UE_XTB.C, by adding an include statement for
UE.H (# include “ue.h”) , the name of the user exit (Add_ID_Column) , the
name of the foreign function (AddColumn) , and the language type(XITCC).

#ifndef UE
#include "ue.h"
#endif /* UE */
#include "ue_samp.h"
/* Define the user exit table */
exitr iapxtb[] = { /* Holds exit routine pointers */
 "Add_ID_Column", AddColumn, XITCC,
 (char *) 0, 0, 0 /* zero entry marks the end */
}; /* end iapxtb */

5. Build your DLL. The steps for building a DLL vary depending on your particular
compiler. For more information, refer to your compiler documentation.

For example, using your compiler, create a project that contains: UE_SAMP.MAK,
IFXTB60.DEF, UEZ.OBJ, UE_XTB.C, and UEXIT.C .

Before building your DLL, you must link the following files:

LIBC.LIB
OLDNAMES
C:\ORAWIN95\FORMS60\USEREXIT\IFR60.LIB
C:\ORAWIN95\PRO20\USEREXIT\SQLLIB18.LIB
C:\ORAWIN95\PRO20\USEREXIT\SQXLIB18.LIB

After building the UE_SAMP.MAK project, the result is a DLL named UE_SAMP.DLL.
Add the UE_SAMP.DLL entry to the list of DLLs defined by the FORMS60_
USEREXITS parameter in the registry.
6-36 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
Alternatively, you can rename UE_SAMP.DLL to IFXTB60.DLL, backup the
IFXTB60.DLL in the C:\ORAWIN95\BIN directory, and copy the new
IFXTB60.DLL to the C:\ORAWIN95\BIN directory.

6. Invoke the foreign function from a user exit.

For example, create a When-Button-Pressed Trigger that calls the foreign function from
a user exit.

The following statement demonstrates how to invoke the AddColumn foreign function
by specifying the user exit name Add_ID_Column in the USER_EXIT built-in:

/* Trigger: When-Button-Pressed */
USER_EXIT(’Add_ID_Column’);

6.2.5 Foreign function examples
This section includes several examples that describe how to use foreign functions.

6.2.5.1 Using ORA_FFI to call Windows help
/* WinHelp ORA_FFI. */
/* */
/* */
/* Usage: WinHelp.WinHelp(helpfile VARCHAR2, */
/* command VARCHAR2, */
/* data {VARCHAR2/PLS_INTEGER See Below}) */
/* */
/* command can be one of the following: */
/* */
/* ’HELP_INDEX’ Help Contents */
/* ’HELP_CONTENTS’ " */
/* ’HELP_CONTEXT’ Context Key (See below) */
/* ’HELP_KEY’ Key Search */
/* ’HELP_PARTIALKEY’ Partial Key Search */
/* ’HELP_QUIT’ Quit */
/* */
/* data contains a string for the key search or a numeric context */
/* value if using topics. */
/* */
/* Winhelp.Winhelp(’C:\ORAWIN95\TOOLS\DOC60\US\IF60.HLP’, */
/* ’HELP_PARTIALKEY’, */
/* ’ORA_FFI’); */
/* */
/* The commented sections replace the line below if using HELP_CONTEXT keys */

Taking Advantage of Open Architecture 6-37

PACKAGE WinHelp IS
 FUNCTION WinHelp(helpfile IN VARCHAR2,
 command IN VARCHAR2,
 data IN VARCHAR2)
 RETURN PLS_INTEGER;
END;

PACKAGE BODY WinHelp IS
 lh_USER ora_ffi.libHandleType;
 fh_WinHelp ora_ffi.funcHandleType;

 FUNCTION i_WinHelp(funcHandle IN ora_ffi.funcHandleType,
 hwnd IN PLS_INTEGER,
 helpfile IN OUT VARCHAR2,
 command IN PLS_INTEGER,
 data IN OUT VARCHAR2)
 RETURN PLS_INTEGER;

 PRAGMA INTERFACE(C,i_WinHelp,11265);

 FUNCTION WinHelp(helpfile IN VARCHAR2,
 command IN VARCHAR2,
 data IN VARCHAR2)
 RETURN PLS_INTEGER
 IS
 hwnd_l PLS_INTEGER;
 helpfile_l VARCHAR2(512) := helpfile;
 command_l PLS_INTEGER;
 data_l VARCHAR2(512) := data;
 rc PLS_INTEGER;

 FUNCTION Help_Convert(command IN VARCHAR2)
 RETURN PLS_INTEGER
 IS
 BEGIN
 /* The windows.h definitions for command */

 /* HELP_CONTEXT 0x0001 */
 /* HELP_QUIT 0x0002 */
 /* HELP_INDEX 0x0003 */
 /* HELP_CONTENTS 0x0003 */
 /* HELP_HELPONHELP 0x0004 */
 /* HELP_SETINDEX 0x0005 */
 /* HELP_SETCONTENTS 0x0005 */
 /* HELP_CONTEXTPOPUP 0x0008 */
6-38 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
 /* HELP_FORCEFILE 0x0009 */
 /* HELP_KEY 0x0101 */
 /* HELP_COMMAND 0x0102 */
 /* HELP_PARTIALKEY 0x0105 */
 /* HELP_MULTIKEY 0x0201 */
 /* HELP_SETWINPOS 0x0203 */

 if command = ’HELP_CONTEXT’ then return(1); end if;
 if command = ’HELP_KEY’ then return(257); end if;
 if command = ’HELP_PARTIALKEY’ then return(261); end if;
 if command = ’HELP_QUIT’ then return(2); end if;
 /* If nothing else go to the contents page */
 return(3);
 END;

 BEGIN
 hwnd_l :=
 TO_PLS_INTEGER(Get_Item_Property(name_in(’SYSTEM.CURSOR_ITEM’),WINDOW_
HANDLE));

 command_l := Help_Convert(command);

 rc := i_WinHelp(fh_WinHelp,
 hwnd_l,
 helpfile_l,
 command_l,
 data_l);

 RETURN (rc);
 END ;

BEGIN
 BEGIN
 lh_USER := ora_ffi.find_library(’USER.EXE’);
 EXCEPTION WHEN ora_ffi.FFI_ERROR THEN
 lh_USER := ora_ffi.load_library(NULL,’USER.EXE’);
 END ;

 fh_WinHelp :=
ora_ffi.register_function(lh_USER,’WinHelp’,ora_ffi.PASCAL_STD);

 ora_ffi.register_parameter(fh_WinHelp,ORA_FFI.C_INT); /* HWND */
 ora_ffi.register_parameter(fh_WinHelp,ORA_FFI.C_CHAR_PTR); /* LPCSTR */
 ora_ffi.register_parameter(fh_WinHelp,ORA_FFI.C_INT); /* UINT */
 ora_ffi.register_parameter(fh_WinHelp,ORA_FFI.C_CHAR_PTR); /* DWORD */
Taking Advantage of Open Architecture 6-39

 ora_ffi.register_return(fh_WinHelp,ORA_FFI.C_INT); /* BOOL */

END WinHelp;

6.2.5.2 Using ORA_FFI to open the File Open dialog on Windows

PACKAGE OraDlg IS
FUNCTION OraMultiFileDlg
(Title IN VARCHAR2,
Filter IN VARCHAR2,
Dir IN VARCHAR2,
FileString IN OUT VARCHAR2)
RETURN PLS_INTEGER;
FUNCTION OraSingleFileDlg
(Title IN VARCHAR2,
Filter IN VARCHAR2,
Dir IN VARCHAR2,
FileString IN OUT VARCHAR2)
RETURN PLS_INTEGER;
END OraDlg;
PACKAGE BODY OraDlg IS
 lh_ORADLG ora_ffi.libHandleType;
fh_OraMultiFileDlg ora_ffi.funcHandleType;
fh_OraSingleFileDlg ora_ffi.funcHandleType;
FUNCTION i_OraMultiFileDlg
(funcHandle IN ora_ffi.funcHandleType,
Title IN OUT VARCHAR2,
Filter IN OUT VARCHAR2,
Dir IN OUT VARCHAR2,
FileString IN OUT VARCHAR2)
RETURN PLS_INTEGER;
PRAGMA INTERFACE(C,i_OraMultiFileDlg,11265);
FUNCTION OraMultiFileDlg
(Title IN VARCHAR2,
Filter IN VARCHAR2,
Dir IN VARCHAR2,
FileString IN OUT VARCHAR2)
RETURN PLS_INTEGER IS
Title_l VARCHAR2(128) := RPAD(SUBSTR(NVL(Title,’Open’),1,128),128,CHR(0));
Filter_l VARCHAR2(128) := RPAD(SUBSTR(NVL
(Filter,’All Files (*.*)|*.*|’),1,128),128,CHR(0));
Dir_l VARCHAR2(256) := RPAD(SUBSTR(NVL(Dir,’ ’),1,256),256,CHR(0));
FileString_l VARCHAR2(2000) := RPAD(SUBSTR(NVL(FileString,’
6-40 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
’),1,2000),2000,CHR(0));
rc PLS_INTEGER;
BEGIN
 rc := i_OraMultiFileDlg(fh_OraMultiFileDlg,
Title_l,
Filter_l,
Dir_l,
FileString_l);
 FileString := FileString_l;
RETURN (rc);
END ;
FUNCTION i_OraSingleFileDlg
(funcHandle IN ora_ffi.funcHandleType,
Title IN OUT VARCHAR2,
Filter IN OUT VARCHAR2,
Dir IN OUT VARCHAR2,
FileString IN OUT VARCHAR2)
RETURN PLS_INTEGER;
PRAGMA INTERFACE(C,i_OraSingleFileDlg,11265);
FUNCTION OraSingleFileDlg
(Title IN VARCHAR2,
Filter IN VARCHAR2,
Dir IN VARCHAR2,
FileString IN OUT VARCHAR2)
RETURN PLS_INTEGER IS
Title_l VARCHAR2(128) := RPAD(SUBSTR(NVL(Title,’Open’),1,128),128,CHR(0));
Filter_l VARCHAR2(128) := RPAD(SUBSTR(NVL
(Filter,’All Files (*.*)|*.*|’),1,128),128,CHR(0));
Dir_l VARCHAR2(256) := RPAD(SUBSTR(NVL(Dir,’ ’),1,256),256,CHR(0));
FileString_l VARCHAR2(2000) := RPAD(SUBSTR(NVL(FileString,’
’),1,2000),2000,CHR(0));
rc PLS_INTEGER;
BEGIN
 rc := i_OraSingleFileDlg(fh_OraSingleFileDlg,
Title_l,
Filter_l,
Dir_l,
FileString_l);
 FileString := FileString_l;
RETURN (rc);
END ;
BEGIN
 BEGIN
 lh_ORADLG := ora_ffi.find_library(’ORADLG.DLL’);
 EXCEPTION WHEN ora_ffi.FFI_ERROR THEN
Taking Advantage of Open Architecture 6-41

 lh_ORADLG := ora_ffi.load_library(NULL,’ORADLG.DLL’);
 END ;
 fh_OraMultiFileDlg := ora_ffi.register_function
(lh_ORADLG,’OraMultiFileDlg’,ora_ffi.PASCAL_STD);
 ora_ffi.register_parameter(fh_OraMultiFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_OraMultiFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_OraMultiFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_OraMultiFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_return(fh_OraMultiFileDlg,ORA_FFI.C_LONG);
 fh_OraSingleFileDlg := ora_ffi.register_function
(lh_ORADLG,’OraSingleFileDlg’,ora_ffi.PASCAL_STD);
 ora_ffi.register_parameter(fh_OraSingleFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_OraSingleFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_OraSingleFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_OraSingleFileDlg,ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_return(fh_OraSingleFileDlg,ORA_FFI.C_LONG);
END OraDlg;

6.2.5.3 Using ORA_FFI to call Unix(SUN) executables with a
STDIN/STDOUT type interface
/* Copyright (c) 1997 by Oracle Corporation */
/*
 NAME
 ora_pipe_io_spec.sql - Specification for access to Unix Pipe mechanism
 DESCRIPTION
 Demonstration of how to use the ORA_FFI Package to provide access to the
 Unix Pipe C functions.
 PUBLIC FUNCTION(S)
 popen - Open the Pipe command
 get_line - Get a line of Text from a Pipe
 put_line - Put a line of Text into a Pipe
 pclose - Close the Pipe
 is_open - Determine whether the Pipe descriptor is open.
 NOTES

