
Oracle8 i

Java Developer’s Guide

Release 3 (8.1.7)

July 2000

Part No. A83728-01

Java Developer’s Guide, Release 3 (8.1.7)

Part No. A83728-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Author: Sheryl Maring

Contributors: Steve Harris, Ellen Barnes, Peter Benson, Greg Colvin, Bill Courington, Matthieu Devin,
Jim Haungs, Hal Hildebrand, Mark Jungerman, Susan Kraft, Thomas Kurian, Scott Meyer, Tom
Portfolio, Dave Rosenberg, Jerry Schwarz, Harlan Sexton, Tim Smith, David Unietis, Brian Wright.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle products mentioned herein are trademarks or registered
trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

1 Introduction to Java in Oracle8 i

Contents .. 1-2
Overview of Java... 1-2

Java and Object-Oriented Programming Terminology... 1-2
Classes... 1-2
Attributes.. 1-4
Methods .. 1-5

Class Hierarchy... 1-5
Interfaces.. 1-6
Polymorphism... 1-7
The Java Virtual Machine (JVM) .. 1-8
Key Features of the Java Language.. 1-11

Why Use Java in Oracle8i? .. 1-12
Multithreading .. 1-13
Automated Storage Management .. 1-14
Footprint .. 1-14
Performance... 1-15

How Native Compilers Improve Performance... 1-15
Dynamic Class Loading... 1-16

Oracle’s Java Application Strategy .. 1-17
Java Stored Procedures .. 1-18
iii

PL/SQL Integration and Oracle RDBMS Functionality ... 1-18
JDBC Drivers.. 1-19
SQLJ – Embedded SQL in Java.. 1-19

Dynamic HTML Invoking Java .. 1-20
Servlets .. 1-20
JavaServerPages... 1-20

Distributed Application Development.. 1-21
Using EJB Components .. 1-21

Development Tools .. 1-22
Overview of Oracle8i Java Documentation ... 1-22

2 Writing Java Applications on Oracle8 i

Overview .. 2-2
Terminology... 2-2

Database Sessions Imposed on Java Applications... 2-3
Session Lifetime .. 2-5
Java Supported APIs .. 2-5

Execution Control ... 2-6
Migrating from JDK 1.1 to Java 2... 2-7

Your Development Environment... 2-7
JDBC 2.0 ... 2-8

Server Applications Using JDBC 2.0... 2-9
Clients Using JDBC 2.0 ... 2-10

Java 2 Security ... 2-10
Java 2 ORB APIs.. 2-10

JNDI Lookup.. 2-11
Aurora ORB Interface ... 2-11
CORBA ORB Interface .. 2-13
Backwards Compatibility for 8.1.5 CORBA and EJB Applications.............................. 2-14

Java Code, Binaries, and Resources Storage.. 2-14
Preparing Java Class Methods for Execution .. 2-15

Compiling Java Classes.. 2-15
Compiling Source through javac... 2-15
Compiling Source through loadjava... 2-15
Compiling Source at Runtime ... 2-16
iv

Specifying Compiler Options .. 2-16
Automatic Recompilation .. 2-19

Resolving Class Dependencies ... 2-19
Allowing References to Non-Existent Classes .. 2-21
ByteCode Verifier .. 2-22

Loading Classes .. 2-23
Two Definitions of the Same Class ... 2-25
Need Database Privileges and JVM Permissions ... 2-26
Loading JAR or ZIP Files.. 2-26

How to Grant Execute Rights ... 2-27
Checking Java Uploads.. 2-28

Object Name and Type ... 2-29
Status ... 2-30

Publishing .. 2-30
User Interfaces on the Server.. 2-31
Shortened Class Names ... 2-32
Class.forName() on JServer... 2-33

Supply the ClassLoader in Class.forName ... 2-34
Supply Class and Schema Names to classForNameAndSchema.. 2-35
Supply Class and Schema Names to lookupClass... 2-36
Supply Class and Schema Names when Serializing ... 2-36
Class.forName Example .. 2-37

