
Oracle8i

Oracle Servlet Engine User’s Guide

Release 3 (8.1.7)

July 2000

Part No.  A83720-01



ii

Oracle Servlet Engine User’s Guide, Release 3 (8.1.7)

Part No.  A83720-01

Copyright © 1996, 1999, 2000, Oracle Corporation. All rights reserved. 

Primary Author: Susan Kraft

Secondary Author:  John Russell

Contributors: Ellen Barnes, Jose Fernandez, Hal Hildebrand, Sunil Kunisetty, Angela Long, Jasen Minton, 
Brian Wright, Ronald Decker, Kannan Muthukkaruppan

The Programs (which include both the software and documentation) contain proprietary information of 
Oracle Corporation; they are provided under a license agreement containing restrictions on use and 
disclosure and are also protected by copyright, patent, and other intellectual and industrial property 
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems 
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this 
document is error free. Except as may be expressly permitted in your license agreement for these 
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on 
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice  Programs delivered subject to the DOD FAR Supplement are "commercial 
computer software" and use, duplication, and disclosure of the Programs, including documentation, 
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement. 
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer 
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for 
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the 
Programs. 

Oracle is a registered trademark, and JDeveloper ™, Net8 ™, Oracle Objects ™, Oracle8 i™, Oracle8 ™, 
Oracle7 ™, Oracle Lite ™, PL/SQL ™, Pro*C ™, SQL*Net®, and SQL*Plus® are trademarks or registered 
trademarks of Oracle Corporation. All other company or product names mentioned are used for 
identification purposes only and may be trademarks of their respective owners. 



Contents

1 Introduction

Serving Web Applications .................................................................................................................    1-2
Session Memory and Scalability..................................................................................................    1-2
OSE in the Database ......................................................................................................................    1-4
Database Sessions ..........................................................................................................................    1-4

Web Services .........................................................................................................................................    1-5
Web Domains .................................................................................................................................    1-6

Single-Domain ........................................................................................................................    1-8
Multi-Domain .........................................................................................................................    1-9

Servlet Contexts ...........................................................................................................................    1-11
Servlets ..........................................................................................................................................    1-12
Java Naming and Directory Interface.......................................................................................    1-13
Permission and Schema ..............................................................................................................    1-13

Summary of Containment Hierarchy.............................................................................................    1-14
Security ................................................................................................................................................    1-14

2 The Servlet Basics with OSE

JNDI........................................................................................................................................................    2-1
Session Shell.........................................................................................................................................    2-3

Getting and Setting Object Parameters ......................................................................................    2-3
Virtual Paths .........................................................................................................................................    2-4
Property Groups...................................................................................................................................    2-4
Deploy a Servlet ...................................................................................................................................    2-5

Servlet Classes Published in a Servlet Context .........................................................................    2-6
Published Servlets ............................................................................................................. .....    2-6

Serving an HTTP Request..................................................................................................................    2-8
iii



Finding the Web Domain ......................................................................................................... ....   2-8
Single-Domain Web Service:.................................................................................................   2-8
Multi-Domain Web Services: ................................................................................................   2-8

Finding the Servlet Context..........................................................................................................   2-9
Mapping the Virtual Path to a Servlet ........................................................................................   2-9

Trying the Default Servlet - Static Content .......................................................................   2-10

3 JNDI and the Session Shell

About JNDI ...........................................................................................................................................   3-2
JNDI Permissions ................................................................................................................................   3-2
Invoking the Session Shell ................................................................................................................   3-3

Directory Navigation and Management ....................................................................................   3-3
Permissions and Ownership ........................................................................................................   3-3

Overview of OSE Session Shell Commands ..................................................................................   3-4
Service Configuration.......................................................................................................... ..........   3-4
Web Domain Configuration....................................................................................................... ..   3-4
Security Management ...................................................................................................................   3-4
Servlet Context Management.......................................................................................................   3-5
Servlet Management......................................................................................................................   3-5
Export Commands.........................................................................................................................   3-6

4 Architecture

HTTP Requests.....................................................................................................................................   4-2
URLs ................................................................................................................................................   4-2

Life Cycle of the HTTP Request .......................................................................................................   4-2
Endpoints ........................................................................................................................................   4-3
Finding the Web Domain .............................................................................................................   4-3
Finding the Servlet Context..........................................................................................................   4-4
Finding the Servlet.........................................................................................................................   4-4
Finding for the Default Servlet ....................................................................................................   4-5

Database Sessions ................................................................................................................................   4-6
User Identity of Database Sessions .............................................................................................   4-8
Database Sessions ..........................................................................................................................   4-8

Database Session Creation, Termination, and Time-Outs................................................   4-8
Database Session Time-Out...................................................................................................   4-8
iv



Automatic Termination of Database Sessions....................................................................    4-9
HTTP Session Creation, Termination, and Time-Outs ............................................................    4-9

5 Apache Module for Oracle OSE

Requirements for OSE with Apache................................................................................................    5-2
Overview of mod_ose in Apache for OSE ......................................................................................    5-2
Configuring mod_ose in Apache for OSE ......................................................................................    5-4

Connection Descriptors and Syntax of tnsnames.ora .............................................................    5-5
Configuring Apache for OSE Applications....................................................................................    5-7

Stateful and Stateless Applications in Apache ..........................................................................    5-7
Stateful and Stateless Handlers in Apache ................................................................................    5-7
Extracting Configuration Information for Apache ...................................................................    5-9

Topology of a Site Using mod_ose .................................................................................................    5-11
mod_ose Installation for Pre-Installed Apache Systems ...........................................................    5-12

Apache Configuration.................................................................................................................    5-13
Specification of OSE Service ...............................................................................................    5-13
Specification of Dynamic Requests....................................................................................    5-13

Forwarding a URL..............................................................................................................................    5-14

6 OSE Server Configuration

Setting Up OSE ....................................................................................................................................    6-2
Create Services .....................................................................................................................................    6-2
Create Domains ....................................................................................................................................    6-2

Contexts Group..............................................................................................................................    6-2
MIME Group ..................................................................................................................................    6-3

Create Servlet Contexts.......................................................................................................................    6-3
MIME Group ..................................................................................................................................    6-3

Add Servlets..........................................................................................................................................    6-4

7 Developer Tools and Procedures

Web Services .........................................................................................................................................    7-2
Virtual Host and IP Domains in the Web Service.....................................................................    7-2
Changing Ports of the Web Service.............................................................................................    7-3

Managing Servlet Contexts................................................................................................................    7-4
v



Creating or Change a Servlet Context ........................................................................................   7-4
Deleting a Servlet Context ............................................................................................................   7-5

What Is in a Servlet Context?.............................................................................................................   7-6
config Object ...................................................................................................................................   7-6
doc_root Object ..............................................................................................................................   7-6
named_servlets Subdirectory.......................................................................................................   7-7
defaultservlet Object......................................................................................................................   7-7
policy Directory .............................................................................................................................   7-7
httpSecurity ...................................................................................................................................   7-7
Servlet Context Group Parameters .............................................................................................   7-8

context.params........................................................................................................................   7-8
context.mime ...........................................................................................................................   7-9
context.servlets........................................................................................................................   7-9
context.error.uris ....................................................................................................................   7-9

Managing Published Servlets .........................................................................................................   7-10
Servlet Classes Published in a Servlet Context........................................................................   7-10

Writing a Servlet.................................................................................................................................   7-12
Writing the Servlet Code ............................................................................................................   7-12
Compiling the Servlet .................................................................................................................   7-12
Loading the Servlet Code ...........................................................................................................   7-13
Publishing the Servlet .................................................................................................................   7-13
Accessing the Servlet...................................................................................................................   7-13

8 Security HTTP Administration

Overview ...............................................................................................................................................   8-1
Prerequisites to Web Server Security ...............................................................................................   8-2
Authentication and Authorization ...................................................................................................   8-3
Declaring Principals ............................................................................................................................   8-3

Groups .............................................................................................................................................   8-4
Users ................................................................................................................................................   8-4
Realms .............................................................................................................................................   8-4

DBUSER Considerations .......................................................................................................   8-5
The Tools................................................................................................................................................   8-6

The Mechanics................................................................................................................................   8-6
Realms ......................................................................................................................................   8-6
vi



Principals .................................................................................................................................    8-7
Details.......................................................................................................................................    8-8

Protecting A Resource .........................................................................................................................    8-8
The Mechanics................................................................................................................................    8-9
More Details .................................................................................................................................    8-10

Declaring Permissions ......................................................................................................................    8-10
The Mechanics..............................................................................................................................    8-10

Declaring A Security Servlet ...........................................................................................................    8-12
The Mechanics..............................................................................................................................    8-12

Trouble Shooting ...............................................................................................................................    8-13

A  Writing PL/SQL Servlets

Overview of PL/SQL Servlets...........................................................................................................   A-1
Configuring mod_ose to Run PL/SQL Servlets.......................................................................   A-2
Writing Stateful PL/SQL Stored Procedures ...........................................................................   A-3

Configuring Database Access Descriptors from an Application ..............................................   A-4
Package DBMS_EPGC .......................................................................................................................   A-7

Summary of Subprograms ..........................................................................................................   A-9
CREATE_INSTANCE Procedure........................................................................................   A-9
DROP_INSTANCE Procedure ............................................................................................   A-9
DROP_ALL_INSTANCES Procedure ................................................................................   A-9
GRANT_ADMIN Procedure ...............................................................................................   A-9
REVOKE_ADMIN Procedure ...........................................................................................   A-10
GET_ADMIN_LIST Procedure..........................................................................................   A-10
SET_GLOBAL_ATTRIBUTE Procedure...........................................................................   A-10
GET_GLOBAL_ATTRIBUTE Procedure..........................................................................   A-10
DELETE_GLOBAL_ATTRIBUTE Procedure ..................................................................   A-10
GET_ALL_GLOBAL_ATTRIBUTES Procedure .............................................................   A-11
CREATE_DAD Procedure .................................................................................................   A-11
DROP_DAD Procedure ......................................................................................................   A-11
SET_DAD_ATTRIBUTE Procedure..................................................................................   A-11
GET_DAD_ATTRIBUTE Procedure .................................................................................   A-12
DELETE_DAD_ATTRIBUTE Procedure..........................................................................   A-12
GET_DAD_LIST Procedure ...............................................................................................   A-12
GET_ALL_DAD_ATTRIBUTES Procedure.....................................................................   A-12
vii



IMPORT Procedure .............................................................................................................   A-13
EXPORT Procedure .............................................................................................................   A-13

B Examples

Index
viii



Send Us Your Comments

Oracle Servlet Engine User’s Guide, Release 3 (8.1.7) 

Part No.  A83720-01

Oracle Corporation welcomes your comments and suggestions on the quality and 
usefulness of this publication. Your input is an important part of the information 
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please 
indicate the chapter, section, and page number (if available). You can send 
comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com

■ FAX - 650-506-7225.   Attn:  Java Platform Group, Information Development 
Manager

■ Postal service:

Oracle Corporation 
Information Development Manager
500 Oracle Parkway, Mailstop 4op978
Redwood Shores, CA  94065
USA

Please indicate if you would like a reply.
ix



 If you have problems with the software, please contact your local Oracle World 
Wide Support Center.
x Oracle Servlet Engine User’s Guide



Preface

Who Should Read This Book
This book has been written for the following audiences:

■ Management—You may have purchased Oracle8i for reasons other than Java 
development within the database. However, if you want to know more about 
Oracle8i Java features, see Oracle8iJava Developers Guide for a management 
perspective.

■ Non-Java Developers—Oracle database programming consists of PL/SQL and 
other non-Java programming. For experienced PL/SQL developers who are not 
familiar with Java, a brief overview of Java and object-oriented concepts is 
discussed in the first part of Oracle8iJava Developers Guide. For more detailed 
information on Java, see "Java Information Resources" at the end of this Preface. 

■ Java Developers—Pure Java developers are used to a Java environment that 
follows the Sun Microsystem specification. However, when Java is combined in 
the database, both Java and database concepts merge. Thus, the Java 
environment within Oracle8i is expanded to include database concerns. The 
bulk of this book discusses the differences you need to understand to run Java 
in the database. The following outlines the two viewpoints that arise from this 
merge:

* Java environment—Note that Oracle8i delivers an implementation that 
compiles with Java—any 100% pure Java code will work. Oracle8i 
JServer affects your Java development in the way that you manage your 
classes and the environment in which your classes exist. For example, 
the classes must be loaded into the database. In addition, there is a 
clearer separation of client and server in the Oracle8i model.
xi



* Database environment—You need tobe aware of database concepts for 
managing your Java objects. This book gives you a comprehensive view 
of how the two well-defined realms—the Oracle8i database and the 
Java environment—fit together. For example, when deciding on your 
security policies, you must consider both database security and Java 
security for a comprehensive security policy. 

If you are not familiar with JavaServer Pages, see "Oracle8i JavaServer Pages 
Developer’s Guide".

Java Information Resources
The Oracle Java Tools Reference lists and describes all the commands used in 
managing the Oracle Servlet Engine.

The following table lists the sources of current information discussed in the Java 
programming documentation suite:

Location Description

http://www.oracle.com/java The latest offerings, updates, and news for Java within 
the Oracle8i database. This site contains Frequently 
Asked Questions (FAQs), updated JDBC drivers, SQLJ 
reference implementations, and white papers that detail 
Java application development. In addition, you can 
download try-and-buy Java tools from this site.

http://java.sun.com/ The Sun Microsystem web site that is the central source 
for Java. This site contains Java products and 
information, such as tutorials, book recommendations, 
and the Java Developer’s Kit (JDK). The JDK is located at 
http://java.sun.com/products

http://java.sun.com/docs/books/jls

http://java.sun.com/docs/books/vmspec

The Oracle8i Java Server (JServer) is based on the Java 
Language specification(JLS) and the Java virtual machine 
(JVM) specification. 

comp.lang.java.programmer

comp.lang.java.databases

Internet newsgroups can be a valuable source of 
information on Java from other Java developers. We 
recommend that you monitor these two newsgroups. 
Note: Oracle monitors activity on some of these 
newsgroups and posts responses to Oracle-specific 
issues.
xii Oracle Servlet Engine User’s Guide



Your local or on-line bookstore has many useful Java references. You can find 
another listing of materials that are helpful to beginners, and that you can use as 
general references, in the "Oracle8i JavaServer Pages Developer’s Guide".
xiii



xiv Oracle Servlet Engine User’s Guide



Introduc
1

Introduction

The Oracle Servlet Engine (OSE) works as a specialized Web server, designed as a 
scalable servlet server inside the Oracle8i database.

The servlet classes are loaded into Oracle8i with a loadjava command and 
published in a namespace inside the database. A servlet runner handles HTTP 
requests, instantiates published servlets in sessions, and invokes servlet methods. 

The following sections contains descriptions and diagrams of the following topics:

■ Serving Web Applications

■ Web Services

■ Summary of Containment Hierarchy

■ Security

You can use one of the create commands to define domains, contexts, and servlets. All 
contents are served by servlets. The servlet location is defined by the client in the 
URL. 
tion 1-1



Serving Web Applications
Serving Web Applications
A Web page is defined as an HTML file containing only static HTML descriptions of 
hyperlinks, and graphic and formatted text display. A Web application provides 
users with a more interactive experience than a static page can deliver. When HTML 
content is extended by servlets, creating dynamic content, that Web page becomes a 
Web application.

Session Memory and Scalability
The OSE is designed for virtually unlimited linear scalability. because each browser 
session is matched with a single virtual Java virtual machine (JVM), there can be 
multiple virtual JVMs (see Figure 1–1, "Browser Sessions Matched With Virtual 
JVMs"). The only limit on database platforms supporting the virtual JVM sessions is 
the amount of hardware present at any given time. See the Oracle8iJava Developers 
Guide for detailed information. 
1-2 Oracle Servlet Engine User’s Guide 



Serving Web Applications
Figure 1–1 Browser Sessions Matched With Virtual JVMs

Although OSE serves static pages and runs CGI scripts, it is intended to be 
deployed as a servlet runner behind a standard Web server, such as Apache, 
Netscape, or IIS. See Chapter 5, "Apache Module for Oracle OSE".

One of the differences between OSE and other servlet engines is how the database 
session used is designed. Browser-sessions set up servlets sessions. The database 
session contains all the HTTP session objects created for that particular browser 
session. By employing database session memory, objects are not dropped after the 
request (connection) ends. However, objects are dropped when the database session 
ends.
Introduction 1-3



Serving Web Applications
OSE in the Database
OSE is a built-in Web server running inside Oracle8i supporting Web applications. 
Each session (virtual Java VM) executes the following items:

■ JavaServer Pages (JSP)

■ Servlets

■ JavaStored Procedures

Database Sessions
The sessions terminate either explicitly or on a time-out configured by the 
administrator. For more information, see Chapter 6, "OSE Server Configuration".

The OSE unique attributes are:

■ All servlets are activated in a browser-session sponsored database session.