 In Order to use these routines you could write the following
 PL/SQL Code:

 -- Example of Calls to ora_pipe_io functions
 DECLARE
 stream ora_pipe_io.PIPE;
 buffer VARCHAR2(240);
 BEGIN
 stream := ora_pipe_io.popen(’ls -l’, ora_pipe_io.READ_MODE);
6-42 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

 loop
 exit when not ora_pipe_io.get_line(stream, buffer, 240);
 :directory.file := buffer;
 down;
 end loop;

 ora_pipe_io.pclose(stream);
 END;

 MODIFIED (MM/DD/YY)
 smclark 08/05/94 - Creation
*/

PACKAGE ora_pipe_io is

 /*
 ** Arguments to popen.
 */
 READ_MODE constant VARCHAR2(1) := ’r’;
 WRITE_MODE constant VARCHAR2(1) := ’w’;

 /* ------------- TYPE PIPE ----------- */
 /*
 ** Public Type PIPE - Handle to a Un*x pipe
 **
 ** Do not modify the private members of this type
 */
 TYPE PIPE is RECORD
 (file_handle ORA_FFI.POINTERTYPE,
 is_open boolean,
 read_write_mode VARCHAR2(1));

 /* ------------ FUNCTION POPEN ----------- */
 /*
 ** Function POPEN -- Open a Un*x pipe command
 **
 ** Given a Unix command to execute and a Pipe read/write mode in which
 ** to execute the instruction this Function will execute the Command
 ** and return a handle, of type PIPE, to the resulting Input/Output
 ** stream.
 **
 ** The command to be executed is limited to 1024 characters.
 */
Taking Advantage of Open Architecture 6-43

 FUNCTION popen(command in VARCHAR2,
 ctype in VARCHAR2)
 RETURN PIPE;

 /* ------------ PROCEDURE PCLOSE ----------- */
 /*
 ** Procedure PCLOSE -- Close a pipe
 **
 ** Close a previously opened pipe.
 **
 ** Raises a VALUE_ERROR exception if incorrect arguments are passed.
 */
 PROCEDURE pclose(stream in out PIPE);

 /* ------------ FUNCTION GET_LINE ----------- */
 /*
 ** Function GET_LINE
 ** -- Get a line of text into a buffer from the read mode pipe.
 **
 ** Get a line of text from a previously opened pipe.
 **
 ** Raises a VALUE_ERROR exception if incorrect arguments are passed.
 ** For example
 ** if you pass a pipe which has never been opened (using popen)
 */
 FUNCTION get_line(stream in out PIPE,
 s in out VARCHAR2,
 n in PLS_INTEGER)
 RETURN BOOLEAN;

 /* ------------ PROCEDURE PUT_LINE ----------- */
 /*
 ** Procedure PUT_LINE -- Put a line of text into a a write mode pipe.
 **
 ** Put a line of text into a previously opened pipe.
 **
 ** Raises a VALUE_ERROR exception if incorrect arguments are passed.
 ** For example
 ** if you pass a pipe which has never been opened (using popen)
 **
 ** The Internal buffer for the string to write is limited to 2048 bytes
 */
6-44 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
 PROCEDURE put_line(stream in out PIPE,
 s in VARCHAR2);

 /* ------------ FUNCTION IS_OPEN ----------- */
 /*
 ** Function IS_OPEN -- Determines whether a pipe is open.
 **
 ** Returns TRUE if the pipe is open, FALSE if the pipe is closed.
 */
 FUNCTION is_open(stream in PIPE)
 RETURN BOOLEAN;
END;

/* ora_pipe_io_body.sql - Body of Package for access to Unix Pipe mechanism
 DESCRIPTION
 Demonstration of how to use the ORA_FFI Package to provide access to the
 Unix Pipe C functions.
 PUBLIC FUNCTION(S)
 popen - Open the Pipe command
 get_line - Get a line of Text from a Pipe
 put_line - Put a line of Text into a Pipe
 pclose - Close the Pipe
 is_open - Determine whether the Pipe descriptor is open.
 PRIVATE FUNCTION(S)
 icd_popen, icd_fgets, icd_fputs, icd_pclose
 NOTES
 MODIFIED (MM/DD/YY)
 smclark 11/02/94 - Modified for production release changes to ORA_FFI.
 smclark 08/05/94 - Creation
*/

 PACKAGE BODY ora_pipe_io is
 lh_libc ora_ffi.libHandleType;
 fh_popen ora_ffi.funcHandleType;
 fh_pclose ora_ffi.funcHandleType;
 fh_fgets ora_ffi.funcHandleType;
 fh_fputs ora_ffi.funcHandleType;

 /* ------------ FUNCTION ICD_POPEN ----------- */
 /*
 ** Function ICD_POPEN -- Interface routine to C function popen
 **
 ** This function acts as the interface to the popen function in
 ** libc.
Taking Advantage of Open Architecture 6-45

 */
 FUNCTION icd_popen(funcHandle in ora_ffi.funcHandleType,
 command in out VARCHAR2,
 ctype in out VARCHAR2)
 return ORA_FFI.POINTERTYPE;

 pragma interface(c, icd_popen, 11265);

 /* ------------ PROCEDURE ICD_PCLOSE ----------- */
 /*
 ** Function ICD_PCLOSE -- Interface routine to C function pclose
 **
 ** This function acts as the interface to the pclose function in
 ** libc.
 */
 PROCEDURE icd_pclose(funcHandle in ora_ffi.funcHandleType,
 stream in out ORA_FFI.POINTERTYPE);

 pragma interface(c, icd_pclose, 11265);

 /* ------------ FUNCTION ICD_FGETS ----------- */
 /*
 ** Function ICD_FGETS -- Interface routine to C function fgets
 **
 ** This function acts as the interface to the fgets function in
 ** libc.
 */
 FUNCTION icd_fgets(funcHandle in ora_ffi.funcHandleType,
 s in out VARCHAR2, n in PLS_INTEGER,
 stream in out ORA_FFI.POINTERTYPE)
 RETURN ORA_FFI.POINTERTYPE;

 pragma interface(c, icd_fgets, 11265);

 /* ------------ FUNCTION ICD_FPUTS ----------- */
 /*
 ** Function ICD_FPUTS -- Interface routine to C function fputs
 **
 ** This function acts as the interface to the fputs function in
 ** libc.
 */
 PROCEDURE icd_fputs(funcHandle in ora_ffi.funcHandleType,
6-46 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
 s in out VARCHAR2,
 stream in out ORA_FFI.POINTERTYPE);

 pragma interface(c, icd_fputs, 11265);

 /* ------------ FUNCTION POPEN ----------- */
 /*
 ** Function POPEN -- Open a Un*x pipe command
 */
 FUNCTION popen(command in VARCHAR2,
 ctype in VARCHAR2)
 RETURN PIPE is

 /*
 ** Take a copy of the arguments because we need to pass them
 ** IN OUT to icd_popen, but we really don’t want people to have
 ** to call our routines in the same way.
 */
 cmd varchar2(1024) := command;
 cmode varchar2(1) := ctype;

 stream PIPE;
 BEGIN
 if (cmode not in (READ_MODE, WRITE_MODE))
 or (cmode is NULL)
 or (cmd is NULL)
 then
 raise VALUE_ERROR;
 end if;

 stream.file_handle := icd_popen(fh_popen, cmd, cmode);
 stream.is_open := TRUE;
 stream.read_write_mode := ctype;
 return(stream);
 END popen;

 /* ------------ PROCEDURE PCLOSE ----------- */
 /*
 ** Procedure PCLOSE -- Close a pipe
 */
 PROCEDURE pclose(stream in out PIPE) is
 BEGIN
 icd_pclose(fh_pclose, stream.file_handle);
Taking Advantage of Open Architecture 6-47

 stream.is_open := FALSE;
 END pclose;

 /* ------------ FUNCTION GET_LINE ----------- */
 /*
 ** Function GET_LINE -- Get a line of text into a buffer
 ** from the read mode pipe.
 */
 FUNCTION get_line(stream in out PIPE,
 s in out VARCHAR2, n in PLS_INTEGER)
 RETURN BOOLEAN is
 buffer ORA_FFI.POINTERTYPE;
 BEGIN
 if (n <= 0)
 or (stream.is_open = FALSE)
 or (stream.is_open is NULL)
 or (stream.read_write_mode <> READ_MODE)
 then
 raise VALUE_ERROR;
 end if;

 /*
 ** Initialise the Buffer area to reserve the correct amount of space.
 */

 s := rpad(’ ’, n);

 buffer := icd_fgets(fh_fgets, s, n, stream.file_handle);

 /*
 ** Determine whether a NULL pointer was returned.
 */
 return (ora_ffi.is_null_ptr(buffer) = FALSE);
 END get_line;

 /* ------------ PROCEDURE PUT_LINE ----------- */
 /*
 ** Procedure PUT_LINE -- Put a line of text into a a write mode pipe.
 */
 PROCEDURE put_line(stream in out PIPE,
 s in VARCHAR2) is
 buffer varchar2(2048) := s;
 BEGIN
6-48 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications
 if (stream.is_open = FALSE)
 or (stream.is_open is NULL)
 or (stream.read_write_mode <> WRITE_MODE)
 then
 raise VALUE_ERROR;
 end if;

 icd_fputs(fh_fputs, buffer, stream.file_handle);
 buffer := chr(10);
 icd_fputs(fh_fputs, buffer, stream.file_handle);
 END put_line;

 /* ------------ FUNCTION IS_OPEN ----------- */
 /*
 ** Function IS_OPEN -- Determines whether a pipe is open.
 */
 FUNCTION is_open(stream in PIPE)
 RETURN BOOLEAN is
 BEGIN
 return(stream.is_open);
 END is_open;

BEGIN
 /*
 ** Declare a library handle as libc. (Internal so NULL,NULL)
 */
 lh_libc := ora_ffi.load_library(NULL, NULL);
 if ora_ffi.is_null_ptr(lh_libc) then
 raise VALUE_ERROR;
 end if;

 /*
 ** Register the popen function, it’s return type and arguments.
 */
 fh_popen := ora_ffi.register_function(lh_libc, ’popen’);
 if ora_ffi.is_null_ptr(fh_popen) then
 raise VALUE_ERROR;
 end if;
 ora_ffi.register_return(fh_popen, ORA_FFI.C_DVOID_PTR);
 ora_ffi.register_parameter(fh_popen, ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_popen, ORA_FFI.C_CHAR_PTR);

 /*
 ** Register the pclose function, it’s return type and arguments.
Taking Advantage of Open Architecture 6-49

 */
 fh_pclose := ora_ffi.register_function(lh_libc, ’pclose’);
 if ora_ffi.is_null_ptr(fh_pclose) then
 raise VALUE_ERROR;
 end if;
 ora_ffi.register_return(fh_pclose, ORA_FFI.C_VOID);
 ora_ffi.register_parameter(fh_pclose, ORA_FFI.C_DVOID_PTR);

 /*
 ** Register the fgets function, it’s return type and arguments.
 */
 fh_fgets := ora_ffi.register_function(lh_libc, ’fgets’);
 if ora_ffi.is_null_ptr(fh_fgets) then
 raise VALUE_ERROR;
 end if;
 ora_ffi.register_return(fh_fgets, ORA_FFI.C_DVOID_PTR);
 ora_ffi.register_parameter(fh_fgets, ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_fgets, ORA_FFI.C_INT);
 ora_ffi.register_parameter(fh_fgets, ORA_FFI.C_DVOID_PTR);

 /*
 ** Register the fputs function, it’s return type and arguments.
 */
 fh_fputs := ora_ffi.register_function(lh_libc, ’fputs’);
 if ora_ffi.is_null_ptr(fh_fputs) then
 raise VALUE_ERROR;
 end if;
 ora_ffi.register_return(fh_fputs, ORA_FFI.C_VOID);
 ora_ffi.register_parameter(fh_fputs, ORA_FFI.C_CHAR_PTR);
 ora_ffi.register_parameter(fh_fputs, ORA_FFI.C_DVOID_PTR);

END ora_pipe_io;
6-50 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
6.3 Using the Open API to Build and Modify Form Builder
Applications

This section describes the non-interactive, programmatic method for building and modifying
Form Builder applications. It includes these topics:

n Section 6.3.1, "What is the Open API?"

n Section 6.3.2, "Guidelines for using the Open API"

n Section 6.3.3, "Using the Open API"

n Section 6.3.4, "Open API examples"

6.3.1 What is the Open API?
The Open API is an advanced Form Builder feature for C/C++ developers that want the
power and flexibility to create or modify form modules in a non-interactive environment.

