
Oracle Forms Developer

Form Builder Reference, Volume 1

Release 6i

January, 2000

Part No: A73074-01

Oracle Forms Developer: Form Builder Reference, Release 6i

Volume 1

Part No: A73074-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Contributors: Fred Bethke, Joan Carter, Ken Chu, Kate Dumont, Tom Haunert, Colleen McCann, Leanne
Soylemez, Poh Lee Tan, Tony Wolfram

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer
Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and JDeveloper, JInitiator, Oracle7, Oracle8, Oracle8i, and PL/SQL are
trademarks or registered trademarks of Oracle Corporation. All other company or product names mentioned are
used for identification purposes only and may be trademarks of their respective owners.

i

Table of Contents

TABLE OF CONTENTS .. I

SEND US YOUR COMMENTS...XIII

PREFACE...XV

BUILT-IN SUBPROGRAMS .. 1
Built-ins overview...1
Built-in syntax...1
Built-in named parameters ..2
Built-in code examples..2
Built-in object IDs...2
Built-in form coordinate units ...2
Built-in uppercase return values..3
Restricted built-in subprograms ..3
Built-in constants ..4
Individual built-in descriptions ...4
ABORT_QUERY built-in...5
ACTIVATE_SERVER built-in...6
ADD_GROUP_COLUMN built-in...7
ADD_GROUP_ROW built-in ..9
ADD_LIST_ELEMENT built-in ..11
ADD_OLEARGS built-in...13
ADD_PARAMETER built-in ...14
ADD_TREE_DATA built-in ..16
ADD_TREE_NODE built-in ..19
APPLICATION_PARAMETER built-in..21
BELL built-in..22
BLOCK_MENU built-in...23
BREAK built-in ..24
CALL_FORM built-in ..25
CALL_INPUT built-in..28
CALL_OLE ..29
CALL_OLE_<returntype> built-in ...30
CANCEL_REPORT_OBJECT built-in ..31
CHECKBOX_CHECKED built-in ...32
CHECK_RECORD_UNIQUENESS built-in ...34
CLEAR_BLOCK built-in35
CLEAR_EOL built-in37
CLEAR_FORM built-in..38
CLEAR_ITEM built-in40
CLEAR_LIST built-in41
CLEAR_MESSAGE built-in ..43

ii

CLEAR_RECORD built-in...44
CLOSE_FORM built-in ..45
CLOSE_SERVER built-in ..46
COMMIT_FORM built-in ..47
CONVERT_OTHER_VALUE built-in ..49
COPY built-in ...50
COPY_REGION built-in ..52
COPY_REPORT_OBJECT_OUTPUT built-in ...53
COUNT_QUERY built-in ..54
CREATE_GROUP built-in...56
CREATE_GROUP_FROM_QUERY built-in ..58
CREATE_OLEOBJ built-in..60
CREATE_PARAMETER_LIST built-in ..61
CREATE_QUERIED_RECORD built-in ...63
CREATE_RECORD built-in ..65
CREATE_TIMER built-in ..66
CREATE_VAR built-in ..68
CUT_REGION built-in...69
DBMS_ERROR_CODE built-in...70
DBMS_ERROR_TEXT built-in ...72
DEBUG_MODE built-in ..74
DEFAULT_VALUE built-in ..75
DELETE_GROUP built-in ...76
DELETE_GROUP_ROW built-in ..77
DELETE_LIST_ELEMENT built-in ..79
DELETE_PARAMETER built-in...81
DELETE_RECORD built-in...82
DELETE_TIMER built-in ..84
DELETE_TREE_NODE built-in..86
DESTROY_PARAMETER_LIST built-in ...88
DESTROY_VARIANT built-in..89
DISPATCH_EVENT built-in ...90
DISPLAY_ERROR built-in..91
DISPLAY_ITEM built-in ...92
DOWN built-in94
DO_KEY built-in..95
DUMMY_REFERENCE built-in ...97
DUPLICATE_ITEM built-in ..98
DUPLICATE_RECORD built-in..99
EDIT_TEXTITEM built-in...100
ENFORCE_COLUMN_SECURITY built-in ...102
ENTER built-in...103
ENTER_QUERY built-in104
ERASE built-in106
ERROR_CODE built-in..107
ERROR_TEXT built-in108
ERROR_TYPE built-in..109
EXEC_VERB built-in...111
EXECUTE_QUERY built-in ..113
EXECUTE_TRIGGER built-in ..115
EXIT_FORM built-in117
FETCH_RECORDS built-in...119
FIND_ALERT built-in..121
FIND_BLOCK built-in123
FIND_CANVAS built-in124

iii

FIND_COLUMN built-in ...125
FIND_EDITOR built-in ..126
FIND_FORM built-in ...127
FIND_GROUP built-in ...128
FIND_ITEM built-in...129
FIND_LOV built-in ..130
FIND_MENU_ITEM built-in ...131
FIND_OLE_VERB built-in ..132
FIND_RELATION built-in...134
FIND_REPORT_OBJECT built-in...135
FIND_TAB_PAGE built-in ..136
FIND_TIMER built-in137
FIND_TREE_NODE built-in ...138
FIND_VA built-in...140
FIND_VIEW built-in141
FIND_WINDOW built-in142
FIRST_RECORD built-in...143
FORM_FAILURE built-in..144
FORM_FATAL built-in..146
FORM_SUCCESS built-in ...148
FORMS_DDL built-in150
GENERATE_SEQUENCE_NUMBER built-in ...153
GET_APPLICATION_PROPERTY built-in..154
GET_BLOCK_PROPERTY built-in ..158
GET_CANVAS_PROPERTY built-in ...164
GET_CUSTOM_PROPERTY built-in ...166
GET_FILE_NAME built-in ..167
GET_FORM_PROPERTY built-in ..169
GET_GROUP_CHAR_CELL built-in..173
GET_GROUP_DATE_CELL built-in ..175
GET_GROUP_NUMBER_CELL built-in..177
GET_GROUP_RECORD_NUMBER built-in..179
GET_GROUP_ROW_COUNT built-in..181
GET_GROUP_SELECTION built-in ...182
GET_GROUP_SELECTION_COUNT built-in ...184
GET_INTERFACE_POINTER built-in ...185
GET_ITEM_INSTANCE_PROPERTY built-in ..186
GET_ITEM_PROPERTY built-in ..188
GET_LIST_ELEMENT_COUNT built-in ...198
GET_LIST_ELEMENT_LABEL built-in ..200
GET_LIST_ELEMENT_VALUE built-in..201
GET_LOV_PROPERTY built-in ...202
GET_MENU_ITEM_PROPERTY built-in ..204
GET_MESSAGE built-in ...206
GET_OLE_<proptype> built-in..207
GET_OLEARG_<type> built-in...208
GET_OLE_MEMBERID built-in ...209
GET_PARAMETER_ATTR built-in..210
GET_PARAMETER_LIST built-in..211
GET_RADIO_BUTTON_PROPERTY built-in ...212
GET_RECORD_PROPERTY built-in..215
GET_RELATION_PROPERTY built-in ..218
GET_REPORT_OBJECT_PROPERTY built-in ..220
GET_TAB_PAGE_PROPERTY built-in ...222
GET_TREE_NODE_PARENT built-in..224

iv

GET_TREE_NODE_PROPERTY built-in ...226
GET_TREE_PROPERTY built-in..228
GET_TREE_SELECTION built-in ..230
GET_VA_PROPERTY built-in ..232
GET_VAR_BOUNDS built-in ...234
GET_VAR_DIMS built-in..235
GET_VAR_TYPE built-in..236
GET_VERB_COUNT built-in..237
GET_VERB_NAME built-in..239
GET_VIEW_PROPERTY built-in ...240
GET_WINDOW_PROPERTY built-in ..242
GO_BLOCK built-in..244
GO_FORM built-in...245
GO_ITEM built-in246
GO_RECORD built-in...247
HELP built-in..248
HIDE_MENU built-in...249
HIDE_VIEW built-in...250
HIDE_WINDOW built-in...251
HOST built-in253
ID_NULL built-in255
IMAGE_SCROLL built-in..257
IMAGE_ZOOM built-in258
INIT_OLEARGS built-in..260
INITIALIZE_CONTAINER built-in ..261
INSERT_RECORD built-in..262
ISSUE_ROLLBACK built-in ...263
ISSUE_SAVEPOINT built-in...264
ITEM_ENABLED built-in ...266
LAST_OLE_ERROR built-in ...267
LAST_OLE_EXCEPTION built-in ..268
LAST_RECORD built-in..269
LIST_VALUES built-in..270
LOCK_RECORD built-in...271
LOGON built-in..272
LOGON_SCREEN built-in...274
LOGOUT built-in ...276
MENU_CLEAR_FIELD built-in..277
MENU_NEXT_FIELD built-in ..278
MENU_PARAMETER built-in ..279
MENU_PREVIOUS_FIELD built-in ...280
MENU_REDISPLAY built-in ..281
MENU_SHOW_KEYS built-in ..282
MESSAGE built-in ...283
MESSAGE_CODE built-in ..285
MESSAGE_TEXT built-in ...286
MESSAGE_TYPE built-in ...287
MOVE_WINDOW built-in...289
NAME_IN built-in..291
NEW_FORM built-in ...295
NEXT_BLOCK built-in..298
NEXT_FORM built-in..299
NEXT_ITEM built-in ...300
NEXT_KEY built-in ...301
NEXT_MENU_ITEM built-in..302

v

NEXT_RECORD built-in ...303
NEXT_SET built-in ..304
OLEVAR_EMPTY built-in ..305
OPEN_FORM built-in ..306
PASTE_REGION built-in...309
PAUSE built-in ...310
PLAY_SOUND built-in..311
POPULATE_GROUP built-in ..312
POPULATE_GROUP_FROM_TREE built-in ...313
POPULATE_GROUP_WITH_QUERY built-in ..315
POPULATE_LIST built-in ...317
POPULATE_TREE built-in ...319
POST built-in ..320
PREVIOUS_BLOCK built-in ...321
PREVIOUS_FORM built-in ...322
PREVIOUS_ITEM built-in...323
PREVIOUS_MENU built-in...324
PREVIOUS_MENU_ITEM built-in ...325
PREVIOUS_RECORD built-in ..326
PRINT built-in327
PTR_TO_VAR built-in..328
QUERY_PARAMETER built-in ..329
READ_IMAGE_FILE built-in..331
READ_SOUND_FILE built-in ...333
RECALCULATE built-in335
REDISPLAY built-in...336
RELEASE_OBJ built-in337
REPLACE_CONTENT_VIEW built-in ...338
REPLACE_MENU built-in ..340
REPORT_OBJECT_STATUS built-in ...342
RESET_GROUP_SELECTION built-in...343
RESIZE_WINDOW built-in...344
RETRIEVE_LIST built-in ..346
RUN_PRODUCT built-in...347
RUN_REPORT_OBJECT built-in ...350
SCROLL_DOWN built-in ..351
SCROLL_UP built-in..352
SCROLL_VIEW built-in ..353
SELECT_ALL built-in..355
SELECT_RECORDS built-in ...356
SERVER_ACTIVE built-in ..357
SET_ALERT_BUTTON_PROPERTY built-in ...358
SET_ALERT_PROPERTY built-in..359
SET_APPLICATION_PROPERTY built-in ..361
SET_BLOCK_PROPERTY built-in ...362
SET_CANVAS_PROPERTY built-in ..367
SET_CUSTOM_ITEM_PROPERTY built-in ..369
SET_CUSTOM_PROPERTY built-in ..370
SET_FORM_PROPERTY built-in ...372
SET_GROUP_CHAR_CELL built-in ..376
SET_GROUP_DATE_CELL built-in...377
SET_GROUP_NUMBER_CELL built-in ..379
SET_GROUP_SELECTION built-in..380
SET_INPUT_FOCUS built-in ..381
SET_ITEM_INSTANCE_PROPERTY built-in ...382

vi

SET_ITEM_PROPERTY built-in ..385
SET_LOV_COLUMN_PROPERTY built-in ...397
SET_LOV_PROPERTY built-in ..398
SET_MENU_ITEM_PROPERTY built-in ...400
SET_OLE built-in402
SET_PARAMETER_ATTR built-in ..403
SET_RADIO_BUTTON_PROPERTY built-in ..404
SET_RECORD_PROPERTY built-in ..407
SET_RELATION_PROPERTY built-in ..409
SET_REPORT_OBJECT_PROPERTY built-in ..411
SET_TAB_PAGE_PROPERTY built-in ..413
SET_TIMER built-in415
SET_TREE_NODE_PROPERTY built-in ...417
SET_TREE_PROPERTY built-in ..419
SET_TREE_SELECTION built-in ...422
SET_VA_PROPERTY built-in...424
SET_VAR built-in426
SET_VIEW_PROPERTY built-in ..427
SET_WINDOW_PROPERTY built-in ...429
SHOW_ALERT built-in432
SHOW_EDITOR built-in ...433
SHOW_KEYS built-in...435
SHOW_LOV built-in..436
SHOW_MENU built-in438
SHOW_VIEW built-in...439
SHOW_WINDOW built-in...440
SYNCHRONIZE built-in..441
TERMINATE built-in...442
TO_VARIANT built-in..443
UNSET_GROUP_SELECTION built-in ..445
UP built-in..446
UPDATE_CHART built-in...447
UPDATE_RECORD built-in ..448
USER_EXIT built-in449
VALIDATE built-in..451
VARPTR_TO_VAR built-in ..453
VAR_TO_TABLE built-in ...454
VAR_TO_<type> built-in...455
VAR_TO_VARPTR built-in ..456
VBX.FIRE_EVENT built-in...457
VBX.GET_PROPERTY built-in ..459
VBX.GET_VALUE_PROPERTY built-in ...461
VBX.INVOKE_METHOD built-in ..462
VBX.SET_PROPERTY built-in ...463
VBX.SET_VALUE_PROPERTY built-in..465
WEB.SHOW_DOCUMENT built-in..466
WHERE_DISPLAY built-in...467
WRITE_IMAGE_FILE built-in..468
WRITE_SOUND_FILE built-in ...470

OPTIONS... 472
About Form Builder Components ...472
Starting Form Builder Components ..473
Starting Form Builder Components from the Command Line ..474

vii

Logging on to the Database...477
Forms Runtime Options ..478
Array (Forms Runtime)...480
Block_Menu (Forms Runtime) ...481
Buffer_Records (Forms Runtime)...482
Debug (Forms Runtime)..483
Debug_Messages (Forms Runtime) ..484
Help (Forms Runtime)485
Interactive (Forms Runtime) ...486
Keyin (Forms Runtime) ..487
Keyout (Forms Runtime) ..488
Logon_Screen (Forms Runtime)...489
Optimize SQL Processing (Forms Runtime)...490
Optimize Transaction Mode Processing (Forms Runtime) ...491
Options_Screen (Forms Runtime)...492
Output_File (Forms Runtime)...493
PECS (Forms Runtime)...494
Query_Only (Forms Runtime) ..495
Quiet (Forms Runtime) ...496
Statistics (Forms Runtime)..497
Term (Forms Runtime)498
Window_State (Forms Runtime)...499
Setting Form Compiler Options ..500
Add_Triggers (Form Compiler) ..502
Batch (Form Compiler) ...503
Build (Form Compiler) ...504
Compile_All (Form Compiler)..505
CRT_File (Form Compiler) ..506
Debug (Form Compiler)..507
Delete (Form Compiler)..508
Extract (Form Compiler)...509
Help (Form Compiler)510
Insert (Form Compiler) ...511
Logon (Form Compiler)..512
Module_Access (Form Compiler)...513
Module_Type (Form Compiler)..514
Nofail (Form Compiler) ..515
Options_Screen (Form Compiler) ...516
Output_File (Form Compiler) ...517
Parse (Form Compiler)..518
Script (Form Compiler)...519
Statistics (Form Compiler)..520
Strip_Source (Form Compiler) ...521
Upgrade (Form Compiler) ..522
Upgrade_Roles (Form Compiler) ...523
Version (Form Compiler)..524
Widen_Fields (Form Compiler) ..525
Setting Form Builder Preferences ...526
Color Mode528
Color Palette529
Build Before Running530
Help (Form Builder)531
HTML File Name532
Access preference (Form Builder) ..533
Module_Type (Form Builder)...534

viii

Printer ...535
Run Modules Asynchronously ..536
Save Before Building ..537
Subclassing Path ...538
Suppress Hints ..539
Term (Form Builder)...540
USESDI (Forms Runtime and Web Forms Runtime) ...541
Use System Editor...542
User Preference File..543
Welcome Dialog ...544
Welcome Pages...545

PROPERTIES... 546
What are properties? ...546
About setting and modifying properties..546
Reading property descriptions...547
About Control property...548
Access Key property ...549
Alert Style property...550
Alias property..551
Allow Expansion property ..552
Allow Empty Branches property...553
Allow Multi-Line Prompts property..554
Allow Start-Attached Prompts property..555
Allow Top-Attached Prompts property...556
Application Instance property ...557
Arrow Style property...558
Associated Menus property...559
Audio Channels property ..560
Automatic Column Width property...561
Automatic Display property..562
Automatic Position property ...563
Automatic Query property ..564
Automatic Refresh property..565
Automatic Select property...567
Automatic Skip (Item) property ..568
Automatic Skip (LOV) property ...569
Background_Color property ...570
Bevel property...571
Block Description property ...572
Bottom Title (Editor) property ..573
Bounding Box Scalable property ..574
Builtin_Date_Format property ..575
Button 1 Label, Button 2 Label, Button 3 Label properties ..577
Calculation Mode property ...578
Calling_Form property..579
Canvas property ..580
Canvas Type property ...581
Cap Style property ..582
Case Insensitive Query property ...583
Case Restriction property..584
Character Cell WD/HT properties ..585
Chart Type property ..586
Chart Subtype property ...587

ix

Check Box Mapping of Other Values property...588
Checked property ..589
Clip Height property ...590
Clip Width property ..591
Clip X Position property ...592
Clip Y Position property ...593
Close Allowed property ..594
Closed property...595
Column Mapping Properties property...596
Column Name property...598
Column Specifications property..599
Column Title (LOV) property ...601
Column Value (Record Group) property ..602
Command Text property ...603
Command Type property ..604
Comments property...606
Communication Mode (Chart) property..607
Communication Mode (Report) property..608
Compress property ..609
Compression Quality property ..610
Conceal Data property ..611
Connect_String property ...612
Console Window property ..613
Control Help property ...614
Control Properties property...615
Coordinate System property..616
Coordination property ...618
Coordination_Status property ...620
Copy Value from Item property ..621
Current Record Visual Attribute Group property..622
Current_Form property ...623
Current_Form_Name property..624
Current_Record property ..625
Current_Row_Background_Color property ..626
Current_Row_Fill_Pattern property..627
Current_Row_Font_Name property..628
Current_Row_Font_Size property ..629
Current_Row_Font_Spacing property ..630
Current_Row_Font_Style property ...631
Current_Row_Font_Weight property..632
Current_Row_Foreground_Color property ...633
Current_Row_White_On_Black property...634
Cursor Mode property...635
Cursor_Style property ...637
Custom Spacing property..638
Dash Style property...639
Data Block Description property ..640
Data Query property..641
Data Source Data Block (Chart) property ...642
Data Source Data Block (Report) property ...643
Data Source X Axis property ..644
Data Source Y Axis property ..645
Data Type property646
Data Type (Record Group) property ...651
Database Block property ...652

x

Database_Value property ..653
Datasource property654
Date_Format_Compatibility_Mode property..655
Default Alert Button property ...656
Default Button property ..657
Default Font Scaling property ...658
Deferred property..659
Defer Required Enforcement property ..660
Delete Allowed property ...661
Delete Procedure Arguments property ..662
Delete Procedure Name property ..663
Delete Procedure Result Set Columns property ..664
Delete Record Behavior property ...665
Detail Block property..666
Detail Reference Item property ...667
Direction property668
Display Hint Automatically property ..672
Display in ’Keyboard Help’/’Keyboard Text’ property...673
Display Quality property...674
Display Width (LOV) property ...675
Display without Privilege property ...676
Display_Height property...677
Display_Width property..678
Displayed property..679
Distance Between Records property ...680
Dither property..681
DML Array Size property ...682
DML Data Target Name property...683
DML Data Target Type property ..684
DML Returning Value property..685
Edge Background Color property ...686
Edge Foreground Color property ..687
Edge Pattern property ...688
Editor property ..689
Editor X Position, Editor Y Position properties ..690
Elements in List property ..691
Enabled (Item) property ..692
Enabled (Menu Item) property..693
Enabled (Tab Page) property ..694
End Angle property...695
Enforce Column Security property..696
Enforce Primary Key (Block) property ...697
Enterable property...698
Error_Date/Datetime_Format property ...699
Execution Mode properties ...700
Execution Mode (Chart) property ...701
Execution Mode (Report) property ...702
Execution Hierarchy property ...703
Filename property704
Fill property705
Fill_Pattern property ...706
Filter Before Display property ..707
Fire in Enter-Query Mode property ..708
First Navigation Block property..709
First_Block property ...710

xi

First_Detail_Relation property..711
First_Item property712
First_Master_Relation property ..713
Fixed Bounding Box property...714
Fixed Length (Item) property..715
Fixed Length (Menu Substitution Parameter) property...716
Flag User Value Too Long property ...717
Font_Name property718
Font_Size property...719
Font_Spacing property..720
Font_Style property...721
Font_Weight property ...722
Foreground_Color property ..723
Form Horizontal Toolbar Canvas property ...724
Form Vertical Toolbar Canvas property ...725

INDEX.. 726

xiii

Send Us Your Comments

Forms Developer Form Builder Reference, Release 6i

Volume 1

Part No: A73074-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the part number,
chapter, section, and page number (if available). You can send comments to us by electronic mail to
oddoc@us.oracle.com.

If you have any problems with the software, please contact your local Oracle World Wide Support Center.

xv

Preface

Welcome to Release 6i of the Forms Developer Form Builder Reference.

This reference guide includes information to help you effectively work with Forms Developer Form Builder
and contains detailed information about the following:

• Built-in subprograms

• Options

• Properties

• System variables

• Triggers

This preface explains how this user’s guide is organized and introduces other sources of information that
can help you use Forms Developer Form Builder.

Prerequisites

You should be familiar with your computer and its operating system. For example, you should know the
commands for deleting and copying files and understand the concepts of search paths, subdirectories, and
path names. Refer to your Microsoft Windows 95 or NT and DOS product documentation for more
information. You should also understand the fundamentals of Microsoft Windows, such as the elements of
an application window. You should also be familiar with such programs as the Explorer, Taskbar or Task
Manager, and Registry.

Notational Conventions

The following typographical conventions are used in this guide:

Convention Meaning

fixed-width font Text in a fixed-width font indicates commands that you enter exactly as shown.
Text typed on a PC is not case-sensitive unless otherwise noted.

In commands, punctuation other than brackets and vertical bars must be entered
exactly as shown.

lowercase Lowercase characters in a command statement represent a variable. Substitute
and appropriate value.

UPPERCASE Uppercase characters within the text represent command names, SQL reserved
words, and keywords.

boldface Boldface is used to indicate user interface items such as menu choices and
buttons.

C> Represents the DOS prompt. Your prompt may differ.

1

Built-in Subprograms

Built-ins overview

Form Builder provides built-in subprograms that you can call from triggers and user-named subprograms
that you write yourself. Built-ins provide programmatic control over standard application functions,
including navigation, interface control, and transaction processing.

This section includes information on the following:

• Built-in syntax

• Built-in named parameters

• Built-in code examples

• Built-in object IDs

• Restricted built-in subprograms

• Built-in constants

Built-in syntax

Named parameters are shown in an italic monospaced font. You can replace any named parameter with
the actual parameter, which can be a constant, a literal, a bind variable, or a number.

SET_TIMER(timer_name, milliseconds, iterate);

In this example, the timer name you supply must be enclosed in single quotes, because the timer_name is
a CHAR value. The milliseconds parameter is passed as a number and, as such, does not require single
quotes. The iterate parameter is passed as a constant, and, as such, must be entered exactly as shown in
the parameter description, without single quotes. Capitalization is unimportant.

In those cases where a number of optional elements are available, various alternate syntax statements are
presented. These alternatives are presented to preclude having to decipher various complicated
syntactical conventions.

Note that you sometimes use variables instead of including a specific object name. In those cases, do not
enclose the variable within single quotes. The following example illustrates a When-Timer-Expired
trigger that calls the SET_TIMER built-in and references a variable that contains a valid timer name:

DECLARE
 the_timer CHAR := GET_APPLICATION_PROPERTY(TIMER_NAME);
BEGIN
 SET_TIMER(the_timer, 60000, REPEAT);
END;

2

Built-in named parameters

The named parameter should be followed with the equal/greater than signs (=>), which point to the
actual parameter that follows the named parameter. For example, if you intend to change the
milliseconds in the SET_TIMER Built-in you can directly use that parameter with the following syntax:

SET_TIMER(timer_name => ’my_timer’, milliseconds => 12000,
 iterate => NO_REPEAT);

Also, you can continue to call the built-in with the following syntax:
SET_TIMER(’my_timer’, 12000, NO_REPEAT);

Built-in code examples

Examples have been included for the built-in subprograms. Some examples are simple illustrations of
the syntax. Others are more complex illustrations of how to use the Built-in either alone or in
conjunction with other built-ins. A few points to keep in mind regarding the syntax of examples:

• Examples are shown exactly as they can be entered.

• Casing and use of italics can be ignored and is included for readability.

• Built-in names and other PL/SQL reserved words, such as IF, THEN, ELSE, BEGIN, and END are
shown in capital letters for easier readability.

• Named parameters, when illustrated, are shown in an italic typeface. If you choose to use named
parameters, enter these parameter names exactly as shown, without quotes and follow them with the
equal/greater than symbols (=>).

• CHAR type arguments must be enclosed in single quotes.

• Any other data type argument should not be enclosed in quotes.

• Special characters other than single quotes (’), commas (,), parentheses, underscores (_), and
semicolons(;) should be ignored.

Built-in object IDs

Some built-in subprograms accept object IDs as actual parameters. An object ID is an internal, opaque
handle that is assigned to each object when created in the Form Builder. Object IDs are internally
managed and cannot be externally viewed by the user. The only method you can use to retrieve the ID is
to define a local or global variable and assign the return value of the object to the variable.

You make the assignment by way of the FIND_ built-in functions. Once you have used FIND_ within a
PL/SQL block, you can use the variable as an object ID while still in that block. The valid PL/SQL type
for each object is included in the syntax descriptions for each parameter. The description for the
FIND_BLOCK built-in provides an example of how to obtain an object ID.

Built-in form coordinate units

Many built-in subprograms allow you to specify size and position coordinates, using properties such as:

• HEIGHT

3

• WIDTH

• DISPLAY_POSITION

• VIEWPORT_X_POS

• VIEWPORT_Y_POS

• VIEW_SIZE

• VIEWPORT_X_POS_ON_CANVAS

• VIEWPORT_Y_POS_ON_CANVAS

When you specify coordinates or width and height, you express these measurements in units of the
current form coordinate system, set on the Form Module property sheet. The form coordinate system
defines the units for specifying size and position coordinates of objects in the Form Builder. Use the
Coordinate System form module property to set the form’s coordinate units:

• character cells or

• real units:
inches

centimeters

pixels

points

When you design in the character cell coordinate system, all object dimensions and position coordinates
are expressed in character cells, so Form Builder accepts only whole numbers for size and position
properties.

When you design using real units (inches, centimeters, or points), all object dimensions and position
coordinates are expressed in the units you specify, so Form Builder will accept decimals as well as whole
numbers for size and position properties. The precision of real units is three digits, so you can specify
coordinates to thousandths. If you use pixels or character cells, coordinates are truncated to whole
numbers.

Built-in uppercase return values

The GET_X_PROPERTY built-ins, such as GET_FORM_PROPERTY, return CHAR arguments as
uppercase values. This will affect the way you compare results in IF statements.

Restricted built-in subprograms

Restricted built-ins affect navigation in your form, either external screen navigation, or internal
navigation. You can call these built-ins only from triggers while no internal navigation is occurring.

Restricted built-ins cannot be called from the Pre and Post triggers, which fire when Form Builder is
navigating from object to another.

Restricted built-ins can be called from the When triggers that are specific to interface items, such as
When-Button-Pressed or When-Checkbox-Changed. Restricted built-ins can also be called from any of
the When-New-"object"-Instance triggers and from key triggers.

Unrestricted built-ins do not affect logical or physical navigation and can be called from any trigger.

4

The built-in descriptions include a heading, Built-In Type, that indicates if the built-in is restricted or
unrestricted.

Built-in constants

Many of the built-in subprograms take numeric values as arguments. Often, constants have been defined
for these numeric arguments. A constant is a named numeric value. When passing a constant to a built-
in do not enclose the constant value in quotation marks.

Constants can only appear on the right side of an operator in an expression.

In some cases, a built-in can take a number of possible constants as arguments. Possible constants are
listed in the descriptions for each parameter.

In the following example, BLOCK_SCOPE is a constant that can be supplied for the parameter constant
VALIDATION_UNIT. Other constants listed in the description are FORM, RECORD, and ITEM.

SET_FORM_PROPERTY(’my_form’, VALIDATION_UNIT, BLOCK_SCOPE);

Individual built-in descriptions

The remainder of this chapter presents individual built-in descriptions. Each built-in is presented in the
following format or a subset of the format, as applicable:

Syntax

Describes the syntax of the built-in. If there are multiple formats for a Built-in then all formats are
shown. For example, if the target object of a built-in can be called by name or by object ID, then both
forms of syntax are displayed

Built-in Type Indicates whether the built-in is restricted or unrestricted

Returns Indicates the return value or data type of a built-in function

Enter Query Mode Indicates the capability to call the built-in during enter query mode.

Description

Indicates the general purpose and use of the built-in.

Parameters

Describes the parameters that are included in the syntax diagrams. Underlined parameters usually are the
default.

Individual built-in descriptions restrictions

Indicates any restrictions.

Individual built-in descriptions examples

Provides an actual example that can be used in conjunction with the syntax to develop a realistic call to
the built-in.

5

ABORT_QUERY built-in

Description

Closes a query that is open in the current block.

A query is open between the time the SELECT statement is issued and the time when all the rows have
been fetched from the database. In particular, a query is not open when the form is in Enter Query mode,
because the SELECT statement has not yet been issued.

Syntax
PROCEDURE ABORT_QUERY;

Built-in Type unrestricted procedure

Enter Query Mode yes

A query is open between the time the SELECT statement is issued and the time when all the rows have
been fetched from the database. In particular, a query is not open when the form is in Enter Query mode,
because the SELECT statement has not yet been issued.

Parameters

none

Usage Notes

ABORT_QUERY is not the equivalent of the Query, Cancel runtime default menu command. It does not
prevent the initial fetch from the database, but rather interrupts fetch processing, thus preventing
subsequent fetches.

ABORT_QUERY restrictions

Do not use ABORT_QUERY in the following triggers:

• On-Fetch. The On-Fetch trigger is provided for applications using transactional triggers to replace
default Form Builder functions when running against non-Oracle data sources. To signal that your
On-Fetch trigger is done fetching rows, exit the On-Fetch trigger without issuing the
CREATE_QUERIED_RECORD built-in.

• Pre-Query. The Pre-Query trigger fires before the query is open, so there is no open query to close
and ABORT_QUERY is ignored. To programmatically cancel Enter Query mode, call the built-in
EXIT_FORM, using a When-New-Record-Instance trigger to check a flag as follows:
IF (:global.cancel_query = ’Y’
 and :system.mode = ’ENTER-QUERY’)
THEN
 Exit_Form;
 :global.cancel_query = ’N’;
END IF;

• Then set the flag to ’TRUE’ either from a Pre-Query trigger or an On-Error trigger that traps for the
FRM-40301 error.

6

ACTIVATE_SERVER built-in

Description

Activates an OLE server associated with an OLE container and prepares the OLE server to receive OLE
automation events from the OLE container.

Syntax
PROCEDURE ACTIVATE_SERVER
 (item_id Item);
PROCEDURE ACTIVATE_SERVER
 (item_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

Usage Notes

• The OLE container must contain an OLE object and the OLE Server must be available for
activation.

ACTIVATE_SERVER restrictions

Valid only on Microsoft Windows and Macintosh.

ACTIVATE_SERVER examples

/*
** Built-in: ACTIVATE_SERVER
** Example: Activates the OLE server associated with the object
** in the OLE container.
** trigger: When-Button-Pressed
*/
DECLARE
 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN
 message(’No such item: ’||item_name);
 ELSE
 Forms_OLE.Activate_Server(item_id);
 END IF;
END;

7

ADD_GROUP_COLUMN built-in

Description

Adds a column of the specified type to the given record group.

Syntax
FUNCTION ADD_GROUP_COLUMN
 (recordgroup_id RecordGroup,
 groupcolumn_name VARCHAR2,
 column_type NUMBER);
FUNCTION ADD_GROUP_COLUMN
 (recordgroup_name VARCHAR2,
 groupcolumn_name VARCHAR2,
 column_type NUMBER);
FUNCTION ADD_GROUP_COLUMN
 (recordgroup_id, RecordGroup
 groupcolumn_name VARCHAR2,
 column_type NUMBER,
 column_width NUMBER);
FUNCTION ADD_GROUP_COLUMN
 (recordgroup_name VARCHAR2,
 groupcolumn_name VARCHAR2,
 column_type NUMBER,
 column_width NUMBER);

Built-in Type unrestricted function

Enter Query Mode yes

Returns GroupColumn

Parameters

recordgroup_id The unique ID that Form Builder assigns when it creates the group. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when creating it. The data type of
the name is VARCHAR2.

groupcolumn_name Specifies the name of the column. The data type of the column name is
VARCHAR2.

column_type Specifies the data type of the column. The allowable values are the
following constants:

CHAR_COLUMN Specify if the column can only accept VARCHAR2
data.

DATE_COLUMN Specify if the column can only accept DATE data.

LONG_COLUMN Specify if the column can only accept LONG data.

NUMBER_COLUMN Specify if the column can only accept NUMBER
data.

8

column_width If you specify CHAR_COLUMN as the column_type, you must indicate the
maximum length of the data. COLUMN_WIDTH cannot exceed 2000,
and must be passed as a whole number.

Error Conditions:

An error is returned under the following conditions:

• You enter the name of a non-existent record group.

• You specify the name for a group or a column that does not adhere to standard Oracle naming
conventions.

• You enter a column type other than CHAR, NUMBER, DATE, or LONG.

ADD_GROUP_COLUMN restrictions

• You must add columns to a group before adding rows.

• You cannot add a column to a group that already has rows; instead, delete the rows with
DELETE_GROUP_ROW, then add the column.

• You can only add columns to a group after it is created with a call to CREATE_GROUP.

• If the column corresponds to a database column, the width of CHAR_COLUMN-typed columns
cannot be less than the width of the corresponding database column.

• If the column corresponds to a database column, the width of CHAR_COLUMN-typed columns can
be greater than the width of the corresponding database column.

• Only columns of type CHAR_COLUMN require the width parameter.

• Performance is affected if a record group has a large number of columns.

• There can only be one LONG column per record group.

ADD_GROUP_COLUMN examples

/*
** Built-in: ADD_GROUP_COLUMN
** Example: Add one Number and one Char column to a new
** record group.
*/
PROCEDURE Create_My_Group IS
 rg_name VARCHAR2(15) := ’My_Group’;
 rg_id RecordGroup;
 gc_id GroupColumn;
BEGIN
 /*
 ** Check to see if Record Group already exists
 */
 rg_id := Find_Group(rg_name);
 /*
 ** If Not, then create it with one number column and one
** Char column
 */
 IF Id_Null(rg_id) THEN
 rg_id := Create_Group(rg_name);
 gc_id := Add_Group_Column(rg_id, ’NumCol’,NUMBER_COLUMN);
 gc_id := Add_Group_Column(rg_id, ’CharCol’,CHAR_COLUMN,15);
 END IF;
END;

9

ADD_GROUP_ROW built-in

Description

Adds a row to the given record group.

Syntax
PROCEDURE ADD_GROUP_ROW
 (recordgroup_id RecordGroup,
 row_number NUMBER);
PROCEDURE ADD_GROUP_ROW
 (recordgroup_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

recordgroup_id The unique ID that Form Builder assigns when it creates the group. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when creating it. The data type of
the name is VARCHAR2.

row_number A whole number that specifies a row in the group. If you add a row to any
but the last position in a group, all rows below that are logically
renumbered. To add a row to the end of a group, use the
END_OF_GROUP constant.

Error Conditions:

Form Builder returns a runtime error given either of the following conditions:

• If you enter the name of a non-existent record group.

• If you supply a row number that is out of range or is invalid (for example, an alphabetic character).

ADD_GROUP_ROW restrictions

• A group can consist of 0 or more rows.

• You can add rows to a group only after it has been created and columns have been added.

• If you specify a row number greater than the number of rows already in the group (or a negative
number), the row is inserted at the end of the group.

• You cannot add rows to a static group without a query.

ADD_GROUP_ROW examples

/*
** Built-in: ADD_GROUP_ROW
** Example: Add ten rows to a new record group and populate.
*/

10

PROCEDURE Populate_My_Group IS
 rg_name VARCHAR2(20) := ’My_Group’;
 rg_col1 VARCHAR2(20) := rg_name||’.NumCol’;
 rg_col2 VARCHAR2(20) := rg_name||’.CharCol’;
 rg_id RecordGroup;
 gc_id GroupColumn;
 in_words VARCHAR2(15);
BEGIN
 /*
 ** Check to see if Record Group already exists
 */
 rg_id := Find_Group(rg_name);
 /*
 ** If it does, then clear all the rows from the group and
 ** populate ten rows with the numbers from 1..10 along
 ** with the equivalent number in words.
 **
 ** Row# NumCol CharCol
 ** ---- ------ -------
 ** 1 1 one
 ** 2 2 two
 ** : : :
 ** 10 10 ten
 */
 IF NOT Id_Null(rg_id) THEN
 Delete_Group_Row(rg_id, ALL_ROWS);
 FOR i IN 1..10 LOOP
 /*
 ** Add the i-th Row to the end (bottom) of the
 ** record group, and set the values of the two cells
 */
 in_words := TO_CHAR(TO_DATE(i,’YYYY’),’year’);
 Add_Group_Row(rg_id, END_OF_GROUP);
 Set_Group_Number_Cell(rg_col1, i, i);
 Set_Group_Char_Cell(rg_col2, i, in_words);
 END LOOP;
 END IF;
END;

11

ADD_LIST_ELEMENT built-in

Description

Adds a single element to a list item.

Syntax
PROCEDURE ADD_LIST_ELEMENT
 (list_name VARCHAR2,
 list_index, NUMBER
 list_label VARCHAR2,
 list_value NUMBER);
PROCEDURE ADD_LIST_ELEMENT
 (list_id ITEM,
 list_index VARCHAR2,
 list_label VARCHAR2,
 list_value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

list_index Specifies the list index value. The list index is 1 based.

list_label Specifies the VARCHAR2 string that you want displayed as the label of the
list element.

list_value The actual list element value you intend to add to the list item.

ADD_LIST_ELEMENT restrictions

For a base table list with the List Style property set to Poplist or T-list, Form Builder does not allow you
to add another values element when the block contains queried or changed records. Doing so causes an
error. This situation can occur if you have previously used DELETE_LIST_ELEMENT or
CLEAR_LIST to remove the other values element that was specified at design time by the Mapping of
Other Values list item property setting.

Note: The block status is QUERY when a block contains queried records. The block status is
CHANGED when a block contains records that have been either inserted or updated.

ADD_LIST_ELEMENT examples

/*
** Built-in: ADD_LIST_ELEMENT
** Example: Deletes index value 1 and adds the value "1994" to

12

** the list item called years when a button is
pressed.
** trigger: When-Button-Pressed
*/
BEGIN
 Delete_List_Element(’years’,1);
 Add_List_Element(’years’, 1, ’1994’, ’1994’);
END;

13

ADD_OLEARGS built-in

Description

Establishes the type and value of an argument that will be passed to the OLE object’s method.

Syntax
PROCEDURE ADD_OLEARG
 (newvar NUMBER, vtype VT_TYPE := VT_R8);
...or...
PROCEDURE ADD_OLEARG
 (newvar VARCHAR2, vtype VT_TYPE := VT_BSTR);
...or...
PROCEDURE ADD_OLEARG
 (newvar OLEVAR, vtype VT_TYPE := VT_VARIANT);

Built-in Type unrestricted procedure

Parameters

newvar The value of this argument. Its type (NUMBER,
VARCHAR2, or OLEVAR) is its FORMS or PL/SQL data
type.

vtype The type of the argument as understood by the OLE method

For a NUMBER argument, the default is VT_TYPE :=
VT_R8.

For a VARCHAR2 argument, the default is VT_TYPE :=
VT_BSTR.

For an OLEVAR argument, the default is VT_TYPE :=
VT_VARIANT.

Usage Notes

A separate ADD_OLEARG call is needed for each argument to be passed. The calls should be in order,
starting with the first argument.

A list of the supported OLE VT_TYPEs can be found in OLE Variant Types .

14

ADD_PARAMETER built-in

Description

Adds parameters to a parameter list. Each parameter consists of a key, its type, and an associated value.

Syntax
PROCEDURE ADD_PARAMETER
 (list VARCHAR2,
 key VARCHAR2,
 paramtype VARCHAR2,
 value VARCHAR2);
PROCEDURE ADD_PARAMETER
 (name VARCHAR2,
 key VARCHAR2,
 paramtype VARCHAR2,
 value VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list or name Specifies the parameter list to which the parameter is assigned. The actual
parameter can be either a parameter list ID of type PARAMLIST, or the
VARCHAR2 name of the parameter list.

key The name of the parameter. The data type of the key is VARCHAR2.

paramtype Specifies one of the following two types:

TEXT_PARAMETER A VARCHAR2 string literal.

DATA_PARAMETER A VARCHAR2 string specifying the name of a
record group defined in the current form. When Form Builder passes a data
parameter to Report Builder or Graphics Builder, the data in the specified
record group can substitute for a query that Report Builder or Graphics
Builder would ordinarily execute to run the report or display.

value The actual value you intend to pass to the called module. If you are passing
a text parameter, the maximum length is 64K characters. Data type of the
value is VARCHAR2.

ADD_PARAMETER restrictions

• A parameter list can consist of 0 (zero) or more parameters.

• You cannot create a parameter list if one already exists; to do so will cause an error. To avoid this
error, use ID_NULL to check to see if a parameter list already exists before creating one. If a
parameter list already exists, delete it with DESTROY_PARAMETER_LIST before creating a new
list.

• You cannot add a parameter of type DATA_PARAMETER if the parameter list is being passed to
another form.

15

ADD_PARAMETER examples

/*
** Built-in: ADD_PARAMETER
** Example: Add a value parameter to an existing Parameter
** List ’TEMPDATA’, then add a data parameter to
** the list to associate named query ’DEPT_QUERY’
** with record group ’DEPT_RECORDGROUP’.
*/
DECLARE
 pl_id ParamList;
BEGIN
 pl_id := Get_Parameter_List(’tempdata’);
 IF NOT Id_Null(pl_id) THEN
 Add_Parameter(pl_id,’number_of_copies’,TEXT_PARAMETER,’19’);

 Add_Parameter(pl_id, ’dept_query’, DATA_PARAMETER,
 ’dept_recordgroup’);
 END IF;
END;

16

ADD_TREE_DATA built-in

Description

Adds a data set under the specified node of a hierarchical tree item.

Syntax
PROCEDURE ADD_TREE_DATA
 (item_id ITEM,
 node FTREE.NODE,
 offset_type NUMBER,
 offset NUMBER,
 data_source NUMBER,
 data VARCHAR2);
PROCEDURE ADD_TREE_DATA
 (item_name VARCHAR2,
 node FTREE.NODE,
 offset_type NUMBER,
 offset NUMBER,
 data_source NUMBER,
 data VARCHAR2);
PROCEDURE ADD_TREE_DATA
 (item_name VARCHAR2,
 node FTREE.NODE,
 offset_type NUMBER,
 offset NUMBER,
 data_source NUMBER,
 data RECORDGROUP);
PROCEDURE ADD_TREE_DATA
 (item_id ITEM,
 node FTREE.NODE,
 offset_type NUMBER,
 offset NUMBER,
 data_source NUMBER,
 data RECORDGROUP);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

17

offset_type Specifies the type of offset for the node. Possible values
are:

PARENT_OFFSET

SIBLING_OFFSET

If offset_type is PARENT_OFFSET, adds a data subset
immediately under the specified node at the location
among its children indicated by offset.

If offset_type is SIBLING_OFFSET, adds the new data
as a sibling to the specified node.

offset Indicates the position of the new node.

If offset_type is PARENT_OFFSET, then offset can be
either 1-n or LAST_CHILD.

If offset_type is SIBLING_OFFSET, then offset can be
either NEXT_NODE or PREVIOUS_NODE.

data_source Indicates the type of data source. Possible values are:

RECORD_GROUP

QUERY_TEXT

data Specifies the data to be added. If data source is
QUERY_TEXT, then data is the text of the query. If
data source is RECORD_GROUP, then data is an item
of type RECORDGROUP or the name of a record
group.

ADD_TREE_DATA examples

/*
** Built-in: ADD_TREE_DATA
*/

-- This code copies a set of values from a record group
-- and adds them as a top level node with any children
-- nodes specified by the structure of the record group.
-- The new top level node will be inserted as the last
-- top level node.

DECLARE
 htree ITEM;
 rg_data RECORDGROUP;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Find the record group.
 rg_data := FIND_GROUP(’new_data_rg’);

18

 -- Add the new node at the top level and children.
 Ftree.Add_Tree_Data(htree,
 Ftree.ROOT_NODE,
 Ftree.PARENT_OFFSET,
 Ftree.LAST_CHILD,
 Ftree.RECORD_GROUP,
 rg_data);
END;

19

ADD_TREE_NODE built-in

Description

Adds a data element to a hierarchical tree item.

Syntax
FUNCTION ADD_TREE_NODE
 (item_name VARCHAR2,
 node FTREE.NODE,
 offset_type NUMBER,
 offset NUMBER,
 state NUMBER,
 label VARCHAR2,
 icon VARCHAR2,
 value VARCHAR2);
FUNCTION ADD_TREE_NODE
 (item_id ITEM,
 node FTREE.NODE,
 offset_type NUMBER,
 offset NUMBER,
 state NUMBER,
 label VARCHAR2,
 icon VARCHAR2,
 value VARCHAR2);

Built-in Type unrestricted procedure

Returns NODE

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

offset_type Specifies the type of offset for the node. Possible values
are:

PARENT_OFFSET

SIBLING_OFFSET

offset Indicates the position of the new node.

20

If offset_type is PARENT_OFFSET, then offset can be
either 1-n or LAST_CHILD.

If offset_type is SIBLING_OFFSET, then offset can be
either NEXT_NODE or PREVIOUS_NODE.

state Specifies the state of the node. Possible vaues are:

COLLAPSED_NODE

EXPANDED_NODE

LEAF_NODE

label The displayed text for the node.

icon The filename for the node’s icon.

value Specifies the VARCHAR2 value of the node.

ADD_TREE_NODE examples

/*
** Built-in: ADD_TREE_NODE
*/
-- This code copies a value from a Form item and
-- adds it to the tree as a top level node. The
-- value is set to be the same as the label.
DECLARE
 htree ITEM;
 top_node FTREE.NODE;
 new_node FTREE.NODE;
 item_value VARCHAR2(30);
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);
 -- Copy the item value to a local variable.
 item_value := :wizard_block.new_node_data;
 -- Add an expanded top level node to the tree
 -- with no icon.
 new_node := Ftree.Add_Tree_Node(htree,
 Ftree.ROOT_NODE,
 Ftree.PARENT_OFFSET,
 Ftree.LAST_CHILD,
 Ftree.EXPANDED_NODE,
 item_value,
 NULL,
 item_value);
END;

21

APPLICATION_PARAMETER built-in

Description

Displays all the parameters associated with the current menu, and their current values, in the Enter
Parameter Values dialog box.

Syntax
PROCEDURE APPLICATION_PARAMETER;

Built-in Type unrestricted procedure

Enter Query Mode yes

Failure:
If no parameters are defined for the current menu, Form Builder
issues error message FRM-10201: No parameters needed.

22

BELL built-in

Description

Sets the terminal bell to ring the next time the terminal screen synchronizes with the internal state of the
form. This synchronization can occur as the result of internal processing or as the result of a call to the
SYNCHRONIZE built-in subprogram.

Syntax
PROCEDURE BELL;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

BELL examples

The following example rings the bell three times:
FOR i in 1..3 LOOP
 BELL;
 SYNCHRONIZE;
END LOOP;

23

BLOCK_MENU built-in

Description

Displays a list of values (LOV) containing the sequence number and names of valid blocks in your form.
Form Builder sets the input focus to the first enterable item in the block you select from the LOV.

Syntax
PROCEDURE BLOCK_MENU;

Built-in Type restricted procedure

Enter Query Mode yes; however, it is illegal to navigate out of the current block in Enter Query mode

Parameters

none

BLOCK_MENU examples

/*
** Built-in: BLOCK_MENU
** Example: Calls up the list of blocks in the form when the
** user clicks a button, and prints a message if
** the user chooses a new block out of the list to
** which to navigate.
*/
DECLARE
 prev_blk VARCHAR2(40) := :System.Cursor_Block;
BEGIN
 BLOCK_MENU;
 IF :System.Cursor_Block <> prev_blk THEN
 Message(’You successfully navigated to a new block!’);
 END IF;
END;

24

BREAK built-in

Description

Halts form execution and displays the Debugger, while the current form is running in debug mode. From
the Debugger you can make selections to view the values of global and system variables. The BREAK
built-in is primarily useful when you need to inspect the state of a form during trigger execution.

Syntax
PROCEDURE BREAK;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

BREAK restrictions

If the current form is not running in debug mode, issuing a call to the BREAK built-in subprogram has
no effect.

BREAK examples

/*
** Built-in: BREAK
** Example: Brings up the debugging window for a particular
** value of the ’JOB’ item anytime the user
** changes records.
** trigger: When-New-Record-Instance
*/
BEGIN
 IF :Emp.Job = ’CLERK’ THEN
 Break;
 Call_Form(’clerk_timesheet’);
 Break;
 END IF;
END;

25

CALL_FORM built-in

Description

Runs an indicated form while keeping the parent form active. Form Builder runs the called form with the
same Runform preferences as the parent form. When the called form is exited Form Builder processing
resumes in the calling form at the point from which you initiated the call to CALL_FORM.

Syntax
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER,
 query_mode NUMBER);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER,
 query_mode NUMBER,
 data_mode NUMBER);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER,
 query_mode NUMBER,
 paramlist_id PARAMLIST);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER,
 query_mode NUMBER,
 paramlist_name VARCHAR2);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER,
 query_mode NUMBER,
 data_mode NUMBER,
 paramlist_id PARAMLIST);
PROCEDURE CALL_FORM
 (formmodule_name VARCHAR2,
 display NUMBER,
 switch_menu NUMBER,
 query_mode NUMBER,
 data_mode NUMBER,
 paramlist_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

26

Parameters

formmodule_name The name of the called form (must be enclosed in single quotes). Datatype
is VARCHAR2.

display HIDE (The default.) Form Builder will hide the calling form before
drawing the called form.

NO_HIDE Form Builder will display the called form without hiding the
calling form.

switch_menu NO_REPLACE (The default.) Form Builder will keep the default menu
module of the calling form active for the called form.

DO_REPLACE Form Builder will replace the default menu module of the
calling form with the default menu module of the called form.

query_mode NO_QUERY_ONLY (The default.) Form Builder will run the indicated
form in normal mode, allowing the end user to perform inserts, updates,
and deletes from within the called form.

QUERY_ONLY Form Builder will run the indicated form in query-only
mode, allowing the end user to query, but not to insert, update, or delete
records.

data_mode NO_SHARE_LIBRARY_DATA (The default.) At runtime, Form
Builder will not share data between forms that have identical libraries
attached (at design time).

SHARE_LIBRARY_DATA At runtime, Form Builder will share data
between forms that have identical libraries attached (at design time).

paramlist_id The unique ID Form Builder assigns when it creates the parameter list.
You can optionally include a parameter list as initial input to the called
form. Datatype is PARAMLIST.

paramlist_name The name you gave the parameter list object when you defined it. Datatype
is VARCHAR2.

CALL_FORM restrictions

• Form Builder ignores the query_mode parameter when the calling form is running in
QUERY_ONLY mode. Form Builder runs any form that is called from a QUERY_ONLY form as a
QUERY_ONLY form, even if the CALL_FORM syntax specifies that the called form is to run in
NO_QUERY_ONLY (normal) mode.

• A parameter list passed to a form via CALL_FORM cannot contain parameters of type
DATA_PARAMETER. Only text parameters can be passed with CALL_FORM.

• Some memory allocated for CALL_FORM is not deallocated until the Runform session ends.
Exercise caution when creating a large stack of called forms.

• When you execute CALL_FORM in a Pre-Logon, On-Logon, or Post-Logon trigger, always specify
the DO_REPLACE parameter to replace the calling form’s menu with the called form’s menu.
Failing to specify DO_REPLACE will result in no menu being displayed for the called form. (An
alternative solution is to call the REPLACE_MENU built-in from a When-New-Form-Instance
trigger in the called form.)

27

CALL_FORM examples

/* Example 1:
** Call a form in query-only mode.
*/
BEGIN
 CALL_FORM(’empbrowser’, no_hide, no_replace, query_only);
END;

/* Example 2:
** Call a form, pass a parameter list (if it exists)
*/
DECLARE
 pl_id PARAMLIST;
 theformname VARCHAR2(20);
BEGIN
 theformname := ’addcust’;

 /* Try to lookup the ’TEMPDATA’ parameter list */
 pl_id := GET_PARAMETER_LIST(’tempdata’);
 IF ID_NULL(pl_id) THEN
 CALL_FORM(theformname);
 ELSE
 CALL_FORM(theformname,
 hide,
 no_replace,
 no_query_only,
 pl_id);
 END IF;

 CALL_FORM(’lookcust’, no_hide, do_replace, query_only);
END;

28

CALL_INPUT built-in

Description

Accepts and processes function key input from the end user. When CALL_INPUT is terminated, Form
Builder resumes processing from the point at which the call to CALL_INPUT occurred.

Syntax
PROCEDURE CALL_INPUT;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

CALL_INPUT restrictions

CALL_INPUT is included for compatibility with previous versions. You should not include this built-in
in new applications.

29

CALL_OLE

Description

Passes control to the identified OLE object’s method.

Syntax
PROCEDURE CALL_OLE
 (obj OLEOBJ, memberid PLS_INTEGER);

Built-in Type unrestricted procedure

Parameters

obj Name of the OLE object.

memberid Member ID of the method to be run.

Usage Notes

• Before this call is issued, the number, type, and value of the arguments must have been established,
using the INIT_OLEARGS and ADD_OLEARGS procedures.

• As a procedure call, no values are returned. To obtain a return value from the method, use one of
the function versions of this call (CALL_OLE_CHAR, _NUM, _OBJ, or _VAR).

• The method can raise a FORM_OLE_FAILURE exception. If so, you can use the function
LAST_OLE_EXCEPTION to obtain more information.

30

CALL_OLE_<returntype> built-in

Description

Passes control to the identified OLE object’s method. Receives a return value of the specified type.

There are four versions of the function (denoted by the value in returntype), one for each of the argument
types CHAR, NUM, OBJ, and VAR.

Syntax
FUNCTION CALL_OLE_CHAR
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN returnval VARCHAR2;
...or...
FUNCTION CALL_OLE_NUM
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN returnval NUMBER;
...or...
FUNCTION CALL_OLE_OBJ
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN returnval OLEOBJ;
...or...
FUNCTION CALL_OLE_VAR
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN returnval OLEVAR;

Built-in Type unrestricted function

Returns the method’s return value in the specified format

Parameters

obj Name of the OLE object.

memberid Member ID of the object’s method.

Usage Notes

• Before this call is issued, the number, type, and value of the arguments must have been established,
using the INIT-OLEARGS and ADD-OLEARGS procedures.

• The method can raise a FORM_OLE_FAILURE exception. If so, you can use the function
LAST_OLE_EXCEPTION to obtain more information.

31

CANCEL_REPORT_OBJECT built-in

Description

Cancels a long-running, asynchronous report. You should verify the report is canceled by checking the
status of the report using REPORT_OBJECT_STATUS .

Syntax
PROCEDURE CANCEL_REPORT_OBJECT
 (report_id VARCHAR2
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

report_id The VARCHAR2 value returned by the RUN_REPORT_OBJECT built-in.
This value uniquely identifies the report that is currently running either
locally or on a remote report server.

Usage Notes

• CANCEL_REPORT_OBJECT is useful only when a report is run asynchronously. You cannot
cancel an report that is run synchronously.

32

CHECKBOX_CHECKED built-in

Description

A call to the CHECKBOX_CHECKED function returns a BOOLEAN value indicating the state of the
given check box. If the item is not a check box, Form Builder returns the following error:

FRM-41038: Item <item_name> is not a check box.

Syntax
FUNCTION CHECKBOX_CHECKED
 (item_id ITEM);
FUNCTION CHECKBOX_CHECKED
 (item_name VARCHAR2);

Built-in Type unrestricted function

Returns BOOLEAN

Enter Query Mode yes

A call to GET_ITEM_PROPERTY(item_name, ITEM_TYPE) can be used to verify the item type
before calling CHECKBOX_CHECKED.

To set the value of a check box programmatically, assign a valid value to the check box using standard
bind variable syntax.

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when it
creates it. The data type of the ID is ITEM.

item_name Specifies the string you defined as the name of the item at design time. The
data type of the name is VARCHAR2.

CHECKBOX_CHECKED restrictions

The CHECKBOX_CHECKED built-in returns a BOOLEAN value regarding the state of the given check
box. It does not return the actual value of the check box nor does it return the value you might have
indicated for the Mapping of Other Values property.

CHECKBOX_CHECKED examples

/*
** Built-in: CHECKBOX_CHECKED
** Example: Sets the query case-sensitivity of the item
** whose name is passed as an argument, depending
** on an indicator checkbox item.
*/
PROCEDURE Set_Case_Sensitivity(it_name VARCHAR2) IS
 indicator_name VARCHAR2(80) := ’control.case_indicator’;
 it_id Item;
BEGIN
 it_id := Find_Item(it_name);

33

 IF Checkbox_Checked(indicator_name) THEN
 /*
 ** Set the item whose name was passed in to query case-
 ** sensitively (i.e., Case Insensitive is False)
 */
 Set_Item_Property(it_id, CASE_INSENSITIVE_QUERY,
 PROPERTY_FALSE);
ELSE
 /*
 ** Set the item whose name was passed in to query case-
 ** insensitively (ie Case Insensitive True)
 */

Set_Item_Property(it_id,CASE_INSENSITIVE_QUERY,PROPERTY_TRUE);
 END IF;
END;

34

CHECK_RECORD_UNIQUENESS built-in

Description

When called from an On-Check-Unique trigger, initiates the default Form Builder processing for
checking the primary key uniqueness of a record.

This built-in is included primarily for applications that will run against a non-ORACLE data source.

Syntax
PROCEDURE CHECK_RECORD_UNIQUENESS;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

CHECK_RECORD_UNIQUENESS restrictions

Valid only in an On-Check-Unique trigger.

CHECK_RECORD_UNIQUENESS examples

/*
** Built-in: CHECK_RECORD_UNIQUENESS
** Example: Perform Form Builder record uniqueness checking
** from the fields in the block that are marked as
** primary keys based on a global flag setup at
** startup by the form, perhaps based on a
** parameter.
** trigger: On-Check-Unique
*/
BEGIN
 /*
 ** Check the global flag we set during form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’chkuniq block=EMP’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Check_Record_Uniqueness;
 END IF;
END;

35

CLEAR_BLOCK built-in

Description

Causes Form Builder to remove all records from, or "flush," the current block.

Syntax
PROCEDURE CLEAR_BLOCK;
PROCEDURE CLEAR_BLOCK
 (commit_mode NUMBER);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

If the end user has made changes to records in the current block that have not been posted or committed,
Form Builder processes the records, following the directions indicated by the argument supplied for the
commit_mode parameter:

commit_mode The optional action parameter takes the following possible constants as
arguments:

ASK_COMMIT Form Builder prompts the end user to commit the
changes during CLEAR_BLOCK processing.

DO_COMMIT Form Builder validates the changes, performs a commit,
and flushes the current block without prompting the end user.

NO_COMMIT Form Builder validates the changes and flushes the current
block without performing a commit or prompting the end user.

NO_VALIDATE Form Builder flushes the current block without
validating the changes, committing the changes, or prompting the end user.

CLEAR_BLOCK examples

/*
** Built-in: CLEAR_BLOCK
** Example: Clears the current block without validation, and
** deposits the primary key value which the user
** has typed into a global variable which a
** Pre-Query trigger will use to include it as a
** query criterion.
** trigger: When-New-Item-Instance
*/
BEGIN
 IF :Emp.Empno IS NOT NULL THEN
 :Global.Employee_Id := :Emp.Empno;
 Clear_Block(No_Validate);
 END IF;
END;
/*
** trigger: Pre-Query
*/

36

BEGIN
 Default_Value(NULL, ’Global.Employee_Id’);
 IF :Global.Employee_Id IS NOT NULL THEN
 :Emp.Empno := :Global.Employee_Id;
 END IF;
END;

37

CLEAR_EOL built-in

Description

Clears the current text item’s value from the current cursor position to the end of the line.

Syntax
PROCEDURE CLEAR_EOL;

Built-in Type restricted procedure

Enter Query Mode yes

CLEAR_EOL examples

/*
** Built-in: CLEAR_EOL
** Example: Clears out the contents of any number field when
** the end user navigates to it.
** trigger: When-New-Item-Instance
*/
BEGIN
 IF Get_Item_Property(:System.trigger_Item, DATATYPE) =
’NUMBER’ THEN
 Clear_Eol;
 END IF;
END;

38

CLEAR_FORM built-in

Description

Causes Form Builder to remove all records from, or flush, the current form, and puts the input focus in
the first item of the first block.

Syntax
POROCEDURE CLEAR_FORM;
PROCEDURE CLEAR_FORM
 (commit_mode NUMBER);
PROCEDURE CLEAR_FORM
 (commit_mode NUMBER,
 rollback_mode NUMBER);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

If the end user has made changes to records in the current form or any called form, and those records
have not been posted or committed, Form Builder processes the records, following the directions
indicated by the argument supplied for the following parameter:

commit_mode ASK_COMMIT Form Builder prompts the end user to commit the
changes during CLEAR_FORM processing.

DO_COMMIT Form Builder validates the changes, performs a commit,
and flushes the current form without prompting the end user.

NO_COMMIT Form Builder validates the changes and flushes the current
form without performing a commit or prompting the end user.

NO_VALIDATE Form Builder flushes the current form without
validating the changes, committing the changes, or prompting the end user.

rollback_mode TO_SAVEPOINT Form Builder rolls back all uncommitted changes
(including posted changes) to the current form’s savepoint.

FULL_ROLLBACK Form Builder rolls back all uncommitted changes
(including posted changes) which were made during the current Runform
session. You cannot specify a FULL_ROLLBACK from a form that is
running in post-only mode. (Post-only mode can occur when your form
issues a call to another form while unposted records exist in the calling
form. To prevent losing the locks issued by the calling form, Form Builder
prevents any commit processing in the called form.)

CLEAR_FORM restrictions

If you use a PL/SQL ROLLBACK statement in an anonymous block or a user-defined subprogram, Form
Builder interprets that statement as a CLEAR_FORM built-in subprogram with no parameters.

39

CLEAR_FORM examples

/*
** Built-in: CLEAR_FORM
** Example: Clear any changes made in the current form,
** without prompting to commit.
*/
BEGIN
 Clear_Form(No_Validate);
END;

40

CLEAR_ITEM built-in

Description

Clears the value from the current text item, regardless of the current cursor position, and changes the text
item value to NULL.

Syntax
PROCEDURE CLEAR_ITEM;

Built-in Type restricted procedure

Enter Query Mode yes

CLEAR_ITEM examples

/*
** Built-in: CLEAR_ITEM
** Example: Clear the current item if it does not represent
** the first day of a month.
** trigger: When-New-Item-Instance
*/
BEGIN
 IF TO_CHAR(:Emp.Hiredate,’DD’) <> ’01’ THEN
 Clear_Item;
 Message(’This date must be of the form 01-MON-YY’);
 END IF;
END;

41

CLEAR_LIST built-in

Description

Clears all elements from a list item. After Form Builder clears the list, the list will contain only one
element (the null element), regardless of the item’s Required property.

Syntax
PROCEDURE CLEAR_LIST
 (list_id ITEM);
PROCEDURE CLEAR_LIST
 (list_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

Usage Notes

• Do not use the CLEAR_LIST built-in if the Mapping of Other Values property is defined and there
are queried records in the block. Doing so may cause Form Builder to be unable to display records
that have already been fetched.

For example, assume that a list item contains the values A, B, and C and the Mapping of Other Values
property is defined. Assume also that these values have been fetched from the database (a query is
open). At this point, if you clear the list with CLEAR_LIST, an error will occur because Form Builder
will attempt to display the previously fetched values (A, B, and C), but will be unable to because the
list was cleared.

Before clearing a list, close any open queries. Use the ABORT_QUERY built-in to close an open
query.

Note: The block status is QUERY when a block contains queried records. The block status is
CHANGED when a block contains records that have been either inserted or updated (queried records
have been modified).

CLEAR_LIST restrictions

• For a Poplist or T-list-style list item, CLEAR_LIST will not clear the default value element or the
other values element from the list if they do not meet the criteria specified for deleting these
elements with DELETE_LIST_ELEMENT.

42

When either the default value or other values element cannot be deleted, CLEAR_LIST leaves these
elements in the list and clears all other elements. Refer to the restrictions on
DELETE_LIST_ELEMENT for more information.

CLEAR_LIST examples

/*
** Built-in: CLEAR_LIST
** Example: See POPULATE_LIST
*/

43

CLEAR_MESSAGE built-in

Description

Removes the current message from the screen message area.

Syntax
PROCEDURE CLEAR_MESSAGE;

Built-in Type restricted procedure

Enter Query Mode yes

CLEAR_MESSAGE examples

/*
** Built-in: CLEAR_MESSAGE
** Example: Clear the message from the message line.
*/
BEGIN
 Message(’Working...’,No_Acknowledge);
 SELECT current_tax
 INTO :Emp.Tax_Rate
 FROM tax_table
 WHERE state_abbrev = :Emp.State;
 Clear_Message;
END;

44

CLEAR_RECORD built-in

Description

Causes Form Builder to remove, or flush, the current record from the block, without performing
validation. If a query is open in the block, Form Builder fetches the next record to refill the block, if the
record space is no longer filled after removing the current record.

A database record that has been cleared is not processed as a delete by the next Post and Commit
Transactions process.

In a default master-detail block relation, clearing the master record causes all corresponding detail
records to be cleared without validation.

Syntax
PROCEDURE CLEAR_RECORD;

Built-in Type restricted procedure

Enter Query Mode yes

CLEAR_RECORD examples

/*
** Built-in: CLEAR_RECORD
** Example: Clear the current record if it’s not the last
** record in the block.
*/
BEGIN
 IF :System.Last_Record = ’TRUE’ AND :System.Cursor_Record =
’1’ THEN
 Message(’You cannot clear the only remaining entry.’);
 Bell;
 ELSE
 Clear_Record;
 END IF;
END;

45

CLOSE_FORM built-in

Description

In a multiple-form application, closes the indicated form. When the indicated form is the current form,
CLOSE_FORM is equivalent to EXIT_FORM.

Syntax
PROCEDURE CLOSE_FORM
 (form_name VARCHAR2);
PROCEDURE CLOSE_FORM
 (form_id FORMMODULE);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

form_name Specifies the name of the form to close as a VARCHAR2.

form_id The unique ID that is assigned to the form dynamically when it is
instantiated at runtime. Use the FIND_FORM built-in to an appropriately
typed variable. The data type of the form ID is FORMMODULE.

CLOSE_FORM restrictions

• You cannot close a form that is currently disabled as a result of having issued CALL_FORM to
invoke a modal called form.

• You cannot close a form that has called you. For example, if Form_A calls Form_B, then Form_B
cannot close Form_A.

46

CLOSE_SERVER built-in

Description

Deactivates the OLE server associated with an OLE container. Terminates the connection between an
OLE server and the OLE container.

Syntax
PROCEDURE CLOSE_SERVER
 (item_id Item);
PROCEDURE CLOSE_SERVER
 (item_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

CLOSE_SERVER restrictions

Valid only on Microsoft Windows and Macintosh.

CLOSE_SERVER examples

/*
** Built-in: CLOSE_SERVER
** Example: Deactivates the OLE server associated with the
object
** in the OLE container.
** trigger: When-Button-Pressed
*/
DECLARE
 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN
 message(’No such item: ’||item_name);
 ELSE
 Forms_OLE.Close_Server(item_id);
 END IF;
END;

47

COMMIT_FORM built-in

Description

Causes Form Builder to update data in the database to match data in the form. Form Builder first
validates the form, then, for each block in the form, deletes, inserts, and updates to the database, and
performs a database commit. As a result of the database commit, the database releases all row and table
locks.

If the end user has posted data to the database during the current Runform session, a call to the
COMMIT_FORM built-in commits this data to the database.

Following a commit operation, Form Builder treats all records in all base-table blocks as if they are
queried records from the database. Form Builder does not recognize changes that occur in triggers that
fire during commit processing.

Syntax
PROCEDURE COMMIT_FORM;

Built-in Type restricted procedure

Enter Query Mode no

COMMIT_FORM restrictions

If you use a PL/SQL COMMIT statement in an anonymous block or a form-level procedure, Form
Builder interprets that statement as a call to the COMMIT_FORM built-in.

COMMIT_FORM examples

Example 1
/*
** Built-in: COMMIT_FORM
** Example: If there are records in the form to be
** committed, then do so. Raise an error if the
** commit was not successful.
*/
BEGIN
 /*
 ** Force validation to happen first
 */
 Enter;
 IF NOT Form_Success THEN
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** Commit if anything is changed
 */
 IF :System.Form_Status = ’CHANGED’ THEN
 Commit_Form;
 /*
 ** A successful commit operation sets Form_Status back
 ** to ’QUERY’.
 */

48

 IF :System.Form_Status <> ’QUERY’ THEN
 Message(’An error prevented your changes from being
 committed.’);
 Bell;
 RAISE Form_trigger_Failure;
 END IF;
 END IF;
END;

Example 2
/*
** Built-in: COMMIT_FORM
** Example: Perform Form Builder database commit during commit
** processing. Decide whether to use this Built-in
** or a user exit based on a global flag setup at
** startup by the form, perhaps based on a
**
** trigger: On-Commit
*/
BEGIN
 /*
 ** Check the global flag we set during form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_commit’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Commit_Form;
 END IF;
END;

49

CONVERT_OTHER_VALUE built-in

Description

Converts the current value of a check box, radio group, or list item to the value associated with the
current check box state (Checked/Unchecked), or with the current radio group button or list item
element.

Syntax
PROCEDURE CONVERT_OTHER_VALUE
 (item_id ITEM);
PROCEDURE CONVERT_OTHER_VALUE
 (item_name VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when it
creates the item. The data type of the ID is ITEM.

item_name Specifies the VARCHAR2 string you defined as the name of the item at
design time.

CONVERT_OTHER_VALUE restrictions

If the item is not a check box, radio group, or list item, Form
Builder returns error FRM-41026: Item does not understand
operation. To avoid this error, determine the item type by
issuing a call to GET_ITEM_PROPERTY(item_name, ITEM_TYPE) before
calling CONVERT_OTHER_VALUE.

CONVERT_OTHER_VALUE examples

/*
** Built-in: CONVERT_OTHER_VALUE
** Example: Ensure that a particular checkbox’s value
** represents either the checked or unchecked
** value before updating the record.
** trigger: Pre-Update
*/
BEGIN
 Convert_Other_Value(’Emp.Marital_Status’);
END;

50

COPY built-in

Description

Copies a value from one item or variable into another item or global variable. Use specifically to write a
value into an item that is referenced through the NAME_IN built-in. COPY exists for two reasons:

• You cannot use standard PL/SQL syntax to set a referenced item equal to a value.

• You might intend to programmatically place characters such as relational operators in NUMBER
and DATE fields while a form is in Enter Query mode.

Syntax
PROCEDURE COPY
 (source VARCHAR2,
 destination VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

source The source is a literal value.

destinatioThe destination can be either a text item or another global variable.

Usage Notes

• When using COPY with date values, the format defined in the BUILTIN_DATE_FORMAT
property will be used if the DATE_FORMAT_COMPATIBILITY_MODE property is set to 5.0. If
this property is set to 4.5 COPY will expect date strings to be formatted using the default American
format.

• To use a text item as the source reference, you can use the following code:
COPY(NAME_IN(source), destination);

COPY restrictions

No validation is performed on a value copied to a text item. However, for all other types of items,
standard validation checks are performed on the copied value.

COPY examples

Example 1
/*
** Built-in: COPY
** Example: Force a wildcard search on the EmpNo item during
** query.
** trigger: Pre-Query
*/
DECLARE
 cur_val VARCHAR2(40);
BEGIN

51

 /*
 ** Get the value of EMP.EMPNO as a string
 */
 cur_val := Name_In(’Emp.Empno’);
 /*
 ** Add a percent to the end of the string.
 */
 cur_val := cur_val || ’%’;
 /*
 ** Copy the new value back into the item so Form Builder
 ** will use it as a query criterion.
 */
 Copy(cur_val, ’Emp.Empno’);
END;

Example 2
/*
** Built-in: COPY
** Example: Set the value of a global variable whose name is
** dynamically constructed.
*/
DECLARE
 global_var_name VARCHAR2(80);
BEGIN
 IF :Selection.Choice = 5 THEN
 global_var_name := ’Storage_1’;
 ELSE
 global_var_name := ’Storage_2’;
 END IF;
 /*
 ** Use the name in the ’global_var_name’ variable as the
 ** name of the global variable in which to copy the
 ** current ’Yes’ value.
 */
 COPY(’Yes’, ’GLOBAL.’||global_var_name);
END;

52

COPY_REGION built-in

Description

Copies the selected region of a text item or image item from the screen and stores it in the paste buffer
until you cut or copy another selected region.

Syntax
PROCEDURE COPY_REGION;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

Usage Notes

Use COPY_REGION, as well as the other editing functions, on text and image items only. The cut and
copy functions transfer the selected region into the system clipboard until you indicate the paste target.
At that time, the cut or copied content is pasted onto the target location.

53

COPY_REPORT_OBJECT_OUTPUT built-in

Description

Copies the output of a report to a file.

Syntax
PROCEDURE COPY_REPORT_OBJECT_OUTPUT
 (report_id VARCHAR2(20),
 output_file VARCHAR2
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

report_id The VARCHAR2 value returned by the RUN_REPORT_OBJECT built-in.
This value uniquely identifies the report that is currently running either
locally or on a remote report server.

output_file The name of the file where the report output will be copied.

Usage Notes

• Use the Report Destination Type property to specify the format of the output file.

• To copy the output of a report from a remote machine, you must set the Report Destination Type
property to Cache.

COPY_REPORT_OBJECT_OUTPUT examples

DECLARE
repid REPORT_OBJECT;
v_rep VARCHAR2(100);
rep_status varchar2(20);

BEGIN
repid := find_report_object(’report4’);
v_rep := RUN_REPORT_OBJECT(repid);
rep_status := report_object_status(v_rep);

if rep_status = ’FINISHED’ then
message(’Report Completed’);
copy_report_object_output(v_rep,’d:\temp\local.pdf’);
host(’netscape d:\temp\local.pdf’);

else
message(’Error when running report.’);

end if;
END;

54

COUNT_QUERY built-in

Description

In an On-Count trigger, performs the default Form Builder processing for identifying the number of rows
that a query will retrieve for the current block, and clears the current block. If there are changes to
commit in the block, Form Builder prompts the end user to commit them during COUNT_QUERY
processing. Form Builder returns the following message as a result of a valid call to COUNT_QUERY:

FRM-40355: Query will retrieve <number> records.

This built-in is included primarily for applications that will run against a non-ORACLE data source.

Syntax
PROCEDURE COUNT_QUERY;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

COUNT_QUERY restrictions

Valid only in triggers that allow restricted built-ins.

COUNT_QUERY examples

Example 1
/*
** Built-in: COUNT_QUERY
** Example: Display the number of records that will be
retrieved
** by the current query.
*/
BEGIN
 Count_Query;
END;

Example 2
/*
** Built-in: COUNT_QUERY
** Example: Perform Form Builder count query hits processing.
** Decide whether to use this Built-in or a user
** exit based on a global flag setup at startup by
** the form, perhaps based on a parameter.
** trigger: On-Count
*/
BEGIN
 /*
 ** Check the global flag we set during form startup
 */

55

 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 /*
 ** User exit returns query hits count back into the
 ** CONTROL.HITS item.
 */
 User_Exit(’my_count’);
 /*
 ** Deposit the number of query hits in the appropriate
 ** block property so Form Builder can display its normal
 ** status message.
 */
 Set_Block_Property(:System.trigger_Block,QUERY_HITS,
 :control.hits);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Count_Query;
 END IF;
END;

56

CREATE_GROUP built-in

Description

Creates a non-query record group with the given name. The new record group has no columns and no
rows until you explicitly add them using the ADD_GROUP_COLUMN, the ADD_GROUP_ROW, and
the POPULATE_GROUP_WITH_QUERY built-ins.

Syntax
FUNCTION CREATE_GROUP
 (recordgroup_name VARCHAR2,
 scope NUMBER,
 array_fetch_size NUMBER);

Built-in Type unrestricted function

Returns RecordGroup

Enter Query Mode yes

Parameters

recordgroup_name The string you defined as the name of the record group at design time.
When Form Builder creates the record group object it also assigns the
object a unique ID of type RecordGroup. You can call the record group by
name or by ID in later calls to record group or record group column built-
in subprograms.

scope Specifies whether tlhe record group can be used only within the current
form or within every form in a multi-form application. Takes the following
constants as arguments:

FORM_SCOPE Indicates that the record group can by used only within the current
form. This is the default value.

GLOBAL_SCOPE Indicates that the record group is global, and that it can be used
within all forms in the application. Once created, a global record group persists for
the remainder of the runtime session.

array_fetch_size Specifies the array fetch size. The default array size is 20.

CREATE_GROUP examples

/*
** Built-in: CREATE_GROUP
** Example: Creates a record group and populates its values
** from a query.
*/
DECLARE
 rg_name VARCHAR2(40) := ’Salary_Range’;
 rg_id RecordGroup;
 gc_id GroupColumn;
 errcode NUMBER;
BEGIN
 /*
 ** Make sure the record group does not already exist.

57

 */
 rg_id := Find_Group(rg_name);
 /*
 ** If it does not exist, create it and add the two
 ** necessary columns to it.
 */
 IF Id_Null(rg_id) THEN
 rg_id := Create_Group(rg_name);
 /* Add two number columns to the record group */
 gc_id := Add_Group_Column(rg_id, ’Base_Sal_Range’,
 NUMBER_COLUMN);
 gc_id := Add_Group_Column(rg_id, ’Emps_In_Range’,
 NUMBER_COLUMN);
 END IF;
 /*
 ** Populate group with a query
 */
 errcode := Populate_Group_With_Query(rg_id,
 ’SELECT SAL-MOD(SAL,1000),COUNT(EMPNO) ’
 ||’FROM EMP ’
 ||’GROUP BY SAL-MOD(SAL,1000) ’
 ||’ORDER BY 1’);
END;

58

CREATE_GROUP_FROM_QUERY built-in

Description

Creates a record group with the given name. The record group has columns representing each column
you include in the select list of the query. Add rows to the record group with the POPULATE_GROUP
built-in.

Note: If you do not pass a formal column name or alias for a
column in the SELECT statement, Form Builder creates ICRGGQ with
a dummy counter <NUM>. This happens whenever the column name
would have been invalid. The first dummy name-counter always
takes the number one. For example, the query SELECT 1 + 1 FROM
DUAL would result in a column named ICRGGQ_1.

Syntax
FUNCTION CREATE_GROUP_FROM_QUERY
 (recordgroup_name VARCHAR2,
 query VARCHAR2,
 scope NUMBER,
 array_fetch_size NUMBER);

Built-in Type unrestricted function

Returns RecordGroup

Enter Query Mode yes

Parameters

recordgroup_name The name of the record group. When Form Builder creates the record
group object it also assigns the object a unique ID of type RecordGroup.

query A valid SQL SELECT statement, enclosed in single quotes. Any columns
retrieved as a result of the query take the data types of the columns in the
table. If you restrict the query to a subset of the columns in the table, then
Form Builder creates only those columns in the record group

scope Specifies whether tlhe record group can be used only within the current
form or within every form in a multi-form application. Takes the following
constants as arguments:

FORM_SCOPE Indicates that the record group can by used only within the current
form. This is the default value.

GLOBAL_SCOPE Indicates that the record group is global, and that it can be used
within all forms in the application. Once created, a global record group persists for
the remainder of the runtime session.

array_fetch_size Specifies the array fetch size. The default array size is 20.

CREATE_GROUP_FROM_QUERY restrictions

• If a global record group is created from (or populated with) a query while executing form A, and the

59

query string contains bind variable references which are local to A (:block.item or
:PARAMETER.param), when form A terminates execution, the global query record group is
converted to a global non-query record group (it retains the data, but a subsequent call to
POPULATE_GROUP is considered an error).

CREATE_GROUP_FROM_QUERY examples

/*
** Built-in: CREATE_GROUP_FROM_QUERY
** Example: Create a record group from a query, and populate
it.
*/
DECLARE
 rg_name VARCHAR2(40) := ’Salary_Range’;
 rg_id RecordGroup;
 errcode NUMBER;
BEGIN
 /*
 ** Make sure group doesn’t already exist
 */
 rg_id := Find_Group(rg_name);
 /*
 ** If it does not exist, create it and add the two
 ** necessary columns to it.
 */
 IF Id_Null(rg_id) THEN
 rg_id := Create_Group_From_Query(rg_name,
 ’SELECT SAL-MOD(SAL,1000) BASE_SAL_RANGE,’
 ||’COUNT(EMPNO) EMPS_IN_RANGE ’
 ||’FROM EMP ’
 ||’GROUP BY SAL-MOD(SAL,1000) ’
 ||’ORDER BY 1’);
 END IF;
 /*
 ** Populate the record group
 */
 errcode := Populate_Group(rg_id);
END;

60

CREATE_OLEOBJ built-in

Description

In its first form, creates an OLE object, and establishes the object’s persistence. In its second form, alters
the persistence of a previously-instantiated OLE object.

Syntax
FUNCTION CREATE_OLEOBJ
 (name OLEOBJ, persistence_boolean := TRUE)
RETURN objpointer OLEOBJ;
...or...
FUNCTION CREATE_OLEOBJ
 (localobject VARCHAR2,
 persistence_boolean := TRUE)
RETURN objpointer OLEOBJ;

Built-in Type unrestricted function

Returns pointer to the OLE object

Parameters

name The program ID of the OLE object’s server.

localobject A pointer to the OLE object whose status is to be
changed from non-persistent to persistent.

persistence_boolean A boolean value of TRUE establishes the object as
persistent. This is an optional parameter. If not
supplied, the default value is persistent.

Usage Notes

A persistent object exists across trigger invocations. A non-persistent object exists only as long as the
trigger that spawned the call runs.

61

CREATE_PARAMETER_LIST built-in

Description

Creates a parameter list with the given name. The parameter list has no parameters when it is created;
they must be added using the ADD_PARAMETER built-in subprogram. A parameter list can be passed
as an argument to the CALL_FORM, NEW_FORM, OPEN_FORM, and RUN_PRODUCT built-in
subprograms.

Syntax
FUNCTION CREATE_PARAMETER_LIST
 (name VARCHAR2);

Built-in Type unrestricted function

Returns ParamList

Enter Query Mode yes

Parameters

name Specifies the VARCHAR2 name of the parameter list object.

When Form Builder creates the object, it assigns it a unique ID of type
PARAMLIST. You can call the parameter list by name or by ID in later
calls to parameter list-related built-in subprograms.

CREATE_PARAMETER_LIST restrictions

• You cannot create a parameter list named DEFAULT. DEFAULT is reserved for the parameter list
that Form Builder creates at the initiation of a runtime session.

• You cannot create a parameter list if one already exists; to do so will cause an error. To avoid this
error, use ID_NULL to check to see if a parameter list already exists before creating one. If a
parameter list already exists, delete it before creating a new list.

CREATE_PARAMETER_LIST examples

/*
** Built-in: CREATE_PARAMETER_LIST
** Example: Create a parameter list named ’TEMPDATA’. First
** make sure the list does not already exist, then
** attempt to create a new list. Signal an error
** if the list already exists or if creating the
** list fails.
*/
DECLARE
 pl_id ParamList;
 pl_name VARCHAR2(10) := ’tempdata’;
BEGIN
 pl_id := Get_Parameter_List(pl_name);
 IF Id_Null(pl_id) THEN
 pl_id := Create_Parameter_List(pl_name);
 IF Id_Null(pl_id) THEN
 Message(’Error creating parameter list ’||pl_name);

62

 RAISE Form_trigger_Failure;
 END IF;
 ELSE
 Message(’Parameter list ’||pl_name||’ already exists!’);
 RAISE Form_trigger_Failure;
 END IF;
END;

63

CREATE_QUERIED_RECORD built-in

Description

When called from an On-Fetch trigger, creates a record on the block’s waiting list. The waiting list is an
intermediary record buffer that contains records that have been fetched from the data source but have not
yet been placed on the block’s list of active records. This built-in is included primarily for applications
using transactional triggers to run against a non-ORACLE data source.

Note that there is no way to remove a record from the waiting list. Consequently, the application must
ensure that there is data available to be used for populating the record programmatically.

Syntax
PROCEDURE CREATE_QUERIED_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

CREATE_QUERIED_RECORD restrictions

• In blocks with a large number of records, this procedure can have side effects on disk I/O, memory
allocation, or both.

CREATE_QUERIED_RECORD examples

/*
** Built-in: CREATE_QUERIED_RECORD
** Example: Fetch the next N records into this block. Record
** count kept in Global.Record_Count.
** trigger: On-Fetch
*/
DECLARE
 fetch_count NUMBER;
 FUNCTION The_Next_Seq
 RETURN NUMBER IS
 CURSOR next_seq IS SELECT uniq_seq.NEXTVAL FROM DUAL;
 tmp NUMBER;
 BEGIN
 OPEN next_seq;
 FETCH next_seq INTO tmp;
 CLOSE next_seq;
 RETURN tmp;
 END;
BEGIN
 /*
 ** Determine how many records Form Builder is expecting us to
 ** fetch
 */
 fetch_count := Get_Block_Property(’MYBLOCK’,RECORDS_TO_FETCH);
 FOR i IN 1..fetch_count LOOP
 /*

64

 ** Create the Queried Record into which we’ll deposit
 ** the values we’re about to fetch;
 */
 Create_Queried_Record;
 :Global.Record_Count := NVL(:Global.Record_Count,0)+1;
 /*
 ** Populate the item in the queried record with a
 ** sequence function we declared above
 */
 :myblock.numbercol := the_next_seq;
 END LOOP;
END;

65

CREATE_RECORD built-in

Description

Creates a new record in the current block after the current record. Form Builder then navigates to the
new record.

Syntax
PROCEDURE CREATE_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

CREATE_RECORD examples

/*
** Built-in: CREATE_RECORD
** Example: Populate new records in a block based on return
** values from a query
*/
PROCEDURE Populate_Rows_Into_Block(projid NUMBER) IS
 CURSOR tempcur(cp_projid NUMBER) IS
 SELECT milestone_name, due_date
 FROM milestone
 WHERE project_id = cp_projid
 ORDER BY due_date;
BEGIN
 /* Add these records to the bottom of the block */
 Last_Record;
 /* Loop thru the records in the cursor */
 FOR rec IN tempcur(projid) LOOP
 /*
 ** Create an empty record and set the current row’s
 ** Milestone_Name and Due_Date items.
 */
 Create_Record;
 : Milestone.Milestone_Name := rec.milestone_name;
 : Milestone.Due_Date := rec.due_date;
 END LOOP;
 First_Record;
END;

66

CREATE_TIMER built-in

Description

Creates a new timer with the given name. You can indicate the interval and whether the timer should
repeat upon expiration or execute once only. When the timer expires, Form Builder fires the When-
Timer-Expired trigger.

Syntax
FUNCTION CREATE_TIMER
 (timer_name VARCHAR2,
 milliseconds NUMBER,
 iterate NUMBER);

Built-in Type unrestricted function

Returns Timer

Enter Query Mode yes

Parameters

timer_name Specifies the timer name of up to 30 alphanumeric characters. The name
must begin with an alphabetic character. The data type of the name is
VARCHAR2.

milliseconds Specifies the duration of the timer in milliseconds. The range of values
allowed for this parameter is 1 to 2147483648 milliseconds. Values >
2147483648 will be rounded down to 2147483648. Note that only
positive numbers are allowed. The data type of the parameter is
NUMBER. See Restrictions below for more information.

iterate Specifies whether the timer should repeat or not upon expiration. Takes the
following constants as arguments:

REPEAT Indicates that the timer should repeat upon expiration. Default.

NO_REPEAT Indicates that the timer should not repeat upon expiration,
but is to be used once only, until explicitly called again.

CREATE_TIMER restrictions

• Values > 2147483648 will be rounded down to 2147483648.

• Milliseconds cannot be expressed as a decimal.

• No two timers can share the same name in the same form instance, regardless of case.

• If there is no When-Timer-Expired trigger defined at the execution of a timer, Form Builder returns
an error.

• If there is no When-Timer-Expired trigger defined at the execution of a timer, and the timer is a
repeating timer, subsequent repetitions are canceled, but the timer is retained.

• If there is no When-Timer-Expired trigger defined at the execution of a timer, and the timer is not a

67

repeating timer, the timer is deleted.

CREATE_TIMER examples

The following example creates a timer called EMP_TIMER, and sets it to 60 seconds and an iterate
value of NO_REPEAT:

DECLARE
 timer_id Timer;
 one_minute NUMBER(5) := 60000;
BEGIN
 timer_id := CREATE_TIMER(’emp_timer’, one_minute,
NO_REPEAT);
END;

68

CREATE_VAR built-in

Description

Creates an empty, unnamed variant.

There are two versions of the function, one for scalars and the other for arrays.

Syntax
FUNCTION CREATE_VAR
 (persistence BOOLEAN)
RETURN newvar OLEVAR;
...or...
FUNCTION CREATE_VAR
 (bounds OLE_SAFEARRAYBOUNDS,
 vtype VT_TYPE,
 persistence BOOLEAN)
RETURN newvar OLEVAR;

Built-in Type unrestricted function

Returns the created OLE variant.

Parameters

persistence Controls the persistence of the variant after its creation. A
boolean value of TRUE establishes the variant as
persistent; a value of FALSE establishes the variant as
non-persistent.

This is an optional parameter. If not specified, the default
value is non-persistent.

bounds A PL/SQL table that specifies the dimensions to be given
to the created array.

For more information about the contents and layout of this
parameter and the type OLE_SAFEARRAYBOUNDS,
see ARRAY TYPES FOR OLE SUPPORT.

vtype The OLE variant type (VT_TYPE) of the elements in the
created array. If the array will contain mixed element
types, specify VT_VARIANT.

Usage Notes

• The created variant is untyped, unless it is an array -- in which case its elements have the type you
specify.

• The created variant is also without a value. Use the SET_VAR function to assign an initial value
and type to the variant.

• A persistent variant exists across trigger invocations. A non-persistent variant exists only as long as
the trigger that spawned the call runs. See also DESTROY_VARIANT

69

CUT_REGION built-in

Description

Removes a selected region of a text item or an image item from the screen and stores it in the paste
buffer until you cut or copy another selected region.

Syntax
PROCEDURE CUT_REGION;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

Usage Notes

Use CUT_REGION, as well as the other editing functions, on text and image items only. The cut and
copy functions transfer the selected region into the system clipboard until you indicate the paste target.
At that time, the cut or copied content is pasted onto the target location.

70

DBMS_ERROR_CODE built-in

Description

Returns the error number of the last database error that was detected.
Syntax
FUNCTION DBMS_ERROR_CODE;

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

none

Usage Notes

For recursive errors, this built-in returns the code of the first message in the stack, so the error text must
be parsed for numbers of subsequent messages.

DBMS_ERROR_CODE examples

/*
** Built-in: DBMS_ERROR_CODE,DBMS_ERROR_TEXT
** Example: Reword certain Form Builder error messages by
** evaluating the DBMS error code that caused them
** trigger: On-Error
*/
DECLARE
 errcode NUMBER := ERROR_CODE;
 dbmserrcode NUMBER;
 dbmserrtext VARCHAR2(200);
BEGIN
 IF errcode = 40508 THEN
 /*
 ** Form Builder had a problem INSERTing, so
 ** look at the Database error which
 ** caused the problem.
 */
 dbmserrcode := DBMS_ERROR_CODE;
 dbmserrtext := DBMS_ERROR_TEXT;

 IF dbmserrcode = -1438 THEN
 /*
 ** ORA-01438 is "value too large for column"
 */
 Message(’Your number is too large. Try again.’);
 ELSIF dbmserrcode = -1400 THEN
 /*
 ** ORA-01400 is "Mandatory column is NULL"
 */
 Message(’You forgot to provide a value. Try again.’);
 ELSE
 /*
 ** Printout a generic message with the database
 ** error string in it.

71

 */
 Message(’Insert failed because of ’||dbmserrtext);
 END IF;
 END IF;
END;

72

DBMS_ERROR_TEXT built-in

Description

Returns the message number (such as ORA-01438) and message text of the database error.

Syntax
FUNCTION DBMS_ERROR_TEXT;

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

none

Usage Notes

You can use this function to test database error messages during exception handling routines.

DBMS_ERROR_TEXT returns the entire sequence of recursive errors.

DBMS_ERROR_TEXT examples

/*
** Built-in: DBMS_ERROR_CODE,DBMS_ERROR_TEXT
** Example: Reword certain Form Builder error messages by
** evaluating the DBMS error code that caused them
** trigger: On-Error
*/
DECLARE
 errcode NUMBER := ERROR_CODE;
 dbmserrcode NUMBER;
 dbmserrtext VARCHAR2(200);
BEGIN
 IF errcode = 40508 THEN
 /*
 ** Form Builder had a problem INSERTing, so
 ** look at the Database error which
 ** caused the problem.
 */
 dbmserrcode := DBMS_ERROR_CODE;
 dbmserrtext := DBMS_ERROR_TEXT;

 IF dbmserrcode = -1438 THEN
 /*
 ** ORA-01438 is "value too large for column"
 */
 Message(’Your number is too large. Try again.’);
 ELSIF dbmserrcode = -1400 THEN
 /*
 ** ORA-01400 is "Mandatory column is NULL"
 */
 Message(’You forgot to provide a value. Try again.’);
 ELSE
 /*

73

 ** Printout a generic message with the database
 ** error string in it.
 */
 Message(’Insert failed because of ’||dbmserrtext);
 END IF;
 END IF;
END;

74

DEBUG_MODE built-in

Description

Toggles debug mode on and off in a menu. When debug mode is on in a menu, Form Builder issues an
appropriate message when a menu item command executes.

Syntax
PROCEDURE DEBUG_MODE;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

DEBUG_MODE restrictions

The DEBUG_MODE applies only to a menu module. It does not place the form in Debug Mode.

75

DEFAULT_VALUE built-in

Description

Copies an indicated value to an indicated variable if the variable’s current value is NULL. If the
variable’s current value is not NULL, DEFAULT_VALUE does nothing. Therefore, for text items this
built-in works identically to using the COPY built-in on a NULL item. If the variable is an undefined
global variable, Form Builder creates the variable.

Syntax
PROCEDURE DEFAULT_VALUE
 (value_string VARCHAR2,
 variable_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

value_string A valid VARCHAR2 string, variable, or text item containing a valid string.

variable_name A valid variable, global variable, or text item name. The data type of the
variable_name is VARCHAR2. Any object passed as an argument to this
built-in must be enclosed in single quotes.

DEFAULT_VALUE restrictions

The DEFAULT_VALUE built-in is not related to the Initial Value item property.

DEFAULT_VALUE examples

/*
** Built-in: DEFAULT_VALUE
** Example: Make sure a Global variable is defined by
** assigning some value to it with Default_Value
*/
BEGIN
 /*
 ** Default the value of GLOBAL.Command_Indicator if it is
 ** NULL or does not exist.
 */
 Default_Value(’***’,’global.command_indicator’);
 /*
 ** If the global variable equals the string we defaulted
 ** it to above, then it must have not existed before
 */
 IF :Global.Command_Indicator = ’***’ THEN
 Message(’You must call this screen from the Main Menu’);
 RAISE Form_trigger_Failure;
 END IF;
END;

76

DELETE_GROUP built-in

Description

Deletes a programmatically created record group.

Syntax
PROCEDURE DELETE_GROUP
 (recordgroup_id RecordGroup);
PROCEDURE DELETE_GROUP
 (recordgroup_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

recordgroup_id The unique ID that Form Builder assigns when it creates the group. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when creating it. The data type of
the name is VARCHAR2.

DELETE_GROUP restrictions

This built-in cannot be used to delete a record group that was created at design time.

DELETE_GROUP examples

/*
** Built-in: DELETE_GROUP
** Example: Delete a programmatically created record group
*/
PROCEDURE Remove_Record_Group(rg_name VARCHAR2) IS
 rg_id RecordGroup;
BEGIN
 /*
 ** Make sure the Record Group exists before trying to
 ** delete it.
 */
 rg_id := Find_Group(rg_name);
 IF NOT Id_Null(rg_id) THEN
 Delete_Group(rg_id);
 END IF;
END;

77

DELETE_GROUP_ROW built-in

Description

Deletes the indicated row or all rows of the given record group. Form Builder automatically decrements
the row numbers of all rows that follow a deleted row. When rows are deleted, the appropriate memory
is freed and available to Form Builder.

If you choose to delete all rows of the group by supplying the ALL_ROWS constant, Form Builder
deletes the rows, but the group still exists until you perform the DELETE_GROUP subprogram.

When a single row is deleted, subsequent rows are renumbered so that row numbers remain contiguous.

Syntax
PROCEDURE DELETE_GROUP_ROW
 (recordgroup_id RecordGroup,
 row_number NUMBER);
PROCEDURE DELETE_GROUP_ROW
 (recordgroup_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

recordgroup_id The unique ID that Form Builder assigns the group when it creates it. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when you created it. The data type
of the name is VARCHAR2.

row_number Specifies the row to be deleted from the record group. Rows are
automatically numbered from 1 to n. Row number parameter data type is
NUMBER.

ALL_ROWS Specifies that Form Builder is to delete all rows without
deleting the record group. ALL_ROWS is a constant.

DELETE_GROUP_ROW restrictions

This built-in cannot be used to delete rows from a static record group.

DELETE_GROUP_ROW examples

/*
** Built-in: DELETE_GROUP_ROW
** Example: Delete certain number of records from the tail
** of the specified record group.
*/
PROCEDURE Delete_Tail_Records(recs_to_del NUMBER,
 rg_name VARCHAR2) IS
 rg_id RecordGroup;

78

 rec_count NUMBER;
BEGIN
 /*
 ** Check to see if Record Group exists
 */
 rg_id := Find_Group(rg_name);
 /*
 ** Get a count of the records in the record group
 */
 rec_Count := Get_Group_Row_Count(rg_id);
 IF rec_Count < recs_to_del THEN
 Message(’There are only ’||TO_CHAR(rec_Count)||
 ’ records in the group.’);
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** Loop thru and delete the last ’recs_to_del’ records
 */
 FOR j IN 1..recs_to_del LOOP
 Delete_Group_Row(rg_id, rec_Count - j + 1);
 END LOOP;
END;

79

DELETE_LIST_ELEMENT built-in

Description

Deletes a specific list element from a list item.

Syntax
PROCEDURE DELETE_LIST_ELEMENT
 (list_name VARCHAR2,
 list_index NUMBER);
PROCEDURE DELETE_LIST_ELEMENT
 (list_id, ITEM
 list_index NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

list_index Specifies the list index value. The list index is 1 based.

Usage Notes

• Do not use the DELETE_LIST_ELEMENT built-in if the Mapping of Other Values property is
defined and there are queried records in the block. Doing so may cause Form Builder to be unable
to display records that have already been fetched.

For example, assume that a list item contains the values A, B, and C and the Mapping of Other Values
property is defined. Assume also that these values have been fetched from the database (a query is
open). At this point, if you delete B from the list using DELETE_LIST_ELEMENT, an error will
occur because Form Builder will attempt to display the previously fetched values (A, B, and C), but
will be unable to because B was deleted from the list.

Before deleting a list element, close any open queries. Use the ABORT_QUERY built-in to close an
open query.

Note: A list does not contain an other values element if none was specified at design time or if it was
programmatically deleted from the list at runtime.

DELETE_LIST_ELEMENT restrictions

For a Poplist or T-list-style list item, Form Builder returns
error FRM-41331: Could not delete element from <list_item> if
you attempt to delete the default value element.

The default value element is the element whose label or value was specified at design time for the Initial
Value property setting.

80

For a Combobox list item, you can delete the default value element only if the Initial Value property was
set to an actual value, rather than an element label.

For a base table Poplist or T-list list item, Form Builder
returns error FRM-41331: Could not delete element from
<list_item> if you:

• attempt to delete the other values element when the block contains queried or changed records.

• attempt to delete any element from a list that does not contain an other values element when the
block contains queried or changed records.

Note: The block status is QUERY when a block contains queried records. The block status is
CHANGED when a block contains records that have been either inserted or updated (queried records
have been modified).

DELETE_LIST_ELEMENT examples

/*
** Built-in: DELETE_LIST_ELEMENT
** Example: See ADD_LIST_ELEMENT
*/

81

DELETE_PARAMETER built-in

Description

Deletes the parameter with the given key from the parameter list.

Syntax
PROCEDURE DELETE_PARAMETER
 (list VARCHAR2,
 key VARCHAR2);
PROCEDURE DELETE_PARAMETER
 (name VARCHAR2,
 key VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list or name Specifies the parameter list, either by list ID or name. The actual parameter
can be either a parameter list ID of type PARAMLIST, or the
VARCHAR2 name of the parameter list.

key The name of the parameter. The data type of the key is VARCHAR2.

DELETE_PARAMETER restrictions

• Deleting the last parameter from a list does not automatically delete the list itself. To delete the
parameter list, issue a call to the DESTROY_PARAMETER_LIST subprogram.

DELETE_PARAMETER examples

/*
** Built-in: DELETE_PARAMETER
** Example: Remove the ’NUMBER_OF_COPIES’ parameter from the
** already existing ’TEMPDATA’ parameter list.
*/
BEGIN
 Delete_Parameter(’tempdata’,’number_of_copies’);
END;

82

DELETE_RECORD built-in

Description

When used outside an On-Delete trigger, removes the current record from the block and marks the record
as a delete. Records removed with this built-in are not removed one at a time, but are added to a list of
records that are deleted during the next available commit process.

If the record corresponds to a row in the database, Form Builder locks the record before removing it and
marking it as a delete.

If a query is open in the block, Form Builder fetches a record to refill the block if necessary. See also the
description for the CLEAR_RECORD built-in subprogram.

In an On-Delete trigger, DELETE_RECORD initiates the default Form Builder processing for deleting a
record during the Post and Commit Transaction process, as shown in Example 2 below.

Syntax
PROCEDURE DELETE_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

DELETE_RECORD examples

Example 1
/*
** Built-in: DELETE_RECORD
** Example: Mark the current record in the current block for
** deletion.
*/
BEGIN
 Delete_Record;
END;

Example 2
/*
** Built-in: DELETE_RECORD
** Example: Perform Form Builder delete record processing
** during commit-time. Decide whether to use this
** Built-in or a user exit based on a global flag
** setup at startup by the form, perhaps based on
** a parameter.
** trigger: On-Delete
*/
BEGIN
 /*
 ** Check the global flag we set during form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_delrec block=EMP’);

83

 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Delete_Record;
 END IF;
END;

84

DELETE_TIMER built-in

Description

Deletes the given timer from the form.

Syntax
PROCEDURE DELETE_TIMER
 (timer_id Timer);
PROCEDURE DELETE_TIMER
 (timer_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

timer_id Specifies the unique ID that Form Builder assigns when it creates the timer,
specifically as a response to a successful call to the CREATE_TIMER
built-in. Use the FIND_TIMER built-in to return the ID to an
appropriately typed variable. That data type of the ID is Timer.

timer_name Specifies the name you gave the timer when you defined it. The data type
of the timer_name is VARCHAR2.

DELETE_TIMER restrictions

• If you delete a timer, you must issue a FIND_TIMER call before attempting to call ID_NULL to
check on availability of the timer object. For instance, the following example is incorrect because
the call to DELETE_TIMER does not set the value of the ID. In other words, the timer is deleted,
but the ID continues to exist, yet points to a non-existent timer, hence, it is not null.
-- Invalid Example
 timer_id := Find_Timer(’my_timer’);
 Delete_Timer(timer_id);
 IF (ID_Null(timer_id))...

DELETE_TIMER examples

/*
** Built-in: DELETE_TIMER
** Example: Remove a timer after first checking to see if
** it exists
*/
PROCEDURE Cancel_Timer(tm_name VARCHAR2) IS
 tm_id Timer;
BEGIN
 tm_id := Find_Timer(tm_name);

 IF NOT Id_Null(tm_id) THEN
 Delete_Timer(tm_id);
 ELSE
 Message(’Timer ’||tm_name||’ has already been cancelled.’);
 END IF;

85

END;

86

DELETE_TREE_NODE built-in

Description

Removes the data element from the tree.

Syntax
PROCEDURE DELETE_TREE_NODE
 (item_name VARCHAR2,
 node NODE);
PROCEDURE DELETE_TREE_NODE
 (item_id ITEM,
 node NODE);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

Usage Notes

Removing a branch node also removes all child nodes.

DELETE_TREE_NODE examples

/*
** Built-in: DELETE_TREE_NODE
*/

-- This code finds a node with the label "Zetie"
-- and deletes it and all of its children.

DECLARE
 htree ITEM;
 delete_node FTREE.NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

87

 -- Find the node with a label of "Zetie".
 -- Start searching from the root of the tree.
 delete_node := Ftree.Find_Tree_Node(htree,
 ’Zetie’,
 Ftree.FIND_NEXT,
 Ftree.NODE_LABEL,
 Ftree.ROOT_NODE,
 Ftree.ROOT_NODE);

 -- Delete the node and all of its children.
 IF NOT Ftree.ID_NULL(delete_node) then
 Ftree.Delete_Tree_Node(htree, delete_node);
 END IF;
END;

88

DESTROY_PARAMETER_LIST built-in

Description

Deletes a dynamically created parameter list and all parameters it contains.

Syntax
PROCEDURE DESTROY_PARAMETER_LIST
 (list VARCHAR2);
PROCEDURE DESTROY_PARAMETER_LIST
 (name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list or name Specifies the parameter list, either by list ID or name. The actual parameter
can be either a parameter list ID of type PARAMLIST, or the
VARCHAR2 name of the parameter list.

Usage Notes:

When a parameter list is destroyed using DESTROY_PARAMETER_LIST the parameter list handle is
NOT set to NULL.

Use the GET_PARAMETER_LIST built-in to return the ID to a variable of the type PARAMLIST.

DESTROY_PARAMETER_LIST examples

/*
** Built-in: DESTROY_PARAMETER_LIST
** Example: Remove the parameter list ’tempdata’ after first
** checking to see if it exists
*/
DECLARE
 pl_id ParamList;
BEGIN
 pl_id := Get_Parameter_List(’tempdata’);
 IF NOT Id_Null(pl_id) THEN
 Destroy_Parameter_List(pl_id);
 END IF;
END;

89

DESTROY_VARIANT built-in

Description

Destroys a variant that was created by the CREATE_VAR function.

Syntax
PROCEDURE DESTROY_VARIANT (variant OLEVAR);

Built-in Type unrestricted procedure

Parameters

variant The OLE variant to be destroyed.

90

DISPATCH_EVENT built-in

Description

Specifies the dispatch mode for ActiveX control events. By default, all PL/SQL event procedures that are
associated with ActiveX events are restricted. This means that go_item cannot be called from within the
procedure code and OUT parameters are not observed. However, there are instances when the same
event may apply to multiple items and a go_item is necessary. This requires that the event be dispatched
as unrestricted. Using the On-Dispatch-Event trigger, you can call DISPATCH_EVENT to specify the
dispatch mode as either restricted or unrestricted. For more information about working with ActiveX
control events, see Responding to ActiveX Control Events in the online help system.

Syntax
PROCEDURE DISPATCH_EVENT
 (sync NUMBER,
);
PROCEDURE DISPATCH_EVENT
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

sync Specifies the dispatch mode as either restricted (RESTRICTED), or
unrestricted (RESTRICTED_ALLOWED).

DISPATCH_EVENT examples

/*
ON-DISPATCH-EVENT trigger
*/
BEGIN

IF :SYSTEM.CUSTOM_ITEM_EVENT = 4294966696 THEN
/*when event occurs, allow it to apply to different

items */
FORMS4W.DISPATCH_EVENT(RESTRICTED_ALLOWED);

ELSE
/*run the default, that does not allow applying any

other item */
FORMS4W.DISPATCH_EVENT(RESTRICTED);

END IF;
END;

91

DISPLAY_ERROR built-in

Description

Displays the Display Error screen if there is a logged error. When the operator presses a function key
while viewing the Display Error screen, Form Builder redisplays the form. If there is no error to display
when you call this built-in, Form Builder ignores the call and does not display the DISPLAY ERROR
screen.

Syntax
PROCEDURE DISPLAY_ERROR;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

92

DISPLAY_ITEM built-in

Description

Maintained for backward compatibility only. For new applications, you should use the
SET_ITEM_INSTANCE_PROPERTY built-in. DISPLAY_ITEM modifies an item’s appearance by
assigning a specified display attribute to the item. DISPLAY_ITEM has the side-effect of also changing
the appearance of any items that mirror the changed instance. SET_ITEM_INSTANCE_PROPERTY
does not change mirror items.

You can reference any item in the current form.

Any change made by a DISPLAY_ITEM built-in is effective until:

• the same item instance is referenced by another DISPLAY_ITEM built-in, or

• the same item instance is referenced by the SET_ITEM_INSTANCE_PROPERTY built-in (with
VISUAL_ATTRIBUTE property), or

• the instance of the item is removed (e.g., through a CLEAR_RECORD or a query), or

• you modify a record (whose status is NEW), navigate out of the record, then re-enter the record, or

• the current form is exited

Syntax
PROCEDURE DISPLAY_ITEM
 (item_id ITEM,
 attribute VARCHAR2);
PROCEDURE DISPLAY_ITEM
 (item_name VARCHAR2,
 attribute VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

 Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when it
creates the item. The data type of the ID is ITEM.

item_name Specifies the VARCHAR2 string you gave to the item when you created it.

attribute Specifies a named visual attribute that should exist. You can also specify a
valid attribute from your Oracle*Terminal resource file. Form Builder will
search for named visual attribute first. Note: You can specify Normal as
a method for applying the default attributes to an item, but only if your
form does not contain a visual attribute or logical (character mode or
otherwise) called Normal. You can also specify NULL as a method for
returning an item to its initial visual attributes (default, custom, or named).

DISPLAY_ITEM examples

/*
** Built-in: DISPLAY_ITEM

93

** Example: Change the visual attribute of each item in the
** current record.
*/
DECLARE
 cur_itm VARCHAR2(80);
 cur_block VARCHAR2(80) := :System.Cursor_Block;
BEGIN
 cur_itm := Get_Block_Property(cur_block, FIRST_ITEM);
 WHILE (cur_itm IS NOT NULL) LOOP
 cur_itm := cur_block||’.’||cur_itm;
 Display_Item(cur_itm, ’My_Favorite_Named_Attribute’);
 cur_itm := Get_Item_Property(cur_itm, NEXTITEM);
 END LOOP;
END;

94

DOWN built-in

Description

Navigates to the instance of the current item in the record with the next higher sequence number. If
necessary, Form Builder fetches a record. If Form Builder has to create a record, DOWN navigates to
the first navigable item in the record.

Syntax
PROCEDURE DOWN;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

95

DO_KEY built-in

Description

Executes the key trigger that corresponds to the specified built-in subprogram. If no such key trigger
exists, then the specified subprogram executes. This behavior is analogous to pressing the corresponding
function key.

Syntax
PROCEDURE DO_KEY
 (built-in_subprogram_name VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

built-in_subprogram_name Specifies the name of a valid built-in subprogram.

Built-in Key trigger Associated Function Key

BLOCK_MENU Key-MENU [Block Menu]

CLEAR_BLOCK Key-CLRBLK [Clear Block]

CLEAR_FORM Key-CLRFRM [Clear Form]

CLEAR_RECORD Key-CLRREC [Clear Record]

COMMIT_FORM Key-COMMIT [Commit]

COUNT_QUERY Key-CQUERY [Count Query Hits]

CREATE_RECORD Key-CREREC [Insert Record]

DELETE_RECORD Key-DELREC [Delete Record]

DOWN Key-DOWN [Down]

DUPLICATE_ITEM Key-DUP-ITEM [Duplicate Item]

DUPLICATE_RECORD Key-DUPREC [Duplicate Record]

EDIT_TEXTITEM Key-EDIT [Edit]

ENTER Key-ENTER [Enter]

ENTER_QUERY Key-ENTQRY [Enter Query]

EXECUTE_QUERY Key-EXEQRY [Execute Query]

EXIT_FORM Key-EXIT [Exit/Cancel]

HELP Key-HELP [Help]

96

LIST_VALUES Key-LISTVAL [List]

LOCK_RECORD Key-UPDREC [Lock Record]

NEXT_BLOCK Key-NXTBLK [Next Block]

NEXT_ITEM Key-NEXT-ITEM [Next Item]

NEXT_KEY Key-NXTKEY [Next Primary Key Fld]

NEXT_RECORD Key-NXTREC [Next Record]

NEXT_SET Key-NXTSET [Next Set of Records]

PREVIOUS_BLOCK Key-PRVBLK [Previous Block]

PREVIOUS_ITEM Key-PREV-ITEM [Previous Item]

PREVIOUS_RECORD Key-PRVREC [Previous Record]

PRINT Key-PRINT [Print]

SCROLL_DOWN Key-SCRDOWN [Scroll Down]

SCROLL_UP Key-SCRUP [Scroll Up]

UP Key-UP [Up]

DO_KEY restrictions

DO_KEY accepts built-in names only, not key names: DO_KEY(ENTER_QUERY). To accept a
specific key name, use the EXECUTE_TRIGGER built-in: EXECUTE_TRIGGER(’KEY_F11’).

DO_KEY examples

/*
** Built-in: DO_KEY
** Example: Simulate pressing the [Execute Query] key.
*/
BEGIN
 Do_Key(’Execute_Query’);
END;

97

DUMMY_REFERENCE built-in

Description

Provides a mechanism for coding an explicit reference to a bind variable that otherwise would be
referred to only indirectly in a formula (or in a function or procedure called by the formula). Use
DUMMY_REFERENCE to ensure that a formula calculated item (that contains indirect references to
bind variables) will be marked for recalculation by Form Builder.

The expression can be an arbitrary expression of type Char, Number, or Date. Typically the expression
will consist of a single reference to a bind variable.

Note: DUMMY_REFERENCE need not be executed for the referenced bind variable to be recognized
by Form Builder (thereby causing the related formula calculated item to be marked for recalcuation).

Syntax
PROCEDURE DUMMY_REFERENCE(expression);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

DUMMY_REFERENCE restrictions

none

98

DUPLICATE_ITEM built-in

Description

Assigns the current item the same value as the instance of this item in the previous record.

Syntax
PROCEDURE DUPLICATE_ITEM;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

DUPLICATE_ITEM restrictions

A previous record must exist in your current session, or Form
Builder returns error FRM-41803: No previous record to copy
value from.

99

DUPLICATE_RECORD built-in

Description

Copies the value of each item in the record with the next lower sequence number to the corresponding
items in the current record. The current record must not correspond to a row in the database. If it does,
an error occurs.

Note: The duplicate record does not inherit the record status of the source record; instead, its record
status is INSERT.

Syntax
PROCEDURE DUPLICATE_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

DUPLICATE_RECORD restrictions

A previous record must exist in your current session.

DUPLICATE_RECORD examples

/*
** Built-in: DUPLICATE_RECORD;
** Example: Make a copy of the current record and increment
** the "line_sequence" item by one.
*/
DECLARE
 n NUMBER;
BEGIN
 /*
 ** Remember the value of the ’line_sequence’ from the
 ** current record
 */
 n := :my_block.line_sequence;
 /*
 ** Create a new record, and copy all the values from the
 ** previous record into it.
 */
 Create_Record;
 Duplicate_Record;
 /*
 ** Set the new record’s ’line_sequence’ to one more than
 ** the last record’s.
 */
 :my_block.line_sequence := n + 1;
END;

100

EDIT_TEXTITEM built-in

Description

Invokes the Runform item editor for the current text item and puts the form in Edit mode.

Syntax
PROCEDURE EDIT_TEXTITEM;
PROCEDURE EDIT_TEXTITEM
 (x NUMBER,
 y NUMBER);
PROCEDURE EDIT_TEXTITEM
 (x NUMBER,
 y NUMBER,
 width, NUMBER
 height NUMBER);

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

x Specifies the x coordinate on the screen where you want to place the upper
left corner of the pop-up item editor.

y Specifies the y coordinate on the screen where you want to place the upper
left corner of the pop-up item editor.

width Specifies the width of the entire editor window, including buttons.

height Specifies the height of the entire editor window, including buttons.

If you specify a height less than 6 character cells, or its equivalent, Form
Builder sets the height equal to 6.

You can use the optional EDIT_TEXTITEM parameters to specify the location and dimensions of the
pop-up window with which the item editor is associated. If you do not use these parameters, Form
Builder invokes the item editor with its default location and dimensions.

EDIT_TEXTITEM restrictions

• The Width must be at least wide enough to display the buttons at the bottom of the editor window.

EDIT_TEXTITEM examples

/*
** Built-in: EDIT_TEXTITEM
** Example: Determine the x-position of the current item
** then bring up the editor either on the left
** side or right side of the screen so as to not
** cover the item on the screen.
*/
DECLARE
 itm_x_pos NUMBER;

101

BEGIN
 itm_x_pos := Get_Item_Property(:System.Cursor_Item,X_POS);
 IF itm_x_pos > 40 THEN
 Edit_TextItem(1,1,20,8);
 ELSE
 Edit_TextItem(60,1,20,8);
 END IF;
END;

102

ENFORCE_COLUMN_SECURITY built-in

Description

Executes default processing for checking column security on a database column. This built-in is
included primarily for applications that run against a non-ORACLE data source, and use transactional
triggers to replace default Form Builder transaction processing.

Default Check Column Security processing refers to the sequence of events that occurs when Form
Builder enforces column-level security for each block that has the Enforce Column Security block
property set Yes. To enforce column security, Form Builder queries the database to determine the base
table columns to which the current form operator has update privileges. For columns to which the
operator does not have update privileges, Form Builder makes the corresponding base table items in the
form non-updateable by setting the Update Allowed item property to No dynamically. By default, Form
Builder performs this operation at form startup, processing each block in sequence.

For more information, refer to Form Builder Advanced Techniques , Chapter 4, "Connecting to Non-
Oracle Data Sources."

Syntax
PROCEDURE ENFORCE_COLUMN_SECURITY

Built-in Type unrestricted procedure

Enter Query Mode yes

Usage Notes

You can include this built-in subprogram in the On-Column-Security trigger if you intend to augment the
behavior of that trigger rather than completely replace the behavior. For more information, refer to
Chapter , "Triggers," in this manual.

ENFORCE_COLUMN_SECURITY restrictions

Valid only in an On-Column-Security trigger.

103

ENTER built-in

Description

Validates data in the current validation unit. (The default validation unit is Item.)

Syntax
PROCEDURE ENTER;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

ENTER examples

/*
** Built-in: ENTER
** Example: Force Validation to occur before calling another
** form
*/
BEGIN
 Enter;
 IF NOT Form_Success THEN
 RAISE Form_trigger_Failure;
 END IF;
 Call_Form(’newcust’);
END;

104

ENTER_QUERY built-in

Description
The behavior of ENTER_QUERY varies depending on any parameters
you supply.

Syntax
PROCEDURE ENTER_QUERY;
PROCEDURE ENTER_QUERY
 (keyword_one VARCHAR2);
PROCEDURE ENTER_QUERY
 (keyword_two VARCHAR2);
PROCEDURE ENTER_QUERY
 (keyword_one VARCHAR2,
 keyword_two VARCHAR2);
PROCEDURE ENTER_QUERY
 (keyword_one VARCHAR2,
 keyword_two VARCHAR2,
 locking VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode yes (to redisplay the example record from the last query executed in the block)

Parameters
no parameters ENTER_QUERY flushes the current block and puts the
form in Enter Query mode. If there are changes to commit, Form
Builder prompts the operator to commit them during the
ENTER_QUERY process.
keyword_one ENTER_QUERY(ALL_RECORDS) performs the same actions
as ENTER_QUERY except that when EXECUTE_QUERY is invoked, Form
Builder fetches all of the selected records.
keyword_two ENTER_QUERY(FOR_UPDATE) performs the same actions
as ENTER_QUERY except that when EXECUTE_QUERY is invoked, Form
Builder attempts to lock all of the selected records
immediately.
keyword_one/ keyword_two ENTER_QUERY(ALL_RECORDS, FOR_UPDATE)
performs the same actions as ENTER_QUERY except that when
EXECUTE_QUERY is invoked, Form Builder attempts to lock all of
the selected records immediately and fetches all of the selected
records.

locking Can be set to NO_WAIT anytime that you use the FOR_UPDATE
parameter. When you use NO_WAIT, Form Builder displays a dialog to
notify the operator if a record cannot be reserved for update immediately.

Without the NO_WAIT parameter, Form Builder keeps trying to obtain a
lock without letting the operator cancel the process.

Use the NO_WAIT parameter only when running against a data source that
supports this functionality.

105

ENTER_QUERY restrictions

Use the ALL_RECORDS and FOR_UPDATE parameters with caution. Locking and fetching a large
number of rows can result in long delays due to the many resources that must be acquired to accomplish
the task.

ENTER_QUERY examples

/*
** Built-in: ENTER_QUERY
** Example: Go Into Enter-Query mode, and exit the form if
** the user cancels out of enter-query mode.
*/
BEGIN
 Enter_Query;
 /*
 ** Check to see if the record status of the first record
 ** is ’NEW’ immediately after returning from enter-query
 ** mode. It should be ’QUERY’ if at least one row was
 ** returned.
 */

 IF :System.Record_Status = ’NEW’ THEN
 Exit_Form(No_Validate);
 END IF;
END;

106

ERASE built-in

Description

Removes an indicated global variable, so that it no longer exists, and releases the memory associated
with the global variable. Globals always allocate 255 bytes of storage. To ensure that performance is
not impacted more than necessary, always erase any global variable when it is no longer needed.

Syntax
PROCEDURE ERASE
 (global_variable_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

global_variable_name Specifies the name of a valid global variable.

ERASE examples

ERASE(’global.var’);

107

ERROR_CODE built-in

Description

Returns the error number of the Form Builder error.

Syntax
PROCEDURE ERROR_CODE;

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

none

ERROR_CODE examples

/*
** Built-in: ERROR_CODE,ERROR_TEXT,ERROR_TYPE
** Example: Reword certain FRM error messages by checking
** the Error_Code in an ON-ERROR trigger
** trigger: On-Error
*/
DECLARE
 errnum NUMBER := ERROR_CODE;
 errtxt VARCHAR2(80) := ERROR_TEXT;
 errtyp VARCHAR2(3) := ERROR_TYPE;
BEGIN
 IF errnum = 40301 THEN
 Message(’Your search criteria identified no matches...
 Try Again.’);
 ELSIF errnum = 40350 THEN
 Message(’Your selection does not correspond to an
employee.’);
 ELSE
 /*
 ** Print the Normal Message that would have appeared
 **
 ** Default Error Message Text Goes Here
 */
 Message(errtyp||’-’||TO_CHAR(errnum)||’: ’||errtxt);
 RAISE Form_trigger_Failure;
 END IF;
END;

108

ERROR_TEXT built-in

Description

Returns the message text of the Form Builder error.

Syntax
FUNCTION ERROR_TEXT;

Built-in Type unrestricted function

Enter Query Mode yes

Description

Returns the message text of the Form Builder error.

Parameters

none

Usage Notes

You can use this function to test error messages during exception handling subprograms.

ERROR_TEXT examples

/*
** Built-in: ERROR_CODE,ERROR_TEXT,ERROR_TYPE
** Example: Reword certain FRM error messages by checking
** the Error_Code in an ON-ERROR trigger
** trigger: On-Error
*/
DECLARE
 errnum NUMBER := ERROR_CODE;
 errtxt VARCHAR2(80) := ERROR_TEXT;
 errtyp VARCHAR2(3) := ERROR_TYPE;
BEGIN
 IF errnum = 40301 THEN
 Message(’Your search criteria identified no matches...
 Try Again.’);
 ELSIF errnum = 40350 THEN
 Message(’Your selection does not correspond to an
employee.’);
 ELSE
 /*
 ** Print the Normal Message that would have appeared
 **
 ** Default Error Message Text Goes Here
 */
 Message(errtyp||’-’||TO_CHAR(errnum)||’: ’||errtxt);
 RAISE Form_trigger_Failure;
 END IF;

109

ERROR_TYPE built-in

Description

Returns the error message type for the action most recently performed during the current Runform
session.

Syntax
FUNCTION ERROR_TYPE;

Built-in Type unrestricted function

Returns ERROR_TYPE returns one of the following values for the error message type:

FRM Indicates an Form Builder error.

ORA Indicates an ORACLE error.

Enter Query Mode yes

Parameters

none

Usage Notes

You can use this function to do one of the following:

• test the outcome of a user action, such as pressing a key, to determine processing within an On-Error
trigger

• test the outcome of a built-in to determine further processing within any trigger

To get the correct results in either type of test, you must perform the test immediately after the action
executes, before any other action occurs.

ERROR_TYPE examples

/*
** Built-in: ERROR_CODE,ERROR_TEXT,ERROR_TYPE
** Example: Reword certain FRM error messages by checking
** the Error_Code in an ON-ERROR trigger
** trigger: On-Error
*/
DECLARE
 errnum NUMBER := ERROR_CODE;
 errtxt VARCHAR2(80) := ERROR_TEXT;
 errtyp VARCHAR2(3) := ERROR_TYPE;
BEGIN
 IF errnum = 40107 THEN
 Message(’You cannot navigate to this non-displayed item...
 Try again.’);
 ELSIF errnum = 40109 THEN
 Message(’If you want to leave this block,
 you must first cancel Enter Query mode.’);
 ELSE
 /*

110

 ** Print the Normal Message that would have appeared
 **
 ** Default Error Message Text Goes Here
 */
 Message(errtyp||’-’||TO_CHAR(errnum)||’: ’||errtxt);
 RAISE Form_trigger_Failure;
 END IF;
END;

111

EXEC_VERB built-in

Description

Causes the OLE server to execute the verb identified by the verb name or the verb index. An OLE verb
specifies the action that you can perform on an OLE object.

Syntax
PROCEDURE EXEC_VERB
 (item_id Item,
 verb_index VARCHAR2);
PROCEDURE EXEC_VERB
 (item_id Item,
 verb_name VARCHAR2);
PROCEDURE EXEC_VERB
 (item_name VARCHAR2,
 verb_index VARCHAR2);
PROCEDURE EXEC_VERB
 (item_name VARCHAR2,
 verb_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

verb_index Specifies the numeric index of a verb. Use the
Forms_OLE.Find_OLE_Verb built-in to obtain this value. The data type
of index is VARCHAR2 string.

verb_name Specifies the name of a verb. Use the Forms_OLE.Get_Verb_Name built-
in to obtain this value. The data type of the name is VARCHAR2 char.

EXEC_VERB restrictions

Valid only on Microsoft Windows and Macintosh.

EXEC_VERB examples

/*
** Built-in: EXEC_VERB
** Example: Deactivates the OLE server associated with the
object
** in the OLE container.
** trigger: When-Button-Pressed
*/
DECLARE

112

 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
 verb_cnt_str VARCHAR(20);
 verb_cnt NUMBER;
 verb_name VARCHAR(20);
 loop_cntr NUMBER;
BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN
 message(’No such item: ’||item_name);
 ELSE
 verb_cnt_str := Forms_OLE.Get_Verb_Count(item_id);
 verb_cnt := TO_NUMBER(verb_cnt_str);
 FOR loop_cntr in 1..verb_cnt LOOP
 verb_name := Forms_OLE.Get_Verb_Name(item_id,loop_cntr);
 IF verb_name = ’Edit’ THEN
 EXEC_VERB(item_id,verb_name);
 END IF;
 END LOOP;
 END IF;
END;

113

EXECUTE_QUERY built-in

Description

Flushes the current block, opens a query, and fetches a number of selected records. If there are changes
to commit, Form Builder prompts the operator to commit them before continuing EXECUTE_QUERY
processing.

Syntax
PROCEDURE EXECUTE_QUERY;
PROCEDURE EXECUTE_QUERY
 (keyword_one VARCHAR2);
PROCEDURE EXECUTE_QUERY
 (keyword_two VARCHAR2);
PROCEDURE EXECUTE_QUERY
 (keyword_one VARCHAR2,
 keyword_two VARCHAR2);
PROCEDURE EXECUTE_QUERY
 (keyword_one VARCHAR2,
 keyword_two VARCHAR2,
 locking VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode yes

Parameters
no parameters EXECUTE_QUERY flushes the current block, opens a
query, and fetches a number of selected records.
keyword_one EXECUTE_QUERY(ALL_RECORDS) performs the same
actions as EXECUTE_QUERY except that Form Builder fetches all of
the selected records.
keyword_two EXECUTE_QUERY(FOR_UPDATE) performs the same
actions as EXECUTE_QUERY except that Form Builder attempts to
lock all of the selected records immediately.
keyword_one/ keyword_two EXECUTE_QUERY(ALL_RECORDS, FOR_UPDATE)
performs the same actions as EXECUTE_QUERY except that Form
Builder attempts to lock all of the selected records immediately
and fetches all of the selected records.

locking Can be set to NO_WAIT anytime that you use the FOR_UPDATE
parameter. When you use NO_WAIT, Form Builder displays a dialog to
notify the operator if a record cannot be reserved for update immediately.

Without the NO_WAIT parameter, Form Builder keeps trying to obtain a
lock without letting the operator cancel the process.

Use the NO_WAIT parameter only when running against a data source that
supports this functionality.

114

EXECUTE_QUERY restrictions

Oracle Corporation recommends that you use the ALL_RECORDS and FOR_UPDATE parameters with
caution. Fetching a large number of rows could cause a long delay. Locking a large number of rows at
once requires many resources.

EXECUTE_QUERY examples

/*
** Built-in: EXECUTE_QUERY
** Example: Visit several blocks and query their contents,
** then go back to the block where original block.
*/
DECLARE
 block_before VARCHAR2(80) := :System.Cursor_Block;
BEGIN
 Go_Block(’Exceptions_List’);
 Execute_Query;
 Go_Block(’User_Profile’);
 Execute_Query;
 Go_Block(’Tasks_Competed’);
 Execute_Query;
 Go_Block(block_before);
END;

115

EXECUTE_TRIGGER built-in

Description

EXECUTE_TRIGGER executes an indicated trigger.

