
Oracle8 i

CORBA Developer’s Guide

Release 3 (8.1.7)

July 2000

Part No. A83722-01

CORBA Developer’s Guide, Release 3 (8.1.7)

Part No. A83722-01

Release 3 (8.1.7)

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Authors: Sheryl Maring

Contributors: Tim Smith, Ellen Barnes, Matthieu Devin, Steve Harris, Hal Hildebrand, Susan Kraft,
Thomas Kurian, Wendy Liau, Angie Long, Sastry Malladi, John O’Duinn, Jeff Schafer, Aniruddha Thakur

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle products mentioned herein are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

1 Overview

Prerequisite Reading.. 1-2
Terminology ... 1-2
About CORBA ... 1-3

CORBA Features... 1-5
About the ORB .. 1-6

Using JNDI and IIOP ... 1-7
IIOP... 1-7

For More Information .. 1-8
Books .. 1-8
URLs ... 1-9

2 Getting Started

A First CORBA Application ... 2-2
Writing Interfaces in IDL... 2-3
Generate Stubs and Skeletons... 2-4
Write the Server Object Implementation... 2-6
Write the Client Code .. 2-8
Compiling the Java Source .. 2-11
Load the Classes into the Database.. 2-11
iii

Publish the Object Name ... 2-12
Run the Example... 2-13

The Interface Definition Language (IDL)... 2-14
Using IDL... 2-15
IDL Types... 2-19
Exceptions .. 2-22
Getting by Without IDL... 2-23

Activating ORBs and Server Objects .. 2-24
Client Side .. 2-24
Server Side ... 2-24
About Object Activation .. 2-24
CORBA Interceptors... 2-25

Debugging Techniques .. 2-25
Using a Debug Agent for Debugging Server Applications .. 2-26

3 Configuring IIOP Applications

Overview... 3-2
Oracle8i Typical or Minimal Installation ... 3-3
Oracle8i Custom Installation .. 3-4
Manual Install and Configuration ... 3-8

Configuring Through Tools .. 3-8
Configuring Through Editing Initialization Files .. 3-9

Advanced Configuration Options.. 3-11
Database Listeners and Dispatchers .. 3-11
Dynamic Listener Endpoint Registration.. 3-15
Direct Dispatcher Connection... 3-16
Configuring SSL for EJB and CORBA.. 3-17

4 JNDI Connections and Session IIOP Service

JNDI Connection Basics .. 4-2
The Name Space .. 4-3
Execution Rights to Database Objects .. 4-4
URL Syntax... 4-5

URL Components and Classes.. 4-6
Using JNDI to Access Bound Objects ... 4-7
iv

Importing JNDI Support Classes.. 4-9
Retrieving the JNDI InitialContext... 4-9

Session IIOP Service .. 4-13
Session IIOP Service Overview .. 4-13
Session Management.. 4-15
Service Context Class ... 4-16
Session Context Class... 4-17
Session Management Scenarios .. 4-18
Setting Session Timeout... 4-26

Retrieving JServer Version Number ... 4-28
Activating In-Session CORBA Objects From Non-IIOP Presentations................................. 4-28
Accessing CORBA Objects Without JNDI .. 4-29

Retrieving the NameService Initial Reference.. 4-29
Retrieving Initial References from ORBDefaultInitRef... 4-33

5 Advanced CORBA Programming

Using SQLJ... 5-2
Running the SQLJ Translator.. 5-2
A Complete SQLJ Example ... 5-3

Implementing CORBA Callbacks ... 5-3
IDL .. 5-4
Client Code .. 5-4
Callback Server Implementation.. 5-5
Callback Client-Server Implementation.. 5-5

Retrieving Interfaces With The IFR .. 5-6
Publishing the IDL Interface ... 5-7
Retrieving Interfaces Implicitly .. 5-7
Retrieving Interfaces Explicitly... 5-8

Using the CORBA Tie Mechanism.. 5-10
Migrating from JDK 1.1 to Java 2... 5-11
Invoking CORBA Objects From Applets... 5-16

Using Signed JAR Files to Conform to Sandbox Security .. 5-16
Performing Object Lookup in Applets .. 5-16
Modifying HTML for Applets that Access CORBA Objects .. 5-18

Interoperability with non-Oracle ORBs... 5-21
v

Java Client using Oracle ORB ... 5-22
Java Client using non-Oracle ORB ... 5-22
C++ Client Interoperability ... 5-23
IIOP Transport Protocol... 5-25

6 IIOP Security

Overview... 6-2
Data Integrity ... 6-3

Using the Secure Socket Layer.. 6-3
SSL Version Negotiation.. 6-4

Authentication ... 6-5
Client-side Authentication.. 6-6

Using JNDI for Authentication ... 6-8
Providing Username and Password for Client-Side Authentication.................................... 6-9
Using Certificates for Client Authentication .. 6-13
AuroraCertificateManager Class .. 6-16

Server-Side Authentication... 6-20
Authorization... 6-26

Setting up Trust Points... 6-27
Parsing through the Server’s Certificate Chain.. 6-27
AuroraCurrent Class .. 6-28

7 Transaction Handling

Transaction Overview .. 7-2
Global and Local Transactions.. 7-3
Demarcating Transactions... 7-3
Transaction Context Propagation... 7-4
Enlisting Resources... 7-5
Two-Phase Commit .. 7-5
JTA Limitations ... 7-6

JTA Server-Side Demarcation... 7-7
JTA Client-Side Demarcation ... 7-9
Configuring Two-Phase Commit Engine.. 7-15
Creating DataSource Objects Dynamically ... 7-17
Setting the Transaction Timeout .. 7-18
vi

Java Transaction Service .. 7-19
JTS Client-Side Demarcation... 7-20
JTS Server-Side Demarcation .. 7-22
JTS Limitations .. 7-23

Transaction Service Interfaces .. 7-24
TransactionService.. 7-25
Using The Java Transaction Service... 7-25

For More Information on JTS ... 7-29
JDBC Restrictions ... 7-30

A Example Code: CORBA

Basic Example .. A-2
README.. A-2
Bank.IDL .. A-2
Server.. A-3
Client.java .. A-5

IFR Example ... A-6
Bank.IDL .. A-6
Server.. A-6
Client .. A-9

Callback Example ... A-16
README.. A-16
IDL Files ... A-20
Server.. A-20
Client .. A-21

TIE Example ... A-22
README.. A-22
Hello.IDL ... A-25
Server Code - HelloImpl.java.. A-25
Client.java .. A-25

Pure CORBA Client.. A-26
README.. A-26
Bank.IDL .. A-30
Server Code ... A-30
Client.java .. A-32
vii

JTA Examples .. A-34
Single-Phase Commit JTA Transaction Example ... A-34

Employee.IDL... A-34
Client.java ... A-35
EmployeeServer.sqlj .. A-38

Two-Phase Commit JTA Transaction Example ... A-40
Employee.IDL... A-40
Client.java ... A-40
Server ... A-42

JTS Transaction Example .. A-48
README... A-48
Employee.IDL... A-51
Client.java ... A-52
Server ... A-53

SSL Examples.. A-54
Client-Side Authentication .. A-54

README... A-54
Hello.IDL... A-58
Client.java ... A-58
Server ... A-59

Server-Side Authentication.. A-59
README... A-60
Hello.IDL... A-63
Client.java ... A-63
Server ... A-66

Session Example... A-66
README... A-66
Hello.IDL... A-69
Client.java ... A-69
Server ... A-71

Applet Example .. A-71
JDK and JInitiator Applets... A-71

README... A-71
HTML for JDK 1.1.. A-72
HTML for JDK 1.2.. A-73
viii

HTML for Oracle JInitiator.. A-73
Applet Client ... A-74

Visigenic Applet.. A-75
README.. A-75
HTML for Visigenic Client Applet... A-76
Visigenic Client Applet.. A-76

B Comparing the Oracle8 i JServer and VisiBroker VBJ ORBs

Object References Have Session Lifetimes ... B-2
The Database Server is the Implementation Mainline ... B-3
Server Object Implementations are Deployed by Loading and Publishing........................... B-3
Implementation by Inheritance is Nearly Identical .. B-3
Implementation by Delegation is Different.. B-3
Clients Look Up Object Names with JNDI ... B-5
No Interface or Implementation Repository ... B-5
The Bank Example in Aurora and VBJ ... B-5

The Bank IDL Module.. B-6
Aurora Client... B-6
VBJ Client... B-7
Aurora Account Implementation... B-8
VBJ Account Implementation ... B-8
Aurora Account Manager Implementation .. B-8
VBJ Account Manager Implementation .. B-10
VBJ Server Mainline ... B-10

C Abbreviations and Acronyms
ix

x

Send Us Your Comments

CORBA Developer’s Guide, Release 3 (8.1.7)

Part No. A83722-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
xi

xii

Preface

This guide gets you started building CORBA applications for Oracle8i. It includes

many code examples to help you develop your application.

Who Should Read This Guide?
Anyone developing server-side CORBA applications for Oracle8i will benefit from

reading this guide. Written especially for programmers, it will also be of value to

architects, systems analysts, project managers, and others interested in

network-centric database applications. To use this guide effectively, you must have

a working knowledge of Java and Oracle8i. This guide assumes that you have some

familiarity with CORBA See "Suggested Reading" on page xv for moreinformation

on CORBA concepts.

How This Guide Is Organized
This guide consists of the following chapters and appendices:

Chapter 1, "Overview", presents a brief overview of the CORBA development

model from an Oracle8i perspective.

Chapter 2, "Getting Started", describes techniques for developing CORBA server

objects that run in the Oracle8i data server.

Chapter 3, "Configuring IIOP Applications" describes how to configure for your

CORBA applications.

Chapter 4, "JNDI Connections and Session IIOP Service" describes how to use JNDI

and sessions within your CORBA applications.
xiii

Chapter 5, "Advanced CORBA Programming" details how to program your CORBA

application beyond the simple example presented in Chapter 2.

Chapter 6, "IIOP Security" covers how to implement security within your CORBA

application.

Chapter 7, "Transaction Handling", documents the transaction interfaces that you

can use when developing your CORBA applications.

Appendix A, "Example Code: CORBA", includes examples of CORBA applications.

Each example contains both the Java and IDL source code.

Appendix B, "Comparing the Oracle8i JServer and VisiBroker VBJ ORBs", discusses

some of the fundamental differences between developing CORBA applications for

VisiBroker and the Oracle8i JServer.

Appendix C, "Abbreviations and Acronyms", supplies a list of acronyms.

Notational Conventions
This guide follows these conventions:

Java code examples follow these conventions:

Italic Italic font denotes terms being defined for the first time,
words being emphasized, error messages, and book titles.

Courier Courier font denotes Java program names, file names, path
names, and Internet addresses.

{ } Braces enclose a block of statements.

// A double slash begins a single-line comment, which extends
to the end of a line.

/* */ A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

... An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

lower case Lower case is used for keywords and for one-word names of
variables, methods, and packages.

UPPER CASE Upper case is used for names of constants (static final
variables) and for names of supplied classes that map to
built-in SQL datatypes.
xiv

Suggested Reading
Programming with VisiBroker, by D. Pedrick et al. (John Wiley and Sons, 1998)

provides a good introduction to CORBA development from the VisiBroker point

of view.

Core Java by Cornell & Horstmann, second edition, Volume II (Prentice-Hall, 1997)

has good presentations of several Java concepts relevant to EJB. For example, this

book documents the Remote Method Invocation (RMI) interface.

Online Sources
There are many useful online sources of information about Java. For example, you

can view or download guides and tutorials from the Sun Microsystems home page

on the Web:

http://www.sun.com

Another popular Java Web site is:

http://www.gamelan.com

For Java API documentation, see:

http://www.javasoft.com

Related Publications
Occasionally, this guide refers you to the following Oracle publications for

more information:

Oracle8i Application Developer’s Guide - Fundamentals

Oracle8i Java Developer’s Guide

Oracle8i JDBC Developer’s Guide and Reference

Oracle8i SQL Reference

Mixed Case Mixed case is used for names of classes and interfaces and for
multi-word names of variables, methods, and packages. The
names of classes and interfaces begin with an upper-case
letter. In all multi-word names, the second and succeeding
words also begin with an upper-case letter.
xv

Oracle8i SQLJ Developer’s Guide and Reference
xvi

Ove
1

Overview

This chapter gives you a general picture of distributed object development in the

Oracle8i JServer. As with the more specific chapters that follow, this overview

focuses on the aspects of CORBA development that are particular to JServer, giving

a brief general description of the standard CORBA development model.

This chapter covers the following topics:

■ Prerequisite Reading

■ Terminology

■ About CORBA

■ Using JNDI and IIOP

■ For More Information
rview 1-1

Prerequisite Reading
Prerequisite Reading
Before consulting this Guide, you should read the Oracle8i Java Developer’s Guide,

which gives you the technical background information necessary to understand

Java in the database server. As well as a comprehensive discussion of the

advantages of the JServer implementation for enterprise application development, it

explains the fundamentals of the JServer Java virtual machine and gives a technical

overview of the tools that JServer provides.

In addition, the Oracle8i Java Developer’s Guide describes the strategic advantages of

the distributed component development model that is implemented by CORBA.

Terminology
This section defines some of the basic terms used in this chapter. See also

Appendix C, "Abbreviations and Acronyms" for a list of common acronyms used in

Java and distributed object computing.

client
A client is an object, an application, or an applet that makes a request of a server

object. Remember that a client need not be a Java application running on a

workstation or a network computer, nor an applet downloaded by a web browser.

A server object can be a client of another server object. "Client" refers to a role in a

requestor/server relationship, not to a physical location or a type of computer

system.

marshalling
In distributed object computing, marshalling refers to the process by which the ORB

passes requests and data between clients and server objects.

object adapter
Each CORBA ORB implements an object adapter (OA), which is the interface

between the ORB and the message-passing objects. CORBA 2.0 specifies that a basic

object adapter (BOA) must exist, but most of the details of its interface are left up to

individual CORBA vendors. Future CORBA standards will require a vendor-neutral

portable object adapter (POA). Oracle intends to support a POA in a future release.
1-2 CORBA Developer’s Guide and Reference

About CORBA
request
A request is a method invocation. Other names sometimes used in its stead are

method call and message.

server object
A CORBA server object is a Java object activated by the server, typically on a first

request from a client.

session
A session always means a database session. Although it is conceptually the same

kind of session as that established when a tool such as SQL*Plus connects to Oracle,

there are differences in the CORBA case, as follows:

■ You establish the database session using the IIOP protocol; you establish a

SQL*Plus session using the Net8 TTC protocol.

■ A Java virtual machine (JVM) that runs in the database server controls an IIOP

session.

See "Session IIOP Service" on page 4-13 for more information about sessions.

About CORBA
CORBA stands for Common Object Request Broker Architecture. What is common about

CORBA is that it integrates ideas from several of the original proposers. CORBA

did not just follow the lead of a single large corporation, and it is very deliberately

vendor neutral. The CORBA architecture specifies a software component, a broker,
that mediates and directs requests to objects that are distributed across a network (or

several networks), which might have been written in a different language from that

of the requestor, and which might be (and in fact, usually are) running on a

completely different hardware architecture from that of the requestor.

Note: To use CORBA with Oracle8i, you must configure the

database so that the listener can recognize incoming IIOP requests,

in addition to TTC requests. DBAs and system administrators

should see the Chapter 3, "Configuring IIOP Applications" for

information on setting up the database and the listener to accept

incoming IIOP requests.
Overview 1-3

About CORBA
CORBA enables your application to tie together components from various sources.

Also, and unlike a typical client/server application, a CORBA application is not

inherently synchronous. It is not necessarily typical that a CORBA requestor (a

client) invokes a method on a server component and waits for a result. Using

asynchronous method invocations, event interfaces and callbacks from server object

to the client ORB, you can construct elaborate applications that link together many

interacting objects and that access one or many data sources and other resources

under transactional control. .

CORBA offers a well-supported international standard for cross-platform,

cross-language development. CORBA supports cross-language development by

specifying a neutral language, Interface Definition Language (IDL), in which you

develop specifications for the interfaces that the application objects expose.

CORBA supports cross-platform development by specifying a transport

mechanism, IIOP, that allows different operating systems running on very different

hardware to interoperate. IIOP supplies a common "software" bus that, together

with an ORB running on each system, makes data and request transfer transparent

to the application developer.

Although the CORBA standard was developed and promulgated just before the

advent of Java and is a standard focused on component development in a

heterogeneous application development environment, incorporating systems and

languages of varying age and sophistication, it is perfectly possible to develop

CORBA applications solely in Java. CORBA and Java are a good match.

For CORBA developers, JServer offers the following services and tools:

■ a Java Transaction Service (JTS) interface to the OMG Object Transaction Service

(OTS)

■ a CosNaming implementation used when publishing objects to an Oracle8i
database, retrieving the object references, and activating objects

■ a version of the IIOP protocol that supports the JServer session-based ORB,

which is compatible with standard IIOP

Note: This section provides a short introduction to CORBA, and

should give you some idea of how you typically use CORBA in the

Oracle8i server environment. Providing a complete introduction to

CORBA is beyond the scope of this Guide. See the references in

"For More Information" on page 1-8 for suggested further reading.

This first section gives a very high-level overview of CORBA itself.
1-4 CORBA Developer’s Guide and Reference

About CORBA
■ a wide range of tools, which assist in developing CORBA applications, that do

the following:

■ load Java classes and resource files to the database

■ drop loaded classes

■ publish objects to the CosNaming service

■ manage the session name space

CORBA Features
CORBA achieves its flexibility in several ways:

■ It specifies an interface description language (IDL) that allows you to specify the

interfaces to objects. IDL object interfaces describe, among other things:

■ The data that the object makes public.

■ The operations that the object can respond to, including the complete

signature of the operation. CORBA operations map to Java methods, and

the IDL operation parameter types map to Java datatypes.

■ Exceptions that the object can throw. IDL exceptions also map to Java

exceptions, and the mapping is very direct.

CORBA provides bindings for many languages, including both non-object

languages such as COBOL and C, and object-oriented languages such as

Smalltalk and Java.

■ All CORBA implementations provide an object request broker (ORB), that handles

the routing of object requests in a way that is largely transparent to the

application developer. For example, requests (method invocations) on remote

objects that appear in the client code look just like local method invocations.

The remote call functionality, including marshalling of parameter and return

data, is performed for the programmer by the ORB.

■ CORBA specifies a network protocol, the Internet Inter-ORB Protocol (IIOP), that

provides for transmission of ORB requests and data over a widely-available

transport protocol: TCP/IP, the Internet standard.

■ A set of fully-specified services eases the burden of application development by

making it unnecessary for the developer to constantly reinvent the wheel.

Among these services are:

■ Naming. One or more services that let you resolve names that are bound to

CORBA server objects.
Overview 1-5

About CORBA
■ Transactions. Services that let you manage transaction control of data

resources in a flexible and portable way.

■ Events.

CORBA specifies over 12 services. Most of these are not yet implemented by

CORBA ORB vendors.

The remainder of this section introduces some of the essential building blocks of an

Oracle8i JServer CORBA application. These include:

■ the ORB—how to talk to remote objects

■ IDL—how to write a portable interface

■ the naming service (and JNDI)—how to locate a persistent object

■ object adapters—how to register a transient object

About the ORB
The object request broker, or ORB, is the fundamental part of a CORBA

implementation. The ORB makes it possible for a client to send messages to a

server, and the server to return values to the client. The ORB handles all

communication between a client and a server object.

The JServer ORB is based on code from Inprise’s VisiBroker 3.4 for Java. The ORB

that executes on the server side has been slightly modified from the VisiBroker

code, to accommodate the different Oracle8i object location and activation model.

The client-side ORB has been changed very little.

In some CORBA implementations, the application programmer and the server

object developer must be aware of the details of how the ORB is activated on the

client and the server, and they must include code in their objects to start up the

Note: The Java code examples in this chapter are available on line.

You can study the complete examples (see Appendix A, "Example

Code: CORBA"), compile and run them, and then modify them for

your own use. All examples are installed in the

$ORACLE_HOME/javavm/demo/demo.zip file.

Note: The VisiBroker ORB functionality supplied with JServer is

only licensed for accessing Oracle8i servers.
1-6 CORBA Developer’s Guide and Reference

Using JNDI and IIOP
ORBs and activate objects. The Oracle8i ORB, on the other hand, makes these

details largely transparent to the application developer. As you will see from the

Java code examples later in this chapter and in Appendix A, only in certain

circumstances does the developer need to control the ORB directly. These occur, for

example, when coding callback mechanisms, or when there is a need to register

transient objects with the basic object adapter.

Using JNDI and IIOP
You publish CORBA objects in the Oracle database using the OMG CosNaming

service. In addition, you can access these objects using Oracle’s JNDI interface to

CosNaming.

Figure 1–1 shows, in a schematic way, how applications access remote objects

published in the database using JNDI.

Figure 1–1 Remote Object Access

IIOP
Oracle8i offers a Java interpreter for the IIOP protocol. Oracle embeds a pure Java

ORB of a major CORBA vendor (VisiBroker for Java version 3.4 by Inprise) and

repackaging the Visigenic Java IIOP interpreter to run in the database.

object reference

JNDI

Session

activated object

published objects

name, class, helper
name, class, helper

Oracle8i
Overview 1-7

For More Information
Because Oracle8i is a highly scalable server, only the essential components of the

interpreter are necessary—namely, a set of Java classes that do the following:

■ decode the IIOP protocol

■ find or activate the relevant Java object

■ invoke the method the IIOP message specifies

■ write the IIOP reply back to the client

Oracle8i does not use the ORB scheduling facilities. The Oracle multi-threaded

server performs the dispatching, enabling the server to process IIOP messages

efficiently and in a highly scalable manner.

On top of this infrastructure, Oracle8i implements the EJB and CORBA

programming models.

For More Information
This section lists some resources that you can access to get more information about

CORBA and about CORBA application development using Java.

Books
The ORB and some of the CORBA services supplied with Oracle8i JServer are based

on VisiBroker for Java code licensed from Inprise. Programming with VisiBroker, by D.

Pedrick et al. (John Wiley and Sons, 1998), provides both an introduction to CORBA

development from the VisiBroker point of view and an in-depth look at the

VisiBroker CORBA environment.

Client/Server Programming with Java and CORBA, by R. Orfali and D. Harkey (John

Wiley and Sons, 1998), covers CORBA development in Java. This book also uses the

VisiBroker implementation for its examples.

You should be aware that the examples published in both of these books require

some modification to run in the Oracle8i ORB. It is better to start off using the

examples in the Appendices to this Guide, which are more extensive than the

examples in the books cited and demonstrate all the features of Oracle8i CORBA.

See also Appendix B, "Comparing the Oracle8i JServer and VisiBroker VBJ ORBs"

for a discussion of the major differences between VisiBroker for Java and the

Oracle8i implementation.
1-8 CORBA Developer’s Guide and Reference

For More Information
URLs
You can download specifications for CORBA 2.0 and for CORBA services from links

available at the following web site:

http://www.omg.org/library/downinst.html

Documentation on Inprise’s VisiBroker for Java product is available at:

http://www.inprise.com/techpubs/visibroker/visibroker33/
Overview 1-9

For More Information
1-10 CORBA Developer’s Guide and Reference

Getting S
2

Getting Started

This chapter introduces the basic procedures for creating CORBA applications for

Oracle8i. The emphasis in this chapter is to present the basics for developing an

Oracle8i CORBA application. For advanced programming techniques and

miscellaneous tips for CORBA applications, see Chapter 5, "Advanced CORBA

Programming".

This chapter covers the following topics:

■ A First CORBA Application

■ The Interface Definition Language (IDL)

■ Activating ORBs and Server Objects

■ Debugging Techniques
tarted 2-1

A First CORBA Application
A First CORBA Application
This section introduces the JServer CORBA application development process. It tells

you how to write a simple but useful program that runs on a client system, connects

to Oracle using IIOP, and invokes a method on a CORBA server object that is

activated and runs inside an Oracle8i Java VM.

Figure 2–1 CORBA Application Components

As shown in Figure 2–1, a CORBA application requires that you provide the client

implementation, the server interface and implementation, and IDL stubs and

skeletons. To create this, perform the following steps:

1. Design and write the object interfaces in IDL.

2. Generate stubs, skeletons, and helper and holder support classes.

3. Write the server object implementations.

Client

IDL stub

Server

IDL skeleton

ORB

{interface
implementation
helper class
holder class

Oracle8i Database
2-2 CORBA Developer’s Guide and Reference

A First CORBA Application
4. Write the client implementation. This code runs outside of the Oracle8i data

server on a workstation or PC.

5. Compile the Java server implementation with the client-side Java compiler. In

addition, compile all the Java classes generated by the IDL compiler. Generate a

JAR file to contain these classes and any other resource files that are needed.

6. Compile the client code using the JDK Java compiler.

7. Load the compiled classes into the Oracle8i database, using the loadjava tool

and specifying the JAR file as its argument. Make sure to include all generated

classes, such as stubs and skeletons. Client stubs are required in the server only

when the server object acts as a client to another CORBA object.

8. Publish a name for the objects directly-accessible using the CosNaming service,

so that you can access them from the client program.

The sample used in this chapter asks the user for an employee number in the EMP

table and returns the employee’s last name and current salary. It throws an

exception if there is no employee in the database with the given ID number.

Writing Interfaces in IDL
When writing a server application, you must create an Interface Definition Lan-

guage (IDL) file to define the server’s interfaces. An interface is a template that

defines a CORBA object. As with any object in an object oriented language, it con-

tains methods and data elements that can be read or set. However, the interface is

only a definition and so defines what the interface to an object would be if it existed.

In your IDL file, each interface describes an object and the operations clients can

perform on that object.

This example contains a file, called employee.idl , that contains only a single

server-side method. The getEmployee method takes an ID number and queries

the database for the employee’s name and salary.

This interface defines three things:

■ a getEmployee method that queries the database and returns the information

■ an EmployeeInfo data structure to hold the returned information

■ a SQLError exception to be thrown if the employee is not found

Note: For a full description of IDL, see "The Interface Definition

Language (IDL)" on page 2-14.
Getting Started 2-3

A First CORBA Application
The contents of the employee.idl file should look like:

module employee {

 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 EmployeeInfo getEmployee (in long ID) raises (SQLError);
 };
};

Generate Stubs and Skeletons
Use the idl2java compiler to compile the interface description. As shown in

Figure 2–2, the compiler generates the interface, implementation template, helper,

and holder classes for the three objects in the IDL file, as well as a stub and skeleton

class for the Employee interface. See "Using IDL" on page 2-15 for more

information about these classes and in the Oracle8i Java Tools Referenece for more

information on the idl2java compiler.

Note: Because there is no use of the Tie mechanism in this example,

you can invoke the compiler with the -no_tie option. This means

that two fewer classes are generated.
2-4 CORBA Developer’s Guide and Reference

A First CORBA Application
Figure 2–2 IDL Compilation Generates Support Files

Compile the IDL as follows:

% idl2java -no_tie -no_comments employee.idl

In compiling the employee.idl file, you receive the following files:

Note: Because developing a CORBA application includes many

compilation, loading, and publishing steps, Oracle recommends

that if you are working in a command-line oriented environment,

you always use a makefile or a batch file to control the process. Or,

you can use IDE products such as Oracle’s JDeveloper to control

the process.

File name File type

_example_Employee.java Implementation template for server object

Employee.java Employee interface definition

EmployeeInfo.java EmployeeInfo interface definition

SQLError.java SQLError interface definition

Interface
Definition

Helper &
Holder

IDL
client stub

IDL
server

skeleton

Impl.
Template

Definition
IDL Interface

idl2java compiler
Getting Started 2-5

A First CORBA Application
The only file that you modify is the _example_Employee.java file. You should

rename the _example_Employee.java file to a more appropriate name, such as

EmployeeImpl.java . Once renamed, you modify the file to add your server’s

implementation. The EmployeeImpl.java file extends the IDL server skeleton,

_EmployeeImplBase.java . Add and implement the getEmployee method that

is defined in the Employee.java interface definition. In addition, you need to cre-

ate the client application that invokes these methods appropriately. "Write the

Server Object Implementation" on page 2-6 demonstrates how to create the server

implementation of Employee in EmployeeImpl.java .

Write the Server Object Implementation
An implementation is an actual instantiation of an interface. That is, the implemen-

tation is code that implements all of the functions and data elements that were

defined in the IDL interface. The following shows hot to implement the Employee
interface:

1. Modify the EmployeeImpl.java file, which used to be the

_example_Employee.java file, to add your server implementation. Notice

_st_Employee.java IDL client stub

_EmployeeImplBase.java IDL server skeleton

EmployeeHelper.java Helper class for Employee . The most impor-

tant methods this class provides are the nar-

row method for typecasting a returned object

to be a Employee object and the id method

that returns the interface’s identifier.

EmployeeHolder.java Holder class for Employee . The Holder class

enables a java object to pass values back to cli-

ents.

EmployeeInfoHelper.java Helper class for EmployeeInfo .

EmployeeInfoHolder.java Holder class for the EmployeeInfo
structure.

SQLErrorHelper.java Helper class for SQLError .

SQLErrorHolder.java Holder class for the SQLError exception.

File name File type
2-6 CORBA Developer’s Guide and Reference

A First CORBA Application
that the EmployeeImpl extends the IDL-generated skeleton,

_EmployeeImplBase .

As shown in Figure 2–1, the _EmployeeImplBase IDL skeleton exists between

the ORB and the server application, so that any invocation for the server

application is performed through it. The skeleton prepares the parameters, calls

the server method, and saves any return values or any out or inout parameters.

2. Implement the getEmployee method to query the database for the employee

and return the appropriate name and salary in EmployeeInfo .

package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl extends _EmployeeImplBase {

 /*constructor*/
 public EmployeeImpl() {
 }

 /*getEmployee method queries database for employee info*/
 public EmployeeInfo getEmployee (int ID) throws SQLError {
 try {
 /*create a JDBC connection*/
 Connection conn =
 new oracle.jdbc.driver.OracleDriver().defaultConnection ();

 /*Create a SQL statement for the database query*/
 PreparedStatement ps =
 conn.prepareStatement ("select ename, sal from emp where empno = ?");
 /*set the employee identifier and execute query. return the
 result in an EmployeeInfo structure */
 try {
 ps.setInt (1, ID);
 ResultSet rset = ps.executeQuery ();
 if (!rset.next ())
 throw new SQLError ("no employee with ID " + ID);
 return new EmployeeInfo (rset.getString (1), ID, rset.getFloat (2));
 } finally {
 ps.close ();
 }
 /*If a problem occurs, throw the SQLError exception*/
 } catch (SQLException e) {
Getting Started 2-7

A First CORBA Application
 throw new SQLError (e.getMessage ());
 }
 }
}

This code uses the JDBC API to perform the database query. The implementation

uses a prepared statement to accommodate the variable in the WHERE clause of the

query. See the Oracle8i JDBC Developer’s Guide and Reference for more about Oracle8i
JDBC. You can use SQLJ, instead of JDBC, if your statement is static.

Comparing Oracle8 i Server Applications to Other ORB Applications
Most ORB applications must provide a server application that instantiates the

server implementation and registers this instance with the CORBA object adapter.

However, with Oracle8i, JServer instantiates the implementation and registers the

resulting instance on demand for you. Thus, you do not need to provide code that

initializes the ORB, instantiates the implementation, and registers the instance. The

only server code that you provide is the actual server implementation. This means

that your client cannot find an active server implementation instance through the

ORB, since it is not instantiated until called. You must publish the implementation

object in the CosNaming service. The client retrieves the object from the Name

Service through a JNDI lookup . Once retrieved, the client invokes the activate
method, which initializes an instance of the object. At this point, the client can

invoke methods on the object.

Write the Client Code
After writing the server, the client needs to be created. To access the server object

you must be able to refer to it by name. In order for the server object to be accessed

by the client, you publish the server object in the Oracle8i database. The client code

looks up the published name and activates the server object as a by-product of the

look up. You can look up any server object either through JNDI or CosNaming. The

JNDI option is shown in the example below. See "JNDI Connection Basics" on

page 4-2 for more information on JNDI and CosNaming.

When you perform the JNDI lookup, the ORB on the server side is started and the

client is authenticated using the environment properties supplied when the initial

context object is created. See "IIOP Security" on page 6-1.

In order to retrieve the object from the Name Service, you must provide the

following:

■ Object name
2-8 CORBA Developer’s Guide and Reference

A First CORBA Application
■ IIOP Service Name

■ Client Authentication Information

Object name
The object name specifies the complete path name of the published object that you

want to look up. For example: /test/myServer .

See "Retrieving the JNDI InitialContext" on page 4-9 for further information about

the lookup() method.

IIOP Service Name
The service name specifies a service that an IIOP presentation manages, and it

represents a database instance. The format of the service URL is explained in

"Accessing CORBA Objects Without JNDI" on page 4-29. Briefly, the service name

specifies the following components:

■ URL prefix for the service

■ the name of the host that manages the service presentation

■ the port number of the listener for the target database instance on that host

■ the system identifier (SID) for the database instance on the host

A typical example of a service name is sess_iiop://localhost:2481:ORCL ,

where sess_iiop is the URL prefix for the service, localhost defaults to the

host of the local database, 2481 is the default listener port for IIOP connections, and

ORCL is the SID.

Client Authentication Information
You must authenticate yourself to the database each time you connect. The type of

authentication information depends on how you want to authenticate—through a

username/password combination or SSL certificates. See "IIOP Security" on

page 6-1 for more information.

Client Example
The client invokes the getEmployee method through the following steps:

1. Instantiates and populates a JNDI InitialContext object with the required

connect properties, including authentication information. See "JNDI Connection

Basics" on page 4-2.
Getting Started 2-9

A First CORBA Application
2. Invokes the lookup() method on the initial context, with a URL as a

parameter that specifies the service name and the name of the object to be

found. The lookup() method returns an object reference to the Employee
CORBA server object. See "Using JNDI to Access Bound Objects" on page 4-7

for more information.

3. Using the object reference returned by the lookup() method invokes the

getEmployee() method on the object in the server. This method returns an

EmployeeInfo class, which is derived from the IDL EmployeeInfo struct.

For simplicity, an employee ID number is hard-coded as a parameter of this

method invocation.

4. Prints the values returned by getEmployee() in the EmployeeInfo class.

import employee.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
 public static void main (String[] args) throws Exception {
 String serviceURL = "sess_iiop://localhost:2481:ORCL";
 String objectName = "/test/myEmployee";

// Step 1: Populate the JNDI properties with connect and authentication
// information
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
 env.put (Context.SECURITY_CREDENTIALS, "TIGER");
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

// Step 2: Lookup the object providing the service URL and object name
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);

// Step 3 (using SCOTT’s employee ID number): Invoke getEmployee
 EmployeeInfo info = employee.getEmployee (7788);

// Step 4: Print out the returned values.
 System.out.println (info.name + " " + info.number + " " + info.salary);
 }
}

2-10 CORBA Developer’s Guide and Reference

A First CORBA Application
When the client code is executed, it prints the following on the client console:

SCOTT 7788 3000.0

Compiling the Java Source
You run the client-side Java byte code compiler, javac , to compile all the Java

source that you have created. The Java source includes the client and server object

implementations, as well as the Java classes generated by the IDL compiler.

For the Employee example, you compile the following files:

■ employee/Employee.java

■ employee/EmployeeHelper.java

■ employee/EmployeeHolder.java

■ employee/EmployeeInfo.java

■ employee/EmployeeInfoHelper.java

■ employee/EmployeeInfoHolder.java

■ employee/SQLError.java

■ employee/SQLErrorHelper.java

■ employee/SQLErrorHolder.java

■ employee/_EmployeeImplBase.java

■ employee/_st_Employee.java

■ EmployeeImpl.java

■ Client.java

Other generated Java files are compiled following the dependencies that the Java

compiler uses.

Oracle8i JServer supports the Java JDK compiler, releases 1.1.6 or 1.2. Alternatively,

you might be able to use other Java compilers, such as a compiler incorporated in

an IDE.

Load the Classes into the Database
CORBA server objects, such as the EmployeeImpl object created for this example,

execute inside the Oracle8i database server. You must load all your classes into the

server—through the loadjava command-line tool—so that they can be activated
Getting Started 2-11

A First CORBA Application
by the ORB upon demand. You also load all dependent classes, such as

IDL-generated Holder and Helper classes, and classes the server object uses, such as

the EmployeeInfo class of this example.

Use the loadjava tool to load each of the server classes into the Oracle8i database.

For the Employee example, issue the loadjava command in the following way:

% loadjava -resolve -user scott/tiger
 employee/Employee.class employee/EmployeeHolder.class
 employee/EmployeeHelper.class employee/EmployeeInfo.class
 employee/EmployeeInfoHolder.class employee/EmployeeInfoHelper.class
 employee/SQLError.class employee/SQLErrorHolder.class
 employee/SQLErrorHelper.class employee/_st_Employee.class
 employee/_EmployeeImplBase.class employeeServer/EmployeeImpl.class

It is sometimes more convenient to combine the server classes into a JAR file, and

simply use that file as the argument to the loadjava command. In this example,

you could issue the command:

% jar -cf0 myJar.jar employee/Employee.class employee/EmployeeHolder.class \
 employee/EmployeeHelper.class employee/EmployeeInfo.class \
 employee/EmployeeInfoHolder.class employee/EmployeeInfoHelper.class \
 employee/SQLError.class employee/SQLErrorHolder.class \
 employee/SQLErrorHelper.class employee/_st_Employee.class \
 employee/_EmployeeImplBase.class employeeServer/EmployeeImpl.class

Then, execute the loadjava command as follows:

% loadjava -resolve -user scott/tiger myJar.jar

Publish the Object Name
The final step in preparing the application is to publish the name of the CORBA

server object implementation in the Oracle8i database. See "The Name Space" on

page 4-3 and the publish section in the Oracle8i Java Tools Reference for information

about publishing objects.

For the example in this section, you can publish the server object using the

publish command as follows:

% publish -republish -user scott -password tiger -schema scott

Note: You do not load any client implementation classes or any

other classes not used on the server side.
2-12 CORBA Developer’s Guide and Reference

A First CORBA Application
 -service sess_iiop://localhost:2481:ORCL
 /test/myEmployee employeeServer.EmployeeImpl employee.EmployeeHelper

This command specifies the following:

■ publish —run the publish command

■ -republish —overwrite any published object of the same name

■ -user scott —scott is the username for the schema doing the publishing

■ -password tiger —Scott’s password

■ -schema scott —the name of the schema in which to resolve classes

■ -service sess_iiop://localhost:2481:ORCL —establishes the service

name (see also "Service Context Class" on page 4-16)

■ /test/myEmployee —the name for the published object

■ employeeServer.EmployeeImpl —the name of the class, loaded in the

database, that implements the server object

■ employee.EmployeeHelper —the name of the helper class

Run the Example
To run this example, execute the client class using the client-side JVM. For this

example, you must set the CLASSPATH for the java command to include:

■ the standard Java library archive (classes.zip)

■ any class files the client ORB uses, such as those in VisiBroker for Java

vbjapp.jar and vbjorb.jar

■ the Oracle8i-supplied JAR files: mts.jar and aurora_client.jar

If you are using JDBC, include one of the following JAR files:

■ classes111.zip for JDBC 1.1 support

■ classes12.zip for JDBC 1.2 support

If you are using SSL, include one of the following JAR files:

■ javax-ssl-1_1.jar and jssl-1_1.jar for SSL 1.1 support

■ javax-ssl-1_2.jar and jssl-1_2.jar for SSL 1.2 support

You can locate these libraries in the lib and jlib directories under the Oracle

home location in your installation.
Getting Started 2-13

The Interface Definition Language (IDL)
The following invocation of the JDK java command runs this example.

% java -classpath .:$(ORACLE_HOME)/lib/aurora_client.jar |
:$(ORACLE_HOME/lib/mts.jar |
:$(ORACLE_HOME)/jdbc/lib/classes111.zip: |
$(ORACLE_HOME)/sqlj/lib/translator.zip:$(ORACLE_HOME)/lib/vbjorb.jar: |
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip |

Client |
sess_iiop://localhost:2481:ORCL |
/test/myEmployee |
scott tiger

This example assumes that you invoke the client with the following arguments on

the command line:

■ CLASSPATH libraries

■ client object

■ service name

■ name of the published object to activate

■ username

■ password

The Interface Definition Language (IDL)
CORBA provides language independence. CORBA objects written in one language

can send requests to objects implemented in a different language. Objects

implemented in an object-oriented language such as Java or Smalltalk can talk to

objects written in C or COBOL, and the converse.

Note: The UNIX shell variable $ORACLE_HOME might be

represented as %ORACLE_HOME% on Windows NT. The

JDK_HOME is the installation location of the Java Development Kit

(JDK).

Note: From the java command you can see why it is almost

always better to use a makefile or a batch file to build CORBA

applications.
2-14 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
Language independence is achieved through the use of a specification

meta-language that defines the interfaces that an object—or a piece of legacy code

wrappered to look like an object—presents to the outside world. As in any

object-oriented system, a CORBA object can have its own private data and its own

private methods. The specification of the public data and methods is the interface

that the object presents to the outside world.

IDL is the language that CORBA uses to specify its objects. You do not write

procedural code in IDL—its only use is to specify data, methods, and exceptions.

Each CORBA vendor supplies a compiler that translates IDL specifications into a

specific language. Oracle8i JServer uses the idl2java compiler from Inprise. The

idl2java compiler translates your IDL interface specifications into Java classes.

See the Oracle8i Java Tools Reference for more information on this tool.

Using IDL
The following example demonstrates the IDL for the HelloWorld example. See

"Basic Example" on page A-2 for the complete example.

module hello {
 interface Hello {
 wstring helloWorld();
 };
};

IDL consists of a module, which contains a group of related object interfaces. The

IDL compiler uses the module name to name a directory where the Java classes are

placed after generation. Also, the module name is used to name the Java package

for the resulting classes.

This module defines a single interface: Hello . The Hello interface defines a single

operation: helloWorld , which takes no parameters and returns a wstring (a

wide string, which is mapped to a Java String).

Note: The idl2java compiler accepts only ASCII characters. Do

not use ISO Latin-1 or other non-ASCII NLS characters in IDL files.
Getting Started 2-15

The Interface Definition Language (IDL)
The module and interface names must be valid Java identifiers and valid file names

for your operating system. When naming interfaces and modules, remember that

both Java and CORBA objects are portable, and that some operating systems are

case sensitive and some are not, so be sure to keep names distinct in your project.

Nested Modules
You can nest modules. For example, an IDL file that specifies the following modules

maps to the Java package hierarchy package org.omg.CORBA .

module org {
 module omg {
 module CORBA {
 ...
 };
 ...
 };
 ...
};

Running the IDL Compiler
Assume that the HelloWorld IDL is saved in a file called hello.idl . When you

run idl2java to compile the hello module, eight Java class files are generated

and are placed in a subdirectory named hello in the same directory as the IDL file:

% idl2java hello.idl
Traversing hello.idl
Creating: hello/Hello.java
Creating: hello/HelloHolder.java
Creating: hello/HelloHelper.java
Creating: hello/_st_Hello.java
Creating: hello/_HelloImplBase.java
Creating: hello/HelloOperations.java
Creating: hello/_tie_Hello.java
Creating: hello/_example_Hello.java

Note: IDL data and exception types, such the wstring shown in

the preceding example, are not specified in this guide. Although

some of the IDL to Java bindings are listed in this guide (for

example see "IDL Types" on page 2-19), CORBA developers should

refer to the OMG specification for complete information about IDL

and IDL types. See "For More Information" on page 1-8.
2-16 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
The ORB uses these Java classes to invoke a remote object, pass and return

parameters, and perform various other things. You can control the files generated,

where they are put, and other aspects of IDL compiling—such as whether the IDL

compiler generates comments in the Java files. See the complete description of the

idl2java compiler in the Oracle8i Java Tools Reference.

Each of the files generated is described below.

Hello This specifies, in Java, what the interface to a Hello object

looks like. In this case, the interface is:

package hello;
public interface Hello extends org.omg.CORBA.Object {
 public java.lang.String helloWorld();
}
Because the file is put in a hello directory, it takes the

package spec from that name. All CORBA basic interface

classes subclass, directly or indirectly, the following:

org.omg.CORBA.Object .

You must implement the methods in the interface. It is

recommended that the implementation class for the

hello.java interface be named helloImpl , but this

naming convention is not a requirement.

HelloHolder The application uses the holder class when parameters in the

interface operation are of types out or inout . Because the

ORB passes Java parameters by value, special holder classes

are necessary to provide for parameter return values.