■ Each database session has its own virtual JVM. There are multiple virtual 
JVMs—one for every browser session. 

■ The OSE uses one virtual JVM per session, isolating the sessions and their static 
variables from each browser session (rather than creating a new thread with 
every browser session).

■ The database session contains all the HTTP session objects created for that particular 
browser session.

■ An HTTPsession is activated per stateful servlet context upon the servlet’s request.

■ An Oracle module, mod_ose, provides a layer between the Oracle HTTP server 
(Apache) and the Oracle8i database holding the Oracle servlet server (OSE). 
mod_ose defines ports, servers, and web domains by setting communication 
variables.
1-4 Oracle Servlet Engine User’s Guide 



Web Services
Web Services
In the hierarchical arrangement of this environment, OSE serves as an execution 
context for one or more Web services. You must specify a service root in the 
namespace when you create a Web service. The service root is the top level that 
contains the domain information for the entire Web service.

When you configure a Web service in OSE, you create a Web service, its end points, 
Web domains, and servlet contexts. A Web service is associated with one or more 
network end points. HTTP clients, who connect to a Web service end point, get 
contents from one of the associated Web domains. You must also configure all the 
attributes so that information in the namespace configuration has paths and 
pointers defined to handle and execute the requests.

OSE supports two types of Web service configurations: 

■ single-domain

■ multi-domain

A single-domain Web service is sufficient for most cases. Configure the Web service 
to listen on a single port (8080 is used in all of our examples) and send any request 
received at the end point to the unique domain. 

To support HTTPS, associate an additional end point to the single-domain Web 
service. This end point listens to a different port (9090 is used in all our examples), 
and you can configure it for SSL connections.

The multi-domain Web service is used for more advanced configurations, such as: 

■ In the virtual hosts configuration, one server with multiple Internet domain 
name system (DNS) names corresponds to multiple Web domains.

■ In the multiple IP address configuration, one server with multiple network 
interface cards (NICs) corresponds to multiple Web domains.

In the multi-domain scenario, the network uses either the IP addressing, or the host 
name, or both to establish the request connection and to route the request to the 
correct domain.
Introduction 1-5



Web Services
Web Domains
A Web domain contains servlet contexts or, in the case of IP and virtual hosted, 
multi-domained Web services,  another Web domain. 

The Web domain for HTTP requests is identified by the address part of the URL. 
The root of the Web domain is located in the service root of the contining Web 
service.

The configuration parameters of each domain are in the config object in the Web 
domain’s directory tree. Graphical representations of these configurations are 
shown in Figure 1–2, "Single Domain Namespace Model Structure" and Figure 1–3, 
"Multi-Domain, Multi-Homed Example with Virtual Hosts In the Structure". Notice 
the config object at the top level of the structure.

The following list describes the Web domain hierarchy:

■ A Web domain has an owner corresponding to the schema namespace directory 
owner.

■ For the single-domain case, service root is the location for both the Web domain 
and the root of the Web service. (See Figure 1–2, "Single Domain Namespace 
Model Structure" on page 1-8.)

■ For the IP host domain case, the Web domain name is the host name located in 
the service root. (See Figure 1–3 on page 1-8.)

■ For the virtual host domain case, the Web domain name is the virtual host 
name, located in the service root. (See Figure 1–3 on page 1-8.)

■ A /contexts subdirectory, located in the domain root, contains the servlet 
contexts directories.

■ The published servlets are under the /named_servlets directory.

■ Parallel to the /named_servlets directory are configuration parameters in 
the namespace objects, config, httpSecurity, policy, defaultservlet, 
and doc_root.

■ The doc_root object is a pointer (soft link) to static contents on the client. 

Note: You can change the configuration of your Web domain 
structure from the default with tools that are described in the Oracle 
Java Tools Reference.
1-6 Oracle Servlet Engine User’s Guide 



Web Services
The directory structure describing the namespace is a model you can use to explore 
and manipulate the elements that make up the Web domain. Each file and directory 
are actually objects with properties in the Oracle8i databases, rather than files with 
contents. However, for most of this discussion, a directory and file model will 
suffice while using the tools to create a Web domain.
Introduction 1-7



Web Services
Single-Domain
When a URL, such as http://cavist.com:8080/cellar/welcome.html, is 
sent to a single-domain, the request accesses the Web service listening on port 8080, 
on the host named cavist.com.

Example 1–1 Single-Domain: Port Relationship and Domain Root in URL

Figure 1–2 Single Domain Namespace Model Structure

 http://cavist.com:8080/cellar/welcome.html

endpoint configuration, port 8080

name of host is recognized by DNS routing
1-8 Oracle Servlet Engine User’s Guide 



Web Services
Multi-Domain
When you set-up a multi-domain Web service, the Web domain name is dependent 
on the configuration type of the service root. An example of a multi-domain, 
multi-homed configuration (more than one IP address on a machine) combined 
with multiple virtual hosts is shown in Figure 1–3. 

For example, a virtual host, cavist.com, in a domain defined by the IP address, 
10.1.1.20, can have the identical structure naming pattern as another IP address and 
virtual host pairing, such as 10.1.1.30 hosting jones.com, sharing the same service 
root. The names are defined in a path so that the lower branches are uniquely 
defined by the domain names.

Example 1–2 Multiple-Domain: Port Relationship and service root in URL

 http://cavist.com:8080/tasting

 Web domain = 10.1.1.20/cavist.com

 port 8080

DNS name = cavist.com 
(cavist.com is mapped to 10.1.1.20)

 http://cavist.com:8080/tasting

 Web domain = 10.1.1.20/cavist.com

 port 8080

DNS name = cavist.com 
(cavist.com is mapped to 10.1.1.20)
Introduction 1-9



Web Services
Figure 1–3 Multi-Domain, Multi-Homed Example with Virtual Hosts  In the Structure
1-10 Oracle Servlet Engine User’s Guide 



Web Services
Servlet Contexts
Think of a servlet context as an application loaded into OSE. It is a set of servlets, 
configuration parameters, JSPs, and pointers to static contents on the file system 
that are all accessible below the same virtual path. The servlet context is usually 
identifiable as the first segment of a URL’s path.

A servlet context configuration describes how the Web server behaves when serving 
its contents (security, timeouts, MIME types, mapping of virtual paths extensions to 
servlets, statefulness). OSE supports nested servlet contexts that can inherit 
configuration properties from their parents.

In practice:

■ The servlet context parent directory, /contexts, is a namespace subdirectory 
of its domain root directory.

■ The winecellar servlet context is stored in the <domain 
root>/contexts/winecellar directory.

■ The servlet context directory contains its configuration parameters, a pointer to 
the static document root, and a subdirectory, named_servlets, containing 
servlets. 

The configuration information of a servlet context is a namespace object, config, in 
the servlet context directory. Look at Figure 1–2, "Single Domain Namespace 
Model Structure" and notice the config object listed under the <servlet 
context1> directory.

If the config object contains the entry /cellar as mapped to /winecellar, 
then the URL http://cavist.com:8080/cellar/welcome.html would 
access the servlet context, winecellar, in the Web domain, cavist.com.
Introduction 1-11



Web Services
Example 1–3 Mapping Virtual Paths to Servlet Contexts

Servlets
A servlet is a Java class. Load servlet classes and any related support classes, into the 
database with the loadjava command. Publish the servlet into a servlet context 
with the session shell.

Publishing a servlet:

■ creates a named namespace object in the named_servlets subdirectory of the 
servlet context directory

■ associates a virtual path with the servlet, as contained in the config object of 
their servlet context to be used when matching against a URI

Example 1–4 Servlets Associated with the HTTP Virtual Path

A servlet accessible as http://cavist.com:8080/cellar/winefinder could 
be published as a namespace object named
service root/contexts/winecellar/named_servlets/winefinderservlet 
with the virtual path mapping entry /winefinder=winefinderservlet in 
service root/contexts/winecellar/config.

 <Web domain>/winecellar/welcome.html

Servlet Context

 http://cavist.com:8080/cellar/welcome.html

virtual path
host and Web domain

/cellar is mapped to /winecellar 
1-12 Oracle Servlet Engine User’s Guide 



Web Services
Java Naming and Directory Interface
Earlier, we said the servlets are published in a namespace and that the directory 
structure was a model. This namespace is the Sun Java Naming and Directory 
Interface (JNDI). The OSE’s JNDI implementation uses SQL tables to store the 
contents of a JNDI accessible namespace. 

Access the JNDI with the session shell command-line tool. Use these commands to 
explore and manipulate the namespace.

Using the session shell you can navigate the namespace as if it were a file system to 
change directories and list the contents (see Chapter 3, "JNDI and the Session Shell" 
for tool definitions and examples).

The contents are organized into hierarchical containment relationships of security, 
mapping, servlets and default objects. Servlet contexts correspond to applications 
deployed in the Web server. Servlet contexts, which are mapped to the address part 
of an URL, are grouped in Web domains.

Example 1–5 URL Shows a Client Accessing Contents

http://<Web domain:port>/<servlet-context>/<path>

We can translate this example URL into a real URL and name such as this:

http://cavist.com:8080/winecellar/welcome.html

Web domains and servlet contexts have owners (Oracle schema) with full 
administration rights. The owner of the Web domain can administer the Web 
domain, create servlet contexts, and give access to other schemas. The owner of a 
servlet context can publish contents in it and tune its configuration parameters.

Permission and Schema
The ownership and permissions are similar in construct to the UNIX environment, 
in that there are read, write, and execute abilities defined with session shell 
commands. Web domain schemas are the only valid users in the JNDI namespace. 
The users are given permissions and ownership in their domains by administrators.
Introduction 1-13



Summary of Containment Hierarchy
Summary of Containment Hierarchy
The containment hierarchy of the OSE is defined as:

Web Service(s) > Web Domain(s) > Servlet Context(s) > Servlets

Security
OSE supports authentication and access control as required by the Servlet 2.2 
Specification.

In defining your security, you must define a valid set of users. You can:

■ use the database users as its population 

■ define your own realm principals

Principal declarations are held in the realms directory of a Web service. The 
following are properties of realms:

■ Realm definitions are within the scope of a service. 

■ A realm is made up of users and groups. 

■ All servlet contexts within a service can use the same realm definitions. 

The policy directory is automatically created when you set permissions and create 
URL security mappings.

See Figure 1–4, "Security Components in the JNDI Namespace", for the general 
relationship of policy to a servlet context.

Figure 1–4 shows the relationship of the realms and policy directories with 
respect to the rest of the domain in the JNDI namespace. realms is at the top level 
of the domain, whereas policy is a sub-directory of servlet context.
1-14 Oracle Servlet Engine User’s Guide 



Security
Figure 1–4 Security Components in the JNDI Namespace 

Versions  OSE supports servlets 2.1 and JSPs 1.0.
Introduction 1-15



Security
1-16 Oracle Servlet Engine User’s Guide 



The Servlet Basics with
2

The Servlet Basics with OSE

This chapter contains a series of operations designed to be helpful during your first 
time using the servlet engine. The topics we cover are the following:

■ JNDI

■ Session Shell

■ Deploy a Servlet

■ Serving an HTTP Request

JNDI
The JNDI namespace is an API storing information and contents of the  servers, and 
provides naming and directory functionality to applications written in the Java 
programming language. JNDI is independent of specific naming or directory 
service implementations, enabling Java applications to access different naming and 
directory services with a common API. Various naming and directory service 
providers are plugged in seamlessly behind the common API, which allows Java 
applications to coexist with legacy applications and systems, such as a file system. 

A full JNDI server, inside Oracle8i, is accessible with JNDI APIs from inside and 
outside of Oracle8i. When managing the Web server, you can interactively see and 
change the contents and properties of the namespace with session shell tool. See the 
Oracle Java Tools Reference for a complete discussion of the session shell commands 
and syntax.
 OSE 2-1



JNDI
The namespace is hierarchical, with two types of entries, objects and directories.

■ Objects are used to store Java references. 

■ Directories contain other directories or objects. Paths to JNDI entries are 
indicated with the regular UNIX notation /dir/dir/dir/leaf.

Figure 2–1 JNDI OSE Namespace Structure Showing dir/dir/dir/leaf
2-2 Oracle Servlet Engine User’s Guide 



Session Shell
Session Shell
The session shell commands, shown in this section, are used in the most commonly 
performed tasks in the OSE management. In the following sections, you will see a 
simple set of commands used to create and manipulate objects in the JNDI.

There are session shell commands for use with the namespace. There are different 
styles of commands which are characterized as follows:

■ a UNIX-like command set for exploring and manipulating the namespace

■ commands to get and set properties of JNDI objects

■ specialized commands to create new objects (for example, the servlet contexts and 
their configuration parameters, and servlets).

See Chapter 3, "JNDI and the Session Shell" for an overview of these commands. 
Read Oracle Java Tools Reference for a complete description of these commands.

Getting and Setting Object Parameters
Use the getproperties command to show all parameters of a JNDI object and the 
setproperties command to change the parameters. You can also change the 
parameters, along with their entire group parameters, using the setgroup 
command.

The syntax for the setparameters and getparameters are:

getproperties <object>
setproperties <object> <properties>

In getproperties, the properties are printed as a Java properties file. In 
setproperties the properties need to be passed in with the same syntax. You will 
likely have more than one property. Enter a double-quote before the first property, 
and use the carriage return after each entry. The shell prompts with an angle bracket 

Note: If a multiple line entry is invoked by using a double-quote, 
the session shell prompts for the next entry with a right-angle 
bracket, ">", until another double-quote is entered.

Another method for multiple line entries is to use a backslash "\" as 
a continuation indicator.
The Servlet Basics with OSE 2-3



Virtual Paths
(>) for more data or an end of entry. Use double-quotes after entering the last 
property, marking the last entry (i.e., >foo=bar").

Example 2–1 Change the doc_root Path

$ getproperties doc_root
FSContextURL=/usr/local/oracle/jis/public_html
$ setproperties doc_root FSContextURL=/usr/local/winecellar
$ getproperties doc_root
FSContextURL=/usr/local/winecellar

For more information on doc_root, see "doc_root Object",  on page 7-6.

Virtual Paths
Virtual paths can be associated with a servlet when publishing it to the 
servlet context sub-directory, named_servlets. 

Given that an URL is defined by:
protocol + servername + URI, then the structure is: http://<servername>/<URI>.

The URI, shown as part of the URL, is defined is the request URI comprised of the
ContextPath + ServletPath + PathInfo

The first portion of the virtual path mapping to a servlet context is called the 
servlet context’s virtual path; the second portion mapping into a particular servlet is 
called the Servlet’s virtual path. Any left over portion in the URI is given as 
PATH_INFO to the servlet.

Property Groups
Defines a group of parameters within a JNDI entry.

Note: The setproperties command clears all of the properties 
of the object before setting the specified properties.

Note: When entering the new path, specify the whole path.
2-4 Oracle Servlet Engine User’s Guide 



Deploy a Servlet
Deploy a Servlet
In the previous sections you read about, and perhaps tested, examples of JNDI 
objects with these procedures:

1. Create a JNDI object.

2. Display properties of the doc_root object, with the getproperties 
command.

This section explains how to publish and run a servlet using the following 
commands: 

■ loadjava

■ publishservlet

■ setproperties
The Servlet Basics with OSE 2-5



Deploy a Servlet
Servlet Classes Published in a Servlet Context
Servlet classes are loaded into Oracle8i with loadjava and published in a servlet 
context with the session shell commands. Publishing a Servlet creates a JNDI object 
in the named_servlets subdirectory of the servlet contexts. 

This JNDI object lists the servlet classname and its initialization parameters. Servlets 
are associated with an HTTP virtual path as described in their JNDI servlet context 
config object.

Use loadjava to load the servlet class and any support classes into the database. 
(See Oracle Java Tools Reference for a detailed description of this tool.)

Published Servlets
Published servlets are JNDI objects of class 
SYS:oracle.aurora.mts.ServletActivation under the named_servlets 
directory of a servlet context. To be accessible from an HTTP client, servlets must be 
associated with a virtual path, or a wild-card name, in their servlet context config.

publishservlet [-virtualpath <path>] [-stateless] [-reuse] [-properties props] \
 contextName <servletName> [className]

 -virtualpath option and path (optional): virtual path to associate with this servlet 
for invocation 

 -stateless flag (optional): tells OSE the servlet is stateless. When this is set, the 
servlet has no access to the HTTPSession.

contextName: the name assigned to this context servlet directory. 

servletName: the name assigned to this servlet in the named_servlets 
directory. 

 className: the name of the class implementing the HttpServlet interface.

This command publishes a servlet by name in the context and associates a virtual 
path with the named servlet.
2-6 Oracle Servlet Engine User’s Guide 



Deploy a Servlet
Example 2–2 Publish a Servlet with publishservlet Command

Verify the servlet is published, enter:
$ ls /webdomains/contexts/winecellar/named_servlets

tastingServlet

Verify the virtual path mapping
$ getgroup /webdomains/contexts/winecellar/config context.servlets
/errors/internal=internalError
/tastings=tastingServlet

Example 2–3 Modify a Published Servlet Properties with setproperties Command

You can add additional properties with the session shell commands then access 
those new properties from the servlet code with the setproperties.