Note: Before using the Open API, you should have a thorough understanding of Form
Builder objects and their properties and relations.

6.3.1.1 When should I use the Open API?
Use the Open API when you want to quickly propagate development changes to a large
number of form modules. You might, for example, use the Open API to update your
applications to the current corporate standards for look and feel. This could involve updating
hundreds for form modules.

You can also use the Open API to:

n Compile a set of forms

n Collect dependency information

n Write your own documentation

6.3.1.2 Open API header files
The Open API consists of one C header file for each Form Builder object. There are 34
Form Builder objects (see the figure). These objects correspond to the Form Builder objects
that you are familiar with at design-time. Each header file contains several functions and
macros that you use to create and manipulate Form Builder objects.
Taking Advantage of Open Architecture 6-51

6-52 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

r.

the
6.3.1.3 Open API properties
Within the Open API, you manipulate Form Builder objects by setting object properties.

Open API properties have their own unique names, such as D2FP_FONT_NAM. These
properties correspond to the Form Builder properties that you are familiar with at
design-time.

A property can be one of the following: Boolean, Text, Number, Object, or Blob.

The table below lists some common item properties with their corresponding Open API
equivalents.

6.3.1.4 Open API functions and macros
You use Open API functions and macros to create, destroy, duplicate, subclass, get, and set
object properties.

For example, to determine an item’s font size, use the D2FITMG_FONT_SIZ macro:

d2fitmg_font_siz(ctx, obj, val);

This macro returns the value of the Font Size property of the item object as type numbe

To set a text item property, use the D2FITMST_SETTEXTPROP function:

d2fitmst_SetTextProp(d2fctx *pd2fctx, d2fitm *pd2fitm, ub2 pnum,text *prp);

This function sets the value of the specified item text property. You specify a pointer to
context in pd2fctx, the item in pd2fitm, the property number in pnum, and a handle to
the text value in prp.

Open API Property Form Builder (design-time) Property

D2FP_ACCESS_KEY Access Key

D2FP_BEVEL_STY Bevel

D2FP_CNV_NAM Canvas

D2FP_ENABLED Enabled

D2FP_FONT_NAM Font Name

D2FP_HEIGHT Width/Height

D2FP_X_POS X Position

D2FP_Y_POS Y Position
Taking Advantage of Open Architecture 6-53

6.3.2 Guidelines for using the Open API
When working with the Open API, consider these guidelines:

6.3.3 Using the Open API
This section provides detailed steps that describe how to create and modify Form Builder
modules using the Open API.

6.3.3.1 Creating and modifying modules using the Open API
To create or modify a Form Builder module:

1. Include the appropriate C header files in your C source code.

2. Make calls to the desired APIs in your C source code.

n Initialize the context structure.

n Make load function calls to open an existing form module, menu module, or
object library.

n Make the necessary Open Forms API function calls to perform the desired
operations, including connecting to an existing database, if required.

n Generate an .FMX or .MMX compiled form using the appropriate
CompileFile() function.

n Make the required function calls to save the associated module (for example,
d2ffmdsv_Save() for a form module, d2fmmdsv_Save() for a menu
module, or d2folbsv_Save() for an object library).

n Finally, call the context destroy function, d2fctxde_Destroy(), to destroy the
Open Forms API context. Note that this function call must be your final one.

3. Link your source files against the Open API library (ifd2f60.lib).

Item Recommendation

File Backups The Open API is non-interactive; validation and error checking are
not supported. Before using the Open API, you should backup your
form modules (.FMBs).

Creating a relation object When creating a relation object, you must:

n Create the object.

n Set relation object properties.

n Call the d2frelup_Update function to instantiate the object.
6-54 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
4. Compile the files to create an executable (.EXE file).

5. Run the executable to create or modify your Form modules (.FMB).

6.3.4 Open API examples
This section includes several examples that describe how to use the Open API.

6.3.4.1 Modifying modules using the Open API
/*
This example determines if the Form Builder object is a subclassed object and
returns the file path of the parent to NULL if the object is subclassed. This
sample only processes the following object types: form level triggers, alerts,
blocks, items, item level triggers, radio buttons, and block level triggers.
Use a similar method to process other object types.
*/
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include <d2ferr.h>
#include <d2fctx.h>
#include <d2ffmd.h>
#include <d2fblk.h>
#include <d2fitm.h>
#include <d2falt.h>
#include <d2ftrg.h>
#include <d2frdb.h>
#define BUFSIZE 128
int WINAPI WinMain(HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpszCommandLine,
 int cmdShow)
{
 d2fctx* pd2fctx;
 d2ffmd* pd2ffmd;
 d2fblk* pd2fblk;
 d2fitm* pd2fitm;
 d2fctxa d2fctx_attr;
 d2fstatus status;
 d2falt* pd2falt;
 d2ftrg* pd2ftrg;
 d2frdb* pd2frdb;
 int counter;
 char buf[BUFSIZE];
Taking Advantage of Open Architecture 6-55

 char* form_name=(char*)0;
 /* Get the form name from the command line */
 strncpy(buf, lpszCommandLine, BUFSIZE);
 form_name = strtok(buf, ".");
 /* Initialize the attribute mask */
 d2fctx_attr.mask_d2fctxa = 0;
 /* for MS Windows-only attributes */
 d2fctx_attr.d2fihnd_d2fctxa = hInstance;
 d2fctx_attr.d2fphnd_d2fctxa = hPrevInstance;
 d2fctx_attr.d2fcmsh_d2fctxa = cmdShow;
 /* Create the API context */
 status = d2fctxcr_Create(&pd2fctx, &d2fctx_attr);
 /* Load the form */
 status = d2ffmdld_Load(pd2fctx, &pd2ffmd, form_name, FALSE) ;
 if (status == D2FS_D2FS_SUCCESS)
 {
 /*** Process Form Level Trigger Objects ***/
 for(status = d2ffmdg_trigger(pd2fctx,pd2ffmd,&pd2ftrg);
 pd2ftrg != NULL;
 status = d2ftrgg_next(pd2fctx,pd2ftrg,&pd2ftrg))
 {
 if (d2ftrgis_IsSubclassed(pd2fctx,pd2ftrg) == D2FS_YES)
 d2ftrgs_par_flpath(pd2fctx,pd2ftrg,NULL);
 }
 /*** Process Alert Objects ***/
 for(status = d2ffmdg_alert(pd2fctx,pd2ffmd,&pd2falt);
 pd2falt != NULL;
 status = d2faltg_next(pd2fctx,pd2falt,&pd2falt))
 {
 if (d2faltis_IsSubclassed(pd2fctx,pd2falt) == D2FS_YES)
 d2falts_par_flpath(pd2fctx,pd2falt,NULL);
 }
 /*** Process Block Objects ***/
 for(status = d2ffmdg_block(pd2fctx,pd2ffmd,&pd2fblk);
 pd2fblk != NULL;
 status = d2fblkg_next(pd2fctx,pd2fblk,&pd2fblk))
 {
 if (d2fblkis_IsSubclassed(pd2fctx,pd2fblk) == D2FS_YES)
 d2fblks_par_flpath(pd2fctx,pd2fblk,NULL);
 }
 /* Process Item Objects */
 for(status = d2fblkg_item(pd2fctx,pd2fblk,&pd2fitm);
 pd2fitm != NULL;
 status = d2fitmg_next(pd2fctx,pd2fitm,&pd2fitm))
 {
6-56 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
 if (d2fitmis_IsSubclassed(pd2fctx,pd2fitm) == D2FS_YES)
 d2fitms_par_flpath(pd2fctx,pd2fitm,NULL);
 /* Process Item Level Trigger Objects */
 for(status = d2fitmg_trigger(pd2fctx,pd2fitm,&pd2ftrg);
 pd2ftrg != NULL;
 status = d2ftrgg_next(pd2fctx,pd2ftrg,&pd2ftrg))
 {
 if (d2ftrgis_IsSubclassed(pd2fctx,pd2ftrg)==D2FS_YES)
 {
 d2ftrgs_par_flpath(pd2fctx,pd2ftrg,NULL);
 printf("item trigger is Subclassed\n");
 }
 else if (d2ftrgis_IsSubclassed(pd2fctx,
 pd2ftrg)==D2FS_NO)
 printf("item trigger is NOT Subclassed\n");
 }
 /* Process Radio Button Objects *
 for(status = d2fitmg_rad_but(pd2fctx,pd2fitm,&pd2frdb);
 pd2frdb != NULL;
 status = d2frdbs_next(pd2fctx,pd2frdb,&pd2frdb))
 {
 if (d2frdbis_IsSubclassed(pd2fctx,pd2frdb)==D2FS_YES
 {
 d2frdbs_par_flpath(pd2fctx,pd2frdb,NULL);
 printf("radio button is Subclassed\n");
 }
 else if (d2frdbis_IsSubclassed(pd2fctx,
 pd2frdb)==D2FS_NO)
 printf("radio button is NOT Subclassed\n");
 }
 }
 /* Process Block Level Trigger Objects */
 for(status = d2fblkg_trigger(pd2fctx,pd2fblk,&pd2ftrg);
 pd2ftrg != NULL;
 status = d2ftrgg_next(pd2fctx,pd2ftrg,&pd2ftrg))
 {
 if (d2ftrgis_IsSubclassed(pd2fctx,pd2ftrg) == D2FS_YES)
 {
 d2ftrgs_par_flpath(pd2fctx,pd2ftrg,NULL);
 printf("block trigger is Subclassed\n");
 }
 else if (d2ftrgis_IsSubclassed(pd2fctx,
 pd2ftrg)==D2FS_NO)
 printf("block trigger is NOT Subclassed\n");
 }
Taking Advantage of Open Architecture 6-57

 /* Save out the form */
 d2ffmdsv_Save(pd2fctx, pd2ffmd, (text *)0, FALSE) ;
 /* Generate the forms executable (fmx) */
 d2ffmdcf_CompileFile(pd2fctx, pd2ffmd) ;
 /* Destroy the API Context */
 d2fctxde_Destroy(pd2fctx) ;
 }
}

6.3.4.2 Creating modules using the Open API
/*
This example creates a master-detail form based on the dept and emp database
tables owned by the user scott. The master contains the following fields:
empno, ename, job, sal, and deptno. The detail contains the following fields
deptno, dname, and loc. The join condition is deptno.
*/
#include<stdio.h>
#include<string.h>
#include<windows.h>
#include<d2fctx.h>
#include<d2ffmd.h>
#include<d2ffpr.h>
#include<d2fob.h>
#include<d2fcnv.h>
#include<d2ftrg.h>
#include<d2blk.h>
#include<d2fitm.h>
#include<d2fwin.h>
#include<d2frel.h>
#define D2FS_SUCCESS 0
#define FAIL 1
#define BUFSIZE 128
#define WBP_TXT "null;\n"
int WINAPI WinMain(HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpszCommandLine,
 int cmdShow)
{
d2fctx *pd2fctx;
d2ffmd *pd2ffmd;
d2fcnv *pd2fcnv;
d2fwin *pd2fwin;
d2fblk *pempblk;
6-58 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
d2fblk *pdeptblk;
d2frel *pd2frel;
d2fitm *pEempnoitm;
d2fitm *pEenameitm;
d2fitm *pEjobitm;
d2fitm *pEsalitm;
d2fitm *pEdeptnoitm;
d2fitm *pDdeptnoitm;
d2fitm *pDdnameitm;
d2fitm *pDlocitm;
text *name = (text *)0;
text *form_name = (text *)0;
d2fctxa d2fctx_attr;
d2fstatus retval;
char buf[BUFSIZE];
/* Get form name */
strncpy(buf, "empdept", BUFSIZE);
form_name = (text*)strtok(buf, ".");
/* Initialize the attribute mask */
d2fctx_attr.mask_d2fctxa = 0;
/* for MS Windows-only attributes */
d2fctx_attr.d2fihnd_d2fctxa = hInstance;
d2fctx_attr.d2fphnd_d2fctxa = hPrevInstance;
d2fctx_attr.d2fcmsh_d2fctxa = cmdShow;
/* Create the API context */
status = d2fctxcr_Create(&pd2fctx, &d2fctx_attr);
/* Create the context */
d2fctxcn_Connect(pd2fctx, (text*)"scott/tiger@test");
/* Create the form */
d2ffmdcr_Create(pd2fctx, &pd2ffmd, form_name);
/* Create a window */
d2fwincr_Create(pd2fctx,pd2ffmd,&pd2fwin,(text*)"MYWIN");
/*** Create Canvas and set canvas-related properties ***/
/* Create a canvas */
d2fcnvcr_Create(pd2fctx, pd2ffmd, &pd2fcnv, (text*)"MYCANVAS");
/* Set viewport width */
d2fcnvs_vprt_wid(pd2fctx, pd2fcnv, 512);
/* Set viewport height */
d2fcnvs_vprt_hgt(pd2fctx, pd2fcnv, 403);
/* Set window */
dwfcnvs_wnd_obj(pd2fctx, pd2fcnv, pd2fwin);
/* Set viewport X-position */
d2fcnvs_vprt_x_pos(pd2fctx, pd2fcnv, 0);
/* Set viewport Y-position */
d2fcnvs_vprt_y_pos(pd2fctx, pd2fcnv, 0);
Taking Advantage of Open Architecture 6-59