HelloHelper The helper classes contain methods that read and write the

object to a stream, and cast the object to and from the type of

the base class. For example, the helper class has a narrow()
method that is used to cast an object to the appropriate type,

as in the following code:

 LoginServer lserver = LoginServerHelper.narrow
 (orb.string_to_object (loginIOR));

Note that when you get an object reference using the JNDI

InitialContext lookup() method, you do not have to

call the helper narrow() method. The ORB calls it

automatically for you.
Getting Started 2-17

The Interface Definition Language (IDL)
IDL Interface Body
An IDL interface body contains the following kinds of declarations:

_st_Hello The generated files that have _st_ prefixed to the interface

name are the stub files or client proxy objects. (_st_ is a

VisiBroker-specific prefix.)

These classes are installed on the client that calls the remote

object. In effect, when a client calls a method on the remote

object, it is really calling into the stub, which then performs

the operations necessary to perform a remote method

invocation. For example, it must marshall parameter data for

transport to the remote host.

_HelloImplBase Generated source files of the form

_<interfaceName>ImplBase are the skeleton files. A

skeleton file is installed on the server and communicates with

the stub file on the client, in that it receives the message on the

ORB from the client and upcalls to the server. The skeleton file

also returns parameters and return values to the client.

HelloOperations
_tie_Hello

The server uses these two classes for Tie implementations of

server objects. See "Using the CORBA Tie Mechanism" on

page 5-10 for information about Tie classes.

_example_Hello The _example_<interfaceName> class provides you with

a template for your server object implementation. You can

copy the example code to the directory where you will

implement the Hello server object, rename it,

(HelloImpl.java is used in the examples in this Guide),

and implement the methods.

constants The constant values that the interface exports.

types Type definitions.

exceptions Exception structures that the interface exports.

attributes Any associated attributes exported by the interface.

operations Operations are the methods that the interface supports.
2-18 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
IDL Types
This section gives a brief description of IDL datatypes and their mapping to Java

datatypes. For more information about IDL types not covered here, see the CORBA

specifications and the books cited in "For More Information" on page 1-8.

Basic Types
Mapping between IDL basic types and Java primitive types is straightforward.

Table 2–1 shows the mappings, as well as possible CORBA exceptions that can be

raised on conversion.

The IDL character type char is an 8-bit type, representing an ISO Latin-1 character

that maps to the Java char type, which is a 16-bit unsigned element representing a

Unicode character. On parameter marshalling, if a Java char cannot be mapped to

an IDL char , a CORBA DATA_CONVERSION exception is thrown.

Table 2–1 IDL to Java Datatype Mappings

CORBA IDL Datatype Java Datatype Exception

boolean boolean

char char CORBA::DATA_CONVERSION

wchar char

octet byte

string java.lang.String CORBA::MARSHAL

CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

float float

double double
Getting Started 2-19

The Interface Definition Language (IDL)
The IDL string type contains IDL chars. On conversion between Java String ,

and IDL string , a CORBA DATA_CONVERSION can be thrown. Conversions

between Java strings and bounded IDL string and wstring can throw a CORBA

MARSHALS exception if the Java String is too large to fit in the IDL string.

Constructed Types
Perhaps the most useful IDL constructed (aggregate) type for the Java developer is

the struct. The IDL compiler converts IDL structs to Java classes. For example, the

IDL specification:

module employee {
 struct EmployeeInfo {
 long empno;
 wstring ename;
 double sal;
 };
 ...

causes the IDL compiler to generate a separate Java source file for an

EmployeeInfo class. It looks like this:

package employee;
final public class EmployeeInfo {
 public int empno;
 public java.lang.String ename;
 public double sal;
 public EmployeeInfo() {
 }
 public EmployeeInfo(
 int empno,
 java.lang.String ename,
 double sal
) {
 this.empno = empno;
 this.ename = ename;
 this.sal = sal;
 }
 ...

The class contains a public constructor with parameters for each of the fields in the

struct. The field values are saved in instance variables when the object is

constructed. Typically, these are passed by value to CORBA objects.
2-20 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
Collections
The two types of ordered collections in CORBA are sequences and arrays. An IDL

sequence maps to a Java array with the same name. An IDL array is a

multidimensional aggregate whose size in each dimension must be established at

compile time.

The ORB throws a CORBA MARSHAL exception at runtime if sequence or array

bounds are exceeded when Java data is converted to sequences or arrays.

IDL also generates a holder class for a sequence. The holder class name is the

sequence’s mapped Java class name with Holder appended to it.

The following IDL code shows how you can use a sequence of structs to represent

information about employees within a department:

module employee {
 struct EmployeeInfo {
 long empno;
 wstring ename;
 double sal;
 };

 typedef sequence <EmployeeInfo> employeeInfos;

 struct DepartmentInfo {
 long deptno;
 wstring dname;
 wstring loc;
 EmployeeInfos employees;
 };

The Java class code that the IDL compiler generates for the DepartmentInfo class

is:

package employee;
final public class DepartmentInfo {
 public int deptno;
 public java.lang.String dname;
 public java.lang.String loc;
 public employee.EmployeeInfo[] employees;
 public DepartmentInfo() {
 }
 public DepartmentInfo(
 int deptno,
 java.lang.String dname,
 java.lang.String loc,
Getting Started 2-21

The Interface Definition Language (IDL)
 employee.EmployeeInfo[] employees
) {
 this.deptno = deptno;
 this.dname = dname;
 this.loc = loc;
 this.employees = employees;
 }

Notice that the sequence employeeInfos is generated as a Java array

EmployeeInfo[] .

Specify an array in IDL as follows:

const long ArrayBound = 12;
typedef long larray[ArrayBound];
The IDL compiler generates this as:

public int[] larray;

When you use IDL constructed and aggregate types in your application, you must

make sure to compile the generated .java files and load them into the Oracle8i
database when the class is a server object. You should scan the generated .java
files, and make sure that all required files are compiled and loaded. Study the

Makefile (UNIX) or the makeit.bat batch file (Windows NT) of CORBA

examples that define these types to see how the set of IDL-generated classes is

compiled and loaded into the data server.

Exceptions
You can create new user exception classes in IDL with the exception key word.

For example:

 exception SQLError {
 wstring message;
 };

The IDL can declare that operations raise user-defined exceptions. For example:

interface employee {
 attribute name;
 exception invalidID {
 wstring reason;
 };
 ...
 wstring getEmp(long ID)
 raises(invalidID);
2-22 CORBA Developer’s Guide and Reference

The Interface Definition Language (IDL)
 };
};

CORBA System Exceptions
Mapping between OMG CORBA system exceptions and their Java form is also quite

straightforward. These mappings are shown in Table 2–2.

Getting by Without IDL
The Oracle8i JVM development environment offers the Inprise Caffeine tools, which

enable development of pure Java distributed applications that follow the CORBA

model. You can write your interface specifications in Java and use the java2iiop
tool to generate CORBA-compatible Java stubs and skeletons.

Developers can also use the java2idl tool to code in pure Java, yet still have IDL

available that can be shipped to customers who are using a CORBA server that does

not support Java. This tool generates IDL from Java interface specifications.

Table 2–2 CORBA and Java Exceptions

OMG CORBA Exception Java Exception

CORBA::PERSIST_STORE org.omg.CORBA.PERSIST_STORE

CORBA::BAD_INV_ORDER org.omg.CORBA.BAD_INV_ORDER

CORBA::TRANSIENT org.omg.CORBA.TRANSIENT

CORBA::FREE_MEM org.omg.CORBA.FREE_MEM

CORBA::INV_IDENT org.omg.CORBA.INV_IDENT

CORBA::INV_FLAG org.omg.CORBA.INV_FLAG

CORBA::INTF_REPOS org.omg.CORBA.INTF_REPOS

CORBA::BAD_CONTEXT org.omg.CORBA.BAD_CONTEXT

CORBA::OBJ_ADAPTER org.omg.CORBA.OBJ_ADAPTER

CORBA::DATA_CONVERSION org.omg.CORBA.DATA_CONVERSION

CORBA::OBJECT_NOT_EXIST org.omg.CORBA.OBJECT_NOT_EXIST

CORBA::TRANSACTIONREQUIRED org.omg.CORBA.TRANSACTIONREQUIRED

CORBA::TRANSACTIONROLLEDBACK org.omg.CORBA.TRANSACTIONROLLEDBACK

CORBA::INVALIDTRANSACTION org.omg.CORBA.INVALIDTRANSACTION
Getting Started 2-23

Activating ORBs and Server Objects
See the Oracle8i Java Tools Reference, for more information about java2iiop and

java2idl .

Activating ORBs and Server Objects
A CORBA application requires that an ORB be active on both the client system and

the system running the server. In looking at the examples shown so far in this

chapter, it is not obvious how the ORB is activated, either on the client or the server.

This section presents more information about that topic.

Client Side
The client-side ORB is normally initialized in one of two ways:

■ The ORB is implicitly instantiated when the client instantiates the server object

either through the JNDI lookup() method on the JNDI InitialContext
object.

■ The ORB is explicitly instantiated when a pure CORBA client invokes the

CORBA ORB init method. See "Aurora ORB Interface" on page 5-12 for a full

explanation of the init method.

Server Side
The presentation that manages IIOP requests starts the ORB on the server when the

session is created. If you want to retrieve the ORB instance, use the CORBA

oracle.aurora.jndi.orb_dep.Orb .init method. See "Aurora ORB Interface"

on page 5-12 for a full explanation of this method.

About Object Activation
Objects are activated on demand. When a client looks up an object, the ORB loads

the object into memory and caches it. To activate the object, the ORB looks up the

class by the fully-qualified class name under which the object was published. The

Note: The only other time that you explicitly initialize the ORB on

the client through the ORB.init method is when you are in a

callback scenario. See "Implementing CORBA Callbacks" on

page 5-3 for a full discussion of callbacks. This discussion also

includes an example that shows the ORB is initialized within the

object that is called back to by the server.
2-24 CORBA Developer’s Guide and Reference

Debugging Techniques
class name is resolved in the schema defined at publication time, rather than the

caller’s schema. See the description of the command-line tool publish in the Oracle8i
Java Tools Reference for more information.

When the class is located, the ORB creates a new instance of the class, using

newInstance() . For this reason, the no-argument constructor of a persistent

object class must be public. If the class implements the

oracle.aurora.AuroraServices.ActivatableObject interface (as

determined by the Java reflection API), then the

_initializeAuroraObject() message is sent to the instance. (See "Using the

CORBA Tie Mechanism" on page 5-10 for an example that requires

_initializeAuroraObject()) .

There is no need for the server implementation to register its published objects with

the object adapter using a boa.obj_is_ready() call—the JServer ORB performs

this automatically.

You register transient objects generated by other objects, such as persistent

published objects, with the BOA using obj_is_ready() . For an example, see the

factory demo in the examples/corba/basic/factory directory of the

product CD.

CORBA Interceptors
Visibroker enables you to implement interceptors. The Visibroker documentation

provides details for how to create them.

Debugging Techniques
Until Java IDEs and JVMs support remote debugging, you can adopt several

techniques for debugging your CORBA client and server code.

1. Use JDeveloper for debugging any Java applications. JDeveloper has provided a

user interface that utilizes JServer’s debugging facilities. You can successfully

debug an object loaded into the database by using JDeveloper’s debugger. See

the JDeveloper documentation for instructions.

2. Use a prepublished DebugAgent object for debugging objects executing on a

server. See "Using a Debug Agent for Debugging Server Applications" on

page 2-26 for more information.

3. Perform stand-alone ORB debugging using one machine and ORB tracing.
Getting Started 2-25

Debugging Techniques
Debug by placing both the client and server in a single address space in a single

process. Use of an IDE for client or server debugging is optional, though highly

desirable.

4. Use Oracle8i trace files.

In the client, the output of System.out.println() goes to the screen.

However, in the Oracle8i ORB, all messages are directed to the server trace files.

The directory for trace files is a parameter specified in the database initialization

file. Assuming a default install of the product into a directory symbolically

named $ORACLE_HOME, then the trace file would appear as

${ORACLE_HOME}/admin/<SID>/bdump/ORCL_s000x_xxx.trc

where ORCL is the SID, and x_xxx represents a process ID number. Do not

delete trace files after the Oracle instance has been started, or no output is

written to a trace file. If you do delete trace files, stop and then restart

the server.

5. Use a single Oracle MTS server.

For debugging only, set the MTS_SERVERS parameter in your INITSID.ORA

file to MTS_SERVERS = 1, and set the MTS_MAX_SERVERS to 1. Having

multiple MTS servers active means that a trace file is opened for each server

process, and, thus, the messages get spread out over several trace files, as

objects get activated in more than one session.

6. Use the printback example to redirect System.out. This example is available in

the demo directory, demo/examples/corba/basic/printback .

Using a Debug Agent for Debugging Server Applications
The procedure for setting up your debugging environment is discussed fully in the

Oracle8i Java Developer’s Guide. However, it discusses starting the debug agent

using a DBMS_JAVA procedures. Within a CORBA application, you can start, stop,

and restart the debug agent using the oracle.aurora.debug .DebugAgent class

methods. These methods perform exactly as their DBMS_JAVA counterparts

perform.

public void start(java.lang.String host, int port, long timeout_seconds)
throws DebugAgentError

public void stop() throws DebugAgentError
public void restart(long timeout) throws DebugAgentError
2-26 CORBA Developer’s Guide and Reference

Debugging Techniques
Example 2–1 Starting a DebugAgent on the Server

The following example shows how to debug an object that exists on the server. First,

you need to start a debug proxy through the debugproxy command-line tool. This

example informs the debugproxy to start up the jdb debugger when contacted by

the debug agent.

Once you execute this command, start your client, which will lookup the intended

object to be debugged, lookup the DebugAgent that is prepublished as

"/etc/debugagent ", and start up the DebugAgent .

Once the DebugAgent starts, the debugproxy starts up the jdb debugger and allows

you to set your breakpoints. Since you have a specified amount of time before the

DebugAgent times out, the first thing you should do is suspend all threads. Then,

set all of your breakpoints before resuming. This suspends the timeout until you are

ready to execute.

proxy window on tstHost

% debugproxy -port 2286 start jdb -password
. (wait until a debug agent starts up and
. contact this proxy... when it does, jdb
. starts up automatically and you can set

client code

main(...)
{
 //retrieve the object that you want to debug
 Bank b = (Bank)ic.lookup(sessURL + "/test/Bank");

 DebugAgent dbagt = (DebugAgent)ic.lookup(svcURL + "/etc/debugagent");
 //start the debug agent and give the proxy host, port, and a timeout
 dbagt.start("tstHost",2286,30);

 //lookup debugagent from JNDI

. breakpoints and debug the object, as follows:)
> suspend

 ...
 //execute methods within Bank)
 ...
 //stop the agent when you want to
 dbagt.stop();
 //restart the agent when you want to
 dbagt.restart(30);

> load SCOTT:Bank
> stop in Bank:updateAccount
> resume
> ...
Getting Started 2-27

Debugging Techniques
2-28 CORBA Developer’s Guide and Reference

Configuring IIOP Applica
3

Configuring IIOP Applications

Configuring IIOP-based applications, whether EJB or CORBA applications, involves

configuring the appropriate listener and MTS server for session-based IIOP

communications. The process for configuring IIOP-based applications involves both

database and network configuration. These elements are discussed in the sections

below:

■ Overview

■ Oracle8i Typical or Minimal Installation

■ Oracle8i Custom Installation

■ Manual Install and Configuration

■ Advanced Configuration Options
tions 3-1

Overview
Overview
Clients access EJB and CORBA applications in the database over an Internet

Inter-Orb Protocol (IIOP) connection. IIOP is an implementation of General

Inter-Orb Protocol (GIOP) over TCP/IP. All IIOP connections for CORBA or EJB

clients that communicate with the database must have IIOP configured on the

database and within the Net8 listener, unless you have the following scenario:

■ the listener that you want to connect to is on the same node as the database

■ the database that you want to use has configured a generic dispatcher

■ you use the dynamic registration tool described in "Dynamic Listener Endpoint

Registration" on page 3-15 to enable the listener to manage IIOP requests

Otherwise, you must configure the database and the listener, as follows:

The database supports incoming requests through a presentation. The presentation

protocol is responsible for making sure data is represented in a format the

application and session layers can accommodate. Both the listener and the

dispatcher accept incoming network requests based upon the presentation that is

configured. For IIOP, you configure a GIOP presentation.

Entity Description Configuration Tool

Database To support an IIOP connection, you must
configure the database for GIOP in MTS
mode.

Configure the database MTS
dispatchers for IIOP
through the Database
Configuration Assistant.
This tool is started under
the covers by the Typical
and Custom Oracle8i install.

Net8 Listener To support an IIOP connection, you must
configure the Net8 listener to accept an IIOP
connection over defined ports 2481 or 2482.

Configure the Net8 listener
for IIOP through the Net8
Assistant.
3-2 CORBA Developer’s Guide and Reference

Oracle8i Typical or Minimal Installation
The configuration for an IIOP connection can be handled in one of three ways:

■ Oracle8i Typical or Minimal Installation—If you choose the Typical or Minimal

Oracle8i installation, you receive configuration for session-based, non-SSL IIOP

connections for both the database and the listener.

■ Oracle8i Custom Installation—If you choose the JServer option within a

"Custom" Oracle8i installation, you receive configuration for session-based,

non-SSL IIOP connections for the database. You have to invoke the Net8

Assistant to configure IIOP for the listener.

■ Manual Install and Configuration—If you install JServer by invoking the

initjvm.sql script, you must manually configure your IIOP connection. All

configuration is done manually either by invoking the Database Configuration

and Net8 Assistants directly or by editing the various initialization parameter

files.

Oracle8 i Typical or Minimal Installation
During a Typical installation of the server, JServer is installed and configured for

you. You automatically receive configuration for an MTS database with

session-based IIOP connections through the listener using non-SSL TCP/IP.

After the typical install is complete, the following line is added to your database

initialization file:

mts_dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

If, instead, you installed the Advanced Security Option and you want the SSL-based

TCP/IP connection, edit your database initialization file to remove the hash mark

(#) from the following line:

mts_dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

Note: For security concerns, you must decide if your IIOP

connection will be Security Socket Layer (SSL) enabled.

■ See "Using the Secure Socket Layer" on page 6-3 for

information on SSL.

■ See "Configuring SSL for EJB and CORBA" on page 3-17 for

information on how to configure SSL.
Configuring IIOP Applications 3-3

Oracle8i Custom Installation
In addition, the listener is configured for IIOP. The following is placed within your

listener.ora file:

listener=
(description_list =

(description=
(address=(...)
(protocol_stack=

(presentation=GIOP)
(session=RAW)

)
)

)

After configuration, the client directs its request to a URL that includes the host and

port, which identifies the listener, and either the SID or database service name,

which identifies the database. The following shows the syntax for this request:

session_iiop://< hostname >/:< portnumber >/:<SID | service_name >

Oracle8 i Custom Installation
If, within a Custom install, you choose the JServer option (as shown in Figure 3–1),

the Database Configuration Assistant configures an MTS database for session-based

IIOP connections, using non-SSL TCP/IP.

Note: The (protocol=tcps) attribute identifies the connection as

SSL-enabled.

Note: If you choose the Typical or Minimal options within the

custom choices, your configuration is the same as defined in

"Oracle8i Typical or Minimal Installation" on page 3-3.
3-4 CORBA Developer’s Guide and Reference

Oracle8i Custom Installation
Figure 3–1 Choosing the JServer option

This places the following line within your database initialization file:

mts_dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

If, instead, you installed the Advanced Security Option and you want the SSL-based

TCP/IP connection, edit your database initialization file to remove the hash mark

(#) from the following line:

mts_dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

After the installation is complete, you must bring up the Net8 Assistant to configure

the listener for IIOP connections.

Note: The (protocol=tcps) attribute identifies the connection as

SSL-enabled.
Configuring IIOP Applications 3-5

Oracle8i Custom Installation
Net8 Assistant
The Net8 Assistant can modify any of the listener settings. The following is a brief

description of the task you must do to configure the listener through the Net8

Assistant. For a fuller explanation, see the Net8 Administrator’s Guide.

1. Start Net8 Assistant

■ On UNIX, run netasst at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Network Administration > Net8 Assistant.

2. In the navigator pane, expand Local > Listeners.

This brings you to the listener location panel, as shown in Figure 3–2.
3-6 CORBA Developer’s Guide and Reference

Oracle8i Custom Installation
Figure 3–2 IIOP Listening Port Configuration

3. Select a listener.

4. From the list in the right pane, select Listening Locations.

5. Select the TCP/IP or TCP/IP with SSL protocol from the Protocol list.

6. Enter the host name of the database in the Host field.

7. Enter port 2481 in the Port field if the chosen protocol is TCP/IP, or enter port

2482 if the chosen protocol is TCP/IP with SSL.

8. Click "Dedicate this endpoint to IIOP connections".
Configuring IIOP Applications 3-7

Manual Install and Configuration
9. Choose File > Save Network Configuration.

This places the following within your listener.ora file:

listener=
(description_list =

(description=
(address=(protocol=tcp)(host=sales-server)(port=2481))))
(protocol_stack=

(presentation=GIOP)
(session=RAW)

)
)

)

After configuration, the client directs its request to a URL that includes the host and

port, which identifies the listener, and either the SID or database service name,

which identifies the database. The following shows the syntax for this request:

session_iiop://< hostname >/:< portnumber >/:<SID | service_name >

Manual Install and Configuration
If you did not install JServer through either the Typical or Custom install options,

you can add JServer to an existing database with the initjvm.sql script. See the

Oracle8i Java Developer’s Guide for more information on this script.

Once you have installed JServer, you can configure your IIOP connections either

through the tools—Database Configuration and Net8 Assistants—or by manually

editing the initialization files.

Configuring Through Tools
1. Configure the database for IIOP through the Database Configuration Assistant.

To start up the Database Configuration Assistant, do the following:

■ On UNIX, run dbassist at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Database Administration > Database Configuration Assistant.

After starting up the Database Configuration Assistant, choose the JServer

option. For information on what this does to your initialization files, see

"Oracle8i Custom Installation" on page 3-4
3-8 CORBA Developer’s Guide and Reference

Manual Install and Configuration
2. Configure the listener for IIOP through the Net8 Assistant. These steps are

described in "Net8 Assistant" on page 3-6.

Configuring Through Editing Initialization Files
The presentation layer within the database identifies the type of connection your

client is using to access the database. To identify the GIOP presentation, you use

oracle.aurora.server.SGiopServer , which is the configuration for

session-based IIOP connections. CORBA applications can activate objects within

multiple sessions and are not limited to objects within the single session that the

client initiated. These connections identify both a session and the standard IIOP

semantics.

To configure an IIOP connection, you specify the GIOP presentation in the

following initialization files:

1. Configure the IIOP connection in the database initialization file—You configure

the PRESENTATION attribute of the MTS_DISPATCHERS parameter.

This section describes only the PRESENTATION attribute for the MTS_

DISPATCHERS parameter. For a full description of MTS configuration, see the

Net8 Administrator’s Guide.

2. Configure the Net8 listener for IIOP connections.

Both steps are described in more detail below.

1. Configure the IIOP Connection in the Database Initialization File
To configure an IIOP connection within the database, you can manually edit the

database initialization file.

The following is the syntax for the MTS_DISPATCHERS parameter:

mts_dispatchers="(protocol=tcp | tcps)
(presentation=oracle.aurora.server.SGiopServer)"

The attributes for MTS_DISPATCHER are described below:

Attribute Description

PROTOCOL (PRO or PROT) Specifies the TCP/IP or TCP/IP with SSL protocol,
which the dispatcher will generate a listening end
point for.

Valid values: TCP (for TCP/IP) or TCPS (for TCP/IP
with SSL)
Configuring IIOP Applications 3-9

Manual Install and Configuration
For example, to configure MTS for session-based IIOP connections through the

listener using non-SSL TCP/IP, add the following within your database

initialization file:

mts_dispatchers="(protocol=tcp)(presentation=oracle.aurora.server.SGiopServer)"

2. Configure a Listener for the Incoming Connection
Each listener is configured to listen on a well-known port number, and the client

communicates with the listener using this port number. To support CORBA and

EJB, the listener must be configured to listen for IIOP clients on either ports 2481 or

2482.

You can either use the Net8 Assistant to configure your listener or manually

configure the listener within the listener.ora file. Oracle recommends that you

use the Net8 Assistant. See "Net8 Assistant" on page 3-6 for information on the Net8

Assistant.

To configure the listener manually, you must modify the listener’s DESCRIPTION

parameter within the listener.ora file.

Modify the LISTENER.ORA DESCRIPTION Parameter You must configure the listener with

a GIOP listening address. The following example configures a GIOP presentation

for non-SSL TCP/IP with port number 2481. You use port 2481 for non-SSL and

port 2482 for SSL.

For GIOP, the PROTOCOL_STACK parameter is added to the DESCRIPTION when

configuring an IIOP connection to sales-server :

PRESENTATION (PRE or PRES) Enables support for GIOP. Supply the following value
for a GIOP presentation:

■ oracle.aurora.server.SGiopServer for
session-based GIOP connections. This
presentation is valid for TCP/IP and TCP/IP
with SSL.

Note: If you configure several MTS_DISPATCHERS within your

database initialization file, each MTS definition must follow each

other. You should not define any other configuration parameters

between the MTS_DISPATCHER definitions.

Attribute Description
3-10 CORBA Developer’s Guide and Reference

Advanced Configuration Options
listener=
 (description_list=
 (description=

 (address=(protocol=tcp)(host=sales-server)(port=2481))
 (protocol_stack=
 (presentation=giop)
 (session=raw))))

The following table gives the definition for each of the GIOP parameters:

Advanced Configuration Options
■ Database Listeners and Dispatchers

■ Dynamic Listener Endpoint Registration

■ Direct Dispatcher Connection

■ Configuring SSL for EJB and CORBA

Database Listeners and Dispatchers
Figure 3–3 shows the interaction between the listener and the dispatchers, and also

illustrates how an Oracle8i ORB session is activated.

Attribute Description

PROTOCOL_STACK Identifies the presentation and session layer
information for a connection.

(PRESENTATION=GIOP) Identifies a presentation of GIOP for IIOP clients.
GIOP supports
oracle.aurora.server.SGiopServer using
TCP/IP.

 (SESSION=RAW) Identifies the session layer. There is no specific
session-layer for IIOP clients.

(ADDRESS=...) Specifies a listening address that uses TCP/IP on
either port 2481 for non-SSL or port 2482 for SSL. If
non-SSL, the protocol should be TCP; for SSL, the
protocol should be defined as TCPS.
Configuring IIOP Applications 3-11

Advanced Configuration Options
Figure 3–3 Listener/Dispatcher Interaction

1. Upon database startup, the dispatcher registers itself with the listener.

2. The client invokes a method, giving the listener’s URL address as the

destination.

3. The listener sends back a LOCATION_FORWARD response to the client’s ORB

layer informing it of the dispatcher’s address. This redirects the request to the

appropriate dispatcher.

4. The underlying ORB runtime layer resends the initial request to the dispatcher.

All future method invocations are directed to the dispatcher. The listener is no

longer a part of the communication.

The incoming request is examined by the shared server services to see if the request

is for an existing session. If so, the request is forwarded to the indicated session. If

not, the service creates a new database session for the request and activates the ORB

in the session. This session is very similar to the database sessions created for

incoming Net8 connections. In the session, the ORB reads the incoming IIOP

messages, authenticates the client, finds and activates the corresponding server-side

Note: The client is unaware of the redirection logic, which is

performed by the ORB runtime layer that supports the client.

 Client

Listener

Oracle8i

Dispatchers

LOCATION_FORWARD

Session Memory

SGA

session state

session state

Shared
Servers

registers at
start up1

2

3

4

3-12 CORBA Developer’s Guide and Reference

Advanced Configuration Options
objects, and sends IIOP messages as needed to reply to the connected client.

Subsequent messages from the client are directed to the existing session.

When you configure a listener, you need to configure separate ports as listening

endpoints for both Net8 and IIOP connections. Similarly, if you want any endpoint

to use the secure socket layer (SSL), you will also need a separate endpoint for an

SSL-enabled IIOP endpoint. See "Using the Secure Socket Layer" on page 6-3 for

more information about connecting using IIOP and SSL.

Handling Incoming Requests
The administrator for your database configures an MTS server with a dispatcher

that is GIOP enabled. In addition, the administrator configures a listener that this

dispatcher registers with upon database startup.

When the database does start up, all dispatchers register with all listeners

configured within the same database initialization file. However, when an IIOP

client invokes a request, the listener will only redirect the request to a GIOP

dispatcher or hand off to a generic dispatcher.

These are discussed fully in the following sections:

■ Redirect to GIOP Dispatcher

■ Hand Off to Generic Dispatcher

Redirect to GIOP Dispatcher The listener recognizes the IIOP protocol and redirects the

request to a registered GIOP dispatcher.

Figure 3–4 IIOP Listener Redirect to GIOP Dispatcher

GIOP
dispatcher

IIOP
listener

IIOP
CLIENT

Oracle8i Database

1
2

3

4

Configuring IIOP Applications 3-13

Advanced Configuration Options
1. GIOP dispatcher registers itself with the listener.

2. IIOP client—an EJB or CORBA client—invokes a method, giving the address of

the listener. For redirection to occur, the listener must be statically configured to

receive IIOP requests.

3. The listener sends back a response to the client informing it of the GIOP

dispatcher’s address.

The listener redirects if a GIOP dispatcher is configured. If no GIOP dispatcher

is configured, the listener can hand off the request to a generic dispatcher. See

"Hand Off to Generic Dispatcher" on page 3-14 for more information.

4. The underlying ORB runtime layer on the client resends its initial request to the

GIOP dispatcher. All future method invocations are directed to the dispatcher.

The listener is no longer a part of the communication.

Hand Off to Generic Dispatcher If there is no GIOP dispatcher statically configured, but

there is a generic dispatcher configured, the listener can hand off the request to this

dispatcher. The only restrictions are that the listener and dispatcher must exist on

the same node in order for the hand off to occur and that the listener must be either

statically or dynamically configured to receive an IIOP request.

For hand off to occur, the listener forfeits the socket to the dispatcher. Thus, this can

only occur within a single node.

Figure 3–5 shows the dispatcher and listener combination in a hand off

environment.

Figure 3–5 Hand Off to Dispatcher

generic
dispatcher

listener

IIOP
CLIENT

Oracle8i Database

1
2

3

3-14 CORBA Developer’s Guide and Reference

Advanced Configuration Options
1. When the database starts, the generic dispatcher registers itself with the

configured listener.

2. The client sends a request to the listener.

3. The listener hands off the request to the generic dispatcher. The listener

negotiates with the generic dispatcher on a separate channel. On this channel,

the socket is handed off to the dispatcher through the operating system

mechanisms.

The client communicates directly with the dispatcher from this point on. The

client is never made aware that the socket was handed off.

Dynamic Listener Endpoint Registration
As discussed in "Hand Off to Generic Dispatcher" on page 3-14, a listener will hand

off the socket to an existing generic dispatcher. In order for a hand off to occur for

an IIOP incoming request, the listener must have an IIOP endpoint registered. You

can register any listening endpoint through either of the following:

■ static configuration—configured by the Net8 configuration tool

■ dynamic configuration—registered by the dynamic registration tool, regep

The dynamic registration tool, regep , adds any type of listening endpoint to your

listener. This includes an IIOP listening endpoint. The following describes how to

use the dynamic registration tool for an IIOP listening endpoint.

The restrictions for this scenario are as follows:

■ Both the listener and generic dispatcher always exist on the same node.

■ A GIOP configured dispatcher cannot exist.

Note: The listener must be configured to receive IIOP requests. You

can either statically configure the listener through the Net8

configuration, or you can dynamically configure the listener

through a dynamic registration tool, regep . See "Dynamic Listener

Endpoint Registration" on page 3-15 for more information.
Configuring IIOP Applications 3-15

Advanced Configuration Options
The advantage for dynamically registering a listener endpoint is that you do not

need to restart your database for this listener to be IIOP enabled. The listening

endpoint is active immediately.

For full details on the regep tool, see the Oracle8i Java Tools Reference Guide.

Example 3–1 Dynamically Registering a LIstener at Port 2241

The following line dynamically registers a listener on the SUNDB host on endpoint

port number 2241. This tool logs on to the SUNDB host.

regep -pres oracle.aurora.server.SGiopServer -host sundb -port 2241

Direct Dispatcher Connection
If you want your client to go to a dispatcher directly, bypassing the listener, you

direct your client to the dispatcher’s port number. Do one of the following to

discover the dispatcher’s port number:

■ Configure a port number for the dispatcher by adding the ADDRESS parameter

that includes a port number.

■ Discover the port assigned to the dispatcher by invoking lsnrctl service .

If you choose to configure the port number, the following shows the syntax:

mts_dispatchers="(address=(protocol=tcp | tcps)
(host=< server_host>)(port=< port>))
(presentation=oracle.aurora.server.SGiopServer)"

The attributes are described below:

Note: If a GIOP configured dispatcher does exist, the listener will

redirect the request, rather than hand off the request, to the

configured dispatcher.

Attribute Description

ADDRESS (ADD or
ADDR)

Specifies the network address that the dispatchers will listen on.
The network address may include either the TCP/IP (TCP) or
the TCP/IP with SSL (TCPS) protocol, the host name of the
server, and a GIOP listening port, which may be any port you
choose that is not already in use.
3-16 CORBA Developer’s Guide and Reference

Advanced Configuration Options
The client supplies the port number on its URL, as follows:

session_iiop://<hostname>/:<portnumber>

Notice that the URL excludes a SID or service name. The dispatcher does not need

the SID instance or service name because it is a directed request.

Configuring SSL for EJB and CORBA
Oracle8i also supports the use of authentication data such as certificates and private

keys required for use by SSL in combination with GIOP. To configure your

transport to be SSL-enabled with GIOP, do the following:

1. Enable the MTS_DISPATCHERS to be SSL-enabled.

2. Specify the SSL wallet to be used when configuring both the listener and

database.

3. Configure the listener to accept SSL.

The following sections detail how to accomplish these three steps.

Enable the MTS_DISPATCHERS for SSL
You must edit the database initialization file to add an SSL-enabled dispatcher.

Uncomment the MTS_DISPATCHERS parameter in the database initialization file

that defines the TCPS port. During installation, the Database Configuration

Assistant always includes a commented out line for SSL TCP/IP. This line is as

follows:

mts_dispatchers="(protocol=tcps)(presentation=oracle.aurora.server.SGiopServer)"

Configure the Wallet Location through Net8 Assistant
Modify the listener to accept SSL requests on port 2482.

1. Start Net8 Assistant.

PRESENTATION (PRE or
PRES)

Enables support for GIOP. Supply the following value for a
GIOP presentation:

■ oracle.aurora.server.SGiopServer for
session-based GIOP connections. This presentation is valid
for TCP/IP and TCP/IP with SSL.

Attribute Description
Configuring IIOP Applications 3-17

Advanced Configuration Options
■ On UNIX, run netasst at $ORACLE_HOME/bin.

■ On Windows NT, choose Start > Programs > Oracle - HOME_NAME >

Network Administration > Net8 Assistant.

2. In the navigator pane, expand Local > Profile.

3. From the pull-down list, select Oracle Advanced Security > SSL.

This brings you to the listening port panel, as shown in Figure 3–6.

Figure 3–6 IIOP listening port configuration

4. On the "Configure SSL for:" line, select the "Server" radio button.

5. Under "Wallet Directory", enter the location for the wallet.
3-18 CORBA Developer’s Guide and Reference

Advanced Configuration Options
6. If you desire a certain SSL version, choose the appropriate version on the SSL

version pulldown list.

7. If you want the client to authenticate itself by providing certificates, select the

"Require Client Authentication" checkbox.

8. Choose File > Save Network Configuration.

These steps will add wallet and SSL configuration information into both the listener

and database configuration files. The SSL wallet location must be specified in both

the listener and database configuration files. Both entities must locate the wallet for

certificate handshake capabilities.

The listener.ora file:
ssl_client_authentication=false
ssl_version=undetermined

The default is for the database to authenticate the client. If you want the listener to

authenticate the client, change the ssl_client_authentication parameter to

true.

The database’s sqlnet.ora file:
ssl_client_authentication=true
ssl_version=0
sqlnet.crypto_seed=< seed_info >

If you did not request client authentication, the ssl_client_authentication
parameter will be false. The default value is for client authentication to be true. In

addition, you can specify a specific SSL version number, such as 3.0, in the ssl_
version parameter. The ssl_version value of 0 means that the version is

undetermined and will be agreed upon during handshake.

Within both the listener’s listener.ora and database’s sqlnet.ora files, the

wallet location is specified:

oss.source.my_wallet=
 (source=
 (method=file)
 (method_data=
 (directory= wallet_location)))

The Oracle Advanced Security Administrator’s Guide describes how to set up the SSL

wallet with the appropriate certificates.
Configuring IIOP Applications 3-19

Advanced Configuration Options
Configure an SSL-Enabled Listener through Net8 Assistant
1. Back in the navigator pane, expand Local > Listener.

This brings you to the listener location panel, as shown in Figure 3–2.

Figure 3–7 IIOP listening port configuration

2. Select a listener.

3. From the list in the right pane, select Listening Locations. If none of the current

listening addresses are feasible for your SSL listening address, you can add a

new address by clicking on the "Add Address" button.

4. Select the TCP/IP with SSL protocol from the Protocol list.

5. Enter the host name of the database in the Host field.
3-20 CORBA Developer’s Guide and Reference

Advanced Configuration Options
6. Enter port 2482 in the Port field.

7. Click "Dedicate this endpoint to IIOP connections".

8. Choose File > Save Network Configuration.

This places the following in the listener.ora file: it modifies the listener to

specify TCPS —instead of TCP—as the protocol with port number 2482. The

following shows an example of an SSL-enabled listener on the sales-server
host.

listener=
 (description_list=
 (description=

 (address=(protocol=tcps)(host=sales-server)(port=2482))))
 (protocol_stack=
 (presentation=giop)
 (session=raw)))
Configuring IIOP Applications 3-21

Advanced Configuration Options
3-22 CORBA Developer’s Guide and Reference

JNDI Connections and Session IIOP Se
4

JNDI Connections and

Session IIOP Service

This chapter describes in detail how clients connect to an Oracle8i server session

and how they authenticate themselves to the server. The term client, as used in this

chapter, includes client applications and applets running on a network PC or a

workstation, as well as distributed objects such as EJBs and CORBA server objects

that are calling other distributed server objects and, thus, acting as clients to these

objects.

In order to execute CORBA objects, you must first publish these objects in a

Oracle8i database instance, using a CORBA CosNaming service. Then, you can

retrieve the object reference either through a URL-based JNDI interface to

CosNaming or straight to the CosNaming service. JNDI is recommended as it is

easy for clients written in Java to locate and activate published objects.

In addition to authentication, this chapter discusses security of access control to

objects in the database. A published object in the data server has a set of

permissions that determine who can access and modify the object. In addition,

classes that are loaded in the data server are loaded into a particular schema, and

the person who deploys the classes can control who can use them.

This chapter covers the following topics:

■ JNDI Connection Basics

■ The Name Space

■ Execution Rights to Database Objects

■ URL Syntax

■ Using JNDI to Access Bound Objects

■ Session IIOP Service
rvice 4-1

JNDI Connection Basics
■ Retrieving JServer Version Number

■ Activating In-Session CORBA Objects From Non-IIOP Presentations

■ Accessing CORBA Objects Without JNDI

JNDI Connection Basics
The client example in Chapter 2 showed how to connect to Oracle, start a database

server session, and activate an object using a single URL specification. This was

performed through the following steps:

1. Hashtable env = new Hashtable();
2. env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
3. env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
4. env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
5. env.put(javax.naming.Context.SECURITY_AUTHENTICATION,

ServiceCtx.NON_SSL_LOGIN);
6. Context ic = new InitialContext(env);
7. myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");
8. System.out.println(hello.helloWorld());

In this example, there are four basic operations:

■ Lines 1-5 set up an environment for the JNDI initial context.

■ Line 6 creates the JNDI initial context.

■ Line 7 looks up a published object. (See "URL Syntax" on page 4-5 for a

discussion of the URL syntax.)

■ Line 8 invokes a method on the object.

When a client looks up an object through the JNDI lookup method, the client and

server automatically perform the following logic:

■ A session IIOP connection is created to the ORCL instance of the local host

database.

■ The server establishes a database session.

■ The client is authenticated, using the NON_SSL_LOGIN protocol, with the

username and password specified in the environment context.

■ The published object, /test/myHello , is located in the session namespace

and a reference to it is returned to the client.
4-2 CORBA Developer’s Guide and Reference

The Name Space
When the client invokes a method—such as helloWorld() —on the returned

reference, the server activates the object in the server.

The Name Space
The name space in the database looks just like a typical file system. You can

examine and manipulate objects in the publishing name space using the session

shell tool. See the "sess_sh " tool in the Oracle8i Tools Reference Guide for

information about the session shell.

There is a root directory, indicated by a forward slash (’/’). The root directory is

built to contain three other directories: bin , etc , and test . The /test directory is

where most objects are published for the example programs. You can create new

directories under root to hold objects for separate projects; however, you must have

access as database user SYS to create new directories under the root.

There is no effective limit to the depth that you can nest directories.

The /etc directory contains objects the ORB uses. Do not delete objects in the /etc
directory. The objects contained in /etc are:

deployejb execute loadjava login transactionFactory

The entries in the name space are represented by objects that are instances of the

following classes:

■ oracle.aurora.AuroraServices.PublishingContext —represents a

class that can contain other objects (a directory)

■ oracle.aurora.AuroraServices.PublishedObject —used for the leafs

of the tree, that is the object names themselves.

These classes are documented in the JavaDoc on the product CD.

Published names for objects are stored in a database table. Each published object

also has a set of associated permissions. Each class or resource file can have a

combination (union) of the following permissions:

read The holder of read rights can list the class or the attributes of the class, such as

its name, its helper class, and its owner.

Note: The initial values in the publishing name space are set up

when the JServer product for Oracle8i is installed.
JNDI Connections and Session IIOP Service 4-3

Execution Rights to Database Objects
write The holder of write for a context can bind new object names into a context. For

an object (a leaf node of the tree), write allows the holder to republish the object

under a different name.

execute You must have execute rights to resolve and activate an object represented

by a context or published object name.

You use the chmod command of the session shell tool to view and change object

rights.

Execution Rights to Database Objects
In addition to authentication and privacy, Oracle8i supports controlled access to the

classes that make up CORBA and EJB objects. Only users or roles that have been

granted execute rights to the Java class of an object stored in the database can

activate the object and invoke methods on it.

You can control execute rights on Java classes with the following tools:

■ At load time with the -grant argument to loadjava . See the Oracle8i Java
Developer’s Guide for more information about loadjava and execution rights

on Java classes in the database.

■ Using SQL commands—You use the SQL DDL GRANT EXECUTE command to

grant execute permission on a Java class loaded in the database. For example, if

SCOTT has loaded a class Hello, then SCOTT (or SYS) can grant execute

privileges on that class to another user, say OTTO, by issuing the SQL

command:

SQL> GRANT EXECUTE ON "Hello" TO OTTO;

Use the SQL command REVOKE EXECUTE to remove execute rights for a user

from a loaded Java class.

■ At publish time—Published objects are not restricted to a specific schema; they

are potentially available to all users in the instance. Published objects have

permissions that can differ from underlying classes. For example, if user SCOTT

has execute permission on a published object name, but does not have execute

permission on the class that the published object represents, SCOTT will not be

able to activate the object.

You can control permissions on a published object through the following:

1. Using the -grant option with the publish tool.
4-4 CORBA Developer’s Guide and Reference

URL Syntax
2. Using the chmod and chown commands within the Session Shell. You must

be connected to the Session Shell as the user SYS to use the chown
command.

Use the ls -l command in the session shell to view the permissions

(EXECUTE, READ, and WRITE) and the owner of a published object.

There are three "built-in" server objects that a client can access without being

authenticated, as shown below:

■ the Name Service

■ the InitialReferences object (the boot service)

■ the Login object

You can activate these objects using serviceCtx.lookup() without

authentication. See the "Logging In and Out of the JServer Session" on page 6-11 for

an example that access the Login object explicitly.

URL Syntax
Oracle8i provides universal resource locator (URL) syntax to access services and

sessions. The URL lets you use JNDI requests to start up services and sessions, and

also to access components published in the database instance. An example service

URL is shown in Figure 4–1.

Figure 4–1 Service URL

The service URL is composed of four components:

1. The URL prefix followed by a colon and two slashes: sess_iiop:// for a session

IIOP request.

URL Prefix

Hostname

System Identifier (SID) or
Service Name

Listener Port Number for IIOP

sess_iiop://localhost:2481:ORCL
JNDI Connections and Session IIOP Service 4-5

URL Syntax
2. The system name (the hostname). For example: myPC-1. You can also use

localhost or the numeric form of the IP address for the host.