$ getproperties invoker
servlet.class=SCOTT:winemasters.tasting.Tasting

$ setproperties invoker "servlet.class=SCOTT:winemasters.tasting.Tasting

>details=high
>style=parker"

$ getproperties invoker
servlet.class=SCOTT:winemasters.tasting.Tasting
details=high
style=parker

$ publishservlet -virtualpath  /tastings  /webdomains/contexts/winecellar \
    tastingServlet SCOTT:winemasters.tasting.Tasting

servletName className

contextnameservlet path
The Servlet Basics with OSE 2-7



Serving an HTTP Request
Serving an HTTP Request
This section describes the algorithm OSE uses to find the right servlet.

Servlets handle all HTTP requests. The request deployment begins when a client 
sends an HTTP request to the server. OSE extracts the virtual path from the request. 

When a service is invoked, the config object uses the virtual path to map the 
servlet to the request.

The following four sections describe how HTTP requests are serviced.

Finding the Web Domain
The Web domain that handles the requests is dependent on the Web service that is 
configured for OSE.

Single-Domain Web Service:
The Web domain handling the request is the single Web domain associated with the 
service.

Multi-Domain Web Services:
If you configured more advanced Web Services, then the domain used depends on 
the service and the URL employed to access OSE. Refer to the Multi-Domain 
discussion in Chapter 1, "Introduction" for more information.
2-8 Oracle Servlet Engine User’s Guide 



Serving an HTTP Request
Finding the Servlet Context
OSE searches in the contexts properties group of the Web domain config object. 
This set of properties is a list of mappings for virtual paths to Context names. 

OSE matches the virtual path of the request against each entry in the Contexts 
properties. The longest match indicates which servlet context will serve the request.

Example 2–4 HTTP Requests Finding the Servlet Context

If the URL is: 

http://cavist.com:8080/cellar/bordeaux.wine

and the virtual path from the Web domain config object maps the 
virtual path to the servlet context:

/cellar=/winecellar

Then the servlet context, cavist/contexts/winecellar, is used.

If a servlet context match is not found, the request is served by the context:

/cavist/contexts/default

Mapping the Virtual Path to a Servlet 
When the servlet is mapped to the URI, the portion of the URI path that was 
mapped to the servlet context is ignored. The remaining portion is matched with 
entries in the context.servlets properties of the servlet context config object. 
The longest match indicates which servlet will handle the request. 

Entries in the context.servlets properties can be paths or wild-card names 
according to the Servlet 2.2 Specification. Partial paths have priority over wild-card 
names. Exact matches have priority over both partial paths and wild-card names.

Example 2–5 HTTP Requests Finding the Servlet

The virtual path /cellar/bordeaux.wine 
is served by the context /cavist/contexts/winecellar.

To find the name of the servlet, bordeaux.wine is matched against the virtual 
paths mapping, defined by the servlet context config object.
The Servlet Basics with OSE 2-9



Serving an HTTP Request
Within the servlet context, if a servlet match is not found, the request is served by 
the default servlet.

Trying the Default Servlet - Static Content 
If no match for the requested URL is found, OSE looks for a servlet named 
defaultservlet, first in the servlet context directory, next in the Web domain 
directory, and then in the Web Service. If the default servlet is found, it processes the 
request.

Example 2–6 Request Served by defaultservlet

Suppose the winecellar/doc_root object points to the file system directory, 
/usr/local/coolplace/html

Therefore, the contents of the doc_root object parameters are
FSContextURL=/usr/local/coolplace/html

The URL is http://cavist.com:8080/cellar/labels/lafitte.gif

The virtual path, /cellar is mapped to a servlet context, /winecellar. If the 
servlet context did not have any matches for /labels/lafitte.gif (or a partial 
match, such as /labels/*), then the default servlet is used.

The default servlet:

1. starts and receives the pathInfo, /labels/lafitte.gif

2. matches the pathInfo below doc_root. 

3. retrieves /usr/local/coolplace/html/labels/lafitte.gif

This match must be full matches. If no default servlet is found, OSE generates an 
internal error code. 
2-10 Oracle Servlet Engine User’s Guide 



JNDI and the Session S
3

JNDI and the Session Shell

This chapter contains tool definitions and examples. The topics we cover are the 
following:

■ About JNDI

■ JNDI Permissions

■ Invoking the Session Shell

■ Overview of OSE Session Shell Commands

A full JNDI server, inside Oracle8i, is accessible with JNDI session shell commands 
from inside and outside of Oracle8i. You can interactively manipulate the contents 
of the namespace with the session shell.
hell 3-1



About JNDI
About JNDI
JNDI stores information and contents of the different Java servers— OSE, CORBA 
and EJB— running in Oracle8i.

The namespace is hierarchical with two types of entries, directories and objects.

Directories contain other directories or objects. Paths to JNDI entries are 
indicated with the regular UNIX notation /dir/dir/dir/leaf.

Objects are used to store Java References. A reference is an instance of the 
javax.naming.Reference class. The JNDI server gets the Reference 
components (Class name, Class factory name and parameters) and uses this 
information to instantiate the Java object. The session shell provides commands 
to store new references in the JNDI namespace and to manipulate their 
parameters.Additionally, the session shell provides a set of commands to 
navigate the namespace, remove entries, and change their permissions.

See figures in Chapter 1, "Introduction", for depictions of the JNDI structure.

JNDI Permissions
All contents in the JNDI server are secure. You must have the correct access rights to 
view and modify contents when accessing the JNDI server as a user. Similar to the 
UNIX file system, JNDI supports three type of access rights: read, write, and 
execute. Access can be granted to databases users (schema) or database roles. This 
can be done with one of the shells or programmatically. Setting read, write, or 
execute JNDI permissions is similar to setting file and directory permissions with 
UNIX. 

The JNDI server also uses the ownership concept, where each entry is owned by a 
database schema. This is similar to the UNIX file system.
3-2 Oracle Servlet Engine User’s Guide 



Invoking the Session Shell
Invoking the Session Shell
All commands execute on the server by remote access and must specify the 
communication transport in use to contact the server. The following communication 
options are available: JDBC, HTTP and IIOP (SESS_IIOP). 

To access the session shell commands on a client/server, type:

sess_sh -s transportURL -u[ser] username[/passwd] [-p[assword] passwd] [otherargs... ] 

-s service transportURL: specifies the transport to use for communicating with the 
server, in the form of a URL descriptor.
 

-u username: The login name for the database session. 

-p passwd: The password during login. 

-command "cmd...": A command to execute on the server 

See the Oracle Java Tools Reference for complete details regarding the shell tool and 
environment.

Directory Navigation and Management
The session shell supports the standard UNIX commands for navigation and 
managing directories, such as cd, pwd, ls, mkdir, and rm.

Permissions and Ownership
Each JNDI entry has permissions set. The JNDI server supports three types of 
permissions: READ, WRITE and EXECUTE. Permissions can be granted to or 
removed from databases users or groups with the shell chmod command.

The following URLs are supported:

jdbc:oracle:type:spec A JDBC URL that specifies how to connect to the 
database using JDBC. 

http://host:port An HTTP URL indicating the host and port to use 
to connect to the administrative webserver 
pre-installed in the database. 

sess_iiop://host:port[:sid] A SESS_IIOP URL indicating the host, port and 
SID for the GIOP listener on the server.
JNDI and the Session Shell 3-3



Overview of OSE Session Shell Commands
Overview of OSE Session Shell Commands
The session shell provides a set of specialized commands to manage the Web server 
and publish servlets. See Oracle Java Tools Reference for syntax requirements. The 
uses of each command, for manipulating the OSE JNDI namespace, are briefly 
described here.

Service Configuration
This set of commands creates new services.   

createservice —Manipulates parameters required by the ServicePresentation code, 
without defining the endpoints (TCP ports) for service.

addendpoint —Adds a new endpoint and performs dynamic registration of the 
endpoint with the Listener storing it in the dynamic registration tables.

rmendpoint —Removes a specific endpoint from a service and the dynamically 
registered ports from the Listener. 

destroyservice —Removes the service and all its endpoints including their dynamic 
registration. The -all flag erases the entire JNDI tree (from the service root level). 

createwebservice —Manipulates parameters required by the ServicePresentation 
code and initializes Web specific configurations. 

Web Domain Configuration
This set of commands sets the location of servlet contexts. As with all JNDI entries, 
each location has an administrator/owner 

createwebdomain  —Creates a Web domain administered by the current schema, 
where servlets execute as that schema. In addition it defines an initial servlet 
context, default, and doc_root.

destroywebdomain —Removes the Web domain and all associated servlet contexts. 

Security Management
This set of commands sets the security for your domain and servlets specifying the 
realm and the authentication method to be used by the security class.

realm   —Lists all the realm commands.

realm list -w <Web service root>  —Lists all realms declared for a service.
3-4 Oracle Servlet Engine User’s Guide 



Overview of OSE Session Shell Commands
realm map -s <servletContextPath> [-(add|remove) <path> -scheme 
<auth>:<realm>]  —Defines/lists(/declares not to be) protected paths within a 
servlet context.

realm echo [0|1] —Turns echo off or on.

realm publish -w <Web service root> [-(add|remove) <realmName> [-type 
(RDBMS | DBUSER | JNDI)]]   Creates/publishes/deletes an realm.

realm user -d <domainContextPath> -realm <realmName> [-(add|remove) 
<userName> [-p <user password>]]  —Creates/deletes a user.

realm group -d <domainContextPath> -realm <realmName> [-(add|remove) 
<groupName> [-p <group password>]]  —Creates/deletes a group.

realm parent -d <domainContextPath> -realm <realmName> [-group 
<groupName> [-(add|remove) <principalName>]] [-query <principalName>]  
—Adds/lists/removes a principal to a group.

realm perm -d <domainContextPath> -realm <realmName> -s 
<servletContextPath> -name <principalName> [-path <path> (+|-) <permList>]  
—Declares, clears, or lists a granted or denied permission on the specified path for a 
user for valid HTTP methods (Declaring Permissions in Chapter 8, "Security HTTP 
Administration").

Servlet Context Management
This set of commands manipulates the Context.

createcontext —Creates a context on the corresponding virtualpath of the domain.

destroycontext —Removes servlet context information and all the servlets from that 
domain.

adderrorpage —Defines which URL reports errors for this context for an error code.

rmerrorpage —Remove the error page associated with the corresponding error 
code.

Servlet Management
This set of commands handles the publishing and unpublishing of servlets.

publishservlet —Publishes a servlet by name in the Context. It also can associate a 
virtual path with the named servlet. Servlets published in a servlet context declared 
as stateless, are not allowed access to the HTTPSession object.
JNDI and the Session Shell 3-5



Overview of OSE Session Shell Commands
unpublishservlet —Removes the servlet from the servlet context, as well as any 
existing virtualpath for the servlet in the mapping table. 

Export Commands
This set of commands provides the means for extracting the structure of a Web 
domain and can generate the corresponding configuration file. Use this 
command-generated file for mod_ose or other proxies.

exportwebdomain—The export utility can be used in one or two stages when 
generating a configuration file: 

1. In XML format, generate the structure of a Web domain or contexts within a 
domain. 

2. (optionally) Apply transformations to the XML structure, producing a 
configuration file for a specific Web server (for example: apache, iis ).

Refer to Chapter 5, "Apache Module for Oracle OSE"for a detailed explanation 
regarding exporting the Web domain. 
3-6 Oracle Servlet Engine User’s Guide 



Archite
4

Architecture

This chapter describes how OSE handles requests for single-domain and 
multi-domain Web services. You can follow the logic OSE uses to find the right 
servlet. The topics we cover are the following:

■ HTTP Requests

■ Life Cycle of the HTTP Request

■ Database Sessions
cture 4-1



HTTP Requests
HTTP Requests
When the first HTTP request is received from a browser, a session is created for the 
client. Any following requests are routed to the session. The session tracking 
mechanisms are cookies or URL rewrites.

URLs
The URL is composed of the protocol, the server, and the Uniform Resource 
Identifier (URI), as such:

<protocol>://<server>/<URI>

The URI is specified by a client in URL request. The URI contains information OSE 
uses to match against declared virtual paths. The mappings in config objects are 
used to determine which servlet to employ for a given request. If a servlet cannot be 
located, the default servlet is employed.

Life Cycle of the HTTP Request
As an HTTP request life-cycle example, we use the URL 
http://cavist.com:8080/cellar/bordeaux.wine in the multi-domain 
depicted in Figure 1–3. 

The following steps show the progrtess of this cycle:

1. The browser sends an HTTP request.

2. The request is received on port 8080.

3. A database session is created and OSE is given the request.

4. OSE uses a service to listen on port 8080. (Refer to Chapter 6, "OSE Server 
Configuration" for instruction on how to set up the OSE.)

5. The request is examined by the web service and looks at the IP address, 
mapping it to the IP domain.

6. The DNS name (cavist.com) is mapped to the JNDI namespace directory 
(cavist.com).

7. The 10.1.1.20/cavist.com/config object is used to match the URI into a 
servlet context (the URI virtual path cellar maps to the JNDI namespace 
entry, winecellar). See Finding the Servlet Context  on page 4-4.
4-2 Oracle Servlet Engine User’s Guide 



Life Cycle of the HTTP Request
8. The servlet context config object is used to match the remaining portion of the 
URI (bordeaux.wine) to the correct servlet, 
cavist.com/contexts/winecellar/named_servlets/wine_servlet

9. The servlet, wine_servlet, services the request, 
http://cavist.com:8080/cellar/bordeaux.wine

10. session terminates. (see Database Session Time-Out  on page 4-8.)

Endpoints
Endpoints are the ports which receive the information. Net8 controls the load 
balancing and connectivity. In order to receive incoming requests, the listener must 
be configured with an endpoint for each presentation type, using the IP address of 
the host and a valid port number to be assigned to the listener.

Finding the Web Domain
The Web domain handling requests directly depends on the containing Web service 
configuration of the OSE. 

When a Web service takes the request as a:

■ single-domain, there is only one Web domain associated with the service. By 
default it is contained in the service root.

■ multi-domain, the Web domain is tied to the IP address associated with the 
DNS name of the URL.

Hint: For a review of multi-domain set ups, see Example 1–2 as an 
example followed by a multi-domain directory tree figure.
Architecture 4-3



Life Cycle of the HTTP Request
Finding the Servlet Context
OSE searches in the domain config object for the set of properties that maps the 
virtual paths to servlet context names. OSE then matches the URI of the request 
against each entry in the config mapping properties. The longest match indicates 
which servlet context will serve the request. If the requested servlet context is not 
found, the default servlet context is used. The default servlet context is stored in, 
/<domain root>/contexts/default.

Example 4–1 HTTP Requests

If the URI is /cellar/bordeaux.wine

and the contents of the contexts group from the config object are:

/cellar=/winecellar
/test=/test

then the partial URI match /cellar 
is served by the context, /contexts/winecellar

Finding the Servlet
After the servlet context is identified, the unmatched portion of the URI is matched 
against the virtual paths in the servlet context config object. OSE ignores the 
portion in the virtual path corresponding to the servlet context. The remaining 
portion is matched against entries in the context.servlets properties of the 
servlet context. The best match indicates which servlet handles the request. 

Example 4–2 Request Served by Servlet

Continuing with the scenario from the previous example, 4–1, the named servlet, 
tastingServlet, is published in winecellar/named_servlets.

In this case, bordeaux.wine is mapped by the servlet context to a servlet entry 
named , tastingServlet.

Note: Entries in the context.servlets properties can be paths 
or wild-names (see the Servlet 2.2 Specification). Partial paths have 
priority over wild-names. Exact matches have priority over both 
partial paths and wild-names. 
4-4 Oracle Servlet Engine User’s Guide 



Life Cycle of the HTTP Request
Finding for the Default Servlet
If no match for the requested URL is found, OSE looks for a servlet named 
defaultservlet, the servlet context directory. When the default servlet is found, it 
processes the request.

When a Web domain is created, OSE installs a default servlet in the domain servlet 
context directory. There is always a default servlet in the Web service, but you can 
provide a virtual mapping of / to function as your new default servlet.

If the unused portion of the URI does not match or partially match the virtual paths 
published in a servlet context, then this same URI portion is used by the default 
servlet. The default servlet looks in the doc_root for an exact match. If a match 
exists, the page is served. If no exact match is found, OSE generates an error code. 

Mappings in the servlet context config object that map error codes to error pages. 
For example, an error code 404 is mapped to the URI named 
/system/errors/404.htm. This results in the default servlet serving that error 
file from the name and location in the doc_root. 