/* Set width */
d2fcnvs_width(pd2fctx, pd2fcnv, 538)
/* Set height */
d2fcnvs_height(pd2fctx, pd2fcnv, 403)
/*** Create Emp block and set block-related properties ***/
/* Create block */
d2fblkcr_Create(pd2fctx, pd2ffmd, &pempblk, (text*)"EMP");
/* Set to database block */
d2fblks_db_blk(pd2fctx, pempblk, TRUE);
/* Set query data source to Table */
d2fblks_qry_dat_src_typ(pd2fctx, pempblk, D2FC_QRDA_TABLE);
/* Set query data source name to EMP table */
d2fblks_qry_dat_src_nam(pd2fctx, pempblk, "EMP");
/* Set DML data source type to Table */
d2fblks_dml_dat_typ(Pd2fctx, pempblk, D2FC_DMDA_TABLE);
/* Set DML data source name to EMP table */
d2fblks_dml_dat_nam(pd2fctx, pempblk, (text*)"EMP");
/*** Create Dept block and set block-related properties ***/
/* Create block */
d2fblkcr_Create(pd2fctx, pd2ffmd, &pdeptblk, (text*)"DEPT");
/* Set to database block */
d2fblks_db_blk(pd2fctx, pdeptblk, TRUE);
/* Set query data source to Table */
d2fblks_qry_dat_src_typ(pd2fctx, pdeptblk, D2FC_QRDA_TABLE);
/* Set query data source name to EMP table */
d2fblks_qry_dat_src_nam(pd2fctx, pdeptblk, "DEPT");
/* Set DML data source type to Table */
d2fblks_dml_dat_typ(Pd2fctx, pdeptblk, D2FC_DMDA_TABLE);
/* Set DML data source name to EMP table */
d2fblks_dml_dat_nam(pd2fctx, pdeptblk, (text*)"DEPT");
/*** Create empno item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pempblk, &pEempnoitm, (text*)"EMPNO");
/* Set item type */
d2fitms_itm_type(pd2fctx, pEempnoitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pEempnoitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pEempnoitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pEempnoitm, D2FC_DATY_NUMBER);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pEempnoitm, 6);
/* Set item Required property */
d2fitms_required(pd2fctx, pEempnoitm, TRUE);
6-60 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pEempnoitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pEempnoitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pEempnoitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pEempnoitm, 6);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pEempnoitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pEempnoitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pEempnoitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pEempnoitm, 32);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pEempnoitm, 50);
/* Set Item Width */
d2fitms_width(pd2fctx, pEempnoitm, 51);
/* Set Item Height */
d2fitms_height(pd2fctx, pEempnoitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pEempnoitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PEempnoitm, (text*)"Enter value for :EMPNO");
/*** Create Ename item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pempblk, &pEenameitm, (text*)"ENAME");
/* Set item type */
d2fitms_itm_type(pd2fctx, pEenameitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pEenameitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pEenameitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pEenameitm, D2FC_DATY_CHAR);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pEenameitm, 10);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pEenameitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pEenameitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pEenameitm, TRUE);
Taking Advantage of Open Architecture 6-61

/* Set Query Length */
d2fitms_qry_len(pd2fctx, pEenameitm, 10);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pEenameitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pEenameitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pEenameitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pEenameitm, 83);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pEenameitm, 50);
/* Set Item Width */
d2fitms_width(pd2fctx, pEenameitm, 77);
/* Set Item Height */
d2fitms_height(pd2fctx, pEenameitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pEenameitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PEenameitm, (text*)"Enter value for :ENAME");
/*** Create JOB item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pempblk, &pEjobitm, (text*)"JOB");
/* Set item type */
d2fitms_itm_type(pd2fctx, pEjobitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pEjobitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pEjobitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pEjobitm, D2FC_DATY_CHAR);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pEjobitm, 9);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pEjobitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pEjobitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pEjobitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pEjobitm, 9);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pEjobitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pEjobitm, TRUE);
6-62 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pEjobitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pEjobitm, 160);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pEjobitm, 50);
/* Set Item Width */
d2fitms_width(pd2fctx, pEjobitm, 70);
/* Set Item Height */
d2fitms_height(pd2fctx, pEjobitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pEjobitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PEjobitm, (text*)"Enter value for :JOB");
/*** Create SALARY item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pempblk, &pEsalitm, (text*)"SAL");
/* Set item type */
d2fitms_itm_type(pd2fctx, pEsalitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pEsalitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pEsalitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pEsalitm, D2FC_DATY_NUMBER);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pEsalitm, 9);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pEsalitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pEsalitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pEsalitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pEsalitm, 9);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pEsalitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pEsalitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pEsalitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pEsalitm, 352);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pEsalitm, 50);
Taking Advantage of Open Architecture 6-63

/* Set Item Width */
d2fitms_width(pd2fctx, pEsalitm, 70);
/* Set Item Height */
d2fitms_height(pd2fctx, pEsalitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pEsalitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PEsalitm, (text*)"Enter value for :SAL");
/*** Create DEPTNO item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pempblk, &pEdeptnoitm, (text*)"DEPTNO");
/* Set item type */
d2fitms_itm_type(pd2fctx, pEdeptnoitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pEdeptnoitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pEdeptnoitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pEdeptnoitm, D2FC_DATY_NUMBER);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pEdeptnoitm, 4);
/*Set item Required property */
d2fitms_required(pd2fctx, pEdeptnoitm, TRUE);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pEdeptnoitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pEdeptnoitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pEdeptnoitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pEdeptnoitm, 4);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pEdeptnoitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pEdeptnoitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pEdeptnoitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pEdeptnoitm, 493);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pEdeptnoitm, 50);
/* Set Item Width */
d2fitms_width(pd2fctx, pEdeptnoitm, 30);
/* Set Item Height */
d2fitms_height(pd2fctx, pEdeptnoitm, 17);
6-64 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pEdeptnoitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PEdeptnoitm, (text*)"Enter value for :DEPTNO");
/*** Create DEPTNO item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pdeptblk, &pDdeptnoitm, (text*)"DEPTNO");
/* Set item type */
d2fitms_itm_type(pd2fctx, pDdeptnoitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pDdeptnoitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pDdeptnoitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pDdeptnoitm, D2FC_DATY_NUMBER);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pDdeptnoitm, 4);
/*Set item Required property */
d2fitms_required(pd2fctx, pDdeptnoitm, TRUE);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pDdeptnoitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pDdeptnoitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pDdeptnoitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pDdeptnoitm, 4);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pDdeptnoitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pDdeptnoitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pDdeptnoitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pDdeptnoitm, 32);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pDdeptnoitm, 151);
/* Set Item Width */
d2fitms_width(pd2fctx, pDdeptnoitm, 38);
/* Set Item Height */
d2fitms_height(pd2fctx, pDdeptnoitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pDdeptnoitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PDdeptnoitm, (text*)"Enter value for :DEPTNO");
Taking Advantage of Open Architecture 6-65

/*** Create DNAME item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pdeptblk, &pDdnameitm, (text*)"DNAME");
/* Set item type */
d2fitms_itm_type(pd2fctx, pDdnameitm, D2FC_ITTY_TI);
/* Set Enable property */
d2fitms_enabled(pd2fctx, pDdnameitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pDdnameitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pDdnameitm, D2FC_DATY_CHAR);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pDdnameitm, 14);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pDdnameitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pDdnameitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pDdnameitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pDdnameitm, 14);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pDdnameitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pDdnameitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pDdnameitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pDdnameitm, 70);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pDdnameitm, 151);
/* Set Item Width */
d2fitms_width(pd2fctx, pDdnameitm, 102);
/* Set Item Height */
d2fitms_height(pd2fctx, pDdnameitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pDdnameitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PDdnameitm, (text*)"Enter value for :DNAME");
/*** Create LOC item and item-related properties ***/
/* Create item */
d2fitmcr_Create(pd2fctx, pdeptblk, &pDlocitm, (text*)"LOC");
/* Set item type */
d2fitms_itm_type(pd2fctx, pDlocitm, D2FC_ITTY_TI);
/* Set Enable property */
6-66 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications
d2fitms_enabled(pd2fctx, pDlocitm, TRUE);
/* Set item (keyboard) navigable property */
d2fitms_kbrd_navigable(pd2fctx, pDlocitm, TRUE);
/* Set item Data Type property */
d2fitms_dat_typ(pd2fctx, pDlocitm, D2FC_DATY_CHAR);
/* Set item Max Length property */
d2fitms_max_len(pd2fctx, pDlocitm, 13);
/* Set Distance Between Records property */
d2fitms_dist_btwn_recs(pd2fctx, pDlocitm, 0);
/* Set Database block(Database Item) property */
d2fitms_db_itm(pd2fctx, pDlocitm, TRUE);
/* Set Query Allowed */
d2fitms_qry_allowed(pd2fctx, pDlocitm, TRUE);
/* Set Query Length */
d2fitms_qry_len(pd2fctx, pDlocitm, 13);
/* Set Update Allowed */
d2fitms_updt_allowed(pd2fctx, pDlocitm, TRUE);
/* Set Item Displayed (Visible) */
d2fitms_visible(pd2fctx, pDlocitm, TRUE);
/* Set Item Canvas property */
d2fitms_cnv_obj(pd2fctx, pDlocitm, pd2fcnv);
/* Set Item X-position */
d2fitms_x_pos(pd2fctx, pDlocitm, 173);
/* Set Item Y-position */
d2fitms_y_pos(pd2fctx, pDlocitm, 151);
/* Set Item Width */
d2fitms_width(pd2fctx, pDlocitm, 96);
/* Set Item Height */
d2fitms_height(pd2fctx, pDlocitm, 17);
/* Set Item Bevel */
d2fitms_bevel(pd2fctx, pDlocitm, D2FC_BEST_LOWERED);
/* Set item Hint */
d2fitms_hint(pd2fctx, PDlocitm, (text*)"Enter value for :LOC");
/*** Create Relations and relations-related properties ***/
/* Create Relation */
d2frelcr_Create(pd2fctx, (d2fob *)pdeptblk, &pd2frel, (text*)"DEPT_EMP");
/* Set Relation Detail block */
d2frels_detail_blk(pd2fctx, pd2frel, (text *)"EMP");
/* Set Master Deletes property */
d2frels_del_rec([pd2fctx, pd2frel, D2FC_DERE_NON_ISOLATED);
/* Set Deferred property */
d2frels_deferred(pd2ctx, pd2frel, FALSE);
/* Set Auto Query property */
d2frels_auto_qry(pd2ctx, pd2frel, FALSE);
/* Set Prevent Masterless property */
Taking Advantage of Open Architecture 6-67

d2frels_prvnt_mstrless_ops(pd2ctx, pd2frel, FALSE);
/* Set Join Condition property */
d2frels_join_cond(pd2ctx, pd2frel, (text*)"DEPTNO");
/* Instantiate Relation: creates master-detail triggers */
d2frelup_Update(pd2fctx, pd2frel);
/* Save Form */
d2ffmdsv_Save(pd2fctx, pd2ffmd, (text*)0, FALSE, TRUE);
/* Compile Form */
d2ffmdcf_CompileFile(pd2fctx, pd2ffmd);
/* Destroy Context */
d2fctxde_Destroy(pd2fctx);
}

6-68 Guidelines for Building Applications

6.4 Designing Applications to Run against ODBC Datasources

ny

CA).

le

 Your
ces.
.