3. The listener port number for IIOP services. The default is 2481.

4. The system identifier (SID)—for example, ORCL—or the service name—for

example, mySID.myDomain .

■ SID—The system identifier is defined in your database initialization file as

the db_name. This identifies the database instance you are connecting to. If

you choose to add the SID to your service URL, the listener will load

balance incoming requests across multiple dispatchers for the database

instance.

■ Service name—The service name is equivalent to either the service_name
or the db_name.db_domain parameters defined in your database

initialization file. If you use the service name within your service URL, the

listener will load balance incoming requests across multiple database

instances: that is, all database instances registered with the listener. This

options is good when you are using parallel servers.

Always use colons to separate the hostname, port, and SID or service name.

URL Components and Classes
When you make a connection to Oracle and look up a published object using JNDI,

you use a URL that specifies the service (service name, host, port, and SID), as well

as the name of a published object to look up and activate. For example, a complete

URL could look like:

sess_iiop://localhost:2481:ORCL/:default/projectAurora/Plans816/getPlans

Note: If you do use the service name, you must specify the

-useServiceName flag on any tool that takes in the URL. If you do

not specify this flag, the tool assumes that the last string is a SID.

Note: If you specify a dispatcher port instead of a listener port,

and you specify a SID, an ObjectNotFound exception is thrown

by the server. Because applications that connect directly to

dispatcher ports do not scale well, Oracle does not recommend

direct connection to dispatchers.
4-6 CORBA Developer’s Guide and Reference

Using JNDI to Access Bound Objects
where sess_iiop://localhost:2481:ORCL specifies the service name,

:default indicates the default session (when a session has already been

established), /projectAurora/Plans816 specifies a directory path in the

namespace, and getPlans is the name of a published object to look up.

Each component of the URL represents a Java class. For example, the service name

is represented by a ServiceCtx class instance, the session by a SessionCtx
instance. See "Using JNDI to Access Bound Objects" and "Session IIOP Service"

starting on page 4-7 for more information on the service and session names within

the URL.

CosNaming Restriction for JNDI Name
The JNDI bound name for the published object must use JNDI syntax rules. The

underlying naming service that JServer JNDI uses is CosNaming. Thus, if your

name includes a dot (".") in one of the names, the behavior diverges from normal

CosNaming rules, as follows:

■ The substring before the dot is treated as a CosNaming NameComponent id.

■ The substring after the dot is treated as a CosNaming NameComponent kind.

■ Both id and kind are concatenated into a full JNDI name.

Normally, in retrieving a CosNaming object, you supply the id and kind as separate

entities. The JServer implementation concatenates both id and kind. Thus, to

retrieve the object, your application refers to the full name with the dot included as

part of the JNDI name, rather than as a separator.

Using JNDI to Access Bound Objects
Clients use the Java Naming and Directory Interface (JNDI) interface to look up

published objects in the JServer namespace. JNDI is an interface supplied by Sun

Microsystems that gives the Java application developer a methodology to access

name and directory services. This section discusses only those parts of the JNDI API

that are needed to look up and activate published objects. To obtain a complete set

Note: You do not specify the session name when no session has

been established for that connection. That is, on the first look up

there is no session active; therefore, :default as a session name

has no meaning. In addition, :default is implied, so you can use

a URL without a session name.
JNDI Connections and Session IIOP Service 4-7

Using JNDI to Access Bound Objects
of documentation for JNDI, see the web site URL

http://java.sun.com/products/jndi/index.html .

As described in "URL Syntax" on page 4-5, the JNDI URL required to access any

bound name in the JServer namespace requires a compound name consisting of the

following two components:

■ Service name—the service name is used by JServer to retrieve a handle to the

correct namespace.

Several namespaces will exist within your network. The service specifies which

namespace to retrieve the JNDI bound object from. Service names can be one of

the following:

■ Session name—the actual JNDI bound name of the object within the designated

namespace. The syntax mimics a UNIX file system syntax. The session name

can be represented by a SessionCtx object.

You can utilize the service and session contexts to perform some advanced

techniques, such as opening different sessions within a database or enabling several

clients to access an object in a single session. These are discussed further in the

Note: It is also possible to access the session namespace without

using JNDI. Instead, you can use CosNaming methods.

Service Name Description

sess_iiop://
 <hostname>:<port>:<SID >

Specifies the host, port, and SID that the
desired namespace is located. Specifying this
service name only without a session name
returns a ServiceCtx object. The session IIOP
service is the main service used by IIOP
applications. It retrieves objects and object
references bound in JNDI namespaces on
different database hosts. See "Session IIOP
Service" on page 4-13 for a full description.

jdbc_access: Specifies that the desired object exists in a
well-known namespace. Used primarily to
retrieve JTA UserTransaction and DataSource
objects from the namespace.

java: Used to specify that the bound name is
actually an EJB environment variable that was
specified within its deployment descriptor.
4-8 CORBA Developer’s Guide and Reference

Using JNDI to Access Bound Objects
"Session IIOP Service" on page 4-13. However, for simple JNDI lookup invocations,

you should use the URL syntax specified in "URL Syntax" on page 4-5.

Importing JNDI Support Classes
When you use JNDI in your client or server object implementations, be sure to

include the following import statements in each source file:

import javax.naming.Context; // the JNDI Context interface
import javax.naming.InitialContext;
import oracle.aurora.jndi.sess_iiop.ServiceCtx; // JNDI property constants
import java.util.Hashtable; // hashtable for the initial context environment

Retrieving the JNDI InitialContext
Context is an interface in the javax.naming package that is used to retrieve the

InitialContext . All Oracle8i EJB and CORBA clients use the InitialContext
for JNDI lookup() . Before you perform a JNDI lookup() , you set the

environment variables, such as authentication information into the Context . You

can use a hash table or a properties list for the environment. Then, this information

is made available to the naming service when the lookup() is performed. The

examples in this guide always use a Java Hashtable , as follows:

Hashtable environment = new Hashtable();

Next, you set up properties in the hash table. You must always set the Context
URL_PKG_PREFIXES property, whether you are on the client or server. The

remaining properties are used for authentication, which primarily are used by

clients or by a server authenticating itself as another user.

■ javax.naming.Context.URL_PKG_PREFIXES

■ javax.naming.Context.SECURITY_PRINCIPAL

■ javax.naming.Context.SECURITY_CREDENTIALS

■ javax.naming.Context.SECURITY_ROLE

■ javax.naming.Context.SECURITY_AUTHENTICATION

■ USE_SERVICE_NAME

URL_PKG_PREFIXES
Context.URL_PKG_PREFIXES holds the name of the environment property for

specifying the list of package prefixes to use when loading in URL context factories.
JNDI Connections and Session IIOP Service 4-9

Using JNDI to Access Bound Objects
The value of the property should be a colon-separated list of package prefixes for

the class name of the factory class that will create a URL context factory.

In the current implementation, you must always supply this property in the Context

environment, and it must be set to the String "oracle.aurora.jndi ".

SECURITY_PRINCIPAL
Context.SECURITY_PRINCIPAL holds the database username.

SECURITY_CREDENTIALS
Context.SECURITY_CREDENTIAL holds the clear-text password. This is the

Oracle database password for the SECURITY_PRINCIPAL (the database user). In all

of the three authentication methods mentioned in SECURITY_AUTHENTICATION

below, the password is encrypted when it is transmitted to the server.

SECURITY_ROLE
Context.SECURITY_ROLE holds the Oracle8i database role with which the user is

connecting. For example, "CLERK" or "MANAGER".

SECURITY_AUTHENTICATION
Context.SECURITY_AUTHENTICATION holds the name of the environment

property that specifies the type of authentication to use. Values for this property

provide for the authentication types supported by Oracle8i. There are four possible

values, which are defined in the ServiceCtx class:

■ ServiceCtx.NON_SSL_LOGIN : The client authenticates itself to the server

with a username and password using the Login protocol over a standard

TCP/IP connection (not a secure socket layer connection). The Login protocol

provides for encryption of the password as it is transmitted from the client to

the server. The server does not authenticate itself to the client. See "Providing

Username and Password for Client-Side Authentication" on page 6-9 for more

information about this protocol.

■ ServiceCtx.SSL_CREDENTIAL : The client authenticates itself to the server

providing a username and password that are encrypted over a secure socket

layer (SSL) connection. The server authenticates itself to the client by providing

credentials.

■ SSL_LOGIN: The client authenticates itself to the server with a username and

password within the Login protocol, over an SSL connection. The server does

not authenticate itself to the client.
4-10 CORBA Developer’s Guide and Reference

Using JNDI to Access Bound Objects
■ SSL_CLIENT_AUTH: Both the client and the server authenticate themselves to

each other by providing certificates to each other over an SSL connection.

USE_SERVICE_NAME
If you are using a service name instead of an SID in the URL, you set this property

to true. Otherwise, the last string in the URL must contain the SID. Given a

Hashtable within the variable, env , the following designates that the service name

is used instead of the SID within the URL:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put("USE_SERVICE_NAME", "true");
Context ic = new InitialContext(env);

The default is false.

The URL given within the lookup should contain a service name, instead of an SID.

The following URL contains the service name, orasun12 :

myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481: orasun12 /test/myHello");

The JNDI InitialContext Methods
InitialContext is a class in the javax.naming package that implements the

Context interface. All naming operations are relative to a context. The initial

context implements the Context interface and provides the starting point for

resolution of names.

Note: To use an SSL connection, you must be able to access a

listener that has an SSL port configured, and the listener must be

able to redirect requests to an SSL-enabled database IIOP port. You

must also include the following JAR files when you compile and

build your application:

■ If your client uses JDK 1.1, import jssl-1_1.jar and
javax-ssl-1_1.jar.

■ If your client uses Java 2, import jssl-1_2.jar and
javax-ssl-1_2.jar .
JNDI Connections and Session IIOP Service 4-11

Using JNDI to Access Bound Objects
Constructor
You construct a new initial context using the constructor:

public InitialContext(Hashtable environment)

It requires a Hashtable for the input parameter that contains the environment

information described in "Retrieving the JNDI InitialContext" above. The following

code fragment sets up an environment for a typical client, and creates a new initial

context:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);

lookup
This is the most common initial context class method that the CORBA or EJB

application developer will use:

public Object lookup(String URL)

You use lookup() to retrieve an object instance or to create a new service context.

■ To retrieve an object instance, specify a URL for the service name and append

the JNDI bound name (the session name). The returned result must be cast to

the expected object type. For example, to retrieve the Hello interface, you would

do the following:

myHello hello =
 (myHello) ic.lookup("sess_iiop://localhost:2481:ORCL/test/myHello");

The service name is "sess_iiop://localhost:2481:ORCL "; the JNDI

bound name for Hello’s home interface is "/test/myHello ".

■ To retrieve a handle to a specific namespace, specify the desired service context.

The return result must be cast to ServiceCtx when a new service context is

being created. For example, if initContext is a JNDI initial context, the

following statement creates a new service context:

ServiceCtx service =
 (ServiceCtx) initContext.lookup("sess_iiop://localhost:2481:ORCL");
4-12 CORBA Developer’s Guide and Reference

Session IIOP Service
See "Session Management Scenarios" on page 4-18 for examples on how to use the

JNDI lookup method within an EJB or CORBA application.

Session IIOP Service
All client/server network communications route requests over an accepted protocol

between both entities. Most network communications to the Oracle8i database

routed over the two-task common (TTC) layer. This is the service that processes

incoming Net8 requests for database SQL services. However, with the addition of

Java into the database, JServer required that clients communicate with the server

over an IIOP transport that recognized database sessions. This is accomplished

through the session IIOP service.

The session IIOP service is used for facilitating requests for IIOP applications,

which includes CORBA and EJB applications. The following sections describe how

to manage your applications within one or more database sessions:

■ Session IIOP Service Overview

■ Session Management

■ Service Context Class

■ Session Context Class

■ Session Management Scenarios

■ Setting Session Timeout

Session IIOP Service Overview
As discussed in the Oracle8i Java Developer’s Guide, since the EJB is loaded into the

database, your client application must start up the EJB within the context of a

database session. Because beans are activated within a session, each client cannot

see bean instances active in another session, unless given a handle to that session.

Also, you can activate objects within the existing session or another session.

The session IIOP service session component tag—TAG_SESSION_IIOP— exists

inside the IIOP profile—SessionIIOP . The value for this Oracle session IIOP

component tag is 0x4f524100 and contains information that uniquely identifies the

session in which the object was activated. The client ORB runtime uses this

information to send requests to objects in a particular session.
JNDI Connections and Session IIOP Service 4-13

Session IIOP Service
Although the Oracle8i session IIOP service provides an enhancement of the

standard IIOP protocol—it includes session ID information—it does not differ from

standard IIOP in its on-the-wire data transfer protocol.

Client Requirements
Clients must have an ORB implementation that supports session IIOP to be able to

access objects in different sessions simultaneously, from within the same program,

and to be able to disconnect from and reconnect to the same session. The version of

the Visigenic ORB that ships with Oracle8i has been extended to support session

IIOP.

Session Routing
When a client makes an IIOP connection to the database, Oracle8i decides if a new

session should be started to handle the request, or if the request should be routed to

an existing session. If the client initializes a new request for a connection (using the

InitialContext .lookup() method) and no session is active for that connection,

a new session is automatically started. If a session has already been activated for the

client, the session identifier is encoded into the object key of the object. This

information enables the session IIOP service to route the request to the correct

session. In addition, you can also use this session identifier to allow a single client to

access multiple sessions. See "Session Management Scenarios" on page 4-18 for

more information.

JServer Tools
When using the Oracle8i JServer tools, especially when developing EJB and CORBA

applications, it is very important to distinguish the two network service protocol

types: TTC and IIOP.
4-14 CORBA Developer’s Guide and Reference

Session IIOP Service
Figure 4–2 TTC and IIOP Services

Figure 4–2 shows which tools and requests use TTC and which use IIOP database

ports. 1521 is the default port number for TTC, and 2481 is the default for IIOP.

■ Tools such as publish , deployejb , and the session shell access IIOP objects,

and so must connect using an IIOP port. In addition, EJB and CORBA clients

must use an IIOP port when sending requests to Oracle.

■ Tools such as loadjava and dropjava connect using a TTC port.

Session Management
In the simple cases, a client (or a server object acting as a client) starts a new server

session implicitly when it performs the lookup for a server object. Oracle8i also

gives you the ability to control session start-up explicitly. Two Oracle-specific

classes are provided that gives you control over the session IIOP service connection

and over the sessions within the database.

■ Service Context Class—Controls the session IIOP service connection to the

database. Given a URL to that database, you can create a service context. Off of

this service context, you can open one or more named sessions within the

database.

Client

SQL*Plus

OCI

dropjava

loadjava

publish

deployejb

session shell

IIOP requests

TTC

IIOP
JNDI Connections and Session IIOP Service 4-15

Session IIOP Service
■ Session Context Class—Controls named database sessions created off of a

service context. Once created, you can activate CORBA or EJB objects within the

session using the named session context object.

Service Context Class
Controls the session IIOP service connection to the database. Given a URL to that

database, you can create a service context. Off of this service context, you can open

one or more named sessions within the database. This Oracle-specific class extends

the JNDI Context class.

Variables
The ServiceCtx class defines a number of final public static variables that you can

use to define environment properties and other variables. Table 4–1 shows these.

Methods
The public methods in this class that CORBA and EJB application developers can

use are as follows:

public Context createSubcontext(String name)

Table 4–1 ServiceCtx Public Variables

String Name Value

NON_SSL_CREDENTIAL "Credential"

NON_SSL_LOGIN "Login"

SSL_CREDENTIAL "SecureCredential"

SSL_LOGIN "SecureLogin"

SSL_CLIENT_AUTH "SslClientAuth"

SSL_30 "30"

SSL_20 "20"

SSL_30_WITH_20_HELLO "30_WITH_20_HELLO"

Integer Name Integer Constructor

SESS_IIOP new Integer(2)

IIOP new Integer(1)
4-16 CORBA Developer’s Guide and Reference

Session IIOP Service
This method takes a Java String as the parameter and returns a JNDI Context
object representing a session in the database. The method creates a new named

session. The parameter is the name of the session to be created, which must start

with a colon (:).

The return result should be cast to a SessionCtx object.

Throws javax.naming.NamingException .

public Context createSubcontext(Name name)

(Each of the methods that takes a String parameter has a corresponding method

that takes a Name parameter. The functionality is the same.)

public static org.omg.CORBA.ORB init(String username,
 String password,
 String role,
 boolean ssl,
 java.util.Properties props)

Gets access to the ORB created when you perform a look up. Set the ssl parameter

to true for SSL authentication. Clients that do not use JNDI to access server objects

should use this method.

See "sharedsession" in the demos installed in the demo/examples/corba/basic
directory.

public Object lookup(String string)

lookup() looks up a published object in the database instance associated with the

service context, and either returns an activated instance of the object, or throws

javax.naming.NamingException.

Session Context Class
Controls named database sessions created off of a service context. Once created, you

can activate CORBA or EJB objects within the session using the named session

context object. Session contexts represent sessions and contain methods that enable

you to perform session operations such as authenticating the client to the session or

activating objects. This class extends the JNDI Context class.
JNDI Connections and Session IIOP Service 4-17

Session IIOP Service
Methods
The session context methods that a client uses are the following:

public synchronized boolean login()

login() authenticates the client using the initial context environment properties

passed in the InitialContext constructor: username, password, and role.

public synchronized boolean login(String username,
 String password,
 String role)

login() authenticates the client using the username, password, and optional

database role supplied as parameters.

public Object activate(String name)

Looks up and activates a published object having the name.

Session Management Scenarios
The following sections describe the different scenarios for managing database

sessions:

■ Client Accessing a Single Session—client activates and accesses an object in the

:default session.

■ Ending a Session—discusses methods that explicitly terminate a session.

■ Client Starting a Named Session—client activates and accesses one or more

objects in a session other than the :default session. This session is identified by a

name within a SessionCtx .

■ Two Clients Accessing the Same Session—two or more clients can access an

activated object within a session by providing x and y to both clients.

■ In-Session Activation—a server object, acting as a client, activates another object

within the same session.

Note: Creating a subcontext within the session context affects the

object type returned on the final JNDI lookup. See "Lookup of

Objects Off of JNDI Context" on page 4-25 for more information.
4-18 CORBA Developer’s Guide and Reference

Session IIOP Service
■ Lookup of Objects Off of JNDI Context—lookup of a partial JNDI name requires

that you activate the bound object.

Client Accessing a Single Session In general, when you look up a published object

from a client with a URL, hostname, and port, the object is activated in a new

session. For example, a client would perform the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context ic = new InitialContext(env);
SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://localhost:5521:ORCL/test/myObj");

Activating an object in a new session from a server object is identical to starting a

session from an application client. If the lookup method is invoked within the

server object, the second object instance is activated in a separate session from the

originating session.

Ending a Session Normally, a session terminates when the client terminates.

However, if you want to explicitly terminate a session, you can do one of the

following:

Terminate A Session From The Server-Side Using The Endsession Method
The server can control session termination by executing the following method:

oracle.aurora.mts.session.Session.THIS_SESSION().endSession();

Terminate A Session From The Client-side Using The Logout Object
If the client wishes to exit the session, it can execute the logout method of the

LogoutServer object, which is pre-published as "/etc/logout ". Only the

session owner is allowed to logout. Any other owner receives a NO_PERMISSION

exception.

The LogoutServer object is analogous to the LoginServer object, which is

pre-published as "/etc/login ". You can use the LoginServer object to retrieve

the Login object, which is used to authenticate to the server. This is an alternative

method to using the Login object within the JNDI lookup.

The following example shows how a client can authenticate using the

LoginServer object and can exit the session through the LogoutServer object.

import oracle.aurora.AuroraServices.LoginServer;
JNDI Connections and Session IIOP Service 4-19

Session IIOP Service
import oracle.aurora.AuroraServices.LogoutServer;
...
// To log in using the LoginServer object
LoginServer loginServer = (LoginServer)ic.lookup(serviceURL + "/etc/login");
Login login = new Login(loginServer);
System.out.println("Logging in ..");
login.authenticate(user, password, null);
...
//To logout using the LogoutServer
LogoutServer logout = (LogoutServer)ic.lookup(serviceURL + "/etc/logout");
logout.logout();

Client Starting a Named Session You can explicitly create multiple session on the

database instance through the JNDI methods provided in the ServiceCtx and

SessionCtx classes.

The following lookup method contains a URL that defines the IIOP service URL of

"sess_iiop://localhost:5521:ORCL " and a default session context.

SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://localhost:5521:ORCL/test/myHello");

In this simple case, the JNDI initial context lookup method implicitly starts a

session and authenticates the client. This session becomes the default session, which

is identified by the name ":default ". All sessions are named. However, in the

default case, the client does not need to know the name of the session, because all

requests go to this single session. Unless specified, all additional objects activated

will be activated in the default session. Even if you create a new JNDI initial context

and look up the same or a new object, the object is instantiated in the same session

as the first object.

The only way to activate objects within another session is to create a named session.

You can create other sessions in place of or in addition to the default session by

creating session contexts off of the service context. Each session would be a named

session, so that you can activate objects in different sessions within the database.

1. Instantiate a new hashtable for the environment properties to be passed to the

server.

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
4-20 CORBA Developer’s Guide and Reference

Session IIOP Service
2. Create a new JNDI Context.

Context ic = new InitialContext(env);

3. Use the JNDI lookup method on the initial context, passing in the service URL,

to establish a service context. This example uses a service URL with the service

prefix of hostname, listener port, and SID.

ServiceCtx service =
 (ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");

4. Create a session by invoking the createSubcontext method on the service

context object. Provide the name for the session as a parameter to the

createSubcontext method. A new session is created within the database.

SessionCtx session = (SessionCtx) service.createSubcontext(":session1");

5. Authenticate the client program to the database by invoking the login method

on the session context object.

session.login("scott", "tiger", null); // role is null

6. Activate the object, identified by its bound JNDI name, in the named session.

Hello hello = (Hello)session.activate (objectName);

 System.out.println (hello.helloWorld ());

Note: Only the URL_PKG_PREFIXES Context variable is filled

in—the other information will be provided in the

login.authenticate() method parameters.

Note: Provide only the service URL of hostname, listener port,

and database SID. If you provide the JNDI name of the desired

object, a default session will be created for you.

Note: You must name a new session when you create it. The

session name must start with a colon (:), and cannot contain a slash

(/), but is not otherwise restricted.
JNDI Connections and Session IIOP Service 4-21

Session IIOP Service
Example 4–1 Activating Objects in Named Sessions

The following example creates two named sessions of the name :session1 and

:session2 . Each one retrieves the Hello object separately. The client invokes both

Hello objects in each named session.

Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx) ic.lookup ("sess_iiop://localhost:2481:ORCL");

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx) service.createSubcontext (":session1");

// Authenticate
session1.login("scott", "tiger", null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx) service.createSubcontext (":session2");

// Authenticate using a login object (not required, just shown for example).
LoginServer login_server2 = (LoginServer)session2.activate ("/etc/login");
Login login2 = new Login (login_server2);
login2.authenticate ("scott", "tiger", null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

// Verify that the objects are indeed different
System.out.println (hello1.helloWorld ());
System.out.println (hello2.helloWorld ());

Two Clients Accessing the Same Session When the client invokes the JNDI lookup

method, JServer creates a session. If you want a second client to access the

instantiated object in this session, you must do the following:

1. The first client saves both the object instance handle and a Login object

reference.

2. The second client retrieves the handle and Login object reference and uses

them to access the object instance.
4-22 CORBA Developer’s Guide and Reference

Session IIOP Service
Example 4–2 Two Clients Accessing a Single Instance

1. The first client authenticates itself to the database by providing a username and

password through the authenticate method on a Login object.

2. The session is created and the object is instantiated through the lookup method

given the URL.

3. Both the LoginServer object and the server object instance handle are saved

to a file for the second client to retrieve.

// Login to the 8i server
LoginServer lserver = (LoginServer)ic.lookup (serviceURL + "/etc/login");
new Login (lserver).authenticate (username, password, null);

// Activate a Hello in the 8i server
// This creates a first session in the server
Hello hello = (Hello)ic.lookup (serviceURL + objectName);
hello.setMessage ("As created by Client1");
System.out.println ("Client1: " + hello.helloWorld ());

// save Login object into a file, loginFile, for Client2 to read
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
String log = orb.object_to_string (lserver);
OutputStream os = new FileOutputStream (loginFile);
os.write (log.getBytes ());
os.close ();

// save object instance handle into a file, helloFile,
// for Client2 to read
String obj_hndl = orb.object_to_string (hello);
OutputStream os = new FileOutputStream (helloFile);
os.write (obj_hndl.getBytes ());
os.close ();

The second client would access the Hello object instance in the active session by

doing the following:

1. Retrieve the object handle and the Login object. This example uses

implementation-defined methods of readHandle and readLogin to retrieve

these objects from storage.

2. Authenticate to the database session with the same Login object as the first

client through the authenticate method. You can recreate the Login object

from the LoginServer object through the Login constructor.

FileInputStream finstream = new FileInputStream (hellofile);
JNDI Connections and Session IIOP Service 4-23

Session IIOP Service
ObjectInputStream istream = new ObjectInputStream (finstream);
Hello hello = (Hello) orb.string_to_object(istream.readObject());
finstream.close ();

// Authenticate with the login Object
LoginServer lserver = (LoginServer) readLogin(loginFile);

//Set the VisiBroker bind options to specify that the
//login is to not try recursively, which means that if it
//fails on the first try, return with the error immediately.
//See VisiBroker manuals for more information.
lserver._bind_options (new BindOptions (false, false));

Login login = new Login (lserver);
login.authenticate (username, password, null);

In-Session Activation If the server object wants to look up and activate a new

published object in the same session in which it is running, the server object can

execute the following:

Context ic = new InitialContext();
SomeObject myObj = (SomeObject) ic.lookup("/test/Hello");

Notice that there are no environment settings for authentication information in the

environment or a session URL in the lookup. The authentication already succeeded

in order to log into the session. Plus, the object exists on the local machine. So, any

other object activation within the session can proceed without specifying

authentication information or a target sess_iiop URL address.

In-Session Activation in Pre-8.1.7 Releases In releases previous to Release 8.1.7,

in-session activation was performed with the thisServer/:thisSession
notation in place of the hostname:port:SID in the URL. This notation is still

valid, but only for IIOP clients.

For example, to look up and activate an object in the same session, do the following:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext(env);
SomeObject myObj =
 (SomeObject) ic.lookup("sess_iiop://thisServer/:thisSession/test/Hello");

Note: In-session activation as demonstrated in this section is valid

for both IIOP and non-IIOP clients.
4-24 CORBA Developer’s Guide and Reference

Session IIOP Service
In this case, myObj is activated in the same session in which the invoking object is

running. Note that there is no need to supply login authentication information, as

the client (a server object in this case) is already authenticated to Oracle8i.

Realize that objects are not authenticated, instead, clients must be authenticated to a

session. However, when a separate session is to be started, then some form of

authentication must be done—either login or SSL credential authentication.

Lookup of Objects Off of JNDI Context In the Sun Microsystems JNDI, if you bind a

name of "/test/myObject ", you can retrieve an object from a Context when

executing the following:

Context ctx = ic.lookup("/test");
MyObject myobj = ctx.lookup("myObject");

The returned object is activated and ready for you to perform method invocations

off of it.

In Oracle8i, trying to retrieve an object from a Context results in an inactive object

being returned. Instead, you must do the following:

1. Retrieve a SessionCtx , instead of a Context . You can retrieve the

SessionCtx from a ServiceCtx , in one of the two following ways:

■ Retrieve the ServiceCtx first and the SessionCtx from the

ServiceCtx , as follows:

ServiceCtx service =
 (ServiceCtx) ic.lookup("sess_iiop://localhost:2481:ORCL");
//Retrieve the ServiceCtx subcontext
SessionCtx sess = (SessionCtx) service.lookup("/test");

■ Retrieve the ServiceCtx and SessionCtx in the same lookup, as

follows:

SessionCtx sess =
 (SessionCtx) ic.lookup("sess_iiop://localhost:2481:ORCL/test");

Note: You can only use the thisServer notation on the server

side, that is, from server objects. You cannot use it in a client

program.
JNDI Connections and Session IIOP Service 4-25

Session IIOP Service
2. Execute the Oracle-specific SessionCtx.activate method for each object in

the session that you want to retrieve. This method activates the object in the

session and returns the object reference. You cannot just perform a lookup of

the object, as it will return an inactive object. Instead, execute the activate
method, as follows:

MyObject myObj = (MyObject) sessCtx.activate("myObject");
// Verify that the objects are indeed different
System.out.println (myObj.printMe ());

The JServer JNDI implementation provides two implementations of the Context
object:

■ ServiceCtx —identifies the database instance through a sess_iiop URL

■ SessionCtx —represents database session within the database

In performing a lookup, you must lookup both the ServiceCtx for identifying the

database and the SessionCtx for retrieving the actual JNDI bound object.

Normally, you supply the URLs for both objects within the JNDI URL given to the

lookup method. However, you can also retrieve each individually as demonstrated

above.

Setting Session Timeout
A session—with its state—normally exits when the last connection terminates.

However, there are situations where you may want a session and its state to idle for

a specified amount of time after the last connection terminates, such as the

following:

■ A middle-tier layer does not want to keep connections open to the session

because connections are expensive; but, the middle-tier may want to keep the

session open in case of another incoming client request.

■ If you experience a network problem that abnormally terminates the

connection, the session will stay around for the specified amount of time to

allow the connection to be re-established.

■ If your application passes a handle to an existing object within the session to

another client before its connection terminates, the second client has time to

access the session.

The timeout clock starts when the last connection to the session terminates. If

another connection to the session starts within the timed window, the timeout clock

is reset. If not, the session exits.
4-26 CORBA Developer’s Guide and Reference

Session IIOP Service
You can set the session idle timeout either from the client or from within a server

object:

■ Set the Session Timeout from the Client

■ Set the Session Timeout from a Server Object

Set the Session Timeout from the Client
You can set the idle timeout on the client through the pre-published utility

object—oracle.aurora.AuroraServices.Timeout . This object is

pre-published under "/etc/timeout ". Use the setTimeout method from this

object.

1. Retrieve the Timeout object through a JNDI lookup of "/etc/timeout "

2. Set the timeout with the setTimeout method giving the number of seconds

for session idle.

Timeout timeout = (Timeout)ic.lookup(serviceURL + "/etc/timeout");
System.out.println("Setting a timeout of 20 seconds ");
timeout.setTimeout(20);

Set the Session Timeout from a Server Object
A server object can control the session timeout by using the

oracle.aurora.net.Presentation object, which contains the

sessionTimeout() method. This method takes one parameter; the session

timeout value in seconds. For example:

int timeoutValue = 30;
...
// set the timeout to 30 seconds
oracle.aurora.net.Presentation.sessionTimeout(timeoutValue);
...
// set the timeout to a very long time
oracle.aurora.net.Presentation.sessionTimout(Integer.MAX_INT);
JNDI Connections and Session IIOP Service 4-27

Retrieving JServer Version Number
Retrieving JServer Version Number
You can retrieve the version of JServer that is installed in the database through the

pre-published oracle.aurora.AuroraServices.Version object, which is

published as "/etc/version " in the JNDI namespace. The Version object

contains the getVersion method, which returns a string that contains the version,

such as "8.1.7". You can retrieve the Version object by providing "/etc/version "

within the JNDI lookup. The following example retrieves the version number:

Version version = (Version)ic.lookup(serviceURL + "/etc/version");
System.out.println("The server version is : " + version.getVersion());

Activating In-Session CORBA Objects From Non-IIOP Presentations
Non-IIOP server requests, such as HTTP or DCOM, can activate a CORBA object

within the same session.

If the non-IIOP server object wants to look up and activate a new published object

in the same session in which it is running, the server object can execute the following:

Context ic = new InitialContext();
SomeObject myObj = (SomeObject) ic.lookup("/test/Hello");

Notice that there are no environment settings for authentication information in the

environment or a URL specified in the lookup. The authentication already

succeeded in order to log into the session. Plus, the object exists on the local

Note: When you use the sessionTimeout() method, you must

add $(ORACLE_HOME)/javavm/lib/aurora.zip to your

CLASSPATH.

■ HTTP An HTTP client interacts with the JServer webserver and executes a

JSP or servlet, which can activate the CORBA object within the same

session that it is running in.

■ DCOM A DCOM client uses a DCOM bridge to access JServer. While within

the JServer session, the DCOM bridge session can activate the CORBA

object within the same session that it is running in.

Note: Once you retrieve the IIOP object reference through this

method, you cannot pass this object to a remote client or server.
4-28 CORBA Developer’s Guide and Reference

Accessing CORBA Objects Without JNDI
machine. So, any other object activation within the session can proceed without

specifying authentication information or a target URL address.

Accessing CORBA Objects Without JNDI
It is possible for clients to access server objects without using the JNDI classes

shown in the other sections of this chapter. These clients can connect to an Oracle

server by using CosNaming methods.

Retrieving the NameService Initial Reference
In order to use the CORBA ORB methods, you must first retrieve the naming

service object. Oracle8i prepublishes a NameService object that you can retrieve

through the ORB resolve_initial_references method.

In CORBA, there are two methods to retrieve the NameService initial reference:

using ORBInitRef or ORBDefaultInitRef . At this time, we have provided only

the ORBDefaultInitRef methodology.

You must provide a service URL to the ORBDefaultInitRef of the form of host,

port, and SID. Or you can provide the service URL with host, port, service name. In

addition, you can specify some optional properties, such as:

■ The connection should use SSL, set the ORBUseSSL property to true:

System.setProperty("ORBUseSSL", "true");

■ The transport type, which can be sess_iiop or iiop . Set the

TRANSPORT_TYPE property, as follows:

System.setProperty("TRANSPORT_TYPE", "sess_iiop");

■ If retrieving the NameService without first accessing the BootService , set

the backward compatible property (ORBNameServiceBackCompat) to false,

as follows:

System.setProperty("ORBNameServiceBackCompat", "false");

■ Use the service name instead of the SID in the service URL. Set the

USE_SERVICE_NAME property to true, as follows:

System.setProperty("USE_SERVICE_NAME", "true");
JNDI Connections and Session IIOP Service 4-29

Accessing CORBA Objects Without JNDI
Example 4–3 Retrieving a Server Object Using CosNaming

The following example demonstrates how to retrieve the NameService object.

From this object, the login is executed and the server object is retrieved.

import java.lang.Exception;

import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import org.omg.CosNaming.NameComponent;

import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.PublishingContext;
import oracle.aurora.AuroraServices.PublishedObjectHelper;
import oracle.aurora.AuroraServices.PublishingContextHelper;

import Bank.Account;
import Bank.AccountManager;
import Bank.AccountManagerHelper;

public class Client {
 public static void main(String args[]) throws Exception {
 // Parse the args
 if (args.length < 4 || args.length > 5) {
 System.out.println ("usage: Client host port username password <sid>");
 System.exit(1);
 }
 String host = args[0];
 String port = args[1];
 String username = args[2];
 String password = args[3];
 String sid = null;
 if(args.length == 5)
 sid = args[4];

 // Declarations for an account and manager
 Account account = null;

Note: You initialize the server URL either through the

ORBDefaultInitRef or through the individual properties:

ORBBootHost , ORBBootPort , and ORACLE_SID.
4-30 CORBA Developer’s Guide and Reference

Accessing CORBA Objects Without JNDI
 AccountManager manager = null;
 PublishingContext rootCtx = null;

 // access the Aurora Names Service
 try {
 // Initialize the ORB
 // The service URL for the server is provided in a string
 // that is prefixed with ’iioploc://’ and includes either
 // host, port, sid or, if the USE_SERVICE_NAME is set to true,
 // host, port, service_name. This example uses host, port, sid
 // and sets it in the ORBDefaultInitRef.
 String initref;
 initref = (sid == null) ? "iioploc://" + host + ":" + port :

"iioploc://" + host + ":" + port + ":" + sid;
 System.setProperty("ORBDefaultInitRef", initref);

 /*
 * Alternatively, you can set the host, port, sid or service in the
 * following individual properties. If set, these properties
 * take precedence over the URL set within the ORBDefaultInitRef property
 System.setProperty("ORBBootHost", host);
 System.setProperty("ORBBootPort", port);
 if (sid != null)
 //set the SID. alternatively, if the USE_SERVICE_NAME property is
 //true, this should contain the service name instead of the sid.

System.setProperty("ORACLE_SID", sid);
 */

 /*
 * Some of the other properties that you can set
 * include the backwards compatibility flag, the service name
 * indicator, the SSL protocol definition, and the transport type.
 System.setProperty("ORBNameServiceBackCompat", "false");
 System.setProperty("USE_SERVICE_NAME", "true");
 System.setProperty("ORBUseSSL", "true");
 //transport type can be either sess_iiop or iiop
 System.setProperty("TRANSPORT_TYPE", "sess_iiop");
 */

 //initialize the ORB
 com.visigenic.vbroker.orb.ORB orb =

oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the Name service Object reference with the
 // resolve_initial_references method
JNDI Connections and Session IIOP Service 4-31

Accessing CORBA Objects Without JNDI
 rootCtx = PublishingContextHelper.narrow(orb.resolve_initial_references(
 "NameService"));

 //After retrieving the NameService initial reference, you must perform
 // the login, as follows:
 // Get the pre-published login object reference
 PublishedObject loginPubObj = null;
 LoginServer serv = null;
 NameComponent[] nameComponent = new NameComponent[2];
 nameComponent[0] = new NameComponent ("etc", "");
 nameComponent[1] = new NameComponent ("login", "");

 // Lookup this object in the Name service
 Object loginCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 loginPubObj = PublishedObjectHelper.narrow (loginCorbaObj);

 // create and activate this object (non-standard call)
 loginCorbaObj = loginPubObj.activate_no_helper ();
 serv = LoginServerHelper.narrow (loginCorbaObj);

 // Create a client login proxy object and authenticate to the DB
 Login login = new Login (serv);
 login.authenticate (username, password, null);

 // Now create and get the bank object reference
 PublishedObject bankPubObj = null;
 nameComponent[0] = new NameComponent ("test", "");
 nameComponent[1] = new NameComponent ("bank", "");

 // Lookup this object in the name service
 Object bankCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 bankPubObj = PublishedObjectHelper.narrow (bankCorbaObj);

 // create and activate this object (non-standard call)
 bankCorbaObj = bankPubObj.activate_no_helper ();
 manager = AccountManagerHelper.narrow (bankCorbaObj);

 account = manager.open ("Jack.B.Quick");

 float balance = account.balance ();
 System.out.println ("The balance in Jack.B.Quick's account is $"
4-32 CORBA Developer’s Guide and Reference

Accessing CORBA Objects Without JNDI
 + balance);
 } catch (SystemException e) {
 System.out.println ("Caught System Exception: " + e);
 e.printStackTrace ();
 } catch (Exception e) {
 System.out.println ("Caught Unknown Exception: " + e);
 e.printStackTrace ();
 }
 }
}
See "Ending a Session" on page 4-19 for more information on the LoginServer ,

Login , and LogoutServer objects.

Retrieving Initial References from ORBDefaultInitRef
CORBA 2.3 Interoperable Name Service supports both the ORBInitRef and

ORBDefaultInitRef methodologies for creating and retrieving initial references.

At this time, Oracle8i only supports an IIOP URL scheme within the

ORBDefaultInitRef , as shown in "Retrieving the NameService Initial Reference"

on page 4-29. You can only provide either a host, port, SID or host, port, service

name combination—prefixed by "iioploc:// "—to the ORBDefaultInitRef for

locating the initial reference. Within this location, the service must have been

activated. Any service activated within the specified location can be retrieved using

the resolve_initial_references method with its object key, which is defined

at the time of activation.

For example, if you set the ORBDefaultInitRef to the following server URL:

System.setProperty("ORBDefaultInitRef","iioploc://myHost:myPort:mySID);

Then, initialize the ORB and retrieve your service, as follows:

//initialize the ORB
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

// Get the myService service Object reference with resolve_initial_references
rootCtx = PublishingContextHelper.narrow(orb.resolve_initial_references(

 "myService"));

The object key that is used to retrieve the service is "myService ". The object with

this key is returned with the resolve_initial_references method.

The following are the Oracle8i services that are activated during startup:

NameService , BootService , AuroraSSLCurrent , and

AuroraSSLCertificateManager .
JNDI Connections and Session IIOP Service 4-33

Accessing CORBA Objects Without JNDI
If you want Oracle8i to initiate any services for you during startup, supply a string

with a comma-separated list of services to be installed when the ORB is initialized

in the UserORBServices property. Each service must be a fully-qualified package

name and name of the class that extends the ORBServiceInit class. You must

extend this class in order for your service to be installed by Oracle8i.
4-34 CORBA Developer’s Guide and Reference

Advanced CORBA Program
5

Advanced CORBA Programming

This chapter discusses advanced CORBA programming techniques, such as calling

back to the client from the server. Advanced programming for security and

transactions are covered in their own chapters. This chapter covers the following

topics:

■ Using SQLJ

■ Implementing CORBA Callbacks

■ Retrieving Interfaces With The IFR

■ Using the CORBA Tie Mechanism

■ Migrating from JDK 1.1 to Java 2

■ Invoking CORBA Objects From Applets

■ Interoperability with non-Oracle ORBs
ming 5-1

Using SQLJ
Using SQLJ
You can often simplify the implementation of a CORBA server object by using

Oracle8i SQLJ to perform static SQL operations. Using SQLJ statements results in

less code than the equivalent JDBC calls and makes the implementation easier to

understand and debug. This section describes a version of the example first shown

in "A First CORBA Application" on page 2-2, but uses SQLJ rather than JDBC for

the database access. Refer to the Oracle8i SQLJ Developer’s Guide and Reference for

complete information about SQLJ.

The only code that changes for this SQLJ implementation is in the

EmployeeImpl.java file, which implements the Employee object. The SQLJ

implementation, which can be called EmployeeImpl.sqlj , is listed below. You

can contrast that with the JDBC implementation of the same object in "Write the

Server Object Implementation" on page 2-6.

package employeeServer;

import employee.*;
import java.sql.*;

public class EmployeeImpl extends _EmployeeImplBase {
 public EmployeeInfo getEmployee (int ID) throws SQLError {
 try {
 String name = null;
 double salary = 0.0;
 #sql { select ename, sal into :name, :salary from emp
 where empno = :ID };
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

The SQLJ version of this implementation is considerably shorter than the JDBC

version. In general, Oracle recommends that you use SQLJ where you have static

SQL commands to process, and use JDBC, or a combination of JDBC and SQLJ, in

applications where dynamic SQL statements are required.

Running the SQLJ Translator
To compile the EmployeeImpl.sqlj file, you issue the following SQLJ command:

% sqlj -J-classpath
5-2 CORBA Developer’s Guide and Reference

Implementing CORBA Callbacks
.:$(ORACLE_HOME)/lib/aurora_client.jar:$(ORACLE_HOME)/jdbc/lib/classes111.zip:
$(ORACLE_HOME)/sqlj/lib/translator.zip:$(ORACLE_HOME)/lib/vbjorb.jar:
$(ORACLE_HOME)/lib/vbjapp.jar:$(JDK_HOME)/lib/classes.zip -ser2class
 employeeServer/EmployeeImpl.sqlj

This command does the following:

■ translates the SQLJ code into a pure Java file

■ compiles the resulting .java source to get a .class file

■ the -ser2class option translates SER files to .class files

The SQLJ translation generates two additional class files:

employeeServer/EmployeeImpl_SJProfile0
employeeServer/EmployeeImpl_SJProfileKeys

which you must also load into the database when you execute the

loadjava command.

A Complete SQLJ Example
This example is available in complete form in the examples/corba/basic
example directory, complete with a Makefile or Windows NT batch file so you can

see how the example is compiled and loaded.

Implementing CORBA Callbacks
This section describes how a CORBA server object can call back to a client. The

basic technique that is shown in this example is the following:

■ Write a client object that runs on the client side and contains the methods the

called-back-to object performs.

■ Implement a server object that has a method that takes a reference to the client

callback object as a parameter.

■ In the client code:

■ Instantiate the client callback object.

■ Register it with the BOA.

■ Pass its reference to the server object that calls it.

■ In the server object implementation, perform the callback to the client.
Advanced CORBA Programming 5-3

Implementing CORBA Callbacks
IDL
The IDL for this example is shown below. There are two separate IDL files:

client.idl and server.idl :

/* client.idl */
module client {
 interface Client {
 wstring helloBack ();
 };
};

/* server.idl */
#include <client.idl>

module server {
 interface Server {
 wstring hello (in client::Client object);
 };
};

Note that the server interface includes the interface defined in client.idl .