Managing Your Operating System Resources... 2-38
Overview of Operating System Resources ... 2-38

Operating System Resource Access .. 2-39
Operating System Resource Lifetime ... 2-39

Garbage Collection and Operating System Resources.. 2-40
Operating System Resources Affected Across Calls ... 2-41

Sockets... 2-43
Threading in JServer .. 2-44

Thread Lifecycle .. 2-45

3 Invoking Java in the Database

Overview .. 3-2
Invoking Java Methods ... 3-3
v

Utilizing Java Stored Procedures ... 3-3
Utilizing Distributed Objects With CORBA and EJB .. 3-6

IIOP Transport ... 3-7
Naming ... 3-7
Creating and Deploying Enterprise JavaBeans... 3-8
Using an EJB... 3-9
Session Shell ... 3-9

Utilizing Remote Method Invocation (RMI)... 3-10
Utilizing Java Native Interface (JNI) Support .. 3-10
Utilizing SQLJ and JDBC for Querying Database.. 3-11

JDBC .. 3-11
SQLJ... 3-11

An Example Comparing JDBC and SQLJ ... 3-12
Complete SQLJ Example ... 3-13

SQLJ Strong Typing Paradigm .. 3-15
Translating a SQLJ Program .. 3-16
Running a SQLJ Program in the Server.. 3-16
Converting a Client Application to Run in the Server... 3-17
Interacting with PL/SQL.. 3-17

Debugging Server Applications .. 3-18
1. Prepare the Code for Debugging .. 3-19
2. Start the Debug Proxy... 3-20
3. Starting, Stopping, and Restarting the Debug Agent... 3-21
OracleAgent Class ... 3-22
4. Connecting a Debugger .. 3-22

How To Tell You Are Executing in the Server ... 3-24
Redirecting Output on the Server ... 3-24

4 Java Installation and Configuration

Initializing a Java-Enabled Database.. 4-2
Manual Install ... 4-2
Requirements .. 4-3
Package DBMS_JAVA.. 4-3

Configuring JServer.. 4-6
Java Stored Procedure Configuration.. 4-7
vi

Enterprise JavaBeans and CORBA Configuration... 4-8
Enabling the Java Client.. 4-8

1. Install JDK on the Client .. 4-8
2. Set up CLASSPATH ... 4-9

Basic Included JAR files:... 4-9
JAR Files Necessary for JDK 1.1 Clients... 4-10
JAR Files Necessary for Java 2 Clients ... 4-10
JAR Files Included for Clients that use SQLJ .. 4-10
JAR Files Included for Clients that use JSP ... 4-11

3. Verify the Port/SID.. 4-11
4. Test Install with Samples... 4-11

5 Security For Oracle8 i Java Applications

Network Connection Security .. 5-2
Database Contents and JVM Security .. 5-2

Java 2 Security ... 5-3
Setting Permissions .. 5-6

Fine-Grain Definition for Each Permission.. 5-7
Acquiring Administrative Permission to Update Policy Table 5-12
Creating Permissions .. 5-14
Enabling or Disabling Permissions... 5-17
Permission Types... 5-19
Initial Permission Grants.. 5-21
General Permission Definition Assigned to Roles.. 5-24

Debugging Permissions... 5-25
Permission for Loading Classes.. 5-25

6 Oracle8 i Java Application Performance

Natively Compiled Code... 6-2
JServer Accelerator Overview... 6-3
JServer Core Java Class Libraries ... 6-5
Natively Compiling Java Application Class Libraries .. 6-5

Installation Requirements .. 6-5
Executing JServer Accelerator .. 6-6

Java Memory Usage .. 6-7
vii

Configuring Memory Initialization Parameters... 6-8
Java Pool Memory... 6-9
Displaying Used Amounts of Java Pool Memory.. 6-10
Correcting Out of Memory Errors.. 6-11

Running out of memory while compiling ... 6-11
Running out of memory while loading.. 6-11

End-of-Call Migration.. 6-12
Oracle-Specific Support for End-of-Call Optimization ... 6-13