Syntax
PROCEDURE EXECUTE_TRIGGER
 (trigger_name VARCHAR2);

Built-in Type restricted procedure (if the user-defined trigger calls any restricted built-in subprograms)

Enter Query Mode yes

Note: EXECUTE_TRIGGER is not the preferred method for executing a user-named trigger: writing a
user-named subprogram is the preferred method.

Parameters

trigger_name Specifies the name of a valid user-named trigger.

Usage Notes

Because you cannot specify scope for this built-in, Form Builder always looks for the trigger starting at
the lowest level, then working up.

To execute a built-in associated with a key, use the DO_KEY built-in instead of EXECUTE_TRIGGER.
For example, rather than:

Execute_trigger (’KEY-NEXT-ITEM’);

Use instead:
Do_Key(’NEXT_ITEM’);

EXECUTE_TRIGGER restrictions

Although you can use EXECUTE_TRIGGER to execute a built-in trigger as well as a user-named
trigger, this usage is not recommended, because the default fail behavior follows a different rule than
when invoked automatically by Form Builder as part of default processing. For example, in default
processing, if the When-Validate-Item trigger fails, it raises an exception and stops the processing of the
form. However, if the When-Validate-Item trigger fails when it is invoked by EXECUTE_TRIGGER,
that failure does not stop the processing of the form, but only sets Form_Failure to FALSE on return
from the EXECUTE_TRIGGER built-in.

EXECUTE_TRIGGER examples

/*
** Built-in: EXECUTE_TRIGGER
** Example: Execute a trigger dynamically from the PL/SQL
** code of a Menu item, depending on a menu
** checkbox.
*/
DECLARE
 Cur_Setting VARCHAR2(5);

116

 Advanced_Mode BOOLEAN;
BEGIN
 /*
 ** Check whether the ’Advanced’ menu item under the
 ** ’Preferences’ submenu is checked on or not.
 */
 Cur_Setting := Get_Menu_Item_Property
 (’Preferences.Advanced’,CHECKED);
 /*
 ** If it is checked on, then Advanced_Mode is boolean
 ** true.
 */
 Advanced_Mode := (Cur_Setting = ’TRUE’);
 /*
 ** Run the appropriate trigger from the underlying form
 **
 */
 IF Advanced_Mode THEN
 Execute_trigger(’Launch_Advanced_Help’);
 ELSE
 Execute_trigger(’Launch_Beginner_Help’);
 END IF;
END;

117

EXIT_FORM built-in

Description

Provides a means to exit a form, confirming commits and specifying rollback action.

• In most contexts, EXIT_FORM navigates outside the form. If there are changes in the current form
that have not been posted or committed, Form Builder prompts the operator to commit before
continuing EXIT_FORM processing.

• If the operator is in Enter Query mode, EXIT_FORM navigates out of Enter Query mode, not out of
the form.

• During a CALL_INPUT, EXIT_FORM terminates the CALL_INPUT function.

Syntax
PROCEDURE EXIT_FORM;
PROCEDURE EXIT_FORM
 (commit_mode NUMBER);
PROCEDURE EXIT_FORM
 (commit_mode NUMBER,
 rollback_mode NUMBER);

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

commit_mode ASK_COMMIT Form Builder prompts the operator to commit the
changes during EXIT_FORM processing.

However, if RECORD_STATUS is INSERT but the record is not valid,
Form Builder instead asks the operator if the form should be closed. If the
operator says yes, the changes are rolled back before the form is closed.

DO_COMMIT Form Builder validates the changes, performs a commit,
and exits the current form without prompting the operator.

NO_COMMIT Form Builder validates the changes and exits the current
form without performing a commit or prompting the operator.

NO_VALIDATE Form Builder exits the current form without validating
the changes, committing the changes, or prompting the operator.

rollback_mode TO_SAVEPOINT Form Builder rolls back all uncommitted changes
(including posted changes) to the current form’s savepoint.

FULL_ROLLBACK Form Builder rolls back all uncommitted changes
(including posted changes) that were made during the current Runform
session. You cannot specify a FULL_ROLLBACK from a form that is
running in post-only mode. (Post-only mode can occur when your form
issues a call to another form while unposted records exist in the calling
form. To prevent losing the locks issued by the calling form, Form Builder
prevents any commit processing in the called form.)

118

NO_ROLLBACK Form Builder exits the current form without rolling
back to a savepoint. You can leave the top level form without performing a
rollback, which means that you retain the locks across a NEW_FORM
operation. These locks can also occur when running Form Builder from an
external 3GL program. The locks remain in effect when Form Builder
returns control to the program.

Usage Notes

Because the default parameters of EXIT_FORM are ASK_COMMIT for commit_mode and
TO_SAVEPOINT for rollback_mode, invoking EXIT_FORM without specifying any parameters in
some contexts may produce undesired results. For example, if the form is in POST only mode and
EXIT_FORM is invoked without parameters, the user will be prompted to commit the changes.
However, regardless of the user’s input at that prompt, the default rollback_mode of TO_SAVEPOINT
rolls back the changes to the form despite a message confirming that changes have been made. To avoid
conflicts explicitly specify parameters.

EXIT_FORM examples

/*
** Built-in: EXIT_FORM and POST
** Example: Leave the called form, without rolling back the
** posted changes so they may be posted and
** committed by the calling form as part of the
** same transaction.
*/
BEGIN
 Post;

 /*
 ** Form_Status should be ’QUERY’ if all records were
 ** successfully posted.
 */
 IF :System.Form_Status <> ’QUERY’ THEN
 Message(’An error prevented the system from posting
changes’);
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** By default, Exit_Form asks to commit and performs a
 ** rollback to savepoint. We’ve already posted, so we do
 ** not need to commit, and we don’t want the posted changes
 ** to be rolled back.
 */
 Exit_Form(NO_COMMIT, NO_ROLLBACK);
END;

119

FETCH_RECORDS built-in

Description

When called from an On-Fetch trigger, initiates the default Form Builder processing for fetching records
that have been identified by SELECT processing.

Syntax
PROCEDURE FETCH_RECORDS;

Built-in Type unrestricted procedure

Enter Query Mode no

This built-in is included primarily for applications that will run against a non-ORACLE data source.

Parameters

none

FETCH_RECORDS examples

/*
** Built-in: FETCH_RECORDS
** Example: Perform Form Builder record fetch processing
during
** query time. Decide whether to use this built-in
** or a user exit based on a global flag setup at
** startup by the form, perhaps based on a
** parameter. The block property RECORDS_TO_FETCH
** allows you to know how many records Form Builder
** is expecting.
** trigger: On-Fetch
*/
DECLARE
 numrecs NUMBER;
BEGIN
 /*
 ** Check the global flag we set during form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 /*
 ** How many records is the form expecting us to
 ** fetch?
 */
 numrecs := Get_Block_Property(’EMP’,RECORDS_TO_FETCH);
 /*
 ** Call user exit to determine if there are any
 ** more records to fetch from its cursor. User Exit
 ** will return failure if there are no more
 ** records to fetch.
 */
 User_Exit(’my_fetch block=EMP remaining_records’);
 /*
 ** If there ARE more records, then loop thru
 ** and create/populate the proper number of queried
 ** records. If there are no more records, we drop through
 ** and do nothing. Form Builder takes this as a signal that

120

 ** we are done.
 */
 IF Form_Success THEN
 /* Create and Populate ’numrecs’ records */
 FOR j IN 1..numrecs LOOP
 Create_Queried_Record;
 /*
 ** User exit returns false if there are no more
 ** records left to fetch. We break out of the
 ** if we’ve hit the last record.
 */
 User_Exit(’my_fetch block=EMP get_next_record’);
 IF NOT Form_Success THEN
 EXIT;
 END IF;
 END LOOP;
 END IF;
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Fetch_Records;
 END IF;
END;

121

FIND_ALERT built-in

Description

Searches the list of valid alerts in Form Builder. When the given alert is located, the subprogram returns
an alert ID. You must return the ID to an appropriately typed variable. Define the variable with a type
of Alert.

Syntax
FUNCTION FIND_ALERT
 (alert_name VARCHAR2);

Built-in Type unrestricted function

Returns Alert

Enter Query Mode yes

Parameters

alert_name Specifies the VARCHAR2 alert name.

FIND_ALERT examples

/*
** Built-in: FIND_ALERT
** Example: Show a user-warning alert. If the user presses
** the OK button, then make REALLY sure they want
** to continue with another alert.
*/
DECLARE
 al_id Alert;
 al_button NUMBER;
BEGIN
 al_id := Find_Alert(’User_Warning’);
 IF Id_Null(al_id) THEN
 Message(’User_Warning alert does not exist’);
 RAISE Form_trigger_Failure;
 ELSE
 /*
 ** Show the warning alert
 */
 al_button := Show_Alert(al_id);
 /*
 ** If user pressed OK (button 1) then bring up another
 ** alert to confirm -- button mappings are specified
 ** in the alert design
 */
 IF al_button = ALERT_BUTTON1 THEN
 al_id := Find_Alert(’Are_You_Sure’);

 IF Id_Null(al_id) THEN
 Message(’The alert named: Are you sure? does not
exist’);
 RAISE Form_trigger_Failure;
 ELSE
 al_button := Show_Alert(al_id);

122

 IF al_button = ALERT_BUTTON2 THEN
 Erase_All_Employee_Records;
 END IF;
 END IF;
 END IF;
 END IF;
END;

123

FIND_BLOCK built-in

Description

Searches the list of valid blocks and returns a unique block ID. You must define an appropriately typed
variable to accept the return value. Define the variable with a type of Block.

Syntax
FUNCTION FIND_BLOCK
 (block_name VARCHAR2);

Built-in Type unrestricted function

Returns Block

Enter Query Mode yes

Parameters

block_name Specifies the VARCHAR2 block name.

FIND_BLOCK examples

/*
** Built-in: FIND_BLOCK
** Example: Return true if a certain blockname exists
*/
FUNCTION Does_Block_Exist(bk_name VARCHAR2)
RETURN BOOLEAN IS
 bk_id Block;
BEGIN
 /*
 ** Try to locate the block by name
 */
 bk_id := Find_Block(bk_name);
 /*
 ** Return the boolean result of whether we found it.
 ** Finding the block means that its bk_id will NOT be NULL
 */
 RETURN (NOT Id_Null(bk_id));
END;

124

FIND_CANVAS built-in

Description

Searches the list of canvases and returns a canvas ID when it finds a valid canvas with the given name.
You must define an appropriately typed variable to accept the return value. Define the variable with a
type of Canvas.

Syntax
FUNCTION FIND_CANVAS
 (canvas_name VARCHAR2);

Built-in Type unrestricted function

Returns Canvas

Enter Query Mode yes

Parameters

canvas_name Specifies the VARCHAR2 canvas name you gave the canvas when defining
it.

FIND_CANVAS examples

DECLARE
 my_canvas Canvas;
BEGIN
 my_canvas := Find_Canvas(’my_canvas’);
END;

125

FIND_COLUMN built-in

Description

Searches the list of record group columns and returns a groupcolumn ID when it finds a valid column
with the given name. You must define an appropriately typed variable to accept the return value. Define
the variable with a type of GroupColumn.

Syntax
FUNCTION FIND_COLUMN
 (recordgroup.groupcolumn_name VARCHAR2);

Built-in Type unrestricted function

Returns GroupColumn

Enter Query Mode yes

Parameters

recordgroup. groupcolumn_name Specifies the fully qualified VARCHAR2 record group column name.

FIND_COLUMN examples

/*
** Built-in: FIND_COLUMN
** Example: Get column IDs for three columns in a record
** group before performing multiple Get’s or Set’s
** of the record group’s column values
*/
PROCEDURE Record_Machine_Stats(mach_number NUMBER,
 pph NUMBER,
 temperature NUMBER) IS
 rg_id RecordGroup;
 col1 GroupColumn;
 col2 GroupColumn;
 col3 GroupColumn;
 row_no NUMBER;
BEGIN
 rg_id := Find_Group(’machine’);
 col1 := Find_Column(’machine.machine_no’);
 col2 := Find_Column(’machine.parts_per_hour’);
 col3 := Find_Column(’machine.current_temp’);
 /*
 ** Add a new row at the bottom of the ’machine’ record
 ** group, and make a note of what row number we just
 ** added.
 */
 Add_Group_Row(rg_id, END_OF_GROUP);
 row_no := Get_Group_Row_Count(rg_id);
 Set_Group_Number_Cell(col1, row_no, mach_number);
 Set_Group_Number_Cell(col2, row_no, pph);
 Set_Group_Number_Cell(col3, row_no, temperature);
END;

126

FIND_EDITOR built-in

Description

Searches the list of editors and returns an editor ID when it finds a valid editor with the given name. You
must define an appropriately typed variable to accept the return value. Define the variable with a type of
Editor.

Syntax
FUNCTION FIND_EDITOR
 (editor_name VARCHAR2);

Built-in Type unrestricted function

Returns Editor

Enter Query Mode yes

Parameters

editor_name Specifies a valid VARCHAR2 editor name.

FIND_EDITOR examples

/*
** Built-in: FIND_EDITOR
** Example: Find and show a user-defined editor
*/
DECLARE
 ed_id Editor;
 status BOOLEAN;
BEGIN
 ed_id := Find_Editor(’Happy_Edit_Window’);

 IF NOT Id_Null(ed_id) THEN
 Show_Editor(ed_id, NULL, :emp.comments, status);
 ELSE
 Message(’Editor "Happy_Edit_Window" not found’);
 RAISE Form_trigger_Failure;
 END IF;
END;

127

FIND_FORM built-in

Description

Searches the list of forms and returns a form module ID when it finds a valid form with the given name.
You must define an appropriately typed variable to accept the return value. Define the variable with a
type of Formmodule.

Syntax
FUNCTION FIND_FORM
 (formmodule_name VARCHAR2);

Built-in Type unrestricted function

Returns FormModule

Enter Query Mode yes

Parameters

formmodule_name Specifies a valid VARCHAR2 form name.

FIND_FORM examples

/*
** Built-in: FIND_FORM
** Example: Find a form’s Id before inquiring about several
** of its properties
*/
DECLARE
 fm_id FormModule;
 tmpstr VARCHAR2(80);
BEGIN
 fm_id := Find_Form(:System.Current_Form);
 tmpstr := Get_Form_Property(fm_id,CURSOR_MODE);
 tmpstr :=
tmpstr||’,’||Get_Form_Property(fm_id,SAVEPOINT_MODE);
 Message(’Form is configured as: ’||tmpstr);
END;

128

FIND_GROUP built-in

Description

Searches the list of record groups and returns a record group ID when it finds a valid group with the
given name. You must define an appropriately typed variable to accept the return value. Define the
variable with a type of RecordGroup.

Syntax
FUNCTION FIND_GROUP
 (recordgroup_name VARCHAR2);

Built-in Type unrestricted function

Returns RecordGroup

Enter Query Mode yes

Parameters

recordgroup_name Specifies the valid VARCHAR2 record group name.

FIND_GROUP restrictions

Performance of this function depends upon the number of record groups.

FIND_GROUP examples

/*
** Built-in: FIND_GROUP
** Example: See CREATE_GROUP and DELETE_GROUP_ROW
*/

129

FIND_ITEM built-in

Description

Searches the list of items in a given block and returns an item ID when it finds a valid item with the given
name. You must define an appropriately typed variable to accept the return value. Define the variable
with a type of Item.

Syntax
FUNCTION FIND_ITEM
 (block.item_name VARCHAR2);

Built-in Type unrestricted function

Returns Item

Enter Query Mode yes

Parameters

block_name. item_name Specifies the fully qualified item name. The data type of the name is
VARCHAR2.

FIND_ITEM examples

/*
** Built-in: FIND_ITEM
** Example: Find an item’s Id before setting several
** of its properties.
*/
PROCEDURE Hide_an_Item(item_name VARCHAR2, hide_it BOOLEAN) IS
 it_id Item;
BEGIN
 it_id := Find_Item(item_name);
 IF Id_Null(it_id) THEN
 Message(’No such item: ’||item_name);
 RAISE Form_trigger_Failure;
 ELSE
 IF hide_it THEN
 Set_Item_Property(it_id,VISIBLE,PROPERTY_FALSE);
 ELSE
 Set_Item_Property(it_id,VISIBLE,PROPERTY_TRUE);
 Set_Item_Property(it_id,ENABLED,PROPERTY_TRUE);
 Set_Item_Property(it_id,NAVIGABLE,PROPERTY_TRUE);
 END IF;
 END IF;
END;

130

FIND_LOV built-in

Description

Searches the list of LOVs and returns an LOV ID when it finds a valid LOV with the given name. You
must define an appropriately typed variable to accept the return value. Define the variable with a type of
LOV.

Syntax
FUNCTION FIND_LOV
 (LOV_name VARCHAR2);

Built-in Type unrestricted function

Returns LOV

Enter Query Mode yes

Parameters

LOV_name Specifies the valid VARCHAR2 LOV name.

FIND_LOV examples

/*
** Built-in: FIND_LOV
** Example: Determine if an LOV exists before showing it.
*/
DECLARE
 lv_id LOV;
 status BOOLEAN;
BEGIN
 lv_id := Find_LOV(’My_Shared_LOV’);
 /*
 ** If the ’My_Shared_LOV’ is not part of the current form,
 ** then use the ’My_Private_LOV’ instead.
 */
 IF Id_Null(lv_id) THEN
 lv_id := Find_LOV(’My_Private_LOV’);
 END IF;
 status := Show_LOV(lv_id,10,20);
END;

131

FIND_MENU_ITEM built-in

Description

Searches the list of menu items and returns a menu item ID when it finds a valid menu item with the
given name. You must define an appropriately typed variable to accept the return value. Define the
variable with a type of MenuItem.

Syntax
FUNCTION FIND_MENU_ITEM
 (menu_name.menu_item_name VARCHAR2);

Built-in Type unrestricted function

Returns MenuItem

Enter Query Mode yes

Parameters

menu_name. menu_item_name Specifies a valid fully-qualified VARCHAR2 menu item name.

FIND_MENU_ITEM examples

/*
** Built-in: FIND_MENU_ITEM
** Example: Find the id of a menu item before setting
** multiple properties
*/
PROCEDURE Toggle_AutoCommit_Mode IS
 mi_id MenuItem;
 val VARCHAR2(10);
BEGIN
 mi_id := Find_Menu_Item(’Preferences.AutoCommit’);
 /*
 ** Determine the current checked state of the AutoCommit
 ** menu checkbox item
 */
 val := Get_Menu_Item_Property(mi_id,CHECKED);
 /*
 ** Toggle the checked state
 */
 IF val = ’TRUE’ THEN
 Set_Menu_Item_Property(mi_id,CHECKED,PROPERTY_FALSE);
 ELSE
 Set_Menu_Item_Property(mi_id,CHECKED,PROPERTY_TRUE);
 END IF;
END;

132

FIND_OLE_VERB built-in

Description

Returns an OLE verb index. An OLE verb specifies the action that you can perform on an OLE object,
and each OLE verb has a corresponding OLE verb index. The OLE verb index is returned as a
VARCHAR2 string and must be converted to NUMBER when used in FORMS_OLE.EXE_VERB. You
must define an appropriately typed variable to accept the return value.

Syntax
FUNCTION FIND_OLE_VERB
 (item_id Item,
 verb_name VARCHAR2);
FUNCTION FIND_OLE_VERB
 (item_name VARCHAR2,
 verb_name VARCHAR2);

Returns VARCHAR2

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

verb_name Specifies the name of an OLE verb. An OLE verb specifies the action that
you can perform on an OLE object. Use the Forms_OLE.Get_Verb_Name
built-in to obtain this value. The data type of the name is VARCHAR2
string.

FIND_OLE_VERB restrictions

Valid only on Microsoft Windows and Macintosh.

FIND_OLE_VERB examples

/*
** Built-in: EXEC_VERB
** Example: Finds an OLE verb index for use with the
** Forms_OLE.Exec_Verb built-in.
** trigger: When-Button-Pressed
*/
DECLARE
 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
 verb_index_str VARCHAR(20);
 verb_index NUMBER;

133

BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN
 message(’No such item: ’||item_name);
 ELSE
 verb_index_str := Forms_OLE.Find_OLE_Verb(item_id,’Edit’);
 verb_index := TO_NUMBER(verb_index_str);
 Forms_OLE.Exec_Verb(item_id,verb_index);
 END IF;
END;

134

FIND_RELATION built-in

Description

Searches the list of relations and returns a relation ID when it finds a valid relation with the given name.
You must define an appropriately typed variable to accept the return value. Define the variable with a
type of Relation.

Syntax
FUNCTION FIND_RELATION
 (relation_name VARCHAR2);

Built-in Type unrestricted function

Returns Relation

Enter Query Mode yes

Parameters

relation_name Specifies a valid VARCHAR2 relation name.

FIND_RELATION examples

/*
** Built-in: FIND_RELATION
** Example: Find the id of a relation before inquiring about
** multiple properties
*/
FUNCTION Detail_of(Relation_Name VARCHAR2)
RETURN VARCHAR2 IS
 rl_id Relation;
BEGIN
 rl_id := Find_Relation(Relation_Name);

 /*
 ** Signal error if relation does not exist
 */
 IF Id_Null(rl_id) THEN
 Message(’Relation ’||Relation_Name||’ does not exist.’);
 RAISE Form_trigger_Failure;
 ELSE
 RETURN Get_Relation_Property(rl_id,DETAIL_NAME);
 END IF;
END;

135

FIND_REPORT_OBJECT built-in

Description

Returns the report_id for a specified report. You can use this ID as a parameter for other built-ins, such
as RUN_REPORT_OBJECT .

Syntax
FUNCTION FIND_REPORT_OBJECT
 (report_name VARCHAR2
);

Built-in Type unrestricted procedure

Returns report_id of data type REPORT

Enter Query Mode yes

Parameters

report_name Specifies the unique name of the report to be found.

•

FIND_REPORT_OBJECT examples

DECLARE
repid REPORT_OBJECT;
v_rep VARCHAR2(100);

BEGIN
repid := find_report_object(’report4’);
v_rep := RUN_REPORT_OBJECT(repid);
....

END;

136

FIND_TAB_PAGE built-in

Description

Searches the list of tab pages in a given tab canvas and returns a tab page ID when it finds a valid tab
page with the given name. You must define a variable of type TAB_PAGE to accept the return value.

Syntax
FUNCTION FIND_TAB_PAGE
 (tab_page_name VARCHAR2);

Built-in Type unrestricted function

Returns tab_page

Enter Query Mode yes

Parameters

tab_page_name The unique tab page name. Datatype is VARCHAR2. (Note: if multiple
tab canvases have tab pages with identical names, you must provide a
fully-qualified name for the tab page (i.e.,
MY_TAB_CVS.TAB_PAGE_1).

FIND_TAB_PAGE examples

/* Use FIND_TAB_PAGE to find the ID of the top-most tab
** page on tab canvas TAB_PAGE_1, then use the ID to set
** properties of the tab page:
*/
DECLARE
 tp_nm VARCHAR2(30);
 tp_id TAB_PAGE;

BEGIN
 tp_nm := GET_CANVAS_PROPERTY(’tab_page_1’, topmost_tab_page);
 tp_id := FIND_TAB_PAGE(tp_nm);
 SET_TAB_PAGE_PROPERTY(tp_id, visible, property_true);
 SET_TAB_PAGE_PROPERTY(tp_id, label, ’Order Info’);
END;

137

FIND_TIMER built-in

Description

Searches the list of timers and returns a timer ID when it finds a valid timer with the given name. You
must define an appropriately typed variable to accept the return value. Define the variable with a type of
Timer.

Syntax
FUNCTION FIND_TIMER
 (timer_name VARCHAR2);

Built-in Type unrestricted function

Returns Timer

Enter Query Mode yes

Parameters

timer_name Specifies a valid VARCHAR2 timer name.

FIND_TIMER examples

/*
** Built-in: FIND_TIMER
** Example: If the timer exists, reset it. Otherwise create
** it.
*/
PROCEDURE Reset_Timer_Interval(Timer_Name VARCHAR2,
 Timer_Intv NUMBER) IS
 tm_id Timer;
 tm_interval NUMBER;
BEGIN
 /*
 ** User gives the interval in seconds, the timer subprograms
 ** expect milliseconds
 */
 tm_interval := 1000 * Timer_Intv;
 /* Lookup the timer by name */
 tm_id := Find_Timer(Timer_Name);
 /* If timer does not exist, create it */
 IF Id_Null(tm_id) THEN
 tm_id := Create_Timer(Timer_Name,tm_interval,NO_REPEAT);
 /*
 ** Otherwise, just restart the timer with the new interval
 */
 ELSE
 Set_Timer(tm_id,tm_interval,NO_REPEAT);
 END IF;
END;

138

FIND_TREE_NODE built-in

Description

Finds the next node in the tree whose label or value matches the search string.

Syntax
FUNCTION FIND_TREE_NODE
 (item_name VARCHAR2,
 search_string VARCHAR2,
 search_type NUMBER,
 search_by NUMBER,
 search_root NODE,
 start_point NODE);
FUNCTION FIND_TREE_NODE
 (item_id ITEM,
 search_string VARCHAR2,
 search_type NUMBER,
 search_by NUMBER,
 search_root NODE,
 start_point NODE);

Built-in Type unrestricted function

Returns NODE

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

search_strin
g

Specifies the VARCHAR2 search string.

search_type Specifies the NUMBER search type. Possible values are:

FIND_NEXT

FIND_NEXT_CHILD Searches just the children of the
search_root node.

search_by Specifies the NUMBER to search by. Possible values
are:

NODE_LABEL

NODE_VALUE

139

search_root Specifies the root of the search tree.

start_point Specifies the starting point in the NODE search.

FIND_TREE_NODE examples

/*
** Built-in: FIND_TREE_NODE
*/
-- This code finds a node with a label of "Doran"
-- within the subtree beginning with the a node
-- with a label of "Zetie".

DECLARE
 htree ITEM;
 find_node Ftree.NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Find the node with a label "Zetie".
 find_node := Ftree.Find_Tree_Node(htree, ’Zetie’,
Ftree.FIND_NEXT,
 Ftree.NODE_LABEL, Ftree.ROOT_NODE,
Ftree.ROOT_NODE);

 -- Find the node with a label "Doran"
 -- starting at the first occurance of "Zetie".
 find_node := Ftree.Find_Tree_Node(htree, ’Doran’,
Ftree.FIND_NEXT,
 Ftree.NODE_LABEL, find_node, find_node);

 IF NOT Ftree.ID_NULL(find_node) then
 ...
 END IF;
END;

140

FIND_VA built-in

Description

Searches for the visual attributes of an item in a given block and returns the value of that attribute as a
text string.

Syntax
FUNCTION FIND_VA
 (va_name PROPERTY);

Built-in Type unrestricted function

Returns Visual Attribute

Enter Query Mode yes

Parameters

va_name The name you gave the visual attribute when you created
it. The data type is VARCHAR2.

141

FIND_VIEW built-in

Description

Searches the list of canvases and returns a view ID when it finds a valid canvas with the given name.
You must define an appropriately typed variable to accept the return value. Define the variable with a
type of ViewPort.

Syntax
FUNCTION FIND_VIEW
 (viewcanvas_name VARCHAR2);

Built-in Type unrestricted function

Returns ViewPort

Enter Query Mode yes

Parameters

viewcanvas_name Specifies the VARCHAR2 name of the canvas.

FIND_VIEW examples

/*
** Built-in: FIND_VIEW
** Example: Change the visual attribute and display position
** of a stacked view before making it visible to
** the user.
*/
DECLARE
 vw_id ViewPort;
BEGIN
 vw_id := Find_View(’Sales_Summary’);
 Set_Canvas_Property(’Sales_Summary’, VISUAL_ATTRIBUTE,
 ’Salmon_On_Yellow’);
 Set_View_Property(vw_id, VIEWPORT_X_POS, 30);
 Set_View_Property(vw_id, VIEWPORT_Y_POS, 5);
 Set_View_Property(vw_id, VISIBLE, PROPERTY_TRUE);
END;

142

FIND_WINDOW built-in

Description

Searches the list of windows and returns a window ID when it finds a valid window with the given name.
You must define an appropriately typed variable to accept the return value. Define the variable with a
type of Window.

Syntax
FUNCTION FIND_WINDOW
 (window_name VARCHAR2);

Built-in Type unrestricted function

Returns Window

Enter Query Mode yes

Parameters

window_name Specifies the valid VARCHAR2 window name.

FIND_WINDOW examples

/*
** Built-in: FIND_WINDOW
** Example: Anchor the upper left corner of window2 at the
** bottom right corner of window1.
*/
PROCEDURE Anchor_Bottom_Right(Window2 VARCHAR2, Window1
VARCHAR2) IS
 wn_id1 Window;
 wn_id2 Window;
 x NUMBER;
 y NUMBER;
 w NUMBER;
 h NUMBER;
BEGIN
 /* ** Find Window1 and get its (x,y) position, width,
 ** and height.
 */
 wn_id1 := Find_Window(Window1);
 x := Get_Window_Property(wn_id1,X_POS);
 y := Get_Window_Property(wn_id1,Y_POS);
 w := Get_Window_Property(wn_id1,WIDTH);
 h := Get_Window_Property(wn_id1,HEIGHT);
 /*
 ** Anchor Window2 at (x+w,y+h)
 */
 wn_id2 := Find_Window(Window2);
 Set_Window_Property(wn_id2,X_POS, x+w);
 Set_Window_Property(wn_id2,Y_POS, y+h);
END;

143

FIRST_RECORD built-in

Description

Navigates to the first record in the block’s list of records.

Syntax
PROCEDURE FIRST_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

FIRST_RECORD examples

/*
** Built-in: FIRST_RECORD
** Example: Have a button toggle between the first and last
** records in a block.
** trigger: When-Button-Pressed
*/
BEGIN
 /*
 ** If we’re not at the bottom, then go to the last record
 */
 IF :System.Last_Record <> ’TRUE’ THEN
 Last_Record;
 ELSE
 First_Record;
 END IF;
END;

144

FORM_FAILURE built-in

Description

Returns a value that indicates the outcome of the action most recently performed during the current
Runform session.

Outcome Returned Value

success FALSE

failure TRUE

fatal error FALSE

 If no action has executed in the current Runform session, FORM_FAILURE returns FALSE.

Use FORM_FAILURE to test the outcome of a built-in to determine further processing within any
trigger. To get the correct results, you must perform the test immediately after the action executes. That
is, another action should not occur prior to the test.

Note: "Another action" includes both built-ins and PL/SQL assignment statements. If another action
occurs, FORM_FAILURE may not reflect the status of the built-in you are testing, but of the other,
more recently executed action. A more accurate technique is, for example, when performing a
COMMIT_FORM, to check that the SYSTEM.FORM_STATUS variable is set to ’QUERY’ after the
operation is done.

Syntax
FUNCTION FORM_FAILURE;

Built-in Type unrestricted function

Returns BOOLEAN

Enter Query Mode yes

Parameters

none

FORM_FAILURE examples

/*
** Built-in: FORM_FAILURE
** Example: Determine if the most recently executed built-in
** failed.
*/
BEGIN
 GO_BLOCK(’Success_Factor’);
 /*
 ** If some validation failed and prevented us from leaving
 ** the current block, then stop executing this trigger.

145

 **
 ** Generally it is recommended to test
 ** IF NOT Form_Success THEN ...
 ** Rather than explicitly testing for FORM_FAILURE
 */
 IF Form_Failure THEN
 RAISE Form_trigger_Failure;
 END IF;
END;

146

FORM_FATAL built-in

Description

Returns the outcome of the action most recently performed during the current Runform session.

Outcome Returned Value

success FALSE

failure FALSE

fatal error TRUE

 Use FORM_FATAL to test the outcome of a built-in to determine further processing within any trigger.
To get the correct results, you must perform the test immediately after the action executes. That is,
another action should not occur prior to the test.

Note: "Another action" includes both built-ins and PL/SQL assignment statements. If another action
occurs, FORM_FATAL may not reflect the status of the built-in you are testing, but of the other, more
recently executed action. A more accurate technique is, for example, when performing a
COMMIT_FORM, to check that the SYSTEM.FORM_STATUS variable is set to ’QUERY’ after the
operation is done.

Syntax
FUNCTION FORM_FATAL;

Built-in Type unrestricted function

Return Type:

BOOLEAN

Enter Query Mode yes

Parameters

none

FORM_FATAL examples

/*
** Built-in: FORM_FATAL
** Example: Check whether the most-recently executed built-in
** had a fatal error.
*/
BEGIN
 User_Exit(’Calculate_Line_Integral control.start
control.stop’);
 /*
 ** If the user exit code returned a fatal error, print a
 ** message and stop executing this trigger.

147

 **
 ** Generally it is recommended to test **
 ** IF NOT FORM_SUCCESS THEN ... **
 ** Rather than explicitly testing for FORM_FATAL
 */

 IF Form_Fatal THEN
 Message(’Cannot calculate the Line Integral due to internal
 error.’);
 RAISE Form_trigger_Failure;
 END IF;
END;

148

FORM_SUCCESS built-in

Description

Returns the outcome of the action most recently performed during the current Runform session.

Outcome Returned Value

success TRUE

failure FALSE

fatal error FALSE

Syntax
FUNCTION FORM_SUCCESS;

Built-in Type unrestricted function

Return Type:

BOOLEAN

Enter Query Mode yes

Parameters

none

Usage Notes

• Use FORM_SUCCESS to test the outcome of a built-in to determine further processing within any
trigger. To get the correct results, you must perform the test immediately after the action executes.
That is, another action should not occur prior to the test. "Another action" includes both built-ins
and PL/SQL assignment statements. If another action occurs, FORM_SUCCESS may not reflect
the status of the built-in you are testing, but of the other, more recently executed action.

• FORM_SUCCESS should not be used to test whether a COMMIT_FORM or POST built-in has
succeeded. Because COMMIT_FORM may cause many other triggers to fire, when you evaluate
FORM_SUCCESS it may not reflect the status of COMMIT_FORM but of some other, more
recently executed built-in. A more accurate technique is to check that the
SYSTEM.FORM_STATUS variable is set to ’QUERY’ after the operation is done.

• On Microsoft Windows NT, when using HOST to execute a 16-bit application, the
FORM_SUCCESS built-in will return TRUE whether the application succeeds or fails. This is a
Microsoft a Win32 issue. 32-bit applications and OS commands will correctly return TRUE if
executed sucessfully and FALSE if failed. Invalid commands will return FALSE.

• On Windows 95 platforms the FORM_SUCCESS built-in will always return TRUE for HOST
commands which fail. This includes calls to command.com or OS functions, any 16-bit DOS or

149

GUI application, or an invalid command. FORM_SUCCESS will return TRUE for 32-bit
applications executed sucessfully and FALSE if failed.

FORM_SUCCESS examples

/*
** Built-in: FORM_SUCCESS
** Example: Check whether the most-recently executed built-in
** succeeded.
*/
BEGIN
 /*
 ** Force validation to occur
 */
 Enter;
 /*
 ** If the validation succeeded, then Commit the data.
 **

 */
 IF Form_Success THEN
 Commit;
 IF :System.Form_Status <> ’QUERY’ THEN
 Message(’Error prevented Commit’);
 RAISE Form_trigger_Failure;
 END IF;
 END IF;
END;

150

FORMS_DDL built-in

Description

Issues dynamic SQL statements at runtime, including server-side PL/SQL and DDL.

Note: All DDL operations issue an implicit COMMIT and will end the current transaction without
allowing Form Builder to process any pending changes.

Syntax
FUNCTION FORMS_DDL
 (statement VARCHAR2);

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

statement Any string expression up to 32K:

a literal

an expression or a variable representing the text of a block of
dynamically created PL/SQL code

a DML statement or

a DDL statement

Usage Notes

Commit (or roll back) all pending changes before you issue the FORMS_DDL command. All DDL
operations issue an implicit COMMIT and will end the current transaction without allowing Form
Builder to process any pending changes, as well as losing any locks Form Builder may have acquired.

Some supplied stored procedures issue COMMIT or ROLLBACK commands as part of their logic.
Make sure all pending changes in the form are committed or rolled back before you call those built-ins.
Use the SYSTEM.FORM_STATUS variable to check whether there are pending changes in the current
form before you issue the FORMS_DDL command. (See Example 4.)

If you use FORMS_DDL to execute a valid PL/SQL block:

• Use semicolons where appropriate.

• Enclose the PL/SQL block in a valid BEGIN/END block structure.

• Do not end the PL/SQL block with a slash.

• Line breaks, while permitted, are not required.

If you use FORMS_DDL to execute a single DML or DDL statement:

• Omit the trailing semicolon to avoid an invalid character error.

To check whether the statement issued using FORMS_DDL executed correctly, use the
FORM_SUCCESS or FORM_FAILURE Boolean functions. If the statement did not execute correctly,
check the error code and error text using DBMS_ERROR_CODE and DBMS_ERROR_TEXT. Note
that the values of DBMS_ERROR_CODE and DBMS_ERROR_TEXT are not automatically reset

151

following successful execution, so their values should only be examined after an error has been detected
by a call to FORM_SUCCESS or FORM_FAILURE.

FORMS_DDL restrictions

The statement you pass to FORMS_DDL may not contain bind variable references in the string, but the
values of bind variables can be concatenated into the string before passing the result to FORMS_DDL.
For example, this statement is not valid:

Forms_DDL (’Begin Update_Employee (:emp.empno); End;’);

However, this statement is valid, and would have the desired effect:
Forms_DDL (’Begin Update_Employee (’||TO_CHAR(:emp.empno)
 ||’);End;’);

However, you could also call a stored procedure directly, using Oracle8’s shared SQL area over multiple
executions with different values for emp.empno:

Update_Employee (:emp.empno);

SQL statements and PL/SQL blocks executed using FORMS_DDL cannot return results to Form Builder
directly. (See Example 4.)

In addition, some DDL operations cannot be performed using FORMS_DDL, such as dropping a table or
database link, if Form Builder is holding a cursor open against the object being operated upon.

FORMS_DDL examples

Example 1
/*
** Built-in: FORMS_DDL
** Example: The expression can be a string literal.
*/
BEGIN
 Forms_DDL(’create table temp(n NUMBER)’);
 IF NOT Form_Success THEN
 Message (’Table Creation Failed’);
 ELSE
 Message (’Table Created’);
 END IF;
END;

Example 2
/*
** Built-in: FORMS_DDL
** Example: The string can be an expression or variable.
** Create a table with n Number columns.
** TEMP(COL1, COL2, ..., COLn).
*/
PROCEDURE Create_N_Column_Number_Table (n NUMBER) IS
 my_stmt VARCHAR2(2000);
BEGIN
 my_stmt := ’create table tmp(COL1 NUMBER’;
 FOR I in 2..N LOOP
 my_stmt := my_stmt||’,COL’||TO_CHAR(i)||’ NUMBER’;
 END LOOP;
 my_stmt := my_stmt||’)’;
 /*
 ** Now, create the table...

152

 */
 Forms_DDL(my_stmt);
 IF NOT Form_Success THEN
 Message (’Table Creation Failed’);
 ELSE
 Message (’Table Created’);
 END IF;
END;

Example 3:
/*
** Built-in: FORMS_DDL
** Example: The statement parameter can be a block
** of dynamically created PL/SQL code.
*/
DECLARE
 procname VARCHAR2(30);
BEGIN
 IF :global.flag = ’TRUE’ THEN
 procname := ’Assign_New_Employer’;
 ELSE
 procname := ’Update_New_Employer’;
 END IF;
 Forms_DDL(’Begin ’|| procname ||’; End;’);
 IF NOT Form_Success THEN
 Message (’Employee Maintenance Failed’);
 ELSE
 Message (’Employee Maintenance Successful’);
 END IF;
END;

Example 4:
/*
** Built-in: FORMS_DDL
** Example: Issue the SQL statement passed in as an argument,
** and return a number representing the outcome of
** executing the SQL statement.
** A result of zero represents success.
*/
FUNCTION Do_Sql (stmt VARCHAR2, check_for_locks BOOLEAN := TRUE)
RETURN NUMBER
IS
 SQL_SUCCESS CONSTANT NUMBER := 0;
BEGIN
 IF stmt IS NULL THEN
 Message (’DO_SQL: Passed a null statement.’);
 RETURN SQL_SUCCESS;
 END IF;
 IF Check_For_Locks AND :System.Form_Status = ’CHANGED’ THEN
 Message (’DO_SQL: Form has outstanding locks pending.’);
 RETURN SQL_SUCCESS;
 END IF;
 Forms_DDL(stmt);
 IF Form_Success THEN
 RETURN SQL_SUCCESS;
 ELSE
 RETURN Dbms_Error_Code;
 END IF;
END;

153

GENERATE_SEQUENCE_NUMBER built-in

Description

Initiates the default Form Builder processing for generating a unique sequence number when a record is
created. When a sequence object is defined in the database, you can reference it as a default value for an
item by setting the Initial Value property to SEQUENCE.my_seq.NEXTVAL. By default, Form Builder
gets the next value from the sequence whenever a record is created. When you are connecting to a non-
ORACLE data source, you can include a call to this built-in in the On-Sequence-Number trigger

Syntax
PROCEDURE GENERATE_SEQUENCE_NUMBER;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

GENERATE_SEQUENCE_NUMBER restrictions

Valid only in an On-Sequence-Number trigger.

GENERATE_SEQUENCE_NUMBER examples

/*
** Built-in: GENERATE_SEQUENCE_NUMBER
** Example: Perform Form Builder standard sequence number
** processing based on a global flag setup at
** startup by the form, perhaps based on a
** parameter.
** trigger: On-Sequence-Number
*/
BEGIN
 /*
 ** Check the global flag we setup at form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_seqnum seq=EMPNO_SEQ’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Generate_Sequence_Number;
 END IF;
END;

154

GET_APPLICATION_PROPERTY built-in

Description

Returns information about the current Form Builder application. You must call the built-in once for each
value you want to retrieve.

Syntax
FUNCTION GET_APPLICATION_PROPERTY
 (property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

property Specify one of the following constants to return information about your
application:

APPLICATION_INSTANCE Returns the pointer value of an instance
handle. Only applies to the Microsoft Windows platform. For all other
platforms, Form Builder returns NULL.

BUILTIN_DATE_FORMAT Returns the current value of the Builtin
date format mask (which is held in the Builtin_Date_Format property).

CALLING_FORM Returns the name of the calling form if the current
form was invoked by the CALL_FORM built-in. If the current form is not
a called form, Form Builder returns NULL.

CONNECT_STRING Returns the database connect string of the current
operator. If the current operator does not have a connect string, Form
Builder returns NULL.

CURRENT_FORM Returns the .FMX file name of the form currently
being executed.

CURRENT_FORM_NAME Returns the name of the current form as
indicated by the form module Name property.

CURSOR_STYLE Returns the name of the current cursor style property.
Valid VARCHAR2 return values are BUSY, CROSSHAIR, DEFAULT,
HELP, and INSERTION.

DATASOURCE Returns the name of the database that is currently in use.
Valid return values are NULL, ORACLE, DB2, NONSTOP, TERADATA,
NCR/3600/NCR/3700, and SQLSERVER. This call returns the database
name only for connections established by Form Builder, not for connections
established by On-Logon triggers.

DATE_FORMAT_COMPATIBILITY_MODE Returns the compatibility
setting contained in this property.

155

DISPLAY_HEIGHT Returns the height of the display. The size of each
unit depends on how you defined the Coordinate System property for the
form module.

DISPLAY_WIDTH Returns the width of the display. The size of each
unit depends on how you defined the Coordinate System property for the
form module.

ERROR_DATE/DATETIME_FORMAT Returns the current value of the
error date or datetime format mask (which is established in the
FORMSnn_Error_Date/Datetime_Format environment variable).

FLAG_USER_VALUE_TOO_LONG Returns the current value of this
property, either ‘TRUE’ or ‘FALSE’, which controls truncation of user-
entered values that exceed an item’s Maximum Length property.

OPERATING_SYSTEM Returns the name of the operating system that is
currently in use. Valid return values are MSWINDOWS,
MSWINDOWS32, WIN32COMMON, UNIX, SunOS, MACINTOSH,
VMS, and HP-UX.

OUTPUT_DATE/DATETIME_FORMAT Returns the current value of the
output date or datetime format mask (which is established in the
FORMSnn_Output_Date/Datetime_Format environment variable).

PASSWORD Returns the password of the current operator.

PLSQL_DATE_FORMAT Returns the current value of the PLSQL date
format mask (which is held in the PLSQL_Date_Format property).

RUNTIME_COMPATIBILITY_MODE Returns the compatibility setting
contained in this property.

SAVEPOINT_NAME Returns the name of the last savepoint Form
Builder has issued. This call is valid only from an On-Savepoint or On-
Rollback trigger. It is included primarily for developers who are using
transactional triggers to access a non-ORACLE data source.

TIMER_NAME Returns the name of the most recently expired timer.
Form Builder returns NULL in response to this constant if there is no timer.

USER_DATE/DATETIME_FORMAT Returns the current value of the
user date or datetime format mask (which is established in the
FORMSnn_User_Date/Datetime_Format environment variable).

USER_INTERFACE Returns the name of the user interface that is
currently in use. Valid return values are MOTIF, MACINTOSH,
MSWINDOWS, MSWINDOWS32, WIN32COMMON, WEB, PM,
CHARMODE, BLOCKMODE, X, and UNKNOWN.

USER_NLS_CHARACTER_SET Returns the current value of the
character set portion only of the USER_NLS_LANG environment variable
defined for the form operator. If USER_NLS_LANG is not explicitly set, it
defaults to the setting of NLS_LANG.

USER_NLS_LANG Returns the complete current value of the
USER_NLS_LANG environment variable defined for the form operator,
for national language support. If USER_NLS_LANG is not explicitly set, it
defaults to the setting of NLS_LANG. USER_NLS_LANG is the

156

equivalent of concatenating USER_NLS_LANGUAGE,
USER_NLS_TERRITORY, and USER_NLS_CHARACTER_SET.

USER_NLS_LANGUAGE Returns the current value of the language
portion only of the USER_NLS_LANG environment variable defined for
the form operator. If USER_NLS_LANG is not explicitly set, it defaults to
the setting of NLS_LANG.

USER_NLS_TERRITORY Returns the current value of the territory
portion only of the USER_NLS_LANG environment variable defined for
the form operator. If USER_NLS_LANG is not explicitly set, it defaults to
the setting of NLS_LANG

USERNAME Returns the name of the current operator. Note: If the user
connects by using an OPS$ account,
GET_APPLICATION_PROPERTY(USERNAME) will not return the
actual username. In this case, you should use
GET_APPLICATION_PROPERTY(CONNECT_STRING) to retrieve
username information.

Usage Notes

To request a complete login, including an appended connect string, use the Username, Password, and
Connect_String properties. For instance, assume that the user has initiated an Microsoft Windows
Runform session specifying the following connect string:

ifrun60 my_form scott/tiger@corpDB1

Form Builder returns the following string as the result of a call to
GET_APPLICATION_PROPERTY(USERNAME):

scott

Form Builder returns the following string as the result of a call to
GET_APPLICATION_PROPERTY(PASSWORD):

tiger

Form Builder returns the following string as the result of a call to
GET_APPLICATION_PROPERTY(CONNECT_STRING):

corpDB1

GET_APPLICATION_PROPERTY restrictions

To retrieve the timer name of the most recently executed timer, you must initiate a call to
GET_APPLICATION_PROPERTY from within a When-Timer-Expired trigger. Otherwise, the results
of the built-in are undefined.

GET_APPLICATION_PROPERTY examples

Example 1
/*
** Built-in: GET_APPLICATION_PROPERTY
** Example: Determine the name of the timer that just
** expired, and based on the username perform a
** task.
** trigger: When-Timer-Expired
*/

157

DECLARE
 tm_name VARCHAR2(40);
BEGIN
 tm_name := Get_Application_Property(TIMER_NAME);

 IF tm_name = ’MY_ONCE_EVERY_FIVE_MINUTES_TIMER’ THEN

 :control.onscreen_clock := SYSDATE;

 ELSIF tm_name = ’MY_ONCE_PER_HOUR_TIMER’ THEN

 Go_Block(’connected_users’);
 Execute_Query;

 END IF;
END;

Example 2
/*
** Built-in: GET_APPLICATION_PROPERTY
** Example: Capture the username and password of the
** currently logged-on user, for use in calling
** another Tool.
*/
PROCEDURE Get_Connect_Info(the_username IN OUT VARCHAR2,
 the_password IN OUT VARCHAR2,
 the_connect IN OUT VARCHAR2) IS
BEGIN
 the_username := Get_Application_Property(USERNAME);
 the_password := Get_Application_Property(PASSWORD);
 the_connect := Get_Application_Property(CONNECT_STRING);
END;

158

GET_BLOCK_PROPERTY built-in

Description

Returns information about a specified block. You must issue a call to the built-in once for each property
value you want to retrieve.

Syntax
FUNCTION GET_BLOCK_PROPERTY
 (block_id Block,
 property NUMBER);
FUNCTION GET_BLOCK_PROPERTY
 (block_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

block_id The unique ID Form Builder assigned to the block when you created it.
Datatype is BLOCK.

block_name The name you gave the block when you created it. Datatype is
VARCHAR2.

property Specify one of the following constants to return information about the given
block:

ALL_RECORDS Specifies whether all the records matching the query
criteria should be fetched into the data block when a query is executed.

BLOCKSCROLLBAR_X_POS Returns the x position of the block’s
scroll bar as a number specified in the form coordinate units indicated by
the Coordinate System form property.

BLOCKSCROLLBAR_Y_POS Returns the y position of the block’s
scroll bar as a number specified in the form coordinate units indicated by
the Coordinate System form property.

COLUMN_SECURITY Returns the VARCHAR2 value of TRUE if
column security is set to Yes, and the VARCHAR2 string FALSE if it is set
to No.

COORDINATION_STATUS For a block that is a detail block in a
master-detail block relation, this property specifies the coordination status
of the block with respect to its master block(s). Returns the VARCHAR2
value COORDINATED if the block is coordinated with all of its master
blocks. If it is not coordinated with all of its master blocks, the built-in
returns the VARCHAR2 value NON_COORDINATED. Immediately after
records are fetched to the detail block, the status of the detail block is
COORDINATED. When a different record becomes the current record in

159

the master block, the status of the detail block again becomes
NON_COORDINATED.

CURRENT_RECORD Returns the number of the current record.

CURRENT_RECORD_ATTRIBUTE Returns the VARCHAR2 name of
the named visual attribute of the given block.

CURRENT_ROW_BACKGROUND_COLOR The color of the object’s
background region.

CURRENT_ROW_FILL_PATTERN The pattern to be used for the
object’s fill region. Patterns are rendered in the two colors specified by
Background Color and Foreground Color.

CURRENT_ROW_FONT_NAME The font family, or typeface, that
should be used for text in the object. The list of fonts available is system-
dependent.

CURRENT_ROW_FONT_SIZE The size of the font, specified in points.

CURRENT_ROW_FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

CURRENT_ROW_FONT_STYLE The style of the font.

CURRENT_ROW_FONT_WEIGHT The weight of the font.

CURRENT_ROW_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

CURRENT_ROW_WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white text on a black
background.

DEFAULT_WHERE Returns the default WHERE clause in effect for the
block, as indicated by the current setting of the WHERE block property.

DELETE_ALLOWED Returns the VARCHAR2 value TRUE if the
Delete Allowed block property is Yes, FALSE if it is No. This property
determines whether the operator or the application is allowed to delete
records in the block.

DML_DATA_TARGET_NAME Returns the VARCHAR2 name of the
block’s DML data source.

DML_DATA_TARGET_TYPE Returns the VARCHAR2 value that
indicates the current setting of the DML Data Target Type property. Return
values for this property are NONE, TABLE, STORED PROCEDURE, or
TRANSACTIONAL TRIGGER.

ENFORCE_PRIMARY_KEY Returns the VARCHAR2 value TRUE if
the Enforce Primary Key property is set to Yes for the block. Otherwise, if
the Enforce Primary Key property is set to No, this parameter returns the
VARCHAR2 value FALSE.

ENTERABLE Returns the VARCHAR2 value TRUE if the block is
enterable, that is, if any item in the block has its Enabled and Keyboard

160

Navigable properties set to Yes. Returns the VARCHAR2 string FALSE if
the block is not enterable.

FIRST_DETAIL_RELATION Returns the VARCHAR2 name of the first
relation in which the given block is a detail. Returns NULL if one does not
exist.

FIRST_ITEM Returns the VARCHAR2 name of the first item in the given
block.

FIRST_MASTER_RELATION Returns the VARCHAR2 name of the
first relation in which the given block is a master. Returns NULL if one
does not exist.

INSERT_ALLOWED Returns the VARCHAR2 value TRUE if the Insert
Allowed block property is Yes, FALSE if it is No. This property
determines whether the operator or the application is allowed to insert
records in the block.

KEY_MODE Returns the VARCHAR2 value that indicates the current
setting of the Key Mode block property. Return values for this property are
UNIQUE_KEY, UPDATEABLE_PRIMARY_KEY, or
NON_UPDATEABLE_PRIMARY_KEY.

LAST_ITEM Returns the name of the last item in the given block.

LAST_QUERY Returns the SQL statement of the last query in the
specified block.

LOCKING_MODE Returns the VARCHAR2 value IMMEDIATE if
rows are to be locked immediately on a change to a base table item;
otherwise, it returns the VARCHAR2 value DELAYED if row locks are to
be attempted just prior to a commit.

MAX_QUERY_TIME Returns the VARCHAR2 value that indicates the
current setting of the Maximum Query Time property. This property
determines whether the operator can abort a query when the elapsed time of
the query exceeds the value of this property.

MAX_RECORDS_FETCHED Returns a number representing the
maximum number of records that can be fetched. This property is only
useful when the Query All Records property is set to Yes.

NAVIGATION_STYLE Returns the VARCHAR2 value that indicates the
current setting of the block’s NAVIGATION_STYLE property, either
SAME_RECORD, CHANGE_RECORD, or CHANGE_BLOCK.

NEXTBLOCK Returns the name of the next block. Returns NULL if the
indicated block is the last block in the form. Note that the setting of the
block’s NEXT_NAVIGATION_BLOCK property has no effect on the value
of NEXTBLOCK.

NEXT_NAVIGATION_BLOCK Returns the VARCHAR2 name of the
block’s next navigation block. By default, the next navigation block is the
next block as defined by the order of blocks in the Object Navigator;
however, the NEXT_NAVIGATION_BLOCK block property can be set to
override the default block navigation sequence.

161

OPTIMIZER_HINT Returns a hint in the form of a VARCHAR2 string
that Form Builder passes on to the RDBMS optimizer when constructing
queries.

ORDER_BY Returns the default ORDER BY clause in effect for the
block, as indicated by the current setting of the ORDER BY block property.

PRECOMPUTE_SUMMARIES[Under Construction]

PREVIOUSBLOCK Returns the name of the block that has the next lower
sequence in the form, as defined by the order of blocks in the Object
Navigator. Returns NULL if the indicated block is the first block in the
form. Note that the setting of the block’s
PREVIOUS_NAVIGATION_BLOCK property has no effect on the value
of PREVIOUSBLOCK.

PREVIOUS_NAVIGATION_BLOCK Returns the VARCHAR2 name of
the block’s previous navigation block. By default, the previous navigation
block is the block with the next lower sequence, as defined by the order of
blocks in the Object Navigator; however, the
NEXT_NAVIGATION_BLOCK block property can be set to override the
default block navigation sequence.

QUERY_ALLOWED Returns the VARCHAR2 value TRUE if the Query
Allowed block property is Yes, FALSE if it is No. This property
determines whether the operator or the application is allowed to query
records in the block.

QUERY_DATA_SOURCE_NAME Returns the VARCHAR2 name of
the block’s query data source.

QUERY_DATA_SOURCE_TYPE Returns the VARCHAR2 value that
indicates the current setting of the Query Data Source Type property.
Return values for this property are NONE, TABLE, STORED
PROCEDURE, TRANSACTIONAL TRIGGER, or SUB-QUERY.

QUERY_HITS Returns the VARCHAR2 value that indicates the number
of records identified by the COUNT_QUERY operation. If this value is
examined while records are being retrieved from a query, QUERY_HITS
specifies the number of records that have been retrieved.

QUERY_OPTIONS Returns the VARCHAR2 values VIEW,
FOR_UPDATE, COUNT_QUERY, or a null value if there are no options.
You can call GET_BLOCK_PROPERTY with this parameter from within a
transactional trigger when your user exit needs to know what type of query
operation Form Builder would be doing by default if you had not
circumvented default processing.

RECORDS_DISPLAYED Returns the number of records that the given
block can display. Corresponds to the Number of Records Displayed block
property.

RECORDS_TO_FETCH Returns the number of records Form Builder
expects an On-Fetch trigger to fetch and create as queried records.

STATUS Returns the VARCHAR2 value NEW if the block contains only
new records, CHANGED if the block contains at least one changed record,

162

and QUERY if the block contains only valid records that have been
retrieved from the database.

TOP_RECORD Returns the record number of the topmost visible record
in the given block.

UPDATE_ALLOWED Returns the VARCHAR2 value TRUE if the
Update Allowed block property is Yes, FALSE if it is No. This property
determines whether the operator or the application is allowed to update
records in the block.

UPDATE_CHANGED_COLUMNS Specifies that only those columns
updated by an operator will be sent to the database. When Update Changed
Columns Only is set to No, all columns are sent, regardless of whether they
have been updated. This can result in considerable network traffic,
particularly if the block contains a LONG data type.

GET_BLOCK_PROPERTY examples

/*
** Built-in: GET_BLOCK_PROPERTY
** Example: Return the screen line of the current record in
** a multi-record block. Could be used to
** dynamically position LOV to a place on the
** screen above or below the current line so as to
** not obscure the current record in question.
*/
FUNCTION Current_Screen_Line
RETURN NUMBER IS
 cur_blk VARCHAR2(40) := :System.Cursor_Block;
 cur_rec NUMBER;
 top_rec NUMBER;
 itm_lin NUMBER;
 cur_lin NUMBER;
 bk_id Block;
BEGIN
 /*
 ** Get the block id since we’ll be doing multiple
 ** Get_Block_Property operations for the same block
 */
 bk_id := Find_Block(cur_blk);
 /*
 ** Determine the (1) Current Record the cursor is in,
 ** (2) Current Record which is visible at the
 ** first (top) line of the multirecord
 ** block.
 */
 cur_rec := Get_Block_Property(bk_id, CURRENT_RECORD);
 top_rec := Get_Block_Property(bk_id, TOP_RECORD);
 /*
 ** Determine the position on the screen the first field in
 ** the multirecord block
 */
 itm_lin := Get_Item_Property(Get_Block_Property
 (bk_id,FIRST_ITEM),Y_POS);
 /*
 ** Add the difference between the current record and the
 ** top record visible in the block to the screen position
 ** of the first item in the block to get the screen
 ** position of the current record:
 */

163

 cur_lin := itm_lin + (cur_rec - top_rec);
 RETURN cur_lin;
END;

164

GET_CANVAS_PROPERTY built-in

Description

Returns the given canvas property for the given canvas. .

Syntax
FUNCTION GET_CANVAS_PROPERTY
 (canvas_id Canvas,
 property NUMBER);
FUNCTION GET_CANVAS_PROPERTY
 (canvas_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

canvas_id The unique ID that Form Builder assigns the canvas object when it creates
it. Use the FIND_CANVAS built-in to return the ID to a variable with
datatype of CANVAS.

canvas_name The name you gave the canvas object when you defined it.

property The property for which you want to get a value for the given canvas. You
can enter the following constants for return values:

BACKGROUND_COLOR The color of the object’s background region.

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

HEIGHT Returns the height of the canvas, specified in the form
coordinate units indicated by the Coordinate System form property.

165

TAB_PAGE_X_OFFSET Returns the distance between the left edge of
the tab canvas and the left edge of the tab page. The value returned
depends on the form coordinate system—pixel, centimeter, inch, or point.

TAB_PAGE_Y_OFFSET Returns the distance between the top edge of
the tab canvas and the top edge of the tab page. The value returned
depends on the form coordinate system—pixel, centimeter, inch, or point.

TOPMOST_TAB_PAGE Returns the name of the tab page currently top-
most on the named tab canvas.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH Returns the width of the canvas, specified in the form coordinate
units indicated by the Coordinate System form property.

VISUAL_ATTRIBUTE Returns the name of the visual attribute currently
in force. If no named visual attribute is assigned to the canvas, returns
CUSTOM for a custom visual attribute or DEFAULT for a default visual
attribute.

GET_CANVAS_PROPERTY examples

/*
** Built-in: GET_CANVAS_PROPERTY
** Example: Can get the width/height of the canvas.
*/
DECLARE
 the_width NUMBER;
 the_height NUMBER;
 cn_id CANVAS;
BEGIN
 cn_id := FIND_CANVAS(’my_canvas_1’);
 the_width := GET_CANVAS_PROPERTY(cn_id, WIDTH);
 the_height := GET_CANVAS_PROPERTY(cn_id,HEIGHT);
END;

166

GET_CUSTOM_PROPERTY built-in

Description

Gets the value of a user-defined property in a Java pluggable component.

Syntax

The built-in returns a VARCHAR2 value containing the string, numeric, or boolean data.
GET_CUSTOM_PROPERTY
 (item,
 row-number,
 prop-name);

Built-in Type unrestricted procedure

Returns VARCHAR2

Enter Query Mode yes

Parameters

item The name or ID of the item associated with the target Java pluggable
component. The name can be in the form of either a varchar2 literal or a
variable set to the value of the name.

row-number The row number of the instance of the item that you want to get. (Instance
row numbers begin with 1.)

prop-name The particular property of the Java component that you want to get.

Usage Notes

• In the Java pluggable component, each custom property type must be represented by a single
instance of the ID class, created by using ID.registerProperty.

• For each Get_Custom_Property built-in executed in the form, the Java component’s getProperty
method is called.

• The name of the item can be gained through either Find_Item(‘Item_Name’), or simply via
‘Item_Name’.

167

GET_FILE_NAME built-in

Description

Displays the standard open file dialog box where the user can select an existing file or specify a new file.

Syntax
FUNCTION GET_FILE_NAME
 (directory_name VARCHAR2,
 file_name VARCHAR2,
 file_filter VARCHAR2,
 message VARCHAR2,
 dialog_type NUMBER,
 select_file BOOLEAN;

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

directory_name Specifies the name of the directory containing the file you want to open.
The default value is NULL. If directory_name is NULL, subsequent
invocations of the dialog may open the last directory visited.

file_name Specifies the name of the file you want to open. The default value is
NULL.

file_filter Specifies that only particular files be shown. The default value is NULL.
File filters take on different forms, and currently are ignored on the motif
and character mode platforms. On Windows, they take the form of Write
Files (*.WRI)|*.WRI| defaulting to All Files (*.*)|*.*| if NULL. On the
Macintosh the attribute currently accepts a string such as Text.

message Specifies the type of file that is being selected. The default value is NULL.

dialog_type Specifies the intended dialog to OPEN_FILE or SAVE_FILE. The default
value is OPEN_FILE.

select_file Specifies whether the user is selecting files or directories. The default
value is TRUE. If dialog_type is set to SAVE_FILE, select_file is
internally set to TRUE.

GET_FILE_NAME examples

/*
** Built-in: GET_FILE_NAME
** Example: Can get an image of type TIFF.
*/

168

DECLARE
 filename VARCHAR2(256)
BEGIN
 filename := GET_FILE_NAME(File_Filter=> ’TIFF Files
(*.tif)|*.tif|’);
 READ_IMAGE_FILE(filename, ’TIFF’, ’block5.imagefld);
END;

169

GET_FORM_PROPERTY built-in

Description

Returns information about the given form. If your application is a multi-form application, then you can
call this built-in to return information about the calling form, as well as about the current, or called form.

Syntax
FUNCTION GET_FORM_PROPERTY
 (formmodule_id FormModule,
 property NUMBER);
FUNCTION GET_FORM_PROPERTY
 (formmodule_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

formmodule_id Specifies the unique ID Form Builder assigns when it creates the form
module. Use the FIND_FORM built-in to return the ID to an appropriately
typed variable. The data type of the ID is FormModule.

formmodule_name Specifies the VARCHAR2 name that you gave to the form module when
you defined it.

property Returns information about specific elements of the form based on which of
the following constants are supplied to the built-in:

CHARACTER_CELL_HEIGHT Returns the dimensions of the character
cell in the form units specified by the Coordinate System property. When
Coordinate System is Character Cells, the value is returned in pixels.

CHARACTER_CELL_WIDTH Returns the dimensions of the character
cell in the form units specified by the Coordinate System property. When
Coordinate System is Character Cells, the value is returned in pixels.

COORDINATE_SYSTEM Returns a VARCHAR2 string indicating the
coordinate system used in the form module.

CHARACTER_CELL if the current coordinate system for the form is
character cell based.

POINTS if the current coordinate system for the form is points.

CENTIMETERS if the current coordinate system for the form is
centimeters.

INCHES if the current coordinate system for the form is inches.

PIXELS if the current coordinate system for the form is pixels.

CURRENT_RECORD_ATTRIBUTE Returns the VARCHAR2 name of
the named visual attribute that should be used for the current row.

170

CURRENT_ROW_BACKGROUND_COLOR The color of the object’s
background region.

CURRENT_ROW_FILL_PATTERN The pattern to be used for the
object’s fill region. Patterns are rendered in the two colors specified by
Background Color and Foreground Color.

CURRENT_ROW_FONT_NAME The font family, or typeface, that
should be used for text in the object. The list of fonts available is system-
dependent.

CURRENT_ROW_FONT_SIZE The size of the font, specified in points.

CURRENT_ROW_FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

CURRENT_ROW_FONT_STYLE The style of the font.

CURRENT_ROW_FONT_WEIGHT The weight of the font.

CURRENT_ROW_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

CURRENT_ROW_WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white text on a black
background.

CURSOR_MODE Returns the setting that indicates the intended effect of
a commit action on existing cursors.

DEFER_REQUIRED_ENFORCEMENT Returns the setting that
indicates whether enforcement of required fields has been deferred from
item validation to record validation. Valid return values are TRUE, 4.5,
and FALSE.

DIRECTION Returns the layout direction for bidirectional objects. Valid
return values are RIGHT_TO_LEFT, LEFT_TO_RIGHT.

FILE_NAME Returns the name of the file where the named form is
stored.

FIRST_BLOCK Returns the name of the block with the lowest sequence
number in the indicated form.

FIRST_NAVIGATION_BLOCK Returns the name of the block into
which Form Builder attempts to navigate at form startup. By default, the
first navigation block is the first block defined in the Object Navigator;
however, the FIRST_NAVIGATION_BLOCK block property can be set to
specify a different block as the first block at form startup.

FORM_NAME Returns the name of the form.

INTERACTION_MODE Returns the interaction mode for the form. Valid
return values are BLOCKING or NONBLOCKING.

ISOLATION_MODE Returns the form’s isolation mode setting, either
READ_COMMITTED or SERIALIZABLE.

171

LAST_BLOCK Returns the name of the block with the highest sequence
number in the indicated form.

MAX_QUERY_TIME Returns the VARCHAR2 value that indicates the
current setting of the Maximum Query Time property. This property
determines whether the operator can abort a query when the elapsed time of
the query exceeds the value of this property.

MAX_RECORDS_FETCHED Returns a number representing the
maximum number of records that can be fetched. This property is only
useful when the Query All Records property is set to Yes.

MODULE_NLS_CHARACTER_SET Returns the current value of the
character set portion only of the DEVELOPER_NLS_LANG environment
variable defined for the form. If DEVELOPER_NLS_LANG is not
explicitly set, it defaults to the setting of NLS_LANG.

MODULE_NLS_LANG Returns the complete current value for national
language support contained in the DEVELOPER_NLS_LANG
environment variable defined for the form. If DEVELOPER_NLS_LANG
is not explicitly set, it defaults to the setting of NLS_LANG.
MODULE_NLS_LANG is the equivalent of concatenating
MODULE_NLS_LANGUAGE, MODULE_NLS_TERRITORY, and
MODULE_NLS_CHACTER_SET.

MODULE_NLS_LANGUAGE Returns the current value of the language
portion only of the DEVELOPER_NLS_LANG environment variable
defined for the form. If DEVELOPER_NLS_LANG is not explicitly set, it
defaults to the setting of NLS_LANG.

MODULE_NLS_TERRITORY Returns the current value of the territory
portion only of the DEVELOPER_NLS_LANG environment variable
defined for the form. If DEVELOPER_NLS_LANG is not explicitly set, it
defaults to the setting of NLS_LANG.

SAVEPOINT_MODE Returns PROPERTY_ON or PROPERTY_OFF
to indicate whether savepoints are supported in the data source.

VALIDATION Returns TRUE or FALSE to indicate whether default
Form Builder validation is enabled.

VALIDATION_UNIT Returns a VARCHAR2 string indicating the
current validation unit for the form:

FORM_SCOPE if the current validation unit is the form.

BLOCK_SCOPE if the current validation unit is the block.

RECORD_SCOPE if the current validation unit is the record.

ITEM_SCOPE if the current validation unit is the item or if the
current validation unit is set to DEFAULT.

GET_FORM_PROPERTY examples

Example 1
/*
** Built-in: GET_FORM_PROPERTY
** Example: Determine the name of the first block in the form.

172

*/
DECLARE
 curform VARCHAR2(40);
 blkname VARCHAR2(40);
BEGIN
 curform := :System.Current_Form;
 blkname := Get_Form_Property(curform,FIRST_BLOCK);
END;

Example 2
/*
** Built-in: GET_FORM_PROPERTY
** Example: Evaluate the current setting of the
** Validate property.
*/
BEGIN
 IF Get_Form_Property(’curform’, VALIDATION) = ’FALSE’
 THEN
 Message (’Form currently has Validation turned OFF’);
 END IF;
END;

173

GET_GROUP_CHAR_CELL built-in

Description

Returns the VARCHAR2 or LONG value for a record group cell identified by the given row and column.
A cell is an intersection of a row and column.

Syntax
FUNCTION GET_GROUP_CHAR_CELL
 (groupcolumn_id GroupColumn,
 row_number NUMBER);
FUNCTION GET_GROUP_CHAR_CELL
 (groupcolumn_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

groupcolumn_id Specifies the unique ID that Form Builder assigns when it creates the record
group column. Use the FIND_COLUMN built-in to return the ID to an
appropriately typed variable. The data type of the ID is GroupColumn.

groupcolumn_name Specifies the fully qualified VARCHAR2 record group column name you
gave the column when you defined it, preceded by the record group name
and a dot, as in recordgroup_name.groupcolumn_name. If the column was
defined as a result of a query, its name is the same as its corresponding
database column.

row_number Specifies the row from which to retrieve the value of the cell.

GET_GROUP_CHAR_CELL restrictions

The row_number specified must be within the bounds implied by the number of rows in the record
group. A non-existent row_number results in an index out of bounds error.

GET_GROUP_CHAR_CELL examples

/*
** Built-in: GET_GROUP_CHAR_CELL
** Example: Search thru names in a static record group to
** determine if the value passed into this subprogram
** exists in the list. Returns the row number
** where the record was first located, or zero (0)
** if no match was found.
*/
FUNCTION Is_Value_In_List(the_value VARCHAR2,
 the_rg_name VARCHAR2,
 the_rg_column VARCHAR2)

174

RETURN NUMBER IS
 the_Rowcount NUMBER;
 rg_id RecordGroup;
 gc_id GroupColumn;
 col_val VARCHAR2(80);
 Exit_Function Exception;
BEGIN
 /*
 ** Determine if record group exists, and if so get its ID.
 */
 rg_id := Find_Group(the_rg_name);

 IF Id_Null(rg_id) THEN
 Message(’Record Group ’||the_rg_name||’ does not exist.’);
 RAISE Exit_Function;
 END IF;

 /*
 ** Make sure the column name specified exists in the
 ** record Group.
 */
 gc_id := Find_Column(the_rg_name||’.’||the_rg_column);

 IF Id_Null(gc_id) THEN
 Message(’Column ’||the_rg_column||’ does not exist.’);
 RAISE Exit_Function;
 END IF;
 /*
 ** Get a count of the number of records in the record
 ** group
 */
 the_Rowcount := Get_Group_Row_Count(rg_id);

 /*
 ** Loop through the records, getting the specified column’s
 ** value at each iteration and comparing it to ’the_value’
 ** passed in. Compare the values in a case insensitive
 ** manner.
 */
 FOR j IN 1..the_Rowcount LOOP
 col_val := GET_GROUP_CHAR_CELL(gc_id, j);
 /*
 ** If we find a match, stop and return the
 ** current row number.
 */
 IF UPPER(col_val) = UPPER(the_value) THEN
 RETURN j;
 END IF;
 END LOOP;

 /*
 ** If we get here, we didn’t find any matches.
 */
 RAISE Exit_Function;
EXCEPTION
 WHEN Exit_Function THEN
 RETURN 0;
END;

175

GET_GROUP_DATE_CELL built-in

Description

Returns the DATE value for a record group cell identified by the given row and column. A cell is an
intersection of a row and column.

Syntax
FUNCTION GET_GROUP_DATE_CELL
 (groupcolumn_id GroupColumn,
 row_number NUMBER);
FUNCTION GET_GROUP_DATE_CELL
 (groupcolumn_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted function

Returns DATE

Enter Query Mode yes

Parameters

groupcolumn_id Specifies the unique ID that Form Builder assigns when it creates the record
group column. Use the FIND_COLUMN built-in to return the ID to an appropriately typed variable.
The data type of the ID is GroupColumn.

groupcolumn_name Specifies the fully qualified VARCHAR2 record group column name you
gave the column when you defined it, preceded by the record group name
and a dot, as in recordgroup_name.groupcolumn_name. If the column was
defined as a result of a query, its name is the same as its corresponding
database column.

row_number Specifies the row from which to retrieve the value of the cell.

GET_GROUP_DATE_CELL restrictions

The row_number specified must be within the bounds implied by the number of rows in the record
group. A non-existent row_number results in an index out of bounds error.

GET_GROUP_DATE_CELL examples

/*
** Built-in: GET_GROUP_DATE_CELL
** Example: Lookup a row in a record group, and return the
** minimum order date associated with that row in
** the record group. Uses the ’is_value_in_list’
** function from the GET_GROUP_CHAR_CELL example.
*/
FUNCTION Max_Order_Date_Of(part_no VARCHAR2)
RETURN DATE IS
 fnd_row NUMBER;
BEGIN

176

 /*
 ** Try to lookup the part number among the temporary part
 ** list record group named ’TMPPART’ in its ’PARTNO’
 ** column.
 */
 fnd_row := Is_Value_In_List(part_no, ’TMPPART’, ’PARTNO’);
 IF fnd_row = 0 THEN
 Message(’Part Number ’||part_no||’ not found.’);
 RETURN NULL;
 ELSE
 /*
 ** Get the corresponding Date cell value from the
 ** matching row.
 */
 RETURN Get_Group_Date_Cell(’TMPPART.MAXORDDATE’, fnd_row);
 END IF;
END;

177

GET_GROUP_NUMBER_CELL built-in

Description

Returns the NUMBER value for a record group cell identified by the given row and column. A cell is an
intersection of a row and column.

Syntax
FUNCTION GET_GROUP_NUMBER_CELL
 (groupcolumn_id GroupColumn,
 row_number NUMBER);
FUNCTION GET_GROUP_NUMBER_CELL
 (groupcolumn_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

groupcolumn_id Specifies the unique ID that Form Builder assigns when it creates the record
group column. Use the FIND_COLUMN built-in to return the ID to an
appropriately typed variable. The data type of the ID is GroupColumn.

groupcolumn_name Specifies the fully qualified VARCHAR2 record group column name you
gave the column when you defined it, preceded by the record group name
and a dot, as in recordgroup_name.groupcolumn_name. If the column was
defined as a result of a query, its name is the same as its corresponding
database column.

row_number Specifies the row from which to retrieve the value of the cell.

GET_GROUP_NUMBER_CELL restrictions

The row_number specified must be within the bounds implied by the number of rows in the record
group. A non-existent row_number results in an index out of bounds error.

GET_GROUP_NUMBER_CELL examples

/*
** Built-in: GET_GROUP_NUMBER_CELL
** Example: Lookup a row in a record group, and return the
** minimum order quantity associated with that row
** in the record group. Uses the
** ’is_value_in_list’ function from the
** GET_GROUP_CHAR_CELL example.
*/
FUNCTION Min_Order_Qty_Of(part_no VARCHAR2)
RETURN NUMBER IS
 fnd_row NUMBER;

178

BEGIN
 /*
 ** Try to lookup the part number among the temporary part
 ** list record group named ’TMPPART’ in its ’PARTNO’
 ** column.
 */
 fnd_row := Is_Value_In_List(part_no, ’TMPPART’, ’PARTNO’);

 IF fnd_row = 0 THEN
 Message(’Part Number ’||part_no||’ not found.’);
 RETURN NULL;
 ELSE
 /*
 ** Get the corresponding Number cell value from the
 ** matching row.
 */
 RETURN Get_Group_Number_Cell(’TMPPART.MINQTY’, fnd_row);
 END IF;
END;

179

GET_GROUP_RECORD_NUMBER built-in

Description

Returns the record number of the first record in the record group with a column value equal to the
cell_value parameter. If there is no match, 0 (zero) is returned.

Syntax
FUNCTION GET_GROUP_RECORD_NUMBER
 (groupcolumn_id GroupColumn,
 cell_value NUMBER);
FUNCTION GET_GROUP_RECORD_NUMBER
 (groupcolumn_name VARCHAR2,
 cell_value NUMBER);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

groupcolumn_id Specifies the unique ID that Form Builder assigns to the record group
column when it creates it. Use the FIND_COLUMN built-in to return the
ID to a variable. The data type of the ID is GroupColumn.

groupcolumn_name Specifies the name of the record group column that you gave to the group
when creating it. The data type of the name is VARCHAR2.

cell_value Specifies the value to find in the specified record group column. The data
type of the name is VARCHAR2, NUMBER, or DATE.

GET_GROUP_RECORD_NUMBER restrictions

The dataype of the cell_value parameter must match the datatype of the record group column. The
comparison is case-sensitive for VARCHAR2 comparisons.

GET_GROUP_RECORD_NUMBER examples

/*
** Built-in: GET_GROUP_RECORD_NUMBER
** Example: Find the first record in the record group with a
** cell in a column that is identical to the value
** specified in the cell_value parameter.
*/
DECLARE
 rg_id RecordGroup;
 match NUMBER := 2212;
 status NUMBER;
 the_recordnum NUMBER;
BEGIN
 rg_id := Create_Group_From_Query(’QGROUP’,
 ’SELECT ENAME,EMPNO,SAL FROM EMP ORDER BY SAL DESC’);

180

 status := Populate_Group(rg_id);
 */ *** Zero status is success*** /
 IF status = 0 THEN
 the_recordnum
:=Get_Group_Record_Number(’QGROUP.ENAME’,match);
 Message(’The first match is record number
’||to_CHAR(the_recordnum));
 ELSE
 Message(’Error creating query record group.’);
 RAISE Form_trigger_Failure;
 END IF;
END;

181

GET_GROUP_ROW_COUNT built-in

Description

Returns the number of rows in the record group.

Syntax
FUNCTION GET_GROUP_ROW_COUNT
 (recordgroup_id RecordGroup);
FUNCTION GET_GROUP_ROW_COUNT
 (recordgroup_name VARCHAR2);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

recordgroup_id Specifies the unique ID that Form Builder assigns to the record group when
it creates it. Use the FIND_GROUP built-in to return the ID to a variable.
The data type of the ID is RecordGroup.

recordgroup_name Specifies the name of the record group that you gave to the group when
creating it. The data type of the name is VARCHAR2.

GET_GROUP_ROW_COUNT examples

/*
** Built-in: GET_GROUP_ROW_COUNT
** Example: Determine how many rows were retrieved by a
** Populate_Group for a query record group.
*/
DECLARE
 rg_id RecordGroup;
 status NUMBER;
 the_rowcount NUMBER;
BEGIN
 rg_id := Create_Group_From_Query(’MY_QRY_GROUP’,
 ’SELECT ENAME,EMPNO,SAL FROM EMP ORDER BY SAL DESC’);
 status := Populate_Group(rg_id);
 */ *** Zero status is success*** /
 IF status = 0 THEN
 the_rowcount := Get_Group_Row_Count(rg_id);
 Message(’The query retrieved ’||to_CHAR(the_rowcount)||
 ’ record(s)’);
 ELSE
 Message(’Error creating query record group.’);
 RAISE Form_trigger_Failure;
 END IF;
END;

182

GET_GROUP_SELECTION built-in

Description

Retrieves the sequence number of the selected row for the given group.

Syntax
FUNCTION GET_GROUP_SELECTION
 (recordgroup_id RecordGroup,
 selection_number NUMBER);
FUNCTION GET_GROUP_SELECTION
 (recordgroup_name VARCHAR2,
 selection_number NUMBER);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

recordgroup_id Specifies the unique ID that Form Builder assigns to the record group when
it creates it. Use the FIND_GROUP built-in to return the ID to a variable.
The data type of the ID is RecordGroup.

recordgroup_name Specifies the name of the record group that you gave to the group when
creating it.

selection_number Identifies the selected rows in order of their selection. For example, given
that rows 3, 7, and 21 are selected, their respective selection values are 1,
2, and 3. The selection_number argument takes a value of the NUMBER
data type.

GET_GROUP_SELECTION examples

/*
** Built-in: GET_GROUP_SELECTION
** Example: Return a comma-separated list (string) of the
** selected part numbers from the presumed
** existent PARTNUMS record group.
*/
FUNCTION Comma_Separated_Partnumbers
RETURN VARCHAR2 IS
 tmp_str VARCHAR2(2000);
 rg_id RecordGroup;
 gc_id GroupColumn;
 the_Rowcount NUMBER;
 sel_row NUMBER;
 the_val VARCHAR2(20);
BEGIN
 rg_id := Find_Group(’PARTNUMS’);
 gc_id := Find_Column(’PARTNUMS.PARTNO’);
 /*
 ** Get a count of how many rows in the record group have

183

 ** been marked as "selected"
 */
 the_Rowcount := Get_Group_Selection_Count(rg_id);
 FOR j IN 1..the_Rowcount LOOP
 /*
 ** Get the Row number of the J-th selected row.
 */
 sel_row := Get_Group_Selection(rg_id, j);
 /*
 ** Get the (VARCHAR2) value of the J-th row.
 */
 the_val := Get_Group_CHAR_Cell(gc_id, sel_row);
 IF j = 1 THEN
 tmp_str := the_val;
 ELSE
 tmp_str := tmp_str||’,’||the_val;
 END IF;
 END LOOP;
 RETURN tmp_str;
END;

184

GET_GROUP_SELECTION_COUNT built-in

Description

Returns the number of rows in the indicated record group that have been programmatically marked as
selected by a call to SET_GROUP_SELECTION.

Syntax
FUNCTION GET_GROUP_SELECTION_COUNT
 (recordgroup_id RecordGroup);
FUNCTION GET_GROUP_SELECTION_COUNT
 (recordgroup_name VARCHAR2);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

recordgroup_id Specifies the unique ID that Form Builder assigns to the record group when
it creates it. Use the FIND_GROUP built-in to return the ID to a variable.
The data type of the ID is RecordGroup.

recordgroup_name Specifies the name of the record group that you gave to the group when
creating it.

GET_GROUP_SELECTION_COUNT examples

/*
** Built-in: GET_GROUP_SELECTION_COUNT
** Example: See GET_GROUP_SELECTION
*/

185

GET_INTERFACE_POINTER built-in

Description

 Returns a handle to an OLE2 automation object.

Syntax
FUNCTION GET_INTERFACE_POINTER
 (item_id Item);
FUNCTION GET_INTERFACE_POINTER
 (item_name VARCHAR2);

Returns PLS_INTEGER

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

GET_INTERFACE_POINTER restrictions

Valid only on Microsoft Windows and Macintosh.

GET_INTERFACE_POINTER examples

/*
** Built-in: GET_INTERFACE_POINTER
** Example: Finds a handle to an OLE object
*/
FUNCTION HandleMap(MapName VARCHAR2) RETURN OLE2.obj_type is
BEGIN
 RETURN(Get_interface_Pointer(MapName));
END;

186

GET_ITEM_INSTANCE_PROPERTY built-in

Description

Returns property values for the specified item instance. GET_ITEM_INSTANCE_PROPERTY returns
the initial value or the value last specified by SET_ITEM_INSTANCE_PROPERTY for the specified
item instance. It does not return the effective value of a property (i.e. the value derived from combining
properties specified at the item instance, item, and block levels). See
SET_ITEM_INSTANCE_PROPERTY for information about effective property values.

Syntax
FUNCTION GET_ITEM_INSTANCE_PROPERTY
 (item_id ITEM,
 record_number NUMBER,
 property NUMBER);
FUNCTION GET_ITEM_INSTANCE_PROPERTY
 (item_name VARCHAR2,
 record_number NUMBER,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

item_id The unique ID that Form Builder assigns to the object when it creates it.
Use the FIND_ITEM built-in to return the ID to a variable of datatype
ITEM.

item_name The name you gave the object when you created it.

record_number A record number or CURRENT_RECORD.

property The property the value of which you want to get for the given item. Valid
properties are:

BORDER_BEVEL Returns RAISED, LOWERED, or PLAIN if the
BORDER_BEVEL property is set to RAISED, LOWERED, or PLAIN,
respectively at the item instance level. If BORDER_BEVEL is not specfied
at the item instance level, this property returns " ".

INSERT_ALLOWED Returns the VARCHAR2 string TRUE if the item
instance INSERT_ALLOWED property is set to true. Returns the string
FALSE if the property is set to false.

NAVIGABLE Returns the VARCHAR2 string TRUE if the item instance
NAVIGABLE property is set to true. Returns the string FALSE if the
property is set to false.

REQUIRED Returns the VARCHAR2 string TRUE if the item instance
REQUIRED property is set to true. Returns the string FALSE if the
property is set to false.

187

SELECTED_RADIO_BUTTON Returns the label of the selected radio
button within the radio group in the specified record. Returns NULL if the
radio group for the specified record does not have a selected radio button or
if the specified record has been scrolled out of view.

UPDATE_ALLOWED Returns the VARCHAR2 string TRUE if the item
instance UPDATE_ALLOWED property is set to true. Returns the string
FALSE if the property is set to false.

VISUAL_ATTRIBUTE Returns the name of the visual attribute currently
in force. If no named visual attribute is assigned to the item instance,
returns DEFAULT for a default visual attribute. Returns ’’ if
VISUAL_ATTRIBUTE is not specified at the item instance level.

188

GET_ITEM_PROPERTY built-in

Description

Returns property values for the specified item. Note that in some cases you may be able to get—but not
set—certain object properties.

Syntax
FUNCTION GET_ITEM_PROPERTY
 (item_id, ITEM
 property NUMBER);
FUNCTION GET_ITEM_PROPERTY
 (item_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

item_id The unique ID that Form Builder assigns to the object when it creates it.
Use the FIND_ITEM built-in to return the ID to a variable of datatype
ITEM.

item_name The name you gave the object when you created it.

property The property the value of which you want to get for the given item. Valid
properties are:

AUTO_HINT Returns the VARCHAR2 string TRUE if the Automatic
Hint property is set to Yes, and the VARCHAR2 string FALSE if it is set to
No.

AUTO_SKIP Returns the VARCHAR2 string TRUE if Automatic Skip is
set to Yes for the item, and the string FALSE if it is set to No for the item.

BACKGROUND_COLOR The color of the object's background region.

BLOCK_NAME Returns the VARCHAR2 block name for the item.

BORDER_BEVEL Returns RAISED, LOWERED, or PLAIN if the
BORDER_BEVEL property is set to RAISED, LOWERED, or PLAIN,
respectively at the item level.

CASE_INSENSITIVE_QUERY Returns the VARCHAR2 string TRUE
if this property is set to Yes for the item, and the string FALSE if the
property is set to No.

CASE_RESTRICTION Returns UPPERCASE if text for the item is to
display in upper case, LOWERCASE if the text is to display in lower case,
or NONE if no case restriction is in force.

189

COLUMN_NAME Returns the name of the column in the database to
which the datablock item is associated.

COMPRESS Returns a value (either TRUE or FALSE) that indicates
whether the sound object being read into a form from a file should be
compressed when converting to the Oracle internal format.

CONCEAL_DATA Returns the VARCHAR2 string TRUE if the text an
operator types into the text item is to be hidden, and the VARCHAR2 string
FALSE if the text an operator types into the text item is to be displayed.

CURRENT_RECORD_ATTRIBUTE Returns the VARCHAR2 name of
the named visual attribute of the given item.

CURRENT_ROW_BACKGROUND_COLOR The color of the object’s
background region.

CURRENT_ROW_FILL_PATTERN The pattern to be used for the
object’s fill region. Patterns are rendered in the two colors specified by
Background Color and Foreground Color.

CURRENT_ROW_FONT_NAME The font family, or typeface, that
should be used for text in the object. The list of fonts available is system-
dependent.

CURRENT_ROW_FONT_SIZE The size of the font, specified in points.

CURRENT_ROW_FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

CURRENT_ROW_FONT_STYLE The style of the font.

CURRENT_ROW_FONT_WEIGHT The weight of the font.

CURRENT_ROW_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

CURRENT_ROW_WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white text on a black
background.

DATABASE_VALUE For a base table item, returns the value that was
originally fetched from the database.

DATATYPE Returns the data type of the item: ALPHA, CHAR, DATE,
JDATE, EDATE, DATETIME, INT, RINT, MONEY, RMONEY,
NUMBER, RNUMBER, TIME, LONG, GRAPHICS, or IMAGE. Note
that some item types, such as buttons and charts, do not have data types. To
avoid an error message in these situations, screen for item type before
getting data type.

DIRECTION Returns the layout direction for bidirectional objects. Valid
return values are RIGHT_TO_LEFT, LEFT_TO_RIGHT.

DISPLAYED Returns the VARCHAR2 string TRUE or FALSE.

190

ECHO Returns the VARCHAR2 string TRUE if the Conceal Data
property is set to No for the item, and the VARCHAR2 string FALSE if the
Conceal Data property is set to Yes for the item.

EDITOR_NAME Returns the name of the editor attached to the text item.

EDITOR_X_POS Returns the x coordinate of the editor attached to the
text item. (Corresponds to the Editor Position property.)

EDITOR_Y_POS Returns the y coordinate of the editor attached to the
edit item. (Corresponds to the Editor Position property.)

ENFORCE_KEY Returns the name of the item whose value is copied to
this item as a foreign key when a new record is created as part of a master-
detail relation. (Corresponds to the Copy property.)

ENABLED Returns TRUE if enabled property is set to Yes, FALSE if set
to No.

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FIXED_LENGTH Returns the VARCHAR2 string TRUE if the property
is set to Yes for the item, and the VARCHAR2 string FALSE if the
property is set to No for the item.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in hundredths of a point (i.e.,
an item with a font size of 8 points will return 800).

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

FORMAT_MASK Returns the format mask used for the text item.

HEIGHT Returns the height of the item. The size of the units depends on
the Coordinate System and default font scaling you specified for the form.

HINT_TEXT Returns the item-specific help text displayed on the message
line at runtime.

ICON_NAME Returns the file name of the icon resource associated with a
button item having the iconic property set to TRUE.

ICONIC_BUTTON Returns the VARCHAR2 value TRUE if the button is
defined as iconic, and the VARCHAR2 value FALSE if it is not an iconic
button.

IMAGE_DEPTH Returns the color depth of the specified image item.

191

IMAGE_FORMAT Returns the format of the specified image item.

INSERT_ALLOWED Returns the VARCHAR2 string TRUE if the
INSERT_ALLOWED property is set to true at the item level. Returns the
string FALSE if the property is set to false.

ITEM_CANVAS Returns the name of the canvas to which the item is
assigned.

ITEM_IS_VALID Returns the VARCHAR2 string TRUE if the current
item is valid, and the VARCHAR2 string FALSE if the current item is not
valid.

ITEM_NAME Returns the name of the item.

ITEM_TAB_PAGE Returns the name of the tab page to which the item is
assigned. Note that the item must be assigned to a tab canvas in order for
Form Builder to return the name of the item’s tab page.

ITEM_TYPE Returns the type of the item. Returns BUTTON if the item
is a button, CHART ITEM if the item is a chart item, CHECKBOX if the
item is a check box, DISPLAY ITEM if the item is a display item, IMAGE
if the item is an image item, LIST if the item is a list item, OLE OBJECT if
the item is an OCX control or an OLE container, RADIO GROUP if the
item is a radio group, TEXT ITEM if the item is a text item, USER AREA
if the item is a user area, and VBX CONTROL if the item is a custom item
that is a VBX control.

JUSTIFICATION Returns the text alignment for text items and display
items only. Valid return values are START, END, LEFT, CENTER,
RIGHT.

KEEP_POSITION Returns the VARCHAR2 string TRUE if the cursor is
to re-enter at the identical location it was in when it left the item, and the
VARCHAR2 string FALSE if the cursor is to re-enter the item at its default
position.

LABEL Returns the VARCHAR2 value defined for the item’s Label
property. This property is valid only for items that have labels, such as
buttons and check boxes.

LIST Returns the VARCHAR2 string TRUE if the item is a text item to
which a list of values (LOV) is attached; otherwise returns the VARCHAR2
string FALSE.

LOCK_RECORD_ON_CHANGE Returns the VARCHAR2 string
TRUE if Form Builder should attempt to lock a row based on a potential
change to this item, and returns the VARCHAR2 string FALSE if no lock
should be attempted.

LOV_NAME Returns the VARCHAR2 name of the LOV associated with
the given item. If the LOV name does not exist, you will get an error
message.

LOV_X_POS Returns the x coordinate of the LOV associated with the text
item. (Corresponds to the List X Position property.)

192

LOV_Y_POS Returns the y coordinate of the LOV associated with the
text item. (Corresponds to the List Y Position property.)

MAX_LENGTH Returns the maximum length setting for the item. The
value is returned as a whole NUMBER.

MERGE_CURRENT_ROW_VA Merges the contents of the specified
visual attribute with the current row’s visual attribute (rather than replacing
it).

MERGE_TOOLTIP_ATTRIBUTE Merges the contents of the specified
visual attribute with the tooltip’s current visual attribute (rather than
replacing it).

MERGE_VISUAL_ATTRIBUTE Merges the contents of the specified
visual attribute with the object’s current visual attribute (rather than
replacing it).

MOUSE_NAVIGATE Returns the VARCHAR2 string TRUE if Mouse
Navigate is set to Yes for the item, and the VARCHAR2 string FALSE if it
is set to No for the item.

MULTI_LINE Returns the VARCHAR2 value TRUE if the item is a
multi-line text item, and the VARCHAR2 string FALSE if it is a single-line
text item.

NAVIGABLE Returns the VARCHAR2 string TRUE if the
NAVIGABLE property is set to true at the item level. Returns the string
FALSE if the property is set to false.

NEXTITEM Returns the name of the next item in the default navigation
sequence, as defined by the order of items in the Object Navigator.

NEXT_NAVIGATION_ITEM Returns the name of the item that is
defined as the "next navigation item" with respect to this current item.

POPUPMENU_CONTENT_ITEM Returns the setting for any of the
OLE popup menu item properties:

POPUPMENU_COPY_ITEM

POPUPMENU_CUT_ITEM

POPUPMENU_DELOBJ_ITEM

POPUPMENU_INSOBJ_ITEM

POPUPMENU_LINKS_ITEM

POPUPMENU_OBJECT_ITEM

POPUPMENU_PASTE_ITEM

POPUPEMNU_PASTESPEC_ITEM

Returns the VARCHAR2 string HIDDEN if the OLE popup menu item is
not displayed. Returns the VARCHAR2 string ENABLED if the OLE
popup menu item is displayed and enabled. Returns the VARCHAR2
string DISABLED if the OLE popup menu item is displayed and not
enabled. Returns the VARCHAR2 string UNSUPPORTED if the platform
is not Microsoft Windows.

PREVIOUSITEM Returns the name of the previous item.

193

PREVIOUS_NAVIGATION_ITEM Returns the name of the item that is
defined as the "previous navigation item" with respect to this current item.

PRIMARY_KEY Returns the VARCHAR2 value TRUE if the item is a
primary key, and the VARCHAR2 string FALSE if it is not.

PROMPT_ALIGNMENT_OFFSET Returns the distance between the
item and its prompt as a VARCHAR2 value.

PROMPT_BACKGROUND_COLOR The color of the object’s
background region.

PROMPT_DISPLAY_STYLE Returns the prompt’s display style, either
FIRST_RECORD, HIDDEN, or ALL_RECORDS.

PROMPT_EDGE Returns a value that indicates which edge the item’s
prompt is attached to, either START, END, TOP, or BOTTOM.

PROMPT_EDGE_ALIGNMENT Returns a value that indicates which
edge the item’s prompt is aligned to, either START, END, or CENTER.

PROMPT_EDGE_OFFSET Returns the distance between the item and
its prompt as a VARCHAR2 value.

PROMPT_FILL_PATTERN The pattern to be used for the object's fill
region. Patterns are rendered in the two colors specified by Background
Color and Foreground Color.

PROMPT_FONT_NAME The font family, or typeface, that should be
used for text in the object. The list of fonts available is system-dependent.

PROMPT_FONT_SIZE The size of the font, specified in points.

PROMPT_FONT_SPACING The width of the font, that is, the amount
of space between characters (kerning).

PROMPT_FONT_STYLE The style of the font.

PROMPT_FONT_WEIGHT The weight of the font.

PROMPT_FOREGROUND_COLOR The color of the object's
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

PROMPT_TEXT Returns the text label that displays for an item.

PROMPT_TEXT_ALIGNMENT Returns a value that indicates how the
prompt is justified, either START, LEFT, RIGHT, CENTER, or END.

PROMPT_VISUAL_ATTRIBUTE Returns a value that indicates the
prompt’s named visual attribute .

PROMPT_WHITE_ON_BLACK Specifies that the object is to appear
on a monochrome bitmap display device as white text on a black
background.

QUERYABLE Returns the VARCHAR2 string TRUE if the item can be
included in a query, and the VARCHAR2 string FALSE if it cannot.

194

QUERY_LENGTH Returns the number of characters an operator is
allowed to enter in the text item when the form is in Enter Query mode.

QUERY_ONLY Returns the VARCHAR2 string TRUE if property is set
to Yes for the item, and the VARCHAR2 string FALSE if the property is
set to No for the item.

RANGE_HIGH Returns the high value of the range limit. (Corresponds
to the Range property.)

RANGE_LOW Returns the low value of the range limit. (Corresponds to
the Range property.)

REQUIRED For multi-line text items, returns the VARCHAR2 string
TRUE if the REQUIRED property is set to true at the item level. Returns
the string FALSE if the property is set to false.

SCROLLBAR Returns the VARCHAR2 string TRUE if the Show Scroll
Bar property is Yes, and the VARCHAR2 string FALSE if the Show Scroll
Bar property is No.

SHOW_FAST_FORWARD_BUTTON Returns the VARCHAR2 value

TRUE if is displayed on the specified sound item, FALSE if not.

SHOW_PALETTE Returns the VARCHAR2 value TRUE if the image-
manipulation palette is displayed adjacent to the specified image item,
FALSE if not.

SHOW_PLAY_BUTTON Returns the VARCHAR2 value TRUE if is
displayed on the specified sound item, FALSE if not.

SHOW_RECORD_BUTTON Returns the VARCHAR2 value TRUE if

 is displayed on the specified sound item, FALSE if not.

SHOW_REWIND_BUTTON Returns the VARCHAR2 value TRUE if

 is displayed on the specified sound item, FALSE if not.

SHOW_SLIDER Returns the VARCHAR2 value TRUE if the Slider
position control is displayed on the specified sound item, FALSE if not.

SHOW_TIME_INDICATOR Returns the VARCHAR2 value TRUE if

 is displayed on the specified sound item, FALSE if not.

SHOW_VOLUME_CONTROL Returns the VARCHAR2 value TRUE

if is displayed on the specified sound item, FALSE if not.

TOOLTIP_BACKGROUND_COLOR The color of the object’s
background region.

TOOLTIP_FILL_PATTERN The pattern to be used for the object’s fill
region. Patterns are rendered in the two colors specified by Background
Color and Foreground Color.

TOOLTIP_FONT_NAME The font family, or typeface, that should be
used for text in the object. The list of fonts available is system-dependent.

TOOLTIP_FONT_SIZE The size of the font, specified in points.

195

TOOLTIP_FONT_SPACING The width of the font, that is, the amount
of space between characters (kerning).

TOOLTIP_FONT_STYLE The style of the font.

TOOLTIP_FONT_WEIGHT The weight of the font.

TOOLTIP_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

TOOLTIP_WHITE_ON_BLACK Specifies that the object is to appear
on a monochrome bitmap display device as white text on a black
background.

TOOLTIP_TEXT Returns the item’s tooltip text.

UPDATE_ALLOWED Returns the VARCHAR2 string TRUE if the
UPDATE_ALLOWED property is set to true at the item level. Returns the
string FALSE if the property is set to false.

UPDATE_COLUMN Returns the VARCHAR2 string TRUE if Form
Builder should treat the item as updated, and FALSE if it should not.

UPDATE_NULL Returns the VARCHAR2 string TRUE if the item
should be updated only if it is NULL, and the VARCHAR2 string FALSE if
it can always be updated. (Corresponds to the Update if NULL property.)

UPDATE_PERMISSION Returns the VARCHAR2 string TRUE if the
UPDATE_PERMISSION property is set to ON, turning on the item's
UPDATEABLE and UPDATE_NULL properties. The VARCHAR2 string
FALSE indicates that UPDATEABLE and UPDATE_NULL are turned off.

VALIDATE_FROM_LIST Returns the VARCHAR2 string TRUE if
Form Builder should validate the value of the text item against the values in
the attached LOV; otherwise returns the VARCHAR2 string FALSE.

VISIBLE Returns the VARCHAR2 string TRUE if the property is set to
Yes for the item, and the VARCHAR2 string FALSE if the property is set
to No for the item.

VISUAL_ATTRIBUTE Returns the name of the visual attribute currently
in force. If no named visual attribute is assigned to the item, returns
DEFAULT for a default visual attribute.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH Returns the width of the item.

WINDOW_HANDLE Returns the a unique internal VARCHAR2
constant that is used to refer to objects. Returns the VARCHAR2 value ‘0’
if the platform is not Microsoft Windows.

WRAP_STYLE Returns VARCHAR2 if the item has wrap style set to
VARCHAR2, WORD if word wrap is set, NONE if no wrap style is
specified for the item.

196

X_POS Returns the x coordinate that reflects the current placement of the
item’s upper left corner relative to the upper left corner of the canvas.

Y_POS Returns the y coordinate that reflects the current placement of the
item’s upper left corner relative to the upper left corner of the canvas.

Usage Notes

If you attempt to use GET_ITEM_PROPERTY to get a property for an item that is not valid for that
item, an error will occur. For example, an error will occur when you attempt to get LIST from a radio
group because LIST is valid only for text items.

GET_ITEM_PROPERTY examples

/*
** Built-in: GET_ITEM_PROPERTY
** Example: Navigate to the next required item in the
** current block. */
PROCEDURE Go_Next_Required_Item IS
 cur_blk VARCHAR2(40);
 cur_itm VARCHAR2(80);
 orig_itm VARCHAR2(80);
 first_itm VARCHAR2(80);
 wrapped BOOLEAN := FALSE;
 found BOOLEAN := FALSE;
 Exit_Procedure EXCEPTION;
 /*
 ** Local function returning the name of the item after the
 ** one passed in. Using NVL we make the item after the
 ** last one in the block equal the first item again.
 */
 FUNCTION The_Item_After(itm VARCHAR2)
 RETURN VARCHAR2 IS
 BEGIN
 RETURN cur_blk||’.’||
 NVL(Get_Item_Property(itm,NEXTITEM),
 first_itm);
 END;
BEGIN
 cur_blk := :System.Cursor_Block;
 first_itm := Get_Block_Property(cur_blk, FIRST_ITEM);
 orig_itm := :System.Cursor_Item;
 cur_itm := The_Item_After(orig_itm);
 /*
 ** Loop until we come back to the item name where we started
 */
 WHILE (orig_itm <> cur_itm) LOOP

 /*
 ** If required item, set the found flag and exit procedure
 */
 IF Get_Item_Property(cur_itm,REQUIRED) = ’TRUE’ THEN
 found := TRUE;
 RAISE Exit_Procedure;
 END IF;
 /*
 ** Setup for next iteration
 */
 cur_itm := The_Item_After(cur_itm);
 END LOOP;
 /*

197

 ** If we get here we wrapped all the way around the
 ** block’s item names
 */
 wrapped := TRUE;
 RAISE Exit_Procedure;
EXCEPTION
 WHEN Exit_Procedure THEN
 /*
 ** If we found a required item and we didn’t come back
 ** to the item we started in, then navigate there
 */
 IF found AND NOT wrapped THEN
 Go_Item(cur_itm);
 END IF;
END;

198

GET_LIST_ELEMENT_COUNT built-in

Description

Returns the total number of list item elements in a list, including elements with NULL values.

Syntax
FUNCTION GET_LIST_ELEMENT_COUNT
 (list_id Item);
FUNCTION GET_LIST_ELEMENT_COUNT
 (list_name VARCHAR2);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

GET_LIST_ELEMENT_COUNT examples

/*
** Built-in: GET_LIST_ELEMENT_COUNT
** Example: Add an element to the list item. Before adding
** the element, verify that the element is not in
** the current list.
*/
DECLARE
 total_list_count NUMBER(2);
 loop_index_var NUMBER(2) := 1;
 list_element VARCHAR2(50);
 list_element_value VARCHAR2(50);
 list_element_to_add VARCHAR2(50);
 list_value_to_add VARCHAR2(50);
 element_match VARCHAR2(5) := ’TRUE’;
 value_match VARCHAR2(5) := ’TRUE’;
BEGIN
/*
** Determine the total number of list elements.
*/
 total_list_count := Get_List_Element_Count(list_id);
/*
** Compare the current list item elements with the element that
** will be added.
*/
 LOOP
 list_element := Get_List_Element_Value(list_id,
 loop_index_var);

199

 loop_index_var := loop_index_var + 1;
 IF list_element_to_add = list_element THEN
 element_match := ’FALSE’;
 END IF;
 EXIT WHEN list_element = list_element_to_add OR
 loop_index_var = total_list_count;
 END LOOP;
/*
** Compare the current list item values with the value that
** will be added.
*/
 loop_index_var := 1;
 LOOP
 list_element_value:= Get_List_Element_Value(list_id,
 loop_index_var);
 loop_index_var := loop_index_var + 1;
 IF list_value_to_add = list_element_value THEN
 value_match := ’FALSE’;
 END IF;
 EXIT WHEN list_element_value = list_value_to_add OR
 loop_index_var = total_list_count;
 END LOOP;
/*
** Add the element and value if it is not in the current list
*/
 IF element_match AND value_match = ’TRUE’ THEN
 Add_List_Element(list_id, list_name, list_element_to_add,
 list_value_to_add);
 END IF
END;

200

GET_LIST_ELEMENT_LABEL built-in

Description

Returns information about the requested list element label.

Syntax
FUNCTION GET_LIST_ELEMENT_LABEL
 (list_id ITEM,
 list_name VARCHAR2,
 list_index NUMBER);
FUNCTION GET_LIST_ELEMENT_LABEL
 (list_name VARCHAR2,
 list_index NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

list_index Specifies the list index value. The list index is 1 based. If the index is
greater than the count of elements in the list,
GET_LIST_ELEMENT_LABEL will fail.

Usage Notes

The value associated with a list item element is not necessarily the list item’s current value. That is, the
value of :block.list_item.

GET_LIST_ELEMENT_LABEL examples

/*
** Built-in: GET_LIST_ELEMENT_LABEL
** Example: See GET_LIST_ELEMENT_COUNT
*/

201

GET_LIST_ELEMENT_VALUE built-in

Description

Returns the value associated with the specified list item element.

Syntax
FUNCTION GET_LIST_ELEMENT_VALUE
 (list_id ITEM,
 list_index NUMBER);
FUNCTION GET_LIST_ELEMENT_VALUE
 (list_name VARCHAR2,
 list_index NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

list_index Specifies the list index value. The list index is 1 based. It will return a
string containing the value of the requested element. If the index is greater
than the count of elements in the list, GET_LIST_ELEMENT_VALUE
will fail.

GET_LIST_ELEMENT_VALUE examples

/*
** Built-in: GET_LIST_ELEMENT_VALUE
** Example: See GET_LIST_ELEMENT_COUNT
*/

202

GET_LOV_PROPERTY built-in

Description

Returns information about a specified list of values (LOV).

You must issue a call to the built-in once for each property value you want to retrieve.

Syntax
FUNCTION GET_LOV_PROPERTY
 (lov_id, property LOV);
FUNCTION GET_LOV_PROPERTY
 (lov_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

lov_id Specifies the unique ID that Form Builder assigns the object at the time it
creates it. Use the FIND_LOV built-in to return the ID to an appropriately
typed variable. The data type of the ID is LOV.

lov_name Specifies the name that you gave the object when creating it.

property Specifies the property you want to set for the given LOV. The possible
properties are as follows:

AUTO_REFRESH Returns the VARCHAR2 string TRUE if the property
is set to Yes; that is, if Form Builder re-executes the query each time the
LOV is invoked. Returns the VARCHAR2 string FALSE if the property is
set to No.

GROUP_NAME Returns the name of the record group currently
associated with this LOV. The data type of the name is VARCHAR2.

HEIGHT Returns the height of the LOV. The size of the units depends
on the Coordinate System and default font scaling you specified for the
form.

WIDTH Returns the width of the LOV. The size of the units depends on
the Coordinate System and default font scaling you specified for the form.

X_POS Returns the x coordinate that reflects the current placement of the
LOV’s upper left corner relative to the upper left corner of the screen.

Y_POS Returns the y coordinate that reflects the current placement of the
LOV’s upper left corner relative to the upper left corner of the screen.

203

GET_LOV_PROPERTY examples

/*
** Built-in: GET_LOV_PROPERTY
** Example: Can get the width/height of the LOV.
*/
DECLARE
 the_width NUMBER;
 the_height NUMBER;
 lov_id LOV;
BEGIN
 lov_id := Find_LOV(’My_LOV_1’);
 the_width := Get_LOV_Property(lov_id, WIDTH);
 the_height := Get_LOV_Property(lov_id,HEIGHT);
END;

204

GET_MENU_ITEM_PROPERTY built-in

Description

Returns the state of the menu item given the specific property. You can use this built-in function to get
the state and then you can change the state of the property with the SET_MENU_ITEM_PROPERTY
built-in.

Syntax
FUNCTION GET_MENU_ITEM_PROPERTY
 (menuitem_id MenuItem,
 property NUMBER);
FUNCTION GET_MENU_ITEM_PROPERTY
 (menu_name.menuitem_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

menuitem_id The unique ID Form Builder assigns to the menu item when you create it.
Use the FIND_MENU_ITEM built-in to return the ID to an appropriately
typed variable. Datatype is MenuItem.

menu_name. menuitem_nameThe name you gave the menu item when you created it. If you specify the
menu item by name, include the qualifying menu name, for example,
menu_name.menuitem_name. Datatype is VARCHAR2.

property Specify one of the following constants to retrieve information about the
menu item:

CHECKED Returns the VARCHAR2 string TRUE if a check box menu
item is checked, FALSE if it is unchecked. Returns the VARCHAR2 string
TRUE if a radio menu item is the selected item in the radio group, FALSE
if some other radio item in the group is selected. Returns TRUE for other
menu item types.

ENABLED Returns the VARCHAR2 string TRUE if a menu item is
enabled, FALSE if it is disabled (thus grayed out and unavailable).

ICON_NAME Returns the file name of the icon resource associated with a
menu item having the Icon in Menu property set to TRUE.

LABEL Returns the VARCHAR2 string for the menu item label.

VISIBLE Returns the VARCHAR2 string TRUE if a menu item is visible,
FALSE if it is hidden from view.

GET_MENU_ITEM_PROPERTY examples

205

/*
** Built-in: GET_MENU_ITEM_PROPERTY
** Example: Toggle the enabled/disable status of the menu
** item whose name is passed in. Pass in a string
** of the form ’MENUNAME.MENUITEM’.
*/
PROCEDURE Toggle_Enabled(menuitem_name VARCHAR2) IS
 mi_id MenuItem;
BEGIN
 mi_id := Find_Menu_Item(menuitem_name);
 IF Get_Menu_Item_Property(mi_id,ENABLED) = ’TRUE’ THEN
 Set_Menu_Item_Property(mi_id,ENABLED,PROPERTY_FALSE);
 ELSE
 Set_Menu_Item_Property(mi_id,ENABLED,PROPERTY_TRUE);
 END IF;
END;

206

GET_MESSAGE built-in

Description

Returns the current message, regardless of type.

Syntax
FUNCTION GET_MESSAGE;

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

none

GET_MESSAGE restrictions

GET_MESSAGE is only instantiated when a message is directed to the display device, either by Form
Builder or by a call to the MESSAGE built-in. If you redirect messages using the On-Message trigger, a
call to GET_MESSAGE does not return a value. Refer to the On-Message trigger for more information.

GET_MESSAGE examples

/*
** Built-in: GET_MESSAGE
** Example: Capture the contents of the Message Line in a
** local variable
*/
DECLARE
 string_var VARCHAR2(200);
BEGIN
 string_var := Get_Message;
END;

207

GET_OLE_<proptype> built-in

Description

Obtains an OLE property.

There are four versions of the function (denoted by the value in proptype), one for each of the argument
types CHAR, NUM, OBJ, and VAR.

Syntax
FUNCTION GET_OLE_CHAR
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN oleprop VARCHAR2;
...or...
FUNCTION GET_OLE_NUM
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN oleprop NUMBER;
...or...
FUNCTION GET_OLE_OBJ
 (obj OLEOBJ, memberid PLS_INTEGER)
RETURN oleprop OLEOBJ;
...or...
FUNCTION GET_OLE_VAR
 (obj OLEOBJ, memberid PLS_INTEGER,
 persistence BOOLEAN)
RETURN oleprop OLEVAR;

Built-in Type unrestricted function

Returns the OLE property. Note that the type varies according to the form of the function chosen.

Parameters

obj A pointer to the OLE object.

memberid The member ID of the OLE property.

persistenc
e

Controls the persistence of the OLEVAR argument after
its retrieval. This is an optional parameter; if not
specified, the default value is FALSE (that is, non-
persistent).

Usage Notes

• If INIT_OLEARGS and ADD_OLEARG calls precede this GET_OLE_type call, and there have
been no intervening GET_OLE, SET_OLE, or CALL_OLE calls, then this call will retrieve the
property by using the arguments specified in those INIT_OLEARGS and ADD_OLEARG calls.

• In contrast to a returned OLEVAR argument, whose persistence can be user-controlled, a returned
OLEOBJ argument is always set to be non-persistent.

208

GET_OLEARG_<type> built-in

Description

Obtains the nth argument from the OLE argument stack.

There are four versions of the function (denoted by the value in type), one for each of the argument types
CHAR, NUM, OBJ, and VAR.

Syntax
FUNCTION GET_OLEARG_CHAR
 (which NUMBER)
RETURN olearg VARCHAR2;
...or...
FUNCTION GET_OLEARG_NUM
 (which NUMBER)
RETURN olearg NUMBER;
...or...
FUNCTION GET_OLEARG_OBJ
 (which NUMBER)
RETURN olearg OLEOBJ;
...or...
FUNCTION GET_OLEARG_VAR
 (which NUMBER, persistence BOOLEAN)
RETURN olearg OLEVAR;

Built-in Type unrestricted function

Returns the indicated argument. Note that the type varies according to the form of the function
used.

Parameters

which A relative number indicating which argument in the OLE
argument stack should be retrieved.

persistence Controls the persistence of the OLEVAR argument after
its retrieval. This is an optional parameter; if not
specified, the default value is FALSE (that is, non-
persistent).

Usage Notes

• Use this function to retrieve arguments whose value might change as a result of the method call.

• In contrast to a returned OLEVAR argument, whose persistence can be user-controlled, a returned
OLEOBJ argument is always set to be non-persistent.

209

GET_OLE_MEMBERID built-in

Description

Obtains the member ID of a named method or property of an OLE object.

Syntax
FUNCTION GET_OLE_MEMBERID
 (obj OLEOBJ, name VARCHAR2)
RETURN memberid PLS_INTEGER;

Built-in Type unrestricted function

Returns member ID of the method or property

Parameters

obj Pointer to the OLE object.

name Name of the object’s method or property.

Usage Notes

The member ID is a hard-coded value. The result returned may vary depending on the language used to
run the OLE server.

210

GET_PARAMETER_ATTR built-in

Description

Returns the current value and type of an indicated parameter in an indicated parameter list.

Syntax
FUNCTION GET_PARAMETER_ATTR
 (list VARCHAR2,
 key VARCHAR2,
 paramtype NUMBER,
 value VARCHAR2);
FUNCTION GET_PARAMETER_ATTR
 (name VARCHAR2,
 key VARCHAR2,
 paramtype NUMBER,
 value VARCHAR2);

Built-in Type unrestricted procedure that returns two OUT parameters

Enter Query Mode yes

Parameters

list or name Specifies the parameter list to which the parameter is assigned. The actual
parameter can be either a parameter list ID of type PARAMLIST, or the
VARCHAR2 name of the parameter list.

key The VARCHAR2 name of the parameter.

paramtype An OUT parameter of type NUMBER. The actual parameter you supply
must be a variable of type NUMBER, and cannot be an expression.
Executing the parameter sets the value of the variable to one of the
following numeric constants:

DATA_PARAMETER Indicates that the parameter’s value is the name of
a record group.

TEXT_PARAMETER Indicates that the parameter’s value is an actual
data value.

value An OUT parameter of type VARCHAR2. If the parameter is a data type
parameter, the value is the name of a record group. If the parameter is a
text parameter, the value is an actual text parameter.

For an overview of using OUT parameters with PL/SQL procedures, refer to the PL/SQL 2.0 User’s
Guide and Reference.

211

GET_PARAMETER_LIST built-in

Description

Searches the list of parameter lists and returns a parameter list ID when it finds a valid parameter list
with the given name. You must define an variable of type PARAMLIST to accept the return value. This
function is similar to the FIND_ functions available for other objects.

Syntax
FUNCTION GET_PARAMETER_LIST
 (name VARCHAR2);

Built-in Type unrestricted function

Returns ParamList

Enter Query Mode yes

Parameters

name Specifies a valid VARCHAR2 parameter list name.

GET_PARAMETER_LIST examples

See CREATE_PARAMETER_LIST

212

GET_RADIO_BUTTON_PROPERTY built-in

Description

Returns information about a specified radio button.

Syntax
FUNCTION GET_RADIO_BUTTON_PROPERTY
 (item_id ITEM,
 button_name VARCHAR2,
 property NUMBER);
FUNCTION GET_RADIO_BUTTON_PROPERTY(
 item_name VARCHAR2,
 button_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

item_id Specifies the radio group item ID. Form Builder assigns the unique ID at
the time it creates the object. Use the FIND_ITEM built-in to return the
ID to an appropriately typed variable. The data type of the ID is ITEM.

item_name Specifies the name of the radio group. The radio group is the owner or
parent of its subordinate radio buttons. The data type of the name is
VARCHAR2.

button_name Specifies the name of the radio button whose property you want. The data
type of the name is VARCHAR2.

property Specifies the property for which you want the current state. The possible
property constants you can indicate are as follows:

BACKGROUND_COLOR The color of the object’s background region.

ENABLED Returns the VARCHAR2 string TRUE if property is set to
Yes, and the VARCHAR2 string FALSE if property is set to No.

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

213

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

HEIGHT Returns the height of the radio button. The value is returned as
a VARCHAR2 and is expressed in the units as set for the form by the form
module Coordinate System property.

LABEL Returns the actual string label for that radio button.

PROMPT_BACKGROUND_COLOR The color of the object’s
background region.

PROMPT_FILL_PATTERN The pattern to be used for the object’s fill
region. Patterns are rendered in the two colors specified by Background
Color and Foreground Color.

PROMPT_FONT_NAME The font family, or typeface, that should be
used for text in the object. The list of fonts available is system-dependent.

PROMPT_FONT_SIZE The size of the font, specified in points.

PROMPT_FONT_SPACING The width of the font, that is, the amount
of space between characters (kerning).

PROMPT_FONT_STYLE The style of the font.

PROMPT_FONT_WEIGHT The weight of the font.

PROMPT_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

PROMPT_WHITE_ON_BLACK Specifies that the object is to appear
on a monochrome bitmap display device as white text on a black
background.

VISIBLE Returns the VARCHAR2 string TRUE if property is set to Yes,
returns and the VARCHAR2 string FALSE if property is set to No.

VISUAL_ATTRIBUTE Returns the name of the visual attribute currently
in force. If no named visual attribute is assigned to the radio button, returns
CUSTOM for a custom visual attribute or DEFAULT for a default visual
attribute.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH Returns the width of the radio button, including the label part.
The value is returned as a VARCHAR2 and is expressed in the units as set
for the form by the form module Coordinate System property.

WINDOW_HANDLE Returns the a unique internal VARCHAR2
constant that is used to refer to objects. Returns the number 0 if the
platform is not Microsoft Windows.

X_POS Returns the x coordinate that reflects the current placement of the
button’s upper left corner relative to the upper left corner of the canvas.

214

The value is returned as a VARCHAR2 and is expressed in the units
defined by the form module Coordinate System property.

Y_POS Returns the y coordinate that reflects the current placement of the
button’s upper left corner relative to the upper left corner of the canvas.
The value is returned as a VARCHAR2 and is expressed in the units
defined by the form module Coordinate System property.

GET_RADIO_BUTTON_PROPERTY examples

/*
** Built-in: GET_RADIO_BUTTON_PROPERTY
** Example: Determine whether a given radio button is
** displayed and has a particular visual
** attribute.
*/
DECLARE
 it_id Item;
 disp VARCHAR2(5);
 va_name VARCHAR2(40);
BEGIN
 it_id := Find_Item(’My_Favorite_Radio_Grp’);
 disp := Get_Radio_Button_Property(it_id, ’REJECTED’,
VISIBLE);
 va_name := Get_Radio_Button_Property(it_id, ’REJECTED’,
 VISUAL_ATTRIBUTE);

 IF disp = ’TRUE’ AND va_name = ’BLACK_ON_PEACH’ THEN
 Message(’You win a prize!’);
 ELSE
 Message(’Sorry, no luck today.’);
 END IF;
END;

215

GET_RECORD_PROPERTY built-in

Description

Returns the value for the given property for the given record number in the given block. The three
parameters are required. If you do not pass the proper constants, Form Builder issues an error. For
example, you must pass a valid record number as the argument to the record_number parameter.

Syntax
FUNCTION GET_RECORD_PROPERTY
 (record_number NUMBER,
 block_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

record_number Specifies the record in a block for which you want property information.
The number must correspond to a record number.

block_name Specifies the block containing the target record.

property Specifies the property for which you want the current state. One property
constant is supported: Status.

STATUS returns NEW if the record is marked as new and there is no
changed record in the block. Returns CHANGED if the record is marked
as changed. Returns QUERY if the record is marked as query. Returns
INSERT if the record is marked as insert.

Usage Notes

The following table illustrates the situations which return a NEW status.

Record
Status

Block
Status

Form
Status

Created record with no modified
fields

NEW <N|Q|C> <N|Q|C>

...and all records in current
block are NEW

NEW NEW <N|Q|C>

...and all blocks in current form
are NEW

NEW NEW NEW

216

The following table illustrates the effect on record, block, and form status of changes to base table items
and control item in base table and control blocks.

Type of
Block/Type of
Item Changed

Record
Status
Before
Change

Record
Status
After
Change

Block
Status

 Form
Status

In a Base Table
Block: Change a
Base Table Item

NEW INSERT CHANGED CHANGED

In a Base Table
Block:Change a
Base Table Item

QUERY CHANGED CHANGED CHANGED

In a Base Table
Block:Change a
Control Item

QUERY QUERY <Q|C> <Q|C>

...and no record
in current block
is changed

QUERY QUERY <Q|C>

...and no block
in current form
is changed

QUERY QUERY QUERY

In a Base Table
Block: Change a
Control Item

NEW INSERT <Q|C> <Q|C>

In a Control
Block: Change
a Control Item

NEW INSERT <Q> <Q|C>

...and no record
in current block
is changed

INSERT QUERY <Q|C>

...and no block
in current form
is changed

INSERT QUERY QUERY

Note:

In general, any assignment to a database item will change a record’s status from QUERY to CHANGED
(or from NEW to INSERT), even if the value being assigned is the same as the previous value. Passing
an item to a procedure as OUT or IN OUT parameter counts as an assignment to it.

Both GET_RECORD_PROPERTY and the system variable SYSTEM.RECORD_STATUS return the
status of a record in a given block, and in most cases, they return the same status. However, there are
specific cases in which the results may differ.

217

GET_RECORD_PROPERTY always has a value of NEW, CHANGED, QUERY, or INSERT, because
GET_RECORD_PROPERTY returns the status of a specific record without regard to the processing
sequence or whether the record is the current record.

SYSTEM.RECORD_STATUS, on the other hand, can in certain cases return a value of NULL, because
SYSTEM.RECORD_STATUS is undefined when there is no current record in the system. For example,
in a When-Clear-Block trigger, Form Builder is at the block level in its processing sequence, so there is
no current record to report on, and the value of SYSTEM.RECORD_STATUS is NULL.

GET_RECORD_PROPERTY examples

/*
** built-in: GET_RECORD_PROPERTY
** Example: Obtain the status of a record in given block
*/
BEGIN
 IF Get_Record_Property(1,’orders’,STATUS) = ’NEW’ AND
 Get_Record_Property(1,’customers’,STATUS) = ’NEW’ THEN
 Message(’You must enter a customer and order first!’);
 RAISE Form_trigger_Failure;
 END IF;
END;

218

GET_RELATION_PROPERTY built-in

Description

Returns the state of the given relation property.

Syntax
FUNCTION GET_RELATION_PROPERTY
 (relation_id Relation,
 property NUMBER);
FUNCTION GET_RELATION_PROPERTY
 (relation_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

relation_id Specifies the unique ID Form Builder assigns when it creates the relation.
Use the FIND_RELATION built-in to return the ID to an appropriately
typed variable. The data type of the ID is Relation.

relation_name Specifies the VARCHAR2 name you gave to the relation when you defined
it, or the name that Form Builder assigned to the relation when created.

property Specifies the property for which you want the current state. The property
constants you can use are as follows:

AUTOQUERY Returns the VARCHAR2 value TRUE if the Automatic
Query relation property is Yes, FALSE if it is No. When the Deferred
relation property is set to Yes, this property determines whether Form
Builder automatically populates the detail block when a different record
becomes the current record in the master block.

DEFERRED_COORDINATION Returns the VARCHAR2 value TRUE
if the Deferred relation property is Yes, FALSE if it is No. This property
determines whether the detail block is to be immediately coordinated with
the current master record, or left clear until the operator navigates to the
detail block.

DETAIL_NAME Returns the VARCHAR2 name of the detail block in the
given master-detail relationship.

MASTER_DELETES Returns one of the following VARCHAR2 values
to indicate the current setting of the block’s Delete Record Behavior
property: NON_ISOLATED, ISOLATED, or CASCADING.

MASTER_NAME Returns the VARCHAR2 name of the master block in
the given master-detail relationship.

219

NEXT_DETAIL_RELATION Returns the VARCHAR2 name of the
next detail relation, if one exists. To get the name of the first detail for a
given block, issue a call to GET_BLOCK_PROPERTY. Returns NULL if
none exists.

NEXT_MASTER_RELATION Returns the VARCHAR2 name of the
next relation, if one exists. To get the name of the first relation for a given
block, issue a call to GET_BLOCK_PROPERTY. Returns NULL if one
does not exist.

PREVENT_MASTERLESS_OPERATION Returns the VARCHAR2
value TRUE if this relation property is Yes, FALSE if it is No. When set to
Yes, Form Builder does not allow records to be inserted in the detail block
when there is no master record in the master block, and does not allow
querying in the detail block when there is no master record from the
database.

GET_RELATION_PROPERTY examples

/*
** Built-in: GET_RELATION_PROPERTY
** Example: If the relation is not deferred, then go
** coordinate the detail block. Otherwise, mark
** the detail block as being in need of
** coordination for an eventual deferred query.
*/
PROCEDURE Query_The_Details(rel_id Relation,
 detail VARCHAR2) IS
BEGIN
 IF Get_Relation_Property(rel_id, DEFERRED_COORDINATION)
 = ’FALSE’ THEN
 Go_Block(detail);
 IF NOT Form_Success THEN
 RAISE Form_trigger_Failure;
 END IF;
 Execute_Query;
 ELSE
 Set_Block_Property(detail, coordination_status,
 NON_COORDINATED);
 END IF;
End;

220

GET_REPORT_OBJECT_PROPERTY built-in

Description

Programmatically obtain a property of a report object.

Syntax
FUNCTION GET_REPORT_OBJECT_PROPERTY
 (report_id REPORT_OBJECT,
 property NUMBER
);
FUNCTION GET_REPORT_OBJECT_PROPERTY
 (report_name VARCHAR2,
 property NUMBER
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

report_id Specifies the unique ID of the report. You can get the report ID for a
particular report using FIND_REPORT_OBJECT .

report_name Specifies the unique name of the report.

property One of the following constants:

REPORT_EXECUTION_MODE: Returns a string value of the report
execution mode, either BATCH or RUNTIME

REPORT_COMM_MODE: Returns a string value of the report
communication mode, either SYNCHRONOUS or ASYNCHRONOUS

REPORT_DESTYPE: Returns a string value of the report destination type,
either PREVIEW, FILE, PRINTER, MAIL, CACHE or SCREEN

REPORT_FILENAME: Returns a string value of the report filename

REPORT_SOURCE_BLOCK: Returns a string value of the report source
block name

REPORT_QUERY_NAME: Returns a string value of the report query
name

REPORT_DESNAME: Returns a string value of the report destination
name

REPORT_DESFORMAT: Returns a string value of the report destination
format

REPORT_SERVER: Returns a string value of the report server name

REPORT_OTHER: Returns a string value of the other user-specified report
properties

221

Usage Notes

• GET_REPORT_OBJECT_PROPERTY returns a string value for all properties. In contrast,
SET_REPORT_OBJECT_PROPERTY sets properties using constant or string values. The value
type depends on the particular property being set.

GET_REPORT_OBJECT_PROPERTY examples

DECLARE
repid REPORT_OBJECT;
report_prop VARCHAR2(20);

BEGIN
repid := find_report_object(’report4’);
report_prop := get_report_object_property(repid,

 REPORT_EXECUTION_MODE);
message(’REPORT EXECUTION MODE PROPERTY IS ’ || report_prop);
report_prop := get_report_object_property(repid,

REPORT_COMM_MODE);
message(’REPORT COMM_MODE PROPERTY IS ’ || report_prop);
report_prop := get_report_object_property(repid,

REPORT_DESTYPE);
message(’REPORT DESTYPE PROPERTY IS ’ || report_prop);
report_prop := get_report_object_property(repid,

REPORT_FILENAME);
message(’REPORT_FILENAME PROPERTY IS ’ || report_prop);

END;

222

GET_TAB_PAGE_PROPERTY built-in

Description

Returns property values for a specified tab page.

Syntax
FUNCTION GET_TAB_PAGE_PROPERTY
 (tab_page_id TAB_PAGE,
 property NUMBER);
FUNCTION GET_TAB_PAGE_PROPERTY
 (tab_page_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

tab_page_id The unique ID Form Builder assigned to the tab page object when you
created it. Use the FIND_TAB_PAGE built-in to return the ID to a
variable of datatype TAB_PAGE.

tab page_name The name you gave the tab page object when you created it. Note: if two
tab pages in the same form module share the same name, you must provide
the canvas and tab page (e.g., CVS_1.TAB_PG_1).

property The property the value of which you want to get for the given tab page.
The possible properties are as follows:

BACKGROUND_COLOR The color of the object’s background region.