Client Code
The client code for this example must instantiate the client-side callback object and

register it with the BOA so that it can be accessed by the server. The code performs

the following steps to do this:

■ Invokes the init() method, with no parameters, on the ORB pseudo-object.

This returns a reference to the existing client-side ORB.

■ Uses the ORB reference to initialize the BOA.

■ Instantiates a new client object.

■ Registers the client object with the client-side BOA.

The code to perform these steps is as follows:

com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
org.omg.CORBA.BOA boa = orb.BOA_init ();

Note: See "Callbacks using Security" on page 6-21 for examples of

using callbacks within an SSL environment.
5-4 CORBA Developer’s Guide and Reference

Implementing CORBA Callbacks
ClientImpl client = new ClientImpl ();
boa.obj_is_ready (client);

Finally, the client code calls the server object, passes it a reference to the registered

client-side callback object, and prints its return value, as follows:

System.out.println (server.hello (client));

Callback Server Implementation
The implementation of the server-side object is very simple. It receives the

client-side callback object and invokes a method from this object. In this example,

the server invokes the client-side helloBack method.

package serverServer;

import server.*;
import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ServerImpl extends _ServerImplBase implements ActivatableObject
{
 public String hello (Client client) {
 return "I Called back and got: " + client.helloBack ();
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

The server simply returns a string that includes the string return value from

the callback.

Callback Client-Server Implementation
The client-side callback server implements the desired callback method. The

following example implements the helloBack method:

package clientServer;

import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends _ClientImplBase implements ActivatableObject
Advanced CORBA Programming 5-5

Retrieving Interfaces With The IFR
{
 public String helloBack () {
 return "Hello Client World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

The client-side object is just like any other server object. But in this callback example

it is running in the client ORB, which can be running on a client system, not

necessarily running inside an Oracle8i database server.

Retrieving Interfaces With The IFR
The Interface Repository (IFR) specified by OMG defines how to store and retrieve

interface definitions. The information contained within the interface can be used

internally by the ORB to retrieve information about an object reference, for

type-checking the request signatures, or used externally by DII/DSI applications for

instantiating objects dynamically through DII/DSI.

You store the IDL interface definition within the IFR through the Oracle8i JServer

publish command. The publish command stores the interface within a flat file,

AuroraIFR.idl .

Once stored, you can retrieve the interface definition either implicitly through the

_get_interface_def method or explicitly looking up the IFR Repository
object and invoking the standard methods to traverse through the repository.

The following sections detail how to publish and retrieve IDL interface information:

■ Publishing the IDL Interface

Note: Normally, this file is automatically written to

$ORACLE_HOME/javavm/admin . However, if this directory is not

write-enabled, you can specify another fully-qualified filename

within the "aurora.ifr.file " system property through the

modifyprops tool, as follows:

modifyprops -user scott/tiger@dbhost:5521:orcl
 "aurora.ifr.file" "/private/ifr/myIFRfile"
5-6 CORBA Developer’s Guide and Reference

Retrieving Interfaces With The IFR
■ Retrieving Interfaces Implicitly

■ Retrieving Interfaces Explicitly

Publishing the IDL Interface
You store the IDL interface definition within the IFR through the Oracle8i JServer

publish command. This command contains the following two options for storing

the IDL interface definition within the IFR:

The following publish command loads the Bank.idl interfaces into the IFR. This is

executed under the SCOTT schema security permissions. If it already exists, the

-replaceIDL option specifies that the interfaces should be replaced with this

version of Bank.idl .

publish -republish -user SCOTT -password TIGER -schema SCOTT \
-service sess_iiop://dlsun164:2481:orcl \

 /test/myBank bankServer.AccountManagerImpl \
 Bank.AccountManagerHelper -idl Bank.idl -replaceIDL

To remove the IDL interface from the IFR, use the -idl option for the sess_sh

remove command.

Retrieving Interfaces Implicitly
You can retrieve the interface definition implicitly through the

org.omg.CORBA.Object._get_interface_def method. The object returned

should be cast to InterfaceDef . The following code retrieves the InterfaceDef
object for the Bank.Account :

-idl Load the IDL interface definition into the IFR. You can only

load IDL interface definitions when using a "sess_iiop" URL.

-replaceIDL If an IDL interface definition currently exists within the IFR,

replace it with this version. If not specified, the publish
command will not replace the existing interface within the

IFR.

Note: The -replaceIDL flag will replace any interface with the

same name in the IFR, even if it was originally stored by another

user. Thus, different users can overwrite another user’s interface

unknowingly.
Advanced CORBA Programming 5-7

Retrieving Interfaces With The IFR
AccountManager manager =
 (AccountManager)ic.lookup (serviceURL + objectName);

Bank.Account account = manager.open(name);

org.omg.CORBA.InterfaceDef intf = (org.omg.CORBA.InterfaceDef)
 account._get_interface_def();

Once retrieved, you can execute any of the InterfaceDef methods for retrieving

information about the interface.

Retrieving Interfaces Explicitly
All defined interfaces stored in the IFR are stored in a hierarchy. The top level of the

hierarchy is a Repository object, which is also a Container object. All objects

under the Repository object are Contained objects. You can parse down through

the Container objects, reviewing the Contained objects, until you find the

particular interface definition you want.

The Repository object is pre-published under the name "/etc/ifr ". You can

retrieve the Repository object by executing the following:

You retrieve a prepublished IFR Repository object by looking up the "/etc/ifr "

object as shown below:

Repository rep = (Repository)ic.lookup(serviceURL + "/etc/ifr");

Once the Repository object is retrieved, you can traverse through the hierarchy

until you reach the object you are interested in. The methods for each object type,

InterfaceDef and others, are documented fully in the OMG CORBA

specification.

As shown in Figure 5–1, the Account interface is contained within

AccountManager , which is container within the Repository object.

Note: The user can only see the objects to which the user has read

privileges.
5-8 CORBA Developer’s Guide and Reference

Retrieving Interfaces With The IFR
Figure 5–1 IFR Hierarchy for Account Interface

Example 5–1 Traversing IFR Repository Within the print Method

Once you retrieve the IFR object, you can traverse through all stored definitions

within the IFR. The print method in Example 5–1 prints out all stored definitions

located within the IFR.

public void print() throws org.omg.CORBA.UserException {

 //retrieve the repository as a container... as the top level container
 org.omg.CORBA.Container container =

(Container)ic.lookup(serviceURL + "/etc/ifr");

 //All objects in the IFR are Contained, except for the Repository.
 //Retrieve the contents of the Repository, which would be all objects that
 //it contains.
 org.omg.CORBA.Contained[] contained =
 container.contents(org.omg.CORBA.DefinitionKind.dk_all, true);

 //The length is equal to the number of objects contained within the IFR
 for(int i = 0; i < contained.length; i++) {
 {
 //Each Contained object has a description.

 org.omg.CORBA.ContainedPackage.Description description =
contained[i].describe();

 //Each object is of a certain type, which is retrieved by the value method.
 switch(contained[i].def_kind().value()) {
 case org.omg.CORBA.DefinitionKind._dk_Attribute:

 printAttribute(org.omg.CORBA.AttributeDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Constant:
 printConstant(org.omg.CORBA.ConstantDefHelper.narrow(contained[i]));

Repository "/etc/ifr"
Container for "AccountManager"

 "AccountManager"
Contained by Repository
Container of "Account"

 "Account"
Contained by "AccountManager"
Advanced CORBA Programming 5-9

Using the CORBA Tie Mechanism
break;
 case org.omg.CORBA.DefinitionKind._dk_Exception:

 printException(org.omg.CORBA.ExceptionDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Interface:
 printInterface(org.omg.CORBA.InterfaceDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Module:
 printModule(org.omg.CORBA.ModuleDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Operation:
 printOperation(org.omg.CORBA.OperationDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Alias:
 printAlias(org.omg.CORBA.AliasDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Struct:
 printStruct(org.omg.CORBA.StructDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Union:
 printUnion(org.omg.CORBA.UnionDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Enum:
 printEnum(org.omg.CORBA.EnumDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_none:
 case org.omg.CORBA.DefinitionKind._dk_all:
 case org.omg.CORBA.DefinitionKind._dk_Typedef:
 case org.omg.CORBA.DefinitionKind._dk_Primitive:
 case org.omg.CORBA.DefinitionKind._dk_String:
 case org.omg.CORBA.DefinitionKind._dk_Sequence:
 case org.omg.CORBA.DefinitionKind._dk_Array:
 default:

break;
 }
 }
 }

Using the CORBA Tie Mechanism
There is only one special consideration when you use the CORBA Tie, or delegation,

mechanism rather than the inheritance mechanism for server object

implementations. In the Tie case, you must implement the
5-10 CORBA Developer’s Guide and Reference

Migrating from JDK 1.1 to Java 2
oracle.aurora.AuroraServices.ActivatableObject interface. This

interface has a single method: _initializeAuroraObject().

(Note that earlier releases of the Oracle8i ORB required you to implement this

method for all server objects. For this release, its implementation is required only

for Tie objects.)

The implementation of _initializeAuroraObject() for a tie class is typically:

import oracle.aurora.AuroraServices.ActivatableObject;
...
public org.omg.CORBA.Object _initializeAuroraObject () {
 return new _tie_Hello (this);
...

where _tie_<interface_name> is the tie class generated by the IDL compiler.

You must also always include a public, parameterless constructor for the

implementation object.

See the tieimpl example in the CORBA examples set for a complete example that

shows how to use the Tie mechanism. See also "TIE Example" on page A-22 for the

code.

Migrating from JDK 1.1 to Java 2
Oracle8i JServer updated its ORB implementation to Visibroker 3.4, which is

compatible with both JDK 1.1 and Java 2.

Sun Microsystems’s Java 2 contains an OMG CORBA implementation; JDK 1.1 did

not contain an OMG CORBA implementation. Thus, when you imported the Inprise

libraries and invoked the CORBA methods, it always invoked the Visibroker

implementation. With the implementation being contained in Java 2, if you invoke

the CORBA methods without any modifications—as discussed below—you will

invoke the Sun Microsystems CORBA implementation, which can cause unexpected

results.

Note: All existing CORBA applications must regenerate their

stubs and skeletons to work with 8.1.6. You must use the 8.1.6 tools

when regenerating code from an IDL file.
Advanced CORBA Programming 5-11

Migrating from JDK 1.1 to Java 2
The following lists the three methods for initializing the ORB on the client-side and

recommendations for bypassing the Sun Microsystems CORBA implementation:

■ JNDI Lookup—The setup for the lookup method is the same for both JDK 1.1

and Java 2. However, you must regenerate the stubs and skeletons.

■ Aurora ORB Interface—The Aurora ORB provides an interface for initializing

the ORB. If you do not use JNDI, your client initializes an ORB on its node to

communicate with the ORB in the database. You can use an Aurora ORB on

your client through this class.

■ CORBA ORB Interface—If you want to use OMG’s CORBA ORB interface, you

must set a few properties to ensure you are accessing the correct

implementation. If you do not wish to use the Aurora ORB on your client, you

can use the pure CORBA interfaces. However, you must set up your

environment to direct your calls to the correct implementation.

JNDI Lookup
If you are using JNDI on the client to access CORBA objects that reside in the server,

no code changes are necessary. However, you must regenerate your CORBA stubs

and skeletons.

Aurora ORB Interface
If your client environment uses JDK 1.1, you do not need to change your existing

code. However, you must regenerate your stubs and skeletons.

If your client environment has been upgraded to Java 2, you can initialize the ORB

through the oracle.aurora.jndi.orb_dep.Orb.init method. This method

guarantees that when you initialize the ORB, it will initialize only a single ORB

instance. That is, if you use the Java 2 ORB interface, it returns a new ORB instance

each time you invoke the init method. Aurora’s init method initializes a

singleton ORB instance. Each successive call to init returns an object reference to

the existing ORB instance.

In addition, the Aurora ORB interface manages the session-based IIOP connection.

oracle.aurora.jndi.orb_dep.Orb Class There are several init methods, each with a

different parameter list. The following describes the syntax and parameters for each

init method.
5-12 CORBA Developer’s Guide and Reference

Migrating from JDK 1.1 to Java 2
No Parameters
If you execute the ORB.init method that takes no parameters, it does the

following:

■ If no ORB instance exists, it creates an ORB instance and returns its reference to

you.

■ If an ORB instance exists, it returns the ORB reference to you.

Syntax
public com.visigenic.vbroker.orb.ORB init();

Providing ORB Properties
If you execute the ORB.init method that takes the ORB properties as the only

parameter, it does the following:

■ If no ORB instance exists, it creates an ORB instance, taking into account the

properties argument, and returns its reference to you.

■ If an ORB instance exists, it returns the ORB reference to you.

Syntax
public org.omg.CORBA.ORB init(Properties props);

Providing Input Arguments and ORB Properties
If you execute the ORB.init method that takes the ORB properties and ORB

command-line arguments, it always creates an ORB instance and returns the

reference to you.

Syntax
public org.omg.CORBA.ORB init(String[] args, Properties props);

Note: The returned class for each init method is different. You

can safely cast the org.omg.CORBA.ORB class to

com.visigenic.vbroker.orb.ORB .
Advanced CORBA Programming 5-13

Migrating from JDK 1.1 to Java 2
Example 5–2 Using Aurora ORB init method

The following example shows a client instantiating an ORB using the Aurora Orb

class.

// Create the client object and publish it to the orb in the client
// Substitute Aurora’s Orb.init for OMG ORB.init call
// old way: org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

Providing ORB Properties with Username, Password, and Role
If you execute the ORB.init method that provides the ORB properties, username,

password, and role as parameters, it does the following:

■ If no ORB instance exists, it creates an ORB instance and returns its reference to

you.

■ If an ORB instance exists, it returns the ORB reference to you.

You would use this method when your client chooses to not use JNDI for ORB

initialization and it receives a reference to an existing object from another client. To

access an active object within a session, the new client must authenticate itself to the

database in one of two ways:

■ If SSL_CREDENTIALS is requested, provide the username, password, and role

in the init method parameters. Then, when you invoke a method on the

supplied object reference, the username, password, and role are passed

implicitly on the first message to authenticate the client to the database.

■ If the login protocol is requested, through either SSL_LOGIN or

NON_SSL_LOGIN, the first client must pass object references to both the login

object and the destination object. The second client authenticates itself by

providing the username, password, and role on the authenticate method of

the login object. Then, it executes any method on the object.

This method is how a second client invokes an active object in an established

session.

Parameter Description

Properties props ORB system properties.

String[] args Arguments that are passed to the ORB instance.
5-14 CORBA Developer’s Guide and Reference

Migrating from JDK 1.1 to Java 2
Syntax
public org.omg.CORBA.ORB init(String un, String pw, String role,

boolean ssl, java.util.Properties props);

CORBA ORB Interface
If you have implemented a pure CORBA client—that is, you do not use JNDI—you

must set the following properties before the ORB initialization call. These properties

direct the call to the Aurora implementation, rather than the Java 2 implementation.

This ensures the behavior that you expect. The behavior expected from Visibroker is

as follows:

■ Even if you invoke ORB.init more than once, JServer creates only a single

ORB instance. If you do not set these properties, be aware that each invocation

of ORB.init will create a new ORB instance.

■ The session IIOP connection is managed correctly.

■ Callbacks from the server are managed correctly.

Example 5–3 Assigning Visibroker values to OMG properties

The following example shows how to set up the OMG properties for directing the

OMG CORBA init method to the Visibroker implementation.

System.getProperties().put("org.omg.CORBA.ORBClass",
"com.visigenic.vbroker.orb.ORB");

Parameter Description

String un The username for client-side authentication.

String pw The password for client-side authentication.

String role The role to use after logging on.

Boolean ssl If true, SSL is enabled for the connection. If false, a NON-SSL
connection is used.

Properties props Properties that are used by the ORB.

Property Assign Value

org.omg.corba.ORBClass com.visigenic.vbroker.orb

org.omg.corba.ORBSingletonClass com.visigenic.vbroker.orb
Advanced CORBA Programming 5-15

Invoking CORBA Objects From Applets
System.getProperties().put("org.omg.CORBA.ORBSingletonClass",
"com.visigenic.vbroker.orb.ORB");

Or you can set the properties on the command line, as follows:

java -Dorg.omg.CORBA.ORBClass=com.visigenic.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.visigenic.vbroker.orb.ORB

Backwards Compatibility with 8.1.5
The tools provided with Oracle8i, such as publish , have been modified to work

with either a JDK 1.1 or Java 2 environment. However, any code that has been

generated or loaded with the 8.1.5 version of any tool, will not succeed. Make sure

that you always use the 8.1.6 version of all tools. This rule applies to your CORBA

stubs and skeletons. You must regenerate all stubs and skeletons with the 8.1.6 IDL

compiler.

Invoking CORBA Objects From Applets
You invoke a server object from an applet in the same manner as from a client. The

only differences are the following:

■ You must conform to the applet standards.

■ You must conform to the Java plug-in standards. The Java plug-ins that are

supported are JDK 1.1, Java 2, and Oracle’s JInitiator.

■ You set the following properties within the initial context environment before

the object lookup: ORBdisableLocator , ORBClass , and

ORBSingletonClass.

Using Signed JAR Files to Conform to Sandbox Security
The security sandbox constricts your applet from accessing anything on the local

disk or from connecting to a remote host other than the host that the applet was

downloaded from. If you create a signed JAR file as a trusted party, you can bypass

the sandbox security. See http://java.sun.com for more information on applet

sandbox security and signed JAR files.

Performing Object Lookup in Applets
You perform the JNDI lookup within the applet the same as within any Oracle Java

client, except that you set the following property within the initial context:
5-16 CORBA Developer’s Guide and Reference

Invoking CORBA Objects From Applets
env.put(ServiceCtx.APPLET_CLASS, this);

By default, you do not need to install any JAR files on the client to run the applet.

However, if you want to place the Oracle JAR files on the client machine, set the

ClassLoader property in the InitialContext environment, as follows:

env.put(’ClassLoader’, this.getClass().getClassLoader());

The following shows the init method within an applet that invokes the Bank

example. The applet sets up the initial context—including setting the

APPLET_CLASS property—and performs the JNDI lookup giving the URL.

public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 try {
 // Initialize the ORB (using the Applet).
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 env.put(ServiceCtx.APPLET_CLASS, this);

 Context ic = new InitialContext(env);
 _manager = (AccountManager)ic.lookup

("sess_iiop://hostfunk:2222/test/myBank");
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 throw new RuntimeException();
 }
 }

Within the action method, the applet invokes methods off of the retrieved object.

In this example, the open method of the retrieved AccountManager object is

invoked.
Advanced CORBA Programming 5-17

Invoking CORBA Objects From Applets
 public boolean action(Event ev, Object arg) {
 if(ev.target == _checkBalance) {
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account’s balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

Modifying HTML for Applets that Access CORBA Objects
Oracle8i supports only the following Java plug-ins for the HTML page that loads in

the applet: JDK 1.1, Java 2, and Oracle JInitiator. Each plug-in contains different

syntax for the applet information. However, each HTML page may contain

definitions for the following two properties:

■ ORBdisableLocator set to TRUE—Required for all applets.

■ ORBClass and ORBSingletonClass definitions—Required for the applets

that use the Java 2 or JInitiator plug-in.

The examples in the following sections show how to create the correct HTML

definition for each plug-in type. Each HTML definition defines the applet bank

example.

■ Example 5–4, "HTML Definition for JDK 1.1 Plug-in"

■ Example 5–5, "HTML Definition for Java 2 Plug-in"

■ Example 5–6, "HTML Definition for JInitiator Plug-in"

Example 5–4 HTML Definition for JDK 1.1 Plug-in

<pre>

Note: Because of the sandbox security rules, you cannot set or

read any system properties. Therefore, any values that you want to

pass on to the ORB runtime, you may set within the applet

parameters. This is the method used to set the

ORBdisableLocator , ORBClass and ORBSingletonClass
properties.
5-18 CORBA Developer’s Guide and Reference

Invoking CORBA Objects From Applets
<html>
<title>Applet talking to 8i</title>
<h1>applet talking to 8i using java plug in 1.1 </h1>
<hr>
The bank example
Specify the plugin in codebase, the class within the CODE parameter, the JAR
files in the ARCHIVE parameter, the plugin version in the type parameter, and
set ORBdisableLocator to true.
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 500 HEIGHT = 50
codebase="http://java.sun.com/products/plugin/1.1/

jinstall-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,

aurora_client.jar,vbjorb.jar,vbjapp.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">
<PARAM NAME="ORBdisableLocator" VALUE="true">

<COMMENT>
Set the plugin version in the type, set ORBdisableLocator to true, the applet
class within the java_CODE tag, the JAR files in the java_ARCHIVE tag, and the
plug-in source site within the pluginspage tag.
<EMBED type="application/x-java-applet;version=1.1"

ORBdisableLocator="true"
java_CODE = OracleClientApplet.class
java_ARCHIVE = "oracleClient.jar,
aurora_client.jar,vbjorb.jar,vbjapp.jar"
WIDTH = 500 HEIGHT = 50

pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

Example 5–5 HTML Definition for Java 2 Plug-in

<pre>
<html>
<title>applet talking to 8i</title>
<h1>applet talking to 8i using Java plug in 1.2 </h1>
<hr>
The bank example
Specify the plugin in codebase, the class within the CODE parameter, the JAR
Advanced CORBA Programming 5-19

Invoking CORBA Objects From Applets
files in the ARCHIVE parameter, the plugin version in the type parameter, and
set ORBdisableLocator to true.
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"

WIDTH = 500 HEIGHT = 50
codebase="http://java.sun.com/products/plugin/1.2/jinstall-11-win32.cab#

Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,
aurora_client.jar,vbjorb.jar,vbjapp.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1.2">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.visigenic.vbroker.orb.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass"

VALUE="com.visigenic.vbroker.orb.ORB">
<COMMENT>
Set the plugin version in the type, set ORBdisableLocator to true, the ORBClass
and ORBSingletonClass to the correct ORB class, the applet
class within the java_CODE tag, the JAR files in the java_ARCHIVE tag, and the
plug-in source site within the pluginspage tag.
<EMBED type="application/x-java-applet;version=1.1.2"

ORBdisableLocator="true"
org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
java_CODE = OracleClientApplet.class
java_ARCHIVE = "oracleClient.jar,

aurora_client.jar,vbjorb.jar,vbjapp.jar"
WIDTH = 500 HEIGHT = 50

pluginspage="http://java.sun.com/products/plugin/1.2/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

Example 5–6 HTML Definition for JInitiator Plug-in

<h1> applet talking to 8i using JInitiator 1.1.7.18</h1>
 <COMMENT>
 Set the plugin version in the type, set ORBdisableLocator to true, the
 ORBClass and ORBSingletonClass to the correct ORB class, the applet
 class within the java_CODE tag, the source of the applet in the java_CODEBASE
 and the JAR files in the java_ARCHIVE tag.
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
5-20 CORBA Developer’s Guide and Reference

Interoperability with non-Oracle ORBs
 java_CODE="OracleClientApplet"
 java_CODEBASE="http://hostfunk:8080/applets/bank"
 java_ARCHIVE="oracleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBdisableLocator="true"
 org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
 org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
 serverHost="orasundb"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>

Interoperability with non-Oracle ORBs
You can interoperate with Oracle8i from a client that uses another vendor’s ORB. To

do so, the vendor must provide the functionality that Oracle8i uses by being part of

the database: functions such as session-based connections, extended CosNaming

functions, and the login protocol. To provide this functionality, your ORB vendor

must work with Oracle’s Product Management to provide libraries for you.

All client-side functionality has been packaged into aurora_client.jar. This JAR file

has been broken into two JAR files for interoperating with your ORB vendor:

■ aurora_orbindep.jar —includes ORB independent features, such as JNDI

■ aurora_orbdep.jar —includes Oracle ORB dependent functionality, such as

session-based communication, the login protocol, and security context

Your ORB vendor needs to provide you the aurora_orbdep.jar file. Thus, you

include their aurora_orbdep.jar file and the Oracle-provided

aurora_orbindep.jar file to replace aurora_client.jar .

The aurora_orbdep.jar includes the following functionality:

Note: If you do not remove aurora_client.jar file from your

CLASSPATH, you will be using Oracle’s classes, instead of your

ORB vendor’s classes.
Advanced CORBA Programming 5-21

Interoperability with non-Oracle ORBs
Java Client using Oracle ORB
You perform the following if you choose to use the Oracle-provided ORB on your

client:

1. Put aurora_client.jar in a directory that exists in the CLASSPATH.

2. Compile and run your CORBA application.

Java Client using non-Oracle ORB
You perform the following if you choose to use another vendor’s ORB on your

client:

1. Put aurora_orbindep.jar in a directory that exists in the CLASSPATH.

2. Contact your ORB vendor to receive their aurora_orbdep.jar .

3. Put their aurora_orbdep.jar in a directory that exists in the CLASSPATH.

4. Compile and run your CORBA application.

Function Description

login The login protocol performs the challenge/response protocol for
authenticating the client to the database. See "IIOP Security" on
page 6-1 for more information.

 bootstrap The boot service obtains key services, such as CosNaming.

 extended CosNaming The Aurora ORB extended CosNaming to automatically
instantiate an object upon first lookup.

 Session IIOP Session IIOP is implemented to allow one client connect to more
than a single IIOP session at the same time. See Chapter 3,
"Configuring IIOP Applications" for more information.

Credentials The security context interceptor for the credential type of
authentication.
5-22 CORBA Developer’s Guide and Reference

Interoperability with non-Oracle ORBs
C++ Client Interoperability
With C++ clients, the ORB vendor must provide the aurora_client.jar file

functionality in shared libraries. The vendor will make use of Oracle-provided C++

login protocol for authentication. All clients are required to authenticate themselves

to the database. One of the methods for authenticating is through the login protocol.

The login protocol is an Oracle-specific design, used for logging in to a database by

providing a username and password to authenticate the client. The following

example shows how to write a sample C++ CORBA client to Oracle8i. This example

uses the Visigenics C++ ORB for its client-side ORB.

Example 5–7 C++ client using login protocol to authenticate

The following C++ client uses the Visigenics C++ ORB for the client-side ORB. Your

implementation can be different, depending on the type of ORB you use.

#include <Login.h>
#include <oracle_orbdep.h>

// set up host, port, and SID
char *sid = NULL;
char *host = argv[1];
int port = atol(argv[2]);
if(argc == 4) sid = argv[3];

// set up username, password, and role
wchar_t *username = new wchar_t[6];
username[0] = 's';
username[1] = 'c';
username[2] = 'o';
username[3] = 't';
username[4] = 't';
username[5] = '\0';

wchar_t *password = new wchar_t[6];
password[0] = 't';
password[1] = 'i';
password[2] = 'g';

Note: If you do not remove aurora_client.jar file from your

CLASSPATH, you will be using Oracle’s classes, instead of your

ORB vendor’s classes.
Advanced CORBA Programming 5-23

Interoperability with non-Oracle ORBs
password[3] = 'e';
password[4] = 'r';
password[5] = '\0';

wchar_t *role = new wchar_t[1];
role[0] = '\0';

// Get the Name service Object reference
AuroraServices::PublishingContext_ptr rootCtx = NULL;

// Contact Visibroker’s boot service for initializing
rootCtx = VisiCppBootstrap::getNameService (host, port, sid);

// Get the pre-published login object reference
AuroraServices::PublishedObject_ptr loginPubObj = NULL;
AuroraServices::LoginServer_ptr serv = NULL;
CosNaming::NameComponent *nameComponent = new CosNaming::NameComponent[2];

nameComponent[0].id = (const char *)"etc";
nameComponent[0].kind = (const char *)"";
nameComponent[1].id = (const char *)"login";
nameComponent[1].kind = (const char *)"";

CosNaming::Name *name1 = new CosNaming::Name(2, 2, nameComponent, 0);

// Lookup this object in the Name service
CORBA::Object_ptr loginCorbaObj = rootCtx->resolve (*name1);

// Make sure it is a published object
loginPubObj = AuroraServices::PublishedObject::_narrow (loginCorbaObj);

// create and activate this object (non-standard call)
loginCorbaObj = loginPubObj->activate_no_helper ();
serv = AuroraServices::LoginServer::_narrow (loginCorbaObj);

// Create a client login proxy object and authenticate to the DB
oracle_orbdep *_visi = new oracle_orbdep(serv);
Login login(_visi);
boolean res = login.authenticate(username, password, role);
5-24 CORBA Developer’s Guide and Reference

Interoperability with non-Oracle ORBs
IIOP Transport Protocol
If, when using another vendor’s ORB, the ORB vendor does not support

session-based IIOP, you can use a regular IIOP port. Any client that uses a regular

IIOP transport can not access multiple sessions.

To configure a non-session-based IIOP listener, you must do the following:

1. Configure the MTS_DISPATCHERS parameter to

oracle.aurora.server.GiopServer instead of

oracle.aurora.server.SGiopServer .

mts_dispatchers="(protocol=tcp | tcps)
(presentation=oracle.aurora.server.GiopServer)"

2. Set the TRANSPORT_TYPE property to ServiceCtx.IIOP, as shown below:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, user);
env.put(Context.SECURITY_CREDENTIALS, password);
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put("TRANSPORT_TYPE", ServiceCtx.IIOP);
Context ic = new InitialContext(env);

Note: Instead of setting the TRANSPORT_TYPE property, you can

use the -iiop option on any of the command-line tools. If your

client is directing the request to a dispatcher, you must also provide

the regular IIOP port within the service name on the

command-line.
Advanced CORBA Programming 5-25

Interoperability with non-Oracle ORBs
5-26 CORBA Developer’s Guide and Reference

IIOP Se
6

IIOP Security

Security involves data integrity, authentication, and authorization.

■ For data integrity, Oracle8i enables your application to use IIOP over a secure

socket layer (SSL).

■ For authentication, your application can choose between providing a

username/password combination or a certificate.

■ For authorization, you can choose the level of trust points that any incoming

clients will be required to give.

The following sections explain these subjects in detail:

■ Overview

■ Data Integrity

■ Authentication

■ Client-side Authentication

■ Server-Side Authentication

■ Authorization
curity 6-1

Overview
Overview
As discussed in the Oracle8i Java Developer’s Guide, there are several security issues

you must think about for your application. The Oracle8i Java Developer’s Guide
divides security into network connection, database contents, and JVM security

issues. All these issues are pertain to IIOP. However, IIOP has specific

implementation issues for both the networking and the JVM security, as listed

below:

■ JVM security includes both utilizing Java2 permissions and granting execution

rights. For IIOP, you can grant execution privileges in one of two ways:

* CORBA—The owner grants execution rights to CORBA objects with an

option on the loadjava tool. See the loadjava discussion in the

Oracle8i Java Developer’s Guide for information on granting execution

rights when loading the CORBA classes.

* EJB—The owner grants execution rights to EJB objects and, potentially,

methods within the deployment descriptor. See the section on "Access

Control" in the Oracle8i Enterprise JavaBeans Developer’s Guide for more

information on defining execution rights within your deployment

descriptor.

■ Network connection security includes the following issues:

* Data Integrity—To prevent a sniffer from reading the transmission

directly off the wire, all transmissions are encoded. Oracle supports

Secure Socket Layer (SSL) for encryption.

* Authentication—To prevent an invalid user from impersonating a valid

user, the client or server provides authentication information. This

information can take the form of a username/password combination or

certificates.

* Authorization—To prove that the user is allowed access to the object,

two types of authorization are performed:

- Session authorization—The session is authorized to the user. In this

case, the client is authorized to access the server through validating

either the username or certificate provided.

- User authorization—The client or server can perform authorization on

a provided certificate. This type of authorization can be performed only

when the client or server authenticates itself by providing a certificate.
6-2 CORBA Developer’s Guide and Reference

Data Integrity
This section describes fully the network connection security issues that IIOP

applications must consider.

Data Integrity
Do you want your transport line to be encrypted? Do you want data integrity and

confidentiality? If you believe that the physical connection can be tampered with,

you can consider encrypting all transmissions by using the secure socket layer (SSL)

encryption technology. However, because adding encryption to your transmission

affects your connection performance, if you do not have any transport security

issues, you should transmit unencrypted.

Figure 6–1 Data Integrity Decision Tree

Using the Secure Socket Layer
JServer’s CORBA and EJB implementations rely on the Secure Socket Layer (SSL)

for data integrity and authentication. SSL is a secure networking protocol, originally

defined by Netscape Communications, Inc. Oracle8i JServer supports SSL over the

IIOP protocol used for the ORB.

When a connection is requested between a client and the server, the SSL layer

within both parties negotiate during the connection handshake to verify if the

connection is allowed. The connection is verified at several levels:

encrypt?

Is my physical
transport safe?

Yes

No

Use SSL for
data integrity

Do not use SSL;
transmit in the
clear
IIOP Security 6-3

Data Integrity
1. The SSL version on both the client and the server must agree for the transport to

be guaranteed for data integrity.

2. If server-side authentication with certificates is requested, the certificates

provided by the server are verified by the client at the SSL layer. This means

that the server is guaranteed to be itself. That is, it is not a third party

pretending to be the server.

3. If client-side authentication with certificates is requested, the certificates

provided by the client are verified at the SSL layer. The server receives the

client’s certificates for authentication or authorization of the client.

The SSL layer performs authentication between the peers. After the handshake, you

can be assured that the peers are authenticated to be who they say they are. You can

perform additional tests on their certificate chain to authorize that this user can

access your application. See "Authorization" on page 6-26 on how to go beyond

authentication.

SSL Version Negotiation
SSL makes sure that both the client and server side agree on an SSL protocol version

number. The values that you can specify are as follows:

■ Undetermined: SSL_UNDETERMINED. This is the default setting.

■ 3.0 with 2.0 Hello: This setting is not supported.

■ 3.0: SSL_30.

Note: Normally, client-side authentication means only that the

server verifies that the client is not an impersonator and is trusted.

However, when you specify SSL_CLIENT_AUTH in JServer, you

are requesting both server-side and client-side authentication.

Note: If you decide to use SSL, your client must import the

following JAR files:

■ If your client uses JDK 1.1, import jssl-1_1.jar and

javax-ssl-1_1.jar.

■ If your client uses Java 2, import jssl-1_2.jar and

javax-ssl-1_2.jar .
6-4 CORBA Developer’s Guide and Reference

Authentication
■ 2.0: This setting is not supported.

On the database, the default is "Undetermined". The database does not support 2.0

or 3.0 with 2.0 Hello. Thus, you can use only the Undetermined or 3.0 setting for the

client.

■ The server’s version is set within the database SQLNET.ORA file, using the

SSL_VERSION parameter. For example, SSL_VERSION = 3.0.

■ For the client, you set the SSL client version number in the client’s JNDI

environment, as follows:

environment.put("CLIENT_SSL_VERSION", ServiceCtx.SSL_30);

Table 6–1 shows which handshakes resolve to depending on SSL version settings on

both the client and the server. The star sign "✸" indicates cases where the handshake

fails.

Table 6–1 SSL Version Numbers

Authentication
Authentication is the process where one party supplies to a requesting party

information that identifies itself. This information guarantees that the originator is

not an imposter. In the client/server distributed environment, authentication can be

required from the client or the server:

■ Server-side authentication—The server sends identifying information to

authenticate itself. The client uses this information to verify that the server is

itself and not an imposter. If you request SSL, the server will always send

certificate-based authentication information.

 Server Setting

 Client Setting Undetermined
3.0 W/2.0 Hello

(not supported) 3.0
 2.0 (not
 supported)

 Undetermined 3.0 ✸ ✸ ✸

 3.0 W/2.0 Hello
 (not supported)

 ✸ ✸ ✸ ✸

 3.0 3.0 ✸ 3.0 ✸

 2.0 (not supported) ✸ ✸ ✸ ✸
IIOP Security 6-5

Client-side Authentication
■ Client-side authentication—For the same reasons, the client sends identifying

information to the server, which includes either a username/password

combination or certificates. Since the client is logging on to a database, the client

must always authenticate itself to the database.

■ Callout authentication—The server initiates a call to another object. This causes

the server to act as a client; as such, the server cannot use the database

authentication information, but must provide information and authenticate

itself as an independent party.

■ Callback authentication—The server is given either a CORBA IOR or an EJB

handle for calling back to an object that exists on the client. In this scenario, the

server is acting as a client; as such, the server cannot use the database

authentication information, but must provide information and authenticate

itself as an independent party.

Client-side Authentication
The Oracle data server is a secure server; a client application cannot access data

stored in the database without first being authenticated by the database server.

Oracle8i CORBA server objects and Enterprise JavaBeans execute in the database

server. For a client to activate such an object and invoke methods on it, the client

must authenticate itself to the server. The client authenticates itself when a CORBA

or EJB object starts a new session. The following are examples of how each IIOP

client must authenticate itself to the database:

■ When a client initially starts a new session, it must authenticate itself to the

database.

■ When a client passes an object reference (a CORBA IOR or an EJB bean handle)

to a second client, the second client connects to the session specified in the

object reference. The second client authenticates itself to the server.

The client authenticates itself by providing one of the following types:

Authentication type Definition

Certificates You can provide the user certificate, the Certificate Authority
certificate (or a chain that contains both, including other identifying
certificates), and a private key.

Username and
password
combination

You can provide the username and password through either
credentials or the login protocol. In addition, you can pass a database
role to the server, along with the username and password.
6-6 CORBA Developer’s Guide and Reference

Client-side Authentication
The type of client-side authentication can be determined by the server’s

configuration. If, within the SQLNET.ORA file, the

SSL_CLIENT_AUTHENTICATION parameter is TRUE, the client must provide

certificate-based authentication. If SSL_CLIENT_AUTHENTICATION is FALSE, the

client authenticates itself with a username/password combination. If

SSL_CLIENT_AUTHENTICATION is TRUE and the client provides a

username/password, the connection handshake will fail.

The following table gives a brief overview of the options that the client has for

authentication.

■ The columns represent the options available if you have chosen to use SSL for

data integrity.

■ The rows demonstrate the three authentication vehicles: login protocol,

credentials, and certificates.

■ The table entries detail the different methods you must employ when

implementing the client-side authentication type.

Authentication vehicle
NON-SSL transport SSL transport

Providing username and
password using the login protocol

■ Implicit method: Set JNDI
property to NON_SSL_LOGIN;
provide username and password
in JNDI properties.

■ Explicit method: Create a Login
object with username and
password.

■ Implicit method: Set JNDI
property to SSL_LOGIN;
provide username and
password in JNDI properties.

■ Explicit method: Create a
Login object with username
and password.

Providing username and
password using credentials

Not supported because the password
would transmit in the clear.

Set JNDI property to
SSL_CREDENTIAL; username
and password are implicitly sent
to the server in the handshake.

Providing certificates Not supported because certificates
require an SSL transport.

Set JNDI property to
SSL_CLIENT_AUTH; provide
client certificate, CA certificate,
and private key in JNDI
properties.

Pure CORBA objects use
AuroraCertificateManager
class to specify certificates, CA
certificate, and private key.
IIOP Security 6-7

Client-side Authentication
As the table demonstrates, most of the authentication options include setting an

appropriate value in JNDI properties.

Using JNDI for Authentication
To set up client-side authentication using JNDI, you set the

javax.naming.Context.SECURITY_AUTHENTICATION attribute to one of the

following values:

■ ServiceCtx.NON_SSL_LOGIN —A plain IIOP connection is used. Because SSL

is not used, all data flowing over the line is not encrypted. Thus, to protect the

password, the client uses the login protocol to authenticate itself. In addition,

the server does not provide SSL certificates to the client to identify itself.

■ ServiceCtx.SSL_LOGIN —An SSL-enabled IIOP connection is used. All data

flowing over the transport is encrypted. If you do not want to provide a

certificate for the client authentication, use the login protocol to provide the

username and password.

Because this is an SSL connection, the server sends its certificate identity to the

client. The client is responsible for verifying the server’s certificate, if interested,

for server authentication. Optionally, the client can set up trust points for the

server’s certificate to be verified against.

■ ServiceCtx.SSL_CREDENTIAL —An SSL-enabled IIOP connection is used.

All data flowing over the transport is encrypted. The client provides the

username and password without using the login protocol for client

authentication to the server. The username and password are automatically

passed to the server in a security context, on the first message.

The server provides its certificate identity to the client. The client is responsible

for verifying the server’s certificate, if interested, for server authentication.

■ ServiceCtx.SSL_CLIENT_AUTH —An SSL-enabled IIOP connection is used.

All data flowing over the transport is encrypted. The client provides

appropriate certificates for client-side authentication to the server. In addition,

the server provides its certificate identity to the client. If interested, the client is

responsible for authorizing the server’s certificate.

Note: The client’s password is not encrypted, as it is with SSL. It

might be slightly more efficient than SSL_LOGIN, where

encrypting a password over an SSL connection is redundant.
6-8 CORBA Developer’s Guide and Reference

Client-side Authentication
■ Nothing is specified. The client must activate the login protocol explicitly before

activating and invoking methods on a server-side object. Use this method when

a client must connect to an existing session and invoke methods on an existing

object. See the demo/examples/corba/session/sharedsession example

for more information. The username and password in the initial context

environment are automatically passed as parameters to the login object’s

authenticate() method.

Within each of these options, you choose to do one or more of the following:

For information on how to implement each of these methods for client or server

authentication, see the following sections:

■ Providing Username and Password for Client-Side Authentication

■ Using Certificates for Client Authentication

■ Server-Side Authentication

Providing Username and Password for Client-Side Authentication
The client authenticates itself to the database server either through a

username/password or by supplying appropriate certificates. The

username/password can be supplied either through Oracle’s login protocol or

credentials over the SSL transport connection.

■ Provide a username and password by setting JNDI properties, which implicitly

sets these values in a login protocol. Set SECURITY_AUTHENTICATION to
ServiceCtx.SSL_LOGIN or ServiceCtx.NON_SSL_LOGIN .

■ Provide a username and password through credentials. The username and

password are provided implicitly and are shipped to the server over the

encrypted SSL transport. Set SECURITY_AUTHENTICATION to
serviceCtx.SSL_CREDENTIAL .

■ Provide a username and password in an explicitly activated login protocol.

 Client authentication ■ authenticate itself to the server using login protocol

■ authenticate itself to the server using straight username and
password

■ authenticate itself to the server using SSL certificates

 Server authentication ■ authenticate itself to the client using SSL certificates
IIOP Security 6-9

Client-side Authentication
Username Sent by Setting JNDI Properties for the Login Protocol
A client can use the login protocol to authenticate itself to the Oracle8i data server.

You can use the login protocol either with or without SSL encryption, because a

secure handshaking encryption protocol is built in to the login protocol.

If your application requires an SSL connection for client-server data security, specify

the SSL_LOGIN service context value for the SECURITY_AUTHENTICATION

property that is passed when the JNDI initial context is obtained. The following

example defines the connection to be SSL-enabled for the login protocol. Notice that

the username and password are set.

Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(javax.naming.Context.SECURITY_PRINCIPAL, username);
env.put(javax.naming.Context.SECURITY_CREDENTIALS, password);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_LOGIN);
Context ic = new InitialContext(env);
...
If your application does not use an SSL connection, specify NON_SSL_LOGIN
within the SECURITY_AUTHENTICATION parameter as shown below:

env.put(javax.naming.Context.SECURITY_AUTHENTICATION, ServiceCtx. NON_SSL_LOGIN);

When you specify values for all four JNDI Context

variables—URL_PKG_PREFIXES, SECURITY_PRINCIPAL,

SECURITY_CREDENTIALS, and SECURITY_AUTHENTICATION—the first

invocation of the Context.lookup() method performs a login automatically.

If the client setting up the connection is not using JNDI look up because it already

has an IOR, the user that gave them the IOR for the object should have also passed

in a Login object that exists in the same session as the active object. You must

Note: The Login class serves as an implementation of the client

side of the login handshaking protocol and as a proxy object for

calling the server login object. This component is packaged in the

aurora_client.jar file. All Oracle8i ORB applications must

import this library.

Note: The login handshaking is secured by encryption, but the

remainder of the client-server interaction is not secure.
6-10 CORBA Developer’s Guide and Reference

Client-side Authentication
provide the username and password in the authenticate method of the Login

object, before invoking the methods on the active object.

Logging In and Out of the JServer Session If the session owner wishes to exit the

session, the owner can use the logout method of the LogoutServer object, which

is pre-published as "/etc/logout ". You use the LogoutServer object to exit the

session. Only the session owner is allowed to logout. Any other owner receives a

NO_PERMISSION exception.

The LogoutServer object is analogous to the LoginServer object, which is

pre-published as "/etc/login ". You can use the LoginServer object to retrieve

the Login object, which is used to authenticate to the server. This is an alternative

method to using the Login object within the JNDI lookup.