6.4 Designing Applications to Run against ODBC
Datasources

The data within your enterprise often resides within several heterogeneous datasources.
Some portion of your data, for example, might be stored within an Oracle database, while
another portion is stored within an Informix database. Building a single application that can
access each datasource can be a difficult task.

However, by taking advantage of Forms Developer’s and Reports Developer’s open
datasource support, you can build generic applications that run transparently against a
ODBC-compliant datasource.

This section describes open datasource support. It includes these topics:

n Section 6.4.1, "What is the Oracle Open Client Adapter (OCA)?"

n Section 6.4.2, "Open datasource guidelines"

n Section 6.4.3, "Configuring your application to run against an ODBC datasource"

6.4.1 What is the Oracle Open Client Adapter (OCA)?
When you connect to an ODBC datasource, you use the Oracle Open Client Adapter (O
OCA is an ODBC level 2-compliant utility that allows Forms Developer or Reports
Developer on Microsoft Windows 95, Windows NT, and Windows 3.1 to access ODBC
-compliant datasources through ODBC drivers.

OCA is included with both Forms Developer and Reports Developer. You use the Orac
Installer to install OCA.

6.4.1.1 When should I use OCA?
You should use OCA whenever your application must access non-Oracle datasources.
Form and Report applications can automatically access any ODBC-compliant datasour
Refer to the online help for specific information about connecting to ODBC datasources

6.4.1.2 OCA architecture
The Oracle Open Client Adapter consists of the following:

Component Description

Forms Developer or Reports
Developer Application

Performs processing and calls ODBC functions to submit SQL
statements and retrieve results.

Oracle Open Client Adapter Translates Oracle database calls to ODBC calls.
Taking Advantage of Open Architecture 6-69

6.4.1.3 Establishing an ODBC connection
To connect to an ODBC datasource, type the following connect string in the Connect dialog
box:

 [user[/password]]@ODBC:datasource[:dbname]

For example, to connect to Sybase System 10, type:

 scott/tiger@ODBC:sybase_ds

6.4.1.4 ODBC drivers
When you connect to an ODBC datasource, you use an ODBC driver to communicate with
the datasource. Both Forms Developer and Reports Developer include prebundled ODBC
drivers for each supported datasource. These drivers are ODBC level 1-compliant and, to
some extent, provide some level 2 functionality to achieve greater performance.

6.4.1.5 OPENDB.PLL
OPENDB.PLL is a PL/SQL library of functions that is included with OCA. You use
OPENDB.PLL within applications to:

n Automatically adjust form and data block properties at runtime to suit the
datasource.

n Open auxiliary connections to other datasources in addition to the application’s
main connection.

n Execute arbitrary SQL statements and Stored Procedure calls on any connection.

n Retrieve results sets from non-Oracle stored procedures.

n Obtain the DBMS and ODBC driver names and versions for a given connection.

For more information about OPENDB.PLL, refer to OCA_INFO.PDF in the ORACLE_
HOME\TOOLS\DOC20 directory.

Driver Manager Loads ODBC drivers for your application.

ODBC Drivers Process ODBC function calls, submits SQL requests to a specific
datasource, and returns results to your application.

Datasource Consists of the data that user wants to access and its associated
operating system, DBMS, and network platform (if any) used to
access the DBMS.

Component Description
6-70 Guidelines for Building Applications

6.4 Designing Applications to Run against ODBC Datasources
6.4.2 Open datasource guidelines
When working with multiple datasources, consider these guidelines:

Topic Recommendation

Optimizing your application
to run against multiple
datasources

You do not have to optimize your application to run against multiple
datasources unless you want to target a specific datasource to take
advantage of features particular to that system.

Writing PL/SQL for use with
ODBC datasources

SQL statements embedded in PL/SQL program units must conform to
both Oracle SQL and the SQL dialect of the datasource that you
connect against. Any statements that fail against Oracle will cause
PL/SQL compilation failures. Similarly, any statements that use
unsupported syntax will fail at execution.

The SYSDATE and USER functions are the only exceptions to this
restriction. These functions are Oracle-specific; and, OCA translates
these functions to the corresponding ODBC functions, allowing these
functions to work against all datasources.

If you want to issue SQL statements that are datasource-specific, but
conflict with Oracle syntax, use the EXEC_SQL package.

Referencing tables from more
than one datasource

Many datasources allow you to access tables that are located in other
datasources if you specify the database, owner, and table (for
example, database.owner.tablename).

PL/SQL does not recognize the three-part table syntax, and your
client-side program unit or trigger will not compile.

To work around this restriction, enclose the three-part name in double
quotes, after calling the appropriate OPENDB function that removes
double quotes.
Taking Advantage of Open Architecture 6-71

Restrictions n When working with a non-Oracle7 datasource, you must store
your application modules (forms, reports, and graphics) in the
file system. Non-Oracle7 datasources cannot be used as a
repository for storing application modules.

n Trigger information for columns cannot be accessed from the
Object Navigator (Database Objects node).

n You can view stored procedure text only for datasources that
emulate the Oracle ALL_SOURCE table (e.g., Microsoft SQL
Server). You cannot edit database stored procedure text.

n You cannot drag and drop PL/SQL program units from the client
to a non-Oracle7 datasource.

n Neither Forms Developer nor Reports Developer can use
primary and foreign key constraint information of OCA
datasources for default selection of master-detail relationships.
These relationships must be identified directly where required.

n Optimizer hints (/*hint*/ style comments) are ignored by any
datasource that you connect to through OCA.

Troubleshooting To view the SQL statements issued by OCA and the messages
generated by the ODBC driver or the database:

1. Verify that the following entry is set in the ORACLE.INI file
on Windows 3.1 or in the registry on Windows NT and
Windows 95:

 UB=ORACLE_HOME\OCA20

2. If you are unable to resolve the error, call Oracle Customer
Support.

3. Add the following entries to the ORACLE.INI file on Windows
3.1 or to the registry under SOFTWARE\ORACLE on Windows
NT and Windows 95:

 OCA_DEBUG_SQL=TRUE

 OCA_DEBUG_ERROR=TRUE

4. Run your application against the ODBC datasource to view SQL
statements or error messages in the debug window. Click OK to
close the debug window and continue processing.

Topic Recommendation
6-72 Guidelines for Building Applications

6.4 Designing Applications to Run against ODBC Datasources
6.4.3 Configuring your application to run against an ODBC
datasource

To configure your application to run against an ODBC-compliant datasource, refer to the
“Accessing non-Oracle datasources” topic in the online help.

Debugging Tips You can display debug information by setting the OCA_DEBUG_SQL
and OCA_DEBUG_ERROR environment variables to TRUE.

Using these environment variables will help you identify SQL
failures when using Forms Developer or Reports Developer against
OCA datasources.

When you set OCA_DEBUG to TRUE, any SQL statement that is sent
to the ODBC driver is displayed before it is transmitted.

When you set OCA_DEBUG_ERROR to TRUE, any errors that are
returned by the ODBC driver are displayed in a dialog before being
passed back to Forms or Reports.

Topic Recommendation
Taking Advantage of Open Architecture 6-73

6-74 Guidelines for Building Applications

Glossary

action

In Project Builder, a command string supplied either by Project Builder or by the user that
applies to files of a given type or types. An action is not restricted to a single file type; for
example, if the action "Compile" is defined for both forms and C source files, selecting the
menu item Compile Project will compile all .FMB and .C files using the appropriate tools.
See also: pre-defined action, user-defined action.

applet

A Java term for small programs that can be dynamically imported into Web pages or appli-
cations as needed.

bidirectional support

Support for languages whose natural writing direction is right-to-left, for example Middle
Eastern and North African languages.

block

The representation of an entity on a form.

built-in macro

In Project Builder, a macro shipped with Project Builder. See also: macro.

canvas

The surface on which interface items and prompts are drawn. Canvasses are displayed in a
window.
 Glossary-1

 of
d
CGI — Common Gateway Interface

The industry-standard technique for running applications on a Web server. Whereas stan-
dard HTML documents retrieved from a Web server are static (the exact same text is
retrieved every time) CGI enables a program running on the Web server to communicate
with another computer to generate "dynamic" HTML documents in response to user-entered
information.

character set

Encoding scheme in which each character is represented by a different binary value. For
example, ISO8859-1 is an extended Latin character set that supports more than 40 Western
European languages.

deliver

In Project Builder, to prepare and provide a completed application for distribution and
deployment.

dependency view

In Project Builder, a view that shows the files in the Project Navigator in the order in which
they depend on each other, with project nodes at the highest point in the hierarchy, followed
by target nodes, which are followed by buildable components of those targets. For example,
an executable form depends on and will be followed by an .fmb file, which may depend on
and be followed by a library used for a USEREXIT procedure, and so on. See also: project
view, target.

dialog box

A window used to enter information needed to complete a specific action. The user must
interact with this window before proceeding.

encryption

The practice of scrambling (encrypting) data in such a way that only an intended recipient
can unscramble (decrypt) and read the data.

entity

A thing of significance to the user. ‘Assignments’ and ‘Sales Order Lines’ are examples
entities. A single entity may comprise several blocks, such as ‘Sales Rep’, ‘Quotas’, an
‘Territories’.
Glossary-2

nd

k is

r or
r
egis-

h
export

In Project Builder, the process of writing out a file containing project, type, action, and/or
macro definitions in a portable format for distribution to others who may work on heteroge-
neous platforms. See also: export file, import.

export file

In Project Builder, the shareable, portable file created by exporting a project. The default
extension of an export file is .UPX. See also: export, import.

field

An interface element that displays information to the user and/or accepts input from the user.
Text items, check boxes, and poplists are examples of fields. Also known as ‘widget’ or
‘item’.

firewall

A computer that regulates access to computers on a local area network from outside, a
regulates access to outside computers from within the local area network.

format mask

A setting that defines the appearance of the value of a field. For example, a format mas
used to specify the display of currency amounts and dates.

Global Registry

A Project Builder registry that stores information common to an entire Forms Develope
Reports Developer installation. This information is restricted to type definitions and thei
associated actions and pre-defined or user-defined properties. The use of the Global R
try is optional; its functions can be performed by individual user registries. See also: regis-
try, user registry.

group

In Project Builder, collections of related items available via submenus off the Launcher.
Groups enable users to set up the Launcher much like the Windows 95 Start menu, wit
arbitrary "groups" that pop up to reveal other items and/or groups.

GUI — Graphical User Interface

The use of pictures rather than just words to represent the input and output of a program.
Programs with GUIs run under a windowing system (such as X Windows, Microsoft Win-
dows, Apple Macintosh, and so on). GUI programs display icons, buttons, and so on, in win-
dows on the screen; users control the GUI programs mainly by moving a pointer on the
screen (typically controlled by a mouse).
 Glossary-3

HTML — Hypertext Markup Language

A tag-based ASCII language used to specify the content and hypertext links to other docu-
ments on WWW servers on the Internet. End users with Web browsers view HTML docu-
ments and follow links to display other documents.