Example 4–3 Request Served by the Default Servlet

Continuing from the previous example, 4–2, if no match for the servlet is found, the 
request is served by service root/contexts/winecellar/defaultservlet. The 
default servlet is employed, and the results are sent back to the client
Architecture 4-5



Database Sessions
Database Sessions
The nature of a database session is one of the differences between OSE and other 
servlet engines.
4-6 Oracle Servlet Engine User’s Guide 



Database Sessions
Figure 4–1  Single Virtual JVM per Browser Session, Multiple HTTP Session in 
Database Sessions
Architecture 4-7



Database Sessions
User Identity of Database Sessions
By default, the database session is authenticated as the owner of the Web domain. 
All SQL access, through JDBC or SQLJ, is performed in the schema of the Web 
domain owner. 

If you deploy a set of servlets in a domain owned by SCOTT, they access tables in 
SCOTT’s schema, unless another schema name is prepended to the table name. For 
example, SYS:HTTP$LOG. In this example, the schema SCOTT needs access rights 
to the other schema’s table.

You can use definer’s rights code to change this behavior. Code that executes through 
classes granted definer’s rights, executes as SYS.

Database Sessions
HTTP clients can combine several HTTP session objects in a single database session. 
The HTTP session is set up for each servlet. If the client activates servlets from two 
different servlet contexts and each servlet calls getSession(true), then two 
different HTTP session instances exist in the database session, as shown in 
Figure 4–1.

Two time-outs are associated with Web server sessions inside Oracle8i:

■ the time-out of the database session itself

■ the time-out of each HTTP session created in the database session

Database Session Creation, Termination, and Time-Outs
The first time an HTTP client connects to an instance of Oracle8i running OSE, a 
session is created inside the database. The session is a regular database session that runs 
its own virtual JVM.

Database Session Time-Out
The database session time-out causes all contained HTTP sessions to terminate. This 
causes all its Java state information to be discarded and all its non-committed SQL 
states to be rolled back.

Think of it as the termination of the virtual JVM executing the servlets.

The database session time-out is set by the Web service parameter, 
service.globalTimeout. The Web service object controls the connection. You 
4-8 Oracle Servlet Engine User’s Guide 



Database Sessions
can set this parameter when you create the service, or configure it later (see 
Example 4–4). 

Example 4–4 Create Service and Set Global Time-out

createservice  [ -http | -iiop ] [-service className ] [-properties propGroups ] 
-root location [ -globalTimeout secs ] service

The time-out begins to count after an HTTP request returns. If another request 
comes in before the time-out expires, it will start counting again using the same 
value after them first request terminates.

When a database session has timed out, a browser cannot connect to it anymore, 
even if the browser has kept the session cookie. Instead, it is routed to a new 
session.

Automatic Termination of Database Sessions
A database session will automatically be terminated if there are no more HTTP 
session objects left. An HTTP session time-out can cause a database session to 
terminate.

HTTP Session Creation, Termination, and Time-Outs
An HTTP session is created when a servlet in a stateful servlet context invokes the 
method getSession(true).

Time-out occurs when the preset value is met with no further activity on the 
connection. This time-out value is defined in units of seconds and is stored in the 
config object. If the database session ends, the HTTP sessions must end as well.

More than one HTTP session object can exist per database session. Only one 
database session exists per client, as shown in Figure 4–1.

A stateful session is useful for a dialogue situation between the client and the 
servlet. A cookie is sent to the client as a method to keep the client information 
readily available to the server. A stateful session is useful during sessions when the 
client is engaged in a step-wise set of information exchanges, when the information 
in the next step is predicated by the information sent in the previous step. If the 
client does not support cookies, OSE uses URL rewrites.
Architecture 4-9



Database Sessions
4-10 Oracle Servlet Engine User’s Guide 



Apache Module for Oracle
5

Apache Module for Oracle OSE

This chapter contains instructions on how to configure and use OSE, a servlet 
server, with Apache, an HTTP Web server. You will see how this arrangement 
delegates the dynamic content through mod_ose to the OSE running in Oracle8i. 

The topics we cover are the following:

■ Requirements for OSE with Apache

■ Overview of mod_ose in Apache for OSE

■ Configuring mod_ose in Apache for OSE

■ Configuring Apache for OSE Applications

■ Topology of a Site Using mod_ose

■ mod_ose Installation for Pre-Installed Apache Systems

■ Forwarding a URL
 OSE 5-1



Requirements for OSE with Apache
Requirements for OSE with Apache
mod_ose requires the following Apache capabilities: 

■ Oracle HTTP server (powered by Apache)

■ mod_so must be installed in Apache (or other support for Dynamic Shared 
Objects) 

■ mod_mime must be installed in Apache 

■ machine executing Apache must be configured as an Oracle client-side 
configuration

■ Oracle client-side libraries must be available on LD_LIBRARY_PATH or 
equivalent

Overview of mod_ose in Apache for OSE
mod_ose is a module in the Oracle HTTP server (Apache), which serves as a 
conduit from Apache to OSE. In conjunction with mod_ose, OSE is the servlet 
engine for Apache, where only static pages are served by Apache and the dynamic 
pages are served by OSE.

You can create multi-node, in-tandem configurations. With these types of 
configurations, you can make a more scalable service than you can with simple 
stand-alone OSE or Apache components.

 Specifically, with a multi-node arrangement there is:

■ no single point of failure

■ fail-over configuration

■ load balancing functionality 

mod_ose works in a network in conjunction with Net8. The Oracle8  Net8 
Administrator’s Guide describes, in detail load balancing, using Oracle Listener, and 
the fail-over configuration. 

Before determining how many and which type of server your network requires, you 
must understand the basic configuration of the two servers, Web and servlet. 
Figure 5–1 depicts a simple representation of the base network arrangement, in this 
order: browser, Apache, mod_ose inside Apache, Net8 (represented by the 
connection between mod_ose and the database), the database, and OSE.
5-2 Oracle Servlet Engine User’s Guide 



Overview of mod_ose in Apache for OSE
Figure 5–1 Simple Topology of the Apache Web Server and Oracle’s Servlet Engine 
(OSE), Using mod_ose 
Apache Module for Oracle OSE 5-3



Configuring mod_ose in Apache for OSE
Configuring mod_ose in Apache for OSE
This section introduces mod_ose configuration steps needed to use Apache as the 
HTTP server and OSE as the servlet server. 

The following steps define the database connection descriptors for use with 
mod_ose and set the Apache configuration so that the requests are sent to the 
appropriate database.

1. Name the Oracle Net8 connection descriptor in tnsnames.ora as a 
pointer to the OSE service (see Example 5–1).

2. Generate a Web domain configuration file using the session shell command, 
exportwebdomain (see Example 5–2).

3. Include this generated configuration file in the Apache configuration file, 
httpd.conf (see Example 5–3).

4. If Apache was previously installed, define which connection to use (see 
Example 5–4).
5-4 Oracle Servlet Engine User’s Guide 



Configuring mod_ose in Apache for OSE
Connection Descriptors and Syntax of tnsnames.ora 
mod_ose uses the same configuration mechanism for finding connection 
descriptors that other Oracle clients, such as OCI clients, do.

Depending on the sqlnet.ora configuration, connections are defined by either:

■ tnsnames.ora file located in the directory pointed to by the environment 
variable TNS_ADMIN

or

■ another Oracle name service, such as LDAP service, to retrieve the connection 
address

Entries for the connection used by Apache must be in tnsnames.ora and be 
defined by the following lines: 

<your_defined_http_connection_name> = (DESCRIPTION=
 listenerAddress
 (CONNECT_DATA=

 serviceSpec
 presentationSpec

 )
 )

where the syntax is defined as,
 listenerAddress := (PORT=...)(ADDRESS=(HOST=...)(PROTOCOL=...)...)
 serviceSpec := (SERVICE_NAME=...) [ (INSTANCE_NAME=...) ]
 presentationSpec := (PRESENTATION=http://<JndiServiceName>)

Table 5–1 tnsnames.ora Connection Information Key Words 

Key Words Definitions

listenerAddress An ADDRESS_LIST (host, port, protocol) in the case of 
multiple Oracle Listeners on the back end (multiple nodes). 
This allows for load balancing and fail-over configurations, as 
well as the use of CMAN for connection concentration. 

Read the Oracle8  Net8 Administrator’s Guide for details on how 
to set this parameters. 
Apache Module for Oracle OSE 5-5



Configuring mod_ose in Apache for OSE
Connection(s) are named in the tnsnames.ora file, as shown in the following 
example.

Example 5–1  tnsnames.ora Defines Entry, inst1_http, as the Apache Connection in 
This Scenario

 inst1_http = (DESCRIPTION=
 (ADDRESS=(PORT=5521)(host=dlsun1609)(PROTOCOL=tcp))
 (CONNECT_DATA=

 (SERVICE_NAME=<WebServerName>)
 (PRESENTATION=http://admin)

 )
 )

serviceSpec group of database instances: specify SERVICE_NAME
Defines a group of instances that can be used interchangeably. 
When there are multiple database instances, mod_ose load 
balances the connections between the different instances.

mod_ose guarantees stateful requests from a client are sent to 
the same database instance so they can be associated with the 
same database session. 

single database instance: specify INSTANCE_NAME
Indicates an specific instance within the service group should 
be used. 

presentationSpec indicates which HTTP service should be used for this 
connection.

<JndiServiceName> is a place holder for the name of a 
service in the JNDI namespace (for example, 
/service/ServiceName) that understands HTTP and has a 
Net8 end-point associated with it.
 See the session shell command, createwebservice.

Note: <WebServerName> is the place-holder for your Web server 
name, such as foo.us.oracle.com.

Table 5–1 tnsnames.ora Connection Information Key Words (Cont.)

Key Words Definitions
5-6 Oracle Servlet Engine User’s Guide 



Configuring Apache for OSE Applications
Configuring Apache for OSE Applications
OSE was design for stateful Web applications. For these types of applications, each 
browser client is assigned a database session that keeps track of all stateful 
applications the user is executing in the domain. By default, all applications are 
considered stateful.

Stateful and Stateless Applications in Apache
You can configure Apache to use a stateless connection to OSE. There are certain 
applications for which a database session does not keep state information, with 
respect to the client. For these requests, each Apache process has a semi-persistent 
connection to a session used to process stateless connections to any client. Because 
each Apache worker handles only one request at a time, the stateless connection is 
used sequentially by different incoming clients. Stateless servlet contexts and 
stateless servlets must be indicated as such when published to the JNDI namespace. 

The commands ServletContext entry and Servlet (see Oracle Java Tools 
Reference for each entry) in the session shell tool have a -stateless option that you 
can use to declare which application contexts or particular servlets are stateless. 
This information, used in conjunction with the Export command, simplifies 
management of the configuration. 

Several Oracle APPS use the stateless model. It is advantageous in such cases to 
declare them as stateless when installed in OSE. 

Stateful and Stateless Handlers in Apache
We specify whether a request uses the stateful or the stateless connection by 
specifying the particular variant of the handler to use:

 SetHandler aurora-stateless-server
 SetHandler aurora-statefull-server
 SetHandler aurora-server

■ The first handler (specifying the stateless connection) considers a request served 
through this channel attempting to start an HttpSession as an error. 

■ The second handler (specifying the stateful connection) allows an HTTPSession 
and requires Apache to define a separate session to serve the requests. 

■ The third handler uses the default mode (stateful). 
Apache Module for Oracle OSE 5-7



Configuring Apache for OSE Applications
Figure 5–2 Stateful Vs. Stateless Sessions
5-8 Oracle Servlet Engine User’s Guide 



Configuring Apache for OSE Applications
Extracting Configuration Information for Apache
A unique place specifying the configuration of Web applications running on OSE is 
the JNDI name space in JServer. A tool, exportwebdomain, extracts the 
information about the applications installed in a Web domain and generates the 
corresponding Apache.conf file. Include this file in the Apache main 
configuration file (see Example 5–2, "Export the Web Domain Structure to an 
Apache CFG File"). 

1. Use the exportwebdomain command to generate the structure of a 
webdomain in a configuration file for mod_ose. The export utility works in two 
stages: 

■ Generates in XML format the structure of a webdomain or contexts within a 
domain.

■ Applies transformations to the XML, producing configuration files specific to 
mod_ose. Generate a configuration file at the shell level.

sess_sh -s <ose-url> -u <user> -p <passwd>

exportwebdomain -format Apache -netservice <name in tnsname.ora> <Web domain> & > <file.conf>

The command connects to the server and generates the webdomain information in 
the format required by Apache and saves it into <file.conf>. 

The parameters are defined as:

<Web domain> - The JNDI location of the Web domain to export (defaulted to 
service root for the single-domain). 

<file.conf> - The name of the file to store the generated configuration, in this 
case, Apache.conf.

The options are defined as:

format type: produces output in a defined format. Use the text string Apache or 
apache to generate the configuration file for mod_ose. 

See the export command, in the Oracle Java Tools Reference, for details of all the 
options available. In particular, you can select to export particular contexts, or 
for whether doc_root (static pages) should be requested to OSE or will be 
served locally.

Example 5–2 Export the Web Domain Structure to an Apache CFG File

1. Enter:
Apache Module for Oracle OSE 5-9



Configuring Apache for OSE Applications
exportwebdomain -format apache -netservice inst1_http /webdomains & > 
/apache/config/webdomains.cfg

The output file webdomains.cfg holds the Web domain configuration.

2. Include this generated file, shown in the following example, at the bottom of 
the Apache configuration file, httpd.conf.

Example 5–3 exportwebdomain Command Output Results, webdomains.cfg

 

# Apache configuration 
# Domain: /webdomains
#
<IfModule mod_ose.c>

AuroraService inst1_http
#
# Context for VPATH /context-test/
#

<Location /context-test/ > 
AddHandler aurora-server snoop
</Location>

<Location /context-test/admin/shell > 
SetHandler aurora-server
</Location>

<Location /context-test/errors/internal > 
SetHandler aurora-server
</Location>

<Location /context-test/examples/counter > 
SetHandler aurora-server
</Location>

<Location /context-test/examples/snoop > 
SetHandler aurora-server
</Location>

<Location /context-test/servlet/* > 
SetHandler aurora-server
</Location>

</IfModule>
#
# End of configuration
5-10 Oracle Servlet Engine User’s Guide 



Topology of a Site Using mod_ose
Topology of a Site Using mod_ose
When using mod_ose, you can configure different network topologies with the 
system in your Web environment. Specifically, you can define configurations that do 
not have a single point of failure. In such configurations, when a node failure 
occurs, any available Oracle Listener can redirect requests to some other database 
instance if the one being used for the client state has failed. For this to work, the 
application must have been replicated in all nodes, and it must be able to handle the 
recovery from an expired database session.

Figure 5–3 Listeners and Load Balancing Through mod_ose, Using Net8
Apache Module for Oracle OSE 5-11



mod_ose Installation for Pre-Installed Apache Systems
mod_ose Installation for Pre-Installed Apache Systems
If Apache is already installed on your system, you must set the configure as 
required by OSE. If Apache is installed by Oracle with the OSE, the installation is 
complete.

From the bin directory of your Apache installation, execute the command: 

apxs -i -a -n mod_ose $APACHE_HOME/Apache/libexec/libjipa8i.so

This command copies the module to your Apache installation and makes it 
available by adding the corresponding LoadModule directive to httpd.config. 
The next time Apache is restarted, the new module will be available. 

Note: The installer should make the library available in 
$APACHE_HOME/Apache/libexec.

libjip.so, on which libjipa8i.so depends, is copied to 
$ORACLE_HOME/lib by the installer.
5-12 Oracle Servlet Engine User’s Guide 



mod_ose Installation for Pre-Installed Apache Systems
Apache Configuration
The Apache configuration is divided in two parts: 

■ Specification of OSE Service (for requests)

■ Specification of Dynamic Requests (URLs)

Specification of OSE Service
In this step, we configure which connection to use when communicating with OSE 
in the database. You can configure the OSE service in Apache only at the virtual 
host level. Paths in a virtual host can be routed to only one OSE server. 

Use the mod_ose command AuroraService, to specify which connection 
description should be used to contact OSE. The syntax is:

<IfModule mod_ose.c>
 AuroraService connection-name

</IfModule>

The following configuration example define which connection to use, pointing to 
the inst1_http connection, as defined in Example 5–1: 

Example 5–4 Defining the Connection Description Contacting OSE 

<IfModule mod_ose.c>
 AuroraService inst1_http

</IfModule>

If the virtual host does not define its own AuroraService configuration, then the 
default Host configuration will be used. 

Specification of Dynamic Requests
The AddHandler and SetHandler commands, defined as part of mod_mime, 
specify which requests are sent to Aurora. (See "Requirements for OSE with 
Apache"  on page 5-2, regarding mod_mime.)

■ AddHandler specifies file extensions 

■ SetHandler specifies the address segment sent to OSE 

Example 5–5 AddHandler Specifies File Extensions Served by OSE 

AddHandler aurora-server .jsp .snoop
Apache Module for Oracle OSE 5-13



Forwarding a URL
This sends stateful requests for a file with a .jsp or .snoop extension to OSE. 