The following example shows how a client can authenticate using the

LoginServer object and can exit the session through the LogoutServer object.

import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LogoutServer;
...
// To log in using the LoginServer object
LoginServer loginServer = (LoginServer)ic.lookup(serviceURL + "/etc/login");
Login login = new Login(loginServer);
System.out.println("Logging in ..");
login.authenticate(user, password, null);
...
//To logout using the LogoutServer
LogoutServer logout = (LogoutServer)ic.lookup(serviceURL + "/etc/logout");
logout.logout();

Username Sent Implicitly by using Credentials
Using the ServiceCtx.SSL_CREDENTIAL authentication type means that the

username, password, and, potentially, a role are passed to the server on the first

request. Because this information is passed over an SSL connection, the password is

encrypted by the transfer protocol, and there is no need for the handshaking that

the Login protocol uses. This is slightly more efficient and is recommended for SSL

connections.

Username Sent by Explicitly Activating a Login Object
You can explicitly create and populate a Login object for the database login.

Typically, you would do this if you wanted to create and use more than a single
IIOP Security 6-11

Client-side Authentication
session from a client. The following example shows a client creating and logging on

to two different sessions. To do this, you must perform the following steps:

1. Create the initial context.

2. Perform a look up on a URL for the destination database.

3. On this database service context, create two subcontexts—one for each session.

4. Login to each session using a Login object, providing a username and

password.

// Prepare a simplified Initial Context as we are going to do
// everything by hand
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Context ic = new InitialContext (env);

// Get a SessionCtx that represents a database instance
ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

// Create and authenticate a first session in the instance.
SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
LoginServer login_server1 = (LoginServer)session1.activate ("etc/login");
Login login1 = new Login (login_server1);
login1.authenticate (user, password, null);

// Create and authenticate a second session in the instance.
SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");
LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
Login login2 = new Login (login_server2);
login2.authenticate (user, password, null);

// Activate one Hello object in each session
Hello hello1 = (Hello)session1.activate (objectName);
Hello hello2 = (Hello)session2.activate (objectName);

Note: The username and password for both sessions are identical

because the destination database is the same database. If the client

were to connect to two different databases, the username and

password may need to be different for logging on.
6-12 CORBA Developer’s Guide and Reference

Client-side Authentication
Using Certificates for Client Authentication
Client authentication through certificates requires the client sending a certificate or

certificate chain to the server; the server verifies that the client is truly who the

client said it was and that it is trusted.

You set up the client for certificate authentication through one of the following

methods:

■ Specifying Certificates in a File

■ Specifying Certificates in Individual JNDI Properties

■ Specifying Certificates using AuroraCertificateManager

Specifying Certificates in a File
You can set up a file that contains the user certificate, the issuer certificate, the entire

certificate chain, an encrypted private key, and the trustpoints. Once created, you

can specify that the client use the file during connection handshake for client

authentication.

1. Create the client certificate file—This file can be created through an export

feature in the Wallet Manager. The Oracle Wallet Manager has an option that

creates this file. You must populate a wallet using the Wallet Manager before

requesting that the file is created.

After you create a valid wallet, bring up the Wallet Manager and perform the

following:

■ From the menu bar pull down, click on Operations > Export Wallet.

■ Within the filename field, enter the name that you want the certificate file

known as.

This creates a base-64 encoded file that contains all certificates, keys, and

trustpoints that you added within your wallet. For information on how to

create the wallet, see the Oracle Advanced Security Administrator’s Guide.

2. Specify the client certificates file for the connection—Within the client code, set

the SECURITY_AUTHENTICATION property to

ServiceCtx.SSL_CLIENT_AUTH . Provide the appropriate certificates and

Note: All certificates, trustpoints, and the private key should be in

base-64 encoded format.
IIOP Security 6-13

Client-side Authentication
trustpoints for the server to authenticate against. Specify the filename and

decrypting key in the JNDI properties, as follows:

The following code is an example of how to set up the JNDI properties to define

the client certificate file:

Hashtable env = new Hashtable();
env.put(javax.naming.Context.URL_PKG_PREFIXES, “oracle.aurora.jndi”);
env.put(javax.naming.Context.SECURITY_PRINCIPAL, <filename>);
env.put(javax.naming.Context.SECURITY_CREDENTIAL, <decrypting_key>);
env.put(javax.naming.Context.SECURITY_AUTHENTICATION,

ServiceCtx. SSL_CLIENT_AUTH);
Context ic = new InitialContext(env);
...
For example, if your decrypting key is welcome12 and the certificate file is

credsFile , the following two lines would specify these values within the

JNDI context:

env.put(Context.SECURITY_CREDENTIALS, "welcome12");
env.put(Context.SECURITY_PRINCIPAL, "credsFile");

Specifying Certificates in Individual JNDI Properties
You can provide each certificate, private key, and trust point programmatically, by

setting each item individually within JNDI properties. Once you populate the JNDI

properties with the user certificate, issuer (Certificate Authority) certificate,

encrypted private key, and trust points, they are used during connection handshake

for authentication. To identify client-side authentication, set the

SECURITY_AUTHENTICATION property to serviceCtx.SSL_CLIENT_AUTH .

You can choose any method for setting up your certificates within the JNDI

properties. All authorization information values must be set up before initializing

the context.

Values Set in JNDI Property

Name of the certificate file SECURITY_PRINCIPAL

Key for decrypting the private key SECURITY_CREDENTIAL

Note: Only a single issuer certificate can be set through JNDI

properties.
6-14 CORBA Developer’s Guide and Reference

Client-side Authentication
The following example declares the certificates as a static variable. However, this is

just one of many options. Your certificate must be base-64 encoded. For example, in

the following code, the testCert_base64 is a base-64 encoded client certificate

declared as a static variable. The other variables for CA certificate, private key, and

so on, are not shown, but they are defined similarly.

final private static String testCert_base64 =
 "MIICejCCAeOgAwIBAgICAmowDQYJKoZIhvcNAQEEBQAwazELMAkGA1UEBhMCVVMx" +
 "DzANBgNVBAoTBk9yYWNsZTEoMCYGA1UECxMfRW50ZXJwcmlzZSBBcHBsaWNhdGlv" +
 "biBTZXJ2aWNlczEhMB8GA1UEAxMYRUFTUUEgQ2VydGlmaWNhdGUgU2VydmVyMB4X" +
 "DTk5MDgxNzE2MjIxMloXDTAwMDIxMzE2MjIxMlowgYUxCzAJBgNVBAYTAlVTMRsw" +
 "GQYDVQQKExJPcmFjbGUgQ29ycG9yYXRpb24xPDA6BgNVBAsUMyoqIFNlY3VyaXR5" +
 "IFRFU1RJTkcgQU5EIEVWQUxVQVRJT04gT05MWSB2ZXJzaW9uMiAqKjEbMBkGA1UE" +
 "AxQSdGVzdEB1cy5vcmFjbGUuY29tMHwwDQYJKoZIhvcNAQEBBQADawAwaAJhANG1" +
 "Kk2K7uOOtI/UBYrmTe89LVRrG83Eb0/wY3xWGelkBeEUTwW57a26u2M9LZAfmT91" +
 "e8Afksqc4qQW23Sjxyo4ObQK3Kth6y1NJgovBgfMu1YGtDHaSn2VEg8p58g+nwID" +
 "AQABozYwNDARBglghkgBhvhCAQEEBAMCAMAwHwYDVR0jBBgwFoAUDCHwEuJfIFXD" +
 "a7tuYNO8bOw1EYwwDQYJKoZIhvcNAQEEBQADgYEARC5rWKge5trqgZ18onldinCg" +
 "Fof6D/qFT9b6Cex5JK3a2dEekg/P/KqDINyifIZL0DV7z/XCK6PQDLwYcVqSSK/m" +
 "487qjdH+zM5X+1DaJ+ROhqOOX54UpiAhAleRMdLT5KuXV6AtAx6Q2mc8k9bzFzwq" +
 "eR3uI+i5Tn0dKgxhCZU=\n";

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_CLIENT_AUTH);
//decrypting key
env.put(Context.SECURITY_CREDENTIALS, "welcome12");

// you may also set the certificates individually, as shown bellow.
//User certificate
env.put(ServiceCtx.SECURITY_USER_CERT, testCert_base64);
//Certificate Authority’s certificate
env.put(ServiceCtx.SECURITY_CA_CERT, caCert_base64);
//Private key

Note: When setting individual certificates as static variables, any

certificates for Oracle8i parties do not have any separators.

However, if you are setting a certificate for a Visigenic ORB (as the

client callback object does in a callback scenario), the certificate

must be delineated by "BEGIN CERTIFICATE" and "END

CERTIFICATE" identifying lines. See the Visigenic documentation

for the format of these strings.
IIOP Security 6-15

Client-side Authentication
env.put(ServiceCtx.SECURITY_ENCRYPTED_PKEY, encryptedPrivateKey_base64);
// setup the trust point
env.put(ServiceCtx.SECURITY_TRUSTED_CERT, trustedCert);

Context ic = new InitialContext(env);

Specifying Certificates using AuroraCertificateManager
CORBA clients that do not use JNDI can use AuroraCertificateManager for

setting the user and issuer certificates, the encrypted private key, and the trust

points.

AuroraCertificateManager maintains certificates for your application. For the

certificates to be passed on the SSL handshake for the connection, you must set the

certificates before an SSL connection is made. Setting up a certificate in this manner

is only required if the following is true:

■ The client sets its certificates through AuroraCertificateManager if

client-side authentication is required, and the client does not want to use JNDI

properties for setting certificates.

■ The server sets its certificates through AuroraCertficateManager if it is

executing a callout or a callback. The typical server-side authentication for a

simple client/server exchange is taken care of by the database wallet. However,

if this server intends to act as a client by executing a callout or callback, it needs

to set certificates identifying itself; it cannot use the database certificate that is

contained in the wallet.

AuroraCertificateManager Class
The methods offered by this object allow you to:

■ Set the SSL protocol version. The default is Undetermined.

■ Set the private key and certificate chain.

■ Require that client applications authenticate themselves by presenting their

certificate chain. This method is used only by servers.

Invoking the ORB.resolve_initial_references method with the parameter

SSLCertificateManager will return an object that can be narrowed to a

AuroraCertificateManager . Example 6–1 shows a code example of the

following methods.
6-16 CORBA Developer’s Guide and Reference

Client-side Authentication
addTrustedCertificate
This method adds the specified certificate as a trusted certificate. The certificate

must be in DER encoded format. The client adds trustpoints through this method

for server-side authentication.

When your client wants to authenticate a server, the server sends its certificate chain

to the client. You might not want to check every certificate in the chain. For

example, you have a chain composed of the following certificates: Certificate

Authority, enterprise, business unit, a company site, and a user. If you trust the

company site, you would check the user’s certificate, but you might stop checking

the chain when you get to the company site’s certificate, because you accept the

certificates above the company sites in the hierarchical chain.

Syntax

void addTrustedCertificate(byte[] derCert);

requestClientCertificate
This method is invoked by servers that wish to require certificates from client

applications. This method is not intended for use by client applications.

Syntax

void requestClientCertificate(boolean need);

Parameter Description

derCert The DER encoded byte array containing the certificate.

Note: The requestClientCertificate method is not currently

required, because the SQLNET.ORA and LISTENER.ORA

configuration parameter SSL_CLIENT_AUTHENTICATION

performs its function.

Parameter Description

need If true, the client must send a certificate for authentication. If
false, no certificate is requested from the client.
IIOP Security 6-17

Client-side Authentication
setCertificateChain
This method sets the certificate chain for your client application or server object and

can be invoked by clients or by servers. The certificate chain always starts with the

Certificate Authority certificate. Each subsequent certificate is for the issuer of the

preceding certificate. The last certificate in the chain is the certificate for the user or

process.

Syntax

void setCertificateChain(byte[][] derCertChain)

setEncryptedPrivateKey
This method sets the private key for your client application or server object. You

must specify the key in PKCS5 or PKCS8 format.

Syntax

void setEncryptedPrivateKey(byte[] key, String password);

setProtocolVersion
This method sets the SSL protocol version that can be used for the connection. A 2.0

Client trying to establish an SSL connection with a 3.0 Server will fail and the

converse. We recommend using Version_Undetermined, because it lets the peers

establish an SSL connection whether they are using the same protocol version or

not. SSL_Version_Undetermined is the default value.

Syntax

void setProtocolVersion(int protocolVersion);

Parameter Description

derCertChain A byte array containing an array of certificates.

Parameter Description

key The byte array that contains the encrypted private key.

password A string containing a password for decrypting the private key.
6-18 CORBA Developer’s Guide and Reference

Client-side Authentication
Example 6–1 Setting SSL Security Information Using AuroraCertificateManager

This example does the following:

1. Retrieve the AuroraCertificateManager .

2. Initialize this client’s SSL information:

a. Set the certificate chain through setCertificateChain .

b. Set the trustpoint through addTrustedCertificate.

c. Set the private key through setEncryptedPrivateKey .

// Get the certificate manager
AuroraCertificateManager cm = AuroraCertificateManagerHelper.narrow(

orb.resolve_initial_references("AuroraSSLCertificateManager"));

BASE64Decoder decoder = new BASE64Decoder();
byte[] userCert = decoder.decodeBuffer(testCert_base64);
byte[] caCert = decoder.decodeBuffer(caCert_base64);

// Set my certificate chain, ordered from CA to user.
byte[][] certificates = {
 caCert, userCert
};
cm.setCertificateChain(certificates);
cm.addTrustedCertificate(caCert);

// Set my private key.
byte[] encryptedPrivateKey =
decoder.decodeBuffer(encryptedPrivateKey_base64);

cm.setEncryptedPrivateKey(encryptedPrivateKey, "welcome12");

Parameter Description

protocolVersion The protocol version being specified. The value you supply is defined
in oracle.security.SSL.OracleSSLProtocolVersion . This
class defines the following values:

■ SSL_Version_Undetermined : Version is undetermined. This is
used to connect to SSL 2.0 and SSL 3.0 peers. This is the default
version.

■ SSL_Version_3_0_With_2_0_Hello : Not supported.

■ SSL_Version_3_0 : Used to connect to 3.0 peers only.

■ SSL_Version_2_0 : Not supported.
IIOP Security 6-19

Server-Side Authentication
Server-Side Authentication
The server can require a different type of authentication depending on its role. If

you are utilizing the database as a server in a typical client/server environment,

you use certificates that are set within a wallet for the database for server-side

authentication. However, if you are using the server to callout to another object or

callback to an object on the client, the server is now acting as a client and so requires

its own identifying certificates. That is, in a callout or callback scenario, the server

cannot use the wallet generated for database server-side authentication.

The following sections describe this in more detail:

■ Typical Client/Server

■ Callouts using Security

■ Callbacks using Security

Typical Client/Server
Server-side authentication takes place when the server provides certificates for

authentication to the client. When requested, the server will authenticate itself to

the client, also known as server-side authentication, by providing certificates to the

client. The SSL layer authenticates both peers during the connection handshake.

The client requests server-side authentication by setting any of the SSL_* values in

the JNDI property. See "Using JNDI for Authentication" on page 6-8 for more

information on these JNDI values.

For server-side authentication, you must set up a database wallet with the

appropriate certificates, using the Wallet Manager. See the Oracle Advanced Security
Administrator’s Guide for information on how to create a wallet.

Server activity Authentication method

Typical client/server Use database wallet generated by Oracle Wallet Manager

Callout to another object Set identifying certificates using either JNDI properties or
AuroraCurrentManager class.

Callback to client object Set identifying certificates using AuroraCurrentManager
class.
6-20 CORBA Developer’s Guide and Reference

Server-Side Authentication
Callouts using Security
A callout is when a Java object loaded within the database invokes a method within

another Java object. If the original call from the client required a certain level of

security—certificate-based or username/password security—the server object is

also required to provide the same level of security information for itself before

invoking the method on the second server object.

Figure 6–2 Server callout requires security

■ Username/password: If the client sent a username/password combination for

authenticating to the database, the server object is also required to send its own

username/password combination to the second object. The server object cannot

forward along the client’s username/password combination, but must supply

its own. You can set the username/password combination in the same manner

as the client. See "Providing Username and Password for Client-Side

Authentication" on page 6-9 for more information.

■ Certificate-based: Similarly, if the client sent certificates for authentication, the

server object must do the same. Additionally, the server must create and send

its own certificates, it cannot forward on the client’s certificates for

authentication. You set up your server object certificates using either the

appropriate JNDI properties or the AuroraCertificateManager as

discussed in "Using Certificates for Client Authentication" on page 6-13.

Callbacks using Security
A callback is when the client passes the server object an object reference to an object

that exists on the client. As shown in Figure 6–3, the server object receives the object

Note: If the client wants to verify the server against trustpoints or

authorize the server, it is up to the client to set up its trustpoints

and parse the server’s certificates for authorization. See

"Authorization" on page 6-26 for more information.

client object1 object2
client
security object1

security
information

information
IIOP Security 6-21

Server-Side Authentication
reference and invokes methods. This effectively calls out of the server and back to

an object located in the client. See "Debugging Techniques" on page 2-25 for more

information on callbacks.

Figure 6–3 Server callout requires security

The type of security you can use for callbacks is certificate-based security over SSL.

When you add SSL security to callbacks, you can have one of two situations:

1. Server-side authentication only

a. The client is not required to authenticate itself with a certificate. However, it

must still authenticate itself to the database using a username/password

combination.

b. The server, since server-side authentication is always required with SSL,

authenticates itself to the client by providing certificates contained in the

database wallet.

c. When the server calls back to the client, it acts as a client; thus, it is not

required to provide certificates for authentication.

client object1
client
certificate

object1
certificate

client
object1

username/password

server wallet

no certificate

certificate for

server-side authentication

a.

b.

c.

d.

obj2
6-22 CORBA Developer’s Guide and Reference

Server-Side Authentication
d. The called object, although contained in the client, is the server object in the

callback scenario. Thus, since server-side authentication rules hold, the

callback object must provide certificates to authenticate itself.

Example 6–2 Callback code with server-side authentication only

The following code shows the client code that performs (a) and (d) steps above.

The first half of the client code sets up a username and password for

authenticating itself to the database. It retrieves the server object. However,

before it invokes the server’s method, the last half of the code sets up the client

callback object by setting certificates, initializing the BOA, and instantiating the

callback object. Finally, the server method is invoked.

public static void main (String[] args) throws Exception {
String serviceURL = args [0];
String objectName = args [1];
String user = args [2];
String password = args [3];

//set up username/password for authentication to database. Set up
//security to be SSL_LOGIN - login authentication for client and server-side
//authentication.
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx. SSL_LOGIN);
Context ic = new InitialContext (env);

// Get the server object before preparing the client object.
// You have to do it in this order to get the ORB initialized correctly
Server server = (Server)ic.lookup (serviceURL + objectName);

// Create the client object and export it to the ORB in the client
// First, set up the ORB properties for the callback object
java.util.Properties props = new java.util.Properties();
props.put("ORBservices", " oracle.aurora.ssl ");

BASE64Decoder decoder = new BASE64Decoder();

// Initialize the ORB.
com.visigenic.vbroker.orb.ORB orb = (com.visigenic.vbroker.orb.ORB)

oracle.aurora.jndi.orb_dep.Orb.init(args, props);

// Get the certificate manager
IIOP Security 6-23

Server-Side Authentication
AuroraCertificateManager certificateManager =
 AuroraCertificateManagerHelper.narrow(
 orb.resolve_initial_references(" AuroraSSLCertificateManager "));

// Set up client callback certificate chain , ordered from user to CA.
byte[] userCert = decoder.decodeBuffer(testCert_base64);
byte[] caCert = decoder.decodeBuffer(caCert_base64);

// Set my certificate chain, ordered from CA to user.
byte[][] certificates = { caCert, userCert };
cm.setCertificateChain(certificates);
cm.addTrustedCertificate(caCert);

// Set client callback object’s private key.
byte[] encryptedPrivateKey=decoder.decodeBuffer(encryptedPrivateKey_base64);

cm.setEncryptedPrivateKey(encryptedPrivateKey, "welcome12");

// Initialize the BOA with SSL
org.omg.CORBA.BOA boa = orb.BOA_init("AuroraSSLTSession", null);

//Instantiate the client callback object
ClientImpl client = new ClientImpl ();

//register callback object with BOA
boa.obj_is_ready (client);

// Invoke the server method, passing the client to call us back
System.out.println (server.hello (client));
}
}

6-24 CORBA Developer’s Guide and Reference

Server-Side Authentication
2. Client-side and Server-side authentication

a. The client is required to authenticate itself with a certificate.

b. The server, since server-side authentication is always required with SSL,

authenticates itself to the client by providing certificates contained in the

database wallet.

c. When the server calls back to the client, it acts as a client; thus, it is required

to provide its own certificates for authentication.

d. The called object, although contained in the client, is the server object in the

callback scenario. Thus, since server-side authentication rules hold, the

callback object must provide certificates to authenticate itself.

The code for the client shown in Example 6–2 is the same for this scenario, except

that instead of providing a username and password, the client provides certificates.

Since client-side authentication is required and because the server is acting as a

client, the server code sets up identifying certificates for itself before invoking the

callback object. The server must create and send its own certificates, it cannot

forward on the client’s certificates for authentication. You set up your server object

certificates using either the appropriate JNDI properties or the

AuroraCertificateManager as discussed in "Using Certificates for Client

Authentication" on page 6-13.

Example 6–3 Server code in callback with client-side authentication

The following server code does the following:

1. Retrieve the Oracle8i ORB reference by invoking the init method.

2. Retrieve the AuroraCertificateManager

client
object1

client certificate

server wallet

server certificate

certificate for

server-side authentication

a.

b.

c.

d.

obj2
IIOP Security 6-25

Authorization
3. Set certificates and key through AuroraCertificateManager methods.

4. Invoke the client callback method, hello .

public String hello (Client client) {
BASE64Decoder decoder = new BASE64Decoder();
com.visigenic.vbroker.orb.ORB orb = (com.visigenic.vbroker.orb.ORB)

 oracle.aurora.jndi.orb_dep.Orb.init ();

try {
// Get the certificate manager
 AuroraCertificateManager cm = AuroraCertificateManagerHelper.narrow(
 orb.resolve_initial_references(" AuroraSSLCertificateManager "));

 byte[] userCert = decoder.decodeBuffer(testCert_base64);
 byte[] caCert = decoder.decodeBuffer(caCert_base64);

 // Set my certificate chain, ordered from CA to user.
 byte[][] certificates = { caCert, userCert };
 cm. setCertificateChain (certificates);

 // Set my private key.
 byte[] encryptedPrivateKey =

decoder.decodeBuffer(encryptedPrivateKey_base64);

 cm. setEncryptedPrivateKey (encryptedPrivateKey, "welcome12");

 } catch (Exception e) {
 e.printStackTrace();
 throw new org.omg.CORBA.INITIALIZE("Couldn’t initialize SSL context");
 }

 return "I Called back and got: " + client.helloBack ();
}

Authorization
The SSL layer authenticates the peers during the connect handshake. After the

handshake, you can be assured that the peer is authenticated to be who they said

they are. In addition, since the server has specified, within an Oracle wallet, its

trustpoints, the SSL adapter on the server will authorize the client. However, the

client has the option of how much authorization is done against the server.

■ The client can direct the SSL layer to authorize the server by setting up

trustpoints.
6-26 CORBA Developer’s Guide and Reference

Authorization
■ The client can authorize the server itself by extracting the server’s certificate

chain and parsing through the chain.

Setting up Trust Points
The server automatically has trustpoints established through the installed Oracle

Wallet. The trustpoints in the wallet are used to verify the client’s certificates.

However, if the client wants to verify the server’s certificates against certain

trustpoints, it can set up its these trustpoints, as follows:

■ If server-side authentication is requested, the client does not have any

certificates set. Thus, to verify the server’s certificates, the client can set a single

trustpoint through JNDI, or if it is a pure CORBA application—that does not

use JNDI—can add trustpoints through the

AuroraCertificateManager.addTrustedCertificate method. See

Example 6–4 on how to set a single trustpoint through JNDI.

■ If client-side authentication is requested, the client has set up certificates. Thus,

the client can add trustpoints to the file that contains its certificates, can add a

single trustpoint through JNDI, or if it is a pure CORBA application—that does

not use JNDI—can add trustpoints through the

AuroraCertificateManager.addTrustedCertificate method.

If the client does not set up trust points, it does not hinder the authorization. That is,

JServer assumes that the client trusts the server.

Example 6–4 Verifying Trustpoints

The following example shows how the client sets up its trustpoints through JNDI.

The JNDI SECURITY_TRUSTED_CERT property can take only a single certificate.

// setup the trust point
env.put(ServiceCtx. SECURITY_TRUSTED_CERT, trustedCert);

Parsing through the Server’s Certificate Chain
The client retrieves the certificates to perform any authorization checks. In the past,

you could retrieve the single issuer certificate. Now, you receive the entire issuer

certificate chain. You must parse the certificate chain for the information that you

need. You can parse the chain through the AuroraCurrent object.
IIOP Security 6-27

Authorization
AuroraCurrent contains three methods for retrieving and managing the

certificate chain. For creating and parsing the certificate chain, you can use the

X509Cert class methods. For information on this class, see Sun Microsystems’s

JDK documentation. Note that the X509Cert class manipulates the certificate chain

differently in JDK 1.1 than in Java 2.

The AuroraCurrent class methods are as follows:

■ getPeerDERCertChain —obtain the peer’s certificate chain, which enables

you to verify that the peer is authorized to access your application methods.

■ getNegotiatedProtocolVersion —obtain the SSL protocol version being

used by the connection, to verify the versioning.

■ getNegotiatedCipherSuite —obtain the cipher suite used to encrypt

messages passed over the connection, to verify that the encryption is strong

enough for your purposes.

When the handshake occurs, the protocol version and the type of encryption used is

negotiated. The type of encryption can be full or limited encryption, which complies

with the United States legal restrictions. After the handshake completes, the

AuroraCurrent can retrieve what was resolved in the negotiation.

AuroraCurrent Class
The following describes the methods contained within AuroraCurrent . See

Example 6–5 for a code example of these methods.

getNegotiatedCipherSuite
This method obtains the type of encryption negotiated in the handshake with the

peer.

Syntax

Note: You must configure the database and listener to be

SSL-enabled, as described in Chapter 3, "Configuring IIOP

Applications".

Note: JDK 1.1 certificate classes were contained within

javax.security.cert . In JDK 1.2, these classes moved to

java.security.cert .
6-28 CORBA Developer’s Guide and Reference

Authorization
String getNegotiatedCipherSuite(org.omg.CORBA.Object peer);

Returns

A string one of the following values:

Export ciphers:

■ SSL_RSA_EXPORT_WITH_RC4_40_MD5

■ SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

■ SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

■ SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

■ SSL_RSA_WITH_NULL_SHA

■ SSL_RSA_WITH_NULL_MD5

Domestic ciphers

■ SSL_RSA_WITH_3DES_EDE_CBC_SHA

■ SSL_RSA_WITH_RC4_128_SHA

■ SSL_RSA_WITH_RC4_128_MD5

■ SSL_RSA_WITH_DES_CBC_SHA

■ SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

■ SSL_DH_anon_WITH_RC4_128_MD5

■ SSL_DH_anon_WITH_DES_CBC_SH

getPeerDERCertificateChain
This method obtains the peer’s certificate chain. After retrieving the chain, you can

parse through the certificates within the chain, to authorize the peer to your

application.

Syntax

byte [] [] getPeerDERCertificateChain(org.omg.CORBA.Object peer);

Parameter Description

peer The peer from which you obtain the negotiated cipher.
IIOP Security 6-29

Authorization
Returns

A byte array containing an array of certificates.

getNegotiatedProtocolVersion
This method obtains the negotiated SSL protocol version of a peer.

Syntax

String getNegoriatedProtocolVersion(org.omg.CORBA.Object peer);

Returns

A string with one of the following values:

■ SSL_Version_Undetermined

■ SSL_Version_3_0

Example 6–5 Retrieving a Peer’s SSL information for Authorization

This example shows how to authorize a peer by retrieving the certificate

information using the AuroraCurrent object.

1. To retrieve an AuroraCurrent object, invoke the

ORB.resolve_initial_references method with AuroraSSLCurrent as

the argument.

2. Retrieve the SSL information from the peer through AuroraCurrent methods:

getNegotiatedCipherSuite , getNegotiatedProtocolVersion , and

getPeerDERCertChain .

3. Authorize the peer. You can authorize the peer based on its certificate chain.

Parameter Description

peer The peer from which you obtain its certificate chain.

Parameter Description

peer The peer from which you obtain the negotiated protocol version.
6-30 CORBA Developer’s Guide and Reference

Authorization
static boolean verifyPeerCert(org.omg.CORBA.Object obj) throws Exception
 {
 org.omg.CORBA.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the SSL current
AuroraCurrent current = AuroraCurrentHelper.narrow

 (orb.resolve_initial_references(" AuroraSSLCurrent "));

 // Check the cipher
 System.out.println("Negotiated Cipher: " +
 current. getNegotiatedCipherSuite (obj));
 // Check the protocol version
 System.out.println("Protocol Version: " +
 current. getNegotiatedProtocolVersion (obj));
 // Check the peer’s certificate
 System.out.println("Peer’s certificate chain : ");
 byte [] [] certChain = current. getPeerDERCertChain (obj);

 //Parse through the certificate chain using the X509Certificate methods
 System.out.println("length : " + certChain.length);
 System.out.println("Certificates: ");
 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 //For each certificate in the chain
 for(int i = 0; i < certChain.length; i++) {
 ByteArrayInputStream bais = new ByteArrayInputStream(certChain[i]);
 Certificate xcert = cf.generateCertificate(bais);
 System.out.println(xcert);
 if(xcert instanceof X509Certificate)
 {
 X509Certificate x509Cert = (X509Certificate)xcert;
 String globalUser = x509Cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
 }
 }

 return true;
 }

Note: This example uses the x509Certificate class methods for

parsing the certificate chain and is specific to Java 2. If you are

using Java 1.1, you must use the x509Certificate class methods

specific to Java 1.1.
IIOP Security 6-31

Authorization
Note: The x509Certificate class is a Java 2 class. See Sun

Microsystems’s documentation for more information. In addition,

you can find information in the javadoc for javax.net.ssl .
6-32 CORBA Developer’s Guide and Reference

Transaction Han
7

Transaction Handling

This chapter covers transaction management for CORBA applications. The CORBA

developer can choose to use one of the following transactional APIs provided:

■ Java Transaction API (JTA) by Sun Microsystems is a method for creating global

transactions in a pure Java environment. JTA can be used in either a single or

two-phase commit transaction. In addition, it can be demarcated either from the

client or the server object.

■ Java Transaction Service (JTS) is a mapping of a subset of the OMG Object

Transaction Service (OTS) API that is supplied with Oracle8i JServer. The

CORBA developer invokes a transaction service to enable transactional

properties for distributed objects in either a Java or non-Java environment. JTS

can only be used in a single-phase commit transaction. In addition, it only

supports client-side demarcation.

In Oracle8i, Java Transaction API (JTA) 1.0.1 for managing transactions. This chapter

assumes that you have a working knowledge of JTA. The discussion focuses mostly

on examples and explaining the differences between the Sun Microsystems JTA

specification and the Oracle JTA implementation. See

http://www.javasoft.com for the Sun Microsystems JTA specification.

■ Transaction Overview

■ JTA Server-Side Demarcation

■ JTA Client-Side Demarcation

■ Configuring Two-Phase Commit Engine

■ Creating DataSource Objects Dynamically

■ Setting the Transaction Timeout

■ Java Transaction Service
dling 7-1

Transaction Overview
■ Transaction Service Interfaces

■ JDBC Restrictions

Transaction Overview
Transactions manage changes to multiple databases within a single application as a

unit of work. That is, if you have an application that manages data within one or

more databases, you can ensure that all changes in all databases are committed at

the same time if they are managed within a transaction.

Transactions are described in terms of ACID properties, which are as follows:

■ Atomic: all changes to the database made in a transaction are rolled back if any

change fails.

■ Consistent: the effects of a transaction take the database from one consistent

state to another consistent state.

■ Isolated: the intermediate steps in a transaction are not visible to other users of

the database.

■ Durable: when a transaction is completed (committed or rolled back), its effects

persist in the database.

The JTA implementation, specified by Sun Microsystems, relies heavily on the JDBC

2.0 specification and XA architecture. The result is a complex requirement on

applications in order to ensure that the transaction is managed completely across all

databases. Sun Microsystems’s specifies Java Transaction API (JTA) 1.0.1 and JDBC

2.0 on http://www.javasoft.com .

You should be aware of the following when using JTA within the Oracle8i
environment:

■ Global and Local Transactions

■ Demarcating Transactions

■ Transaction Context Propagation

■ Two-Phase Commit

■ Enlisting Resources

■ JTA Limitations
7-2 CORBA Developer’s Guide and Reference

Transaction Overview
Global and Local Transactions
Whenever your application connected to a database using JDBC or a SQL server,

you were creating a transaction. However, the transaction involved only the single

database and all updates made to the database were committed at the end of these

changes. This is referred to as a local transaction.

A global transaction involves a complicated set of management objects—objects

that track all of the objects and databases involved in the transaction. These global

transaction objects—TransactionManager and Transaction —track all objects

and resources involved in the global transaction. At the end of the transaction, the

TransactionManager and Transaction objects ensure that all database

changes are atomically committed at the same time.

Demarcating Transactions
A transaction is said to be demarcated, which means that each transaction has a

definite start and stop point. For example, in an interactive tool such as SQL*Plus,

each SQL DML statement implicitly begins a new transaction, if it is not already

part of a transaction. A transaction ends when a SQL COMMIT or ROLLBACK

statement is issued.

In a distributed object application, transactions are demarcated differently if the

originator is the client or the server. Where the transaction originates defines the

transaction as client-side demarcated or server-side demarcated. See "JTA Client-Side

Demarcation" on page 7-9 and "JTA Server-Side Demarcation" on page 7-7 for more

information.

The client or server object programmatically demarcates the transaction by

executing the appropriate begin or commit methods. Explicit demarcation is

discussed further in "JTA Client-Side Demarcation" on page 7-9.
Transaction Handling 7-3

Transaction Overview
Transaction Context Propagation
When you begin a transaction within either a client or a server instance, JTA

denotes the originator in the transaction manager. As the transaction involves more

objects and resources, the transaction manager tracks all of these objects and

resources in the transaction and manages the transaction for these entities.

When an object calls another object, in order for the invoked object to be included in

the transaction, JTA propagates the transaction context to the invoked object.

Propagation of the transaction context is necessary for including the invoked object

into the global transaction.

As shown in Figure 7–1, if the client begins a global transaction, calls a server object

in the database, the transaction context is propagated to the server object. If the

server object supports transactions, this object is attached to the transaction

manager as involved in the global transaction. If this server object invokes another

server object, within the same or a remote database, the transaction context is

propagated to this object as well. This ensures that all objects that are supposed to

be involved in the global transaction are tracked by the transaction manager.

Figure 7–1 Connection to an Object over IIOP

Note: The originating client or object that starts the transaction

must also end the transaction with a commit or rollback. However,

the originator can end the transaction in a different method than

the originating method. For example, if the client begins the

transaction, calls out to a server object, the client must end the

transaction after the invoked method returns. The invoked server

object cannot end the transaction.

Client Server ObjectIIOP

connection
Server Object

IIOP

connection
7-4 CORBA Developer’s Guide and Reference

Transaction Overview
Enlisting Resources
Each resource, including databases, that you want managed in the global

transaction must be enlisted. The Oracle8i JTA implementation automatically enlists

all databases if you open a JDBC connection to the database within the context of a

global transaction. The Oracle8i JDBC Developer’s Guide contains more information

on how to open a JDBC connection to a database within a transaction.

An object—client or server object—can only enlist a database within the global

transaction through JDBC 2.0 methods within the DataSource object. The

getConnection method must be invoked after the begin method of the

UserTransaction object.

If your transaction involves more than one database, you must specify an Oracle8i
database as the two-phase commit engine. See "Configuring Two-Phase Commit

Engine" on page 7-15 for more information.

Two-Phase Commit
One of the primary advantages for a global transaction is the number of objects and

database resources managed as a single unit within the transaction. If your global

transaction involves more than one database resource, you must specify a

two-phase commit engine, which is an Oracle8i database designated to manage the

changes to all databases within the transaction. The two-phase commit engine is

responsible for ensuring that when the transaction ends, all changes to all databases

are either totally committed or fully rolled back.

On the other hand, if your global transaction has multiple server objects, but only a

single database resource, you do not need to specify a two-phase commit engine.

The two-phase commit engine is required only to synchronize the changes for

multiple databases. If you have only a single database, single-phase commit can be

performed by the transaction manager.

Figure 7–2 shows three databases enlisted in a global transaction and another

database that is designated as the two-phase commit engine. All databases,

including the local database, are enlisted when a JDBC connection is opened after

Note: Your two-phase commit engine can be any Oracle8i
database. It can be the database where your server object exists, or

even a database that is not involved in the transaction at all. See

"Configuring Two-Phase Commit Engine" on page 7-15 for a full

explanation of the two-phase commit engine setup.
Transaction Handling 7-5

Transaction Overview
the global transaction starts. See "Enlisting Resources" on page 7-5 for more

information on database enlistment.

When the global transaction ends, the two-phase commit engine ensures that all

changes made to the databases A, B, and the local are committed or rolled back

simultaneously.

Figure 7–2 Two-Phase Commit for Global Transactions

JTA Limitations
The following are the portions of the JTA specification that Oracle8i does not

support.

Nested Transactions
Nested transactions are not supported in this release. If you attempt to begin a new

transaction before committing or rolling back any existing transaction, the

transaction service throws a NotSupportedException exception.

Client Server Object

local database server

Database B

Database A

JDBC
connection

IIOP

connection

JDBC connection

table X

two-phase
 commit
 engine

manage
transactional
updates
to all three
databases
7-6 CORBA Developer’s Guide and Reference

JTA Server-Side Demarcation
Interoperability
The transaction services supplied with this release do not interoperate with other

JTA implementations.

JTA Server-Side Demarcation
To retrieve any objects or database resources, you can perform in-session activation

or remote lookup.

■ In-session activation: Server objects can be local or remote, the

UserTransaction is always local (only necessary for bean-managed

transactional beans), and DataSource objects can be local or remote. For local

retrieval of any of these objects, you can activate these objects within this

session. The namespace is always local, so the lookup requires only the JNDI

name, In addition, the initial context can be created without any set

environment.

■ Remote retrieval: The server object and/or the DataSource object is remote, so

you must still provide all of the same information that was provided in the

client scenario: authentication information, namespace URL, the "jdbc_
access:// " prefix, and registering the OracleDriver . For remote retrieval,

perform exactly as demonstrated in the "JTA Client-Side Demarcation" on

page 7-9.

Example 7–1 Server-Side Demarcation for Single-Phase Commit

Before starting the client, you must first bind the UserTransaction and

DataSource objects in the namespace.

Bind UserTransaction Object in the Namespace
You bind the UserTransaction object in the namespace through the bindut
command of the sess_sh tool. To bind a UserTransaction object to the name

"/test/myUT " in the namespace located on nsHost , execute the following:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
& bindut /test/myUT

Verify that the user bound with the UserTransaction has FORCE ANY

TRANSACTION granted to the user that bound this object. This privilege enables

the user to commit this transaction. In this example, you would execute the

following:

GRANT FORCE ANY TRANSACTION TO SCOTT
Transaction Handling 7-7

JTA Server-Side Demarcation
Bind DataSource Object in the Namespace
Use the bindds command of the sess_sh tool to bind an DataSource object in

the namespace. The full command is detailed in the Oracle8i Java Tools Reference.

To bind a DataSource object for a single-phase commit transaction with the

empHost database to the name "/test/empDatabase " in the namespace located

on nsHost , execute the following:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password TIGER
& bindds /test/empDatabase -url jdbc:oracle:thin:@empHost:5521:ORCL -dstype jta

After binding the DataSource object in the namespace, the server can enlist the

database within a global transaction.

Developing the Server Application
The following example demonstrates a server object performing an in-session

lookup of the UserTransaction and DataSource objects. This example uses a

single phase commit transaction.

ic = new InitialContext ();

// lookup the usertransaction
UserTransaction ut = (UserTransaction)ic.lookup ("/test/myUT");
...
ut.begin ();

// Retrieve the DataSource

Note: The client needs the same information to retrieve the

UserTransaction as you give within the bindut command.

Note: If using more than one database, you will need to setup for

a two-phase commit. See "Configuring Two-Phase Commit Engine"

on page 7-15 for more information.

Note: To modify this for two-phase commit, supply a username

and password within the environment passed into the initial

context constructor.
7-8 CORBA Developer’s Guide and Reference

JTA Client-Side Demarcation
DataSource ds = (DataSource)ic.lookup ("/test/empDB");

// Get connection to the database through DataSource.getConnection
Connection conn = ds.getConnection ();

JTA Client-Side Demarcation
For JTA, client-side demarcated transactions are explicitly demarcated

programmatically through the UserTransaction object, which must be bound

with the bindut command into the namespace. With client-side transaction

demarcation, the client controls the transaction. The client starts a global transaction

by invoking the UserTransaction begin method; it ends the transaction by

invoking either the commit or rollback methods.

In addition, the client must always set up an environment including a Hashtable
with authentication information and namespace location URL. It must also register

an OracleDriver when retrieving the transaction objects from the namespace.

Figure 7–3 shows a client invoking a server object. The client starts a global

transaction, then invokes the object. The transactional context is propagated to

include the server object.

Figure 7–3 Client Demarcated Global Transaction

The following must occur for the client to demarcate the transaction:

1. Initialize a Hashtable environment with the namespace address and

authentication information.

2. Register the OracleDriver .

Client Server ObjectIIOP

connection
Transaction Handling 7-9

JTA Client-Side Demarcation
3. Retrieve the UserTransaction object from the namespace within the client

logic. When you retrieve the UserTransaction object from any client, the

URL must consist of "jdbc_access:// " prefix before the JNDI name.

4. Start the global transaction within the client using

UserTransaction.begin() .

5. Retrieve the server object.

6. Invoke any object methods to be included in the transaction.

7. End the transaction through UserTransaction.commit() or

UserTransaction.rollback() .

Example 7–2 shows a client that invokes a server object within the transaction.

Example 7–2 Employee Client Code for Client Demarcated Transaction

After binding the UserTransaction object, your client code can retrieve the

UserTransaction object and start a global transaction. Since the client is

retrieving the UserTransaction object from a remote site, the lookup requires

authentication information, location of the namespace, the OracleDriver
registration, and the "jdbc_access:// " prefix.

import employee.*;
import java.sql.DriverManager;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
import java.sql.SQLException;
import javax.naming.NamingException;
import oracle.aurora.jndi.jdbc_access.jdbc_accessURLContextFactory;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 UserTransaction ut = null;
 EmployeeInfo info;
 String sessiiopURL = args [0];
 String objectName = args [1];

 //Set up the service URL to where the UserTransaction object
 //is bound. Since from the client, the connection to the database
 //where the namespace is located can be communicated with over either
7-10 CORBA Developer’s Guide and Reference

JTA Client-Side Demarcation
 //a Thin or OCI8 JDBC driver. This example uses a Thin JDBC driver.
 String namespaceURL = "jdbc:oracle:thin:@nsHost:1521:ORCL";

 // lookup usertransaction object in the namespace
 try {
 //1.(a) Authenticate to the database.
 // create InitialContext and initialize for authenticating client
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
 env.put (Context.SECURITY_CREDENTIALS, "TIGER");
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 //1.(b) Specify the location of the namespace where the transaction objects
 // are bound.
 env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
 Context ic = new InitialContext (env);

 //2. Register a JDBC OracleDriver. Required for JDBC connection to retrieve
 // UserTransaction from namespace.
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 //3. Retrieve the UserTransaction object from JNDI namespace
 ut = (UserTransaction)ic.lookup ("jdbc_access://test/myUT");

 //4. Start the transaction
 ut.begin();

 //5. Retrieve the server object reference
 // lookup employee object in the namespace
 Employee employee = (Employee)ic.lookup

("sess_iiop://myhost:1521:orcl/test/employee");

 //6. Perform bean business logic.
 // retrieve the info
 info = employee.getEmployee ("SCOTT");
 System.out.println ("Before Update: " + info.name +" " + info.salary);

 // change the salary and update it
 System.out.println ("Increase by 10%");
 info.salary += (info.salary * 10) / 100;
 employee.updateEmployee (info);

 //7. End the transaction
 //Commit the updated value
 ut.commit ();
Transaction Handling 7-11

JTA Client-Side Demarcation
}
The transaction context is propagated to the object when the client invokes it.

JTA Client-Side Demarcation Including Databases
The previous example showed how a transaction context was propagated to server

objects from a client within the JTA global transaction. When you execute the server

object, the transaction is propagated over the IIOP transport layer. In addition to

invoking IIOP server objects, you may wish to update databases over JDBC

connections. The databases that the object accesses must be enlisted to be included

within the global transaction.