Memory Profiling Utility ... 6-17
How MemStat Works... 6-18
Using MemStat.. 6-19
MemStat Permissions ... 6-20
The MemStat Report Format... 6-21
Sample Output .. 6-22

Glossary

Index
viii

Send Us Your Comments

Oracle8 i Java Developer’s Guide, Release 3 (8.1.7)

Part No. A83728-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service:

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

You can send comments to us in the following ways
Beta Draft ix

■ Electronic mail — jpgcomnt@us.oracle.com

■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager

■ Postal service

Oracle Corporation

Information Development Manager

500 Oracle Parkway, Mailstop 4op978

Redwood Shores, CA 94065

USA

Please provide the following information, and indicate if you would like a reply:

Name:

Title

Company:

Department:

Electronic Mail Address:

Postal Address:

Phone Number:

Book Title:

Version Number:

If you like, you can use the following questionnaire to give us feedback:

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available).

If you have problems with the software, please contact your local Oracle World Wide Support Center.
x Beta Draft

Preface

Who Should Read This Book
This book has been written for the following audiences:

■ Management—You might have purchased Oracle8i for reasons other than Java

development within the database. However, if you want to know more about

Oracle8i Java features, see "Overview of Oracle8i Java Documentation" on

page 1-22 for a management perspective.

■ Non-Java Developers—Oracle database programming consists of PL/SQL and

other non-Java programming. For experienced PL/SQL developers who are not

familiar with Java, a brief overview of Java and object-oriented concepts is

discussed in the first part of Chapter 1, "Introduction to Java in Oracle8i". For

more detailed information on Java, see "Java Information Resources" at the end

of this Preface.

■ Java Developers—Pure Java developers are used to a Java environment that

follows Sun Microsystem’s specification. However, when Java is combined in

the database, both Java and database concepts merge. Thus, the Java

environment within Oracle8i is expanded to include database concerns. The

bulk of this book discusses the differences you must understand to run Java in

the database. The following outlines the two viewpoints that arise from this

merge:

* Java environment—Note that Oracle8i delivers a compliant Java

implementation—any 100% pure Java code will work. Oracle8i JServer

affects your Java development in the way you manage your classes and

the environment in which your classes exist. For example, the classes

must be loaded into the database. In addition, there is a clearer

separation of client and server in the Oracle8i model.
xi

* Database environment—You must be aware of database concepts for

managing your Java objects. This book gives you a comprehensive view

of how the two well-defined realms—Oracle8i database and Java

environment—fit together. For example, when deciding on your

security policies, you must consider both database security and Java

security for a comprehensive security policy.

Java API Programming Models
The building blocks Java developers use in Oracle8i are as follows:

■ Java stored procedures—You can develop Java applications that are stored in

the database. Once loaded, these procedures can be invoked from SQL,

PL/SQL, or as triggers. See the Oracle8i Java Stored Procedures Developer’s
Guide.for more information.

■ JDBC and SQLJ—You can write a Java application that accesses SQL data from

the client or directly on the server.

■ Distributed Java CORBA or EJB applications—You can develop distributed EJB

or CORBA applications that are loaded and invoked in the database.

Each of these models is briefly discussed in Chapter 1, "Introduction to Java in

Oracle8i" and examples are given in Chapter 3, "Invoking Java in the Database".

Both of these chapters should help you decide which model to use for your

particular application. Once you decide on the appropriate model, examine the

appropriate developer’s guide for in depth information on each model. For

example, if you decide to use Java stored procedures, you should examine the book

Oracle8i Java Stored Procedures Developer’s Guide.