Example 5–6 SetHandler Specifies All Connection Requests, Parsing the Address 
Segment Sent to OSE

SetHandler aurora-server

This command must be used in conjunction with the Location directive, parsing the 
components of the virtual path served by OSE: 

<Location /examples/> 
 SetHandler aurora-server

</Location>

The virtual path of the request used in Apache are forwarded as is to the OSE. The 
OSE generates the passed segment of the Apache configuration string from the 
JNDI namespace information. 

Forwarding a URL
When an HTTP request comes through Apache to mod_ose, the initial path 
information, http://<web-domain:port> is discarded. The remaining path is 
sent to OSE. After the servlet is executed, the result is returned to the client. In 
general, the request path initiates Apache routing a request through mod_ose to the 
servlet server. 

Example 5–7 Apache Routing a Request Through mod_ose to OSE

If 3000 is the port on which Apache is listening and the following directive is 
included in the httpd.conf file:

 <Location /MyContexts>
    SetHandler aurora-server
 </Location>
The client asks for http://apacheserver:3000/MyContexts/Counter. 
mod_ose forwards the request as, /MyContexts/Counter, to OSE. If /Counter is 
found as a published servlet in the /MyContexts servlet context directory, then 
OSE sends a response. If not found, the default servlet returns Error 404 (Not 
Found) by default. You can change this behavior with the servlet management tools.

 The same logic applies when processing static files.
5-14 Oracle Servlet Engine User’s Guide 



Forwarding a URL
Example 5–8 Apache and mod_ose Processing Static Files

If the client asks for, http://apacheserver:3000/MyContexts/index.html

Then the /MyContexts/index.html file must exist under the root directory, as 
specified in the URL., showing how you can send a path and a file name and the 
entire path is read.

Note: Example 5–8 highlights a specific request operation detail 
for those who use mod_jserv.
Apache Module for Oracle OSE 5-15



Forwarding a URL
5-16 Oracle Servlet Engine User’s Guide 



OSE Server Configu
6

OSE Server Configuration

This chapter uses examples and discussion to describe the OSE administration 
techniques and tools. The following topics are in this chapter:

■ Setting Up OSE

■ Create Services

■ Create Domains

■ Create Servlet Contexts

■ Add Servlets
ration 6-1



Setting Up OSE
Setting Up OSE
OSE is works through services that are configured to listen to end-points. In a 
service there are one or more domains. Domains contain one or more servlet 
contexts. Servlet contexts represents the Web application layer, containing servlets 
and various support entries.

The domain is configured to map virtual paths to servlet contexts. Servlet contexts 
are configured to map virtual paths to servlets.

Create Services
Define the basic level of a service, the service name, property groups, and the root 
location, with  the createwebservice command. If you are creating a 
multi-domain service, this command also defines the IP address and virtual host 
name. Look at any configured service structure with the getproperties 
command.

getproperties  /service/<service_name> 

Use the addendpoint command to add a new endpoint dynamically with an 
existing database listener. You can also create a new endpoint statically.

Create Domains
Create a Web domain with  the createwebdomain command. A new Web domain 
is owned by the current schema that excuted the command. Servlets contained in 
this domain, are executed as the domain owner. Each Web domain is initialized 
with a servlet context,/default.

Contexts Group
 You can see the results of the configured domain structure by typing:

getproperties <domainroot>/config 

Note: (Refer to the Oracle Java Tools Reference for detailed 
information on the commands used in the following sections.
6-2 Oracle Servlet Engine User’s Guide 



Create Servlet Contexts
The context group lists the mappings between virtual paths and contexts that handle 
HTTP requests. It is a list of name-to-value pairs.

■ The name part is a virtual path. 

■ The value part is the name of a context, relative to the contexts subdirectory of 
the Web domain. 

This is a list of virtual paths mapped to the proper servlet contexts which service 
HTTP requests.

MIME Group
The MIME group lists the extension to MIME type mappings that the Web domain 
supports.

Create Servlet Contexts
Create servlet contexts with the createcontext command. A servlet context is 
contained in contexts directory within the domain root. You can configure the 
servlet context to support either stateless or stateful servlets.

You can see the results of the configured servlet context structure by typing:

getproperties  <domainroot>/contexts/<servlet_context>/config

You can see the virtual mapping in the servlet context config object with:

getproperties  <domainroot>/config

MIME Group
The MIME group lists the extension to MIME type mappings that the Web server 
supports.
OSE Server Configuration 6-3



Add Servlets
Add Servlets
Publish a servlet by name in the servlet context with the publishservlet 
command. This command can also associate a virtual path with the named servlet.  
You can see the results of the configured service structure by typing:

getproperties <domainroot>/contexts/<servlet_context>/named_servlets/<servletA>

You can see the virtual mapping in the servlet context config object with:

getproperties <domainroot>/contexts/<servlet_context>/config
6-4 Oracle Servlet Engine User’s Guide 



Developer Tools and Proce
7

Developer Tools and Procedures

This chapter uses examples and discussion to describe the OSE developer 
techniques and tools. The following topics are in this chapter:

■ Web Services

■ Managing Servlet Contexts

■ What Is in a Servlet Context?

■ Managing Published Servlets

■ Writing a Servlet
dures 7-1



Web Services
Web Services
A Web service contains one or more domains, depending on the configuration of 
the service. A newly created Web domain contains one servlet context, default. It 
serves contents for all requests that do not map to another servlet context. You can 
create specific servlets and servlet contexts for your own applications (see 
Figure 7–1, "JNDI default Servlet Context in the JNDI Namespace").

JNDI namespace directory structure in parallel to another servlet context. The same 
structure requirements apply to both branches of the JNDI namespace tree. See 
Figure 1–2 and Figure 1–3 for visual examples of single and multiple domains. 

Figure 7–1 JNDI default Servlet Context in the JNDI Namespace

Use the createwebservice command to define properties of the service. The 
Oracle Java Tools Reference has a detailed description of this command.

Virtual Host and IP Domains in the Web Service
In a single domain case, you do have neither an IP or a virtual host domain. The 
domain root is the service root. If you have a service configured to be a 
multi-domain service, as either a virtual host or an IP address, the domain will be 
rooted in the service root. If the service has both types of domains, IP address and a 
virtual host, the IP address is rooted in the service root, and the virtual host is 
7-2 Oracle Servlet Engine User’s Guide 



Web Services
contained in the IP address domain (see Figure 1–3, "Multi-Domain, Multi-Homed 
Example with Virtual Hosts In the Structure").

These domains are created by the createwebdomain command. See the Oracle Java 
Tools Reference for syntax and argument details.

Changing Ports of the Web Service
Ports are associated with the corresponding presentation either statically or by 
using the dynamic registration commands. To support HTTPS, associate an 
additional SSL endpoint to the Web service.

Use the addendpoint command to configure the ports that are to be associated 
with the service (see Oracle Java Tools Reference for syntax and arguments).
Developer Tools and Procedures 7-3



Managing Servlet Contexts
Managing Servlet Contexts
This section describes how to create, change, and delete a servlet context.

Creating or Change a Servlet Context
Create new servlet contexts with the session shell createcontext command. 

■ You must have your username set with "write permission" in the containing 
domain’s contexts directory to create a servlet context.

■ You must have your username set with "write permission" in the containing 
domain’s config object.

■ The argument passed in as the virtual path gets entered into the domain’s 
config object, making the new servlet context accessible to HTTP clients.

■ Servlets execute using the identity of the creator of the context.

createcontext defines and sets up some or all the following properties:

■ defines the virtual path associated with this context

■ initializes context with a list of properties

■ (optional) defines the location of the static pages

■ (optional) destroys and replaces previously existing named context

■ (optional) if flagged stateless, the context is stateless— servlets are not allowed 
to obtain the HTTPSession object
7-4 Oracle Servlet Engine User’s Guide 



Managing Servlet Contexts
In Example 7–1, "Creating a Servlet Context Named, winecellar", the servlet context 
handles all HTTP requests beginning with,  
http://<host-name>:8080/cellar

Example 7–1 Creating a Servlet Context Named, winecellar

1. Start the session shell tool. 

2. Create a new servlet context.

Enter:

3. List the context.

Enter:

$ ls /webdomains/contexts
./            ../           default/      winecellar/  

4. The context is also listed in the Web service virtual path mappings. Enter:

$ getgroup /webdomains/config contexts
/cellar=winecellar

Deleting a Servlet Context
Remove a servlet context and all servlets in the context with the session shell tool 
destroycontext command. The mapping in the domain config object is 
removed as well.

$createcontext -virtualpath /cellar /webdomains winecellar

 virtualPath domainName servlet context
Developer Tools and Procedures 7-5



What Is in a Servlet Context?
What Is in a Servlet Context?
A servlet context encapsulates the notion of a web application. A servlet context 
contains several entries that represent its configuration and contents. You can see 
the entries with the session shell tool.

Example 7–2 Servlet Context Entries of winecellar Representing Configuration and 
Content

1. Start the session shell.

2. $ cd /webdomains/contexts/winecellar

3. $ ls

./ 

../ 
config 
doc_root 
named_servlets/
defaultservlet
policy
httpSecurity

config Object
The config entry has a set of properties controlling the behavior of the servlet 
context. You can see and modify the config object with the session shell 
commands that manage object properties. See Oracle Java Tools Reference for more 
information.  

doc_root Object
The doc_root object is a JNDI object representing an instance of class 
SYS:oracle.aurora.namespace.filesystem.FSContextImpl that serves 
as a link to the file system. The doc_root object is where the static content is 
located. It has one property known as FSContextURL. The file system path of the 
static contents of the servlet context, is stored in the FSContextURL property.
7-6 Oracle Servlet Engine User’s Guide 



What Is in a Servlet Context?
named_servlets Subdirectory
The named_servlets subdirectory contains the servlets published in the servlet 
context. Each published servlet is a JNDI object  representing an instance of class 
SYS:oracle.aurora.mts.ServletActivation.

defaultservlet Object
If there is an entry in the servlet context named, defaultServlet, that servlet is 
used when no other servlet matches the request. If there is no entry in the servlet 
context for a default servlet, one is provided by the containing service.

policy Directory 
The policy directory contains security configuration entries. See details in 
Chapter 8, "Security HTTP Administration".

httpSecurity 
The security servlet, httpSecurity, functions as the first filter for all requests. 
This servlet handles security by raising an exception or not raising an exception and 
allowing the request processing to proceed. See details in Chapter 8, "Security HTTP 
Administration".
Developer Tools and Procedures 7-7



What Is in a Servlet Context?
Servlet Context Group Parameters 
This section contains the full list of groups and properties that a servlet context 
config object supports.

The group, context.properties, lists a set of properties that control the servlet 
context. 

Example 7–3 Viewing and Modifying config Properties

$ getproperties config
--group--=context.properties
context.browse.dirs=true
context.welcome.names=index.html
context.accept.charset=ISO-8859-1
context.accept.language=en
context.default.languages=*
context.default.charsets=*
--group--=context.params
...
--group--=context.mime
java=text/plain
html=text/html
...

$ addgroupentry config context.properties context.browse.dirs false
$ getgroup config context.properties
context.browse.dirs=false
context.welcome.names=index.html
context.accept.charset=ISO-8859-1
context.accept.language=en
context.default.languages=*
context.default.charsets=*

context.params
The context.params group is a list of arbitrary name/value pairs that are 
accessible at runtime by the servlet context getAttribute method. 

Example 7–4 Servlet Context getAttribute Method

If you have the following parameters:

$ getgroup config context.properties
7-8 Oracle Servlet Engine User’s Guide 



What Is in a Servlet Context?
details=high

You can access the details parameter in a servlet as follows:

public void doGet (HttpServletRequest request, HttpServletResponse response)
    ...  {
    ...
    String details = getServletContext().getAttribute ("details");
    if (details.equals ("high")) {
      ...
    }

context.mime
The group context.mime lists the MIME types that the servlet context supports. 
This group has the same format as the MIME types group in the Web domain 
configuration.

context.servlets
When you publish servlets, you associate them with virtual paths, and you can see 
these virtual paths with the session shell getgroup command. See the section, 
"JNDI default Servlet Context in the JNDI Namespace" for more information.

The group context.servlets lists the virtual path mapping for the published 
servlets. It contains a list of name/value pairs, where the name part is the virtual 
path, and the value part is the name of a servlet to handle the virtual path. The 
servlet name is relative to the named_servlets directory of the servlet context. 
The name portion of the pair contains either a virtual path or a wild-card name.

context.error.uris 
The group context.error.uris associates HTTP error codes with URIs within 
the servlet context that are used to report errors to the HTTP clients. Often, these 
URIs are handled by the default servlet and are relative to the doc_root parameter 
of the servlet context.

$ getgroup config context.error.uris

401=/system/errors/401.html
403=/system/errors/403.html
404=/system/errors/404.html
406=/system/errors/406.html
500=/errors/internal
Developer Tools and Procedures 7-9



Managing Published Servlets
Managing Published Servlets
A servlet is published once it has a servlet activation entry in the named_servlets 
directory and the virtual path that is mapped in the servlet context config object.

This section discusses how to manage the servlets published in the OSE.

Servlet Classes Published in a Servlet Context
The session shell publishservlet and unpublishservlet commands modify 
the named_servlets directory and the servlet context config object. The servlets 
are created (published) or removed with their associated paths and names.

Published servlets are JNDI objects of class 
SYS:oracle.aurora.mts.ServletActivation. To be accessible from an 
HTTP client, servlets must be associated with a virtual path or a star-name, in their 
servlet context.

Example 7–5 Publishing a Servlet 

$ publishservlet -virtualpath /tastings \
       /webdomains/contexts/winecellar tastingServlet \
        SCOTT:winemasters.tasting.Tasting

Example 7–6 Verifying the New Servlet and Virtual Path Mappings

# Verify the servlet is here
$ getproperties /webdomains/contexts/winecellar/named_servlets/tastingServlet 
  servlet.class=SCOTT:winemasters.tasting.Tasting

# Verify the virtual path mapping
$ getgroup /webdomains/contexts/winecellar/config context.servlets
/errors/internal=internalError
/tastings=tastingServlet

A newly published servlet has only one property, the servlet.class. The 
servlet.class specifies the full name of the servlet class: the schema and the 
fully qualified path within the schema. If no schema is specified, the current schema 
is used.

Note: The backslash is a line continuation aide. It is shell tool 
command line convention to assist with very long entries.
7-10 Oracle Servlet Engine User’s Guide 



Managing Published Servlets
You can add additional properties with session shell commands and access 
additional properties from the servlet code with the getInitParameter() 
method call. 

Example 7–7 Adding Properties to the Servlet

$ setproperties invoker \
"servlet.class=SCOTT:winemasters.tasting.Tasting
details=high
style=parker"

$ getproperties invoker
servlet.class=SCOTT:winemasters.tasting.Tasting
details=high
style=parker

You can access the servlet properties with the following code:

public void doGet (HttpServletRequest request, HttpServletResponse response)
   {
...
   String details = getServletConfig().getInitParameter ("details");
 if (details.equals ("high")) {
...
   }
Developer Tools and Procedures 7-11



Writing a Servlet
Writing a Servlet
Once you have configured OSE, you can begin writing and deploying servlets and JSPs. 

We support the Servlet 2.2 specification.

The following steps describe the method of writing and publishing a servlet:

1. Write the servlet code.

2. Compile the servlet.

3. Load the servlet class in the database.

4. Publish the servlet. 

5. Open the servlet from a Web browser.

Writing the Servlet Code
A servlet book will give a full spectrum of examples and tutorials. Please see a 
servlet book for assistance in writing the code. 

Compiling the Servlet
To compile the servlet, you must have the following jar(s) in your CLASSPATH:

1. The jar containing the http classes: 
$(ORACLE_HOME)/jis/lib/servlet.jar 

2. If your servlet accesses the database, you also must have the JDBC classes:

- %(ORACLE_HOME)/jdbc/lib/classes12.zip 
- % javac -classpath .:$(ORACLE_HOME)/jis/lib/servlet.jar HelloWorld.java

Note: A prerequisite for this section is understanding the 
"Endpoints" section in chapter "Architecture".

A good reference book on servlets, such as the "Java Servlet 
Programming" (O’Reilly and Associates), is needed to cover the 
basics of building servlets.
7-12 Oracle Servlet Engine User’s Guide 



Writing a Servlet
Loading the Servlet Code
Load the servlet with the loadjava command. See the documentation on 
loadjava in the "JServer Concepts Manual".

% loadjava -u scott/tiger -r HelloWorld.class

Publishing the Servlet
Here we publish in the default context. We are mapping the servlet to the 
virtualpath /hello.

$ publishservlet -virtualpath /hello /webdomains/contexts/default helloServlet SCOTT:HelloWorld

If you change the servlet, you must reload it in the database, but it is not necessary 
to republish the servlet in the Web server.