If you access an Oracle8i database from the server that should be included in the

transaction, you must open the connection to the database after the global

transaction starts.

This section shows how you enlist databases using a JDBC connection in tandem

with the IIOP server object propagation.

To include a remote database within the transaction from a client, you must use a

DataSource object, which has been bound in the namespace as a JTA

DataSource . Then, invoke the getConnection method of the DataSource
object after the transaction has started, and the database is included in the global

transaction.

The following must occur in the client runtime to demarcate the transaction:

1. Initialize a Hashtable environment with the namespace address and

authentication information.

2. Register the OracleDriver .

3. Retrieve the UserTransaction object from the namespace within the client

logic. When you retrieve the UserTransaction object from the client, the

URL must consist of "jdbc_access:// " prefix before the JNDI name.

4. Start the global transaction within the client using

UserTransaction.begin() .

5. Enlist any database resources to be included in the transaction by opening a

connection to the specified database, as follows:

Note: At this time, the Oracle JTA implementation does not

support including non-Oracle databases in a global transaction.
7-12 CORBA Developer’s Guide and Reference

JTA Client-Side Demarcation
a. Retrieve the DataSource object from the namespace within the client

logic. When you retrieve the DataSource object from any client, the URL

must consist of "jdbc_access:// " prefix before the JNDI name.

b. Open a connection to the database through

DataSource.getConnection method.

6. Retrieve the object reference.

7. Invoke any object methods to be included in the transaction.

8. Invoke SQL DML statements against any enlisted databases.

9. End the transaction through UserTransaction.commit() or

UserTransaction.rollback() .

Example 7–3 shows a client that invokes a server object and enlists a single database

within the transaction.

Example 7–3 Employee Client Code for Client Demarcated Transaction

Before starting the client, you must first bind the UserTransaction and

DataSource objects in the namespace. The following example follows the steps

listed in "JTA Client-Side Demarcation Including Databases" on page 7-12.

import employee.*;
import java.sql.DriverManager;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
import java.sql.SQLException;
import javax.naming.NamingException;
import oracle.aurora.jndi.jdbc_access.jdbc_accessURLContextFactory;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 UserTransaction ut = null;
 EmployeeInfo info;
 String sessiiopURL = args [0];
 String objectName = args [1];
 String dsName = args [2];

 //Set up the service URL to where the UserTransaction object
Transaction Handling 7-13

JTA Client-Side Demarcation
 //is bound. Since from the client, the connection to the database
 //where the namespace is located can be communicated with over either
 //a Thin or OCI8 JDBC driver. This example uses a Thin JDBC driver.
 String namespaceURL = "jdbc:oracle:thin:@nsHost:1521:ORCL";

 // lookup usertransaction object in the namespace
 try {
 //1.(a) Authenticate to the database.
 // create InitialContext and initialize for authenticating client
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, "SCOTT");
 env.put (Context.SECURITY_CREDENTIALS, "TIGER");
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 //1.(b) Specify the location of the namespace where the transaction objects
 // are bound.
 env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
 Context ic = new InitialContext (env);

 //2. Register a JDBC OracleDriver. This is a requirement for retrieving
 // the UserTransaction and DataSource objects from the namespace over
 // a JDBC connection.
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 //3. Retrieve the UserTransaction object from JNDI namespace
 ut = (UserTransaction)ic.lookup ("jdbc_access://test/myUT");

 //4. Start the transaction
 ut.begin();

 //5.(a) Retrieve the DataSource (that was previously bound with bindds in
 // the namespace. After retrieving the DataSource...
 // get a connection to a database. You need to provide authentication info
 // for a remote database lookup, similar to what you would do from a client.
 // In addition, if this was a two-phase commit transaction, you must provide
 // the username and password.
 DataSource ds = (DataSource)ic.lookup ("jdbc_access://test/empDB");

 //5.(b). Get connection to the database through DataSource.getConnection
 // in this case, the database requires the same username and password as
 // set in the environment.
 Connection conn = ds.getConnection ();

 //6. Retrieve the server object reference
 // lookup employee object in the namespace
7-14 CORBA Developer’s Guide and Reference

Configuring Two-Phase Commit Engine
 Employee employee = (Employee)ic.lookup (sessiiopURL + objectName);

 //7 (a). Perform bean business logic.
 // retrieve the info
 info = employee.getEmployee ("SCOTT");
 System.out.println ("Before Update: " + info.name +" " + info.salary);

 // change the salary and update it
 System.out.println ("Increase by 10%");
 info.salary += (info.salary * 10) / 100;
 employee.updateEmployee (info);

 //7 (b). Execute SQL statements against the enlisted database.
 Statement stmt = conn.createStatement ();
 int cnt = stmt.executeUpdate ("insert into my_tab values (39304)");

 //8. Close the database connection.
 conn.close ();

 //9. End the transaction
 //Commit the updated value
 ut.commit ();
}

Configuring Two-Phase Commit Engine
If you have more than a single database involved in your transaction, you must

designate a two-phase commit engine for managing all changes to all databases

involved in the transaction. A two-phase commit engine is responsible for

contacting all of the databases at the end of the transaction and managing the

commit or rollback of all updates to all included databases. Thus, this two-phase

commit engine must have access to database links to each database included within

the transaction.

To configure for a two-phase commit, your system administrator must do the

following:

1. Designate an Oracle8i database as the two-phase commit engine.

2. Configure database links from the two-phase commit engine to each database

that may be involved in the global transaction. This is necessary for the

two-phase commit engine to communicate with each database at the end of the

transaction.
Transaction Handling 7-15

Configuring Two-Phase Commit Engine
3. Provide the database link name in the -dblink option of bindds for each

individual database when binding that database’s DataSource into the

namespace.

bindds /test/empDatabase -url jdbc:oracle:thin:@empHost:5521:ORCL
-dstype jta -dblink 2pcToEmp.oracle.com

4. Provide the two-phase commit engine’s fully-qualified database address,

username, and password when binding the UserTransaction into the

namespace.

bindut /test/myUT -url sess_iiop://dbsun.mycompany.com:2481:ORCL
-user SCOTT -password TIGER

Once all of this configuration is complete, your application differs from the

single-phase commit scenario in the following aspects:

■ If you are demarcating your transaction from the client, you can chose to not

supply the username and password in the UserTransaction binding; but

instead, provide the username/password when retrieving the

UserTransaction object within the Hashtable in the InitialContext
used when looking up the UserTransaction .

The following example shows a server object that performs an in-session activation

to retrieve both the UserTransaction and DataSource objects that have been

bound locally. The UserTransaction was bound with the two-phase commit

engine’s URL, username, and password. The DataSource objects were all bound

with the proper database links.

//with the environment set, create the initial context.
InitialContext ic = new InitialContext ();
UserTransaction ut = (UserTransaction)ic.lookup ("/test/myUT");

//With the same username and password for the 2pc engine,
// lookup the local datasource and a remote database.
DataSource localDS = (DataSource)ic.lookup ("/test/localDS");

//remote lookup requires environment setup

Note: Verify that the user bound with the UserTransaction has

FORCE ANY TRANSACTION granted to the user that bound this

object. This privilege enables the user to commit this transaction. In

this example, you would execute the following:

GRANT FORCE ANY TRANSACTION TO SCOTT
7-16 CORBA Developer’s Guide and Reference

Creating DataSource Objects Dynamically
Hashtable env = new Hashtable ();
env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put (Context.SECURITY_PRINCIPAL, user);
env.put (Context.SECURITY_CREDENTIALS, password);
env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, namespaceURL);
Context ic = new InitialContext (env);

//Register a JDBC OracleDriver.
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
//retrieve the DataSource for the remote database
DataSource remoteDS = (DataSource)ic.lookup ("jdbc_access://test/NewYorkDS");

//retrieve connections to both local and remote databases
Connection localConn = localDS.getConnection ();
Connection remoteConn = remoteDS.getConnection ();
...
//close the connections
localConn.close();
remoteConn.close();

//end the transaction
 ut.commit();

Creating DataSource Objects Dynamically
If you want to bind only a single DataSource object in the namespace to be used

for multiple database resources, you must do the following:

1. Bind the DataSource without specifying the URL, host, port, SID, or driver

type. Thus, you execute the bindds tool with only the -dstype jta option, as

follows:

sess_sh -service jdbc:oracle:thin:@nsHost:5521:ORCL -user SCOTT -password
TIGER
& bindds /test/empDatabase -dstype jta

2. Retrieve the DataSource in your code. When you perform the lookup, you

must cast the returned object to OracleJTADataSource instead of

DataSource . The Oracle-specific version of the DataSource class contains

methods to set the DataSource properties.

3. Set the following properties:

■ URL with the OracleJTADataSource.setURL method
Transaction Handling 7-17

Setting the Transaction Timeout
■ Host, port, SID, and driver type if you did not set the URL with the

following OracleJTADataSource methods: setURL ,

setDatabaseName , setPortNumber , and setDriverType

■ Database link if using two-phase commit engine with the

OracleJTADataSource.setDBLink method

■ Username and password if need to provide authentication information for a

two-phase commit engine. This information could have been provided on

the initial context environment or can be provided in the getConnection
method. However, if you want to set it with the OracleJTADataSource
methods, you can through the setUser and setPassword methods.

4. Retrieve the connection through the

OracleJTADataSource .getConnection method as indicated in the other

examples.

Example 7–4 Retrieving Generic DataSource

The following example retrieves a generically bound DataSource from the

namespace using in-session lookup and initializes all relevant fields.

//retrieve an in-session generic DataSource object
OracleJTADataSource ds = (OracleJTADataSource)ic.lookup ("/test/genericDS");

//set all relevant properties for my database
//URL is for a local database so use the KPRB URL
ds.setURL ("jdbc:oracle:kprb:");
//Used in two-phase commit, so provide the fully qualified database link that
//was created from the two-phase commit engine to this database
ds.setDBLink("localDB.oracle.com");

//Finally, retrieve a connection to the local database using the DataSource
Connection conn = ds.getConnection ();

Setting the Transaction Timeout
A global transaction automatically has an idle timeout of 60 seconds. If the object

attached to the transaction is idle for over the timeout limit, the transaction is rolled

back. To initialize a different timeout, set the timeout value—in seconds—through

the setTransactionTimeout method before the transaction is begun. If you

change the timeout value after the transaction begins, it will not affect the current

transaction. The following example sets the timeout to 2 minutes (120 seconds)

before the transaction begins.
7-18 CORBA Developer’s Guide and Reference

Java Transaction Service
//create the initial context
InitialContext ic = new InitialContext ();

//retrieve the UserTransaction object
ut = (UserTransaction)ic.lookup ("/test/myUT");

//set the timeout value to 2 minutes
ut.setTransactionTimeout (120);

//begin the transaction
ut.begin

//Update employee table with new employees
updateEmployees(emp, newEmp);

//end the transaction.
ut.commit ();

Java Transaction Service
With JTS, you demarcate the transaction off of a transaction context, which you can

retrieve from the TransactionService object. The transaction context contains

the begin, commit, rollback, suspend, and resume methods. One of the

disadvantages to JTS is that you cannot use a two-phase commit engine to

coordinate changes to multiple databases. The advantage to JTS is that you can

suspend and resume the transaction. Also, because it is specific to CORBA, you can

use either Java or non-Java languages in your application.

This implementation of JTS does not manage distributed transactions. Transaction

control distributed among multiple database servers, with support for the required

two-phase commit protocol, is only available within the JTA implementation.

The JTS transaction API supplied with Oracle8i JServer manages only one resource:

an Oracle8i database session. A transaction exists within only a single server, which

means that it cannot span multiple servers or multiple database sessions in a single

service. Transaction contexts are never propagated outside a server. If a server

object calls out to another server, the transaction context is not carried along.

However, a transaction can involve one or many objects. The transaction can

encompass one or many methods within these objects.

Whether you demarcate the transaction on the client or the server, the following

must occur:

1. Initialize the TransactionService object.
Transaction Handling 7-19

Java Transaction Service
Oracle8i automatically initializes this object for any server objects; thus, only

the client must explicitly initialize this object. The initialization is accomplished

through the AuroraTransactionService.initialize method.

2. Retrieve the TransactionService object through the static TS.getTS
method.

3. Retrieve the current transaction context through the

TransactionService.getCurrent method.

4. Manage the transaction through the following transaction context (Current
class) methods: begin , commit , rollback , rollback_only , suspend ,

resume .

JTS Client-Side Demarcation
The only difference between client and server-side demarcation is that the client

must initialize the TransactionService object before retrieving it. The client

initializes a TransactionService object on the intended server. Since JTS can

only manage a transaction within a single server, the client should invoke server

objects that exist only on that single server. In addition, any SQL statements

executed against the database should also be solely applied to the same server.

The following example demonstrates the steps required for a client-side

demarcation:

1. Initialize the TransactionService object. The initialization is accomplished

through the AuroraTransactionService.initialize method.

2. Retrieve the TransactionService object through the static TS.getTS
method.

3. Retrieve the current transaction context through the

TransactionService.getCurrent method.

4. Manage the transaction through the following transaction context (Current
class) methods: begin , commit , rollback , rollback_only , suspend ,

resume .

Example 7–5 Client-Side Demarcation for JTS Example

import employee.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jts.client.AuroraTransactionService;
import oracle.aurora.jts.util.*;
import javax.naming.Context;
7-20 CORBA Developer’s Guide and Reference

Java Transaction Service
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 //The environment must be setup with the correct authentication
 //and prefix information before you create the initial context
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 //provide the intial context and the service URL of the server
 AuroraTransactionService.initialize (ic, serviceURL);

 //Since JTS can only manage transactions on a single server, the
 //destination server object exists on the same server as the transaction
 //service. Thus, you use the same service URL to retrieve the object.
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);
 EmployeeInfo info;

 //Use the static method getTS to retrieve the TransactionService and the
 //static method getCurrent to retrieve the current transaction context.
 //Off of the Current object, you can start the transaction with the begin
 //method. All three methods have been combined as follows:
 TS.getTS ().getCurrent ().begin ();

 //invoke a method on the retrieved server object. Since the object exists
 //on the transaction server, it is included in the transaction.
 info = employee.getEmployee ("SCOTT");
 System.out.println (info.name + " " + " " + info.salary);
 System.out.println ("Increase by 10%");
 info.salary += (info.salary * 10) / 100;
Transaction Handling 7-21

Java Transaction Service
 employee.updateEmployee (info);
 info = employee.getEmployee ("SCOTT");
 System.out.println (info.name + " " + " " + info.salary);

 //Finally, commit the transaction with the Current.commit method.
 TS.getTS ().getCurrent ().commit (true);
 }
}

JTS Server-Side Demarcation
Oracle8i initializes the TransactionService for any server object. In the same

manner as the client, the server must invoke only other server objects on the same

server. SQL statements should also only be applied to the same database.

The following example demonstrates the steps required for a client-side

demarcation:

1. Retrieve the TransactionService object through the static TS.getTS
method.

2. Retrieve the current transaction context through the

TransactionService.getCurrent method.

3. Manage the transaction through the following transaction context (Current
class) methods: begin , commit , rollback , rollback_only , suspend ,

resume .

Example 7–6 Server-Side Demarcation for JTS Example

package employeeServer;

import employee.*;
import java.sql.*;
import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl extends _EmployeeImplBase
{
 Control txn;

 public EmployeeInfo getEmployee (String name) throws SQLError {
 //When the client invokes the getEmployee method, the transaction is started
 //Retreive the Transaction service through the static getTS method.
 //Retrieve the current transaction context through the getCurrent method.
 //And start the transaction with the Current.begin method. These have
7-22 CORBA Developer’s Guide and Reference

Java Transaction Service
 //been combined into one statement....
 TS.getTS ().getCurrent ().begin ();

 //Retrieve the employee information given the employee name.
 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };

 //At this point, we suspend the transaction to return the employee
 //information to the client.
 txn = TS.getTS().getCurrent().suspend();
 return new EmployeeInfo (name, empno, (float)salary);
 }

 public void updateEmployee (EmployeeInfo employee) throws SQLError {
 //After the client retrieves the employee info, it invokes the updateEmp
 //method to change any values.
 //The transaction is resumed in this method through the Current.resume,
 //which requires the Control object returned on the suspend method.
 TS.getTS().getCurrent().resume(txn);

 //update the employee’s information.
 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)
 where empno = :(employee.number) };

 //Once finished, complete the transaction with the Current.commit method.
 TS.getTS ().getCurrent ().commit (true);
 }

JTS Limitations
The implementations of JTS that is supplied for this Oracle8i release is intended to

support client-side transaction demarcation. It has limitations that you should be

aware of when designing your application.

No Distributed Transactions
This implementation of JTS does not manage distributed transactions. Transaction

control distributed among multiple database servers, with support for the required

two-phase commit protocol, is only available within the JTA implementation.
Transaction Handling 7-23

Transaction Service Interfaces
Resources
The JTS transaction API supplied with Oracle8i JServer manages only one resource:

an Oracle8i database session. A transaction cannot span multiple servers or

multiple database sessions in a single service.

Transaction contexts are never propagated outside a server. If a server object calls

out to another server, the transaction context is not carried along.

However, a transaction can involve one or many objects. The transaction can

encompass one or many methods of these objects. The scope of a transaction is

defined by a transaction context that is shared by the participating objects. For

example, your client can invoke one or more objects on the same server within a

single session or several objects on the same server within multiple sessions.

Nested Transactions
Nested transactions are not supported in this release. If you attempt to begin a new

transaction before committing or rolling back any existing transaction, the

transaction service throws a SubtransactionsUnavailable exception.

Timeouts
Methods of the JTS that support transaction timeout, such as setTimeout() , do

not work in this release. You can invoke them from your code, and no exception is

thrown, but they have no effect.

Interoperability
The transaction services supplied with this release do not interoperate with other

OTS implementations.

Transaction Service Interfaces
Oracle8i supports a version of the JTS. The JTS is a Java mapping of the OMG

Object Transaction Service (OTS). There are two classes that the application

developer can use:

■ TransactionService

■ UserTransaction , implemented by

oracle.aurora.jts.client.AuroraTransactionService
7-24 CORBA Developer’s Guide and Reference

Transaction Service Interfaces
TransactionService
Use the TransactionService to initialize a transaction context on the client.

Include the AuroraTransactionService package in your Java client source

with the following import statements:

import oracle.aurora.jts.client.AuroraTransactionService;
import javax.jts.*;
import oracle.aurora.jts.util.*;

These classes are included in the library file aurora_client.jar , which must be

in the CLASSPATH when compiling and executing all source files that use the JTS.

There is only one method in this package that you can call:

public synchronized static void initialize(Context initialContext,
 String serviceName)

This method initializes the transaction context on a client. The parameters are:

An example of using initialize() is:

Hashtable env = new Hashtable();
env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
env.put(Context.SECURITY_PRINCIPAL, "scott");
env.put(Context.SECURITY_CREDENTIALS, "tiger");
env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
Context initialContext = new InitialContext(env);
AuroraTransactionService.initialize
 (initialContext, "sess_iiop://localhost:2481:ORCL");

Using The Java Transaction Service
JTS contains methods that a client-side or server-side object uses to begin

transactions, commit or roll back a transaction, and perform utility functions such

as setting the transaction timeout. JTS methods should be used in CORBA clients

server objects.

The following sections describe the JTS APIs:

■ Required Import Statements

initialContext The context object returned by a JNDI Context constructor.

serviceName The complete service name. For example sess_
iiop://localhost:2481:ORCL
Transaction Handling 7-25

Transaction Service Interfaces
■ Java Transaction Service Methods

■ Current Transaction Methods

Required Import Statements
To use the JTS methods, include the following import statements in your source:

import oracle.aurora.jts.util.TS;
import javax.jts.util.*;
import org.omg.CosTransactions.*;

The oracle.aurora.jts.util package is included in the library file aurora_
client.jar , which must be in the CLASSPATH for all Java sources that use the

JTS.

You use the static methods in the TS class to retrieve the transaction service.

Java Transaction Service Methods
The JTS includes the following methods:

public static synchronized TransactionService getTS()

1. The getTS method returns a transaction service object.

2. Once a transaction service has been obtained, you can invoke the static method

getCurrent() on it to return a Current pseudo-object, the transaction

context.

3. Finally, you can invoke methods to begin, suspend, resume, commit, or roll

back the current transaction on the Current pseudo-object.

Here is an example that begins a new transaction on a client, starting with getting

the JNDI initial context:

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jts.client.AuroraTransactionService;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
...
Context ic = new InitialContext(env);
...
AuroraTransactionService.initialize(ic, serviceURL);
...
Employee employee = (Employee)ic.lookup (serviceURL + objectName);
EmployeeInfo info;
7-26 CORBA Developer’s Guide and Reference

Transaction Service Interfaces
oracle.aurora.jts.util.TS.getTS().getCurrent().begin();

If there is no transaction service available, then getTS() throws a

NoTransactionService exception.

Current Transaction Methods
The methods that you can call to control transactions on the current transaction

context are the following:

public void begin()

Begins a new transaction.

Can throw these exceptions:

■ NoTransactionService —if you have not initialized a transaction context.

■ SubtransactionsUnavailable —if you invoke a begin() before the

current transaction has been committed or rolled back.

See the section "TransactionService" on page 7-25 for information

about initialization.

public Control suspend()

Suspends the current transaction in the session. Returns a Control transaction

context pseudo-object. You must save this object reference for use in any subsequent

resume() invocations. Invoke suspend() in this way:

org.omg.CosTransactions.Control c =
 oracle.aurora.jts.util.TS.getTS().getCurrent().suspend();

suspend() can throw these exceptions:

■ NoTransactionService —if you have not initialized a transaction context.

■ TransactionDoesNotExist —if not in an active transaction context. This can

occur if a suspend() follows a previous suspend() , with no

intervening resume() .

If suspend() is invoked outside of a transaction context, then a

NoTransactionService exception is thrown. If suspend() is invoked before

begin() has been invoked, or after a suspend() , the a exception is thrown.

public void resume(Control which)
Transaction Handling 7-27

Transaction Service Interfaces
Resumes a suspended transaction. Invoke this method after a suspend() , in order

to resume the specified transaction context. The which parameter must be the

transaction Control object that was returned by the previous matching

suspend() invocation in the same session. For example:

org.omg.CosTransactions.Control c =
 oracle.aurora.jts.util.TS.getTS().getCurrent().suspend();
... // do some non-transactional work
oracle.aurora.jts.util.TS.getTS().getCurrent().resume(c);

resume() can throw:

■ InvalidControl —if the which parameter is not valid, or is null.

public void commit(boolean report_heuristics)

Commits the current transaction. Set the report_heuristics parameter to

false .

(The report_heuristics parameter is set to true for extra information on

two-phase commits. Because this release of JServer does not support the two-phase

commit protocol for distributed objects, use of the report_heuristics
parameter is not meaningful. It is included for compatibility with future releases.)

commit() can throw:

■ HeuristicMixe d—if report_heuristics was set true, and a two-phase

commit is in progress.

■ HeuristicHazard —if report_heuristics was set true, and a two-phase

commit is in progress.

The HeuristicMixe d and HeuristicHazard exceptions are documented in the

OTS specification.

If there is no active transaction, commit() throws a NoTransaction exception.

public void rollback()

Rolls back the effects of the current transaction.

Invoking rollback() has the effect of ending the transaction, so invoking any JTS

method except begin() after a rollback() throws a NoTransaction exception.

If not in a transaction context, rollback() throws the NoTransaction exception.
7-28 CORBA Developer’s Guide and Reference

For More Information on JTS
public void rollback_only() throws NoTransaction {

rollback_only() modifies the transaction associated with the current thread so

that the only possible outcome is to roll back the transaction. If not in a transaction

context, rollback_only() throws the NoTransaction exception.

public void set_timeout(int seconds)

This method is not supported, and has no effect if invoked. The default timeout

value is 60 seconds in all cases.

public Status get_status()

You can call get_status() at any time to discover the status of the current

transaction. Possible return values are:

■ javax.transaction.Status.StatusActive

■ javax.transaction.Status.StatusMarkedRollback

■ javax.transaction.Status.StatusNoTransaction

The complete set of status ints is defined in javax.transaction.Status .

public String get_transaction_name() {

Invoke get_transaction_name() to see the name of the transaction, returned as

a String. If this method is invoked before a begin() , after a rollback() , or

outside of a transaction context, it returns a null string.

For More Information on JTS
Information on the Java Transaction Service is available at:

http://java.sun.com:/products/jts/index.html

The Sun JTS specification is available at:

http://java.sun.com/products/jta/index.html

The OTS specification is part of the CORBA services specification. Chapter 10

(individually downloadable) contains the OTS specification. Get it at:

http://www.omg.org/library/csindx.html
Transaction Handling 7-29

JDBC Restrictions
JDBC Restrictions
If you are using JDBC calls in your CORBA server object to update a database, and

you have an active transaction context, you should not also use JDBC to perform

transaction services, by calling methods on the JDBC connection. Do not code JDBC

transaction management methods. For example:

Connection conn = ...
...
conn.commit(); // DO NOT DO THIS!!

Doing so will cause a SQLException to be thrown. Instead, you must commit

using the UserTransaction object retrieved to handle the global transaction.

When you commit using the JDBC connection, you are instructing a local

transaction to commit, not the global transaction. When the connection is involved

in a global transaction, trying to commit a local transaction within the global

transaction causes an error to occur.

In the same manner, you must also avoid doing direct SQL commits or rollbacks

through JDBC. Code the object to either handle transactions directly using the

UserTransaction interface.
7-30 CORBA Developer’s Guide and Reference

Example Code: CO
A

Example Code: CORBA

Oracle8i JServer installs several samples under the demo directory. Some of these

samples are included in this appendix for your perusal.

The examples in the demo directory include a UNIX makefile and Windows NT

batch file to compile and run each example. You need a Java-enabled Oracle8i
database with the standard EMP and DEPT demo tables to run the examples.

The emphasis in these short examples is on demonstrating features of the ORB and

CORBA, not on elaborate Java coding techniques. Each of the examples includes a

README file that tell you what files the example contains, what the example does,

and how to compile and run the example.

■ Basic Example

■ IFR Example

■ Callback Example

■ TIE Example

■ Pure CORBA Client

■ JTA Examples

■ JTS Transaction Example

■ SSL Examples

■ Session Example

■ Applet Example
RBA A-1

Basic Example
Basic Example
The following is a Bank example that demonstrates a simple CORBA application.

Included is the README, the IDL, the server code, and the client code. Refer to the

demo/corba/basic directory for the Makefile.

README
bank demonstrates:

This is an Oracle8i-compatible version of the VisiBroker Bank
example. The major differences from the Vb example are:

(1) There is no server main loop. For Oracle8i the
"wait-for-activation" loop is part of the IIOP presentation (MTS
server).

(2) _boa.connect(object) is used instead of the less portable
 _boa_obj_is_ready(object) in the server object implementation to
register the new Account objects.

(3) The client program contains the code necessary to lookup the
AccountManager object (published under /test/myBank) and activate it,
and to authenticate the client to the server. (Note that object
activation and authentication, via NON_SSL_LOGIN, happen "under the
covers" so to speak on the lookup() method invocation.)

(4) There is also a tie implementation of this example, with the
server being AccountManagerImplTie.java.

Bank.IDL
// Bank.idl

module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};
A-2 CORBA Developer’s Guide and Reference

Basic Example
Server
The server code is implemented in the following:

AccountManagerImpl.java
package bankServer;

import java.util.*;

public class AccountManagerImpl
 extends Bank._AccountManagerImplBase {

 public synchronized Bank.Account open(String name) {

 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 _orb().connect(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 8i.
 System.out.println("Created " + name + "'s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

}

Example Code: CORBA A-3

Basic Example
AccountImpl.java
package bankServer;

public class AccountImpl extends Bank._AccountImplBase {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

AccountManagerImplTie.java
package bankServer;

import java.util.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImplTie
 implements Bank.AccountManagerOperations,
 ActivatableObject {

 public synchronized Bank.Account open(String name) {

 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 org.omg.CORBA.ORB.init().BOA_init().obj_is_ready(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 8i.
 System.out.println("Created " + name + "'s account: " + account);

 // Save the account in the account dictionary.
A-4 CORBA Developer’s Guide and Reference

Basic Example
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return new Bank._tie_AccountManager(this);
 }

 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

}

Client.java
// Client.java opens the account through the AccountManager class and manages
// the account through the Account class */

import bankServer.*;
import Bank.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 5) {
 System.out.println("usage: Client serviceURL objectName user password "
 + "accountName");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];
 String name = args [4];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
Example Code: CORBA A-5

IFR Example
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager)ic.lookup (serviceURL + objectName);

 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 System.out.println
 ("The balance in " + name + "'s account is $" + balance);
 }
}

IFR Example
The following example shows how to use the IFR. Soft copy is located at

demo/corba/basic/bankWithIFR .

Bank.IDL
// Bank.idl

module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Server
The server code is implemented in the AccountManager , Account , and TIE

classes.
A-6 CORBA Developer’s Guide and Reference

IFR Example
AccountManagerImpl.java
package bankServer;

import java.util.*;

public class AccountManagerImpl
 extends Bank._AccountManagerImplBase {

 public synchronized Bank.Account open(String name) {

 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 _orb().connect(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 8i.
 System.out.println("Created " + name + "'s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

}

AccountImpl.java
package bankServer;

public class AccountImpl extends Bank._AccountImplBase {
Example Code: CORBA A-7

IFR Example
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

AccountManagerImplTie.java
package bankServer;

import java.util.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImplTie
 implements Bank.AccountManagerOperations,
 ActivatableObject {

 public synchronized Bank.Account open(String name) {

 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);

 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 org.omg.CORBA.ORB.init().BOA_init().obj_is_ready(account);

 // Print out the new account.
 // This just goes to the system trace file for Oracle 8i.
 System.out.println("Created " + name + "'s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
A-8 CORBA Developer’s Guide and Reference

IFR Example
 // Return the account.
 return account;
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return new Bank._tie_AccountManager(this);
 }

 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

}

Client
The client code is facilitated in the following:

■ Client.java

■ PrintIDL.java

Client.java
import bankServer.*;
import Bank.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import org.omg.CORBA.Repository;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 5) {
 System.out.println("usage: Client serviceURL objectName user password "
 + "accountName");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];
Example Code: CORBA A-9

IFR Example
 String name = args [4];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, user);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);

 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager)ic.lookup (serviceURL + objectName);

 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 System.out.println
 ("The balance in " + name + "'s account is $" + balance);

 System.out.println("Calling the implicit method get_interface()");
 org.omg.CORBA.InterfaceDef intf = (org.omg.CORBA.InterfaceDef)
 account._get_interface_def();
 System.out.println("intf = " + intf.name());

 System.out.println("Now explicitly looking up for IFR and printing the");
 System.out.println("whole repository");
 System.out.println("");

 Repository rep = (Repository)ic.lookup(serviceURL + "/etc/ifr");

 new PrintIDL(org.omg.CORBA.ORB.init()).print(rep);

 }
}

PrintIDL.java
import java.io.PrintStream;
import java.util.Vector;
import java.io.DataInputStream;
import org.omg.CORBA.Repository;
A-10 CORBA Developer’s Guide and Reference

IFR Example
public class PrintIDL
{
 private static org.omg.CORBA.ORB _orb;
 private static PrintStream _out = System.out;
 private static int _indent;

 public PrintIDL (org.omg.CORBA.ORB orb) {
 _orb = orb;
 }
 private void println(Object o) {
 for(int i = 0; i < _indent; i++) {
 _out.print(" ");
 }
 _out.println(o);
 }

 private String toIdl(org.omg.CORBA.IDLType idlType) {
 org.omg.CORBA.Contained contained =
org.omg.CORBA.ContainedHelper.narrow(idlType);
 return contained == null ?
 idlType.type().toString() :
 contained.absolute_name();
 }

 public void print(org.omg.CORBA.Container container) throws
org.omg.CORBA.UserException {
 org.omg.CORBA.Contained[] contained =
 container.contents(org.omg.CORBA.DefinitionKind.dk_all, true);
 for(int i = 0; i < contained.length; i++) {
 {

org.omg.CORBA.ContainedPackage.Description description =
contained[i].describe();

org.omg.CORBA.portable.OutputStream output =
_orb.create_output_stream();

org.omg.CORBA.ContainedPackage.DescriptionHelper.write(output,
description);

org.omg.CORBA.portable.InputStream input =
output.create_input_stream();

org.omg.CORBA.ContainedPackage.Description description2 =
 org.omg.CORBA.ContainedPackage.DescriptionHelper.read(input);
org.omg.CORBA.Any any1 = _orb.create_any();
org.omg.CORBA.ContainedPackage.DescriptionHelper.insert(any1,

description);
Example Code: CORBA A-11

IFR Example
org.omg.CORBA.Any any2 = _orb.create_any();
org.omg.CORBA.ContainedPackage.DescriptionHelper.insert(any2,

description2);
if(!any1.equals(any1) ||
 !any1.equals(any2) ||
 !any2.equals(any2) ||
 !any2.equals(any1)) {
 System.out.println("\n*** The desriptions were not equal (1) ***

\n");
}
org.omg.CORBA.ContainedPackage.Description description3 =
 org.omg.CORBA.ContainedPackage.DescriptionHelper.extract(any2);
if(description.kind != description2.kind ||
 !description.value.equals(description3.value)) {
 System.out.println("\n*** The desriptions were not equal (2) ***

\n");
}

 }
 switch(contained[i].def_kind().value()) {
 case org.omg.CORBA.DefinitionKind._dk_Attribute:

printAttribute(org.omg.CORBA.AttributeDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Constant:
printConstant(org.omg.CORBA.ConstantDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Exception:
printException(org.omg.CORBA.ExceptionDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Interface:
printInterface(org.omg.CORBA.InterfaceDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Module:
printModule(org.omg.CORBA.ModuleDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Operation:
printOperation(org.omg.CORBA.OperationDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Alias:
printAlias(org.omg.CORBA.AliasDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Struct:
printStruct(org.omg.CORBA.StructDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_Union:
printUnion(org.omg.CORBA.UnionDefHelper.narrow(contained[i]));
A-12 CORBA Developer’s Guide and Reference

IFR Example
break;
 case org.omg.CORBA.DefinitionKind._dk_Enum:

printEnum(org.omg.CORBA.EnumDefHelper.narrow(contained[i]));
break;

 case org.omg.CORBA.DefinitionKind._dk_none:
 case org.omg.CORBA.DefinitionKind._dk_all:
 case org.omg.CORBA.DefinitionKind._dk_Typedef:
 case org.omg.CORBA.DefinitionKind._dk_Primitive:
 case org.omg.CORBA.DefinitionKind._dk_String:
 case org.omg.CORBA.DefinitionKind._dk_Sequence:
 case org.omg.CORBA.DefinitionKind._dk_Array:
 default:

break;
 }
 }
 }

 private void printConstant(org.omg.CORBA.ConstantDef def) throws
org.omg.CORBA.UserException {

 println("const " + toIdl(def.type_def()) + " " + def.name() + " = " +
def.value() + ";");

 }

 private void printStruct(org.omg.CORBA.StructDef def) throws
org.omg.CORBA.UserException {

 println("struct " + def.name() + " {");
 _indent++;
 org.omg.CORBA.StructMember[] members = def.members();
 for(int j = 0; j < members.length; j++) {
 println(toIdl(members[j].type_def) + " " + members[j].name + ";");
 }
 _indent--;
 println("};");
 }

 private void printUnion(org.omg.CORBA.UnionDef def) throws
org.omg.CORBA.UserException {
 println("union " + def.name() + " switch(" +
toIdl(def.discriminator_type_def()) + ") {");
 org.omg.CORBA.UnionMember[] members = def.members();
 int default_index = def.type().default_index();
 _indent++;
 for(int j = 0; j < members.length; j++) {
 if(j == default_index) {

println("default:");
Example Code: CORBA A-13

IFR Example
 }
 else {

println("case " + members[j].label + ":");
 }
 _indent++;
 println(toIdl(members[j].type_def) + " " + members[j].name + ";");
 _indent--;
 }
 _indent--;
 println("};");
 }

 private void printException(org.omg.CORBA.ExceptionDef def) throws
org.omg.CORBA.UserException {

 println("exception " + def.name() + " {");
 _indent++;
 org.omg.CORBA.StructMember[] members = def.members();
 for(int j = 0; j < members.length; j++) {
 println(toIdl(members[j].type_def) + " " + members[j].name + ";");
 }
 _indent--;
 println("};");
 }

 private void printEnum(org.omg.CORBA.EnumDef def) throws
org.omg.CORBA.UserException {

 org.omg.CORBA.TypeCode type = def.type();
 println("enum " + type.name() + " {");
 _indent++;
 int count = type.member_count();
 for(int j = 0; j < count; j++) {
 println(type.member_name(j) + ((j == count - 1) ? "" : ","));
 }
 _indent--;
 println("};");
 }

 private void printAlias(org.omg.CORBA.AliasDef def) throws
org.omg.CORBA.UserException {

 org.omg.CORBA.IDLType idlType = def.original_type_def();
 String arrayBounds = "";
 while(true) {
 // This is a little strange, since the syntax of typedef'ed
 // arrays is stupid.
 org.omg.CORBA.ArrayDef arrayDef =
A-14 CORBA Developer’s Guide and Reference

IFR Example
org.omg.CORBA.ArrayDefHelper.narrow(idlType);
 if(arrayDef == null) {

break;
 }
 arrayBounds += "[" + arrayDef.length() + "]";
 idlType = arrayDef.element_type_def();
 }
 println("typedef " + toIdl(idlType) + " " + def.name() + arrayBounds + ";");
 }

 private void printAttribute(org.omg.CORBA.AttributeDef def) throws
org.omg.CORBA.UserException {

 String readonly = def.mode() == org.omg.CORBA.AttributeMode.ATTR_READONLY ?
 "readonly " : "";

println(readonly + "attribute " + toIdl(def.type_def()) + " " + def.name() +
";");

 }

 private void printOperation(org.omg.CORBA.OperationDef def) throws
org.omg.CORBA.UserException {

 String oneway = def.mode() == org.omg.CORBA.OperationMode.OP_ONEWAY ?
 "oneway " : "";
 println(oneway + toIdl(def.result_def()) + " " + def.name() + "(");
 _indent++;
 org.omg.CORBA.ParameterDescription[] parameters = def.params();
 for(int k = 0; k < parameters.length; k++) {
 String[] mode = { "in", "out", "inout" };
 String comma = k == parameters.length - 1 ? "" : ",";
 println(mode[parameters[k].mode.value()] + " " +

toIdl(parameters[k].type_def) + " " +
 parameters[k].name + comma);

 }
 _indent--;
 org.omg.CORBA.ExceptionDef[] exceptions = def.exceptions();
 if(exceptions.length > 0) {
 println(") raises (");
 _indent++;
 for(int k = 0; k < exceptions.length; k++) {

String comma = k == exceptions.length - 1 ? "" : ",";
println(exceptions[k].absolute_name() + comma);

 }
 _indent--;
 }
 println(");");
 }
Example Code: CORBA A-15

Callback Example
 private void printInterface(org.omg.CORBA.InterfaceDef idef) throws
org.omg.CORBA.UserException {

 String superList = "";
 {
 org.omg.CORBA.InterfaceDef[] base_interfaces = idef.base_interfaces();
 if(base_interfaces.length > 0) {

superList += " :";
for(int j = 0; j < base_interfaces.length; j++) {
 String comma = j == base_interfaces.length - 1 ? "" : ",";
 superList += " " + base_interfaces[j].absolute_name() + comma;
}

 }
 }
 println("interface " + idef.name() + superList + " {");
 _indent++;
 print(idef);
 _indent--;
 println("};");
 }

 private void printModule(org.omg.CORBA.ModuleDef def) throws
org.omg.CORBA.UserException {

 println("module " + def.name() + " {");
 _indent++;
 print(def);
 _indent--;
 println("};");
 }
}

Callback Example
The callback example is available online at

demo/examples/corba/basic/callback.

README
Overview
========

callback shows a CORBA server object that calls back to the client-side
object. It works by activating a new object in the client-side ORB, using the
Basic Object Adapter (BOA), and boa.obj_is_ready(), and sending a reference to
A-16 CORBA Developer’s Guide and Reference

Callback Example
that object to the CORBA server object.

Source files
============

client.idl

The CORBA IDL that defines the client-side object, that will be called
from the server.

interface Client
 wstring helloBack()

server.idl

The CORBA IDL that defines the server-side object, that will be called
from the client, and that will in turn call back to the client.

interface Server
 wstring hello (in client::Client object)

Since the object is registered on the client side, and is not
published in the database, to perform a callback the server object
must have a reference to the client-side object. In this example, the
server is called with a reference to the object that has been
registered with the client-side Basic Object Adapter (BOA) as a
parameter.

Client.java

Invoke the client program from a command prompt, and pass it four arguments,
the

 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published bean to lookup and instantiate
 - username
 - password that authenticates the client to the Oracle8i database server

For example:
Example Code: CORBA A-17

Callback Example
% java -classpath LIBs Client sess_iiop://localhost:2222 \
 /test/myHello scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code performs the following steps:

 - gets the arguments passed on the command line
 - creates a new JNDI Context (InitialContext())
 - looks up the published CORBA 'Server' object to find and activate it
 - starts up the ORB on the client system (ORB.init())
 - gets the basic object adapter object (BOA)
 - instantiates a new client callback object (new ClientImpl()), and
 registers it with the object adapater (boa.obj_is_ready(client))
 - invokes the hello() method on the server object, passing it the
 reference to the client callback object

It is important to do the lookup() before initializing the ORB on the Client
side: The lookup call initializes the ORB in a way that's compatible with
Oracle 8i. The following org.omg.CORBA.ORB.init() call does not initialize a
new ORB instance but just returns the orb that was initialized by the lookup
call.

The client prints:

I Called back and got: Hello Client World!

which is the concatenation of the strings returned by the server
object, and the called-back client-side object.

serverServer/ServerImpl.java

This class implements the server interface. The code has one method, hello(),
which returns its own String ("I called back and got: ") plus the
String that it gets as the return from the callback to the client.
A-18 CORBA Developer’s Guide and Reference

Callback Example
clientServer/ClientImpl.java

This class implements the client interface. It has a public constructor, which
is required, and a single method, helloBack(), which simply returns the String
"Hello Client World!" to the client that called it (the server object 'server'
in this case).

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.
Example Code: CORBA A-19

Callback Example
See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

IDL Files

Client.IDL
module client {
 interface Client {
 wstring helloBack ();
 };
};

Server.IDL
#include <client.idl>

module server {
 interface Server {
 wstring hello (in client::Client object);
 };
};

Server

ServerImpl.java
/* $Header: ServerImpl.java 14-mar-00.13:48:31 ielayyan Exp $ */
/* Copyright (c) Oracle Corporation 2000. All Rights Reserved. */
package serverServer;

import server.*;
import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ServerImpl extends _ServerImplBase implements ActivatableObject
{
 public String hello (Client client) {
 return "I Called back and got: " + client.helloBack ();
A-20 CORBA Developer’s Guide and Reference

Callback Example
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

Client
The client invokes the server object, which calls back to another object on the

client-side. The originating client is implemented in Client.java. The client-side

callback object is implemented in ClientImpl.java.

Client.java
import server.*;
import client.*;
import clientServer.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // Get the server object before preparing the client object
Example Code: CORBA A-21

TIE Example
 // You have to do it in that order to get the ORB initialized correctly
 Server server = (Server)ic.lookup (serviceURL + objectName);

 // Create the client object and publish it to the orb in the client
 //org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
 com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();
 org.omg.CORBA.BOA boa = orb.BOA_init ();
 ClientImpl client = new ClientImpl ();
 boa.obj_is_ready (client);

 // Pass the client to the server that will call us back
 System.out.println (server.hello (client));
 }
}

ClientImpl.java
/* $Header: ClientImpl.java 14-mar-00.13:48:25 ielayyan Exp $ */
/* Copyright (c) Oracle Corporation 2000. All Rights Reserved. */
package clientServer;

import client.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class ClientImpl extends _ClientImplBase implements ActivatableObject
{
 public String helloBack () {
 return "Hello Client World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

TIE Example
This example demonstrates how to use the TIE mechanism.

README
Overview
========
A-22 CORBA Developer’s Guide and Reference

TIE Example
This is a CORBA TIE (delegation) implementation of the helloworld example. See
the readme for that example for more information. It uses the
_initializeAuroraObject() method to return a class delegate, rather than the
object itself.

Source files
============

hello.idl

(See the helloworld example readme file.)

Client.java

(See the helloworld example readme file.)

helloServer/HelloImpl.java

Implements the IDL-specified Hello interface. The interface has one
method, helloWorld(), that returns a String to the caller.