CANVAS_NAME Returns the VARCHAR2 name of the canvas to which
the tab page belongs.

ENABLED Returns the VARCHAR2 string TRUE if a tab page is
enabled, FALSE if it is disabled (i.e., greyed out and unavailable).

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

223

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

LABEL Returns the VARCHAR2 string for the tab page label.

VISIBLE Returns the VARCHAR2 value TRUE if the tab page is visible,
FALSE if it is not. A tab page is reported visible if it is currently mapped
to the screen, even if it is entirely hidden behind another tab page.

VISUAL_ATTRIBUTE Returns the name of the visual attribute currently
in force. If no named visual attribute is assigned to the tab page, returns
CUSTOM for a custom visual attribute or DEFAULT for a default visual
attribute.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

GET_TAB_PAGE_PROPERTY examples

/* Use FIND_TAB_PAGE and GET_TAB_PAGE_PROPERTY to check
** if a tab page is enabled:
*/
DECLARE
 tp_id TAB_PAGE;
 live VARCHAR2(32);

BEGIN
 tp_id := FIND_TAB_PAGE(’tab_page_1’);
 live := GET_TAB_PAGE_PROPERTY(tp_id, enabled);
END;

224

GET_TREE_NODE_PARENT built-in

Description

Returns the parent of the specified node.

Syntax
FUNCTION GET_TREE_NODE_PARENT
 (item_name VARCHAR2
 node NODE);
FUNCTION GET_TREE_NODE_PARENT
 (item_id ITEM
 node NODE);

Returns NODE

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

GET_TREE_NODE_PARENT examples

/*
** Built-in: GET_TREE_NODE_PARENT
*/

-- This code could be used in a WHEN-TREE-NODE-SELECTED
-- trigger to locate the parent of the node that was
-- clicked on.

DECLARE
 htree ITEM;
 parent_node FTREE.NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Get the parent of the node clicked on.

225

 parent_node := Ftree.Get_Tree_Node_Parent(htree,
:SYSTEM.TRIGGER_NODE);

 ...
END;

226

GET_TREE_NODE_PROPERTY built-in

Description

Returns the value of the specified property of the hierarchical tree node.

Syntax
FUNCTION GET_TREE_NODE_PROPERTY
 (item_name VARCHAR2,
 node NODE,
 property NUMBER);
FUNCTION GET_TREE_NODE_PROPERTY
 (item_id ITEM,
 node NODE,
 property NUMBER);

Returns VARCHAR2

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

property Specify one of the following properties:

NODE_STATE Returns the state of the hierarchical
tree node. This is either EXPANDED_NODE,
COLLAPSED_NODE, or LEAF_NODE.

NODE_DEPTH Returns the nesting level of the
hierarchical tree node.

NODE_LABEL Returns the label

NODE_ICON Returns the icon name

NODE_VALUE Returns the value of the hierarchical
tree node.

GET_TREE_NODE_PROPERTY examples

/*

227

** Built-in: GET_TREE_NODE_PROPERTY
*/

-- This code could be used in a WHEN-TREE-NODE-SELECTED
-- trigger to return the value of the node that was
-- clicked on.

DECLARE
 htree ITEM;
 node_value VARCHAR2(100);
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Find the value of the node clicked on.
 node_value := Ftree.Get_Tree_Node_Property(htree,
:SYSTEM.TRIGGER_NODE, Ftree.NODE_VALUE);

 ...
END;

228

GET_TREE_PROPERTY built-in

Description

Returns property values of the specified hierarchical tree.

Syntax
FUNCTION GET_TREE_PROPERTY
 (item_name VARCHAR2,
 property NUMBER);
FUNCTION GET_TREE_PROPERTY
 (item_id ITEM,
 property NUMBER);

Returns VARCHAR2

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_name Specifies the name you gave the object when you created
it. The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

property Specify one of the following properties:

DATASOURCE Returns the source used to initially
populate the hierarchical tree, either in Form Builder or
by using the SET_TREE_PROPERTY built-in. Returns
EXTERNAL if neither property was set in Form Builder.

RECORD_GROUP Returns the RecordGroup used to
initially populate the hierarchical tree, either in Form
Builder or by using the SET_TREE_PROPERTY built-
in. This may be a null string.

QUERY_TEXT Returns the text of the query used to
initially populate the hierarchical tree, either in Form
Builder or by using the SET_TREE_PROPERTY built-
in.. This may be a null string.

NODE_COUNT Returns the number of rows in the
hierarchical tree data set.

SELECTION_COUNT Returns the number of selected
rows in the hierarchical tree.

ALLOW_EMPTY_BRANCHES Returns the character

229

string TRUE or FALSE.

ALLOW_MULTI-SELECT Returns the character
string TRUE or FALSE.

Usage Notes

The values returned by datasource RECORD_GROUP and QUERY_TEXT do not necessarily reflect
the current data or state of the tree. The values returned are those that were set in Form Builder and not
those set using the SET_TREE_PROPERTY built-in.

GET_TREE_PROPERTY examples

/*
** Built-in: GET_TREE_PROPERTY
*/

-- This code could be used to find out how many nodes are
-- in a given tree.

DECLARE
 htree ITEM;
 node_count NUMBER;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Get the node count of the tree.
 node_count := Ftree.Get_Tree_Property(htree,
Ftree.NODE_COUNT);

 ...
END;

230

GET_TREE_SELECTION built-in

Description

Returns the data node indicated by selection. Selection is an index into the list of selected nodes.

Syntax
FUNCTION GET_TREE_SELECTION
 (item_name VARCHAR2,
 selection NUMBER);
FUNCTION GET_TREE_SELECTION
 (item_id ITEM,
 selection NUMBER);
Returns FTREE.NODE

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

selection Specifies the selection of a single node.

GET_TREE_SELECTION examples

/*
** Built-in: GET_TREE_SELECTION
*/

-- This code will process all tree nodes marked as selected.
See the
-- Ftree.Set_Tree_Selection built-in for a definition of
"selected".

DECLARE
 htree ITEM;
 num_selected NUMBER;
 current_node FTREE.NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Find the number of nodes marked as selected.
 num_selected := Ftree.Get_Tree_Property(htree,

231

Ftree.SELECTION_COUNT);

 -- Loop through selected nodes and process them. If you are
deleting
 -- nodes, be sure to loop in reverse!
 FOR j IN 1..num_selected LOOP
 current_node := Ftree.Get_Tree_Selection(htree, j);
 ...
 END LOOP;
END;

232

GET_VA_PROPERTY built-in

Description

Returns visual attribute property values for the specified property.

Syntax
FUNCTION GET_VA_PROPERTY
 (va_id VISUALATTRIBUTE
 property NUMBER);
FUNCTION GET_VA_PROPERTY
 (va_name VARCHAR2
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

va_id The unique ID Form Builder assinged to the visual
attribute when you created it. The data type is
VISUALATTRIBUTE.

va_name The name you gave the visual attribute when you created
it. The data type is VARCHAR2.

property Specify one of the following properties:

BACKGROUND_COLOR The color of the object’s
background region.

FILL_PATTERN The pattern to be used for the object’s
fill region. Patterns are rendered in the two colors
specified by Background Color and Foreground Color.

FONT_NAME The font family, or typeface, that should
be used for text in the object. The list of fonts available
is system-dependent.

FONT_SIZE The size of the font, specified in hundreds
of points. For example, 8pt. would be 800.

FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color
attribute defines the color of text displayed in the item.

233

WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white
text on a black background.

234

GET_VAR_BOUNDS built-in

Description

Obtains the bounds of an OLE variant’s array.

Syntax
PROCEDURE GET_VAR_BOUNDS
 (var OLEVAR, bounds OLE_SAFEARRAYBOUNDS);

Built-in Type unrestricted procedure

Parameters

var The variant.

bounds The PL/SQL table that is populated with the bounds of
the array.

For more information about the contents and layout of
this parameter, see Array Types for OLE Support

235

GET_VAR_DIMS built-in

Description

Determines if an OLE variant is an array, and if so, obtains the number of dimensions in that array.

Syntax
FUNCTION GET_VAR_DIMS
 (var OLEVAR)
RETURN vardims PLS_INTEGER;

Built-in Type unrestricted function

Returns A value of zero (0) if the variant is not an array. Otherwise, the return value is the number of
dimensions in the array.

Parameters

var The variant.

236

GET_VAR_TYPE built-in

Description

Obtains the type of an OLE variant.

Syntax
FUNCTION GET_VAR_TYPE
 (var OLEVAR)
RETURN vartype VT_TYPE;

Built-in Type unrestricted function

Returns type of the variable

Parameters

var The variant.

vartype Type of the variant.

Usage Notes

A list of the supported VT_TYPEs can be found in OLE Variant Types .

237

GET_VERB_COUNT built-in

Description

Returns the number of verbs that an OLE server recognizes. An OLE verb specifies the action that you
can perform on an OLE object, and the number of verbs available depends on the OLE server. The
number of verbs is returned as a VARCHAR2 string and must be converted to NUMBER for use in
determining the verb index and verb name for each verb. You must define an appropriately typed
variable to accept the return value.

Syntax
FUNCTION GET_VERB_COUNT
 (item_id Item);
FUNCTION GET_VERB_COUNT
 (item_name VARCHAR2);

Returns VARCHAR2

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

GET_VERB_COUNT restrictions

Valid only on Microsoft Windows and Macintosh.

GET_VERB_COUNT examples

/*
** Built-in: GET_VERB_COUNT
** Example: Obtains the number of verbs that the OLE server
** issues and recognizes when executed from the OLE container.
** trigger: When-Button-Pressed
*/
DECLARE
 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
 verb_cnt_str VARCHAR(20);
 verb_cnt NUMBER;
 verb_name VARCHAR(20);
 loop_cntr NUMBER;
BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN

238

 message(’No such item: ’||item_name);
 ELSE
 verb_cnt_str := Get_Verb_Count(item_id);
 verb_cnt := TO_NUMBER(verb_cnt_str);
 FOR loop_cntr in 1..verb_cnt LOOP
 verb_name := Get_Verb_Name(item_id,loop_cntr);
 IF verb_name = ’Edit’ THEN
 Exec_Verb(item_id,verb_name);
 END IF;
 END LOOP;
 END IF;
END;

239

GET_VERB_NAME built-in

Description

Returns the name of the verb that is associated with the given verb index. An OLE verb specifies the
action that you can perform on an OLE object, and each OLE verb has a corresponding OLE verb index.
You must define an appropriately typed variable to accept the return value.

Syntax
FUNCTION GET_VERB_NAME
 (item_id Item,
 verb_index VARCHAR2);
FUNCTION GET_VERB_NAME
 (item_name VARCHAR2,
 verb_index VARCHAR2);

Returns VARCHAR 2

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2.

verb_index Specifies the numeric index of a verb. Use the FIND_OLE_VERB built-in
to obtain this value. The data type of index is VARCHAR2.

GET_VERB_NAME restrictions

Valid only on Microsoft Windows and Macintosh.

GET_VERB_NAME examples

/*
** Built-in: GET_VERB_COUNT
** Example: See EXEC_VERB and GET_VERB_COUNT
*/

240

GET_VIEW_PROPERTY built-in

Description

Returns the indicated property setting for the indicated canvas.

Syntax
FUNCTION GET_VIEW_PROPERTY
 (view_id ViewPort,
 property NUMBER);
FUNCTION GET_VIEW_PROPERTY
 (view_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

view_id Specifies the unique ID that Form Builder assigns the canvas when it
creates the object. Use the FIND_VIEW built-in to return the ID to an
appropriately typed variable. The data type of the ID is ViewPort.

view_name Specifies the name that you gave the object when defining it.

property Specifies the property whose state you want to get for the given canvas.
You must make a separate call to GET_VIEW_PROPERTY for each
property you need, as shown in the example. You can enter one of the
following constants to obtain return values:

DIRECTION Returns the layout direction for bidirectional objects. Valid
return values are RIGHT_TO_LEFT, LEFT_TO_RIGHT.

HEIGHT Returns the height of the view. For a content view, the height of
the view is actually the height of the window in which the view is currently
displayed. The size of each unit depends on how you defined the
Coordinate System property for the form module.

VIEWPORT_X_POS For a stacked canvas, returns the x coordinate that
reflects the current placement of the view’s upper left corner relative to the
upper left corner of the window’s current content canvas. For a content
view, returns 0. The value is returned as a VARCHAR2 and is expressed in
the units defined by the form module Coordinate System property.

VIEWPORT_Y_POS For a stacked canvas, returns the y coordinate that
reflects the current placement of the view’s upper left corner relative to the
upper left corner of the window’s current content canvas. For a content
view, returns 0. The value is returned as a VARCHAR2 and is expressed in
the units defined by the form module Coordinate System property.

VIEWPORT_X_POS_ON_CANVAS Returns the x coordinate that
reflects the current placement of the view’s upper left corner relative to the

241

upper left corner of its canvas. The value is returned as a VARCHAR2 and
is expressed in the units defined by the form module Coordinate System
property.

VIEWPORT_Y_POS_ON_CANVAS Returns the y coordinate that
reflects the current placement of the view’s upper left corner relative to the
upper left corner of its canvas. The value is returned as a VARCHAR2 and
is expressed in the units defined by the form module Coordinate System
property.

VISIBLE Returns the VARCHAR2 value TRUE if the view is visible,
FALSE if it is not. A view is reported visible when it is a) in front of all
other views in the window or b) only partially obscured by another view. A
view is reported not visible when it is a) a stacked view that is behind the
content view or b) completely obscured by a single stacked view. Note that
this property is independent of the current window display state. Thus a
view can be reported visible even when its window is currently hidden or
iconified.

WIDTH Returns the width of the view. For a content view, the width of
the view is actually the width of the window in which the view is currently
displayed. The size of each unit depends on how you defined the
Coordinate System property for the form module.

WINDOW_NAME Returns the name of the window where this canvas is
displayed.

GET_VIEW_PROPERTY examples

/*
** Built-in: GET_VIEW_PROPERTY
** Example: Use the Width, and display position of one
** stacked view (View1) to determine where to
** position another one (View2) immediately to its
** right.
*/
PROCEDURE Anchor_To_Right(View2 VARCHAR2, View1 VARCHAR2) IS
 vw_id1 ViewPort;
 vw_id2 ViewPort;
 x NUMBER;
 y NUMBER;
 w NUMBER;
BEGIN
 /* Find View1 and get its (x,y) position, width */
 vw_id1 := Find_View(View1);
 x := Get_View_Property(vw_id1,VIEWPORT_X_POS);
 y := Get_View_Property(vw_id1,VIEWPORT_Y_POS);
 w := Get_View_Property(vw_id1,WIDTH);
 /*
 ** Anchor View2 at (x+w,y+h)
 */
 vw_id2 := Find_View(View2);
 Set_View_Property(vw_id2,VIEWPORT_X_POS, x+w);
 Set_View_Property(vw_id2,VIEWPORT_Y_POS, y);
END;

242

GET_WINDOW_PROPERTY built-in

Description

Returns the current setting for the indicated window property for the given window.

Syntax
FUNCTION GET_WINDOW_PROPERTY
 (window_id Window,
 property NUMBER);
FUNCTION GET_WINDOW_PROPERTY
 (window_name VARCHAR2,
 property NUMBER);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Usage Notes

On Microsoft Windows, you can reference the MDI application window with the constant
FORMS_MDI_WINDOW.

Parameters

window_id Specifies the unique ID that Form Builder assigns the window at the time it
creates it. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when creating it.

property You must make a separate call to GET_WINDOW_PROPERTY for each
property you need, as shown in the FIND_WINDOW example. Specify
one of the following constants to get the current value or state of the
property:

BACKGROUND_COLOR The color of the object’s background region.

DIRECTION Returns the layout direction for bidirectional objects. Valid
return values are RIGHT_TO_LEFT, LEFT_TO_RIGHT.

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

243

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

HEIGHT Returns the height of the window.

HIDE_ON_EXIT Returns the VARCHAR2 value TRUE if the window
has the Remove On Exit property set to Yes, otherwise, it is FALSE.

ICON_NAME Returns the file name of the icon resource associated with a
window item when it is minimized.

TITLE Returns the title of the window.

VISIBLE Returns the VARCHAR2 value TRUE if the window is visible,
FALSE if it is not. A window is reported visible if it is currently mapped to
the screen, even if it is entirely hidden behind another window or iconified
(minimized).

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH Returns the width of the window.

WINDOW_HANDLE Returns the a unique internal VARCHAR2
constant that is used to refer to objects. Returns the number 0 if the
platform is not Microsoft Windows.

WIDOW_SIZE Returns the width and height of the window as a string,
separated by commas.

WINDOW_STATE Returns the current display state of the window. The
display state of a window is the VARCHAR2 string NORMAL,
MAXIMIZE, or MINIMIZE.

X_POS Returns the x coordinate that reflects the window’s current display
position on the screen.

Y_POS Returns the y coordinate that reflects the window’s current display
position on the screen.

244

GO_BLOCK built-in

Description

GO_BLOCK navigates to an indicated block. If the target block is non-enterable, an error occurs.

Syntax
PROCEDURE GO_BLOCK
 (block_name VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

block_name Specifies the name you gave the block when defining it. The data type of
the name is VARCHAR2.

GO_BLOCK examples

/*
** Built-in: GO_BLOCK
** Example: Navigate to a block by name. Make sure to check
** that the Go_Block succeeds by checking
FORM_SUCCESS.
*/
BEGIN
 IF :Global.Flag_Indicator = ’NIGHT’ THEN
 Go_Block(’Night_Schedule’);
 /*
 ** One method of checking for block navigation success.
 */
 IF NOT FORM_SUCCESS THEN
 RAISE Form_trigger_Failure;
 END IF;
 ELSIF :Global.Flag_Indicator = ’DAY’ THEN
 Go_Block(’Day_Schedule’);
 /*
 ** Another way of checking that block navigation
 ** succeeds. If the block the cursor is in hasn’t
 ** changed after a block navigation, something went
 ** wrong. This method is more reliable than simply
 ** checking FORM_SUCCESS.
 */
 IF :System.trigger_Block = :System.Cursor_Block THEN
 RAISE Form_trigger_Failure;
 END IF;
 END IF;
 Execute_Query;
 Go_Block(’Main’);
END;

245

GO_FORM built-in

Description

In a multiple-form application, navigates from the current form to the indicated target form. When
navigating with GO_FORM, no validation occurs and no triggers fire except WHEN-WINDOW-
DEACTIVATED, which fires for the form that initiates navigation, and WHEN-WINDOW-
ACTIVATED, which fires for the target window in the target form.

Attempting to navigate to a form that has not yet been opened raises an error.

Syntax
PROCEDURE GO_FORM
 (form_id FORMMODULE);
PROCEDURE GO_FORM
 (form_name VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

form_id The unique ID that is assigned to the form dynamically when it is
instantiated at runtime. Use the FIND_FORM built-in to return the ID to
an appropriately typed variable. The data type of the ID is
FORMMODULE.

form_name The name of the target form. The data type of name is VARCHAR2. The
GO_FORM built-in attempts to search for the form module name, not the
name of the .fmx file.

GO_FORM restrictions

The target form cannot be a form that is currently disabled as a result of having invoked another form
with CALL_FORM.

246

GO_ITEM built-in

Description

GO_ITEM navigates to an indicated item. GO_ITEM succeeds even if the target item has the Keyboard
Navigable property set to No.

Syntax
PROCEDURE GO_ITEM
 (item_id Item);
PROCEDURE GO_ITEM
 (item_name VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
The data type of the ID is Item.

item_name Specifies the string you defined as the name of the item at design time. The
data type of the name is VARCHAR2.

GO_ITEM restrictions

GO_ITEM(’emp.ename’);

• In Enter Query mode, GO_ITEM cannot be used to navigate to an item in a different block.

• You cannot use GO_ITEM to navigate to a non-navigable item, such as a VARCHAR2 item or
display item.

GO_ITEM examples

/*
** Built-in: GO_ITEM
** Example: Invoke a dialog window by navigating to
** an item which is on the canvas which the window
** displays.
*/
PROCEDURE Open_Preference_Dialog IS
BEGIN
 Go_Item(’pref_dialog.printer_name’);
END;

247

GO_RECORD built-in

Description

Navigates to the record with the specified record number.

Syntax
PROCEDURE GO_RECORD
 (record_number NUMBER);

Built-in Type restricted procedure

Enter Query Mode no

Parameters
record_number Specifies any integer value that PL/SQL can
evaluate to a number. This includes values derived from calls
to system variables, such as TO_NUMBER(:SYSTEM.TRIGGER_RECORD) +
8.

You can use the system variables SYSTEM.CURSOR_RECORD or SYSTEM.TRIGGER_RECORD to
determine a record’s sequence number.

GO_RECORD restrictions

• If the query is open and the specified record number is greater than the number of records already
fetched, Form Builder fetches additional records to satisfy the call to this built-in.

GO_RECORD examples

/*
** Built-in: GO_RECORD
** Example: Navigate to a record in the current block
** by record number. Also see FIRST_RECORD and
** LAST_RECORD built-ins.
*/
BEGIN
 Go_Record(:control.last_record_number);
END;

248

HELP built-in

Description

Displays the current item’s hint message on the message line. If the hint message is already displayed,
HELP displays the detailed help screen for the item.

Syntax
PROCEDURE HELP;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

HELP examples

/*
** Built-in: HELP
** Example: Gives item-level hint/help.
*/
BEGIN
 Help;
END;

249

HIDE_MENU built-in

Description

On character mode platforms, makes the current menu disappear if it is currently displayed, uncovering
any part of the form display that the menu had covered. The menu will redisplay if the SHOW_MENU
built-in is invoked or the operator presses [Menu].

Syntax
PROCEDURE HIDE_MENU;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

HIDE_MENU examples

/*
** Built-in: HIDE_MENU
** Example: Hides the menu from view on character-mode or
** block-mode devices
*/
BEGIN
 Hide_Menu;
END;

250

HIDE_VIEW built-in

Description

Hides the indicated canvas.

Syntax
PROCEDURE HIDE_VIEW
 (view_id ViewPort);
PROCEDURE HIDE_VIEW
 (view_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Description

Hides the indicated canvas.

Parameters

view_id Specifies the unique ID that Form Builder assigns the view at the time it
creates it. Use the FIND_VIEW built-in to return the ID to an
appropriately typed variable. The data type of the ID is ViewPort.

view_name Specifies the name that you gave the view when creating it.

HIDE_VIEW examples

/*
** Built-in: HIDE_VIEW
** Example: Programmatically dismiss a stacked view from the
** operator’s sight.
*/
PROCEDURE Hide_Button_Bar IS
BEGIN
 Hide_View(’Button_Bar’);
END;

251

HIDE_WINDOW built-in

Description

Hides the given window. HIDE_WINDOW is equivalent to setting VISIBLE to No by calling
SET_WINDOW_PROPERTY.

Syntax
PROCEDURE HIDE_WINDOW
 (window_id Window);
PROCEDURE HIDE_WINDOW
 (window_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

window_id Specifies the unique ID that Form Builder assigns the window at the time it
creates it. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when creating it.

HIDE_WINDOW examples

/*
** Built-in: HIDE_WINDOW
** Example: When a main window is closed, hide other
** "subordinate" windows automatically. To
** establish this window hierarchy we might define
** a static record group in the form called
** ’WINDOW_HIERARCHY’ with a structure of:
**
** Parent_Window Child_Window
** ------------- -------------
** MAIN DETAIL1
** MAIN DETAIL2
** DETAIL1 DETAIL3
** DETAIL1 DETAIL4
** DETAIL2 DETAIL5
** DETAIL3 DETAIL6
**
** We also have to make sure we navigate to some
** item not on any of the canvases shown in the
** windows we are closing, or else that window
** will automatically be re-displayed by forms
** since it has input focus.
*/
PROCEDURE Close_Window(wn_name VARCHAR2,
 dest_item VARCHAR2) IS
 rg_id RecordGroup;
 gc_parent GroupColumn;
 gc_child GroupColumn;
 the_Rowcount NUMBER;
 /*

252

 ** Local function called recursively to close children at
 ** all levels of the hierarchy.
 */
 PROCEDURE Close_Win_With_Children(parent_win VARCHAR2) IS
 the_child VARCHAR2(40);
 the_parent VARCHAR2(40);
 BEGIN
 FOR j IN 1..the_Rowcount LOOP
 the_parent := Get_Group_Char_Cell(gc_parent,j);
 /* If we find a matching parent in the table */
 IF UPPER(the_parent) = UPPER(parent_win) THEN
 the_child := Get_Group_Char_Cell(gc_child,j);
 /*
 ** Close this child and any of its children
 */
 Close_Win_With_Children(the_child);
 END IF;
 END LOOP;
 /*
 ** Close the Parent
 */
 Hide_Window(parent_win);
 END;
BEGIN
 /*
 ** Setup
 */
 rg_id := Find_Group(’WINDOW_HIERARCHY’);
 gc_parent := Find_Column(’WINDOW_HIERARCHY.PARENT_WINDOW’);
 gc_child := Find_Column(’WINDOW_HIERARCHY.CHILD_WINDOW’);
 the_Rowcount := Get_Group_Row_Count(rg_id);
 /* Close all the child windows of ’wn_name’ */
 Close_Win_With_Children(wn_name);
 /* Navigate to the Destination Item supplied by the caller */
 Go_Item(dest_item);
END;

253

HOST built-in

Description

Executes an indicated operating system command.

Syntax
PROCEDURE HOST
 (system_command_string VARCHAR2);
PROCEDURE HOST
 (system_command_string VARCHAR2,
 screen_action NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

system_command_ string Specifies the system command you want to pass to your particular operating
system.

screen_actioSpecifies one of the following constants:

no parameter Specifies that Form Builder will:

clear the screen

prompt the operator to return from the command

NO_PROMPT Specifies that Form Builder will:

clear the screen (does not prompt the operator to return from the
command)

NO_SCREEN Specifies that Form Builder will:

not clear the screen

not prompt the operator to return from the system command

(The HOST command should not send output to the screen when using the
NO_SCREEN parameter.)

Usage notes

• Thescreen_action parameter is only relevant to applications running in character mode, where the
output of the Host command is displayed in the same window as the form. In GUI applications, the
output of the Host command is displayed in a separate window.

• Note that the command interpreter for Microsoft Windows NT is
cmd, while on Windows 95 it is command. Before using the HOST
built-in to run an external command, be sure to check for the
operating system and pass the appropriate command string.

• On Microsoft Windows NT, when using HOST to execute a 16-bit application, the
FORM_SUCCESS built-in will return TRUE whether the application succeeds or fails. This is a
Microsoft Win32 issue. 32-bit applications and OS commands will correctly return TRUE if
executed sucessfully and FALSE if failed. Invalid commands will return FALSE.

254

• On Windows 95 platforms the FORM_SUCCESS built-in will always return TRUE for HOST
commands which fail. This includes calls to command.com or OS functions, any 16-bit DOS or
GUI application, or an invalid command. 32-bit applications will correctly return TRUE if executed
sucessfully and FALSE if failed.

HOST examples

/*
** built-in: HOST
** Example: Execute an operating system command in a
** subprocess or subshell. Uses the
** ’Get_Connect_Info’ procedure from the
** GET_APPLICATION_PROPERTY example.
*/
PROCEDURE Mail_Warning(send_to VARCHAR2) IS
 the_username VARCHAR2(40);
 the_password VARCHAR2(40);
 the_connect VARCHAR2(40);
 the_command VARCHAR2(2000);
BEGIN
 /*
 ** Get Username, Password, Connect information
 */
 Get_Connect_Info(the_username,the_password,the_connect);
 /*
 ** Concatenate together the static text and values of
 ** local variables to prepare the operating system command
 ** string.
 */
 the_command := ’orasend ’||
 ’ to=’||send_to||
 ’ std_warn.txt ’||
 ’ subject="## LATE PAYMENT ##"’||
 ’ user=’||the_username||
 ’ password=’||the_password||
 ’ connect=’||the_connect;

 Message(’Sending Message...’, NO_ACKNOWLEDGE);
 Synchronize;
 /*
 ** Execute the command string as an O/S command The
 ** NO_SCREEN option tells forms not to clear the screen
 ** while we do our work at the O/S level "silently".
 */
 Host(the_command, NO_SCREEN);
 /*
 ** Check whether the command succeeded or not
 */
 IF NOT Form_Success THEN
 Message(’Error -- Message not sent.’);
 ELSE
 Message(’Message Sent.’);
 END IF;
END;

255

ID_NULL built-in

Description

Returns a BOOLEAN value that indicates whether the object ID is available.

Syntax
FUNCTION ID_NULL
 (Alert BOOLEAN);
FUNCTION ID_NULL
 (Block BOOLEAN);
FUNCTION ID_NULL
 (Canvas BOOLEAN);
FUNCTION ID_NULL
 (Editor BOOLEAN);
FUNCTION ID_NULL
 (FormModule BOOLEAN);
FUNCTION ID_NULL
 (GroupColumn BOOLEAN);
FUNCTION ID_NULL
 (Item BOOLEAN);
FUNCTION ID_NULL
 (LOV BOOLEAN);
FUNCTION ID_NULL
 (MenuItem BOOLEAN);
FUNCTION ID_NULL
 (ParamList BOOLEAN);
FUNCTION ID_NULL
 (RecordGroup BOOLEAN);
FUNCTION ID_NULL
 (Relation BOOLEAN);
FUNCTION ID_NULL
 (Timer BOOLEAN);
FUNCTION ID_NULL
 (Viewport BOOLEAN);
FUNCTION ID_NULL
 (Window BOOLEAN);

Built-in Type unrestricted function

Returns BOOLEAN

Enter Query Mode yes

Parameters

object_id You can call this function to test results of the following object ID types:

• Alert

• Block

• Canvas

• Editor

• FormModule

• GroupColumn

256

• Item

• LOV

• MenuItem

• ParamList

• RecordGroup

• Relation

• Timer

• Viewport

• Window

Usage Notes

Use ID_NULL when you want to check for the existence of an object created dynamically at runtime.
For example, if a specific record group already exists, you will receive an error message if you try to
create that record group. To perform this check, follow this general process:

• Use the appropriate FIND_ built-in to obtain the object ID.

• Use ID_NULL to check whether an object with that ID already exists.

• If the object does not exist, proceed to create it.

If you are going to test for an object’s existence at various times (that is, more than once during a run),
then you need to reissue the appropriate FIND_ every time -- once preceding each use of ID_NULL.

ID_NULL examples

See CREATE_GROUP

257

IMAGE_SCROLL built-in

Description

Scrolls the image item as close to the specified offset (the X,Y coordinates) as possible. This is useful if
the image is bigger than the image item.

Syntax
PROCEDURE IMAGE_SCROLL
 (item_name VARCHAR2,
 X NUMBER,
 Y NUMBER
);

PROCEDURE IMAGE_SCROLL
 (item_id ITEM,
 X NUMBER,
 Y NUMBER
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the unique ID Form Builder assigns when it creates the image
item.

item_name Specifies the name you gave the image when defining it.

X The X coordinate of the offset.

Y The Y coordinate of the offset.

IMAGE_SCROLL examples

For example, suppose the image is twice the size of the image item, that is, the image coordinates are 0,
200, and the item coordinates are 0, 100. To roughly center the image, you can set IMAGE_SCROLL X,
Y coordinates to 50, 50. This sets the top left corner of the item at 50 50 instead of 0, 0, which offsets the
image so that it is displayed from its coordinates of 50 to 150.

258

IMAGE_ZOOM built-in

Description

Zooms the image in or out using the effect specified in zoom_type and the amount specified in
zoom_factor.

Syntax
PROCEDURE IMAGE_ZOOM
 (image_id ITEM,
 zoom_type NUMBER);
PROCEDURE IMAGE_ZOOM
 (image_name VARCHAR2,
 zoom_type NUMBER);
PROCEDURE IMAGE_ZOOM
 (image_id ITEM,
 zoom_type NUMBER,
 zoom_factor NUMBER);
PROCEDURE IMAGE_ZOOM
 (image_name VARCHAR2,
 zoom_type NUMBER,
 zoom_factor NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

image_id Specifies the unique ID Form Builder assigns when it creates the image
item. The data type of the ID is ITEM.

image_name Specifies the name you gave the image when defining it.

zoom_type Specify one of the following constants to describe the effect you want to
have on the image displayed:

ADJUST_TO_FIT Scales the image to fit within the display rectangle:
the entire image is visible and the image fills as much of the image item as
possible without distorting the image.

SELECTION_RECTANGLE Scales the image so the selected region
fully fills the image item.

ZOOM_IN_FACTOR Enlarges the image by the zoom_factor.

ZOOM_OUT_FACTOR Reduces the image by the zoom_factor.

ZOOM_PERCENT Scales the image to the percentage indicated in
zoom_factor.

zoom_factor Specifies either the factor or the percentage to which you want the image
zoomed. Supply a whole number for this argument.

Usage Notes

• Check zoom_factor for reasonableness. For example, specifying a ZOOM_IN_FACTOR of 100

259

would increase the size of your image 100 times, and could cause your application to run out of
memory.

• When specifying ZOOM_IN_FACTOR or ZOOM_OUT_FACTOR, you can use any positive
integer value for zoom_factor, but performance is optimal if you use 2, 4, or 8.

• When specifying ZOOM_PERCENT, you can use any positive integer value for zoom_factor. To
enlarge the image, specify a percentage greater than 100.

• The operator must use the mouse to select a region before specifying SELECTION_RECTANGLE,
or Form Builder will return an error message.

• Your design should include scroll bars on images that use SELECTION_RECTANGLE.

• Valid for both color and black-and-white images.

IMAGE_ZOOM examples

The following example shows a When-Button-Pressed trigger that doubles the size of the image every
time the button is pressed.

Image_Zoom(’my_image’, zoom_in_factor, 2);

260

INIT_OLEARGS built-in

Description

Establishes how many arguments are going to be defined and passed to the OLE object’s method,

Syntax
PROCEDURE INIT_OLEARGS (num_args NUMBER);

Built-in Type unrestricted procedure

Parameters

num_args Number of arguments that are to be passed to the
method -- plus one.

Usage Notes

• This built-in should be called before establishing the arguments’ types and values with
ADD_OLEARG.

• This built-in and ADD_OLEARG would also be used to prepare for GET_OLE_* calls if the
property is accessed (for example, with an index).

• It is not necessary to use INIT_OLEARGS before a GET_OLE_* call if that call does not take OLE
parameters.

• Note that the number specified in num_args should be one more than the number of actual
arguments. (Thus, if four arguments are to be passed, set num_arg to be five). This increase is
required only in preparation for GET_OLE_* calls, not for CALL_OLE, but does no harm in the
latter case.

261

INITIALIZE_CONTAINER built-in

Description

Inserts an OLE object from a server-compatible file into an OLE container.

Syntax
PROCEDURE INITIALIZE_CONTAINER
 (item_id Item,
 file_name VARCHAR2);
PROCEDURE INITIALIZE_CONTAINER
 (item_name VARCHAR2,
 file_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

file_name Specifies the name of the file containing the object for insertion into an
OLE container. Include the path of the file location.

INITIALIZE_CONTAINER restrictions

Valid only on Microsoft Windows and Macintosh.

INITIALIZE_CONTAINER examples

/* Built-in: INITIALIZE_CONTAINER
** Example: Initializes an OLE container by inserting an object
** from a specified file into an OLE container.
** trigger: When-Button-Pressed
*/
DECLARE
 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN
 message(’No such item: ’||item_name);
 ELSE
 Initialize_Container(item_id,’c:\OLE\oleobj.xls’);
 END IF;
END;

262

INSERT_RECORD built-in

Description

When called from an On-Insert trigger, inserts the current record into the database during Post and
Commit Transactions processing. This built-in is included primarily for applications that will run against
a non-ORACLE datasource.

Syntax
PROCEDURE INSERT_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

INSERT_RECORD restrictions

Valid only in an On-Insert trigger.

INSERT_RECORD examples

/*
** Built-in: INSERT_RECORD
** Example : Perform Form Builder standard insert processing
** based on a global flag setup at startup by the
** form, perhaps based on a parameter.
** trigger: On-Insert
*/
BEGIN
 /*
 ** Check the global flag we setup at form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_insrec block=EMP’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Insert_Record;
 END IF;
END;

263

ISSUE_ROLLBACK built-in

Description

When called from an On-Rollback trigger, initiates the default Form Builder processing for rolling back
to the indicated savepoint. This built-in is included primarily for applications that will run against a non-
ORACLE data source.

Syntax
PROCEDURE ISSUE_ROLLBACK
 (savepoint_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

savepoint name Name of the savepoint to which you want to rollback. A null
savepoint_name causes a full rollback.

ISSUE_ROLLBACK restrictions

Results are unpredictable when ISSUE_ROLLBACK is used outside an On-Rollback trigger or when
used with a savepoint other than that provided by a call to
GET_APPLICATION_PROPERTY(SAVEPOINT_NAME).

ISSUE_ROLLBACK examples

/*
** Built-in: ISSUE_ROLLBACK
** Example: Perform Form Builder standard Rollback processing.
** Decide whether to use this built-in based on a
** global flag setup at startup by the form.
** perhaps based on a parameter.
** trigger: On-Rollback
*/
DECLARE
 sp_name VARCHAR2(80);
BEGIN
 /*
 ** Get name of the savepoint to which Form Builder needs to
 ** rollback. (NULL = Full Rollback)
 */
 sp_name := Get_Application_Property(SAVEPOINT_NAME);
 /*
 ** Check the global flag we setup at form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_rollbk name=’||sp_name);
 ELSE
 Issue_Rollback(sp_name);
 END IF;
END;

264

ISSUE_SAVEPOINT built-in

Description

When called from an On-Savepoint trigger, ISSUE_SAVEPOINT initiates the default processing for
issuing a savepoint. You can use GET_APPLICATION_PROPERTY (SAVEPOINT_NAME) to
determine the name of the savepoint that Form Builder would be issuing by default, if no On-Savepoint
trigger were present.

This built-in is included primarily for applications that will run against a non-ORACLE datasource.

Syntax
PROCEDURE ISSUE_SAVEPOINT
 (savepoint_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

savepoint _name Name of the savepoint you want to be issued

ISSUE_SAVEPOINT restrictions

Never issue a savepoint with the name FM_<number>, unless the savepoint name was provided by a call
to GET_APPLICATION_PROPERTY. Doing so may cause a conflict with savepoints issued by Form
Builder.

ISSUE_SAVEPOINT examples

/*
** Built-in: ISSUE_SAVEPOINT
** Example: Perform Form Builder standard savepoint
processing.
** Decide whether to use this built-in based on a
** global flag setup at startup by the form,
** perhaps based on a parameter.
** trigger: On-Savepoint
*/
DECLARE
 sp_name VARCHAR2(80);
BEGIN
 /* Get the name of the savepoint Form Builder needs to issue
 */
 sp_name := Get_Application_Property(SAVEPOINT_NAME);
 /* Check the global flag we setup at form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_savept name=’||sp_name);
 /* Otherwise, do the right thing.
 */
 ELSE
 Issue_Savepoint(sp_name);
 END IF;

265

END;

266

ITEM_ENABLED built-in

Description

Returns the Boolean value TRUE when the menu item is enabled. Returns the Boolean value FALSE
when the menu item is disabled.

Note: ITEM_ENABLED is equivalent to GET_MENU_ITEM_PROPERTY (MENU_ITEM,
ENABLED).

Syntax
FUNCTION ITEM_ENABLED
 (mnunam VARCHAR2,
 itmnam VARCHAR2);

Built-in Type unrestricted function

Returns BOOLEAN

Enter Query Mode yes

Parameters

mnunam Specifies the VARCHAR2 name of the menu.

itmnam Specifies the VARCHAR2 name of the menu item.

267

LAST_OLE_ERROR built-in

Description

Returns the identifying number of the most recent OLE error condition

Syntax
FUNCTION LAST_OLE_ERROR RETURN number;

Built-in Type unrestricted function

Returns number

Parameters None

Usage Notes

• This function can be used for most error conditions. However, if the error was a PL/SQL exception,
use the LAST_OLE_EXCEPTION function instead.

• For more information about error values and their meanings, refer to winerror.h. Winerror.h is
supplied by your C compiler vendor.

268

LAST_OLE_EXCEPTION built-in

Description

Returns the identifying number of the most recent OLE exception that occurred in the called object.

Syntax
FUNCTION LAST_OLE_EXCEPTION
 (source OUT VARCHAR2, description OUT VARCHAR2,
 helpfile OUT VARCHAR2,
 helpcontextid OUT PLS_INTEGER)
RETURN errornumber PLS_INTEGER;

Built-in Type unrestricted function

Returns error number that the OLE server assigned to this exception condition

Parameters

source Name of the OLE server that raised the
exception condition.

description Error message text.

helpfile Name of the file in which the OLE server has
additional error information.

helpcontextid ID of a specific document in the above help
file.

Usage Notes

This function can be used after a PL/SQL FORM_OLE_FAILURE exception has occurred as a result of
calling an OLE object server. For information about other types of errors (not PL/SQL exceptions), use
the LAST_OLE_ERROR function.

269

LAST_RECORD built-in

Description

Navigates to the last record in the block’s list of records. If a query is open in the block, Form Builder
fetches the remaining selected records into the block’s list of records, and closes the query.

Syntax
PROCEDURE LAST_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

LAST_RECORD examples

See FIRST_RECORD

270

LIST_VALUES built-in

Description

LIST_VALUES displays the list of values for the current item, as long as the input focus is in a text item
that has an attached LOV. The list of values remains displayed until the operator dismisses the LOV or
selects a value.

By default, LIST_VALUES uses the NO_RESTRICT parameter. This parameter causes Form Builder
not to use the automatic search and complete feature. If you use the RESTRICT parameter, Form
Builder uses the automatic search and complete feature.

Automatic Search and Complete Feature With the automatic search and complete feature, an LOV
evaluates a text item’s current value as a search value. That is, if an operator presses [List] in a text item
that has an LOV, Form Builder checks to see if the item contains a value.

If the text item contains a value, Form Builder automatically uses that value as if the operator had entered
the value into the LOV’s search field and pressed [List] to narrow the list.

If the item value would narrow the list to only one value, Form Builder does not display the LOV, but
automatically reads the correct value into the field.

Syntax
PROCEDURE LIST_VALUES
 (kwd NUMBER);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

kwd Specifies one of the following constants:

NO_RESTRICT Specifies that Form Builder will not use the automatic
search and complete feature.

RESTRICT Specifies that Form Builder will use the automatic search and
complete feature.

271

LOCK_RECORD built-in

Description

Attempts to lock the row in the database that corresponds to the current record. LOCK_RECORD locks
the record immediately, regardless of whether the Locking Mode block property is set to Immediate (the
default) or Delayed.

When executed from within an On-Lock trigger, LOCK_RECORD initiates default database locking.
The following example illustrates this technique.

Syntax
PROCEDURE LOCK_RECORD;

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

none

LOCK_RECORD examples

/*
** Built-in: LOCK_RECORD
** Example: Perform Form Builder standard record locking on
the
** queried record which has just been deleted or
** updated. Decide whether to use default
** processing or a user exit by consulting a
** global flag setup at startup by the form,
** perhaps based on a parameter.
** trigger: On-Lock
*/
BEGIN
 /*
 ** Check the global flag we set up at form startup
 */
 IF :Global.Non_Oracle_Datasource = ’TRUE’ THEN
 User_Exit(’my_lockrec block=EMP’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Lock_Record;
 END IF;
END;

272

LOGON built-in

Description

Performs the default Form Builder logon processing with an indicated username and password. Call this
procedure from an On-Logon trigger when you want to augment default logon processing.

Syntax
PROCEDURE LOGON
 (username VARCHAR2,
 password VARCHAR2);
PROCEDURE LOGON
 (username VARCHAR2,
 password VARCHAR2,
 logon_screen_on_error VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

This built-in takes the following arguments:

username Any valid username of up to 80 characters.

password Any valid password of up to 80 characters, including a database connect
string.

logon_screen_ on_error An optional BOOLEAN parameter that, when set to TRUE (default), causes
Form Builder to automatically display the logon screen if the logon
specified fails (usually because of a incorrect username/password). When
logon_screen_on_error is set to FALSE and the logon fails, the logon
screen will not display and FORM_FAILURE is set to TRUE so the
designer can handle the condition in an appropriate manner.

Usage Notes:

When using LOGON to connect to an OPS$ database use a slash ’/’ for the user.name and the
database name for the password..

LOGON restrictions

• If you identify a remote database, a SQL*Net connection to that database must exist at runtime.

• Form Builder can connect to only one database at a time. However, database links may be used to
access multiple databases with a single connection.

LOGON examples

/*
** Built-in: LOGON
** Example: Perform Form Builder standard logon to the ORACLE
** database. Decide whether to use Form Builder

273

** built-in processing or a user exit by consulting a
** global flag setup at startup by the form,
** perhaps based on a parameter. This example
** uses the ’Get_Connect_Info’ procedure from the
** GET_APPLICATION_PROPERTY example.
** trigger: On-Logon
*/
DECLARE
 un VARCHAR2(80);
 pw VARCHAR2(80);
 cn VARCHAR2(80);
BEGIN
 /*
 ** Get the connection info
 */
 Get_Connect_Info(un,pw,cn);
 /*
 ** If at startup we set the flag to tell our form that we
 ** are not running against ORACLE, then call our
 ** appropriate MY_LOGON userexit to logon.
 */
 IF :Global.Non_Oracle_Datasource = ’TRUE’ THEN
 User_Exit(’my_logon username=’||un||’ password=’||pw);
 /*
 ** Otherwise, call the LOGON built-in
 */
 ELSE
 /*
 ** Use the following to place a slash in the username field
for OPS$ logon
 */
 IF un IS NULL THEN
 un:=’/’;
 END IF
 IF cn IS NOT NULL THEN
 LOGON(un,pw||’@’||cn);
 ELSE
 LOGON(un,pw);
 END IF;
 END IF;
END;

274

LOGON_SCREEN built-in

Description

Displays the default Form Builder logon screen and requests a valid username and password. Most
commonly, you will include this built-in subprogram in an On-Logon trigger to connect to a non-
ORACLE data source.

Syntax
PROCEDURE LOGON_SCREEN;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

LOGON_SCREEN restrictions

• You must issue a call to the LOGON built-in to create the connection to your data source.

LOGON_SCREEN examples

/*
** Built-in: LOGON_SCREEN
** Example: Use the default Form Builder logon screen to
prompt
** for username and password before logging on to
** the database. This uses the ’Get_Connect_Info’
** procedure from the GET_APPLICATION_PROPERTY
** example.
*/
DECLARE
 un VARCHAR2(80);
 pw VARCHAR2(80);
 cn VARCHAR2(80);
BEGIN
 /*
 ** Bring up the logon screen
 */
 Logon_Screen;
 /*
 ** Get the username, password and
 ** connect string.
 */
 Get_Connect_Info(un, pw, cn);
 /*
 ** Log the user onto the database
 */
 IF cn IS NOT NULL THEN
 LOGON(un,pw||’@’||cn);
 ELSE
 LOGON(un,pw);
 END IF;

275

END;

276

LOGOUT built-in

Description

Disconnects the application from the ORACLE RDBMS. All open cursors are automatically closed
when you issue a call to the LOGOUT built-in. You can programmatically log back on with LOGON. If
you LOGOUT of a multiple-form application with multiple connections, Form Builder tries to re-
establish all of those connections when you subsequently execute LOGON.

Syntax
PROCEDURE LOGOUT;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

LOGOUT examples

/*
** Built-in: LOGOUT
** Example: Perform Form Builder standard logout. Decide
** whether to use Form Builder built-in processing or
a
** user exit by consulting a global flag setup at
** startup by the form, perhaps based on a
** parameter.
** trigger: On-Logout
*/
BEGIN
 /*
 ** Check the flag we setup at form startup
 */
 IF :Global.Non_Oracle_Datasource = ’TRUE’ THEN
 User_Exit(’my_logout’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Logout;
 END IF;

277

MENU_CLEAR_FIELD built-in

Description

MENU_CLEAR_FIELD clears the current field’s value from the current cursor position to the end of the
field. If the current cursor position is to the right of the last nonblank character,
MENU_CLEAR_FIELD clears the entire field, making its value NULL.

Syntax
PROCEDURE MENU_CLEAR_FIELD;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

MENU_CLEAR_FIELD restrictions

The Enter Parameter Values dialog must be displayed.

278

MENU_NEXT_FIELD built-in

Description

MENU_NEXT_FIELD navigates to the next field in an Enter Parameter Values dialog.

Syntax
PROCEDURE MENU_NEXT_FIELD;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

MENU_NEXT_FIELD restrictions

You must be in an Enter Parameter Values dialog.

279

MENU_PARAMETER built-in

Description

MENU_PARAMETER displays all the parameters associated with the current menu, and their current
values, in the Enter Parameter Values dialog box.

Syntax
PROCEDURE MENU_PARAMETER;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

MENU_PARAMETER restrictions

Valid only for menus running in full-screen display style.

280

MENU_PREVIOUS_FIELD built-in

Description

MENU_PREVIOUS_FIELD returns to the previous field in an Enter Parameter Values dialog.

Syntax
PROCEDURE MENU_PREVIOUS_FIELD;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

MENU_PREVIOUS_FIELD restrictions

You must be in an Enter Parameter Values dialog box.

281

MENU_REDISPLAY built-in

Description

This procedure redraws the screen in a menu.

Syntax
PROCEDURE MENU_REDISPLAY;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

MENU_REDISPLAY restrictions

You must be on a character mode or block mode platform.

282

MENU_SHOW_KEYS built-in

Description

MENU_SHOW_KEYS displays the Keys screen for the menu module at runtime.

Syntax
PROCEDURE MENU_SHOW_KEYS;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

MENU_SHOW_KEYS restrictions

MENU_SHOW_KEYS is available in any context.

283

MESSAGE built-in

Description

Displays specified text on the message line.

Syntax
PROCEDURE MESSAGE
 (message_string VARCHAR2,
 user_response NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

message_string Specify a character string enclosed in single quotes or a variable of
VARCHAR2 data type.

user_response Specifies one of the following constants:

ACKNOWLEDGE Specifies that Form Builder is to display a modal alert
that the operator must dismiss explicitly, whenever two consecutive
messages are issued. ACKNOWLEDGE forces the first message to be
acknowledged before the second message can be displayed. This is the
default.

NO_ACKNOWLEDGE Specifies that, when two consecutive messages
are issued, the operator is not expected to respond to the first message
displayed before Form Builder displays a second message. Using
NO_ACKNOWLEDGE creates a risk that the operator may not see the first
message, because the second message immediately overwrites it without
prompting the operator for acknowledgement.

MESSAGE restrictions

The message_string can be up to 200 characters long. Note, however, that several factors affect the
maximum number of characters that can be displayed, including the current font and the limitations of
the runtime window manager.

MESSAGE examples

/*
** Built-in: MESSAGE
** Example: Display several messages to the command line
** throughout the progress of a particular
** subprogram. By using the NO_ACKNOWLEDGE parameter,
** we can avoid the operator’s having to
** acknowledge each message explicitly.
*/
PROCEDURE Do_Large_Series_Of_Updates IS
BEGIN
 Message(’Working... (0%)’, NO_ACKNOWLEDGE);

284

 /*
 ** Long-running update statement goes here
 */
 SYNCHRONIZE;
 Message(’Working... (30%)’, NO_ACKNOWLEDGE);
 /*
 ** Another long-running update statement goes here
 */
 Message(’Working... (80%)’, NO_ACKNOWLEDGE);
 /*
 ** Last long-running statement here
 */
 Message(’Done...’, NO_ACKNOWLEDGE);
END;

285

MESSAGE_CODE built-in

Description

Returns a message number for the message that Form Builder most recently generated during the current
Runform session. MESSAGE_CODE returns zero at the beginning of a session, before Form Builder
generates any messages.

Use MESSAGE_CODE to test the outcome of a user action (e.g., pressing a key) to determine
processing within an On-Message trigger.

Refer to the Messages appendix for a list of messages and message numbers.

Syntax
FUNCTION MESSAGE_CODE;

Built-in Type unrestricted function
Returns NUMBER

Enter Query Mode yes

Parameters

none

MESSAGE_CODE examples

/*
** Built-in: MESSAGE_CODE,MESSAGE_TEXT,MESSAGE_TYPE
** Example: Reword certain FRM message messages by checking
** the Message_Code in an ON-MESSAGE trigger
** trigger: On-Message
*/
DECLARE
 msgnum NUMBER := MESSAGE_CODE;
 msgtxt VARCHAR2(80) := MESSAGE_TEXT;
 msgtyp VARCHAR2(3) := MESSAGE_TYPE;
BEGIN
 IF msgnum = 40400 THEN
 Message(’Your changes have been made permanent.’);
 ELSIF msgnum = 40401 THEN
 Message(’You have no unsaved changes outstanding.’);
 ELSE
 /*
 ** Print the Normal Message that would have appeared
 **
 ** FRM-12345: Message Text Goes Here
 */
 Message(msgtyp||’-’||TO_CHAR(msgnum)||’: ’||msgtxt);
 END IF;
END;

286

MESSAGE_TEXT built-in

Description

Returns message text for the message that Form Builder most recently generated during the current
Runform session. MESSAGE_TEXT returns NULL at the beginning of a session, before Form Builder
generates any messages.

Use MESSAGE_TEXT to test the outcome of a user action (e.g., pressing a key) to determine processing
within an On-Message trigger.

Note: If your applications must be supported in more than one language, use the MESSAGE_CODE
built-in instead of the MESSAGE_TEXT built-in. Referencing message codes rather than message text is
particularly useful in applications that provide national language support.

Syntax
FUNCTION MESSAGE_TEXT;

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

none

MESSAGE_TEXT examples

/*
** Built-in: MESSAGE_CODE,MESSAGE_TEXT,MESSAGE_TYPE
** Example: Reword certain FRM message messages by checking
** the Message_Code in an ON-MESSAGE trigger
** trigger: On-Message
*/
DECLARE
 msgnum NUMBER := MESSAGE_CODE;
 msgtxt VARCHAR2(80) := MESSAGE_TEXT;
 msgtyp VARCHAR2(3) := MESSAGE_TYPE;
BEGIN
 IF msgnum = 40400 THEN
 Message(’Your changes have been made permanent.’);
 ELSIF msgnum = 40401 THEN
 Message(’You have no unsaved changes outstanding.’);
 ELSE
 /*
 ** Print the Normal Message that would have appeared
 **
 ** FRM-12345: Message Text Goes Here
 */
 Message(msgtyp||’-’||TO_CHAR(msgnum)||’: ’||msgtxt);
 END IF;
END;

287

MESSAGE_TYPE built-in

Description

Returns a message type for the message that Form Builder most recently generated during the current
Runform session.

Use MESSAGE_TYPE to test the outcome of a user action (e.g., pressing a key) to determine processing
within an On-Message trigger.

Syntax
FUNCTION MESSAGE_TYPE;

Built-in Type unrestricted function

Returns VARCHAR2

MESSAGE_TYPE returns one of three values for the message type:

FRM Indicates that an Form Builder message was generated.

ORA Indicates that an ORACLE message was generated.

NULL Indicates that Form Builder has not yet issued any messages during the
session.

Enter Query Mode yes

Parameters

none

MESSAGE_TYPE examples

/*
** Built-in: MESSAGE_CODE,MESSAGE_TEXT,MESSAGE_TYPE
** Example: Reword certain FRM message messages by checking
** the Message_Code in an ON-MESSAGE trigger
** trigger: On-Message
*/
DECLARE
 msgnum NUMBER := MESSAGE_CODE;
 msgtxt VARCHAR2(80) := MESSAGE_TEXT;
 msgtyp VARCHAR2(3) := MESSAGE_TYPE;
BEGIN
 IF msgnum = 40400 THEN
 Message(’Your changes have been made permanent.’);
 ELSIF msgnum = 40401 THEN
 Message(’You have no unsaved changes outstanding.’);
 ELSE
 /*
 ** Print the Normal Message that would have appeared
 **
 ** FRM-12345: Message Text Goes Here
 */
 Message(msgtyp||’-’||TO_CHAR(msgnum)||’: ’||msgtxt);
 END IF;

288

END;

289

MOVE_WINDOW built-in

Description

Moves the given window to the location specified by the given coordinates.

If you have specified the form property Coordinate System as Character, then your x, y coordinates are
specified in characters. If the Coordinate System is specified as Real, then your x, y coordinates are
specified in the real units you have selected--pixels, inches, centimeters, or points.

Syntax
FUNCTION MOVE_WINDOW
 (window_id Window,
 x NUMBER,
 y NUMBER);
FUNCTION MOVE_WINDOW
 (window_name VARCHAR2,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

window_id Specifies the unique ID that Form Builder assigns the window when
created. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when creating it.

x Specifies the x coordinate on the screen where you want to place the upper
left corner of a window.

y Specifies the y coordinate on the screen where you want to place the upper
left corner of a window.

MOVE_WINDOW examples

/*
** Built-in: MOVE_WINDOW
** Example: Move window2 to be anchored at the bottom right
** corner of window1.
*/
PROCEDURE Anchor_Bottom_Right2(Window2 VARCHAR2, Window1
VARCHAR2) IS
 wn_id1 Window;
 wn_id2 Window;
 x NUMBER;
 y NUMBER;
 w NUMBER;
 h NUMBER;
BEGIN
 /*
 ** Find Window1 and get its (x,y) position, width, and

290

 ** height.
 */
 wn_id1 := Find_Window(Window1);
 x := Get_Window_Property(wn_id1,X_POS);
 y := Get_Window_Property(wn_id1,Y_POS);
 w := Get_Window_Property(wn_id1,WIDTH);
 h := Get_Window_Property(wn_id1,HEIGHT);
 /*
 ** Anchor Window2 at (x+w,y+h)
 */
 wn_id2 := Find_Window(Window2);
 Move_Window(wn_id2, x+w, y+h);
END;

291

NAME_IN built-in

Description

Returns the value of the indicated variable.

The returned value is in the form of a character string. However, you can use NAME_IN to return
numbers and dates as character strings and then convert those strings to the appropriate data types. You
can use the returned value as you would use any value within an executable statement.

If you nest the NAME_IN function, Form Builder evaluates the individual NAME_IN functions from the
innermost one to the outermost one.

Syntax
FUNCTION NAME_IN
 (variable_name VARCHAR2);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

variable_name Specifies a valid variable or text item. The data type of the name is
VARCHAR2.

Usage Notes

If the returned value is a date string, NAME_IN will use the format mask specified in the
BUILTIN_DATE_FORMAT property. If the DATE_FORMAT_COMPATIBILITY_MODE property
is set to 4.5 the default American format is used to format the returned string.

NAME_IN examples

/*
** Built-in: NAME_IN
** Example: Simple implementation of a Last-In-First-Out
** stack mechanism using Global variables.
** For each named stack, a global variable
** GLOBAL.<stackname>_PTR points to the largest
** element on the stack. PUSH increments this
** value as new elements are added. Values
** PUSH’ed on or POP’ed off the named stack are
** actually stored in GLOBAL variables of a
** conveniently formed name: GLOBAL.<stackname>nnn
** where ’nnn’ is the number of the element on the
** stack.
**
** Usage:
** Push(’MYSTACKNAME’, ’1’);
** Push(’MYSTACKNAME’, ’2’);
**
** str_var := Pop(’MYSTACKNAME’); -- Gets ’2’
** str_var := Pop(’MYSTACKNAME’); -- Gets ’1’
** str_var := Pop(’MYSTACKNAME’); -- Gets ’EOS’

292

**
*/
PROCEDURE Push (the_stackname VARCHAR2,
 the_value VARCHAR2) IS

 ptr_name VARCHAR2(40); -- This stack’s pointer name
 prefix VARCHAR2(40); -- Common prefix for storage vars
 elt_name VARCHAR2(40); -- Name of storage element
 new_idx VARCHAR2(4) ; -- New stack pointer value
BEGIN
 /*
 ** For any named stack that we reference, the global
 ** variables used for storing the stack’s values and the
 ** stack’s pointer all begin with a common prefix:
 ** GLOBAL.<stackname>
 */
 prefix := ’GLOBAL.’ || the_stackname;
 /*
 ** This named stack’s pointer resides in
 ** GLOBAL.<stackname>_PTR Remember that this is the *name*
 ** of the pointer.
 */
 ptr_name := prefix || ’_PTR’;
 /*
 ** Initialize the stack pointer with a default value of
 ** zero if the stack pointer did not exist previously, ie
 ** the GLOBAL.<stackname>_PTR had yet to be created.
 */
 Default_Value(’0’, ptr_name);
 /*
 ** Since we’re PUSH’ing a new element on the stack,
 ** increment the stack pointer to reflect this new
 ** element’s position. Remember that GLOBAL variables are
 ** always of type VARCHAR2, so we must convert them TO_NUMBER
 ** before any calculations.
 */
 new_idx := TO_CHAR(TO_NUMBER(Name_In(ptr_name)) + 1) ;
 Copy(new_idx , ptr_name);
 /*
 ** Determine the name of the global variable which will
 ** store the value passed in, GLOBAL.<stackname><new_idx>.
 ** This is simply the prefix concatenated to the new index
 ** number we just calculated above.
 */
 elt_name := prefix||new_idx;
 Copy(the_value , elt_name);
END;

FUNCTION Pop (the_stackname VARCHAR2)
RETURN VARCHAR2 IS
 ptr_name VARCHAR2(40); -- This stack’s pointer name
 prefix VARCHAR2(40); -- Common prefix for storage vars
 elt_name VARCHAR2(40); -- Name of storage element
 new_idx VARCHAR2(4) ; -- New stack pointer value
 cur_idx VARCHAR2(4) ; -- Current stack pointer value
 the_val VARCHAR2(255);

 EMPTY_STACK CONSTANT VARCHAR2(3) := ’EOS’;
 NO_SUCH_STACK CONSTANT VARCHAR2(3) := ’NSS’;
BEGIN
 /*
 ** For any named stack that we reference, the global
 ** variables used for storing the stack’s values and the
 ** stack’s pointer all begin with a common prefix:
 ** GLOBAL.<stackname>

293

 */
 prefix := ’GLOBAL.’ || the_stackname;
 /*
 ** This named stack’s pointer resides in
 ** GLOBAL.<stackname>_PTR Remember that this is the *name*
 ** of the pointer.
 */
 ptr_name := prefix || ’_PTR’;
 /*
 ** Force a default value of NULL so we can test if the
 ** pointer exists (as a global variable). If it does not
 ** exist, we can test in a moment for the NULL, and avoid
 ** the typical error due to referencing non-existent
 ** global variables.
 */
 Default_Value(NULL, ptr_name);
 /*
 ** If the *value* contained in the pointer is NULL, then
 ** the pointer must not have existed prior to the
 ** Default_Value statement above. Return the constant
 ** NO_SUCH_STACK in this case and erase the global
 ** variable that the Default_Value implicitly created.
 */
 IF Name_In(ptr_name) IS NULL THEN
 the_val := NO_SUCH_STACK;
 Erase(ptr_name);
 /*
 ** Otherwise, the named stack already exists. Get the
 ** index of the largest stack element from this stack’s
 ** pointer.
 */
 ELSE
 cur_idx := Name_In(ptr_name) ;
 /*
 ** If the index is zero, then the named stack is already
 ** empty, so return the constant EMPTY_STACK, and leave
 ** the stack’s pointer around for later use, ie don’t
 ** ERASE it.
 **
 ** Note that a stack can only be empty if some values
 ** have been PUSH’ed and then all values subsequently
 ** POP’ed. If no values were ever PUSH’ed on this named
 ** stack, then no associated stack pointer would have
 ** been created, and we would flag that error with the
 ** NO_SUCH_STACK case above.
 */
 IF cur_idx = ’0’ THEN
 the_val := EMPTY_STACK;
 /*
 ** If the index is non-zero, then:
 ** (1) Determine the name of the global variable in
 ** which the value to be POP’ed is stored,
 ** GLOBAL.<stackname><cur_idx>
 ** (2) Get the value of the (cur_idx)-th element to
 ** return
 ** (3) Decrement the stack pointer
 ** (4) Erase the global variable which was used for
 ** value storage
 */
 ELSE
 elt_name:= prefix || cur_idx;
 the_val := Name_In(elt_name);
 new_idx := TO_CHAR(TO_NUMBER(Name_In(ptr_name)) - 1) ;
 Copy(new_idx , ptr_name);
 Erase(elt_name);

294

 END IF;
 END IF;
 RETURN the_val;
END;

295

NEW_FORM built-in

Description

Exits the current form and enters the indicated form. The calling form is terminated as the parent form.
If the calling form had been called by a higher form, Form Builder keeps the higher call active and treats
it as a call to the new form. Form Builder releases memory (such as database cursors) that the terminated
form was using.

Form Builder runs the new form with the same Runform options as the parent form. If the parent form
was a called form, Form Builder runs the new form with the same options as the parent form.

Syntax
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER,
 query_mode NUMBER);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER,
 query_mode NUMBER,
 data_mode NUMBER);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER,
 query_mode NUMBER,
 paramlist_id PARAMLIST);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER,
 query_mode NUMBER,
 paramlist_name VARCHAR2);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER,
 query_mode NUMBER,
 data_mode NUMBER,
 paramlist_id PARAMLIST);
PROCEDURE NEW_FORM
 (formmodule_name VARCHAR2,
 rollback_mode NUMBER,
 query_mode NUMBER,
 data_mode NUMBER,
 paramlist_name VARCHAR2);

Built-in Type restricted procedure

Enter Query Mode no

Parameters

296

formmodule_name Then name of the called form (must be enclosed in single quotes).
Datatype is VARCHAR2.

rollback_mode TO_SAVEPOINT (The default.) Form Builder will roll back all
uncommitted changes (including posted changes) to the current form’s
savepoint.

NO_ROLLBACK Form Builder will exit the current form without rolling
back to a savepoint. You can leave the top level form without performing a
rollback, which means that you retain any locks across a NEW_FORM
operation. These locks can also occur when invoking Form Builder from
an external 3GL program. The locks are still in effect when you regain
control from Form Builder.

FULL_ROLLBACK Form Builder rolls back all uncommitted changes
(including posted changes) that were made during the current Runform
session. You cannot specify a FULL_ROLLBACK from a form that is
running in post-only mode. (Post-only mode can occur when your form
issues a call to another form while unposted records exist in the calling
form. To avoid losing the locks issued by the calling form, Form Builder
prevents any commit processing in the called form.)

query_mode NO_QUERY_ONLY (The default.) Runs the indicated form normally,
allowing the end user to perform inserts, updates, and deletes in the form.

QUERY_ONLY Runs the indicated form in query-only mode; end users
can query records, but cannot perform inserts, updates or deletes.

data_mode NO_SHARE_LIBRARY_DATA (The default.) At runtime, Form
Builder will not share data between forms that have identical libraries
attached (at design time).

SHARE_LIBRARY_DATA At runtime, Form Builder will share data
between forms that have identical libraries attached (at design time).

paramlist_id The unique ID Form Builder assigns when it creates the parameter list.
Specify a parameter list when you want to pass parameters from the calling
form to the new form. Datatype is PARAMLIST. A parameter list passed
to a form via NEW_FORM cannot contain parameters of type
DATA_PARAMETER (a pointer to record group).

paramlist_name The name you gave the parameter list object when you defined it. Datatype
is VARCHAR2. A parameter list passed to a form via NEW_FORM
cannot contain parameters of type DATA_PARAMETER (a pointer to
record group).

NEW_FORM examples

/* Create a generic procedure that will invoke the
** formname passed-in using the method indicated by
** the ’newform’ and ’queryonly’ parameters.
*/
PROCEDURE GENERIC_CALL(formname VARCHAR2,
 newform VARCHAR2,
 queryonly VARCHAR2) IS

 msglvl VARCHAR2(2);
 error_occurred EXCEPTION;
BEGIN

297

 /*
 ** Remember the current message level and temporarily
 ** set it to 10 to suppress errors if an incorrect
 ** formname is called
 */
 msglvl := :SYSTEM.MESSAGE_LEVEL;
 :SYSTEM.MESSAGE_LEVEL := ’10’;

 IF newform = ’Y’ THEN
 IF queryonly = ’Y’ THEN
 NEW_FORM(formname, to_savepoint, query_only);
 ELSIF queryonly = ’N’ THEN
 NEW_FORM(formname);
 END IF;
 ELSIF newform = ’N’ THEN
 IF queryonly = ’Y’ THEN
 CALL_FORM(formname, hide, no_replace, query_only);
 ELSIF queryonly = ’N’ THEN
 CALL_FORM(formname);
 END IF;
 END IF;
 IF NOT form_success THEN
 MESSAGE(’Cannot call form ’||UPPER(formname)||
 ’. Please contact your SysAdmin for help.’);
 RAISE error_occurred;
 END IF;
 :SYSTEM.MESSAGE_LEVEL := msglvl;
EXCEPTION
 WHEN error_occurred THEN
 :SYSTEM.MESSAGE_LEVEL := msglvl;
 RAISE form_trigger_failure;
END;

298

NEXT_BLOCK built-in

Description

Navigates to the first navigable item in the next enterable block in the navigation sequence. By default,
the next block in the navigation sequence is the block with the next higher sequence number, as defined
by the order of blocks in the Object Navigator. However, the Next Navigation Block block property can
be set to specify a different block as the next block for navigation purposes.

If there is no enterable block with a higher sequence, NEXT_BLOCK navigates to the enterable block
with the lowest sequence number.

Syntax
PROCEDURE NEXT_BLOCK;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

NEXT_BLOCK examples

/*
** Built-in: NEXT_BLOCK
** Example: If the current item is the last item in the
** block, then skip to the next block instead of
** the default of going back to the first item in
** the same block
** trigger: Key-Next-Item
*/
DECLARE
 cur_itm VARCHAR2(80) := :System.Cursor_Item;
 cur_blk VARCHAR2(80) := :System.Cursor_Block;
 lst_itm VARCHAR2(80);
BEGIN
 lst_itm :=
cur_blk||’.’||Get_Block_Property(cur_blk,LAST_ITEM);
 IF cur_itm = lst_itm THEN
 Next_Block;
 ELSE
 Next_Item;
 END IF;
END;

299

NEXT_FORM built-in

Description

In a multiple-form application, navigates to the independent form with the next highest sequence number.
(Forms are sequenced in the order they were invoked at runtime.) If there is no form with a higher
sequence number, NEXT_FORM navigates to the form with the lowest sequence number. If there is no
such form, the current form remains current.

When navigating with NEXT_FORM, no validation occurs and no triggers fire except WHEN-
WINDOW-DEACTIVATED, which fires for the form that initiates navigation, and WHEN-WINDOW-
ACTIVATED, which fires for the target form.

Syntax
PROCEDURE NEXT_FORM;

Built-in Type restricted procedure

Enter Query Mode no

NEXT_FORM restrictions

The target form cannot be a form that is currently disabled as a result of having invoked another form
with CALL_FORM.

300

NEXT_ITEM built-in

Description

Navigates to the navigable item with the next higher sequence number than the current item. If there is
no such item, NEXT_ITEM navigates to the item with the lowest sequence number. If there is no such
item, NEXT_ITEM navigates to the current item.

If the validation unit is the item, NEXT_ITEM validates any fields with sequence numbers greater than
the current item or less than the target item.

The function of NEXT_ITEM from the last navigable item in the block depends on the setting of the
Navigation Style block property. The valid settings for Navigation Style include:

Same Record (Default): A Next Item operation from a block’s last item moves the input focus to the first
navigable item in the block, in that same record.

Change Record: A Next Item operation from a block’s last item moves the input focus to the first
navigable item in the block, in the next record. If the current record is the last record in the block and
there is no open query, Form Builder creates a new record. If there is an open query in the block (the
block contains queried records), Oracle forms retrieves additional records as needed.

Change Block: A Next Item operation from a block’s last item moves the input focus to the first
navigable item in the first record of the next block.

Syntax
PROCEDURE NEXT_ITEM;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

NEXT_ITEM examples

/*
** Built-in: NEXT_ITEM
** Example: See NEXT_BLOCK
*/

301

NEXT_KEY built-in

Description

Navigates to the enabled and navigable primary key item with the next higher sequence number than the
current item. If there is no such item, NEXT_KEY navigates to the enabled and navigable primary key
item with the lowest sequence number. If there is no primary key item in the current block, an error
occurs.

If the validation unit is the item, NEXT_KEY validates any fields with sequence numbers greater than
the current item or less than the target item.

Syntax
PROCEDURE NEXT_KEY;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

NEXT_KEY examples

/*
** Built-in: NEXT_KEY
** Example: Jump the cursor to the next primary key item in
** in the current block.
*/
BEGIN
 Next_Key;
END;

302

NEXT_MENU_ITEM built-in

Description

Navigates to the next menu item in the current menu.

Syntax
PROCEDURE NEXT_MENU_ITEM;

Built-in Type restricted procedure

Parameters

none

NEXT_MENU_ITEM restrictions

NEXT_MENU_ITEM is available only in a custom menu running in the full-screen menu display style.

303

NEXT_RECORD built-in

Description

Navigates to the first enabled and navigable item in the record with the next higher sequence number
than the current record. If there is no such record, Form Builder will fetch or create a record. If the
current record is a new record, NEXT_RECORD fails.

Syntax
PROCEDURE NEXT_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

NEXT_RECORD restrictions

Not allowed in Enter Query mode.

NEXT_RECORD examples

/*
** Built-in: NEXT_RECORD
** Example: If the current item is the last item in the
** block, then skip to the next record instead of
** the default of going back to the first item in
** the same block
** trigger: Key-Next-Item
*/
DECLARE
 cur_itm VARCHAR2(80) := :System.Cursor_Item;
 cur_blk VARCHAR2(80) := :System.Cursor_Block;
 lst_itm VARCHAR2(80);
BEGIN
 lst_itm :=
cur_blk||’.’||Get_Block_Property(cur_blk,LAST_ITEM);
 IF cur_itm = lst_itm THEN
 Next_Record;
 ELSE
 Next_Item;
 END IF;
END;

304

NEXT_SET built-in

Description

Fetches another set of records from the database and navigates to the first record that the fetch retrieves.
NEXT_SET succeeds only if a query is open in the current block.

Syntax
PROCEDURE NEXT_SET;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

NEXT_SET examples

/*
** Built-in: NEXT_SET
** Example: Fetch the next set of records from the database
** when a button is pressed.
** trigger: When-Button-Pressed
*/
BEGIN
 Next_Set;
END;

305

OLEVAR_EMPTY built-in

Description

An OLE variant of type VT_EMPTY.

Syntax
OLEVAR_EMPTY OLEVAR;

Usage Notes

This is a non-settable variable. It is useful for supplying empty or non-existant arguments to an OLE
call.

306

OPEN_FORM built-in

Description

Opens the indicated form. Use OPEN_FORM to create multiple-form applications, that is, applications
that open more than one form at the same time.

Syntax
PROCEDURE OPEN_FORM
 (form_name VARCHAR2);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER,
 session_mode NUMBER);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER,
 session_mode NUMBER,
 data_mode NUMBER);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER,
 session_mode NUMBER,
 paramlist_name VARCHAR2);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER,
 session_mode NUMBER,
 paramlist_id PARAMLIST);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER,
 session_mode NUMBER,
 data_mode NUMBER,
 paramlist_name VARCHAR2);
PROCEDURE OPEN_FORM
 (form_name VARCHAR2,
 activate_mode NUMBER,
 session_mode NUMBER,
 data_mode NUMBER,
 paramlist_id PARAMLIST);

Built-in Type restricted procedure

Enter Query Mode no

Parameters:

form_name The name of the form to open. Datatype is VARCHAR2. Required

activate_mode ACTIVATE (The default.) Sets focus to the form to make it the active
form in the application.

NO_ACTIVATE Opens the form but does not set focus to the form. The
current form remains current.

307

session_mode NO_SESSION (The default.) Specifies that the opened form should
share the same database session as the current form. POST and COMMIT
operations in any form will cause posting, validation, and commit
processing to occur for all forms running in the same session.

SESSION Specifies that a new, separate database session should be
created for the opened form.

data_mode NO_SHARE_LIBRARY_DATA (The default.) At runtime, Form
Builder will not share data between forms that have identical libraries
attached (at design time).

SHARE_LIBRARY_DATA At runtime, Form Builder will share data
between forms that have identical libraries attached (at design time).

paramlist_name The name of a parameter list to be passed to the opened form. Datatype is
VARCHAR2.

paramlist_id The unique ID that Form Builder assigns to the parameter list at the time it
is created. Use the GET_PARAMETER_LIST function to return the ID to
a variable of type PARAMLIST.

Usage Notes

• Whether you open a form with ACTIVATE or NO_ACTIVATE specified, any startup triggers that
would normally fire will execute in the opened form. (However, see the usage note regarding
SESSION-specified below.)

• When you open a form with ACTIVATE specified (the default), the opened form receives focus
immediately; trigger statements that follow the call to OPEN_FORM never execute.

• When you open a form with NO_ACTIVATE specified, trigger statements that follow the call to
OPEN_FORM will execute after the opened form has been loaded into memory and its initial start-
up triggers have fired.

• When you open a form with SESSION specified, the PRE-LOGON, ON-LOGON, and POST-
LOGON triggers will not fire.

• If the form that issues the OPEN_FORM built-in is running in QUERY_ONLY mode, then the
opened form will also run in QUERY_ONLY mode.

• On Microsoft Windows, if any window in the form that opens the independent form is maximized,
the first window displayed by the opened form will also be maximized, regardless of its original
design-time setting. (The GUI display state of a window is controlled by the Window_State
property.)

• For most applications, you should avoid using OPEN_FORM with forms that contain root windows.
Because there can be only one root window displayed at a time, canvases that are assigned to the
root window in the current form and in the opened form will be displayed in the same window. This
causes the opened form to "take over" the root window from the original form, thus hiding the
canvases in the original form partially or completely.

OPEN_FORM restrictions

• You can set session On for all Runform invocations by setting the FORMSnn_SESSION
environment variable to TRUE. When you set the FORMSnn_SESSION variable, all Runform
invocations inherit its setting, unless you override the environment variable by setting the Session
option from the Runform command line.

308

• If you set session_mode to SESSION when you use OPEN_FORM to create a multiple-form
application, you cannot set data_mode to SHARE_LIBRARY_DATA (Form Builder will display a
runtime error message).

309

PASTE_REGION built-in

Description

Pastes the contents of the clipboard (i.e., the selected region that was cut or copied most recently),
positioning the upper left corner of the pasted area at the cursor position.

Syntax
PROCEDURE PASTE_REGION;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

Usage Notes

Use PASTE_REGION, as well as the other editing functions, on text and image items only. The cut and
copy functions transfer the selected region into the system clipboard until you indicate the paste target.
At that time, the cut or copied content is pasted onto the target location.

310

PAUSE built-in

Description

Suspends processing until the end user presses a function key. PAUSE might display an alert.

Syntax
PROCEDURE PAUSE;

Built-in Type unrestricted procedure

Enter Query Mode yes

Description

Suspends processing until the end user presses a function key. PAUSE might display an alert.

Parameters

none

311

PLAY_SOUND built-in

Description

Plays the sound object in the specified sound item.

Syntax
PLAY_SOUND(item_id ITEM);
PLAY_SOUND(item_name VARCHAR2);

Built-in Type restricted

Enter Query Mode No

Parameters:

item_id The unique ID Form Builder gave the sound item when you created it.

item_name The name you gave the sound item when you created it.

PLAY_SOUND examples

/* Example 1: This procedure call (attached to a menu item)
** plays a sound object from the specified sound item:
*/
GO_ITEM(’about.abc_inc’);
PLAY_SOUND(’about.abc_inc’);

/* Example 2: These procedure calls (attached to a
** When-Button-Pressed trigger) read a sound object from the
** file system and play it. Note: since an item must have focus
** in order to play a sound, the trigger code includes a call
** to the built-in procedure GO_ITEM:
*/
BEGIN
 IF :clerks.last_name EQ ’BARNES’ THEN
 GO_ITEM(’orders.filled_by’);
 READ_SOUND_FILE(’t:\orders\clerk\barnes.wav’,
 ’wave’,
 ’orders.filled_by’);
 PLAY_SOUND(’orders.filled_by’);
 END IF;
END;

312

POPULATE_GROUP built-in

Description

Executes the query associated with the given record group and returns a number indicating success or
failure of the query. Upon a successful query, POPULATE_GROUP returns a 0 (zero). An unsuccessful
query generates an ORACLE error number that corresponds to the particular SELECT statement failure.
The rows that are retrieved as a result of a successful query replace any rows that exist in the group.

Note: Be aware that the POPULATE_GROUP array fetches 100 records at a time. To improve network
performance, you may want to restrict queries, thus limiting network traffic.

Syntax
FUNCTION POPULATE_GROUP
 (recordgroup_id RecordGroup);
FUNCTION POPULATE_GROUP
 (recordgroup_name VARCHAR2);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

recordgroup_id The unique ID that Form Builder assigns when it creates the group. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when creating it. The data type of
the name is VARCHAR2.

POPULATE_GROUP restrictions

Valid only for record groups

• that were created at design time with a query

• that were created by a call to the CREATE_GROUP_FROM_QUERY built-in

• that have been previously populated with the POPULATE_GROUP_WITH_QUERY built-in
(which associates a query with the record group)

POPULATE_GROUP examples

/*
** Built-in: POPULATE_GROUP
** Example: See GET_GROUP_ROW_COUNT and
CREATE_GROUP_FROM_QUERY
*/

313

POPULATE_GROUP_FROM_TREE built-in

Description

Populates a record group with the data from the hierarchical tree.

Syntax
PROCEDURE POPULATE_GROUP_FROM_TREE
 (group_name VARCHAR2,
 item_name VARCHAR2,
 node NODE);
PROCEDURE POPULATE_GROUP_FROM_TREE
 (group_name VARCHAR2,
 item_id ITEM,
 node NODE);
PROCEDURE POPULATE_GROUP_FROM_TREE
 (group_id RECORDGROUP,
 item_name VARCHAR2,
 node NODE);
PROCEDURE POPULATE_GROUP_FROM_TREE
 (group_id RECORDGROUP,
 item_id ITEM,
 node NODE);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

group_name Specifies the name of the group.

group_id Specifies the ID assigned to the group.

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node. If specified, indicates a sub-tree
used to populate the RecordGroup, including the
specified node.

Usage Notes

The record group is cleared prior to inserting the hierarchical tree’s data set.

314

POPULATE_GROUP_FROM_TREE examples

/*
** Built-in: POPULATE_GROUP_FROM_TREE
*/

-- This code will transfer all the data from a hierarchical tree
-- that is parented by the node with a label of "Zetie" to a
-- pre-created record group. Please see the documentation
-- for the structure of the required record group.

DECLARE
 htree ITEM;
 find_node NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Find the node with a label "Zetie".
 find_node := Ftree.Find_Tree_Node(htree, ’Zetie’,
Ftree.FIND_NEXT,
 Ftree.NODE_LABEL, Ftree.ROOT_NODE,
Ftree.ROOT_NODE);

 -- Populate the record group with the tree data.
 -- The record group must already exist.
 Ftree.Populate_Group_From_Tree(’tree_data_rg’, htree,
find_node);
END;

315

POPULATE_GROUP_WITH_QUERY built-in

Description

Populates a record group with the given query. The record group is cleared and rows that are fetched
replace any existing rows in the record group.

If the SELECT statement fails, Form Builder returns an ORACLE error number. If the query is
successful, this built-in returns 0 (zero).

You can use this built-in to populate record groups that were created by a call to either:

• the CREATE_GROUP built-in or

• the CREATE_GROUP_FROM_QUERY built-in

When you use this built-in, the indicated query becomes the default query for the group, and will be
executed whenever the POPULATE_GROUP built-in is subsequently called.

Note: Be aware that the POPULATE_GROUP_WITH_QUERY array fetches 20 records at a time. To
improve network performance, you may want to restrict queries, thus limiting network traffic.

Syntax
FUNCTION POPULATE_GROUP_WITH_QUERY
 (recordgroup_id RecordGroup,
 query VARCHAR2);
FUNCTION POPULATE_GROUP_WITH_QUERY
 (recordgroup_name VARCHAR2,
 query VARCHAR2);

Built-in Type unrestricted function

Returns NUMBER

Enter Query Mode yes

Parameters

recordgroup_id The unique ID that Form Builder assigns when it creates the group. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when creating it. The data type of
the name is VARCHAR2.

query A valid SELECT statement, enclosed in single quotes. Any columns
retrieved as a result of the query take the data types of the columns in the
table. If you restrict the query to a subset of the columns in the table, then
Form Builder creates only those columns in the record group. The data
type of the query is VARCHAR2.

POPULATE_GROUP_WITH_QUERY restrictions

• The columns specified in the SELECT statement must match the record group columns in number
and type.

316

POPULATE_GROUP_WITH_QUERY examples

/*
** Built-in: POPULATE_GROUP_WITH_QUERY
** Example: See CREATE_GROUP
*/

317

POPULATE_LIST built-in

Description

Removes the contents of the current list and populates the list with the values from a record group. The
record group must be created at runtime and it must have the following two column (VARCHAR2)
structure:

Column 1: Column 2:

the list label the list value

Syntax
PROCEDURE POPULATE_LIST
 (list_id ITEM,
 recgrp_id RecordGroup);
PROCEDURE POPULATE_LIST
 (list_id ITEM,
 recgrp_name VARCHAR2);
PROCEDURE POPULATE_LIST
 (list_name VARCHAR2,
 recgrp_id RecordGroup);
PROCEDURE POPULATE_LIST
 (list_name VARCHAR2,
 recgrp_name VARCHAR2);

Built-in Type

unrestricted procedure

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

recgrp_id Specifies the unique ID that Form Builder assigns when it creates the record
group. The data type of the ID is RecordGroup.

recgrp_name The VARCHAR2 name you gave to the record group when you created it.

Usage Notes

• Do not use the POPULATE_LIST built-in if the Mapping of Other Values property is defined and
there are queried records in the block. Doing so may cause Form Builder to be unable to display
records that have already been fetched.

For example, assume that a list item contains the values A, B, and C and the Mapping of Other Values
property is defined. Assume also that these values have been fetched from the database (a query is
open). At this point, if you populate the list using POPULATE_LIST, an error will occur because

318

Form Builder will attempt to display the previously fetched values (A, B, and C), but will be unable to
because these values were removed from the list and replaced with new values.

• Before populating a list, close any open queries. Use the ABORT_QUERY built-in to close an open
query.

POPULATE_LIST restrictions

POPULATE_LIST returns error FRM-41337: Cannot populate the list
from the record group if:

• the record group does not contain either the default value element or the other values element and
the list does not meet the criteria specified for deleting these elements with
DELETE_LIST_ELEMENT. Refer to the restrictions on DELETE_LIST_ELEMENT for more
information.

• the record group contains an other value element but the list does not meet the criteria specified for
adding an other value element with ADD_LIST_ELEMENT. Refer to the restrictions on
ADD_LIST_ELEMENT for more information.

POPULATE_LIST examples

/*
** Built-in: POPULATE_LIST
** Example: Retrieves the values from the current list item
** into record group one, clears the list, and
** populates the list with values from record group
** two when a button is pressed.
** trigger: When-Button-Pressed
*/
BEGIN
 Retrieve_List(list_id, ’RECGRP_ONE’);
 Clear_List(list_id);
 Populate_List(list_id, ’RECGRP_TWO’);
END;

319

POPULATE_TREE built-in

Description

Clears out any data already in the hierarchical tree, and obtains the data set specified by the
RecordGroup or QueryText properties.

Syntax
PROCEDURE POPULATE_TREE
 (item_name VARCHAR2);
PROCEDURE POPULATE_TREE
 (item_id ITEM);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

POPULATE_TREE examples

/*
** Built-in: POPULATE_TREE
*/
-- This code will cause a tree to be re-populated using
-- either the record group or query already specified
-- for the hierarchical tree.
DECLARE
 htree ITEM;
 top_node FTREE.NODE;
 find_node FTREE.NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Populate the tree with data.
 Ftree.Populate_Tree(htree);
END;

320

POST built-in

Description

Writes data in the form to the database, but does not perform a database commit. Form Builder first
validates the form. If there are changes to post to the database, for each block in the form Form Builder
writes deletes, inserts, and updates to the database.

Any data that you post to the database is committed to the database by the next COMMIT_FORM that
executes during the current Runform session. Alternatively, this data can be rolled back by the next
CLEAR_FORM.

Syntax
PROCEDURE POST;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

Usage Notes

If this form was called via OPEN_FORM with the NO_SESSION parameter specified, then the POST
will validate and write the data both in this form and in the calling form.

POST examples

/*
** Built-in: POST and EXIT_FORM
** Example: Leave the called form, without rolling back the
** posted changes so they may be posted and
** committed by the calling form as part of the
** same transaction.
*/
BEGIN
 Post;
 /*
 ** Form_Status should be ’QUERY’ if all records were
 ** successfully posted.
 */
 IF :System.Form_Status <> ’QUERY’ THEN
 Message(’An error prevented the system from posting
changes’);
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** By default, Exit_Form asks to commit and performs a
 ** rollback to savepoint. We’ve already posted, so we do
 ** not need to commit, and we don’t want the posted changes
 ** to be rolled back.
 */
 Exit_Form(NO_COMMIT, NO_ROLLBACK);
END;

321

PREVIOUS_BLOCK built-in

Description

Navigates to the first navigable item in the previous enterable block in the navigation sequence. By
default, the previous block in the navigation sequence is the block with the next lower sequence number,
as defined by the block order in the Object Navigator. However, the Previous Navigation Block block
property can be set to specify a different block as the previous block for navigation purposes.

If there is no enterable block with a lower sequence, PREVIOUS_BLOCK navigates to the enterable
block with the highest sequence number.

Syntax
PROCEDURE PREVIOUS_BLOCK;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

PREVIOUS_BLOCK examples

/*
** Built-in: PREVIOUS_BLOCK
** Example: If the current item is the first item in the
** block, then skip back the previous block
** instead of the default of going to the last
** item in the same block
** trigger: Key-Previous-Item
*/
DECLARE
 cur_itm VARCHAR2(80) := :System.Cursor_Item;
 cur_blk VARCHAR2(80) := :System.Cursor_Block;
 frs_itm VARCHAR2(80);
BEGIN
 frs_itm :=
cur_blk||’.’||Get_Block_Property(cur_blk,FIRST_ITEM);
 IF cur_itm = frs_itm THEN
 Previous_Block;
 ELSE
 Previous_Item;
 END IF;
END;

322

PREVIOUS_FORM built-in

Description

In a multiple-form application, navigates to the form with the next lowest sequence number. (Forms are
sequenced in the order they were invoked at runtime.) If there is no form with a lower sequence number,
PREVIOUS_FORM navigates to the form with the highest sequence number. If there is no such form,
the current form remains current.

When navigating with PREVIOUS_FORM, no validation occurs and no triggers fire except WHEN-
WINDOW-DEACTIVATED, which fires for the form that initiates navigation, and WHEN-WINDOW-
ACTIVATED, which fires for the target form.

Syntax
PROCEDURE PREVIOUS_FORM;

Built-in Type restricted procedure

Enter Query Mode no

PREVIOUS_FORM restrictions

The target form cannot be a form that is currently disabled as a result of having invoked another form
with CALL_FORM.

323

PREVIOUS_ITEM built-in

Description

Navigates to the navigable item with the next lower sequence number than the current item. If there is no
such item, PREVIOUS_ITEM navigates to the navigable item with the highest sequence number. If
there is no such item, PREVIOUS_ITEM navigates to the current item.

The function of PREVIOUS_ITEM from the first navigable item in the block depends on the setting of
the Navigation Style block property. The valid settings for Navigation Style include:

Same Record (Default): A Previous Item operation from a block’s first item moves the input focus to
the last navigable item in the block, in that same record.

Change Record: A Previous Item operation from a block’s first item moves the input focus to the last
navigable item in the block, in the previous record.

Change Block: A Previous Item operation from a block’s first item moves the input focus to the last
navigable item in the current record of the previous block.

Syntax
PROCEDURE PREVIOUS_ITEM;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

PREVIOUS_ITEM examples

/*
** Built-in: PREVIOUS_ITEM
** Example: See PREVIOUS_BLOCK
*/

324

PREVIOUS_MENU built-in

Description

PREVIOUS_MENU navigates to the previously active item in the previous menu.

Syntax
PROCEDURE PREVIOUS_MENU;

Built-in Type restricted procedure

Parameters

none

PREVIOUS_MENU restrictions

PREVIOUS_MENU applies only in full-screen and bar menus.

325

PREVIOUS_MENU_ITEM built-in

Description

PREVIOUS_MENU_ITEM navigates to the previous menu item in the current menu.

Syntax
PROCEDURE PREVIOUS_MENU_ITEM;

Built-in Type restricted procedure

Parameters

none

PREVIOUS_MENU_ITEM restrictions

PREVIOUS_MENU_ITEM applies only in full-screen menus.

326

PREVIOUS_RECORD built-in

Description

Navigates to the first enabled and navigable item in the record with the next lower sequence number than
the current record.

Syntax
PROCEDURE PREVIOUS_RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

PREVIOUS_RECORD examples

/*
** Built-in: PREVIOUS_RECORD
** Example: If the current item is the first item in the
** block, then skip back to the previous record
** instead of the default of going to the last
** item in the same block
** trigger: Key-Previous-Item
*/
DECLARE
 cur_itm VARCHAR2(80) := :System.Cursor_Item;
 cur_blk VARCHAR2(80) := :System.Cursor_Block;
 frs_itm VARCHAR2(80);
BEGIN
 frs_itm :=
cur_blk||’.’||Get_Block_Property(cur_blk,FIRST_ITEM);
 IF cur_itm = frs_itm THEN
 Previous_Record;
 ELSE
 Previous_Item;
 END IF;
END;

327

PRINT built-in

Description

Prints the current window to a file or to the printer.

Syntax
PROCEDURE PRINT;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

PRINT examples

/*
** Built-in: PRINT
** Example: Print the current window.
*/
BEGIN
 Print;
END;

328

PTR_TO_VAR built-in

Description

First, creates an OLE variant of type VT_PTR that contains the supplied address. Then, passes that
variant and type through the function VARPTR_TO_VAR.

Syntax
FUNCTION PTR_TO_VAR
 (address PLS_INTEGER, vtype VT_TYPE)
RETURN newvar OLEVAR;

Built-in Type unrestricted function

Returns the created and transformed OLE variant.

Parameters

address A variable whose value is an address.

vtype The type to be given to the final version of the OLE
variant (after its processing by VARPTR_TO_VAR).

Usage Notes

In most applications, there is no need to use this function. If the function is used, care must be taken to
ensure that the correct address value is placed in the new variant.

329

QUERY_PARAMETER built-in

Description

Displays the Query Parameter dialog showing the current values of the specified substitution parameters.
End users can set the value of any parameter you include in the list.

The Query Parameter dialog is modal, and control does not return to the calling trigger or procedure until
the end user either accepts or cancels the dialog. This means that any PL/SQL statements that follow the
call to QUERY_PARAMETER are not executed until the Query Parameter dialog is dismissed.

Syntax
PROCEDURE QUERY_PARAMETER
 (parameter_string VARCHAR2);

Built-in Type unrestricted procedure

Parameters

parameter_string Specifies a string of substitution parameters for a menu item. The syntax
for specifying the parameter_string parameter requires the ampersand
&parm_name. Substitution parameters are referenced in PL/SQL code
with the colon syntax ":param_name" used for all bind variables).

QUERY_PARAMETER examples

/*
** Built-in: QUERY_PARAMETER
** Example: Prompt for several menu parameters
** programmatically, validating their contents.
*/
PROCEDURE Update_Warehouse IS
 validation_Err BOOLEAN;
BEGIN
 WHILE TRUE LOOP
 Query_Parameter(’&p1 &q2 &z6’);
 /*
 ** If the user did not Cancel the box the Menu_Success
 ** function will return boolean TRUE.
 */
 IF Menu_Success THEN
 IF TO_NUMBER(:q2) NOT BETWEEN 100 AND 5000 THEN
 Message(’Qty must be in the range 100..5000’);
 Bell;
 Validation_Err := TRUE;
 END IF;
 /*
 ** Start a sub-block so we can catch a Value_Error
 ** exception in a local handler
 */
 BEGIN
 IF TO_DATE(:z6) < SYSDATE THEN
 Message(’Target Date must name a day in the future.’);
 Bell;
 Validation_Err := TRUE;
 END IF;
 EXCEPTION

330

 WHEN VALUE_ERROR THEN
 Message(’Target Date must be of the form DD-MON-YY’);
 Bell;
 Validation_Err := TRUE;
 END;
 /*
 ** If we get here, all parameters were valid so do the
 ** Update Statement.
 */
 IF NOT Validation_Err THEN
 UPDATE WAREHOUSE
 SET QTY_TO_ORDER = QTY_TO_ORDER*0.18
 WHERE TARGET_DATE = TO_DATE(:z6)
 AND QTY_ON_HAND > TO_NUMBER(:q2)
 AND COST_CODE LIKE :p1||’%’;
 END IF;
 ELSE
 /*
 ** If Menu_Success is boolean false, then return back
 ** from the procedure since user cancelled the dialog
 */
 RETURN;
 END IF;
 END LOOP;
END;

331

READ_IMAGE_FILE built-in

Description

Reads an image of the given type from the given file and displays it in the Form Builder image item.

Syntax
PROCEDURE READ_IMAGE_FILE
 (file_name VARCHAR2,
 file_type VARCHAR2,
 item_id ITEM);
PROCEDURE READ_IMAGE_FILE
 (file_name VARCHAR2,
 file_type VARCHAR2,
 item_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

file_name Valid file name. The file name designation can include a full path
statement appropriate to your operating system.

file_type The valid image file type: BMP, CALS, GIF, JFIF, JPG, PICT, RAS,
TIFF, or TPIC. (Note: File type is optional, as Form Builder will attempt
to deduce it from the source image file. To optimize performance,
however, you should specify the file type.)

item_id The unique ID Form Builder assigns to the image item when it creates it.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. Datatype is ITEM.

item_name The name you gave the image item when you created it. Datatype is
VARCHAR2.

Usage Notes

Form Builder searches for the image file along the same default path as it searches for an .FMX file. For
more information on the specific search path for your platform, refer to the Form Builder documentation
for your operating system.

READ_IMAGE_FILE examples

/* Read an image from the filesystem into an image item on the
** form. In this example, the scanned picture identification
** for each employee is NOT saved to the database, but is
** stored on the filesystem. An employee’s photo is a TIFF
** image stored in a file named <Userid>.TIF Each employee’s
** Userid is unique.
** trigger: Post-Query
*/
DECLARE
 tiff_image_dir VARCHAR2(80) := ’/usr/staff/photos/’;
 photo_filename VARCHAR2(80);

332

BEGIN
 /*
 ** Set the message level high so we can gracefully handle
 ** an error reading the file if it occurs
 */
 :System.Message_Level := ’25’;
 /*
 ** After fetching an employee record, take the employee’s
 ** Userid and concatenate the ’.TIF’ extension to derive
 ** the filename from which to load the TIFF image. The EMP
 ** record has a non-database image item named ’EMP_PHOTO’
 ** into which we read the image.
 */
 photo_filename := tiff_image_dir||LOWER(:emp.userid)||’.tif’;

 /*
 ** For example ’photo_filename’ might look like:
 **
 ** /usr/staff/photos/jgetty.tif
 ** ------
 **
 ** Now, read in the appropriate image.
 */

 READ_IMAGE_FILE(photo_filename, ’TIFF’, ’emp.emp_photo’);
 IF NOT FORM_SUCCESS THEN
 MESSAGE(’This employee does not have a photo on file.’);
 END IF;
 :SYSTEM.MESSAGE_LEVEL := ’0’;
END;

333

READ_SOUND_FILE built-in

Description

Reads sound object from the specified file into the specified sound item.

Syntax
READ_SOUND_FILE(file_name VARCHAR2,
 file_type VARCHAR2,
 item_id ITEM);
READ_SOUND_FILE(file_name VARCHAR2,
 file_type VARCHAR2,
 item_name VARCHAR2);

Built-in Type

unrestricted

Enter Query Mode Yes

Parameters:

file_name The fully-qualified file name of the file that contains the sound object to be
read.

file_type The file type for the sound data file. Valid values are: AU, AIFF, AIFF-C,
and WAVE. (Note: file type is optional, but should be specified if known
for increased performance.)

item_id The unique ID Form Builder gave the sound item when you created it.

item_name The name you gave the sound item when you created it.

Usage Notes

• Specifying a file type for the sound file is optional. If you know the file type, however, specifying it
can increase performance.

READ_SOUND_FILE restrictions

READ_SOUND_FILE examples

/* These procedure calls (attached to a When-Button-Pressed
** trigger) reads a sound object from the file system and plays
** it. Note: since a sound item must have focus in order to play
** a sound object, the trigger code includes a call to the
** built-in procedure GO_ITEM:
*/
BEGIN
 IF :clerks.last_name EQ ’BARNES’ THEN
 GO_ITEM(’orders.filled_by’);
 READ_SOUND_FILE(’t:\orders\clerk\barnes.wav’,
 ’wave’,
 ’orders.filled_by’);
 PLAY_SOUND(’orders.filled_by’);
 END IF;

334

END;

335

RECALCULATE built-in

Description

Marks the value of the specified formula calculated item (in each record of the block) for recalculation.
Typically you would invoke this when the formula (or function or procedure that it invokes) refers to a
system variable or built-in function which now would return a different value.

Note that actual recalculation doesn’t happen immediately; it occurs sometime after the item is marked
but before the new value of the calculated item is referenced or displayed to the end user. Your
application’s logic should not depend on recalculation of a calculated item occurring at a specific time.

Syntax
PROCEDURE RECALCULATE
 (item_name VARCHAR2);
PROCEDURE RECALCULATE
 (item_id Item);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_name The name you gave the item when you defined it. Datatype is
VARCHAR2.

item_id The unique ID Form Builder assigned to the item when it created the item.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. Datatype is Item.

RECALCULATE restrictions

You can use the RECALCULATE built-in to recalculate formula calculated items only; if you specify a
summary item (or a non-calculated item) as the argument to RECALCULATE, Form Builder will return
an error message:

 FRM-41379: Cannot recalculate non-formula item
<block_name.item_name>.

336

REDISPLAY built-in

Description

Redraws the screen. This clears any existing system messages displayed on the screen.

Syntax
PROCEDURE REDISPLAY;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

337

RELEASE_OBJ built-in

Description

Shuts down the connection to the OLE object.

Syntax
PROCEDURE RELEASE_OBJ
 (obj OLEOBJ, kill_persistence_boolean := NULL);

Built-in Type unrestricted procedure

Parameters

obj Pointer to the OLE object to be released.

Kill_persistence_boolean A boolean value of NULL releases the
object, ending its persistence.

A boolean value of TRUE releases only a
persistent object. If you don’t have a pointer
to a persistent object, your code will
misbehave.

A boolean value of FALSE releases only a
non-persistent object. If you don’t have a
pointer to a non-persistent object, you will
get error FRM-40935.

This is an optional parameter. If not
supplied, the default value is NULL (release
object unconditionally).

Usage Notes

In general, you should not access an object after you release it.

The conditional form of this procedure (boolean TRUE or FALSE) should be used only in those rare
cases when two instances of an object have been created, each carrying different persistence values, and
the pointer is ambiguous. The procedure will release one of the two objects, leaving the other as the sole
instance.

338

REPLACE_CONTENT_VIEW built-in

Description

Replaces the content canvas currently displayed in the indicated window with a different content canvas.

Syntax
PROCEDURE REPLACE_CONTENT_VIEW
 (window_id Window,
 view_id ViewPort);
PROCEDURE REPLACE_CONTENT_VIEW
 (window_name VARCHAR2,
 view_id ViewPort);
PROCEDURE REPLACE_CONTENT_VIEW
 (window_id Window,
 view_name VARCHAR2);
PROCEDURE REPLACE_CONTENT_VIEW
 (window_name VARCHAR2,
 view_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

window_id Specifies the unique ID that Form Builder assigns the window when
created. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when creating it. The data
type of the name is VARCHAR2.

view_id Specifies the unique ID that Form Builder assigns the view when it creates
the object. Use the FIND_VIEW built-in to return the ID to an
appropriately typed variable. The data type of the ID is ViewPort.

view_name Specifies the name that you gave the object when defining it. The data type
of the name is VARCHAR2.

REPLACE_CONTENT_VIEW restrictions

• The canvas that replaces the window’s current content canvas must have been assigned to that
window at design time. That is, you cannot replace a window’s content view with a content view
from a different window.

• If you replace a content canvas that contains the item that currently has focus, Form Builder will
immediately undo the replacement to keep the focus item visible to the end user.

REPLACE_CONTENT_VIEW examples

/*
** Built-in: REPLACE_CONTENT_VIEW
** Example: Replace the ’salary’ view with the ’history’
** view in the ’employee_status’ window.

339

*/
BEGIN
 Replace_Content_View(’employee_status’,’history’);
END;

340

REPLACE_MENU built-in

Description

Replaces the current menu with the specified menu, but does not make the new menu active.
REPLACE_MENU also allows you to change the way the menu displays and the role.

Because REPLACE_MENU does not make the new menu active, Form Builder does not allow the menu
to obscure any part of the active canvas. Therefore, all or part of the menu does not appear on the screen
if the active canvas would cover it.

Syntax
REPLACE_MENU;
PROCEDURE REPLACE_MENU
 (menu_module_name VARCHAR2);
PROCEDURE REPLACE_MENU
 (menu_module_name VARCHAR2,
 menu_type NUMBER);
PROCEDURE REPLACE_MENU
 (menu_module_name VARCHAR2,
 menu_type NUMBER,
 starting_menu_name VARCHAR2);
PROCEDURE REPLACE_MENU
 (menu_module_name VARCHAR2,
 menu_type NUMBER,
 starting_menu VARCHAR2,
 group_name VARCHAR2);
PROCEDURE REPLACE_MENU
 (menu_module_name VARCHAR2,
 menu_type NUMBER,
 starting_menu VARCHAR2,
 group_name VARCHAR2,
 use_file BOOLEAN);

Built-in Type unrestricted procedure

Enter Query Mode yes

Usage Notes

REPLACE_MENU replaces the menu for all windows in the application. If you are using
CALL_FORM, REPLACE_MENU will replace the menu for both the calling form and the called form
with the specified menu.

Parameters

menu_module _name Name of the menu module that should replace the current menu module.
Datatype is VARCHAR2. This parameter is optional; if it is omitted, Form
Builder runs the form without a menu.

menu_type The display style of the menu. The following constants can be passed as
arguments for this parameter:

PULL_DOWN Specifies that you want Form Builder to display the menus
in a pull-down style that is characteristic of most GUI platforms and some
character mode platforms.

341

BAR Specifies that you want Form Builder to display the menu in a bar
style horizontally across the top of the root window.

FULL_SCREEN Specifies that you want Form Builder to display the
menu in a full-screen style.

starting_menu Specifies the menu within the menu module that Form Builder should use
as the starting menu. The data type of the name is VARCHAR2.

group_name Specifies the security role that Form Builder is to use. If you do not specify
a role name, Form Builder uses the current username to determine the role.

use_file Indicates how Form Builder should locate the menu .MMX file to be run.
Corresponds to the Menu Source form module property. The data type of
use_file is BOOLEAN.

NULL Specifies that Form Builder should read the current form’s Menu
Source property and execute REPLACE_MENU accordingly. For
example, if the form module Menu Source property is set to Yes for the
current form, Form Builder executes REPLACE_MENU as if the use_file
actual parameter was TRUE.

FALSE Specifies that Form Builder should treat the menu_module value
as a reference to a .MMB (binary) menu module in the database, and should
query this module to get the actual name of the .MMX (executable).

TRUE Specifies that Form Builder should treat the menu_module value as
a direct reference to a .MMX menu runfile in the file system.

REPLACE_MENU examples

/*
** Built-in: REPLACE_MENU
** Example: Use a standard procedure to change which root
** menu in the current menu application appears in
** the menu bar. A single menu application may
** have multiple "root-menus" which an application
** can dynamically set at runtime.
*/
PROCEDURE Change_Root_To(root_menu_name VARCHAR2) IS
BEGIN
 Replace_Menu(’MYAPPLSTD’, PULL_DOWN, root_menu_name);
END;

342

REPORT_OBJECT_STATUS built-in

Description

Provides status of a report object run within a form by the RUN_REPORT_OBJECT built-in.

Syntax
FUNCTION REPORT_OBJECT_STATUS
 (report_id VARCHAR2(20)
);

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

report_id The VARCHAR2 value returned by the RUN_REPORT_OBJECT built-in.
This value uniquely identifies the report that is currently running either
locally or on a remote report server.

Usage Notes

• There are eight possible return values for this built-in: finished, running, canceled, opening_report,
enqueued, invalid_job, terminated_with_error, and crashed.

•

REPORT_OBJECT_STATUS examples

DECLARE
repid REPORT_OBJECT;
v_rep VARCHAR2(100);
rep_status varchar2(20);

BEGIN
repid := find_report_object(’report4’);
v_rep := RUN_REPORT_OBJECT(repid);
rep_status := REPORT_OBJECT_STATUS(v_rep);

if rep_status = ’FINISHED’ then
message(’Report Completed’);
copy_report_object_output(v_rep,’d:\temp\local.pdf’);
host(’netscape d:\temp\local.pdf’);

else
message(’Error when running report.’);

end if;
END;

343

RESET_GROUP_SELECTION built-in

Description

Deselects any selected rows in the given group. Use this built-in to deselect all record group rows that
have been programmatically marked as selected by executing SET_GROUP_SELECTION on individual
rows.

Syntax
PROCEDURE RESET_GROUP_SELECTION
 (recordgroup_id RecordGroup);
PROCEDURE RESET_GROUP_SELECTION
 (recordgroup_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

recordgroup_id The unique ID that Form Builder assigns when it creates the group. The
data type of the ID is RecordGroup.

recordgroup_name The name you gave to the record group when creating it. The data type of
the name is VARCHAR2.

RESET_GROUP_SELECTION examples

/*
** Built-in: RESET_GROUP_SELECTION
** Example: If the user presses the (Cancel) button, forget
** all of the records in the ’USERSEL’ record
** group that we may have previously marked as
** selected records.
** trigger: When-Button-Pressed
*/
BEGIN
 Reset_Group_Selection(’usersel’);
END;

344

RESIZE_WINDOW built-in

Description

Changes the size of the given window to the given width and height. A call to RESIZE_WINDOW sets
the width and height of the window, even if the window is not currently displayed. RESIZE_WINDOW
does not change the position of the window, as specified by the x and y coordinates of the window’s
upper left corner on the screen.

On Microsoft Windows, you can resize the MDI application window by specifying the constant
FORMS_MDI_WINDOW as the window name.

You can also resize a window with SET_WINDOW_PROPERTY.

Syntax
PROCEDURE RESIZE_WINDOW
 (window_id Window,
 width NUMBER,
 height NUMBER);
PROCEDURE RESIZE_WINDOW
 (window_name VARCHAR2,
 width NUMBER,
 height NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

window_id Specifies the unique ID that Form Builder assigns the window when
created. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when creating it. The data
type of the name is VARCHAR2.

width Specifies the new width of the window, in form coordinate units.

height Specifies the new height of the window, in form coordinate units.

RESIZE_WINDOW examples

/*
** Built-in: RESIZE_WINDOW
** Example: Set Window2 to be the same size as Window1
*/
PROCEDURE Make_Same_Size_Win(Window1 VARCHAR2, Window2
VARCHAR2) IS
 wn_id1 Window;
 w NUMBER;
 h NUMBER;
BEGIN
 /*
 ** Find Window1 and get it’s width and height.
 */

345

 wn_id1 := Find_Window(Window1);
 w := Get_Window_Property(wn_id1,WIDTH);
 h := Get_Window_Property(wn_id1,HEIGHT);
 /*
 ** Resize Window2 to the same size
 */
 Resize_Window(Window2, w, h);
END;

346

RETRIEVE_LIST built-in

Description

Retrieves and stores the contents of the current list into the specified record group. The target record
group must have the following two-column (VARCHAR2) structure:

Column 1: Column 2:

the list label the list value

Storing the contents of a list item allows you to restore the list with its former contents.

Syntax
PROCEDURE RETRIEVE_LIST
 (list_id ITEM,
 recgrp_name VARCHAR2);
PROCEDURE RETRIEVE_LIST
 (list_id ITEM,
 recgrp_id RecordGroup);
PROCEDURE RETRIEVE_LIST
 (list_name VARCHAR2,
 recgrp_id RecordGroup);
PROCEDURE RETRIEVE_LIST
 (list_name VARCHAR2,
 recgrp_name VARCHAR2);

Built-in Type unrestricted procedure

Returns VARCHAR2

Enter Query Mode yes

Parameters

list_id Specifies the unique ID that Form Builder assigns when it creates the list
item. Use the FIND_ITEM built-in to return the ID to an appropriately
typed variable. The data type of the ID is ITEM.

list_name The name you gave to the list item when you created it. The data type of
the name is VARCHAR2.

recgrp_id Specifies the unique ID that Form Builder assigns when it creates the record
group. The data type of the ID is RecordGroup.

recgrp_name The VARCHAR2 name you gave to the record group when you created it.

RETRIEVE_LIST examples

/*
** Built-in: RETRIEVE_LIST
** Example: See POPULATE_LIST
*/

347

RUN_PRODUCT built-in

Description

Invokes one of the supported Oracle tools products and specifies the name of the module or module to be
run. If the called product is unavailable at the time of the call, Form Builder returns a message to the end
user.

If you create a parameter list and then reference it in the call to RUN_PRODUCT, the form can pass text
and data parameters to the called product that represent values for command line parameters, bind or
lexical references, and named queries. Parameters of type DATA_PARAMETER are pointers to record
groups in Form Builder. You can pass DATA_PARAMETERs to Report Builder and Graphics Builder,
but not to Form Builder.

To run a report from within a form, you can alternatively use the dedicated report integration built-in
RUN_REPORT_OBJECT .

Syntax
PROCEDURE RUN_PRODUCT
 (product NUMBER,
 module VARCHAR2,
 commmode NUMBER,
 execmode NUMBER,
 location NUMBER,
 paramlist_id VARCHAR2,
 display VARCHAR2);
PROCEDURE RUN_PRODUCT
 (product NUMBER,
 module VARCHAR2,
 commmode NUMBER,
 execmode NUMBER,
 location NUMBER,
 paramlist_name VARCHAR2,
 display VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

product Specifies a numeric constant for the Oracle product you want to invoke:
FORMS specifies a Runform session. GRAPHICS specifies Graphics
Builder. REPORTS specifies Report Builder. BOOK specifies Oracle
Book.

module Specifies the VARCHAR2 name of the module or module to be executed
by the called product. Valid values are the name of a form module, report,
Graphics Builder display, or Oracle Book module. The application looks
for the module or module in the default paths defined for the called
product.

commmode Specifies the communication mode to be used when running the called
product. Valid numeric constants for this parameter are SYNCHRONOUS
and ASYNCHRONOUS.

348

SYNCHRONOUS specifies that control returns to Form Builder only after
the called product has been exited. The end user cannot work in the form
while the called product is running.

ASYNCHRONOUS specifies that control returns to the calling application
immediately, even if the called application has not completed its display.

execmode Specifies the execution mode to be used when running the called product.
Valid numeric constants for this parameter are BATCH and RUNTIME.
When you run Report Builder and Graphics Builder, execmode can be
either BATCH or RUNTIME. When you run Form Builder, always set
execmode to RUNTIME.

locatioSpecifies the location of the module or module you want the called product to execute, either the
file system or the database. Valid constants for this property are
FILESYSTEM and DB.

Paramlist_name or paramlist_ID Specifies the parameter list to be passed to the called product. Valid
values for this parameter are the VARCHAR2 name of the parameter list,
the ID of the parameter list, or a null string (’’). To specify a parameter list
ID, use a variable of type PARAMLIST.

You can pass text parameters to called products in both SYNCHRONOUS
and ASYNCHRONOUS mode. However, parameter lists that contain
parameters of type DATA_PARAMETER (pointers to record groups) can
only be passed to Report Builder and Graphics Builder in
SYNCHRONOUS mode. (SYNCHRONOUS mode is required when
invoking Graphics Builder to return an Graphics Builder display that will
be displayed in a form chart item.)

Note: You can prevent Graphics Builder from logging on by passing a
parameter list that includes a parameter with key set to LOGON and value
set to NO.

Note: You cannot pass a DATA_PARAMETER to a child query in Report
Builder. Data passing is supported only for master queries.

display Specifies the VARCHAR2 name of the Form Builder chart item that will
contain the display (such as a pie chart, bar chart, or graph) generated by
Graphics Builder. The name of the chart item must be specified in the
format block_name.item_name. (This parameter is only required when you
are using an Graphics Builder chart item in a form.)

RUN_PRODUCT examples

/*
** Built-in: RUN_PRODUCT
** Example: Call a Report Builder report, passing the
** data in record group ’EMP_RECS’ to substitute
** for the report’s query named ’EMP_QUERY’.
** Presumes the Emp_Recs record group already
** exists and has the same column/data type
** structure as the report’s Emp_Query query.
*/
PROCEDURE Run_Emp_Report IS
 pl_id ParamList;
BEGIN
 /*
 ** Check to see if the ’tmpdata’ parameter list exists.

349

 */
 pl_id := Get_Parameter_List(’tmpdata’);
 /*
 ** If it does, then delete it before we create it again in
 ** case it contains parameters that are not useful for our
 ** purposes here.
 */
 IF NOT Id_Null(pl_id) THEN
 Destroy_Parameter_List(pl_id);
 END IF;
 /*
 ** Create the ’tmpdata’ parameter list afresh.
 */
 pl_id := Create_Parameter_List(’tmpdata’);
 /*
 ** Add a data parameter to this parameter list that will
 ** establish the relationship between the named query
 ** ’EMP_QUERY’ in the report, and the record group named
 ** ’EMP_RECS’ in the form.
 */
 Add_Parameter(pl_id,’EMP_QUERY’,DATA_PARAMETER,’EMP_RECS’);
 /*
 **Pass a Parameter into PARAMFORM so that a parameter dialog
will not appear
 **for the parameters being passing in.
 */
 Add_Parameter(pl_id, ’PARAMFORM’, TEXT_PARAMETER, ’NO’);
 /*
 ** Run the report synchronously, passing the parameter list
 */
 Run_Product(REPORTS, ’empreport’, SYNCHRONOUS, RUNTIME,
 FILESYSTEM, pl_id, NULL);
END;

350

RUN_REPORT_OBJECT built-in

Description

Use this built-in to run a report from within a form. You can run the report against either a local or
remote database server. Executing this built-in is similar using the RUN_PRODUCT built-in on a report.

Syntax
FUNCTION RUN_REPORT_OBJECT
 (report_id REPORT_OBJECT
);

Built-in Type unrestricted procedure

Returns VARCHAR2

Enter Query Mode yes

Parameters

report_id Specifies the unique ID of the report to be run. You can get the report ID
for a particular report using the built-in FIND_REPORT_OBJECT.

Usage Notes

• Returns a VARCHAR2 value that uniquely identifies the report that is running either locally or on a
remote report server. You can use this report ID string as a parameter to
REPORT_OBJECT_STATUS , COPY_REPORT_OBJECT , and CANCEL_REPORT_OBJECT.

If you invoke Run_Report_Object with a blank Report Server property, the return value will be
NULL. In that case, you cannot then use the built-ins Report_Object_Status and
Copy_Report_Object_Output, because they require an actual ID value.

RUN_REPORT_OBJECT examples

DECLARE
repid REPORT_OBJECT;
v_rep VARCHAR2(100);
rep_status varchar2(20);

BEGIN
repid := find_report_object(’report4’);
v_rep := RUN_REPORT_OBJECT(repid);
......

END;

351

SCROLL_DOWN built-in

Description

Scrolls the current block’s list of records so that previously hidden records with higher sequence numbers
are displayed. If there are available records and a query is open in the block, Form Builder fetches
records during SCROLL_DOWN processing. In a single-line block, SCROLL_DOWN displays the next
record in the block’s list of records. SCROLL_DOWN puts the input focus in the instance of the current
item in the displayed record with the lowest sequence number.

Syntax
PROCEDURE SCROLL_DOWN;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

SCROLL_DOWN examples

/*
** Built-in: SCROLL_DOWN
** Example: Scroll records down some.
*/
BEGIN
Scroll_Down;
END;

352

SCROLL_UP built-in

Description

Scrolls the current block’s list of records so that previously hidden records with lower sequence numbers
are displayed. This action displays records that were "above" the block’s display.

SCROLL_UP puts the input focus in the instance of the current item in the displayed record that has the
highest sequence number.

Syntax
PROCEDURE SCROLL_UP;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

SCROLL_UP examples

/*
** Built-in: SCROLL_UP
** Example: Scroll records up some.
*/
BEGIN
 Scroll_Up;
END;

353

SCROLL_VIEW built-in

Description

Moves the view to a different position on its canvas by changing the Viewport X Position on Canvas and
Viewport Y Position on Canvas properties. Moving the view makes a different area of the canvas visible
to the operator, but does not change the position of the view within the window.

Note: For a content or toolbar canvas, the window in which the canvas is displayed represents the view
for that canvas. For a stacked canvas, the view size is controlled by setting the Viewport Width and
Viewport Height properties.

Syntax
PROCEDURE SCROLL_VIEW
 (view_id ViewPort,
 x NUMBER,
 y NUMBER);
PROCEDURE SCROLL_VIEW
 (view_name VARCHAR2,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

view_id Specifies the unique ID that Form Builder assigns the view when it creates
the object. Use the FIND_VIEW built-in to return the ID to an
appropriately typed variable. The data type of the ID is ViewPort.

view_name Specifies the name that you gave the object when defining it. The data type
of the name is VARCHAR2.

x Specifies the x coordinate of the view’s upper left corner relative to the
upper left corner of the canvas.

y Specifies the y coordinate of the view’s upper left corner relative to the
upper left corner of the canvas.

SCROLL_VIEW examples

/*
** Built-in: SCROLL_VIEW
** Example: Scroll the view whose name is passed in 10% to
** the right or left depending on the ’direction’
** parameter.
*/
PROCEDURE Scroll_Ten_Percent(viewname VARCHAR2,
 direction VARCHAR2) IS
 vw_id ViewPort;
 vw_wid NUMBER;
 vw_x NUMBER;
 cn_id Canvas;
 cn_wid NUMBER;

354

 ten_percent NUMBER;
 new_x NUMBER;
 old_y NUMBER;
BEGIN
 /*
 ** Get the id’s for the View and its corresponding canvas
 */
 vw_id := Find_View(viewname);
 cn_id := Find_Canvas(viewname);

 /*
 ** Determine the view width and corresponding canvas
 ** width.
 */
 vw_wid := Get_View_Property(vw_id,WIDTH);
 cn_wid := Get_Canvas_Property(cn_id,WIDTH);
 /*
 ** Calculate how many units of canvas width are outside of
 ** view, and determine 10% of that.
 */
 ten_percent := 0.10 * (cn_wid - vw_wid);
 /*
 ** Determine at what horizontal position the view
 ** currently is on the corresponding canvas
 */
 vw_x:= Get_View_Property(vw_id,VIEWPORT_X_POS_ON_CANVAS);
 /*
 ** Calculate the new x position of the view on its canvas
 ** to effect the 10% scroll in the proper direction.
 ** Closer than ten percent of the distance to the edge
 ** towards which we are moving, then position the view
 ** against that edge.
 */
 IF direction=’LEFT’ THEN
 IF vw_x > ten_percent THEN
 new_x := vw_x - ten_percent;
 ELSE
 new_x := 0;
 END IF;
 ELSIF direction=’RIGHT’ THEN
 IF vw_x < cn_wid - vw_wid - ten_percent THEN
 new_x := vw_x + ten_percent;
 ELSE
 new_x := cn_wid - vw_wid;
 END IF;
 END IF;
 /*
 ** Scroll the view that much horizontally
 */
 old_y := Get_View_Property(vw_id,VIEWPORT_Y_POS_ON_CANVAS);
 Scroll_View(vw_id, new_x , old_y);
END;

355

SELECT_ALL built-in

Description

Selects the text in the current item. Call this procedure prior to issuing a call to CUT_REGION or
COPY_REGION, when you want to cut or copy the entire contents of a text item.

Syntax
PROCEDURE SELECT_ALL;

Built-in Type restricted procedure

Enter Query Mode yes

Parameters

none

356

SELECT_RECORDS built-in

Description

When called from an On-Select trigger, initiates default Form Builder SELECT processing. This built-in
is included primarily for applications that run against a non-ORACLE data source, and use transactional
triggers to replace default Form Builder transaction processing.

Syntax
PROCEDURE SELECT_RECORDS;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

SELECT_RECORDS restrictions

Valid only within an On-Select trigger.

SELECT_RECORDS examples

/*
** Built-in: SELECT_RECORDS
** Example: Perform Form Builder standard SELECT processing
** based on a global flag setup at startup by the
** form, perhaps based on a parameter.
** trigger: On-Select
*/
BEGIN
 /*
 ** Check the flag variable we setup at form startup
 */
 IF :Global.Using_Transactional_Triggers = ’TRUE’ THEN
 User_Exit(’my_select block=EMP’);
 /*
 ** Otherwise, do the right thing.
 */
 ELSE
 Select_Records;
 END IF;
END;

357

SERVER_ACTIVE built-in

Description

Indicates whether or not the server associated with a given container is running: Returns TRUE if the
OLE server is running, FALSE if the OLE server is not running. You must define an appropriately typed
variable to accept the return value.

Syntax
FUNCTION SERVER_ACTIVE
 (item_id Item);
FUNCTION SERVER_ACTIVE
 (item_name VARCHAR2);

Returns BOOLEAN

Built-in Type unrestricted function

Enter Query Mode no

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is Item.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

SERVER_ACTIVE restrictions

Valid only on Microsoft Windows and Macintosh.

SERVER_ACTIVE examples

/*
** Built-in: SERVER_ACTIVE
** Example: Checks to see if the OLE server is active.
** trigger: When-Button-Pressed
*/
DECLARE
 item_id ITEM;
 item_name VARCHAR(25) := ’OLEITM’;
 active_serv BOOLEAN;
BEGIN
 item_id := Find_Item(item_name);
 IF Id_Null(item_id) THEN
 message(’No such item: ’||item_name);
 ELSE
 active_serv := Forms_OLE.Server_Active(item_id);
 IF active_serv = FALSE THEN
 Forms_OLE.Activate_Server(item_id);
 END IF;
 END IF;
END;

358

SET_ALERT_BUTTON_PROPERTY built-in

Description

Changes the label on one of the buttons in an alert.

Syntax
PROCEDURE SET_ALERT_BUTTON_PROPERTY
 (alert_id ALERT,
 button NUMBER,
 property VARCHAR2,
 value VARCHAR2);
PROCEDURE SET_ALERT_BUTTON_PROPERTY
 (alert_name VARCHAR2,
 button NUMBER,
 property VARCHAR2,
 value VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

alert_id Specifies the unique ID (data type ALERT) that Form Builder assigns to the
alert when it is created. Use FIND_ALERT to return the ID to an
appropriately typed variable.

alert_name Specifies the VARCHAR2 name of the alert.

buttoA constant that specifies the alert button you want to change, either
ALERT_BUTTON1, ALERT_BUTTON2, or ALERT_BUTTON3.

property LABEL Specifies the label text for the alert button.

value Specifies the VARCHAR2 value to be applied to the property you
specified.

Usage Notes

If the label specified is NULL, the button’s label reverts to the label specified at design time.

359

SET_ALERT_PROPERTY built-in

Description

Changes the message text for an existing alert.

Syntax
SET_ALERT_PROPERTY
 (alert_id ALERT,
 property NUMBER,
 message VARCHAR2);
SET_ALERT_PROPERTY
 (alert_name VARCHAR2,
 property NUMBER,
 message VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

alert_id Specifies the unique ID (data type ALERT) that Form Builder assigns to the
alert when it is created. Return the ID to an appropriately typed variable.

alert_name Specifies the VARCHAR2 name of the alert.

property Specifies the specific alert property you are setting:

ALERT_MESSAGE_TEXT Specifies that you are setting the text of the
alert message.

TITLE Specifies the title of the alert. Overrides the value specified in
Form Builder unless the property value is NULL.

message Specifies the message that is to replace the current alert message. Pass the
message as a string enclosed in single quotes, as a variable, or in a
string/variable construction.

SET_ALERT_PROPERTY restrictions

If the message text exceeds 200 characters, it will be truncated.

SET_ALERT_PROPERTY examples

/*
** Built-in: SET_ALERT_PROPERTY
** Example: Places the error message into a user-defined alert
** named ’My_Error_Alert’ and displays the alert.
** trigger: On-Error
*/
DECLARE
 err_txt VARCHAR2(80) := Error_Text;
 al_id Alert;
 al_button Number;

360

BEGIN
 al_id := Find_Alert(’My_Error_Alert’);
 Set_Alert_Property(al_id, alert_message_text, err_txt);
 al_button := Show_Alert(al_id);
END;

361

SET_APPLICATION_PROPERTY built-in

Description

Sets (or resets) the application property for the current application.

Syntax
SET_APPLICATION_PROPERTY
 (property NUMBER,
 value VARCHAR2)

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

property Specifies the property you want to set for the given application. The
possible properties are as follows:

BUILTIN_DATE_FORMAT Specifies the Builtin date format mask.

CURSOR_STYLE Specifies the cursor style for the given application.

DATE_FORMAT_COMPATIBILITY_MODE Specifies how certain date
format conversion operations will be performed.

FLAG_USER_VALUE_TOO_LONG Specifies how Form Builder should
handle user-entered values that exceed an item’s Maximum Length
property. Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

PLSQL_DATE_FORMAT Specifies the PLSQL date format mask.

value The new value to be set for this property.

362

SET_BLOCK_PROPERTY built-in

Description

Sets the given block characteristic of the given block.

Syntax
SET_BLOCK_PROPERTY
 (block_id Block,
 property VARCHAR,
 value VARCHAR);
SET_BLOCK_PROPERTY
 (block_id Block,
 property VARCHAR,
 x NUMBER);
SET_BLOCK_PROPERTY
 (block_id Block,
 property VARCHAR,
 x NUMBER
 y NUMBER);
SET_BLOCK_PROPERTY
 (block_name VARCHAR2,
 property VARCHAR,
 value VARCHAR);
SET_BLOCK_PROPERTY
 (block_name VARCHAR2,
 property VARCHAR,
 x NUMBER);
SET_BLOCK_PROPERTY
 (block_name VARCHAR2,
 property VARCHAR,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

block_id The unique ID Form Builder assigned to the block when you created it.
Datatype is BLOCK.

block_name The name you gave the block when you created it. Datatype is
VARCHAR2.

property Specify one of the following constants:

ALL_RECORDS Specifies whether all the records matching the query
criteria should be fetched into the data block when a query is executed.

BLOCKSCROLLBAR_POSITION Specifies both the x and y positions
of the block’s scroll bar in the form coordinate units indicated by the
Coordinate System form property.

363

BLOCKSCROLLBAR_X_POS Specifies the x position of the block’s
scroll bar in the form coordinate units indicated by the Coordinate System
form property.

BLOCKSCROLLBAR_Y_POS Specifies the y position of the block
scroll bar in the form coordinate units indicated by the Coordinate System
form property.

COORDINATION_STATUS Specifies a status that indicates whether a
block that is a detail block in a master-detail relation is currently
coordinated with all of its master blocks; that is, whether the detail records
in the block correspond correctly to the current master record in the master
block. Valid values are COORDINATED and NON_COORDINATED

CURRENT_RECORD_ATTRIBUTE Specify the VARCHAR2 name of
a named visual attribute to be associated with the given block. If the named
visual attribute does not exist, you will get an error message.

CURRENT_ROW_BACKGROUND_COLOR The color of the object’s
background region.