Accessing the Servlet
You can now see the servlet in a Web browser, using the URL:
http://<host>:8080/hello
Developer Tools and Procedures 7-13



Writing a Servlet
7-14 Oracle Servlet Engine User’s Guide 



Security HTTP Administ
8

Security HTTP Administration

Overview
This chapter contains a series of operations designed to be helpful in setting up the 
HTTP security for the servlet engine. The topics we cover are the following:

■ Prerequisites to Web Server Security

■ Authentication and Authorization

■ Declaring Principals

■ The Tools

■ Protecting A Resource

■ Declaring Permissions

■ Declaring A Security Servlet

■ Trouble Shooting
ration 8-1



Prerequisites to Web Server Security
Prerequisites to Web Server Security
Before you define and program the security settings in the OSE, you must be 
proficient at setting up and manipulating the JNDI structure. Verify your 
knowledge against the following checklist: 

❏ Single-Domain  on page 1-8

❏ Multiple-Domain on page 1-9

❏ HTTP Virtual Path on page 2-4

❏ Mapping Virtual Paths to Servlet Contexts on page 2-9

❏ HTTP Requests on page 4-2

❏ Request Served by Servlet on page 2-5

❏ Request Served by the Default Servlet on page 4-5

❏ Create Service on page 7-2

❏ Create a Context on page 7-4

If you are unsure of any of the above topics, review the diagrams and examples 
describing how the OSE works with the JNDI namespace and how Web browsers 
interact with the OSE. A link follows each topic to a specific discussion. A complete 
example list is located in Appendix B, "Examples".

After you learn the basic security set up in this chapter, you can safely change the 
configuration of your Web service security from the default set up.
8-2 Oracle Servlet Engine User’s Guide 



Declaring Principals
Authentication and Authorization
In HTTP security, access to a protected resource is composed of two parts: 
authentication of valid credentials and authorization of the user. Authentication is the 
validation of submitted credentials establishing that a user is known and validated 
by the system. Authorization is the determination of whether an authorized user is 
allowed to perform the requested action.

There are four stages to declare when establishing security measures: 

1. The principals of a service. 

2. Resources as being protected and how they are to be protected. 

3. Permissions of principals within the servlet context. 

4. A security servlet in the root of the servlet context. 

Use these steps to ensure the correct base information is in use defining HTTP 
security for your Web resources. Without any one of these steps, security will either 
be non-existent or will deny access to protected resources.

Declaring Principals
A principal is a generic term for either a user or a group. The realm is an object in 
the service, which contains the declared principals. Figure 8–1 shows the position of 
the realm object at the top level of the Web service, at the same level as the config 
object for the service.
Security HTTP Administration 8-3



Declaring Principals
Figure 8–1 JNDI Structure Depicting /realms in the Domain Root

Groups
Groups contain other principals (users or other groups). Individual members of a 
group inherit the permission of the group object.

Users
Users are single objects. Unlike a group, there are no subsets of other principals 
belonging to a user. 

Realms
Each realm defines a separate set of principals. The realm and its implementation 
are core to all of HTTP Security. There can be multiple realms within a service. The 
realm is the source of: 

■ the valid set of principals 

■ the types of principals that are handed to the server 
8-4 Oracle Servlet Engine User’s Guide 



Declaring Principals
Because the realm is the source of all principals, it also plays a key role in: 

■ what types of credentials are to be used to identify principals 

■ aiding the principals in managing the credentials themselves or it can defer to 
whatever entity that does have them 

■ establishing the relationships among all principals within it. 

By default, there are three implementations of realms, named in HTTP Security: 

■ JNDI— stores all information in JNDI entries in the namespace 

■ DBUSER— defers to local user definitions within the database itself 

■ RDBMS— stores all principals and their relationships in more regular database 
tables 

These names are just shortcuts.  When instantiating the realm, use the appropriate 
name when declaring the realm class in the JNDI namespace.

DBUSER Considerations
The DBUSER realm is a principal definition derived from the users and roles 
defined within the database. There are several implications. 

■ No principal management is allowed through any security commands. 
Principal creation, deletion, and role membership is managed by the database, 
not security tools. 

■ Because all instances utilize the same source for principal definition, all 
instances will essentially be equivalent. 

■ When referring to principals, no case translations are performed to the form of 
the name, as presented to the Java system. This means when the database entity 
was created, unless the case was explicitly expressed, the entire name is 
uppercase. For example, SYS and PUBLIC are in uppercase, but if a user were 
created in lower case, such as: 

create user "joe" identified by welcome;

then the username would be joe, in lowercase. 

Note: The upper case/lower case distinction is important when 
supplying usernames and passwords from the browser.
Security HTTP Administration 8-5



The Tools
The Tools
You set the security levels with the realm command, using the different flags and 
options. You can see the complete definition of all valid realm uses in the Oracle Java 
Tools Reference. To see a list of the different choices, execute the realm command 
from the session shell. 

Example 8–1 Executing The Realm Command Listing Valid Security Commands

$ realm
usage:
realm
realm list -d <webServiceRoot>
realm echo [0|1]
realm secure -s <servletContextPath>
realm map -s <servletContextPath> [- add|remove <path>] [-scheme <auth>:<realm>]
realm publish -d <webServiceRoot> [- add|remove <realmName>] [-type RDBMS | DBUSER | JNDI]
realm user -d <webServiceRoot> -realm <realmName> [- add|remove <userName> [-p <user password>]]
realm group -d <webServiceRoot> -realm <realmName> [- add|remove <groupName> [-p <group password>]]
realm parent -d <webServiceRoot> -realm <realmName> [-group <groupName> [- add|remove <principalName>]] 
[-query <principalName>]
realm perm -d <webServiceRoot> -realm <realmName> -s <servletContextPath> -name <principalName> [-path <path> 
(+|-) <permList>]

The Mechanics
Underscoring its central role, realm is the start of all security commands in the 
shell. The following sections depict example commands creating and managing 
realms from the shell.

Realms 
To create a RDBMS realm, type:

realm publish -w /myService -add testRealm -type RDBMS
For JNDI and DBUSER, use those titles as the type argument. 

To remove a realm, type:

realm publish -w /myService -remove testRealm
Realm declarations reside in the JNDI namespace. Deploying customized realms, 
once written, requires only slight customization of the namespace entry. 

To publish a custom realm, type:

realm publish -w /myService -add testRealm -classname foo.bar.MyRealm
8-6 Oracle Servlet Engine User’s Guide 



The Tools
Principals
To create a user, type:
realm user -w /myService -realm testRealm1 -add user1 -p 
upswd1

To create a group, type:
realm group -w /myService -realm testRealm1 -add group1 -p gpswd1 

In either of the above commands, if the password is left blank, the principal name is 
used instead.

To delete a user, type:
realm user -w /myService -realm testRealm1 -remove user1

To delete a group, type:
realm group -w /myService -realm testRealm1 -remove group1

To list users of a realm, type:
realm user -w /myService -realm testRealm1

To list groups of a realm, type:
realm group -w /myService -realm testRealm1

To add a principal to a group, type:
realm parent -w /myService -realm testRealm -group group1 -add user1

To remove a principal from a group, type:
realm parent -w /myService -realm testRealm -group group1 -remove user1

To list principals within a group, type:
realm parent -w /myService -realm testRealm -group group1

To query which groups a principal is a member of, type:
realm parent -w /myService -realm testRealm -q user1
(All realms do not support this query option.)

Note: Not all realms support editing principals. For example, 
DBUSER realms do not support any principal manipulation.
Security HTTP Administration 8-7



Protecting A Resource
Details 
If a service has any realms declared, they are located in a realms sub-context of the 
service. If it is a JNDI realm, there is additional sub-contexts within the realms 
context that contain its principal declarations.

If /realms is removed, all realm definitions are removed along with it. However 
any external resources (such as table entries) would remain. Using the session shell 
realm tool is much safer for efficient realm management.

Removing subcontexts of realms can affect any JNDI type realms. The RDBMS 
realm is defined to use the following tables: 

■ JAVA$HTTP$REALM$PRINCIPAL$— contains all principals and an encoded 
form of their password 

■ JAVA$HTTP$REALM$GROUP$— contains principal/group relationships 

Protecting A Resource
OSE HTTP security resource protection is local to the servlet context. To declare a 
resource protected, two pieces of information must be supplied, embodied in a 
protection scheme. A scheme is of the form: 

<authType>:<realmName> 

There are two valid authentication types: 

■ Basic— typical base64 encoding, not very secure. 

■ Digest— both parties keep the password to themselves and pass highly 
encrypted codes. The codes are embedded with many situation-specific values, 
such as time stamp, URL being requested, a secret key, and IP of the requester.

Although Digest is far more secure than Basic, not all browsers support it. From 
looking at typical installations, IE5 supports it; Netscape 4.7 does not.

You can also declare resources not to be protected. This is useful when the servlet 
context root is to be protected. However, when the root is protected, the error pages, 
being part of the tree, are also protected. Delivering an error page is part of the 
authentication process. If the error page is protected, cycles develop, and the 
desired behavior is not observed. 
8-8 Oracle Servlet Engine User’s Guide 



Protecting A Resource
Instead of letting the error page default as part of the tree, explicitly declare the 
error pages as not being protected. Use a protection scheme of <NONE>. For 
example:

realm map -s /myService/contexts/myContext -a /system/* -scheme <NONE>
realm map -s /myService/myService/contexts/myContext -a /* -scheme 
basic:testRealm1

The Mechanics
The protected path is local to the servlet context. Internally, that path is normalized, 
enabling stable, predictable patterns for matching. This may cause the internal 
representation to differ from the original path used to create the protection scheme. 
HTTP Security will use the longest, most exact match possible when trying to apply 
the protection rules. 

Protecting paths to resources with protection schemes:

realm map -s /myService/contexts/myContext -a /doc/index.html -scheme 
basic:testRealm1 
realm map -s /myService/contexts/myContext -a /doc -scheme basic:testRealm2 
realm map -s /myService/contexts/myContext -a /doc/* -scheme basic:testRealm3

When declarations are made, as shown in the previous example, the paths are 
matched to realms as in the following examples:

/doc/index.html -> testRealm1 
/doc/foo -> testRealm3 
/doc -> testRealm2 
/doc/ -> testRealm2 
/doc/index -> testRealm3

To remove the protection of a path, type:
realm map -s /myService/contexts/myContext -r /doc/index.html

To list all protected paths within a servlet context, type:
realm map -s /myService/contexts/myContext

To explicitly declare a path not to be protected, type:
realm map -s /myService/contexts/myContext -a /system/* 
-scheme <NONE>

To list all protected paths within a servlet context, type:
realm map -s /myService/contexts/myContext
Security HTTP Administration 8-9



Declaring Permissions
More Details 
The JNDI entry for protection mappings is located in a subdirectory, policy, of the 
servlet context. Within that sub-context is an entry, httpMapping, which creates 
the object responsible for handling the security servlet protection mapping. By 
default, this object is used as an index into the JAVA$HTTP$REALM$MAPPING$ 
table. The HTTP realm mapping table contains all the mapped paths. Simple JNDI 
entry manipulation can introduce a customized version of 
HttpProtectionMapping.

Declaring Permissions
Permissions are the most involved of all HTTP Security declarations because they 
tie domain-scoped entities with servlet context-scoped entities and reside in the 
servlet context themselves. 

A permission declaration consists of several pieces: 

1. service 

2. realm within specified service 

3. servlet context within specified service 

4. principal within specified realm 

5. path to which the permission is to apply 

6. whether the permission is being granted or denied 

7. HTTP actions being assigned 

Given all the pieces that are being tied into one permission declaration, it is easy to 
see why these are the most complicated declarations.

Of those pieces, only the HTTP actions have not been talked about yet. HTTP 
security permissions concern only valid HTTP request methods: GET, POST, PUT, 
DELETE, HEAD, TRACE, OPTIONS.

The Mechanics
To declare a granted permission on /foo/index.html for user1 for GET and 
POST, type:
realm perm -w /myService -realm testRealm1 -s 
/myService/contexts/myContext -n user1 -u /foo/index.html + 
get,post
8-10 Oracle Servlet Engine User’s Guide 



Declaring Permissions
To declare a denied permission on /foo/* for user1 for PUT and DELETE, type:
realm perm -w /myService -realm testRealm1 -s 
/myService/contexts/myContext -n user1 -u /foo/* - put,delete

To clear granted permissions on /foo/index.html for user1, type:
realm perm -w /myService -realm testRealm1 -s 
/myService/contexts/myContext -n user1 -u /foo/index.html +

To list all permissions for a user, type:
realm perm -w /myService -realm testRealm1 -s 
/myService/contexts/myContext -n user1

More Details 

In the policy subcontext of a servlet context, there will be an entry, config. This is the 
entry used to create the object responsible for all permission declaration checks. 
Again, the object is used as a key into the permissions table, 
JAVA$HTTP$REALM$POLICY$
Security HTTP Administration 8-11



Declaring A Security Servlet
Declaring A Security Servlet
All HTTP Security is declared through JNDI namespace entries. This is also true for 
the servlet that does the enforcing of security. In the servlet context, if there is a 
PrivilegedServlet named httpSecurity, that servlet is added as the first pre-filter for 
all requests within that servlet context. 

Any customization is allowed as long as the PrivilegedServlet interface is 
implemented.The main responsibility of this servlet is to either:

■ raise an AccessControlException during its 
service(HttpRequest.PrivilegedAccess, HttpRequest, 
HttpResponse) if there is a perceived security violation

or

■ not raise an exception if the request is to be allowed

After authentication and authorization have taken place, the servlet must set 
specific authenticated principal values on the request itself. This is the user 
information that can be retrieved from the request by any executing servlet.

The Mechanics
To create a security servlet, type:
realm secure -s /myService/contexts/myContext 
Removing the security servlet removes all security enforcement in a servlet context. If the entry is missing, the webserver continues execution with no security enforcement.To remove a security servlet, type:rm /myDomain/contexts/myContext/httpSecurity 

Note: The servlet is not published in named_servlets but 
within the servlet context directory itself. 
8-12 Oracle Servlet Engine User’s Guide 



Trouble Shooting
Trouble Shooting
There are several layers of suspected problems to eliminate when debugging HTTP 
Security. This minimal checklist can help you start your trouble shooting quest. 

❏ Check spelling (for instance, realm names, user names, or URI specifications).

❏ If using a DBUSER realm, check the case considerations. 

❏ Set your browser cache to check for newer versions of pages every time.

❏ Clear browser cache(s). 

❏ After setting a Web server sessions property, make sure you are testing against a 
new Web server session. The information may not be propagated to current 
active sessions. This can be done by closing all running browsers and starting a 
new browser. 

❏ Be sure that all four stages of security declarations are in place. If any are 
missing or incorrect, the results are unpredictable. 

❏ Be sure that the type of authentication specified is supported by your browser. 
For example, by default, Netscape 4.7 does not support Digest authentication. 
Netscape will treat it as just Basic authentication (raising a dialog box). 
However, the Basic authentication response does not work for Digest 
authentication. This is misleading when the expected Netscape prompt 
displays, as it actually appeared for the wrong reasons.

❏ Use the shell to query the entities involved. Check that the information is 
declared in a way that defines your security goals. 
For example, if /doc/index.html is to only be accessible to user1 in 
myRealm using Basic authentication then there has to be the following: 

1. a realm named myRealm is within the domain 

2. the realm has to contain a user named, user1, with a known password

3. a mapping of /doc/index.html or some more general path to a 
protection scheme basic:myRealm within the servlet context 

4. a security servlet declared for the servlet context 

5. a permission granting GET rights to the user user1 for/doc/index.html 
(or a more general path) 
Security HTTP Administration 8-13



Trouble Shooting
8-14 Oracle Servlet Engine User’s Guide 



Writing PL/SQL Se
A

Writing PL/SQL Servlets

This chapter describes new and changed features for release 8.1.7. The topics in this 
chapter include:

■ Overview of PL/SQL Servlets

■ Configuring Database Access Descriptors from an Application

■ Package DBMS_EPGC

Overview of PL/SQL Servlets
When you use the Internet Application Server (iAS), you typically access PL/SQL 
stored procedures over the Web by using the mod_plsql module. This module is 
recommended for stateless PL/SQL procedures, where the transaction state and 
values of package variables are not preserved once the original procedure call is 
finished.

You can also run PL/SQL stored procedures using the Oracle Servlet Engine 
through the mod_ose module of iAS. This module is recommended for stateful 
PL/SQL procedures, which behave similar to Java servlets. These procedures can 
preserve state (such as package variables and transaction state) across multiple 
HTTP requests.

See Also: ■For detailed information about running PL/SQL procedures 
over the web, see Using mod_plsql in the Oracle HTTP Server 
documentation.
rvlets A-1



Overview of PL/SQL Servlets
Configuring mod_ose to Run PL/SQL Servlets
To run PL/SQL stored procedures as servlets, you must first load and publish one 
servlet that serves as a gateway (known as the embedded PL/SQL gateway). This is 
a one-time operation. The PL/SQL procedures can then run over the Web without 
any code changes or loading/publishing steps for each procedure.