Note that the class definition *implements* the IDL-generated
HelloOperations interface, rather than extending _HelloImplBase, as in
the helloworld example.

The class also implements the Aurora ActivateableObject
interface. ActivatableObject has only one method:
_initializeAuroraObject(), which returns the class to be activated by
the BOA.

This class performs no database access.

Client-side output
==================

The client prints the returned String "Hello World!" and then exits
immediately.
Example Code: CORBA A-23

TIE Example
Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.
A-24 CORBA Developer’s Guide and Reference

TIE Example
Hello.IDL
module hello {
 interface Hello {
 wstring helloWorld ();
 };
};

Server Code - HelloImpl.java
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl implements HelloOperations, ActivatableObject
{
 public String helloWorld () {
 return "Hello World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return new _tie_Hello (this);
 }
}

Client.java
import hello.Hello;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
Example Code: CORBA A-25

Pure CORBA Client
 String user = args [2];
 String password = args [3];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 Hello hello = (Hello)ic.lookup (serviceURL + objectName);
 System.out.println (hello.helloWorld ());
 }
}

Pure CORBA Client
This example uses CORBA Naming Service to retrieve any objects instead of JNDI.

README
Overview
========

This example is a variant of the VisiBroker for Java "bank" example,
which simply creates and publishes a factory CORBA object
AccountManager that generates Account objects with some random
balance. The Account object has a method, balance(), that returns the
account "balance".

This example differs from the other basic CORBA examples in this set
in that it does not use JNDI to lookup and activate the published
object. It uses the CosNaming name service instead, along with the
classes that are part of the oracle.aurora.AuroraServices package.

Source files
============

bank.idl

A-26 CORBA Developer’s Guide and Reference

Pure CORBA Client
The CORBA IDL for the example. Defines a single interface Bank with
two interfaces: Account and AccountManager. The AccountManager has a
single method, open(), that creates an Account object, and returns it
to the caller. The Account class has a single method, balance(), that
returns the random balance in the account.

bankServer.AccountManagerImpl.java

The Java code that implements the AccountManager class.

bankServer.AccountImpl.java

The Java code that implements the Account class.

Client.java

You invoke the client program from a command prompt, and pass it five
arguments. For example:

% java -classpath LIBs Client localhost 2481 ORCL scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables might be %ORACLE_HOME% and
%JAVA_HOME%.)

The client program looks up and accesses the published AccountManager
using the following steps:

(1) Get argument values from the invocation that set:
 (a) the hostname of the server machine
 (b) the GIOP listener port on that server
 (c) the database SID for the Oracle server
 (d) the username in the instance
Example Code: CORBA A-27

Pure CORBA Client
 (e) the password

(2) Uses the standard resolve_initial_references() method on the ORB to
obtain the NameService of 8i. There are various properties that
control how this initial name service is obtained, as explained in the
doc and in the example code. The Oracle name service object is an instance of a
PublishingContext, which is an Oracle-specific extension to the CosNaming
NamingContext interface. But you can resolve arbitrary references to
any service also using resolve_initial_references().

(The PublishingContext class, along with the other Oracle-specific classes
used in this example, is documented in the JavaDoc that accompanies this
EJB/CORBA product.)

(3) Gets and uses a server login object, which is published under the standard
name /etc/login in all Java-enabled Oracle8i databases. This is done in the
following steps:

 (a) Set the /etc directory and the login object name as members of a
 CosNaming NameComponent array.
 (b) Using this array, resolve the component as a Java Object.
 (c) Narrow it to be a published object type.
 (d) Activate and get the object using the Oracle-specific
 activate_no_helper() method.
 (e) Narrow it to an Oracle LoginServer object.
 (f) Create a client login proxy object.
 (g) Authenticate the client using the login object.

(4) Lookup and activate an AccountManager class, which is published (by the
Makefile) as /test/bank. The steps are the same as those for the login object.

(You can appreciate now how much the Oracle JNDI lookup() method is doing for
you, as it performs steps (2), (3), and (4) in one invocation.)

(5) Get a new Account object, call the balance() method on it to get the
"balance", and print the value to the client console.

Output
======

The printed output is something like:
A-28 CORBA Developer’s Guide and Reference

Pure CORBA Client
The balance in Jack.B.Quick's account is $786.68

The actual balance amount is a random number, and will be different
each time you run this program.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.
Example Code: CORBA A-29

Pure CORBA Client
You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Bank.IDL
// Bank.idl

module Bank {
 interface Account { float balance(); };
 interface AccountManager { Account open(in string name); };
};

Server Code

AccountManagerImpl.java
package bankServer;

// import the idl-generated classes
import Bank.*;

import java.util.Dictionary;
import java.util.Random;
import java.util.Hashtable;

// Corba specific imports
import org.omg.CORBA.Object;

// Aurora-orb specific imports
import oracle.aurora.AuroraServices.ActivatableObject;

public class AccountManagerImpl
 extends _AccountManagerImplBase
 implements ActivatableObject
{
 private Dictionary _accounts = new Hashtable ();
 private Random _random = new Random ();

 // Constructors
 public AccountManagerImpl () { super (); }
 public AccountManagerImpl (String name) { super (name); }

 public Object _initializeAuroraObject () {
A-30 CORBA Developer’s Guide and Reference

Pure CORBA Client
 return new AccountManagerImpl ("BankManager");
 }

 public synchronized Account open (String name) {
 // Lookup the account in the account dictionary.
 Account account = (Account) _accounts.get (name);

 // If there was no account in the dictionary, create one.
 if (account == null) {
 // Make up the account's balance, between 0 and 1000 dollars.
 float balance = Math.abs (_random.nextInt ()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl (balance);

 // Make the object available to the ORB.
 _orb ().connect (account);

 // Print out the new account.
 System.out.println ("Created " + name + "'s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put (name, account);
 }

 // Return the account.
 return account;
 }
}

AccountImpl.java
package bankServer;

import Bank.*;

public class AccountImpl extends _AccountImplBase {
 private float _balance;

 public AccountImpl () { _balance = (float) 100000.00; }
 public AccountImpl (float balance) { _balance = balance; }
 public float balance () { return _balance; }
}

Example Code: CORBA A-31

Pure CORBA Client
Client.java
import java.lang.Exception;

import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import org.omg.CosNaming.NameComponent;

import oracle.aurora.client.Login;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.AuroraServices.LoginServerHelper;
import oracle.aurora.AuroraServices.PublishedObject;
import oracle.aurora.AuroraServices.PublishingContext;
import oracle.aurora.AuroraServices.PublishedObjectHelper;
import oracle.aurora.AuroraServices.PublishingContextHelper;

import Bank.Account;
import Bank.AccountManager;
import Bank.AccountManagerHelper;

public class Client {
 public static void main(String args[]) throws Exception {
 // Parse the args
 if (args.length < 4 || args.length > 5) {
 System.out.println ("usage: Client host port username password <sid>");
 System.exit(1);
 }
 String host = args[0];
 String port = args[1];
 String username = args[2];
 String password = args[3];
 String sid = null;
 if(args.length == 5)
 sid = args[4];

 // Declarations for an account and manager
 Account account = null;
 AccountManager manager = null;
 com.visigenic.vbroker.orb.ORB orb;
 PublishingContext rootCtx = null;

 // access the Aurora Names Service
 try {
 // Initialize the ORB
 String initref;
A-32 CORBA Developer’s Guide and Reference

Pure CORBA Client
 initref = (sid == null) ? "iioploc://" + host + ":" + port :
"iioploc://" + host + ":" + port + ":" + sid;
 System.setProperty("ORBDefaultInitRef", initref);

 /*
 * Alternatively the following individual properties can be set
 * which take precedence over the URL above
 System.setProperty("ORBBootHost", host);
 System.setProperty("ORBBootPort", port);
 if(sid != null)
System.setProperty("ORACLE_SID", sid);
 */

 /*
 * Some of the other properties that you can set
 System.setProperty("ORBNameServiceBackCompat", "false");
 System.setProperty("USE_SERVICE_NAME", "true");
 System.setProperty("ORBUseSSL", "true");
 System.setProperty("TRANSPORT_TYPE", "sess_iiop");
 */

 orb = oracle.aurora.jndi.orb_dep.Orb.init();
 // Get the Name service Object reference
 rootCtx = PublishingContextHelper.narrow(orb.resolve_initial_references(
 "NameService"));
 // Get the pre-published login object reference
 PublishedObject loginPubObj = null;
 LoginServer serv = null;
 NameComponent[] nameComponent = new NameComponent[2];
 nameComponent[0] = new NameComponent ("etc", "");
 nameComponent[1] = new NameComponent ("login", "");

 // Lookup this object in the Name service
 Object loginCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 loginPubObj = PublishedObjectHelper.narrow (loginCorbaObj);

 // create and activate this object (non-standard call)
 loginCorbaObj = loginPubObj.activate_no_helper ();
 serv = LoginServerHelper.narrow (loginCorbaObj);

 // Create a client login proxy object and authenticate to the DB
 Login login = new Login (serv);
 login.authenticate (username, password, null);
Example Code: CORBA A-33

JTA Examples
 // Now create and get the bank object reference
 PublishedObject bankPubObj = null;
 nameComponent[0] = new NameComponent ("test", "");
 nameComponent[1] = new NameComponent ("bank", "");

 // Lookup this object in the name service
 Object bankCorbaObj = rootCtx.resolve (nameComponent);

 // Make sure it is a published object
 bankPubObj = PublishedObjectHelper.narrow (bankCorbaObj);

 // create and activate this object (non-standard call)
 bankCorbaObj = bankPubObj.activate_no_helper ();
 manager = AccountManagerHelper.narrow (bankCorbaObj);

 account = manager.open ("Jack.B.Quick");

 float balance = account.balance ();
 System.out.println ("The balance in Jack.B.Quick's account is $"
 + balance);
 } catch (SystemException e) {
 System.out.println ("Caught System Exception: " + e);
 e.printStackTrace ();
 } catch (Exception e) {
 System.out.println ("Caught Unknown Exception: " + e);
 e.printStackTrace ();
 }
 }
}

JTA Examples

Single-Phase Commit JTA Transaction Example

Employee.IDL
module employee {
 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
A-34 CORBA Developer’s Guide and Reference

Single-Phase Commit JTA Transaction Example
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 void setUpDSConnection (in wstring dsName) raises (SQLError);
 EmployeeInfo getEmployee (in wstring name) raises (SQLError);
 void updateEmployee (in EmployeeInfo name) raises (SQLError);
 };
};

Client.java
import employee.*;

import java.sql.DriverManager;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;

import java.sql.SQLException;
import javax.naming.NamingException;

import oracle.aurora.jndi.jdbc_access.jdbc_accessURLContextFactory;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;

public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 7)
 {
 System.out.println ("usage: Client sessiiopURL jdbcURL objectName " +

 "user password userTxnName dataSrcName");
 System.exit (1);
 }
 String sessiiopURL = args [0];
 String jdbcURL = args [1];
 String objectName = args [2];
 String user = args [3];
 String password = args [4];
 String utName = args [5];
Example Code: CORBA A-35

Single-Phase Commit JTA Transaction Example
 String dsName = args [6];

 // lookup usertransaction object in the namespace
 UserTransaction ut = lookupUserTransaction (user, password,

jdbcURL, utName);

 // lookup employee object in the namespace
 Employee employee = lookupObject (user, password, sessiiopURL, objectName);
 EmployeeInfo info;

 // for (int ii = 0; ii < 10; ii++)
 // {
 // start a transaction
 ut.begin ();

 // set up the DS on the server
 employee.setUpDSConnection (dsName);

 // retrieve the info
 info = employee.getEmployee ("SCOTT");
 System.out.println ("Before Update: " + info.name +" " + info.salary);

 // change the salary and update it
 System.out.println ("Increase by 10%");
 info.salary += (info.salary * 10) / 100;
 employee.updateEmployee (info);

 // commit the changes
 ut.commit ();

 // NOTE: you can do this before the commit of the previous transaction
 // (without starting a txn) then it becomes part of the first
 // global transaction.
 // start another transaction to retrieve the updated info
 ut.begin ();

 // Since, you started a new transaction, the DS needs to be
 // enlisted with the 'new' transaction. Hence, setup the DS on the server
 employee.setUpDSConnection (dsName);

 // try to retrieve the updated info
 info = employee.getEmployee ("SCOTT");
 System.out.println ("After Update: " + info.name +" " + info.salary);

 // commit the seond transaction
A-36 CORBA Developer’s Guide and Reference

Single-Phase Commit JTA Transaction Example
 ut.commit ();
 }

 private static UserTransaction lookupUserTransaction (String user,
String password,
String jdbcURL,
String utName)

 {
 UserTransaction ut = null;
 try {
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put(jdbc_accessURLContextFactory.CONNECTION_URL_PROP, jdbcURL);
 Context ic = new InitialContext (env);

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

 ut = (UserTransaction)ic.lookup ("jdbc_access:/" + utName);
 } catch (NamingException e) {
 e.printStackTrace ();
 } catch (SQLException e) {
 e.printStackTrace ();
 }
 return ut;
 }

 private static Employee lookupObject (String user, String password,
 String sessiiopURL, String objectName)

 {
 Employee emp = null;
 try {
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 System.out.println ("Trying to lookup: " + sessiiopURL + objectName);
 emp = (Employee)ic.lookup (sessiiopURL + objectName);
 } catch (NamingException e) {
 e.printStackTrace ();
 }
Example Code: CORBA A-37

Single-Phase Commit JTA Transaction Example
 return emp;
 }
}

EmployeeServer.sqlj
package employeeServer;

import employee.*;

import java.sql.Connection;
import java.sql.DataSource;
import java.sql.SQLException;
import java.util.Hashtable;

import javax.naming.Context;
import javax.naming.InitialContext;

import javax.naming.NamingException;

public class EmployeeImpl
 extends _EmployeeImplBase
{
 Context ic = null;
 DataSource ds = null;
 Connection conn = null;

 private void setInSessionLookupContext ()
 throws NamingException
 {
 Hashtable env = new Hashtable ();
 env.put (Context.INITIAL_CONTEXT_FACTORY,
 "oracle.aurora.namespace.InitialContextFactoryImpl");
 ic = new InitialContext (env);
 // ic = new InitialContext ();
 }

 public void setUpDSConnection (String dsName)
 throws SQLError
 {
 try {
 if (ic == null)

setInSessionLookupContext ();

 // get a connection to the local DB
A-38 CORBA Developer’s Guide and Reference

Single-Phase Commit JTA Transaction Example
 ds = (DataSource)ic.lookup (dsName);

 // get a connectoin to the local DB
 conn = ds.getConnection ();
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("setUpDSConnection failed:" + e.toString ());
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("setUpDSConnection failed:" + e.toString ());
 }
 }

 public EmployeeInfo getEmployee (String name)
 throws SQLError
 {
 try {
 if (conn == null)

throw new SQLError ("getEmployee: conn is null");

 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp

 where ename = :name };
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }

 public void updateEmployee (EmployeeInfo employee)
 throws SQLError
 {
 if (conn == null)
 throw new SQLError ("updateEmployee: conn is null");

 try {
 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)

 where empno = :(employee.number) };
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

Example Code: CORBA A-39

Two-Phase Commit JTA Transaction Example
Two-Phase Commit JTA Transaction Example

Employee.IDL
module employee {
 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 void initialize (in wstring user, in wstring password,
 in wstring serviceURL, in wstring objectName,
 in wstring utName, in wstring localDSName,
 in wstring remoteDSName) raises (SQLError);

 EmployeeInfo getEmployee (in wstring empName) raises (SQLError);
 void updateEmployee (in EmployeeInfo empInfo) raises (SQLError);

 EmployeeInfo getRemoteEmpInfo (in wstring name) raises (SQLError);
 void updateRemoteEmployee (in EmployeeInfo empInfo) raises (SQLError);
 };
};

Client.java
import employee.*;

import java.sql.DriverManager;
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;

import java.sql.SQLException;
import javax.naming.NamingException;

import oracle.aurora.jndi.jdbc_access.jdbc_accessURLContextFactory;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
A-40 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
public class Client
{
 public static void main (String[] args) throws Exception
 {
 if (args.length != 7)
 {
 System.out.println ("usage: Client sessiiopURL objectName user password"

 + " userTxnName localDataSrcName remoteDataSrcName");
 System.exit (1);
 }
 String sessiiopURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];
 String utName = args [4];
 String localDSName = args [5];
 String remoteDSName = args [6];

 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 Employee employee = null;
 EmployeeInfo info;

 try {
 employee = (Employee)ic.lookup (sessiiopURL + objectName);
 employee.initialize (user, password, sessiiopURL, objectName, utName,

 localDSName, remoteDSName);

 info = employee.getEmployee ("SCOTT");
 System.out.println (info.name + " " + " " + info.salary);
 System.out.print ("Increase by 10% to ");
 info.salary += (info.salary * 10) / 100;
 System.out.println (info.salary);
 employee.updateEmployee (info);
 } catch (SQLError e) {
 System.out.println (" Got SQLError: " + e.toString ());
 }
 }
}

Example Code: CORBA A-41

Two-Phase Commit JTA Transaction Example
Server
package employeeServer;

import employee.*;

import java.sql.Connection;
import java.sql.DataSource;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.Hashtable;
import java.sql.SQLException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.transaction.UserTransaction;
import javax.naming.NamingException;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.transaction.xa.OracleJTADataSource;

public class EmployeeImpl extends _EmployeeImplBase
{
 Context inSessionLookupctx = null;
 UserTransaction ut = null;
 DataSource localDS = null;
 DataSource remoteDS = null;
 Connection localConn = null;
 Connection remoteConn = null;
 String utName = null;
 String localDSName = null;
 String remoteDSName = null;
 String user = null;
 String pwd = null;
 String serviceURL = null;
 String objectName = null;
 EmployeeInfo localEmpInfo = null;

 private void setInSessionLookupContext ()
 throws NamingException
 {
 // NOTE: here we need to set env as 2-phase coord needs
 // user/pwd to be set (branches is optional)
 Hashtable env = new Hashtable ();
 env.put (Context.SECURITY_PRINCIPAL, user);
A-42 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 env.put (Context.SECURITY_CREDENTIALS, pwd);
 inSessionLookupctx = new InitialContext (env);
 }

 public void initialize (String user, String password, String serviceURL,
 String objectName, String utName, String localDSName,
 String remoteDSName)

 throws SQLError
 {
 try {
 // set the local variables
 this.user = user;
 this.pwd = password;
 this.objectName = objectName;
 this.utName = utName;
 this.localDSName = localDSName;
 this.remoteDSName = remoteDSName;
 this.serviceURL = serviceURL;

 // se up a ctx to lookup the local/in-session objects
 if (inSessionLookupctx == null)

setInSessionLookupContext ();

 // lookup the usertransaction
 ut = (UserTransaction)inSessionLookupctx.lookup (utName);

 // get a connection to the local DB
 localDS = (OracleJTADataSource)inSessionLookupctx.lookup (localDSName);

 // get a connection to the local DB
 remoteDS = (OracleJTADataSource)inSessionLookupctx.lookup (remoteDSName);
 } catch (NamingException e) {
 e.printStackTrace ();
 throw new SQLError ("setUpDSConnection failed:" + e.toString ());
 }
 }

 private void getConnections ()
 throws SQLException
 {
 if (localDS == null)
 throw new SQLException ("local DataSource is NOT set correctly");
 if (remoteDS == null)
 throw new SQLException ("remote DataSource is NOT set correctly");
 if (user == null || pwd == null)
Example Code: CORBA A-43

Two-Phase Commit JTA Transaction Example
 throw new SQLException ("user/pwd is NOT set correctly");

 localDS.setURL ("jdbc:oracle:kprb:");
 localConn = localDS.getConnection ();
 System.out.println ("remoteDS.getURL: " + remoteDS.getURL ());
 remoteConn = remoteDS.getConnection (user, pwd);
 }

 private void startTrans ()
 throws SQLError
 {
 try {
 if (ut == null)

throw new SQLError ("startTrans: userTransaction is null");

 ut.begin ();
 } catch (Exception e) {
 throw new SQLError ("startTrans failed:" + e.toString ());
 }
 }

 private void commitTrans ()
 throws SQLError
 {
 try {
 ut.commit ();
 } catch (Exception e) {
 throw new SQLError ("commitTrans failed:" + e.toString ());
 }
 }

 public EmployeeInfo getLocalEmpInfo (String name)
 throws SQLError
 {
 try {
 if (localConn== null)

throw new SQLError ("getLocalEmpInfo: localConn is null");
 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp

 where ename = :name };
 System.out.println (" Local (" + name + ", " + salary + ")");
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 e.printStackTrace ();
A-44 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 throw new SQLError ("getRemoteEmpInfo SQLException: " + e.toString ());
 }
 }

 public EmployeeInfo getRemoteEmpInfo (String name)
 throws SQLError
 {
 try {
 if (remoteConn== null)

throw new SQLError ("getRemoteEmpInfo: remoteConn is null");
 int empno = 0;
 double salary = 0.0;

 PreparedStatement ps = remoteConn.prepareStatement
("select empno, sal from emp where ename = ?");

 ps.setString (1, name);
 ResultSet rs = ps.executeQuery ();

 while (rs.next ())
 {

empno = rs.getInt (1);
salary = rs.getDouble (2);

 }
 System.out.println (" Remote (" + name + ", " + salary + ")");
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("getRemoteEmpInfo SQLException: " + e.toString ());
 }
 }

 public EmployeeInfo getEmployee (String name)
 throws SQLError
 {
 System.out.println ("getEmployee: begin");

 try {
 this.startTrans ();
 // get a connection to the local and remote DB
 this.getConnections ();
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("getEmployee SQLError: " + e.toString ());
 }
Example Code: CORBA A-45

Two-Phase Commit JTA Transaction Example
 // get info for localEmployee = smith
 localEmpInfo = this.getLocalEmpInfo ("SMITH");

 // get info for the remote employee
 EmployeeInfo info = this.getRemoteEmpInfo (name);
 System.out.println (" Remote (" + info.name + ", " + info.salary + ")");

 this.commitTrans ();
 System.out.println ("getEmployee: end");
 return info;
 }

 public void updateEmployee (EmployeeInfo empInfo) throws SQLError
 {
 System.out.println ("updateEmployee: begin");
 this.startTrans ();

 try {
 this.getConnections ();

 System.out.println (" Before updating: ");
 this.getLocalEmpInfo ("SMITH");
 this.getRemoteEmpInfo ("SCOTT");

 localEmpInfo.salary -= 0.1 * localEmpInfo.salary;
 this.updateLocalEmployee (localEmpInfo);

 System.out.println (" calling to update " + empInfo.name + " salary");
 updateRemoteEmployee (empInfo);

 System.out.println ("updateEmployee: After updating: ");
 this.getLocalEmpInfo ("SMITH");
 this.getRemoteEmpInfo ("SCOTT");
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError ("updateEmployee SQLError: " + e.toString ());
 }

 this.commitTrans ();
 System.out.println ("updateEmployee: end");
 }

 public void updateLocalEmployee (EmployeeInfo empInfo)
 throws SQLError
A-46 CORBA Developer’s Guide and Reference

Two-Phase Commit JTA Transaction Example
 {
 System.out.println ("updateLocalEmployee: begin");
 try {
 this.getLocalEmpInfo ("SMITH");

 #sql { update emp set ename = :(empInfo.name), sal = :(empInfo.salary)
 where empno = :(empInfo.number) };

 System.out.println (" after updating " + empInfo.name + " salary");
 this.getLocalEmpInfo (empInfo.name);
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError (e.toString ());
 }

 System.out.println ("updateLocalEmployee: end");
 }

 public void updateRemoteEmployee (EmployeeInfo empInfo)
 throws SQLError
 {
 System.out.println ("updateRemoteEmployee: begin");

 try {
 PreparedStatement ps = remoteConn.prepareStatement

("update emp set ename = ?, sal = ? where empno = ?");
 ps.setString (1, empInfo.name);
 ps.setDouble (2, empInfo.salary);
 ps.setInt (3, empInfo.number);
 ps.executeUpdate ();

 System.out.println (" after updating " + empInfo.name + " salary");
 this.getRemoteEmpInfo (empInfo.name);
 } catch (SQLException e) {
 e.printStackTrace ();
 throw new SQLError (e.toString ());
 }

 System.out.println ("updateRemoteEmployee: end");
 }
}

Example Code: CORBA A-47

JTS Transaction Example
JTS Transaction Example

README
Overview
========

The serversideJTS example shows how to do transaction management for
CORBA server objects from the server object, using the XA JTS
methods.

Compare this example with the clientside example, in which all
transaction management is done on the client.

This example also shows a server object that uses SQLJ in its methods.

Source files
============

employee.idl

The CORBA IDL for the example. Defines:

An EmployeeInfo struct
A SQLError exception
An Employee interface, with
 EmployeeInfo getEmployee(in wstring name)
 EmployeeInfo getEmployeeForUpdate(in wstring name)
 void updateEmployee(in EmployeeInfo name)

The SQLError exception is used so that SQLException messages can
be passed back to the client.

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the
A-48 CORBA Developer’s Guide and Reference

JTS Transaction Example
 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published server object to lookup and instantiate
 - username
 - password that authenticates the client to the Oracle8i database server

For example:
% java -classpath LIBs Client sess_iiop://localhost:2481:ORCL \
 /test/myEmployee scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

The client code is almost exactly the same as the code in
../clientside/Client.java, but without the JTS transaction calls.

The client code performs the following steps:

 - gets the arguments passed on the command line
 - creates a new JNDI Context (InitialContext())
 - initializes the Aurora transaction service
 - looks up the myEmployee CORBA published object on the server
 (this step also authenticates the client using NON_SSL_LOGIN and
 activates the server object)
 - gets and prints information about the employee SCOTT
 - decreases SCOTT's salary by 10%
 - updates the EMP table with the new salary by calling the updateEmployee()
 method on the employee object
 - gets and prints the new information

The printed output is:

Beginning salary = 3000.0
Decrease by 10%
Final Salary = 2700.0

Note that the starting value is taken from the EMP table when the
example starts to run, so you may see a different salary amount. The new
salary amount is written back to the database, and will be used as the
Example Code: CORBA A-49

JTS Transaction Example
new starting amount if you run this example again.

employeeServer/EmployeeImpl.sqlj

Implements the Employee interface. This file implements the three
methods specified in the IDL: getEmployee(), getEmployeeForUpdate(),
and updateEmployee(), using SQLJ for ease of DML coding.

EmployeeImpl also adds two private methods, commitTrans() and
startTrans(), that perform XA JTS transaction management from the
server.

Note that on the server there is no need to call
AuroraTransactionService.initialize() to initialize the transaction
manager. This is done automatically by the server ORB.

If the SQLJ code throws a SQLException, it is caught, and a
CORBA-defined SQLError is thrown. This in turn would be
propagated back to the client, where it is handled.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

A-50 CORBA Developer’s Guide and Reference

JTS Transaction Example
On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Employee.IDL
module employee {
 struct EmployeeInfo {
 wstring name;
 long number;
 double salary;
 };

 exception SQLError {
 wstring message;
 };

 interface Employee {
 EmployeeInfo getEmployee (in wstring name) raises (SQLError);
 EmployeeInfo getEmployeeForUpdate (in wstring name) raises (SQLError);
 void updateEmployee (in EmployeeInfo name) raises (SQLError);
 };
};
Example Code: CORBA A-51

JTS Transaction Example
Client.java
import employee.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 // get the handle to the InitialContext
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put (Context.SECURITY_PRINCIPAL, user);
 env.put (Context.SECURITY_CREDENTIALS, password);
 env.put (Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);

 // This is using Server-side TX services, specifically, JTS/XA TX:

 // get handle to the object and it's info
 Employee employee = (Employee)ic.lookup (serviceURL + objectName);

 // get the info about a specific employee
 EmployeeInfo info = employee.getEmployee ("SCOTT");
 System.out.println ("Beginning salary = " + info.salary);
 System.out.println ("Decrease by 10%");
 // do work on the object or it's info
 info.salary -= (info.salary * 10) / 100;

 // call update on the server-side
 employee.updateEmployee (info);
A-52 CORBA Developer’s Guide and Reference

JTS Transaction Example
 System.out.println ("Final Salary = " + info.salary);
 }
}

Server
package employeeServer;

import employee.*;
import java.sql.*;

import oracle.aurora.jts.util.*;
import org.omg.CosTransactions.*;

public class EmployeeImpl extends _EmployeeImplBase
{
 Control c;

 private void startTrans () throws SQLError {
 try {
 TS.getTS ().getCurrent ().begin ();
 } catch (Exception e) {
 throw new SQLError ("begin failed:" + e);
 }
 }

 private void commitTrans () throws SQLError {
 try {
 TS.getTS ().getCurrent ().commit (true);
 } catch (Exception e) {
 throw new SQLError ("commit failed:" + e);
 }
 }

 public EmployeeInfo getEmployee (String name) throws SQLError {
 try {
 startTrans ();

 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name };
 c = TS.getTS().getCurrent().suspend();
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
Example Code: CORBA A-53

SSL Examples
 throw new SQLError (e.getMessage ());
 } catch (Exception e) {
 throw new SQLError (e.getMessage());
 }
 }

 public EmployeeInfo getEmployeeForUpdate (String name) throws SQLError {
 try {
 startTrans ();

 int empno = 0;
 double salary = 0.0;
 #sql { select empno, sal into :empno, :salary from emp
 where ename = :name for update };
 return new EmployeeInfo (name, empno, (float)salary);
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 }
 }

 public void updateEmployee (EmployeeInfo employee) throws SQLError {
 try {
 TS.getTS().getCurrent().resume(c);

 #sql { update emp set ename = :(employee.name), sal = :(employee.salary)
 where empno = :(employee.number) };
 commitTrans ();
 } catch (SQLException e) {
 throw new SQLError (e.getMessage ());
 } catch (Exception e) {
 throw new SQLError (e.getMessage ());
 }
 }
}

SSL Examples

Client-Side Authentication

README
Overview
A-54 CORBA Developer’s Guide and Reference

Client-Side Authentication
========

This is a very simple CORBA example using client side ssl for login.
The helloWorld server object merely returns a greeting plus the Java
VM version number to the client.

The purpose of the example is to show how to use ssl client side
authentication for logins.

Setup required

You need to open the encrypted wallet(ewallet.der) provided in this directory
using the wallet manager tool provided by Oracle. The password is welcome12.
Copy the cleartext into TNS_ADMIN directory and restart the database and
listeners.

The encrypted wallet(ewallet.der) is only valid for Solaris platforms. For
other platforms, you should generate the wallet using Oracle's owm tool.

This test also requires B64 encoded wallet(cert.txt) which is already present
in this directory. You can also generate your own using Oracle's owmgui tool
and using export option in the tool.

The parameter SSL_CLIENT_AUTHENTICATION in $TNSADMIN/sqlnet.ora should be set
to TRUE before restarting the database and listeners

The setup also requires creation of global user guest. The script to create
global user is in this directory(create.sh). This script prompts for username
and password of a privileged user as input to this script.

The Makefile has loadjava that loads all the classes into scott's schema
whereas the client program is executed as the user guest. Hence loadjava
has a "-grant guest" to grant the privileges to guest.

Source files
============

hello.idl

The CORBA IDL for the example. Defines a single interface Hello with a single
method helloWorld(). The interface is defined in the Module named 'hello',
which determines the name of the directory in which the idl2java compiler
Example Code: CORBA A-55

Client-Side Authentication
places the generated files.

The helloWorld() method returns a CORBA wstring, which maps to a Java String
type:

module hello
 interface Hello
 wstring helloWorld()

Client.java

You invoke the client program from a command prompt, and pass it three
arguments, the

 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published bean to lookup and instantiate
 - credentials file - the B64 encoded wallet for the user. This is a
 generated wallet at Oracle site.

The password for the wallet is hardcoded as "welcome12"

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 /test/myHello cert.txt

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

 - gets the arguments passed on the command line
 - puts the authentication type and values into env context
 - creates a new JNDI Context (InitialContext())
 - looks up the published CORBA server object to find and activate it
 - invokes the helloWorld() method on the hello object and prints the results
A-56 CORBA Developer’s Guide and Reference

Client-Side Authentication
The printed output is:

Hello client, your javavm version is 8.1.5.

helloServer/HelloImpl.java

Implements the IDL-specified Hello interface. The interface has one
method, helloWorld(), that returns a String to the caller.

helloWorld() invokes System.getProperty("oracle.server.version") to get the
version number of the Java VM.

This object performs no database access.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.
Example Code: CORBA A-57

Client-Side Authentication
Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Hello.IDL
module hello {
 interface Hello {
 wstring helloWorld ();
 };
};

Client.java
import hello.Hello;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{

 public static void main (String[] args) throws Exception {
 if (args.length != 3) {
 System.out.println("usage: Client serviceURL objectName credsFile");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String credsFile = args [2];
A-58 CORBA Developer’s Guide and Reference

Server-Side Authentication
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_CLIENT_AUTH);
 env.put(Context.SECURITY_CREDENTIALS, "welcome12");

 // Simply specify a file that contains all the credential info. This is
 // the file generated by the wallet manager tool.
 env.put(Context.SECURITY_PRINCIPAL, credsFile);

/*
 // As an alternative, you may also set the credentials individually, as
 // shown bellow.
 env.put(ServiceCtx.SECURITY_USER_CERT, testCert_base64);
 env.put(ServiceCtx.SECURITY_CA_CERT, caCert_base64);
 env.put(ServiceCtx.SECURITY_ENCRYPTED_PKEY, encryptedPrivateKey_base64);
 //System.getProperties().put("AURORA_CLIENT_SSL_DEBUG", "true");
*/

 Context ic = new InitialContext(env);

 Hello hello = (Hello) ic.lookup(serviceURL + objectName);
 System.out.println(hello.helloWorld());
 }
}

Server
package helloServer;

import hello.*;

public class HelloImpl extends _HelloImplBase {
 public String helloWorld() {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }
}

Server-Side Authentication
This example includes setting a trustpoint. If you do not want to involve

trustpoints, just remove the section of the code that sets the trustpoint.
Example Code: CORBA A-59

Server-Side Authentication
README
Overview
========

This is a very simple CORBA example using server side ssl for login. The
helloWorld server object merely returns a greeting plus the Java VM version
number to the client.

The purpose of the example is to show how to use ssl server side
authentication for logins.

Setup required

You need to open the encrypted wallet(ewallet.der) provided in this directory
using the wallet manager tool provided by Oracle. The password is welcome12.
Copy the cleartext into TNS_ADMIN directory and restart the database and
listeners.

The encrypted wallet(ewallet.der) is only valid for Solaris platforms. For
other platforms, you should generate the wallet using Oracle's owm tool.
And if you generate the wallet, be sure to change the trust point provided
in the client file Client.java too.

The parameter SSL_CLIENT_AUTHENTICATION in $TNSADMIN/sqlnet.ora should be set
to false before restarting the database and listeners.

You may also generate a wallet using Oracle tool owmgui. The cleartext
wallet that you will be using should be binary compatible with the machine
you are using to run this sample.

There is also a hard coded trustpoint within Client.java. This trust point
matches with the one in the server's wallet. You may replace with your trust
point if needed. But this trust point should be matching with the one in
the server's wallet.

This example runs with JDK1.1 libraries. If you are using JDK 1.2 libraries,
then you should comment out JDK1.1 code and uncomment JDK1.2 code.

Source files
============

hello.idl

A-60 CORBA Developer’s Guide and Reference

Server-Side Authentication
The CORBA IDL for the example. Defines a single interface Hello with a single
method helloWorld(). The interface is defined in the Module named 'hello',
which determines the name of the directory in which the idl2java compiler
places the generated files.

The helloWorld() method returns a CORBA wstring, which maps to a Java String
type:

module hello
 interface Hello
 wstring helloWorld()

Client.java

You invoke the client program from a command prompt, and pass it four
arguments, the

 - service URL (service ID, hostname, port, and SID if port is a listener)
 - name of the published bean to lookup and instantiate
 - username
 - password

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222
/test/sslHelloServerAuthWithTP

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip

(Note: for NT users, the environment variables would be %ORACLE_HOME% and
%JAVA_HOME%.)

The client code performs the following steps:

 - gets the arguments passed on the command line
Example Code: CORBA A-61

Server-Side Authentication
 - puts the authentication type and values into env context
 - creates a new JNDI Context (InitialContext())
 - looks up the published CORBA server object to find and activate it
 - invokes the helloWorld() method on the hello object and prints the results

The printed output is:

Hello client, your javavm version is 8.1.5.

helloServer/HelloImpl.java

Implements the IDL-specified Hello interface. The interface has one
method, helloWorld(), that returns a String to the caller.

helloWorld() invokes System.getProperty("oracle.server.version") to get the
version number of the Java VM.

This object performs no database access.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.

Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

A-62 CORBA Developer’s Guide and Reference

Server-Side Authentication
On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Hello.IDL
module hello {
 interface Hello {
 wstring helloWorld ();
 };
};

Client.java
import hello.Hello;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import oracle.aurora.ssl.*;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
//import java.security.cert.*; // Needs JDK 1.2; won't compile in JDK 1.1
import javax.security.cert.*; // for JDK 1.1
import java.io.*;
Example Code: CORBA A-63

Server-Side Authentication

J"+
h"+
public class Client
{
 private static String trustedCert =
"MIIBNjCB4aADAgECAhEAv/poeUAh5DxtXZSkZAIunDANBgkqhkiG9w0BAQQFADAcMQswCQYDVQQG"+
"EwJVUzENMAsGA1UEAxQEUk9PVDAeFw05OTExMTcxODQ1NDNaFw0wMjAyMDIxODQ1NDNaMBwxCzA
"BgNVBAYTAlVTMQ0wCwYDVQQDFARST09UMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBANEzeu17sae
"q60fGp4Ya0IZ4C2GkUFFmvxBIqqfvgXUyqifrZ7ZsrmxoEEYmng+OWxhwToykIlGUYR4ngMgF78C"+
"AwEAATANBgkqhkiG9w0BAQQFAANBAMzDmFK2/QAxgn085SLQ+bmYBatuji2YPVDgmMYa3ebhFgUe"+
"I7CKLQTxFg1Y2bw71LFww0Mi9cxwrR+Lt9jhnes=";

 static boolean verifyPeerCert(org.omg.CORBA.Object obj) throws Exception
 {
 org.omg.CORBA.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

 // Get the SSL current
 AuroraCurrent current = AuroraCurrentHelper.narrow
 (orb.resolve_initial_references("AuroraSSLCurrent"));

 // Check the cipher
 System.out.println("Negotiated Cipher: " +
 current.getNegotiatedCipherSuite(obj));
 // Check the protocol version
 System.out.println("Protocol Version: " +
 current.getNegotiatedProtocolVersion(obj));
 // Check the peer's certificate
 System.out.println("The account obj's certificate chain : ");
 byte [] [] certChain = current.getPeerDERCertChain(obj);
 System.out.println("length : " + certChain.length);
 System.out.println("Certificates: ");

 /*
 // JDB 1.2 way
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 for(int i = 0; i < certChain.length; i++) {
 ByteArrayInputStream bais = new ByteArrayInputStream(certChain[i]);
 Certificate xcert = cf.generateCertificate(bais);
 System.out.println(xcert);
 if(xcert instanceof X509Certificate)
 {
 X509Certificate x509Cert = (X509Certificate)xcert;
 String globalUser = x509Cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
A-64 CORBA Developer’s Guide and Reference

Server-Side Authentication
 }
 }
 */

 // JDK 1.1 way

 java.security.Security.setProperty("cert.provider.x509v1",
 "oracle.security.cert.X509CertificateImpl");

 for(int i = 0; i < certChain.length; i++) {
 javax.security.cert.X509Certificate cert =
 javax.security.cert.X509Certificate.getInstance(certChain[i]);

 String globalUser = cert.getSubjectDN().getName();
 System.out.println("DN out of the cert : " + globalUser);
 }

 return true;
 }

 public static void main (String[] args) throws Exception {
 if (args.length != 2) {
 System.out.println("usage: Client serviceURL objectName");
 System.exit(1);
 }
 String serviceURL = args [0];
 String objectName = args [1];

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.SSL_LOGIN);
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");

 // setup the trust point
 env.put(ServiceCtx.SECURITY_TRUSTED_CERT, trustedCert);

 Context ic = new InitialContext(env);

 // Make an SSL connection to the server first. If the connection
 // succeeds, then inspect the server's certificate, since we haven't
 // specified a trust point.
 // Get a SessionCtx that represents a database instance
Example Code: CORBA A-65

Session Example
 ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);
 SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
 // Lookup login object for the purpose of getting hold of some corba
 // object needed for verifyPeerCert(). We should provide an extension
 // to just getting the NS object, for this purpose.
 LoginServer obj = (LoginServer) session1.activate("/etc/login");

 if(!verifyPeerCert(obj))
 throw new org.omg.CORBA.COMM_FAILURE("Verification of Peer cert failed");

 // Now that we trust the server, let's go ahead and do our business.
 session1.login();
 Hello hello = (Hello) session1.activate(objectName);
 System.out.println(hello.helloWorld());
 }
}

Server
package helloServer;

import hello.*;

public class HelloImpl extends _HelloImplBase {
 public String helloWorld() {
 String v = System.getProperty("oracle.server.version");
 return "Hello client, your javavm version is " + v + ".";
 }
}

Session Example
You can manage sessions in multiple ways, which are all discussed in "Session

Management Scenarios" on page 4-18. The example presented here demonstrates

how to access two sessions from a single client.

README
Overview
========

Twosessions demostrates a client that instantiates two separate sessions in
the server, and calls methods on objects in each session. It also demos use of
the login object for client authentication.
A-66 CORBA Developer’s Guide and Reference

Session Example
Compare this example to the ../examples/corba/session/clientserverserver
example, in which the client instantiates a server object, and that server
object then instantiates a second server object in a different session.

Source files
============

hello.idl

The CORBA IDL for the example. The IDL for the Hello object simply
defines two methods:

interface Hello
 wstring helloWorld ();
 void setMessage (in wstring message);

which must be implemented by the helloServer.HelloImpl.java code.

Client.java

You invoke the client program from a command line prompt, and pass it
four arguments: the service URL (service ID, hostname, and port), the
name of the published object to lookup and instantiate, and a username
and password that authenticate the client to the Oracle8i database
server.

For example:
% java -classpath LIBs Client sess_iiop://localhost:2222 scott tiger

where LIBs is the classpath that must include

$ORACLE_HOME/lib/aurora_client.jar
#If using Java 2, use classes12.zip instead of classes111.zip
$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar
$JAVA_HOME/lib/classes.zip
Example Code: CORBA A-67

Session Example
The client first obtains a service context in the normal way, by
getting a JNDI Context object, and looking up the service context on
it, using the service URL (e.g., sess_iiop://localhost:2222).
The service context is then used to create new named sessions,
:session1 and :session2. On each session, a login server object is
instantiated, then a login client is obtained, and the authenticate()
method on the login client is used to authenticate the client.

Note that this form of authentication is what happens automatically
when a server object is instantiated, and the JNDI context is obtained
by passing in the username, password, optional database role, and the
value NON_SSL_LOGIN in the environmentg hashtable.

In this example, because the sessions are instantiated overtly, it is
necessary to also do the authentication overtly.

After session instantiation and authentication, a Hello object is
instantiated in each session, the helloWorld() method is invoked
on each, and the returned String is printed on the console.

The printed output is:

Hello from Session1
Hello from Session2

helloServer/HelloImpl.java

This source file implements the two methods specified in the hello.idl
file: setMessage() to set the instance variable message, and
helloWorld() to return the value set in message.

Compiling and Running the Example
=================================

UNIX

Enter the command 'make all' or simply 'make' in the shell to compile,
load, and deploy the objects, and run the client program. Other
targets are 'run' and 'clean'.
A-68 CORBA Developer’s Guide and Reference

Session Example
Make sure that a shell environment variable ORACLE_HOME is set to
point to the home location of the Oracle installation. This is
operating system dependent, so see the Installation documentation that
came with your system for the location. Also, review the README file
for the Oracle database, and the README file for the CORBA/EJB server
(the Oracle8i ORB), for additional up-to-date information.

Windows NT

On Windows NT, run the batch file makeit.bat from a DOS command prompt
to compile, load, and deploy the objects. Run the batch file runit.bat
to run the client program, and see the results.

Make sure that the environment variables %ORACLE_HOME%, %CLASSPATH%,
and %SERVICE% are set appropriately for the DOS command window. You
can set these as either user or system environment variables from the
Control Panel. Double click on System in the Control Panel then on
the Environment tab to set these variables. Start a new DOS window
after setting environment variable values.

See the Installation documentation that came with your Oracle8i system
for the values of these variables. Also, review the README file for
the Oracle database, and the README file for the CORBA/EJB server (the
Oracle8i ORB), for additional up-to-date information.