CURRENT_ROW_FILL_PATTERN The pattern to be used for the
object’s fill region. Patterns are rendered in the two colors specified by
Background Color and Foreground Color.

CURRENT_ROW_FONT_NAME The font family, or typeface, that
should be used for text in the object. The list of fonts available is system-
dependent.

CURRENT_ROW_FONT_SIZE The size of the font, specified in points.

CURRENT_ROW_FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

CURRENT_ROW_FONT_STYLE The style of the font.

CURRENT_ROW_FONT_WEIGHT The weight of the font.

CURRENT_ROW_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

CURRENT_ROW_WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white text on a black
background.

DEFAULT_WHERE Specifies a default WHERE clause for the block,
overriding previous WHERE clauses. (Note: this will not override a value
established at design time via the Property Palette for the data block’s
WHERE clause property.)

Enclose in single quotes. The WHERE reserved word is optional. The
default WHERE clause can include references to global variables, form
parameters, and item values, specified with standard bind variable syntax.

DELETE_ALLOWED Specifies whether the operator or the application
is allowed to delete records in the given block. Valid values are
PROPERTY_TRUE or PROPERTY_FALSE.

364

DML_DATA_TARGET_NAME Specifies the name of the block’s DML
data source.

ENFORCE_PRIMARY_KEY Specifies that any record inserted or
updated in the block must have a unique characteristic in order to be
committed to the database. Valid values are PROPERTY_TRUE or
PROPERTY_FALSE.

INSERT_ALLOWED Specifies whether the operator or the application is
allowed to insert records in the given block. Valid values are
PROPERTY_TRUE or PROPERTY_FALSE.

KEY_MODE Specifies the key mode for the block. This is particularly
useful when running Form Builder against non-ORACLE data sources.
Valid values are UPDATEABLE_PRIMARY_KEY and
NONUPDATEABLE_PRIMARY_KEY.

LOCKING_MODE Specifies the block’s LOCKING_MODE property.
Valid values are DELAYED or IMMEDIATE.

MAX_QUERY_TIME Specifies the maximum query time. The operator
can abort a query when the elapsed time of the query exceeds the value of
this property.

MAX_RECORDS_FETCHED Specifies the maximum number of
records that can be fetched. This property is only useful when the Query
All Records property is set to Yes.

NAVIGATION_STYLE Specifies the block’s NAVIGATION_STYLE
property. Valid values are SAME_RECORD, CHANGE_RECORD, or
CHANGE_BLOCK.

NEXT_NAVIGATION_BLOCK Specifies the name of the block’s next
navigation block. By default, the next navigation block is the block with
the next higher sequence number; however, the
NEXT_NAVIGATION_BLOCK block property can be set to override the
default block navigation sequence.

OPTIMIZER_HINT Specifies a hint that Form Builder passes on to the
RDBMS optimizer when constructing queries. This allows the form
designer to achieve the highest possible performance when querying blocks.

ORDER_BY Specifies a default ORDER BY clause for the block,
overriding any prior ORDER BY clause. Enclose in single quotes but do
not include the actual words ’ORDER BY’. Form Builder automatically
prefixes the statement you supply with "ORDER BY."

PRECOMPUTE_SUMMARIES[Under Construction]

PREVIOUS_NAVIGATION_BLOCK Specifies the name of the block’s
previous navigation block. By default, the previous navigation block is the
block with the next lower sequence number; however, the
NEXT_NAVIGATION_BLOCK block property can be set to override the
default block navigation sequence.

QUERY_ALLOWED Specifies whether a query can be issued from the
block, either by an operator or programmatically. Valid values are
PROPERTY_TRUE or PROPERTY_FALSE.

365

QUERY_DATA_SOURCE_NAME Specifies the name of the block’s
query data source. Note: You cannot set a blocks’
QUERY_DATA_SOURCE_NAME when the block’s datasource is a
procedure.

QUERY_HITS Specifies the NUMBER value that indicates the number of
records identified by the COUNT_QUERY operation.

UPDATE_ALLOWED Specifies whether the operator or the application
is allowed to update records in the given block. Valid values are
PROPERTY_TRUE or PROPERTY_FALSE.

UPDATE_CHANGED_COLUMNS Specifies that only those columns
updated by an operator will be sent to the database. When Update Changed
Columns Only is set to No, all columns are sent, regardless of whether they
have been updated. This can result in considerable network traffic,
particularly if the block contains a LONG data type.

value The following constants can be passed as arguments to the property values
described earlier:

COORDINATED Specifies that the COORDINATION_STATUS
property should be set to COORDINATED for a block that is a detail block
in a master-detail relation.

DELAYED Specifies that you want Form Builder to lock detail records
only at the execution of a commit action.

IMMEDIATE Specifies that you want Form Builder to lock detail records
immediately whenever a database record has been modified.

NON_COORDINATED Specifies that the COORDINATION_STATUS
property should be set to NON_COORDINATED for a block that is a
detail block in a master-detail relation.

NON_UPDATEABLE_PRIMARY_KEY Specifies that you want Form
Builder to process records in the block on the basis that the underlying data
source does not allow primary keys to be updated.

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state. Specifically, supply as the value for DELETE_ALLOWED,
INSERT_ALLOWED, QUERY_HITS, and UPDATE_ALLOWED.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

UNIQUE_KEY Specifies that you want Form Builder to process records
in the block on the basis that the underlying data source uses some form of
unique key, or ROWID.

UPDATEABLE_PRIMARY_KEY Specifies that you want Form Builder
to process records in the block on the basis that the underlying data source
allows for primary keys to be updated.

x The NUMBER value of the axis coordinate specified in form coordinate
system units. If setting both x and y positions this value refers to the x
coordinate. When setting the y position only, this value refers to the y
coordinate.

366

y The NUMBER value of the y axis coordinate specified in form coordinate
system units. This value applies when setting both x and y positions, and
can be ignored for all other properties.

SET_BLOCK_PROPERTY examples

/*
** Built-in: SET_BLOCK_PROPERTY
** Example: Prevent future inserts, updates, and deletes to
** queried records in the block whose name is
** passed as an argument to this procedure.
*/
PROCEDURE Make_Block_Query_Only(blk_name IN VARCHAR2)
IS
 blk_id Block;
BEGIN
 /* Lookup the block’s internal ID */
 blk_id := Find_Block(blk_name);
 /*
 ** If the block exists (ie the ID is Not NULL) then set
 ** the three properties for this block. Otherwise signal
 ** an error.
 */
 IF NOT Id_Null(blk_id) THEN
 Set_Block_Property(blk_id,INSERT_ALLOWED,PROPERTY_FALSE);
 Set_Block_Property(blk_id,UPDATE_ALLOWED,PROPERTY_FALSE);
 Set_Block_Property(blk_id,DELETE_ALLOWED,PROPERTY_FALSE);
 ELSE
 Message(’Block ’||blk_name||’ does not exist.’);
 RAISE Form_trigger_Failure;
 END IF;
END;
Using BLOCKSCROLLBAR_POSITION:
/*
** Built-in: SET_BLOCK_PROPERTY
** Example: Set the x and y position of the block’s scrollbar
** to the passed x and y coordinates
*/
PROCEDURE Set_Scrollbar_Pos(blk_name IN VARCHAR2, xpos IN

NUMBER, ypos IN NUMBER)
IS
BEGIN
 Set_Block_Property(blk_name, BLOCKSCROLLBAR_POSITION, xpos, ypos);
END;

367

SET_CANVAS_PROPERTY built-in

Description

Sets the given canvas property for the given canvas.

Syntax
SET_CANVAS_PROPERTY
 (canvas_id CANVAS,
 property NUMBER,
 value VARCHAR2);
SET_CANVAS_PROPERTY
 (canvas_id CANVAS,
 property NUMBER,
 x NUMBER);
SET_CANVAS_PROPERTY
 (canvas_id CANVAS,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_CANVAS_PROPERTY
 (canvas_name VARCHAR2,
 property NUMBER,
 value VARCHAR2);
SET_CANVAS_PROPERTY
 (canvas_name VARCHAR2,
 property NUMBER,
 x NUMBER);
SET_CANVAS_PROPERTY
 (canvas_name VARCHAR2,
 property NUMBER,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

canvas_id The unique ID Form Builder assigned to the canvas object when you
created it. Use the FIND_CANVAS built-in to return the ID to a variable
of datatype CANVAS.

canvas_name The name you gave the canvas object when you defined it. Datatype is
VARCHAR2.

property The property you want to set for the given canvas. Possible properties are:

BACKGROUND_COLOR The color of the object’s background region.

CANVAS_SIZE The dimensions of the canvas (width, height).

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

368

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

HEIGHT The height of the canvas in characters.

TOPMOST_TAB_PAGE The name of the tab page that will appear to
operators as the top-most (i.e., overlaying all other tab pages in the tab
canvas).

VISUAL_ATTRIBUTE Either a valid named visual attribute that exists in
the current form, or the name of a logical attribute definition in a runtime
resource file that you want Form Builder to apply to the canvas.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH The width of the canvas in characters.

value The VARCHAR2 value to be applied to the property you specified.

x The NUMBER value of the x coordinate or the width, depending on the
property you specified. Specify the argument in form coordinate system
units.

y The NUMBER value of the y coordinate or the height, depending on the
property you specified. Specify the argument in form coordinate system
units.

SET_CANVAS_PROPERTY restrictions

• You cannot enter a non-existent named visual attribute.

• If Form Builder cannot find a named visual attribute by the name you supply, it looks for the display
attribute in your Oracle*Terminal resource file.

SET_CANVAS_PROPERTY examples

/* Change the "background color" by dynamically setting the
** canvas color at runtime to the name of a visual attribute
** you created:
*/
BEGIN
 SET_CANVAS_PROPERTY(’my_cvs’, visual_attribute, ’blue_txt’);
END;

369

SET_CUSTOM_ITEM_PROPERTY built-in

Note:

This built-in has been replaced by the SET_CUSTOM_PROPERTY built-in You should use that built-
in in any new form. The following information is provided only for maintenance purposes.

Description

Sets the value of a property of a JavaBean associated with a Bean Area item.

Syntax

The built-in is available for types VARCHAR2, NUMBER, or BOOLEAN.
SET_CUSTOM_ITEM_PROPERTY
 (item,
 prop-name,
 varchar2 value);
SET_CUSTOM_ITEM_PROPERTY
 (item,
 prop-name,
 number value);
SET_CUSTOM_ITEM_PROPERTY
 (item,
 prop-name,
 boolean value);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item The name of the Bean Area item associated with the target JavaBean. The
name can be in the form of either a varchar2 literal or a variable set to the
value of the name.

prop-name The particular property of the JavaBean container associated with this Bean
Area.

value The value for the specified property. Value must be of type varchar2,
integer, or boolean.

Usage Notes

• In the JavaBean container, each property type must be represented by a single instance of the ID
class,. created by using ID.registerProperty.

• For each Set_Custom_Item_Property built-in executed in the form, the JavaBean container’s
setProperty method is called.

• The name of the Bean Area item can be gained through either Find_Item(‘Item_Name’), or simply
via ‘Item_Name’.

370

SET_CUSTOM_PROPERTY built-in

Description

Sets the value of a user-defined property in a Java pluggable component.

Syntax

The built-in is available for types VARCHAR2, NUMBER, or BOOLEAN.
SET_CUSTOM_PROPERTY
 (item,
 row-number,
 prop-name,
 value VARCHAR2);
SET_CUSTOM_PROPERTY
 (item,
 row-number,
 prop-name,
 value NUMBER);
SET_CUSTOM_PROPERTY
 (item,
 row-number,
 prop-name,
 value BOOLEAN);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item The name or ID of the item associated with the target Java pluggable
component. The name can be in the form of either a varchar2 literal or a
variable set to the value of the name.

row-number The row number of the instance of the item that you want to set. (Instance
row numbers begin with 1.) If you want to set all the instances, specify the
constant ALL_ROWS.

prop-name The particular property of the Java component that you want to set.

value The new value for the specified property. Value must be of type varchar2,
number, or boolean.

Usage Notes

• In the Java pluggable component, each custom property must be represented by a single instance of
the ID class, created by using ID.registerProperty.

• For each Set_Custom_Property built-in executed in the form, the Java component’s setProperty
method is called.

• The name of the item can be gained through either Find_Item(‘Item_Name’), or simply via
‘Item_Name’.

371

SET_CUSTOM_PROPERTY examples

In this example, the Java pluggable component is a JavaBean. (To see the full context for this partial
code, look at the complete example.)

In the container (or wrapper) for the JavaBean:
 private static final ID SETRATE =
ID.registerProperty(SetAnimationRate);

In the form, as part of the PL/SQL code activated by a When_Button_Pressed trigger on a faster button
on the end-user’s screen:

 NewAnimationRate := gb.CurAnimationRate + 25
 . . .
 Set_Custom_Property(’Juggler_Bean’, ALL_ROWS,
’SetAnimationRate’, NewAnimationRate);

In this SET_CUSTOM_PROPERTY built-in:

• Juggler_Bean is the name of the Bean Area item in the form. The item is associated with the
container of the JavaBean.

• SetAnimationRate is a property in the container for the JavaBean.

• NewAnimationRate is a variable holding the new value for that property that is being passed to the
JavaBean container.

372

SET_FORM_PROPERTY built-in

Description

Sets a property of the given form.

Syntax
SET_FORM_PROPERTY
 (formmodule_id FormModule,
 property NUMBER,
 value NUMBER);
SET_FORM_PROPERTY
 (formmodule_name VARCHAR2,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

formmodule_id Specifies the unique ID that Form Builder assigns to the form when created.
The data type of the ID is FormModule.

formmodule_name Specifies the name of the form module that you gave the form when
creating it. The data type of the name is VARCHAR2.

property Specifies the property you want to set for the form:

CURRENT_RECORD_ATTRIBUTE Specify the VARCHAR2 name of
a named visual attribute to be associated with the given form. If the named
visual attribute does not exist, you will get an error message.

CURRENT_ROW_BACKGROUND_COLOR The color of the object’s
background region.

CURRENT_ROW_FILL_PATTERN The pattern to be used for the
object’s fill region. Patterns are rendered in the two colors specified by
Background Color and Foreground Color.

CURRENT_ROW_FONT_NAME The font family, or typeface, that
should be used for text in the object. The list of fonts available is system-
dependent.

CURRENT_ROW_FONT_SIZE The size of the font, specified in points.

CURRENT_ROW_FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

CURRENT_ROW_FONT_STYLE The style of the font.

CURRENT_ROW_FONT_WEIGHT The weight of the font.

373

CURRENT_ROW_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

CURRENT_ROW_WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white text on a black
background.

CURSOR_MODE Specifies the cursor state Form Builder should attempt
to define. Primarily used when connecting to non-ORACLE data sources.
Valid values are OPEN_AT_COMMIT and CLOSE_AT_COMMIT.

DEFER_REQUIRED_ENFORCEMENT Specifies whether
enforcement of required fields has been deferred from item validation to
record validation. Valid values are PROPERTY_TRUE,
PROPERTY_4_5, and PROPERTY_FALSE.

DIRECTION Specifies the layout direction for bidirectional objects.
Valid values are DIRECTION_DEFAULT, RIGHT_TO_LEFT,
LEFT_TO_RIGHT.

FIRST_NAVIGATION_BLOCK Returns the name of the block into
which Form Builder attempts to navigate at form startup. By default, the
first navigation block is the first block defined in the Object Navigator;
however, the FIRST_NAVIGATION_BLOCK block property can be set to
specify a different block as the first block at form startup.

SAVEPOINT_MODE Specifies whether Form Builder is to issue
savepoints. Valid values are PROPERTY_TRUE and
PROPERTY_FALSE.

VALIDATION Specifies whether Form Builder is to perform default
validation. Valid values are PROPERTY_TRUE and
PROPERTY_FALSE.

VALIDATION_UNIT Specifies the scope of validation for the form.
Valid values are DEFAULT_SCOPE, BLOCK_SCOPE,
RECORD_SCOPE, and ITEM_SCOPE.

value The following constants can be passed as arguments to the property values
described earlier:

BLOCK_SCOPE Specify when you want Form Builder to validate data
only at the block level. This means, for instance, that Form Builder
validates all the records in a block when a navigation event forces
validation by leaving the block.

CLOSE_AT_COMMIT Specify when you do not want cursors to remain
open across database commits; for example, when a form is running against
a non-ORACLE database.

DEFAULT_SCOPE Sets the Validation Unit form module property to the
default setting. On GUI window managers, the default validation unit is
ITEM.

FORM_SCOPE Specify when you want validation to occur at the form
level only.

374

ITEM_SCOPE. Specify when you want Form Builder to validate at the
item level. This means, for instance, that Form Builder validates each
changed item upon navigating out of an item as a result of a navigation
event.

OPEN_AT_COMMIT Specify when you want cursors to remain open
across database commits. This is the normal setting when running against
ORACLE.

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

RECORD_SCOPE Specify when you want Form Builder to validate at
the record level. This means that Form Builder validates each changed
record when, for instance, it leaves the record.

SET_FORM_PROPERTY examples

Example 1
/*
** Built-in: SET_FORM_PROPERTY
** Example: Set the Cursor Mode property in the current form
** to CLOSE_AT_COMMIT and changes the form
** Validation unit to the Block level.
*/
DECLARE
 fm_id FormModule;
BEGIN
 fm_id := Find_Form(:System.Current_Form);
 Set_Form_Property(fm_id,CURSOR_MODE,CLOSE_AT_COMMIT);
 Set_Form_Property(fm_id,VALIDATION_UNIT,BLOCK_SCOPE);
END;

Example 2
/*
** Built-in: SET_FORM_PROPERTY
** Example: Setup form and block properties required to run
** against a particular non-Oracle datasource.
** Procedure accepts the appropriate numerical
** constants like DELAYED as arguments.
**
** Usage: Setup_Non_Oracle(PROPERTY_FALSE,
** CLOSE_AT_COMMIT,
** UPDATEABLE_PRIMARY_KEY,
** DELAYED);
*/
PROCEDURE Setup_Non_Oracle(the_savepoint_mode NUMBER,
 the_cursor_mode NUMBER,
 the_key_mode NUMBER,
 the_locking_mode NUMBER) IS
 fm_id FormModule;
 bk_id Block;
 bk_name VARCHAR2(40);
BEGIN
 /* ** Validate the settings of the parameters ** */
 IF the_savepoint_mode NOT IN (PROPERTY_TRUE,PROPERTY_FALSE)

375

THEN
 Message(’Invalid setting for Savepoint Mode.’);
 RAISE Form_trigger_Failure;
 END IF;
 IF the_cursor_mode NOT IN (CLOSE_AT_COMMIT,OPEN_AT_COMMIT)
THEN
 Message(’Invalid setting for Cursor Mode.’);
 RAISE Form_trigger_Failure;
 END IF;
 IF the_key_mode NOT IN (UNIQUE_KEY,UPDATEABLE_PRIMARY_KEY,
 NON_UPDATEABLE_PRIMARY_KEY) THEN
 Message(’Invalid setting for Key Mode.’);
 RAISE Form_trigger_Failure;
 END IF;
 IF the_locking_mode NOT IN (IMMEDIATE,DELAYED) THEN
 Message(’Invalid setting for Locking Mode.’);
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** Get the id of the current form
 */
 fm_id := Find_Form(:System.Current_Form);
 /*
 ** Set the two form-level properties
 */
 Set_Form_Property(fm_id, SAVEPOINT_MODE, the_savepoint_mode);
 Set_Form_Property(fm_id, CURSOR_MODE, the_cursor_mode);
 /*
 ** Set the block properties for each block in the form
 */
 bk_name := Get_Form_Property(fm_id,FIRST_BLOCK);
 WHILE bk_name IS NOT NULL LOOP
 bk_id := Find_Block(bk_name);

 Set_Block_Property(bk_id,LOCKING_MODE,the_locking_mode);

 Set_Block_Property(bk_id,KEY_MODE,the_key_mode);
 IF the_key_mode IN (UPDATEABLE_PRIMARY_KEY,
 NON_UPDATEABLE_PRIMARY_KEY) THEN
 Set_Block_Property(bk_id,PRIMARY_KEY,PROPERTY_TRUE);
 END IF;

 bk_name := Get_Block_Property(bk_id, NEXTBLOCK);
 END LOOP;
END;

376

SET_GROUP_CHAR_CELL built-in

Description

Sets the value for the record group cell identified by the given row and column.

Syntax
SET_GROUP_CHAR_CELL
 (groupcolumn_id GroupColumn,
 row_number NUMBER,
 cell_value VARCHAR2);
SET_GROUP_CHAR_CELL
 (groupcolumn_name VARCHAR2,
 row_number NUMBER,
 cell_value VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

groupcolumn_id The unique ID that Form Builder assigns when it creates the column for the
record group. Use the FIND_COLUMN built-in to return the ID to an
appropriately typed variable. The data type of the ID is GroupColumn.

groupcolumn_name The name you gave to the column when you created it, preceded by the
record group name and a dot, as in recordgroup_name.groupcolumn_name.
The data type of the name is VARCHAR2.

row_number Specifies the row number that contains the cell whose value you intend to
set. Specify as a whole NUMBER.

cell_value For a VARCHAR2 column, specifies the VARCHAR2 value you intend to
enter into a cell; for a LONG column, specifies the LONG value you
intend to enter into a cell.

SET_GROUP_CHAR_CELL restrictions

• You must create the specified row before setting the value of a cell in that row. Form Builder does
not automatically create a new row when you indicate one in this built-in. Explicitly add the row
with the ADD_GROUP_ROW built-in or populate the group with either POPULATE_GROUP or
POPULATE_GROUP_WITH_QUERY.

• Not valid for a static record group. A static record group is a record group that was created at
design time and that has the Record Group Type property set to Static.

SET_GROUP_CHAR_CELL examples

/* Built-in: SET_GROUP_CHAR_CELL
** Example: See ADD_GROUP_ROW */

377

SET_GROUP_DATE_CELL built-in

Description

Sets the value for the record group cell identified by the given row and column.

Syntax
SET_GROUP_DATE_CELL
 (groupcolumn_id GroupColumn,
 row_number NUMBER,
 cell_value DATE);
SET_GROUP_DATE_CELL
 (groupcolumn_name VARCHAR2,
 row_number NUMBER,
 cell_value DATE);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

groupcolumn_id The unique ID that Form Builder assigns when it creates the column for the
record group. Use the FIND_COLUMN built-in to return the ID to an
appropriately typed variable. The data type of the ID is GroupColumn.

groupcolumn_name The name you gave to the column when you created it, preceded by the
record group name and a dot, as in recordgroup_name.groupcolumn_name.
The data type of the name is VARCHAR2.

row_number Specifies the row number that contains the cell whose value you intend to
set. Specify as a whole NUMBER.

cell_value Specifies the DATE value you intend to enter into a cell.

SET_GROUP_DATE_CELL restrictions

• You must create the specified row before setting the value of a cell in that row. Form Builder does
not automatically create a new row when you indicate one in this built-in. Explicitly add the row
with the ADD_GROUP_ROW built-in or populate the group with either POPULATE_GROUP or
POPULATE_GROUP_WITH_QUERY.

• Not valid for a static record group. A static record group is a record group that was created at
design time and that has the Record Group Type property set to Static.

SET_GROUP_DATE_CELL examples

/*
** Built-in: SET_GROUP_DATE_CELL
** Example: Lookup a row in a record group, and set the
** minimum order date associated with that row in
** the record group. Uses the ’is_value_in_list’
** function from the GET_GROUP_CHAR_CELL example.
*/
PROCEDURE Set_Max_Order_Date_Of(part_no VARCHAR2,

378

 new_date DATE) IS
 fnd_row NUMBER;
BEGIN
 /*
 ** Try to lookup the part number among the temporary part list
 ** record group named ’TMPPART’ in its ’PARTNO’ column.
 */
 fnd_row := Is_Value_In_List(part_no, ’TMPPART’, ’PARTNO’);

 IF fnd_row = 0 THEN
 Message(’Part Number ’||part_no||’ not found.’);
 RETURN;
 ELSE
 /*
 ** Set the corresponding Date cell value from the
 ** matching row.
 */
 Set_Group_Date_Cell(’TMPPART.MAXORDDATE’,fnd_row,new_date);
 END IF;
END;

379

SET_GROUP_NUMBER_CELL built-in

Description

Sets the value for the record group cell identified by the given row and column.

Syntax
SET_GROUP_NUMBER_CELL
 (groupcolumn_id GroupColumn,
 row_number NUMBER,
 cell_value NUMBER);
SET_GROUP_NUMBER_CELL
 (groupcolumn_name VARCHAR2,
 row_number NUMBER,
 cell_value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

groupcolumn_id The unique ID that Form Builder assigns when it creates the column for the
record group. Use the FIND_COLUMN built-in to return the ID to an
appropriately typed variable. The data type of the ID is GroupColumn.

groupcolumn_name The name you gave to the column when you created it, preceded by the
record group name and a dot, as in recordgroup_name.groupcolumn_name.
The data type of the name is VARCHAR2.

row_number Specifies the row number that contains the cell whose value you intend to
set. Specify as a whole NUMBER.

cell_value Specifies the NUMBER value you intend to enter into a cell.

SET_GROUP_NUMBER_CELL restrictions

• You must create the specified row before setting the value of a cell in that row. Explicitly add a row
with the ADD_GROUP_ROW built-in or populate the group with either POPULATE_GROUP or
POPULATE_GROUP_WITH_QUERY.

• Not valid for a static record group. A static record group is a record group that was created at
design time and that has the Record Group Type property set to Static.

SET_GROUP_NUMBER_CELL examples

/*
** Built-in: SET_GROUP_NUMBER_CELL
** Example: See ADD_GROUP_ROW
*/

380

SET_GROUP_SELECTION built-in

Description

Marks the specified row in the given record group for subsequent programmatic row operations. Rows
are numbered sequentially starting at 1. If you select rows 3, 8, and 12, for example, those rows are
considered by Form Builder to be selections 1, 2, and 3. You can undo any row selections for the entire
group by calling the RESET_GROUP_SELECTION built-in.

Syntax
SET_GROUP_SELECTION
 (recordgroup_id RecordGroup,
 row_number NUMBER);
SET_GROUP_SELECTION
 (recordgroup_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

recordgroup_id Specifies the unique ID that Form Builder assigns to the record group when
created. Use the FIND_GROUP built-in to return the ID to a variable.
The data type of the ID is RecordGroup.

recordgroup_name Specifies the name of the record group that you gave to the group when
creating it. The data type of the name is VARCHAR2.

row_number Specifies the number of the record group row that you want to select. The
value you specify is a NUMBER.

SET_GROUP_SELECTION examples

/*
** Built-in: SET_GROUP_SELECTION
** Example: Set all of the even rows as selected in the
** record group whose id is passed-in as a
** parameter.
*/
PROCEDURE Select_Even_Rows (rg_id RecordGroup) IS
BEGIN
 FOR j IN 1..Get_Group_Row_Count(rg_id) LOOP
 IF MOD(j,2)=0 THEN
 Set_Group_Selection(rg_id, j);
 END IF;
 END LOOP;
END;

381

SET_INPUT_FOCUS built-in

Description

Sets the input focus on the menu of the current form. Once trigger processing is completed, Form
Builder activates the menu.

Syntax
SET_INPUT_FOCUS
 (MENU);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

MENU

SET_INPUT_FOCUS restrictions

Only for use in character mode and block mode environments.

SET_INPUT_FOCUS examples

/*
** Built-in: SET_INPUT_FOCUS
** Example: Directs the users input focus to the Menu when
** used with the only support parameter, MENU.
** Only has an effect on character-mode or
** block-mode devices.
*/
BEGIN
 Set_Input_Focus(MENU);
END;

382

SET_ITEM_INSTANCE_PROPERTY built-in

Description

Modifies the current item instance in a block by changing the specified item property.
SET_ITEM_INSTANCE_PROPERTY does not change the appearance of items that mirror the current
instance.

You can reference any item in the current form. Note that SET_ITEM_INSTANCE_PROPERTY only
affects the display of the current instance of the item; other instances of the specified item are not
affected. This means that if you specify a display change for an item that exists in a multi-record block,
SET_ITEM_INSTANCE_PROPERTY only changes the instance of that item that belongs to the block’s
current record. If you want to change all instances of an item in a multi-record block, use
SET_ITEM_PROPERTY .

Any change made by a SET_ITEM_INSTANCE_PROPERTY remains in effect until:

• the same item instance is referenced by another SET_ITEM_INSTANCE_PROPERTY, or

• the same item instance is referenced by the DISPLAY_ITEM built-in, or

• the instance of the item is removed (e.g., through a CLEAR_RECORD or a query), or

• the current form is exited

Syntax
SET_ITEM_INSTANCE_PROPERTY
 (item_id ITEM,
 record_number NUMBER,
 property NUMBER,
 value VARCHAR2);
SET_ITEM_INSTANCE_PROPERTY
 (item_name VARCHAR2,
 record_number NUMBER,
 property NUMBER,
 value VARCHAR2);
SET_ITEM_INSTANCE_PROPERTY
 (item_name VARCHAR2,
 record_number NUMBER,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_id The unique ID that Form Builder assigned to the object when it created it.
Use the FIND_ITEM built-in to return the ID to a variable with datatype of
ITEM.

record_number The record number that you want to set. The record number is the record’s
position in the block. Specify as a whole number. You can specify
CURRENT_RECORD if you want to set the block’s current record.

383

item_name The name you gave the item when you created it. Datatype is
VARCHAR2.

property The property you want to set for the given item. Possible properties are:

BORDER_BEVEL Specifies the item border bevel for the specified item
instance. Valid values are RAISED, LOWERED, PLAIN (unbeveled), or "
". A value of " " causes the border bevel to be determined by the value
specified at the item level at design-time or by SET_ITEM_PROPERTY at
runtime.

Note: You cannot set BORDER_BEVEL if the item’s Bevel property is set
to None in Form Builder.

INSERT_ALLOWED Applies only to records not retrieved from the
database. When set to PROPERTY_TRUE at the item instance, item, and
block levels, allows the end user to modify the item instance. Setting this
property to PROPERTY_FALSE at the item instance, item, or block levels,
prohibits the end user from modifying the item instance.

NAVIGABLE When set to PROPERTY_TRUE at the item instance and
item levels, allows the end user to be able to navigate to the item instance
using default keyboard navigation. Setting this property to
PROPERTY_FALSE at the item instance or item levels, disables default
keyboard navigation to the item instance.

REQUIRED Specify the constant PROPERTY_TRUE if you want to
force the end user to enter a non-null value for the item instance. Setting
this property to PROPERTY_FALSE at the item instance and item levels,
indicates that the item instance is not required.

UPDATE_ALLOWED Applies only to records retrieved from the
database. When set to PROPERTY_TRUE at the item instance, item, and
block levels, allows the end user to modify the item instance. When set to
PROPERTY_FALSE at the instance, item, or block levels, prohibits the
end user from modifying the item instance.

VISUAL_ATTRIBUTE Specify a valid named visual attribute that exists
in the current form or ’’. Specifying ’’ leaves visual attribute unspecified at
the item instance level.

Usage Notes

When working with properties specified at multiple levels (item instance, item, and block), consider the
following guidelines:

• Required properties specified at multiple levels are ORed together

• Other boolean properties specified at multiple levels are ANDed together

The value derived from combining properties specified at the item instance, item, and block levels is
called the effective value. Some of the effects of these two rules are as follows:

• setting INSERT_ALLOWED to true has no effect at the item instance level unless it is set
consistently at the block and item levels. For example, your user cannot type data into an item
instance if INSERT_ALLOWED is true at the instance level, but not at the item or block levels.

• setting NAVIGABLE to true has no effect at the item instance level unless it is set consistently at
the item and item instance levels

384

• Setting NAVIGABLE to true may affect whether the block is considered enterable. A block’s read-
only Enterable property will be true if and only if its current record contains an item instance whose
effective value for the NAVIGABLE property is true.

• setting REQUIRED to false has no effect at the item instance level unless it is set consistently at the
item and item instance levels.

• setting UPDATE_ALLOWED to true has no effect at the item instance level unless it is set
consistently at the block, item, and item instance levels.

• setting BORDER_BEVEL at the item instance level will override the item level BORDER_BEVEL
setting, except when the item instance BORDER_BEVEL property is unspecified (that is, set to " ").

• setting VISUAL_ATTRIBUTE at the item instance level will override the properties at the item and
block levels unless you specify a partial visual attribute, in which case a merge will occur between
the partial visual attribute and the item's current visual attribute. If VISUAL_ATTRIBUTE is set to
" " at the item instance level, the item-level settings of this property are used.

• When a new record is created, its item instance properties are set to values that do not override the
values specified at higher levels. For example, the BORDER_BEVEL and VISUAL_ATTRIBUTE
properties get set to " ", REQUIRED is set to false, and other boolean properties are set to true.

• Setting an item instance property does not affect the item instance properties of any items that mirror
the specified item.

• An instance of a poplist will, when selected, display an extra null value if its current value is NULL
or if its Required property is set to false. When selecting the current value of an instance of a text
list (t-list), it will be unselected (leaving the t-list with no selected value) if its Required property is
set to false. If its Required property is set to true, selecting a t-list instance's current value will have
no effect, that is, the value will remain selected.

•

SET_ITEM_INSTANCE_PROPERTY examples

/*
** Built-in: SET_ITEM_INSTANCE_PROPERTY
** Example: Change visual attribute of each item instance in the
** current record
*/
DECLARE
 cur_itm VARCHAR2(80);
 cur_block VARCHAR2(80) := :System.Cursor_Block;
BEGIN
 cur_itm := Get_Block_Property(cur_block, FIRST_ITEM);
 WHILE (cur_itm IS NOT NULL) LOOP
 cur_itm := cur_block||’.’||cur_itm;
 Set_Item_Instance_Property(cur_itm, CURRENT_RECORD,
 VISUAL_ATTRIBUTE,’My_Favorite_Named_Attribute’);
 cur_itm := Get_Item_Property(cur_itm, NEXTITEM);
 END LOOP;
END;

385

SET_ITEM_PROPERTY built-in

Description

Modifies all instances of an item in a block by changing a specified item property. Note that in some
cases you can get but not set certain object properties.

Syntax
SET_ITEM_PROPERTY
 (item_id ITEM,
 property NUMBER,
 value VARCHAR2);
SET_ITEM_PROPERTY
 (item_name VARCHAR2,
 property NUMBER,
 value VARCHAR2);
SET_ITEM_PROPERTY
 (item_id ITEM,
 property NUMBER,
 x NUMBER);
SET_ITEM_PROPERTY
 (item_name VARCHAR2,
 property NUMBER,
 x NUMBER);
SET_ITEM_PROPERTY
 (item_id ITEM,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_ITEM_PROPERTY
 (item_name VARCHAR2,
 property NUMBER,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_id The unique ID that Form Builder assigned to the object when it created it.
Use the FIND_ITEM built-in to return the ID to a variable with datatype of
ITEM.

item_name The name you gave the item when you created it. Datatype is
VARCHAR2.

property The property you want to set for the given item. Possible properties are:

ALIGNMENT The text alignment (text and display items only). Valid
values are ALIGNMENT_START, ALIGNMENT_END,
ALIGNMENT_LEFT, ALIGNMENT_ CENTER, ALIGNMENT_RIGHT.

386

AUTO_HINT Determines if Form Builder will display help hints on the
status line automatically when input focus is in the specified item. Valid
values are PROPERTY_TRUE and PROPERTY_FALSE.

AUTO_SKIP Specifies whether the cursor should skip to the next item
automatically when the end user enters the last character in a text item.
Valid only for a text item. Valid values are PROPERTY_TRUE and
PROPERTY_FALSE.

BACKGROUND_COLOR The color of the object’s background region.

BORDER_BEVEL Specifies the item border bevel for the specified item
instance. Valid values are RAISED, LOWERED, or PLAIN (unbeveled).

Note: You cannot set BORDER_BEVEL if the item’s Bevel property is set
to None in Form Builder.

CASE_INSENSITIVE_QUERY Specifies whether query conditions
entered in the item should be case-sensitive. Valid values are
PROPERTY_TRUE and PROPERTY_FALSE.

CASE_RESTRICTION Specifies the case restriction applied to any text
entered in the indicated text item. Valid values are UPPERCASE,
LOWERCASE, or NONE.

COMPRESSSpecifies whether the sound data from a sound object should
be compressed before Form Builder writes the data to the file. Valid values
are COMPRESSION_ON, COMPRESSION_OFF, and
ORIGINAL_SETTING (retain the default compression setting of the data).

CONCEAL_DATA Specify the constant PROPERTY_TRUE if you want
the item to remain blank or otherwise obscured when the end user enters a
value. Specify the constant PROPERTY_FALSE if you want any value
that is typed into the text item to be visible.

CURRENT_RECORD_ATTRIBUTE Specifies the VARCHAR2 name
of a named visual attribute to be associated with the given item. If the
named visual attribute does not exist, you will get an error message.

CURRENT_ROW_BACKGROUND_COLOR The color of the object’s
background region.

CURRENT_ROW_FILL_PATTERN The pattern to be used for the
object’s fill region. Patterns are rendered in the two colors specified by
Background Color and Foreground Color.

CURRENT_ROW_FONT_NAME The font family, or typeface, that
should be used for text in the object. The list of fonts available is system-
dependent.

CURRENT_ROW_FONT_SIZE The size of the font, specified in points.

CURRENT_ROW_FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

CURRENT_ROW_FONT_STYLE The style of the font.

CURRENT_ROW_FONT_WEIGHT The weight of the font.

387

CURRENT_ROW_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

CURRENT_ROW_WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white text on a black
background.

DIRECTION Specifies the layout direction for bidirectional objects.
Valid values are DIRECTION_DEFAULT, RIGHT_TO_LEFT,
LEFT_TO_RIGHT.

DISPLAYED Specifies whether the item will be displayed/enabled or
hidden/disabled.

ECHO Specifies whether characters an end user types into a text item
should be visible. When Echo is false, the characters typed are hidden.
Used for password protection. Valid values are PROPERTY_TRUE and
PROPERTY_FALSE.

ENABLED Specifies whether end users should be able to manipulate an
item. Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

Note: Setting Enabled to false will cause other item property settings to
change. Consult the "Propagation of Property Changes" section for details.

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FIXED_LENGTH Specifies whether the item’s value should be validated
against the setting of the item’s Max Length property. When
FIXED_LENGTH is true, the item is valid only if the number of characters
in its value equals the Max Length setting. Valid values are
PROPERTY_TRUE and PROPERTY_FALSE.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in hundredths of a point (i.e.,
for a font size of 8 points, the value should be set to 800).

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

FORMAT_MASK Specifies the display format and input accepted for
data in text items.

HEIGHT Specifies the height of the item.

388

HINT_TEXT Specifies the item-specific help text displayed on the
message line at runtime. If the text specified is NULL, the original hint text,
specified in Form Builder, will be restored.

ICON_NAME Specifies the file name of the icon resource associated with
a button item having the Iconic property set to YES.

IMAGE_DEPTH Specifies the depth of color to be applied to an image
item.

INSERT_ALLOWED In a new record, allows end user to insert items
normally when set to PROPERTY_TRUE. Specify PROPERTY_FALSE
to specify that the item does not accept modification, but is displayed
normally (not grayed out). (Insert_Allowed does not propagate changes to
the Enabled property.)

ITEM_IS_VALID Specifies whether the current item should be
considered valid. Set to PROPERTY_TRUE or PROPERTY_FALSE.

ITEM_SIZE Specifies a width and height for the item as two numbers
separated by a comma. Use the syntax that includes x, y.

KEEP_POSITION Specifies whether the Keep Cursor Position property
should be true or false. When Keep Cursor Position is true, the cursor
returns to the same position it was in when it left the text item. When Keep
Cursor Position is false, the cursor returns to the default position in the text
item. Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

LABEL Specifies the VARCHAR2 string that you want displayed as the
label of the item. This property is only valid for items that have labels,
such as buttons.

LOCK_RECORD_ON_CHANGE Specify the constant
PROPERTY_TRUE if you want the record to be locked when this item is
changed. Specify the constant PROPERTY_FALSE if you do not want the
record locked when this item is changed. Use primarily when connecting to
a non-ORACLE data source that does not have row-level locking.

LOV_NAME Specify the VARCHAR2 name of an LOV to be associated
with the given item. If the LOV name does not exist, you will get an error
message.

MERGE_CURRENT_ROW_VA Merges the contents of the specified
visual attribute with the current row’s visual attribute (rather than replacing
it).

MERGE_TOOLTIP_ATTRIBUTE Merges the contents of the specified
visual attribute with the tooltip’s current visual attribute (rather than
replacing it).

MERGE_VISUAL_ATTRIBUTE Merges the contents of the specified
visual attribute with the object’s current visual attribute (rather than
replacing it).

MOUSE_NAVIGATE Specifies whether Form Builder should navigate
and set focus to the item when the end user activates the item with the
mouse. Specify the constant PROPERTY_TRUE if you want the end user
to be able to navigate to the item using the mouse. Specify the constant

389

PROPERTY_FALSE if you want a mouse click to keep the input focus in
the current item.

NAVIGABLE Specify the constant PROPERTY_TRUE if you want the
end user to be able to navigate to the item using default keyboard
navigation. Specify the constant PROPERTY_FALSE if you want to
disable default keyboard navigation to the item. (Keyboard Navigable does
not propagate changes to the Enabled property.)

NEXT_NAVIGATION_ITEM Specifies the name of the item that is
defined as the "next navigation item" with respect to this current item.

POPUPMENU_CONTENT_ITEM Specifies the setting for any of the
OLE popup menu item properties:

POPUPMENU_COPY_ITEM

POPUPMENU_CUT_ITEM

POPUPMENU_DELOBJ_ITEM

POPUPMENU_INSOBJ_ITEM

POPUPMENU_LINKS_ITEM

POPUPMENU_OBJECT_ITEM

POPUPMENU_PASTE_ITEM

POPUPEMNU_PASTESPEC_ITEM

Specify the character string HIDDEN for the OLE popup menu item not to
be displayed on the OLE popup menu. Specify the character string
ENABLED for the OLE popup menu item to be displayed and enabled.
Specify the character string DISABLED for the OLE popup menu item to
be displayed and not enabled.

POSITION Specify the x, y coordinates for the item as NUMBERs
separated by a comma. Use the syntax that includes x, y.

PREVIOUS_NAVIGATION_ITEM Specifies the name of the item that
is defined as the "previous navigation item" with respect to this current
item.

PRIMARY_KEY Specify the constant PROPERTY_TRUE to indicate
that any record inserted or updated in the block must have a unique
characteristic in order to be committed to the database. Otherwise, specify
the constant PROPERTY_FALSE.

PROMPT_ALIGNMENT_OFFSET Determines the distance between
the item and its prompt.

PROMPT_BACKGROUND_COLOR The color of the object’s
background region.

PROMPT_DISPLAY_STYLE Determines the prompt’s display style,
either PROMPT_FIRST_RECORD, PROMPT_HIDDEN, or
PROMPT_ALL_RECORDS.

PROMPT_EDGE Determines which edge the item’s prompt is attached
to, either START_EDGE, END_EDGE, TOP_EDGE, or
BOTTOM_EDGE.

390

PROMPT_EDGE_ALIGNMENT Determines which edge the item’s
prompt is aligned to, either ALIGNMENT_START, ALIGNMENT_END,
or ALIGNMENT_CENTER.

PROMPT_EDGE_OFFSET Determines the distance between the item
and its prompt as a VARCHAR2 value.

PROMPT_FILL_PATTERN The pattern to be used for the object's fill
region. Patterns are rendered in the two colors specified by Background
Color and Foreground Color.

PROMPT_FONT_NAME The font family, or typeface, that should be
used for text in the object. The list of fonts available is system-dependent.

PROMPT_FONT_SIZE The size of the font, specified in points.

PROMPT_FONT_SPACING The width of the font, that is, the amount
of space between characters (kerning).

PROMPT_FONT_STYLE The style of the font.

PROMPT_FONT_WEIGHT The weight of the font.

PROMPT_FOREGROUND_COLOR The color of the object's
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

PROMPT_TEXT Determines the text label that displays for an item.

PROMPT_TEXT_ALIGNMENT Determines how the prompt is
justified, either ALIGNMENT_START, ALIGNMENT_LEFT,
ALIGNMENT_RIGHT, ALIGNMENT_CENTER, or
ALIGNMENT_END.

PROMPT_VISUAL_ATTRIBUTE Specifies the named visual attribute
that should be applied to the prompt at runtime.

PROMPT_WHITE_ON_BLACK Specifies that the object is to appear
on a monochrome bitmap display device as white text on a black
background.

QUERYABLE Specify the constant PROPERTY_TRUE if you want the
end user to be able to initiate a query against the item. Specify the constant
PROPERTY_FALSE if you want to disallow the use of the item in a query.

QUERY_ONLY Specify an item to be queried, preventing that item from
becoming part of insert or update statements. QUERY_ONLY is
applicable to text items, radio groups, and check boxes. Enclose the fully-
qualified item name in single quotes.

REQUIRED Specify the constant PROPERTY_TRUE if you want to
force the end user to enter a value for the item. Specify the constant
PROPERTY_FALSE if the item is not to be required.

SHOW_FAST_FORWARD_BUTTON Specify the constant
PROPERTY_TRUE to display the fast forward button on a sound item,
PROPERTY_FALSE to hide it.

391

SHOW_PLAY_BUTTON Specify the constant PROPERTY_TRUE to
display the play button on a sound item, PROPERTY_FALSE to hide it.
Note that Form Builder will hide either play or record, but not both.

SHOW_RECORD_BUTTON Specify the constant PROPERTY_TRUE
to display the record on a sound item, PROPERTY_FALSE to hide it.
Note that Form Builder will hide either play or record, but not both.

SHOW_REWIND_BUTTON Specify the constant PROPERTY_TRUE
to display the rewind button on a sound item, PROPERTY_FALSE to hide
it.

SHOW_SLIDER Specify the constant PROPERTY_TRUE to display the
slider on a sound item, PROPERTY_FALSE to hide it.

SHOW_TIME_INDICATOR Specify the constant PROPERTY_TRUE
to display the time indicator button on a sound item, PROPERTY_FALSE
to hide it.

SHOW_VOLUME_CONTROL Specify the constant
PROPERTY_TRUE to display the volume control on a sound item,
PROPERTY_FALSE to hide it.

TOOLTIP_BACKGROUND_COLOR The color of the object’s
background region.

TOOLTIP_FILL_PATTERN The pattern to be used for the object’s fill
region. Patterns are rendered in the two colors specified by Background
Color and Foreground Color.

TOOLTIP_FONT_NAME The font family, or typeface, that should be
used for text in the object. The list of fonts available is system-dependent.

TOOLTIP_FONT_SIZE The size of the font, specified in points.

TOOLTIP_FONT_SPACING The width of the font, that is, the amount
of space between characters (kerning).

TOOLTIP_FONT_STYLE The style of the font.

TOOLTIP_FONT_WEIGHT The weight of the font.

TOOLTIP_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

TOOLTIP_TEXT Determines the item’s tooltip text.

TOOLTIP_WHITE_ON_BLACK Specifies that the object is to appear
on a monochrome bitmap display device as white text on a black
background.

UPDATE_ALLOWED Specify the constant PROPERTY_TRUE if you
want the end user to be able to update the item. Specify the constant
PROPERTY_FALSE if you want the item protected from update.

UPDATE_COLUMN Specify the constant PROPERTY_TRUE if this
column should be treated as updated, and included in the columns to be
written to the database. Specify the constant PROPERTY_FALSE if this

392

column should be treated as not updated, and not be included in the
columns to be written to the database.

UPDATE_NULL Specify the constant PROPERTY_TRUE if you want
the end user to be able to update the item only if its value is NULL.
Specify the constant PROPERTY_FALSE if you want the end user to be
able to update the value of the item regardless of whether the value is
NULL.

UPDATE_PERMISSION Use UPDATE_ ALLOWED when you run
against non-ORACLE data sources. Specify the constant
PROPERTY_TRUE to turn on the item’s UPDATEABLE and
UPDATE_NULL properties. Specify the constant PROPERTY_FALSE to
turn off the item’s UPDATEABLE and UPDATE_NULL properties.

VALIDATE_FROM_LIST Specifies that Form Builder should validate
the value of the text item against the values in the attached LOV when set to
PROPERTY_TRUE. Specify PROPERTY_FALSE to specify that Form
Builder should not use the LOV for validation.

VISIBLE Specifies whether the indicated item should be visible or hidden.
Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

Note: Setting Visible to false will cause other item property settings to
change. Consult the "Propagation of Property Changes" section for details.

VISUAL_ATTRIBUTE Specify a valid named visual attribute that exists
in the current form.

Note: You cannot set the visual attribute for an image item.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH Specify the width of the item as a NUMBER. The size of the
units depends on how you set the Coordinate System property and default
font scaling for the form.

X_POS Specify the x coordinate as a NUMBER.

Y_POS Specify the y coordinate as a NUMBER.

value Specify the value to be applied to the given property. The data type of the
property determines the data type of the value you enter. For instance, if
you want to set the VISIBLE property to true, you specify the constant
PROPERTY_TRUE for the value. If you want to change the LABEL for
the item, you specify the value, in other words, the label, as a VARCHAR2
string.

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

If you want to reset the value of the property to be the value originally
established for it at design time, enter two single quotes with no space
between: ‘’. For example, SET_ITEM_PROPERTY(‘DEPTNO’,

393

FORMAT_MASK, ‘’); would reset that format mask to its design-time
value.

x Specifies the NUMBER value of the x coordinate or the width, depending
on the property you specified. Specify the argument in form coordinate
system units.

y Specifies the NUMBER value of the y coordinate or the height, depending
on the property you specified. Specify the argument in form coordinate
system units.

Usage Notes

The following issues can affect your decisions on how to apply certain property values to an item:

• validation of property changes

• propagation of property changes

Validation of Property Changes When you specify a change through the SET_ITEM_PROPERTY
built-in, Form Builder validates the change before it adjusts the property. If the change is validated,
Form Builder makes the change and leaves it in effect until another SET_ITEM_PROPERTY changes
the same property or the current form is exited.

Illegal Settings If the change is not validated, Form Builder issues an error message. You cannot use
SET_ITEM_PROPERTY to set the following item properties true or false, given the following target
item conditions.

You cannot set this
property parameter...

To this restricted setting If this target item
condition is true:

(All) true/false • NULL-canvas item
(item's canvas
property is null)

ENABLED true/false

true

• current item

• Visible item
property is false

INSERT_ALLOWED true

true

• Enabled item
property is false

• Visible item
property is false

NAVIGABLE true/false

true

• current item

• Visible item
property is false

394

QUERYABLE
(Query Allowed)

true • Visible item
property is false

UPDATE_ALLOWED true

true

• Enabled item
property is false

• Conceal Data item
property is true

UPDATE_NULL
(Update if NULL)

true

true

• Enabled item
property is false

• Conceal Data item
property is true

VISIBLE true/false • current item

•

Form Builder does not consider the current contents of an item before allowing a property change. If
SET_ITEM_PROPERTY changes an item property that would affect how Form Builder validates the
data in an item (for example, FIXED_LENGTH or REQUIRED), the validation consequences are not
retroactive. The new validation rules do not apply to the item until Form Builder next validates it under
normal circumstances.

For example, suppose the application has a required text item, such as Employee ID. In the application,
the end user needs to be able to leave this item (behavior not allowed for a REQUIRED item), so you
temporarily set the REQUIRED property to False. At this point, Form Builder marks an existing NULL
value as VALID. Later in the application, when you set the REQUIRED property to true again, Form
Builder does not automatically change the VALID/INVALID marking. In order to have a NULL value
marked as INVALID (expected for a REQUIRED item), you must make a change in the item that will
cause Form Builder to validate it, such as:

IF :block.item IS NULL
THEN :block.item := NULL;

Propagation of Property Changes You can only specify a change to one item property at a time
through the SET_ITEM_PROPERTY built-in. However, one SET_ITEM_PROPERTY statement can
cause changes to more than one item property if the additional changes are necessary to complete, or
propagate, the intended change. This is included primarily for compatibility with prior versions.

The following table shows the SET_ITEM_PROPERTY settings that cause Form Builder to propagate
changes across item properties:

Setting this property
parameter...

To this setting Also causes these
propagated changes:

ENABLED False • sets the Navigable
item property to
False

• sets the
Update_Null item

395

property to False

• sets the Updateable
item property to
False

• sets the Required
item property to
False

DISPLAYED False • sets the Enabled
and Navigable item
properties to False

• sets the Updateable
item property to
False

• sets the
Update_Null item
property to False

• sets the Required
item property to
False

• sets the Queryable
item property to
False

UPDATEABLE True • sets the
Update_Null item
property to False

UPDATE_NULL True • sets the Updateable
item property to
False

SET_ITEM_PROPERTY examples

/*
** Built-in: SET_ITEM_PROPERTY
** Example: Change the icon of an iconic button dynamically
** at runtime by changing its icon_name. The user
** clicks on this button to go into enter query
** mode, then clicks on it again (after the icon
** changed) to execute the query. After the query
** is executed the user sees the original icon
** again.
** trigger: When-Button-Pressed
*/
DECLARE
 it_id Item;
BEGIN
 it_id := Find_Item(’CONTROL.QUERY_BUTTON’);
 IF :System.Mode = ’ENTER-QUERY’ THEN
 /*
 ** Change the icon back to the enter query icon, and
 ** execute the query.
 */
 Set_Item_Property(it_id,ICON_NAME,’entquery’);
 Execute_Query;

396

 ELSE
 /*
 ** Change the icon to the execute query icon and get
 ** into enter query mode.
 */
 Set_Item_Property(it_id,ICON_NAME,’exequery’);
 Enter_Query;
 END IF;
END;

397

SET_LOV_COLUMN_PROPERTY built-in

Description

Sets the given LOV property for the given LOV.

Syntax
SET_LOV_COLUMN_PROPERTY
 (lov_id LOV,
 colnum NUMBER,
 property NUMBER,
 value VARCHAR2);
SET_LOV_COLUMN_PROPERTY
 (lov_name VARCHAR2,
 colnum NUMBER,
 property NUMBER,
 value VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

lov_id Specifies the unique ID that Form Builder assigns the LOV when created.
Use the FIND_LOV built-in to return the ID to an appropriately typed
variable. The data type of the ID is LOV.

lov_name Specifies the LOV name (as a VARCHAR2).

colnum Specifies the column to be modified (as a NUMBER). The first column is
column 1.

property Specifies the property you want to set for the given LOV. The possible
properties are as follows:

TITLE Sets the Column Title property that controls the title that displays
above an LOV column.

Note: Setting the column title to NULL resets the column title to the title
specified at design time.

WIDTH Specifies the width to be reserved in the LOV for displaying
column values.

Note: Setting the column width to NULL results in a hidden, or non-
displayed, column.

value The VARCHAR2 or NUMBER value that represents the desired property
setting.

398

SET_LOV_PROPERTY built-in

Description

Sets the given LOV property for the given LOV.

Syntax
SET_LOV_PROPERTY
 (lov_id LOV,
 property NUMBER,
 value NUMBER);
SET_LOV_PROPERTY
 (lov_name VARCHAR2,
 property NUMBER,
 value NUMBER);
SET_LOV_PROPERTY
 (lov_id LOV,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_LOV_PROPERTY
 (lov_name VARCHAR2,
 property NUMBER,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

lov_id Specifies the unique ID that Form Builder assigns the LOV when created.
Use the FIND_LOV built-in to return the ID to an appropriately typed
variable. The data type of the ID is LOV.

lov_name Specifies the LOV name (as a VARCHAR2).

property Specifies the property you want to set for the given LOV. The possible
properties are as follows:

AUTO_REFRESH Specifies whether Form Builder re-executes the query
each time the LOV is invoked.

GROUP_NAME Specifies the record group with which the LOV is
associated.

LOV_SIZE Specifies a width, height pair indicating the size of the LOV.

POSITION Specifies an x, y pair indicating the position of the LOV.

TITLE Specifies the title of the LOV. Overrides the value specified in the
Form Builder unless the property value is NULL.

value Specify one of the following constants:

399

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

Recordgroup Name Specify the VARCHAR2 name of the record group you are setting. You
can create this record group in Form Builder or programmatically, as long
as the record group exists when the SET_LOV_PROPERTY is called.

x Specify either the x coordinate or the width, depending on the property you
specified.

y Specify either the y coordinate or the height, depending on the property you
specified.

SET_LOV_PROPERTY restrictions

• You can set only one property per call to the built-in.

SET_LOV_PROPERTY examples

/*
** Built-in: SET_LOV_PROPERTY
** Example: if LOV is currently base on GROUP1,
** make LOV use GROUP2
*/
DECLARE
 lov_id LOV;
BEGIN
 lov_id := Find_LOV(’My_LOV_1’);
 IF Get_LOV_Property(lov_id,GROUP_NAME) = ’GROUP1’ THEN
 Set_LOV_Property(lov_id,GROUP_NAME,’GROUP2’);
 ENDIF;
END;

400

SET_MENU_ITEM_PROPERTY built-in

Description

Modifies the given properties of a menu item.

Syntax
SET_MENU_ITEM_PROPERTY
 (menuitem_id MenuItem,
 property NUMBER,
 value NUMBER);
SET_MENU_ITEM_PROPERTY
 (menu_name.menuitem_name VARCHAR2,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

menuitem_id Specifies the unique ID Form Builder assigns when it creates the menu
item. Use the FIND_MENU_ITEM built-in to return the ID to an
appropriately typed variable. The data type of the ID is MenuItem.

menu_name.menuitem_name Specifies the VARCHAR2 name you gave to the menu item when you
defined it. If you specify the menu item by name, include the qualifying
menu name, as shown in the syntax.

property Specify one of the following constants to set information about the menu
item:

CHECKED Specifies the Checked property, which indicates if a check
box menu item or a radio menu item is in the checked state or unchecked
state.

ENABLED Specifies whether the menu item is enabled (thus active) or
disabled (thus greyed out and unavailable to the operator).

ICON_NAME Specifies the file name of the icon resource associated with
a menu item having the Icon in Menu property set to TRUE.

LABEL Specifies the character string for the menu item label.

VISIBLE Specifies whether the menu item is visibly displayed.

value Specify one of the following constants:

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

Label Specify the VARCHAR2 label name.

401

SET_MENU_ITEM_PROPERTY restrictions

These restrictions apply only if the menu module’s Use Security property is set to Yes:

• If the menu module Use Security property is Yes, whether you can set the property of a menu item
using SET_MENU_ITEM_PROPERTY depends on whether the form operator has access
privileges for that item.

• If the menu item is hidden and the operator does not have security access to a menu item, Runform
does not display that item. You cannot set the property of a menu item using
SET_MENU_ITEM_PROPERTY if the item is currently hidden.

• If the menu item is displayed, but disabled and the Display w/o Priv property for this menu item was
set in Form Builder, Runform displays the item in a disabled state. In this case, you can set the
menu item properties programmatically.

SET_MENU_ITEM_PROPERTY examples

/*
** Built-in: SET_MENU_ITEM_PROPERTY
** Example: See GET_MENU_ITEM_PROPERTY
*/

402

SET_OLE built-in

Description

Changes the value of an OLE property.

There are three versions of the procedure, one for each of the new-value types: NUMBER, VARCHAR,
and OLEVAR.

Syntax
PROCEDURE SET_OLE
 (obj OLEOBJ, memberid PLS_INTEGER
 newval NUMBER, vtype VT_TYPE);
PROCEDURE SET_OLE
 (obj OLEOBJ, memberid PLS_INTEGER
 newval VARCHAR2, vtype VT_TYPE);
PROCEDURE SET_OLE
 (obj OLEOBJ, memberid PLS_INTEGER
 newval OLEVAR, vtype VT_TYPE);

Built-in Type unrestricted procedure

Parameters

obj A pointer to the OLE object.

memberid The member ID of the OLE property.

newval A new value of the specified type to replace the OLE
property.

vtype The VT_TYPE of the original variant.

This is an optional parameter. If not specified, the default
value for the NUMBER version of the procedure is
VT_R8. For the VARCHAR2 version, the default is
VT_BSTR. For the OLEVAR version, the default is
VT_VARIANT: that is, whatever type the variant itself
actually specifies .

Usage Notes

If INIT_OLEARGS and ADD_OLEARG calls precede this SET_OLE call, and there have been no
intervening GET_OLE, SET_OLE, or CALL_OLE calls, then this call will access the property by using
the arguments specified in those INIT_OLEARGS and ADD_OLEARG calls.

403

SET_PARAMETER_ATTR built-in

Description

Sets the type and value of an indicated parameter in an indicated parameter list.

Syntax
SET_PARAMETER_ATTR
 (list PARAMLIST,
 key VARCHAR2,
 paramtype NUMBER,
 value VARCHAR2);
SET_PARAMETER_ATTR
 (name VARCHAR2,
 key VARCHAR2,
 paramtype NUMBER,
 value VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

list or name Specifies the parameter list. The actual parameter can be either a parameter
list ID of type PARAMLIST, or the VARCHAR2 name of the parameter
list.

key The VARCHAR2 name of the parameter.

paramtype Specifies the type of parameter you intend to pass:

DATA_PARAMETER Indicates that the parameter’s value is the name of
a record group.

TEXT_PARAMETER Indicates that the parameter’s value is an actual
data value.

value The value of the parameter specified as a VARCHAR2 string.

404

SET_RADIO_BUTTON_PROPERTY built-in

Description

Sets the given property for a radio button that is part of the given radio group specified by the item_name
or item_id.

Syntax
SET_RADIO_BUTTON_PROPERTY
 (item_id VARCHAR2,
 button_name VARCHAR2,
 property NUMBER,
 value NUMBER);
SET_RADIO_BUTTON_PROPERTY
 (item_id VARCHAR2,
 button_name VARCHAR2,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_RADIO_BUTTON_PROPERTY
 (item_name VARCHAR2,
 button_name VARCHAR2,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_RADIO_BUTTON_PROPERTY
 (item_name VARCHAR2,
 button_name VARCHAR2,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the radio group item ID. Form Builder assigns the unique ID at
the time it creates the object. Use the FIND_ITEM built-in to return the
ID to an appropriately typed variable.

item_name Specifies the name of the radio group. The radio group is the owner or
parent of its subordinate radio buttons. The data type of the name is
VARCHAR2.

button_name Specifies the name of the radio button whose property you want to set. The
data type of the name is VARCHAR2.

property Specifies the property you want to set. The possible property constants you
can set are as follows:

BACKGROUND_COLOR The color of the object’s background region.

ENABLED Specify PROPERTY_TRUE constant if you want to enable
the radio button. Specify PROPERTY_FALSE if you want to disable the
radio button from operator control.

405

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

HEIGHT Specify the height of the given radio button. Specify the value
as a number.

ITEM_SIZE Sets the width and height of the given radio button. Use the
syntax that shows an x,y coordinate pair and specify the values as numbers.

LABEL Specify the actual string label for that radio button.

POSITION Sets the position of the given radio button. Use the syntax
that shows an x,y coordinate pair and specify the values as numbers.

PROMPT The text displayed in the object.

PROMPT_BACKGROUND_COLOR The color of the object’s
background region.

PROMPT_FILL_PATTERN The pattern to be used for the object’s fill
region. Patterns are rendered in the two colors specified by Background
Color and Foreground Color.

PROMPT_FONT_NAME The font family, or typeface, that should be
used for text in the object. The list of fonts available is system-dependent.

PROMPT_FONT_SIZE The size of the font, specified in points.

PROMPT_FONT_SPACING The width of the font, that is, the amount
of space between characters (kerning).

PROMPT_FONT_STYLE The style of the font.

PROMPT_FONT_WEIGHT The weight of the font.

PROMPT_FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color attribute defines the
color of text displayed in the item.

PROMPT_WHITE_ON_BLACK Specifies that the object is to appear
on a monochrome bitmap display device as white text on a black
background.

406

VISIBLE Specify PROPERTY_TRUE constant if you want the radio
button to be displayed. Specify PROPERTY_FALSE constant if you want
the radio button to be hidden.

VISUAL_ATTRIBUTE Specifies either a valid named visual attribute
that exists in the current form, or the name of a logical attribute definition in
a runtime resource file that you want Form Builder to apply to the radio
button.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WIDTH Specify the width of the given radio button. Specify the value as
a number.

X_POS Specify the x-coordinate for the radio button. Specify the value as
a number.

Y_POS Specify the y-coordinate for the radio button. Specify the value as
a number.

value Specifies a NUMBER or a VARCHAR2 value. The data type of the value
you enter is determined by the data type of the property you specified. If
you enter a VARCHAR2 value, you must enclose it in quotes, unless you
reference a text item or variable.

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

x Specifies the first numeric value for the ITEM_SIZE and POSITION
properties.

y Specifies the second numeric value for the ITEM_SIZE and POSITION
properties.

SET_RADIO_BUTTON_PROPERTY examples

/*
** Built-in: SET_RADIO_BUTTON_PROPERTY
** Example: Set a particular radio button to disabled.
*/
BEGIN
 Set_Radio_Button_Property(’MYBLOCK.FLIGHT_STATUS’,
 ’GROUNDED’,ENABLED,PROPERTY_FALSE);
END;

407

SET_RECORD_PROPERTY built-in

Description

Sets the specified record property to the specified value.

Syntax
SET_RECORD_PROPERTY
 (record_number NUMBER,
 block_name VARCHAR2,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

record_number Specifies the number of the record whose status you want to set. The
record number is the record’s position in the block. Specify as a whole
number.

block_name Specifies the name of the block in which the target record exists. The data
type of the name is VARCHAR2.

property Use the following property:

STATUS Specifies that you intend to change the record status. STATUS
is a constant.

value Use one of the following values:

CHANGED_STATUS Specifies that the record should be marked for
update and should be treated as an update when the next commit action
occurs.

INSERT_STATUS Specifies that the record is to be marked as an
INSERT and should be inserted into the appropriate table when the next
commit action occurs.

NEW_STATUS Specifies that the record is to be treated as a NEW
record, that is, a record that has not been marked for insert, update, or
query. Changed but uncleared or uncommitted records cannot be assigned
a status of NEW.

QUERY_STATUS Specifies that the record is to be treated as a QUERY
record, whether it actually is. See also the
CREATE_QUERIED_RECORD built-in.

SET_RECORD_PROPERTY restrictions

The following table illustrates the valid transition states of a record.

408

Current Status Target
Status

NEW QUERY INSERT CHANGED

NEW yes yes1 yes2 no

QUERY yes4 yes no yes

INSERT yes4 yes3 yes no

CHANGED yes4 no no yes

1. Adheres to the rules described in footnotes 2 and 3.

2. This transition is not allowed in query mode, because QUERY and INSERT are not valid in query
mode.

3. If this transition is performed while Runform is running in Unique Key mode and not all of the
transactional triggers exist, then you must enter a valid value in the ROWID field. Put another way, if
you are connected to a non-ORACLE data source that does not support ROWID, but you are using a
unique key, you must supply the key for a record that goes from Insert to Query, in one of the
transactional triggers, either On-Lock, On-Update, or On-Delete. Otherwise Form Builder returns an
error.

4. Records that have been changed but not yet committed or cleared cannot be assigned a status of NEW.

SET_RECORD_PROPERTY examples

/*
** Built-in: SET_RECORD_PROPERTY
** Example: Mark the third record in the EMP block as if it
** were a queried record.
*/
BEGIN
 Set_Record_Property(3, ’EMP’, STATUS, QUERY_STATUS);
END;

409

SET_RELATION_PROPERTY built-in

Description

Sets the given relation property in a master-detail relationship.

Syntax
SET_RELATION_PROPERTY
 (relation_id Relation,
 property NUMBER,
 value NUMBER);
SET_RELATION_PROPERTY
 (relation_name VARCHAR2,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

relation_id Specifies the unique ID that Form Builder assigns the relation when it
creates the relation object. This can occur automatically when you define a
master-detail relationship in the Form Builder, or you can explicitly create
the relation. The data type of the ID is Relation.

relation_name Specifies the name you or Form Builder gave the relation object when
defining it. The data type of the name is VARCHAR2.

property Use one of the following relation properties, which can be passed to the
built-in as a constant:

AUTOQUERY Specifies that the detail block of this relation is to be
automatically coordinated upon instantiation of the block. This allows
potentially expensive processing to be deferred until blocks that are
involved in relations are actually visited. Valid values are
PROPERTY_TRUE and PROPERTY_FALSE.

DEFERRED_COORDINATION Specifies that a block requiring
coordination is to be marked but not coordinated until the detail blocks are
instantiated. Deferred coordination refers only to the population phase of
coordination. Even deferred detail blocks are cleared during the clear
phase of coordination to present the form in a visually consistent state.
Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

MASTER_DELETES Specifies the default relation behavior for deletion
of a detail record in the detail block when there is a corresponding master
record in the master block. Valid values are NON-ISOLATED,
ISOLATED, or CASCADING. The ability to set this property
programmatically is included only for designers who are coding their own
master-detail coordination. It does not alter a default relation that was
created at design time.

410

PREVENT_MASTERLESS_OPERATION Specifies that operations in
a detail block are not allowed when no corresponding master record exists.
Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

value The following constants can be supplied for the properties described
earlier:

CASCADING Specifies that the MASTER_DELETES property is to be
set so that when an operator deletes a master record, its corresponding
detail records are locked at the same time as the master records are locked.

ISOLATED Specifies that the MASTER_DELETES property is to be set
so that an operator can delete a master record for which detail records exist.
This does not cause subsequent locking and deletion of detail records,
however, Form Builder still initiates detail block coordination in this case.

NON_ISOLATED Specifies that the MASTER_DELETES property is to
be set so that if the operator attempts to delete a master record for which
detail records exist, Form Builder issues an error message and disallows the
deletion.

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state.

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state.

SET_RELATION_PROPERTY restrictions

You can only set one property per call to this built-in.

SET_RELATION_PROPERTY examples

/*
** Built-in: SET_RELATION_PROPERTY
** Example: Set the coordination behavior of a relation to
** be deferred, and auto-query.
*/
PROCEDURE Make_Relation_Deferred(rl_name VARCHAR2) IS
 rl_id Relation;
BEGIN
 /*
 ** Look for the relation’s ID
 */
 rl_id := Find_Relation(rl_name);
 /*
 ** Set the two required properties
 */
 Set_Relation_Property(rl_id,AUTOQUERY,PROPERTY_TRUE);
END;

411

SET_REPORT_OBJECT_PROPERTY built-in

Description

Programmatically sets the value of a report property.

Syntax
PROCEDURE SET_REPORT_OBJECT_PROPERTY
(report_id REPORT_OBJECT,
 property NUMBER,
 value VARCHAR2
);
PROCEDURE SET_REPORT_OBJECT_PROPERTY
 (report_name VARCHAR2,
 property NUMBER,
 value VARCHAR2
);
PROCEDURE SET_REPORT_OBJECT_PROPERTY
(report_id REPORT_OBJECT,
 property NUMBER,
 value NUMBER
);
PROCEDURE SET_REPORT_OBJECT_PROPERTY
 (report_name VARCHAR2,
 property NUMBER,
 value NUMBER
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

report_id Specifies the unique ID of the report. You can get the report ID for a
particular report using FIND_REPORT_OBJECT .

report_name Specifies the unique name of the report.

property One of the following constants:

REPORT_EXECUTION_MODE: The report execution mode, either
BATCH or RUNTIME

REPORT_COMM_MODE: The report communication mode, either
SYNCHRONOUS or ASYNCHRONOUS

REPORT_DESTYPE: The report destination type, either PREVIEW,
FILE, PRINTER, MAIL, CACHE or SCREEN

One of the following strings:

REPORT_FILENAME: The report filename

REPORT_SOURCE_BLOCK: The report source block name

REPORT_QUERY_NAME: The report query name

412

REPORT_DESNAME: The report destination name

REPORT_DESFORMAT: The report destination format

REPORT_SERVER: The report server name

REPORT_OTHER: The other user-specified report properties

value One of the following constants:

REPORT_EXECUTION_MODE: Value must be BATCH or RUNTIME

REPORT_COMM_MODE: Value must be SYNCHRONOUS or
ASYNCHRONOUS

REPORT_DESTYPE: Value must be PREVIEW, FILE, PRINTER, MAIL,
CACHE, or SCREEN

One of the following strings:

REPORT_FILENAME: Value must be of type VARCHAR2

REPORT_SOURCE_BLOCK: Value must be of type VARCHAR2

REPORT_QUERY_NAME: Value must be of type VARCHAR2

REPORT_DEST_NAME: Value must be of type VARCHAR2

REPORT_DEST_FORMAT: Value must be of type VARCHAR2

REPORT_SERVER: Value must be of type VARCHAR2

REPORT_OTHER: Value must be of type VARCHAR2

Usage Notes

• SET_REPORT_OBJECT_PROPERTY sets properties using constant or string values. The value
type depends on the particular property being set, as specified above. In contrast,
GET_REPORT_OBJECT_PROPERTY returns a string value for all properties.

SET_REPORT_OBJECT_PROPERTY examples

DECLARE
repid REPORT_OBJECT;
report_prop VARCHAR2(20);

BEGIN
repid := find_report_object(’report4’);
SET_REPORT_OBJECT_PROPERTY(repid, REPORT_EXECUTION_MODE,

BATCH);
SET_REPORT_OBJECT_PROPERTY(repid, REPORT_COMM_MODE,

SYNCHRONOUS);
SET_REPORT_OBJECT_PROPERTY(repid, REPORT_DESTYPE, FILE);

END;

413

SET_TAB_PAGE_PROPERTY built-in

Description

Sets the tab page properties of the specified tab canvas page.

Syntax
SET_TAB_PAGE_PROPERTY
 (tab_page_id TAB_PAGE,
 property NUMBER,
 value NUMBER);
SET_TAB_PAGE_PROPERTY
 (tab_page_name VARCHAR2,
 property NUMBER,
 value NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

tab_page_id The unique ID Form Builder assigns to the tab page when it creates it.
Datatype is TAB_PAGE.

tab_page_name The name you gave the tab page when you defined it. Datatype is
VARCHAR2.

property The property you want to set for the given tab page. Possible values are:

BACKGROUND_COLOR The color of the object’s background region.

ENABLED Specify TRUE to enable the tab page, FALSE to disable it
(i.e., make it greyed out and unavailable).

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

LABEL The character string for the tab page label.

414

VISIBLE Specify TRUE to make the tab page visible, FALSE to make it
not visible. A tab page is reported visible if it is currently mapped to the
screen, even if it is entirely hidden behind another tab page.

VISUAL_ATTRIBUTE Specifies the name of the visual attribute
currently in force.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

value You can pass the following constants as arguments to the property values
described earlier:

PROPERTY_TRUE (sets the property to the TRUE state)

PROPERTY_FALSE (sets the property to the FALSE state)

SET_TAB_PAGE_PROPERTY examples

/* Example 1: Use SET_TAB_PAGE_PROPERTY to set the
** ENABLED property to TRUE for a tab page (if it currently
** is set to FALSE:
*/

DECLARE
 tb_pg_id TAB_PAGE;

BEGIN
 tb_pg_id := FIND_TAB_PAGE(’tab_page_1’);
 IF GET_TAB_PAGE_PROPERTY(tb_pg_id, enabled) = ’FALSE’ THEN
 SET_TAB_PAGE_PROPERTY(tb_pg_id, enabled, property_true);
 END IF;
END;

415

SET_TIMER built-in

Description

Changes the settings for an existing timer. You can modify the interval, the repeat parameter, or both.

Syntax
SET_TIMER
 (timer_id Timer,
 milliseconds NUMBER,
 iterate NUMBER);
SET_TIMER
 (timer_name VARCHAR2,
 milliseconds NUMBER,
 iterate NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

timer_id Specifies the unique ID that Form Builder assigns when it creates the timer,
specifically as a response to a successful call to the CREATE_TIMER
built-in. Use the FIND_TIMER built-in to return the ID to an
appropriately typed variable. The data type of the ID is Timer.

timer_name Specifies the name you gave the timer when you defined it. The data type
of the name is VARCHAR2.

milliseconds Specifies the duration of the timer in milliseconds. The range of values
allowed for this parameter is 1 to 2147483648 milliseconds. Values >
2147483648 will be rounded down to 2147483648. Note that only
positive numbers are allowed. The data type of the parameter is
NUMBER. See Restrictions below for more information.

NO_CHANGE Specifies that the milliseconds property is to remain at its
current setting.

iterate Specifies the iteration of the timer.

REPEAT Indicates that the timer should repeat upon expiration. Default.

NO_REPEAT Indicates that the timer should not repeat upon expiration,
but is to be used once only, until explicitly called again.

NO_CHANGE Specifies that the iterate property is to remain at its current
setting.

SET_TIMER restrictions

• Values > 2147483648 will be rounded down to 2147483648.

• A value less than 1 results in a runtime error.

416

• A value greater than the stated upper bound results in an integer overflow.

• Milliseconds cannot be expressed as a negative number.

• No two timers can share the same name in the same form instance, regardless of case.

• If there is no When-Timer-Expired trigger defined at the execution of a timer, Form Builder returns
an error.

• If there is no When-Timer-Expired trigger defined at the execution of a timer, and the timer is a
repeating timer, subsequent repetitions are canceled, but the timer is retained.

SET_TIMER examples

/*
** Built-in: SET_TIMER
** Example: See FIND_TIMER
*/

417

SET_TREE_NODE_PROPERTY built-in

Description

Sets the state of a branch node.

Syntax
PROCEDURE SET_TREE_NODE_PROPERTY
 (item_name VARCHAR2,
 node FTREE.NODE,
 property NUMBER,
 value NUMBER);
PROCEDURE SET_TREE_NODE_PROPERTY
 (item_name VARCHAR2,
 node FTREE.NODE,
 property NUMBER,
 value VARCHAR2);
PROCEDURE SET_TREE_NODE_PROPERTY
 (item_id ITEM,
 node FTREE.NODE,
 property NUMBER,
 value NUMBER);
PROCEDURE SET_TREE_NODE_PROPERTY
 (item_id ITEM,
 node FTREE.NODE,
 property NUMBER,
 value VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

property Specify one of the following properties:

NODE_STATE Possible values are
EXPANDED_NODE, COLLAPSED_NODE, and
LEAF_NODE.

NODE_LABEL Sets the label of the node.

NODE_ICON Sets the icon of the node.

418

NODE_VALUE Sets the value of the node.

value The actual value you intend to pass.

SET_TREE_NODE_PROPERTY examples

/*
** Built-in: SET_TREE_NODE_PROPERTY
*/

-- This code could be used in a WHEN-TREE-NODE-SELECTED
-- trigger to change the icon of the node clicked on.

DECLARE
 htree ITEM;
 current_node FTREE.NODE;
 find_node FTREE.NODE;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Change it icon of the clicked node.
 -- The icon file will be located using the
 -- UI60_ICON environment variable in client/server
 -- or in the virtual directory for web deployment.
 Ftree.Set_Tree_Node_Property(htree, :SYSTEM.TRIGGER_NODE,
Ftree.NODE_ICON, ’Open’);
END;

419

SET_TREE_PROPERTY built-in

Description

Sets the value of the indicated hierarchical tree property.

Syntax
PROCEDURE SET_TREE_PROPERTY
 (item_name VARCHAR2,
 property NUMBER,
 value NUMBER);
PROCEDURE SET_TREE_PROPERTY
 (item_name VARCHAR2,
 property NUMBER,
 value VARCHAR2);
PROCEDURE SET_TREE_PROPERTY
 (item_name VARCHAR2,
 property NUMBER,
 value RECORDGROUP);
PROCEDURE SET_TREE_PROPERTY
 (item_id ITEM,
 property NUMBER,
 value NUMBER);
PROCEDURE SET_TREE_PROPERTY
 (item_id ITEM,
 property NUMBER,
 value VARCHAR2);
PROCEDURE SET_TREE_PROPERTY
 (item_id ITEM,
 property NUMBER,
 value RECORDGROUP);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

property Specify one of the following properties:

RECORD_GROUP Replaces the data set of the
hierarchical tree with a record group and causes it to
display.

420

QUERY_TEXT Replaces the data set of the
hierarchical tree with an SQL query and causes it to
display.

ALLOW_EMPTY_BRANCHES Possible values are
PROPERTY_TRUE and PROPERTY_FALSE.

value Specify the value appropriate to the property you are
setting:

PROPERTY_TRUE The property is to be set to the
TRUE state.

PROPERTY_FALSE The property is to be set to the
FALSE state.

SET_TREE_PROPERTY examples

/*
** Built-in: SET_TREE_PROPERTY
*/

-- This code could be used in a WHEN-NEW-FORM-INSTANCE
-- trigger to initially populate the hierarchical tree
-- with data.

DECLARE
 htree ITEM;
 v_ignore NUMBER;
 rg_emps RECORDGROUP;
BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Check for the existence of the record group.
 rg_emps := Find_Group(’emps’);
 IF NOT Id_Null(rg_emps) THEN
 DELETE_GROUP(rg_emps);
 END IF;

 -- Create the record group.
 rg_emps := Create_Group_From_Query(’rg_emps’,
 ’select 1, level, ename, NULL, to_char(empno) ’ ||
 ’from emp ’ ||
 ’connect by prior empno = mgr ’ ||
 ’start with job = ’’PRESIDENT’’’);

 -- Populate the record group with data.
 v_ignore := Populate_Group(rg_emps);

 -- Transfer the data from the record group to the
hierarchical

421

 -- tree and cause it to display.
 Ftree.Set_Tree_Property(htree, Ftree.RECORD_GROUP, rg_emps);
END;

422

SET_TREE_SELECTION built-in

Description

Specifies the selection of a single node.

Syntax
PROCEDURE SET_TREE_SELECTION
 (item_name VARCHAR2,
 node NODE,
 selection_type NUMBER);
PROCEDURE SET_TREE_SELECTION
 (item_id ITEM,
 node NODE,
 selection_type NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode no

Parameters

item_name Specifies the name of the object created at design time.
The data type of the name is VARCHAR2 string.

Item_id Specifies the unique ID that Form Builder assigns to the
item when created. Use the FIND_ITEM built-in to
return the ID to an appropriately typed variable. The
data type of the ID is ITEM.

node Specifies a valid node.

selection_type Specifies the type of selection.

SELECT_ON Selects the node.

SELECT_OFF Deselects the node.

SELECT_TOGGLE Toggles the selection state of the
node.

SET_TREE_SELECTION examples

/*
** Built-in: SET_TREE_SELECTION
*/

-- This code could be used in a WHEN-TREE-NODE-EXPANDED
-- trigger and will mark the clicked node as selected.

DECLARE
 htree ITEM;

423

BEGIN
 -- Find the tree itself.
 htree := Find_Item(’tree_block.htree3’);

 -- Mark the clicked node as selected.
 Ftree.Set_Tree_Selection(htree, :SYSTEM.TRIGGER_NODE,
Ftree.SELECT_ON);
END;

424

SET_VA_PROPERTY built-in

Description

Modifies visual attribute property values for the specified property.

Syntax
SET_VA_PROPERTY
 (va_id VISUALATTRIBUTE
 property NUMBER
 value VARCHAR2);
SET_VA_PROPERTY
 (va_name VARCHAR2
 property NUMBER
 value VARCHAR2);
SET_VA_PROPERTY
 (va_id VISUALATTRIBUTE
 property NUMBER
 value NUMBER);
SET_VA_PROPERTY
 (va_name VARCHAR2
 property NUMBER
 value NUMBER);

Built-in Type unrestricted function

Enter Query Mode yes

Parameters

va_id The unique ID Form Builder assinged to the visual
attribute when you created it. The data type is
VISUALATTRIBUTE.

va_name The name you gave the visual attribute when you created
it. The data type is VARCHAR2.

Property Specify one of the following properties:

BACKGROUND_COLOR The color of the object’s
background region.

FILL_PATTERN The pattern to be used for the object’s
fill region. Patterns are rendered in the two colors
specified by Background Color and Foreground Color.

FONT_NAME The font family, or typeface, that should
be used for text in the object. The list of fonts available
is system-dependent.

FONT_SIZE The size of the font, specified in hundreds
of points.

425

value

FONT_SPACING The width of the font, that is, the
amount of space between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s
foreground region. For items, the Foreground Color
attribute defines the color of text displayed in the item.

WHITE_ON_BLACK Specifies that the object is to
appear on a monochrome bitmap display device as white
text on a black background.

Specify the value to be applied to the given property.
The data type of the property determines the data type of
the value you enter. For instance, if you want to set the
WHITE_ON_BLACK property to true, specify the
constant PROPERTY_TRUE for the value. If you want
to change the FONT_NAME for the item, specify the
value, in other words, the label, as a VARCHAR2 string.

PROPERTY_TRUE Specifies that the property is to be
set to the TRUE state.

PROPERTY_FALSE Specifies that the property is to be
set to the FALSE state.

If you want to reset the value of the property to be the
value originally established for it at design time, enter
two single quotes with no space between: ’’. For example,
SET_ITEM_PROPERTY(’DEPTNO’, FONT_SIZE, ’’);
would reset that format size to its design-time value.

426

SET_VAR built-in

Description

Sets a newly-created OLE variant to its initial value. Or, resets an existing OLE variant to a new value.

There are four versions of the procedure, one for each of the new value types CHAR, NUMBER,
OLEVAR, and table.

Syntax
PROCEDURE SET_VAR
 (var OLEVAR, newval CHAR
 vtype VT_TYPE, arrspec VARCHAR2);
PROCEDURE SET_VAR
 (var OLEVAR, newval NUMBER
 vtype VT_TYPE, arrspec VARCHAR2);
PROCEDURE SET_VAR
 (var OLEVAR, newval OLEVAR
 vtype VT_TYPE, arrspec VARCHAR2);
PROCEDURE SET_VAR
 (var OLEVAR, source_table,
 vtype VT_TYPE, arrspec VARCHAR2);

Built-in Type unrestricted procedure

Parameters

var The variant to be set.

newval The value to be given to the variant.

vtype The OLE VT_TYPE to be given to the variant.

This is an optional parameter. If not specified, the
default value for the NUMBER version of the procedure
is VT_R8. For the VARCHAR2 version, the default is
VT_BSTR. For the OLEVAR version, the default is
VT_VARIANT: that is, whatever type the variant value
actually specifies .

source_table A PL/SQL table whose dimensions and element values
are to be given to the variant.

arrspec Indicates which selected element or elements of the
source table are to be used in the creation of the new
variant. For more information, see Specifiers for OLE
Arrays

This is an optional parameter. If not specified, the entire
source table is used..

Usage Notes

The target variant in this SET_VAR procedure must first be created with the CREATE_VAR function.

427

SET_VIEW_PROPERTY built-in

Description

Sets a property for the indicated canvas. You can set only one property per call to the built-in. In other
words, you cannot split the argument in such a way that the x coordinate applies to X_POS and the y
coordinate applies to the HEIGHT.

Syntax
SET_VIEW_PROPERTY
 (view_id ViewPort,
 property NUMBER,
 value NUMBER);
SET_VIEW_PROPERTY
 (view_id ViewPort,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_VIEW_PROPERTY
 (view_name VARCHAR2,
 property NUMBER,
 value NUMBER);
SET_VIEW_PROPERTY
 (view_name ViewPort,
 property NUMBER,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

view_id The unique ID Form Builder assigned the view when you created the
canvas/view. Use the FIND_VIEW built-in to return the ID to an
appropriately typed variable. Datatype is VIEWPORT.

view_name The name you gave the canvas object when you defined it. Datatype is
VARCHAR2.

property Specifies one of the following properties:

DIRECTION The layout direction for bidirectional objects. Valid values
are DIRECTION_DEFAULT, RIGHT_TO_LEFT, LEFT_TO_RIGHT.

DISPLAY_POSITION For a stacked view, the position of the view’s
upper-left corner relative to the window’s content view, as an X, Y pair.
Determines where the view is displayed in the window.

HEIGHT For a stacked canvas, the height of the view. To change the size
of the canvas itself, use SET_CANVAS_PROPERTY.

POSITION_ON_CANVAS An X, Y pair indicating the location of the
view’s upper-left corner relative to its canvas.

428

VIEWPORT_X_POS For a stacked view, the X coordinate for the view’s
upper-left corner relative to the window’s content view.

VIEWPORT_Y_POS For a stacked view, the Y coordinate for the view’s
upper-left corner relative to the window’s content view.

VIEWPORT_X_POS_ON_CANVAS The X coordinate for the view’s
upper-left corner relative to its canvas.

VIEWPORT_Y_POS_ON_CANVAS The Y coordinate for the the
view’s upper-left corner relative to its canvas.

VIEW_SIZE For a stacked canvas, the size of the view, as a width, height
pair. To change the size of the canvas itself, use
SET_CANVAS_PROPERTY.

VISIBLE Whether the view is to be displayed. Valid values are
PROPERTY_TRUE and PROPERTY_FALSE.

WIDTH For a stacked canvas, the width of the view. To change the size
of the canvas itself, use SET_CANVAS_PROPERTY.

value Specify the value appropriate to the property you are setting:

PROPERTY_TRUE The property is to be set to the TRUE state.

PROPERTY_FALSE The property is to be set to the FALSE state.

x The NUMBER value of the X coordinate or the width, depending on the
property you specified. Specify the argument in form coordinate system
units.

y The NUMBER value of the Y coordinate or the height, depending on the
property you specified. Specify the argument in form coordinate system
units.

429

SET_WINDOW_PROPERTY built-in

Description

Sets a property for the indicated window.

Syntax
SET_WINDOW_PROPERTY
 (window_id Window,
 property NUMBER,
 value VARCHAR2);
SET_WINDOW_PROPERTY
 (window_id Window,
 property NUMBER,
 x NUMBER);
SET_WINDOW_PROPERTY
 (window_id Window,
 property NUMBER,
 x NUMBER,
 y NUMBER);
SET_WINDOW_PROPERTY
 (window_name VARCHAR2,
 property NUMBER,
 value VARCHAR2);
SET_WINDOW_PROPERTY
 (window_name VARCHAR2,
 property NUMBER,
 x NUMBER);
SET_WINDOW_PROPERTY
 (window_name VARCHAR2,
 property NUMBER,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

window_id Specifies the unique ID that Form Builder assigns the window when
created. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when creating it. The data
type of the name is VARCHAR2.

property Specify one of the following window properties:

BACKGROUND_COLOR The color of the object’s background region.

DIRECTION Specifies the layout direction for bidirectional objects.
Valid values are DIRECTION_DEFAULT, RIGHT_TO_LEFT,
LEFT_TO_RIGHT.

430

FILL_PATTERN The pattern to be used for the object’s fill region.
Patterns are rendered in the two colors specified by Background Color and
Foreground Color.

FONT_NAME The font family, or typeface, that should be used for text in
the object. The list of fonts available is system-dependent.

FONT_SIZE The size of the font, specified in points.

FONT_SPACING The width of the font, that is, the amount of space
between characters (kerning).

FONT_STYLE The style of the font.

FONT_WEIGHT The weight of the font.

FOREGROUND_COLOR The color of the object’s foreground region.
For items, the Foreground Color attribute defines the color of text displayed
in the item.

HEIGHT Specifies the height of the window.

HIDE_ON_EXIT Specifies whether Form Builder hides the current
window automatically when the operator navigates to an item in another
window. Valid values are PROPERTY_TRUE and PROPERTY_FALSE.

ICON_NAME Specifies the file name of the icon resource associated with
a window item when the window is minimized.

POSITION Specifies an x, y pair indicating the location for the window
on the screen.

TITLE Sets the title of the window.

VISIBLE Specifies whether the window is to be displayed. Valid values
are PROPERTY_TRUE and PROPERTY_FALSE.

WHITE_ON_BLACK Specifies that the object is to appear on a
monochrome bitmap display device as white text on a black background.

WINDOW_SIZE Specifies a width, height pair indicating the size of the
window on the screen.

WINDOW_STATE Specifies the current display state of the window.
Valid values are NORMAL, MAXIMIZE, or MINIMIZE.

WIDTH Specifies the width of the window.

X_POS Sets the x coordinate for the window’s upper left corner on the
screen.

Y_POS Sets the y coordinate for the window’s upper left corner on the
screen.

value The following constants can be passed as arguments to the property values
described earlier:

PROPERTY_TRUE Specifies that the property is to be set to the TRUE
state. This applies specifically to the VISIBLE property.

431

PROPERTY_FALSE Specifies that the property is to be set to the
FALSE state. This applies specifically to the VISIBLE property.

The following constants can be passed as arguments for use with the
WINDOW_STATE property:

NORMAL Specifies that the window is displayed normally according to
the current Width, Height, X Position, and Y Position property settings.

MAXIMIZE Specifies that the window is enlarged to fill the screen
according to the display style of the window manager.

MINIMIZE Specifies that the window is minimized, or iconified.

x Specifies the NUMBER value of the x coordinate or the width, depending
on the property you specified. Specify the argument in form coordinate
system units.

y Specifies the NUMBER value of the y coordinate or the height, depending
on the property you specified. Specify the argument in form coordinate
system units.

Usage Notes

On Microsoft Windows, forms run inside the MDI application window. You can use
SET_WINDOW_PROPERTY to set the following properties of the MDI application window:

• TITLE

• POSITION

• WIDTH, HEIGHT

• WINDOW_SIZE

• WINDOW_STATE

• X_POS, Y_POS

To reference the MDI application window in a call to SET_WINDOW_PROPERTY, use the constant
FORMS_MDI_WINDOW:

Set_Window_Property(FORMS_MDI_WINDOW, POSITION, 5,10)
Set_Window_Property(FORMS_MDI_WINDOW, WINDOW_STATE, MINIMIZE)

SET_WINDOW_PROPERTY restrictions

• If you change the size or position of a window, the change remains in effect for as long as the form
is running, or until you explicitly change the window’s size or position again. Closing the window
and reopening it does not reset the window to its design-time defaults. You must assign the design-
time defaults to variables if you intend to set the window back to those defaults.

SET_WINDOW_PROPERTY examples

/*
** Built-in: SET_WINDOW_PROPERTY
** Example: See FIND_WINDOW
*/

432

SHOW_ALERT built-in

Description

Displays the given alert, and returns a numeric value when the operator selects one of three alert buttons.

Syntax
SHOW_ALERT
 (alert_id Alert);
SHOW_ALERT
 (alert_name VARCHAR2);

Built-in Type unrestricted function

Returns A numeric constant corresponding to the button the operator selected from the alert. Button
mappings are specified in the alert design.

If the operator selects... Form Builder returns

Button 1 ALERT_BUTTON1

Button 2 ALERT_BUTTON2

Button 3 ALERT_BUTTON3

Enter Query Mode yes

Parameters

alert_id The unique ID that Form Builder assigns the alert when the alert is created.
Use the FIND_ALERT built-in to return the ID to an appropriately typed
variable. The data type of the ID is Alert.

alert_name The name you gave the alert when you defined it. The data type of the
name is VARCHAR2.

SHOW_ALERT examples

/*
** Built-in: SHOW_ALERT
** Example: See FIND_ALERT and SET_ALERT_PROPERTY
*/

433

SHOW_EDITOR built-in

Description

Displays the given editor at the given coordinates and passes a string to the editor, or retrieves an
existing string from the editor. If no coordinates are supplied, the editor is displayed in the default
position specified for the editor at design time.

Syntax
SHOW_EDITOR
 (editor_id Editor,
 message_in VARCHAR2,
 message_out VARCHAR2,
 result BOOLKAN);
SHOW_EDITOR
 (editor_id Editor,
 message_in VARCHAR2,
 x NUMBER,
 y NUMBER,
 message_out VARCHAR2,
 result BOOLEAN);
SHOW_EDITOR
 (editor_name VARCHAR2,
 message_in VARCHAR2,
 message_out VARCHAR2,
 result BOOLEAN);
SHOW_EDITOR
 (editor_name VARCHAR2,
 message_in VARCHAR2,
 x NUMBER,
 y NUMBER,
 message_out VARCHAR2,
 result BOOLEAN);

Built-in Type unrestricted procedure that returns two OUT parameters (result and message_out)

Enter Query Mode yes

Parameters

editor_id Specifies the unique ID that Form Builder assigns when it creates the
editor. Use the FIND_EDITOR built-in to return the ID to a variable of
the appropriate data type. The data type of the ID is Editor.

editor_name Specifies the name you gave to the editor when you defined it. The data
type of the name is VARCHAR2.

message_i Specifies a required IN parameter of VARCHAR2 data type. The value
passed to this parameter can be NULL. You can also reference a text item
or variable.

x Specifies the x coordinate of the editor. Supply a whole number for this
argument.

y Specifies the y coordinate of the editor. Supply a whole number for this
argument.

434

message_out Specifies a required OUT parameter of VARCHAR2 data type. You can
also reference a text item or variable. If the operator cancels the editor,
result is FALSE and message_out is NULL.

result Specifies a required OUT parameter of BOOLEAN data type. If the
operator accepts the editor, result is TRUE. If the operator cancels the
editor, result is FALSE and message_out is NULL.

SHOW_EDITOR restrictions

• Message_out should be at least as long as message_in, because the length of the variable or text
item specified for message_out determines the maximum number of characters the editor can accept.

• The message_in parameter values are always converted to VARCHAR2 by Form Builder when
passed to the editor. However, if you are passing message_out to something other than a
VARCHAR2 type object, you must first perform the conversion by passing the value to a variable
and then perform type conversion on that variable with PL/SQL functions TO_DATE or
TO_NUMBER.

• The Width must be at least wide enough to display the buttons at the bottom of the editor window.

SHOW_EDITOR examples

/*
** Built-in: SHOW_EDITOR
** Example: Accept input from the operator in a user-defined
** editor. Use the system editor if the user has
** checked the "System_Editor" menu item under the
** "Preferences" menu in our custom menu module.
*/
DECLARE
 ed_id Editor;
 mi_id MenuItem;
 ed_name VARCHAR2(40);
 val VARCHAR2(32000);
 ed_ok BOOLEAN;
BEGIN
 mi_id := Find_Menu_Item(’PREFERENCES.SYSTEM_EDITOR’);
 IF Get_Menu_Item_Property(mi_id,CHECKED) = ’TRUE’ THEN
 ed_name := ’system_editor’;
 ELSE
 ed_name := ’my_editor1’;
 END IF;

 ed_id := Find_Editor(ed_name);
 /*
 ** Show the appropriate editor at position (10,14) on the
 ** screen. Pass the contents of the :emp.comments item
 ** into the editor and reassign the edited contents if
 ** ’ed_ok’ returns boolean TRUE.
 */
 val := :emp.comments;
 Show_Editor(ed_id, val, 10,14, val, ed_ok);
 IF ed_ok THEN
 :emp.comments := val;
 END IF;
END;

435

SHOW_KEYS built-in

Description

Displays the Keys screen. When the operator presses a function key, Form Builder redisplays the form
as it was before invoking the SHOW_KEYS built-in.

Syntax
SHOW_KEYS;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

SHOW_KEYS examples

/*
** Built-in: SHOW_KEYS
** Example: Display valid function key bindings
*/
BEGIN
 Show_Keys;
END;

436

SHOW_LOV built-in

Description

Displays a list of values (LOV) window at the given coordinates, and returns TRUE if the operator
selects a value from the list, and FALSE if the operator Cancels and dismisses the list.

Syntax
SHOW_LOV
 (lov_id LOV);
SHOW_LOV
 (lov_id LOV,
 x NUMBER,
 y NUMBER);
SHOW_LOV
 (lov_name VARCHAR2);
SHOW_LOV
 (lov_name VARCHAR2,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted function

Returns BOOLEAN

Enter Query Mode yes

Parameters

lov_id Specifies the unique ID that Form Builder assigns the LOV when created.
Use the FIND_LOV built-in to return the ID to an appropriately typed
variable. The data type of the ID is LOV.

lov_name The name you gave to the LOV when you defined it. The data type of the
name is VARCHAR2.

x Specifies the x coordinate of the LOV.

y Specifies the y coordinate of the LOV.

Usage Notes

When SHOW_LOV is used to display an LOV, Form Builder ignores the LOV’s Automatic Skip
property.

If you want to move the cursor to the next navigable item, use the LIST_VALUES built-in.

SHOW_LOV restrictions

If the lov_name argument is not supplied and there is no LOV associated with the current item, Form
Builder issues an error.

If the record group underlying the LOV contains 0 records, the BOOLEAN return value for
SHOW_LOV will be FALSE.

437

SHOW_LOV examples

/*
** Built-in: SHOW_LOV
** Example: Display a named List of Values (LOV)
*/
DECLARE
 a_value_chosen BOOLEAN;
BEGIN
 a_value_chosen := Show_Lov(’my_employee_status_lov’);
 IF NOT a_value_chosen THEN
 Message(’You have not selected a value.’);
 Bell;
 RAISE Form_trigger_Failure;
 END IF;
END;

438

SHOW_MENU built-in

Description

Displays the current menu if it is not currently displayed. It does not make the menu active.

Because SHOW_MENU does not make the menu active, Form Builder does not allow the menu to
obscure any part of the current canvas. Therefore, all or part of the menu does not appear on the screen
if the current canvas would cover it.

Syntax
SHOW_MENU;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

SHOW_MENU restrictions

Only for use in character mode environments.

SHOW_MENU examples

/*
** Built-in: SHOW_MENU
** Example: Display the menu if no canvas overlays it.
*/
BEGIN
 Show_Menu;
END;

439

SHOW_VIEW built-in

Description

Displays the indicated canvas at the coordinates specified by the canvas’s X Position and Y Position
property settings. If the view is already displayed, SHOW_VIEW raises it in front of any other views in
the same window.

Syntax
SHOW_VIEW
 (view_id ViewPort);
SHOW_VIEW
 (view_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

view_id Specifies the unique ID that Form Builder assigns the view when it creates
the object. Use the FIND_VIEW built-in to return the ID to an
appropriately typed variable. The data type of the ID is ViewPort.

view_name Specifies the name that you gave the view when defining it. The data type
of the name is VARCHAR2.

SHOW_VIEW examples

/*
** Built-in: SHOW_VIEW
** Example: Programmatically display a view in the window to
** which it was assigned at design time.
*/
BEGIN
 Show_View(’My_Stacked_Overlay’);
END;

440

SHOW_WINDOW built-in

Description

Displays the indicated window at either the optionally included X,Y coordinates, or at the window’s
current X,Y coordinates. If the indicated window is a modal window, SHOW_WINDOW is executed as
a GO_ITEM call to the first navigable item in the modal window.

Syntax
SHOW_WINDOW
 (window_id Window);
SHOW_WINDOW
 (window_id Window,
 x NUMBER,
 y NUMBER);
SHOW_WINDOW
 (window_name VARCHAR2);
SHOW_WINDOW
 (window_name VARCHAR2,
 x NUMBER,
 y NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

window_id Specifies the unique ID that Form Builder assigns the window when
created. Use the FIND_WINDOW built-in to return the ID to an
appropriately typed variable. The data type of the ID is Window.

window_name Specifies the name that you gave the window when defining it. The data
type of the name is VARCHAR2.

x Specifies the x coordinate of the window. Supply a whole number for this
argument.

y Specifies the y coordinate of the window. Specify this value as a whole
NUMBER.

SHOW_WINDOW examples

/*
** Built-in: SHOW_WINDOW
** Example: Override the default (x,y) coordinates for a
** windows location while showing it.
*/
BEGIN
 Show_Window(’online_help’,20,5);
END;

441

SYNCHRONIZE built-in

Description

Synchronizes the terminal screen with the internal state of the form. That is, SYNCHRONIZE updates
the screen display to reflect the information that Form Builder has in its internal representation of the
screen.

Syntax
SYNCHRONIZE;

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

none

SYNCHRONIZE restrictions

SYNCHRONIZE only updates the screen display if both of the following conditions are true:

• Form Builder is at the item level in the forms hierarchy (i.e., SYSTEM.CURRENT_ITEM is not
NULL).

•

SYNCHRONIZE examples

/*
** Built-in: SYNCHRONIZE
** Example: Achieve an odometer effect by updating the
** screen as an items value changes quickly.
** Without synchronize, the screen is typically
** only updated when Form Builder completes all
trigger
** execution and comes back for user input.
*/
BEGIN
 FOR j IN 1..1000 LOOP
 :control.units_processed := j;
 SYNCHRONIZE;
 Process_Element(j);
 END LOOP;
END;

442

TERMINATE built-in

Description

TERMINATE terminates input in a form or dialog box. This function is equivalent to the operator
pressing [ACCEPT].

Syntax
TERMINATE;

Built-in Type restricted function

Parameters

none

TERMINATE restrictions

Terminate applies only in the Enter Parameter Values dialog.

443

TO_VARIANT built-in

Description

Creates an OLE variant and assigns it a value. There are four versions of the function.

Syntax
FUNCTION TO_VARIANT
 (newval NUMBER,
 vtype VT_TYPE
 persistence BOOLEAN)
RETURN newvar OLEVAR;
...or...
FUNCTION TO_VARIANT
 (newval VARCHAR2,
 vtype VT_TYPE
 persistence BOOLEAN)
RETURN newvar OLEVAR;
...or...
FUNCTION TO_VARIANT
 (source_table,
 vtype VT_TYPE
 arrspec VARCHAR2, persistence BOOLEAN)
RETURN newvar OLEVAR;
...or...
FUNCTION TO_VARIANT
 (var OLEVAR,
 vtype VT_TYPE
 arrspec VARCHAR2, persistence BOOLEAN)
RETURN newvar OLEVAR;

Built-in Type unrestricted function

Returns the newly-created OLE variant.

Parameters

newval The value to be given to the newly-created OLE variant.

vtype The OLE VT_TYPE to be given to the newly-created
variant.

This is an optional parameter. If not specified, the
default value for the NUMBER version of the function is
VT_R8. For the VARCHAR2 version, the default is
VT_BSTR. For the table version, the default is
determined from the PL/SQL types of the table For the
OLEVAR version, the default is the type of the source
variant.

persistence Controls the persistence of the variant after its creation.
A boolean value of TRUE establishes the variant as
persistent; a value of FALSE establishes the variant as
non-persistent.

444

This is an optional parameter. If not specified, the
default value is non-persistent.

source_table An existing PL/SQL table that is used to establish the
bounds and values of the newly-created variant table.
The source table can be of any type.

arrspec Indicates which selected element or elements of a source
table are to be used in the creation of the new variant.
The lower bound always starts at 1. For more
information, see Specifiers for OLE Arrays.

This is an optional parameter. If not specified, the entire
source table or source variant is used.

var An existing OLE variant whose value is to be given to
the new variant. (This source variant may be a table.)

Usage Notes

• This function first creates an empty variant and then gives it a value. It offers a combined version of
the CREATE_VAR and SET_VAR operations.

• This TO_VARIANT function can also be thought of as the inverse version of the VAR_TO_*
function.

• Note that the OLEVAR version of this function differs from the NUMBER, VARCHAR2, and table
versions in that it uses an existing OLE variant as the source, rather than a PL/SQL equivalent value.

445

UNSET_GROUP_SELECTION built-in

Syntax
UNSET_GROUP_SELECTION
 (recordgroup_id RecordGroup,
 row_number NUMBER);
UNSET_GROUP_SELECTION
 (recordgroup_name VARCHAR2,
 row_number NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Description

Unmarks the specified row in the indicated record group. Use the procedure to unmark rows that have
been programmatically selected by a previous call to SET_GROUP_SELECTION.

Rows are numbered sequentially starting at 1. If you select rows 3, 8, and 12, for example, those rows
are considered by Form Builder to be selections 1, 2, and 3. You can undo any row selections for the
entire group by calling the RESET_GROUP_SELECTION built-in.

Parameters

recordgroup_id Specifies the unique ID that Form Builder assigns to the record group when
created. Use the FIND_GROUP built-in to return the ID to a variable.
The data type of the ID is RecordGroup.

recordgroup_name Specifies the name of the record group that you gave to the group when
creating it. The data type of the name is VARCHAR2.

row_number Specifies the number of the record group row that you want to select. The
value you specify is a NUMBER.

UNSET_GROUP_SELECTION examples

/*
** Built-in: UNSET_GROUP_SELECTION
** Example: Clear all of the even rows as selected in the
** record group whose id is passed-in as a
** parameter.
*/
PROCEDURE Clear_Even_Rows (rg_id RecordGroup) IS
BEGIN
 FOR j IN 1..Get_Group_Row_Count(rg_id) LOOP
 IF MOD(j,2)=0 THEN
 Unset_Group_Selection(rg_id, j);
 END IF;
 END LOOP;
END;

446

UP built-in

Description

Navigates to the instance of the current item in the record with the next lowest sequence number.

Syntax
UP;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

447

UPDATE_CHART built-in

Description

A data block is updated whenever it is queried or when changes to it are committed. By default, when the
block is updated, any charts based on the data block are automatically updated. You can use the
UPDATE_CHART built-in to explicitly cause a chart item to be updated, even if the data block on
which it is based has not been updated. For example, you may want update the chart to reflect
uncommitted changes in the data block.

Syntax
PROCEDURE UPDATE_CHART
 (chart_name VARCHAR2,
 param_list_id TOOLS.PARAMLIST
);
PROCEDURE UPDATE_CHART
 (chart_name VARCHAR2,
 param_list_name VARCHAR2
);
PROCEDURE UPDATE_CHART
 (chart_id FORMS4C.ITEM,
 param_list_id TOOLS.PARAMLIST
);
PROCEDURE UPDATE_CHART
 (chart_id FORMS4C.ITEM,
 param_list_name VARCHAR2
);
PROCEDURE UPDATE_CHART
 (chart_id FORMS4C.ITEM
);
PROCEDURE UPDATE_CHART
 (chart_name VARCHAR2
);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

chart_id Specifies the unique ID of the chart.

chart_name Specifies the unique name of the chart.

param_list_id Specifies the unique ID of the chart parameter list.

param_list_name Specifies the unique name of the chart parameter list.

448

UPDATE_RECORD built-in

Description

When called from an On-Update trigger, initiates the default Form Builder processing for updating a
record in the database during the Post and Commit Transaction process.

This built-in is included primarily for applications that run against a non-ORACLE data source.

Syntax
UPDATE RECORD;

Built-in Type restricted procedure

Enter Query Mode no

Parameters

none

UPDATE_RECORD restrictions

Valid only in an On-Update trigger.

449

USER_EXIT built-in

Description

Calls the user exit named in the user_exit_string.

Syntax
USER_EXIT
 (user_exit_string VARCHAR2);
USER_EXIT
 (user_exit_string VARCHAR2,
 error_string VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

user_exit_string Specifies the name of the user exit you want to call, including any
parameters.

error_string Specifies a user-defined error message that Form Builder should display if
the user exit fails.

USER_EXIT examples

/*
** Built-in: USER_EXIT
** Example: Invoke a 3GL program by name which has been
** properly linked into your current Form Builder
** executable. The user exit subprogram must parse
** the string argument it is passed to decide what
** functionality to perform.
*/
PROCEDURE Command_Robotic_Arm(cmd_string VARCHAR2) IS
BEGIN
 /*
 ** Call a C function ’RobotLnk’ to initialize the
 ** communication card before sending the robot a message.
 */
 User_Exit(’RobotLnk INITIALIZE Unit=6,CmdToFollow=1’);
 IF NOT Form_Success THEN
 Message(’Failed to initialize Robot 6’);
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** Pass the string argument as a command to the robot
 */
 User_Exit(’RobotLnk SEND Unit=6,Msg=’||cmd_string);
 IF NOT Form_Success THEN
 Message(’Command not understood by Robot 6’);
 RAISE Form_trigger_Failure;
 END IF;
 /*
 ** Close the robot’s communication channel
 */

450

 User_Exit(’RobotLnk DEACTIVATE Unit=6’);
 IF NOT Form_Success THEN
 Message(’Failed to Deactivate Robot’);
 RAISE Form_trigger_Failure;
 END IF;

 /*
 ** The user exit will deposit a timing code into the item
 ** called ’CONTROL.ROBOT_STATUS’.
 */
 Message(’Command Successfully Completed by Robot 6’||
 ’ in ’||TO_CHAR(:control.robot_timing)||
 ’ seconds.’);
END;

451

VALIDATE built-in

Description

VALIDATE forces Form Builder to immediately execute validation processing for the indicated
validation scope.

Syntax
VALIDATE
 (validation_scope NUMBER);

Built-in Type:

unrestricted procedure

Enter Query Mode yes

Parameters

validation scope Specify one of the following scopes:

DEFAULT_SCOPE Perform normal validation for the default scope,
determined by the runtime platform.

Note: If you change the scope via
SET_FORM_PROPERTY(VALIDATION UNIT) and then call
VALIDATE(DEFAULT_SCOPE), you will override the default scope as
defined in the form module. In this case, Form Builder will not validate at
the default scope but at the scope defined by SET_FORM_PROPERTY.

FORM_SCOPE Perform normal validation for the current form.

BLOCK_SCOPE Perform normal validation for the current block.

RECORD_SCOPE Perform normal validation for the current record.

ITEM_SCOPE Perform normal validation for the current item.

Note on runtime behavior

If an invalid field is detected when validation is performed, the cursor does not move to that field.
Instead, the cursor remains in its previous position.

VALIDATE examples

/*
** Built-in: VALIDATE
** Example: Deposits the primary key value, which the user
** has typed, into a global variable, and then
** validates the current block.
** trigger: When-New-Item-Instance
*/
BEGIN
 IF :Emp.Empno IS NOT NULL THEN
 :Global.Employee_Id := :Emp.Empno;
 Validate(block_scope);

452

 IF NOT Form_Success THEN
 RAISE Form_trigger_Failure;
 END IF;
 Execute_Query;
 END IF;
END;

453

VARPTR_TO_VAR built-in

Description

Changes a variant pointer into a simple variant.

Syntax
FUNCTION VARPTR_TO_VAR
 (variant OLEVAR, vtype VT_TYPE)
RETURN changed OLEVAR;

Built-in Type unrestricted function

Returns the transformed variant.

Parameters

variant The OLE variant pointer to be changed into a variant.

vtype The OLE VT_TYPE to be given to the transformed
variant.

This is an optional parameter. If not specified, the default
value is VT_VARIANT.

Usage Notes

• This function removes VT_BYREF typing from the variant.

• If the variant’s type was not VT_BYREF, the variant is assumed to hold an address to the type
specified in the vtype, and is de-referenced accordingly.

• If the pointer was NULL or the variant was of type VT_NULL, then VT_EMPTY is returned.

454

VAR_TO_TABLE built-in

Description

Reads an OLE array variant and populates a PL/SQL table from it.

Syntax
PROCEDURE VAR_TO_TABLE
 (var OLEVAR,
 target_table,
 arrspec VARCHAR2);

Built-in Type unrestricted procedure

Parameters

var The OLE variant that is the source array.

target_table The PL/SQL table to be populated.

arrspec Indicates which rows, columns, or elements of the source
array are to be used. See Specifiers for OLE Arrays for
more information.

This is an optional parameter. If not specified, all
elements in the source array are used.

Usage Notes

For similar operations on other data types, use the function VAR_TO_type .

455

VAR_TO_<type> built-in

Description

Reads an OLE variant and transforms its value into an equivalent PL/SQL type.

There are three versions of the function (denoted by the value in type), one for each for of the types
CHAR, NUMBER, and OBJ.

Syntax
FUNCTION VAR_TO_CHAR
 (var OLEVAR, arrspec VARCHAR2)
RETURN retval VARCHAR2;
...or...
FUNCTION VAR_TO_NUMBER
 (var OLEVAR, arrspec VARCHAR2)
RETURN retval NUMBER;
...or...
FUNCTION VAR_TO_OBJ
 (var OLEVAR, arrspec VARCHAR2)
RETURN retval OLEOBJ;

Built-in Type unrestricted function

Returns The variant with its value changed into an equivalent PL/SQL-type. Note that the type of
the return depends on the version of the function chosen.

Parameters

var The OLE variant to be read.

arrspec This parameter is used only if the OLE variant is an array.
It indicates which element of the array is to be read and
returned.

See Specifiers for OLE Arrays for more information.

Usage Notes

• To return a table, use the procedure VAR_TO_TABLE .

• In the VAR_TO_OBJ version of this function, the returned object is local (non-persistent).

456

VAR_TO_VARPTR built-in

Description

Creates an OLE variant that points to an existing variant.

Syntax
FUNCTION VAR_TO_VARPTR
 (variant OLEVAR, vtype VT_TYPE)
RETURN newpointer OLEVAR;

Built-in Type unrestricted function

Returns the created variant

Parameters

variant The existing OLE variant to be pointed to.

vtype The type to be assigned to the created OLE variant.

Permissible types are VT_BYREF, VT_PTR, and
VT_NULL.

This is an optional parameter. If not specified, the default
value is VT_BYREF.

Usage Notes

• If the variant to be pointed to is of type VT_EMPTY, then the created pointer will be of type
VT_NULL, regardless of the vtype specification in the function.

• If vtype is specified as VT_BYREF, or defaults to VT_BYREF, then the created pointer will be of
type VT_BYREF plus the source variant’s type.

• If the vtype does not have a VT_BYREF in it, then the created pointer will be of type VT_PTR, and
it will point to the content within the variant.

457

VBX.FIRE_EVENT built-in

Description

Raises an event for the VBX control.

Syntax
VBX.FIRE_EVENT
 (item_id ITEM,
 event_name VARCHAR2,
 paramlist_id PARAMLIST);
VBX.FIRE_EVENT
 (item_id ITEM,
 event_name VARCHAR2,
 paramlist_name VARCHAR2);
VBX.FIRE_EVENT
 (item_name VARCHAR2,
 event_name VARCHAR2,
 paramlist_id PARAMLIST);
VBX.FIRE_EVENT
 (item_name VARCHAR2,
 event_name VARCHAR2,
 paramlist_name VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is ITEM.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

event_name Specifies the name of a VBX event sent to the VBX control. The data type
of the name is VARCHAR2 string.

paramlist_id Specifies the unique ID Form Builder assigns when a parameter list is
created. The data type of the ID is PARAMLIST.

paramlist_name The name you give the parameter list object when it is defined. The data
type of the name is VARCHAR2 string.

VBX.FIRE_EVENT restrictions

Valid only on Microsoft Windows.

VBX.FIRE_EVENT examples

/*
** Built-in: VBX.FIRE_EVENT
** Example: The VBX.FIRE_EVENT built-in triggers a SpinDown

458

** event for the SpinButton VBX control.
** trigger: When-Button-Pressed
*/
DECLARE
 ItemName VARCHAR2(40) := ’SPINBUTTON’;
 PL_ID PARAMLIST;
 PL_NAME VARCHAR2(20) := ’EName’;
BEGIN
 PL_ID := Get_Parameter_List(PL_NAME);
 IF id_null(PL_ID) THEN
 PL_ID := Create_Parameter_List(PL_NAME);
 END IF;
 VBX.FIRE_EVENT(ItemName,’SpinDown’,PL_ID);
END;

459

VBX.GET_PROPERTY built-in

Description

Obtains the value of a property from a VBX control.

Syntax
VBX.GET_PROPERTY
 (item_id ITEM,
 property VARCHAR2);
VBX.GET_PROPERTY
 (item_name VARCHAR2,
 property VARCHAR2);

Built-in Type unrestricted function

Returns VARCHAR2

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is ITEM.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

property Specifies a property or an element of a property array for a VBX control. A
set of VBX properties exists for any given VBX control. Examples of
VBX properties are Width, Height, and FontSize. The data type of
property is a VARCHAR2 string.

VBX.GET_PROPERTY restrictions

Valid only on Microsoft Windows.

VBX.GET_PROPERTY examples

/*
** Built-in: VBX.GET_PROPERTY
** Example: Uses the VBX.GET_PROPERTY built-in to obtain the
** CURRTAB property of the VBX item named TABCONTROL.
** The property value of CURRTAB is returned to the
** TabNumber variable and is used as input in the
** user-defined Goto_Tab_Page subprogram.
** trigger: When-Custom-Item-Event
*/
DECLARE
 TabEvent varchar2(80);
 TabNumber char;
BEGIN
 TabEvent := :system.custom_item_event;
 IF (UPPER(TabEvent) = ’CLICK’) then

460

 TabNumber := VBX.Get_Property(’TABCONTROL’,’CurrTab’);
 Goto_Tab_Page(TO_NUMBER(TabNumber));
 END IF;
END;

461

VBX.GET_VALUE_PROPERTY built-in

Description

Gets the VBX Control Value Property of a VBX control.

Syntax
VBX.GET_VALUE_PROPERTY
 (item_id ITEM);
VBX.GET_VALUE_PROPERTY
 (item_name VARCHAR2);

Built-in Type unrestricted function

Returns property

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is ITEM.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

VBX.GET_VALUE_PROPERTY restrictions

Valid only on Microsoft Windows.

VBX.GET_VALUE_PROPERTY examples

/*
** Built-in: VBX.GET_VALUE_PROPERTY
** Example: Passes the VBX Control Value to the user-defined
** Verify_Item_Value subprogram. Verify_Item_Value
** ensures the display value is the expected value.
*/
DECLARE
 ItemName VARCHAR2(40) := ’SPINBUTTON’;
 VBX_VAL_PROP VARCHAR2(40);
BEGIN
 VBX_VAL_PROP := VBX.Get_Value_Property(ItemName);
 Verify_Item_Value(VBX_VAL_PROP);
END;

462

VBX.INVOKE_METHOD built-in

Syntax
VBX.INVOKE_METHOD(item_id, method_name, w, x, y, z);
VBX.INVOKE_METHOD(item_name, method_name, w, x, y, z);

Built-in Type:

unrestricted procedure

Enter Query Mode yes

Description

Invokes the specified method on the item. If the method takes arguments, they should be specified. The
arguments should be provided in the order that the VBX control expects them. The methods that are
valid for VBX controls and a listing of the arguments they expect can be found in the moduleation that
accompanies the VBX control.

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is ITEM.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

method_name Specifies the name of the method to invoke. The data type of the name is
VARCHAR2 string.

w, x, y, z Specifies optional arguments that might be required for VBX controls. The
data type of the arguments is VARCHAR2 string.

VBX.INVOKE_METHOD restrictions

Valid only on Microsoft Windows.

VBX.INVOKE_METHOD examples

/*
** Built-in: VBX.INVOKE_METHOD_PROPERTY
** Example: Adds an entry to a combobox. The entry to
** add to the combobox is first optional argument.
** The position where the entry appears is the second
** optional argument.
*/
DECLARE
 ItemName VARCHAR2(40) := ’COMBOBOX’;
BEGIN
 VBX.Invoke_Method(ItemName,’ADDITEM’,’blue’,’2’);
END;

463

VBX.SET_PROPERTY built-in

Description

Sets the specified property for a VBX control.

Syntax
VBX.SET_PROPERTY
 (item_id ITEM,
 property VARCHAR2,
 value VARCHAR2);
VBX.SET_PROPERTY
 (item_name VARCHAR2,
 property VARCHAR2,
 value VARCHAR2);

Built-in Type:

unrestricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is ITEM.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

property Specifies a property or an element of a property array for a VBX control. A
set of VBX properties exists for any given VBX control. Examples of
VBX properties are Width, Height, and FontSize. The data type of
property is a VARCHAR2 string.

value Specifies the value to be applied to the VBX property. The data type of
value is a VARCHAR2 string.

VBX.SET_PROPERTY restrictions

Valid only on Microsoft Windows.

VBX.SET_PROPERTY examples

/*
** Built-in: VBX.SET_PROPERTY
** Example: Uses the VBX.SET_PROPERTY built-in to set the
Index
** property of the SpinButton VBX control.
** trigger: When-Button-Pressed
*/
DECLARE
 ItemName VARCHAR2(40) := ’SPINBUTTON’;
 VBX_VAL_PROP VARCHAR2(40);

464

 VBX_VAL VARCHAR2(40);
BEGIN
 IF :System.Custom_Item_Event = ’SpinDown’ THEN
 VBX_VAL_PROP := ’Index’;
 VBX_VAL := ’5’;
 VBX.Set_Property(ItemName,VBX_VAL_PROP,VBX_VAL);
 END IF;
END;

465

VBX.SET_VALUE_PROPERTY built-in

Description

Sets the VBX Control Value Property of a VBX control.

Syntax
VBX.SET_VALUE_PROPERTY
 (item_id ITEM,
 property VARCHAR2);
VBX.SET_VALUE_PROPERTY
 (item_name VARCHAR2,
 property VARCHAR2);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

item_id Specifies the unique ID that Form Builder assigns to the item when created.
Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. The data type of the ID is ITEM.

item_name Specifies the name of the object created at design time. The data type of
the name is VARCHAR2 string.

property Specifies a property for the Form Builder VBX Control Value Property. A
set of VBX properties exists for any given VBX control. Examples of
VBX properties are Width, Height, and FontSize. The data type of
property is a VARCHAR2 string.

VBX.SET_VALUE_PROPERTY restrictions

Valid only on Microsoft Windows.

VBX.SET_VALUE_PROPERTY examples

/*
** Built-in: VBX.SET_VALUE_PROPERTY
** Example: Uses VBX.SET_VALUE_PROPERTY built-in to set the
** VBX Control Value property.
*/
DECLARE
 ItemName VARCHAR2(40) := ’SPINBUTTON’;
 VBX_VAL_PROP VARCHAR2(40);
BEGIN
 IF :System.Custom_Item_Event = ’SpinDown’ THEN
 VBX_VAL_PROP := ’Index’;
 VBX.Set_Value_Property(ItemName,VBX_VAL_PROP);
 END IF;
END;

466

WEB.SHOW_DOCUMENT built-in

Syntax:
SHOW_DOCUMENT(url, target);

Built-in Type: unrestricted procedure

Enter Query Mode: yes

Description:

Specifies the URL and target window of a Web application.

Parameters:

url Datatype is VARCHAR2. Specifies the Uniform Resource Locator of the
document to be loaded.

target Datatype is VARCHAR2. Specifies one of the following targets:

_SELF Causes the document to load into the same frame or window as the
source document.

_PARENT Causes the target document to load into the parent window or
frameset containing the hypertext reference. If the reference is in a window
or top-level frame, it is equivalent to the target _self.

_TOP Causes the document to load into the window containing the
hypertext link, replacing any frames currently displayed in the window.

_BLANK Causes the document to load into a new, unnamed top-level
window.

Restrictions:

Can only be used from within a form run from the Web.

Example:
/*
** Built-in: WEB.SHOW_DOCUMENT
** Example: Display the specified URL in the target window.
*/
BEGIN
 Web.Show_Document(‘http://www.abc.com’, ‘_self’);
END;

467

WHERE_DISPLAY built-in

Description

Toggles the Where menu navigation option on and off. In a full-screen menu, the Where option displays
information about the operator’s current location in the menu hierarchy.

Syntax
WHERE_DISPLAY;

Built-in Type:

unrestricted procedure

Enter Query Mode yes

Parameters

none

WHERE_DISPLAY restrictions

WHERE_DISPLAY is valid only in a full-screen menu.

468

WRITE_IMAGE_FILE built-in

Description

Writes the image from a Form Builder image item into the specified file.

Syntax
WRITE_IMAGE_FILE
 (file_name VARCHAR2,
 file_type VARCHAR2,
 item_id ITEM,
 compression_quality NUMBER,
 image_depth NUMBER);
WRITE_IMAGE_FILE
 (file_name VARCHAR2,
 file_type VARCHAR2,
 item_name VARCHAR2,
 compression_quality NUMBER,
 image_depth NUMBER);

Built-in Type unrestricted procedure

Enter Query Mode yes

Parameters

file_name The name of the file where the image is stored. The file name must adhere
to your operating system requirements.

file_type The file type of the image: BMP, CALS, GIF, JFIF, JPEG, PICT, RAS,
TIFF, or TPIC. The parameter takes a VARCHAR2 argument.

item_id The unique ID Form Builder assigned to the image item when you created
it. Use the FIND_ITEM built-in to return the ID to an appropriately typed
variable. Datatype is ITEM.

item_name The name you gave the image item when you defined it. Datatype is
VARCHAR2.

compression_quality The degree of compression Form Builder will apply to the image when it
stores it to the file (optional). Datatype is VARCHAR2. Valid values
are:NO_COMPRESSION, MINIMIZE_COMPRESSION,
LOW_COMPRESSION, MEDIUM_COMPRESSION,
HIGH_COMPRESSION, MAXIMIZE_COMPRESSION

image_depth The degree of depth Form Builder will apply to the image when it stores it
to the file (optional). Datatype is VARCHAR2. Valid values
are:ORIGINAL_DEPTH, MONOCHROME, GRAYSCALE, LUT
(Lookup Table), RGB (Red, Green, Blue)

WRITE_IMAGE_FILE restrictions

• The indicated file type must be compatible with the actual file type of the image.

• As with any file, if you write the image to an existing file, you overwrite the contents of that file

469

with the contents of the image item.

• Though you can read PCD and PCX files from the filesystem or the database, you cannot write
image files to the filesystem in PCD or PCX format (using WRITE_IMAGE_FILE). (If you use a
restricted file type when writing images to the filesystem, Form Builder defaults the image file to
TIFF format.)

• Writing a JPEG file from a Form Builder image item will result in loss of resolution.

WRITE_IMAGE_FILE examples

/* Built-in: WRITE_IMAGE_FILE
**
** Save the contents of an image item out to a file
** on the filesystem in a supported image format.
*/
BEGIN
 WRITE_IMAGE_FILE(’output.tif’,
 ’TIFF’,
 ’emp.photo_image_data’,
 maximize_compression,
 original_depth);
END;

470

WRITE_SOUND_FILE built-in

Description

Writes sound data from the specified sound item to the specified file.

Syntax
WRITE_SOUND_FILE(file_name VARCHAR2,
 file_type VARCHAR2,
 item_id ITEM,
 compression NUMBER,
 sound_quality NUMBER,
 channels NUMBER);
WRITE_SOUND_FILE(file_name VARCHAR2,
 file_type VARCHAR2,
 item_name VARCHAR2,
 compression NUMBER,
 sound_quality NUMBER,
 channels NUMBER);

Built-in Type unrestricted

Enter Query Mode Yes

Parameters:

file_name The fully-qualified file name of the file to which you wish to write sound
data.

file_type The file type for the sound data file. Valid values are: AU, AIFF, AIFF-C,
and WAVE. Note: File type is optional, but should be specified if known
for increased performance. If omitted, Form Builder applies a default file
type: WAVE (Microsoft Windows), AIFF-C (Macintosh), or AU (all
others).

item_id The unique ID Form Builder gave the sound item when you created it.

item_name The name you gave the sound item when you created it.

compressioWhether the sound data should be compressed before Form Builder writes the data to the file.
Possible values are COMPRESSION_ON, COMPRESSION_OFF, and
ORIGINAL_SETTING (retain the default compression setting of the data).
Compression is optional: the default value, if omitted, is
ORIGINAL_SETTING.

sound_quality The quality of data sampling rate and depth for the sound data. Possible
values are: HIGHEST_SOUND_QUALITY, HIGH_SOUND_QUALITY,
MEDIUM_SOUND_QUALITY, LOW_SOUND_QUALITY,
LOWEST_SOUND_QUALITY, and ORIGINAL_QUALITY. Sound
quality is optional: the default value, if omitted, is
ORIGINAL_QUALITY.

channels Whether Form Builder should write the sound data to the file as
monophonic or stereophonic. Valid values are MONOPHONIC,
STEREOPHONIC, and ORIGINAL_SETTING (retain the default channel

471

setting of the data). Channels is optional: the default value, if omitted, is
ORIGINAL_SETTING.

WRITE_SOUND_FILE restrictions

• To use the PLAY_SOUND, READ_SOUND_FILE and WRITE_SOUND_FILE built-ins to play
and/or record sound data in a file, you must create a sound item and place focus in that item before
the call to the built-ins are executed. Although the sound item will be represented by the sound item
control at design-time, the control will not function for end users at runtime. Therefore, you must
"hide" the sound item behind another object on the canvas so users will not see the control at
runtime. (To place focus in an item, it cannot be assigned to a null canvas or have its Displayed
property set to No.) For example, to call the READ_SOUND_FILE and PLAY_SOUND built-ins
from a When-Button-Pressed trigger, place focus in the "hidden" sound item by including a call to
the built-in procedure GO_ITEM in the trigger code prior to calling READ_SOUND_FILE and
PLAY_SOUND.