From SQL*Plus, connect as SYS and run the script rdbms/admin/initplgs.sql 
to load the embedded PL/SQL gateway servlet into the database server.

From the system command line, use the sess_sh command to publish the servlet 
so that it can be accessed through a URL. This operation registers a virtual path, and 
every request for a document using that virtual path is handled by the embedded 
PL/SQL gateway servlet, which runs the appropriate PL/SQL stored procedure. 
For example:

% $ORACLE_HOME/jis/bin/unix/sess_sh -s http://webserver:portnumber -u 
sys/change_on_install
--Session Shell--
--type "help" at the command line for help message
$ publishservlet -virtualpath pls/* /webdomains/contexts/default plsGateway 
SYS:oracle.plsql.web.PLSQLGatewayServlet

This publishes the gateway servlet under the name plsGateway with a default 
context. In this example:

■ PL/SQL stored procedures can be accessed using the virtual path /pls. You 
might specify different virtual paths to set up multiple instances of the servlet, 
each with different settings.

■ You can choose a different name in place of plsGateway. This is the name that 
you use when forwarding requests from another servlet.

■ You must specify the SYS: parameter as shown. It is the name of the actual Java 
class file.

A URL to access a stored procedure through the gateway might look like one of 
these:

http://webserver/pls/dadname/procedurename
http://webserver/pls/dadname/schemaname.procedurename
http://webserver:portnumber/pls/dadname/procedurename
http://webserver/pls/dadname/procedurename?param1=value1&param2=value2

The procedure names in these URLs specify PL/SQL procedures. They can use 
either a stateful or a stateless execution model depending on how you configure the 
DAD, as explained in the following section.
A-2 Oracle Servlet Engine User’s Guide



Overview of PL/SQL Servlets
Writing Stateful PL/SQL Stored Procedures
Typically, when a PL/SQL stored procedure is run over the web, its state goes away 
when the procedure ends.  This state information includes the values of any 
package variables it accesses, its transaction state, and any rows it inserted into 
temporary tables.

You might want to change this behavior when several procedures are called in 
sequence, for example during a registration procedure that uses several different 
HTML forms. Instead of passing the information from one procedure to another 
using CGI-style parameters, you can store it in package variables until the entire 
process is complete. You can do a single commit or rollback when the registration 
succeeds or fails.

You can preserve this state information across calls to PL/SQL stored procedures by 
following these steps:

1. Publish the embedded PL/SQL gateway servlet through the Oracle Servlet 
Engine, as previously described. This only needs to be done once.

2. Set the stateful attribute of the DAD to Yes. By default, its value is No. This 
only needs to be done once, and remains in effect for all packages and stored 
procedures called through this DAD. You can also set this attribute at the global 
level, so that all new DADs inherit the same setting.

3. Create a package containing some variables, if you need storage for data to be 
preserved across calls.

4. Write one or more PL/SQL stored procedures that access the package variables, 
perform different parts of a single transaction, and generally take advantage of 
stateful execution.

5. When all the data is ready, explicitly commit if the operation is successful, or 
rollback if the operation fails. There is no implicit commit when the procedure 
ends. When an exception is raised, there is an implicit rollback to the state at the 
beginning of the current procedure call, but the transaction remains open so a 
commit or rollback is still needed at the end.

See Also:

■ Using mod_plsql in the documentation for the Oracle HTTP Server for 
information about the DAD configuration parameters.

■ Oracle8i Java Tools Reference for the syntax of the sess_sh command.
Writing PL/SQL Servlets A-3



Configuring Database Access Descriptors from an Application
To explicitly delete the package state information, you can call DBMS_
SESSION.RESET_PACKAGE. This technique lets you get the performance benefits 
of stateful procedures while keeping the default behavior for state information.

Configuring Database Access Descriptors from an Application
When you configure a Web server to run Oracle stored procedures, you typically 
use a browser interface to set up the database access descriptor (DAD). To automate 
this operation, you can configure the DAD by calling procedures in the package 
DBMS_EPGC. The following example shows how to set or change the DAD 
configuration from an application. The next section describes each procedure in 
package DBMS_EPGC.

--
-- A sample procedure that configures an embedded gateway
-- instance for the given port number.
--
CREATE OR REPLACE PROCEDURE sample1_init_cfg(port IN PLS_INTEGER) IS
BEGIN

   --
   -- reset instance (port) configuration.
   --
   dbms_epgc.drop_instance(port);
   dbms_epgc.create_instance(port);

   --
   -- set global attributes for the embedded PL/SQL Gateway instance.
   --
   dbms_epgc.set_global_attribute(port, ’defaultdad’, ’HR’);
   dbms_epgc.set_global_attribute(port, ’adminPath’, ’/admin_/’);
   dbms_epgc.set_global_attribute(port, ’stateful’, ’Yes’);

   --
   -- create a database access descriptor (DAD) called APPS
   -- 
   dbms_epgc.create_dad(port, ’APPS’);
   dbms_epgc.set_dad_attribute(port, ’APPS’, ’default_page’, ’APPS.pkg.home’);
   dbms_epgc.set_dad_attribute(port, ’APPS’, ’document_table’, ’APPS.doc_tab’);
   dbms_epgc.set_dad_attribute(port, ’APPS’, ’document_path’, ’docs’);
   dbms_epgc.set_dad_attribute(port, ’APPS’, ’upload_as_blob’, ’jpeg, gif, 
txt’);
   dbms_epgc.set_dad_attribute(port, ’APPS’, ’document_proc’,
A-4 Oracle Servlet Engine User’s Guide



Configuring Database Access Descriptors from an Application
                               ’APPS.doc_pkg.process_download’);
   -- override global setting for stateful attribute
   dbms_epgc.set_dad_attribute(port, ’APPS’, ’stateful’, ’No’);

   --
   -- create a database access descriptor (DAD) called HR.
   --
   dbms_epgc.create_dad(port, ’HR’);
   --
   dbms_epgc.set_dad_attribute(port, ’HR’, ’username’, ’scott’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’password’, ’tiger’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’default_page’, ’HR.hello’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’document_table’, ’wpg_new_doctab’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’document_path’, ’docs’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’upload_as_blob’, ’txt’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’upload_as_long_raw’, ’sql’);
   dbms_epgc.set_dad_attribute(port, ’HR’, ’document_proc’,
                               ’HR.docpkg.process_download’);

   --
   -- Commit the changes.
   -- 
   COMMIT;

END;
/
show errors;

--
-- Configure the embedded gateway for port 8080.
--
EXECUTE sample1_init_cfg(8080);

If you have worked with DADs before, you might be familiar with the syntax of the 
configuration files used by WebDB and OAS. You can import such information in a 
single operation, as demonstrated by the following program:

-- A sample procedure that configures an embedded gateway
-- using the import method.
--
CREATE OR REPLACE PROCEDURE sample2_init_cfg(port IN PLS_INTEGER) IS
   string VARCHAR2(2000);
BEGIN
Writing PL/SQL Servlets A-5



Configuring Database Access Descriptors from an Application
   string := ’
[PLSQL_GATEWAY]
adminpath = /admin_/
defaultdad = HR
stateful = yes
[DAD_APPS]
DEFAULT_PAGE=APPS.pkg.home
DOCUMENT_PATH=docs
DOCUMENT_PROC=APPS.doc_pkg.process_download
DOCUMENT_TABLE=APPS.doc_tab
STATEFUL=no
UPLOAD_AS_BLOB=jpeg, gif, txt
[DAD_HR]
DEFAULT_PAGE=HR.hello
DOCUMENT_PATH=docs
DOCUMENT_PROC=HR.docpkg.process_download
DOCUMENT_TABLE=wpg_new_doctab
USERNAME=scott
PASSWORD=tiger
UPLOAD_AS_BLOB=txt
UPLOAD_AS_LONG_RAW=sql
’;

   dbms_epgc.drop_instance(port);
   dbms_epgc.create_instance(port);

   dbms_epgc.import(port, string);
   --
   -- Commit the changes.
   -- 
   COMMIT;

END;
/
show errors;

--
-- Configure the embedded gateway for port 8080.
--
EXECUTE sample2_init_cfg(8080);
A-6 Oracle Servlet Engine User’s Guide



Package DBMS_EPGC
Package DBMS_EPGC
This package lets you configure database access descriptors (DADs) for the Oracle 
Servlet Engine.

The embedded PL/SQL gateway runs as a plug-in in the Oracle Servlet Engine 
embedded in the Oracle database. There can be multiple instances of the Oracle 
Servlet Engine, each listening for HTTP requests on a unique port. With each port,  
you can associate an instance of the embedded PL/SQL gateway. The port number 
in the the HTTP request determines which instance of the embedded PL/SQL 
gateway (with its associated configuration) is used.

Each instance of the embedded PL/SQL gateway is independently configurable.  
You can use the DBMS_EPGC package to set and get this configuration information.

Because the configuration information is stored in the database rather than on a 
middle tier, it does not work with DADs from the Oracle HTTP Server. You can 
exchange configuration information with DADs on a middle tier using the 
IMPORT/EXPORT procedures in this package.

Security Model
Although all users have execute privileges on this package, the package performs 
its own security checking by maintaining a private list of administrative users; only 
these user can call the methods of this package. SYS and SYSTEM are always 
administrative users by default. The GRANT_ADMIN and REVOKE_ADMIN 
procedures control the embedded gateway administration privileges for other 
database users.

Transactional Behavior
All operations run in the caller’s transactional context. The caller must explicitly 
commit after calling any update operations such as import, set, or drop.

 To execute configuration operations in a separate transaction context, you can wrap 
the calls to this package in an autonomous PL/SQL block.

See Also: The Using mod_plsql book for the Oracle HTTP 
Server for descriptions of the configuration 
parameters. Some of the caching and connection 
pooling parameters do not apply when the stored 
procedures are accessed outside of mod_plsql.
Writing PL/SQL Servlets A-7



Package DBMS_EPGC
Types
The procedures in this package use the following type for passing parameters:

   TYPE varchar2_table IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

Exceptions
The procedures in this package can raise the following exceptions:

config_error EXCEPTION;
PRAGMA EXCEPTION_INIT(config_error, -20000);
config_error_num CONSTANT PLS_INTEGER := -20000;

user_already_exists EXCEPTION;
PRAGMA EXCEPTION_INIT(user_already_exists, -20001);
user_already_exists_num CONSTANT PLS_INTEGER := -20001;

invalid_port EXCEPTION;
PRAGMA EXCEPTION_INIT(invalid_port, -20002);
invalid_port_num PLS_INTEGER := -20002;

invalid_username EXCEPTION;
PRAGMA EXCEPTION_INIT(invalid_username, -20003);
invalid_username_num PLS_INTEGER := -20003;

not_an_admin EXCEPTION;
PRAGMA EXCEPTION_INIT(not_an_admin, -20004);
not_an_admin_num PLS_INTEGER := -20004;

privilege_error EXCEPTION;
PRAGMA EXCEPTION_INIT(privilege_error, -20005);
privilege_error_num PLS_INTEGER := -20005;

dad_not_found EXCEPTION;
PRAGMA EXCEPTION_INIT(dad_not_found, -20006);
dad_not_found_num PLS_INTEGER := -20006;

invalid_dad_attribute EXCEPTION;
PRAGMA EXCEPTION_INIT(invalid_dad_attribute, -20007);
invalid_dad_attribute_num PLS_INTEGER := -20007;

invalid_global_attribute EXCEPTION;
PRAGMA EXCEPTION_INIT(invalid_global_attribute, -20008);
invalid_global_attribute_num PLS_INTEGER := -20008;
A-8 Oracle Servlet Engine User’s Guide



Package DBMS_EPGC
instance_already_exists EXCEPTION;
PRAGMA EXCEPTION_INIT(instance_already_exists, -20009);
instance_already_exists_num PLS_INTEGER := -20009;

Summary of Subprograms

CREATE_INSTANCE Procedure
Creates a gateway instance identified by a port number. This call must be done 
before configuring attributes and privileges for the instance.

If the instance (port) is already in use, this operation results in an error.

The bulk configuration procedures (IMPORT and EXPORT) can be used without 
explicitly creating the instance.

The calling user of this routine automatically gets administrative privileges on this 
gateway instance.

PROCEDURE create_instance(port IN PLS_INTEGER);

DROP_INSTANCE Procedure
Drops the configuration information for a gateway instance identified by a port 
number. In some cases it might be easier to drop and recreate the instance than to 
modify it.

PROCEDURE drop_instance(port IN PLS_INTEGER);

DROP_ALL_INSTANCES Procedure
Drops the configuration information for all gateway instances in the database.

The caller of this procedure must either be SYS or have administrative privileges on 
all gateway instances in the database.

PROCEDURE drop_all_instances;

GRANT_ADMIN Procedure
The following APIs grant and revoke gateway administration privileges to database 
users. The SYS and SYSTEM users are always administrative users by default.
Writing PL/SQL Servlets A-9



Package DBMS_EPGC
Grants gateway administrative privileges to a user.

PROCEDURE grant_admin(port IN PLS_INTEGER, username IN VARCHAR2);

REVOKE_ADMIN Procedure
Revokes gateway administrative privileges of a user.

PROCEDURE revoke_admin(port IN PLS_INTEGER, username IN VARCHAR2);

GET_ADMIN_LIST Procedure
Gets the list of gateway administrative users, other than SYS and SYSTEM. If no 
such users exist, the result is an empty table, with zero elements.

PROCEDURE get_admin_list(port  IN          PLS_INTEGER,
                         users OUT NOCOPY  VARCHAR2_TABLE);

SET_GLOBAL_ATTRIBUTE Procedure
Sets the value of a global attribute, one that applies to all DADs. If an attribute is 
already set for a given port number, the old value is overwritten with the new one.

Attribute names are not case-sensitive. Attribute values are sometimes 
case-sensitive, for example when the values represent UNIX filenames, but values 
such as Yes and No are not case-sensitive.

PROCEDURE set_global_attribute(port      IN PLS_INTEGER,
                               attrname  IN VARCHAR2,
                               attrvalue IN VARCHAR2);

GET_GLOBAL_ATTRIBUTE Procedure
Gets the value of a global attribute. Returns NULL if the attribute has not been set. 
Raises an exception if the attribute is not a valid attribute.

FUNCTION get_global_attribute(port      IN PLS_INTEGER,
                              attrname  IN VARCHAR2)
RETURN VARCHAR2;

DELETE_GLOBAL_ATTRIBUTE Procedure
Deletes a global attribute.
A-10 Oracle Servlet Engine User’s Guide



Package DBMS_EPGC
PROCEDURE delete_global_attribute(port      IN PLS_INTEGER,
                                  attrname  IN VARCHAR2);

GET_ALL_GLOBAL_ATTRIBUTES Procedure
Get all global attributes/values for an embedded gateway instance. The output is 
two index-by tables, one with the attribute names, and the other with the 
corresponding attribute values. If the gateway instance has no global attributes set, 
the output arrays are empty.

PROCEDURE get_all_global_attributes(port           IN  PLS_INTEGER,
                                    attrnamearray  OUT NOCOPY VARCHAR2_TABLE,
                                    attrvaluearray OUT NOCOPY VARCHAR2_TABLE);

CREATE_DAD Procedure
Creates a new DAD, with no attributes set. The DAD name is not case-sensitive. If a 
DAD with this name already exists, the old information is deleted.

PROCEDURE create_dad(port IN PLS_INTEGER, dadname IN VARCHAR2);

DROP_DAD Procedure
Drops a DAD from the gateway configuration.

PROCEDURE drop_dad(port IN PLS_INTEGER, dadname IN VARCHAR2);

SET_DAD_ATTRIBUTE Procedure
Sets an attribute for a DAD (Database Access Descriptor). It creates the DAD if it 
does not already exist. Any old value of the attribute is overwritten.

DAD names and DAD attribute names are not case sensitive. DAD attribute values 
might be case-sensitive depending upon the attribute.

PROCEDURE set_dad_attribute(port      IN PLS_INTEGER,
                            dadname   IN VARCHAR2,
                            attrname  IN VARCHAR2,
                            attrvalue IN VARCHAR2);
Writing PL/SQL Servlets A-11



Package DBMS_EPGC
Example
set_dad_attribute(8080, ’myApp’, ’default_page’, ’myApp.home’);
set_dad_attribute(8080, ’myApp’, ’document_path’, ’docs’);

GET_DAD_ATTRIBUTE Procedure
Gets the value of a DAD attribute. Raises an error if DAD does not exist, or if the 
attribute is not a valid attribute. Returns NULL if the attribute is not set.

function get_dad_attribute(port      IN PLS_INTEGER,
                           dadname   IN VARCHAR2,
                           attrname  IN VARCHAR2) return VARCHAR2;

DELETE_DAD_ATTRIBUTE Procedure
Deletes a DAD attribute.

PROCEDURE delete_dad_attribute(port      IN PLS_INTEGER,
                               dadname   IN VARCHAR2,
                               attrname  IN VARCHAR2);

GET_DAD_LIST Procedure
Gets the list of all DADs for an embedded gateway instance. If no DADs exist, the 
result is an empty table, with zero elements.