Java Information Resources
The following table lists the sources of current information discussed in the Java

programming documentation suite:

Location Description

http://www.oracle.com/java The latest offerings, updates, and news for Java within

the Oracle8i database. This site contains Frequently
Asked Questions (FAQ), updated JDBC drivers, SQLJ
reference implementations, and white papers that detail
Java application development. In addition, you can
download try-and-buy Java tools from this site.
xii

http://www.oracle.com/java

Your local or on-line bookstore has many useful Java references. You can find

another listing of materials that are helpful to beginners and that you can use as

general references, in the Oracle8i Java Stored Procedures Developer’s Guide.

http://java.sun.com/ Sun Microsystem’s web site that is the central source for
Java. This site contains Java products and information,
such as tutorials, book recommendations, and the Java
Developer’s Kit (JDK). The JDK is located at
http://java.sun.com/products

http://java.sun.com/docs/books/jls

http://java.sun.com/docs/books/vmspec

The Oracle8i Java Server (JServer) is based on the Java
Language (JLS) and the Java Virtual Machine (JVM)
specifications.

comp.lang.java.programmer

comp.lang.java.databases

Internet newsgroups can be a valuable source of
information on Java from other Java developers. We
recommend that you monitor these two newsgroups.
Note: Oracle monitors activity on some of these
newsgroups and posts responses to Oracle-specific
issues.

Location Description
xiii

http://java.sun.com/
http://java.sun.com/docs/books/jls
http://java.sun.com/docs/books/vmspec

xiv

Introduction to Java in Oracle
1

Introduction to Java in Oracle8 i

Java applications are supported within the Oracle8i database. Java applications can

range from the simple standalone application to large, enterprise solutions using

EJB or CORBA. All supported Java APIs cannot be covered within a single

document; thus, several books describe the full support for Java within Oracle8i.
This book provides a general overview for how you should program your Java

applications when loading and running these applications in the database.

Secondly, this book helps you choose which type of Java application you might

develop, and direct you to the corresponding book for detailed information on that

subject.

This chapter contains the following information:

■ Introduces the Java language for Oracle database programmers. Oracle PL/SQL

developers are accustomed to developing server-side applications that have

tight integration with SQL data. You can develop Java server-side applications

that take advantage of the scalability and performance of the Oracle database. If

you are not familiar with Java, see "Overview of Java" on page 1-2.

■ Examines why you should consider using Java within an Oracle8i database. See

"Why Use Java in Oracle8i?" on page 1-12. In addition, a brief description is

given of the Java application development interfaces supported within Oracle8i.
These include SQLJ, JDBC, Java stored procedures, EJB, and CORBA. See

"Oracle’s Java Application Strategy" on page 1-17.

■ Provides a roadmap to the Oracle8i Java documentation. Several Java

application types are supported within Oracle8i. Each of these types are

described generally in this book, and more intimately in their own books.

"Overview of Oracle8i Java Documentation" on page 1-22 shows you which

books cover each Java application type in detail.
8i 1-1

Contents
Contents
■ Overview of Java

■ Why Use Java in Oracle8i?

■ Oracle’s Java Application Strategy

■ Overview of Oracle8i Java Documentation

Overview of Java
Java, which was developed at Sun Microsystems, has emerged over the last several

years as the object-oriented programming language of choice. It includes the

following concepts:

■ A Java virtual machine (JVM), which provides the fundamental basis for

platform independence

■ Automated storage management techniques, the most visible of which is

garbage collection

■ Language syntax that borrows from C and enforces strong typing

The result is a language easily learned by existing C programmers, but which

remains truly object-oriented and efficient for application-level programs.

Java and Object-Oriented Programming Terminology
This section covers some basic terminology for discussing details of Java application

development in the Oracle8i environment. The terms should be familiar to

experienced Java programmers. A detailed discussion of object-oriented

programming or of the Java language is beyond the scope of this book. Many texts,

in addition to the complete language specification, are available at your bookstore

and on the Internet. See "Java Information Resources" in the Preface, and

“Suggested Reading” in the Oracle8i Java Stored Procedures Developer’s Guide. for

pointers to reference materials and for places to find Java-related information on the

Internet.

Classes
All object-oriented programming languages support the concept of a class. As with

a table definition, a class provides a template for objects that share common

characteristics. Each class can contain the following:
1-2 Oracle8i Java Developer’s Guide

Overview of Java
■ Attributes—static or instance variables that each object of a particular class

possesses.

■ Methods—you can invoke methods defined by the class or inherited by any

classes extended from the class.

When you create an object from a class, you are creating an instance of that class.