472

Options

About Form Builder Components

Form Builder consists of the following programs, or components, which you can execute independently
from the command line or by clicking on an icon:

Form Builder Form Builder is the design component you use to create,
compile, and run Form Builder applications. Using Form
Builder, you can create three types of modules: forms, menus,
and libraries.

Forms Runtime Form operators use Forms Runtime to run the completed
application. As an application designer, you can also use
Forms Runtime to test and debug forms during the design
stage. Forms Runtime reads the machine-readable file created
by the Form Compiler, and executes the form.

Web Previewer Application developers use the Web Previewer to test forms
locally as though they were being run from Forms Server in a
browser or in the Appletviewer. Like Forms Runtime, the
Web Previewer reads the machine-readable file created by the
Form Compiler, and executes the form.

Form Compiler Most often, you use the Form Compiler to create a machine-
readable file that Forms Runtime can execute.

Form Compiler also allows you to convert various
representations of a form. Using Form Compiler, you can:

Convert files between binary, text, and database module
storage formats.

Insert module definitions into database tables.

Delete module definitions from the database.

Recompile application modules when porting to different
platforms.

Upgrade applications created with previous versions of
Form Builder, SQL*Forms, and SQL*Menu.

473

Starting Form Builder Components

Some platforms support icons, and some support command lines. You can start the Form Builder, Form
Compiler, Web Previewer, or Forms Runtime components in one of two ways, depending on your
computer platform:

icon You will see a different icon for each component:
Form Builder, Forms Runtime, and Forms Compiler.
To launch a component, double-click it.

command line When you start a component by entering a command
on the command line, you can indicate the options you
want to use for this session by entering keyword
parameters on the command line.

For more information on starting Form Builder components, refer to the Form Builder documentation for
your operating system.

474

Starting Form Builder Components from the Command
Line

To start any Form Builder component from the command line, enter this statement at the system prompt:
component_name [module_name] [userid/password] [parameters]

where:
component_name Specifies the Form Builder component you want to
use:

• Form Builder - ifbld60

• Forms Runtime - ifrun60

• Web Previewer - ifweb60

• Form Compiler - ifcmp60

Starting Form Builder Components examples

ifrun60 Starts the Forms Runtime component on Microsoft Windows,
with no calls to the user exit interface.
To indicate that foreign functions accessible through the user
exit interface have been linked into the executable, add an x to
component_name.

For more information on valid component names, refer to the Form Builder
documentation for your operating system.

module_name Specifies the module you want to load: a form,
menu, or library name. If you omit the module name, Form
Builder displays a dialog allowing you to choose the module to
open.
userid/password Specifies your ORACLE username and password.
parameters Specifies any optional command line parameters you
want to activate for this session. Optional parameters are
entered in this format:keyword1=value1 keyword2=value2...

ifrun60 custform scott/tiger statistics=yes

Note: The examples assume that you’re running Form Builder on Microsoft Windows, with no calls to
the user exit interface, so the Forms Runtime component name is shown as "ifrun60." You should
substitute the correct value of component_name for your platform and application.

Keyword Usage

There are three categories of parameters in Form Builder:

• MODULE and USERID

• options (command line parameters for setting options)

• form parameters

The first two parameters, MODULE and USERID, are unique because you can use either positional or
keyword notation to enter them. Use keyword notation to enter optional parameters, on the command

475

line. (Many optional parameters can also be set using dialogs.) Form parameters are optional input
variables that are defined at design time for a specific form.

MODULE and USERID

If you enter the first two parameters, MODULE and USERID, in the specified order, you may omit the
keywords and enter only values, as shown in the following example:

ifrun60 custform scott/tiger

Invalid Example:
ifrun60 scott/tiger

This sequence is invalid because the value for username/password is out of sequence, so it must be
preceded by the USERID keyword. To use positional notation instead of keywords would require
inserting the value of the MODULE parameter immediately after the component name, as in the previous
example.

Valid Examples:
ifrun60 module=custform userid=scott/tiger
ifrun60 userid=scott/tiger
ifrun60

If you indicate only the module name, Form Builder will prompt you for module name and
username/password.

Options

Use keyword notation for setting options on the command line. For information on options, see:

• Setting Forms Runtime Options

• Setting Form Compiler Options

• Setting Form Builder Options

The following syntax rules apply to all keyword parameters, including options and form parameters:

• No spaces should be placed before or after the equal sign of an argument.

• Separate arguments with one or more spaces; do not use commas to separate arguments.

Invalid Example:
ifrun60 custform scott/tiger statistics = yes
ifrun60 custform scott/tiger statistics=yes,debug=yes

Valid Examples:
ifrun60 custform scott/tiger statistics=yes
ifrun60 custform scott/tiger statistics=yes debug=yes

Form Parameters

Form parameters are variables that you define at design time. Form parameters provide a simple
mechanism for defining and setting the value of inputs that are required by a form at startup. Operators
can specify values for form parameters by entering them on the command line using standard command
line syntax.

476

The default value for a form parameter is taken from the Default Value field of the Properties window.
The operator can override the default value when starting Forms Runtime by specifying a new value for
the form parameter on the command line.

In the following example, myname_param is a user-defined form parameter that was defined in Form
Builder.

Note: If a form parameter value includes a space or punctuation, enclose the value in double quotes.

Example
ifrun60 empform scott/tiger myname_param="Msr. Dubois"

Displaying Hint Text on Command Line Options

To receive help on syntax and parameters, type the component name followed by "help=yes" at the
system prompt.

Example
ifrun60 help=yes

477

Logging on to the Database

To explicitly log on to the database, use the USERID command line keyword or, in Form Builder,
choose File->Connect.

USERID

USERID is your ORACLE username and password with an optional SQL*Net connect string. The
maximum length for the connect string is 255 characters.

To log on, use one of the following forms:
username/password
username/password@node

Expired password

The Oracle8 database server offers a password expiration feature that database administrators can
employ to force users to update their password on a regular basis.

If your password has expired, Forms will offer you an opportunity to enter a new password when you log
on. (You can also use the Forms startup dialog box to change your password before it expires.)

Logging on to the Database examples

You might specify the following command to run the ORDER_ENTRY form on the default database of
the LONDON node:

ifrun60 order_entry scott/tiger@D:london

For information on SQL*Net, refer to the SQL*Net User’s Guide. For help with your ORACLE
username, see your Database Administrator.

478

Forms Runtime Options

Forms Runtime options specify Form Builder default behavior during a Forms Runtime session. You can
set Forms Runtime options in two ways:

• Set options in the Forms Runtime Options dialog box.

• Pass parameters to Form Builder on the command line when you invoke Forms Runtime.

In addition, you can set Forms Runtime options to specify the defaults for forms you run from Form

Builder in the Preferences dialog box. To display the Preferences dialog box, choose Tools
Preferences.

Note: Forms Runtime preferences set in Form Builder apply only to forms run from within Form
Builder.

Options may also be set for the Web Previewer in the serverargs parameter of a base HTML file. You
can specify this HTML filename in the Runtime tab of the Preferences dialog box, or on the command
line.

The following chart lists the Forms Runtime options from the Options window and their corresponding
keyword parameters.

If you enter these keyword parameters as command line options, you can enter more than one at a time,
in any order:

ifrun60 module=myform userid=scott/tiger debug=YES
statistics=YES

Option Name Keyword Parameter Default

Oracle terminal resource file Term

Run in debug mode Debug No

Debug messages Debug_Messages * No

Write input keystrokes to file Keyout

Read input keystrokes from file Keyin

Write output to file Output_File

Write output to display Interactive Yes

Array processing Array Yes

Buffer records to temporary file Buffer_Records No

Display screen to specify logon Logon_Screen No

Display block menu on startup Block_Menu No

Optimize V2-style trigger step SQL
processing

OptimizeSQL Yes

Optimize transaction mode processing OptimizeTP Yes

479

Run in quiet mode Quiet No

Show statistics Statistics No

Run in query only mode Query_Only No

Show help information Help No

Window state Window_State NORMAL

Collect PECS data? PECS OFF

Options screen Options_Screen * No

Use SDI mode USESDI No

Path for HTML file (Web Runtime only) HTML

 * Use from command line only; not available from the Forms Runtime Options dialog box.

480

Array (Forms Runtime)

Description

Use array processing during a Forms Runtime session.

When you suppress array processing, Forms requests that the database only returns a single row of query
results at a time from server to client. Similarly, Forms requests that the database only send a single row
at a time from the client to the server for an INSERT, UPDATE, or DELETE when array processing is
suppressed.

Suppressing array processing usually results in the first retrieved record displaying faster than it would if
you fetched a number of records with array processing. However, the total time required to fetch and
display a number of records is shorter with array processing because network overhead can be reduced.

Option Name Array Processing
Default YES

Array (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger array=NO

481

Block_Menu (Forms Runtime)

Description

Automatically displays the block menu as the first screen (after the login screen, if it displays) instead of
the form.

Preference Name Display Block Menu
Default NO

Block_Menu (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger block_menu=YES

482

Buffer_Records (Forms Runtime)

Description

Sets the number of records buffered in memory to the minimum allowable number of rows displayed plus
3 (for each block). If a block retrieves any records by a query beyond this minimum, Form Builder
buffers these additional records to a temporary file on disk.

Setting this option saves Forms Runtime memory, but may slow down processing because of disk I/O.

Buffer_Records=NO tells Form Builder to set the minimum to the number specified using the Buffered
property from each block.

Option Name Buffer Records to Temporary File
Default NO

Buffer_Records (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger buffer_records=YES

483

Debug (Forms Runtime)

Description

Invokes the debug mode for the Forms Runtime session. Debug mode invokes break processing if the
BREAK built-in is used in any trigger or if you use the Help->Debug command from the Form Builder
menu.

To invoke debug mode on non-Windows platforms, you must use the debug runform executable:
ifdbg60 module=myform userid=scott/tiger debug=YES

Option Name Run in Debug Mode
Default NO

Debug (Forms Runtime) examples

ifdbg60 module=myform userid=scott/tiger debug=YES

484

Debug_Messages (Forms Runtime)

Description

Debug_Messages displays ongoing messages about trigger execution while the form runs.
Default NO

Debug_Messages (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger debug_messages=YES

485

Help (Forms Runtime)

Description

Invokes the Form Builder help screen.

Option Name Show Help Information
Default NO

Help (Forms Runtime) examples

ifrun60 help=YES

486

Interactive (Forms Runtime)

Description

Interactive specifies that, when you are using a keyscript file as input, Form Builder will display the
output on the terminal screen (i.e., run interactively) as well as print the output to a file. Use
Interactive=NO to suppress screen output when running forms in batch mode.

This parameter applies to character-mode terminals only.

Note: You must use the Keyin and Output_File parameters whenever you use Interactive. The Keyin file
specifies the input, or keyscript, file; Output_File specifies the output, or display log, file.

Option Name Write Output to Display
Default YES

Interactive (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger keyin=myfile.key
output_file=mydisplay.out interactive=NO

487

Keyin (Forms Runtime)

Description

Allows you to read a keyscript file into a form as input. The keyscript file starts, executes, and ends the
Forms Runtime session.

The file name specified is the input, or keyscript, file.

By default, Form Builder performs all actions on the terminal screen. If you want to suppress screen
output, specify Interactive=NO and use Output_File to specify the output file.

This parameter applies to character-mode terminals only.

Option Name Read Input Keystrokes from File

Keyin (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger keyin=myfile.key

488

Keyout (Forms Runtime)

Description

Captures in a keyscript file the keystrokes involved during the Forms Runtime session. The keyscript file
includes the keystrokes involved in navigating within a form, invoking functions, and performing
transactions.

The file name specifies the output, or keyscript, file.

This parameter applies to character-mode terminals only.

Option Name Write Input Keystrokes to File

Keyout (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger keyout=newfile.key

489

Logon_Screen (Forms Runtime)

Description

Forces the logon screen to display if you have not entered the password. Do not specify a username and
password when you use Logon_Screen (Form Builder will ignore it if you do).

Use Logon_Screen when you do not want to type your password on the command line (where it is
visible).

Option Name Display Screen to Specify Logon
Default NO

Logon_Screen (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger logon_screen=YES

490

Optimize SQL Processing (Forms Runtime)

Description

Specifies that Form Builder is to optimize SQL statement processing in V2-style triggers by sharing
database cursors.

By default, Form Builder assigns a separate database cursor for each SQL statement that a form executes
explicitly in a V2 trigger. This behavior enhances processing because the statements in each cursor need
to be parsed only the first time they are executed in a Forms Runtime session¾not every time.

When you specify OptimizeSQL=NO, Form Builder assigns a single cursor for all SQL statements in V2
triggers. These statements share, or reuse, that cursor. This behavior saves memory, but slows
processing because the SQL statements must be parsed every time they are executed.

You can fine-tune this behavior through the New Cursor Area trigger step characteristic. If a trigger step
that contains a SQL statement has this characteristic turned on, Form Builder assigns a separate cursor to
the statement, in effect overriding the OptimizeSQL parameter for that statement.

Note: OptimizeSQL has no effect on statements in PL/SQL triggers.
Option Name Optimize V2-Style trigger Step SQL Processing
optimizesql
Default YES

Optimize SQL Processing (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger optimizesql=NO

491

Optimize Transaction Mode Processing (Forms Runtime)

Description

Optimizes transaction mode processing.

By default, Form Builder assigns a separate database cursor for each SQL statement that a form executes
implicitly as part of posting or querying data. This behavior enhances processing because the statements
in each cursor are parsed only the first time they are executed in a Forms Runtime session, not every
time.

Note that the cursors that are assigned to query SELECT statements must be parsed every time they are
executed. This exception exists because queries can vary from execution to execution.

When you specify OptimizeTP=NO, Form Builder assigns a separate cursor only for each query
SELECT statement. All other implicit SQL statements share, or reuse, cursors. This behavior saves
memory but slows processing because all INSERT, UPDATE, DELETE, and SELECT FOR UPDATE
statements must be parsed every time they are executed.

Option Name Optimize Transaction Mode Processing optimizetp
Default YES

Optimize Transaction Mode Processing (Forms Runtime) restrictions

The OptimizeTP parameter has no effect if you replace standard Form Builder processing with On-
Insert, On-Update, and On-Delete triggers because these triggers replace the implicit issuance of
INSERT, UPDATE, and DELETE statements.

Optimize Transaction Mode Processing (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger optimizetp=NO

492

Options_Screen (Forms Runtime)

Description

Displays the Options window.

This parameter applies on GUI displays only.
Default NO

Options_Screen (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger options_screen=YES

493

Output_File (Forms Runtime)

Description

Captures the terminal output for a form in a display log file, as well as displaying it on the screen. If you
want to suppress screen output, use Interactive=NO and then specify an Output_File.

This parameter applies to character-mode terminals only.

Note: You must use the Keyin parameter whenever you use Output_File. The Keyin file specifies the
input, or keyscript, file; Output_File specifies the output, or display log, file.

Option Name Write Output to File

Output_File (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger keyin=myfile.key
output_file=mydisplay.out

494

PECS (Forms Runtime)

Description

Runs a form with Performance Event Collection Services (PECS) enabled.

PECS is a performance measurement tool you can use to perform the following tasks:

• Measure resource usage (CPU time per event or transactions processed per hour) of Form Builder or
application-specific events

• Locate performance problems (elapsed time per event)

• Measure object coverage (whether a specific object, such as a trigger, alert, or window, is visited
during test execution)

• Measure line-by-line coverage (for PL/SQL code in triggers and procedures)

The PECS option can be set to ON, OFF, or FULL:
For object coverage, set PECS=ON

• For object coverage and line coverage:
Compile with Debug=ON
Run with PECS=FULL
The default is PECS=OFF

To use PECS on non-Windows platforms, you must use the debug runform executable:
ifdbg60 module=myform userid=scott/tiger PECS=ON
Default: OFF

PECS (Forms Runtime) examples

ifdbg60 module=myform userid=scott/tiger PECS=ON

495

Query_Only (Forms Runtime)

Description

Invokes the form in query-only mode. Setting this option to On is equivalent to using the
CALL_FORM(query_only) built-in.

Preference Name Query Only Mode
Default NO

Query_Only (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger query_only=YES

496

Quiet (Forms Runtime)

Description

Invokes the quiet mode for the Forms Runtime session. In quiet mode, messages do not produce an
audible beep. You can explicitly ring the bell from a trigger by way of a call to the BELL built-in. The
default of quiet=NO means that the bell rings. To turn off the bell, set quiet=YES.

Option Name Run in Quiet Mode
Default NO

Quiet (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger quiet=YES

497

Statistics (Forms Runtime)

Description

Displays a message at the end of the session that states the maximum number of simultaneous cursors
that were used during the session. This message appears on the terminal screen, not on the message line.

This option also issues the following command to the database:
ALTER SESSION SET SQL_TRACE TRUE

This command enables the SQL trace facility for the current session, displaying the trace file directory on
the server. For more information on this facility¾which gathers database performance information¾refer
to the Oracle RDBMS Performance Tuning Guide .

If you are running a form within Form Builder and you want to use this feature, activate the Statistics
Forms Runtime option.

Option Name Show Statistics
Default NO

Statistics (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger statistics=YES

498

Term (Forms Runtime)

Description

Specifies a mapping other than the default mapping for the current device and product:
resfile The file name specified is the name of your Oracle
Terminal resource file. If you do not specify resfile, Form
Builder defaults to a file name that is platform-specific, but
begins with "FMR" on most platforms. For example, the Microsoft
Windows default file is FMRUSW.

resfile The file name specified is the name of your Oracle Terminal resource file.
If you do not specify resfile, Form Builder defaults to a file name that is
platform-specific, but begins with “FMR” on most platforms. For example,
the Microsoft Windows default file is FMRUSW.

mymapping The mapping name specified is the mapping you want to use for this Form
Builder session.

Note: You or the DBA define mappings with Oracle Terminal. For more information on resource files,
refer to the Form Builder documentation for your operating system.

When running forms on the web use only the resfile argument to specify the full path of the resource file
to be used.

Option Name Oracle Terminal Resource File

Term (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger@<alias>
term=resfile:mymapping

When running a form on the web use:
serverargs="myform.fmx scott/tiger@<alias>
term=c:\formdir\resfile.res"

499

Window_State (Forms Runtime)

Description

Sets the size of the MDI application window at the beginning of Forms Runtime.

When set to MAXIMIZE, the MDI application window is maximized at the beginning of a Forms
Runtime session. When set to MINIMIZE, the MDI application window is minimized at the beginning
of a Forms Runtime session. The NORMAL setting starts up an MDI application window that is normal
size.

Option Name Window State
Default NORMAL

Window_State (Forms Runtime) restrictions

Valid only on Microsoft Windows. Not supported for forms running from the web.

Window_State (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger window_state=MAXIMIZE

500

Setting Form Compiler Options

Form Compiler options specify Form Builder default behavior during a Form Compiler session. Some of
these options apply to file generation during development, for running and testing forms; other options
apply only when you are converting files from earlier versions to Version 6.0.

You can set Form Compiler options in two ways:

• Set options in the "Form Compiler Options" dialog box.

• Pass parameters to Form Builder on the command line when you invoke Form Compiler.

The following chart lists the Form Compiler options from the "Form Compiler Options" window and
their corresponding keyword parameters. For information on a specific Form Compiler option, see the
corresponding parameter in the alphabetical list that follows the chart.

In the alphabetical list of Form Compiler parameters, the following information is shown for each
parameter:

• example, showing the parameter set to a value other than its default

• relevant module type: Form, Menu, Library, or All

• description

• default

If you enter these keyword parameters as command line options, you can enter more than one at a time,
in any order:

ifcmp60 module=myform userid=scott/tiger batch=YES
statistics=YES

Option Name Keyword Parameter

File Module

Userid/Password Userid

Module type is Form, Menu, or Library Module_Type

Module access is File or Database Module_Access

Compile in Debug mode Debug

Show statistics Statistics

Logon to the database Logon

Write output to file Output_File

Write script file Script

Delete module from database Delete

Insert module into database Insert

Extract module from database into file Extract

501

Upgrade 3.0 Form or 5.0 Menu to 4.5 Module Upgrade

Upgrade SQL*Menu 5.0 table privileges Upgrade_Roles

Version to upgrade Version

CRT file to use when upgrading CRT_File

Compile a runform/runmenu file when upgrading Build

Add key-up and down triggers when upgrading Add_Triggers

Add NOFAIL to exemacro steps when upgrading Nofail

Show help information Help

Options_Screen Options_Screen*

Batch Batch*

*Use from command line only; not available from the Form Compiler Options dialog.

502

Add_Triggers (Form Compiler)

Description

Indicates whether to add key-up and key-down triggers when upgrading from Forms 2.0 or 2.3 to 4.0
wherever KEY-PRVREC and KEY-NXTREC triggers existed.

Module: Form
Default NO

Add_Triggers (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=yes version=23
add_triggers=YES

503

Batch (Form Compiler)

Description

Suppresses interactive messages; use when performing a batch generation.

Module: Form
Default NO

Batch (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger batch=YES

504

Build (Form Compiler)

Description

Use the Build option in conjunction with Upgrade. Form Builder creates two files when you specify
upgrade=YES and omit build, thus accepting the default of build=YES:

• an upgraded binary design module (.FMB or .MMB file)

• an upgraded Forms Runtime executable module (.FMX or .MMX file)

If you do not want to automatically create the Forms Runtime module, specify build=NO.

Module: Form, Menu
Default YES

Build (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=YES build=NO

505

Compile_All (Form Compiler)

Description

Compiles the program units within the specified module.

Note: The output file will be placed in the current directory unless you specify a different location using
Output_File.

Module: Form, Menu, Library
Default NO

Compile_All (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger compile_all=YES

506

CRT_File (Form Compiler)

Description

Indicates CRT file to use when upgrading from SQL*Forms Version 2.0 or 2.3.

Module: Form

CRT_File (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=yes version=20
crt_file=myfile.crt

507

Debug (Form Compiler)

Description

Creates a debug-capable form.

The debug Form Compiler option creates entries in your .FMX file used by the runtime source-level
debugger, so set debug=yes for Form Compiler whenever you plan to set debug=yes for runtime.

Option Name Compile in Debug Mode

Default NO

Debug (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger debug=yes

508

Delete (Form Compiler)

Description

Deletes the module directly from the database.

Module: All
Default NO

Delete (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger delete=YES

509

Extract (Form Compiler)

Description

Extracts the module from the database into a file with the same module name.

Module: All
Default NO

Extract (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger extract=YES

510

Help (Form Compiler)

Description

Invokes the Form Builder help screen.

Module: All
Default NO

Help (Form Compiler) examples

ifcmp60 help=YES

511

Insert (Form Compiler)

Description

Inserts a module directly into the database from the Form Compiler command line.

Module: All
Default NO

Usage Notes

The Insert option does not work in combination with the Upgrade option.

Insert (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger insert=YES

512

Logon (Form Compiler)

Description

Specifies whether Form Compiler should log on to the database. If the module contains any PL/SQL
code with table references, a connection will be required for generation.

Module: Form
Default YES

Logon (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger logon=NO

513

Module_Access (Form Compiler)

Description

Specifies whether you want to open and save modules to the file system or to the database.

Module: All
Default FILE

Module_Access (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger module_access=database

514

Module_Type (Form Compiler)

Description

Specifies module type for current module. By specifying Module_Type, you can have form, menu and
library modules with the same name.

Module: All
Default FORM

Module_Type (Form Compiler) examples

ifcmp60 module=orders userid=scott/tiger module_type=menu

515

Nofail (Form Compiler)

Description

Indicates whether to add the NOFAIL keyword to exemacro steps when upgrading from Forms 2.0 only.

Module: Form
Default NO

Nofail (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=yes version=20
nofail=YES

516

Options_Screen (Form Compiler)

Description

Invokes the Options window.

This parameter applies to GUI displays only.

Module: All
Default NO

Options_Screen (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger options_screen=YES

517

Output_File (Form Compiler)

Description

Specifies the file name for the generated file.

When used with upgrade=yes, output_file specifies:

• the complete name of the upgraded binary design module(.FMB,.MMB, or .PLL file)

Note: To specify the name of the generated library file, you must use Strip_Source in conjunction with
Output_File.

• the root name (without extension) of the upgraded Forms Runtime executable module (.FMX or
.MMX file)

When used with upgrade=yes and build=no, the file extension is ignored.

Module: All

Output_File (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=yes
output_file=myform.fmb

518

Parse (Form Compiler)

Description

Converts the text file format of a module (.FMT, .MMT, .PLD) to a binary format (.FMB, .MMB, .PLL).

This operation can also be done from within Form Builder by using the Convert command.

Module: All

Default NO

Parse (Form Compiler) examples

ifcmp60 module=myform parse=YES

519

Script (Form Compiler)

Description

Converts a binary file format (.FMB, .MMB, or .PLL) to a text format (.FMT, .MMT, or .PLD).

This operation can also be done within Form Builder by using the Convert command.

Module: All
Default NO

Script (Form Compiler) examples

ifcmp60 module=myform script=YES

520

Statistics (Form Compiler)

Description

Displays a message at the end of the session listing the number of various objects in the compiled form:

• Object Statistics: The number of alerts, editors, lists of values, procedures, record groups, canvases,
visual attributes, windows, and total number of objects.

• trigger Statistics: The number of form triggers, block triggers, item triggers, and total number of
triggers.

• Block Statistics: The number of blocks with Array Fetch ON, the average array fetch size, and the
total number of blocks.

• Item Statistics: The number of buttons, check boxes, display items, image items, list items, radio
groups, text items, user areas, and total number of items.

Module: Form
Default NO

Statistics (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger statistics=YES

521

Strip_Source (Form Compiler)

Description

Removes the source code from the library file and generates a library file that only contains pcode. The
resulting file can be used for final deployment, but cannot be subsequently edited in Form Builder.

When you use Strip_Source, you must specify an output file by using the Output_File (Forms Runtime)
parameter.

Module: Library
Default NO

Strip_Source (Form Compiler) examples

ifcmp60 module=old_lib.pll userid=scott/tiger strip_source=YES
output_file=new_lib.pll

522

Upgrade (Form Compiler)

Description

Upgrades modules from SQL*Forms 2.0, 2.3, or 3.0 to Form Builder 4.5, or from SQL*Menu 5.0 to an
Form Builder 4.5 menu module:

To upgrade from SQL*Forms 3.0 or SQL*Menu 5.0 to Form Builder 4.5, specify upgrade=yes and omit
version.

To upgrade from SQL*Forms 2.0, specify upgrade=yes and version=20.

To upgrade from SQL*Forms 2.3, specify upgrade=yes and version=23.

Module: Form, Menu
Default NO

Usage Notes

The Upgrade option does not work in combination with the Insert option.

Upgrade (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=YES

523

Upgrade_Roles (Form Compiler)

Description

Upgrades SQL*Menu 5.0 table privileges to Oracle8 database roles.

Note: Menu roles are independent of any specific menu application (no module name is specified). You
cannot specify upgrade=yes and upgrade_roles=yes in one run.

Module: none
Default NO

Upgrade_Roles (Form Compiler) examples

ifcmp60 userid=system/manager upgrade_roles=YES

524

Version (Form Compiler)

Description

Indicates version from which to upgrade. Use in conjunction with upgrade=yes to upgrade from version 2.3
(version=23) or version 2.0 (version=20).

To upgrade from version 3.0, specify upgrade=yes and omit the version parameter.

Module: Form

Default version=30

Version (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=yes version=23

525

Widen_Fields (Form Compiler)

Description

Use the Widen_Fields option in conjunction with Upgrade. When upgrading to Version 4.5, the bevels
on each field can cause the loss of up to one character per field. Specify this option when upgrading to
automatically add one character to the Display Width of each field. Note: This has no effect on the
maximum allowable data length.

This option is most useful for upgrading Form Builder 3.0 character-mode applications with a large
number of 1-6 character fields. The effects of the Widen_Fields option will depend on your interface
design, and should be tested carefully. Effects can include:

• Text items may overlap boilerplate text if space between fields is limited.

• If two fields are currently flush against each other, the Widen_Fields option will cause the fields to
overlap.

Module: Form
Default NO

Widen_Fields (Form Compiler) examples

ifcmp60 module=myform userid=scott/tiger upgrade=yes
widen_fields=YES

526

Setting Form Builder Preferences

Form Builder preferences specify Form Builder session default behavior. Choose Tools Preferences
in Form Builder to invoke the Preferences dialog box. To set options, click on the check boxes or fill in
file names for the options you choose.

The Preferences dialog box includes both Form Builder and Forms Runtime preferences.

Form Builder Preferences

You can set the following design options to specify the defaults for the current Form Builder session:

• Save Before Building

• Build Before Running

• Suppress Hints

• Run Module Asynchronously

• Use System Editor

• Module Access (File, Database, File/Database)

• Module Filter (Forms, Menus, Libraries, All)

• Printer

• Color Palette

• Color Mode

For information on a specific design option, see the alphabetical list that follows.

Runtime Options

You can set the following Runtime options to specify the defaults for forms that you run from Form
Builder:

• Buffer Records in File

• Debug Mode

• Array Processing

• Optimize SQL Processing

• Optimize Transaction Mode Processing

• Statistics

• Display Block Menu

• Query Only Mode

• Quiet Mode

Runtime options are listed earlier in this chapter.

Keyword Parameters

527

In addition to the options listed in the Options dialog, you can set these keyword parameters on the Form
Builder command line:

• Module_Type

• Module_Access

• Help

Setting Form Builder Options examples

ifbld60 module=orders userid=scott/tiger module_type=menu

528

Color Mode

Determines how an Form Builder color palette will be loaded on your system. Each time you load, open,
or create a form, Form Builder loads the Form Builder color palette into your current system color table.
Because this system color table can handle only a limited number of colors at once, Form Builder may
not be able to accurately modify multiple forms simultaneously if they use different color palettes. For
this reason, use the Read Only - Shared option except when you are actively modifying the Form Builder
color palette.

Color Mode options:

Editable Select Editable mode only when you want to change the Form Builder color
palette. Once you have changed the color palette, return to Read Only -
Shared mode. In Editable mode, each color has its own unique entry in the
current system color table, and if there is no more room in the table, the
color palette may refuse to load.

To change the Form Builder color palette:

• Change Color Mode to Editable and save your options (Tools ->
Preferences, General tab, Color Mode).

• Restart Form Builder.

• Use Formet -> Layout Options -> Color Palette to make changes to
the color palette (only when the Layout Editor is open).

• Use File -> Export -> Color Palette to save the Form Builder color
palette to a file (only when the Layout Editor is open).

• Change your options to use the new color file (Tools ->
Preferences, General tab, Color Palette).

• Change Color Mode back to Read Only - Shared and save your
options.

• Restart Form Builder.

Read Only-Shared In Read Only - Shared mode, Form Builder maps duplicate colors to the
same entry in the current system color table before appending new entries
from your Form Builder color palette. Read Only - Shared will help you
avoid the color flicker that can result when you switch between Form
Builder color palettes and is the recommended setting for Color Mode
unless you are modifying the palette.

Read Only-Private This option is provided for consistency with Graphics Builder, and is not
relevant for Form Builder. In Form Builder, it maps to Read Only -
Shared.

Default Read Only - Shared

529

Color Palette

Description

Specifies the name of the Form Builder color palette that is automatically loaded when you create a new
form. If this field is left blank, the Form Builder default color palette is loaded.

For more information about color palettes, refer to About Color Palettes.

530

Build Before Running

Description

Determines whether Form Builder automatically compiles the active module before running a form.
When Build Before Running is checked, Form Builder does the following when you issue the Program-
>Run Form command to run a specified form:

• builds the active form, menu, or library module to create an executable runfile having the same
name as the module
runs the .FMX file (form runfile) you specify in the Run dialog
box.

This option lets you avoid issuing separate Compile and Run commands each time you modify and then

run a form. However, this option does not save the module. You must issue the File Save command
to save the module, or check the Save Before Building preference.

Also, when the Build Before Running option is checked, Form Builder does not automatically compile
any menu or library modules attached to that form. You must compile menu and library modules
separately before running a form that references them.

Default: Off

531

Help (Form Builder)

Description

Invokes the Form Builder help screen.

Module: All
Default NO

Help (Form Builder) examples

ifbld60 help=YES

532

HTML File Name

Description

Specifies the HTML file to be used to run the form using the Web Previewer.

When you preview a form in the Web Previewer, a container HTML file is created dynamically with the
runtime options specified by preferences or by default. This file is sent to the Web Previewer to execute
your form. Enter the path and filename of a custom HTML file to supersede the one Form Builder
creates.

533

Access preference (Form Builder)

Description

Specifies whether to open and save modules to the file system or to the database.

This option can be set on the command line using the Module_Access parameter or within the Form
Builder Access tab of the Preferences dialog box.

The command line parameter establishes access on a one-time basis for the current Form Builder session.
On the command line, the Module_Access option can be set to file or database.

To set this option for future Form Builder sessions, use the Access preference (Tools->Preferences
Access tab) to change your Preferences file.

In the Module Access option, you can specify one of the following storage preferences for opening and
saving modules:

File Modules are loaded from and saved to the file system.

Database Modules are loaded from and saved to the database.

Ask Modules can be loaded from and saved to either the file system or the database. Form
Builder will prompt for the location of the file each time you perform these operations.

Module: All
Default FILE

Access preference (Form Builder) examples

ifbld60 module=myform userid=scott/tiger module_access=database

534

Module_Type (Form Builder)

Description

Specifies module type for current module. By specifying Module_Type, you can have form, menu and
library modules with the same name.

Module: All
Default FORM

Module_Type (Form Builder) examples

ifbld60 module=orders userid=scott/tiger module_type=menu

535

Printer

The name of the default printer. This name is operating-system dependent.

For more information about printers, refer to the Form Builder documentation for your operating system.

536

Run Modules Asynchronously

Determines whether forms that you run from Form Builder are executed synchronously or
asynchronously with respect to Form Builder itself:

• When Run Modules Asynchronously is Off, forms you run from Form Builder are synchronous.
That is, you cannot work in Form Builder until you exit the form.

• When Run Modules Asynchronously is On, forms you run from Form Builder are asynchronous, so
you can move back and forth between Form Builder and Forms Runtime.

When you run a form synchronously, Form Builder notifies you of any Forms Runtime startup errors that
occur by displaying an alert in Form Builder. When you run a form asynchronously, no such
communication between Forms Runtime and Form Builder occurs, and Forms Runtime startup errors are
not reported in Form Builder.

Default Off

537

Save Before Building

Determines whether Form Builder saves the current module automatically before it is built either when
you choose File->Administration->Compile File or when the form is built before running when the
Build Before Running preference is checked.

Default Off

538

Subclassing Path

Description

Specifies whether to save the path of an original object with the subclassed object.

Specify one of the following preferences for saving the path of original objects with subclassed objects:

Remove The path will be removed from the filename of the original object
referenced in the subclassed object.

Keep The subclassed object will reference the original object according to the
full path.

Ask Each time you subclass an object Form Builder will display a dialog box
prompting whether to remove or keep the path.

Default ASK

Notes

A subclassed object inherits property values from the original object and references the original object by
the file name of the form in which it is saved. The full path name of the form may be saved with the
subclassed object or only the filename. When the form containing the subclassed object is opened, Form
Builder looks for the file specified for the subclassed object. If the filename is specified without the path,
Form Builder looks in the current directory in which Form Builder was started.

539

Suppress Hints

Determines whether hints are suppressed from the message line as you work in Form Builder.
Default Off

540

Term (Form Builder)

Description

Specifies a mapping other than the default mapping for the current device and product:

resfile The file name specified is the name of your Oracle Terminal resource file.
If you do not specify resfile, Form Builder defaults to a file name that is
platform-specific, but begins with "FMR" on most platforms. For
example, the Microsoft Windows default file is FMRUSW.

mymapping The mapping name specified is the mapping you want to use for this Form
Builder session.

For more information on resource files, refer to the Form Builder documentation for your operating
system.

Note: You or the DBA define mappings with Oracle Terminal.

Term (Form Builder) examples

ifbld60 module=myform userid=scott/tiger term=resfile:mymapping

541

USESDI (Forms Runtime and Web Forms Runtime)

Description

Use single document interface (SDI) system of window management during a Forms Runtime or Web
Forms Runtime session.

There is no multiple document interface (MDI) root window. MDI toolbars exist in parent windows and
menus will be attached to each window.

Calls to the FORMS_MDI_WINDOW constant returns NULL as the MDI window handle when
usesdi=YES.

Option Name None
Default YES

Usage Notes:

SDI Forms are not native windows and you cannot navigate to the SDI window by using certain native
OS methods to access windows, such as Alt-TAB on Microsoft Windows.

USESDI (Forms Runtime) examples

ifrun60 module=myform userid=scott/tiger usesdi=YES

542

Use System Editor

Determines which editor Form Builder uses when you invoke an editor from a multi-line text item.
When Use System Editor is unchecked, Form Builder displays the default editor. When Use System
Editor is checked, Form Builder displays the default system editor defined on your system.

Note: If Use System Editor is checked and you are using an editor with a native document format, you
must save the document as ASCII text (with line breaks), instead of saving the document in that editor’s
format.

For more information about defining the default system editors, refer to the Form Builder documentation
for your operating system.

Default Off

543

User Preference File

Although the Preferences dialog box is the most convenient way to set preferences, you can also set them
directly in the preference file (usually called PREFS.ORA).

The preference file that enforces Form Builder options is automatically updated every time you change
your preferences. Form Builder reads the updated preference file when you start Form Builder. This file
contains keywords and settings that allow you to preset each of the Form Builder and Forms Runtime
options.

You can use any of the Form Builder or Forms Runtime keyword parameters listed in this chapter in a
user preference file. For example, to ensure that any form that you run from Form Builder runs in quiet
mode, you would include the following line in the user preference file:

FORMS.QUIET=ON

The preference file also allows you to preset a mapping for Form Builder. On most platforms, the
preference file must be named PREFS.ORA and must reside in the login directory.

If you start Form Builder with a command line parameter that specifies a preference setting or mapping,
the command line parameter overrides the setting in the preference file. Also, if a line in the preference
file contains an error, Form Builder ignores that line when it reads the file.

Syntax for Options

To preset a Form Builder or Forms Runtime option, include the appropriate keyword and setting in the
preference file, just as you would on the command line. Use the following syntax:

KEYWORD = {ON | OFF | STRING}

For a list of keywords and appropriate values, save your preferences, then examine the current contents
of your PREFS.ORA file.

544

Welcome Dialog

Description

Determines whether the welcome screen is displayed when Form Builder is started.

When checked, the welcome screen will be displayed when Form Builder is started. When unchecked,
Form Builder starts with a new, blank module called module1.

Default ON

545

Welcome Pages

Description

Determines whether the welcome page for a specific wizard is displayed when the wizard is invoked.

When checked, the welcome page will be displayed when the wizard is started. When unchecked, the
wizard does not display the welcome page.

Applies to

Data Block Wizard

LOV Wizard

Layout Wizard

Chart Wizard
Default ON

546

Properties

What are properties?

Each object in a Form Builder application possesses characteristics known as properties. An object’s
properties determine its appearance and functionality.

About setting and modifying properties

Each property description includes a Set heading that describes how you can set the property; either
declaratively in Form Builder (using the Property Palette), programmatically at runtime, or both.

Setting Properties Programmatically

To dynamically modify object properties programmatically, use the following Form Builder built-ins
subprograms:

• SET_APPLICATION_PROPERTY

• SET_BLOCK_PROPERTY

• SET_CANVAS_PROPERTY

• SET_FORM_PROPERTY

• SET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_LOV_PROPERTY

• SET_MENU_ITEM_PROPERTY

• SET_PARAMETER_ATTR

• SET_RADIO_BUTTON_PROPERTY

• SET_RECORD_PROPERTY

• SET_RELATION_PROPERTY

• SET_REPORT_OBJECT_PROPERTY

• SET_TAB_PAGE_PROPERTY

• SET_VIEW_PROPERTY

• SET_WINDOW_PROPERTY

You can programmatically determine the settings of most properties by using the set of corresponding
built-ins to get properties (e.g., GET_ITEM_PROPERTY).

547

Reading property descriptions

Description

The property descriptions follow a general pattern. The property name is printed in a bold typeface and
is followed by a brief description.

The headings in the following table are included for those properties to which they apply.

Heading Description

Applies to The object class or classes for which this property is
meaningful.

Set Where you can set the property: in Form Builder (using
the Property Palette), programmatically at runtime, or
both.

Refer to Built-in Built-in(s) you can use to set the property, if you can set
the property programmatically.

Default The default value of the property.

Required/Optional Whether the property is required or optional.

Restrictions: Any restrictions potentially affecting usage of the
property.

Usage Notes Any particular usage considerations you should keep in
mind when using the property.

548

About Control property

Description

For ActiveX (OCX) control items in the layout editor. Provides a link to an about screen describing the
current OCX control.

Applies to ActiveX items

Set Form Builder

Required/Optional optional

549

Access Key property

Description

Specifies the character that will be used as the access key, allowing the operator to select or execute an
item by pressing a key combination, such as Alt-C.

The access key character is displayed with an underscore in the item label.

For example, assume that Push_Button1’s label is "Commit" and the access key is defined as "c". When
the operator presses Alt-C (on Microsoft Windows), Form Builder executes the "Commit" command.

Applies to button, radio button, and check box

Set Form Builder

Default

No

Required/Optional Optional

Usage Notes

• When the operator initiates an action via an access key, any triggers associated with the action fire.
For example, assume that Push_Button1 has an access key assigned to it. Assume also that there is
a When-Button-Pressed trigger associated with Push_Button1. When the operator presses the
access key, the When-Button-Pressed trigger fires for Push_Button1.

Access Key restrictions

• Buttons with the Iconic property set to Yes cannot have an access key.

550

Alert Style property

Description

Specifies the alert style: caution, warning, or informational. On GUI platforms, the alert style determines
which bitmap icon is displayed in the alert.

Applies to alert

Set Form Builder

Default

warning

551

Alias property

Description

Establishes an alias for the table that the data block is associated with.

Applies to table/columns associated with a data block

Set Form Builder

Default

The Data Block wizard sets the Alias property to the first letter of the table name. (For example, a table
named DEPT would have a default alias of D.)

Required/Optional required for Oracle8 tables that contain column objects or REFs

Usage Notes

For Oracle8 tables, SELECT statements that include column objects or REF columns must identify both
the table name and its alias, and must qualify the column name by using that alias as a prefix.

For example:
 CREATE TYPE ADDRESS_TYPE AS OBJECT
 (STREET VARCHAR2(30),
 CITY VARCHAR2(30),
 STATE VARCHAR2(2));
 CREATE TABLE EMP
 (EMPNO NUMBER,
 ADDRESS ADDRESS_TYPE);

If the alias for this EMP table were E, then a SELECT statement would need to be qualified as follows:
 SELECT EMPNO, E.ADDRESS.CITY FROM EMP E;

In this case, the alias is E. The column object ADDRESS.CITY is qualified with that alias, and the alias
is also given after the table name. (The column EMPNO, which is a normal relational column, requires
no such qualification.)

In most situations, Form Builder will handle this alias naming for you. It will establish an alias name at
design-time, and then automatically use the qualified name at runtime when it fetches the data from the
Oracle8 Server. You only need to concern yourself with this alias naming if you are doing such things as
coding a block WHERE clause.

552

Allow Expansion property

Description

Specifies whether Form Builder can automatically expand a frame when the contents of the frame extend
beyond the frame’s borders.

Applies to frame

Set Form Builder

Default

Yes

Required/Optional required

553

Allow Empty Branches property

Description

Specifies whether branch nodes may exist with no children. If set to FALSE, branch nodes with no
children will be converted to leaf nodes. If set to TRUE, an empty branch will be displayed as a
collapsed node.

Applies to hierarchical tree

Set Form Builder, programmatically

Default

False

Required/Optional required

554

Allow Multi-Line Prompts property

Description

Specifies whether Form Builder can conserve space within a frame by splitting a prompt into multiple
lines. Prompts can only span two lines.

Applies to frame

Set Form Builder

Default

Yes

Required/Optional required

555

Allow Start-Attached Prompts property

Description

Specifies whether space usage can be optimized when arranging items in tablular-style frames.

By default, this property is set to No, and prompts are attached to the item’s top edge. Setting Allow
Start-Attached Prompts to Yes allows you to attach prompts to the item’s start edge if there is enough
space.

Applies to frame

Set Form Builder

Default

No

Required/Optional required

556

Allow Top-Attached Prompts property

Description

Specifies whether space usage can be optimized when arranging items in form-style frames.

By default, this property is set to No, and prompts are attached to the item’s start edge. Setting Allow
Top-Attached Prompts to Yes allows you to attach prompts to the item’s top edge if there is enough
space.

Applies to frame

Set Form Builder

Default

No

Required/Optional required

557

Application Instance property

Description

Specifies a reference to an instance of an application on the Microsoft Windows platform. Other
platforms always return the NULL value.

Applies to form, block, or item

Refer to Built-in

GET_APPLICATION_PROPERTY

Default

NULL

Usage Notes

Specify the APPLICATION_INSTANCE property in GET_APPLICATION_PROPERTY to obtain the
pointer value of an instance handle. To use the instance handle when calling the Windows API, this
pointer value must be converted with TO_PLS_INTEGER.

Application Instance restrictions

Valid only on Microsoft Windows (Returns NULL on other platforms).

558

Arrow Style property

Description

Specifies the arrow style of the line as None, Start, End, Both ends, Middle to Start, or Middle to End.

Applies to graphic line

Set Form Builder

Default

None

Required/Optional required

559

Associated Menus property

Description

Indicates the name of the individual menu in the module with which the parameter is associated. When
the operator navigates to a menu that has an associated parameter, Form Builder prompts the operator to
enter a value in the Enter Parameter Values dialog box.

Applies to menu parameter

Set Form Builder

Required/Optional optional

Associated Menus restrictions

Applies only to full-screen menus.

560

Audio Channels property

Description

Specifies the number of channels with which the sound item will be stored in the database: either
Automatic, Mono, or Stereo.

When you use the or WRITE_SOUND_FILE built-in subprogram to write sound data to the filesystem,
use the channels parameter to control the number of channels with which the sound data will be written
to the filesystem.

Applies to sound item

Set Form Builder, programmatically

Refer to Built-in

• WRITE_SOUND_FILE

Default

Automatic

Required/Optional required

561

Automatic Column Width property

Description

Specifies whether LOV column width is set automatically.

• When Automatic Column Width is set to Yes, the width of each column is set automatically to the
greater of the two following settings:

the width specified by the Display Width property

or

the width necessary to display the column’s title as specified in the Column Title property.

• When Automatic Column Width is set to No, the width of each column is set to the value specified
by the Display Width property.

Applies to LOV

Set Form Builder

Default

No

562

Automatic Display property

Description

Specifies whether Form Builder displays the LOV automatically when the operator or the application
navigates into a text item to which the LOV is attached.

Applies to LOV

Set Form Builder

Default

No

563

Automatic Position property

Description

Specifies whether Form Builder automatically positions the LOV near the field from which it was
invoked.

Applies to LOV

Set Form Builder

Default

No

564

Automatic Query property

Description

See Coordination.

565

Automatic Refresh property

Description

Determines whether Form Builder re-executes the query to populate an LOV that is based on a query
record group. By default, Form Builder executes the query to populate an LOV’s underlying record
group whenever the LOV is invoked; that is, whenever the LOV is displayed, or whenever Form Builder
validates a text item that has the Use LOV for Validation property set to Yes.

• When Automatic Refresh is set to Yes (the default), Form Builder executes the query each time the
LOV is invoked. This behavior ensures that the LOV’s underlying record group contains the most
recent database values.

• When Automatic Refresh is set to No, Form Builder executes the query only if the LOV’s underlying
record group is not flagged as having been populated by a query that occurred because this or any
other LOV was invoked. (Remember that more than one LOV can be based on the same record
group.) If the LOV’s underlying record group has already been populated as a result of an LOV
displaying, Form Builder does not re-execute the query, but instead displays the LOV using the
records currently stored in the record group.

The Automatic Refresh property also determines how long records retrieved by the query remain stored
in the underlying record group:

• When Automatic Refresh is set to Yes, records returned by the query are stored in the underlying
record group only as long as the LOV is needed. Once the operator dismisses the LOV, or
validation is completed, the record cache is destroyed.

• When Automatic Refresh is set to No, records from the initial query remain stored in the LOV’s
underlying record group until they are removed or replaced. You can manipulate these records
programmatically. For example, you can explicitly replace the records in an LOV’s underlying
record group by calling the POPULATE_GROUP built-in. Other record group built-ins allow you
to get and set the values of cells in a record group.

Applies to LOV

Set Form Builder, programmatically

Refer to Built-in

• GET_LOV_PROPERTY

• SET_LOV_PROPERTY

Default

Yes

Usage Notes

• When multiple LOVs are based on the same record group, it is usually appropriate to use the same
Automatic Refresh setting for each one. This is not, however, a strict requirement; the following
scenario describes refresh behavior when one LOV has Automatic Refresh set to Yes and another
has Automatic Refresh set to No.

566

LOV1 and LOV2 are based on the same record group; LOV1 has Automatic Refresh set to Yes, LOV2
has Automatic Refresh set to No. When LOV1 is invoked, Form Builder executes the query to
populate the underlying record group. When the operator dismisses LOV1, Form Builder destroys the
record cache, and clears the record group.

When LOV2 is subsequently invoked, Form Builder again executes the query to populate the record
group, even though LOV2 has Automatic Refresh set to No. Because LOV2’s underlying record group
was cleared when LOV1 was dismissed, Form Builder does not consider it to have been queried by an
LOV invocation, and so re-executes the query.

If, on the other hand, both LOV1 and LOV2 had Automatic Refresh set to No, Form Builder would
execute the query when LOV1 was invoked, but would not re-execute the query for LOV2. This is
true even if the initial query returned no rows.

• When Automatic Refresh is set to No, you can programmatically replace the rows that were returned
by the initial query with POPULATE_GROUP. Form Builder ignores this operation when deciding
whether to re-execute the query. (Form Builder looks only at the internal flag that indicates whether
a query has occurred, not at the actual rows returned by that query.)

Automatic Refresh restrictions

Valid only for an LOV based on a query record group, rather than a static or non-query record group.

567

Automatic Select property

Description

Specifies what happens when an LOV has been invoked and the user reduces the list to a single choice
when using auto-reduction or searching:

• When Automatic Confirm is set to Yes, the LOV is dismissed automatically and column values from
the single row are assigned to their corresponding return items.

• When Automatic Confirm is set to No, the LOV remains displayed, giving the operator the option to
explicitly select the remaining choice or dismiss the LOV.

Applies to LOV

Set Form Builder

Default

No

568

Automatic Skip (Item) property

Description

Moves the cursor to the next navigable item when adding or changing data in the last character of the
current item. The last character is defined by the Maximum Length property.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Usage Notes

Combine the Automatic Skip property with the Fixed Length property to move the cursor to the next
applicable text item when an operator enters the last required character.

Automatic Skip (Item) restrictions

• Valid only for single-line text items.

• The Key-NXT-ITEM trigger does not fire when the cursor moves as a result of this property. This
behavior is consistent with the fact that the operator did not press [Next Item].

569

Automatic Skip (LOV) property

Description

Moves the cursor to the next navigable item when the operator makes a selection from an LOV to a text
item. When Automatic Skip is set to No, the focus remains in the text item after the operator makes a
selection from the LOV.

Applies to LOV

Set Form Builder, programmatically

Refer to Built-in

SET_ITEM_PROPERTY

Default

No

Automatic Skip (LOV) restrictions

• The Key-NXT-ITEM trigger does not fire when the cursor moves as a result of this property. This
behavior is consistent with the fact that the operator did not press [Next Item].

570

Background_Color property

Description

Specifies the color of the object’s background region.

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

571

Bevel property

Description

Specifies the appearance of the object border, either RAISED, LOWERED, INSET, OUTSET, or
NONE. Can also be set programmatically at the item instance level to indicate the property is unspecified
at this level. That is, if you set this property programmatically at the item instance level using
SET_ITEM_INSTANCE_PROPERTY, the border bevel is determined by the item-level value specified
at design-time or by SET_ITEM_PROPERTY at runtime.

Applies to chart item, image item, custom item, stacked canvases, text items (Microsoft Windows only)

Set Form Builder, programmatically [BORDER_BEVEL]

Refer to Built-in

• GET_ITEM_INSTANCE_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_ITEM_PROPERTY

Default

LOWERED

Usage Notes

• To create a scrolling window, the Bevel property should be set to RAISED or LOWERED.

Bevel restrictions

• On window managers that do not support beveling, the RAISED, LOWERED, and NONE options
are equivalent, and simply specify that the item should have a border.

• If the item’s Bevel property is set to None in Form Builder, you cannot set BORDER_BEVEL
programmatically.

• You cannot programmatically set BORDER_BEVEL to NONE.

572

Block Description property

Description

See Listed in Block Menu/Block Description.

573

Bottom Title (Editor) property

Description

Specifies a title of up to 72 characters to appear at the bottom of the editor window.

Applies to editor

Set Form Builder

Required/Optional optional

574

Bounding Box Scalable property

Description

Specifies whether the text object’s bounding box should be scaled when the text object is scaled.

Applies to graphic text

Set Form Builder

Default

Yes

Required/Optional required

575

Builtin_Date_Format property

Description

This property establishes the format mask used in converting a date value to or from a string that is not
potentially visible to the end user. This format mask is most commonly used when executing a built-in
subprogram.

Applies to application (global value)

Set programmatically

Refer to Built-in

• GET_APPLICATION_PROPERTY built-in

• SET_APPLICATION_PROPERTY built-in

Required/Optional optional. However, it is STRONGLY RECOMMENDED that, for a new
application, you set this property to a format mask containing full century and time information. It is
also recommended that this format mask be the same as the one specified in the
PLSQL_DATE_FORMAT property .

Default

As noted above, it is strongly recommended that you explicitly set this value for a new application.
However, if you do not, the default value used will depend on the context.

Forms first determines whether the item is a DATE2, DATE4, or DATETIME object, and then tries a
series of format masks accordingly. (These default masks are used for compatibility with prior releases.)

Object types are determined as shown in the following table:

Date object Type

Item of datatype DATETIME DATETIME

Item of datatype DATE:

…having a format mask that contains yyyy,
YYYY, rrrr, or RRRR

DATE4

…having a format mask that does not
contain yyyy, YYYY, rrrr, or RRRR

DATE2

…not having a format mask, and its length
(Maximum Length) is 10 or more

DATE4

…not having a format mask, and its length
(Maximum Length) is 9 or less

DATE2

Parameter (as in :PARAMETER.myparam)
of datatype DATE. (Note that there are no
DATETIME parameters, and that a
parameter's Maximum Length property
applies only to CHAR parameters.)

DATE2

LOV column of datatype DATE. (Note that DATE2

576

there are no DATETIME LOV columns.)

Internal value of system variables
CURRENT_DATETIME and
EFFECTIVE_DATE

DATETIME

After determining the object type of the item to be converted, Forms uses one of the masks listed below.
There are two sets of masks -- one set for YY operations, and another set for RR operations.

For a date-to-string operation, only the first (primary) format mask is used. For a string-to-date
operation, Form Builder first tries the first/primary format mask. If that conversion is unsuccessful, it
tries the other (secondary) masks, in the order shown

For YY:

Object Type Format Masks Used

DATE2 DD-MON-YY

DD-MM-SYYYY HH24:MI:SS

DATE4 DD-MON-YYYY

DD-MM-SYYYY HH24:MI:SS

DATETIME DD-MON-YYYY HH24:MI:SS

DD-MON-YYYY HH24:MI

DD-MM-SYYYY HH24:MI:SS

For RR:

Object Type Format Masks Used

DATE2 DD-MON-RR

DD-MM-SYYYY HH24:MI:SS

DATE4 DD-MON-RRRR

DD-MM-SYYYY HH24:MI:SS

DATETIME DD-MON-RRRR HH24:MI:SS

DD-MON-RRRR HH24:MI

DD-MM-SYYYY HH24:MI:SS

577

Button 1 Label, Button 2 Label, Button 3 Label
properties

Description

Specifies the text labels for the three available alert buttons.

Applies to alert

Set Form Builder, programmatically

Refer to Built-in

SET_ALERT_BUTTON_PROPERTY

Required/Optional At least one button must have a label.

Default

Button 1 Label: OK, Button 2 Label: Cancel, Button 3 Label: NULL

578

Calculation Mode property

Description

Specifies the method of computing the value of a calculated item. Valid values are:

None The default. Indicates the item is not a calculated item.

Formula Indicates the item’s value will be calculated as the result of a user-written
formula. You must enter a single PL/SQL expression for an item’s formula.
The expression can compute a value, and also can call a Form Builder or
user-written subprogram.

Summary Indicates the item’s value will be calculated as the result of a summary
operation on a single form item. You must specify the summary type, and
the item to be summarized.

Applies to item

Set Form Builder

Required/Optional optional

Default

None

579

Calling_Form property

Description

Specifies the name of the calling form, as indicated by the form module Name property.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Default

NULL

Usage Notes

Only valid in a called form; that is, a form that was invoked from a calling form by the execution of the
CALL_FORM built-in procedure.

580

Canvas property

Description

Specifies the canvas on which you want the item to be displayed.

Applies to item

Set Form Builder

Default

The item’s current canvas assignment.

Required/Optional optional

Usage Notes

• Items are assigned to a specific canvas, which in turn is assigned to a specific window.

• If you leave the Canvas property blank, the item is a NULL-canvas item; that is, an item that is not
assigned to any canvas and so cannot be displayed in the Form Editor or at runtime.

• If you change the name of a canvas in the Form Builder, Form Builder automatically updates the
Canvas property for all items assigned to that canvas.

Canvas restrictions

The canvas specified must already exist in the form.

581

Canvas Type property

Description

Specifies the type of canvas, either Content, Stacked, Vertical Toolbar Canvas, or Horizontal Toolbar
Canvas. The type determines how the canvas is displayed in the window to which it is assigned, and
determines which properties make sense for the canvas.

Content The default. Specifies that the canvas should occupy the entire content area
of the window to which it is assigned. Most canvases are content canvases.

Stacked Specifies that the canvas should be displayed in its window at the same time
as the window’s content canvas. Stacked views are usually displayed
programmatically and overlay some portion of the content view displayed
in the same window.

Vertical Toolbar Canvas Specifies that the canvas should be displayed as a vertical toolbar under the
menu bar of the window. You can define iconic buttons, pop-lists, and other
items on the toolbar as desired.

Horizontal Toolbar
Canvas

Specifies that the canvas should be displayed as a horizontal toolbar at the
left side of the window to which it is assigned.

Applies to canvas

Set Form Builder

Default

Content

Usage Notes

In the Property Palette, the properties listed under the Stacked View heading are valid only for a canvas
with the Canvas Type property set to Stacked.

582

Cap Style property

Description

Specifies the cap style of the graphic object’s edge as either Butt, Round, or Projecting.

Applies to graphic physical

Set Form Builder

Default

Butt

Required/Optional required

583

Case Insensitive Query property

Description

Determines whether the operator can perform case-insensitive queries on the text item.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Usage Notes

Case-insensitive queries are optimized to take advantage of an index. For example, assume you perform
the following steps:

• Create an index on the EMP table.

• Set the Case Insensitive Query property on ENAME to Yes.

• In Enter Query mode, enter the name ’BLAKE’ into :ENAME.

• Execute the query.

Form Builder constructs the following statement:
SELECT * FROM EMP WHERE UPPER(ENAME) = ’BLAKE’ AND
 (ENAME LIKE ’Bl%’ OR ENAME LIKE ’bL%’ OR
 ENAME LIKE ’BL%’ OR ENAME LIKE ’bl%’);

The last part of the WHERE clause is performed first, making use of the index. Once the database finds
an entry that begins with bl, it checks the UPPER(ENAME) = ’BLAKE’ part of the statement, and makes
the exact match.

Case Insensitive Query restrictions

If you set this property to Yes, queries may take longer to execute.

584

Case Restriction property

Description

Specifies the case for text entered in the text item or menu substitution parameter. The allowable values
for this property are as follows:

Value Result

MIXED Text appears as typed.

UPPER Lower case text converted to upper case as it is typed.

LOWER Upper case text converted to lower case as it is typed.

 Applies to text item, menu substitution parameters

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM _PROPERTY

Case Restriction restrictions

• Values assigned to the text item through triggers are not effected.

• Case Restriction governs the display of all strings, whether they are entered by an operator or
assigned programmatically, because Case Restriction serves as both an input and output format
mask enforced by the user interface.

If you programmatically assign string values that conflict with the setting for Case Restriction, you will
not see the effect in the text item because its display will be forced to conform to the current setting of
Case Restriction. This also means that if data that violates the Case Restriction setting is queried into
or programmatically assigned to an item, then what the end user sees on the screen may differ from the
internal value of that text item. For example, if Case Restriction is set to UPPER and the data retrieved
from the data source is in mixed case, the form will display it in UPPER, but the actual value of the
data will remain mixed case. However, If the data is subsequently modified in that field and the change
is committed, the value of the data will change to upper case.

585

Character Cell WD/HT properties

Description

Specifies the width and height of a character cell when the Coordinate System property is set to Real,
rather than Character. The width and height are expressed in the current real units (centimeters, inches,
or points) indicated by the Real Unit property setting.

Applies to form module

Set Form Builder

Required/Optional optional

Usage Notes

The character cell size is specified in the Coordinate System dialog in pixels but displayed in the Layout
Editor in points.

586

Chart Type property

Description

Specifies the base chart type. Available types of charts are Column, Pie, Bar, Table, Line, Scatter,
Mixed, High-low, Double-Y, and Gantt.

Applies to chart item

Set Form Builder

Default

Column

587

Chart Subtype property

Description

Specifies a variation of the chart type. Each variation is based on the specified chart type, with various
properties set to achieve a different look.

Applies to chart item

Set Form Builder

Default

Column

588

Check Box Mapping of Other Values property

Description

Specifies how any fetched or assigned value that is not one of the pre-defined "checked" or "unchecked"
values should be interpreted.

Applies to check box

Set Form Builder

Default

NOT ALLOWED

Usage Notes

The following settings are valid for this property:

Setting Description

Not Allowed Any queried record that contains a value other than the user-
defined checked and unchecked values is rejected and no error is
raised. Any attempt to assign an other value is disallowed.

Checked Any value other than the user-defined unchecked value is
interpreted as the checked state.

Unchecked Any value other than the user-defined checked value is
interpreted as the unchecked state.

589

Checked property

Description

Specifies the state of a check box- or radio-style menu item, either CHECKED or UNCHECKED.

Applies to menu item

Set programmatically

Refer to Built-in

• GET_MENU_ITEM_PROPERTY

• SET_MENU_ITEM_PROPERTY

Default

NULL

Required/Optional optional

Checked restrictions

Valid only for a menu item with the Menu Item Type property set to Check or Radio.

590

Clip Height property

Description

Specifies the height of a clipped (cropped) image in layout units. If you specify a value less than the
original image height, the image clips from the bottom.

Applies to graphic image

Set Form Builder

Default

original image height

Required/Optional required

591

Clip Width property

Description

Specifies the width of a clipped (cropped) image in layout units. If you specify a value less than the
original image’s width, the image clips from the right.

Applies to graphic image

Set Form Builder

Default

original image width

Required/Optional required

592

Clip X Position property

Description

Specifies how much (in layout units) to clip off the left side of the image.

Applies to graphic image

Set Form Builder

Default

0

Required/Optional required

593

Clip Y Position property

Description

Specifies how much (in layout units) to clip off the top of the image.

Applies to graphic image

Set Form Builder

Default

0

Required/Optional required

594

Close Allowed property

Description

Specifies whether the window manager-specific Close command is enabled or disabled for a window. On
GUI window managers, the Close command is available on the window’s system menu, or by double-
clicking the close box in the upper-left corner of the window.

Applies to window

Set Form Builder

Default

Yes

Usage Notes

• Setting Close Allowed to Yes enables the Close command so that the Close Window event can be
sent to Form Builder when the operator issues the Close command. However, to actually close the
window in response to this event, you must write a When-Window-Closed trigger that explicitly
closes the window. You can close a window programmatically by calling HIDE_WINDOW,
SET_WINDOW_PROPERTY, or EXIT_FORM.

• On Microsoft Windows, if the operator closes the MDI parent window, Form Builder executes
DO_KEY(’Exit_Form’) by default.

Close Allowed restrictions

Cannot be set for a root window. A root window is always closeable.

595

Closed property

Description

Specifies whether an arc is closed.

Applies to graphic arc

Set Form Builder

Default

Yes

Required/Optional required

596

Column Mapping Properties property

Description

The Column Mapping Properties group includes Column Name, Column Title, Display Width, and
Return Item.

Applies to LOV

Set Form Builder

Column Name

Specifies the names of the columns in an LOV.

Required/Optional At least one column must be defined.

Default

The names of the columns in the underlying record group.

Usage Notes

The column names must adhere to object naming standards.

Column Title

Specifies the title that displays above the column currently selected in the column name list.

Display Width

Specifies the width for the column currently selected in the Column Name list.

Required/Optional optional

Usage Notes

• Set the Display Width property to the width in appropriate units (points, pixels, centimeters, inches,
or characters as specified by the form’s Coordinate System property) that you want Form Builder to
reserve for the column in the LOV window. Column value truncation may occur if the Display
Width is smaller than the width of the column value. To avoid this situation, increase the Display
Width for the column.

• To make the column a hidden column, set Display Width to 0. (You can specify a return item for a
hidden column, just as you would for a displayed column.)

To add extra space between columns in the LOV window, set the Display Width wider than the column’s
default width. Note, however, that as an exception to this rule, you cannot increase the width between
a NUMBER column and a non-NUMBER column by increasing the display width for the NUMBER
column because LOVs display numbers right-justified. For example, assume that your LOV contains 3
columns: column 1 and 3 are type CHAR and column 2 is type NUMBER. To increase the width
between each column, increase the Display Width for columns 1 and 3.

Return Item

Specifies the name of the form item or variable to which Form Builder should assign the column’s value
whenever the operator selects an LOV record.

597

Default

NULL

Required/Optional optional

Usage Notes

The Return Item can be any of the following entries:

• form item (block_name.item_name)

• form parameter (PARAMETER.my_parameter)

• global parameter (GLOBAL.my_global)

Do not put a colon in front of the object name.

598

Column Name property

Description

Establishes that an item corresponds to a column in the table associated with the data block.

Applies to any item except button, chart, VBX (on 16-bit Microsoft Windows 3.x), or ActiveX (on 32-
bit Windows) controls

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

Yes

Required/Optional optional

Usage notes

When a selected item is from a column object or REF column in a table, Form Builder creates a
compound name for it using dot notation: ObjectColumnName.AttributeName.

For example, assume dept_type were an object type having attributes of dnum, dname, and dloc, and we
had a column object called dept based on dept_type. If we then selected dname to become an item in the
data block, its column name property would become dept.dname.

599

Column Specifications property

Description

The Column Specifications group of properties include Column Name, Column Value, Data Type,
Length.

Applies to record group

Set Form Builder

Column Name

Specifies the names of the columns in a record group.

Required/Optional At least one column must be defined.

Default

Names of the columns in the underlying record group.

Usage Notes

The column names must adhere to object naming standards. There can be up to 255 columns in a record
group.

Column Value

For a static record group, specifies the row values for the column currently selected in the Column Name
list.

Default

NULL

Data Type

Specifies the data type for a given record group column.

Default

CHAR, except when you define a query record group, in which case, the data type of each column
defaults to the data type of the corresponding database column.

Restrictions

The data type of a record group column can only be CHAR, NUMBER, or DATE.

Length

Specifies the length, in characters, of the record group column currently selected in the Column Name
list.

Default

600

For a query record group, the default is the width specified for the column in the database. For a static
record group, the default is 30.

Required/Optional required

Column Specifications restrictions

• You cannot reference an uninitialized variable or an item for this property, as that action constitutes
a forward reference that Form Builder is unable to validate at design time.

• The data type of the value must correspond to the data type of its associated column, as indicated in
the Column Name property.

601

Column Title (LOV) property

Description

See Column Mapping Properties.

602

Column Value (Record Group) property

Description

See Column Specifications.

603

Command Text property

Description

Specifies menu item command text for the current menu item. Valid values depend on the current setting
of the menu item Command Type property. For instance, when the command type is MENU, valid
command text is the name of a submenu in the menu module. When the command type is PL/SQL, valid
command text is any valid PL/SQL statements.

Applies to menu item

Set Form Builder

Required/Optional Required for all command types except NULL.

Command Text restrictions

The value can be up to 240 characters in length.

604

Command Type property

Description

Specifies the nature of the menu item command. This property determines how Form Builder interprets
the text in the Command Text property.

Applies to menu item

Set Form Builder

Default

NULL

Required/Optional required

Command Type Description

Null Specifies that the menu item does not issue a command.
The NULL command is required for separator menu items
and optional for all other types of items.

Menu Invokes a submenu. Valid command text is the name of the
submenu to be invoked.

PL/SQL The default command type. Executes a PL/SQL command.
Valid command text is PL/SQL statements, including calls
to built-in and user-named subprograms.
Note: PL/SQL in a menu module cannot refer directly to
the values of items, variables, or parameters in a form
module. Instead, use the built-ins NAME_IN and COPY to
indirectly reference such values.

Plus*
Avoid. To invoke SQL*Plus, use the
PL/SQL command type, and execute
the HOST built-in to launch
SQL*Plus. (On Windows platforms,
use plus80.exe as the executable
name.)

Current Forms* Avoid. To invoke Form Builder, use the PL/SQL command
type, and execute the HOST or RUN_PRODUCT built-ins
to execute a valid Form Builder login.

Macro* Avoid. Executes a SQL*Menu macro.

*This command type
is included for
compatibility with
previous versions. Do
not use this command
type in new
applications.

605

606

Comments property

Description

The Comments property specifies general information about any Form Builder object that you create.
Use comments to record information that will be useful to you or to other designers who develop,
maintain, and debug your applications.

Applies to all objects

Set Form Builder

Required/Optional optional

607

Communication Mode (Chart) property

Description

When calling Graphics Builder from Form Builder to create a chart, specifies the communication mode
to be used as either Synchronous or Asynchronous. Synchronous specifies that control returns to the
calling application only after the called product has finished. The end user cannot work in the form while
the called product is running. Asynchronous specifies that control returns to the calling application
immediately, even if the called application has not completed its display.

When data is returned from the called product, such as when updating a chart item, communication mode
must be synchronous.

Applies to chart items

Set Form Builder

Default

Synchronous

Required/Optional required

608

Communication Mode (Report) property

Description

For report/form integration, specifies communication mode between the form and the report as either
Synchronous or Asynchronous. Synchronous specifies that control returns to the calling application only
after the called product has finished. The end user cannot work in the form while the called product is
running. Asynchronous specifies that control returns to the calling application immediately, even if the
called application has not completed its display.

When data is returned from the called product, communication mode must be synchronous.

Applies to report integration

Set Form Builder

Default

Synchronous

Required/Optional required

609

Compress property

Description

Specifies whether a sound object being read into a form from a file should be compressed when
converting to the Oracle internal format.

Applies to sound item

Set Form Builder, programmatically

Refer to Built-in

• WRITE_SOUND_FILE

Default

Automatic (uses the compression setting of the sound data, if any).

610

Compression Quality property

Description

Specifies whether an image object being read into a form from a file, or written to a file (with the
WRITE_IMAGE_FILE built-in) should be compressed, and if so, to what degree. Valid values are:

• None

• Minimum

• Low

• Medium

• High

• Maximum

Applies to image item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

None

611

Conceal Data property

Description

Hides characters that the operator types into the text item. This setting is typically used for password
protection.

The following list describes the allowable values for this property:

Yes Disables the echoing back of data entered by the operator.

No Enables echoing of data entered by the operator.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Conceal Data restrictions

Valid only for single-line text items.

612

Connect_String property

Description

The Connect String property specifies the form operator’s SQL*NET connect string.

If the current operator does not have a SQL*NET connect string, Form Builder returns NULL.

Applies to application

Refer to Built-in

GET_APPLICATION_PROPERTY

613

Console Window property

Description

Specifies the name of the window that should display the Form Builder console. The console includes
the status line and message line, and is displayed at the bottom of the window.

On Microsoft Windows, the console is always displayed on the MDI application window, rather than on
any particular window in the form; however, you must still set this property to the name of a form
window to indicate that you want the console to be displayed.

If you do not want a form to have a console, set this property to <Null>.

Applies to form

Set Form Builder

Default

WINDOW1

Required/Optional optional

614

Control Help property

Description

For ActiveX (OCX) control items in the layout editor. Provides a link to the OCX help documentation
about the current OCX control.

Applies to ActiveX control

Set Form Builder

Default

More...

Required/Optional optional

615

Control Properties property

Description

Activates the control-specific property sheet for the currently-selected OLE or ActiveX control. The
control must be visible in the Layout Editor in order to view its property sheet.

Applies to OLE/ ActiveX control

Set Form Builder

616

Coordinate System property

Description

Specifies whether object size and position values should be interpreted as character cell values, or as real
units (centimeters, inches, pixels, or points). The following settings are valid for this property:

Character Sets the coordinate system to a character cell-based measurement. The
actual size and position of objects will depend on the size of a default
character on your particular platform.

Real Sets the coordinate system to the unit of measure specified by the Real Unit
property (centimeters, inches, pixels, or points.)

Changing the coordinate system for the form changes the ruler units displayed on Form Editor rulers, but
does not change the grid spacing and snap-points settings.

Applies to form

Set Form Builder

Default

Centimeter

Usage Notes

The coordinate system you select is enforced at design time and at runtime. For example, if you
programmatically move a window with SET_WINDOW_PROPERTY, the position coordinates you pass
to the built-in are interpreted in the current form coordinate units.

When you convert from one coordinate system to another, Form Builder automatically converts object
size and position values that were specified declaratively at design time. Loss of precision can occur
when you convert to less precise units.

If portability is a concern, setting the Coordinate System to Character provides the most portable unit
across platforms, but sets a coarse grid that reduces the ability to fine-tune the layout. If your application
runs in both character-mode and GUI, the decision about which coordinate system to use depends on
which interface style you want to optimize.

If you want to optimize for GUIs, the Real setting provides maximum flexibility for proportional fonts,
but may require some fine-tuning to avoid overlapping fields on the character-mode side.

If you want to optimize for character-mode, choose the Character setting. This setting provides less
flexibility for the proportional fonts used on GUIs, but lets you line up character cell boundaries exactly.

For this type of application... Set Coordinate System to...

GUI only Real: inches, centimeters, or points

Character-mode only Character

Mixed character-mode and GUI:

617

Optimize for GUI Real

Optimize for character-mode Character

618

Coordination property

Description

Specifies how and when the population phase of block coordination should occur. Specify the
coordination desired by setting the Deferred and Automatic Query properties. When you set these
properties at design time, Form Builder creates or modifies the appropriate master-detail triggers to
enforce the coordination setting you choose.

Applies to:

relation

Set:

Form Builder, programmatically

Refer to Built-in

• GET_RELATION_PROPERTY

• SET_RELATION_PROPERTY

Default

Immediate coordination (Deferred No, Automatic Query No)

Usage Notes

Whenever the current record in the master block changes at runtime (a coordination-causing event),
Form Builder needs to populate the detail block with a new set of records. You can specify exactly how
and when that population should occur by setting this property to one of three valid settings:

Deferred=No,Automatic
Query ignored

The default setting. When a coordination-causing event
occurs in the master block, the detail records are fetched
immediately.

Deferred=Yes,
Automatic Query=Yes

When a coordination-causing event occurs, Form Builder
defers fetching the associated detail records until the
operator navigates to the detail block.

Deferred=Yes,
Automatic Query=No

When a coordination-causing event occurs, Form Builder
defers fetching the associated detail records until the
operator navigates to the detail block and explicitly
executes a query.

Deferred=No,Automatic
Query=Yes

Not a valid setting.

619

Coordination restrictions

The ability to set and get these properties programmatically is included only for applications that require
a custom master-detail scheme. For a default master-detail relation created at design time, Form Builder
generates the appropriate triggers to enforce coordination, and setting the coordination properties at
runtime has no effect on the default trigger text.

620

Coordination_Status property

Description

For a block that is a detail block in a master-detail block relation, this property specifies the current
coordination status of the block with respect to its master block(s). This property is set to the value
COORDINATED when the block is coordinated with all of its master blocks. When the block is not
coordinated with all of its master blocks, Coordination_Status is set to NON_COORDINATED.

Immediately after records are fetched to the detail block, the status of a detail block is COORDINATED.
When a different record becomes the current record in the master block, the status of the detail block
again becomes NON_COORDINATED.

Applies to relation

Set programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Usage Notes

This property is included for designers who are programmatically enforcing a custom master-detail block
coordination scheme. Its use is not required when you are using Form Builder declarative master-detail
coordination.

621

Copy Value from Item property

Description

Specifies the source of the value that Form Builder uses to populate the item. When you define a master-
detail relation, Form Builder sets this property automatically on the foreign key item(s) in the detail
block. In such cases, the Copy Value from Item property names the primary key item in the master block
whose value gets copied to the foreign key item in the detail block whenever a detail record is created or
queried.

Applies to all items except buttons, chart items, and image items

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Required/Optional optional

Usage Notes

• Specify this property in the form <block_name>.<block_item_name>.

• Setting the Copy Value from Item property does not affect record status at runtime, because the
copying occurs during default record processing.

• To prevent operators from de-enforcing the foreign key relationship, set the Enabled property to No
for the foreign key items.

• To get the Copy Value from Item property programmatically with GET_ITEM_PROPERTY, use
the constant ENFORCE_KEY.

622

Current Record Visual Attribute Group property

Description

Specifies the named visual attribute used when an item is part of the current record.

Applies to form, block, item

Set Form Builder, programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Required/Optional optional

Usage Notes

This property can be set at the form, block, or item level, or at any combination of levels. If you specify
named visual attributes at each level, the item-level attribute overrides all others, and the block-level
overrides the form-level.

Note that if you define a form-level Current Record Visual Attribute, any toolbars in the form will be
displayed using that Current Record Visual Attribute. You can avoid this by defining block-level Current
Record Visual Attributes for the blocks that need them instead of defining them at the form level. If you
wish to retain the form-level Current Record Visual Attribute, you can set the block-level Current Record
Visual Attribute for the toolbar to something acceptable.

Current Record Visual Attribute is frequently used at the block level to display the current row in a
multi-record block in a special color. For example, if you define Vis_Att_Blue for the Emp block which
displays four detail records, the current record will display as blue, because it contains the item that is
part of the current record.

If you define an item-level Current Record Visual Attribute, you can display a pre-determined item in a
special color when it is part of the current record, but you cannot dynamically highlight the current item,
as the input focus changes. For example, if you set the Current Record Visual Attribute for EmpNo to
Vis_Att_Green, the EmpNo item in the current record would display as green. When the input focus
moved to EmpName, EmpNo would still be green and EmpName would not change.

623

Current_Form property

Description
Specifies the name of the .FMX file of the form currently being
executed.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

Get the value of this property to determine the name of the file the current form came from in an
application that has multiple called forms.

Current_Form at the application level corresponds to File_Name at the form level. File_Name is
gettable with GET_FORM_PROPERTY.

624

Current_Form_Name property

Description

Specifies the name of the current form, as indicated by the form module Name property.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

Get the value of this property to determine the name of the current form in an application that has
multiple called forms.

Current_Form_Name at the application level corresponds to Form_Name at the form level. Form_Name
is gettable with GET_FORM_PROPERTY.

625

Current_Record property

Description

Specifies the number of the current record in the block’s list of records.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

626

Current_Row_Background_Color property

Description

Specifies the color of the object’s background region.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

627

Current_Row_Fill_Pattern property

Description

Specifies the pattern to be used for the object’s fill region. Patterns are rendered in the two colors
specified by Background_Color and Foreground_Color.

Applies to item, block, form

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

628

Current_Row_Font_Name property

Description

Specifies the font family, or typeface, to be used for text in the object. The list of fonts available is
system-dependent.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

629

Current_Row_Font_Size property

Description

Specifes the size of the font in points.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

630

Current_Row_Font_Spacing property

Description

Specifies the width of the font (i.e., the amount of space between characters, or kerning).

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

631

Current_Row_Font_Style property

Description

Specifies the style of the font.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

632

Current_Row_Font_Weight property

Description

Specifies the weight of the font.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

633

Current_Row_Foreground_Color property

Description

Specifies the color of the object’s foreground region. For items, defines the color of the text displayed in
the item.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

634

Current_Row_White_On_Black property

Description

Specifies that the object is to appear on a monochrome bitmap display device as white text on a black
background.

Applies to item, block, form

Set Programmatically

Default

NULL

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

635

Cursor Mode property

Note:

In Release 5.0 and later, cursor mode is handled automatically by Form Builder. This property is
now obsolete, and should not be used. In particular, cursor mode should never be set to Close. The
following information is provided only for historical and maintenance purposes.

Description

Defines the cursor state across transactions. The cursor refers to the memory work area in which SQL
statements are executed. For more information on cursors, refer to the ORACLE RDBMS Database
Administrator’s Guide. This property is useful for applications running against a non-ORACLE data
source.

The following settings are valid for the Cursor_Mode property:

Setting Description

Open (the default) Specifies that cursors should remain open across
transactions.

Close Specifies that cursors should be closed when a commit
is issued.

Applies to form

Set programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

Default

OPEN_AT_COMMIT

Usage Notes

• Because ORACLE allows the database state to be maintained across transactions, Form Builder
allows cursors to remain open across COMMIT operations. This reduces overhead for subsequent
execution of the same SQL statement because the cursor does not need to be re-opened and the SQL
statement does not always need to be re-parsed.

• Some non-ORACLE databases do not allow database state to be maintained across transactions.
Therefore, you can specify the CLOSE_AT_COMMIT parameter of the Cursor_Mode option to
satisfy those requirements.

• Closing cursors at commit time and re-opening them at execute time can degrade performance in

636

three areas:

• during the COMMIT operation

• during future execution of other SQL statements against the same records

• during execution of queries

• Form Builder does not explicitly close cursors following commit processing if you set the property
to CLOSE_AT_COMMIT. This setting is primarily a hint to Form Builder that the cursor state can
be undefined after a commit.

Form Builder maintains a transaction ID during all types of transaction processing. For instance, Form
Builder increments the transaction ID each time it opens a cursor, performs a commit, or performs a
rollback.

When Form Builder attempts to re-execute a cursor, it checks the transaction ID. If it is not the current
transaction ID, then Form Builder opens, parses, and executes a new cursor. Only the last transaction
ID is maintained.

• If you query, change data, then commit, Form Builder increments the transaction ID. Subsequent
fetches do not re-open and execute the cursor, for the following reasons:

• Form Builder does not attempt to handle read consistency issues, nor does it handle re-positioning in
the cursor.

• Form Builder expects ORACLE or the connect to return an end-of-fetch error when trying to fetch
from an implicitly closed cursor.

On a subsequent execution of the query, Form Builder opens a new cursor.

• When using this property in conjunction with transactional triggers, you, the designer, must manage
your cursors. For example, you might want to close any open queries on the block whenever you
perform a commit.

637

Cursor_Style property

Description

Specifies the mouse cursor style. Use this property to dynamically change the shape of the cursor.

The following settings are valid for the Cursor Style property:

Setting Description

BUSY Displays a GUI-specific busy symbol.

CROSSHAIR Displays a GUI-specific crosshair symbol.

DEFAULT Displays a GUI-specific arrow symbol.

HELP Displays a GUI-specific help symbol.

INSERTIODisplays a GUI-specific insertion symbol.

Applies to application

Set Programmatically

Refer to Built-in

• GET_APPLICATION_PROPERTY

• SET_APPLICATION_PROPERTY

Default

Arrow symbol

Usage Notes

When Form Builder is performing a long operation, it displays the "Working" message and replaces any
cursor style specified with the BUSY cursor.

For example, if you set the cursor style to "HELP" and the operator executes a large query, the HELP
cursor is replaced by the BUSY cursor while the query is being executed. After Form Builder executes
the query, the BUSY cursor reverts to the HELP cursor.

Note, however, if you change the cursor style while Form Builder is displaying the BUSY cursor, the
cursor style changes immediately rather than waiting for Form Builder to complete the operation before
changing cursor styles.

638

Custom Spacing property

Description

Specifies the custom spacing for the text object in layout units.

Applies to graphic text

Set Form Builder

Default

0

Required/Optional required

639

Dash Style property

Description

Specifies the dash style of the graphic object’s edge as Solid, Dotted, Dashed, Dash Dot, Double Dot,
Long dash, or dash Double Dot.

Applies to graphic physical

Set Form Builder

Default

Solid

Required/Optional required

640

Data Block Description property

Description

Describes the data block.

Applies to data block database

Set Form Builder

Default

Null

Required/Optional optional

641

Data Query property

Description

Specifies the query-based data source.

Applies to hierarchical tree

Set Form Builder, programmatically

Refer to Built-in

ADD_TREE_DATA

Default

NULL

Required/Optional optional

642

Data Source Data Block (Chart) property

Description

When running Graphics Builder from Form Builder to create a chart, specifies the data block to be used
as the source of a chart item.

Applies to chart item

Set Form Builder

Default

Null

Required/Optional optional

643

Data Source Data Block (Report) property

Description

For report/form integration, specifies the data block to be used as the source of the report as either Null
or a block name.

Applies to report integration

Set Form Builder

Default

Null

Required/Optional optional

644

Data Source X Axis property

Description

Specifies the data block column to be used as the basis of the X axis of a chart item.

Applies to chart item

Set Form Builder

645

Data Source Y Axis property

Description

Specifies the data block column to be used as the basis of the Y axis of a chart item.

Applies to chart item

Set Form Builder

646

Data Type property

Description

Specifies what kinds of values Form Builder allows as input and how Form Builder displays those
values.

Applies to check box, display item, list item, radio group, text item, custom item, and form parameter
(form parameter supports CHAR, DATE, DATETIME, and NUMBER only)

Note: All data types do not apply to each item type.

Set Form Builder

Usage Notes

• In Form Builder 6.0 and later, it is recommended that you use only the standard data types CHAR,
DATE, DATETIME, and NUMBER for data. These data types are based on native ORACLE data
types, and offer better performance and application portability. The other data types are valid only
for text items, and are included primarily for compatibility with previous versions. You can achieve
the same formatting characteristics by using a standard data type with an appropriate format mask.

• The data type of a base table item must be compatible with the data type of the corresponding
database column. Use the CHAR data type for items that correspond to ORACLE VARCHAR2
database columns.

• Do not create items that correspond to database CHAR columns if those items will be used in
queries or as the join condition for a master-detail relation; use VARCHAR2 database columns
instead.

• Form Builder will perform the following actions on items, as appropriate:
remove any trailing blanks

change the item to NULL if it consists of all blanks

remove leading zeros if the data type is NUMBER, INT, MONEY, RINT, RMONEY, or RNUMBER
(unless the item’s format mask permits leading zeros)

• The form parameter Data Type property supports the data types CHAR, DATE, and NUMBER.

ALPHA

Contains any combination of letters (upper and/or lower case).

Default Null

Example "Employee", "SMITH"

CHAR

Supports VARCHAR2 up to 2000 characters. Contains any combination of the following characters:

• Letters (upper and/or lower case)

• Digits

• Blank spaces

647

• Special characters ($, #, @, and _)

Default Null

Example "100 Main Street", "CHAR_EXAMPLE_2"

DATE

Contains a valid date. You can display a DATE item in any other valid format by changing the item’s
format mask.

Default DD-MON-YY

Restrictions Refers to a DATE column in the database and is processed as a true date, not a
character string.

The DATE data type is not intended to store a time component.

Example 01-JAN-92

DATETIME

Contains a valid date and time.

Default DD-MON-YY HH24:MI[:SS]

Restrictions Refers to a DATE column in the database and is processed as a true date, not a
character string.

The DATETIME data type contains a four digit year. If the year input to a
DATETIME data type is two digits, the year is interpreted as 00YY.

Example 31-DEC-88 23:59:59

EDATE

Contains a valid European date.

Default DD/MM/YY

Restrictions V3 data type.

Must refer to a NUMBER column in the database.

Included for backward compatibility. Instead, follow these recommendations:

Use the DATE data type.

Apply a format mask to produce the European date format.

Reference a DATE column in the database, rather than a NUMBER column.

Example 23/10/92 (October 23, 1992)

01/06/93 (June 1, 1993)

INT

648

Contains any integer (signed or unsigned whole number).

Default 0

Example 1, 100, -1000

JDATE

Contains a valid Julian date.

Default MM/DD/YY

Restrictions V3 data type.

Must refer to a NUMBER column in the database.

Included for backward compatibility. Instead, follow these recommendations:

Use the DATE data type.

Apply a format mask to produce the Julian date format.

Reference a DATE column in the database, rather than a NUMBER column.

Example 10/23/92 (October 23, 1992)

06/01/93 (June 1, 1993)

LONG

Contains any combination of characters. Stored in ORACLE as variable-length character strings. Forms
allows a LONG field to be up to 65,534 bytes. However, PL/SQL has a maximum of 32,760 bytes. If a
LONG variable is to be used as a bind variable in a PL/SQL statement, it cannot exceed that 32,760 byte
limit.

Default Null

Restrictions Not allowed as a reference in the WHERE or ORDER BY clauses of any SELECT
statement.

LONG items are not queryable in Enter Query mode.

MONEY

Contains a signed or unsigned number to represent a sum of money.

Restrictions V3 data type

Included for backward compatibility. Instead, use a format mask with a number to
produce the same result.

Example 10.95, 0.99, -15.47

NUMBER

649

Contains fixed or floating point numbers, in the range of 1.0x10-129 to 9.99x10124, with one or more of
the following characteristics:

• signed

• unsigned

• containing a decimal point

• in regular notation

• in scientific notation

• up to 38 digits of precision

NUMBER items refer to NUMBER or FLOAT columns in the database, and Form Builder processes
their values as true numbers (not character strings).

Default 0

Restrictions Commas cannot be entered into a number item (e.g., 99,999). Use a format mask
instead.

Example -1, 1, 1.01, 10.001, 1.85E3

RINT

Displays integer values as right-justified.

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the NUMBER data type.

Apply a format mask such as 999 to produce a right-justified number.

RMONEY

Displays MONEY values as right-justified.

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the NUMBER data type

Apply a format mask such as $999.99 to produce a right-justified number.

RNUMBER

Displays NUMBER values as right-justified.

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the NUMBER data type.

650

Apply a format mask such as 999.999 to produce a right-justified number.

TIME

Contains numbers and colons that refer to NUMBER columns in the database.

Default HH24:MI[:SS]

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the DATETIME data type.

Apply a format mask to produce only the time.

Not allowed as a reference to DATE columns in the database.

Example :10:23:05

21:07:13

651

Data Type (Record Group) property

Description

See Column Specifications.

652

Database Block property

Description

Specifies that the block is based on any of the following block data source types: table, procedure,
transactional trigger, or sub-query. (Table source includes relational tables, object tables, and relational
tables containing column objects or REFs.) Also specifies that the block is not a control block. When
the Database Block property is set to No, form builder grays-out and ignores the datasource properties
for the block.

Applies to block

Set Form Builder

Default

Yes

Required/Optional required

653

Database_Value property

Description

For a base table item that is part of a database record whose status is QUERY or UPDATE,
Database_Value returns the value that was originally fetched from the database. When a fetched value
has been updated and then subsequently committed, Database_Value returns the committed value.

For a control item that is part of a database record, Database_Value returns the value that was originally
assigned to the item when the record was fetched from the database.

For any item that is part of a non-database record whose status is NEW or INSERT, Database_Value
returns the current value of the item.

Note: You can examine the Database_Value property to determine what the value of an item in a
database record was before it was modified by the end user.

Note: You can examine the SYSTEM.RECORD_STATUS system variable or use the
GET_RECORD_PROPERTY built-in to determine if a record has been queried from the database.

Applies to:

all items except buttons, chart items, and image items

Set not settable

Refer to Built-in:

GET_ITEM_PROPERTY

654

Datasource property

Description

Specifies the name of the database currently in use.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Default

ORACLE

Usage Notes

This property is used in connection with non-Oracle data sources. It returns the name of the database for
connections established by Form Builder, not for connections established by On-Logon triggers. The
following settings are valid for this property:

• ORACLE

• DB2

• NULL (Unspecified database, or not logged on)

• NONSTOP

• TERADATA

• NCR/3600

• NCR/3700

• SQLSERVER

•

655

Date_Format_Compatibility_Mode property

Description

Establishes what date format masks will be used in certain conversion operations. A setting of 4.5
chooses the types of conversions done in Release 4.5 and earlier. A setting of 5.0 chooses the types of
conversions done in Release 5.0 and later.

The conversion operations and masks affected by this choice are noted in About format masks for dates

Applies to application

Set settable from within Form Builder.

Refer to Built-in

GET_APPLICATION_PROPERTY

SET_APPLICATION_PROPERTY

Default

5.0

Required/Optional required

Usage Notes

If this Date_Format_Compatibility_Mode property is set to 4.5 but the Runtime_Compatibility_Mode
property is set to 5.0, the 5.0 value will override the Date_Format_Compatibility_Mode setting.

•

656

Default Alert Button property

Description

Specifies which of three possible alert buttons is to be the default alert button. The default alert button is
normally bordered uniquely or highlighted in some specific manner to visually distinguish it from other
buttons.

Applies to alert

Set Form Builder

Default

Button 1

Required/Optional optional

657

Default Button property

Description

Specifies that the button should be identified as the default button. At runtime, the end user can invoke
the default button by pressing [Select] if focus is within the window that contains the default button.

On some window managers, the default button is bordered or highlighted in a unique fashion to
distinguish it from other buttons in the interface.

Applies to button

Set Form Builder

Default

No

Required/Optional optional

658

Default Font Scaling property

Description

Specifies that the font indicated for use in a form defaults to the relative character scale of the display
device in use.

Applies to form module

Set Form Builder

Default

Yes

Default Font Scaling restrictions

Valid only when the Coordinate System property is set to Character Cell.

659

Deferred property

Description

See Coordination.

660

Defer Required Enforcement property

Description

For an item that has the Required property set to true, it specifies whether Form Builder should defer
enforcement of the Required item attribute until the record is validated.

There are three settings for this property: Yes, 4.5, and No.

Applies to form

Set Form Builder, programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

Default

No

Usage Notes

This property applies only when item-level validation is in effect. By default, when an item has Required
set to true, Form Builder will not allow navigation out of the item until a valid value is entered. This
behavior will be in effect if you set Defer Required Enforcement to No. (An exception is made when the
item instance does not allow end-user update; in this unusual case, a Defer Required Enforcement setting
of No is ignored and item-level validation does not take place.)

If you set Defer Required Enforcement to Yes (PROPERTY_TRUE for runtime) or to 4.5
(PROPERTY_4_5 for runtime), you allow the end user to move freely among the items in the record,
even if they are null, postponing enforcement of the Required attribute until validation occurs at the
record level.

When Defer Required Enforcement is set to Yes, null-valued Required items are not validated when
navigated out of. That is, the WHEN-VALIDATE-ITEM trigger (if any) does not fire, and the item’s
Item Is Valid property is unchanged. If the item value is still null when record-level validation occurs
later, Form Builder will issue an error.

When Defer Required Enforcement is set to 4.5, null-valued Required items are not validated when
navigated out of, and the item’s Item Is Valid property is unchanged. However, the WHEN-VALIDATE-
ITEM trigger (if any) does fire. If it fails (raises Form_trigger_Failure), the item is considered to have
failed validation and Form Builder will issue an error. If the trigger ends normally, processing continues
normally. If the item value is still null when record-level validation occurs later, Form Builder will issue
an error at that time.

Setting a value of 4.5 for Defer Required Enforcement allows you to code logic in a WHEN-
VALIDATE-ITEM trigger that will be executed immediately whenever the end-user changes the item’s
value (even to null) and then navigates out. Such logic might, for example, update the values of other
items. (The name 4.5 for this setting reflects the fact that in Release 4.5, and subsequent releases
running in 4.5 mode, the WHEN-VALIDATE-ITEM trigger always fired during item-level validation.)

661

Delete Allowed property

Description

Specifies whether records can be deleted from the block.

Applies to block

Set Form Builder, programmatically

Default

Yes

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

662

Delete Procedure Arguments property

Description

Specifies the names, datatypes, and values of the arguments that are to be passed to the procedure for
deleting data. The Delete Procedure Arguments property is valid only when the DML Data Target Type
property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

663

Delete Procedure Name property

Description

Specifies the name of the procedure to be used for deleting data. The Delete Procedure Name property
is valid only when the DML Data Target Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

664

Delete Procedure Result Set Columns property

Description

Specifies the names and the datatypes of the result set columns associated with the procedure for deleting
data. The Delete Procedure Result Set Columns property is valid only when the DML Data Target Type
property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

665

Delete Record Behavior property

Description

(Note : this property was formerly called the Master Deletes property.)

Specifies how the deletion of a record in the master block should affect records in the detail block:

Setting Description

Non-Isolated The default setting. Prevents the deletion of a master record
when associated detail records exist in the database.

Isolated Allows the master record to be deleted and does not affect
associated detail records in the database.

Cascading Allows the master record to be deleted and automatically deletes
any associated detail records in the detail block’s base table at
commit time. In a master-detail-detail relation, where relations
are nested, only records in the immediate detail block are
deleted (deletions do not cascade to multiple levels of a relation
chain automatically).

Applies to relation

Set Form Builder, programmatically

Refer to Built-in

• GET_RELATION_PROPERTY

• SET_RELATION_PROPERTY

Default

Non-Isolated

Delete Record Behavior restrictions

• Setting this property at runtime has no effect for a default master-detail relation. At design time,
Form Builder creates the appropriate triggers to enforce the relation, and changing the Delete
Record Behavior property at runtime does not alter the default trigger text. The ability to set and get
this property programmatically is included only for designers who are coding custom master-detail
coordination.

666

Detail Block property

Description

Specifies the name of the detail block in a master-detail block relation.

Applies to relation

Set Form Builder

Refer to Built-in

GET_RELATION_PROPERTY (Detail_Name)

Default:

NULL

Required/Optional required

Detail Block restrictions

The block specified must exist in the active form.

667

Detail Reference Item property

Description

Identifies the REF item in the relation’s detail data block that forms the link to the master data block.
This property applies only when the Relation Type property is set to REF.

Applies to Relation

Set Form Builder

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Null

Usage Notes

This property applies only when the Relation type property is set to REF

668

Direction property

Description

Note: This property is specific to bidirectional National Language Support (NLS) applications.

Specifies the layout direction for bidirectional objects.

For the purposes of this property, assume that Local refers to languages displayed Right-To-Left, and
Roman refers to languages displayed Left-To-Right.

Direction is an umbrella property that provides as much functionality for each object as possible. For all
objects except text items and display items, the Direction property is the only bidirectional property, and
its setting controls the other aspects of bidirectional function. (List items, however, have both a
Direction property and an Initial Keyboard Direction property.)

The form-level Direction property is the highest level setting of the property. When you accept the
Default setting for the form-level Direction property, the layout direction for the form is inherited from
the natural writing direction specified by the NLS language environment variable.

In most cases, leaving all the other Direction properties set to Default will provide the desired
functionality--that is, the NLS language environment variable layout direction will ripple down to each
subsequent level. You only need to specify the bidirectional properties when you want to override the
inherited default values.

This chart summarizes inheritance for the Direction property.

Default Setting Derives Value
From This Object

Form NLS environment variable

All objects, such as
Alert, Block, LOV,
Window, and Canvas

Form

All items, such as Text
Item, Display Item,
Check Box, Button,
Radio Group, and List
Item

Canvas

 This table summarizes the functions controlled by the Direction property for each object type. (Text
items and display items do not have a Direction property; instead, in the Form Builder, you can
specifically set Justification, Reading Order, and Initial Keyboard Direction properties for these items.
However, programmatically, you can get and set the Direction property only for all items, including text
items and display items.)

Layout
Direction

Text
Reading

Text
Alignment

Scrollbar
Position

Initial
Keyboard

669

Order Direction

Form X

Alert X X X

Block(for future
use)

LOV(for future
use)

Window X(of
menu)

X X

Canvas X(also
point of
origin)

X(boilerpla
te text)

X(and
rulers)

Check Box X X X

Button X X X

Radio Group X X X

List Item X X X X

Note: The headings listed above represent functions, not properties: for example, the Direction property
for alerts does not set the Initial Keyboard Direction property, it controls the initial keyboard state
function.

The allowable values for this property are:

Value Description

Default Direction based on the property shown in the table.

Right-To-Left Direction is right-to-left.

Left-To-Right Direction is left-to-right.

Applies to all objects listed in the table

Set Form Builder, programmatically

Refer to Built-in

•

• GET_WINDOW_PROPERTY

• GET_VIEW_PROPERTY

• GET_ITEM_PROPERTY

• SET_FORM_PROPERTY

670

• SET_WINDOW_PROPERTY

• SET_VIEW_PROPERTY

• SET_ITEM_PROPERTY

General Usage Notes:

• If you want all items on your form to default to the natural writing direction specified by the
language environment variable, set Language Direction at the Form level to Default, and allow all
other Direction properties to be Default, as well.

• In most cases, the Default setting will provide the functionality you need. Occasionally, however,
you may want to override the default by setting the Direction property for a specific object that
needs to be displayed differently from the higher-level Direction property. For example, you may
want to have most items on a canvas inherit their Direction from the canvas Direction property, but
in the case of a specific text item, you might set the Direction property to override the default.

• If you are developing a bilingual application and need to display both Local and Roman menus,
create a trigger to display the correct version of the menu based on the USER_NLS_LANG property
of the GET_APPLICATION_PROPERTY built-in.

• Follow these guidelines when choosing a Direction property value:

• If you are developing a bilingual application and want to display a Local object in Right-To-Left
mode and a Roman object in Left-To-Right, use the Default value.

• If the object is normally composed of Local text, choose the Right-To-Left value.

• If the object is normally composed of Roman text, choose the Left-To-Right value.

Direction (Alert)

Specifies the layout direction of the alert interface items, including the reading order of the text displayed
within the alert window.

Direction (Button)

Specifies the reading order of button text and the initial keyboard state when the button receives input
focus.

Direction (Canvas)

Specifies the layout direction of the canvas, including:

• layout direction used in the Layout Editor

• point of origin (for Right-to-Left, point of origin is top right corner; for Left-to-Right, point of origin
is top left corner)

• display of rulers and scrollbars

• reading order of boilerplate text

Canvas Usage Notes:

• Refer to the Usage Notes for the form-level Direction property to determine which value to choose.

• To develop an application with blocks laid out in different directions, place each block on a
different canvas. This will provide:

• automatic layout of blocks in the canvas Direction property

671

• boilerplate text reading order will default to the canvas Direction property

• If a block spans multiple canvases, keep the canvas Direction property the same for all canvases,
unless you intend to have part of the block displayed with a different Direction.

• In the Form Builder, if you change the canvas Direction property while the Layout Editor is open,
the change will not take place until you reopen the Layout Editor.

Direction (Check Box)

Specifies the layout direction of a check box, including:

• the position of the box relative to the text

• reading order of check box label

• initial keyboard state when the check box receives input focus

Direction (Form)

Specifies the layout direction of a form. Setting the form-level Direction property to Default lets the
form inherit layout direction from the natural writing direction of the language specified in the NLS
environment variable.

Form Usage Notes:

• If you are developing a bilingual application that must run in both Right-To-Left and Left-To-Right
directions, use the Default value.

• During testing, set Direction to either Right-To-Left or Left-To-Right, to test your form in Local or
Roman direction. Before generating the final executable, return the setting to Default.

• If your application must run in one direction only, choose the corresponding value.

Direction (List Item)

Specifies the layout direction of the list items in both popup lists and combo boxes, including:

• position of the scroll bar

• alignment of list text

• reading order of list text

• initial keyboard state when the list item gains input focus

Direction (Radio Group)

Specifies layout direction of the radio buttons of a group (position of the circle relative to the text),
including:

• reading order of text

• initial keyboard state when the radio group gains input focus

Direction (Windows)

Specifies layout direction of the window object, including:

• layout direction of the menu

• reading order of any text displayed within the window area that is not part of an object that has its
own Direction property (for example, the window title)

672

Display Hint Automatically property

Description

Determines when the help text specified by the item property, Hint, is displayed:

• Set Display Hint Automatically to Yes to have Form Builder display the hint text whenever the input
focus enters the item.

• Set Display Hint Automatically to No to have Form Builder display the hint text only when the input
focus is in the item and the end user presses [Help] or selects the Help command on the default
menu.

Applies to all items except chart item, display item, and custom item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Usage Notes

If a trigger causes Form Builder to navigate through several items before stopping at the target item, the
help text does not display for the traversed items, but only for the target item.

Display Hint Automatically restrictions

Not applicable when the Hint property is NULL.

673

Display in ’Keyboard Help’/’Keyboard Text’ property

Description

Specifies whether a key trigger description is displayed in the runtime Keys help screen. An entry in the
Keys screen includes a text description for the key name and the physical keystroke associated with it,
for example, Ctrl-S.

Applies to trigger

Set Form Builder

Default

No

Usage Notes

• If you do not want the name or the description to appear in the Show Keys window, set the Display
Keyboard Help property to No. This is the default setting.

• If you want the name of the key that corresponds to the trigger and its default description to be
displayed in the Keys window, set the Display Keyboard Help property to Yes and leave the
Keyboard Help Text blank.

• If you want to replace the default key description, set the Display Keyboard Help property to Yes,
then enter the desired description in the Keyboard Help Text property.

Display in Keyboard Help restrictions

Valid only for key triggers.

674

Display Quality property

Description

Determines the level of quality used to display an image item, allowing you to control the tradeoff
between image quality and memory/performance.

The following settings are valid for this property:

High Displays the image with high quality, which requires more resources.

Medium Displays the image with medium quality.

Low Displays the image with low quality, which requires fewer resources.

Applies to image item

Set Form Builder

Default

High

Display Quality restrictions

none

675

Display Width (LOV) property

Description

See Column Mapping Properties.

676

Display without Privilege property

Description

Determines whether the current menu item is displayed when the current form end user is not a member
of a security role that has access privileges to the item:

• When Display without Privilege is No, Form Builder does not display the item if the end user does
not have access to it.

• When Display without Privilege is Yes, Form Builder displays the item as a disabled (grayed) menu
item. The end user can see the item on the menu, but cannot execute the command associated with
the item.

You can only grant access to members of those roles displayed in the roles list. To add a database role to
this list, set the menu module property, Menu Module Roles. For more information on establishing the
roles list and assigning a role access to menu items, see the Form Builder online help system.

Applies to menu item

Set Form Builder

Default

No

Display without Privilege restrictions

Valid only when the name of at least one database role has been specified in the roles list.

677

Display_Height property

Description

Specifies the height of the display device, in the units specified by the current setting of the Coordinate
Units form property. Use this property to dynamically calculate the optimum display position for
windows on the screen.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

678

Display_Width property

Description

Specifies the width of the display device, in the units specified by the current setting of the Coordinate
Units form property. Use this property to dynamically calculate the optimum display position for
windows on the screen.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

679

Displayed property

Descriptiuon

Enables/unhides or deisbles/hides an item. When an itme is disabled and hidden it is not navigable,
queryable, or updateable.

Values: TRUE/FALSE

Applies to: item

Set: programmatically

Usage notes

You should make sure an item is not selected before setting the Displayed property to FALSE. Setting a
selected item’s Diaplayed property to false will generate an error: FRM-41016.

Refer to Built-in

GET_ITEM_PROPERTY

SET_ITEM_PROPERTY

Displayed property restrictions

You cannot set the Displayed property of an item that is selected or has focus.

680

Distance Between Records property

Description

Specifies the amount of space between instances of items in a multi-record block. A multi-record block is
a block that has the Number of Records Displayed property set to greater than 1.

Applies to item

Set Form Builder

Default

0

Required/Optional optional

Usage Notes

If you are working in character cell ruler units, the amount of space between item instances must be at
least as large as the height of a single cell.

For example, to increase the amount of space between item instances in a 5 record item, you must set the
Distance Between Records property to at least 4, one cell for each space between item instances.

681

Dither property

Description

Specifies the whether the image is dithered when it is displayed.

Applies to graphic image

Set Form Builder

Default

No

Required/Optional required

682

DML Array Size property

Description

Specifies the maximum array size for inserting, updating, and deleting records in the database at one
time.

Applies to block

Set form builder

Default

1

Usage Notes

A larger size reduces transaction processing time by reducing network traffic to the database, but
requires more memory. The optimal size is the number of records a user modifies in one transaction.

DML Array Size restrictions

Minimium number of records is 1; there is no maximum.

• When the DML Array Size is greater than 1 and Insert Allowed is Yes, you must specify one or
more items as a primary key, because you cannot get the ROWID of the records. ROWID is the
default construct ORACLE uses to identify each record. With single record processing, the ROWID
of a record is obtained for future reference (update or delete). During array processing, the ROWID
of each record in the array is not returned, resulting in the need to designate one or more primary
key items in the block. The primary key is used to specify the row to lock, and the ROWID is used
for updating and deleting. BLOCK.ROWID is not available until the record is locked. You should
specify one or more items in the block as the primary key even if the Key Mode value is Unique (the
default).

• When DML Array Size is greater than 1, Update Changed Columns Only is always set to No at
runtime, even if Update Changed Columns Only is Yes in the form builder. Update Changed
Columns Only specifies that only columns whose values are actually changed should be included in
the UPDATE statement during a COMMIT.

• If a long raw item (such as an image, sound or OLE item) appears in the block, the DML Array Size
is always set to 1 at runtime.

683

DML Data Target Name property

Description

Specifies the name of the block’s DML data target. The DML Data Target Name property is valid only
when the DML Data Target Type property is set to Table.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_ITEM_PROPERTY

Default

NULL

Required/Optional optional

DML Data Target Name restrictions

Prior to setting the DML Data Target Name property you must perform a COMMIT_FORM or a
CLEAR_FORM.

684

DML Data Target Type property

Description

Specifies the block’s DML data target type. A DML data target type can be a Table, Procedure, or
Transactional trigger.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

GET_BLOCK_PROPERTY

Default

Table

Required/Optional required

685

DML Returning Value property

Description

Specifies whether Forms should use new or old behavior when updating client-side data with changed
values after a database update or insert. A Yes setting for this property selects new behavior (new as of
Release 6). A No setting selects old behavior (behavior of Release 5 and earlier).

A database update or insert action may initiate server-side triggers that cause alterations or additional
changes in the data. In Release 6, when using an Oracle8 database server, Forms uses the DML
Returning clause to immediately bring back any such changes. When this property is set to Yes, Forms
will automatically update the client-side version of the data, and the user will not need to re-query the
database to obtain the changed values.

When this property is set to No, Forms will not automatically update the client-side version of the data.
(This is its pre-Release 6 behavior.) In this case, if the user subsequently tries to update a row whose
values were altered on the server side, the user receives a warning message and is asked to re-query to
obtain the latest values. This No setting is available as a compatibility option.

Applies to block

Set Form Builder

Valid values Yes/No

Default No

Required/Optional required

Restrictions

• Forms uses the DML Returning clause only with an Oracle8 database server. This property is
ignored when using a non-Oracle8 server.

• Forms uses the Returning clause with Insert and Update statements, but (currently) not with Delete
statements.

• Forms does not use the Returning clause when processing LONGs.

• The updating of unchanged columns is controlled by the setting of the Update Changed Columns
Only property, which in turn is affected by the setting of the DML Array Size property.

686

Edge Background Color property

Description

Specifies the background color of the graphic object’s edge.

Applies to graphic font & color

Set Form Builder

Default

Null

Required/Optional optional

687

Edge Foreground Color property

Description

Specifies the foreground color of the graphic object’s edge.

Applies to graphic font & color

Set Form Builder

Default

Null

Required/Optional optional

688

Edge Pattern property

Description

Specifies the pattern of the graphic object’s edge.

Applies to graphic font & color

Set Form Builder

Default

Null

Required/Optional optional

689

Editor property

Description

Specifies that one of the following editors should be used as the default editor for this text item:

• a user-named editor that you defined in the form or

• a system editor outside of Form Builder that you specified by setting the SYSTEM_EDITOR
environment variable

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

blank, indicating the default Form Builder editor

Required/Optional optional

Usage Notes

To specify a system editor:

• Define the system editor by setting the FORMS60_EDITOR environment variable.

• Enter the value SYSTEM_EDITOR in the Editor Name field.

Editor restrictions

The editor specified must exist in the active form.

690

Editor X Position, Editor Y Position properties

Description

Specifies the horizontal (x) and vertical (y) coordinates of the upper left corner of the editor relative to
the upper left corner of the window’s content canvas. When you set the Editor property, you can set the
Editor position properties to override the default display coordinates specified for the editor.

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

0, 0; indicating that Form Builder should use the default editor display coordinates, as specified by the
editor Position property.

Required/Optional optional

691

Elements in List property

Description

The Elements in List property group includes the List Item and List Item Value properties.

Applies to list item

Set Form Builder

List Item

Specifies the text label for each element in a list item.

Required/Optional required

List Item Value

Specifies the value associated with a specific element in a list item.

Default

NULL

Required/Optional required

Usage Notes

When you leave the List Item Value field blank, the value associated with the element is NULL.

Elements in List restrictions

• Must be unique among values associated with element values.

692

Enabled (Item) property

Description

Determines whether end users can use the mouse to manipulate an item.

On most window managers, Enabled set to No grays out the item.

Applies to all items except buttons, chart items, and display items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

Default

Yes

Usage Notes

When Enabled is set to Yes, Keyboard Navigable can be set to Yes or No. When Enabled is No, an item
is always non-Keyboard Navigable. At runtime, when the Enabled property is set to
PROPERTY_FALSE, the Keyboard_Navigable property is also set to PROPERTY_FALSE.

Enabled set to No grays out the item. If you want the item to appear normally so the user can inspect it
but without being able to change it, set the following properties:

Insert Allowed (Item) to No

Update Allowed (Item) to No

Enabled to Yes

693

Enabled (Menu Item) property

Description

Specifies whether the menu item should be displayed as an enabled (normal) item or disabled (grayed)
item.

Applies to menu item

Set Form Builder, programmatically

Refer to Built-in

• GET_MENU_ITEM_PROPERTY

•

Default

Yes

Enabled (Menu Item) restrictions

You cannot programmatically enable or disable a menu item that is hidden as a result of the following
conditions:

• The menu module Use Security property is Yes.

• The menu item Display without Privilege property is set to No.

• The current end user is not a member of a role that has access to the menu item.

694

Enabled (Tab Page) property

Description

Specifies whether the tab page should be displayed as enabled (normal) or disabled (greyed out).

Applies to tab page

Set Form Builder, programmatically

Refer to Built-in

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

Default

Yes

695

End Angle property

Description

Specifies the ending angle of the arc, using the horizontal axis as an origin.

Applies to graphic arc

Set Form Builder

Default

180

Required/Optional required

696

Enforce Column Security property

Description

Specifies when Form Builder should enforce update privileges on a column-by-column basis for the
block’s base table. If an end user does not have update privileges on a particular column in the base
table, Form Builder makes the corresponding item non-updateable for this end user only, by turning off
the Update Allowed item property at form startup.

The following table describes the effects of the allowable values for this property:

State Effect

Yes Form Builder enforces the update privileges that are defined in the
database for the current end user.

No Form Builder does not enforce the defined update privileges.

 Applies to block

Set Form Builder

Refer to Built-in

GET_BLOCK_PROPERTY

Default

No

697

Enforce Primary Key (Block) property

Description

Indicates that any record inserted or updated in the block must have a unique key in order to avoid
committing duplicate rows to the block’s base table.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

No

Enforce Primary Key (Block) restrictions

• The Primary Key item property must be set to Yes for one or more items in the block.

698

Enterable property

Description

Specifies whether the block is enterable.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

• A block is enterable when its current record contains an item instance whose Keyboard Navigable
property has an effective value of true. See the Keyboard Navigable property and
SET_ITEM_INSTANCE_PROPERTY built-in for information about effective Keyboard Navigable
values.

•

699

Error_Date/Datetime_Format property

Description

Holds the current error date or datetime format mask established by the environment variable
FORMSnn_ERROR_DATE_FORMAT or FORMSnn_ERROR_DATETIME_FORMAT. Forms uses
these format masks as defaults in its runtime error processing.

There are two separate properties: Error_Date_Format and Error_Datetime_Format.

Applies to application

Set Not settable from within Form Builder.

Refer to Built-in

GET_APPLICATION_PROPERTY

700

Execution Mode properties

Execution Mode (Chart) property

Execution Mode (Report) property

701

Execution Mode (Chart) property

Description

When running Graphics Builder from Form Builder to create a chart, this property specifies the
execution mode to be used as either Batch or Runtime. Batch mode executes the report or graphic
without user interaction. Runtime mode enables user interaction during the execution.

Applies to chart items

Set Form Builder

Default

Batch

Required/Optional required

702

Execution Mode (Report) property

Description

For report integration with a form, this property specifies the execution mode of the report as either
Batch or Runtime. Batch mode executes the report or graphic without user interaction. Runtime mode
enables user interaction during the execution.

Applies to report Developer integration

Set Form Builder

Default

Batch

Required/Optional required

703

Execution Hierarchy property

Description

Specifies how the current trigger code should execute if there is a trigger with the same name defined at a
higher level in the object hierarchy.

The following settings are valid for this property:

Override Specifies that the current trigger fire instead of any trigger by the same
name at any higher scope. This is known as "override parent" behavior.

Before Specifies that the current trigger fire before firing the same trigger at the
next-higher scope. This is known as "fire before parent" behavior.

After Specifies that the current trigger fire after firing the same trigger at the
next-higher scope. This is known as "fire after parent" behavior.

Applies to trigger

Set Form Builder

Default

Override

704

Filename property

Description

Specifies the name of the file where the named object is stored.

Applies to form, report

Set not settable

Refer to Built-in

GET_FORM_PROPERTY

Required/Optional optional

Usage Notes

Filename at the form level corresponds to Current_Form at the application level. Current_Form is
gettable with GET_APPLICATION_PROPERTY.

Filename property restrictions

If two or more forms share the same name, Filename supplies the name of the file where the most
recently-accessed form is stored.

705

Fill property

Description

Specifies the fill shape of the arc as either Pie or Chord. Pie renders the arc from the center point of the
circle described by the arc. Chord renders the arc from a line segment between the arc’s two end points.

Applies to graphic arc

Set Form Builder

Default

Pie

Required/Optional required

706

Fill_Pattern property

Description

Specifies the pattern to be used for the object’s fill region. Patterns are rendered in the two colors
specified by Background_Color and Foreground_Color.

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

707

Filter Before Display property

Description

When Filter Before Display is set to Yes, Form Builder displays a query criteria dialog before displaying
the LOV. End users can enter a value in the query criteria dialog to further restrict the rows that are
returned by the default SELECT statement that populates the LOV’s underlying record group. Form
Builder uses the value entered in the query criteria dialog to construct a WHERE clause for the SELECT
statement. The value is applied to the first column displayed in the LOV. A hidden LOV column is not
displayed.

The WHERE clause constructed by Form Builder appends the wildcard symbol to the value entered by
the end user. For example, if the end user enters 7, the WHERE clause reads LIKE ’7%’ and would
return 7, 712, and 7290.

Keep in mind that once the end user enters a value in the query criteria dialog and the LOV is displayed,
the LOV effectively contains only those rows that correspond to both the the default SELECT statement
and the WHERE clause created by the value in the query criteria dialog. For example, consider an LOV
whose default SELECT statement returns the values FOO, FAR, and BAZ. If the end user enters the
value F or F% in the query criteria dialog, the resulting LOV contains only the values FOO and FAR. If
the user then enters the value B% in the LOV’s selection field, nothing will be returned because BAZ has
already been selected against in the query criteria dialog.

Applies to LOV

Set Form Builder

Default

No

Filter Before Display restrictions

• If the SELECT statement for the LOV's underlying record group joins tables, the name of the first
column displayed in the LOV must be unique among all columns in all joined tables. If it is not, an
error occurs when the end user attempts to use the Filter Before Display feature. For example, when
joining the EMP and DEPT tables, the DEPTNO column would not be unique because it occurs in
both tables. An alternative is to create a view in the database, and assign a unique name to the
column you want end users to reference in the query criteria dialog.

• When a long-list LOV is used for item validation, the query criteria dialog is not displayed so that
LOV validation is transparent to the forms end user. Instead, Form Builder uses the current value of
the text item to construct the WHERE clause used to reduce the size of the list by applying the
wildcard criteria to the first visible column in the LOV.

708

Fire in Enter-Query Mode property

Description

Specifies that the trigger should fire when the form is in Enter-Query mode, as well as in Normal mode.

Applies to trigger

Set Form Builder

Default

no

Usage Notes

Only applicable to the following triggers:

• Key

• On-Error

• On-Message

• When- triggers, except:

• When-Database-Record

• When-Image-Activated

• When-New-Block-Instance

• When-New-Form-Instance

• When-Create-Record

• When-Remove-Record

• When-Validate-Record

• When-Validate-Item

709

First Navigation Block property

Description

Specifies the name of the block to which Form Builder should navigate at form startup and after a
CLEAR_FORM operation. By default, the First_Navigation_Block is the first block in the form’s
commit sequence, as indicated by the sequence of blocks in the Object Navigator. You can set the
First_Navigation_Block property programmatically to specify a different block as the first navigation
block.

Applies to form module

Set Form Builder, programmatic

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

Default

The first block in the form; that is, the block that is listed first in the Object Navigator.

Required/Optional optional

Usage Notes

You can set this property from a When-New-Form-Instance trigger, which fires at form startup, before
Form Builder navigates internally to the first block in the form.

710

First_Block property

Description

Specifies the block that is the first block in the form, as indicated by the sequence of blocks in the Object
Navigator. At startup, Form Builder navigates to the first item in the first block.

Applies to form

Set not settable

Refer to Built-in

GET_FORM_PROPERTY

711

First_Detail_Relation property

Description

Specifies the name of the first master-detail block relation in which the given block is the detail block.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

This property is useful when you are writing your own master-detail coordination scheme. It can be used
in conjunction with the Next_Master_Relation and Next_Detail_Relation properties to traverse a list of
relations.

712

First_Item property

Description

Specifies the item that is the first item in the block, as indicated by the sequence of items in the Object
Navigator. At startup, Form Builder navigates to the first item in the first block.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

713

First_Master_Relation property

Description

Specifies the name of the first master-detail block relation in which the given block is the master block.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

This property is useful when you are writing your own master-detail coordination scheme. It can be used
in conjunction with the Next_Master_Relation and Next_Detail_Relation properties to traverse a list of
relations.

714

Fixed Bounding Box property

Description

Specifies whether the text object’s bounding box should remain a fixed size. If this property is set to
Yes, the values of the Width and Height properties determine the size of the bounding box.

Applies to graphic text

Set Form Builder

Default

No

Required/Optional required

715

Fixed Length (Item) property

Description

When set to Yes, Fixed Length specifies that the item should be considered valid only when it contains
the maximum number of characters allowed. The maximum number of characters allowed is determined
by the Maximum Length property setting.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Fixed Length (Item) restrictions

• The Visible and Enabled properties must be set to Yes.

• A text item value of the NUMBER data type cannot contain leading zeroes. Form Builder
automatically removes leading zeroes and interprets the text item as "not filled."

716

Fixed Length (Menu Substitution Parameter) property

Description

When set to Yes, Fixed Length specifies that the parameter should be considered valid only when it
contains the maximum number of characters allowed. The maximum number of characters allowed is
determined by the Maximum Length property setting.

Applies to menu substitution parameter

Set Form Builder

Default

No

717

Flag User Value Too Long property

Description

Specifies how Forms should handle a user-entered value that exceeds the item’s Maximum Length
property.

This property applies only in a 3-tier environment in which the middle tier (the Forms server) specifies a
multi-byte character set other than UTF8.

Applies to application

Set programmatically

Default

Property_False (‘FALSE’)

Refer to Built-in

GET_APPLICATION_PROPERTY

SET_APPLICATION_PROPERTY

Usage Notes

In a 3-tier, non-UTF8 multi-byte character set environment, it is possible for an end user to type more
bytes into an item than the item’s Maximum Length property specifies.

When the Flag User Value Too Long property has been set or defaulted to FALSE and this situation
arises, then the user’s typed-in value is truncated (on a character boundary) so that its size in bytes does
not exceed the item’s Maximum Length. When item-level validation is performed, the truncated value is
validated. If validation (and any navigational triggers) succeeds, then the end user is allowed to navigate
out of the item. No error or warning message is displayed.

When the Flag User Value Too Long property has been set to TRUE and this situation arises, then the
user’s typed-in value is not truncated. When item-level validation is performed, it will fail (with an error
message indicating that truncation would be necessary). This means that the end user is not allowed to
leave the current validation unit (as specified by the current form’s Validation Unit property).

718

Font_Name property

Description

Specifies the font family, or typeface, to be used for text in the object. The list of fonts available is
system-dependent.

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

719

Font_Size property

Description

Specifes the size of the font in points.

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

720

Font_Spacing property

Description

Specifies the width of the font (i.e., the amount of space between characters, or kerning). Valid values
are:

FONT_NORMAL
FONT_ULTRADENSE
FONT_EXTRADENSE
FONT_DENSE
FONT_SEMIDENSE
FONT_SEMIEXPAND
FONT_EXPAND
FONT_EXTRAEXPAND
FONT_ULTRAEXPAND

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default
FONT_NORMAL

Refer to Built-in

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_VA_PROPERTY

• SET_VA_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

721

Font_Style property

Description

Specifies the style of the font. Valid values are:
FONT_PLAIN
FONT_ITALIC
FONT_OBLIQUE
FONT_UNDERLINE
FONT_OUTLINE
FONT_SHADOW
FONT_INVERTED
FONT_OVERSTRIKE
FONT_BLINK

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default
FONT_PLAIN

Refer to Built-in

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_VA_PROPERTY

• SET_VA_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

722

Font_Weight property

Description

Specifies the weight of the font. Valid values are:
FONT_MEDIUM
FONT_ULTRALIGHT
FONT_EXTRALIGHT
FONT_LIGHT
FONT_DEMILIGHT
FONT_DEMIBOLD
FONT_BOLD
FONT_EXTRABOLD
FONT_ULTRABOLD

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default
FONT_MEDIUM

Refer to Built-in

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_VA_PROPERTY

• SET_VA_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

723

Foreground_Color property

Description

Specifies the color of the object’s foreground region. For items, defines the color of the text displayed in
the item.

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

724

Form Horizontal Toolbar Canvas property

Description

On Microsoft Windows, specifies the canvas that should be displayed as a horizontal toolbar on the MDI
application window. The canvas specified must have the Canvas Type property set to Horizontal
Toolbar.

Applies to form

Set Form Builder

Default

Null

Required/Optional optional

Form Horizontal Toolbar Canvas restrictions

Valid only on Microsoft Windows. On other platforms, the Form Horizontal Toolbar Canvas property is
ignored and the canvas is mapped to the window indicated by its Window property setting.

725

Form Vertical Toolbar Canvas property

Description

On Microsoft Windows, specifies the toolbar canvas that should be displayed as a vertical toolbar on the
MDI application window. The canvas specified must have the Canvas Type property set to Vertical
Toolbar.

Applies to form

Set Form Builder

Default

Null

Required/Optional optional

Form Vertical Toolbar Canvas restrictions

Valid only on Microsoft Windows. On other platforms, the Form Vertical Toolbar Canvas property is
ignored and the toolbar canvas is mapped to the window indicated by its Window property setting.