PROCEDURE get_dad_list(port IN PLS_INTEGER,
                       dadarray OUT NOCOPY VARCHAR2_TABLE);

GET_ALL_DAD_ATTRIBUTES Procedure
Get all attributes of a DAD. The output is two index-by tables, one with the 
attribute names, and the other with the corresponding attribute values. If the DAD 
has no attributes set, the output arrays are empty.

PROCEDURE get_all_dad_attributes(port           IN  PLS_INTEGER,
                                 dadname        IN  VARCHAR2,
                                 attrnamearray  OUT NOCOPY VARCHAR2_TABLE,
                                 attrvaluearray OUT NOCOPY VARCHAR2_TABLE);
A-12 Oracle Servlet Engine User’s Guide



Package DBMS_EPGC
IMPORT Procedure
The following procedures let you bulk load the configuration information for an 
embedded PL/SQL gateway. The input can be in any of the following forms:

■ A VARCHAR2 (with a maximum length of 32 KB)

■ An index-by table of VARCHAR2 variables

■ A CLOB

The syntax of the configuration information must be the same as that used by the 
Oracle HTTP Server in iAS. The easiest way to create it is to export it from an 
existing DAD.

PROCEDURE import(port IN PLS_INTEGER,
                 cfg  IN VARCHAR2);

PROCEDURE import(port IN PLS_INTEGER,
                 cfg  IN DBMS_EPGC.VARCHAR2_TABLE);

PROCEDURE import(port IN PLS_INTEGER,
                 cfg  IN CLOB);

EXPORT Procedure
The following procedures export the configuration information of an embedded 
PL/SQL gateway to a flattened form so that it can be used with the Oracle HTTP 
Server in iAS. The output can be any of the following:

■ VARCHAR2 (with a maximum length of 32 KB)

■ index-by table of VARCHAR2 variables

■ CLOB

PROCEDURE export(port   IN  PLS_INTEGER,
                 cfg    OUT NOCOPY VARCHAR2);

PROCEDURE export(port IN  PLS_INTEGER,
                 cfg  OUT NOCOPY dbms_epgc.VARCHAR2_TABLE);

PROCEDURE export(port   IN  PLS_INTEGER,
                 cfg    OUT NOCOPY CLOB);
Writing PL/SQL Servlets A-13



Package DBMS_EPGC
A-14 Oracle Servlet Engine User’s Guide



Exam
B

Examples

This appendix contains links to all the examples in the Oracle Servlet Engine User’s 
Guide.

Single-Domain: Port Relationship and Domain Root in URL 1-8

Multiple-Domain: Port Relationship and service root in URL 1-9

Mapping Virtual Paths to Servlet Contexts 1-12

Servlets Associated with the HTTP Virtual Path 1-12

URL Shows a Client Accessing Contents 1-13

Change the doc_root Path 2-4

Publish a Servlet with publishservlet Command 2-7

Modify a Published Servlet Properties with setproperties Command 2-7

HTTP Requests Finding the Servlet Context 2-9

HTTP Requests Finding the Servlet 2-9

Request Served by defaultservlet 2-10

HTTP Requests 4-4

Request Served by Servlet 4-4

Request Served by the Default Servlet 4-5

Create Service and Set Global Time-out 4-9

 tnsnames.ora Defines Entry, inst1_http, as the Apache Connection in This Scenario 5-6
ples B-1



Export the Web Domain Structure to an Apache CFG File 5-9

exportwebdomain Command Output Results, webdomains.cfg 5-10

Defining the Connection Description Contacting OSE 5-13

AddHandler Specifies File Extensions Served by OSE 5-13

SetHandler Specifies All Connection Requests, Parsing the Address Segment Sent to OSE 5-14

Apache Routing a Request Through mod_ose to OSE 5-14

Apache and mod_ose Processing Static Files 5-15

Creating a Servlet Context Named, winecellar 7-5

Servlet Context Entries of winecellar Representing Configuration and Content 7-6

Viewing and Modifying config Properties 7-8

Servlet Context getAttribute Method 7-8

Publishing a Servlet 7-10

Verifying the New Servlet and Virtual Path Mappings 7-10

Adding Properties to the Servlet 7-11

Executing The Realm Command Listing Valid Security Commands 8-6
B-2 Oracle Servlet Engine User’s Guide



Index
Symbols
":continuation indicator, 2-3
:continuation indicator, 2-3
>:continuation indicator, 2-3

Numerics
404.htm, 4-5

A
access control, 1-14
algorithm

finding a servlet, 4-1
Apache configuration

using tnsnames.ora, 5-5
Authentication, 8-3
authentication, 1-14
Authorization, 8-3

C
Commands

modify entries, 3-4
configuration of your Web domain defaults, 1-6
connection name file

tnsnames.ora, 5-5
context.params, 7-8
context.properties, 7-8
Contexts Group, 6-2
cookie, 4-2

and time-outs, 4-9
stateful session, 4-9

Creating new entries, 3-4
customization

policy/map object, 8-10
realms, 8-6

D
database, 4-3, 4-6
database access descriptors

configuring from an application, A-3
database session timeout

service.globalTimeout, 4-8
Database Session Timeouts

Timeouts, 4-9
DBMS_EPGC package, A-7

CONFIG_ERROR exception, A-8
CREATE_DAD procedure, A-11
CREATE_INSTANCE procedure, A-9
DAD_NOT_FOUND exception, A-8
DELETE_DAD_ATTRIBUTE procedure, A-12
DELETE_GLOBAL_ATTRIBUTE 

procedure, A-10
DROP_ALL_INSTANCES procedure, A-9
DROP_DAD procedure, A-11
DROP_INSTANCE procedure, A-9
EXPORT procedure, A-13
GET_ADMIN_LIST procedure, A-10
GET_ALL_DAD_ATTRIBUTES 

procedure, A-12
GET_ALL_GLOBAL_ATTRIBUTES 

procedure, A-11
GET_DAD_ATTRIBUTE procedure, A-12
GET_DAD_LIST procedure, A-12
GET_GLOBAL_ATTRIBUTE procedure, A-10
Index-1



GRANT_ADMIN procedure, A-9
IMPORT procedure, A-13
INSTANCE_ALREADY_EXISTS exception, A-8
INVALID_DATA_ATTRIBUTE exception, A-8
INVALID_GLOBAL_ATTRIBUTE 

exception, A-8
INVALID_PORT exception, A-8
INVALID_USERNAME exception, A-8
NOT_AN_ADMIN exception, A-8
PRIVILEGE_ERROR exception, A-8
REVOKE_ADMIN procedure, A-10
SET_DAD_ATTRIBUTE procedure, A-11
SET_GLOBAL_ATTRIBUTE procedure, A-10
USER_ALREADY_EXISTS exception, A-8
VARCHAR2_TABLE type, A-8

Declaring Permissions, 8-10
Default Servlet, 2-10, 4-5
default set up

security change, 8-2
Web domain, 1-6

defaultservlet, 2-10
error message, 4-5

doc_root object, 7-6
Document Root, 4-3

E
embedded PL/SQL gateway, A-2
Endpoints, 1-5
Entries

bind command, 3-4
modify, 3-4
new, 3-4

error code
404, 4-5

error message
posted to client, 4-5

Example
Adding Properties to the Servlet, 7-11
Change the doc_root Path, 2-4
Create Service and Set Global Time-out, 4-9
Executing The Realm Command Listing Valid 

Security Commands, 8-6
Export the Web Domain Structure to an Apache 

CFG File, 5-9

exportwebdomain Command Output Results, 
webdomains.cfg, 5-10

getgroup, 7-8, 7-9
getproperties config, 7-8
HTTP Requests, 4-4
HTTP requests

finding the servlet contex, 2-9
HTTP Requests Finding the Servlet, 2-9
Mapping Virtual Paths to Servlet Contexts, 1-12
Modify a Published Servlet Properties with 

setproperties Command, 2-7
Multiple-Domain- Port Relationship and service 

root, 1-9
Publish a Servlet with publishservlet 

Command, 2-7
Request Served by defaultservlet, 2-10
Request Served by Servlet, 4-4
Request Served by the Default Servlet, 4-5
Servlets Associated with the HTTP Virtual 

Path, 1-12
Single-Domain- Port Relationship and Domain 

Root in URL, 1-8
tnsnames.ora Defines Entry, inst1_http, as the 

Apache Connectio, 5-6
URL Shows a Client Accessing Contents, 1-13
Viewing and Modifying config Properties, 7-8

Export Commands, 3-6

F
fail-over configurations, 5-2, 5-5
Forwarding a URL, 5-14

G
get properties

ls, 2-7
getSession(true), 4-8
Group context.error.uris, 7-9
Group context.mime, 7-9
Group context.params, 7-8
Group context.properties, 7-8
Group context.servlets, 7-9
Groups

property, 2-4
Index-2



H
HTTP Requests

servlets, 2-8
HTTP requests

find the right servlet, 4-1
HTTP security, 8-1

authentication and authorization, 8-3
Declaring A Security Servlet, 8-12
Declaring Permissions, 8-10
Mechanics of Creating a Security Servlet, 8-12
Mechanics of protecting a resource, 8-9
The Mechanics of Permissions, 8-10
Trouble Shooting, 8-13

HTTP session
getSession(true), 4-8

http_sh
getproperties 

add properties to the servlet, 2-7
publishservlet -virtualpath, 2-7
setproperties, 2-3, 2-7

httpSecurity, 7-7

I
internet newsgroups, xii
Introduction

containment hierarchy, 1-14
time-out, 1-4

invoke session shell
transportURL, 3-3

J
Java

documentation, xii
introduction, xi

Java Namespace and Directory Interface, 1-13
Java properties file, 2-3
Java References, 2-2
JDBC

web information, xii
JDK

web location, xii
JLS

web information, xii

JNDI
invoking the session shell, 3-3
navigation, 3-3
permissions, 3-2

JNDI and the Session Shell, 3-1
JNDI object

virtual path, 1-12
JServer

definition, xii
JVM

Web information, xii

L
Listeners and load balancing, 5-11
load balancing mod_ose, 5-5
Load the Servlet class in the database, 2-5
loadjava, 1-12

M
Mapping

of virtual paths, 2-9
the URI to the Virtual Path, 4-4
the Virtual Path to a Servlet, 2-9

mod_ose
fail-over configuration, 5-2
fail-over configurations, 5-5
tnsnames.ora, 5-5

Multi-Domain Web Service
requests, 2-8, 4-3

O
object of class

SYS:oracle.aurora.mts.ServletActivation, 7-7, 
7-10

SYS:oracle.aurora.namespace.filesystem.FSConte
xtImpl, 7-6

Oracle schema, 1-13
Ownership, 1-13, 3-3

P
Permissions, 1-13
Index-3



Ownership, 3-3
Schema, 1-13

PL/SQL servlets, A-1
Property groups, 2-4
Protecting A Resource, 8-8
Publish the Servlet

run a servlet, 2-5

R
Requests

finding the servlet, 4-1
Multi-Domain web service, 2-8
Multi-Domain WebService, 4-3
Servlet Context, 4-4

, 2-9
servlets, 2-8
Single-Domain WebService, 2-8, 4-3
URI, 2-4

routing a request
through mod_ose, 5-14

S
Schemas

Web domain, 1-13
Security, 1-14, 8-3

Trouble Shooting, 8-13
security customization, 8-6, 8-10
security defaults, 8-2
Security HTTP, 8-1
security servle, 7-7
Service Configuration, 3-4
Serving an HTTP Request, 2-8
Servlet

default, 2-10
servlet

default, 4-5
finding, 4-1
finding it, 4-1
HTTP requests, 2-8

Servlet Context, 1-13
config, 7-6
creating new, 7-4
inside, 7-6

Management, 3-5
to Handle Requests, 2-9, 4-4

Servlet Contexts, 1-11
Servlet Management, 3-5
servlet property

servlet.class, 7-10
servlets

written in PL/SQL, A-1
Session

created for client, 4-2
session shell, 3-3

cd, 7-6
createcontext command, 7-4
createcontext -virtualpath, 7-4, 7-5
destroycontext command, 7-5
getgroup, 2-7, 7-10
getproperties, 2-3, 7-8, 7-11
getproperties 

add properties to the servlet, 2-7
ls, 7-5, 7-6
publishservlet -virtualpath, 7-10
setproperties, 7-11
tools, 2-1

setgroup, 2-3
Single-Domain WebService

requests, 2-8, 4-3
SQLJ

documentation, xii
stateful procedures

written in PL/SQL, A-3
Static Content

default servlet, 2-10

T
The Servlet Basics with OSE

session shell tools, 2-1
timeout

database session, 4-8
HTTP session, 4-8

tnsnames.ora
mod_ose, 5-5

transportURL
invoke session shell, 3-3

Trouble Shooting
Index-4



security, 8-13

U
URL, 2-4

V
Versions, 1-15
virtual host

multiple domains, 1-9
Virtual Path, 7-5

mapping, 2-9
virtual path, 2-4

example, 4-4
JNDI object, 1-12
OSE matches, 2-9

W
Web Domain

Configuration, 3-4
discussion, 1-6
finding to handle requests, 2-8, 4-3, 4-6

Web Service
virtual path, 7-5

Web Services, 1-5
endpoints, 1-5
multi homed, 1-5
simple, 1-5

Web sites with more Java info, xii
Index-5



Index-6


	PDF Directory
	Send Us Your Comments
	Preface
	Who Should Read This Book
	Java Information Resources
	1 Introduction
	Serving Web Applications
	Session Memory and Scalability
	OSE in the Database
	Database Sessions

	Web Services
	Web Domains
	Servlet Contexts
	Servlets
	Java Naming and Directory Interface
	Permission and Schema

	Summary of Containment Hierarchy
	Security

	2 The Servlet Basics with OSE
	JNDI
	Session Shell
	Getting and Setting Object Parameters

	Virtual Paths
	Property Groups
	Deploy a Servlet
	Servlet Classes Published in a Servlet Context

	Serving an HTTP Request
	Finding the Web Domain
	Finding the Servlet Context
	Mapping the Virtual Path to a Servlet


	3 JNDI and the Session Shell
	About JNDI
	JNDI Permissions
	Invoking the Session Shell
	Directory Navigation and Management
	Permissions and Ownership

	Overview of OSE Session Shell Commands
	Service Configuration
	Web Domain Configuration
	Security Management
	Servlet Context Management
	Servlet Management
	Export Commands


	4 Architecture
	HTTP Requests
	URLs

	Life Cycle of the HTTP Request
	Endpoints
	Finding the Web Domain
	Finding the Servlet Context
	Finding the Servlet
	Finding for the Default Servlet

	Database Sessions
	User Identity of Database Sessions
	Database Sessions
	HTTP Session Creation, Termination, and Time-Outs


	5 Apache Module for Oracle OSE
	Requirements for OSE with Apache
	Overview of mod_ose in Apache for OSE
	Configuring mod_ose in Apache for OSE
	Connection Descriptors and Syntax of tnsnames.ora

	Configuring Apache for OSE Applications
	Stateful and Stateless Applications in Apache
	Stateful and Stateless Handlers in Apache
	Extracting Configuration Information for Apache

	Topology of a Site Using mod_ose
	mod_ose Installation for Pre-Installed Apache Systems
	Apache Configuration

	Forwarding a URL

	6 OSE Server Configuration
	Setting Up OSE
	Create Services
	Create Domains
	Contexts Group
	MIME Group

	Create Servlet Contexts
	MIME Group

	Add Servlets

	7 Developer Tools and Procedures
	Web Services
	Virtual Host and IP Domains in the Web Service
	Changing Ports of the Web Service

	Managing Servlet Contexts
	Creating or Change a Servlet Context
	Deleting a Servlet Context

	What Is in a Servlet Context?
	config Object
	doc_root Object
	named_servlets Subdirectory
	defaultservlet Object
	policy Directory
	httpSecurity
	Servlet Context Group Parameters

	Managing Published Servlets
	Servlet Classes Published in a Servlet Context

	Writing a Servlet
	Writing the Servlet Code
	Compiling the Servlet
	Loading the Servlet Code
	Publishing the Servlet
	Accessing the Servlet


	8 Security HTTP Administration
	Overview
	Prerequisites to Web Server Security
	Authentication and Authorization
	Declaring Principals
	Groups
	Users
	Realms

	The Tools
	The Mechanics

	Protecting A Resource
	The Mechanics
	More Details

	Declaring Permissions
	The Mechanics

	Declaring A Security Servlet
	The Mechanics

	Trouble Shooting

	A Writing PL/SQL Servlets
	Overview of PL/SQL Servlets
	Configuring mod_ose to Run PL/SQL Servlets
	Writing Stateful PL/SQL Stored Procedures

	Configuring Database Access Descriptors from an Application
	Package DBMS_EPGC
	Summary of Subprograms


	B Examples
	Index