The instance contains the fields of an object, which are known as its data, or state.

Figure 1–1 shows an example of an Employee class defined with two attributes:

last name (lastName) and employee identifier (ID).
Introduction to Java in Oracle8i 1-3

Overview of Java
Figure 1–1 Classes and Instances

When you create an instance, the attributes store individual and private information

relevant only to the employee. That is, the information contained within an

employee instance is known only for that single employee. The example in

Figure 1–1 shows two instances of employee—Smith and Jones. Each instance

contains information relevant to the individual employee.

Attributes
Attributes within an instance are known as fields. Instance fields are analogous to

the fields of a relational table row. The class defines the fields, as well as the type of

each field. You can declare fields in Java to be static, public, private, protected, or

default access.
1-4 Oracle8i Java Developer’s Guide

Overview of Java
■ Public, private, protected, or default access fields are created within each

instance.

■ Static fields are like global variables in that the information is available to all

instances of the employee class.

The language specification defines the rules of visibility of data for all fields. Rules

of visibility define under what circumstances you can access the data in these fields.

Methods
The class also defines the methods you can invoke on an instance of that class.

Methods are written in Java and define the behavior of an object. This bundling of

state and behavior is the essence of encapsulation, which is a feature of all

object-oriented programming languages. If you define an Employee class,

declaring that each employee’s id is a private field, other objects can access that

private field only if a method returns the field. In this example, an object could

retrieve the employee’s identifier by invoking the Employee.getId() method.

In addition, with encapsulation, you can declare that the Employee.getId()
method is private, or you can decide not to write an Employee.getId() method.

Encapsulation helps you write programs that are reusable and not misused.

Encapsulation makes public only those features of an object that are declared

public; all other fields and methods are private. Private fields and methods can be

used for internal object processing.

Class Hierarchy
Java defines classes within a large hierarchy of classes. At the top of the hierarchy is

the Object class. All classes in Java inherit from the Object class at some level, as

you walk up through the inheritance chain of superclasses. When we say Class B

inherits from Class A, each instance of Class B contains all the fields defined in class

B, as well as all the fields defined in Class A. For example, in Figure 1–2, the

FullTimeEmployee class contains the id and lastName fields defined in the

Employee class because it inherits from the Employee class. In addition, the

FullTimeEmployee class adds another field, bonus , which is contained only

within FullTimeEmployee .

You can invoke any method on an instance of Class B that was defined in either

Class A or B. In our employee example, the FullTimeEmployee instance can

invoke methods defined only within its own class, or methods defined within the

Employee class.
Introduction to Java in Oracle8i 1-5

Overview of Java
Figure 1–2 Inheritance Hierarchy

Instances of Class B are substitutable for instances of Class A, which makes

inheritance another powerful construct of object-oriented languages for improving

code reuse. You can create new classes that define behavior and state where it

makes sense in the hierarchy, yet make use of pre-existing functionality in class

libraries.

Interfaces
Java supports only single inheritance; that is, each class has one and only one class

from which it inherits. If you must inherit from more than one source, Java provides

the equivalent of multiple inheritance, without the complications and confusion

that usually accompany it, through interfaces. Interfaces are similar to classes;

however, interfaces define method signatures, not implementations. The methods
1-6 Oracle8i Java Developer’s Guide

Overview of Java
are implemented in classes declared to implement an interface. Multiple inheritance

occurs when a single class simultaneously supports many interfaces.

Polymorphism
Assume in our Employee example that the different types of employees must be

able to respond with their compensation to date. Compensation is computed

differently for different kinds of employees.

■ FullTimeEmployees are eligible for a bonus

■ NonExemptEmployees get overtime pay

In traditional procedural languages, you would write a long switch statement, with

the different possible cases defined.

switch: (employee.type) {
 case: Employee
 return employee.salaryToDate;
 case: FullTimeEmployee
 return employee.salaryToDate + employee.bonusToDate
 ...

If you add a new kind of Employee , you must update your switch statement. If

you modify your data structure, you must modify all switch statements that use it.