726

Index

A
ABORT_QUERY built-in, 6
About Control property, 561
Access Key property, 562
Access preference (Form Builder), 546
ACTIVATE_SERVER, 7
ADD_GROUP_COLUMN built-in, 9
ADD_GROUP_ROW built-in, 12
ADD_LIST_ELEMENT built-in, 14
ADD_OLEARGS, 16
ADD_PARAMETER built-in, 17
ADD_TREE_DATA built-in, 19
ADD_TREE_NODE built-in, 22
Add_Triggers (Form Compiler) options, 515
Alert Style property, 563
Alias property, 564
Allow Empty Branches property, 566
Allow Expansion property, 565
Allow Multi-Line Prompts property, 567
Allow Start-Attached Prompts property, 568
Allow Top-Attached Prompts property, 569
Application Instance property, 570
APPLICATION_PARAMETER built-in, 24
Array (Forms Runtime) option, 493
Arrow Style property, 571
Associated Menus property, 572
asynchronously

Run Modules, 549
Audio Channels property, 573
Automatic Column Width property, 574
Automatic Display property, 575
Automatic Position property, 576
Automatic Query property, 577
Automatic Refresh property, 578
Automatic Select property, 580
Automatic Skip (Item) property, 581
Automatic Skip (LOV) property, 582

B
Background_Color property, 583
Batch (Form Compiler) option, 516
BELL built-in, 25
Bevel property, 584
blanks converted to null, 659
Block Description property, 585
Block_Menu (Forms Runtime) option, 494
BLOCK_MENU built-in, 26
Bottom Title (Editor) property, 586
Bounding Box Scalable property, 587
BREAK built-in, 27
Buffer Records (Forms Runtime) option, 495

Build (Form Compiler) option, 517
Build Before Running option, 543
built-in packages

overview, 1
Builtin_Date_Format property, 588
Button 1 Label

Alert button labels, 590

C
Calculation Mode property, 591
CALL_FORM built-in, 28
CALL_INPUT built-in, 31
CALL_OLE, 32
CALL_OLE_returntype, 33
Calling_Form property, 592
CANCEL_REPORT_OBJECT built-in, 34
Canvas property, 593
Canvas Type property, 594
Cap Style property, 595
Case Insensitive Query property, 596
Case Restriction property, 597
CHAR, 659
Character Cell WD/HT, 598
Chart Subtype property, 600
Chart Type property, 599
Check Box Mapping of Other Values property, 601
CHECK_RECORD_UNIQUENESS built-in, 37
CHECKBOX_CHECKED built-in, 35
Checked property, 602
CLEAR_BLOCK built-in, 38
CLEAR_EOL built-in, 40
CLEAR_FORM built-in, 41
CLEAR_ITEM built-in, 43
CLEAR_LIST built-in, 44
CLEAR_MESSAGE built-in, 46
CLEAR_RECORD built-in, 47
Clip Height property, 603
Clip Width property, 604
Clip X Position property, 605
Clip Y Position property, 606
Close Allowed property, 607
CLOSE_FORM built-in, 48
CLOSE_SERVER, 49
Closed property, 608
Color Mode option, 541
Color Palette option, 542
Column Mapping Properties property, 609
Column Name property, 611
Column Specifications property, 612
Column Title (LOV) property, 614
Column Value (Record Group) property, 615
Command Text property, 616
Command Type property, 617

727

Comments property, 619
COMMIT_FORM built-in, 50
Communication Mode (Chart) property, 620
Communication Mode (Report) property, 621
Compile in Debug Mode, 520
Compile_All (Form Compiler) option, 518
Compress property, 622
Compression Quality property, 623
Conceal Data property, 624
Connect_String property, 625
Console Window property, 626
Control Help property, 627
Control Properties property, 628
CONVERT_OTHER_VALUE built-in, 52
Coordinate System property, 629
Coordination property, 631
Coordination_Status property, 633
COPY built-in, 53
Copy Value from Item property, 634
COPY_REGION built-in, 55
COPY_REPORT_OBJECT_OUTPUT built-in, 56
COUNT_QUERY built-in, 57
CREATE_GROUP built-in, 59
CREATE_GROUP_FROM_QUERY built-in, 61
CREATE_OLEOBJ, 63
CREATE_PARAMETER_LIST built-in, 64
CREATE_QUERIED_RECORD built-in, 66
CREATE_RECORD built-in, 68
CREATE_TIMER built-in, 69
CREATE_VAR, 71
CRT_File (Form Compiler) option, 519
Current Record Visual Attribute Group property, 635
Current_Form property, 636
Current_Form_Name property, 637
Current_Record property, 638
Current_Row_Background_Color property, 639
Current_Row_Fill_Pattern property, 640
Current_Row_Font_Name property, 641
Current_Row_Font_Size property, 642
Current_Row_Font_Spacing property, 643
Current_Row_Font_Style property, 644
Current_Row_Font_Weight property, 645
Current_Row_Foreground_Color property, 646
Current_Row_White_on_Black property, 647
Cursor Mode property, 648
Cursor_Style property, 650
cursors

Optimize SQL Processing option, 503
Optimize Transaction Mode Processing, 504
statistics (Forms Runtime) option), 510

custom item, 379
Custom Spacing property, 651
CUT_REGION built-in, 73

D
Dash Style property, 652
Data Block Description property, 653
Data Query property, 654
Data Source Data Block (Chart) property, 655
Data Source Data Block (Report) property, 656

Data Source X Axis property, 657
Data Source Y Axis property, 658
data synchronization, 700
Data Type (Record Group) property, 664
Data Type property, 659
Data types:, 659
database

logging in to, 490
Database Block property, 665
Database_Value property, 666
Datasource property, 667
DATE, 659, 660, 661, 663
Date_Format_Compatibility_Mode property, 668
DATETIME, 659, 660, 663
DBMS_ERROR_CODE built-in, 74
DBMS_ERROR_TEXT built-in, 76
Debug (Form Compiler) option, 520
Debug Messages (Forms Runtime) option, 497
Debug Mode (Runtime option), 496
DEBUG_MODE built-in, 78
Default Alert Button property, 669
Default Button property, 670
Default Font Scaling property, 671
DEFAULT_VALUE built-in, 79
Defer Required Enforcement property, 673
Deferred property, 672
Delete (Form Compiler) option, 521
Delete Allowed property, 675
Delete Procedure Arguments property, 676
Delete Procedure Name property, 677
Delete Procedure Result Set Columns property, 678
Delete Record Behavior property, 679
DELETE_GROUP built-in, 80
DELETE_GROUP_ROW built-in, 81
DELETE_LIST_ELEMENT built-in, 83
DELETE_PARAMETER built-in, 85
DELETE_RECORD built-in, 86
DELETE_TIMER built-in, 88
DELETE_TREE_NODE built-in, 90
DESTROY_PARAMETER_LIST built-in, 92
DESTROY_VARIANT, 93
Detail Block property, 680
Detail Reference Item property, 681
Direction property, 682, 683, 684, 685, 686
DISPATCH_EVENT built-in, 94
Display Block Menu preference, 494
Display Hint Automatically property, 687
Display in Keyboard Help property, 688
Display Quality property, 689
Display Screen to Specify Logon option, 502
Display Width (LOV) property, 690
Display without Privilege property, 691
DISPLAY_ERROR built-in, 95
Display_Height property, 692
DISPLAY_ITEM built-in, 96
Display_Width property, 693
Distance Between Records property, 695
Dither property, 696
DML Array Size property, 697
DML Data Target Name property, 698
DML Data Target Type property, 699

728

DML Returning Value property, 700
DO_KEY built-in, 99
DOWN built-in, 98
DUMMY_REFERENCE built-in, 101
DUPLICATE_ITEM built-in, 102
DUPLICATE_RECORD built-in, 103

E
Edge Background Color property, 701
Edge Foreground Color property, 702
Edge Pattern property, 703
EDIT_TEXTITEM built-in, 104
Editor property, 704
Editor X Position

Editor Y Position, 705
Elements in List property, 706
Enabled (Item) property, 707
Enabled (Menu Item) property, 708
Enabled (Tab Page) property, 709
End Angle property, 710
Enforce Column Security property, 711
Enforce Primary Key (Block) property, 712
ENFORCE_COLUMN_SECURITY built-in, 106
ENTER built-in, 107
ENTER_QUERY built-in, 108
Enterable property, 713
ERASE built-in, 110
ERROR_CODE built-in, 111
Error_Date/Datetime_Format property, 714
ERROR_TEXT built-in, 112
ERROR_TYPE built-in, 113
EXEC_VERB, 115
EXECUTE_QUERY built-in, 117
EXECUTE_TRIGGER built-in, 119
Execution Hierarchy property, 718
Execution Mode (Chart) property, 716
Execution Mode (Report) property, 717
EXIT_FORM built-in, 121
expired password, 490
Extract (Form Compiler) option, 522

F
FETCH_RECORDS built-in, 123
Filename property, 719
files

Filename property, 719
Fill property, 720
Fill_Pattern property, 721
Filter Before Display property, 722
FIND_ALERT built-in, 125
FIND_BLOCK built-in, 127
FIND_CANVAS built-in, 128
FIND_COLUMN built-in, 129
FIND_EDITOR built-in, 130
FIND_FORM built-in, 131
FIND_GROUP built-in, 132
FIND_ITEM built-in, 133
FIND_LOV built-in, 134
FIND_MENU_ITEM built-in, 135

FIND_OLE_VERB, 136
FIND_RELATION built-in, 138
FIND_REPORT_OBJECT built-in, 139
FIND_TAB_PAGE built-in, 140
FIND_TIMER built-in, 141
FIND_TREE_NODE built-in, 142
FIND_VA built-in, 144
FIND_VIEW built-in, 145
FIND_WINDOW built-in, 146
Fire in Enter-Query Mode, 723
First Navigation Block property, 724
First_Block property, 725
First_Detail_Relation property, 726
First_Item property, 727
First_Master_Relation property, 728
FIRST_RECORD built-in, 147
Fixed Bounding Box property, 729
Fixed Length (Item) property, 730
Fixed Length (Menu Substitution Parameter)

property), 731
Flag User Value Too Long property, 732
Font_Name property, 733
Font_Size property, 734
Font_Spacing property, 735
Font_Style property, 736
Font_Weight property, 737
Foreground_Color property, 738
Form Builder options

setting, 539
Form Builder preferences, 491
Form Compiler options

setting Form Compiler options, 513
Form Compiler options:, 513
Form Horizontal Toolbar Canvas property, 739
Form Vertical Toolbar Canvas property, 740
FORM_FAILURE built-in, 148
FORM_FATAL built-in, 150
FORM_SUCCESS built-in, 152
Forms Runtime

starting, 486
FORMS_DDL built-in, 154
FORMS_OLE.SERVER_ACTIVE, 365

G
GENERATE_SEQUENCE_NUMBER built-in, 158
GET_APPLICATION_PROPERTY built-in, 159
GET_BLOCK_PROPERTY built-in, 163
GET_CANVAS_PROPERTY built-in, 169
GET_CUSTOM_PROPERTY built-in, 171
GET_FILE_NAME built-in, 172
GET_FORM_PROPERTY built-in, 174
GET_GROUP_CHAR_CELL built-in, 178
GET_GROUP_DATE_CELL built-in, 181
GET_GROUP_NUMBER_CELL built-in, 183
GET_GROUP_RECORD_NUMBER built-in, 185
GET_GROUP_ROW_COUNT built-in, 187
GET_GROUP_SELECTION built-in, 188
GET_GROUP_SELECTION_COUNT built-in, 190
GET_INTERFACE_POINTER, 191
GET_ITEM_INSTANCE_PROPERTY built-in, 192

729

GET_ITEM_PROPERTY built-in, 194
GET_LIST_ELEMENT_COUNT built-in, 204
GET_LIST_ELEMENT_LABEL built-in, 206
GET_LIST_ELEMENT_VALUE built-in, 207
GET_LOV_PROPERTY built-in, 208
GET_MENU_ITEM_PROPERTY built-in, 210
GET_MESSAGE built-in, 212
GET_OLE_proptype, 213
GET_OLEARG_type, 214
GET_PARAMETER_ATTR built-in, 216
GET_PARAMETER_LIST built-in, 217
GET_RADIO_BUTTON_PROPERTY built-in, 218
GET_RECORD_PROPERTY built-in, 221
GET_RELATION_PROPERTY built-in, 224
GET_REPORT_OBJECT_PROPERTY built-in, 226
GET_TAB_PAGE_PROPERTY built-in, 228
GET_TREE_NODE_PARENT built-in, 230
GET_TREE_NODE_PROPERTY built-in, 232
GET_TREE_PROPERTY built-in, 234
GET_TREE_SELECTION built-in, 236
GET_VA_PROPERTY built-in, 238
GET_VAR_BOUNDS, 240
GET_VAR_DIMS, 241
GET_VAR_TYPE, 242
GET_VERB_COUNT, 243
GET_VERB_NAME, 245
GET_VIEW_PROPERTY built-in, 246
GET_WINDOW_PROPERTY built-in, 248
GET-OLE-MEMBERID, 215
GO_BLOCK built-in, 250
GO_FORM built-in, 251
GO_ITEM built-in, 252
GO_RECORD built-in, 253

H
handles (Object IDs), 1
Help (Form Builder) option, 544
Help (Form Compiler) option, 523
Help (Forms Runtime) option, 498
HELP built-in, 254
HIDE_MENU built-in, 255
HIDE_VIEW built-in, 256
HIDE_WINDOW built-in, 257
HOST built-in, 259
HTML File Name, 545

I
ID_NULL built-in, 261
IMAGE_SCROLL built-in, 263
IMAGE_ZOOM built-in, 264
INIT_OLEARGS, 266
INITIALIZE_CONTAINER, 267
Insert (Form Compiler) option, 524
INSERT_RECORD built-in, 268
Interactive (Forms Runtime) option, 499
ISSUE_ROLLBACK built-in, 269
ISSUE_SAVEPOINT built-in, 271
ITEM_ENABLED built-in, 273

K
Keyboard Text property, 688
Keyin (Forms Runtime) option, 500
Keyout (Forms Runtime) option, 501

L
LAST_OLE_ERROR, 274
LAST_OLE_EXCEPTION, 275
LAST_RECORD built-in, 276
LIST_VALUES built-in, 277
LOCK_RECORD built-in, 278
logging in to the database, 490
login to the database, 490
Logon (Form Compiler) option, 525
LOGON built-in, 279
Logon_Screen (Forms Runtime) option, 502
LOGON_SCREEN built-in, 281
LOGOUT built-in, 283

M
Master Deletes property, 679
MENU_CLEAR_FIELD built-in, 284
MENU_NEXT_FIELD built-in, 285
MENU_PARAMETER built-in, 286
MENU_PREVIOUS_FIELD built-in, 287
MENU_REDISPLAY built-in, 288
MENU_SHOW_KEYS built-in, 289
MESSAGE built-in, 290
MESSAGE_CODE built-in, 292
MESSAGE_TEXT built-in, 293
MESSAGE_TYPE built-in, 294
modifying

properties, 559
Module Access (Form Builder) preference, 546
Module_Access (Form Compiler) option, 526
Module_Type (Form Builder) option, 547
Module_Type (Form Compiler) option, 527
MOVE_WINDOW built-in, 296

N
NAME_IN built-in, 298
names

Filename property, 719
NEW_FORM built-in, 302
NewTopic 1, 381
NEXT_BLOCK built-in, 305
NEXT_FORM built-in, 306
NEXT_ITEM built-in, 307
NEXT_KEY built-in, 308
NEXT_MENU_ITEM built-in, 309
NEXT_RECORD built-in, 310
NEXT_SET built-in, 311
Nofail (Form Compiler) option, 528
null

blanks converted to, 659
NUMBER, 659, 660, 661, 662, 663

730

O
object ID, 1
object name aliases, 564
OLEVAR_EMPTY, 312
OPEN_FORM built-in, 314
Optimize SQL Processing (Forms Runtime)

preference, 503
Optimize Transaction Mode Processing (Forms

Runtime), 504
Optimize V2-Style Trigger Step SQL Processing, 503
options, 491, 492

Forms Runtime options, 491
preference file, 556
setting Form Builder options, 539
setting Form Compiler options, 513

Options_Screen (Form Compiler) option, 529
Options_Screen (Forms Runtime) option, 505
Oracle Terminal Resource File option, 511
Output_File (Form Compiler) option, 530
Output_File (Forms Runtime) option, 506

P
Palette option, 542
Parse (Form Compiler) option, 531
password, 490
PASTE_REGION built-in, 316
PAUSE built-in, 317
PECS (Forms Runtime) option, 507
PLAY_SOUND built-in, 318
POPULATE_GROUP built-in, 319
POPULATE_GROUP_FROM_TREE built-in, 320
POPULATE_GROUP_WITH_QUERY built-in, 322
POPULATE_LIST built-in, 324
POPULATE_TREE built-in, 326
POST built-in, 327
preferences

Form Builder options, 539
user preference file, 556

PREVIOUS_BLOCK built-in, 329
PREVIOUS_FORM built-in, 330
PREVIOUS_ITEM built-in, 331
PREVIOUS_MENU built-in, 332
PREVIOUS_MENU_ITEM built-in, 333
PREVIOUS_RECORD built-in, 334
PRINT built-in, 335
Printer option, 548
properties

Cursor Mode, 648
modifying, 559
overview, 559
reading property descriptions, 560
setting and modifying, 559

properties:, 648
PTR_TO_VAR, 336

Q
qualifying table names, 564
Query Only (Forms Runtime) option, 508

QUERY_PARAMETER built-in, 337
Quiet (Forms Runtime) option, 509

R
Read Input Keystrokes from File option, 500
READ_IMAGE_FILE built-in, 339
READ_SOUND_FILE built-in, 341
RECALCULATE built-in, 343
REDISPLAY built-in, 344
RELEASE_OBJ, 345
REPLACE_CONTENT_VIEW built-in, 346
REPLACE_MENU built-in, 348
REPORT_OBJECT_STATUS built-in, 350
re-querying, 700
RESET_GROUP_SELECTION built-in, 351
RESIZE_WINDOW built-in, 352
restricted built-in subprograms, 1
RETRIEVE_LIST built-in, 354
Returning clause in DML usage, 700
Rollbacks, 42
Run in Query Only Mode, 508
Run in Quiet Mode, 509
Run Modules Asynchronously option, 549
RUN_PRODUCT built-in, 355
RUN_REPORT_OBJECT built-in, 358
runtime, 491, 492
runtime:, 491
Runtime_Compatibility_Mode property, 668

S
Save Before Building option, 550
Script (Form Compiler) option, 532
SCROLL_DOWN built-in, 359
SCROLL_UP built-in, 360
SCROLL_VIEW built-in, 361
SELECT_ALL built-in, 363
SELECT_RECORDS built-in, 364
server-side data changes, 700
SET_ALERT_BUTTON_PROPERTY built-in, 367
SET_ALERT_PROPERTY built-in, 368
SET_APPLICATION_PROPERTY built-in, 370
SET_BLOCK_PROPERTY built-in, 371
SET_CANVAS_PROPERTY built-in, 376
SET_CUSTOM_ITEM_PROPERTY built-in, 379
SET_CUSTOM_PROPERTY built-in, 380
SET_FORM_PROPERTY built-in, 382
SET_GROUP_CHAR_CELL built-in, 386
SET_GROUP_DATE_CELL built-in, 387
SET_GROUP_NUMBER_CELL built-in, 389
SET_GROUP_SELECTION built-in, 390
SET_INPUT_FOCUS built-in, 391
SET_ITEM_INSTANCE_PROPERTY built-in, 392
SET_ITEM_PROPERTY built-in, 403, 404
SET_LOV_COLUMN_PROPERTY built-in, 407
SET_LOV_PROPERTY built-in, 408
SET_MENU_ITEM_PROPERTY built-in, 410
SET_OLE, 412
SET_PARAMETER_ATTR built-in, 413
SET_RADIO_BUTTON_PROPERTY built-in, 414

731

SET_RECORD_PROPERTY built-in, 417
SET_RELATION_PROPERTY built-in, 419
SET_REPORT_OBJECT_PROPERTY built-in, 421
SET_TAB_PAGE_PROPERTY built-in, 423
SET_TIMER built-in, 425
SET_TREE_NODE_PROPERTY built-in, 427
SET_TREE_PROPERTY built-in, 429
SET_TREE_SELECTION built-in, 432
SET_VA_PROPERTY built-in, 434
SET_VAR, 436, 437
SET_VIEW_PROPERTY built-in, 438
SET_WINDOW_PROPERTY built-in, 440
setting

Form Builder options, 539
Form Compiler options, 513, 514
properties, 559

Show Help Information option, 498
Show Statistics, 510
SHOW_ALERT built-in, 444
SHOW_EDITOR built-in, 445
SHOW_KEYS built-in, 448
SHOW_LOV built-in, 449
SHOW_MENU built-in, 451
SHOW_VIEW built-in, 452
SHOW_WINDOW built-in, 453
SQL Processing

Optimize SQL Porcessing (Forms Runtime)
preference, 503

Statistics (Form Compiler) option, 533
Statistics (Forms Runtime) option, 510
Strip_Source (Form Compiler) option, 534
Subclassing Path, 551
Suppress Hints option, 552
SYNCHRONIZE built-in, 454
synchronously

Run Modules, 549

T
table name qualification, 564
Term (Form Builder) option, 553
Term (Forms Runtime) option, 511
TERMINATE built-in, 455
time (as part of DATETIME), 659
TO_VARIANT built-in, 456
triggers

Add_Triggers Form Compiler option, 515
Optimizing V2-style triggers, 503

truncation, 732
of user-entered value, 732

tuning applications
Optimize transaction mode processing preference,

504
OptimizeSQL option, 503

tuning applications:, 503

U
unrestricted built-in subprograms, 1
UNSET_GROUP_SELECTION built-in, 458
UP built-in, 459
UPDATE_CHART built-in, 460
UPDATE_RECORD built-in, 461
Upgrade (Form Compiler) option, 535
Upgrade_Roles (Form Compiler) option, 536
Use System Editor option, 555
user preference file option, 556
USER_EXIT built-in, 462
userid, 490
USESDI (Forms Runtime) option, 554

V
VALIDATE built-in, 464
VAR_TO_CHAR, 468
VAR_TO_NUMBER

VAR_TO_OBJ, 468
VAR_TO_TABLE, 467
VAR_TO_type, 468
VAR_TO_VARPTR, 469
VARPTR_TO_VAR, 466
VBX.FIRE_EVENT, 470
VBX.GET_PROPERTY, 472
VBX.GET_VALUE_PROPERTY, 474
VBX.INVOKE_METHOD, 475
VBX.SET_PROPERTY, 476
VBX.SET_VALUE_PROPERTY, 478
Version (Form Compiler) option, 537
visual attributes

Oracle Terminal Resource File option, 511

W
Web Runtime options, 491
WEB.SHOW_DOCUMENT, 479
Webforms, 554

USESDI option, 554
Welcome Dialog preference (Form Builder), 557
Welcome Pages, 558
WHERE_DISPLAY built-in, 480
Widen_Fields (Form Compiler) option, 538
Window_State (Forms Runtime) option, 512
Write Input Keystrokes to File option, 501
Write Output to Display option, 499
Write Output to File option, 506
WRITE_IMAGE_FILE built-in, 481
WRITE_SOUND_FILE built-in, 483

Oracle Forms Developer

Form Builder Reference, Volume 2

Release 6i

January, 2000

Part No: A73074-01

Oracle Forms Developer: Form Builder Reference, Release 6i

Volume 2

Part No: A73074-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Contributors: Fred Bethke, Joan Carter, Ken Chu, Kate Dumont, Tom Haunert, Colleen McCann, Leanne
Soylemez, Poh Lee Tan, Tony Wolfram

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee’s responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer
Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and JDeveloper, JInitiator, Oracle7, Oracle8, Oracle8i, and PL/SQL are
trademarks or registered trademarks of Oracle Corporation. All other company or product names mentioned are
used for identification purposes only and may be trademarks of their respective owners.

i

Table of Contents

TABLE OF CONTENTS .. I

SEND US YOUR COMMENTS.. XI

PREFACE...XIII

PROPERTIES (CONTINUED)... 1
Format Mask property...1
Form_Name property..8
Formula property ..9
Frame Alignment property..10
Frame Title property ...11
Frame Title Alignment property..12
Frame Title Background Color property ...13
Frame Title Font Name property...14
Frame Title Font Size property ...15
Frame Title Font Spacing property ...16
Frame Title Font Style property ..17
Frame Title Font Weight property ..18
Frame Title Foreground Color property..19
Frame Title Offset property ..20
Frame Title Reading Order property ...21
Frame Title Spacing property..22
Frame Title Visual Attribute Group property..23
Graphics Type property ..25
Group_Name property ..26
Help property ..27
Hide on Exit property..28
Highest Allowed Value/Lowest Allowed Value property...29
Hint (Item) property ..30
Hint (Menu Item) property..31
Hint (Menu Substitution Parameter) property...32
Horizontal Justification property...33
Horizontal Margin property ..34
Horizontal Object Offset property ..35
Horizontal Origin property..36
Horizontal Toolbar Canvas property...37
Icon Filename property ...38
Icon in Menu property...39
Iconic property ..40
Image Depth property ...41
Image Format property..42
Implementation Class property ...43
Include REF Item property..44

ii

Inherit Menu property ...45
Initial Keyboard State property ...46
Initial Menu property ..47
Initial Value (Item) property ...48
Insert Allowed (Block) property ...50
Insert Allowed (Item) property ...51
Insert Procedure Arguments property ...53
Insert Procedure Name property ...54
Insert Procedure Result Set Columns property ...55
Interaction Mode property ..56
Isolation Mode property..57
Item Roles property...58
Item Type property ...59
Item_Is_Valid property ...60
Item_Tab_Page property...61
Join Condition property ..62
Join Style property ..63
Justification property...64
Keep Cursor Position property..66
Key Mode property ...67
Keyboard Accelerator property...69
Keyboard Help Description property ..70
Keyboard Navigable property ...71
Keyboard State property ...72
Label (Item) property ..73
Label (Menu Item) property..74
Label (Menu Substitution Parameter) property...75
Label (Tab Page) property ..76
Last_Block property..77
Last_Item property..78
Last_Query property ...79
Layout Data Block property..80
Layout Style property..81
Length (Record Group) property ..82
Line Spacing property...83
Line Width property..84
List Item Value property ...85
List of Values property ...86
List Style property...87
List Type property...88
List X Position property ..89
List Y Position property ..90
Listed in Data Block Menu/Data Block Description...91
Lock Procedure Arguments property ..92
Lock Procedure Name property ..93
Lock Procedure Result Set Columns property ..94
Lock Record property ...95
Locking Mode property ..96
Magic Item property..97
Main Menu property ...99
Mapping of Other Values property ...100
Maximize Allowed property ...101
Maximum Length property ...102
Maximum Length (Form Parameter) property ..103
Maximum Length (Menu Substitution Parameter) property ...104

iii

Maximum Objects Per Line property..105
Maximum Query Time property ...106
Maximum Records Fetched property ..107
Menu Description property ...108
Menu Directory property ..109
Menu Filename property ...110
Menu Item Code property ...111
Menu Item Radio Group property...112
Menu Item Type property ...113
Menu Module property115
Menu Role property116
Menu Source property...117
Menu Style property..119
Message property120
Minimize Allowed property..121
Minimized Title property ..122
Modal property123
Module_NLS_Lang property ..124
Module Roles property ...125
Mouse Navigate property..126
Mouse Navigation Limit property...127
Move Allowed property ..128
Multi-Line property...129
Multi-Selection property ...130
Name property131
Navigation Style property ...133
Next Navigation Block property ...134
Next Navigation Item property ...135
NextBlock property...136
NextItem property137
Next_Detail_Relation property ...138
Next_Master_Relation property..139
Number of Items Displayed property..140
Number of Records Buffered property..141
Number of Records Displayed property..142
OLE Activation Style property ...143
OLE Class property...144
OLE In-place Activation property...145
OLE Inside-Out Support property...146
OLE Popup Menu Items property ...147
OLE Resize Style property..150
OLE Tenant Aspect property ..151
OLE Tenant Types property ...152
Operating_System property...153
Optimizer Hint property..154
Order By property155
Other Reports Parameters property ...156
Output_Date/Datetime_Format property ..157
Parameter Data Type property ..158
Parameter Initial Value (Form Parameter) property..163
Menu Parameter Initial Value (Menu Substitution Parameter) property...164
Password property...165
PLSQL_Date_Format property ...166
PL/SQL Library Location property...167
PL/SQL Library Source property..168

iv

Popup Menu property ...169
Precompute Summaries property ..170
Prevent Masterless Operations property ...171
Previous Navigation Block property ...172
Previous Navigation Item property ...173
PreviousBlock property ..174
PreviousItem property...175
Primary Canvas property...176
Primary Key (Item) property...177
Program Unit Text property ..178
Prompt property ..179
Prompt Alignment property ..180
Prompt Alignment Offset property..181
Prompt Attachment Edge property..182
Prompt Attachment Offset property ..183
Prompt Background Color property ..184
Prompt Display Style property..185
Prompt Fill Pattern property ...186
Prompt Font Name property..187
Prompt Font Size property ..188
Prompt Font Spacing property ..189
Prompt Font Style property...190
Prompt Font Weight property ...191
Prompt Foreground Color property...192
Prompt Justification property..193
Prompt Reading Order property..194
Prompt Visual Attribute Group property ..195
Prompt_White_On_Black property ..196
Property Class property...197
Query All Records property ..198
Query Allowed (Block) property ..199
Query Allowed (Item) property...200
Query Array Size property ..201
Query Data Source Arguments property ...202
Query Data Source Columns property ..203
Query Data Source Name property ...204
Query Data Source Type property ..205
Query Length property..206
Query Name property..207
Query Only property208
Query_Hits property209
Query_Options property ...210
Radio Button Value Property ..211
Raise on Entry property ..212
Reading Order property ..213
Real Unit property...214
Record Group property215
Record Group Fetch Size property..216
Record Group Query property ..217
Record Group Type property ..218
Record Orientation property ...219
Records_to_Fetch property ...220
Relation Type property ...222
Rendered property..223
Report Destination Format property ...224

v

Report Destination Name property ...225
Report Destination Type property...226
Report Server property..227
Required (Item) property ..228
Required (Menu Parameter) property ...229
Resize Allowed property...230
Return Item (LOV) property ...231
Rotation Angle property..232
Runtime Compatibility Mode property ...233
Savepoint Mode property..234
Savepoint_Name property...235
Scroll Bar Alignment property..236
Scroll Bar Height property ..237
Scroll Bar Width property...238
Secure (Menu Parameter) property ...239
Share Library with Form property...240
Show Fast Forward Button property ...241
Show Horizontal Scroll Bar property..242
Show Lines property243
Show OLE Popup Menu property...244
Show OLE Tenant Type property ...245
Show Palette property ...246
Show Play Button property ...247
Show Record Button property...248
Show Rewind Button property..249
Show Scroll Bar property..250
Show Slider property252
Show Symbols property ..253
Show Time Indicator property ..254
Show Vertical Scroll Bar property ..255
Show Volume Control property ..256
Shrinkwrap property257
Single Object Alignment property ..258
Single Record property ...259
Size property260
Sizing Style property...262
Sound Format property ...263
Sound Quality property...264
Start Angle property...265
Start Prompt Alignment property..266
Start Prompt Offset property...267
Startup Code property ...268
Status (Block) property ...269
Status (Record) property ...270
Subclass Information property ..271
Submenu Name property...272
Summarized Block property ...273
Summarized Item property..274
Summary Function property..275
Synchronize with Item property..276
Tab Attachment Edge property ...277
Tab Page property278
Tab Page X Offset property ..279
Tab Page Y Offset property ..280
Tab Style property...281

vi

Tear-Off Menu property..282
Timer_Name property..283
Title property284
Tooltip property285
Tooltip Background Color property ..286
Tooltip Fill Pattern property ...287
Tooltip Font Name property ...288
Tooltip Font Size property ..289
Tooltip Font Spacing property ..290
Tooltip Font Style property...291
Tooltip Font Weight property ...292
Tooltip Foreground Color property...293
Tooltip Visual Attribute Group property ..294
Tooltip White on Black property ..295
Top Prompt Alignment property ...296
Top Prompt Offset property ..297
Top_Record property298
Top Title property299
Topmost_Tab_Page property ..300
Transactional Triggers property ..301
Trigger Style property...302
Trigger Text property..303
Trigger Type property...304
Update Allowed (Block) property...305
Update Allowed (Item) property ...306
Update Changed Columns Only property ...307
Update_Column property..308
Update Commit property...309
Update Layout property ..310
Update Only if NULL property...311
Update_Permission property...312
Update Procedure Arguments property...313
Update Procedure Name property ...314
Update Procedure Result Set Columns property ...315
Update Query property..316
Use Security property..317
Use 3D Controls property ...318
Username property..319
User_Date/Datetime_Format property ..320
User_Interface property ..321
User_NLS_Date_Format property ..322
User_NLS_Lang property...323
Validate from List property...324
Validation property ...325
Validation Unit property ...326
Value when Checked property ..327
Value when Unchecked property ..328
VBX Control File property ...329
VBX Control Name property ..330
VBX Control Value property ..331
Vertical Fill property...332
Vertical Justification property...333
Vertical Margin property ..334
Vertical Object Offset property...335
Vertical Origin property..336

vii

Vertical Toolbar Canvas property ...337
Viewport Height, Viewport Width property ...338
Viewport X Position, Viewport Y Position property ..339
Viewport X Position on Canvas, Viewport Y Position on Canvas property340
Visible property ..341
Visible (Canvas) property ...342
Visible (Item) property..343
Visible (Tab Page) property ..344
Visible in Horizontal/Vertical Menu Toolbar property ...345
Visible in Menu property ..346
Visual Attribute property ..347
Visual Attribute Group property ...348
Visual Attribute Type property ...350
WHERE Clause/ORDER BY Clause properties ...351
White on Black property ...353
Width/Height (WD, HT) properties ..354
Window property ..355
Window_Handle property...356
Window_State property ..357
Window Style property ...358
Wrap Style property ..359
Wrap Text property...360
X Corner Radius property ...361
X Position, Y Position property ..362
Y Corner Radius property ...364

SYSTEM VARIABLES.. 365
About system variables ...365
Date and Time System Default Values ...366
$$DATE$$ system variable ..368
$$DATETIME$$ system variable ..369
$$DBDATE$$ system variable...370
$$DBDATETIME$$ system variable ...371
$$DBTIME$$ system variable ...372
$$TIME$$ system variable ...373
SYSTEM.BLOCK_STATUS system variable..374
SYSTEM.COORDINATION_OPERATION system variable ...375
SYSTEM.CURRENT_BLOCK system variable ..377
SYSTEM.CURRENT_DATETIME system variable ...378
SYSTEM.CURRENT_FORM system variable ..379
SYSTEM.CURRENT_ITEM system variable..380
SYSTEM.CURRENT_VALUE system variable ..381
SYSTEM.CURSOR_BLOCK system variable...382
SYSTEM.CURSOR_ITEM system variable ..383
SYSTEM.CURSOR_RECORD system variable ..384
SYSTEM.CURSOR_VALUE system variable...385
SYSTEM.CUSTOM_ITEM_EVENT system variable ...386
SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS system variable...387
SYSTEM.DATE_THRESHOLD system variable ..388
SYSTEM.EFFECTIVE_DATE system variable ..389
SYSTEM.EVENT_WINDOW system variable..390
SYSTEM.FORM_STATUS system variable..391
SYSTEM.LAST_FORM system variable ...392
SYSTEM.LAST_QUERY system variable...393

viii

SYSTEM.LAST_RECORD system variable ..395
SYSTEM.MASTER_BLOCK system variable...396
SYSTEM.MESSAGE_LEVEL system variable ...397
SYSTEM.MODE system variable ..398
SYSTEM.MOUSE_BUTTON_MODIFIERS system variable...399
SYSTEM.MOUSE_BUTTON_PRESSED system variable ...400
SYSTEM.MOUSE_BUTTON_SHIFT_STATE system variable ...401
SYSTEM.MOUSE_CANVAS system variable ..402
SYSTEM.MOUSE_FORM system variable ...403
SYSTEM.MOUSE_ITEM system variable ..404
SYSTEM.MOUSE_RECORD system variable ..405
SYSTEM.MOUSE_RECORD_OFFSET system variable..406
SYSTEM.MOUSE_X_POS system variable ..407
SYSTEM.MOUSE_Y_POS system variable ..408
SYSTEM.RECORD_STATUS system variable ...409
SYSTEM.SUPPRESS_WORKING system variable ..410
SYSTEM.TAB_NEW_PAGE system variable...411
SYSTEM.TAB_PREVIOUS_PAGE system variable ..412
SYSTEM.TRIGGER_BLOCK system variable ...413
SYSTEM.TRIGGER_ITEM system variable ...414
SYSTEM.TRIGGER_NODE_SELECTED system variable ..415
SYSTEM.TRIGGER_RECORD system variable...416

TRIGGERS ... 418
Overview of trigger categories..418
Block processing triggers..418
Interface event triggers..419
Master/Detail triggers ...420
Message-handling triggers ..420
Navigational triggers...420
Query-time triggers422
Transactional triggers..422
Validation triggers423
Other trigger categories...424
Delete-Procedure trigger ...425
Function Key triggers..426
Insert-Procedure trigger ..429
Key-Fn trigger...430
Key-Others trigger431
Lock-Procedure trigger ...432
On-Check-Delete-Master trigger...433
On-Check-Unique trigger..434
On-Clear-Details trigger..436
On-Close trigger...437
On-Column-Security trigger..438
On-Commit trigger..440
On-Count trigger441
On-Delete trigger442
On-Dispatch-Event trigger ..443
On-Error trigger444
On-Fetch trigger...446
On-Insert trigger..448
On-Lock trigger..449
On-Logon trigger450

ix

On-Logout trigger ...451
On-Message trigger...452
On-Populate-Details trigger ..454
On-Rollback trigger ..455
On-Savepoint trigger...456
On-Select trigger ...457
On-Sequence-Number trigger ...459
On-Update trigger ...460
Post-Block trigger ...461
Post-Change trigger...462
Post-Database-Commit trigger..464
Post-Delete trigger ..465
Post-Form trigger ..466
Post-Forms-Commit trigger ..467
Post-Insert trigger..469
Post-Logon trigger ..470
Post-Logout trigger ...471
Post-Query trigger...472
Post-Record trigger ...474
Post-Select trigger ...475
Post-Text-Item trigger...476
Post-Update trigger ...477
Pre-Block trigger...478
Pre-Commit trigger ...479
Pre-Delete trigger..480
Pre-Form trigger..481
Pre-Insert trigger ...482
Pre-Logon trigger..484
Pre-Logout trigger...485
Pre-Popup-Menu trigger ...486
Pre-Query trigger ..487
Pre-Record trigger...489
Pre-Select trigger ..490
Pre-Text-Item trigger ..491
Pre-Update trigger...492
Query-Procedure trigger ...494
Update-Procedure trigger ..495
User-Named trigger...496
When-Button-Pressed trigger..497
When-Checkbox-Changed trigger...498
When-Clear-Block trigger...499
When-Create-Record trigger ...500
When-Custom-Item-Event trigger...502
When-Database-Record trigger...504
When-Form-Navigate trigger..505
When-Image-Activated trigger..506
When-Image-Pressed trigger...507
When-List-Activated trigger ...508
When-List-Changed trigger...509
When-Mouse-Click trigger ...510
When-Mouse-DoubleClick trigger..511
When-Mouse-Down trigger ..513
When-Mouse-Enter trigger ...514
When-Mouse-Leave trigger ..515
When-Mouse-Move trigger...516

x

When-Mouse-Up trigger ...517
When-New-Block-Instance trigger ...518
When-New-Form-Instance trigger ..519
When-New-Item-Instance trigger..521
When-New-Record-Instance trigger ...522
When-Radio-Changed trigger ...523
When-Remove-Record trigger ..524
When-Tab-Page-Changed trigger ...525
When-Timer-Expired trigger ..526
When-Tree-Node-Activated trigger ..528
When-Tree-Node-Expanded trigger..529
When-Tree-Node-Selected trigger ..530
When-Validate-Item trigger ..531
When-Validate-Record trigger..533
When-Window-Activated trigger..535
When-Window-Closed trigger ..536
When-Window-Deactivated trigger ..537
When-Window-Resized trigger...538

INDEX.. 540

xi

Send Us Your Comments

Oracle Forms Developer: Form Builder Reference, Release 6i

Volume 2

Part No: A73074-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the part number,
chapter, section, and page number (if available). You can send comments to us by electronic mail to
oddoc@us.oracle.com.

If you have any problems with the software, please contact your local Oracle World Wide Support Center.

xii

xiii

Preface

This book is Volume 2 of the Oracle Forms Develop:r Form Builder Reference . For more information
about the book, please see the preface in Volume 1.

xiv

1

Properties (continued)

Format Mask property

Description

Specifies the display format and input accepted for data in text items.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Required/Optional optional

Usage Notes

Valid format masks for character strings, numbers and dates are described in the following tables.

Character Strings

The following table describes valid format masks for character strings.

Element Example Description

FM FMXX99 Fill mode: accept string as typed, do not right justify.
Allows end user input string to be shorter than the
format mask.

X XXXX Any alphabetic, numeric, or special character. End
user input string must be exact length specified by
format mask.

9 9999 Numeric characters only. End user input string must be
exact length specified by format mask.

A AAAA Alphabetic characters only. End user input string must
be exact length specified by format mask.

Character String Examples

Format
Mask

Description

2

XXAA Will accept: --ab, abcd, 11ab; will not accept: --11, ab11, or ab--(must
use XX to accept hyphens and other special characters).

XXXX Will accept any combination of alphabetic, numeric, or special
characters: --ab, abcd, 11ab, --11, ab11, or ab--. Will accept 1234 or
abcd; will not accept 123 or abc. (To accept input string shorter than
mask, use FMXXXX.)

FMXX99 Will accept ab12, ab1, ab followed by two spaces; will not accept
12ab or abcd. (To produce the Form Builder Version 3.0 Alpha
datatype, use FMAAAAAA.)

• To embed additional characters such as a hyphen (-) or a comma (,), surround the character with
double-quotes (").

• Embedded characters are separate from text item values and are not collated along with text item
values, even when the end user enters them.

NUMBERS

The following table describes valid format masks for numbers.

Element Example Description

9 9999 Number of nines determines display width. Any
leading zeros will be displayed as blanks.

0 0999 Display leading zeros.

0 9990 Display zero value as zero, not blank.

$ $9999 Prefix value with dollar sign.

B B9999 Display zero value as blank, not "0".

MI 9999MI Display "-" after a negative value.

PR 9999PR Display a negative value in <angle brackets>.

comma 9,999 Display a comma in this position. For correct behavior
in multilingual applications, substitute G to return the
appropriate group (thousands) separator.

period 99.99 Display a decimal point in this position. For correct
behavior in multilingual applications, substitute D to
return the appropriate decimal separator.

E 9.999EEEE Display in scientific notation (format must contain
exactly four "E"s).

FM FM999 Fill mode: accept string as typed, do not right justify.

• When you mask a number with nines (9), Form Builder adds a space in front of the number to
accommodate the plus (+) or minus (-) sign. However, since the plus sign is not displayed, it

3

appears as if Form Builder adds a space in front of the number. (The minus sign is displayed.)

• To embed additional characters such as a hyphen (-) or a comma (,), surround the character with
double-quotes (").

• Embedded characters are separate from text item values and are not collated along with text item
values, even when the end user enters them.

NUMBER Examples

Format Mask Description

FM099"-"99"-"9999 Displays the social security number as formatted,
including hyphens, even if end user enters only nine
digits.To create a Social Security column, create an 11-
character column, set to fixed length, with a format
mask of 099"-"99"-"9999. This mask will
accommodate Social Security numbers that begin with
zero, accepting 012-34-5678 or 012345678 (both
stored as 012345678).

99999PR Accepts -123; reformats as <123>.

999MI Accepts -678; reformats as 678-.

9.999EEEE Displays as 1.00E+20.

How Forms handles length mismatches

If a runtime user enters a numeric string that exceeds the format mask specification, the value will be
rejected. For example:

Format Mask User enters Result

99.9 321.0 Invalid

99.9 21.01 Invalid

99.9 21.1 21.1

99.9 01.1 1.1

In contrast, if a numeric value fetched from the database exceeds the format mask specification for its
display field, the value is displayed, but truncated, with rounding, to fit the mask. (The item itself within
the Forms application retains its full value.) For example, if the database held the value 2.0666, and the
format mask was 99.9, the value displayed to the user would be 2.1. However, the value of the item
within the form would be the full 2.0666.

Dates

The following table describes valid format masks for dates.

Element Description

YYYY or SYYYY 4-digit year; "S" prefixes "BC" date with "-".

4

YYY or YY or Y Last 3, 2, or 1 digits of year.

Y,YYY Year with comma in this position.

BC or AD BC/AD indicator.

B.C. or A.D. BD/AD indicator with periods.

RR Defaults to correct century. Deduces the century from a
date entered by comparing the 2 digit year entered with the
year and century to which the computer’s internal clock is
set. Years 00-49 will be given the 21st century (the year
2000), and years from 50-99 will be given the 20th century
(the year 1900).

MM Month (01-12; JAN = 01).

MONTH Name of month, padded with blanks to length of 9
characters.

MON Name of month, 3-letter abbreviation.

DDD Day of year (1-366).

DD Day of month (1-31).

D Day of week (1-7; Sunday=1).

DAY Name of day, padded with blanks to length of 9 characters.

DY Name of day, 3-letter abbreviation.

J Julian day; the number of days since January 1, 4712 BC.

AM or PM Meridian indicator.

A.M. or P.M. Meridian indicator with periods.

HH or HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

MI Minute (0-59).

SS Second (0-59).

SSSSS Seconds past midnight (0-86399).

/. , . Punctuation is reproduced in the result.

"..." Quoted string is reproduced in the result.

FM Fill mode: assumes implied characters such as O or space;
displays significant characters left justified. Allows end
user input to be shorter than the format mask. (Use in
conjunction with FX to require specific delimiters.)

FX All date literals must match the format mask exactly,
including delimiters.

5

• When you prefix a date mask with FX, the end user must enter the date exactly as you define the
mask, including the specified delimiters:

Date Examples

Format Mask Description

FXDD-MON-YY Will accept 12-JAN-94, but will not accept 12.JAN.94 or
12/JAN/94 because the delimiters do not match the mask.
Will not accept 12JAN94 because there are no delimiters.
Will accept 01-JAN-94 but will not accept 1-JAN-94.

FMDD-MON-YY Will accept 01-JAN-94. Will also accept the entry of other
delimiters, for example 01/JAN/94 and 01 JAN 94.
However, will not accept 01JAN94. Will accept 1-JAN-94,
converting it to 01-JAN-94.

DD-MON-YY Will accept 12.JAN.94, 12/JAN/94 or 12-JAN-94. Note:
Any delimiter characters will be accepted, but if delimiters
are omitted by the end user, this mask will interpret date
characters as a delimiters. Will accept 12-JAN94, (but will
erroneously interpret as 12-JAN-04); but will not accept
12JAN94, because "AN" is not a valid month name.

• Use of a format mask only affects how the data looks. Form Builder stores full precision, regardless
of how the data is presented.

• Embedded characters are separate from text item values and are not collated along with text item
values, even when the end user enters them.

• To embed additional characters such as a hyphen (-) or a comma (,), surround the character with
double-quotes ("). Note, however, that double-quotes themselves cannot be used as a character. In
other words, trying to achieve output of DD"MM by specifying a mask of DD"""MM would not
work.

Format Mask Description

FMMONTH" "DD", "YYYY Displays the text item data in the specified date
format: JANUARY 12, 1994, including the
appropriate blank spaces and comma.

FMDD-MONTH-YYYY Displays as 12-JANUARY-1994.

DY-DDD-YYYY Displays as WED-012-1994. Note: for input
validation including day of the week, a mask that
allows specific determination of the day is
required, such as this example or DY-DD-MM-
YY.

• When you use day of the week formats, be sure that the data includes day of the week information.
To avoid illogical masks, display also either the day of the year (1-366) or the month in some

6

format.

Format Mask Description

DD-MONTH-YYYY Displays as 12-JANUARY-1994.

DY-DDD-YYYY Displays as WED-012-1994.

DY-DD-MON-YY Displays as WED-12-JAN-94. Be sure to include
month. Avoid masks such as DY-DD-YY, which could
generate an error.

NLS Format Masks

The following table describes valid National Language Support (NLS) format masks.

Element Example Description

C C999 Returns the international currency symbol.

L L9999 Returns the local currency symbol.

D 99D99 Returns the decimal separator.

G 9G999 Returns the group (thousands) separator.

comma 9,999 Displays a comma in this position.

period 9.999 Displays a decimal point in this position. Displays a
decimal point in this position.

NLS Format Mask Examples

Format Mask Description

L99G999D99 Displays the local currency symbol, group, and decimal
separators: if NLS_LANG=American, this item displays as
$1,600.00; if NLS_LANG=Norwegian, this item displays as
Kr.1.600,00.

C99G999D99 Displays the appropriate international currency symbol: if
NLS_LANG=American, this item displays as USD1,600.00; if
NLS_LANG=French, this item displays as FRF1.600,00.

Format Mask restrictions

• When setting the Maximum Length property for a text item, include space for any embedded
characters inserted by the format mask you specify.

7

• Format masks can contain a maximum of 30 characters.

• Form Builder supports only ORACLE format masks that are used for both input and output.
Output-only format masks, such as WW, are not supported.

8

Form_Name property

Description

Specifies the name of the form.

Applies to form

Set not settable

Refer to Built-in

GET_FORM_PROPERTY

Usage Notes

Form_Name at the form level corresponds to Current_Form_Name at the application level.
Current_Form_Name is gettable with GET_APPLICATION_PROPERTY.

9

Formula property

Description

Specifies a single PL/SQL expression that determines the value for a formula calculated item. The
expression can reference built-in or user-written subprograms.

Applies to item

Set Form Builder

Refer to Built-in

RECALCULATE

Usage Notes

You cannot enter an entire PL/SQL statement as your formula; accordingly, do not terminate your
calculation expression with a semicolon. Form Builder adds the actual assignment code to the formula
internally do not code it yourself. For example, instead of coding an entire assignment statement, code
just the expression

 :emp.sal + :emp.comm

Form Builder will internally convert this into a complete statement, e.g.,
 :emp.gross_comp := (:emp.sal + :emp_comm);

Required/Optional required if Calculation Mode property is set to Formula

10

Frame Alignment property

Description

Specifies how objects should be aligned within the width of the frame, either Start, End, Center, Fill, or
Column. This property is valid when the Layout Style property is set to Form.

Applies to frame

Set Form Builder

Default

Fill

Required/Optional required

11

Frame Title property

Description

Specifies the frame’s title.

Applies to frame

Set Form Builder

Default

blank

Required/Optional optional

12

Frame Title Alignment property

Description

Specifies the title alignment for a frame, either Start, End, or Center.

Note: Title alignment is relative to the Direction of the canvas on which the canvas appears.

Applies to frame

Set Form Builder

Default

Start

Required/Optional required

13

Frame Title Background Color property

Description

Specifies the color to apply to the frame title background.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font color (usually white).

Required/Optional required

14

Frame Title Font Name property

Description

Specifies the name of the font (typeface) to apply to the frame title.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font

Required/Optional required

15

 Frame Title Font Size property

Description

Specifies the size of the font (typeface) to apply to the frame title.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font size

Required/Optional required

16

 Frame Title Font Spacing property

Description

Specifies the spacing to apply to the frame title text.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font spacing

Required/Optional required

17

Frame Title Font Style property

Description

Specifies the typographic style (for example, Italic) to apply to the frame title text.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font style

Required/Optional required

18

Frame Title Font Weight property

Description

Specifies the typographic weight (for example, Bold) to apply to the frame title text.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font weight.

Required/Optional required

19

Frame Title Foreground Color property

Description

Specifies the color to apply to the frame title text.

Applies to frame

Set Form Builder

Default

Defaults to the standard operating system font color (usually black).

Required/Optional required

20

Frame Title Offset property

Description

Specifies the distance between the frame and its title.

Applies to frame

Set Form Builder

Default

2 char cells (or the equivalent depending on the form coordinate system)

Required/Optional required

21

Frame Title Reading Order property

Description

Specifies the reading order for frame titles, either Default, Left-to-Right, or Right-to-Left.

Applies to frame

Set Form Builder

Default

Default

Required/Optional required

22

Frame Title Spacing property

Description

Specifies the amount of space reserved on either side of the frame’s title.

Applies to frame

Set Form Builder

Default

1 char cell (or the equivalent depending on the form coordinate system)

Required/Optional required

23

Frame Title Visual Attribute Group property

Description

Specifies how the frame title’s individual attribute settings (Font Name, Background Color, Fill Pattern,
etc.) are derived. The following settings are valid for this property:

Default Specifies that the object should be displayed with default color,
pattern, and font settings. When Visual Attribute Group is set to
Default, the individual attribute settings reflect the current system
defaults. The actual settings are determined by a combination of
factors, including the type of object, the resource file in use, and
the platform.

Named visual
attribute

Specifies a named visual attribute that should be applied to the
object. Named visual attributes are separate objects that you
create in the Object Navigator and then apply to interface
objects, much like styles in a word processing program. When
Visual Attribute Group is set to a named visual attribute, the
individual attribute settings reflect the attribute settings defined
for the named visual attribute object. When the current form does
not contain any named visual attributes, the poplist for this
property will show Default.

Applies to frame title

Set Form Builder

Default

Default

Usage Notes

• Default and named visual attributes can include the following individual attributes, listed in the
order they appear in the Property Palette:

Font Name The font family, or typeface, that should be used for text in the object. The list of fonts
available is system-dependent.

Font Size The size of the font, specified in points.

Font Style The style of the font.

Font Spacing The width of the font, that is, the amount of space between characters (kerning).

Font Weight The weight of the font.

Foreground Color The color of the object’s foreground region. For items, the Foreground Color
attribute defines the color of text displayed in the item.

24

Background Color The color of the object’s background region.

Fill Pattern The pattern to be used for the object’s fill region. Patterns are rendered in the two colors
specified by Background Color and Foreground Color.

Character Mode Logical Attribute Specifies the name of a character mode logical attribute defined
in an Oracle Terminal resource file that is to be used as the basis of device attributes for a character
mode version of your application.

White on Black Specifies that the object is to appear on a monochrome bitmap display device as
white text on a black background.

Not all attributes are valid for each object type. For example, setting font attributes for a window
object has no effect. (The font used in a window’s title bar is derived from the system.)

A new object in a new form has Default visual attributes. The default settings are defined
internally. Override the default font for new items and boilerplate by setting the optional
FORMS60_DEFAULTFONT environment variable. For example, On Microsoft Windows, set
this variable in the ORACLE.INI file, as follows:
FORMS60_DEFAULTFONT="COURIER.10". The default font specified determines the font
used for new boilerplate text generated by the New Block window, and for any items that have
Visual Attribute Group set to Default.

When you create an item in the Layout Editor, its initial visual attribute settings are determined by the
current Layout Editor settings for fonts, colors, and patterns, as indicated by the Font dialog and
Color and Pattern palettes.

On Microsoft Windows, the colors of buttons, window title bars, and window borders are controlled
by the Windows Control Panel color settings specified for these elements. You cannot override
these colors in Form Builder.

When the Use 3D Controls form property is set to Yes on Microsoft Windows (the default), items are
rendered with shading that provides a sculpted, three-dimensional look. A side effect of setting this
property is that any canvases that have Visual Attribute Group set to Default derive their color
setting from the Windows Control Panel (gray for most color schemes). You can override this
setting by explicitly applying named visual attributes to the canvas.

An item that has Visual Attribute Group set to Default, or that has individual attribute settings left
unspecified, inherits those settings from the canvas to which it is assigned. Similarly, a canvas that
has Visual Attribute Group set to Default, or that has individual attribute settings left unspecified,
inherits those settings from the window in which it is displayed. For example, if you set a window’s
Background Color to CYAN, and then leave Background Color unspecified for the canvas assigned
to the window, at runtime, that canvas will inherit the CYAN background from its window. Visual
attribute settings derived through window canvas or canvas item inheritance are apparent only at
runtime, not at design time.

You can apply property classes to objects to specify visual attribute settings. A property class can
contain either the Visual Attribute Group property, or one or more of the individual attribute
properties. (If a property class contains both Visual Attribute Group and individual attributes, the
Visual Attribute Group property takes precedence.)

If you apply both a named visual attribute and a property class that contains visual attribute settings to
the same object, the named visual attribute settings take precedence, and the property class visual
attribute settings are ignored.

Logical attribute definitions defined in the resource file take precedence over visual attributes
specified in the Form Builder, local environment variable definitions, and default Form Builder
attributes. To edit the resource file, use the Oracle Terminal utility.

25

Graphics Type property

Description

A read-only property that specifies the type of the graphic object. Possible values include: Arc, Chart,
Group, Image, Line, Polygon, Rectangle, Rounded Rectangle, Symbol, and Text. (Same possible values
as Graphics Builder property Object Type.)

Applies to graphics general

Set Form Builder

Default

the type

Required/Optional required

26

Group_Name property

Description

Specifies the name of the record group on which an LOV is based.

Applies to LOV

Set programmatically

Refer to Built-in

• GET_LOV_PROPERTY

• SET_LOV_PROPERTY

Default

Name of the underlying record group.

Usage Notes

Set Group_Name to replace the LOV’s current record group with another record group at runtime. The
column names and types in the new record group must match the column names and types in the record
group you are replacing.

27

Help property

Description

On character mode platform specifies help text for the menu item. Help text is displayed in a window
when the end user presses [Help] while the menu item is selected.

Applies to menu item

Set Form Builder

Required/Optional optional

Help restrictions

Applies to character mode applications only.

28

Hide on Exit property

Description

For a modeless window, determines whether Form Builder hides the window automatically when the end
user navigates to an item in another window.

Applies to window

Set Form Builder, programmatically

Refer to Built-in

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

Default

No

Hide on Exit restrictions

• Cannot be set for a root window: a root window always remains visible when the end user navigates
to an item in another window.

29

Highest Allowed Value/Lowest Allowed Value property

Description

Determines the maximum value or minimum value, inclusive, that Form Builder allows in the text item.

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Required/Optional optional

Usage Notes

• The following values are valid for range settings:
any valid constant

form item (:block_name.item_name)

global variable (:GLOBAL.my_global)

form parameter (:PARAMETER.my_param)

• Form Builder evaluates the values in items by data type, as follows:

ALPHA alphabetical according to your system’s collating sequence

CHAR alphabetical according to your system’s collating sequence

DATE chronological

DATETIME chronological

INT numerical ascending

NUMBER numerical ascending

• For all items, you can enter dates in either:
the default format for your NLS_LANG setting or

the format you specified as a format mask

For compatibility with prior releases, a reference to a form item or to a sequence may be specified with a
leading ampersand (&) instead of a leading colon (:).

To specify a raw value that begins with a leading ampersand (‘&’) or a leading colon (‘:’), specify two of
them (that is, ‘&&’ or ‘::’). (This is a change in Forms behavior, beginning with Release 6.5.)

30

Hint (Item) property

Description

Specifies item-specific help text that can be displayed on the message line of the root window at runtime.
Hint text is available when the input focus is in the item.

Applies to all items except chart items, display items, and custom items

Set Form Builder

Refer to Built-in

• GET_ITEM_PROPERTY (HINT_TEXT)

Default

"Enter value for: <item
name>"

For an item that was created by using the Data Block Wizard

NULL For all other items

Required/Optional optional

Usage Notes

Leave the Hint property NULL if you do not want the item to have hint text.

31

Hint (Menu Item) property

Description

For a character mode application, specifies hint text for a menu item. In pull-down and bar menu display
styles, hint text is displayed on the message line when the input focus is in the menu item.

In full-screen display style, hint text, if specified, is displayed as the item descriptor, and the menu item
name is ignored. (When no hint text is specified, Form Builder displays the item name as the descriptor.)

Applies to menu item

Set Form Builder

Required/Optional optional

Hint (Menu Item) restrictions

• Applies to character mode applications only.

32

Hint (Menu Substitution Parameter) property

Description

Specifies a description or instruction to appear on the message line when the end user enters a value for
the menu substitution parameter.

Applies to menu substitution parameter

Set Form Builder

Required/Optional optional

33

Horizontal Justification property

Description

Specifies the horizontal justification of the text object as either Left, Right, Center, Start, or End.

Applies to graphic text

Set Form Builder

Default

Start

Required/Optional required

34

Horizontal Margin property

Description

Specifies the distance between the frame’s borders (left and right) and the objects within the frame.

Applies to frame

Set Form Builder

Default

1 char cell (or the equivalent depending on the form coordinate system)

Required/Optional required

35

Horizontal Object Offset property

Description

Specifies the horizontal distance between the objects within a frame.

Applies to frame

Set Form Builder

Default

2 char cells (or the equivalent depending on the form coordinate system)

Required/Optional required

36

Horizontal Origin property

Description

Specifies the horizontal position of the text object relative to its origin point as either Left, Right, or
Center.

Applies to graphic text

Set Form Builder

Default

Left

Required/Optional required

37

Horizontal Toolbar Canvas property

Description

Specifies the canvas that should be displayed as a horizontal toolbar on the window. The canvas
specified must be a horizontal toolbar canvas (Canvas Type property set to Horizontal Toolbar) and must
be assigned to the current window by setting the Window property.

Applies to window

Set Form Builder

Default

Null

Required/Optional required if you are creating a horizontal toolbar

Usage Notes

• In the Properties window, the poplist for this property shows only canvases that have the Canvas
Type property set to Horizontal Toolbar.

• At runtime, Form Builder attempts to display the specified horizontal toolbar on the window.
However, if more than one toolbar of the same type has been assigned to the same window (by
setting the canvas Window property to point to the specified window), Form Builder may display a
different toolbar in response to navigation events or programmatic control.

• On Microsoft Windows, the specified horizontal toolbar canvas will not be displayed on the window
if you have specified that it should be displayed on the MDI application window by setting the Form
Horizontal Toolbar Canvas form property.

38

Icon Filename property

Description

Specifies the name of the icon resource that you want to represent the iconic button, menu item, or
window.

Applies to button, menu item, window

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_MENU_ITEM_PROPERTY

• SET_MENU_ITEM_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

Default

NULL

Required/Optional optional

Usage Notes
When defining the Icon Filename property, do not include the
icon file extension (.ico, .xpm, etc.). For example, enter
my_icon, not my_icon.ico.

The icon filename should not end in any of the following five letters: A, L, M, S, and X. (Neither upper-
case nor lower-case are allowed.) These are reserved letters used internally for icon sizing. Unexpected
icon placement results may occur if your icon filename ends in any of these letters.

Use the platform-specific environment variable to indicate the directory where icon resources are
located. For example, the Microsoft Windows name for this variable is UI60_ICON. (For more
information on this variable name, refer to the Form Builder documentation for your operating system.)

Icon Filename restrictions

• For a window, it is only valid when Minimize Allowed property set to Yes.

• Icon resources must exist in the runtime operating system, and are not incorporated in the form
definition. For this reason, icon resource files are not portable across platforms.

39

Icon in Menu property

Description

Specifies whether an icon should be displayed in the menu beside the menu item. If Yes, the Icon
Filename property specifies the icon that will be displayed.

Applies to menu item

Set Form Builder

Default

No

Required/Optional optional

40

Iconic property

Description

Specifies that a button is to be an iconic button.

Applies to button

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

No

Required/Optional optional

Usage Notes

When Iconic is Yes, the button’s Icon Filename property specifies the icon resource that Form Builder
should display for the button.

Iconic restrictions

A valid icon resource file name must be supplied.

41

Image Depth property

Description

Specifies the image depth setting Form Builder applies to an image being read from or written to a file in
the filesystem. Valid values are:

• Original

• Monochrome

• Gray

• LUT (Lookup Table)

• RGB (Red, Green, Blue)

Applies to image item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• WRITE_IMAGE_FILE

Default

Original

Required/Optional required

42

Image Format property

Description

Specifies the format in which an image item will be stored in the database. Valid values are:

• BMP

• CALS

• GIF

• JFIF

• PICT

• RAS

• TIFF

• TPIC

Applies to image item

Set Form Builder

Refer to Built-in

• GET_ITEM_PROPERTY

• WRITE_IMAGE_FILE

Default

TIFF

Required/Optional required

Usage Notes

• The default Oracle image storage format no longer is valid.

• The value you set for this property will override the original format of an image when the record
containing the image item is stored in the database. For example, if an image item’s Image Format
property is set to GIF, and a TIFF image is pasted into the image item at runtime, the pasted image
will be stored in GIF format when the record is saved to the database.

43

Implementation Class property

Description

Identifies the class name of a container of a JavaBean, or of a custom implementation for a control item
type when you want to supply an alternate to the standard Form Builder control.

Applies to

The following control item types:

Bean Area

Check Box

List Item

Push Button

Radio Group

Text Item

Set

Form Builder

Default

None.

Required/Optional

Always required for Bean Area. This property identifies the class name of the container of the JavaBean
you are adding to the application. (If this property is not supplied, the form’s end user will see an empty
square.)

Also required for any other control item type listed above if the form is to use a customized, user-
supplied implementation of that control. This identifies the class name of the alternate control you are
supplying.

Set at Runtime

No.

Usage Notes

• The Implementation Class property is only available for those control item types listed above, not
for all control item types.

44

Include REF Item property

Description

Creates a hidden item called REF for this block. This item is used internally to coordinate master-detail
relationships built on a REF link. This item also can be used programmatically to access the object Id
(OID) of a row in an object table.

Applies to

Blocks based on object tables; master-detail REF links, in particular.

Set Form Builder

Default

Default is No. However, when creating a relationship based on a REF pointer, Form Builder sets this
property to Yes.

Required/Optional

Required for a master block in a master-detail relationship based on a REF pointer.

Usage Notes

This REF item is used to obtain the object-ids (OIDs) of the rows in an object table.

Each row in an object table is identified by a unique object id (OID). The OID is a unique identifier for
that row. These OIDs form an implicit column in an object table.

In a REF pointer relationship between two tables, the REF column in the pointing table holds copies of
the OID values (addresses) of the pointed-to table. This forms the link between the two tables.

The Data Block wizard sets this property to Yes and creates this REF item when you build a master-
detail relationship based on a REF pointer. The item is named REF, and is in the master block. It is not
visible to the end user. In addition, the wizard sets the Copy_Value_From_Item property in the detail
block to access this new REF. This is how Form Builder coordinates the master-detail relationship at
runtime.

45

Inherit Menu property

Description

Specifies whether the window should display the current form menu on window managers that support
this feature.

Applies to window

Set Form Builder

Default

Yes

Required/Optional optional

Inherit Menu restrictions

• Not valid on Microsoft Windows.

46

Initial Keyboard State property

Description

Note: This property is specific to bidirectional National Language Support (NLS) applications.

Initial Keyboard State sets the keyboard to generate either Local or Roman characters when the item
receives input focus, so the end user can begin to type immediately, without switching the keyboard state.

Value Description

Default Initial keyboard state is based on the value of the Reading Order
property.

Local Initial keyboard state is Local (Right To Left language).

Roman Initial keyboard state is Roman (Left To Right language).

Applies to display item, text item

Set Form Builder

Usage Notes

• Most of the time, you will use this property only for text items.

• The end user can override the setting for Initial Keyboard State by pressing the keyboard state
toggle key.

47

Initial Menu property

Description

Specifies the name of the individual menu in the menu module that Form Builder should use as the main,
or top-level, menu for this invocation. End users cannot navigate above the menu specified as the
starting menu.

By default, the starting menu is the menu named in the menu module property, Main Menu. The Initial
Menu property allows you to override the Main Menu property.

Applies to form module

Set Form Builder

Default

blank (Form Builder uses the default main menu as the starting menu)

Required/Optional optional

Initial Menu restrictions

• The menu specified must exist in the menu module.

48

Initial Value (Item) property

Description

Specifies the default value that Form Builder should assign to the item whenever a record is created. The
default value can be one of the following:

• raw value (216, ’TOKYO’)

• form item (:block_name.item_name)

• global variable (:GLOBAL.my_global)

• form parameter (:PARAMETER.my_param)

• a sequence (:SEQUENCE.my_seq.NEXTVAL)

Applies to check boxes, display items, list items, radio groups, text items, and user areas

Set Form Builder

Default

Null

Required/Optional Optional for all items except radio groups, check boxes, and list items.

For a radio group, a valid Initial Value is required unless

a) the radio group specifies Mapping of Other Values or,

b) the value associated with one of the radio buttons in the group is NULL.

For a list item, a valid Initial Value is required unless

a) the list item specifies Mapping of Other Values or,

b) the value associated with one of the list elements is NULL.

For a check box, a valid Initial Value is required unless

a) the check box specifies Mapping of Other Values or,

b) the value associated with Checked or Unchecked is NULL.

Usage Notes

• When using the default value to initialize the state of items such as check boxes, radio groups, or list
items, keep in mind that the default value does not get assigned until Form Builder creates a record
in the block.

Subordinate mirror items are initialized from the master mirror item’s Initial Value property. The ON-
SEQUENCE-NUMBER trigger is also taken from the master item. If the subordinate mirror item
specifies Initial Value and ON-SEQUENCE-NUMBER, Form Builder ignores them and issues a
warning.

At runtime, the initial value set by this property will be ignored if all of the following are true for the
item (or an item that mirrors it):

the item is a poplist, T-list, radio group, or check box

49

there is no element corresponding to the initial value

the item does not allow other values

For compatibility with prior releases, a reference to a form item or to a sequence may be specified with a
leading ampersand (&) instead of a leading colon (:).

To specify a raw value that begins with a leading ampersand (‘&’) or a leading colon (‘:’), specify two of
them (that is, ‘&&’ or ‘::’). (This is a change in Forms behavior, beginning with Release 6.5.)

Initial Value (Item) property restrictions

• For a text item, the value cannot be outside the range defined by the Lowest Allowed Value and
Highest Allowed Value properties.

• For a radio group, the default value must be either the name (not the label) of one of the radio
buttons, or the value associated with one of the radio buttons. Form Builder checks first for a radio
button name.

• For a list item, the default value must be either the name of one of the list elements, or the value
associated with one of the list elements. Form Builder checks first for a list element name.

50

Insert Allowed (Block) property

Description

Specifies whether records can be inserted in the block.

Applies to block

Set Form Builder , programatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

Yes

51

Insert Allowed (Item) property

Description

Determines whether an end user can modify the value of an item in a new record (i.e., when the
Record_Status is NEW or INSERT).

If you set Insert Allowed to No for an item, the user will not be able to manipulate the item in a new
record. For example, the user will not be able to type into a text item, check a check box, or select a
radio button.

Applies to text item, check box, list item, radio button, image item, custom items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_INSTANCE_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Usage Notes

Set Insert Allowed to No when you want the user to be able to inspect an item without being able to
modify it. For example, for a system-generated key field, you might set Insert Allowed to No to
prevent modification of the key while still displaying it normally (not grayed out).

Set the Enabled property to No if you want to prevent an item from responding to mouse events.
Disabled items are grayed out to emphasize the fact that they are not currently applicable, while
enabled items with Insert Allowed set to No allow the user to browse an item’s value with the mouse or
keyboard, but not to modify the item’s value.

Insert Allowed resembles Update Allowed, which applies to records with a Record_Status of QUERY or
CHANGED. For items in database blocks, Insert Allowed, in combination with Update Allowed, lets
you control whether the end user can enter or change the value displayed by an item. For items in
non-database blocks, setting Insert Allowed to No lets you create a display-only item without disabling
it.

If Enabled or Visible is set to No (or PROPERTY_FALSE for runtime), then the items’ or item
instance’s Insert Allowed property is effectively false.

• Setting INSERT_ALLOWED to Yes (or PROPERTY_TRUE for runtime) has no effect at the item
instance level unless it is set consistently at the block and item levels. For example, your user
cannot type data into an item instance if INSERT_ALLOWED is true at the instance level, but not at
the item or block levels.

Insert Allowed (Item) restrictions

• If you are using SET_ITEM_PROPERTY to set Insert Allowed to true, then you must set item

52

properties as follows:
Enabled to Yes (PROPERTY_TRUE for runtime)

Visible to Yes (PROPERTY_TRUE for runtime)

When Insert Allowed is specified at multiple levels (item instance, item, and block), the values are
ANDed together. This means that setting INSERT_ALLOWED to Yes (PROPERTY_TRUE for
runtime) has no effect at the item instance level unless it is set consistently at the block and item
levels. For example, your user cannot type data into an item instance if INSERT_ALLOWED is true
at the instance level, but not at the item or block levels.

53

Insert Procedure Arguments property

Description

Specifies the names, datatypes, and values of the arguments to pass to the procedure for inserting data
into the data block. The Insert Procedure Arguments property is valid only when the DML Data Target
Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

54

Insert Procedure Name property

Description

Specifies the name of the procedure to be used for inserting data into the data block. The Insert
Procedure Name property is valid only when the DML Data Target Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

55

Insert Procedure Result Set Columns property

Description

Specifies the names and datatypes of the result set columns associated with the procedure for inserting
data into the data block. The Insert Procedure Result Set Columns property is valid only when the DML
Data Target Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

56

Interaction Mode property

Description

Specifies the interaction mode for the form module. Interaction mode dictates how a user can interact
with a form during a query. If Interaction Mode is set to Blocking, then users are prevented from resizing
or otherwise interacting with the form until the records for a query are fetched from the database. If set to
Non-Blocking, then end users can interact with the form while records are being fetched.

Non-blocking interaction mode is useful if you expect the query will be time-consuming and you want
the user to be able to interrupt or cancel the query. In this mode, the Forms runtime will display a dialog
that allows the user to cancel the query.

You cannot set the interaction mode programmatically, however, you can obtain the interaction mode
programmatically using the GET_FORM_PROPERTY built-in.

Applies to form module

Set Form Builder

Refer to Built-in

• GET_FORM_PROPERTY

Default Blocking

Required/Optional required

57

Isolation Mode property

Description

Specifies whether or not transactions in a session will be serializable. If Isolation Mode has the value
Serializable, the end user sees a consistent view of the database for the entire length of the transaction,
regardless of updates committed by other users from other sessions. If the end user queries and changes a
row, and a second user updates and commits the same row from another session, the first user sees
Oracle error (ORA-08177: Cannot serialize access.).

Applies to form module

Set Form Builder

Usage Notes

Serializable mode is best suited for an implementation where few users are performing a limited number
of transactions against a large database; in other words, an implementation where there is a low chance
that two concurrent transactions will modify the same row, and where long-running transactions are
queries. For transaction-intensive implementations, leave Isolation Mode set to Read Committed (the
default). Serializable mode is best used in conjunction with the block-level property Locking Mode set to
Delayed.

Default

Read Committed

Required/Optional required

58

Item Roles property

Description

Specifies which menu roles have access to a menu item.

Applies to menu item

Set Form Builder

Required/Optional optional

Usage Notes

You can only grant access to members of those roles displayed in the roles list. To add a role to this list,
set the menu module property Module Roles.

Item Roles restrictions

Valid only when the name of at least one role has been specified in the menu module roles list.

59

Item Type property

Description

Specifies the type of item. An item can be one of the following types:

• ActiveX Control (32-bit Windows platforms)

• Bean Area

• Chart Item

• Check Box

• Display Item

• Hierarchical Tree

• Image

• List Item

• OLE Container

• Push Button

• Radio Group

• Sound

• Text Item

• User Area

• VBX Control (Microsoft Windows 3.1 only)

Applies to: items

Set: Form Builder

Default: Text Item

Required/Optional required

60

Item_Is_Valid property

Description

Specifies whether an item is marked internally as valid.

Applies to item

Set programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

item in a new record: No; item in a queried record: Yes

Usage Notes

• Use Item_Is_Valid to check whether the current status of a text item is valid.

• Set Item_Is_Valid to Yes to instruct Form Builder to treat any current data in an item as valid and
skip any subsequent validation. Set Item_Is_Valid to No to instruct Form Builder to treat any
current data in a text item as invalid and subject it to subsequent validation.

61

Item_Tab_Page property

Description

Specifies the tab page on which an item is placed.

Applies to item

Refer to Built-in

• GET_ITEM_PROPERTY

Default

None

62

Join Condition property

Description

Defines the relationship that links a record in the detail block with a record in the master block.

Applies to relation

Set Form Builder

Required/Optional required for a relation object

Usage Notes

You can specify a join condition with the following entries:

• an item name that exists in both the master block and the detail block (block_2.item_3)

• an equating condition of two item names, where one item exists in the master block and the other
item exists in the detail block

• a combination of item names and equating conditions

Join Condition restrictions

• Maximum length for a join condition is 255 characters.

Join Condition examples

Examples:

To link a detail block to its master block through the ORDID text item that is common to both blocks,
define the following join condition:

ORDID

To link the detail block to its master block through a number of text items, define the join condition as
follows:

block1.item1 = block2.item1 AND block1.item2 = block2.item2

Keep in mind that the join condition specifies the relationship between the items in each block, not
between the columns in the tables on which those blocks are based. Thus, the items specified must
actually exist in the form for the join condition to be valid.

63

Join Style property

Description

Specifies the join style of the graphic object as either Mitre, Bevel, or Round.

Applies to graphic physical

Set Form Builder

Default

Mitre

Required/Optional optional

64

Justification property

Description

Specifies the text justification within the item. The allowable values for this property are as follows:

Value Description

Left Left-justified, regardless of Reading Order property.

Center Centered, regardless of Reading Order property.

Right Right-justified, regardless of Reading Order property.

Start Item text is aligned with the starting edge of the item bounding
box. The starting edge depends on the value of the item’s
Reading Order property.
Start is evaluated as Right alignment when the reading order is
Right To Left, and as Left alignment when the reading order is
Left to Right.

End Item text is aligned with the ending edge of the item bounding
box. The ending edge depends on the value of the item’s
Reading Order property.
End is evaluated as Left alignment when the reading order is
Right To Left, and as Right alignment when the reading order is
Left to Right.

Applies to display item, text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Start

Usage Notes

• In unidirectional applications (reading order Left to Right), accept the default, Start, in most cases.
For unidirectional applications, Start gives exactly the same results as Left and End gives the same
results as Right.

• In bidirectional applications:

• If your data must be aligned with the item’s Reading Order, choose Start (the default).

65

• If your data must be aligned opposite to the item’s Reading Order, choose End.

• Unsupported by some window managers.

66

Keep Cursor Position property

Description

Specifies that the cursor position be the same upon re-entering the text item as when last exited.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Usage Notes

Use this property if you want to give the end user the flexibility to move the cursor to an item, then back
to the partially filled item, and have the cursor reposition itself to the end of the partial text.

Keep Cursor Position restrictions

Unsupported on some window managers.

67

Key Mode property

Description

Specifies how Form Builder uniquely identifies rows in the database. This property is included for
applications that will run against non-ORACLE data sources. For applications that will run against
ORACLE, use the default setting.

By default, the ORACLE database uses unique ROWID values to identify each row. Non-ORACLE
databases do not include the ROWID construct, but instead rely solely on unique primary key values to
identify unique rows. If you are creating a form to run against a non-ORACLE data source, you must use
primary keys, and set the Key Mode block property accordingly.

Value Description

Automatic (default) Specifies that Form Builder should use ROWID constructs
to identify unique rows in the datasource but only if the
datasource supports ROWID.

Non-Updateable Specifies that Form Builder should not include primary key
columns in any UPDATE statements. Use this setting if
your database does not allow primary key values to be
updated.

Unique Instructs Form Builder to use ROWID constructs to identify
unique rows in an ORACLE database.

Updateable Specifies that Form Builder should issue UPDATE
statements that include primary key values. Use this setting
if your database allows primary key columns to be updated
and you intend for the application to update primary key
values.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

Unique

Usage Notes

68

When the Key Mode property is set to one of the primary key modes, you must identify the primary key
items in your form by setting the Enforce Primary Key block property to Yes for the block, and the
Primary Key item property to Yes for at least one item in the block.

69

Keyboard Accelerator property

Description

Specifies a logical function key to be associated with a menu item. Accelerator keys are named
ACCELERATOR1, ACCELERATOR2, and so on, through ACCELERATOR5. End users can select
the menu item by pressing the key or key combination that is mapped to the logical accelerator key.

Applies to menu item

Set Form Builder

Required/Optional optional

Usage Notes

The mappings of logical accelerator keys to physical device keys is defined in the runtime resource file.
You must edit the resource file in Oracle Terminal to change the key mappings. You can also create
additional accelerator keys in Oracle Terminal (ACCELERATOR6, ACCELERATOR7, and so on),
which you can then associate with menu items in a menu module.

Keyboard Accelerator restrictions

• Not valid for separator menu items.

• Key mappings must not interfere with standard Form Builder key mappings.

• When running with bar-style menus, accelerator keys can be used only for items on the menu that is
currently displayed.

70

Keyboard Help Description property

Description

Specifies the key trigger description that is displayed in the runtime Keys help screen if the Display in
Keyboard Help property is set to Yes. An entry in the Keys screen includes a text description for the key
name and the physical keystroke associated with it, for example, Ctrl-S.

Applies to trigger

Set Form Builder

Default

blank

Usage Notes

• If you do not want the name or the description to appear in the Keys window, set the Display
Keyboard Help property to No. This is the default setting.

• If you want the name of the key that corresponds to the trigger and its default description to be
displayed in the Keys window, set the Display Keyboard Help property to Yes and leave the
Keyboard Help Description blank.

• If you want to replace the default key description, set the Display Keyboard Help property to Yes,
then enter the desired description in the Keyboard Help Description field.

Keyboard Help Description restrictions

Valid only for key triggers.

71

Keyboard Navigable property

Description

Determines whether the end user or the application can place the input focus in the item during default
navigation. When set to Yes for an item, the item is navigable. When set to No, Form Builder skips
over the item and enters the next navigable item in the default navigation sequence. The default
navigation sequence for items is defined by the order of items in the Object Navigator.

Applies to all items except chart items and display items

Set Form Builder, programmatically [NAVIGABLE]

Refer to Built-in

• GET_ITEM_INSTANCE_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Usage Notes

If Enabled or Visible is set to No (PROPERTY_FALSE for runtime), then the items’ or item instance’s
Keyboard navigable property is effectively false. At runtime, when the Enabled property is set to
PROPERTY_FALSE, the Keyboard_Navigable property is also set to PROPERTY_FALSE.
However, if the Enabled property is subsequently set back to PROPERTY_TRUE, the keyboard
Navigable property is NOT set to PROPERTY_TRUE, and must be changed explicitly.

• When Keyboard Navigable is specified at multiple levels (item instance, item, and block), the values
are ANDed together. This means that setting Keyboard Navigable to Yes (or NAVIGABLE to
PROPERTY_TRUE for runtime) has no effect at the item instance level unless it is set consistently
at the item level. For example, your user cannot navigate to an item instance if Keyboard Navigable
is true at the instance level, but not at the item level.

• You can use the GO_ITEM built-in procedure to navigate to an item that has its Keyboard
Navigable property set to No (PROPERTY_FALSE) for runtime.

Keyboard Navigable restrictions

• If you are using SET_ITEM_PROPERTY to set NAVIGABLE to true, then you must set item
properties as follows:

Enabled to Yes (PROPERTY_TRUE for runtime)

Visible to Yes (PROPERTY_TRUE for runtime)

72

Keyboard State property

Description

Specifies supported international keyboard states as Any, Roman Only, or Local Only.

Applies to item international

Set Form Builder

Default

Any

Required/Optional required

73

Label (Item) property

Description

Specifies the text label that displays for a button, check box, or radio button in a radio group.

Applies to button, check box, radio group button

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_ITEM_INSTANCE_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

Default

blank

Required/Optional optional

74

Label (Menu Item) property

Description

Specifies the text label for each menu item.

Applies to menu item

Set Form Builder, programmatically

Refer to Built-in

• GET_MENU_ITEM_PROPERTY

• SET_MENU_ITEM_PROPERTY

Required/Optional optional

Usage Notes

Each menu item has both a name and a label. The label, used only in the runtime GUI, may differ from
the name, which can be used programmatically.

Unlike the name, which must follow PL/SQL naming conventions, the label can include multiple words
and punctuation. For example,More Info... is an acceptable label, while the corresponding name would
be more_info.

When you create a new menu item in the Menu editor, Form Builder gives it a default name, like ITEM2,
and a default label, <New Item>. When you edit the item label in the Menu editor, making it, for
instance, "Show Keys," the menu item name remains ITEM2 until you change it in either the Object
Navigator or the Properties Palette.

75

Label (Menu Substitution Parameter) property

Description

Specifies the label that will prompt the end user to supply a value for the substitution parameter.

Applies to menu substitution parameter

Set Form Builder

Required/Optional optional

Label (Menu Substitution Parameter) restrictions

none

76

Label (Tab Page) property

Description

The label identifying the tab page. End users click the labelled tab to display the tab pages of a tab
canvas.

Applies to tab page

Set Form Builder, programmatically

Refer to Built-in

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

Required/Optional optional

Label (Tab Page) restrictions

none

77

Last_Block property

Description

Specifies the name of the block with the highest sequence number in the form, as indicated by the
sequence of blocks listed in the Object Navigator.

Applies to form module

Set not settable

Refer to Built-in

GET_FORM_PROPERTY

78

Last_Item property

Description

Specifies the name of the item with the highest sequence number in the indicated block, as indicated by
the sequence of items listed in the Object Navigator.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

79

Last_Query property

Description

Specifies the SQL statement for the last query of the specified block.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

80

Layout Data Block property

Description

Specifies the name of the data block which the frame is associated with; the items within this block are
arranged within the frame. A block can only be associated with one frame. You cannot arrange a block’s
items within multiple frames.

Applies to frame

Set Form Builder

Default

NULL

Required/Optional required

81

Layout Style property

Description

Specifies the layout style for the items within the frame.

Form The default frame style. When Frame Style is set is to Form, Form Builder
arranges the items in a two-column format, with graphic text prompts
positioned to the left of each item.

Tabular When Frame Style is set to Tabular, Form Builder arranges the items next
to each other across a single row, with graphic text prompts above each
item.

Applies to frame

Set Form Builder

Default

Form

Required/Optional required

82

Length (Record Group) property

Description

See Column Specifications.

83

Line Spacing property

Description

Specifies the line spacing of the text objext as Single, One-and-a-half, Double, Custom. If Custom is
selected, the Custom Spacing property determines the line spacing.

Applies to graphic text

Set Form Builder

Default

Single

Required/Optional required

84

Line Width property

Description

Specifies the width of the object’s edge in points (1/72 inch). (Same as Graphics Builder property Edge
Width.)

Applies to graphic physical

Set Form Builder

Required/Optional optional

85

List Item Value property

Description

Specifies the value associated with a specific radio.

Applies to radio button

Set Form Builder

Default

NULL

Required/Optional required

Usage Notes

When you leave the List Item Value field blank, the value associated with the radio button is NULL.

List Item Value restrictions

• Must be unique among values associated with radio button.

86

List of Values property

Description

Specifies the list of values (LOV) to attach to the text item. When an LOV is attached to a text item, end
users can navigate to the item and press [List of Values] to invoke the LOV. To alert end users that an
LOV is available, Form Builder displays the LOV list lamp on the message line when the input focus is
in a text item that has an attached LOV.

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Required/Optional optional

List of Values restrictions

The LOV must exist in the active form module.

87

List Style property

Description

Specifies the display style for the list item, either poplist, combo box, or Tlist. The poplist and combo
box styles take up less space than a Tlist, but end users must open the poplist or combo box to see list
elements. A Tlist remains "open," and end users can see more than one value at a time if the list is large
enough to display multiple values.

Applies to list item

Set Form Builder

Default

Poplist

Usage Notes

The display style you select for the list item has no effect on the data structure of the list item.

88

List Type property

Description

Specifies how you intend to reference the record group object on which the LOV will be based. Every
LOV has an associated record group from which it derives its values at runtime.

Applies to:

List of Values (LOV)

Set Form Builder

Default

Query

Required/Optional required

Usage Notes

The following settings are valid for this property:

Record Group Indicates that you intend to base the LOV on an existing record group.
When you select this option, you must choose the record group in the
Record Group property drop-down list. The record group you specify can
be either a static record group or a query record group, and must already
exist in the active form.

Old This option is included for compatibility with previous versions of Form
Builder. It cannot be used in new applications.

List Type restrictions

none

89

List X Position property

Description

Specifies the horizontal (X) coordinate of the upper left corner of the LOV relative to the screen. When
you attach an LOV to a text item by setting the List of Values property, you can also set the List X
Position and List Y Position properties to override the default display coordinates specified for the LOV.

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

0; indicating that Form Builder should use the default LOV display horizontal (X) coordinate, as
specified by the List X Position property.

Required/Optional required

Usage Notes

• If you leave the List X Position property set to 0 and the List Y Position property set to 0, Form
Builder displays the LOV at the display coordinates you specified when you created the LOV. If
you specify position coordinates, the coordinates you specify override the LOV’s default position
coordinates.

• The List of Values property must be specified.

90

List Y Position property

Description

Specifies the vertical (Y) coordinate of the upper left corner of the LOV relative to the screen. When
you attach an LOV to a text item by setting the List of Values property, you can also set the List Y
Position and List X Position properties to override the default display coordinates specified for the LOV.

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

0; indicating that Form Builder should use the default LOV display vertical (Y) coordinate, as specified
by the List Y Position property.

Required/Optional required

Usage Notes

• If you leave the List X Position property set to 0 and the List Y Position property set to 0, Form
Builder displays the LOV at the display coordinates you specified when you created the LOV. If
you specify position coordinates, the coordinates you specify override the LOV’s default position
coordinates.

• The List of Values property must be specified.

91

Listed in Data Block Menu/Data Block Description

Specifies whether the block should be listed in the block menu and, if so, the description that should be
used for the block.

Form Builder has a built-in block menu that allows end users to invoke a list of blocks in the current
form by pressing [Block Menu]. When the end user selects a block from the list, Form Builder navigates
to the first enterable item in the block.

Applies to block

Set Form Builder

Default

Yes. Block Description: For a new block, NULL; For an existing block, the block name at the time the
block was created.

Required/Optional optional

Listed in Block Menu/Block Description restrictions

The block does not appear in the Block Menu if you set the Listed in Block Menu property to Yes but
leave the Block Description property blank.

92

Lock Procedure Arguments property

Description

Specifies the names, datatypes, and values of the arguments that are to be passed to the procedure for
locking data. The Lock Procedure Arguments property is valid only when the DML Data Target Type
property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

93

Lock Procedure Name property

Description

Specifies the name of the procedure to be used for locking data. The Lock Procedure Name property is
valid only when the DML Data Target Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

94

Lock Procedure Result Set Columns property

Description

Specifies the names and datatypes of the result set columns associated with the procedure for locking
data. The Lock Procedure Result Set Columns property is valid only when the DML Data Target Type
property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

95

Lock Record property

Description

Specifies that Form Builder should attempt to lock the row in the database that corresponds to the current
record in the block whenever the text item’s value is modified, either by the end user or
programmatically.

Applies to text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Usage Notes

• Set this property to Yes when the text item is a control item (an item not associated with a base table
column), but you still want Form Builder to lock the row in the database that corresponds to the
current record in the block.

• Useful for lookup text items where locking underlying record is required.

• To set the Lock Record property with SET_ITEM_PROPERTY, use the constant
LOCK_RECORD_ON_CHANGE.

Lock Record restrictions

Valid only when the item is a control item (Base Table Item property set to No) in a data block.

96

Locking Mode property

Description

Specifies when Form Builder tries to obtain database locks on rows that correspond to queried records in
the form. The following table describes the allowed settings for the Locking Mode property:

Value Description

Automatic
(default)

Identical to Immediate if the datasource is an Oracle database. For other
datasources, Form Builder determines the available locking facilities and
behaves as much like Immediate as possible.

Immediate Form Builder locks the corresponding row as soon as the end user presses a key
to enter or edit the value in a text item.

Delayed Form Builder locks the row only while it posts the transaction to the database,
not while the end user is editing the record. Form Builder prevents the commit
action from processing if values of the fields in the block have changed when
the user causes a commit action.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

Automatic

Usage Notes

For most applications use the default setting of Automatic.

The Immediate setting remains for compatibility with existing applications, but there is no reason to use
it in new applications. Use Automatic instead.

The Delayed setting is useful for applications that must minimize the number of locks or the amount of
time that rows remain locked. Use delayed locking if the form’s Isolation Mode property has the value
Serializable.

The main drawbacks of delayed locking are

• The changes an end user makes to a block may need to be redone at commit time.

• Another user’s lock can force the first end user to choose between waiting indefinitely or abandoning
the changes.

97

Magic Item property

Description

Specifies one of the the following predefined menu items for custom menus: Cut, Copy, Paste, Clear,
Undo, About, Help, Quit, or Window. Magic menu items are automatically displayed in the native style
for the platform on which the form is being executed, with the appropriate accelerator key assigned.

Cut, Copy, Paste, Clear, Window, and Quit have built-in functionality supplied by Form Builder, while
the other magic menu items can have commands associated with them.

Applies to menu item

Set Form Builder

Default

Cut

Required/Optional optional

Usage Notes

The following settings are valid for this property:

Setting Description

Cut, Copy,
Paste, Clear

These items perform the usual text-manipulation operations.
Form Builder supplies their functionality, so the designer may
not enter a command for these items.

Undo, About These items have no native functionality, so the designer must
enter a command for these items. Any type of command can be
used for these items, except Menu.

Help The command for the Help menu item must be Menu. The
designer provides the functionality of items on this submenu.

Quit Quit also has built-in functionality, so the designer may not
assign a command to this item.

Window The Window magic menu item presents a submenu of all open
windows, allowing the user to activate any of them. If the
Window magic menu item has a command that invokes a
submenu, that submenu will contain both the list of open widows
and the user-defined submenu items, in an order determined by
Form Builder. The command type for a magic Window item is
Null or Menu.

98

Magic Item restrictions

• Any given magic menu item may appear only once in the entire menu hierarchy for a given menu
module. For example, a menu containing the magic menu item Cut cannot be a submenu of two
different options in the menu module.

• Leave the magic menu item’s Icon, Keyboard Accelerator, and Hint properties blank.

99

Main Menu property

Description

Specifies the name of the individual menu in the document that is to be the main or starting menu at
runtime.

If you are creating a pulldown menu, you will not need to change this property: it is automatically set to
the name of the first menu you create, and updated thereafter if you change the name of that menu.

The Main Menu property is used mostly with full-screen menus, to limit the menus to which end users
have access. End users cannot navigate to any menu that is above the main menu in the menu module
hierarchy.

Applies to menu module

Set Form Builder

Default

blank

Required/Optional required

Usage Notes

When you attach the menu module to a form by setting the appropriate properties in the Form Module
property sheet, you can specify a different menu in the document to be the main menu by setting the
Initial Menu property.

100

Mapping of Other Values property

Description

Specifies how any fetched or assigned value that is not one of the pre-defined values associated with a
specific list element or radio button should be interpreted.

Applies to list item, radio group

Set Form Builder

Default

blank

Required/Optional optional

Usage Notes

• Leave this property blank to indicate that other values are not allowed for this item or radio group.
Any queried record that contains a value other than the user-defined element value is silently
rejected. Any attempt to assign an other value is disallowed.

• Any value you specify must evaluate to one of the following references:

• the value associated with one of the list elements or radio groups

• the name (not the label) of one of the list elements

101

Maximize Allowed property

Description

Specifies that end users can resize the window by using the zooming capabilities provided by the runtime
window manager.

Applies to window

Set Form Builder

Default

Yes

Maximize Allowed restrictions

• Only valid when Resize Allowed is set to No

102

Maximum Length property

Description

Specifies the maximum length of the data value that can be stored in the item.

Applies to all items except buttons, image items, and chart items

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

• For a database item, the length of the corresponding column in the database table. Note: If the item’s
data type is NUMBER, the maximum length will be set to the defined column length plus two, to
allow for the possible use of a minus sign (for negative values) and a decimal separator.

• For a control item, 30.

• For a LONG item, 240 bytes.

Required/Optional required

Usage Notes

• At runtime, Forms will increase the value of the Maximum Length property if the item’s format
mask requires a longer length. (The format mask may be either an explicit mask specified by the
form’s designer for this item, or one of the implicit masks used by Forms in its internal conversion
operations.)

• For CHAR values, the Maximum Length is 2000 characters.

Note: Bear these considerations in mind if you are writing applications for a multi-byte character set:

• Form Builder allows end users to enter the full number of single-byte characters, up to the
Maximum Length specified.

• If the end user enters a combination of single-byte and multi-byte characters that produce a string
whose total length in bytes exceeds the item's Maximum Length, the string will be truncated to the
nearest whole character and a warning will be displayed. To avoid this situation, consider raising
the Maximum Length for the item. (If Maximum Length exceeds the display width of the item,
Form Builder will automatically allow the end user to scroll the contents of the item.)

103

Maximum Length (Form Parameter) property

Description

Specifies the maximum length, in characters, of a form parameter of type CHAR.

Applies to form parameter

Set Form Builder

Default

For a parameter of type CHAR, 30

Required/Optional required

Maximum Length (Form Parameter) restrictions

• Maximum length of a CHAR parameter is 2000 bytes.

104

Maximum Length (Menu Substitution Parameter)
property

Description

Specifies the maximum length, in characters, of a menu substitution parameter.

Applies to menu substitution parameter

Set Form Builder

Default

30

Required/Optional required

105

Maximum Objects Per Line property

Description

Specifies the maximum number of objects that can appear on each line within a frame.

When the Maximum Number of Frame Objects is set to 0 (the default), there is no maximum--Form
Builder arranges the maximum number of objects per line within a frame.

This property is valid when the Frame Style property is set to Form and the Vertical Fill property is set to
No.

Applies to frame

Set Form Builder

Default

0

Required/Optional required

106

Maximum Query Time property

Description

Provides the option to abort a query when the elapsed time of the query exceeds the value of this
property.

Applies to form, block

Set Form Builder, Programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• GET_BLOCK_PROPERTY

Required/Optional optional

Usage Notes

This property is only useful when the Query All Records property is set to Yes.

107

Maximum Records Fetched property

Description

Specifies the number of records fetched when running a query before the query is aborted.

Applies to form, block

Set Form Builder, Programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• GET_BLOCK_PROPERTY

Required/Optional optional

Usage Notes

Maximum Records Fetched is only useful when the properties Query Allowed and Query All Records are
set to Yes. Set the Maximum Records Fetched property to limit the records returned by a user’s query.

108

Menu Description property

Description

For applications running on character mode in the pull-down and bar menu display styles, this property
specifies the string that displays on the message line when the end user navigates to the menu. In full-
screen display style, this property specifies the string that identifies the menu module.

Applies to menu module

Set Form Builder

Default

The default document name

Required/Optional optional

Menu Description restrictions

• Applicable for character mode applications only.

109

Menu Directory property

Description

Specifies the directory in which Form Builder should look for the .MMX runtime menu file. This
property is applicable only when you want Form Builder to locate the menu .MMX runfile through
database lookup, rather than direct reference.

When using database lookup, the menu module must be stored in the database. At runtime, Form
Builder queries the menu module definition stored in the database to find out the directory and filename
of the menu .MMX runfile. The Menu Directory and Menu Filename menu module properties specify
the path where Form Builder should look for the .MMX menu file.

Applies to menu module

Set Form Builder

Default

blank

Required/Optional optional

Usage Notes

If you leave the directory path unspecified, Form Builder first searches the default directory for the file,
then searches any predefined search paths. For more information on search paths, refer to the Form
Builder documentation for your platform.

Menu Directory restrictions

Not valid when using direct reference to specify the location of the menu .MMX runfile. You use direct
reference when you attach a menu to a form by setting the Menu Source form module property to Yes.

110

Menu Filename property

Description

Specifies the name of the .MMX runtime menu file that Form Builder should look for at form startup.
This property is applicable only when you want Form Builder to locate the menu runfile through
database lookup, rather than direct reference.

To use database lookup, the menu module must be stored in the database. At runtime, Form Builder
queries the menu module definition stored in the database to find out the directory and filename of the
menu .MMX runfile. The Menu Directory and Menu Filename menu module properties specify the path
where Form Builder should look for the .MMX menu file.

Applies to menu module

Set Form Builder

Default

Module Name property

Required/Optional required

Usage Notes

If you leave the directory unspecified, Form Builder first searches the default directory for the file, then
searches any predefined search paths. For more information on search paths, refer to the Form Builder
documentation for your platform.

Menu Filename restrictions

• The .MMX file extension is not required.

111

Menu Item Code property

Description

Contains the PL/SQL commands for a menu item.

Applies to menu items

Set Form Builder

Required/Optional required

Usage Notes

Clicking the More… button opens the PL/SQL Editor for the menu item, allowing you to edit the
PL/SQL commands.

112

Menu Item Radio Group property

Description

Specifies the name of the radio group to which the current radio menu item belongs.

Applies to menu item

Set Form Builder

Required/Optional required

Usage Notes

Specify the same Radio Group for all radio items that belong to the same logical set.

Menu Item Radio Group restrictions

• Radio items must be adjacent to each other on the same menu.

• Only one radio group per individual menu is allowed.

113

Menu Item Type property

Description

Specifies the type of menu item: Plain, Check, Magic, Radio, or Separator. The type determines how the
item is displayed and whether the item can have an associated command.

Applies to:

menu items

Set Form Builder

Default

Plain

Usage Notes

The following menu item types are available:

• PlaiDefault. Standard text menu item.

Check Indicates a Boolean menu item that is either Yes or No, checked or
unchecked.

Whenever the end user selects a Check menu item Form Builder toggles the
state of that item and executes the command associated with that menu item,
if there is one.

Magic Indicates one of the the following predefined menu items: Cut, Copy,
Paste, Clear, Undo, About, Help, Quit, and Window. Magic menu items
are automatically displayed in the native style of the platform on which the
form is executed, in the position determined by the platform’s conventions,
with the appropriate accelerator key assigned. Cut, Copy, Paste, Clear,
Windows, and Quit have built-in functionality supplied by Form Builder,
while the other magic menu items require that commands be associated
with them.

Radio Indicates a BOOLEAN menu item that is part of a radio group. Enter a
radio group name in the Radio Group property field. One and only one
Radio menu item in a group is selected at any given time.

When the end user selects a Radio menu item, Form Builder toggles the
selection state of the item and executes its command, if there is one.

Separator A line or other cosmetic item. You specify a Separator menu item for the
purpose of separating other menu items on the menu. A Separator menu
item cannot be selected and therefore it cannot have a command associated
with it.

• You can use GET_MENU_ITEM_PROPERTY and SET_MENU_ITEM_PROPERTY to get and
set the state of check and radio menu items.

• Magic menu items Cut, Copy, Clear, and Paste are automatically enabled and disabled by Form

114

Builder. You can also use GET_MENU_ITEM_PROPERTY and
SET_MENU_ITEM_PROPERTY to get and set the state of magic menu items programmatically,
but the result of disabling magic menu items will vary, depending on the behavior of the native
platform.

Menu Item Type restrictions

The top-level menu should only have plain or magic menu items.

115

Menu Module property

Description

Specifies the name of the menu to use with this form. When this property is set to Default, Form Builder
runs the form with the default menu that is built in to every form. When left NULL, Form Builder runs
the form without any menu.

When any value other than Default or Null is specified, the Menu Source property determines how the
Menu Module property setting is interpreted:

• When the Menu Source property is Yes, the Menu Module property specifies the name of the menu
.MMX runfile that Form Builder should use with this form.

• When the Menu Source property is No, it specifies the name of the menu module in the database
that Form Builder should query at form startup to find out the name of the menu .MMX file to use
with this form.

Applies to form module

Set Form Builder

Default

Default, indicating that Form Builder should run the form with the default form menu.

Required/Optional optional

116

Menu Role property

Description

Specifies the security role that Form Builder should use to run the menu. When the Menu Role property
is specified, Form Builder runs the indicated menu as if the current end user were a member of the
security role specified.

Applies to form module

Set Form Builder

Required/Optional optional

Usage Notes

The Menu Role property is included for backward compatibility only. Its use is not recommended in
current applications.

In previous versions of Form Builder, the Menu Role property allowed designers to test a menu by
creating a master role that had access to all of the items in the menu, and then running the menu under
that role. You can obtain the same result by setting the menu module property Use Security to No. When
Use Security is No, all end users have access to all menu items, and you do not have to be a member of
any particular role to test your application.

117

Menu Source property

Description

Menu Source allows you to specify the location of the .MMX runfile when you attach a custom menu to
a form module. Form Builder loads the .MMX file at form startup.

Applies to form module

Set Form Builder

Default

Yes

Required/Optional optional

Usage Notes

Setting the Menu Source property allows you to specify the location of the menu .MMX runfile through
either direct reference or through database lookup. In most cases, you will want to use direct reference
to the file system. Database lookup is included for backward compatibility.

Direct
Reference

To refer directly to the .MMX file, set the Menu Source
property to Yes, then enter the path/filename of the .MMX file
in the Menu Module field.

Database
Lookup

To refer to the menu by way of database lookup, set the Menu
Source property to No, then enter the name of the menu
module stored in the database. At form startup, Form Builder
queries the menu module definition to look up the name of the
.MMX runfile it needs. (The Menu Module Menu Filename
and Menu Directory define the path to the .MMX file in the
file system.)
When the form is loaded at runtime, Form Builder locates the
.MMX file by querying the database to look up the pointer to
the .MMX file defined by the menu module Menu Filename
and Menu Directory properties.

The following table compares the property settings and database conditions required when attaching a
menu to a form through direct reference to those required for database lookup.

Condition or Property Direct
Reference

Database Lookup

Form Module Property:
"Menu Source"

Yes No

Form Module Property:
"Menu Module"

Name of .MMX
runfile

Name of .MMB menu design
document in database

Menu Module Property:
"Menu Directory/Menu

n/a Path/filename of .MMX file in
file system

118

Filename"

Database Connection Not required Required at form startup

Location of Menu .MMB at
Load Time

n/a Must be stored in database

The following diagrams compare using direct reference and database lookup when attaching a custom
menu to a form.

119

Menu Style property

Description

Specifies the menu display style Form Builder should use to run the custom menu specified by the Menu
Module property. Display style options are pull-down or bar.

Applies to form module

Set Form Builder

Default

Pull-down

Required/Optional optional

Menu Style restrictions

Not valid when the Menu Module property is set to DEFAULT. (The default menu runs only in pull-
down display style.)

120

Message property

Description

Specifies the message that is to be displayed in an alert.

Applies to alert

Set Form Builder, programmatically

Refer to Built-in

SET_ALERT_PROPERTY

Required/Optional optional

Message restrictions

Maximum of 200 characters. Note, however, that several factors affect the maximum number of
characters displayed, including the font chosen and the limitations of the runtime window manager.

121

Minimize Allowed property

Description

Specifies that a window can be iconified on window managers that support this feature.

Applies to window

Set Form Builder

Default

Yes

Required/Optional optional

Minimize Allowed restrictions

Cannot be set for a root window: a root window is always iconifiable.

122

Minimized Title property

Description

Specifies the text string that should appear below an iconified window.

Applies to window

Set Form Builder

Default

No

Required/Optional optional

Minimized Title restrictions

Only applicable when the Minimize Allowed property is set to Yes.

123

Modal property

Description

Specifies whether a window is to be modal. Modal windows require an end user to dismiss the window
before any other user interaction can continue.

Applies to window

Set Form Builder

Default

No

Modal restrictions

• When Modal is set to Yes, the following window properties are ignored:

• Close Allowed • Resize Allowed

• Icon Filename • Minimized Title

• Minimize Allowed • Inherit Menu

• Move Allowed • Maximize Allowed

• Show Vertical/Horizontal
Scroll Bar

124

Module_NLS_Lang property

Description

Specifies the complete current value of the NLS_LANG environment variable defined for the form, for
national language support. MODULE_NLS_LANG is the equivalent of concatenating the following
properties:

• MODULE_NLS_LANGUAGE (language only)

• MODULE_NLS_TERRITORY (territory only)

• MODULE_NLS_CHARACTER_SET (character set only)

Applies to form

Set Not settable from within Form Builder. Set at your operating system level.

Refer to Built-in

GET_FORM_PROPERTY

Default

Default is usually "America_American.WE8ISO8859P1," but all the defaults can be port-specific.

125

Module Roles property

Description

Specifies which database roles are available for items in this menu module.

Applies to menu module

Set Form Builder

Required/Optional optional

Usage Notes

Use Menu Module Roles to construct the entire list of roles with access to this menu module, then use
Menu Item Roles to specify which of these roles should have access to a specific menu item.

126

Mouse Navigate property

Description

Specifies whether Form Builder should perform navigation to the item when the end user activates the
item with a mouse.

Applies to button, check box, list item, radio group

Set Form Builder

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Usage Notes

When Mouse Navigate is No, Form Builder does not perform navigation to the item when the end user
activates it with the mouse. For example, a mouse click in a button or check box is not treated as a
navigational event. Form Builder fires any triggers defined for the button or check box (such as When-
Button-Pressed), but the input focus remains in the current item.

When Mouse Navigate is Yes, Form Builder navigates to the item, firing any appropriate navigation and
validation triggers on the way.

Mouse Navigate restrictions

Applies only in mouse-driven environments.

127

Mouse Navigation Limit property

Description

Determines how far outside the current item an end user can navigate with the mouse. Mouse Navigation
Limit can be set to the following settings:

Form (The default.) Allows end users to navigate to any item in the current form.

Block Allows end users to navigate only to items that are within the current block.

Record Allows end users to navigate only to items that are within the current
record.

Item Prevents end users from navigating out of the current item. This setting
prevents end users from navigating with the mouse at all.

Applies to form

Set Form Builder

Default

Form

128

Move Allowed property

Description

Specifies whether or not the window can be moved .

Windows can be moved from one location to another on the screen by the end user or programmatically
by way of the appropriate built-in subprogram.

Applies to window

Set Form Builder

Default

Yes

Required/Optional optional

Usage Notes

In general, it is recommended that windows always be movable.

Move Allowed restrictions

Cannot be set to NO for a window with the name of ROOT_WINDOW. Such a window is always
movable.

129

Multi-Line property

Description

Determines whether the text item is a single-line or multi-line editing region.

Applies to text item

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

No

Usage Notes

Setting the Multi-line property Yes allows a text item to store multiple lines of text, but it does not
automatically make the item large enough to display multiple lines. It is up to you to set the Width,
Height, Font Size, and Maximum Length properties to ensure that the desired number of lines and
characters are displayed.

Single-line Pressing the carriage return key while the input focus is in a single-line text
item initiates a [Next Item] function.

Multi-line Pressing the carriage return key while the input focus is in a multi-line text
item starts a new line in the item.

Multi-Line restrictions

Valid only for text items with data type CHAR, ALPHA, or LONG.

130

Multi-Selection property

Description

Indicates whether multiple nodes may be selected at one time. If set to FALSE, attempting to select a
second node will deselect the first node, leaving only the second node selected.

Applies to hierarchical tree

Set Form Builder

Default

False

Required/Optional required

131

Name property

Description

Specifies the internal name of the object. Every object must have a valid name that conforms to Oracle
naming conventions.

Applies to all objects

Set Form Builder

Default

OBJECT_CLASS_N, where OBJECT_CLASS is the type of object, and N is the next available number in
the document; for example, BLOCK5 or EDITOR3.

Required/Optional required

Usage Notes

• For menu items and radio buttons, the Name property has unique characteristics:

• The Name property specifies an internal handle that does not display at runtime.

• The Name property is used to refer to the menu item or radio button in PL/SQL code.

• The Label property specifies the text label that displays for the menu item or current radio button.

For menu substitution parameters, the following restrictions apply:

• Restricted to a two-character identifier for the substitution parameter.

• Must be alphanumeric.

• Must start with an alphabetic character.

• When referencing the parameter in a menu command line, the parameter must be preceded by an
ampersand (&RN)

• In a PL/SQL reference, the parameter must be preceded by a colon (:SS).

Name restrictions

• Can be up to 30 characters long

• Must begin with a letter

• Can contain letters, numbers, and the special characters $, #, @ and _ (underscore)

• Are not case sensitive

• Must uniquely identify the object:

• Item names must be unique among item names in the same block

• Relation names must be unique among relations that have the same master block

• Cannot be set for the root window

132

Name examples

Example

ENAME, ADDRESS1, PHONE_NO1

133

Navigation Style property

Description

Determines how a Next Item or Previous Item operation is processed when the input focus is in the last
navigable item or first navigable item in the block, respectively.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

Same Record

Usage Notes

The following settings are valid for this property:

Same Record The default navigation style. A Next Item operation from the block’s last
navigable item moves the input focus to the first navigable item in the
block, in that same record.

Change Record A Next Item operation from the block’s last navigable item moves the input
focus to the first navigable item in the block, in the next record. If the
current record is the last record in the block and there is no open query,
Form Builder creates a new record. If there is an open query in the block
(the block contains queried records), Form Builder retrieves additional
records as needed.

Change Block A Next Item operation from the block’s last navigable item moves the input
focus to the first navigable item in the first record of the next block.
Similarly, a Previous Item operation from the first navigable item in the
block moves the input focus to the last item in the current record of the
previous block. The Next Navigation Block and Previous Navigation
Block properties can be set to redefine a block’s "next" or "previous"
navigation block.

134

Next Navigation Block property

Description

Specifies the name of the block that is defined as the"next navigation block" with respect to this block.
By default, this is the block with the next higher sequence number in the form, as indicated by the order
of blocks listed in the Object Navigator. However, you can set this property to redefine a block’s "next"
block for navigation purposes.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

The name of the block with the next higher sequence number, as indicated by the order of blocks listed in
the Object Navigator.

Required/Optional optional

Usage Notes

Setting this property does not change the value of the NextBlock property.

135

Next Navigation Item property

Description

Specifies the name of the item that is defined as the "next navigation item" with respect to this current
item. By default, the next navigation item is the item with the next higher sequence as indicated by the
order of items in the Object Navigator. However, you can set this property to redefine the "next item"
for navigation purposes.

Applies to item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

NULL. NULL indicates the default sequence, which is the name of the item with the next higher
sequence number.

Next Navigation Item restrictions

The item specified as Next Navigation Item must be in the same block as the current item.

136

NextBlock property

Description

Specifies the name of the block with the next higher sequence number in the form, as indicated by the
order of blocks listed in the Object Navigator.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

• You can programmatically visit all of the blocks in a form by using GET_BLOCK_PROPERTY to
determine the First_Block and NextBlock values.

• The value of NextBlock is NULL when there is no block with a higher sequence number than the
current block.

• Setting the Next Navigation Block property has no effect on the value of NextBlock.

137

NextItem property

Description

Specifies the name of the item with the next higher sequence number in the block, as indicated by the
order of items listed in the Object Navigator.

Applies to item

Set not settable

Refer to Built-in

GET_ITEM_PROPERTY

138

Next_Detail_Relation property

Description

Returns the name of the relation that has the same detail block as the specified relation. If no such
relation exists, returns NULL.

Applies to relation

Set not settable

Refer to Built-in

GET_RELATION_PROPERTY

Usage Notes

Use this property with the FIRST_DETAIL_RELATION property to traverse a list of relations for a
given master block.

139

Next_Master_Relation property

Description

Returns the name of the next relation that has the same master block as the specified relation. If no such
relation exists, returns NULL.

Applies to relation

Set not settable

Refer to Built-in

GET_RELATION_PROPERTY

Usage Notes

Use this property with the FIRST_MASTER_RELATION property to traverse a list of relations for a
given master block.

140

Number of Items Displayed property

Description

Specifies the number of item instances displayed for the item when the item is in a multi-record block.

Setting Number of Items Displayed > 0 overrides the Number of Records Displayed block property.

Applies to item

Set Form Builder

Default

Zero. Zero indicates that the item should display the number of instances specified by the Number of
Records Displayed block property.

Required/Optional optional

Usage:

Use Number of Items Displayed to create a single button, chart, OLE item, image, VBX control (in 16-
bit Microsoft Windows), or ActiveX control (in 32-bit Windows) as part of a multi-record block. For
instance, if Number of Records Displayed is set to 5 to create a multi-record block and you create a
button, by default you will get 5 buttons, one per record. To get only one button, set Number of Items
Displayed to 1.

Number of Items Displayed restrictions

Number of Items Displayed must be <= Number of Records Displayed block property setting.

141

Number of Records Buffered property

Description

Specifies the minimum number of records buffered in memory during a query in the block.

Applies to block

Set Form Builder

Default

NULL; which indicates the minimum setting allowed (the value set for the Number of Records Displayed
property plus a constant of 3).

Required/Optional optional

Usage Notes

• Form Builder buffers any additional records beyond the maximum to a temporary file on disk.

• Improve processing speed by increasing the number of records buffered.

• Save memory by decreasing the number of records buffered. This can, however, result in slower
disk I/O.

• If you anticipate that the block may contain a large number of records either as the result of a query
or of heavy data entry, consider raising the Number of Records Buffered property to increase
performance.

• Consider lowering the Number of Records Buffered property if you anticipate retrieving large items,
such as image items, because of the amount of memory each item buffered may require.

Number of Records Buffered restrictions

• If you specify a number lower than the minimum, Form Builder returns an error when you attempt to
accept the value.

142

Number of Records Displayed property

Description

Specifies the maximum number of records that the block can display at one time. The default is 1
record. Setting Number of Records Displayed greater than 1 creates a multi-record block.

Applies to block

Set Form Builder

Refer to Built-in

GET_BLOCK_PROPERTY

Default

1

Required/Optional required

143

OLE Activation Style property

Description

Specifies the event that will activate the OLE containing item.

Applies to OLE Container

Set Form Builder

Default

Double Click

Usage Notes

The following settings are valid for this property:

Double Click The default OLE activation style. An OLE object becomes active by
double-clicking anywhere on the OLE object.

• Focus-i Navigating to the OLE object causes the OLE object to become active.

Manual An OLE object becomes active by selecting Edit or Open from the Object
submenu of the OLE popup menu. The Show OLE Popup Menu property
must be set to YES and the Object menu item must be set to displayed and
enabled. The OLE popup menu is accessible when the mouse cursor is on
the OLE object and the right mouse button is pressed.

If the Show OLE Popup Menu property is YES and the Object menu item is displayed and enabled, it is
also possible to manually activate the OLE object through the OLE popup
menu when the OLE Activation Style is Double Click or Focus-in.

OLE Activation Style restrictions

Valid only on Microsoft Windows and Macintosh.

144

OLE Class property

Description

Determines what class of OLE objects can reside in an OLE container. The following settings are valid
for this property:

NULL The default OLE class. You can insert any kind of OLE object class
specified in the registration database in an OLE container.

other than NULL Only OLE objects from the specified class can be inserted in an OLE
container at runtime. The OLE object classes that are available for
selection depend on information contained in the registration database.
The content of the registration database is determined by the OLE server
applications installed on your computer.

Applies to OLE Container

Set Form Builder

Default

NULL

Usage Notes

You select a specific class if you want to create an application that allows end users to change the current
OLE object in the OLE container, but want to restrict the end users to creating OLE objects from a
particular class.

OLE Class restrictions

Valid only on Microsoft Windows and Macintosh.

145

OLE In-place Activation property

Description

Specifies if OLE in-place activation is used for editing embedded OLE objects. The following settings
are valid for this property:

YES Turns on OLE in-place activation. OLE in-place activation is used for
editing embedded OLE objects; linked objects are activated with external
activation.

NO Turns off OLE in-place activation and turns on external activation.
External Activation is used for editing embedded or linked OLE objects.

Applies to OLE Container

Set Form Builder

Default

NO

OLE In-place Activation restrictions

• Valid only on Microsoft Windows and Macintosh.

146

OLE Inside-Out Support property

Description

Specifies if the OLE server of the embedded object allows inside-out object support during in-place
activation. Inside-out activation allows for more than one embedded object to have an active editing
window within an OLE container. The following settings are valid for this property:

YES Turns on inside-out object support for embedded objects that have the OLE
In-place Activation property set to Yes.

NO Turns off inside-out object support for embedded objects that have the OLE
in-place Activation property set to Yes.

Applies to OLE Container

Set Form Builder

Default

YES

OLE Inside-Out Support restrictions

• Valid only on Microsoft Windows and Macintosh.

147

OLE Popup Menu Items property

Description

Determines which OLE popup menu commands are displayed and enabled when the mouse cursor is on
the OLE object and and the right mouse button is pressed. The OLE popup menu commands manipulate
OLE objects. OLE popup menu commands and their actions include:

OLE Popup Menu
Command

Action

CUT Cuts an OLE object and places the content on the
clipboard.

COPY Copies an OLE object and places the content on
the clipboard.

PASTE Pastes the content from the clipboard to an OLE
container.

PASTE SPECIAL Pastes an OLE object from the clipboard to an
OLE container in a format other than the original
format.

INSERT OBJECT Inserts an OLE object in an OLE container.

DELETE OBJECT Deletes an OLE object from an OLE container.

LINKS Invokes a dialog that has settings to determine how
links are updated, edit linked source files, and
change links from one source file to another source
file.

OBJECT Depending on the OLE server, it is possible to
perform various operations on an OLE object.
Some examples include opening an OLE object,
editing an OLE object, and converting an OLE
object from one format to another.

Applies to OLE Container

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Display On and Enable On for all menu commands

Required/Optional required

148

Usage Notes

• In the Form Builder, you can set each OLE popup menu command to exhibit the following
characteristics by selecting the appropriate check box:

Display Specifies whether the selected menu command is displayed.

Enable Specifies whether a menu command that has Display On is enabled or
disabled. A disabled item appears dimmed or grayed.

• In addition to setting OLE popup menu command properties in the Form Builder, you can set and
get OLE popup menu command properties programmatically. To set or get the OLE popup menu
commands programmatically, use a programmatic property name that corresponds to a menu
command. The following list includes each of the OLE popup menu commands and a corresponding
programmatic property name:

Menu Command Programmatic Property Name

Cut POPUPMENU_CUT_ITEM

Copy POPUPMENU_COPY_ITEM

Paste POPUPMENU_PASTE_ITEM

Paste Special POPUPMENU_PASTESPEC_ITEM

Insert Object POPUPMENU_INSOBJ_ITEM

Delete Object POPUPMENU DELOBJ ITEM

Links POPUPMENU_LINKS_ITEM

Object POPUPMENU_OBJECT_ITEM

• You can programmatically set the OLE popup menu command properties to any of the following
values:

DISPLAYED Specifies that an OLE popup menu command is displayed and enabled.

ENABLED Specifies that an OLE popup menu command is displayed and disabled. A
disabled item appears dimmed or grayed.

• HIDDESpecifies that an OLE popup menu command is not displayed on
the OLE popup menu. A command that is not displayed is not enabled.

In addition to the values that you can set programmatically, you can programmatically get the
following values from each of the OLE popup menu commands:

DISPLAYED Return value when an OLE popup menu command is displayed and
enabled.

ENABLED Return value when an OLE popup menu command is displayed and
disabled. A disabled item appears dimmed or grayed.

• HIDDEReturn value when an OLE popup menu command is not displayed
on the OLE popup menu. A command that is not displayed is not enabled.

UNSUPPORTED Return value when the OLE popup menu is not supported. This is the
return value for every platform except Microsoft Windows.

149

OLE Popup Menu Items restrictions

Valid only on Microsoft Windows.

150

OLE Resize Style property

Description

Determines how an OLE object is displayed in an OLE container. The following settings are valid for
this property:

CLIP The default OLE resize style. An OLE object is cropped to fit into an OLE
container.

SCALE An OLE object is scaled to fit into an OLE container.

INITIAL An OLE container is resized to fit an OLE object at creation time only.

DYNAMIC An OLE container is resized to fit an OLE object whenever the OLE object
size changes.

Applies to OLE Container

Set Form Builder

Required/Optional required

Default

CLIP

OLE Resize Style restrictions

Valid only on Microsoft Windows and Macintosh.

151

OLE Tenant Aspect property

Description

Determines how an OLE object appears in an OLE container.

Applies to OLE Container

Set Form Builder

Default

CONTENT

Usage Notes

The following settings are valid for this property:

CONTENT The default OLE tenant aspect. The content of an OLE object is displayed
in an OLE container. The content of the OLE object depends on the value
of the OLE Resize Style property and can either be clipped, scaled, or full
size.

ICO An icon of an OLE object is displayed in an OLE container. The default
icon is one that represents the OLE server application that created the OLE
object. You can choose which icon to use from the insert object dialog.

THUMBNAIL A reduced view of the OLE object is displayed in an OLE container.

An OLE object type is saved to the database in a LONG RAW column. When the OLE object is
queried from the database, make sure that it has the same OLE Tenant Aspect property setting as
that of the OLE object saved to the database. If the OLE Tenant Aspect property of the saved OLE
object is different from that of the queried OLE object, the record containing the object is
automatically LOCKED.

OLE Tenant Aspect restrictions

Valid only on Microsoft Windows.

152

OLE Tenant Types property

Description

Specifies the type of OLE objects that can be tenants of the OLE container. The following settings are
valid for this property:

ANY The default OLE tenant type. Any OLE object can be a tenant of the OLE
container.

NONE No object can reside in the OLE container.

STATIC Only static OLE objects can be a tenant of the OLE container. A static
OLE object is a snapshot image of a linked OLE object that has a broken
link to its source. A static OLE object cannot be modified.

EMBEDDED Only an embedded OLE object can be a tenant of the OLE container.

LINKED Only a linked OLE object can be a tenant of the OLE container.

Applies to OLE Container

Set Form Builder

Default

ANY

OLE Tenant Types restrictions

Valid only on Microsoft Windows and Macintosh.

153

Operating_System property

Description

Specifies the name of the current operating system, such as Microsoft WINDOWS, WIN32COMMON,
UNIX, Sun OS, MACINTOSH, VMS, and HP-UX.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

Because the value returned by this property is platform-specific, refer to the Form Builder documentation
for your operating system if the platform you are using is not listed above.

154

Optimizer Hint property

Description

Specifies a hint string that Form Builder passes on to the RDBMS optimizer when constructing queries.
Using the optimizer can improve the performance of database transactions.

Applies to block

Set Designer, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Restrictions:

Valid only for applications running against the Oracle7 Server or Oracle8 Server.

Usage Notes

Consider a form that contains a block named DeptBlock based on the DEPT table. If the end user enters
a criteria of " > 25 " for the DEPTNO column and executes the query, the default SELECT statement
that Form Builder generates to query the appropriate rows from the database is as follows:

SELECT DEPTNO,DNAME,LOC,ROWID
FROM DEPT
WHERE (DEPTNO > 25)

The designer can use SET_BLOCK_PROPERTY to set the Optimizer Hint property to request that the
Oracle7 Server attempt to optimize the SQL statement for best response time:

Set_Block_Property(’DeptBlock’,OPTIMIZER_HINT,’FIRST_ROWS’);
SELECT /*+ FIRST_ROWS */ DEPTNO,DNAME,LOC,ROWID
FROM DEPT
WHERE (DEPTNO > 25)

For more information on how to use this feature with Oracle7, refer to the following sources:

• Oracle7 Server Application Developer’s Guide, Chapter 5, "Tuning SQL Statements"

• Oracle7 Server Concepts Manual, Chapter 13, "The Optimizer"

155

Order By property

Description

See WHERE CLAUSE/ORDER BY CLAUSE.

156

Other Reports Parameters property

Description

A <keyword>=<value> list of parameters to include in the running of the report. For a list of valid
parameters, see the keyword list in the Report Builder online help.

Applies to Report Builder reports

Set Form Builder

Default

blank

Required/Optional optional

Usage Notes:

When passing multi-word parameter values in the where-clause, the entire where-clause should be
enclosed in single quotes. When a name appears in such a multi-word parameter, then two single quotes
should also be used to begin and to end that name. For example, in order to pass the parameter value
where ename = ’MILLER’ it is necessary to code this as:

‘where ename = ‘‘MILLER’’’

157

Output_Date/Datetime_Format property

Description

Holds the current output date or datetime format mask established by the environment variable
FORMSnn_OUTPUT_DATE_FORMAT or FORMSnn_OUTPUT_DATETIME_FORMAT. Forms
uses these format masks as defaults in its runtime output processing.

There are two separate properties: Output_Date_Format and Output_Datetime_Format.

Applies to application

Set Not settable from within Form Builder.

Refer to Built-in

GET_APPLICATION_PROPERTY

158

Parameter Data Type property

Description

Specifies what kinds of values Form Builder allows as input and how Form Builder displays those
values.

Applies to check box, display item, list item, radio group, text item, custom item, form parameter

Note: All data types do not apply to each item type.

Set Form Builder

Usage Notes

• It is recommended that you use only the standard data types CHAR, DATE, LONG, and NUMBER.
These data types are based on native ORACLE data types, and offer better performance and
application portability. The other data types are valid only for text items, and are included primarily
for compatibility with previous versions. You can achieve the same formatting characteristics by
using a standard data type with an appropriate format mask.

• The data type of a base table item must be compatible with the data type of the corresponding
database column. Use the CHAR data type for items that correspond to ORACLE VARCHAR2
database columns.

• Do not create items that correspond to database CHAR columns if those items will be used in
queries or as the join condition for a master-detail relation; use VARCHAR2 database columns
instead.

• Form Builder will perform the following actions on items, as appropriate:

• remove any trailing blanks

• change the item to NULL if it consists of all blanks

• remove leading zeros if the data type is NUMBER, INT, MONEY, RINT, RMONEY, or
RNUMBER (unless the item’s format mask permits leading zeros)

• The form parameter Parameter Data Type property supports the data types CHAR, DATE, and
NUMBER.

ALPHA

Contains any combination of letters (upper and/or lower case).

Default Blanks

Example "Employee", "SMITH"

CHAR

Supports VARCHAR2 up to 2000 characters. Contains any combination of the following characters:

• Letters (upper and/or lower case)

• Digits

159

• Blank spaces

• Special characters ($, #, @, and _)

Default Blanks

Example "100 Main Street", "CHAR_EXAMPLE_2"

DATE

Contains a valid date. You can display a DATE item in any other valid format by changing the item’s
format mask.

Default DD-MON-YY

Restrictions Refers to a DATE column in the database and is processed as a true date, not a
character string.

The DATE data type
contains a ZERO time
component

.

Example 01-JAN-92

DATETIME

Contains a valid date and time.

Default DD-MON-YY HH24:MI[:SS]

Restrictions Refers to a DATE column in the database and is processed as a true date, not a
character string.

The DATETIME data type contains a four digit year. If the year input to a
DATETIME data type is two digits, the year is interpreted as 00YY.

Example 31-DEC-88 23:59:59

EDATE

Contains a valid European date.

Default DD/MM/YY

Restrictions V3 data type.

Must refer to a NUMBER column in the database.

Included for backward compatibility. Instead, follow these recommendations:

Use the DATE data type.

Apply a format mask to produce the European date format.

Reference a DATE column in the database, rather than a NUMBER column.

Example 23/10/92 (October 23, 1992)

01/06/93 (June 1, 1993)

INT

Contains any integer (signed or unsigned whole number).

160

Default 0

Example 1, 100, -1000

JDATE

Contains a valid Julian date.

Default MM/DD/YY

Restrictions V3 data type.

Must refer to a NUMBER column in the database.

Included for backward compatibility. Instead, follow these recommendations:

Use the DATE data type.

Apply a format mask to produce the Julian date format.

Reference a DATE column in the database, rather than a NUMBER column.

Example 10/23/92 (October 23, 1992)

06/01/93 (June 1, 1993)

LONG

Contains any combination of up to 65,534 characters. Stored in ORACLE as variable-length character
strings.

Default Blanks

Restrictions Not allowed as a reference in the WHERE or ORDER BY clauses of any SELECT
statement.

LONG items are not queryable in Enter Query mode.

MONEY

Contains a signed or unsigned number to represent a sum of money.

Restrictions V3 data type

Included for backward compatibility. Instead, use a format mask with a number to
produce the same result.

Example 10.95, 0.99, -15.47

NUMBER

Contains fixed or floating point numbers, in the range of 1.0x10-129 to 9.99x10124, with one or more of
the following characteristics:

• signed

• unsigned

• containing a decimal point

• in regular notation

• in scientific notation

161

• up to 38 digits of precision

NUMBER items refer to NUMBER columns in the database and Form Builder processes their values as
true numbers (not character strings).

Default 0

Restrictions Commas cannot be entered into a number item (e.g., 99,999). Use a format mask
instead.

Example -1, 1, 1.01, 10.001, 1.85E3

RINT

Displays integer values as right-justified.

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the NUMBER data type.

Apply a format mask such as 999 to produce a right-justified number.

RMONEY

Displays MONEY values as right-justified.

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the NUMBER data type

Apply a format mask such as $999.99 to produce a right-justified number.

RNUMBER

Displays NUMBER values as right-justified.

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the NUMBER data type.

Apply a format mask such as 999.999 to produce a right-justified number.

TIME

Contains numbers and colons that refer to NUMBER columns in the database.

Default HH24:MI[:SS]

Restrictions V3 data type

Included for backward compatibility. Instead, follow these recommendations:

Use the DATETIME data type.

Apply a format mask to produce only the time.

Not allowed as a reference to DATE columns in the database.

162

Example :10:23:05

21:07:13

163

Parameter Initial Value (Form Parameter) property

Description

Specifies the value that Form Builder assigns the parameter at form startup.

Applies to Form Parameter

Set Form Builder

Default

NULL

Required/Optional optional

Usage Notes

Any valid constant is a valid value for this property.

164

Menu Parameter Initial Value (Menu Substitution
Parameter) property

Description

Specifies the value that Form Builder assigns the parameter at form startup.

Set Form Builder

Required/Optional required

165

Password property

Description

Specifies the password of the current end user.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

The Password property returns only the password. If you want a connect string as well, examine the
Connect_String property.

166

PLSQL_Date_Format property

Description

This property establishes the format mask used in converting date values when executing PL/SQL (for a
trigger or called function or procedure) within Forms, in the following cases:

• evaluating TO_DATE (char_value) or TO_DATE (date_value) with no explicit format mask

• assigning a CHAR value to a date variable, or vice versa.

Applies to entire Forms application (global value)

Set programmatically

Refer to Built-in

• GET_APPLICATION_PROPERTY built-in

• SET_APPLICATION_PROPERTY built-in

Required/Optional optional. However, it is STRONGLY RECOMMENDED that, for a new
application, you set this property to a format mask containing full century and time information. It is
also recommended that this format mask be the same as the one specified in the Builtin_Date_Format
property.

Default

As noted above, it is strongly recommended that you explicitly set this value for a new application. If
you do not, the default value will be DD-MON-YY. (This value is used for compatibility with Release
4.5 and earlier.)

Compatibility with other Oracle products

In Oracle products other than Form Builder, PL/SQL version 2 does not necessarily use a default date
format mask of DD-MON-YY. Instead, it typically uses a format mask derived from the current NLS
environment. If for some reason you want your Forms application to exhibit the same behavior, you can
use the USER_NLS_DATE_FORMAT application property to get the current NLS date format mask,
and then assign it to the application’s PLSQL_DATE_FORMAT property.

167

PL/SQL Library Location property

Description

Shows the location of the attached PL/SQL library.

This property is set when you attach a PL/SQL library to a Forms module. If you requested that the
directory path be retained, this property will be the full pathname of the library. If you requested that the
directory path be removed, this property will be just the library name.

This property is displayed only for your information. You cannot set or change it through the property
palette.

Applies to PL/SQL libraries

Set Form Builder

Required/Optional display only.

Default none

168

PL/SQL Library Source property

Description

This property is set when you attach a PL/SQL library to a Forms module. It shows the source of this
PL/SQL library – either File or Database.

This property is displayed only for your information. You cannot set or change it through the property
palette.

Applies to PL/SQL libraries

Set Form Builder

Required/Optional display only

Default File

169

Popup Menu property

Description

Specifies the popup menu to display for the canvas or item.

Applies to canvases and items

Set not settable

Required/Optional Optional

Default

NULL

Refer to Built-in

GET_MENU_ITEM_PROPERTY

• SET__MENU_ITEM_PROPERTY

Note: ENABLED, DISABLED, and LABEL are the only properties valid for popup menus.