HTTP — Hypertext Transfer Protocol

The protocol used to carry WWW traffic between a WWW browser computer and the
WWW server being accessed.

hyperlink

A reference (link) from some point in one hypertext document to (some point in) another
document or another place in the same document. A Web browser usually displays a hyper-
link in some distinguishing way (in a different color, font or style). When users activate
hyperlinks (by clicking on them with a mouse) the browser displays the target of the link.

hypertext

A collection of documents containing cross-references which, with the aid of a Web
browser, allow readers to move easily from one document to another.

implied item

In Project Builder, a project item, usually the result of automatic generation, which Project
Builder recognizes and for which it automatically creates an entry in the Project Navigator.
For example, Project Builder can recognize .OBJ files, generated as an immediate step in
the compilation of C source files, and create entries for them in the Project Navigator.
Although resetting the properties of an implied item is of limited use (the next compilation
will destroy changes) such items can be useful, as they can be examined via actions such as
Edit, View, and Print. See also: action, item.

import

In Project Builder, to read in a file containing project information. This is the recommended
method for sharing projects. See also: export, export file.

inherit

In Project Builder, to obtain information for an action, type, macro, or property definition
from an ancestor node in the dependency tree. If related attributes exist in an ancestor node,
they may be inherited. Thus, filesystem items like forms and documents may inherit action
definitions from subprojects, projects, a user registry, or the Global Registry; projects may
inherit type definitions from a user registry or the Global Registry; and so on.
Glossary-4

er’s

vi-
input item

In Project Builder, the file used to build a target. For example, an .FMB is the input item for
an .FMX. Also called source.

Internet

A worldwide TCP/IP-based network of computers.

Intranet

An internal TCP/IP network, access to which is restricted (via a firewall) to individuals
inside the company or organization. An intranet provides similar services within an organi-
zation to those provided by the Internet, but is not necessarily connected to the Internet. A
common example of an intranet is when a company sets up one or more Web servers on an
internal network for distribution of information or applications within the company.

IP (Internet Protocol) Address

A four-part number with no more than three digits in each part that uniquely identifies a
computer on the Internet.

item

In Project Builder, an object in the file system associated with a project, such as a form or
report, and pointed to or represented by a node in the Project Navigator.

JAR — Java ARchive

A file used for aggregating many files (Java class files, images, and so on) into one file.

Java

A computer language that supports programming for the Internet in the form of platform-
independent "applets."

language environment variable

Environment variable which specifies the language, territory, and character set for a us
environment. The language environment variable can be any one of the following:
NLS_LANG, DEVELOPER_NLS_LANG, or USER_NLS_LANG.

Launcher

In Project Builder, the secondary toolbar docked (by default) to the left of the Project Na
gator. It provides simple organizational and application launching abilities.
 Glossary-5

cts to
macro

In Project Builder, a type-specific variable which may be used to customize and extend
actions. A macro may be either a constant or a simple expression (which may, in turn, con-
tain other constants and/or expressions). The use of macros offers great flexibility in issuing
command options, and in allowing the user to modify sets of commands by changing one
property definition.

master-detail

A relation between two entities that indicates a hierarchy of information. For example, a
Sales Order consists of a Header entity and a Line entity; the Header is the master of the
Line, and the Line is the detail of the Header.

modal

A state where the user must supply specific information before continuing operation of the
application.

multilingual application

An application which can be deployed in more than one language and displays data accord-
ing to local conventions.

ORACLE_HOME

An environment variable that indicates the root of the Oracle7 Server code tree.

PDF — Portable Document Format

A file format (native for Adobe Acrobat) for representing documents in a manner that is
independent of the original application software, hardware, and operating system used to
create the documents. A PDF file can describe documents containing any combination of
text, graphics, and images in a device-independent and resolution independent format.

PL/SQL

Oracle’s proprietary extension to the SQL language. Adds procedural and other constru
SQL that make it suitable for writing applications.

port

A number that TCP uses to route transmitted data to and from a particular program.
Glossary-6

ay
pes

ir
ot" or
 in this
b-
t

d
here.

nt
s, such
le at
cts.

abet-
pre-defined action

An action shipped with Project Builder and automatically available to the user via a menu
item and/or a toolbar button. Pre-defined actions include Build, Deliver, and several source
control options. When a pre-defined action is defined for a supported file type, the action is
invoked for any selected item of that file type when the user calls that action from Project
Builder. See also: action, user-defined action.

project

The basic data structure created by Project Builder. A project is a collection of pointers to
files in the user’s file system. It also contains information about behavior that the user m
wish to apply to a given project, such as the specific editor to invoke to edit all files of ty
.CPP, .H, and .TXT. Project files can be exported and shared across platforms. See also:
export, project definition file, project item.

project definition file

In Project Builder, a file that stores project data, which consists of project items and the
properties. Each file has one project item by default, which can be thought of as the "ro
master project for that file. The user can create as many subproject items as necessary
file; subprojects are items beneath the master project which allow the user to collect su
groups of items and change their properties at the parent (subproject) level. The defaul
extension for a project file is .UPD. See also: project, project item.

project item

In Project Builder, an item that stores project-specific information, such as a connection
string and an implicit list of contained items. Types are not defined here, but actions an
user-defined macros for all types visible to a project may be defined and/or overridden
See also: item, project, project definition file.

Project Navigator

In Project Builder, the window containing a hierarchical list of project items for the curre
session. The list appears in outline form, and enables the user to complete several task
as creating, editing, renaming, and deleting objects. Although only one schema is visib
any time, the user can choose from two different schema by which to organize the obje
See also: dependency view, project view.

project view

In Project Builder, the project view shows objects in the Project Navigator organized by
their type, and by their project/subproject relationships. The projects are organized alph
ically by project file, then alphabetically by category. See also: dependency view, Project
Navigator.
 Glossary-7

les

ight
ds.

efi-
Project Wizard

In Project Builder, a dialog that assists the user in accomplishing the steps necessary to cre-
ate a new project or subproject.

prompt

A label that uniquely identifies an item. ‘Salesperson’ and ‘Item Description’ are examp
of prompts.

region

A set of related items within an entity. For example, the Purchase Order Header entity m
contain a ‘Currency Information’ region, which consists of the Rate, Type, and Date fiel

registry

In Project Builder, a global and/or user-specific configuration file used to store project d
nitions and environment information. See also: Global Registry, user registry.

RDBMS — Relational Database Management System

A database that allows the definition of data structures, storage and retrieval operations, and
integrity constraints. In such a database, data and relations between them are organized in
tables.

snap point

The point of a widget that corresponds to the (X,Y) position that locates it.

socket

The combination of an IP address and a port number.

target

In Project Builder, any item in the middle of the dependency tree; for example, an execut-
able is a (compile) target for a library, while a library is a target for a group of objects and an
object is a target for a source file. See also: input item.

toolbar

A series of iconic buttons that perform generic actions, such as List and Save.

TCP — Transmission Control Protocol

The underlying communication protocol for exchanging HTTP requests between clients and
Web servers.
Glossary-8

en-

 be

is
ry

 pref-
eral

d by

y the
type

In Project Builder, a description of a file type, such as a form, a document, etc., containing
such information as type name and description. Types are the foundation for defining actions
and macros.

URL: Uniform Resource Locator

The "address" used to specify a WWW server and home page. For example:

http://www.acme.com/

indicates that the host’s address is www.acme.com.

An URL most often is a filename (possibly with a long path to it and usually with an ext
sion of .HTML, or .HTM (for PC-DOS filenames).

user-defined action

In Project Builder, a custom action defined by a Project Builder user. Such actions may
apply to a single file type, or all file types. See also: action, pre-defined action.

user-defined macro

In Project Builder, a custom macro defined by a Project Builder user. Such macros may
used to modify both pre-defined and user-defined actions. See also: action, built-in macro,
macro, pre-defined action.

user registry

In Project Builder, a project file storing configuration information on a per-user basis. Th
enables users to customize their individual development environments. The user regist
inherits type information from the Global Registry, and may define new types as well as
override aspects of types defined in the Global Registry. It also stores environment and
erence information, such as the user’s preferred connection string, UI settings, and gen
project information. See also: Global Registry, registry.

virtual directory

A synonym that the virtual file system maps to a file stored in the file system maintaine
the host machine’s operating system.

virtual file system

A mapping that associates the pathnames used in URL to the file system maintained b
host machine’s operating system.
 Glossary-9

Web browser

A program that end users utilize to read HTML documents and programs stored on a com-
puter (serviced by a Web server).

Web cartridge

A program executed on a Web server via the WRB.

Web server

A server process (HTTP daemon) running at a Web site which sends out Web pages in
response to HTTP requests from remote Web browsers

window

A screen in a graphical user interface (GUI) environment. A window is a frame enclosing a
surface on which elements are painted.

WRB — Oracle Web Request Broker

Provides a powerful distributed runtime environment for developing and deploying applica-
tions for the Web. The WRB runtime platform enables application developers to write appli-
cations that are independent of, and work with a number of, Web servers.

WWW — World Wide Web

The network of servers on the Internet, each of which has one or more home pages, which
provide information and hypertext links to other documents on that and (usually) other serv-
ers.
Glossary-10

Index

A
action

in Project Builder
automating, 1-7
definition, 1-4
multiple platforms, 1-22

ActiveX controls, 6-17
built-ins, 6-8
examples, 6-23
properties, 6-19

Activex controls
use guidelines, 6-20

alerts, 2-27
ALTER SESSION, 4-13

using to change NLS_LANG, 4-2
using to specify default format mask, 4-13

anchor, 2-33, 2-34
animation, 3-32
application

associating modules with, 1-7
customizing using foreign functions, 6-25
deploying, 1-26
design and development, 1-10
designing for portability, 5-1
designing user interface, 2-1
maintenance and support, 1-18
managing, 1-1
multilingual, 4-1
multiple platforms, 1-21
project administrator role, 1-19
release phase, 1-25
running against ODBC datasources, 6-69
software development life cycle, 1-2

test phase, 1-23
translating, 4-17

application server, 3-30
array processing, 3-11

B
bar graph, 2-38
Base Printing On property, 2-35
bidirectional support, 4-6

in Form Builder, 4-7
in Report Builder, 4-8
language environment variable, 4-6

Big Font, 4-9
block

in Form Builder
definition, 2-11
design guidelines, 2-23

boilerplate, 2-33
break groups, 3-23
Build From type action, 1-8
built-ins

OLE and ActiveX, 6-8
button, 2-33

portability considerations, 5-6, 5-18

C
canvas

in Form Builder
definition, 2-14
design guidelines, 2-19

changes at runtime, 3-31
character data
Index-1

sorting, 4-12
character set, 4-1, 4-4

conversion, 4-4
design considerations, 4-4
multibyte, 4-4

character-mode platform
for forms, 5-14
for reports, 5-18

Clearcase, 1-10
color

design guidelines, 2-18
portability considerations, 5-4, 5-17

compiling
modifying results, 1-21
project, 1-20

configuration choice, 3-29
connection strings, 1-8

creating, 1-13
console

portability considerations, 5-8
container window, 2-12
Content canvas, 2-14
context-sensitive help, 2-29
control block, 2-11
COPIES parameter, 3-26

D
data block, 2-11
data model, 3-12
Data Model view, 2-31
database design, 3-12
debug mode, 3-21
default format mask

specifying with ALTER SESSION, 4-13
specifying with the language environment

variable, 4-11
DEI file, 1-30
Deliver File property, 1-9
Deliverable Type property, 1-8
DEPLOY directory, 1-30
desktop machine, 3-30
DEVELOPER_NLS_LANG, 4-2, 4-3

obtaining the current value of, 4-15
using for bidirectional applications, 4-6

display size, 3-31
distribution media, 1-27

definition of, 1-27
DO_SQL procedure, 3-28
Double-Y, 2-38
DPI (dots per inch)

portability considerations, 5-18

E
embedded object, 6-3
entry

in Project Builder, 1-4
explicit anchor, 2-34
export

cross-platform development, 1-9
external activation, 6-4

F
fetch-ahead, 3-26
field, 2-33
fixed sizes, 3-22
font

portability considerations, 5-5, 5-17
font aliases, 5-5
font aliasing, 4-4
font substitution, 4-4
font support

for Unicode, 4-9
foreign function, 6-25

creating, 6-29
examples, 6-37
interface, 6-26
use guidelines, 6-28

form
character-mode platforms, 5-14

Form Builder
bidirectional support, 4-7
building effective forms, 2-10
character-mode platforms, 5-14
design guidelines, 2-16
designing for portability, 5-2, 5-11
using with Open API, 6-51