You can also set an environment variable %JAVA_HOME% to point to the
root of your Java JDK. For example, SET JAVA_HOME=C:\JDK1.1.6.

Hello.IDL
module hello {
 interface Hello {
 wstring helloWorld ();
 void setMessage (in wstring message);
 };
};

Client.java
import hello.Hello;
Example Code: CORBA A-69

Session Example
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import oracle.aurora.jndi.sess_iiop.SessionCtx;
import oracle.aurora.AuroraServices.LoginServer;
import oracle.aurora.client.Login;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println ("usage: Client serviceURL objectName user password");
 System.exit (1);
 }
 String serviceURL = args [0];
 String objectName = args [1];
 String user = args [2];
 String password = args [3];

 // Prepare a simplified Initial Context as we are going to do
 // everything by hand
 Hashtable env = new Hashtable ();
 env.put (Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 Context ic = new InitialContext (env);

 // Get a SessionCtx that represents a database instance
 ServiceCtx service = (ServiceCtx)ic.lookup (serviceURL);

 // Create and authenticate a first session in the instance.
 SessionCtx session1 = (SessionCtx)service.createSubcontext (":session1");
 LoginServer login_server1 = (LoginServer)session1.activate ("etc/login");
 Login login1 = new Login (login_server1);
 login1.authenticate (user, password, null);

 // Create and authenticate a second session in the instance.
 SessionCtx session2 = (SessionCtx)service.createSubcontext (":session2");
 LoginServer login_server2 = (LoginServer)session2.activate ("etc/login");
 Login login2 = new Login (login_server2);
 login2.authenticate (user, password, null);

 // Activate one Hello object in each session
 Hello hello1 = (Hello)session1.activate (objectName);
A-70 CORBA Developer’s Guide and Reference

JDK and JInitiator Applets
 Hello hello2 = (Hello)session2.activate (objectName);

 // Verify that the objects are indeed different
 hello1.setMessage ("Hello from Session1");
 hello2.setMessage ("Hello from Session2");

 System.out.println (hello1.helloWorld ());
 System.out.println (hello2.helloWorld ());
 }
}

Server
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl extends _HelloImplBase implements ActivatableObject
{
 String message;

 public String helloWorld () {
 return message;
 }

 public void setMessage (String message) {
 this.message = message;
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 return this;
 }
}

Applet Example

JDK and JInitiator Applets

README
For all oracle clients, you need to set the following in the
Example Code: CORBA A-71

JDK and JInitiator Applets
environment before creating InitialContext
 env.put(ServiceCtx.APPLET_CLASS, this);// This referes to the applet class

In the HTML file itself, you need to set
ORBdisableLocator=true, for all versions. In addition, if you are using
JDK 1.2 (i.e, plug in 1.2), then you also need to set the following in the
HTML file.
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.visigenic.vbroker.orb.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass" VALUE="com.visigenic.vbroker.orb.O
RB">

The syntax slightly differs from plugin to plugin. Look at the example applets
in this diretory.

Note that you don’t need to copy any jars on to the client machine. But if you
do wish to copy the jar files to the client machine, also set "ClassLoader" to
the appletClassLoader (this.getClass().getClassLoader()) and things will
work fine. You also don’t need to change any files (like java.security etc.) on
the client.

HTML for JDK 1.1
<pre>
<html>
<title> CORBA Applet talking to 8i</title>
<h1> CORBA applet talking to 8i using java plug in 1.1 </h1>
<hr>
The good old bank example
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 500 HEIGHT = 50 codebase="http://java.sun.com/products/plugin/1.1/jinst
all-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,aurora_client.jar,vbjorb.jar,vbj
app.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1"
ORBdisableLocator="true" java_CODE = OracleClientApplet.class java_ARCHIVE = "or
acleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar" WIDTH = 500 HEIGHT = 50
 pluginspage="http://java.sun.com/products/plugin/1.1/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>
A-72 CORBA Developer’s Guide and Reference

JDK and JInitiator Applets
</center>
<hr>
</pre>

HTML for JDK 1.2
<pre>
<html>
<title> CORBA applet talking to 8i</title>
<h1> CORBA applet talking to 8i using Java plug in 1.2 </h1>
<hr>
The good old bank example
<OBJECT classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
WIDTH = 500 HEIGHT = 50 codebase="http://java.sun.com/products/plugin/1.2/jinst
all-11-win32.cab#Version=1,1,0,0">
<PARAM NAME = CODE VALUE = OracleClientApplet.class >
<PARAM NAME = ARCHIVE VALUE = "oracleClient.jar,aurora_client.jar,vbjorb.jar,vbj
app.jar" >
<PARAM NAME="type" VALUE="application/x-java-applet;version=1.1.2">
<PARAM NAME="ORBdisableLocator" VALUE="true">
<PARAM NAME="org.omg.CORBA.ORBClass" VALUE="com.visigenic.vbroker.orb.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass" VALUE="com.visigenic.vbroker.orb.O
RB">
<COMMENT>
<EMBED type="application/x-java-applet;version=1.1.2"
ORBdisableLocator="true"
org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB" java_CODE = Orac
leClientApplet.class java_ARCHIVE = "oracleClient.jar,aurora_client.jar,vbjorb.j
ar,vbjapp.jar" WIDTH = 500 HEIGHT = 50 pluginspage="http://java.sun.com/produc
ts/plugin/1.2/plugin-install.html">
<NOEMBED></COMMENT>
</NOEMBED></EMBED>
</OBJECT>

</center>
<hr>
</pre>

HTML for Oracle JInitiator
<h1>CORBA applet talking to 8i using JInitiator 1.1.7.18</h1>
 <COMMENT>
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
Example Code: CORBA A-73

JDK and JInitiator Applets
 java_CODE="OracleClientApplet"
 java_CODEBASE="http://mysun:8080/applets/bank"
 java_ARCHIVE="oracleClient.jar,aurora_client.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBdisableLocator="true"
 org.omg.CORBA.ORBClass="com.visigenic.vbroker.orb.ORB"
 org.omg.CORBA.ORBSingletonClass="com.visigenic.vbroker.orb.ORB"
 serverHost="mysun"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>

Applet Client
// ClientApplet.java

import java.awt.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;
import Bank.*;

public class OracleClientApplet extends java.applet.Applet {

 private TextField _nameField, _balanceField;
 private Button _checkBalance;
 private Bank.AccountManager _manager;

 public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 try {
A-74 CORBA Developer’s Guide and Reference

Visigenic Applet
 String serviceURL = "sess_iiop://mysun:2222";
 String objectName = "/test/myBank";

 // Initialize the ORB (using the Applet).
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 env.put(ServiceCtx.APPLET_CLASS, this);

 Context ic = new InitialContext(env);
 _manager = (AccountManager)ic.lookup (serviceURL + objectName);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 throw new RuntimeException();
 }
 }

 public boolean action(Event ev, Object arg) {
 if(ev.target == _checkBalance) {
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account's balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

}

Visigenic Applet

README
To run VisiClient applet, you need to do the following.

Start osagent and gatekeeper (with port 16000)
(for gate keeper, create a file called gatekeeper.properties and just
put this entry in there : exterior_port=16000)
Example Code: CORBA A-75

Visigenic Applet
Then start the Bank server (vbj Server &).

Your browser should have Jinitiator installed (use ojdk-pc.us.oracle.com
for getting JInitiator, jdk 1.1.7.18)
(Browser security doesn’t have to be off, i.e, you may set it to
AppletHost in Jinitiator)

Then simply connect to mysun:8080/applets/bank/VisiClient.html

HTML for Visigenic Client Applet
<h1>Visigenic Client applet</h1>
 <COMMENT>
 <EMBED type="application/x-jinit-applet;version=1.1.7.18"
 java_CODE="VisiClientApplet"
 java_CODEBASE="http://mysun:8080/applets/bank"
 java_ARCHIVE="visiClient.jar,vbjorb.jar,vbjapp.jar"
 WIDTH=400
 HEIGHT=100
 ORBgatekeeperIOR="http://mysun:16000/gatekeeper.ior"
 USE_ORB_LOCATOR="true"
 ORBbackCompat="true"
 serverHost="mysun"
 serverPort=8080
 <NOEMBED>
 </COMMENT>
 </NOEMBED>
 </EMBED>

Visigenic Client Applet
// ClientApplet.java

import java.awt.*;

public class VisiClientApplet extends java.applet.Applet {

 private TextField _nameField, _balanceField;
 private Button _checkBalance;
 private Bank.AccountManager _manager;

 public void init() {
 // This GUI uses a 2 by 2 grid of widgets.
 setLayout(new GridLayout(2, 2, 5, 5));
A-76 CORBA Developer’s Guide and Reference

Visigenic Applet
 // Add the four widgets.
 add(new Label("Account Name"));
 add(_nameField = new TextField());
 add(_checkBalance = new Button("Check Balance"));
 add(_balanceField = new TextField());
 // make the balance text field non-editable.
 _balanceField.setEditable(false);
 // Initialize the ORB (using the Applet).
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(this, null);
 // Locate an account manager.
 _manager = Bank.AccountManagerHelper.bind(orb, "BankManager");
 }

 public boolean action(Event ev, Object arg) {
 if(ev.target == _checkBalance) {
 // Request the account manager to open a named account.
 // Get the account name from the name text widget.
 Bank.Account account = _manager.open(_nameField.getText());
 // Set the balance text widget to the account’s balance.
 _balanceField.setText(Float.toString(account.balance()));
 return true;
 }
 return false;
 }

}

Example Code: CORBA A-77

Visigenic Applet
A-78 CORBA Developer’s Guide and Reference

Comparing the Oracle8i JServer and VisiBroker VBJ O
B

Comparing the Oracle8 i JServer and

VisiBroker VBJ ORBs

This appendix, which is for developers who are familiar with the VisiBroker VBJ

ORB, summarizes the main differences between that ORB and the current version of

the Oracle8i JServer ORB. Each ORB supports multiple styles of usage, but this

appendix compares only the most commonly used styles. In particular, it assumes

that VBJ clients use the helper bind() method to find objects by name, whereas

Oracle8i clients use the JNDI lookup() method for the same purpose. It also

assumes that Oracle8i clients use Oracle’s session IIOP to communicate with server

objects, though the JServer ORB also supports the standard IIOP used by the

VBJ ORB.

The differences in the ORBs are summarized in these sections:

■ Object References Have Session Lifetimes

■ The Database Server is the Implementation Mainline

■ Server Object Implementations are Deployed by Loading and Publishing

■ Implementation by Inheritance is Nearly Identical

■ Implementation by Delegation is Different

■ Clients Look Up Object Names with JNDI

■ No Interface or Implementation Repository

At the end of the appendix, equivalent client and server implementations of the

same IDL for the VBJ and Aurora ORBs are provided for comparison.
RBs B-1

Object References Have Session Lifetimes
Object References Have Session Lifetimes
The Aurora ORB creates object instances in database sessions. When a session

disappears, references to objects created in that session become invalid; attempts to

use them incur the “object does not exist” exception. A session disappears when the

last client connection to the session is closed or the session’s timeout value is

reached. An object in a session can set the session timeout value with

oracle.aurora.net.Presentation.sessionTimeout()
optionally providing a client interface to this method, which a client can call if it

wants an object to persist after client connections to the session are closed.

The life of a typical Oracle8i CORBA object proceeds as follows:

■ A client looks up an object implementation’s name with JNDI specifying the

database where the implementation has been published.

■ The Oracle ORB responds by instantiating an object of the type, and returning a

reference to the client.

■ The client calls methods on the object, and may pass the reference to other

clients who may then call methods on the object.

■ The object ceases to exist when its session is destroyed.
B-2 CORBA Developer’s Guide and Reference

Implementation by Delegation is Different
The Database Server is the Implementation Mainline
An Oracle8i server object implementation consists of a single class. Developers do

not write a mainline server because the database server is the mainline. If the

database is running, all implementations published in that database are available to

clients. The database server dynamically assigns MTS threads to implementations.

An implementation may multithread its own execution with Java threads.

Server Object Implementations are Deployed by Loading and
Publishing

Loading an object implementation into a database with the loadjava tool makes

that implementation accessible to the ORB running in that database. Publishing an

loaded implementation’s name to a database’s session name space with the

publish tool makes the implementation accessible to clients by name. Every

CORBA object implementation must be loaded but only those whose names will be

looked up by clients need to be published.

Implementation by Inheritance is Nearly Identical
To implement the hypothetical interface Alpha in Oracle8i, you write a class called

AlphaImpl which extends AlphaImplBase and defines the Java methods that

implement the IDL operations. You may also provide instance initialization code in

an _initializeAuroraObject() method which the Oracle ORB will call when

it creates a new instance.

Implementation by Delegation is Different
For an Oracle8i implementation by delegation (tie), the class you write extends a

class you have defined and implements two Oracle-defined interfaces. The first

interface, whose name is the IDL interface name concatenated with Operations ,

defines the methods corresponding to the IDL operations. The second interface,

called ActivatableObject , defines a single method called

_initializeAuroraObject () . To implement this method, create and return an

instance. Here is a minimal example:

// IDL
module hello {
 interface Hello {
 wstring helloWorld ();
 };
Comparing the Oracle8i JServer and VisiBroker VBJ ORBs B-3

Implementation by Delegation is Different
};

// Aurora tie implementation
package helloServer;

import hello.*;
import oracle.aurora.AuroraServices.ActivatableObject;

public class HelloImpl implements HelloOperations, ActivatableObject
//, extends <YourClass>
{
 public String helloWorld () {
 return "Hello World!";
 }

 public org.omg.CORBA.Object _initializeAuroraObject () {
 // create and initialize an instance and return it, for example ...
 return new _tie_Hello (this);
 }
}

B-4 CORBA Developer’s Guide and Reference

The Bank Example in Aurora and VBJ
Clients Look Up Object Names with JNDI
An Oracle8i client can look up a published object by name with CORBA

COSNaming or with the simpler JNDI (Java Naming and Directory Interface) which

interacts with COSNaming in the client’s behalf.

A client creates an initial JNDI context for a particular database with a Java

constructor, for example:

Context ic = new InitialContext(env);

The env parameter specifies user name and password under which the client is

logging in. Because object implementations run in database servers, CORBA object

users (via their clients) must identify and authenticate themselves to the database as

they would for any database operation.

To obtain an instance of a published implementation, the client calls the JNDI

context’s lookup() method, passing a URL that names the target database and the

published name of the desired object implementation. The lookup() call returns a

reference to an instance in the target database. A client may pass the reference

(perhaps in stringified form) to other clients, and the reference will remain valid as

long as the session in which the associated object was created survives. Clients that

use copies of the same object reference share the object’s database session.

If a client executes lookup() twice in succession with the same parameters, the

second object reference is identical to the first, that is, it refers to the instance created

by the first lookup() call. However, if a client creates a second session and does

the second lookup() in that session, a different instance is created and its

reference returned.

No Interface or Implementation Repository
The current version of the Oracle8i ORB does not include an interface repository or

an implementation repository.

The Bank Example in Aurora and VBJ
The following sections compare implementations of the bank example widely used

in VBJ documentation. Both client and server are shown as they would be

implemented in Oracle8i and VBJ. All implementations use inheritance.
Comparing the Oracle8i JServer and VisiBroker VBJ ORBs B-5

The Bank Example in Aurora and VBJ
The Bank IDL Module

// Bank.idl

module Bank {
 interface Account {
 float balance();
 };
 interface AccountManager {
 Account open(in string name);
 };
};

Aurora Client

// Client.java

import bankServer.*;
import Bank.*;

import oracle.aurora.jndi.sess_iiop.ServiceCtx;

import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client
{
 public static void main (String[] args) throws Exception {

 String serviceURL = "sess_iiop://localhost:2222";
 String objectName = "/test/myBank";
 String username = "scott";
 String password = "tiger";

 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, username);
 env.put(Context.SECURITY_CREDENTIALS, password);
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
B-6 CORBA Developer’s Guide and Reference

The Bank Example in Aurora and VBJ
 Context ic = new InitialContext(env);

 AccountManager manager =
 (AccountManager) ic.lookup(serviceURL + objectName);

 // use args[0] as the account name, or a default.
 String name = args.length == 1 ? args[0] : "Jack B. Quick";

 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);

 // Get the balance of the account.
 float balance = account.balance();

 // Print out the balance.
 System.out.println
 ("The balance in " + name + "‘s account is $" + balance);
 }
}

VBJ Client
// Client.java

public class Client {

 public static void main(String[] args) {
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Locate an account manager.
 Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "BankManager");
 // use args[0] as the account name, or a default.
 String name = args.length > 0 ? args[0] : "Jack B. Quick";
 // Request the account manager to open a named account.
 Bank.Account account = manager.open(name);
 // Get the balance of the account.
 float balance = account.balance();
 // Print out the balance.
 System.out.println
 ("The balance in " + name + "‘s account is $" + balance);
 }
Comparing the Oracle8i JServer and VisiBroker VBJ ORBs B-7

The Bank Example in Aurora and VBJ
}

Aurora Account Implementation

// AccountImpl.java
package bankServer;

public class AccountImpl extends Bank._AccountImplBase {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

VBJ Account Implementation

// AccountImpl.java

public class AccountImpl extends Bank._AccountImplBase {
 public AccountImpl(float balance) {
 _balance = balance;
 }
 public float balance() {
 return _balance;
 }
 private float _balance;
}

Aurora Account Manager Implementation

// AccountManagerImpl.java
package bankServer;
B-8 CORBA Developer’s Guide and Reference

The Bank Example in Aurora and VBJ
import java.util.*;

public class AccountManagerImpl extends Bank._AccountManagerImplBase {

 public AccountManagerImpl() {
 super();
 }

 public AccountManagerImpl(String name) {
 super(name);
 }

 public synchronized Bank.Account open(String name) {
 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);
 // If there was no account in the dictionary, create one.
 if(account == null) {

 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;

 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);

 _orb().connect (account);

 // Print out the new account.
 // This just goes to the system trace file for Aurora.
 System.out.println("Created " + name + "‘s account: " + account);

 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }

 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();

}

Comparing the Oracle8i JServer and VisiBroker VBJ ORBs B-9

The Bank Example in Aurora and VBJ
VBJ Account Manager Implementation

// AccountManagerImpl.java

import java.util.*;

public class AccountManagerImpl extends Bank._AccountManagerImplBase {
 public AccountManagerImpl(String name) {
 super(name);
 }
 public synchronized Bank.Account open(String name) {
 // Lookup the account in the account dictionary.
 Bank.Account account = (Bank.Account) _accounts.get(name);
 // If there was no account in the dictionary, create one.
 if(account == null) {
 // Make up the account’s balance, between 0 and 1000 dollars.
 float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
 // Create the account implementation, given the balance.
 account = new AccountImpl(balance);
 // Make the object available to the ORB.
 _boa().obj_is_ready(account);
 // Print out the new account.
 System.out.println("Created " + name + "‘s account: " + account);
 // Save the account in the account dictionary.
 _accounts.put(name, account);
 }
 // Return the account.
 return account;
 }
 private Dictionary _accounts = new Hashtable();
 private Random _random = new Random();
}

VBJ Server Mainline

// Server.java

public class Server {

 public static void main(String[] args) {
B-10 CORBA Developer’s Guide and Reference

The Bank Example in Aurora and VBJ
 // Initialize the ORB.
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
 // Initialize the BOA.
 org.omg.CORBA.BOA boa = orb.BOA_init();
 // Create the account manager object.
 Bank.AccountManager manager =
 new AccountManagerImpl("BankManager");
 // Export the newly created object.
 boa.obj_is_ready(manager);
 System.out.println(manager + " is ready.");
 // Wait for incoming requests
 boa.impl_is_ready();
 }

}

Comparing the Oracle8i JServer and VisiBroker VBJ ORBs B-11

The Bank Example in Aurora and VBJ
B-12 CORBA Developer’s Guide and Reference

Abbreviations and Acro
C

Abbreviations and Acronyms

This appendix lists some of the most common acronyms that you will find in the

areas of networks, distributed object development, and Java. In cases where an

acronym refers to a product or a concept that is associated with a specific group,

company or product, the group, company, or product is indicated in brackets

following the acronym expansion. For example: CORBA ... [OMG].

This acronym list is intended as a helpful guide only. There are no guarantees that it

is complete or even completely accurate.

3GL third generation language

4GL fourth generation language

ACID atomicity, consistency, isolation, durability

ACL access control list

ADT abstract datatype

AFC application foundation classes [Microsoft]

ANSI American National Standards Institute

API application program interface

AQ advanced queuing [Oracle8]

ASCII American standard code for information interchange

ASP active server pages [Microsoft]

application service provider

AWT abstract windowing toolkit [Java]

BDK beans developer kit [Java]

BLOB binary large object
nyms C-1

BOA basic object adapter [CORBA]

BSD Berkeley system distribution [UNIX]

C/S client/server

CGI common gateway interface

CICS customer information control system [IBM]

CLI call level interface [SAG]

CLOB character large object

COM common object model [Microsoft]

COM+ common object model, extended [Microsoft]

CORBA common object request broker architecture [OMG]

DB database

DBA database administrator, database administration

DBMS database management system

DCE distributed computing environment [OSF]

DCOM distributed common object model [Microsoft]

DDCF distributed document component facility

DDE dynamic data exchange [Microsoft]

DDL data definition language [SQL]

DLL dynamic link library [Microsoft]

DLM distributed lock manager [Oracle8]

DML data manipulation language [SQL]

DOS disk operating system

DSOM distributed system object model [IBM]

DSS decision support system

DTP distributed transaction processing

EBCDIC extended binary-coded decimal interchange code [IBM]

EJB Enterprise JavaBean

ERP enterprise resource planning

ESIOP environment-specific inter-orb protocol
C-2 CORBA Developer’s Guide and Reference

FTP file transfer protocol

GB gigabyte

GIF graphics interchange format

GIOP general inter-orb protocol

GUI graphical user interface

GUID globally-unique identifier

HTML hypertext markup language

HTTP hypertext transfer protocol

IDE integrated development environment

interactive development environment

IDL interface definition language

IEEE Institute of Electrical and Electronics Engineers

IIOP internet inter-ORB protocol

IIS Internet information server [Microsoft]

IP internet protocol

IPC interprocess communication

IS information services

ISAM indexed sequential access method

ISAPI Internet server API [Microsoft]

ISO international standards organization (translation)

ISP internet service provider

ISQL interactive SQL [Interbase]

ISV independent software vendor

IT information technology

J2EE Java 2 Enterprise Edition [Sun]

JAR Java archive (on analogy with tar, q.v.)

JCK Java compatibility kit [Sun]

JDBC "Java database connectivity"

JDK Java developer kit
Abbreviations and Acronyms C-3

JFC Java foundation classes

JIT just in time

JLS Java language specification

JMF Java media framework

JMS Java messaging service

JNDI Java naming and directory interface

JNI Java native interface

JOB Java Objects for Business [Sun]

JPEG joint photographic experts group

JRMP Java remote ??message protocol

JSP Java server pages [Sun]

(sometimes used for Java Stored Procedure [Oracle])

JTA Java transaction API

JTS Java transaction service

JWS Java Web Server [Sun]

KB kilobyte

LAN local area network

LDAP lightweight directory access protocol

LDIF LDPA data interchange format

LOB large object

MB megabyte

MIME multipurpose Internet mail extensions

MIS management information services

MOM message-oriented middleware

MPEG motion picture experts group

MTS multi-threaded server [Oracle]

MTS Microsoft Transaction Server [Microsoft]

NCLOB national character large object

NIC network information center [internet]
C-4 CORBA Developer’s Guide and Reference

NNTP net news transfer protocol

NSAPI Netscape server application programming interface

NSP network service provider

NT New Technology [Microsoft]

OCI Oracle call interface

OCX OLE common control [Microsoft]

ODBC open database connectivity [Microsoft]

ODBMS object database management system

ODL object definition language [Microsoft]

ODMG Object Database Management Group

OEM original equipment manufacturer

OID object identifier

OLE object linking and embedding

OLTP on line transaction processing

OMA object management architecture [OMG]

OMG Object Management Group

OO object-oriented, object orientation

OODBMS object-oriented database management system

OQL object query language

ORB object request broker

ORDBMS object-relational database management system

OS operating system

OSF Open System Foundation

OSI open systems interconnect

OSQL object SQL

OTM object transaction monitor

OTS object transaction service

OWS Oracle Web Server

PB petabyte
Abbreviations and Acronyms C-5

PDF portable document format [Adobe]

PGP pretty good privacy

PL/SQL procedural language/SQL [Oracle]

POA portable object adapter [CORBA]

RAM random access memory

RAS remote access service [Microsoft]

RCS revision control system

RDBMS relational database management system

RFC request for comments

RFP request for proposal

RMI remote method invocation [Sun]

ROM read only memory

RPC remote procedure call

RTF rich text file

SAF server application function [Netscape]

SAG SQL Access Group

SCSI small computer system interface

SDK software developer kit

SET secure electronic transaction

SGML standard generalized markup language

SID system identifier [Oracle]

SLAPD standalone LDAP daemon

SMP symmetric multiprocessing

SMTP simple mail transfer protocol

SPI service provider interface

SQL structured query language

SQLJ SQL for Java

SRAM static (or synchronous) random access memory

SSL secure socket layer
C-6 CORBA Developer’s Guide and Reference

TB terabyte

TCPS TCP for SSL

TCP/IP transmission control protocol/internet protocol

TP transaction processing

TPC Transaction Processing Council

TPCW TPC web benchmark

TPF transaction processing facility

TPM transaction processing monitor

UCS universal character set [ISO 10646]

UDP user datagram protocol

UI user interface

UML unified modeling language [Rational]

URI uniform resource identifier

URL universal resource locator

URN universal resource name

VAR value-added reseller

VB Visual Basic [Microsoft]

VRML virtual reality modeling language

WAI web application interface [Netscape]

WAN wide area network

WIPS web interactions per second [TPCW]

WWW world wide web

XA extended architecture [X/Open]

XML extended markup language

jdb Java debugger [Sun]

tar tape archive, tape archiver [UNIX]

tps transactions per second
Abbreviations and Acronyms C-7

C-8 CORBA Developer’s Guide and Reference

Index

Symbols
_get_interface_def method, 5-6, 5-7

_initializeAuroraObject method, 2-25

A
ACID properties, 7-2

acronyms, C-1

ActivatableObject interface, 2-25

_initializeAuroraObject method, 2-25

ADDRESS parameter, 3-11, 3-16

applet

invoking server objects from, 5-16

sandbox security restrictions, 5-16

APPLET_CLASS property, 5-17

aurora_client.jar file, 6-10

AuroraCertificateManager class, 6-24, 6-25

setCertificateChain method, 6-24

setEncryptedPrivateKey method, 6-24

AuroraCurrentManager class, 6-20

AuroraTransactionService class, 7-20

initialize method, 7-20, 7-25

aurora.zip, 4-28

authenticate method, 4-20, 6-11

authentication

defined, 6-5

logout, 4-19, 6-11

server-side, 6-20

using SSL, 6-3

B
begin method, 7-9, 7-10, 7-12, 7-20, 7-22, 7-27

bindds command, 7-8, 7-17

bindut command, 7-7, 7-16

BOA

obj_is_ready method, 2-25

C
callback, 5-3

client-side authentication, 6-25

server-side authentication, 6-22

using SSL, 6-21

callout

using SSL, 6-21

certificates, 6-20, 6-21, 6-24

manager, 6-24

ClassLoader property, 5-17

client

access existing bean, 4-22

client-side authentication, 6-5

collections

in IDL, 2-21

commit method, 7-9, 7-10, 7-13, 7-20, 7-22, 7-28

configuring, 3-1 to 3-19

direct to dispatcher, 3-16

IIOP clients, 3-1 to 3-19

SSL over TCP/IP, 3-17

Contained object, 5-8

Container object, 5-8

Context

JNDI object, 4-9

CORBA

callbacks, 5-3

Java 2 support, 5-11

pure CORBA using Java 2, 5-15
Index-1

retrieving name service, 4-29

skeletons, 2-4

stubs, 2-4

system exceptions, 2-23

TIE mechanism, 5-10

web sites for documentation, 1-9

CosNaming service, 4-1, 4-2, 4-29

Current class

begin method, 7-20, 7-22

commit method, 7-20, 7-22

resume method, 7-20, 7-22

rollback method, 7-20, 7-22

rollback_only method, 7-20, 7-22

suspend method, 7-20, 7-22

D
data integrity, 6-3

Database Configuration Assistant, 3-8

DataSource object

binding in namespace, 7-8

create dynamically, 7-17

DebugAgent class, 2-26

restart method, 2-26

stop method, 2-26

debugging techniques, 2-25

DESCRIPTION parameter, 3-10

dispatchers

configuration, 3-11

connecting directly, 3-11

overview, 3-11

E
endpoint, 3-13

registration, 3-15

endSession method, 4-19

example code, A-1

exceptions

in IDL, 2-22

G
General Inter-Orb Protocol, see GIOP

get_status method, 7-29

get_transaction_name method, 7-29

getCurrent method, 7-20, 7-22

getTS method, 7-20, 7-22, 7-26

GIOP

dispatcher configuration, 3-11

oracle.aurora.server.SGiopServer, 3-9

presentation, 3-2

H
hand off, 3-14

Helper class

narrow method, 2-6

Holder class, 2-6

I
IDL, 1-4

IFR, 5-7

interface, 2-3

language mapping, 2-3

skeleton, 2-7

idl2java tool, 2-4

IFR, 5-6, 5-7, 5-8

object hierarchy, 5-8

overview, 5-6

Repository object, 5-6

IIOP, 1-7, 3-2, 4-15

clients

connecting to dispatchers, 3-11

session-based, 3-9

configuring, 5-25

MTS_DISPATCHER, 3-3

profile, 4-13

SSL support, 3-17

IIOP clients

configuring, 3-1 to 3-19

implementation, 2-6

init method, 2-24

InitialContext object, 4-12

initialize method, 7-20, 7-25

Inprise, 1-8

version supported, 5-11

VisiBroker for Java, B-1

in-session activation, 4-24
Index-2

interceptors, 2-25

interface

defined, 2-3

IFR, 5-7, 5-8

retrieving from IFR, 5-6

Interface Description Language, see IDL

Interface Repository, see IFR

InterfaceDef class, 5-7

Internet Inter-Orb Protocol, see IIOP

J
Java 2

migrating from JDK 1.1, 5-11

Java Naming and Directory Interface, see JNDI

Java Transaction API, see JTA

Java Transaction Service, see JTS

java2idl tool, 2-24

java2iiop tool, 2-24

javax-ssl-1_1.jar, 4-11, 6-4

javax-ssl-1_2.jar, 4-11, 6-4

JDeveloper

debugging, 2-25

JNDI

Context object, 4-9

initial context, 4-2

InitialContext constructor, 4-12

lookup method, 4-7, 4-12

jssl-1_1.jar, 4-11, 6-4

jssl-1_2.jar, 4-11, 6-4

JTA

client-side demarcation, 7-9

enlisting resources, 7-5

limitations, 7-6

nested transactions, 7-6

overview, 7-1, 7-2

server-side demarcation, 7-7

specification web site, 7-1

timeout, 7-18

two-phase commit, 7-5, 7-15

JTS, 7-1

begin method, 7-27

client-side demarcation, 7-20

commit method, 7-28

get_status method, 7-29

get_transaction_name method, 7-29

getTS method, 7-26

initializing, 7-19

invocation steps, 7-19

limitations, 7-23

overview, 7-19

rollback method, 7-28

rollback_only method, 7-29

server-side demarcation, 7-22

suspend method, 7-27

L
listener, 3-11

configuration, 3-13

endpoint registration, 3-15

hand off, 3-14

overview, 3-11

redirection, 3-12, 3-13

loadjava tool, 2-12

login

non-JNDI login, 4-19, 6-11

Login class, 4-5, 6-11

LoginServer class, 6-11

authenticate method, 4-20, 6-11

logout method, 4-19, 6-11

LogoutServer class, 4-19, 6-11

lookup method, 4-11, 4-12

M
MTS_DISPATCHERS parameter

ADDRESS attribute, 3-16

configuration, 5-25

overview, 3-3

PRESENTATION attribute, 3-9, 3-10, 3-17

PROTOCOL attribute, 3-9

N
NameService

retrieving, 4-29

namespace, 4-3

narrow method, 2-6

Net8 Assistant
Index-3

configuring, 3-10

configuring for IIOP clients, 3-6

NON_SSL_LOGIN value, 4-2, 4-10

O
obj_is_ready method, 2-25

object activation, 2-24, 4-28

in-session, 4-24, 4-28

Object class

_get_interface_def method, 5-7

oracle.aurora.server.SGiopServer, 3-9

OracleJTADataSource class, 7-18

ORB

initialization, 2-24, 5-12, 6-24

ORBClass property, 5-15, 5-18

ORBDefaultInitRef, 4-33

ORBdisableLocator property, 5-18

ORBInitRef, 4-33

ORBSingletonClass property, 5-15, 5-18

OSS.SOURCE.MY_WALLET parameter, 3-19

P
parameter passing

by value, 2-20

presentation

GIOP, 3-2, 3-9

oracle.aurora.server.SGiopServer, 3-9

PRESENTATION attribute, 3-9, 3-10, 3-11, 3-17

property

ORBClass, 5-15

ORBSingletonClass, 5-15

PROTOCOL attribute, 3-9

PROTOCOL_STACK parameter, 3-11

publish command

IFR, 5-7

publish tool, 2-12, 5-7

published object

permissions, 4-4

R
RAW session layer, 3-11

redirection, 3-12, 3-13, 3-16

regep tool, 3-15, 3-16

Repository object, 5-8

IFR, 5-6

restart method, 2-26

resume method, 7-20, 7-22, 7-27

rollback method, 7-9, 7-10, 7-13, 7-20, 7-22, 7-28

rollback_only method, 7-20, 7-22, 7-29

S
Secure Socket Layer, see SSL

SECURITY_AUTHENTICATION property, 4-10

SECURITY_CREDENTIALS property, 4-10

SECURITY_PRINCIPAL property, 4-10

SECURITY_ROLE property, 4-10

server-side authentication, 6-5

service name, 2-9, 4-6, 4-11

session

logout, 4-19, 6-11

routing, 4-14

terminating from server-side, 4-19

SESSION attribute, 3-11

setCertificateChain method, 6-24

setEncryptedPrivateKey method, 6-24

setTransactionTimeout method, 7-19

SID, 4-6

skeletons, 2-7

SQLJ, 5-2

SSL, 6-20

configuring, 3-17

defined, 6-3

JAR files, 4-11, 6-4

protocol version numbers, 6-4

SSL_CLIENT_ AUTHENTICATION

parameter, 3-19

SSL_CLIENT_AUTH value, 4-11

SSL_CREDENTIAL value, 4-10

SSL_LOGIN value, 4-10

SSL_VERSION parameter, 3-19

SSL_VERSION property, 3-19

start method, 2-26

stop method, 2-26

suspend method, 7-20, 7-22, 7-27

system exceptions, 2-23

system identifier, see SID
Index-4

T
TIE mechanism, 5-10

trace files, 2-26

transaction

client-side demarcation, 7-9

context propagation, 7-4

demarcation, 7-3

enlisting resources, 7-5

global, 7-3

limitations, 7-6, 7-23

overview, 7-2

server-side demarcation, 7-7

single-phase commit

example, 7-8

timeout, 7-18

two-phase commit, 7-5, 7-15

Transaction class, 7-3

TransactionManager class, 7-3

TransactionService class, 7-19, 7-20, 7-24, 7-25

getCurrent method, 7-20, 7-22

TRANSPORT_TYPE property, 5-25

TS class

getTS method, 7-20, 7-22

TTC, 4-13

two-phase commit, 7-15

two-task common, see TTC

U
URL

syntax for, 4-5

URL_PKG_PREFIXES property, 4-9

USE_SERVICE_NAME property, 4-11

UserTransaction interface, 7-24

UserTransaction object

begin method, 7-9, 7-10, 7-12

binding in namespace, 7-7

commit method, 7-9, 7-10, 7-13

retrieving, 7-7

rollback method, 7-9, 7-10, 7-13

setTransactionTimeout method, 7-19

useServiceName flag, 4-6

deployejb option, 4-11

V
version

Visibroker, 5-11

VisiBroker for Java, 1-8

W
wallet, 6-20

web sites

CORBA, 1-9
Index-5

Index-6

	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	Prerequisite Reading
	Terminology
	client
	marshalling
	object adapter
	request
	server object
	session

	About CORBA
	CORBA Features
	About the ORB

	Using JNDI and IIOP
	IIOP

	For More Information
	Books
	URLs

	2 Getting Started
	A First CORBA Application
	Writing Interfaces in IDL
	Generate Stubs and Skeletons
	Write the Server Object Implementation
	Comparing Oracle8i Server Applications to Other ORB Applications

	Write the Client Code
	Object name
	IIOP Service Name
	Client Authentication Information
	Client Example

	Compiling the Java Source
	Load the Classes into the Database
	Publish the Object Name
	Run the Example

	The Interface Definition Language (IDL)
	Using IDL
	Nested Modules
	Running the IDL Compiler
	IDL Interface Body

	IDL Types
	Basic Types
	Constructed Types
	Collections

	Exceptions
	CORBA System Exceptions

	Getting by Without IDL

	Activating ORBs and Server Objects
	Client Side
	Server Side
	About Object Activation
	CORBA Interceptors

	Debugging Techniques
	Using a Debug Agent for Debugging Server Applications

	3 Configuring IIOP Applications
	Overview
	Oracle8i Typical or Minimal Installation
	Oracle8i Custom Installation
	Net8 Assistant

	Manual Install and Configuration
	Configuring Through Tools
	Configuring Through Editing Initialization Files
	1. Configure the IIOP Connection in the Database Initialization File
	2. Configure a Listener for the Incoming Connection

	Advanced Configuration Options
	Database Listeners and Dispatchers
	Handling Incoming Requests

	Dynamic Listener Endpoint Registration
	Direct Dispatcher Connection
	Configuring SSL for EJB and CORBA
	Enable the MTS_DISPATCHERS for SSL
	Configure the Wallet Location through Net8 Assistant
	Configure an SSL-Enabled Listener through Net8 Assistant

	4 JNDI Connections and Session IIOP Service
	JNDI Connection Basics
	The Name Space
	Execution Rights to Database Objects
	URL Syntax
	URL Components and Classes
	CosNaming Restriction for JNDI Name

	Using JNDI to Access Bound Objects
	Importing JNDI Support Classes
	Retrieving the JNDI InitialContext
	URL_PKG_PREFIXES
	SECURITY_PRINCIPAL
	SECURITY_CREDENTIALS
	SECURITY_ROLE
	SECURITY_AUTHENTICATION
	USE_SERVICE_NAME
	The JNDI InitialContext Methods
	Constructor
	lookup

	Session IIOP Service
	Session IIOP Service Overview
	Client Requirements
	Session Routing
	JServer Tools

	Session Management
	Service Context Class
	Variables
	Methods

	Session Context Class
	Methods

	Session Management Scenarios
	Setting Session Timeout
	Set the Session Timeout from the Client
	Set the Session Timeout from a Server Object

	Retrieving JServer Version Number
	Activating In-Session CORBA Objects From Non-IIOP Presentations
	Accessing CORBA Objects Without JNDI
	Retrieving the NameService Initial Reference
	Retrieving Initial References from ORBDefaultInitRef

	5 Advanced CORBA Programming
	Using SQLJ
	Running the SQLJ Translator
	A Complete SQLJ Example

	Implementing CORBA Callbacks
	IDL
	Client Code
	Callback Server Implementation
	Callback Client-Server Implementation

	Retrieving Interfaces With The IFR
	Publishing the IDL Interface
	Retrieving Interfaces Implicitly
	Retrieving Interfaces Explicitly

	Using the CORBA Tie Mechanism
	Migrating from JDK 1.1 to Java 2
	JNDI Lookup
	Aurora ORB Interface
	No Parameters
	Providing ORB Properties
	Providing Input Arguments and ORB Properties
	Providing ORB Properties with Username, Password, and Role
	CORBA ORB Interface
	Backwards Compatibility with 8.1.5

	Invoking CORBA Objects From Applets
	Using Signed JAR Files to Conform to Sandbox Security
	Performing Object Lookup in Applets
	Modifying HTML for Applets that Access CORBA Objects

	Interoperability with non-Oracle ORBs
	Java Client using Oracle ORB
	Java Client using non-Oracle ORB
	C++ Client Interoperability
	IIOP Transport Protocol

	6 IIOP Security
	Overview
	Data Integrity
	Using the Secure Socket Layer
	SSL Version Negotiation

	Authentication
	Client-side Authentication
	Using JNDI for Authentication
	Providing Username and Password for Client-Side Authentication
	Username Sent by Setting JNDI Properties for the Login Protocol
	Username Sent Implicitly by using Credentials
	Username Sent by Explicitly Activating a Login Object

	Using Certificates for Client Authentication
	Specifying Certificates in a File
	Specifying Certificates in Individual JNDI Properties
	Specifying Certificates using AuroraCertificateManager

	AuroraCertificateManager Class
	addTrustedCertificate
	requestClientCertificate
	setCertificateChain
	setEncryptedPrivateKey
	setProtocolVersion

	Server-Side Authentication
	Typical Client/Server
	Callouts using Security
	Callbacks using Security

	Authorization
	Setting up Trust Points
	Parsing through the Server’s Certificate Chain
	AuroraCurrent Class
	getNegotiatedCipherSuite
	getPeerDERCertificateChain
	getNegotiatedProtocolVersion

	7 Transaction Handling
	Transaction Overview
	Global and Local Transactions
	Demarcating Transactions
	Transaction Context Propagation
	Enlisting Resources
	Two-Phase Commit
	JTA Limitations
	Nested Transactions
	Interoperability

	JTA Server-Side Demarcation
	Bind UserTransaction Object in the Namespace
	Bind DataSource Object in the Namespace
	Developing the Server Application

	JTA Client-Side Demarcation
	JTA Client-Side Demarcation Including Databases

	Configuring Two-Phase Commit Engine
	Creating DataSource Objects Dynamically
	Setting the Transaction Timeout
	Java Transaction Service
	JTS Client-Side Demarcation
	JTS Server-Side Demarcation
	JTS Limitations
	No Distributed Transactions
	Resources
	Nested Transactions
	Timeouts
	Interoperability

	Transaction Service Interfaces
	TransactionService
	Using The Java Transaction Service
	Required Import Statements
	Java Transaction Service Methods
	Current Transaction Methods

	For More Information on JTS
	JDBC Restrictions

	A Example Code: CORBA
	Basic Example
	README
	Bank.IDL
	Server
	AccountManagerImpl.java
	AccountImpl.java
	AccountManagerImplTie.java

	Client.java

	IFR Example
	Bank.IDL
	Server
	AccountManagerImpl.java
	AccountImpl.java
	AccountManagerImplTie.java

	Client
	Client.java
	PrintIDL.java

	Callback Example
	README
	IDL Files
	Client.IDL
	Server.IDL

	Server
	ServerImpl.java

	Client
	Client.java
	ClientImpl.java

	TIE Example
	README
	Hello.IDL
	Server Code - HelloImpl.java
	Client.java

	Pure CORBA Client
	README
	Bank.IDL
	Server Code
	AccountManagerImpl.java
	AccountImpl.java

	Client.java

	JTA Examples
	Single-Phase Commit JTA Transaction Example
	Employee.IDL
	Client.java
	EmployeeServer.sqlj

	Two-Phase Commit JTA Transaction Example
	Employee.IDL
	Client.java
	Server

	JTS Transaction Example
	README
	Employee.IDL
	Client.java
	Server

	SSL Examples
	Client-Side Authentication
	README
	Hello.IDL
	Client.java
	Server

	Server-Side Authentication
	README
	Hello.IDL
	Client.java
	Server

	Session Example
	README
	Hello.IDL
	Client.java
	Server

	Applet Example
	JDK and JInitiator Applets
	README
	HTML for JDK 1.1
	HTML for JDK 1.2
	HTML for Oracle JInitiator
	Applet Client

	Visigenic Applet
	README
	HTML for Visigenic Client Applet
	Visigenic Client Applet

	B Comparing the Oracle8i JServer and VisiBroker VBJ ORBs
	Object References Have Session Lifetimes
	The Database Server is the Implementation Mainline
	Server Object Implementations are Deployed by Loading and Publishing
	Implementation by Inheritance is Nearly Identical
	Implementation by Delegation is Different
	Clients Look Up Object Names with JNDI
	No Interface or Implementation Repository
	The Bank Example in Aurora and VBJ
	The Bank IDL Module
	Aurora Client
	VBJ Client
	Aurora Account Implementation
	VBJ Account Implementation
	Aurora Account Manager Implementation
	VBJ Account Manager Implementation
	VBJ Server Mainline

	C Abbreviations and Acronyms
	Index