In an object-oriented language such as Java, you implement a method,

compensationToDate() , for each subclass of Employee class that requires any

special treatment beyond what is already defined in Employee class. For example,

you could implement the compensationToDate() method of

NonExemptEmployee , as follows:

private float compensationToDate() {
 return super.compensationToDate() + this.overtimeToDate();
}

You implement FullTimeEmployee ’s method, as follows:

private float compensationToDate() {
 return super.compensationToDate() + this.bonusToDate();
}

The common usage of the method name compensationToDate() allows you to

invoke the identical method on different classes and receive different results,

without knowing the type of employee you are using. You do not have to write a

special method to handle FullTimeEmployees and PartTimeEmployees . This
Introduction to Java in Oracle8i 1-7

Overview of Java
ability for the different objects to respond to the identical message in different ways

is known as polymorphism.

In addition, you could create an entirely new class that does not inherit from

Employee at all—Contractor —and implement a compensationToDate()
method in it. A program that calculates total payroll to date would iterate over all

people on payroll, regardless of whether they were full-time, part-time, or

contractors, and add up the values returned from invoking the

compensationToDate() method on each. You can safely make changes to the

individual compensationToDate() methods with the knowledge that callers of

the methods will work correctly. For example, you can safely add new fields to

existing classes.

The Java Virtual Machine (JVM)
As with other high-level computer languages, your Java source compiles to

low-level machine instructions. In Java, these instructions are known as bytecodes

(because their size is uniformly one byte of storage). Most other languages, such as

C, compile to machine-specific instructions; for example, instructions specific to an

Intel or HP processor. Your Java source compiles to a standard,

platform-independent set of bytecodes, which interacts with a Java virtual machine

(JVM). The JVM is a separate program optimized for the specific platform on which

you execute your Java code. Figure 1–3 shows how Java can maintain platform

independence. Your Java source is compiled into bytecodes, which are platform

independent. Each platform has installed a JVM that is specific to its operating

system. The Java bytecodes from your source get interpreted through the JVM into

appropriate platform dependent actions.
1-8 Oracle8i Java Developer’s Guide

Overview of Java
Figure 1–3 Java Component Structure

When you develop a Java program, you use predefined core class libraries written

in the Java language. The Java core class libraries are logically divided into

packages that provide commonly-used functionality, such as basic language

support (java.lang), input/output (java.io), and network access (java.net).

Together, the JVM and core class libraries provide a platform on which Java

programmers can develop with the confidence that any hardware and operating

system that supports Java will execute their program. This concept is what drives

the “write once, run anywhere” idea of Java.

Figure 1–4 illustrates how Oracle’s Java applications sit on top of the Java core class

libraries, which in turn sit on top of the JVM. Because Oracle’s Java support system

is located within the database, the JVM interacts with the Oracle database libraries,

instead of directly with the operating system.
Introduction to Java in Oracle8i 1-9

Overview of Java
Figure 1–4 JServer Component Structure
1-10 Oracle8i Java Developer’s Guide

Overview of Java
Sun Microsystems furnishes publicly available specifications for both the Java

language and the JVM. The Java language specification (JLS) defines things such as

syntax and semantics; the JVM specification defines the necessary low-level

behavior for the “machine” that executes the bytecodes. In addition, Sun

Microsystems provides a compatibility test suite for JVM implementors to

determine if they have complied with the specifications. This test suite is known as

the Java Compatibility Kit (JCK). Oracle’s JVM implementation complies fully with

JCK. Part of the overall Java strategy is that an openly specified standard, together

with a simple way to verify compliance with that standard, allows vendors to offer

uniform support for Java across all platforms.

Key Features of the Java Language
The Java language has key features that make it ideal for developing server

applications. These features include:

■ Simplicity—Java is a simpler language to master than most others you use in

server applications because of its consistent enforcement of the object model.

The large, standard set of class libraries brings powerful tools to Java

developers on all platforms.

■ Portability—Java is portable across platforms. It is possible to write

platform-dependent code in Java, but it is also simple to write programs that

move seamlessly across machines. Oracle server applications, which do not

support graphical user interfaces directly on the platform that hosts them, also

tend to avoid the few platform portability issues that Java has.