Form module, 2-10
Index-2

format element
number, 4-13

format mask
default, 4-11
design considerations, 4-10
overriding the default, 4-11
specifying default with ALTER SESSION, 4-13
specifying default with the language environment

variable, 4-11
format triggers, 3-20
formatting attributes, 3-22
frame, 2-33

in Form Builder, 2-12

G
Gantt, 2-38
get_application_property, 5-13
Global Registry, 1-11

in Project Builder, 1-5
global variables, 3-18
Graphics Builder

creating effective displays, 2-37
designing for portability, 5-19

group filters, 3-13
GTM GlossaryTerm, Glossary-8
GUI (graphical user interface)

see user interface

H
handles for referencing, 3-29
hardware power, 3-33
headings

H1 Head1, 2-31, 2-32
High-low, 2-38
Horizontal Elasticity, 2-35
hyperlinks, 3-32

I
icon

portability considerations, 5-6
image resolution, 3-22
implicit anchor, 2-34

implied item, 1-8
import

cross-platform development, 1-9
in-place activation, 6-4
INS file, 1-30
installable component, 1-27
installation

files, 1-28
process, 1-31

item
in Form Builder

definition, 2-11
design guidelines, 2-23

J
JAR files, 3-32
Java class files, 3-32
just-in-time compiling, 3-33

K
Kanji characters, 4-20
Keep with Anchoring Object property, 2-37

L
language conventions, 4-5
language environment variable, 4-2

DEVELOPER_NLS_LANG, 4-2
NLS_LANG, 4-2
USER_NLS_LANG, 4-2
using to specify character set, 4-4
using to specify default format mask, 4-11
using to specify language, 4-5
using to specify territory, 4-5

Launcher, 1-5
Launcher toolbar, 1-9
Layout Model view, 2-31, 2-33
library usage, 3-32
Line chart, 2-38
linked object, 6-3
LOBs, 3-18
locking, 3-19
LOGON parameter, 3-28
Index-3

LONGCHUNK parameter, 3-25
LONGs, 3-18

M
macro

in Project Builder, 1-4
multiple platforms, 1-22

MAP file, 1-29
maximizing performance

See performance suggestions
measuring performance, 3-6
menu

in Form Builder
design guidelines, 2-29
portability considerations, 5-7

menu items, enabling/disabling, 3-31
Menu module, 2-10
messages

in Form Builder
design guidelines, 2-27

microhelp, 2-29
moat, 5-6
modal window, 2-12
modeless window, 2-12
modules

adding to project, 1-13
assigning connection strings to, 1-8
checking in and out, 1-21
creating dependencies, 1-8, 1-13
creating install package, 1-9
editing, 1-20
in Form Builder, 2-10

monitor
portability considerations, 5-3

multibyte character set, 4-1, 4-4
multilingual application, 4-1

translating, 4-17
multimedia, 3-32
multiple datasources

See also OCA (Open Client Adaper)
use guidelines

multiple servers, 3-33
multi-tiered server, 3-27

N
National Language Support (NLS), 4-1
navigation between forms, 3-17
NLS, see National Language Support
NLS_CALENDAR, 4-2, 4-13, 4-15
NLS_CREDIT, 4-2
NLS_CURRENCY, 4-2, 4-13, 4-15
NLS_DATE_FORMAT, 4-2, 4-13
NLS_DATE_LANGUAGE, 4-2, 4-13, 4-15
NLS_DEBIT, 4-2
NLS_ISO_CURRENCY, 4-2, 4-13, 4-15
NLS_LANG, 4-2

changing with ALTER SESSION, 4-2
setting for Unicode, 4-10
setting for UTF-8, 4-10
syntax, 4-2

NLS_LANGUAGE, 4-13
NLS_LIST_SEPARATOR, 4-2
NLS_MONETARY_CHARACTERS, 4-2
NLS_NUMERIC_CHARACTERS, 4-2, 4-13, 4-15
NLS_SORT, 4-2, 4-13
NLS_TERRITORY, 4-13
NLSSORT, 4-12
non-Oracle foreign function, 6-26
number format element, 4-13

O
object group, 2-5
object library, 2-5

definition, 2-15
Object Library module, 2-10
OCA

See OCA (Open Client Adapter)
OCA (Open Client Adapter)

OCA.PLL, 6-70
overview, 6-69
running applications against ODBC

datasources, 6-73
use guidelines

OCX
See ActiveX controls

ODBC (Open Database Connectivity)
See OCA (Open Client Adapter)

OLE (Object Linking and Embedding), 6-2
Index-4

about OLE automation, 6-5
about OLE servers and containers, 6-3
built-ins, 6-8
container properties, 6-6
embedded objects, 6-3
examples, 6-14
external activation, 6-4
in-place activation, 6-4
linked objects, 6-3
registration database, 6-4
See also ActiveX controls
use guidelines, 6-13

online help
implementing, 2-29
portability considerations, 5-10

Open API
creating or modifying modules, 6-54
examples, 6-55
overview, 6-51
use guidelines, 6-54

Open Client Adapter
See OCA (Open Client Adapter)

OPENDB.PLL, 6-70
operating system

portability considerations, 5-9
ORA_FFI, 6-26
Oracle Applications object library, 2-5, 2-15
Oracle Call Interface foreign function, 6-26
Oracle File Packager, 1-26, 1-27
Oracle Installer, 1-26, 1-28
Oracle precompiler foreign function, 6-26
ORACONNECT, 1-4
ORDER BY clause

using NLSSORT to control, 4-13

P
Page Break After property, 2-36
Page Break Before property, 2-36
Page Protect property, 2-36
Parameter Form view, 2-31
paths, specifying, 3-27
PDF, 4-4
performance suggestions

client/server specific, 3-29

data usage, 3-11
Form Builder specific, 3-14
Graphics Builder specific, 3-28
introduction to, 3-5
Java specific, 3-30
measurements, 3-6
Report Builder specific, 3-19
sharing work, 3-14
three-tier environment specific, 3-30
upgrades, 3-9
web specific, 3-30

pie chart, 2-38
platform

portability considerations, 5-9
PL/SQL

translating strings, 4-19
PL/SQL efficiency, 3-12
PL/SQL libraries

using to translate a multilingual application, 4-19
PL/SQL Library module, 2-10, 2-31
popup hints, 2-29
portability

designing applications, 5-1
managing multi-platform projects, 1-21
registries, 1-21
user interface considerations, 2-6

PRD file, 1-28
preface

Send Us Your Comments, xiii
pre-loading, 3-33
Print Object On property, 2-35
Product

definition of, 1-27
project

building, 1-20
creating, 1-12
definition, 1-4
multiple platforms, 1-21
packaging for release, 1-26

project administrator, 1-6
creating a project, 1-12
definition of role, 1-6
managing multi-platform projects, 1-22
release phase, 1-26
test phase, 1-24
Index-5

working with projects, 1-19
Project Builder

accessing other tools, 1-9
benefits, 1-7
installing, 1-10
overview, 1-3
roles, 1-6
terminology, 1-4

project items
implied items, 1-8

Project Navigator, 1-5
project registry file

definition, 1-5
sharing and porting, 1-9

Project Wizard, 1-12
prompt

portability considerations, 5-8
Property Palette, 1-5
PVCS, 1-10

R
record group fetch size, 3-18
Ref Cursor, 3-15
region

in Form Builder
definition, 2-11
design guidelines, 2-22

registration database, 6-4
registry

in Project Builder, 1-5
portability, 1-21

registry file
sharing and porting, 1-9

release phase, 1-25
repeating frame, 2-33
report

on character-mode platforms, 5-18
Report Builder

bidirectional support, 4-8
building effective reports, 2-30
character-mode platforms, 5-18
controlling layout objects, 2-33
designing for portability, 5-17
Editor views, 2-31

modules, 2-31
templates, 2-32

report definition file
using NLS parameters in, 4-16

Report module, 2-31
residence choice, 3-30
runtime changes, 3-31
runtime language switching, 4-18
runtime parameters, 3-21

S
scalability

See performance suggestions
Scatter, 2-38
screen

design considerations, 4-20
screen design

for translation, 4-20
Send Us Your Comments

boilerplate, xiii
server (tier-two machine), 3-30
servers, multiple, 3-33
sharing between components, 3-14
shortcut built-ins, 3-29
software development life cycle, 1-2
source control

multiple platforms, 1-22
setting up, 1-15
using, 1-9

space reduction
See performance suggestions

speed, improving
See performance suggestions

SQL efficiency, 3-12
SQL functions

using NLS parameters with, 4-15
SRW.DO_SQL, 3-24
SRW.SET_ATTR, 3-25
Stacked canvas, 2-14
Stage area

definition of, 1-27
stage area, 1-27
Standard object library, 2-5, 2-15
StarBase, 1-10
Index-6

StarTeam, 1-10
storage for documents, 3-27
storage reduction

See performance suggestions
stored procedures, 3-14
storyboard, 2-7
subproject

in Project Builder, 1-4
system test, 1-2

T
Tab canvas, 2-14
table linking, 3-21
table of records, 3-16
template, 2-6, 2-32
territory conventions, 4-5
test phase, 1-23
three-tier structure, 3-30
Toolbar canvas, 2-14
Tooltips, 2-29
translating a multilingual application, 4-17

using PL/SQL libraries, 4-19
using runtime language switching, 4-18
using Translation Builder, 4-17

Translation Builder, 4-17
using to translate a multilingual application, 4-17

transparent objects, 3-21
type

in Project Builder, 1-4

U
UIFONT.ALI, 5-5
Unicode, 4-8

font support, 4-9
setting NLS_LANG, 4-10
support, 4-8
UTF-8, 4-8

unit test, 1-2
user exit

interface to foreign functions, 6-26, 6-34
ORA_FFI, 6-26
portability considerations, 5-11

user exits, 3-23

user feedback
gathering, 2-9

user interface
building, 2-9
designing, 2-1
designing for portability, 5-2
translating, 4-10

user registry
in Project Builder

customizing, 1-17
definition, 1-5

user requirements
defining, 2-3

USER_NLS_LANG, 4-2, 4-3
obtaining the current value of, 4-15
using for bidirectional applications, 4-6

using to translate a multilingual application, 4-18
UTF-8, 4-8

setting NLS_LANG, 4-10

V
validation, 3-31
variable sizes, 3-22
version label, 1-19
versions

synchronizing, 1-19
Vertical Elasticity, 2-35
viewports, 2-14
VRF file, 1-30

W
WHERE clause

using NLSSORT to compare strings, 4-12
white space, 4-20
widget usage, 3-18
window

in Form Builder
definition, 2-12
design guidelines, 2-21

word wrapping, 3-22
Index-7

Index-8

	Send Us Your Comments
	Preface
	1 Managing Your Applications
	1.1� The Software Development Lifecycle: An Overview
	1.1.1� Using Project Builder to implement a management strategy
	1.1.2� About Project Builder
	1.1.2.1� Understanding Project Builder terminology
	1.1.2.2� How Project Builder affects existing development roles

	1.1.3� Exploring Project Builder benefits
	1.1.3.1� Associating modules with an application
	1.1.3.2� Automating actions based on file types
	1.1.3.3� Creating dependencies between modules
	1.1.3.4� Assigning default connection strings to modules
	1.1.3.5� Designating which modules are to be included in the final install set
	1.1.3.6� Sharing and porting project and subproject registry files
	1.1.3.7� Accessing other product components and third party tools
	1.1.3.8� Using source control packages

	1.2� Managing Project Documents During Design and Development
	1.2.1� Installing Project Builder
	1.2.1.1� Installing the project and user registries

	1.2.2� Creating a project
	1.2.2.1� Creating a project: Project Administrator
	1.2.2.2� Creating a project: Team members

	1.2.3� Working with projects and project documents
	1.2.3.1� Working with projects: Project Administrator
	1.2.3.2� Working with project documents: Team members

	1.2.4� Managing projects and project documents across multiple platforms
	1.2.4.1� Managing projects across multiple platforms: Project Administrator
	1.2.4.2� Managing project documents across multiple platforms: Team members

	1.3� Managing Project Documents During the Test Phase
	1.3.1� On the development side
	1.3.1.1� The test phase: Project Administrator

	1.3.2� On the test side
	1.3.2.1� The test phase: Testers

	1.4� Managing Project Documents During the Release Phase
	1.4.1� On the development side
	1.4.1.1� The release phase: Project Administrator

	1.5� Deploying Completed Applications
	1.5.1� Before You Begin
	1.5.1.1� Terminology
	1.5.1.2� The Oracle Installer files
	1.5.1.3� The contents of the TEMPLATES directory

	1.5.2� Making your application an installable product
	1.5.2.1� Deploying your application on Windows

	2 Designing Visually Effective Applications
	2.1� Understanding the Process
	2.1.1� What are the stages?
	2.1.2� Defining user requirements
	2.1.3� Planning the user interface
	2.1.3.1� Creating your standards
	2.1.3.2� Considering portability
	2.1.3.3� Creating a prototype

	2.1.4� Building the user interface elements
	2.1.5� Gathering user feedback

	2.2� Creating an Effective Form
	2.2.1� Understanding forms
	2.2.1.1� What is a module?
	2.2.1.2� What are forms, blocks, items, regions, and frames?
	2.2.1.3� What are windows and canvases?