Popup Menu restrictions

The popup menu must be defined within the current form module.

• You cannot attach a popup menu to individual radio buttons, but you can assign a popup menu to a
radio group.

170

Precompute Summaries property

Description

Specifies that the value of any summarized item in a data block is computed before the normal query is
issued on the block. Form Builder issues a special query that selects all records (in the database) of the
summarized item and performs the summary operation (sum, count, etc.) over all the records.

Applies to block

Set Form Builder

Required/Optional Required if the block contains summarized items and the block’s Query All Records
property is set to No.

Default

No

Usage Notes

When an end user executes a query in a block with Precompute Summaries set to Yes, Form Builder fires
the Pre-Query trigger (if any) once before it executes the special query. Form Builder fires the Pre-
Select trigger (if any) twice: once just before executing the special query, and again just before
executing the normal query.

Precompute Summaries restrictions

You cannot set Precompute Summaries to Yes if any of the following are true: (1) the block contains a
summarized control item, (2) a minimize or maximize operation is performed on a summarized item
in the block, (3) the block’s Query Data Source is a stored procedure or transactional triggers (must be
a table or sub-query), or (4) the block contains a checkbox item, list item, or radio group with an
empty Other Values property..

• Read consistency cannot be guaranteed unless (1) the form is running against an Oracle7.3
database, and (2) the form-level Isolation Mode property is set to Serializable.

171

Prevent Masterless Operations property

Description

Specifies whether end users should be allowed to query or insert records in a block that is a detail block
in a master-detail relation. When set to Yes, Form Builder does not allow records to be inserted in the
detail block when there is no master record in the master block, and does not allow querying in the detail
block when there is no master record that came from the database.

When Prevent Masterless Operation is Yes, Form Builder displays an appropriate message when end
users attempt to insert or query a record:

FRM-41105: Cannot create records without a parent record.
FRM-41106: Cannot query records without a parent record.

Applies to relation

Set Form Builder, programmatically

Refer to Built-in

• GET_RELATION_PROPERTY

• SET_RELATION_PROPERTY

Default

No

172

Previous Navigation Block property

Description

Specifies the name of the block that is defined as the "previous navigation block" with respect to this
block. By default, this is the block with the next lower sequence in the form, as indicated by the order of
blocks in the Object Navigator. However, you can set this property to redefine a block’s "previous"
block for navigation purposes.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

The name of the block with the next lower sequence in the form.

Required/Optional optional

Usage Notes

Setting this property has no effect on the value of the PreviousBlock property.

173

Previous Navigation Item property

Description

Specifies the name of the item that is defined as the"previous navigation item" with respect to the current
item. By default, this is the item with the next lower sequence in the form, as indicated by the order of
items in the Object Navigator. However, you can set this property to redefine the "previous item" for
navigation purposes.

Applies to item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

NULL. NULL indicates the default, which is the name of the item with the next lower sequence in the
form.

Required/Optional optional

Previous Navigation Item restrictions

The item specified as Previous Navigation Item must be in the same block as the current item.

174

PreviousBlock property

Description

Specifies the name of the block with the next lower sequence in the form, as indicated by the order of
blocks in the Object Navigator.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Required/Optional optional

Usage Notes

• You may use this property with the First_Block or Last_Block form properties to traverse a list of
blocks.

• The value of PreviousBlock is NULL when there is no block with a lower sequence number than the
current block.

• Setting the Previous Navigation Block property has no effect on the value of PreviousBlock.

175

PreviousItem property

Description

Specifies the name of the item with the next lower sequence number in the block, as indicated by the
order of items in the Object Navigator.

Applies to item

Set not settable

Refer to Built-in

GET_ITEM_PROPERTY

Required/Optional optional

176

Primary Canvas property

Description

Specifies the canvas that is to be the window’s primary content view. At runtime, Form Builder always
attempts to display the primary view in the window. For example, when you display a window for the
first time during a session by executing the SHOW_WINDOW built-in procedure, Form Builder displays
the window with its primary content view.

If, however, Form Builder needs to display a different content view because of navigation to an item on
that view, the primary content view is superseded by the target view.

Applies to window

Set Form Builder

Default

 NULL

Required/Optional Required only for a window that will be shown programmatically, rather than in
response to navigation to an item on a canvas assigned to the window.

Primary Canvas restrictions

The specified view must be a content view (Canvas Type property set to Content), and must be assigned
to the indicated window (by setting the Window canvas property).

177

Primary Key (Item) property

Description

Indicates that the item is a base table item in a data block and that it corresponds to a primary key
column in the base table. Form Builder requires values in primary key items to be unique.

Applies to all items except buttons, chart items, and image items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Required/Optional optional

Primary Key (Item) restrictions

The Enforce Primary Key block property must be set to Yes for the item’s owning block.

178

Program Unit Text property

Description

Specifies the PL/SQL code that a program unit contains. When you click on More… in the Property
Palette the Program Unit Editor is invoked.

Applies to program unit

Set Form Builder

Required/Optional required

179

Prompt property

Description

Specifies the text label that displays for an item.

Applies to item prompt

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

blank

Required/Optional optional

180

Prompt Alignment property

Description

Specifies how the prompt is aligned along the item’s edge, either Start, End, or Center.

Applies to item prompt

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Alignment.)

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Start

Required/Optional required

181

Prompt Alignment Offset property

Description

Specifies the prompt’s alignment offset.

Applies to item prompt

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Alignment_Offset.)

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

blank

Required/Optional optional

182

Prompt Attachment Edge property

Description

Specifies which edge the prompt should be attached to, either Start, End, Top, or Bottom.

Applies to item prompt

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Attachment_Edge.)

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Start

Required/Optional required

183

Prompt Attachment Offset property

Description

Specifies the distance between the item and its prompt.

Applies to item prompt

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Attachment_Offset.)

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

blank

Required/Optional optional

184

Prompt Background Color property

Description

The color of the object’s or background region.

Applies to item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Background_Color.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

185

Prompt Display Style property

Description

Specifies the prompt’s display style.

First Record Form Builder displays a prompt beside the first record.

• HiddeForm Builder does not display a prompt.

All Records Form Builder displays a prompt beside each record.

Applies to item prompt

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Display_Style.)

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

First Record

Required/Optional required

186

Prompt Fill Pattern property

Description

Specifies the pattern to be used for the object’s fill region. Patterns are rendered in the two colors
specified by Background_Color and Foreground_Color.

Applies to item, item prompt's, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Fill_Pattern.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

187

Prompt Font Name property

Description

Specifies the font family, or typeface, to be used for text in the object. The list of fonts available is
system-dependent.

Applies to item item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Font_Name.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

188

Prompt Font Size property

Description

The size of the font, specified in points.

Applies to item, item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Font_Size.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

189

Prompt Font Spacing property

Description

Specifies the width of the font (i.e., the amount of space between characters, or kerning).

Applies to item, item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Font_Spacing.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

190

Prompt Font Style property

Description

Specifies the style of the font.

Applies to item, item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Font_Style.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

191

Prompt Font Weight property

Description

Specifies the weight of the font.

Applies to item, item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Font_Weight.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

192

Prompt Foreground Color property

Description

Specifies the color of the object’s foreground region. For items, defines the color of the text displayed in
the item.

Applies to item, item prompt, radio button

Set Form Builder, programmatically (Note: When you use this property in a PL/SQL program, replace
the spaces with underscores: Prompt_Foreground_Color.)

Default

Unspecified

Required/Optional optional

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

193

Prompt Justification property

Description

Specifies justification of the prompt as either Left, Right, Center, Start, or End.

Applies to item prompt

Set Form Builder

Default

Start

Required/Optional required

194

Prompt Reading Order property

Description

Specifies the prompt’s reading order, either Default, Left to Right, or Right to Left.

Applies to item prompt

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Default

Required/Optional required

195

Prompt Visual Attribute Group property

Description

Specifies the named visual attribute that should be applied to the prompt at runtime.

Applies to item prompt

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Default

Required/Optional required

196

Prompt_White_On_Black property

Description

Specifies that the object is to appear on a monochrome bitmap display device as white text on a black
background.

Applies to item, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

197

Property Class property

Description

Specifies the name of the property class from which the object can inherit property settings.

Applies to all objects

Set Form Builder

Default

Null

Required/Optional optional

198

Query All Records property

Description

Specifies whether all the records matching the query criteria should be fetched into the data block when a
query is executed.

Yes - Fetches all records from query; equivalent to executing the EXECUTE_QUERY
(ALL_RECORDS) built-in.

No - Fetches the number of records specified by the Query Array Size block property.

Applies to block

Set Form Builder

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

No

Required/Optional Required if a data block contains summarized items, and the block’s Precompute
Summaries property is set to No.

199

Query Allowed (Block) property

Description

Specifies whether Form Builder should allow the end user or the application to execute a query in the
block. When Query Allowed is No, Form Builder displays the following message if the end user attempts
to query the block:

FRM-40360: Cannot query records here.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

Yes

Restrictions:

When the Query Allowed block property is Yes, the Query Allowed item property must be set to Yes for
at least one item in the block.

200

Query Allowed (Item) property

Description

Determines if the item can be included in a query against the base table of the owning block.

Applies to all items except buttons, chart items, and image items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes; however if the item is part of the foreign key in the detail block of a master-detail block relation,
Form Builder sets this property to No.

Usage Notes

To set the Query Allowed (Item) property programmatically, use the constant QUERYABLE.

Query Allowed (Item) restrictions

• The Visible property must also be set to Yes.

• Items with the data type LONG cannot be directly queried.

201

Query Array Size property

Description

Specifies the maximum number of records that Form Builder should fetch from the database at one time.

Applies to block

Set Form Builder

Refer to Built-in

GET_BLOCK_PROPERTY

Default

The number of records the block can display, as indicated by the Number of Records Displayed block
property.

Required/Optional required

Usage Notes

A size of 1 provides the fastest perceived response time, because Form Builder fetches and displays only
1 record at a time. By contrast, a size of 10 fetches up to 10 records before displaying any of them,
however, the larger size reduces overall processing time by making fewer calls to the database for
records.

Query Array Size restrictions

• There is no maximum.

202

Query Data Source Arguments property

Description

Specifies the names, datatypes, and values of the arguments that are to be passed to the procedure for
querying data. The Query Procedure Arguments property is valid only when the Query Data Source
Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

203

Query Data Source Columns property

Description

Specifies the names and datatypes of the columns associated with the block’s query data source. The
Query Data Source Columns property is valid only when the Query Data Source Type property is set to
Table, Sub-query, or Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

204

Query Data Source Name property

Description

Specifies the name of the block’s query data source.

The Query Data Source Name property is valid only when the Query Data Source Type property is set to
Table, Sub-Query, or Procedure.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_ITEM_PROPERTY

Default

NULL

Required/Optional optional

Query Data Source Name restrictions

Prior to setting the Query Data Source Name property you must perform a COMMIT_FORM or a
CLEAR_FORM.

205

Query Data Source Type property

Description

Specifies the query data source type for the block. A query data source type can be a Table, Procedure,
Transactional trigger, or FROM clause query.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

GET_BLOCK_PROPERTY

Default

Table

Required/Optional required

206

Query Length property

Description

Specifies the number of characters an end user is allowed to enter in the text item when the form is Enter
Query mode.

Applies to text item

Set Form Builder

Default

The value of the item’s Maximum Length property.

Usage Notes

You can make the query length greater than the Maximum Length when you want to allow the end user
to enter complex query conditions. For example, a query length of 5 allows an end user to enter the
query condition !=500 in a text item with a Maximum Length of 3.

Query Length restrictions

• The maximum query length is 255 characters.

207

Query Name property

Description

Specifies the name of the query in the report with which to associate the forms block.

Applies to report integration

Set Form Builder

Default

blank

Required/Optional optional

208

Query Only property

Description

Specifies that an item can be queried but that it should not be included in any INSERT or UPDATE
statement that Form Builder issues for the block at runtime.

Applies to check box, radio group, list item, image item, text item, custom item (OLE)

Set programmatically

Default

No

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

209

Query_Hits property

Description

Specifies the NUMBER value that indicates the number of records identified by the COUNT_QUERY
operation. If this value is examined while records are being retrieved from a query, QUERY_HITS
specifies the number of records that have been retrieved.

This property is included primarily for applications that will run against non-ORACLE data sources.

Applies to block

Set programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Usage Notes

This property can be used in several ways:

• In an application that runs against a non-ORACLE data source, use
SET_BLOCK_PROPERTY(QUERY_HITS) in an On-Count trigger to inform Form Builder of the
number of records that a query will return. This allows you to implement count query processing
equivalent to Form Builder default Count Query processing.

• Use GET_BLOCK_PROPERTY(QUERY_HITS) during Count Query processing to examine the
number of records a query will potentially retrieve.

• Use GET_BLOCK_PROPERTY(QUERY_HITS) during fetch processing to examine the number of
records that have been retrieved by the query so far and placed on the block’s list of records.

Query_Hits restrictions

Set this property greater than or equal to 0.

210

Query_Options property

Description

Specifies the type of query operation Form Builder would be doing by default if you had not
circumvented default processing. This property is included for applications that will run against non-
ORACLE data sources.

Values for this property include:

• VIEW

• FOR_UPDATE

• COUNT_QUERY

• NULL

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

211

Radio Button Value Property

Description

Specifies the value associated with a radio button item in a radio group.

Applies to radio button

Set Form Builder

Default

blank

212

Raise on Entry property

Description

For a canvas that is displayed in the same window with one or more other canvases, Raise on Entry
specifies how Form Builder should display the canvas when the end user or the application navigates to
an item on the canvas.

• When Raise on Entry is No, Form Builder raises the view in front of all other views in the window
only if the target item is behind another view.

• When Raise on Entry is Yes, Form Builder always raises the view to the front of the window when
the end user or the application navigates to any item on the view.

Applies to canvas

Set Form Builder

Default

No

Raise on Entry restrictions

Applicable only when more than one canvas is assigned to the same window.

213

Reading Order property

Description

Note: This property is specific to bidirectional National Language Support (NLS) applications.

Specifies the reading order for groups of words (segments) in the same language within a single text
item.

Reading Order allows you to control the display of bilingual text items, text items that include segments
in both Roman and Local languages. (The Reading Order property has no effect on text items composed
of a single language.)

The allowable values for this property are:

Value Description

Default Text item inherits the reading order specified by its canvas
Language Direction property setting.

Right-To-Left Item reading order is right-to-left.

Left-To-Right Item reading order is left-to-right.

Applies to display item, text item

Set Form Builder

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Default

Usage Notes

• In most cases, you will not need to explicitly set the Reading Order property (the Default setting will
provide the functionality you need). Use the Reading Order property only when you need to
override the default reading order for an item.

• To get or set the Reading Order property programmatically, use the Language Direction property.

• To display a Local segment in Right-To-Left mode and a Roman segment in Left-To-Right, use the
Default value.

• If your item text is mostly Local, choose the Right-To-Left value.

• If your item text is mostly Roman, choose the Left-To-Right value.

214

Real Unit property

Description

When the Coordinate System property is set to Real, the Real Unit property specifies the real units to be
used for specifying size and position coordinates in the form. Real units can be centimeters, inches,
pixels, points, or decipoints. (A point is 1/72nd of an inch.)

Form Builder interprets all size and position coordinates specified in the form in the real units you
specify here. When you convert from one real unit to another, some loss of precision may occur for
existing object size and position values.

Applies to form module

Set Form Builder

Default

Centimeter

Required/Optional optional

Real Unit restrictions

Valid only when the coordinate system property is set to Real.

215

Record Group property

Description

Specifies the name of the record group from which the LOV or hierarchical tree derives its values.

Applies to:

LOV, hierarchical tree

Set Form Builder, programmatically

Refer to Built-in

GET_LOV_PROPERTY (GROUP_NAME)

SET_LOV_PROPERTY (GROUP_NAME)

POPULATE_TREE

POPULATE_GROUP_FROM_TREE

Default

Null

Required/Optional Required for LOV, Optional for hierarchical tree

Usage Notes

An LOV displays the records stored in its underlying record group. Each LOV must be based on a record
group. A record group can be populated by a query (query record group) or by fixed values (static record
group).

216

Record Group Fetch Size property

Description

Specifies the size of the record group to be fetched. A larger fetch size reduces the number of fetches
required to obtain the record group. For example, a record group of 5000 records will require 500 trips
to be fetched if Record Group Fetch Size is set to 10, but only 5 trips if Record Group Fetch Size is set
to 1000.

Applies to record group functional

Set Form Builder

Default

20

Required/Optional required

Usage Notes

Only available when Record Group Type is set to Query.

217

Record Group Query property

Description

Specifies the SELECT statement for query associated with the record group.

Applies to record group

Set Form Builder, programmatically

Refer to Built-in

POPULATE_GROUP_WITH_QUERY

Required/Optional optional

218

Record Group Type property

Description

Specifies the type of record group, either Static or Query:

Static Specifies that the record group is constructed of explicitly defined column
names and column values. The values of a static record group are
specified at design time and cannot be changed at runtime.

Query Specifies that the record group is associated with a SELECT statement, and
thus can be populated dynamically at runtime. When you select this option,
enter the SELECT statement in the multi-line field provided, then choose
Apply.

Applies to:

record group

Set Form Builder

Default

Query

219

Record Orientation property

Description

Determines the orientation of records in the block, either horizontal records or vertical records. When
you set this property, Form Builder adjusts the display position of items in the block accordingly.

Applies to block

Set Form Builder

Default

Vertical records

Required/Optional optional

Usage Notes

You can also set this property when you create a block in the New Block window by setting the
Orientation option to either Vertical or Horizontal.

Record Orientation restrictions

Valid only for a multi-record block (Number of Records Displayed property set greater than 1).

220

Records_to_Fetch property

Description

Returns the number of records Form Builder expects an On-Fetch trigger to fetch and create as queried
records.

You can programmatically examine the value of Records_To_Fetch when you are using transactional
triggers to replace default Form Builder transaction processing when running against a non-ORACLE
data source.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

Records_To_Fetch is defined only within the scope of an On-Fetch trigger.

The first time the On-Fetch trigger fires, the value of Records_To_Fetch is either the array size (as
specified by the Query Array Size block property) or the number of records displayed + 1, whichever is
larger.

If the On-Fetch trigger creates this many queried records, the next time the On-Fetch trigger fires, the
value of Records_To_Fetch will be the same number.

If, however, the On-Fetch trigger creates fewer records than the value of Records_To_Fetch and returns
without raising Form_trigger_Failure, Form Builder will fire the On-Fetch trigger again.
Records_To_Fetch will be the set to its previous value minus the number of queried records created by
the previous firing of the On-Fetch trigger.

This behavior continues until one of the following events occurs:

• The trigger does not create a single queried record (signaling a successful end of fetch).

• The expected number of queried records gets created.

• The trigger raises a Form_trigger_Failure (signaling that the fetch aborted with an error and fetch
processing should halt).

Records_to_Fetch examples

Example
/*
** Call a client-side package function to retrieve
** the proper number of rows from a package cursor.
*/
DECLARE
 j NUMBER := Get_Block_Property(blk_name, RECORDS_TO_FETCH);
 emprow emp%ROWTYPE;
BEGIN

221

 FOR ctr IN 1..j LOOP
 /* Try to get the next row.*/
 EXIT WHEN NOT MyPackage.Get_Next_Row(emprow);
 Create_Queried_Record;
 :Emp.rowid := emprow.ROWID;
 :Emp.empno := emprow.EMPNO;
 :Emp.ename := emprow.ENAME;
 :
 :
 END LOOP;
END;

222

Relation Type property

Description

Specifies whether the link between the master block and detail block is a relational join or an object REF
pointer.

Applies to master-detail relations

Set Form Builder

Default

Join

Usage Notes

Valid values are Join (indicating a relational join) or REF (indicating a REF column in one block
pointing to referenced data in the other block).

When the link is via a REF, see also the Detail Reference property.

When the link is via a join, see also the Join Condition property.

223

Rendered property

Description

Specifies that the item is to be displayed as a rendered object when it does not have focus.

Applies to text item, display item

Set Form Builder

Default

Yes

Usage Notes

Use the Rendered property to conserve system resources. A rendered item does not require system
resources until it receives focus. When a rendered item no longer has focus, the resources required to
display it are released.

224

Report Destination Format property

Description

In bit-mapped environments, this property specifies the printer driver to be used when the Report
Destination Type property is File. In character-mode environments, it specifies the characteristics of the
printer named in report Destination name property.

Possible valus are any valid destination format not to exceed 1K in length. Examples of valid values for
this keyword are hpl, hplwide, dec, decwide, decland, dec180, dflt, wide, etc. Ask your System
Administrator for a list of valid destination formats. In addition, Report Builder supports the following
destination formats:

PDF Means that the report output will be sent to a file that can
be read by a PDF viewer. PDF output is based upon the
currently configured printer for your system. The drivers
for the currently selected printer is used to produce the
output; you must have a printer configured for the
machine on which you are running the report.

HTML Means that the report output will be sent to a file that can
be read by an HTML 3.0 compliant browser (e.g.,
Netscape 2.2).

HTMLCS
S

Means that the report output sent to a file will include
style sheet extensions that can be read by an HTML 3.0
compliant browser that supports cascading style sheets.

HTMLCS
SIE

Means that the report output sent to a file will include
style sheet extensions that can be read by Microsoft
Internet Explorer 3.x.

RTF Means that the report output will be sent to a file that can
be read by standard word processors (such as Microsoft
Word). Note that when you open the file in MS Word,
you must choose View->Page Layout to view all the
graphics and objects in your report.

DELIMIT
ED

Means that the report output will be sent to a file that can
be read by standard spreadsheet utilities, such as
Microsoft Excel. Note that you must also specify a
DELIMITER.

For more information about this property, see DESFORMAT under the index category Command Line
Arguments in the Report Builder online help.

Applies to report reports

Set Form Builder

Default

blank

Required/Optional optional

225

Report Destination Name property

Description

Name of the file, printer, Interoffice directory, or email user ID (or distribution list) to which the report
output will be sent. Possible values are any of the following not to exceed 1K in length:

• a filename (if Report Destination Type property is File or Localfile)

• a printer name (if Report Destination Type property is Printer)

• email name or distribution name list (if Report Destination Type property is Mail).
To send the report output via email, specify the email ID as you
do in your email application (any MAPI-compliant application on
Windows, such as Oracle InterOffice, or your native mail
application on UNIX). You can specify multiple usernames by
enclosing the names in parentheses and separating them by commas
(e.g., (name, name, . . .name)). For printer names, you can
optionally specify a port. For example:
printer,LPT1:
printer,FILE:

Or, if the Report Destination Type property is Interoffice:
/FOLDERS/directory/reportname

For more information about this property, see DESNAME under the index category Command Line
Arguments in the Report Builder online help.

Applies to report reports

Set Form Builder

Default

blank

Required/Optional optional

226

Report Destination Type property

Description

Destination to which you want the output to be sent. Possible values are Screen, File, Printer, Preview,
Mail, and Interoffice. For more information about this property, see DESTYPE under the index category
Command Line Arguments in the Report Builder online help.

SCREEN Screen routes the output to the Previewer for
interactive viewing. This value is valid only for when
running the report in Runtime mode (not Batch).
Font aliasing is not performed.

FILE File saves the output to a file named in Report
Destination Name.

PRINTER Printer routes the output to the printer named in
Report Destination Name.

PREVIEW Preview routes the output to the Previewer for
interactive viewing. However, Preview causes the
output to be formatted as Postscript output. The
Previewer will use the Report Destination Name
property to determine which printer’s fonts to use to
display the output. Font aliasing is performed for
Preview.

MAIL Mail routes the output to the mail users specified in
Report Destination Name. You can send mail to any
mail system that is MAPI-compliant or has the
service provider driver installed. The report is sent
as an attached file.

INTEROFFIC
E

routes the output to the Oracle InterOffice mail users
specified in Report Destination Name. By
specifying this value, you store the report output in
InterOffice as a repository.

Applies to report reports

Set Form Builder

Default

File

Required/Optional required

227

Report Server property

Description

Specifies the Report Server against which you can run your Report.

Applies to report reports

Set Form Builder

Required/Optional optional

Default

blank

228

Required (Item) property

Description

When a new record is being entered, specifies that the item is invalid when its value is NULL.

Applies to list item, text item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_INSTANCE_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Usage Notes

When an item has Required set to Yes, and item-level validation is in effect, by default Form Builder will
not allow navigation out of the item until a valid value is entered. To allow the end user to move freely
among the items in the record, set the Defer Required Enforcement property to Yes. This will postpone
enforcement of the Required attribute from item validation to record validation.

Even when Required is set to Yes, there are circumstances when an item’s value could be NULL. Form
Builder checks for required items as part of its validation process: each item in a new record is subject to
validation, but queried data is presumed to be valid and an item is not validated unless it is changed. For
example, if the record already exists and is queried from the database, the item that would be Required
could come in as NULL.

Setting a poplist’s or T-list’s Required property may affect the values the list will display: When
selected, an instance of a poplist will display an extra null value if its current value is NULL or if its
effective Required property is No (false). When selecting the current value of an instance of a T-list, it
will be unselected (leaving the T-list with no selected value) if its effective Required property is No
(false). But if its effective Required property is Yes (true), selecting a T-list instance’s current value will
have no effect. The value will stay selected.

229

Required (Menu Parameter) property

Description

Specifies that the end user is required to enter a value for the menu substitution parameter.

Applies to menu substitution parameter

Set Form Builder

Default

No

230

Resize Allowed property

Description

Specifies that the window is to be a fixed size and cannot be resized at runtime. This property is a GUI
hint, and may not be supported on all platforms.

Applies to window

Set Form Builder

Default

No

Usage Notes

The Resize Allowed property prevents an end user from resizing the window, but it does not prevent you
from resizing the window programmatically with RESIZE_WINDOW or SET_WINDOW_PROPERTY.

Resize Allowed restrictions

• Resize Allowed is only valid when the Maximize Allowed property is set to No

231

Return Item (LOV) property

Description

See Column Mapping Properties .

232

Rotation Angle property

Description

Specifies the graphic object’s rotation angle. The angle at which the object is initially created is
considered to be 0, and this property is the number of degrees clockwise the object currently differs from
that initial angle. You can rotate an object to an absolute angle by setting this property.

Applies to graphics physical

Set Form Builder

Default 0

Required/Optional required

233

Runtime Compatibility Mode property

Description

Specifies the Form Builder version with which the current form’s runtime behavior is compatible (either
4.5 or 5.0 +). By default, new forms created with Form Builder 5.0 and later are set to 5.0-compatible.
Existing forms that are upgraded from 4.5 are 4.5-compatible. To get these forms to use the new runtime
behavior of 5.0 +, set this property to 5.0. The runtime behavior that is affected by this property is
primarily validation and initialization. For information about 5.0-and-later runtime behavior, see the
Initialization and Validation sections in the Default Processing chapter of the online Form Builder
Reference. For information about 4.5 runtime behavior, see the Form Builder 4.5 Runtime Behavior
section in the Compatibility with Prior Releases chapter of the online Form Builder Reference.

Applies to forms compatibility

Set Form Builder

Default

5.0 for new forms, 4.5 for forms created using Form Builder 4.5.

Required/Optional required

234

Savepoint Mode property

Description

Specifies whether Form Builder should issue savepoints during a session. This property is included
primarily for applications that will run against non-ORACLE data sources. For applications that will run
against ORACLE, use the default setting.

The following table describes the settings for this property:

Setting Description

Yes (the default) Specifies that Form Builder should issue a savepoint at form
startup and at the start of each Post and Commit process.

No Specifies that Form Builder is to issue no savepoints, and
that no rollbacks to savepoints are to be performed.

 Applies to form module

Set Form Builder, programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

Default

Yes

Required/Optional optional

Savepoint Mode restrictions

When Savepoint Mode is No, Form Builder does not allow a form that has uncommitted changes to
invoke another form with the CALL_FORM procedure.

235

Savepoint_Name property

Description

Specifies the name of the savepoint Form Builder is expecting to be set or rolled back to.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

The value of this property should be examined only within an On-Savepoint or On-Rollback trigger:

• Use Savepoint_Name in an On-Savepoint trigger to determine the savepoint to be set by a call to
ISSUE_SAVEPOINT.

• In an On-Rollback trigger, examine Savepoint_Name to determine the savepoint to which Form
Builder should roll back by way of a call to ISSUE_ROLLBACK. A NULL savepoint name implies
that a full rollback is expected.

236

Scroll Bar Alignment property

Description

Specifies whether the scroll bar is displayed at the start or the end of the frame.

Applies to frame

Set Form Builder

Default

End

Required/Optional optional

237

Scroll Bar Height property

Description

Specifies the height of the scroll bar.

Applies to scroll bar

Set Form Builder

Required/Optional optional

238

Scroll Bar Width property

Description

Specifies the width of the scroll bar.

Applies to scroll bar

Set Form Builder

Required/Optional optional

239

Secure (Menu Parameter) property

Description

Hides characters that the end user enters for the substitution parameter.

Applies to menu substitution parameter

Set Form Builder

Default

No

Required/Optional optional

240

Share Library with Form property

Description

Forms that have identical libraries attached can share library package data. (For more information, see
the data_mode parameter for the CALL_FORM, OPEN_FORM, and NEW_FORM built-ins.) The Share
Library with Form property enables menus associated with the forms to share the library package data as
well.

Applies to menus

Set Form Builder

Default

Yes

Usage Notes

• If two forms share an object, and both forms are open at design time and you make changes to the
object in Form A, those changes will not be seen in Form B until the changes are first saved by
Form A, and Form B is then closed and reopened.

• If you use OPEN_FORM to open a form in a different database session, you cannot share library
data with the form or its associated menus. Attempts to share library data by setting the property to
Yes will be ignored.

241

Show Fast Forward Button property

Description

Determines whether the sound item control will display the fast forward button (both in the Layout
Editor and at runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Required/Optional Required

242

Show Horizontal Scroll Bar property

Description

Determines whether a canvas, secondary window, or image item is displayed with a scroll bar.

Applies to canvas, window, editor, image item

Set Form Builder

Default

No

Required/Optional optional

Show Horizontal Scroll Bar restrictions

• For a window, only valid when the Modal property is set to No.

• Valid on window managers that support horizontal scroll bars.

243

Show Lines property

Description

Determines whether a hierarchical tree displays lines leading up to each node.

Applies to hierarchical tree

Set Form Builder

Default

True

Required/Optional required

244

Show OLE Popup Menu property

Description

Determines whether the right mouse button displays a popup menu of commands for interacting with the
OLE object. The following settings are valid for this property:

YES The default OLE popup menu selection. The OLE popup menu is
displayed when the mouse cursor is on the OLE object and the right mouse
button is pressed.

NO The OLE popup menu is not displayed when mouse cursor is on the OLE
object and the right mouse button is pressed.

Applies to OLE Container

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Required/Optional required

Usage Notes

• In addition to the Form Builder, you can programmatically set and get the OLE popup menu value
by using the SHOW_POPUPMENU property. For the SET_ITEM_PROPERTY built-in, the OLE
popup menu is shown when the SHOW_POPUPMENU property is set to PROPERTY_TRUE.
When the SHOW_POPUPMENU property is set to PROPERTY_FALSE, the OLE popup menu is
not shown. You can also use the SHOW_POPUPMENU property with the
GET_ITEM_PROPERTY built-in to obtain the current OLE popup menu setting. The
GET_ITEM_PROPERTY built-in returns TRUE when the OLE popup menu is shown, and
GET_ITEM_PROPERTY returns FALSE when the OLE popup menu is not shown.

• Valid only on Microsoft Windows and Macintosh.

245

Show OLE Tenant Type property

Description

Determines whether a border defining the OLE object type surrounds the OLE container. The type of
border varies according to the object type.

Applies to OLE Container

Set Form Builder

Default

Yes

Show OLE Tenant Type restrictions

Valid only on Microsoft Windows and Macintosh.

246

Show Palette property

Description

Determines whether Form Builder will display an image-manipulation palette adjacent to the associated
image item at runtime. The palette provides three tools that enable end users to manipulate a displayed
image:

• Zoom—click the tool, then repeatedly click the image to incrementally reduce the amount of the
source image displayed within the image item's borders.

• Pan—click the tool and use the grab hand to pan unseen portions of the source image into view
(valid only if the source image extends beyond at least one border of the image item).

• Rotate—click the tool, then repeatedly click the image to rotate it clockwise in 90-degree
increments.

Applies to image item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Required/Optional Required

247

Show Play Button property

Description

Determines whether the sound item control will display the play button (both in the Layout Editor and at
runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Required/Optional Required

Usage Notes

• If you set the Show Play Button property to No when the Show Record Button property already is
set to No, Form Builder automatically will display at runtime.

248

Show Record Button property

Description

Determines whether the sound item control will display the record button (both in the Layout Editor and
at runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Required/Optional Required

Usage Notes

• If you set the Show Record Button property to No when the Show Play Button property already is
set to No, Form Builder will automatically display at runtime.

249

Show Rewind Button property

Description

Determines whether the sound item control will display the rewind button (both in the Layout Editor and
at runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Required/Optional Required

250

Show Scroll Bar property

Description

The Show Scroll Bar option specifies whether Form Builder should create a block scroll bar for the
block you are defining. When Show Scroll Bar is set to Yes, Form Builder creates the scroll bar on the
canvas specified by the Scroll Bar Canvas property.

When you create a block scroll bar, you can set the properties of the scroll bar object itself, including
Scroll Bar Canvas, Scroll Bar Orientation, Scroll Bar X Position, Scroll Bar Y Position, Scroll Bar
Width, Scroll Bar Height, Reverse Direction, and Visual Attribute Group.

Applies to block

Set Form Builder

Default:

No

Required/Optional optional

Usage Notes

Setting Reverse Direction to Yes causes Form Builder to fetch the next set of records when the end user
scrolls upward. If the end user scrolls downward, Form Builder displays already fetched records.

Property Description

Scroll Bar Canvas Specifies the canvas on which the block’s scroll bar
should be displayed. The specified canvas must exist
in the form.

Scroll Bar Orientation Specifies whether the block scroll bar should be
displayed horizontally or vertically.

Scroll Bar X Position Specifies the x position of a block scroll bar measured
at the upper left corner of the scrollbar. The default
value is 0.

Scroll Bar Y Position Specifies the width of a block scroll bar measured at
the upper left corner of the scrollbar. The default
value is 0.

Scroll Bar Width Specifies the width of a block scroll bar. The default
value is 2.

Scroll Bar Height Specifies the height of a block scroll bar. The default
value is 10.

Reverse Direction Specifies that the scroll bar scrolls in reverse. The
default value is No.

Visual Attribute Group Specifies the font, color, and pattern attributes to use

251

for scroll bar. Refer to the Visual Attribute Group
property for more information. The default setting is
determined by the platform and resource file definition.

252

Show Slider property

Description

Determines whether the sound item control will display the Slider position control (both in the Layout
Editor and at runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Required/Optional Required

253

Show Symbols property

Description

Indicates whether a hierarchical tree should display + or - symbols in front of each branch node. The +
symbol indicates that the node has children but is not expanded. The - symbol indicates that the node is
expanded.

Applies to hierarchical tree

Set Form Builder

Default

True

Required/Optional required

254

Show Time Indicator property

Description

Determines whether the sound item control displays the time indicator (both in the Layout Editor and at
runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Required/Optional Required

255

Show Vertical Scroll Bar property

Description

Specifies that a vertical scroll bar is to appear on the side of a canvas or window.

Applies to canvas, window, image item, editor, item

Set Form Builder

Default

No

Required/Optional Optional

Show Vertical Scroll Bar restrictions

• Valid on window managers that support vertical scroll bars.

• Not valid for a root window: a root window cannot have scroll bars.

• Valid on window managers that support vertical scroll bars.

• For text item, the Multi-Line property must be YES.

256

Show Volume Control property

Description

Determines whether the sound item control will display the volume control (both in the Layout Editor
and at runtime).

Applies to Sound item control

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Required/Optional Required

257

Shrinkwrap property

Description

Specifies whether blank space should be automatically removed from the frame. When Shrinkwrap is set
to Yes, Form Builder automatically reduces, or "shrinkwraps", the frame around the items within the
frame.

Note: Reisizing a frame has no effect when Shrinkwrap is set to Yes; when you, for example, increase
the size of the frame, Form Builder automatically reduces the frame to its shrinwrap size. If you want to
resize a frame, set Shrinkwrap to No.

Applies to frame

Set Form Builder

Default

Yes

Required/Optional Optional

258

Single Object Alignment property

Description

Specifies the alignment for single line objects when the Frame Alignment property is set to Fill.

Applies to frame

Set Form Builder

Default

Start

Required/Optional Required

259

Single Record property

Description

Specifies that the control block always should contain one record. Note that this differs from the number
of records displayed in a block.

Applies to block

Set Form Builder

Default

No

Usage Notes

• Set Single Record to Yes for a control block that contains a summary calculated item, a VBX (on
Microsoft Windows 3.x 16-bit) or ActiveX control (on 32-bit Windows). Conversely, Single
Record must be set to No for the block that contains the item whose values are being summarized
and displayed in the calculated item.

• You cannot set Single Record to Yes for a data block.

260

Size property

Description

Specifies the width and height of the canvas in the current form coordinate units specified by the
Coordinate System form property.

Applies to canvas

Set Form Builder, programmatically

Refer to Built-in

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

Size (Item)

Specifies the width and height of the item in the current form coordinate units specified by the
Coordinate System form property.

Applies to item

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

Size (Editor)

Specifies the width and height of the editor in the current form coordinate units specified by the
Coordinate System form property.

Applies to editor

Set Form Builder, programmatically

Refer to Built-in

• EDIT_TEXTITEM

• SHOW_EDITOR

Usage Notes

• For a text item or display item, the number of characters the item can store is determined by the Max
Length property, and is not affected by the size property.

261

• In applications that will run on character mode platforms, the height of items that display text labels
must be at least 2 character cells for the text to display properly.

Size (LOV)

Specifies the width and height of the LOV in the current form coordinate units specified by the
Coordinate System form property.

Specifies the width and height of the LOV, in the current form coordinate units specified by the
Coordinate System form property.

Applies to LOV

Set Form Builder, programmatically

Refer to Built-in

• GET_LOV_PROPERTY

• SET_LOV_PROPERTY

Restrictions

Form Builder will ensure that the minimum width of the LOV is set wide enough to display the buttons
at the bottom of the LOV. (On platforms that allow LOVs to be resized, you can resize the LOV to a
minimum that will not display all the buttons.)

Size (Window)

Specifies the width and height of the window in the current form coordinate units specified by the
Coordinate System form property.

Applies to window

Set Form Builder, programmatically

Default

80 characters by 24 characters

Refer to Built-in

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

Size restrictions

Form Builder will ensure that the minimum width of the editor is set wide enough to display the buttons
at the bottom of the editor. (On platforms that allow editors to be resized, you can resize the editor to a
minimum that will not display all the buttons.)

262

Sizing Style property

Description

Determines the display style of an image when the image size does not match the size of the image item.

The following settings are valid for this property:

Crop Displays only the portion of the full image that fits in the display rectangle.

Adjust Scales the image to fit within the display rectangle.

Applies to image item

Set Form Builder

Default

Crop

263

Sound Format property

Description

Specifies the format in which the sound item will be stored in the database: either AU, AIFF, AIFF-C, or
WAVE.

When you use the READ_SOUND_FILE or WRITE_SOUND_FILE built-in subprograms to work with
sound data read from—or written to—the filesystem, use the file_type parameter to control the sound
format of the sound data being read or written.

Applies to sound item

Set Form Builder

Refer to Built-in

• READ_SOUND_FILE

• WRITE_SOUND_FILE

Default

WAVE

Required/Optional required

264

Sound Quality property

Description

Specifies the quality with which the sound item will be stored in the database: either Automatic, Highest,
High, Medium, Low, or Lowest.

When you use the WRITE_SOUND_FILE built-in subprogram to write sound data to the filesystem, use
the sound_quality parameter to control the sound format of the sound data being written.

Applies to sound item

Set Form Builder

Refer to Built-in

• WRITE_SOUND_FILE

Default

Automatic

Required/Optional required

265

Start Angle property

Description

Specifies the starting angle of the arc, using the horizontal axis as an origin.

Applies to graphic arc

Set Form Builder

Default

90

Required/Optional required

266

Start Prompt Alignment property

Description

Specifies how the prompt is aligned to the item’s horizontal edge, either Start, Center, or End. This
property is valid when the Layout Style property is set to Form.

Applies to frame

Set Form Builder

Default

Start

Required/Optional required

267

Start Prompt Offset property

Description

Specifies the distance between the prompt and its item when the Start Prompt Alignment property is set
to Start.

Applies to frame

Set Form Builder

Default

0 (character cell)

Required/Optional required

268

Startup Code property

Description

Specifies optional PL/SQL code that Form Builder executes when the menu module is loaded in memory
at form startup. Think of startup code as a trigger that fires when the menu module is loaded.

Applies to menu module

Set Form Builder

Required/Optional optional

Usage Notes

Startup code does not execute when Form Builder is returning from a called form.

269

Status (Block) property

Description

Specifies the current status of an indicated block. Block status can be New, Changed, or Query.

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

You can determine the status of the current block in the form by examining the
SYSTEM.BLOCK_STATUS system variable. Form status can be examined by way of the
SYSTEM.FORM_STATUS system variable.

270

Status (Record) property

Description

Specifies the current status of the indicated record. Record status can be New, Changed, Query, or
Insert.

Applies to record

Set programmatically

Refer to Built-in

• GET_RECORD_PROPERTY

• SET_RECORD_PROPERTY

Usage Notes

The status property allows you to examine the status of any indicated record. You can also examine the
status of the current record in the form with the SYSTEM.RECORD_STATUS system variable.

In general, any assignment to a database item will change a record’s status from QUERY to CHANGED
(or from NEW to INSERT), even if the value being assigned is the same as the previous value. Passing
an item to a procedure as OUT or IN OUT parameter counts as an assignment to it.

271

Subclass Information property

Description

Specifies the following information about the source object and source module for a referenced objects.

Module The name of the source module.

Storage The source module type (Form or Menu) and location (File System or
Database)

Name The name of the source object in the source module. (The name of a
reference object can be different than the name of its source object.)

Applies to any reference object

Set Form Builder

Required/Optional optional

272

Submenu Name property

Description

Specifies the name of the submenu associated with a main menu. The Command Type property must be
set to Menu to invoke the Submenu property.

Applies to menu items

Set Form Builder

Required/Optional required

Default

Null

273

Summarized Block property

Description

Specifies a Form Builder block, over which all rows of a summary calculated item is summarized (e.g.,
summed, averaged, etc.) in order to assign a value to the item.

Applies to block

Set Form Builder

Required/Optional required if the associated item’s Calculation Mode property is set to Summary

274

Summarized Item property

Description

Specifies a Form Builder item, the value of which is summarized (e.g., summed, averaged, etc.) in order
to assign a value to a summary calculated item.

Applies to item

Set Form Builder

Required/Optional required if the associated item’s Calculation Mode property is set to Summary

Summarized Item restrictions

• The summarized item cannot be a summary item.

• If the summarized item does not reside in the same block as the summary item, the summary item
must reside in a control block with the Single Record property set to Yes.

275

Summary Function property

Description

Specifies the type of computation function Form Builder will perform on the summarized item.

Avg The average value (arithmetic mean) of the summarized item over all
records in the block.

Count Count of all non-null instances of the summarized item over all records in
the block.

Max Maximum value of the summarized item over all records in the block.

MiMinimum value of the summarized item over all records in the block.

Stddev The standard deviation of the summarized item’s values over all records in
the block.

Sum Sum of all values of the summarized item over all records in the block.

Variance The variance of the summarized item’s values over all records in the block.
(Variance is defined as the square of the standard deviation.)

Note: For more information about these arithmetic operations, refer to the Oracle8 Server SQL
Language Reference Manual.

Applies to item

Set Form Builder

Required/Optional required (only if associated item’s Calculation Mode property is set to Summary)

Default

None

Summary Function restrictions

You must set the Parameter Data Type property to Number, unless the item’s Summary Type is Max or
Min, in which case the datatype must mirror that of its associated summarized item. For example, a
calculated item that displays the most recent (i.e., maximum) date in the HIRE_DATE column must have
a datatype of Date.

276

Synchronize with Item property

Description

Specifies the name of the item from which the current item should derive its value. Setting this property
synchronizes the values of the two items, so that they effectively mirror each other. When the end user or
the application changes the value of either item, the value of the other item changes also.

Applies to all items except OLE containers

Set Form Builder

Required/Optional Optional

Default

NULL

Usage Notes

• In earlier releases, this property was called the Mirror Item property.

• You can set Synchronize with Item for base table or control blocks. When Synchronize with Item is
specified, the current item’s Base Table Item property is ignored, and the item derives its value from
the mirror item specified, rather than from a column in the database.

• If you use the GET_ITEM_PROPERTY built-in to obtain a Base Table Item property, it will obtain
the value from the mirror item specified.

• You can use mirror item to create more than one item in a block that display the same database
column value.

Synchronize with Item restrictions

• The maximum number of items in a form that can point to the same mirror item is 100.

277

Tab Attachment Edge property

Description

Specifies the location where tabs are attached to a tab canvas.

Applies to tab canvas

Set Form Builder

Default

Top

Required/Optional required

Tab Attachment Edge restrictions

Valid only for tab canvas.

278

Tab Page property

Description

The name of the tab page on which the item is located.

Applies to item

Set Form Builder

Default

none

Refer to Built-in

• GET_ITEM_PROPERTY (programmatic property name is Item_Tab_Page)

Required/Optional required (if the item is located on a tab canvas)

279

Tab Page X Offset property

Description

The distance between the left edge of the tab canvas and the left edge of the tab page. The value
returned depends on the form coordinate system—pixel, centimeter, inch, or point.

Applies to tab canvas

Refer to Built-in

• GET_CANVAS_PROPERTY

Tab Page X Offset restrictions

• you can get the property value, but you cannot set it

• valid only for tab canvas. 0 is returned for all other canvas types

280

Tab Page Y Offset property

Description

Specifies the distance between the top edge of the tab canvas and the top edge of the tab page. The value
returned depends on the form coordinate system used -- pixel, centimeter, inch, or point.

Applies to tab canvas

Refer to Built-in

• GET_CANVAS_PROPERTY

Tab Page Y Offset restrictions

• you can get the property value, but you cannot set it

• valid only for tab canvas. 0 is returned for all other canvas types

281

Tab Style property

Description

Specifies the shape of the labelled tab(s) on a tab canvas.

Applies to tab canvas

Set Form Builder

Default

Chamfered

Required/Optional required

282

Tear-Off Menu property

Description

Defines a menu as a tear-off menu.

Applies to menu

Set Form Builder

Default

No

Tear-Off Menu restrictions

Only supported in the pull-down menu style, on window managers that support this feature.

283

Timer_Name property

Description

Specifies the name of the most recently expired timer.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Required/Optional optional

Timer_Name restrictions

Only valid when examined in a When-Timer-Expired trigger.

284

Title property

Description

Specifies the title to be displayed for the object.

Applies to alert, form module, LOV, window

Set Form Builder

Required/Optional optional

Title (LOV)

Default

NULL

Required/Optional optional

Title (Window)

Refer to Built-in

GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

Required/Optional optional

Usage Notes

• Length limit of a window title depends on the display driver used. (For example, for an SVGA 1280
x 1024, running under NT, the limit is 78 characters.)

• If you do not specify a title for a window that is not a root window, Form Builder uses the window’s
object name, as indicated by the window Name property.

• If you do not specify a title for a root window, and the current menu is the Default menu, Form
Builder uses the name of the form module for the root window title, as indicated by the form module
Name property. When the current menu is a custom menu running in Pull-down or Bar display
style, Form Builder uses the name of the main menu in the module for the root window title, as
indicated by the menu module Main property.

285

Tooltip property

Description

Specifies the help text that should appear in a small box beneath the item when the mouse enters the
item.

Applies to item

Set Form Builder, programmtically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

blank

Required/Optional optional

286

Tooltip Background Color property

Description

Specifies the color of the object’s background region.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

287

Tooltip Fill Pattern property

Description

Specifies the pattern to be used for the object’s fill region. Patterns are rendered in the two colors
specified by Background_Color and Foreground_Color.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

288

Tooltip Font Name property

Description

Specifies the font family, or typeface, to be used for text in the object. The list of fonts available is
system-dependent.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

289

Tooltip Font Size property

Description

Specifes the size of the font in points.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

290

Tooltip Font Spacing property

Description

Specifies the width of the font (i.e., the amount of space between characters, or kerning).

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

291

Tooltip Font Style property

Description

Specifies the style of the font.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

292

Tooltip Font Weight property

Description

Specifies the weight of the font.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

293

Tooltip Foreground Color property

Description

Specifies the color of the object’s foreground region. For items, defines the color of the text displayed in
the item.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

294

Tooltip Visual Attribute Group property

Description

Specifies the named visual attribute that should be applied to the tooltip at runtime.

Applies to item tooltip

Set Form Builder

Default

Default

Required/Optional required

295

Tooltip White on Black property

Description

Specifies that the object is to appear on a monochrome bitmap display device as white text on a black
background.

Applies to item

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

296

Top Prompt Alignment property

Description

Specifies how the prompt is aligned to the item’s top edge, either Start, End, or Center. This property is
valid when the Layout Style property is set to Tabular.

Applies to frame

Set Form Builder

Default

Start

Required/Optional required

297

Top Prompt Offset property

Description

Specifies the distance between the prompt and its item when the Top Prompt Alignment property is set to
Top.

Applies to frame

Set Form Builder

Default

0 (character cell)

Required/Optional required

298

Top_Record property

Description

Specifies the record number of the topmost record that is visible in the block. (Records are numbered in
the order they appear on the block’s internal list of records.)

Applies to block

Set not settable

Refer to Built-in

GET_BLOCK_PROPERTY

Usage Notes

Together, the TOP_RECORD and RECORDS_DISPLAYED properties allow you to determine the
number of the bottom record in the display, that is, the record having the highest record number among
records that are currently displayed in the block.

299

Top Title property

Description

Specifies a title of up to 72 characters to appear at the top of the editor window.

Applies to editor

Set Form Builder

Required/Optional optional

300

Topmost_Tab_Page property

Description

Specifies the top most tab page in a tab canvas.

Applies to tab canvas

Set Form Builder, programmatically

Refer to Built-in

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

Default

First tab page that appears under the Tab Page node.

Topmost_Tab_Page restrictions

Valid only for tab canvas.

301

Transactional Triggers property

Description

Identifies a block as a transactional control block; that is, a non-database block that Form Builder should
manage as a transactional block. This property is included for applications that will run against non-
ORACLE data sources, and that will include transactional triggers. If your application will run against
ORACLE, leave this property set to No.

When you create a non-ORACLE data source application, you are essentially simulating the functionality
of a data block by creating a transactional control block. Such a block is a control block because its base
table is not specified at design time (the Base Table block property is NULL), but it is transactional
because there are transactional triggers present that cause it to function as if it were a data block.

For more information, see Form Builder Advanced Techniques , Chapter 4, "Connecting to Non-
ORACLE Data Sources."

Applies to block

Set Form Builder

Default

No

Usage Notes

• Transactional Triggers applies only when the Base Table property is NULL.

• Setting Transactional Triggers to Yes enables the Enforce Primary Key and Enforce Column
Security properties.

302

Trigger Style property

Description

Specifies whether the trigger is a PL/SQL trigger or a V2-style trigger. Oracle Corporation recommends
that you write PL/SQL triggers only. V2-style trigger support is included only for compatibility with
previous versions.

Applies to trigger

Set Form Builder

Default

PL/SQL

Usage Notes

Choosing V2-Style trigger enables the Zoom button, which opens the trigger Step property sheet.

303

Trigger Text property

Description

Specifies the PL/SQL code that Form Builder executes when the trigger fires.

Applies to trigger

Set Form Builder

Required/Optional required

304

Trigger Type property

Description

Specifies the type of trigger, either built-in or user-named. User-named triggers are appropriate only in
special situations, and are not required for most applications.

Applies to:

trigger

Set Form Builder

Default

PL/SQL

Required/Optional required

Usage Notes

trigger type can be one of the following:

Built-i Specifies that the trigger is one provided by Form Builder and corresponds
to a specific, pre-defined runtime event.

User-named Specifies that the trigger is not provided by Form Builder. A user-named
trigger can only be executed by a call to the EXECUTE_TRIGGER built-
in procedure.

305

Update Allowed (Block) property

Description

Determines whether end users can modify the values of items in the block that have the Update Allowed
item property set to Yes. (Setting Update Allowed to No for the block overrides the Update Allowed
setting of any items in the block.)

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default

Yes

Update Allowed (Block) restrictions

When the Update Allowed block property is set to Yes, at least one item in the block must have the
Update Allowed item property set to Yes for the block to be updateable.

306

Update Allowed (Item) property

Description

Specifies whether end users should be allowed to change the value of the base table item in a queried
record. When Update Allowed is set to No, end users can navigate to the item in a queried record, but if
they attempt to change its value, Form Builder displays error FRM-40200: Field is protected against update.

Setting Update Allowed to Yes does not prevent end users from entering values in a NEW (INSERT)
record.

Applies to all items except buttons, chart items, and image items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_INSTANCE_PROPERTY

• GET_ITEM_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Usage Notes

To set the Update Allowed (Item) property programmatically, you can use the constant
UPDATE_ALLOWED or UPDATEABLE. The constant UPDATEABLE is for compatibility with
prior releases.

If Enabled is set to PROPERTY_FALSE at runtime, then the items’ or item instance’s Update Allowed
property is also set to PROPERTY_FALSE.

• When Update Allowed is specified at multiple levels (item instance, item, and block), the values are
ANDed together. This means that setting Update Allowed to Yes (PROPERTY_TRUE for runtime)
has no effect at the item instance level unless it is set consistently at the block and item levels. For
example, your user cannot update an item instance if Update Allowed is true at the instance level,
but not at the item or block levels.

Update Allowed (Item) restrictions

• If you are using SET_ITEM_PROPERTY to set UPDATE_ALLOWED to true, then you must set
item properties as follows:

Enabled to Yes (PROPERTY_TRUE for runtime)

Visible to Yes (PROPERTY_TRUE for runtime)

Base Table Item to Yes (PROPERTY_TRUE for runtime)

Update Only If Null to No (PROPERTY_FALSE for runtime)

307

Update Changed Columns Only property

Description

When queried records have been marked as updates, specifies that only columns whose values were
actually changed should be included in the SQL UPDATE statement that is sent to the database during a
COMMIT. By default, Update Changed Columns Only is set to No, and all columns are included in the
UPDATE statement.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Default :

No

Required/Optional optional

Usage Notes

• If the DML Array Size property is set to a value greater than 1, this Update Changed Columns Only
property will be ignored at runtime. That is, a DML Array Size greater than 1 causes all columns to
be updated – even if Update Changed Columns Only was set to Yes.

• When Update Changed Columns Only is No, Form Builder can reuse the same SQL statement for
multiple updates, without having to reparse each time. Setting Update Changed Columns Only to
Yes can degrade performance because the UPDATE statement must be reparsed each time. In
general, you should only set Update Changed Columns Only to Yes when you know that operators
will seldom update column values that will take a long time to transfer over the network, such as
LONGs.

• Set Update Changed Columns Only to Yes in the following circumstances:
To save on network traffic, if you know an operator will primarily update only one or two columns.

To avoid re-sending large items that are not updated, such as images or LONGs.

To fire database triggers on changed columns only. For example, if you implement a security scheme
with a database trigger that fires when a column has been updated and writes the userid of the person
performing the update to a table.

308

Update_Column property

Description

When set to Yes, forces Form Builder to treat this item as updated.

If the Update Changed Columns Only block property is set to Yes, setting Update Column to
Property_True specifies that the item has been updated and its corresponding column should be included
in the UPDATE statement sent to the database.

If the Update Changed Columns Only block property is set to Yes, and Update Column is set to
Property_False, the item’s column will not be included in the UPDATE statement sent to the database.

If the Updated Changed Columns block property is set to No, the Update Column setting is ignored, and
all base table columns are included in the UPDATE statement.

Applies to item

Set programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Required/Optional optional

Usage Notes

The main use for this property is in conjunction with Update Changed Columns Only. However, whether
or not Update Changed Columns Only is set to Yes, you can use this property to check whether a given
column was updated.

Note: Although Update Column affects Record Status, setting this property to Property_Off for all
columns will not return Record Status to QUERY. If you want Record Status to revert to QUERY, you
must set it explicitly with SET_RECORD_PROPERTY.

309

Update Commit property

Description

Specifies whether a chart item is updated to reflect changes made by committing new or updated records
to its source block.

Applies to chart item

Set Form Builder

Default

Yes

Required/Optional required

310

Update Layout property

Description

Specifies when the frame’s layout is updated.

Automatically The layout is updated whenever the frame is moved or resized or whenever
any frame layout property is modified.

Manually The layout is updated whenever the Layout Wizard is used to modify a
frame or whenever the user clicks the Update Layout button or menu
option.

Locked The layout is locked and cannnot be updated.

Applies to frame

Set Form Builder

Default

Yes

Required/Optional required

311

Update Only if NULL property

Description

Indicates that operators can modify the value of the item only when the current value of the item is
NULL.

Applies to image items, list items, sound items, text items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

No

Required/Optional optional

Usage Notes

To set the Update Only if NULL property programmatically, use the constant UPDATE_NULL.

Update Only if NULL restrictions

Item properties must be set as follows:

• Enabled set to Yes

• Visible set to Yes

• Update Allowed set to No

312

Update_Permission property

Description

Setting Update_Permission to No performs the following three actions:

• Sets the Update_If_Null property to No.

• Sets the Update Allowed property to No.

• Specifies that this column should not be included in any UPDATE statements issued by Form
Builder, by removing that column from the SET clause of the UPDATE statements.

Applies to all items except buttons and chart items

Set programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

Default

Yes

Required/Optional optional

Usage Notes

Update_Permission allows form developers to implement their own security mechanism, overriding the
Form Builder default Enforce Column Security property. This property is included primarily for
applications that will run against non-ORACLE data sources. Use Update_Permission when you want to
exclude certain columns from any UPDATE statements: for example, when using an On-Column-
Security trigger to implement a custom security scheme.

313

Update Procedure Arguments property

Description

Specifies the names, datatypes, and values of the arguments that are to be passed to the procedure for
updating data. The Update Procedure Arguments property is valid only when the DML Data Target
Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

314

Update Procedure Name property

Description

Specifies the name of the procedure to be used for updating data. The Update Procedure Name property
is valid only when the DML Data Target Type property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

315

Update Procedure Result Set Columns property

Description

Specifies the names and datatypes of the result set columns associated with the procedure for updating
data. The Update Procedure Result Set Columns property is valid only when the DML Data Target Type
property is set to Procedure.

Applies to block

Set Form Builder

Default

NULL

Required/Optional optional

316

Update Query property

Description

Specifies whether a chart item is updated to reflect changes made by querying records in its source block.

Applies to chart item

Set Form Builder

Default

Yes

Required/Optional required

317

Use Security property

Description

Specifies that Form Builder should enforce the security scheme defined for the menu module, using the
Menu Module Roles property.

Applies to menu module

Set Form Builder

Default

No

Usage Notes

This property can be set to No so that developers can test a menu module without having to be members
of any database role. Use Security can then be set to Yes at production to enforce those roles.

Use Security restrictions

none

318

Use 3D Controls property

Description

On Microsoft Windows, specifies that Form Builder displays items with a 3-dimensional, beveled look.

When Use 3D Controls is set to Yes, any canvas that has Visual Attribute Group set to Default will
automatically be displayed with background color grey.

In addition, when Use 3D Controls is set to Yes, the bevel for each item automatically appears lowered,
even if an item-level property is set, for example, to raised.

Applies to form

Set Form Builder

Default

For a new form, Yes. For a form upgraded from a previous version of Form Builder, No.

Use 3D Controls restrictions

Valid only on Microsoft Windows.

319

Username property

Description

Specifies the username of the current operator.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

May be used with the LOGON built-in in an On-Logon trigger or for connecting to a non-ORACLE data
source.

The Username property returns only the username. If you want a connect string as well, examine the
Connect_String property.

320

User_Date/Datetime_Format property

Description

Holds the current date or datetime format mask established by the environment variable
FORMSnn_USER_DATE_FORMAT or FORMSnn_USER_DATETIME_FORMAT.

There are two separate properties: User_Date_Format and User_Datetime_Format.

Applies to application

Set Not settable from within Form Builder.

Refer to Built-in

GET_APPLICATION_PROPERTY

321

User_Interface property

Description

Specifies the name of the user interface currently in use.

Applies to application

Set not settable

Refer to Built-in

GET_APPLICATION_PROPERTY

Usage Notes

This property returns one of the following values:

• BLOCKMODE

• CHARMODE

• MACINTOSH

• MOTIF

• MSWINDOWS

• MSWINDOWS32

• PM

• WIN32COMMON

• WEB

• X

322

User_NLS_Date_Format property

Description

Obtains the current NLS date format mask.

Applies to application

Set Not settable from within Form Builder.

Refer to Built-in

GET_APPLICATION_PROPERTY

Note that this property is read-only. That is, you cannot specify it in
SET_APPLICATION_PROPERTY.

For example, if you wanted to set the PLSQL_DATE_FORMAT property to the current NLS date
format mask value, you could code the following in a WHEN-NEW-FORM-INSTANCE trigger in your
application:

 SET_APPLICATION_PROPERTY(PLSQL_DATE_FORMAT,

GET_APPLICATION_PROPERTY(USER_NLS_DATE_FORMAT));

Default

None.

323

User_NLS_Lang property

Description

Specifies the complete value of the NLS_LANG environment variable defined for the current Runform
session, for national language support. USER_NLS_LANG is the equivalent of concatenating the
following properties:

• USER_NLS_LANGUAGE (language only)

• USER_NLS_TERRITORY (territory only)

• USER_NLS_CHARACTER_SET (character set only)

Applies to application

Set Not settable from within Form Builder. Set at your operating system level.

Refer to Built-in

GET_APPLICATION_PROPERTY

Default

Default is usually "America_American.WE8ISO8859P1," but all the defaults can be port-specific.

324

Validate from List property

Description

Specifies whether Form Builder should validate the value of the text item against the values in the
attached LOV.

Applies to text item

Set Form Builder

Default

No

Required/Optional optional

Restrictions:

List of Values property must be specified.

Usage Notes

When Validate from List is Yes, Form Builder compares the current value of the text item to the values
in the first column displayed in the LOV whenever the validation event occurs:

• If the value in the text item matches one of the values in the first column of the LOV, validation
succeeds, the LOV is not displayed, and processing continues normally.

• If the value in the text item does not match one of the values in the first column of the LOV, Form
Builder displays the LOV and uses the text item value as the search criteria to automatically reduce
the list.

For example, if the operator enters the first three digits of a 6-digit product code and then tries to
navigate to the next item, Form Builder displays the LOV and auto-reduces the list to display all of the
codes that have the same first three digits.

• If the operator selects a value from the LOV, Form Builder dismisses the LOV and assigns the
selected values to their corresponding return items.

When you use an LOV for validation, Form Builder generally marks a text item as Valid if the operator
selects a choice from the LOV. Thus, it is your responsibility to ensure that:

• the text item to which the LOV is attached is defined as a return item for the first column displayed
in the LOV and

• the values in the LOV are valid

Note, however, that a When-Validate-Item trigger on the item still fires, and any validation checks you
perform in the trigger still occur.

Note also that the first column displayed in the LOV may not be the first column in the LOV’s underlying
record group, as some record group columns may not have been included in the LOV structure, or may
be hidden columns.

325

Validation property

Description

Specifies whether default Form Builder validation processing has been enabled or disabled for a form.

Applies to form module

Set programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

Default

Yes

Usage Notes

Use this property with caution, because when you set Validation to No all internal form validation will be
bypassed and no WHEN-VALIDATE triggers will fire.

You can programmatically set Validation to No for only brief periods of time when you specifically want
to avoid all default Form Builder validation behavior. Once you set Validation to Yes again, any text
items left in an unvalidated state will be validated according to normal processing rules.

When Validation is set to No, the Post-Change trigger will fire during query processing but will not fire
elsewhere.

326

Validation Unit property

Description

Specifies the scope of form validation at runtime. Specifically, the validation unit defines the maximum
amount of data that an operator can enter in the form before Form Builder initiates validation. For most
applications, the Validation Unit is Item (default setting on most platforms), which means that Form
Builder validates data in an item as soon as the operator attempts to navigate out of the item.

Applies to form module

Set Form Builder, programmatically

Refer to Built-in

• GET_FORM_PROPERTY

• SET_FORM_PROPERTY

Default

Default

Usage Notes

The following settings are valid for this property:

• Default

• Form

• Block

• Record

• Item

327

Value when Checked property

Description

Specifies the value you want the check box to display as the checked state. For example, Y, 1,
MANAGER, or 1992. When a value that matches the checked value is fetched or assigned to the check
box, the check box is displayed checked. Similarly, when the operator toggles the check box to the
checked state, the value of the check box becomes the checked value.

Applies to check box

Set Form Builder

Default

NULL

Required/Optional optional

Value when Checked restrictions

The value must be compatible with the datatype specified by the Parameter Data Type property.

328

Value when Unchecked property

Description

Specifies the value you want the check box to display as the unchecked state. For example, Y, 1,
MANAGER, or 1992. When a value that matches the unchecked value is fetched or assigned to the
check box, the check box is displayed unchecked. Similarly, when the operator toggles the check box to
the unchecked state, the value of the check box becomes the unchecked value.

Applies to check box

Set Form Builder

Default

NULL

Required/Optional Optional; leaving this property blank makes the Unchecked value NULL.

Value when Unchecked restrictions

The value must be compatible with the datatype specified by the Parameter Data Type property.

329

VBX Control File property

Description

Specifies the VBX file selection.

Applies to VBX Control

Set Form Builder

Default

none

Required/Optional required

Usage Notes

The selection of a VBX file determines which VBX controls are available for use. The number and type
of VBX files available for selection depends on the third-party VBX controls that are installed on your
system.

Because moving a form module with hard-coded paths to another computer system can make the VBX
file and location invalid, you should avoid specifying an absolute path for the VBX Control File
property.

For a VBX control file that is not associated with an absolute path, the search criteria is the system
default search path. If all default search paths fail to locate the specified VBX control file, the
FORMS60_PATH parameter in the ORACLE.INI file becomes the search criteria for finding the VBX
control file. If all search paths in the FORMS60_PATH parameter fail to locate the VBX control file, a
runtime error message informs you that the VBX control cannot be found.

VBX Control File restrictions

Valid only on Microsoft Windows 3.x (16-bit).

330

VBX Control Name property

Description

Specifies the VBX control selection from a VBX file. Some VBX files contain more than a single VBX
control. You must specify which VBX control to use even when a VBX file contains on a single VBX
control.

Applies to VBX Control

Set Form Builder

Default

none

VBX Control Name restrictions

Valid only on Microsoft Windows 3.x (16-bit).

331

VBX Control Value property

Description

Specifies the value property of a VBX control. This property determines the value of the VBX custom
item in Form Builder.

Applies to VBX Control

Set Form Builder

Refer to Built-in

• VBX.GET_VALUE_PROPERTY

• VBX.SET_VALUE_PROPERTY

Default

Most VBX controls have a default value property. If the default value property exists, it is the default
Form Builder VBX Control Value Property. If the VBX control does not have a default value property,
the Form Builder VBX Control Value Property is the VBX property named "value". If the VBX
property "value" does not exist, a default value property is not assigned to the Form Builder VBX
Control Value Property.

Required/Optional required

Usage Notes

The VBX CONTROL VALUE PROPERTY automatically synchronizes itself with a VBX property.
Changes to the VBX property are reflected in the VBX CONTROL VALUE PROPERTY.

VBX Control Value restrictions

Valid only on Microsoft Windows 3.x (16-bit).

332

Vertical Fill property

Description

Specifies whether the Layout Wizard uses the empty space surrounding an object when the Layout Style
property is set to Form.

Yes Specifies that the Layout Wizard should use all available space when
arranging frame objects. Consequently, Form Builder ignores the
Maximum Objects Per Line property.

No Specifies that the Layout Wizard should not use all available space when
arranging frame objects. When objects wrap, they begin on the next frame
line.

Applies to frame

Set Form Builder

Default

Yes

Required/Optional required

333

Vertical Justification property

Description

Specifies the vertical justification of the text object as either Top, Center, or Bottom.

Applies to graphic text

Set Form Builder

Default

Top

Required/Optional required

334

Vertical Margin property

Description

Specifies the distance between the frame’s top and bottom borders and the objects within the frame.

Applies to frame

Set Form Builder

Default

1 character cell (or the equivalent based on the form coordinate system)

Required/Optional required

335

Vertical Object Offset property

Description

Specifies the vertical distance between the objects within a frame.

Applies to frame

Set Form Builder

Default

0

Required/Optional required

336

Vertical Origin property

Description

Specifies the vertical position of the text object relative to its origin point as either Top, Center, or
Bottom.

Applies to graphic text

Set Form Builder

Default

Top

Required/Optional required

337

Vertical Toolbar Canvas property

Description

Specifies the canvas that should be displayed as a vertical toolbar on the window. The canvas you
specify must be a vertical toolbar canvas (Canvas Type property set to Vertical Toolbar) and must be
assigned to the current window by setting the Window property.

Applies to window

Set Form Builder

Default

Null

Required/Optional required if you are creating a vertical toolbar

Usage Notes

• In the Properties window, the poplist for this property shows only canvases that have the Canvas
Type property set to Vertical Toolbar.

• At runtime, Form Builder attempts to display the specified vertical toolbar on the window. However,
if more than one toolbar of the same type has been assigned to the same window (by setting the
canvas Window property to point to the specified window), Form Builder may display a different
toolbar in response to navigation events or programmatic control.

• On Microsoft Windows, the specified vertical toolbar canvas will not be displayed on the window if
you have specified that it should instead be displayed on the MDI application window by setting the
Form Vertical Toolbar Canvas form property.

338

Viewport Height, Viewport Width property

Description

Specifies the width and height of the view for a stacked canvas. The size and position of the view define
the part of the canvas that is actually displayed in the window at runtime.

Note: For a content or toolbar canvas, the view is represented by the window to which the canvas is
assigned, and so the Viewport Height and Viewport Width properties do not apply.

Applies to canvas

Set Form Builder, programmatically

Refer to Built-in

SET_VIEW_PROPERTY

Default

0,0

Required/Optional optional

Viewport Height, Viewport Width restrictions

Valid only for a stacked view (Canvas Type property set to Stacked). For a content view, the viewport
size is determined by the runtime size of the window in which the content view is displayed.

339

Viewport X Position, Viewport Y Position property

Description

Specifies the x,y coordinates for the stacked canvas’s upper left corner relative to the upper left corner of
the window’s current content view.

Applies to canvas

Set Form Builder, programmatically

Refer to Built-in

• GET_VIEW_PROPERTY

• SET_VIEW_PROPERTY

Default

0,0

Required/Optional optional

Viewport X Position, Viewport Y Position restrictions

Not valid for a content canvas view; that is, a canvas view that has the Canvas Type property set to
Content.

340

Viewport X Position on Canvas, Viewport Y Position on
Canvas property

Description

Specifies the location of the view’s upper left corner relative to the upper left corner of the canvas. The
size and location of the viewport define the view; that is, the part of the canvas that is actually visible in
the window to which the canvas is assigned.

Applies to canvas

Set Form Builder, programmatically

Refer to Built-in

• GET_VIEW_PROPERTY

• SET_VIEW_PROPERTY

Default

0,0

341

Visible property

Description

Indicates whether the object is currently displayed or visible. Set Visible to Yes or No to show or hide a
canvas or window.

Applies to canvas, window

Set programmatically

Refer to Built-in

• GET_VIEW_PROPERTY

• GET_WINDOW_PROPERTY

• SET_VIEW_PROPERTY

• SET_WINDOW_PROPERTY

Default

TRUE

Usage Notes

• You cannot hide the canvas that contains the current item.

• You can hide a window that contains the current item.

NOTE: In some operating systems, it is possible to hide the only window in the form.

• When you use GET_WINDOW_PROPERTY to determine window visibility, Form Builder uses the
following rules:

• A window is considered visible if it is displayed, even if it is entirely hidden behind another
window.

• A window that has been iconified (minimized) is reported as visible to the operator because even
though it has a minimal representation, it is still mapped to the screen.

• When you use GET_VIEW_PROPERTY to determine canvas visibility, Form Builder uses the
following rules:

• A view is reported as visible when it is a) in front of all other views in the window or b) only
partially obscured by another view.

• A view is reported as not visible when it is a) a stacked view that is behind the content view in the
window or b) completely obscured by a single stacked view. Note that a view is reported as visible
even if it is completely obscured by a combination of two or more stacked views.

• The display state of the window does not affect the setting of the canvas VISIBLE property. That is,
a canvas may be reported visible even if the window in which it is displayed is not currently mapped
to the screen.

342

Visible (Canvas) property

Description

Determines whether a stacked canvas is initially shown or hidden in the window to which it is assigned.

Applies to:

stacked canvas

Set:

Form Builder, programmatically

Refer to Built-in

• GET_VIEW_PROPERTY (VISIBLE)

• SET_VIEW_PROPERTY (VISIBLE)

Default:

Yes

Visible (Canvas) restrictions

• A displayed view may not be visible if it is behind the content view or another stacked view
assigned to the same window.

343

Visible (Item) property

Description

Determines whether an item that is assigned to a canvas is shown or hidden at runtime.

Applies to all items

Set Form Builder, programmatically

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

Default

Yes

Usage Notes

To set the Visible (Item) property programmatically, you can use the constant VISIBLE or
DISPLAYED. The constant DISPLAYED is for compatibility with prior releases.

Visible (Item) restrictions

When the item is part of the foreign key in a default master-detail relation, the default is No.

344

Visible (Tab Page) property

Description

Determines whether a tab page is shown or hidden at runtime.

Applies to:

tab page

Applies to:

Form Builder, programmatically

Refer to Built-in

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

Default:

Yes

345

Visible in Horizontal/Vertical Menu Toolbar property

Description

Specifies whether the menu item should appear (represented by an icon) on the horizontal or vertical
menu toolbar (or both) of a form.

Applies to menu item

Set Form Builder

Default

No

Required/Optional optional

Visible in Horizontal/Vertical Menu Toolbar restrictions

Developers must provide icons to associate with each menu item that appears on a menu toolbar.

346

Visible in Menu property

Description

Determines whether the menu item is shown or hidden at runtime.

Applies to:

menu item

Set:

Form Builder, programmatically

Refer to Built-in

• GET_MENU_ITEM_PROPERTY

• SET_MENU_ITEM_PROPERTY

Default:

Yes

347

Visual Attribute property

Description

Specifies the named visual attribute that should be applied to the object at runtime. A visual attribute
defines a collection of font, color, and pattern attributes that determine the appearance of the object.

Applies to canvas, tab page, item, radio button

Set programmatically

Refer to Built-in

• GET_ITEM_INSTANCE_PROPERTY

• GET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_CANVAS_PROPERTY

• SET_ITEM_INSTANCE_PROPERTY

• SET_ITEM_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• SET_TAB_PAGE_PROPERTY

Usage Notes

When you execute the appropriate GET_ built-in function to determine the setting of this property at
runtime, the return value is one of the following:

• the name of a named visual attribute

• the name of a logical attribute defined in the resource file

• DEFAULT (the item uses the default attributes defined in the resource file)

Visual Attribute restrictions

The visual attribute must be a named visual attribute defined in the form module or a logical attribute
defined in the runtime resource file.

348

Visual Attribute Group property

Description

Specifies how the object’s individual attribute settings (Font Name, Background Color, Fill Pattern, etc.)
are derived. The following settings are valid for this property:

Default Specifies that the object should be displayed with default color,
pattern, and font settings. When Visual Attribute Group is set to
Default, the individual attribute settings reflect the current system
defaults. The actual settings are determined by a combination of
factors, including the type of object, the resource file in use, and
the platform.

Named visual
attribute

Specifies a named visual attribute that should be applied to the
object. Named visual attributes are separate objects that you
create in the Object Navigator and then apply to interface
objects, much like styles in a word processing program. When
Visual Attribute Group is set to a named visual attribute, the
individual attribute settings reflect the attribute settings defined
for the named visual attribute object. When the current form does
not contain any named visual attributes, the poplist for this
property will show Default.

Applies to all interface objects

Set Form Builder

Default

Default

Usage Notes

• Default and named visual attributes can include the following individual attributes, listed in the
order they appear in the Property Palette:

Font Name The font family, or typeface, that should be used for text in the object. The list of fonts
available is system-dependent.

Font Size The size of the font, specified in points.

Font Style The style of the font.

Font Spacing The width of the font, that is, the amount of space between characters (kerning).

Font Weight The weight of the font.

Foreground Color The color of the object’s foreground region. For items, the Foreground Color
attribute defines the color of text displayed in the item.

Background Color The color of the object’s background region.

349

Fill Pattern The pattern to be used for the object’s fill region. Patterns are rendered in the two colors
specified by Background Color and Foreground Color.

Character Mode Logical Attribute Specifies the name of a character mode logical attribute defined
in an Oracle Terminal resource file that is to be used as the basis of device attributes for a character
mode version of your application.

White on Black Specifies that the object is to appear on a monochrome bitmap display device as
white text on a black background.

Not all attributes are valid for each object type. For example, setting font attributes for a window
object has no effect. (The font used in a window’s title bar is derived from the system.)

A new object in a new form has Default visual attributes. The default settings are defined
internally. You can override the default font for new items and boilerplate by setting the optional
FORMS60_DEFAULTFONT environment variable. For example, on Microsoft Windows, you
can set this variable in the registry, as follows: FORMS60_DEFAULTFONT="COURIER.10".
The default font specified determines the font used for new boilerplate text generated by the New
Block window, and for any items that have Visual Attribute Group set to Default.

When you create an item in the Layout Editor, its initial visual attribute settings are determined by the
current Layout Editor settings for fonts, colors, and patterns, as indicated by the Font dialog and
Color and Pattern palettes.

On Microsoft Windows, the colors of buttons, window title bars, and window borders are controlled
by the Windows Control Panel color settings specified for these elements. You cannot override
these colors in Form Builder.

When the Use 3D Controls form property is set to Yes on Microsoft Windows (the default), items are
rendered with shading that provides a sculpted, three-dimensional look. A side effect of setting this
property is that any canvases that have Visual Attribute Group set to Default derive their color
setting from the Windows Control Panel (gray for most color schemes). You can override this
setting by explicitly applying named visual attributes to the canvas.

An item that has Visual Attribute Group set to Default, or that has individual attribute settings left
unspecified, inherits those settings from the canvas to which it is assigned. Similarly, a canvas that
has Visual Attribute Group set to Default, or that has individual attribute settings left unspecified,
inherits those settings from the window in which it is displayed. For example, if you set a window’s
Background Color to CYAN, and then leave Background Color unspecified for the canvas assigned
to the window, at runtime, that canvas will inherit the CYAN background from its window. Visual
attribute settings derived through window--canvas or canvas--item inheritance are apparent at
design time if the Layout Editor is reopened.

You can apply property classes to objects to specify visual attribute settings. A property class can
contain either the Visual Attribute Group property, or one or more of the individual attribute
properties. (If a property class contains both Visual Attribute Group and individual attributes, the
Visual Attribute Group property takes precedence.)

If you apply both a named visual attribute and a property class that contains visual attribute settings to
the same object, the named visual attribute settings take precedence, and the property class visual
attribute settings are ignored.

Logical attribute definitions defined in the resource file take precedence over visual attributes
specified in the Form Builder, local environment variable definitions, and default Form Builder
attributes. To edit the resource file, use the Oracle Terminal utility.

350

Visual Attribute Type property

Description

Specifies the type of the visual attribute during design time as either Common, Prompt, or Title.

Applies to visual attribute general

Set Form Builder

Default Common

Required/Optional required

351

WHERE Clause/ORDER BY Clause properties

Description

The default WHERE Clause and default ORDER BY Clause properties specify standard SQL clauses for
the default SELECT statement associated with a data block. These clauses are automatically appended to
the SELECT statement that Form Builder constructs and issues whenever the operator or the application
executes a query in the block.

Applies to block

Set Form Builder, programmatically

Refer to Built-in

• GET_BLOCK_PROPERTY

• SET_BLOCK_PROPERTY

Required/Optional optional

Usage Notes

• The reserved words WHERE and ORDER BY are optional. If you do not include them, Form Builder
automatically prefixes the statement with these words.

• WHERE Clause can reference the following objects:

 columns in the block’s data block table (except LONG columns)

 form parameters (:PARAMETER.my_parameter)

• ORDER BY Clause can reference the following objects:

columns in the block’s data block table (except LONG columns)

• Embedded comments are not supported in WHERE Clause and ORDER BY Clause.

WHERE Clause/ORDER BY Clause restrictions

• Maximum length for WHERE Clause is 32,000 bytes.

• ORDER BY clause cannot reference global variables or form parameters.

WHERE Clause/ORDER BY Clause examples

Example

In the following example from an order tracking system, the WHERE Clause limits the retrieved records
to those whose shipdate column is NULL. The ORDER BY Clause arranges the selected records from
the lowest (earliest) date to the highest (latest) date.

WHERE shipdate IS NULL
ORDER BY orderdate

352

This WHERE Clause/ORDER BY Clause statement specifies the base conditions for record retrieval.
The operator can further restrict the records retrieved by placing the form in Enter Query mode and
entering ad hoc query conditions.

353

White on Black property

Description

Specifies that the object is to appear on a monochrome bitmap display device as white text on a black
background.

Applies to item, tab page, canvas, window, radio button

Set Programmatically

Default

Unspecified

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

• GET_TAB_PAGE_PROPERTY

• SET_TAB_PAGE_PROPERTY

• GET_CANVAS_PROPERTY

• SET_CANVAS_PROPERTY

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

354

Width/Height (WD, HT) properties

Description

See Size property

355

Window property

Description

Specifies the window in which the canvas will be displayed at runtime.

Applies to canvas

Set Form Builder

Refer to Built-in

GET_VIEW_PROPERTY

Default

ROOT_WINDOW, if there is a root window in the form, else the first window listed under the Windows
node in the Object Navigator.

Required/Optional required for the canvas to be displayed at runtime

356

Window_Handle property

Description

On Microsoft Windows, a window handle is a unique internal character constant that can be used to refer
to objects. It is possible to obtain a window handle for any item or window.

Applies to form, block, item

Refer to Built-in

• GET_ITEM_PROPERTY

• GET_WINDOW_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

Default

NULL

Usage Notes

• Specify the name of the item and the WINDOW_HANDLE property in GET_ITEM_PROPERTY
to obtain the window handle to an item.

• Specify the name of the window and the WINDOW_HANDLE property in
GET_WINDOW_PROPERTY to obtain the window handle to a window. If the name of the
window of GET_WINDOW_PROPERTY is FORMS_MDI_WINDOW, the return value is a handle
to the MDI client window. The handle to a MDI client window is used to create child MDI windows
and controls.

• Specify the item name or item id of the radio group, the name of the radio button, and the
WINDOW_HANDLE property in GET_RADIO_BUTTON_PROPERTY to obtain a window
handle to a radio button.

• To obtain a window handle to a radio group, use the name of the radio group as the item name in
GET_ITEM_PROPERTY. A window handle to the button that is in focus is returned. If no button
is in focus, the window handle to the button that is selected is returned. If neither a focused or
selected button exists, the window handle to the first button is returned.

Window_Handle restrictions

Valid only on Microsoft Windows. (Returns NULL on other platforms.)

357

Window_State property

Description

Specifies the current display state of the window:

NORMAL Specifies that the window should be displayed normally, according to its
current Width, Height, X Position, and Y Position property settings.

MINIMIZE Specifies that the window should be minimized, or iconified so that it is
visible on the desktop s a bitmap graphic.

MAXIMIZE Specifies that the window should be enlarged to fill the screen according to
the display style of the window manager.

Applies to window

Set Programmatically

Refer to Built-in

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

Default

NORMAL

Usage Notes

The minimize and maximize display states are managed by the window manager and do not affect the
window’s current width and height settings, as defined by the Width and Height properties. Thus, if a
window display state is currently minimized or maximized, any call to SET_WINDOW_PROPERTY or
RESIZE_WINDOW that changes the Width or Height properties will be applied, but will not become
apparent to the operator until the window is returned to the Normal state.

Similarly, GET_WINDOW_PROPERTY always returns the window’s current Width and Height
property settings, even if the window is currently in the minimized or maximized display state.

Window_State restrictions

Setting Window_State to MAXIMIZE is not supported on Motif.

358

Window Style property

Description

Specifies whether the window is a Document window or a Dialog window. Document and dialog
windows are displayed differently on window managers that support a Multiple Document Interface
(MDI) system of window management.

Applies to window

Set Form Builder

Default

Document

Restrictions:

Valid only for a secondary window. (A root window is always a document window.)

Usage Notes

MDI applications display a default parent window, called the application window. All other windows in
the application are either document windows or dialog windows.

Document windows always remain within the application window frame. If the operator resizes the
application window so that it is smaller than a document window, the document window is clipped. An
operator can maximize a document window so that is occupies the entire workspace of the application
window.

Dialog windows are free-floating, and the operator can move them outside the application window if they
were defined as Movable. If the operator resizes the application window so that it is smaller than a
dialog window, the dialog window is not clipped.

359

Wrap Style property

Description

Specifies how text is displayed when a line of text exceeds the width of a text item or editor window.

The following list describes the allowable values for this property:

NONE No wrapping: text exceeding the right border is not shown.

CHARACTER Text breaks following the last visible character, and wraps to the next line.

WORD Text breaks following last visible complete word, and wraps to the next
line.

Applies to text item, editor

Set Form Builder

Refer to Built-in

GET_ITEM_PROPERTY

Default

WORD

Wrap Style restrictions

Valid only for multi-line text items.

360

Wrap Text property

Description

Specifies whether the text in the text object wraps to the next line to fit within the bounding box.

Applies to graphic text

Set Form Builder

Default

Yes

Required/Optional required

361

X Corner Radius property

Description

Specifies the amount of horizontal rounding (in layout units) of the corners of the rounded rectangle.

Applies to graphic rounded rectangle

Set Form Builder

Default

10

Required/Optional required

362

X Position, Y Position property

Description

For an object, specifies where it appears on the screen. For an item, specifies the position of the item’s
upper left corner relative to the upper left corner of the item’s canvas. The values you specify are
interpreted in the current form coordinate units (character cells, centimeters, inches, pixels, or points), as
specified by the Coordinate System form property.

Applies to all items, editors, LOVs, windows, canvases

Set Form Builder, programmatically

Usage Notes

The following information is specific to the current object.

ITEM

Determines where the item appears on the owning canvas.

Refer to Built-in

• GET_ITEM_PROPERTY

• SET_ITEM_PROPERTY

• GET_RADIO_BUTTON_PROPERTY

• SET_RADIO_BUTTON_PROPERTY

Default

x,y(0,0)

LOV

Determines where the LOV appears on the screen: (0,0) is the upper left corner of the entire screen,
regardless of where the root window appears on the screen. The LOV can be displayed anywhere on the
screen, including locations outside the form.

Refer to Built-in

• GET_LOV_PROPERTY

• SET_LOV_PROPERTY

Default

x,y(0,0)

WINDOW

Determines where the window appears on the screen: (0,0) is the upper left corner of the entire screen.

Refer to Built-in

363

• GET_WINDOW_PROPERTY

• SET_WINDOW_PROPERTY

Default

x,y(0,0)

X Position, Y Position restrictions

• Values for all items, editors, and LOVs must be non-negative.

• Precision allowed is based on the current form coordinate units. Rounding may occur when
necessary.

364

Y Corner Radius property

Description

Specifies the amount of vertical rounding (in layout units) of the corners of the rounded rectangle.

Applies to graphic rounded rectangle

Set Form Builder

Default

10

Required/Optional required

365

System Variables

About system variables

A system variable is an Form Builder variable that keeps track of an internal Form Builder state. You
can reference the value of a system variable to control the way an application behaves.

Form Builder maintains the values of system variables on a per form basis. That is, the values of all
system variables correspond only to the current form. The names of the available system variables are:

• SYSTEM.BLOCK_STATUS

• SYSTEM.COORDINATION_OPERATION

• SYSTEM.CURRENT_BLOCK

• SYSTEM.CURRENT_DATETIME

• SYSTEM.CURRENT_FORM

• SYSTEM.CURRENT_ITEM

• SYSTEM.CURRENT_VALUE

• SYSTEM.CURSOR_BLOCK

• SYSTEM.CURSOR_ITEM

• SYSTEM.CURSOR_RECORD

• SYSTEM.CURSOR_VALUE

• SYSTEM.CUSTOM_ITEM_EVENT

• SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS

• SYSTEM.DATE_THRESHOLD*

• SYSTEM.EFFECTIVE_DATE*

• SYSTEM.EVENT_WINDOW

• SYSTEM.FORM_STATUS

• SYSTEM.LAST_QUERY

• SYSTEM.LAST_RECORD

• SYSTEM.MASTER_BLOCK

• SYSTEM.MESSAGE_LEVEL*

• SYSTEM.MODE

• SYSTEM.MOUSE_BUTTON_PRESSED

• SYSTEM.MOUSE_BUTTON_SHIFT_STATE

• SYSTEM.MOUSE_ITEM

366

• SYSTEM.MOUSE_CANVAS

• SYSTEM.MOUSE_X_POS

• SYSTEM.MOUSE_Y_POS

• SYSTEM.MOUSE_RECORD

• SYSTEM.MOUSE_RECORD_OFFSET

• SYSTEM.RECORD_STATUS

• SYSTEM.SUPPRESS_WORKING*

• SYSTEM.TAB_NEW_PAGE

• SYSTEM.TAB_PREVIOUS_PAGE

• SYSTEM.TRIGGER_BLOCK

• SYSTEM.TRIGGER_ITEM

• SYSTEM.TRIGGER_RECORD

All system variables, except the four indicated with an asterisk (*), are read-only variables. These four
variables are the only system variables to which you can explicitly assign values. Form Builder also
supplies 6 default values for date and time. (See Date and Time System Default Values).

Local Variables

Because system variables are derived, if the value is not expected to change over the life of the trigger,
you can save the system value in a local variable and use the local variable multiple times instead of
getting the system variable value each time.

Date and Time System Default Values

Form Builder supplies six special default values $$DATE$$, $$DATETIME$$, $$TIME$$,
$$DBDATE$$, $$DBDATETIME$$, and $$DBTIME$$ that supply date and time information. These
variables have the and the following special restrictions on their use:

• For client/server applications, consider the performance implications of going across the network to
get date and time information.

• When accessing a non-ORACLE datasource, avoid using $$DBDATE$$ and $$DBDATETIME$$.
Instead, use a When-Create-Record trigger to select the current date in a datasource-specific
manner.

• Use $$DATE$$, $$DATETIME$$, and $$TIME$$ to obtain the local system date/time; use
$$DBDATE$$, $$DBDATETIME$$, and $$DBTIME$$ to obtain the database date/time, which
may differ from the local system date/time when, for example, connecting to a remote database in a
different time zone.

• Use these variables only to set the value of the Initial Value, Highest Allowed Value or Lowest
Allowed Value property.

367

About system variables examples

Assume that you want to create a Key-NXTBLK trigger at the form level that navigates depending on
what the current block is. The following trigger performs this function, using
:SYSTEM.CURSOR_BLOCK stored in a local variable.

DECLARE
 curblk VARCHAR2(30);
BEGIN
 curblk := :System.Cursor_Block;
 IF curblk = ’Orders’
 THEN Go_Block(’Items’);
 ELSIF curblk = ’Items’
 THEN Go_Block(’Customers’);
 ELSIF curblk = ’Customers’
 THEN Go_Block(’Orders’);
 END IF;
END;

Uppercase Return Values

All system variables are case-sensitive, and most return their arguments as uppercase values. This will
affect the way you compare results in IF statements.

368

$$DATE$$ system variable

Syntax
$$DATE$$

Description

$$DATE$$ retrieves the current operating system date (client-side). Use $$DATE$$ to designate a
default value or range for a text item using the Initial Value or Lowest/Highest Allowed Value
properties. The text item must be of the CHAR, DATE, or DATETIME data type.

Use $$DATE$$ as a default value for form parameters. In this case, the parameter’s value is computed
once, at form startup.

Usage Notes

The difference between $$DATE$$ and $$DATETIME$$ is that the time component for $$DATE$$ is
always fixed to 00:00:00, compared to $$DATETIME$$, which includes a meaningful time component,
such as 09:17:59.

The display of system variables is governed by the format mask, either a default data type format mask or
one you specify. For example, to use the default DD-MON-YY format, specify a DATE data type.
(Note that the default format mask depends on the value of NLS_LANG.)

Although $$DATE$$ displays only the date, its underlying value includes a time component which is
saved at commit time. If you specify a DATETIME data type and provide $$DATE$$ as the default, the
underlying value will be DD-MON-YYYY HH:MM:SS: for example, 01-DEC-1994 00:00:00 (although
only 01-DEC-1994 will be displayed).

Use $$DATE$$ when you want to compare the contents of this field with a field whose format mask
does not have a time component, such as a SHIPDATE field of data type DATE. In this case, both
$$DATE$$ and SHIPDATE will have a time component of 00:00:00, so the comparison of two dates
evaluating to the same day will be successful.

$$DATE$$ examples

Example 1

Assume that you want the value of a DATE text item, called ORDERDATE, to default to the current
date. When you define the ORDERDATE text item, specify $$DATE$$ in the text item Initial Value
property.

Example 2

If you use $$DATE$$ in a parameter, such as :PARAMETER.STARTUP_DATE, then every time you
reference that parameter, the date you started the application will be available:

IF :PARAMETER.Startup_Date + 1 < :System.Current_Datetime
 THEN Message (’You have been logged on for more than a
day.’);
ELSE Message (’You just logged on today.’);
END IF;

369

$$DATETIME$$ system variable

Syntax
$$DATETIME$$

Description

$$DATETIME$$ retrieves the current operating system date and time. You can use $$DATETIME$$
to designate a default value or range for a text item using the Initial Value or Lowest/Highest Allowed
Value properties. The text item must be of the CHAR or DATETIME data type.

Use $$DATETIME$$ as a default value for form parameters. In this case, the parameter’s value is
computed once, at form startup.

Usage Notes

The display of system variables is governed by the format mask, either a default data type format mask or
one you specify. For example, if you want the default DD-MON-YY HH:MM:SS format, you must
specify a DATETIME data type. (Note that the default format mask depends on the value of
NLS_LANG.)

The difference between $$DATE$$ and $$DATETIME$$ is that the time component for $$DATE$$ is
always fixed to 00:00:00, compared to $$DATETIME$$, which includes a meaningful time component,
such as 09:17:59.

Note: Do not use $$DATETIME$$ instead of $$DATE$$ unless to specify the time component. If, for
example, you use $$DATETIME$$ with the default DATE format mask of DD-MON-YY, you would be
committing values to the database that the user would not see, because the format mask does not include
a time component. Then, because you had committed specific time information, when you later queried
on date, the values would not match and you would not return any rows.

$$DATETIME$$ examples

Assume that you want the value of a DATETIME text item, called ORDERDATE, to default to the
current operating system date and time. When you define the ORDERDATE text item, specify
$$DATETIME$$ in the Initial Value property.

370

$$DBDATE$$ system variable

Syntax
$$DBDATE$$

Description

$$DBDATE$$ retrieves the current database date. Use $$DBDATE$$ to designate a default value or
range for a text item using the Initial Value or Lowest/Highest Allowed Value properties. The text item
must be of the CHAR, DATE, or DATETIME data type.

Usage Notes

The difference between $$DBDATE$$ and $$DBDATETIME$$ is that the time component for
$$DBDATE$$ is always fixed to 00:00:00, compared to $$DBDATETIME$$, which includes a
meaningful time component, such as 09:17:59.

Use $$DBDATE$$ to default a DATE item to the current date on the server machine, for example, when
connecting to a remote database that may be in a different time zone from the client’s time zone.

The display of system variables is governed by the format mask, either a default data type format mask or
one you specify. For example, if you want the default DD-MON-YY format, you must specify a DATE
data type. (Note that the default format mask depends on the value of NLS_LANG.)

Although $$DBDATE$$ displays only the date, its underlying value includes a time component which is
saved at commit time. If you specify a DATETIME data type and provide $$DBDATE$$ as the default,
the underlying value will be DD-MON-YYYY HH:MM:SS: for example, 01-DEC-1994 00:00:00
(although only 01-DEC-1994 will be displayed).

$$DBDATE$$ restrictions

• If you are accessing a non-ORACLE datasource, avoid using $$DBDATE$$. Instead, use a When-
Create-Record trigger to select the current date in a datasource-specific manner.

$$DBDATE$$ examples

To have the value of a DATE text item called ORDERDATE default to the current database date, for the
ORDERDATE text item, specify $$DBDATE$$ in the Initial Value property.

371

$$DBDATETIME$$ system variable

Syntax
$$DBDATETIME$$

Description

$$DBDATETIME$$ retrieves the current date and time from the local database. Use
$$DBDATETIME$$ to designate a default value or range for a text item using the Initial Value or
Lowest/Highest Allowed Value properties. The text item must be of the CHAR or DATETIME data
type.

Usage Notes

Use $$DBDATETIME$$ to default a DATE item to the current date on the server machine, for example,
when connecting to a remote database that may be in a different time zone from the client’s time zone.

The display of system variables is governed by the format mask, either a default data type format mask or
one you specify. For example, if you want a DD-MON-YY HH:MM:SS format, you must specify a
DATETIME or CHAR data type. (Note that the default format mask depends on the value of
NLS_LANG.)

If you are building a client/server application, using $$DBDATETIME$$ could have performance
implications, depending on the complexity of your network configuration.

Note: Do not use $$DBDATETIME$$ instead of $$DBDATE$$ unless you plan to specify the time
component. If, for example, you use $$DBDATETIME$$ with the default DATE format mask of DD-
MON-YY, you would be committing values to the database that the user would not see, because the
format mask does not include a time component. Then, because you had committed specific time
information, when you later queried on date, the values would not match and you would not return any
rows.

$$DBDATETIME$$ restrictions

If you are accessing a non-ORACLE datasource, avoid using $$DBDATETIME$$. Instead, use a
When-Create-Record trigger to select the current date and time in a datasource-specific manner.

$$DBDATETIME$$ examples

Assume that you want the value of a DATETIME text item, called ORDERDATE, to default to the
current database date and time. When you define the ORDERDATE text item, specify
$$DBDATETIME$$ in the Lowest/Highest Allowed Value properties.

372

$$DBTIME$$ system variable

Syntax
$$DBTIME$$

Description

$$DBTIME$$ retrieves the current time from the local database. Use $$DBTIME$$ to designate a
default value or range for a text item using the Initial Value or Lowest/Highest Allowed Value
properties. The text item must be of the CHAR or TIME data type.

Usage Notes

Use $$DBTIME$$ when connecting to a remote database that may be in a different time zone from the
client’s time zone.

The display of system variables is governed by the format mask, either a default data type format mask or
one you specify. For example, if you want the default HH:MM:SS format, you must specify a TIME data
type. (Note that the default format mask depends on the value of NLS_LANG.)

If you are building a client/server application, using $$DBTIME$$ could have performance implications,
depending on the complexity of your network configuration.

$$DBTIME$$ restrictions

If you are accessing a non-ORACLE datasource, avoid using $$DBTIME$$. Instead, use a When-
Create-Record trigger to select the current time in a datasource-specific manner.

$$DBTIME$$ examples

Assume that you want the value of a TIME text item, called ORDERTIME, to default to the current
database time. When you define the ORDERTIME text item, specify $$DBTIME$$ in the Initial Value
property.

373

$$TIME$$ system variable

Syntax
$$TIME$$

Description

$$TIME$$ retrieves the current operating system time. Use $$TIME$$ to designate a default value or
range for a text item using the Initial Value or Lowest/Highest Allowed Value properties. The text item
must be of the CHAR or TIME data type.

You also can use $$TIME$$ as a default value for form parameters. In this case, the parameter’s value is
computed once, at form startup.

Usage Notes

The display of system variables is governed by the format mask, either a default data type format mask or
one you specify. For example, if you want the default HH:MM:SS format, you must specify a TIME data
type. (Note that the default format mask depends on the value of NLS_LANG.)

$$TIME$$ examples

Assume that you want the value of a TIME text item, called ORDERTIME, to default to the current
operating system time. When you define the ORDERTIME item, specify $$TIME$$ in the Initial Value
property.

374

SYSTEM.BLOCK_STATUS system variable

Syntax
SYSTEM.BLOCK_STATUS

Description

SYSTEM.BLOCK_STATUS represents the status of a Data block where the cursor is located, or the
current data block during trigger processing. The value can be one of three character strings:

CHANGED Indicates that the block contains at least one Changed record.

NEW Indicates that the block contains only New records.

QUERY Indicates that the block contains only Valid records that have been
retrieved from the database.

Usage Notes

Each time this value is referenced, it must be constructed by Form Builder. If a block contains a large
number of records, using SYSTEM.BLOCK_STATUS could adversely affect performance.

SYSTEM.BLOCK_STATUS examples

Assume that you want to create a trigger that performs a commit before clearing a block if there are
changes to commit within that block. The following Key-CLRBLK trigger performs this function.

IF :System.Block_Status = ’CHANGED’
 THEN Commit_Form;
END IF;
Clear_Block;

375

SYSTEM.COORDINATION_OPERATION system variable

Syntax
SYSTEM.COORDINATION_OPERATION

Description

This system variable works with its companion SYSTEM.MASTER_BLOCK to help an On-Clear-
Details trigger determine what type of coordination-causing operation fired the trigger, and on which
master block of a master/detail relation.

The values of the two system variables remain constant throughout the clearing phase of any block
synchronization. SYSTEM.MASTER_BLOCK represents the name of the driving master block, and
SYSTEM.COORDINATION_OPERATION represents the coordination-causing event that occurred on
the master block.

The Clear_All_Master_Details procedure, which is automatically generated when a relation is created,
checks the value of SYSTEM.COORDINATION_OPERATION to provide special handling for the
CLEAR_RECORD and SYNCHRONIZE events, which may be different from the handling for other
coordination-causing events. The Clear_All_Master_Details procedure also checks the value of
SYSTEM.MASTER_BLOCK , to verify that while it is processing the master block of a relation
coordination, it is searching only for blocks containing changes.

For example, given the relation hierarchy between blocks shown below, moving to the next record using
the [Next Record] key or the Record, Next menu command while in Block C would cause blocks E, F, G,
and H to be cleared (and perhaps subsequently queried, depending on the Deferred_Coordination
property of the CE and the CF relations).

When the On-Clear-Details trigger fires for block C, the result is:
:System.Cooordination_Operation = ’NEXT_RECORD’
:System.Master_Block = ’C’

The Clear_All_Master_Details procedure will clear all of block C’s details, causing a "chain reaction" of
Clear_Block operations. Consequently, block F is cleared.

Since F is a master for both G and H, and it is being cleared, an On-Clear-Details trigger will fire for
block F as well. However, since the clearing of block F was driven (indirectly) by a coordination-causing
event in block C, these remain the values in the On-Clear-Details trigger for block F:

:System.Cooordination_Operation = ’NEXT_RECORD’
:System.Master_Block = ’C’

Note: The values of these two system variables are well-defined only in the scope of an On-Clear-
Details trigger, or any program unit called by that trigger. Outside this narrow context, the values of
these two variables are undefined and should not be used.

The possible values of SYSTEM.COORDINATION_OPERATION, when it is appropriate to check that
variable, are described in the following table.

Value Description Caused By

MOUSE Mouse to non-current record Mouse

UP Move up a record Menu, key, PL/SQL

376

DOWN Move down a record Menu, key, PL/SQL

SCROLL_UP Scroll up records Menu, key, PL/SQL

SCROLL_DOWN Scroll down records Mouse, key, PL/SQL

CLEAR_BLOCK Clear current block Menu, key, PL/SQL

CLEAR_RECORD Clear current record Menu, key, PL/SQL

CREATE_RECORD Create new record Mouse, menu, key, PL/SQL

DELETE_RECORD Delete current record Menu, key, PL/SQL

DUPLICATE_RECORD Duplicate current record Menu, key, PL/SQL

FIRST_RECORD Move to first record PL/SQL

LAST_RECORD Move to last record PL/SQL

NEXT_RECORD Move to next record Mouse, menu, key, PL/SQL

PREVIOUS_RECORD Move to previous record Mouse, menu, key, PL/SQL

GO_RECORD Jump to record by number PL/SQL

ENTER_QUERY Enter Query mode Menu, key, PL/SQL

EXECUTE_QUERY Execute query Menu, key, PL/SQL

COUNT_QUERY Count queried records Menu, key, PL/SQL

NEXT_SET Fetch next set of records Menu, key, PL/SQL

SYNCHRONIZE_
BLOCKS

Resume after commit error Internal only

377

SYSTEM.CURRENT_BLOCK system variable

Syntax
SYSTEM.CURRENT_BLOCK

Description

The value that the SYSTEM.CURRENT_BLOCK system variable represents depends on the current
navigation unit:

• If the current navigation unit is the block, record, or item (as in the Pre- and Post- Item, Record, and
Block triggers), the value of SYSTEM.CURRENT_BLOCK is the name of the block that Form
Builder is processing or that the cursor is in.

• If the current navigation unit is the form (as in the Pre- and Post-Form triggers), the value of
SYSTEM.CURRENT_BLOCK is NULL.

The value is always a character string.

Note: SYSTEM.CURRENT_BLOCK is included for compatibility with previous versions. Oracle
Corporation recommends that you use SYSTEM.CURSOR_BLOCK and SYSTEM.TRIGGER_BLOCK
instead.

378

SYSTEM.CURRENT_DATETIME system variable

Syntax
SYSTEM.CURRENT_DATETIME

Description

SYSTEM.CURRENT_DATETIME is a variable representing the operating system date. The value is a
CHAR string in the following format:

DD-MON-YYYY HH24:MM:SS

Default

current date

Usage Notes

SYSTEM.CURRENT_DATETIME is useful when you want to use the current operating system date
and time in a PL/SQL trigger or procedure. By using SYSTEM.CURRENT_DATETIME instead of
$$DBDATETIME$$, you can avoid the performance impact caused by querying the database.

Note: Local time and database time may differ.

SYSTEM.CURRENT_DATETIME examples

/*
**
** trigger: WHEN-TIMER-EXPIRED
** Example: Update on-screen time every 30 seconds
*/
DECLARE
 time VARCHAR2(20);
BEGIN
 time := :System.Current_Datetime;
 :control.onscreen := SUBSTR(time, instr(time,’ ’)+1);
END;

379

SYSTEM.CURRENT_FORM system variable

Syntax
SYSTEM.CURRENT_FORM

Description

SYSTEM.CURRENT_FORM represents the name of the form that Form Builder is executing. The
value is always a character string.

Usage Notes

You can use the GET_APPLICATION_PROPERTY built-in to obtain the name of the current form.

SYSTEM.CURRENT_FORM examples

Assume that you want any called form to be able to identify the name of the form that called it. You can
invoke the following user-defined procedure before Form Builder issues a call. This procedure stores the
name of the current form in a global variable named CALLING_FORM.

PROCEDURE STORE_FORMNAME IS
BEGIN
 :GLOBAL.Calling_Form := :System.Current_Form;
END;

380

SYSTEM.CURRENT_ITEM system variable

Syntax
SYSTEM.CURRENT_ITEM

Description

The value that the SYSTEM.CURRENT_ITEM system variable represents depends on the current
navigation unit:

• If the current navigation unit is the item (as in the Pre- and Post-Item triggers), the value of
SYSTEM.CURRENT_ITEM is the name of the item that Form Builder is processing or that the
cursor is in. The returned item name does not include a block name prefix.

• If the current navigation unit is the record, block, or form (as in the Pre- and Post- Record, Block,
and Form triggers), the value of SYSTEM.CURRENT_ITEM is NULL.

The value is always a character string.

Note: SYSTEM.CURRENT_ITEM is included for compatibility with previous versions. Oracle
Corporation recommends that you use SYSTEM.CURSOR_ITEM or SYSTEM.TRIGGER_ITEM
instead.

381

SYSTEM.CURRENT_VALUE system variable

Syntax
SYSTEM.CURRENT_VALUE

Description

SYSTEM.CURRENT_VALUE represents the value of the item that is registered in
SYSTEM.CURRENT_ITEM.

The value is always a character string.

Note: SYSTEM.CURRENT_VALUE is included for compatibility with previous versions. Oracle
Corporation recommends that you use SYSTEM.CURSOR_ITEM and SYSTEM.CURSOR_VALUE
instead.

382

SYSTEM.CURSOR_BLOCK system variable

Syntax
SYSTEM.CURSOR_BLOCK

Description

The value that the SYSTEM.CURSOR_BLOCK system variable represents depends on the current
navigation unit:

• If the current navigation unit is the block, record, or item (as in the Pre- and Post- Item, Record, and
Block triggers), the value of SYSTEM.CURSOR_BLOCK is the name of the block where the cursor
is located. The value is always a character string.

• If the current navigation unit is the form (as in the Pre- and Post-Form triggers), the value of
SYSTEM.CURSOR_BLOCK is NULL.

SYSTEM.CURSOR_BLOCK examples

Assume that you want to create a Key-NXTBLK trigger at the form level that navigates depending on
what the current block is. The following trigger performs this function, using
:SYSTEM.CURSOR_BLOCK stored in a local variable.

DECLARE
 curblk VARCHAR2(30);
BEGIN
 curblk := :System.Cursor_Block;
 IF curblk = ’ORDERS’
 THEN Go_Block(’ITEMS’);
 ELSIF curblk = ’ITEMS’
 THEN Go_Block(’CUSTOMERS’);
 ELSIF curblk = ’CUSTOMERS’
 THEN Go_Block(’ORDERS’);
 END IF;
END;

383

SYSTEM.CURSOR_ITEM system variable

Syntax
SYSTEM.CURSOR_ITEM

Description

SYSTEM.CURSOR_ITEM represents the name of the block and item, block.item, where the input focus
(cursor) is located.

The value is always a character string.

Usage Notes

Within a given trigger, the value of SYSTEM.CURSOR_ITEM changes when navigation takes place.
This differs from SYSTEM.TRIGGER_ITEM, which remains the same from the beginning to the end of
single trigger.

SYSTEM.CURSOR_ITEM restrictions

Avoid using SYSTEM.CURSOR_ITEM in triggers where the current navigation unit is not the item,
such as Pre- and Post-Record, Block, and Form triggers. In these triggers, the value of
SYSTEM.CURSOR_ITEM is NULL.

SYSTEM.CURSOR_ITEM examples

Assume that you want to create a user-defined procedure that takes the value of the item where the cursor
is located (represented by SYSTEM.CURSOR_VALUE), then multiplies the value by a constant, and
then reads the modified value into the same item. The following user-defined procedure uses the COPY
built-in to perform this function.

PROCEDURE CALC_VALUE IS
 new_value NUMBER;
BEGIN
 new_value := TO_NUMBER(:System.Cursor_Value) * .06;
 Copy(TO_CHAR(new_value), :System.Cursor_Item);
END;

384

SYSTEM.CURSOR_RECORD system variable

Syntax
SYSTEM.CURSOR_RECORD

Description

SYSTEM.CURSOR_RECORD represents the number of the record where the cursor is located. This
number represents the record’s current physical order in the block’s list of records. The value is always a
character string.

SYSTEM.CURSOR_RECORD examples

Assume that you want to redefine [Previous Item] on the first text item of the ITEMS block so that it
navigates to the last text item of the ORDERS block if the current record is the first record. The
following Key-PRV-ITEM trigger on the ITEMS.ORDERID text item performs this function.

IF :System.Cursor_Record = ’1’
 THEN Go_Item(’orders.total’);
 ELSE Previous_Item;
END IF;

385

SYSTEM.CURSOR_VALUE system variable

Syntax
SYSTEM.CURSOR_VALUE

Description

SYSTEM.CURSOR_VALUE represents the value of the item where the cursor is located. The value is
always a character string.

Usage Notes

Be aware that in triggers where the current navigation unit is not the item, such as Pre-Record , and Pre-
Block triggers, SYSTEM.CURSOR_VALUE will contain the value of the item navigated from, rather
than the value of the item navigated to.

SYSTEM.CURSOR_VALUE restrictions

• Avoid using SYSTEM.CURSOR_VALUE in Pre-Form and Post-Form triggers, where the value of
SYSTEM.CURSOR_VALUE is NULL.

SYSTEM.CURSOR_VALUE examples

Assume that you want to create a user-defined procedure that takes the value of the item where the cursor
is located, multiplies the value by a constant, and then reads the modified value into the same item. The
following user-defined procedure uses the COPY built-in to perform this function.

PROCEDURE CALC_VALUE IS
 new_value NUMBER;
BEGIN
 new_value := TO_NUMBER(:System.Cursor_Value) * .06;
 Copy(TO_CHAR(new_value), :System.Cursor_Item);
END;

386

SYSTEM.CUSTOM_ITEM_EVENT system variable

Syntax
SYSTEM.CUSTOM_ITEM_EVENT

Description

SYSTEM.CUSTOM_ITEM_EVENT stores the name of the event fired by a VBX (in 16-bit Microsoft
Windows) or ActiveX (in 32-bit Windows) control.

SYSTEM.CUSTOM_ITEM_EVENT examples

Checks to see if the SpinDown event was fired by the SpinButton VBX control before navigating to the
previous item.

IF :System.Custom_Item_Event = ’SpinDown’ THEN
 :QTY := :QTY -1;
END IF;

387

SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS system
variable

Syntax
SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS

Description

SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS stores the supplementary arguments for an event
fired by a VBX (in 16-bit Microsoft Windows) or ActiveX (in 32-bit Windows) control.

SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS examples

Obtains the value of the ’Button’ parameter that stores the value of a VBX control event, and passed the
’Button’ value to the user-defined Move_Image subprogram.

DECLARE
 parmType NUMBER;
 parmValue VARCHAR2(80);
BEGIN
 Get_Parameter_Attr(:System.Custom_Item_Event_Parameters,
 ’Button’,parmType,parmValue);
 /*
 ** The value of the ’Button’ parameter represents the
 ** direction to move an image. The user-defined Move_Image
 ** subprogram moves an image two pixels in the direction
 ** specified by ’Button’ parameter.
 */
 Move_Image(parmValue);
END;

388

SYSTEM.DATE_THRESHOLD system variable

Syntax
SYSTEM.DATE_THRESHOLD

Description

SYSTEM.DATE_THRESHOLD represents the database date requery threshold. This variable works in
conjunction with the three system variables $$DBDATE$$, $$DBDATETIME$$, and $$DBTIME$$,
and controls how often Form Builder synchronizes the database date with the RDBMS. The value of this
variable must be specified in the following format:

MI:SS

Because frequent RDBMS queries can degrade performance, it is best to keep this value reasonably high.
However, keep in mind that if the value is not synchronized often enough, some time discrepancy can
occur. In addition, if you are building a client/server application, the performance implications of
SYSTEM.DATE_THRESHOLD could vary depending on the complexity of your network
configuration.

Default

01:00 (Synchronization occurs after one minute of elapsed time.)

This does not mean that Form Builder polls the RDBMS once every minute. It means that whenever
Form Builder needs to generate the value for the system variables $$DBDATE$$, $$DBDATETIME$$,
$$DBTIME$$, or SYSTEM.EFFECTIVE_DATE, it updates the effective date by adding the amount of
elapsed time (as measured by the local operating system) to the most previously queried RDBMS value.

If the amount of elapsed time exceeds the date threshold, then a new query is executed to retrieve the
RDBMS time and the elapsed counter is reset.

Usage Notes

If a form never references the database date, Form Builder never executes a query to retrieve the
RDBMS date, regardless of the value of SYSTEM.DATE_THRESHOLD.

The operating system clock and the RDBMS clock rarely drift by more than one or two seconds, even
after hours of elapsed time. However, since your database administrator can reset the RDBMS clock at
any time, it is safest to set the threshold no higher than a few minutes.

Often, a Form Builder block may contain multiple references to these $$DBDATE$$,
$$DBDATETIME$$, or $$DBTIME$$ defaults. By setting SYSTEM.DATE_THRESHOLD to the
default of one minute, nearly all such references in a form can be satisfied with a single query of the
RDBMS.

389

SYSTEM.EFFECTIVE_DATE system variable

Syntax
SYSTEM.EFFECTIVE_DATE

Description

SYSTEM.EFFECTIVE_DATE represents the effective database date. The variable value must always
be in the following format:

DD-MON-YYYY HH24:MI:SS

Default

RDBMS date

Usage Notes

This system variable is convenient for testing. Since you can use it to set a specific time, the time on the
screen during an application would not cause subsequent test results to appear different than the known
valid output.

SYSTEM.EFFECTIVE_DATE restrictions

This variable is only valid when the database contains a definition of the DUAL table.

SYSTEM.EFFECTIVE_DATE examples

Assume you have set a DATE or TIME text item to one of the three system variables $$DBDATE$$,
$$DBDATETIME$$, or $$DBTIME$$. To override that date or time, set the
SYSTEM.EFFECTIVE_DATE system variable to a specific date and/or time.

:System.Effective_Date := ’31-DEC-1997 10:59:00’

Note that the effective date "rolls forward" with the database clock. For example, if you were to set the
date as in the immediately preceding example, in an hour, the date would appear as follows:

31-DEC-1997 11:59:00

The value is synchronized to the RDBMS date. If your database administrator changes the RDBMS
date, the SYSTEM.EFFECTIVE_DATE is automatically changed by the same amount of change
between old and new RDBMS dates. Form Builder polls the RDBMS whenever a reference to the
effective date is required by the application.

390

SYSTEM.EVENT_WINDOW system variable

Syntax
SYSTEM.EVENT_WINDOW

Description

The SYSTEM.EVENT_WINDOW system variable represents the name of the last window that was
affected by an action that caused one of the window event triggers to fire. The following triggers cause
this variable to be updated:

• WHEN-WINDOW-ACTIVATED

• WHEN-WINDOW-CLOSED

• WHEN-WINDOW-DEACTIVATED

• WHEN-WINDOW-RESIZED

From within these triggers, assign the value of the variable to any of the following:

• global variable

• parameter

• variable

• item, including a null canvas item

SYSTEM.EVENT_WINDOW examples

The following example sets the input focus into a particular item, depending on the window affected:
IF :System.Event_Window = ’ROOT_WINDOW’ THEN
 Go_Item(’EMPNO’);
ELSIF :System.Event_Window = ’DEPT_WINDOW’ THEN
 Go_Item(’DEPTNO’);
END IF;

391

SYSTEM.FORM_STATUS system variable

Syntax
SYSTEM.FORM_STATUS

Description

SYSTEM.FORM_STATUS represents the status of the current form. The value can be one of three
character strings:

CHANGED Indicates that the form contains at least one block with a Changed
record. The value of SYSTEM.FORM_STATUS becomes
CHANGED only after at least one record in the form has been changed
and the associated navigation unit has also changed.

NEW Indicates that the form contains only New records.

QUERY Indicates that a query is open. The form contains at least one block
with QUERY records and no blocks with CHANGED records.

Usage Notes

Each time this value is referenced, it must be constructed by Form Builder. If a form contains a large
number of blocks and many records, using SYSTEM.FORM_STATUS could affect performance.

SYSTEM.FORM_STATUS examples

Assume that you want to create a trigger that performs a commit before clearing a form if there are
changes to commit within that form. The following Key-CLRFRM trigger performs this function.

IF :System.Form_Status = ’CHANGED’
 THEN Commit_Form;
END IF;
Clear_Form;

392

SYSTEM.LAST_FORM system variable

Syntax
SYSTEM.LAST_FORM

Description

SYSTEM.LAST_FORM represents the form document ID of the previous form in a multi-form
application, where multiple forms have been invoked using OPEN_FORM. The value can be one of two
character strings: either the form document ID or NULL.

Usage Notes

SYSTEM.LAST_FORM is not valid with CALL_FORM.

393

SYSTEM.LAST_QUERY system variable

Syntax
SYSTEM.LAST_QUERY

Description

SYSTEM.LAST_QUERY represents the query SELECT statement that Form Builder most recently used
to populate a block during the current Runform session. The value is always a character string.

SYSTEM.LAST_QUERY examples

Example 1

Assume that you want to generate a report in Report Builder that retrieves information identical to a
query you perform in Form Builder. The following examples show how to use
SYSTEM.LAST_QUERY to extract the WHERE/ORDER BY clause from the last query so you can
pass the results to Report Builder using the RUN_PRODUCT built-in.

FUNCTION Last_Where_Clause
RETURN VARCHAR2
 IS
 tmp_lstqry VARCHAR2(10000) := :System.Last_Query;
 tmp_curblk VARCHAR2(40);
 tmp_index NUMBER;
 tmp_where VARCHAR2(2000);
 BEGIN
 /*
 ** See if we can find the word ’WHERE’ in
 ** the text of the Last Query
 */
 tmp_index:= INSTR(tmp_lstqry,’WHERE’);
 /*
 ** If we found it (at a positive index into
 ** the string), we extract the remainder of
 ** the text that follows the word ’WHERE’ as
 ** the Where clause. This might include ORDER BY
 ** clause, too.
 */
 IF tmp_index > 0 THEN
 tmp_where := SUBSTR(tmp_lstqry, tmp_index + 6);
 END IF;
 RETURN (tmp_where);
EXCEPTION
 WHEN OTHERS THEN
 RETURN NULL;
END;

Example 2
PROCEDURE Run_Report_For_Last_Query
IS
 pl ParamList;
 wc VARCHAR2(2000); -- The Where Clause to Pass
BEGIN
 /*

394

 ** Create a parameter list for parameter passing
 */
 pl := Create_Parameter_List(’tmp’);
 /*
 ** Get the Where Clause from the Last Query
 ** using a user-defined function
 */
 wc := Last_Where_Clause;
 /*
 ** If there is a Non-NULL Last Where clause to
 ** pass, add a text parameter to the parameter
 ** list to specify the parameter name and its
 ** value. In this case the report definition has
 ** a parameter named ’the_Where_Clause’ that
 ** it’s expecting.
 */
 IF wc IS NOT NULL THEN
 Add_Parameter(pl, -- Handle to
 -- the ParamList
 ’the_Where_Clause’, -- Name of Parameter
 -- in the Report
 TEXT_PARAMETER, -- Type of Parameter
 wc -- String Value
 -- for Parameter
);
 END IF;
 /*
 ** Launch the report, passing parameters in the
 ** parameter list.
 */
 Run_Product(REPORTS, -- The Product to call
 ’rep0058.rdf’, -- The name of the
 -- report definition
 SYNCHRONOUS, -- The communications mode
 BATCH, -- The Execution Mode
 FILESYSTEM, -- The Location of the
 -- reports document
 pl -- The Handle to the
); -- parameter list
 /* Delete the parameter list */
 Destroy_Parameter_List(pl);
END;

395

SYSTEM.LAST_RECORD system variable

Syntax
SYSTEM.LAST_RECORD

Description

SYSTEM.LAST_RECORD indicates whether the current record is the last record in a block’s list of
records. The value is one of the following two CHAR values:

TRUE Indicates that the current record is the last record in the current
block’s list of records.

FALSE Indicates that the current record is not the last record in the current
block’s list of records.

SYSTEM.LAST_RECORD examples

Assume that you want to create a user-defined procedure that displays a custom message when an
operator navigates to the last record in a block’s list of records. The following user-defined procedure
performs the basic function.

PROCEDURE LAST_RECORD_MESSAGE IS
BEGIN
 IF :System.Last_Record = ’TRUE’
 THEN Message(’You are on the last row’);
 END IF;
END;

You can then redefine [Down], [Next Record], and [Scroll Down] to call this user-defined procedure in
addition to their normal processing.

396

SYSTEM.MASTER_BLOCK system variable

Syntax
SYSTEM.MASTER_BLOCK

Description

This system variable works with its companion SYSTEM.COORDINATION_OPERATION to help an
On-Clear-Details trigger determine what type of coordination-causing operation fired the trigger, and on
which master block of a master/detail relation.

The values of the two system variables remain constant throughout the clearing phase of any block
synchronization. SYSTEM.MASTER_BLOCK represents the name of the driving master block, and
SYSTEM_COORDINATION_OPERATION represents the coordination-causing event that occurred on
the master block.

Please see the reference topic for SYSTEM.COORDINATION_OPERATION for more information.

397

SYSTEM.MESSAGE_LEVEL system variable

Syntax
SYSTEM.MESSAGE_LEVEL

Description

SYSTEM.MESSAGE_LEVEL stores one of the following message severity levels: 0, 5, 10, 15, 20, or
25. The default value is 0.

SYSTEM.MESSAGE_LEVEL can be set to either a character string or a number. The values assigned
can be any value between 0 and 25, but values lower than 0 or higher than 25 will generate an error.

During a Runform session, Form Builder suppresses all messages with a severity level that is the same or
lower (less severe) than the indicated severity level.

Assign a value to the SYSTEM.MESSAGE_LEVEL system variable with standard PL/SQL syntax:
:System.Message_Level := value;

The legal values for SYSTEM.MESSAGE_LEVEL are 0, 5, 10, 15, 20,and 25. Form Builder does not
suppress prompts or vital error messages, no matter what severity level you select.

SYSTEM.MESSAGE_LEVEL examples

Assume that you want Form Builder to display only the most severe messages (level 25). The following
Pre-Form trigger suppresses all messages at levels 20 and below.

:System.Message_Level := ’20’;

398

SYSTEM.MODE system variable

Syntax
SYSTEM.MODE

Description

SYSTEM.MODE indicates whether the form is in Normal, Enter Query, or Fetch Processing mode. The
value is always a character string.

NORMAL Indicates that the form is currently in normal processing mode.

ENTER-QUERY Indicates that the form is currently in Enter Query mode.

QUERY Indicates that the form is currently in fetch processing mode,
meaning that a query is currently being processed.

Usage Notes

When using SYSTEM.MODE to check whether the current block is in Enter Query mode, be aware that
if testing from a When-Button-Pressed trigger in a control block, Enter Query mode will never be
entered, because the control block is not the current block.

SYSTEM.MODE examples

Assume that you want Form Builder to display an LOV when the operator enters query mode and the
input focus is in a particular text item. The following trigger accomplishes that operation.

/*
** When-New-Item-Instance trigger
*/
BEGIN
 IF :System.Cursor_Item = ’EMP.EMPNO’ and
 :System.Mode = ’ENTER-QUERY’
 THEN
 IF NOT Show_Lov(’my_lov’) THEN
 RAISE Form_trigger_Failure;
 END IF;
END;

399

SYSTEM.MOUSE_BUTTON_MODIFIERS system variable

Syntax
SYSTEM.MOUSE_BUTTON_MODIFIERS

Description

SYSTEM.MOUSE_BUTTON_MODIFIERS indicates the keys that were pressed during the click, such
as SHIFT, ALT, or CONTROL. The value is always a character string.

For example, if the operator holds down the control and shift keys while pressing the mouse button,
SYSTEM.MOUSE_BUTTON_MODIFIERS contains the value "Shift+Control+".

The values returned by this variable will be invariant across all platforms, and will not change across
languages. SYSTEM.MOUSE_BUTTON_MODIFIERS should be used in place of
SYSTEM.MOUSE_BUTTON_SHIFT_STATE.

Possible values are: "Shift+", "Caps Lock+", "Control+", "Alt+", "Command+", "Super+", and
"Hyper+".

400

SYSTEM.MOUSE_BUTTON_PRESSED system variable

Syntax
SYSTEM.MOUSE_BUTTON_PRESSED

Description

SYSTEM.MOUSE_BUTTON_PRESSED indicates the number of the button that was clicked, either 1,
2, or 3 (left, middle, or right). The value is always a character string.

Notes:

On Motif platforms pressing the right mouse button will not set the
SYSTEM.MOUSE_BUTTON_PRESSED value.

SYSTEM.MOUSE_BUTTON_PRESSED examples

/*
** trigger: When-Mouse-Click
** Example: When mouse button 1 is pressed,
** a help window appears.
*/
DECLARE
 the_button_pressed VARCHAR(1);
BEGIN
 the_button_pressed := :System.Mouse_Button_Pressed;
 IF the_button_pressed = ’1’ THEN
 Show_Window(’online_help’,20,5);
 END IF;
END;

401

SYSTEM.MOUSE_BUTTON_SHIFT_STATE system
variable

Syntax
SYSTEM.MOUSE_BUTTON_SHIFT_STATE

Description

SYSTEM.MOUSE_BUTTON_SHIFT_STATE indicates the key that was pressed during the click, such
as SHIFT, ALT, or CONTROL. The value is always a character string. The string itself may depend on
the user’s platform. For example, in Microsoft Windows, the strings returned are in the language of the
operating system.

Key Pressed Value

SHIFT Shift+

CONTROL Ctrl+

ALT Alt+

SHIFT+CONTROL Shift+Ctrl+

SYSTEM.MOUSE_BUTTON_SHIFT_STATE examples

/*
** trigger: When-Mouse-Click
** Example: If the operator presses down on the Shift key and
** then clicks on a boilerplate image, a window
** appears.
*/
DECLARE
 key_pressed VARCHAR(30) := ’FALSE’;
 x_position_clicked NUMBER(30);
 y_position_clicked NUMBER(30);

BEGIN
 key_pressed := :System.Mouse_Button_Shift_State;
 x_position_clicked := To_Number(:System.Mouse_X_Pos);
 y_position_clicked := To_Number(:System.Mouse_Y_Pos);
/*
** If the operator shift-clicked within the x and y
** coordinates of a boilerplate image, display a window.
*/
 IF key_pressed = ’Shift+’ AND x_position_clicked
 BETWEEN 10 AND 20 AND y_position_clicked BETWEEN 10
 AND 20 THEN
 Show_Window(’boilerplate_image_window’);
 END IF;
END;

402

SYSTEM.MOUSE_CANVAS system variable

Syntax
SYSTEM.MOUSE_CANVAS

Description

If the mouse is in a canvas, SYSTEM.MOUSE_CANVAS represents the name of that canvas as a CHAR
value. If the mouse is in an item, this variable represents the name of the canvas containing the item.

SYSTEM.MOUSE_CANVAS is NULL if:

• the mouse is not in a canvas

• the operator presses the left mouse button, then moves the mouse

• the platform is non-GUI

SYSTEM.MOUSE_CANVAS examples

/*
** trigger: When-Mouse-Move
** Example: When the mouse enters any one of several
overlapping
** canvases, Form Builder brings that canvas to the
** front.
*/
DECLARE
 canvas_to_front VARCHAR(50);
BEGIN
 canvas_to_front := :System.Mouse_Canvas;
 Show_View(canvas_to_front);
END;

403

SYSTEM.MOUSE_FORM system variable

Syntax
SYSTEM.MOUSE_FORM

Description

If the mouse is in a form document, SYSTEM.MOUSE_FORM represents the name of that form
document as a CHAR value. For example, if the mouse is in Form_Module1, the value for
SYSTEM.MOUSE_ITEM is FORM_MODULE1.

Note: SYSTEM.MOUSE_FORM is NULL if the platform is not a GUI platform.

404

SYSTEM.MOUSE_ITEM system variable

Syntax
SYSTEM.MOUSE_ITEM

Description

If the mouse is in an item, SYSTEM.MOUSE_ITEM represents the name of that item as a CHAR value.
For example, if the mouse is in Item1 in Block2, the value for SYSTEM.MOUSE_ITEM is
:BLOCK2.ITEM1.