	2.2.2� Guidelines for building forms
	2.2.2.1� Using object libraries
	2.2.2.2� Understanding basic design principles
	2.2.2.3� Adding color
	2.2.2.4� Creating canvases
	2.2.2.5� Creating windows
	2.2.2.6� Creating regions
	2.2.2.7� Adding items to blocks
	2.2.2.8� Designing messages
	2.2.2.9� Implementing online help
	2.2.2.10� Building effective menus

	2.3� Creating an Effective Report
	2.3.1� Understanding Reports
	2.3.2� Using Templates in Report Builder
	2.3.3� Understanding Layout Objects
	2.3.4� Controlling Layout Objects in Report Builder
	2.3.4.1� Using anchors
	2.3.4.2� Using the Print Object On and Base Printing On properties
	2.3.4.3� Understanding Horizontal and Vertical Elasticity
	2.3.4.4� Using the Page Break Before and After property
	2.3.4.5� Using the Page Protect property
	2.3.4.6� Using the Keep with Anchoring Object property

	2.4� Creating an Effective Display
	2.4.0.7� Choosing the Right Graph

	3 Performance Suggestions
	3.1� Summary
	3.2� Introduction: What Is Performance?
	3.2.1� Performance When?
	3.2.2� Performance of What?
	3.2.3� Interrelationships
	3.2.4� Trade-offs

	3.3� Measuring Performance
	3.3.1� Forms Developer- and Reports Developer-Specific Measurements
	3.3.1.1� Forms Measurements
	3.3.1.2� Reports Measurements

	3.3.2� Server- and Network-Specific Measurements

	3.4� General Guidelines for Performance Improvement
	3.4.1� Upgrades of Hardware and Software
	3.4.1.1� Software Upgrades
	3.4.1.2� Hardware Upgrades

	3.4.2� Suggestions for Data Usage
	3.4.2.1� Use Array Processing
	3.4.2.2� Eliminate Redundant Queries
	3.4.2.3� Improve Your Data Model
	3.4.2.4� Use SQL and PL/SQL Efficiently
	3.4.2.5� Use Group Filters
	3.4.2.6� Share Work Between Components
	3.4.2.7� Move Wait Time Forward

	3.4.3� Forms-Specific Suggestions
	3.4.3.1� Tune Your Array Processing
	3.4.3.2� Base Data Blocks on Stored Procedures
	3.4.3.3� Optimize SQL Processing in Transactions
	3.4.3.4� Optimize SQL Processing in Triggers
	3.4.3.5� Control Inter-Form Navigation
	3.4.3.6� Raise the Record Group Fetch Size
	3.4.3.7� Use LOBs instead of LONGs
	3.4.3.8� Erase Global Variables
	3.4.3.9� Reduce Widget Creation on Microsoft Windows
	3.4.3.10� Examine the Necessity of Locking

	3.4.4� Reports-Specific Suggestions
	3.4.4.1� Areas to Focus On
	3.4.4.2� Reduce Layout Overhead
	3.4.4.3� Use Format Triggers Carefully
	3.4.4.4� Consider Linking Tables
	3.4.4.5� Control Your Runtime Parameter Settings
	3.4.4.6� Turn Off Debug Mode
	3.4.4.7� Use Transparent Objects
	3.4.4.8� Use Fixed Sizes for Non-Graphical Objects
	3.4.4.9� Use Variable Sizes for Graphical Objects
	3.4.4.10� Use Image Resolution Reduction
	3.4.4.11� Avoid Word Wrapping
	3.4.4.12� Simplify Formatting Attributes
	3.4.4.13� Limit Your Use of Break Groups
	3.4.4.14� Avoid Duplicate Work with Graphics Builder
	3.4.4.15� Choose Between PL/SQL and User Exits
	3.4.4.16� Use PL/SQL instead of SRW.DO_SQL for DML
	3.4.4.17� Evaluate the Use of Local PL/SQL
	3.4.4.18� Use Multiple Attributes When Calling SRW.SET_ATTR
	3.4.4.19� Adjust the ARRAYSIZE Parameter
	3.4.4.20� Adjust the LONGCHUNK Parameter
	3.4.4.21� Adjust the COPIES Parameter
	3.4.4.22� Avoid Fetch-Aheads in Previewing
	3.4.4.23� Choose Appropriate Document Storage
	3.4.4.24� Specify Path Variables for File Searching
	3.4.4.25� Use the Multi-Tiered Server

	3.4.5� Graphics-Specific Suggestions
	3.4.5.1� Pre-Load Your Graphics Files
	3.4.5.2� Update Displays Only If Necessary
	3.4.5.3� Move Display Updates Out of Loops
	3.4.5.4� Use Common Elements Wherever Possible
	3.4.5.5� Limit the DO_SQL Procedure to DDL Statements
	3.4.5.6� Use Handles to Reference Objects
	3.4.5.7� Consider Not Using Shortcut Built-ins

	3.5� In a Client/Server Structure
	3.5.0.8� Choose the Best Installation Configuration
	3.5.0.9� Choose a Suitable Application Residence

	3.6� In a Three-Tier Structure
	3.6.1� Maximizing Tier 1 - Tier 2 Scalability
	3.6.1.1� Increase Network Bandwidth
	3.6.1.2� Minimize Changes to the Runtime User Interface
	3.6.1.3� Adjust Stacked Canvases
	3.6.1.4� Perform Validation at a Higher Level
	3.6.1.5� Avoid Enabling and Disabling Menu items
	3.6.1.6� Keep Display Size Small
	3.6.1.7� Identify Paths for Graphic URLs
	3.6.1.8� Limit the Use of Multimedia
	3.6.1.9� Avoid Use of Animations Driven from the Application Server
	3.6.1.10� Take Advantage of Hyperlinks
	3.6.1.11� Put Code into Libraries
	3.6.1.12� Reduce Start-up Overhead with JAR Files
	3.6.1.13� Reduce Start-up Overhead with Pre-Loading
	3.6.1.14� Use Just-in-Time Compiling

	3.6.2� Maximizing Tier 2 - Tier 3 Scalability
	3.6.3� Increase Tier 2 Power — Hardware
	3.6.4� Increase Tier 2 Power — Software

	4 Designing Multilingual Applications
	4.1� National Language Support (NLS)
	4.1.1� The language environment variables
	4.1.1.1� NLS_LANG
	4.1.1.2� DEVELOPER_NLS_LANG and USER_NLS_LANG

	4.1.2� Character sets
	4.1.2.1� Character set design considerations
	4.1.2.2� Font aliasing on Windows platforms

	4.1.3� Language and territory
	4.1.4� Bidirectional support
	4.1.4.1� Bidirectional support in Form Builder
	4.1.4.2� Bidirectional support in Report Builder

	4.1.5� Unicode
	4.1.5.1� Unicode support
	4.1.5.2� Font support
	4.1.5.3� Enabling Unicode support

	4.2� Using National Language Support During Development
	4.2.1� Format masks
	4.2.1.1� Format mask design considerations
	4.2.1.2� Default format masks
	4.2.1.3� Format mask characters

	4.2.2� Sorting character data
	4.2.2.1� Comparing strings in a WHERE clause
	4.2.2.2� Controlling an ORDER BY clause

	4.2.3� NLS parameters
	4.2.3.1� Using ALTER SESSION
	4.2.3.2� Using NLS parameters in SQL functions
	4.2.3.3� Form Builder NLS parameters
	4.2.3.4� Report Builder report definition files

	4.3� Translating Your Applications
	4.3.1� Translating your applications using Translation Builder
	4.3.1.1� Advantages
	4.3.1.2� Disadvantages

	4.3.2� Translating your applications using runtime language switching
	4.3.2.1� Advantages
	4.3.2.2� Disadvantages

	4.3.3� Using PL/SQL libraries for strings in code
	4.3.4� Screen design considerations

	5 Designing Portable Applications
	5.1� Before You Begin
	5.2� Designing Portable Forms
	5.2.1� Considering the GUI
	5.2.1.1� Choosing a coordinate system
	5.2.1.2� Considering monitors
	5.2.1.3� Using color
	5.2.1.4� Resolving font issues
	5.2.1.5� Using icons
	5.2.1.6� Using buttons
	5.2.1.7� Creating menus
	5.2.1.8� Creating the console
	5.2.1.9� Miscellaneous

	5.2.2� Considering the operating system
	5.2.2.1� Including user exits

	5.2.3� Strategies for developing cross-platform forms
	5.2.3.1� Creating a single source
	5.2.3.2� Subclassing visual attributes
	5.2.3.3� Using the get_application_property built-in
	5.2.3.4� Hiding objects

	5.2.4� Designing forms for character-mode

	5.3� Designing Portable Reports
	5.3.1� Designing a report for character-mode environments
	5.3.1.1� Design considerations

	5.4� Designing Portable Displays

	6 Taking Advantage of Open Architecture
	6.1� Working with OLE Objects and ActiveX Controls
	6.1.1� What is OLE?
	6.1.1.1� When should I use OLE?
	6.1.1.2� About OLE servers and containers
	6.1.1.3� About embedded and linked objects
	6.1.1.4� About the registration database
	6.1.1.5� About OLE activation styles
	6.1.1.6� About OLE automation
	6.1.1.7� OLE support
	6.1.1.8� OLE guidelines
	6.1.1.9� Adding an OLE object to your application
	6.1.1.10� Manipulating OLE objects
	6.1.1.11� OLE examples

	6.1.2� What are ActiveX controls?
	6.1.2.1� When should I use ActiveX controls?
	6.1.2.2� Manipulating ActiveX controls
	6.1.2.3� Responding to ActiveX events
	6.1.2.4� Deploying your ActiveX control
	6.1.2.5� ActiveX support
	6.1.2.6� ActiveX guidelines
	6.1.2.7� Adding an ActiveX control to your application
	6.1.2.8� ActiveX examples

	6.2� Using Foreign Functions to Customize Your Applications
	6.2.1� What are foreign functions?
	6.2.1.1� When should I use a foreign function?
	6.2.1.2� Foreign function types

	6.2.2� The foreign function interface
	6.2.2.1� The Oracle Foreign Function Interface (ORA_FFI)
	6.2.2.2� User exit interface to foreign functions
	6.2.2.3� Comparing ORA_FFI and user exits

	6.2.3� Foreign function guidelines
	6.2.4� Creating a foreign function
	6.2.4.1� Creating an ORA_FFI interface to a foreign function
	6.2.4.2� Creating a user exit interface to a foreign function

	6.2.5� Foreign function examples
	6.2.5.1� Using ORA_FFI to call Windows help
	6.2.5.2� Using ORA_FFI to open the File Open dialog on Windows
	6.2.5.3� Using ORA_FFI to call Unix(SUN) executables with a STDIN/STDOUT type interface

	6.3� Using the Open API to Build and Modify Form Builder Applications
	6.3.1� What is the Open API?
	6.3.1.1� When should I use the Open API?
	6.3.1.2� Open API header files
	6.3.1.3� Open API properties
	6.3.1.4� Open API functions and macros

	6.3.2� Guidelines for using the Open API
	6.3.3� Using the Open API
	6.3.3.1� Creating and modifying modules using the Open API

	6.3.4� Open API examples
	6.3.4.1� Modifying modules using the Open API
	6.3.4.2� Creating modules using the Open API

	6.4� Designing Applications to Run against ODBC Datasources
	6.4.1� What is the Oracle Open Client Adapter (OCA)?
	6.4.1.1� When should I use OCA?
	6.4.1.2� OCA architecture
	6.4.1.3� Establishing an ODBC connection
	6.4.1.4� ODBC drivers
	6.4.1.5� OPENDB.PLL

	6.4.2� Open datasource guidelines
	6.4.3� Configuring your application to run against an ODBC datasource

	Glossary
	Index