SYSTEM.MOUSE_ITEM is NULL if:

• the mouse is not in an item

• the operator presses the left mouse button, then moves the mouse

• the platform is not a GUI platform

SYSTEM.MOUSE_ITEM examples

/* trigger: When-Mouse-Click
** Example: Dynamically repositions an item if:
** 1) the operator clicks mouse button 2
** on an item and
** 2) the operator subsequently clicks mouse button
** 2 on an area of the canvas that is
** not directly on top of another item.
*/
DECLARE
 item_to_move VARCHAR(50);
 the_button_pressed VARCHAR(50);
 target_x_position NUMBER(3);
 target_y_position NUMBER(3);
 the_button_pressed VARCHAR(1);
BEGIN
 /* Get the name of the item that was clicked.
 */
 item_to_move := :System.Mouse_Item;
 the_button_pressed := :System.Mouse_Button_Pressed;
 /*
 ** If the mouse was clicked on an area of a canvas that is
 ** not directly on top of another item, move the item to
 ** the new mouse location.
 */
 IF item_to_move IS NOT NULL AND the_button_pressed = ’2’
THEN
 target_x_position := To_Number(:System.Mouse_X_Pos);
 target_y_position := To_Number(:System.Mouse_Y_Pos);
 Set_Item_Property(item_to_move,position,
 target_x_position,target_y_position);
 target_x_position := NULL;
 target_y_position := NULL;
 item_to_move := NULL;
 END IF;
END;

405

SYSTEM.MOUSE_RECORD system variable

Syntax
SYSTEM.MOUSE_RECORD

Description

If the mouse is in a record, SYSTEM.MOUSE_RECORD represents that record’s record number as a
CHAR value.

Note: SYSTEM.MOUSE_RECORD is 0 if the mouse is not in an item (and thus, not in a record).

SYSTEM.MOUSE_RECORD examples

/*
** trigger: When-Mouse-Move
** Example: If the mouse is within a record, display a window
** that contains an editing toolbar.
*/
DECLARE
 mouse_in_record NUMBER(7);
BEGIN
 mouse_in_record := To_Number(:System.Mouse_Record);

 IF mouse_in_record > 0 THEN
 Show_Window(’editing_toolbar’);
 END IF;
END;

406

SYSTEM.MOUSE_RECORD_OFFSET system variable

Syntax
SYSTEM.MOUSE_RECORD_OFFSET

Description

If the mouse is in a record, SYSTEM.MOUSE_RECORD_OFFSET represents the offset from the first
visible record as a CHAR value. SYSTEM.MOUSE_RECORD_OFFSET is only valid within mouse
triggers. Its value represents which row within the visible rows the mouse has clicked.

For example, if the mouse is in the second of five visible records in a multi-record block,
SYSTEM.MOUSE_RECORD_OFFSET is 2. (SYSTEM.MOUSE_RECORD_OFFSET uses a 1-based
index).

Note: SYSTEM.MOUSE_RECORD_OFFSET is 0 if the mouse is not in an item (and thus, not in a
record).

407

SYSTEM.MOUSE_X_POS system variable

Syntax
SYSTEM.MOUSE_X_POS

Description

SYSTEM.MOUSE_X_POS represents (as a CHAR value) the x coordinate of the mouse in the units of
the current form coordinate system. If the mouse is in an item, the value is relative to the upper left
corner of the item’s bounding box. If the mouse is on a canvas, the value is relative to the upper left
corner of the canvas.

Note: SYSTEM.MOUSE_X_POS is always NULL on character-mode platforms.

SYSTEM.MOUSE_X_POS examples

/*
** Example: See SYSTEM.MOUSE_ITEM and
** SYSTEM.MOUSE_BUTTON_SHIFT_STATE.
*/

408

SYSTEM.MOUSE_Y_POS system variable

Syntax
SYSTEM.MOUSE_Y_POS

Description

SYSTEM.MOUSE_Y_POS represents (as a CHAR value) the y coordinate of the mouse, using units of
the current coordinate system. If the mouse is in an item, the value is relative to the upper left corner of
the item’s bounding box. If the mouse is on a canvas, the value is relative to the upper left corner of the
canvas.

Note: SYSTEM.MOUSE_Y_POS is always NULL on character-mode platforms.

SYSTEM.MOUSE_Y_POS examples

/*
** Example: See SYSTEM.MOUSE_ITEM and
** SYSTEM.MOUSE_BUTTON_SHIFT_STATE.
*/

409

SYSTEM.RECORD_STATUS system variable

Syntax
SYSTEM.RECORD_STATUS

Description

SYSTEM.RECORD_STATUS represents the status of the record where the cursor is located. The value
can be one of four character strings:

CHANGED Indicates that a queried record’s validation status is Changed.

INSERT Indicates that the record’s validation status is Changed and that the
record does not exist in the database.

NEW Indicates that the record’s validation status is New.

QUERY Indicates that the record’s validation status is Valid and that it was
retrieved from the database.

Usage Notes

Both SYSTEM.RECORD_STATUS and the GET_RECORD_PROPERTY built-in return the status of a
record in a given block, and in most cases, they return the same status. However, there are specific cases
in which the results may differ.

SYSTEM.RECORD_STATUS can in certain cases return a value of NULL, because
SYSTEM.RECORD_STATUS is undefined when there is no current record in the system. For example,
in a When-Clear-Block trigger, Form Builder is at the block level in its processing sequence, so there is
no current record to report on, and the value of SYSTEM.RECORD_STATUS is NULL.

GET_RECORD_PROPERTY, on the other hand, always has a value of NEW, CHANGED, QUERY, or
INSERT, because it returns the status of a specific record without regard to the processing sequence or
whether the record is the current record.

SYSTEM.RECORD_STATUS examples

Assume that you want to create a trigger that performs a commit before clearing a Changed record. The
following Key-CLRREC trigger performs this function.

IF :System.Record_Status IN (’CHANGED’, ’INSERT’) THEN
 Commit_Form;
END IF;
Clear_Record;

410

SYSTEM.SUPPRESS_WORKING system variable

Syntax
SYSTEM.SUPPRESS_WORKING

Description

SYSTEM.SUPPRESS_WORKING suppresses the "Working..." message in Runform, in order to prevent
the screen update usually caused by the display of the "Working..." message. The value of the variable is
one of the following two CHAR values:

TRUE Prevents Form Builder from issuing the "Working..." message.

FALSE Allows Form Builder to continue to issue the "Working..." message.

SYSTEM.SUPPRESS_WORKING examples

Assume that you want to have the form filled with data when the operator enters the form. The following
When-New-Form-Instance trigger will prevent the unwanted updates that would normally occur when
you fill the blocks with data.

:System.Suppress_Working := ’TRUE’;
Go_Block (’DEPT’);
Execute_Query;
Go_Block (’EMP’);
Execute_Query;
Go_Block (’DEPT’);
:System.Suppress_Working := ’FALSE’;

411

SYSTEM.TAB_NEW_PAGE system variable

Syntax
SYSTEM.TAB_NEW_PAGE

Description

The system variable SYSTEM.TAB_NEW_PAGE specifies the name of the tab page to which
navigation occurred. Use it inside a When-Tab-Page-Changed trigger.

SYSTEM.TAB_NEW_PAGE examples

/* Use system variable SYSTEM.TAB_NEW_PAGE inside a
** When-Tab-Page-Changed trigger to change the label of
** the tab page to UPPERCASE when an end user navigates
** into the tab page:
*/
DECLARE
 tp_nm VARCHAR2(30);
 tp_id TAB_PAGE;
 tp_lbl VARCHAR2(30);
BEGIN
 tp_nm := :SYSTEM.TAB_NEW_PAGE;
 tp_id := FIND_TAB_PAGE(tp_nm);
 tp_lbl := GET_TAB_PAGE_PROPERTY(tp_id, label);
 IF tp_nm LIKE ’ORD%’ THEN
 SET_TAB_PAGE_PROPERTY(tp_id, label, ’ORDERS’);
 END IF;
END;

412

SYSTEM.TAB_PREVIOUS_PAGE system variable

Syntax
SYSTEM.TAB_PREVIOUS_PAGE

Description

The system variable SYSTEM.TAB_PREVIOUS_PAGE specifies the name of the tab page from which
navigation occurred. Use it inside a When-Tab-Page-Changed trigger.

SYSTEM.TAB_PREVIOUS_PAGE examples

/* Use system variable SYSTEM.TAB_PREVIOUS_PAGE inside a
** When-Tab-Page-Changed trigger to change the label of the
** tab page to initial-cap after an end user navigates out
** of the tab page:
*/
DECLARE
 tp_nm VARCHAR2(30);
 tp_id TAB_PAGE;
 tp_lbl VARCHAR2(30);
BEGIN
 tp_nm := :SYSTEM.TAB_PREVIOUS_PAGE;
 tp_id := FIND_TAB_PAGE(tp_nm);
 tp_lbl := GET_TAB_PAGE_PROPERTY(tp_id, label);
 IF tp_nm LIKE ’ORD%’ THEN
 SET_TAB_PAGE_PROPERTY(tp_id, label, ’Orders’);
 END IF;
END;

413

SYSTEM.TRIGGER_BLOCK system variable

Syntax
SYSTEM.TRIGGER_BLOCK

Description

SYSTEM.TRIGGER_BLOCK represents the name of the block where the cursor was located when the
current trigger initially fired. The value is NULL if the current trigger is a Pre- or Post-Form trigger.
The value is always a character string.

SYSTEM.TRIGGER_BLOCK examples

Assume that you want to write a form-level procedure that navigates to the block where the cursor was
when the current trigger initially fired. The following statement performs this function.

Go_Block(Name_In(’System.trigger_Block’));

414

SYSTEM.TRIGGER_ITEM system variable

Syntax
SYSTEM.TRIGGER_ITEM

Description

SYSTEM.TRIGGER_ITEM represents the item (BLOCK.ITEM) in the scope for which the trigger is
currently firing. When referenced in a key trigger, it represents the item where the cursor was located
when the trigger began. The value is always a character string.

Usage Notes

SYSTEM.TRIGGER_ITEM remains the same from the beginning to the end of given trigger. This
differs from SYSTEM.CURSOR_ITEM, which may change within a given trigger when navigation
takes place.

SYSTEM.TRIGGER_ITEM restrictions

Avoid using SYSTEM.TRIGGER_ITEM in triggers where the current navigation unit is not the item,
such as Pre- and Post-Record, Block, and Form triggers. In these triggers, the value of
SYSTEM.TRIGGER_ITEM is NULL.

SYSTEM.TRIGGER_ITEM examples

Assume that you want to write a user-defined procedure that navigates to the item where the cursor was
when the current trigger initially fired. The following statement performs this function.

Go_Item(:System.trigger_Item);

415

SYSTEM.TRIGGER_NODE_SELECTED system variable

Syntax
SYSTEM.TRIGGER_NODE_SELECTED

Description

SYSTEM.TRIGGER_NODE_SELECTED contains a valid value only during the WHEN-TREE-NODE-
SELECTED trigger, indicating whether the trigger is firing for a selection or a deselection. The values
are either TRUE or FALSE.

416

SYSTEM.TRIGGER_RECORD system variable

Syntax
SYSTEM.TRIGGER_RECORD

Description

SYSTEM.TRIGGER_RECORD represents the number of the record that Form Builder is processing.
This number represents the record’s current physical order in the block’s list of records. The value is
always a character string.

SYSTEM.TRIGGER_RECORD examples

In the following anonymous block, the IF statement uses SYSTEM.TRIGGER_RECORD to identify the
current record before processing continues.

IF :System.trigger_Record = ’1’
 THEN Message(’First item in this order.’);
END IF;

417

418

Triggers

Overview of trigger categories

This topic provides an overview of commonly used triggers, grouped into the following functional
categories:

block-processing triggers

interface event triggers

master-detail triggers

message-handling triggers

navigational triggers

query-time triggers

transactional triggers

validation triggers

This topic does not list all of the triggers available in Form Builder, many of which have highly
specialized uses. For a complete list of triggers, or for detailed information on a specific trigger, refer to
the Triggers Category Page.

Block processing triggers

Block processing triggers fire in response to events related to record management in a block.

Trigger Typical Usage

When-Create-Record Perform an action whenever Form Builder attempts
to create a new record in a block. For example, to
set complex, calculated, or data-driven default
values that must be specified at runtime, rather than
design time.

When-Clear-Block Perform an action whenever Form Builder flushes
the current block; that is, removes all records from
the block.

When-Database-Record Perform an action whenever Form Builder changes a
record’s status to Insert or Update, thus indicating
that the record should be processed by the next
COMMIT_FORM operation

When-Remove-Record Perform an action whenever a record is cleared or
deleted. For example, to adjust a running total that
is being calculated for all of the records displayed in
a block.

419

Interface event triggers

Interface event triggers fire in response to events that occur in the form interface. Some of these triggers,
such as When-Button-Pressed, fire only in response to operator input or manipulation. Others, like
When-Window-Activated, can fire in response to both operator input and programmatic control.

trigger Typical Usage

When-Button-Pressed Initiate an action when an operator selects a button,
either with the mouse or through keyboard selection.

When-Checkbox-Changed Initiate an action when the operator toggles the state
of a check box, either with the mouse or through
keyboard selection

When-Image-Activated Initiate an action whenever the operator double-
clicks an image item.

When-Image-Pressed Initiate an action whenever an operator clicks on an
image item.

Key- [all] Replace the default function associated with a
function key. For example, you can define a Key-
EXIT trigger to replace the default functionality of
the [Help] key.

When-Radio-Changed Initiate an action when an operator changes the
current radio button selected in a radio group item.

When-Timer-Expired Initiate an action when a programmatic timer
expires.

When-Window-Activated Initiate an action whenever an operator or the
application activates a window.

When-Window-Closed Initiate an action whenever an operator closes a
window with the window manager’s Close
command.

When-Window-Deactivated Initiate an action whenever a window is deactivated
as a result of another window becoming the active
window.

When-Window-Resized Initiate an action whenever a window is resized,
either by the operator or programmatically.

420

Master/Detail triggers

Form Builder generates master/detail triggers automatically when a master/detail relation is defined
between blocks. The default master/detail triggers enforce coordination between records in a detail
block and the master record in a master block. Unless developing custom block-coordination schemes,
you do not need to define these triggers. Instead, simply create a relation object, and let Form Builder
generate the triggers required to manage coordination between the master and detail blocks in the
relation.

trigger Typical Usage

On-Check-Delete-Master Fires when Form Builder attempts to delete a record
in a block that is a master block in a master/detail
relation.

On-Clear-Details Fires when Form Builder needs to clear records in a
block that is a detail block in a master/detail relation
because those records no longer correspond to the
current record in the master block.

On-Populate-Details Fires when Form Builder needs to fetch records into
a block that is the detail block in a master/detail
relation so that detail records are synchronized with
the current record in the master block.

Message-handling triggers

Form Builder automatically issues appropriate error and informational messages in response to runtime
events. Message handling triggers fire in response to these default messaging events.

trigger Typical Usage

On-Error Replace a default error message with a custom error
message, or to trap and recover from an error.

On-Message To trap and respond to a message; for example, to
replace a default message issued by Form Builder with a
custom message.

Navigational triggers

Navigational triggers fire in response to navigational events. For instance, when the operator clicks on a
text item in another block, navigational events occur as Form Builder moves the input focus from the
current item to the target item.

421

Navigational events occur at different levels of the Form Builder object hierarchy (Form, Block, Record,
Item). Navigational triggers can be further sub-divided into two categories: Pre- and Post- triggers, and
When-New-Instance triggers.

Pre- and Post- Triggers fire as Form Builder navigates internally through different levels of the object
hierarchy. As you might expect, these triggers fire in response to navigation initiated by an operator,
such as pressing the [Next Item] key. However, be aware that these triggers also fire in response to
internal navigation that Form Builder performs during default processing. To avoid unexpected results,
you must consider such internal navigation when you use these triggers.

trigger Typical Usage

Pre-Form Perform an action just before Form Builder navigates to
the form from "outside" the form, such as at form startup.

Pre-Block Perform an action before Form Builder navigates to the
block level from the form level.

Pre-Record Perform an action before Form Builder navigates to the
record level from the block level.

Pre-Text-Item Perform an action before Form Builder navigates to a
text item from the record level.

Post-Text-Item Manipulate an item when Form Builder leaves a text item
and navigates to the record level.

Post-Record Manipulate a record when Form Builder leaves a record
and navigates to the block level.

Post-Block Manipulate the current record when Form Builder leaves
a block and navigates to the form level.

Post-Form Perform an action before Form Builder navigates to
"outside" the form, such as when exiting the form.

When-New-Instance-Triggers fire at the end of a navigational sequence that places the input focus on
a different item. Specifically, these triggers fire just after Form Builder moves the input focus to a
different item, when the form returns to a quiet state to wait for operator input.

Unlike the Pre- and Post- navigational triggers, the When-New-Instance triggers do not fire in response
to internal navigational events that occur during default form processing.

trigger Typical Usage

When-New-Form-Instance Perform an action at form start-up. (Occurs after the
Pre-Form trigger fires).

When-New-Block-Instance Perform an action immediately after the input focus
moves to an item in a block other than the block that
previously had input focus.

When-New-Record-Instance Perform an action immediately after the input focus
moves to an item in a different record. If the new
record is in a different block, fires after the When-
New-Block-Instance trigger, but before the When-

422

New-Item-Instance trigger.

When-New-Item-Instance Perform an action immediately after the input focus
moves to a different item. If the new item is in a
different block, fires after the When-New-Block-
Instance trigger.

Query-time triggers

Query-time triggers fire just before and just after the operator or the application executes a query in a
block.

trigger Typical Usage

Pre-Query Validate the current query criteria or provide additional
query criteria programmatically, just before sending the
SELECT statement to the database.

Post-Query Perform an action after fetching a record, such as looking
up values in other tables based on a value in the current
record. Fires once for each record fetched into the block.

Transactional triggers

Transactional triggers fire in response to a wide variety of events that occur as a form interacts with the
data source.

trigger Typical Usage

On-Delete Replace the default Form Builder processing for
handling deleted records during transaction posting.

On-Insert Replace the default Form Builder processing for
handling inserted records during transaction posting.

On-Lock Replace the default Form Builder processing for
locking rows in the database.

On-Logon Replace the default Form Builder processing for
connecting to ORACLE, especially for a form that
does not require a database connection or for
connecting to a non-ORACLE data source.

On-Logout Replace the default Form Builder processing for
logout from ORACLE.

On-Update Replace the default Form Builder processing for
handling updated records during transaction posting.

423

Post-Database-Commit Augment default Form Builder processing following
a database commit.

Post-Delete Audit transactions following the deletion of a row
from the database.

Post-Forms-Commit Augment the default Form Builder commit
statement prior to committing a transaction.

Post-Insert Audit transactions following the insertion of a row
in the database.

Post-Update Audit transactions following the updating of a row
in the database.

Pre-Commit Perform an action immediately before the Post and
Commit Transactions process, when Form Builder
determines that there are changes in the form to post
or to commit.

Pre-Delete Manipulate a record prior to its being deleted from
the database during the default Post and Commit
Transactions process; for example, to prevent
deletion of the record if certain conditions exist.

Pre-Insert Manipulate a record prior to its being inserted in the
database during the default Post and Commit
Transactions process.

Pre-Update Validate or modify a record prior to its being
updated in the database during the default Post and
Commit Transactions process.

Note: This is only a partial list of the transactional triggers available. Many of the triggers not shown
here are On-event triggers that exist primarily for applications that will run against a non-ORACLE data
source.

Validation triggers

Validation triggers fire when Form Builder validates data in an item or record. Form Builder performs
validation checks during navigation that occurs in response to operator input, programmatic control, or
default processing, such as a Commit operation.

trigger Typical Usage

When-Validate-Item Augment default validation of an item.

When-Validate-Record Augment default validation of a record.

424

Other trigger categories

The previous section listed triggers in groups according to their functions. Triggers can also be
categorized by name. There are five such categories, each relating to a particular type of event that
occurs during runtime processing.

When-Event Triggers signal a point at which Form Builder default processing may be augmented with
additional tasks or operations. For example, the When-Validate-Item trigger fires immediately after Form
Builder validates data in an item.

To augment the default validation checks that Form Builder performs, code additional validation in a
When-Validate-Item trigger. Most When-event triggers can include calls to restricted built-in
subprograms.

On-Event Triggers signal a point at which Form Builder default processing may be replaced. For
example, the On-Logon trigger fires when Form Builder readies to log on to an ORACLE data source. If
the application requires a connection to a non-ORACLE data source, code an On-Logon trigger to pass
the appropriate logon parameters to the non-ORACLE data source. This completely replaces the default
logon to ORACLE. On-event triggers can include calls to unrestricted built-in subprograms.

Pre-Event Triggers signal a point just prior to the occurrence of either a When-event or an On-event.
Use triggers for these events to prepare objects or data for the upcoming event. Pre-event triggers can
include calls to unrestricted built-in subprograms.

Post-Event Triggers signal a point just following the occurrence of either a When-event or an On-event.
Write triggers for these events that validate objects or data, or that perform some auditing tasks based on
the prior event. Post-event triggers can include calls to unrestricted built-in subprograms.

Key Triggers have a one-to-one relationship with specific keys. That is, the trigger fires when the
operator presses a specific key or key-sequence.

Remember that most GUI applications offer operators more than one way to execute commands. For
instance, an operator might be able to execute a query by clicking a button, selecting a menu command,
or pressing the [Execute Query] key.

In such situations, it would be a mistake to place all of your application logic in a key trigger that might
never fire. Similarly, in any mouse-driven application, you cannot rely entirely on key triggers for
navigational keys like [Next Item] and [Next Block]. Because operators can navigate with a mouse, they
may choose not to use these keys for navigation, and the associated triggers would not be fired.

425

Delete-Procedure trigger

Description

Automatically created by Form Builder when the delete data source is a stored procedure. This trigger is
called when a delete operation is necessary. Think of this as an ON-DELETE trigger that is called by the
system instead of doing default delete operations.

Do not modify this trigger.

Enter Query Mode Not applicable.

On Failure

No effect

426

Function Key triggers

Description

Function key triggers are associated with individual Runform function keys. A function key trigger fires
only when an operator presses the associated function key. The actions defined in a function key trigger
replace the default action that the function key would normally perform.

The following table shows all function key triggers and the corresponding Runform function keys.

Key trigger Associated Function Key

Key-CLRBLK [Clear Block]

Key-CLRFRM [Clear Form]

Key-CLRREC [Clear Record]

Key-COMMIT [Accept]

Key-CQUERY [Count Query Hits]

Key-CREREC [Insert Record]

Key-DELREC [Delete Record]

Key-DOWN [Down]

Key-DUP-ITEM [Duplicate Item]

Key-DUPREC [Duplicate Record]

Key-EDIT [Edit]

Key-ENTQRY [Enter Query]

Key-EXEQRY [Execute Query]

Key-EXIT [Exit]

Key-HELP [Help]

Key-LISTVAL [List of Values]

Key-MENU [Block Menu]

Key-NXTBLK [Next Block]

Key-NXT-ITEM [Next Item]

Key-NXTKEY [Next Primary Key]

Key-NXTREC [Next Record]

Key-NXTSET [Next Set of Records]

Key-PRINT [Print]

427

Key-PRVBLK [Previous Block]

Key-PRV-ITEM [Previous Item]

Key-PRVREC [Previous Record]

Key-SCRDOWN [Scroll Down]

Key-SCRUP [Scroll Up]

Key-UP [Up]

Key-UPDREC Equivalent to Record, Lock
command on the default menu

Note that you cannot redefine all Runform function keys with function key triggers. Specifically, you
cannot ever redefine the following static function keys because they are often performed by the terminal
or user interface management system and not by Form Builder.

[Clear Item] [First Line] [Scroll Left]

[Copy] [Insert Line] [Scroll Right]

[Cut] [Last Line] [Search]

[Delete Character] [Left] [Select]

[Delete Line] [Paste] [Show Keys]

[Display Error] [Refresh] [Toggle Insert/Replace]

[End of Line] [Right] [Transmit]

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

On Failure

no effect

Enter Query Mode yes

Usage Notes

The default functionality performed by the following keys is not allowed in Enter Query mode:

[Clear Block] [Down] [Next Record]

[Clear Form] [Duplicate Item] [Next Set of Records]

428

[Clear Record] [Duplicate Record] [Previous Block]

[Accept] [Block Menu] [Previous Record]

[Insert Record] [Next Block] [Up]

[Delete Record] [Next Primary Key] [Lock Record]

Common Uses

Use function key triggers to perform the following tasks:

• Disable function keys dynamically.

• Replace the default behavior of function keys.

• Dynamically remap function keys.

• Perform complex or multiple functions with a single key or key sequence.

Function Key Triggers restrictions

• Form Builder ignores the Key-Commit trigger when an operator presses [Commit/Accept] in a
dialog box.

429

Insert-Procedure trigger

Description

Automatically created by Form Builder when the insert data source is a stored procedure. This trigger is
called when a insert operation is necessary. Think of this as an ON-INSERT trigger that is called by the
system instead of doing default insert operations.

Definition Level

Do not modify this trigger.

Enter Query Mode Not applicable.

On Failure

No effect

430

Key-Fn trigger

Description

A Key-Fn trigger fires when an operator presses the associated key.

You can attach Key-Fn triggers to 10 keys or key sequences that normally do not perform any Form
Builder operations. These keys are referred to as Key-F0 through Key-F9. Before you can attach key
triggers to these keys, you or the DBA must use Oracle Terminal to map the keys to the appropriate
functions.

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

• Use Key-Fn triggers to create additional function keys for custom functions.

• The key description shown in the default menu’s Help->Keys menu will always be for the form-
level trigger defined for that key. If there are any lower-level triggers (e.g., block-level triggers) that
are also defined for the key, their descriptions will be shown when focus is in the lower level (e.g.,
the block) and [Show Keys] is pressed, but they will not be displayed in the default menu’s Help-
>Keys menu.

• Not all keys can be remapped on certain operating systems. For example, the Microsoft Windows
operating system always displays the Windows Help System when F1 is pressed, and attempts to
close the application window when Alt-F4 is pressed.

Key-Fn trigger restrictions

Form Builder ignores Key-Fn triggers in Edit mode.

431

Key-Others trigger

Description

A Key-Others trigger fires when an operator presses the associated key.

A Key-Others trigger is associated with all keys that can have key triggers associated with them but are
not currently defined by function key triggers (at any level).

A Key-Others trigger overrides the default behavior of a Runform function key (unless one of the
restrictions apply). When this occurs, however, Form Builder still displays the function key’s default
entry in the Keys screen.

Trigger Type key

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use Key-Others triggers to limit an operator’s possible actions. Specifically, use Key-Others triggers to
perform the following tasks:

• Disable all keys that are not relevant in a particular situation.

• Perform one specific action whenever an operator presses any key.

Also note:

• The key description shown in the default menu’s Help->Keys menu will always be for the form-
level trigger defined for that key. If there are any lower-level triggers (e.g., block-level triggers) that
are also defined for the key, their descriptions will be shown when focus is in the lower level (e.g.,
the block) and [Show Keys] is pressed, but they will not be displayed in the default menu’s
Help->Keys menu.

Key-Others trigger restrictions

Form Builder ignores a Key-Others trigger under the following conditions:

• The form is in Enter Query mode and Fire in Enter-Query Mode is Off.

• A list of values, the Keys screen, a help screen, or an error screen is displayed.

• The operator is responding to a Runform prompt.

• The operator presses a static function key.

432

Lock-Procedure trigger

Description

Automatically created by Form Builder when the lock data source is a stored procedure. This trigger is
called when a lock operation is necessary. Think of this as an ON-LOCK trigger that is called by the
system instead of doing default lock operations.

Do not modify this trigger.

Enter Query Mode Not applicable.

On Failure

No effect

433

On-Check-Delete-Master trigger

Description

Form Builder creates this trigger automatically when you define a master/detail relation and set the
Delete Record Behavior property to Non-Isolated. It fires when there is an attempt to delete a record in
the master block of a master/detail relation.

Definition Level form or block

Legal Commands

Any command, unrestricted built-ins, restricted built-ins

Enter Query Mode no

On Failure

Prevents the deletion of the current master record

Fires In

Master/Detail Coordination

On-Check-Delete-Master trigger examples

Example

The following example replaces the On-Check-Delete-Master that is generated by default for a
master/detail relation with a trigger that will fail if the sum of the distributions does not equal the
purchase order total.

DECLARE
 the_sum NUMBER;
BEGIN
 SELECT SUM(dollar_amt)
 INTO the_sum
 FROM po_distribution
 WHERE po_number = :purchase_order.number;

/* Check for errors */
 IF the_sum <> :purchase_order.total THEN
 Message(’PO Distributions do not reconcile.’);
 RAISE Form_trigger_Failure;
 ELSIF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 end if;
END;

434

On-Check-Unique trigger

Description

During a commit operation, the On-Check-Unique trigger fires when Form Builder normally checks that
primary key values are unique before inserting or updating a record in a base table. It fires once for each
record that has been inserted or updated.

Replaces the default processing for checking record uniqueness. When a block has the PRIMKEYB
property set to Yes, Form Builder, by default, checks the uniqueness of a record by constructing and
executing the appropriate SQL statement to select for rows that match the current record’s primary key
values. If a duplicate row is found, Form Builder displays message FRM-40600: Record has already
been inserted.

For a record that has been marked for insert, Form Builder always checks for unique primary key values.
In the case of an update, Form Builder checks for unique primary key values only if one or more items
that have the Primary Key item property have been modified.

Definition Level

form, block

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

To perform the default processing from this trigger, call the CHECK_RECORD_UNIQUENESS built-
in.

On Failure

no effect

Fires In

Check Record Uniqueness

Post and Commit Transactions

See Process Flowcharts

435

On-Check-Unique trigger examples

Example

The following example verifies that the current record in question does not already exist in the DEPT
table.

DECLARE
 CURSOR chk_unique IS SELECT ’x’
 FROM dept
 WHERE deptno = :dept.deptno;
 tmp VARCHAR2(1);
BEGIN
 OPEN chk_unique;
 FETCH chk_unique INTO tmp;
 CLOSE chk_unique;
 IF tmp IS NOT NULL THEN
 Message(’This department already exists.’);
 RAISE Form_trigger_Failure;
 ELSIF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 END IF;
END;

436

On-Clear-Details trigger

Description

Fires when a coordination-causing event occurs in a block that is a master block in a Master/Detail
relation. A coordination-causing event is any event that makes a different record the current record in
the master block.

Definition Level form, block

Legal Commands

Any command, unrestricted built-ins, restricted built-ins

Enter Query Mode no

Usage Notes

Form Builder creates the On-Clear-Details trigger automatically when a Master/Detail block relation is
defined.

On Failure

Causes the coordination-causing operation and any scheduled coordination triggers to abort.

Fires In

Master Detail Coordination

See Process Flowcharts

437

On-Close trigger

Description

Fires when an operator or the application causes a query to close. By default, Form Builder closes a
query when all of the records identified by the query criteria have been fetched, or when the operator or
the application aborts the query.

The On-Close trigger augments the normal Form Builder "close cursor" phase of a query.

Definition Level form

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Close trigger after using the On-Select or On-Fetch triggers, specifically, to close files,
close cursors, and free memory.

• The On-Close trigger fires automatically when the ABORT_QUERY built-in is called from an On-
Select trigger.

On Failure

no effect

Fires In

ABORT_QUERY

Close The Query

On-Close trigger examples

Example

The following example releases memory being used by a user-defined data access method via the
transactional triggers.

BEGIN
 IF NOT my_data source_open(’DX110_DEPT’) THEN
 my_datasource_close(’DX110_DEPT’);
 ELSIF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 END IF;
END;

438

On-Column-Security trigger

Description

Fires when Form Builder would normally enforce column-level security for each block that has the
Enforce Column Security block property set On.

By default, Form Builder enforces column security by querying the database to determine the base table
columns to which the current form operator has update privileges. For columns to which the operator
does not have update privileges, Form Builder makes the corresponding base table items in the form non-
updateable by setting the Update Allowed item property Off dynamically. Form Builder performs this
operation at form startup, processing each block in sequence.

Definition Level form, block

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

To perform the default processing from this trigger, call the ENFORCE_COLUMN_SECURITY built-
in.

On Failure

no effect

On-Column-Security trigger examples

Example

The following example sets salary and commission text items in the current block to disabled and non-
updateable, unless the SUPERUSER role is enabled. Only users with the user-defined SUPERUSER role
can change these number fields.

DECLARE
 itm_id Item;
 on_or_off NUMBER;
BEGIN
 IF NOT role_is_set(’SUPERUSER’) THEN
 on_or_off := PROPERTY_OFF;
 ELSE
 on_or_off := PROPERTY_ON;
 END IF;
 itm_id := Find_Item(’Emp.Sal’);
 Set_Item_Property(itm_id,ENABLED,on_or_off);
 Set_Item_Property(itm_id,UPDATEABLE,on_or_off);
 itm_id := Find_Item(’Emp.Comm’);
 Set_Item_Property(itm_id,ENABLED,on_or_off);
 Set_Item_Property(itm_id,UPDATEABLE,on_or_off);

 IF form_fatal OR form_failure THEN

439

 raise form_trigger_failure;
END IF;
END;

440

On-Commit trigger

Description

Fires whenever Form Builder would normally issue a database commit statement to finalize a transaction.
By default, this operation occurs after all records that have been marked as updates, inserts, and deletes
have been posted to the database.

The default COMMIT statement that Form Builder issues to finalize a transaction during the Post and
Commit Transactions process.

Definition Level form

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Commit trigger to change the conditions of normal Form Builder commit processing to
fit the particular requirements of a commit to a non-ORACLE database.

• To perform the default processing from this trigger, call to the built-in.

On Failure

Aborts Post and Commit processing

Fires In

Post and Commit Transactions

See Process Flowcharts

On-Commit trigger examples

Example

This example disables the commit operation when running against a datasource that does not support
transaction control. If the application is running against ORACLE, the commit operation behaves
normally.

BEGIN
 IF Get_Application_Property(DATA_SOURCE) = ’ORACLE’ THEN
 Commit_Form;
 ELSIF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 END IF;
 /*
 ** Otherwise, no action is performed
 */
END;

441

On-Count trigger

Description

Fires when Form Builder would normally perform default Count Query processing to determine the number
of rows in the database that match the current query criteria. When the On-Count trigger completes
execution, Form Builder issues the standard query hits message: FRM-40355: Query will retrieve <n>
records.

Definition Level form, block

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode yes

Usage Notes

• Use an On-Count trigger to replace default Count Query processing in an application running
against a non-ORACLE data source.

• To perform the default Form Builder processing from this trigger, include a call to the built-in.

• If you are replacing default processing, you can set the value of the Query_Hits block property to
indicate the number of records in the non-ORACLE data source that match the query criteria.

• Form Builder will display the query hits message (FRM-40355) even if the On-Count trigger fails to
set the value of the Query_Hits block property. In such a case, the message reports 0 records
identified.

On Failure

no effect

Fires In

See Process Flowcharts

On-Count trigger examples

Example

This example calls a user-named subprogram to count the number of records to be retrieved by the
current query criteria, and sets the Query_Hits property appropriately.

DECLARE
 j NUMBER;
BEGIN
 j := Recs_Returned(’DEPT’,Name_In(’DEPT.DNAME’));
 Set_Block_Property(’DEPT’,QUERY_HITS,j);
END;

442

On-Delete trigger

Description

Fires during the Post and Commit Transactions process and replaces the default Form Builder processing
for handling deleted records during transaction posting. Specifically, it fires after the Pre-Delete trigger
fires and before the Post-Delete trigger fires, replacing the actual database delete of a given row. The
trigger fires once for each row that is marked for deletion from the database.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Delete trigger to replace the default Form Builder processing for handling deleted
records during transaction posting.

• To perform the default Form Builder processing from this trigger, that is, to delete a record from
your form or from the database, include a call to the DELETE_RECORD built-in.

On Failure

Form Builder rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

On-Delete trigger examples

Example

This example updates the employee table to set the Termination_Date, rather than actually deleting the
employee from the database.

BEGIN
 UPDATE emp
 SET termination_date = SYSDATE
 WHERE empno = :Emp.Empno;
IF form_fatal OR form_failure THEN
 raise form_trigger_failure;
END IF;
END;

443

On-Dispatch-Event trigger

Description

This trigger is called when an ActiveX control event occurs. You can call the DISPATCH_EVENT
built-in from within this trigger to specify the dispatch mode as either restricted or unrestricted. For
more information about working with ActiveX control events, see Responding to ActiveX Control
Events.

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode No

On Failure

No effect

On-Dispatch Event examples

Example
/*
ON-DISPATCH-EVENT trigger
*/
BEGIN

IF SYSTEM.CUSTOM_ITEM_EVENT = 4294966696 THEN
/*when event occurs, allow it to apply to different

items */.
FORMS4W.DISPATCH_EVENT(RESTRICTED_ALLOWED);

ELSE
/*run the default, that does not allow applying any

other item */
FORMS4W.DISPATCH_EVENT(RESTRICTED_UNALLOWED);

ENDIF;
 IF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 END IF;

END;

444

On-Error trigger

Description

An On-Error trigger fires whenever Form Builder would normally cause an error message to display.

Replaces

The writing of an error message to the message line.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode yes

Usage Notes

• Use an On-Error trigger for the following purposes:

• to trap and recover from an error

• to replace a standard error message with a custom message

Use the ERROR_CODE , ERROR_TEXT , ERROR_TYPE , DBMS_ERROR_TEXT , or
DBMS_ERROR_CODE built-in function in an On-Error trigger to identify a specific error condition.

• In most cases, On-Error triggers should be attached to the form, rather than to a block or item.
Trapping certain errors at the block or item level can be difficult if these errors occur while Form
Builder is performing internal navigation, such as during a Commit process.

On Failure

no effect

On-Error trigger examples

Example

The following example checks specific error message codes and responds appropriately.
DECLARE
 lv_errcod NUMBER := ERROR_CODE;
 lv_errtyp VARCHAR2(3) := ERROR_TYPE;
 lv_errtxt VARCHAR2(80) := ERROR_TEXT;
BEGIN
 IF (lv_errcod = 40nnn) THEN
 /*
 ** Perform some tasks here
 */
 ELSIF (lv_errcod = 40mmm) THEN
 /*
 ** More tasks here
 */

445

...

...
ELSIF (lv_errcod = 40zzz) THEN
 /*
 ** More tasks here
 */
ELSE
 Message(lv_errtyp||’-’||to_char(lv_errcod)||’: ’||lv_errtxt);
 RAISE Form_trigger_Failure;
END IF;
END;

446

On-Fetch trigger

Description

When a query is first opened, fires immediately after the On-Select trigger fires, when the first records
are fetched into the block. While the query remains open, fires again each time a set of rows must be
fetched into the block.

Definition Level form or block

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

When you write an On-Fetch trigger to replace default fetch processing, the trigger must do the
following:

Retrieve the appropriate number of records from the non-ORACLE data source, as indicated by the
setting of the Records_To_Fetch property.

Create that number of queried records in the current block.

Populate the records with the retrieved data.

Create queried records from an On-Fetch trigger by calling the CREATE_QUERIED_RECORD
built-in subprogram.

While the query remains open, the On-Fetch trigger continues to fire as more records are needed in the
block. This behavior continues:

until no queried records are created in a single execution of the trigger. Failing to create any records
signals an end-of-fetch to Form Builder, indicating that there are no more records to be retrieved.

until the query is closed, either by the operator or programmatically through a call to
ABORT_QUERY.

until the trigger raises the built-in exception FORM_TRIGGER_FAILURE.

•

To perform the default Form Builder processing from this trigger, include a call to the
FETCH_RECORDS built-in.

Do not use an ABORT_QUERY built-in in an On-Fetch trigger. ABORT_QUERY is not valid in an
On-Fetch trigger, and produces inconsistent results.

On Failure

no effect

Fires In

Fetch Records

See Process Flowcharts

447

On-Fetch trigger examples

This example calls a client-side package function to retrieve the proper number of rows from a package
cursor.

DECLARE
 j NUMBER := Get_Block_Property(blk_name, RECORDS_TO_FETCH);
 emprow emp%ROWTYPE;

BEGIN
 FOR ctr IN 1..j LOOP
 /*
 ** Try to get the next row.
 */
 EXIT WHEN NOT MyPackage.Get_Next_Row(emprow);
 Create_Queried_Record;
 :Emp.rowid := emprow.ROWID;
 :Emp.empno := emprow.EMPNO;
 :Emp.ename := emprow.ENAME;
 :
 :
 END LOOP;
 IF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 END IF;
END;

448

On-Insert trigger

Description

Fires during the Post and Commit Transactions process when a record is inserted. Specifically, it fires
after the Pre-Insert trigger fires and before the Post-Insert trigger fires, when Form Builder would
normally insert a record in the database. It fires once for each row that is marked for insertion into the
database.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Insert trigger to replace the default Form Builder processing for handling inserted
records during transaction posting.

• To perform the default Form Builder processing from this trigger, include a call to the
INSERT_RECORD built-in.

On Failure

Form Builder performs the following steps when the On-Insert trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

449

On-Lock trigger

Description

Fires whenever Form Builder would normally attempt to lock a row, such as when an operator presses a
key to modify data in an item. The trigger fires between the keypress and the display of the modified
data.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Lock trigger to replace the default Form Builder processing for locking rows. For
example, for an application intended for use on a single-user system, use the On-Lock trigger to
speed processing by bypassing all lock processing. Also, use On-Lock when accessing a non-
ORACLE data source directly, not by way of Open Gateway.

• When the On-Lock trigger fires as a result of an operator trying to modify data, the trigger fires only
the first time the operator tries to modify an item in the record. The trigger does not fire during
subsequent modifications to items in the same record. In other words, for every row that is to be
locked, the trigger fires once.

• To perform the default Form Builder processing from this trigger, include a call to the
LOCK_RECORD built-in.

• Use this trigger to lock underlying tables for non-updateable views.

Caution

In special circumstances, you may use the LOCK TABLE DML statement in an On-Lock trigger.
However, as this could result in other users being locked out of the table, please exercise caution and
refer to the ORACLE RDMS Database Administrator’s Guide before using LOCK TABLE.

On Failure

When the On-Lock trigger fails, the target record is not locked and Form Builder attempts to put the
input focus on the current item. If the current item cannot be entered for some reason, Form Builder
attempts to put the input focus on the previous navigable item.

Fires In

Lock the Row

See Process Flowcharts

450

On-Logon trigger

Description

Fires once for each logon when Form Builder normally initiates the logon sequence.

Definition Level form

Legal Commands

unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Logon trigger to initiate a logon procedure to a non-ORACLE data source.

• Pre-Logon and Post-Logon triggers fire as part of the logon procedure.

• To create an application that does not require a data source, supply a NULL command to this trigger
to bypass the connection to a data source.

• To perform the default Form Builder processing from this trigger, include a call to the LOGON
built-in.

On Failure

Form Builder attempts to exit the form gracefully, and does not fire the Post-Logon trigger.

Fires In

LOGON

See Process Flowcharts

451

On-Logout trigger

Description

Fires when Form Builder normally initiates a logout procedure from Form Builder and from the
RDBMS.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use an On-Logout trigger to replace the default logout processing either from the RDBMS or from a
non-ORACLE data source.

• To perform the default Form Builder processing from this trigger, include a call to the LOGOUT
built-in.

• If you call certain built-ins from within one of the Logout triggers, the results are undefined. For
example, you cannot call the COPY built-in from a Pre-Logout trigger because Pre-Logout fires
after the Leave the Form event. Because the form is no longer accessible, a COPY operation is not
possible.

On Failure

If an exception is raised in an On-Logout trigger and the current Runform session is exited, Form Builder
will not fire other triggers, such as Post-Logout .

Fires In

LOGOUT

See Process Flowcharts

452

On-Message trigger

Description

Fires whenever Form Builder would normally cause a message to display and pre-empts the message.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use an On-Message trigger for the following purposes:

• to trap and respond to an informative message

• to replace a standard informative message with a custom message

• to exclude an inappropriate message

• Use the MESSAGE_CODE, MESSAGE_TEXT, MESSAGE_TYPE built-ins in an On-Message
trigger to identify the occurrence of a specific message condition.

• If you use the On-Message trigger to trap a message so that it does not display on the message line,
the GET_MESSAGE built-in does not return a value. To display the current message from this
trigger, you must trap the message and explicitly write it to the display device.

• In most cases, On-Message triggers should be attached to the form, rather than to a block or item.
Trapping certain errors at the block or item level can be difficult if these errors occur while Form
Builder is performing internal navigation, such as during a Commit process.

On Failure

no effect

On-Message trigger examples

Example

The following example responds to an error message by displaying an alert that gives the user a message
and gives the user the choice to continue or to stop:

DECLARE
 alert_button NUMBER;
 lv_errtype VARCHAR2(3) := MESSAGE_TYPE;
 lv_errcod NUMBER := MESSAGE_CODE;
 lv_errtxt VARCHAR2(80) := MESSAGE_TEXT;
BEGIN
 IF lv_errcod = 40350 THEN
 alert_button := Show_Alert(’continue_alert’);
 IF alert_button = ALERT_BUTTON1 THEN

453

 ...
 ELSE
 ...
 END IF;
 ELSE
 Message(lv_errtyp||’-’||to_char(lv_errcod)||’:
’||lv_errtxt);
 RAISE Form_trigger_Failure;
 END IF;
 IF form_fatal OR form_failure THEN
 raise form_trigger_failure;
 END IF;
END;

454

On-Populate-Details trigger

Description

Form Builder creates this trigger automatically when a Master/Detail relation is defined. It fires when
Form Builder would normally need to populate the detail block in a Master/Detail relation.

Definition Level form, block

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins, restricted built-ins

Enter Query Mode no

Usage Notes

Use an On-Populate-Details trigger when you have established a Master/Detail relationship and you want
to replace the default populate phase of a query.

The On-Populate-Details trigger does not fire unless an On-Clear-Details trigger is present. If you are
using the default Master/Detail functionality, Form Builder creates the necessary triggers automatically.
However, if you are writing your own Master/Detail logic, be aware that the On-Clear-Details trigger
must be present, even if it contains only the NULL statement.

When Immediate coordination is set, this causes the details of the instantiated master to be populated
immediately. Immediate coordination is the default.

When Deferred coordination is set and this trigger fires, Form Builder marks the blocks as needing to be
coordinated.

If you intend to manage block coordination yourself, you can call the SET_BLOCK_PROPERTY
(COORDINATION_STATUS) built-in.

On Failure

Can cause an inconsistent state in the form.

Fires In

Master/Detail Coordination

See Process Flowcharts

455

On-Rollback trigger

Description

Fires when Form Builder would normally issue a ROLLBACK statement, to roll back a transaction to the
last savepoint that was issued.

Definition Level form

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use an On-Rollback trigger to replace standard Form Builder rollback processing.

To perform default Form Builder processing from this trigger, include a call to the ISSUE_ROLLBACK
built-in.

Fires In

CLEAR_FORM

Post and Commit Transactions

ROLLBACK_FORM

See Process Flowcharts

456

On-Savepoint trigger

Description

Fires when Form Builder would normally issue a Savepoint statement. By default, Form Builder issues
savepoints at form startup, and at the start of each Post and Commit Transaction process.

Definition Level form

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

To perform default Form Builder processing from this trigger, include a call to the ISSUE_SAVEPOINT
built-in.

In an On-Savepoint trigger, the Savepoint_Name application property returns the name of the next
savepoint that Form Builder would issue by default, if no On-Savepoint trigger were present. In an On-
Rollback trigger , Savepoint_Name returns the name of the savepoint to which Form Builder would roll
back.

Suppress default savepoint processing by setting the Savepoint Mode form document property to Off.
When Savepoint Mode is Off, Form Builder does not issue savepoints and, consequently, the On-
Savepoint trigger never fires.

On Failure

no effect

Fires In

CALL_FORM

Post and Commit Transactions

SAVEPOINT

See Process Flowcharts

457

On-Select trigger

Description

Fires when Form Builder would normally execute the open cursor, parse, and execute phases of a query,
to identify the records in the database that match the current query criteria.

Definition Level form or block

Legal Commands

SELECT statements, PL/SQL, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use an On-Select trigger to open and execute the database cursor. Specifically, use this trigger when
you are retrieving data from a non-ORACLE data source. The On-Select trigger can be used in
conjunction with the On-Fetch trigger to replace the processing that normally occurs in the
EXECUTE_QUERY built-in subprogram.

To perform the default Form Builder processing from this trigger, include a call to the
SELECT_RECORDS built-in.

On Failure

no effect

Fires In

EXECUTE_QUERY

Open The Query

See Process Flowcharts

On-Select trigger examples

Example

In the following example, the On-Select trigger is used to call a user exit, ’Query,’ and a built-in
subprogram, SELECT_RECORDS, to perform a query against a database.

IF Get_Application_Property(DATASOURCE) = ’DB2’ THEN
 User_Exit (’Query’);
 IF Form_Failure OR Form_Fatal THEN
 ABORT_QUERY;
 END IF;
ELSE
 /*
 ** Perform the default Form Builder task of opening the
query.

458

 */
 Select_Records;
END IF;

459

On-Sequence-Number trigger

Description

Fires when Form Builder would normally perform the default processing for generating sequence
numbers for default item values. Replaces the default series of events that occurs when Form Builder
interacts with the database to get the next value from a SEQUENCE object defined in the database.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

When a SEQUENCE is used as a default item value, Form Builder queries the database to get the next
value from the SEQUENCE whenever the Create Record event occurs. Suppress or override this
functionality with an On-Sequence-Number trigger.

To perform the default Form Builder processing from this trigger, call the
GENERATE_SEQUENCE_NUMBER built-in.

On Failure

no effect

Fires In

GENERATE_SEQUENCE_NUMBER

See Process Flowcharts

460

On-Update trigger

Description

Fires during the Post and Commit Transactions process while updating a record. Specifically, it fires
after the Pre-Update trigger fires and before the Post-Update trigger fires, when Form Builder would
normally update a record in the database. It fires once for each row that is marked for update in the
form.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use an On-Update trigger to replace the default Form Builder processing for handling updated records
during transaction posting.

To perform the default Form Builder processing from this trigger, include a call to the
UPDATE_RECORD built-in.

On Failure

Form Builder performs the following steps when the On-Update trigger fails:

• sets the error location

• rolls back to the most recently issued savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

461

Post-Block trigger

Description

Fires during the Leave the Block process when the focus moves off the current block.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Block trigger to validate the block’s current record; that is, the record that had input focus
when the Leave the Block event occurred.

Use this trigger to test a condition and prevent the user from leaving a block based on that condition.

On Failure

If the trigger fails while trying to make the form the navigation unit, Form Builder tries to set the target to
a particular block, record or item. Failing that, Form Builder attempts to put the cursor at a target
location, but, if the target is outside of the current unit or if the operator indicates an end to the process,
Form Builder aborts the form.

Fires In

Leave the Block

See Process Flowcharts

Post-Block trigger restrictions

A Post-Block trigger does not fire when the Validation Unit form document property is set to Form.

462

Post-Change trigger

Description

Fires when any of the following conditions exist:

• The Validate the Item process determines that an item is marked as Changed and is not NULL.

• An operator returns a value into an item by making a selection from a list of values, and the item is
not NULL.

• Form Builder fetches a non-NULL value into an item. In this case, the When-Validate-Item trigger
does not fire. If you want to circumvent this situation and effectively get rid of the Post-Change
trigger, you must include a Post-Query trigger in addition to your When-Validate-Item trigger. See
"Usage Notes" below.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

The Post-Change trigger is included only for compatibility with previous versions of Form Builder.
Its use is not recommended in new applications.

The Post-Query trigger does not have the restrictions of the Post-Change trigger. You can use Post-
Query to make changes to the fetched database values. Given such changes, Form Builder marks the
corresponding items and records as changed.

On Failure

If fired as part of validation initiated by navigation, navigation fails, and the focus remains in the original
item.

If there are V2-style triggers in the form and Form Builder is populating a record with fetched values, the
following restrictions apply:

Form Builder ignores any attempt to change the value of a database item in the record.

Form Builder does not execute any SELECT statement that only affects database items in the record.

Form Builder does not execute a SELECT statement that does not have an INTO clause.

If Form Builder does not execute a SELECT statement in a V2-style trigger step, it treats the trigger step
as though the step succeeded, even when the Reverse Return Code trigger step property is set.

During fetch processing, Post-Change triggers defined as PL/SQL triggers do not operate with these
restrictions. Regardless of trigger style, during a record fetch, Form Builder does not perform validation
checks, but marks the record and its items as Valid, after firing the Post-Change trigger for each item.

Fires In

Validate the Item

Fetch Records

463

See Process Flowcharts

Post-Change trigger restrictions

Note that it is possible to write a Post-Change trigger that changes the value of an item that Form Builder
is validating. If validation succeeds, Form Builder marks the changed item as Valid and does not re-
validate it. While this behavior is necessary to avoid validation loops, it does allow you to commit an
invalid value to the database.

464

Post-Database-Commit trigger

Description

Fires once during the Post and Commit Transactions process, after the database commit occurs. Note
that the Post-Forms-Commit trigger fires after inserts, updates, and deletes have been posted to the
database, but before the transaction has been finalized by issuing the Commit. The Post-Database-
Commit trigger fires after Form Builder issues the Commit to finalize the transaction.

Definition Level form

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Database-Commit trigger to perform an action anytime a database commit has occurred.

On Failure

There is no rollback, because at the point at which this trigger might fail, Form Builder has already
moved past the point at which a successful rollback operation can be initiated as part of a failure
response.

Fires In

Post and Commit Transactions

See Process Flowcharts

Post-Database-Commit trigger examples

Example
/*
** FUNCTION recs_posted_and_not_committed
** RETURN BOOLEAN IS
** BEGIN
** Default_Value(’TRUE’,’Global.Did_DB_Commit’);
** RETURN (:System.Form_Status = ’QUERY’
** AND :Global.Did_DB_Commit = ’FALSE’);
** END;
*/
BEGIN
 :Global.Did_DB_Commit := ’FALSE’;
END;

465

Post-Delete trigger

Description

Fires during the Post and Commit Transactions process, after a row is deleted. It fires once for each row
that is deleted from the database during the commit process.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Delete trigger to audit transactions.

On Failure

Form Builder performs the following steps when the Post-Delete trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

466

Post-Form trigger

Description

Fires during the Leave the Form process, when a form is exited.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Form trigger for the following tasks:

• To clean up the form before exiting. For example, use a Post-Form trigger to erase any global
variables that the form no longer requires.

• To display a message to the operator upon form exit.

This trigger does not fire when the form is exited abnormally, for example, if validation fails in the form.

On Failure

processing halts

Fires In

Leave the Form

See Process Flowcharts

467

Post-Forms-Commit trigger

Description

Fires once during the Post and Commit Transactions process. If there are records in the form that have
been marked as inserts, updates, or deletes, the Post-Forms-Commit trigger fires after these changes have
been written to the database but before Form Builder issues the database Commit to finalize the
transaction.

If the operator or the application initiates a Commit when there are no records in the form have been
marked as inserts, updates, or deletes, Form Builder fires the Post-Forms-Commit trigger immediately,
without posting changes to the database.

Definition Level form

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Forms-Commit trigger to perform an action, such as updating an audit trail, anytime a
database commit is about to occur.

On Failure

Aborts post and commit processing: Form Builder issues a ROLLBACK and decrements the internal
Savepoint counter.

Fires In

Post and Commit Transactions

See Process Flowcharts

Post-Forms-Commit trigger examples

Example

This example can be used in concert with the Post-Database-Commit trigger to detect if records have
been posted but not yet committed.

/*
** FUNCTION recs_posted_and_not_committed
** RETURN BOOLEAN IS
** BEGIN
** Default_Value(’TRUE’,’Global.Did_DB_Commit’);
** RETURN (:System.Form_Status = ’QUERY’
** AND :Global.Did_DB_Commit = ’FALSE’);
** END;
*/
BEGIN
 :Global.Did_DB_Commit := ’FALSE’;

468

END;

469

Post-Insert trigger

Description

Fires during the Post and Commit Transactions process, just after a record is inserted. It fires once for
each record that is inserted into the database during the commit process.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Insert trigger to audit transactions.

On Failure

Form Builder performs the following steps when the Post-Insert trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

470

Post-Logon trigger

Description

Fires after either of the following events:

• The successful completion of Form Builder default logon processing.

• The successful execution of the On-Logon trigger.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Logon trigger to provide an event point for a task such as setting up a custom environment
with special variables--to initialize on an application level rather than a form-by-form basis. You might
accomplish this by initializing special global variables from this trigger.

On Failure

Varies based on the following conditions:

• If the trigger fails during the first logon process, Form Builder exits the form, and returns to the
operating system.

• If the trigger fails after a successful logon, Form Builder raises the built-in exception
FORM_TRIGGER_FAILURE .

Fires In

LOGON

See Process Flowcharts

Post-Logon trigger examples

Example

This example calls a user exit to log the current username and time to an encrypted audit trail file on the
file system, which for security reasons is outside the database.

BEGIN
 User_Exit(’LogCrypt ’||
 USER||’ ’ ||
 TO_CHAR(SYSDATE,’YYYYMMDDHH24MISS’));
END;

471

Post-Logout trigger

Description

Fires after either of the following events:

• Form Builder successfully logs out of ORACLE.

• The successful execution of the On-Logout trigger.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Logout trigger to audit or to perform tasks on an Form Builder application that does not
require or affect the RDBMS or other data source.

If you call certain built-ins from within one of the Logout triggers, the results are undefined. For
example, you cannot call COPY from a Pre-Logout trigger because Pre-Logout fires after the Leave the
Form event. Because the form is no longer accessible, a COPY operation is not possible.

On Failure

If this trigger fails while leaving the form, there is no effect.

If this trigger fails and you have initiated a call to the LOGOUT built-in from within the trigger,
FORM_FAILURE is set to TRUE.

Fires In

LOGOUT

See Process Flowcharts

472

Post-Query trigger

Description

When a query is open in the block, the Post-Query trigger fires each time Form Builder fetches a record
into a block. The trigger fires once for each record placed on the block’s list of records.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Query trigger to perform the following tasks:

• populate control items or items in other blocks

• calculate statistics about the records retrieved by a query

• calculate a running total

• When you use a Post-Query trigger to SELECT non-base table values into control items, Form
Builder marks each record as CHANGED, and so fires the When-Validate-Item trigger by default.
You can avoid the execution of the When-Validate-Item trigger by explicitly setting the Status
property of each record to QUERY in the Post-Query trigger. To set record status
programmatically, use SET_RECORD_PROPERTY .

On Failure

Form Builder flushes the record from the block and attempts to fetch the next record from the database.
If there are no other records in the database, Form Builder closes the query and waits for the next
operator action.

Fires In

Fetch Records

See Process Flowcharts

Post-Query trigger examples

Example

This example retrieves descriptions for code fields, for display in non-database items in the current
block.

DECLARE

 CURSOR lookup_payplan IS SELECT Payplan_Desc
 FROM Payplan
 WHERE Payplan_Id =

473

 :Employee.Payplan_Id;

 CURSOR lookup_area IS SELECT Area_Name
 FROM Zip_Code
 WHERE Zip = :Employee.Zip;

BEGIN
 /*
 ** Lookup the Payment Plan Description given the
 ** Payplan_Id in the Employee Record just fetched.
 ** Use Explicit Cursor for highest efficiency.
 */
 OPEN lookup_payplan;
 FETCH lookup_payplan INTO :Employee.Payplan_Desc_Nondb;
 CLOSE lookup_payplan;

 /*
 ** Lookup Area Descript given the Zipcode in
 ** the Employee Record just fetched. Use Explicit
 ** Cursor for highest efficiency.
 */
 OPEN lookup_area;
 FETCH lookup_area INTO :Employee.Area_Desc_Nondb;
 CLOSE lookup_area;
END;

474

Post-Record trigger

Description

Fires during the Leave the Record process. Specifically, the Post-Record trigger fires whenever the
operator or the application moves the input focus from one record to another. The Leave the Record
process can occur as a result of numerous operations, including INSERT_RECORD ,
DELETE_RECORD , NEXT_RECORD , NEXT_BLOCK , CREATE_RECORD ,
PREVIOUS_BLOCK , etc.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Record trigger to perform an action whenever the operator or the application moves the input
focus from one record to another. For example, to set a visual attribute for an item as the operator scrolls
down through a set of records, put the code within this trigger.

On Failure

The input focus stays in the current record.

Fires In

Leave the Record

See Process Flowcharts

Post-Record trigger restrictions

A Post-Record trigger fires only when the form is run with a validation unit of the item or record, as
specified by the Validation Unit form property.

475

Post-Select trigger

Description

The Post-Select trigger fires after the default selection phase of query processing, or after the successful
execution of the On-Select trigger. It fires before any records are actually retrieved through fetch
processing.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Note:

Use the Post-Select trigger to perform an action based on the outcome of the Select phase of query
processing such as an action based on the number of records that match the query criteria.

On Failure

no effect

Fires In

Execute the Query

Open the Query

See Process Flowcharts

476

Post-Text-Item trigger

Description

Fires during the Leave the Item process for a text item. Specifically, this trigger fires when the input
focus moves from a text item to any other item.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Text-Item trigger to calculate or change item values.

On Failure

Navigation fails and focus remains in the text item.

Fires In

Leave the Item

See Process Flowcharts

Post-Text-Item trigger restrictions

The Post-Text-Item trigger does not fire when the input focus is in a text item and the operator uses the
mouse to click on a button, check box, list item, or radio group item that has the Mouse Navigate
property Off. When Mouse Navigate is Off for these items, clicking them with the mouse is a non-
navigational event, and the input focus remains in the current item (in this example, a text item).

477

Post-Update trigger

Description

Fires during the Post and Commit Transactions process, after a row is updated. It fires once for each row
that is updated in the database during the commit process.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted function codes,
unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Post-Update trigger to audit transactions.

On Failure

Form Builder performs the following steps when the Post-Update trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

478

Pre-Block trigger

Description

Fires during the Enter the Block process, during navigation from one block to another.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Block trigger to:

• allow or disallow access to a block

• set variable values

On Failure

Navigation fails and focus remains in the source item.

Fires In

Enter the Block

See Process Flowcharts

Pre-Block trigger restrictions

A Pre-Block trigger fires only when the form is run with a validation unit of the item, record, or block, as
specified by the Validation Unit form property.

479

Pre-Commit trigger

Description

Fires once during the Post and Commit Transactions process, before Form Builder processes any records
to change. Specifically, it fires after Form Builder determines that there are inserts, updates, or deletes in
the form to post or commit, but before it commits the changes. The trigger does not fire when there is an
attempt to commit, but validation determines that there are no changed records in the form.

Definition Level form

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Commit trigger to perform an action, such as setting up special locking requirements, at any
time a database commit is going to occur.

On Failure

The Post and Commit process fails: No records are written to the database and focus remains in the
current item.

Note: If you perform DML in a Pre-Commit trigger and the trigger fails, you must perform a manual
rollback, because Form Builder does not perform an automatic rollback. To prepare for a possible
manual rollback, save the savepoint name in an On-Savepoint trigger, using
GET_APPLICATION_PROPERTY (Savepoint_Name). Then you can roll back using
ISSUE_ROLLBACK (Savepoint_Name).

Fires In

Post and Commit Transactions

See Process Flowcharts

480

Pre-Delete trigger

Description

Fires during the Post and Commit Transactions process, before a row is deleted. It fires once for each
record that is marked for delete.

Note: Form Builder creates a Pre-Delete trigger automatically for any master-detail relation that has the
Delete Record Behavior property set to Cascading

Definition Level form or block

Legal Commands

SELECT statements, Data Manipulation Language (DML) statements (i.e., DELETE, INSERT,
UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Delete trigger to delete the detail record of a master record.

Use a Pre-Delete trigger to prevent the deletion of a record if that record is the master record for detail
records that still exist.

On Failure

Form Builder performs the following steps when the Pre-Delete trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

481

Pre-Form trigger

Description

Fires during the Enter the Form event, at form startup.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Form trigger to perform the following tasks:

• assign unique primary key from sequence

• restrict access to a form

• initialize global variables

On Failure

Form Builder leaves the current form and fires no other triggers.

Fires In

Enter the Form

See Process Flowcharts

482

Pre-Insert trigger

Description

Fires during the Post and Commit Transactions process, before a row is inserted. It fires once for each
record that is marked for insert.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Insert trigger to perform the following tasks:

• change item values

• keep track of the date a record is created and store that in the record prior to committing

On Failure

Form Builder performs the following steps when the Pre-Insert trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

Pre-Insert trigger examples

Example

This example assigns a primary key field based on a sequence number, and then writes a row into an
auditing table, flagging creation of a new order.

DECLARE
 CURSOR next_ord IS SELECT orderid_seq.NEXTVAL FROM dual;
BEGIN

 /*
 ** Fetch the next sequence number from the
 ** explicit cursor directly into the item in
 ** the Order record. Could use SELECT...INTO,
 ** but explicit cursor is more efficient.
 */
 OPEN next_ord;
 FETCH next_ord INTO :Order.OrderId;

483

 CLOSE next_ord;

 /*
 ** Make sure we populated a new order id ok...
 */
 IF :Order.OrderId IS NULL THEN
 Message(’Error Generating Next Order Id’);
 RAISE Form_trigger_Failure;
 END IF;

 /*
 ** Insert a row into the audit table
 */
 INSERT INTO ord_audit(orderid, operation, username, timestamp
)
 VALUES (:Order.OrderId,
 ’New Order’,
 USER,
 SYSDATE);

END;

484

Pre-Logon trigger

Description

Fires just before Form Builder initiates a logon procedure to the data source.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Logon trigger to prepare the form for the logon procedure, particularly to a non-ORACLE data
source.

On Failure

The results of a failure depend on which of the following conditions applies:

• If Form Builder is entering the form for the first time and the trigger fails, the form is exited
gracefully, but no other triggers are fired.

• If the trigger fails while Form Builder is attempting to execute the LOGON built-in from within the
trigger, Form Builder raises the FORM_TRIGGER_FAILURE exception.

Fires In

LOGON

See Process Flowcharts

485

Pre-Logout trigger

Description

Fires once before Form Builder initiates a logout procedure.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Logout trigger to prepare the form for logging out from the data source, particularly a non-
ORACLE data source.

If you call certain built-ins from within one of the Logout triggers, the results are undefined. For
example, the COPY built-in cannot be called from a Pre-Logout trigger because Pre-Logout fires after
the Leave the Form event. Because the form is no longer accessible at this point, the COPY operation is
not possible.

On Failure

The results of a failure depend on which of the following conditions applies:

• If Form Builder is exiting the form and the trigger fails, the form is exited gracefully, but no other
triggers are fired.

• If the trigger fails while Form Builder is attempting to execute the LOGOUT built-in from within the
trigger, Form Builder raises the FORM_TRIGGER_FAILURE exception.

If an exception is raised in a Pre-Logout trigger, Form Builder does not fire other triggers, such as On-
Logout and Post-Logout .

Fires In

LOGOUT

See Process Flowcharts

486

Pre-Popup-Menu trigger

Description

This trigger is called when a user causes a pop-up menu to be displayed. (In a Microsoft Windows
environment, this occurs when a user presses the right mouse button.) Actions defined for this trigger
are performed before the pop-up menu is displayed.

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use this trigger to enable or disable menu items on a pop-up menu before it is displayed.

On Failure

No effect

487

Pre-Query trigger

Description

Fires during Execute Query or Count Query processing, just before Form Builder constructs and issues
the SELECT statement to identify rows that match the query criteria.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Query trigger to modify the example record that determines which rows will be identified by
the query.

On Failure

The query is canceled. If the operator or the application had placed the form in Enter Query mode, the
form remains in Enter Query mode.

Fires In

COUNT_QUERY

EXECUTE_QUERY

Open the Query

Prepare the Query

See Process Flowcharts

Pre-Query trigger examples

Example

This example validates or modifies query criteria for a database block query.
BEGIN
 /*
 ** Set the ORDER BY clause for the current block
 ** being queried, based on a radio group
 ** called ’Sort_Column’ in a control block named
 ** ’Switches’. The Radio Group has three buttons
 ** with character values giving the names of
 ** three different columns in the table this
 ** block is based on:
 **
 ** SAL
 ** MGR,ENAME

488

 ** ENAME
 */
 Set_Block_Property(’EMP’,ORDER_BY, :Switches.Sort_Column);
 /*
 ** Make sure the user has given one of the two
 ** Columns which we have indexed in their search
 ** criteria, otherwise fail the query with a helpful
 ** message
 */
 IF :Employee.Ename IS NULL AND :Employee.Mgr IS NULL THEN
 Message(’Supply Employee Name and/or Manager Id ’||
 ’for Query.’);
 RAISE Form_trigger_Failure;
 END IF;

 /*
 ** Change the default where clause to either show "Current
 ** Employees Only" or "Terminated Employees" based on the
 ** setting of a check box named ’Show_Term’ in a control
 ** block named ’Switches’.
 */
 IF Check box_Checked(’Switches.Show_Term’) THEN
 Set_Block_Property(’EMP’,DEFAULT_WHERE,’TERM_DATE IS NOT
NULL’);
 ELSE
 Set_Block_Property(’EMP’,DEFAULT_WHERE,’TERM_DATE IS NULL’);
 END IF;
END;

489

Pre-Record trigger

Description

Fires during the Enter the Record process, during navigation to a different record.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Record trigger to keep a running total.

On Failure

Navigation fails and focus remains in the current item.

Fires In

Enter the Record

See Process Flowcharts

Pre-Record trigger restrictions

A Pre-Record trigger fires only when the form is run with a validation unit of the item or record, as
specified by the Validation Unit form property.

Pre-Record trigger examples

Example

The following trigger prevents the user from entering a new record given some dynamic condition and
the status of SYSTEM.RECORD_STATUS evaluating to NEW.

IF ((dynamic-condition)
 AND :System.Record_Status = ’NEW’) THEN
 RAISE Form_trigger_Failure;
END IF;

490

Pre-Select trigger

Description

Fires during Execute Query and Count Query processing, after Form Builder constructs the SELECT
statement to be issued, but before the statement is actually issued. Note that the SELECT statement can
be examined in a Pre-Select trigger by reading the value of the system variable
SYSTEM.LAST_QUERY .

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Select trigger to prepare a query prior to execution against a non-ORACLE data source.

On Failure

No effect. The current query fetched no records from the table. The table is empty, or it contains no
records that meet the query’s search criteria.

Fires In

EXECUTE_QUERY

Open the Query

Prepare the Query

See Process Flowcharts

491

Pre-Text-Item trigger

Description

Fires during the Enter the Item process, during navigation from an item to a text item.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Text-Item trigger to perform the following types of tasks:

• derive a complex default value, based on other items previously entered into the same record.

• record the current value of the text item for future reference, and store that value in a global variable
or form parameter.

On Failure

Navigation fails and focus remains in the current item.

Fires In

Enter the Item

See Process Flowcharts

Pre-Text-Item trigger restrictions

A Pre-Text-Item trigger fires only when the form is run with a validation unit of the item, as specified by
the Validation Unit form property.

492

Pre-Update trigger

Description

Fires during the Post and Commit Transactions process, before a row is updated. It fires once for each
record that is marked for update.

Definition Level form or block

Legal Commands

SELECT statements, DML statements (DELETE, INSERT, UPDATE), unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a Pre-Update trigger to audit transactions.

On Failure

Form Builder performs the following steps when the Pre-Update trigger fails:

• sets the error location

• rolls back to the most recent savepoint

Fires In

Post and Commit Transactions

See Process Flowcharts

Pre-Update trigger examples

Example

The following example writes a row into an Audit Table showing old discount and new discount for a
given customer, including timestamp and username making the change.

DECLARE
 old_discount NUMBER;
 new_discount NUMBER := :Customer.Discount_Pct;
 oper_desc VARCHAR2(80);
 CURSOR old_value IS SELECT discount_pct FROM customer
 WHERE CustId = :Customer.CustId;
BEGIN
 /*
 ** Fetch the old value of discount percentage from the
 ** database by CustomerId. We need to do this since the
 ** value of :Customer.Discount_Pct will be the *new* value
 ** we’re getting ready to commit and we want to record for
 ** posterity the old and new values. We could use
 ** SELECT...INTO but choose an explicit cursor for
 ** efficiency.
 */

493

 OPEN old_value;
 FETCH old_value INTO old_discount;
 CLOSE old_value;

 /*
 ** If the old and current values are different, then
 ** we need to write out an audit record
 */
 IF old_discount <> new_discount THEN
 /*
 ** Construct a string that shows the operation of
 ** Changing the old value to the new value. e.g.
 **
 ** ’Changed Discount from 13.5% to 20%’
 */
 oper_desc := ’Changed Discount from ’||
 TO_CHAR(old_discount)||’% to ’||
 TO_CHAR(new_discount)||’%’;

 /*
 ** Insert the audit record with timestamp and user
 */
 INSERT INTO cust_audit(custid, operation, username,
 timestamp)
 VALUES (:Customer.CustId,
 oper_desc,
 USER,
 SYSDATE);
 END IF;
END;

494

Query-Procedure trigger

Description

Automatically created by Form Builder when the query data source is a stored procedure. This trigger is
called when a query operation is necessary. Think of this as an On-Query trigger that is called by the
system instead of doing default query operations.

Do not modify this trigger.

Enter Query Mode See Usage Notes

Usage Notes

When constructing a query, any of the items may be used, but the Query Data Source Columns property
must be set so that those items can be passed to the query stored procedure. Then, the query stored
procedure has to use those values to filter the data. This means that the enter query mode does not
happen automatically unless you specify it.

On Failure

No effect

495

Update-Procedure trigger

Description

Automatically created by Form Builder when the update data source is a stored procedure. This trigger
is called when a update operation is necessary. Think of this as an On-Update trigger that is called by
the system instead of doing default update operations.

Do not modify this trigger.

Enter Query Mode Not applicable.

On Failure

No effect

496

User-Named trigger

Description

A user-named trigger is a trigger defined in a form by the developer. User-Named triggers do not
automatically fire in response to a Form Builder event, and must be called explicitly from other triggers
or user-named subprograms. Each user-named trigger defined at the same definition level must have a
unique name.

To execute a user-named trigger, you must call the EXECUTE_TRIGGER built-in procedure, as shown
here:

Execute_trigger(’my_user_named_trigger’);

Definition Level form, block, or item

Legal Commands

Any commands that are legal in the parent trigger from which the user-named trigger was called.

Enter Query Mode no

Usage Notes

User-named PL/SQL subprograms can be written to perform almost any task for which one might use a
user-named trigger.

As with all triggers, the scope of a user-named trigger is the definition level and below. When more than
one user-named trigger has the same name, the trigger defined at the lowest level has precedence.

It is most practical to define user-named triggers at the form level.

Create a user-named trigger to execute user-named subprograms defined in a form document from menu
PL/SQL commands and user-named subprograms. (User-named subprograms defined in a form cannot
be called directly from menu PL/SQL, which is defined in a different document.) In the menu PL/SQL,
call the EXECUTE_TRIGGER built-in to execute a user-named trigger, which in turn calls the user-
named subprogram defined in the current form.

On Failure

Sets the FORM_FAILURE built-in to TRUE. Because the user-named trigger is always called by the
EXECUTE_TRIGGER built-in, you can test the outcome of a user-named trigger the same way you test
the outcome of a built-in subprogram; that is, by testing for errors with the built-in functions
FORM_FAILURE, FORM_SUCCESS, FORM_FATAL .

497

When-Button-Pressed trigger

Description

Fires when an operator selects a button, by clicking with a mouse, or using the keyboard.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Button-Pressed trigger to perform navigation, to calculate text item values, or for other item,
block, or form level functionality.

On Failure

no effect

When-Button-Pressed trigger examples

Example

This example executes a COMMIT_FORM if there are changes in the form.
BEGIN
 IF :System.Form_Status = ’CHANGED’ THEN
 Commit_Form;
 /*
 ** If the Form_Status is not back to ’QUERY’
 ** following a commit, then the commit was
 ** not successful.
 */
 IF :System.Form_Status <> ’QUERY’ THEN
 Message(’Unable to commit order to database...’);
 RAISE Form_trigger_Failure;
 END IF;
 END IF;
END;

498

When-Checkbox-Changed trigger

Description

Fires when an operator changes the state of a check box, either by clicking with the mouse, or using the
keyboard.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Checkbox-Changed trigger to initiate a task dependent upon the state of a check box.

When an operator clicks in a check box, the internal value of that item does not change until navigation
is completed successfully. Thus, the When-Checkbox-Changed trigger is the first trigger to register the
changed value of a check box item. So for all navigation triggers that fire before the When-Checkbox-
Changed trigger, the value of the check box item remains as it was before the operator navigated to it.

On Failure

no effect

499

When-Clear-Block trigger

Description

Fires just before Form Builder clears the data from the current block.

Note that the When-Clear-Block trigger does not fire when Form Builder clears the current block during
the CLEAR_FORM event.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode yes

Usage Notes

• Use a When-Clear-Block trigger to perform an action every time Form Builder flushes the current
block. For example, you might want to perform an automatic commit whenever this condition
occurs.

• In a When-Clear-Block trigger, the value of SYSTEM.RECORD_STATUS is unreliable because
there is no current record. An alternative is to use GET_RECORD_PROPERTY to obtain the
record status. Because GET_RECORD_PROPERTY requires reference to a specific record, its
value is always accurate.

On Failure

no effect on the clearing of the block

Fires In

CLEAR_BLOCK

COUNT_QUERY

ENTER_QUERY

Open the Query

See Process Flowcharts

500

When-Create-Record trigger

Description

Fires when Form Builder creates a new record. For example, when the operator presses the [Insert] key,
or navigates to the last record in a set while scrolling down, Form Builder fires this trigger.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a When-Create-Record trigger to perform an action every time Form Builder attempts to create a
new record. This trigger also is useful for setting complex, calculated, or data-driven default values that
must be specified at runtime, rather than at design-time.

On Failure

Prevents the new record from being created. Returns to the previous location, if possible.

Fires In

CREATE_RECORD

See Process Flowcharts

When-Create-Record trigger examples

Example

This example assigns data-driven or calculated default values without marking the record as changed.
DECLARE
 CURSOR ship_dflt IS SELECT val
 FROM cust_pref
 WHERE Custid = :Customer.Custid
 AND pref = ’SHIP’;
BEGIN
 /*
 ** Default Invoice Due Date based on Customer’s
 ** Net Days Allowed value from the Customer block.
 */
 :Invoice.Due_Date := SYSDATE + :Customer.Net_Days_Allowed;
 /*
 ** Default the shipping method based on this customers
 ** preference, stored in a preference table. We could
 ** use SELECT...INTO, but explicit cursor is more
 ** efficient.
 */
 OPEN ship_dflt;
 FETCH ship_dflt INTO :Invoice.Ship_Method;

501

 CLOSE ship_dflt;
END;

502

When-Custom-Item-Event trigger

Description

Fires whenever a JavaBean or ActiveX (on 32-bit Windows) or VBX (on 16-bit Microsoft Windows 3.x)
custom component in the form causes the occurrence of an event.

Definition Level:

form, block, item

Legal Commands:

unrestricted built-ins, restricted built-ins

Enter Query Mode:

yes

Usage Notes

Use a When-Custom-Item-Event trigger to respond to a selection or change of value of a custom
component. The system variable SYSTEM.CUSTOM_ITEM_EVENT stores the name of the event that
occurred, and the system variable SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS stores a
parameter name that contains the supplementary arguments for an event that is fired by a custom control.

Control event names are case sensitive.

On Failure:

no effect

When-Custom-Item-Event trigger examples

JavaBeans Example

This is an example of a procedure called by a When-Custom-Item-Event trigger in a form that uses two
JavaBeans. (For the context, see the complete example.)

The trigger is fired by the dispatching of a custom event in one of the JavaBeans, in response to a change
in value.

 CustomEvent ce = new CustomEvent(mHandler, VALUECHANGED);
 dispatchCustomEvent(ce);

In the form, the When_Custom_Item_Event trigger that is attached to this JavaBean’s Bean Area item is
automatically fired in response to that custom event.

In the trigger code, it executes the following procedure. Note that this procedure picks up the new
values set in the JavaBean container (a new animation rate, for example) by accessing the
System.Custom_Item_Event_Parameters.

503

In this example, the procedure then uses the Set_Custom_Item_Property built-in to pass those values to
the other JavaBean.

PROCEDURE Slider_Event_Trap IS
 BeanHdl Item;

BeanValListHdl ParamList;
paramType Number;
EventName VarChar2(20);
CurrentValue Number(4);
NewAnimationRate Number(4);

Begin
-- Update data items and Display fields with current radius

information
BeanValListHdl :=

get_parameter_list(:SYSTEM.Custom_Item_Event_Parameters);
EventName := :SYSTEM.Custom_Item_Event;
:event_name := EventName;
if (EventName = ’ValueChanged’) then
 get_parameter_attr(BeanValListHdl,’Value’,ParamType,

CurrentValue);
 NewAnimationRate := (300 - CurrentValue);
 :Animation_Rate := NewAnimationRate;

 set_custom_item_property(’Juggler_Bean’,’SetAnimationRate’,
NewAnimationRate);

elsif (EventName = ’mouseReleased’) then
 get_parameter_attr(BeanValListHdl,’Value’,ParamType,

CurrentValue);
 set_custom_item_property(’Juggler_Bean’,’SetAnimationRate’,
CurrentValue);
 end if;
End;

VBX Example

This is an example of a procedure that can be called when Form Builder fires the When-Custom-Item-
Event trigger.

DECLARE
 TabEvent varchar2(80);
 TabNumber Number;
BEGIN
 TabEvent := :system.custom_item_event;
 /*
 ** After detecting a Click event, identify the
 ** tab selected, and use the user-defined Goto_Tab_Page
 ** procedure to navigate to the selected page.
 */
 IF (UPPER(TabEvent) = ’CLICK’) THEN
 TabNumber := VBX.Get_Property(’TABCONTROL’,’CurrTab’);
 Goto_Tab_Page(TabNumber);
 END IF;
END;

504

When-Database-Record trigger

Description

Fires when Form Builder first marks a record as an insert or an update. That is, the trigger fires as soon
as Form Builder determines through validation that the record should be processed by the next post or
commit as an insert or update. This generally occurs only when the operator modifies the first item in a
record, and after the operator attempts to navigate out of the item.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a When-Database-Record trigger to perform an action every time a record is first marked as an insert
or an update.

On Failure

no effect

505

When-Form-Navigate trigger

Description

Fires when navigation between forms takes place, such as when the user changes the focus to another
loaded form.

Definition Level form

Legal Commands:

unrestricted built-ins, restricted built-ins

Enter Query Mode:

no

Usage Notes

Use a When-Form-Navigate trigger to perform actions when any cross form navigation takes place
without relying on window activate and window deactivate events.

On Failure

no effect

When-Form-Navigate trigger examples

Example

This is an example of a procedure that can be called when Form Builder fires the When-Form-Navigate
trigger.

DECLARE
 win_id WINDOW := FIND_WINDOW(’WINDOW12’);
BEGIN
 if (GET_WINDOW_PROPERTY(win_id,WINDOW_STATE) = ’MAXIMIZE’ THEN
 SET_WINDOW_PROPERTY(win_id,WINDOW_STATE,MINIMIZE);
 else
 SET_WINDOW_PROPERTY(win_id,WINDOW_STATE,MAXIMIZE);
 end if;
END;

506

When-Image-Activated trigger

Description

Fires when an operator uses the mouse to:

• single-click on an image item

double-click on an image item

Note that When-Image-Pressed also fires on a double-click.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

On Failure

no effect

507

When-Image-Pressed trigger

Description

Fires when an operator uses the mouse to:

• single-click on an image item

• double-click on an image item

• Note that When-Image-Activated also fires on a double-click.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Image-Pressed trigger to perform an action when an operator clicks or double-clicks on an
image item.

On Failure

no effect

508

When-List-Activated trigger

Description

Fires when an operator double-clicks on an element in a list item that is displayed as a T-list.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

A When-List-Activated trigger fires only for T-list style list items, not for drop-down lists or combo box
style list items. The display style of a list item is determined by the List Style property.

On Failure

no effect

509

When-List-Changed trigger

Description

Fires when an end user selects a different element in a list item or de-selects the currently selected
element. In addition, if a When-List-Changed trigger is attached to a combo box style list item, it fires
each time the end user enters or modifies entered text.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-List-Changed trigger to initiate an action when the value of the list is changed directly by
the end user. The When-List-Changed trigger is not fired if the value of the list is changed
programmatically such as by using the DUPLICATE_ITEM built-in, or if the end user causes a
procedure to be invoked which changes the value. For example, the When-List-Changed trigger will not
fire if an end user duplicates the item using a key mapped to the DUPLICATE_ITEM built-in.

On Failure

no effect

510

When-Mouse-Click trigger

Description

Fires after the operator clicks the mouse if one of the following events occurs:

• if attached to the form, when the mouse is clicked within any canvas or item in the form

• if attached to a block, when the mouse is clicked within any item in the block

• if attached to an item, when the mouse is clicked within the item

Three events must occur before a When-Mouse-Click trigger will fire:

• Mouse down

• Mouse up

• Mouse click

Any trigger that is associated with these events will fire before the When-Mouse-Click trigger fires.

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use the When-Mouse-Click trigger to perform an action every time the operator clicks the mouse within
an item and/or canvas.

On Failure

no effect

511

When-Mouse-DoubleClick trigger

Description

Fires after the operator double-clicks the mouse if one of the following events occurs:

• if attached to the form, when the mouse is double-clicked within any canvas or item in the form

• if attached to a block, when the mouse is double-clicked within any item in the block

• if attached to an item, when the mouse is double-clicked within the item

Six events must occur before a When-Mouse-DoubleClick trigger will fire:

• Mouse down

• Mouse up

• Mouse click

• Mouse down

• Mouse up

• Mouse double-click

Any trigger that is associated with these events will fire before the When-Mouse-DoubleClick trigger
fires.

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Mouse-DoubleClick trigger to perform an action every time the operator double-clicks the
mouse within an item and/or canvas.

On Failure

no effect

When-Mouse-DoubleClick trigger examples

Example

Assume that an application requires Behavior A when the operator clicks the mouse and Behavior B
when the operator double-clicks the mouse. For example, if the operator clicks the mouse, a product
information window must appear. If the operator double-clicks the mouse, an online help window must
appear.

512

Three triggers are used in this example, a When-Mouse-Click trigger, a When-Timer-Expired trigger,
and a When-Mouse-DoubleClick trigger.

/*
** trigger: When-Mouse-Click
** Example: When the operator clicks the mouse, create a timer
** that will expire within .5 seconds.
*/

DECLARE
 timer_id TIMER;
 timer_duration NUMBER(5) := 500;
BEGIN
 timer_id := Create_Timer(’doubleclick_timer’, timer_duration,
 NO_REPEAT);
END;

/*
** trigger: When-Timer-Expired
** Example: When the timer expires display the online help
** window if the operator has double-clicked the
mouse
** within .5 seconds, otherwise display the product
** information window.
*/
BEGIN
 IF :Global.double_click_flag = ’TRUE’ THEN
 Show_Window(’online_help’);
 :Global.double_click := ’FALSE’;
 ELSE
 Show_Window(’product_information’);
 END IF;
END;

/*
** trigger: When-Mouse-DoubleClick
** Example: If the operator double-clicks the mouse, set a
** flag that indicates that a double-click event
** occurred.
*/
BEGIN
 :Global.double_click_flag := ’TRUE’;
END;

513

When-Mouse-Down trigger

Description

Fires after the operator presses down the mouse button if one of the following events occurs:

• if attached to the form, when the mouse is pressed down within any canvas or item in the form

• if attached to a block, when the mouse is pressed down within any item in the block

• if attached to an item, when the mouse is pressed within the item

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Mouse-Down trigger to perform an action every time the operator presses down the mouse
button within an item and/or canvas.

Note: The mouse down event is always followed by a mouse up event.

On Failure

no effect

When-Mouse-Down trigger restrictions

Depending on the window manager, navigational code within a When-Mouse-Down trigger may fail.
For example on Microsoft Windows, if the operator clicks the mouse button within a field (Item_One), a
When-Mouse-Down trigger that calls GO_ITEM (’item_two’) will fail because Windows will return
focus to Item_One, not Item_Two since the When-Mouse-Up event occurred within Item_Two.

514

When-Mouse-Enter trigger

Description

Fires when the mouse enters an item or canvas if one of the following events occurs:

• if attached to the form, when the mouse enters any canvas or item in the form

• if attached to a block, when the mouse enters any item in the block

• if attached to an item, when the mouse enters the item

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Mouse-Enter trigger to perform an action every time the mouse enters an item or canvas.

Do not use the When-Mouse-Enter trigger on a canvas that is larger than the window. Iconic buttons and
items on the canvas below the initial window cannot be selected. The user is able to scroll the canvas to
see the items. However, as soon as the mouse enters that area, the trigger fires and returns focus to the
previous target, so the user is never able to click on those items.

Changing a tooltip’s property in a When-Mouse-Enter trigger cancels the tooltip before it is ever shown.

Be careful when calling a modal window from a When-Mouse-Enter trigger. Doing so may cause the
modal window to appear unnecessarily.

For example, assume that your When-Mouse-Enter trigger causes Alert_One to appear whenever the
mouse enters Canvas_One. Assume also that your application contains two canvases, Canvas_One and
Canvas_Two. Canvas_One and Canvas_Two do not overlap each other, but appear side by side on the
screen. Further, assume that Alert_One displays within Canvas_Two’s border.

Finally, assume that the mouse has entered Canvas_One causing the When-Mouse-Enter trigger to fire
which in turn causes Alert_One to appear.

When the operator dismisses the message box, Alert_One will appear again unnecessarily if the operator
subsequently enters Canvas_One with the mouse. In addition, when the operator moves the mouse out of
Canvas_Two, any When-Mouse-Leave triggers associated with this event will fire. This may not be the
desired behavior.

On Failure

no effect

515

When-Mouse-Leave trigger

Description

Fires after the mouse leaves an item or canvas if one of the following events occurs:

• if attached to the form, when the mouse leaves any canvas or item in the form

• if attached to a block, when the mouse leaves any item in the block

• if attached to an item, when the mouse leaves the item

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Mouse-Leave trigger to perform an action every time the mouse leaves an item and/or
canvas.

On Failure

no effect

516

When-Mouse-Move trigger

Description

Fires each time the mouse moves if one of the following events occurs:

• if attached to the form, when the mouse moves within any canvas or item in the form

• if attached to a block, when the mouse moves within any item in the block

• if attached to an item, when the mouse moves within the item

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use the When-Mouse-Move trigger to perform an action every time the operator moves the mouse.

The When-Mouse-Move trigger may have performance implications because of the number of times this
trigger can potentially fire.

On Failure

no effect

517

When-Mouse-Up trigger

Description

Fires each time the operator presses down and releases the mouse button if one of the following events
occurs:

• if attached to the form, when the mouse up event is received within any canvas or item in a form

• if attached to a block, when the mouse up event is received within any item in a block

• if attached to an item, when the mouse up event is received within an item

Two events must occur before a When-Mouse-Up trigger will fire:

• Mouse down

• Mouse up

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode yes

Usage Notes

Use the When-Mouse-Up trigger to perform an action every time the operator presses and releases the
mouse.

The mouse up event is always associated with the item that received the mouse down event. For
example, assume that there is a When-Mouse-Up trigger attached to Item_One. If the operator presses
down the mouse on Item_One, but then releases the mouse on Item_Two, the mouse up trigger will fire
for Item_One, rather than for Item_Two.

On Failure

no effect

518

When-New-Block-Instance trigger

Description

Fires when the input focus moves to an item in a different block. Specifically, it fires after navigation to
an item, when Form Builder is ready to accept input in a block that is different than the block that
previously had the input focus.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode no

Usage Notes

Use a When-New-Block-Instance trigger to perform an action every time Form Builder instantiates a
new block.

On Failure

no effect

Fires In

Return for Input

See Process Flowcharts

519

When-New-Form-Instance trigger

Description

At form start-up, Form Builder navigates to the first navigable item in the first navigable block. A
When-New-Form-Instance trigger fires after the successful completion of any navigational triggers that
fire during the initial navigation sequence.

This trigger does not fire when control returns to a calling form from a called form.

In a multiple-form application, this trigger does not fire when focus changes from one form to another.

Definition Level form

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins

Enter Query Mode no

On Failure

no effect

Fires In

Run the Form

See Process Flowcharts

When-New-Form-Instance trigger restrictions

• When you call FORMS_OLE.GET_INTERFACE_POINTER from the When-New-Form-Instance
trigger, an exception (ORA-305500) is raised unless you initialize the OLE item or the ActiveX control
with the SYNCHRONIZE built-in.

• When a new form is called, it will appear in the default x-y position on the screen. If this is not the
desired position, you can change the x-y coordinates. However, they cannot be changed in this When-
New-Form-Instance trigger. (This trigger fires too late in the sequence.) To change the coordinates,
use the Pre-Form trigger.

When-New-Form-Instance trigger examples

Example

This example calls routine to display dynamic images, starts a timer to refresh the on-screen clock, and
queries the first block.

BEGIN
 Populate_Dynamic_Boilerplate;
 Start_OnScreen_Clock_Timer;
 Go_Block(’Primary_Ord_Info’);

 /*

520

 ** Query the block without showing
 ** the working message.
 */
 :System.Suppress_Working := ’TRUE’;
 Execute_Query;
 :System.Suppress_Working := ’FALSE’;
END;

521

When-New-Item-Instance trigger

Description

Fires when the input focus moves to an item. Specifically, it fires after navigation to an item, when Form
Builder is ready to accept input in an item that is different than the item that previously had input focus.

Definition Level form, block, or item

Legal Commands

SELECT statements, restricted built-ins, unrestricted built-ins.

Enter Query Mode yes

Usage Notes

Use a When-New-Item-Instance trigger to perform an action whenever an item gets input focus. The
When-New-Item-Instance trigger is especially useful for calling restricted (navigational) built-ins.

On Failure

no effect

Fires In

Return for Input

See Process Flowcharts

When-New-Item-Instance trigger restrictions

The conditions for firing this trigger are not met under the following circumstances:

• Form Builder navigates through an item, without stopping to accept input

• the input focus moves to a field in an alert window, or to any part of an Form Builder menu

522

When-New-Record-Instance trigger

Description

Fires when the input focus moves to an item in a record that is different than the record that previously
had input focus. Specifically, it fires after navigation to an item in a record, when Form Builder is ready
to accept input in a record that is different than the record that previously had input focus.

Fires whenever Form Builder instantiates a new record.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-New-Record-Instance trigger to perform an action every time Form Builder instantiates a
new record. For example, when an operator presses [Down] to scroll through a set of records, Form
Builder fires this trigger each time the input focus moves to the next record, in other words, each time
Form Builder instantiates a new record in the block.

On Failure

no effect

Fires In

Return for Input

See Process Flowcharts

523

When-Radio-Changed trigger

Description

Fires when an operator selects a different radio button in a radio group, or de-selects the currently
selected radio button, either by clicking with the mouse, or using the keyboard.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use a When-Radio-Changed trigger to perform an action depending on the state of a radio group. (De-
selecting a radio button in a radio group sets the radio group value to NULL; operators use this technique
in Enter Query mode to exclude a radio group from a query.)

When an operator clicks an item in a radio group, the internal value of that item does not change until
navigation is completed successfully. Thus, the When-Radio-Changed trigger is the first trigger to
register the changed value of a radio group. For all navigation triggers that fire before the When-Radio-
Changed trigger, the value of the radio group remains as it was before the operator navigated to it.

On Failure

no effect

524

When-Remove-Record trigger

Description

Fires whenever the operator or the application clears or deletes a record.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a When-Remove-Record trigger to perform an action every time Form Builder clears or deletes a
record.

On Failure

Form Builder navigates to the block level with or without validation depending on the current operation,
and puts the cursor at the target block.

Fires In

CLEAR_RECORD

DELETE_RECORD

See Process Flowcharts

525

When-Tab-Page-Changed trigger

Description

Fires whenever there is explicit item or mouse navigation from one tab page to another in a tab canvas.

Definition Level form

Legal Commands

unrestricted built-ins, restricted built-ins

Enter Query Mode no

Usage Notes

• Use a When-Tab-Page-Changed trigger to perform actions when any tab page is changed during
item or mouse navigation.

• When-Tab-Page-Changed fires only when tab page navigation is explicit; it does not respond to
implicit navigation. For example, the trigger will fire when the mouse or keyboard is used to
navigate between tab pages, but the trigger will not fire if an end user presses [Next Item] (Tab) to
navigate from one field to another field in the same block, but on different tab pages.

• When-Tab-Page-Changed does not fire when the tab page is changed programmatically.

On Failure

no effect

When-Tab-Page-Changed examples

Example
/* Use a When-Tab-Page-Changed trigger to dynamically
** change a tab page’s label from lower- to upper-case
** (to indicate to end users if they already have
** navigated to the tab page):
*/
DECLARE
 tp_nm VARCHAR2(30);
 tp_id TAB_PAGE;
 tp_lb VARCHAR2(30);

BEGIN
 tp_nm := GET_CANVAS_PROPERTY(’emp_cvs’, topmost_tab_page);
 tp_id := FIND_TAB_PAGE(tp_nm);
 tp_lb := GET_TAB_PAGE_PROPERTY(tp_id, label);

 IF tp_lb LIKE ’Sa%’ THEN
 SET_TAB_PAGE_PROPERTY(tp_id, label, ’SALARY’);
 ELSIF tp_lb LIKE ’Va%’ THEN
 SET_TAB_PAGE_PROPERTY(tp_id, label, ’VACATION’);
 ELSE null;
 END IF;
END;

526

When-Timer-Expired trigger

Description

Fires when a timer expires.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Timers are created programmatically by calling the CREATE_TIMER built-in procedure.

• The When-Timer-Expired trigger can not fire during trigger, navigation, or transaction processing.

• Use a When-Timer-Expired trigger to initiate an event, update item values, or perform any task that
should occur after a specified interval.

• You can call GET_APPLICATION_PROPERTY(TIMER_NAME) in a When-Timer-Expired
trigger to determine the name of the most recently expired timer.

On Failure

no effect

Fires In

Process Expired Timer

See Process Flowcharts

When-Timer-Expired trigger restrictions

A When-Timer-Expired trigger will not fire when the user is currently navigating a menu.

When-Timer-Expired trigger examples

Example

The following example displays a message box each time a repeating timer expires. The following
example is from a telemarketing application, in which sales calls are timed, and message boxes are
displayed to prompt the salesperson through each stage of the call. The message box is displayed each
time a repeating timer expires.

DECLARE
 timer_id TIMER;
 alert_id ALERT;
 call_status NUMBER;
 msg_1 VARCHAR2(80) := ’Wrap up the first phase of your

527

 presentation’;
 msg_2 VARCHAR2(80) := ’Move into your close.’;
 msg_3 VARCHAR2(80) := ’Ask for the order or
 repeat the close.’
 two_minutes NUMBER(6) := (120 * 1000);
 one_and_half NUMBER(5) := (90 * 1000);
BEGIN
 :GLOBAL.timer_count := 1
 BEGIN
 timer_id := FIND_TIMER(’tele_timer’);
 alert_id := FIND_ALERT(’tele_alert’);
 IF :GLOBAL.timer_count = 1 THEN
 Set_Alert_Property(alert_id, ALERT_MESSAGE_TEXT, msg_1);
 call_status := Show_Alert(alert_id);
 IF call_status = ALERT_BUTTON1 THEN
 Delete_Timer(timer_id);
 Next_Record;
 ELSIF
 call_status = ALERT_BUTTON2 THEN
 :GLOBAL.timer_count := 0;
 ELSE
 Set_Timer(timer_id, two_minutes, NO_CHANGE);
 END IF;
ELSIF :GLOBAL.timer_count = 2 THEN
 Change_Alert_Message(alert_id, msg_2);
 call_status := Show_Alert(alert_id);
 IF call_status = ALERT_BUTTON1 THEN
 Delete_Timer(timer_id);
 Next_Record;
 ELSIF
 call_status = ALERT_BUTTON2 THEN
 :GLOBAL.timer_count := 0;
 ELSE
 Set_Timer(timer_id, one_and_half, NO_CHANGE);
 END IF;
 ELSE
 Change_Alert_Message(alert_id, msg_3);
 call_status := Show_Alert(alert_id);
 IF call_status = ALERT_BUTTON1 THEN
 Delete_Timer(timer_id);
 Next_Record;
 ELSIF
 call_status = ALERT_BUTTON2 THEN
 :GLOBAL.timer_count := 0;
 ELSE
 Set_Timer(timer_id, NO_CHANGE, NO_REPEAT);
 END IF;
 END IF;
 :GLOBAL.timer_count = 2;
 END;
END;

528

When-Tree-Node-Activated trigger

Description

Fires when an operator double-clicks a node or presses Enter when a node is selected.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

• SYSTEM.TRIGGER_NODE is the node the user clicked on. SYSTEM.TRIGGER_NODE returns a
value of type NODE.

• No programmatic action will cause the When-Tree-Node-Activated trigger to fire. Only end-user
action will generate an event.

On Failure

no effect

529

When-Tree-Node-Expanded trigger

Description

Fires when a node is expanded or collapsed.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

• SYSTEM.TRIGGER_NODE is the node the user clicked on. SYSTEM.TRIGGER_NODE returns a
value of type NODE.

• No programmatic action will cause the When-Tree-Node-Espanded trigger to fire. Only end-user
action will generate an event.

On Failure

no effect

530

When-Tree-Node-Selected trigger

Description

Fires when a node is selected or deselected.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

• SYSTEM.TRIGGER_NODE is the node the user clicked on. SYSTEM.TRIGGER_NODE returns a
value of type NODE.

• No programmatic action will cause the When-Tree-Node-Selected trigger to fire. Only end-user
action will generate an event.

On Failure

no effect

531

When-Validate-Item trigger

Description

Fires during the Validate the Item process. Specifically, it fires as the last part of item validation for
items with the New or Changed validation status.

Definition Level form, block, or item

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

• Use a When-Validate-Item trigger to supplement Form Builder default item validation processing.

• It is possible to write a When-Validate-Item trigger that changes the value of an item that Form
Builder is validating. If validation succeeds, Form Builder marks the changed item as Valid and
does not re-validate it. While this behavior is necessary to avoid validation loops, it does make it
possible for your application to commit an invalid value to the database.

• The setting you choose for the Defer Required Enforcement property can affect the When-Validate-
Item trigger. See Defer_Required_Enforcement for details.

On Failure

If fired as part of validation initiated by navigation, navigation fails, and the focus remains on the
original item.

Fires In

Validate the Item

See Process Flowcharts

When-Validate-Item trigger examples

Example
The following example finds the commission plan in the COMMPLAN
table, based on the current value of the commcode item in the
EMPLOYEE block in the form, to verify that the code is valid.
If the code in the COMMPLAN table is located, the description of
the COMMPLAN is obtained and deposited in the non-database
Description item. Otherwise, an error is raised.
** Method 1: Using a SELECT...INTO statement, the trigger
** looks more readable but can be less efficient
** than Method 2 because for ANSI Standard
** compliance, the SELECT...INTO statement must
** return an error if more than one row is
** retrieved that matches the criteria. This
** implies PL/SQL may attempt to fetch data twice

532

** from the table in question to insure that there
** aren’t two matching rows.
*/
BEGIN
 SELECT description
 INTO :Employee.Commplan_Desc
 FROM commplan
 WHERE commcode = :Employee.Commcode;
EXCEPTION
 WHEN No.Data_Found THEN
 Message(’Invalid Commission Plan, Use <List> for help’);
 RAISE Form_trigger_Failure;
 WHEN Too_Many_Rows THEN
 Message(’Error. Duplicate entries in COMMPLAN table!’);
 RAISE Form_trigger_Failure;
END;

/*
** Method 2: Using an Explicit Cursor looks a bit more
** daunting but is actually quite simple. The
** SELECT statement is declared as a named cursor
** in the DECLARE section and then is OPENed,
** FETCHed, and CLOSEd in the code explicitly
** (hence the name). Here we guarantee that only a
** single FETCH will be performed against the
** database.
*/
DECLARE
 noneFound BOOLEAN;
 CURSOR cp IS SELECT description
 FROM commplan
 WHERE commcode = :Employee.Commcode;
BEGIN
 OPEN cp;
 FETCH cp INTO :Employee.Commplan_Desc;
 noneFound := cp%NOTFOUND;
 CLOSE cp;
 IF noneFound THEN
 Message(’Invalid Commission Plan, Use <List> for help’);
 RAISE Form_trigger_Failure;
 END IF;
END;

533

When-Validate-Record trigger

Description

Fires during the Validate the Record process. Specifically, it fires as the last part of record validation for
records with the New or Changed validation status.

Definition Level form or block

Legal Commands

SELECT statements, unrestricted built-ins

Enter Query Mode no

Usage Notes

Use a When-Validate-Record trigger to supplement Form Builder default record validation processing.

Note that it is possible to write a When-Validate-Record trigger that changes the value of an item in the
record that Form Builder is validating. If validation succeeds, Form Builder marks the record and all of
the fields as Valid and does not re-validate. While this behavior is necessary to avoid validation loops, it
does make it possible for your application to commit an invalid value to the database.

On Failure

If fired as part of validation initiated by navigation, navigation fails, and the focus remains on the
original item.

Fires In

Validate the Record

See Process Flowcharts

When-Validate-Record trigger examples

Example

The following example verifies that Start_Date is less than End_Date. Since these two text items have
values that are related, it’s more convenient to check the combination of them once at the record level,
rather than check each item separately. This code presumes both date items are mandatory and that
neither will be NULL.

/* Method 1: Hardcode the item names into the trigger.
** Structured this way, the chance this code will
** be reusable in other forms we write is pretty
** low because of dependency on block and item
** names.
*/
BEGIN
 IF :Experiment.Start_Date > :Experiment.End_Date THEN
 Message(’Your date range ends before it starts!’);
 RAISE Form_trigger_Failure;
 END IF;

534

END;

/* Method 2: Call a generic procedure to check the date
** range. This way our date check can be used in
** any validation trigger where we want to check
** that a starting date in a range comes before
** the ending date. Another bonus is that with the
** error message in one standard place, i.e. the
** procedure, the user will always get a
** consistent failure message, regardless of the
** form they’re currently in.
*/
BEGIN
 Check_Date_Range(:Experiment.Start_Date,:Experiment.End_Date);
END;

/*
** The procedure looks like this
*/
PROCEDURE Check_Date_Range(d1 DATE, d2 DATE) IS
BEGIN
 IF d1 > d2 THEN
 Message(’Your date range ends before it starts!’);
 RAISE Form_trigger_Failure;
 END IF;
END;

535

When-Window-Activated trigger

Description

Fires when a window is made the active window. This occurs at form startup and whenever a different
window is given focus. Note that on some window managers, a window can be activated by clicking on
its title bar. This operation is independent of navigation to an item in the window. Thus, navigating to
an item in a different window always activates that window, but window activation can also occur
independently of navigation.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use this trigger to perform the following types of tasks:

• Capture initial settings of window properties, by way of the GET_WINDOW_PROPERTY built-in.

• Enforce navigation to a particular item whenever a window is activated.

• Keep track of the most recently fired window trigger by assigning the value from
SYSTEM.EVENT_WINDOW to a variable or global variable.

On Failure

no effect

536

When-Window-Closed trigger

Description

Fires when an operator closes a window using a window-manager specific Close command.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use this trigger to programmatically close a window when the operator issues the window-manager
Close command.

You can hide the window that contains the current item.

On Failure

no effect

When-Window-Closed trigger examples

Example

The following example of a call to SET_WINDOW_PROPERTY from this trigger closes a window
whenever the operator closes it by way of the window manager operation:

Set_Window_Property(’window_name’, VISIBLE, PROPERTY_OFF);

537

When-Window-Deactivated trigger

Description

Fires when an operator deactivates a window by setting the input focus to another window within the
same form.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use this trigger to audit the state of a window whenever the operator deactivates the window by setting
the input focus in another window.

Note that if this form opens another form, this deactivate trigger does not immediately fire. Instead, it
will fire later when control returns to this form. (Assuming this window also has an activate trigger, then
when control returns to this form, first the deactivate trigger fires followed immediately by the activate
trigger.)

On Failure

no effect

538

When-Window-Resized trigger

Description

Fires when a window is resized, either by the operator or programmatically through a call to
RESIZE_WINDOW or SET_WINDOW_PROPERTY. (Even if the window is not currently displayed,
resizing the window programmatically fires the When-Window-Resized trigger.) This trigger also fires
at form startup, when the root window is first drawn. It does not fire when a window is iconified.

Definition Level form

Legal Commands

SELECT statements, unrestricted built-ins, restricted built-ins

Enter Query Mode yes

Usage Notes

Use this trigger to perform any one of the following types of tasks:

• Capture the changed window properties, such as width, height, x coordinate, or y coordinate.

• Audit the actions of an operator.

• Set the input focus in an item on the target window.

• Maintain certain visual standards by resetting window size if the window was improperly resized.

On Failure

no effect

539

540

Index

A
auditing transactions

Post-Update trigger, 492

B
Block processing triggers, 433
blocks

BLOCK_STATUS system variable, 390
CURRENT_BLOCK system variable, 393
CURSOR_BLOCK system variable, 398
LAST_RECORD system variable, 411
master/detail triggers, 435
MASTER_BLOCK system variable, 412
On-Populate-Details trigger, 469
Post-Block trigger, 476
Pre-Block trigger, 493
TRIGGER_BLOCK system variable, 429
When-Clear-Block trigger, 514
When-New-Block-Instance trigger, 533

buttons
When-Button-Pressed trigger, 512

C
check boxes

When-Checkbox-Changed trigger, 513
closing forms

Post-Form trigger, 481
committing data

Pre-Commit trigger, 494
custom triggers, 511
CUSTOM_ITEM_EVENT system variable, 402
CUSTOM_ITEM_EVENT_PARAMETERS system

variables, 403

D
database

On-Commit trigger, 455
Date and Time

System Variables, 382
date and time system variables:, 382
date and time system variables

$$DATE$$, 384
$$DATETIME$$, 385
$$DBDATE$$, 386
$$DBDATETIME$$, 387
$$DBTIME$$, 388
$$TIME$$, 389
CURRENT_DATETIME, 394

DATE_THRESHOLD, 404
difference between $$DATE$$ and

$$DATETIME$$, 384
EFFECTIVE_DATE, 405

Delete-Procedure trigger, 440
DML Array Size property, 323

E
error trapping

On-Error trigger, 459
errors

message-handling triggers, 435
On-Error trigger, 459

events
EVENT_WINDOW system variable, 406
Interface event triggers, 434
other trigger categories, 439

exiting forms
Post-Form trigger, 481

F
Form_Name property, 24
Format Mask property, 17
forms

CURRENT_FORM system variable, 395
FORM_STATUS system variable, 407
LAST_FORM system variable, 408
Post-Form trigger, 481
Pre-Form trigger, 496
When-Form-Navigate trigger, 520
When-New-Form-Instance trigger, 534

FORMSnn_User_Date/Datetime_Format, 336
Formula property, 25
Frame Alignment property, 26
Frame Title Alignment property, 28
Frame Title Background Color property, 29
Frame Title Font Name property, 30
Frame Title Font Size property, 31
Frame Title Font Spacing property, 32
Frame Title Font Style property, 33
Frame Title Font Weight property, 34
Frame Title Foreground Color property, 35
Frame Title Offset property, 36
Frame Title property, 27
Frame Title Reading Order property, 37
Frame Title Spacing property, 38
Frame Title Visual Attribute Group Property, 39
Function key triggers, 441, 442, 443

541

G
Graphics Type property, 41
Group_Name property, 42

H
height of item, 370
Help property, 43
Hide on Exit property, 44
Highest Allowed Value, 45
Hint (Item) property, 46
Hint (Menu Item) property, 47
Hint (Menu Substitution Parameter) property, 48
Horizontal Justification property, 49
Horizontal Margin property, 50
Horizontal Object Offset property, 51
Horizontal Origin property, 52
Horizontal Toolbar Canvas property, 53

I
Icon Filename property, 54
Icon in Menu property, 55
Iconic property, 56
Image Depth property, 57
Image Format property, 58
image items

When-Image-Activated trigger, 521
When-Image-Pressed trigger, 522

image items:, 521
Implementation Class property, 59
Include REF Item property, 60
Inherit Menu property, 61
Initial Keyboard State property, 62
Initial Menu property, 63
Initial Value (Item) property, 64
Insert Allowed (Block) property, 66
Insert Allowed (Item) property, 67
Insert Procedure Arguments property, 69
Insert Procedure Name property, 70
Insert Procedure Result Set Columns property, 71
inserting records

When-Create-Record trigger, 515
Insert-Procedure trigger, 444
Interaction Mode property, 72
Interface event triggers, 434
Isolation Mode property, 73
item events

When-Custom-Item-Event trigger, 517
Item Roles property, 74
Item Type property, 75
Item_Is_Valid property, 76
Item_Tab_Page property, 77
items

CURRENT_ITEM system variable, 396
CURRENT_VALUE system variable, 397
CURSOR_ITEM system variable, 399
CURSOR_VALUE system variable, 401
CUSTOM_ITEM_EVENT system variable, 402

CUSTOM_ITEM_EVENT_PARAMETERS
system variable, 403

TRIGGER_ITEM system variable, 430

J
JavaBean control, 517
Join Condition property, 78
Join Style property, 79
Justification property, 80

K
Keep Cursor Position property, 82
Key Mode property, 84
Key triggers, 439
Keyboard Accelerator property, 85
Keyboard Help Description property, 86
Keyboard Navigable property, 87
Keyboard State property, 88
Key-Fn, 434
Key-Fn triggers, 445
Key-Others trigger, 446

L
Label (Item) property, 89
Label (Menu Item) property, 90
Label (Menu Substitution Parameter) property, 91
Label (Tab Page) property, 92
Last_Block property, 93
Last_Item property, 94
Last_Query property, 95
Layout Data Block property, 96
Layout Style property, 97
Length (Record Group) property, 98
Line Spacing property, 99
Line Width property, 100
linkage between master and detail, 238
List Item Value property, 101
list items

When-List-Changed trigger, 524
List of Values property, 102
List Style property, 103
List Type property, 104
List X Position property, 105
List Y Position property, 106
Listed in Data Block Menu/Data Block Description,

107
Lock Procedure Arguments property, 108
Lock Procedure Name property, 109
Lock Procedure Result Set Columns property, 110
Lock Record property, 111
Locking Mode property, 112
Lock-Procedure trigger, 447
logging out, 466
logon

On-Logon trigger, 465
logon process

Post-Logon trigger, 485

542

Post-Logout trigger, 486
Pre-Logon trigger, 499

logon process:, 485
logout, 466
LOV property, 102
Lowest Allowed Value, 45

M
Magic Item property, 113
Main Menu property, 115
Mapping of Other Values property, 116
master-detail link type, 238
Maximize Allowed property, 117
Maximum Length (Form Parameter) property, 119
Maximum Length (Menu Substitution Parameter)

property, 120
Maximum Length property, 118
Maximum Objects Per Line property, 121
Maximum Query Time property, 122
Maximum Records Fetched property, 123
Menu Description property, 124
Menu Directory property, 125
Menu Filename property, 126
Menu Item Code property, 127
Menu Item Radio Group property, 128
Menu Item Type property, 129
Menu Module property, 131
Menu Parameter Initial Value (Menu Substitution

Parameter) property, 180
Menu Role property, 132
Menu Source property, 133
Menu Style property, 135
Message property, 136
messages

MESSAGE_LEVEL system variable, 413
message-handling triggers, 435
On-Message trigger, 467
suppressing runtime messages, 426

Minimize Allowed property, 137
Minimized Title property, 138
Modal property, 139
modes

MODE system variable, 414
Module Roles property, 141
Module_NLS_Lang property, 140
mouse events

MOUSE_BUTTON_PRESSED system variable,
416

MOUSE_CANVAS system variable, 418
MOUSE_ITEM system variable, 420
MOUSE_RECORD system variable, 421
MOUSE_X_POS system variable, 423
MOUSE_Y_POS system variable, 424
When-Image-Activated trigger, 521
When-Image-Pressed trigger, 522
When-Mouse-Click trigger, 525
When-Mouse-DoubleClick trigger, 526
When-Mouse-Down trigger, 528
When-Mouse-Enter trigger, 529
When-Mouse-Leave trigger, 530

When-Mouse-Move trigger, 531
When-Mouse-Up trigger, 532

Mouse Navigate property, 142
Mouse Navigation Limit property, 143
MOUSE_BUTTON_MODIFIERS system variable,

415
Move Allowed property, 144
Multi-Line property, 145
multiple selection, 146
Multi-Selection property, 146

N
Name property, 147
navigation

CURSOR_BLOCK system variable, 398
Navigation Style property, 149
Next Navigation Block property, 150
Next Navigation Item property, 151
Next_Detail_Relation property, 154
Next_Master_Relation property, 155
NextBlock property, 152
NextItem property, 153
non-ORACLE data sources, 449
non-Oracle database

On-Commit trigger, 455
Number of Items Displayed property, 156
Number of Records Buffered property, 157
Number of Records Displayed property, 158

O
OLE Activation Style property, 159
OLE Class property, 160
OLE In-place Activation, 161
OLE Inside-Out Support, 162
OLE Popup Menu Items property, 163
OLE Resize Style property, 166
OLE Tenant Aspect property, 167
OLE Tenant Types property, 168
On-Check-Delete, 435
On-Check-Delete-Master trigger, 448
On-Check-Unique trigger, 449
On-Clear-Details, 435
On-Clear-Details trigger, 451
On-Close trigger, 452
On-Column-Security trigger, 453
On-Commit trigger, 455
On-Count trigger, 456
On-Delete, 437
On-Delete trigger, 457
On-Dispatch-Event trigger, 458
On-Error, 435
On-Error trigger, 459
On-event triggers, 439
On-Fetch trigger, 461
On-Insert, 437
On-Insert trigger, 463
On-Lock, 437
On-Lock trigger, 464
On-Logon trigger, 465

543

On-Logout, 437
On-Logout trigger, 466
On-Message, 435
On-Message trigger, 467
On-Populate-Details, 435
On-Populate-Details trigger, 469
On-Rollback trigger, 470
On-Savepoint trigger, 471
On-Select trigger, 472
On-Sequence-Number trigger, 474
On-Update, 437
On-Update trigger, 475
Operating_System property, 169
Optimizer Hint property, 170
ORDER BY Clause, 367
Order By property, 171
Other Reports Parameters property, 172
Output_Date/Datetime_Format property, 173

P
Parameter Data Type property, 174
Parameter Initial Value (Form Parameter) property,

179
Password property, 181
PL/SQL Library Location property, 183
PL/SQL Library Source property, 184
PLSQL_Date_Format property, 182
Popup Menu property, 185
Post-Block, 435
Post-Block trigger, 476
Post-Change trigger, 477
Post-Database-Commit, 437
Post-Database-Commit trigger, 479
Post-Delete, 437
Post-Delete trigger, 480
post-event triggers, 439
Post-Form, 435
Post-Form trigger, 481
Post-Forms-Commit, 437
Post-Forms-Commit trigger, 482
Post-Insert, 437
Post-Insert trigger, 484
Post-Logon trigger, 485
Post-Logout trigger, 486
Post-Query, 437
Post-Query trigger, 487
Post-Record, 435
Post-Record trigger, 489
Post-Select trigger, 490
Post-Text-Item, 435
Post-Text-Item trigger, 491
Post-Update, 437
Post-Update trigger, 492
Pre-Block, 435
Pre-Block trigger, 493
Pre-Commit, 437
Pre-Commit trigger, 494
Precompute Summaries property, 186
Pre-Delete, 437
Pre-Delete trigger, 495

Pre-event triggers, 439
Pre-Field trigger (Pre-Text-Item trigger), 506
Pre-Form, 435
Pre-Form trigger, 496
Pre-Insert, 437
Pre-Insert trigger, 497
Pre-Logon trigger, 499
Pre-Logout trigger, 500
Pre-Popup-Menu trigger, 501
Pre-Query, 437
Pre-Query trigger, 502
Pre-Record, 435
Pre-Record trigger, 504
Pre-Select trigger, 505
Pre-Text-Item, 435
Pre-Text-Item trigger, 506
Pre-Update, 437
Pre-Update trigger, 507
Prevent Masterless Operations property, 187
Previous Navigation Block property, 188
Previous Navigation Item property, 189
PreviousBlock property, 190
PreviousItem property, 191
Primary Canvas property, 192
primary key

checking programmatically, 449
Primary Key (Item) property, 193
Program Unit Text property, 194
Prompt Alignment Offset property, 197
Prompt Alignment property, 196
Prompt Attachment Edge property, 198
Prompt Attachment Offset property, 199
Prompt Background Color property, 200
Prompt Display Style property, 201
Prompt Fill Pattern property, 202
Prompt Font Name property, 203
Prompt Font Size property, 204
Prompt Font Spacing property, 205
Prompt Font Style property, 206
Prompt Font Weight property, 207
Prompt Foreground Color property, 208
Prompt Justification property, 209
Prompt property, 195
Prompt Reading Order property, 210
Prompt Visual Attribute Group property, 211
Prompt_White_on_Black property, 212
properties

relation type, 238
Property Class property, 213

Q
queries

LAST_QUERY system variable, 409
Query All Records property, 214
Query Allowed (Block) property, 215
Query Allowed (Item) property, 216
Query Array Size property, 217
Query Data Source Arguments property, 218
Query Data Source Columns property, 219
Query Data Source Name property, 220

544

Query Data Source Type property, 221
Query Length property, 222
Query Name property, 223
Query Only property, 224
query processing

Post-Query trigger, 487
Post-Select trigger, 490
Pre-Query, 502
Pre-Select trigger, 505
Query-Procedure trigger, 509

Query_Hits property, 225
Query_Options property, 226
querying

On-Fetch trigger, 461
Query-Procedure trigger, 509
query-time triggers, 437

R
Radio Button Value Property, 227
radio buttons

When-Radio-Changed trigger, 538
Raise on Entry property, 228
Reading Order property, 229
Real Unit property, 230
Record Group Fetch Size property, 232
Record Group property, 231
Record Group Query property, 233
Record Group Type property, 234
Record Orientation property, 235
records

CURSOR_RECORD system variable, 400
LAST_RECORD system variable, 411
On-Fetch trigger, 461
Pre-Insert trigger, 497
Pre-Record-trigger, 504
RECORD_STATUS system variable, 425
TRIGGER_RECORD system variable, 432
When-Database-Record trigger, 519
When-New-Record-Instance trigger, 537
When-Remove-Record trigger, 539

Records_to_Fetch property, 236
REF column, 238
Relation Type property, 238
Rendered property, 239
Report Destination Format property, 240
Report Destination Name property, 241
Report Destination Type property, 242
Report Server property, 243
Required (Item) property, 244
Required (Menu Parameter) property, 245
Resize Allowed property, 246
Return Item (LOV) property, 247
Rotation Angle property, 248
Runtime Compatibility Mode property, 249

S
Savepoint Mode property, 250
Savepoint_Name property, 251
saving

On-Commit trigger, 455
Scroll Bar Alignment property, 252
Scroll Bar Height property, 253
Scroll Bar Width property, 254
Secure (Menu Parameter) property, 255
security

On-Column-Security trigger, 453
Share Library with Form property, 256
Show Fast Forward Button property, 257
Show Horizontal Scroll Bar property, 258
Show Lines property, 259
Show OLE Popup Menu property, 260
Show OLE Tenant Type property, 261
Show Palette property, 262
Show Play Button property, 263
Show Record Button property, 264
Show Rewind Button property, 265
Show Scroll Bar property, 266
Show Slider property, 268
Show Symbols property, 269
Show Time Indicator property, 270
Show Vertical Scroll Bar property, 271
Show Volume Control property, 272
Shrinkwrap property, 273
Single Object Alignment property, 274
Single Record property, 275
Single-user system, 464
Size property, 276
Sizing Style property, 278
sound, 272
Sound Format property, 279
Sound Quality property, 280
Start Angle property, 281
Start Prompt Alignment property, 282
Start Prompt Offset property, 283
Startup Code property, 284
static function keys, 442
Status (Block) property, 285
Status (Record) property, 286
Subclass Information property, 287
Submenu Name property, 288
Summarized Item property, 290
Summary Function property, 291
Synchronize with Item property, 292
system variables

alphabetical list of, 381
BLOCK_STATUS, 390
COORDINATION_OPERATION, 391
CURRENT_BLOCK, 393
CURRENT_DATETIME, 394
CURRENT_FORM, 395
CURRENT_ITEM, 396
CURRENT_VALUE, 397
CURSOR_BLOCK, 398
CURSOR_ITEM, 399
CURSOR_RECORD, 400
CURSOR_VALUE, 401
CUSTOM_ITEM_EVENT, 402
CUSTOM_ITEM_EVENT_PARAMETERS, 403
Date and Time, 382
DATE_THRESHOLD, 404

545

EFFECTIVE_DATE, 405
EVENT_WINDOW, 406
FORM_STATUS, 407
LAST_FORM, 408
LAST_QUERY, 409
LAST_RECORD, 411
MASTER_BLOCK, 412
MESSAGE_LEVEL, 413
MODE, 414
MOUSE_BUTTON_PRESSED, 416
MOUSE_CANVAS, 418
MOUSE_FORM, 419
MOUSE_ITEM, 420
MOUSE_RECORD, 421
MOUSE_RECORD_OFFSET, 422
MOUSE_X_POS, 423
MOUSE_Y_POS, 424
RECORD_STATUS, 425
SUPPRESS_WORKING, 426
TAB_NEW_PAGE, 427
TAB_PREVIOUS_PAGE, 428
TRIGGER_BLOCK, 429
TRIGGER_ITEM, 430
TRIGGER_RECORD, 432

System variables
MOUSE_BUTTON_SHIFT_STATE, 417

system variables:, 381

T
Tab Attachment Edge property, 293
Tab page

When-Tab-Page-Changed trigger, 540
Tab Page property, 294
Tab Page X Offset property, 295
Tab Page Y Offset property, 296
Tab Style property, 297
tabs

TAB_NEW_PAGE system variable, 427
TAB_PREVIOUS_PAGE system variable, 428

Tear-Off Menu, 298
Time and Date

System Variables, 382
time system variables

$$DATETIME$$, 385
$$DBDATETIME$$, 387
$$DBTIME$$, 388
$$TIME$$, 389

Timer_Name property, 299
timers

When-Timer-Expired trigger, 541
Title property, 300
Tooltip Background Color property, 302
Tooltip Fill Pattern property, 303
Tooltip Font Name property, 304
Tooltip Font Size property, 305
Tooltip Font Spacing property, 306
Tooltip Font Style property, 307
Tooltip Font Weight property, 308
Tooltip Foreground Color property, 309
Tooltip property, 301

Tooltip Visual Attribute Group property, 310
Tooltip White on Black property, 311
Top Prompt Alignment property, 312
Top Prompt Offset property, 313
Top Title property, 315
Top_Record property, 314
Topmost_Tab_Page property, 316
transactional triggers

When-Remove-Record, 539
Transactional Triggers property, 317
Trigger Style property, 318
Trigger Text property, 319
Trigger Type property, 320
TRIGGER_NODE_SELECTED system variable, 431
triggers

Block processing triggers, 433
categories

overview of, 433
Interface event triggers, 434
master/detail triggers, 435
message-handling triggers, 435
navigational triggers, 435, 436
other categories, 439
Pre- and Post-, 436
Query-time triggers, 437
transactional triggers, 437, 438
TRIGGER_BLOCK system variable, 429
TRIGGER_ITEM system variable, 430
TRIGGER_RECORD system variable, 432
validation, 438
When-New-Instance, 436

U
Update Allowed (Block) property, 321
Update Allowed (Item) property, 322
Update Changed Columns Only property, 323
Update Commit property, 325
Update Layout property, 326
Update Only if NULL property, 327
Update Procedure Arguments property, 329
Update Procedure Name property, 330
Update Procedure Result Set Columns property, 331
Update Query property, 332
Update_Column property, 324
Update_Permission property, 328
Update-Procedure trigger, 510
updating

Pre-Update trigger, 507
Use 3D Controls property, 334
Use Security property, 333
User_Date/Datetime_Format property, 336
User_Interface property, 337
User_NLS_Date_Format property, 338
User_NLS_Lang property, 339
Username property, 335
User-named trigger, 511

V
Validate from List property, 340

546

validation
Post-Change trigger, 477
triggers, 438
When-Validate-Item trigger, 546
When-Validate-Record trigger, 548

Validation property, 341
Validation Unit property, 342
Value when Checked property, 343
Value when Unchecked property, 344
values

CURRENT_VALUE system variable, 397
CURSOR_VALUE system variable, 401

VBX
CUSTOM_ITEM_EVENT system variable, 402
CUSTOM_ITEM_EVENT_PARAMETERS

system variable, 403
When-Custom-Item-Event trigger, 517

VBX Control File property, 345
VBX Control Name property, 346
VBX Control Value property, 347
Vertical Fill property, 348
Vertical Justification property, 349
Vertical Margin property, 350
Vertical Object Offset property, 351
Vertical Origin property, 352
Vertical Toolbar Canvas property, 353
Viewport Height

Viewport Width, 354
Viewport X Position

Viewport Y Position, 355
Viewport X Position on Canvas, 356
Viewport Y Position on Canvas, 356
Visible (Canvas) property, 358
Visible (Item) property, 359
Visible (Tab Page) property, 360
Visible in Horizontal/Vertical Menu Toolbar, 361
Visible in Menu property, 362
Visible property, 357
Visual Attribute Group property, 365
Visual Attribute property, 363
Visual Attribute Type property, 366
volume, 272

W
When-Button-Pressed, 434
When-Button-Pressed trigger, 512
When-Checkbox-Changed, 434
When-Checkbox-Changed trigger, 513
When-Clear-Block, 433
When-Clear-Block trigger, 514
When-Create_Record, 433
When-Create-Record trigger, 515
When-Custom-Item-Event trigger, 517
When-Database-Record, 433
When-Database-Record trigger, 519
When-event triggers, 439
When-Form-Navigate trigger, 520
When-Image-Activated, 434
When-Image-Activated trigger, 521
When-Image-Pressed, 434

When-Image-Pressed trigger, 522
When-List-Activated trigger, 523
When-List-Changed trigger, 524
When-Mouse-Click trigger, 525
When-Mouse-DoubleClick trigger, 526
When-Mouse-Down trigger, 528
When-Mouse-Enter trigger, 529
When-Mouse-Leave trigger, 530
When-Mouse-Move trigger, 531
When-Mouse-Up trigger, 532
When-New-Block-Instance, 436, 437
When-New-Block-Instance trigger, 533
When-New-Form-Instance, 435
When-New-Form-Instance trigger, 534
When-New-Instance triggers, 436
When-New-Item-Instance, 436, 437
When-New-Item-Instance trigger, 536
When-New-Record-Instance, 435
When-New-Record-Instance trigger, 537
When-Radio-Changed, 434
When-Radio-Changed trigger, 538
When-Remove-Record, 433
When-Remove-Record trigger, 539
When-Tab-Page-Changed trigger, 540
When-Timer-Expired, 434
When-Timer-Expired trigger, 541
When-Tree-Node-Activated trigger, 543
When-Tree-Node-Expanded trigger, 544
When-Tree-Node-Selected trigger, 545
When-Validate-Item, 438
When-Validate-Item trigger, 546
When-Validate-Record, 438
When-Validate-Record trigger, 548
When-Window-Activated, 434
When-Window-Activated trigger, 550
When-Window-Closed, 434
When-Window-Closed trigger, 551
When-Window-Deactivated, 434
When-Window-Deactivated trigger, 552
When-Window-Resized, 434
When-Window-Resized trigger, 553
WHERE Clause, 367
White on Black property, 369
width of item, 370
Window property, 371
Window Style property, 374
Window_Handle property, 372
Window_State property, 373
windows

EVENT_WINDOW system variable, 406
firing triggers when window activated, 550
firing triggers when window closed, 551
firing triggers when window deactivated, 552
resizing, 553

Wrap Style property, 375
Wrap Text property, 376

X
X Corner Radius property, 377
X Position, 378

547

Y Y Corner Radius property, 380
Y Position, 378