■ Automatic Storage Management—The Java virtual machine automatically

performs all memory allocation and deallocation during program execution.

Java programmers can neither allocate nor free memory explicitly. Instead, they

depend on the JVM to perform these bookkeeping operations, allocating

memory as they create new objects and deallocating memory when the objects

are no longer referenced. The latter operation is known as garbage collection.

■ Strong Typing—Before you use a Java variable, you must declare the class of

the object it will hold. Java’s strong typing makes it possible to provide a

reasonable and safe solution to inter-language calls in the case of Java and

PL/SQL and to integrate Java and SQL.

■ No Pointers—Although Java retains much of the flavor of C in its syntax, it

does not support direct pointers or pointer manipulation. You pass all

parameters, except primitive types, by reference (that is, object identity is

preserved), not by value. Java does not provide C’s low level, direct access to

pointers, which eliminates memory corruption and leaks.
Introduction to Java in Oracle8i 1-11

Why Use Java in Oracle8i?
■ Exception Handling—Java exceptions are objects. Java requires developers to

declare which exceptions can be thrown by methods in any particular class.

■ Flexible Namespace—Java defines classes and holds them within a hierarchical

structure that mirrors the Internet’s domain namespace. You can distribute Java

applications and avoid name collisions. Java extensions such as the Java

Naming and Directory Interface (JNDI) provide a framework for multiple name

services to be federated. Java’s namespace approach is flexible enough for

Oracle to incorporate the concept of a schema for resolving class names, while

fully complying with the language specification.

■ Security—The design of Java bytecodes and the JVM allow for built-in

mechanisms to verify Java binary code has not been tampered with. Oracle8i is
installed with an instance of SecurityManager, which, combined with Oracle

database security, secures who can invoke any Java methods.

■ Standards for Connectivity to Relational Databases—JDBC and SQLJ enable

Java code to access and manipulate data resident in relational databases. Oracle

provides drivers that allow vendor-independent, portable Java code to access

the relational database.

Why Use Java in Oracle8 i?
The only reason that you are allowed to write and load Java applications within the

database is because it is a safe language. Java has been developed to prevent anyone

tampering with the operating system that the Java code resides in. Some languages,

such as C, can introduce problems within the database. Java, because of its design,

is a safe language to allow within the database.

Although the Java language presents many advantages to developers, providing an

implementation of a JVM that supports Java server applications in a scalable

manner is a challenge. This section discusses some of these challenges.

■ Multithreading

■ Automated Storage Management

■ Footprint

■ Performance

■ Dynamic Class Loading
1-12 Oracle8i Java Developer’s Guide

Why Use Java in Oracle8i?
Multithreading
Multithreading support is often cited as one of the key scalability features of the

Java language. Certainly, the Java language and class libraries make it simpler to

write multithreaded applications in Java than many other languages, but it is still a

daunting task in any language to write reliable, scalable multithreaded code.

As a database server, Oracle8i efficiently schedules work for thousands of users.

The Oracle8i Aurora JVM uses the facilities of the RDBMS server to concurrently

schedule Java execution for thousands of users. Although Oracle8i supports Java

language level threads required by the Java language specification (JLS) and Java

Compatibility Kit (JCK), using threads within the scope of the database will not

increase your scalability. Using the embedded scalability of the database eliminates

the need for writing multithreaded Java servers. You should use the database’s

facilities for scheduling users by writing single-threaded Java applications. The

database will take care of the scheduling between each application; thus, you

achieve scalability without having to manage threads. You can still write

multithreaded Java applications, but multiple Java threads will not increase your

server’s performance.

One difficulty multithreading imposes on Java is the interaction of threads and

automated storage management, or garbage collection. The garbage collector

executing in a generic JVM has no knowledge of which Java language threads are

executing or how the underlying operating system schedules them.

■ Non-Oracle8i model—A single user maps to a single Java language level

thread; the same single garbage collector manages all garbage from all users.

Different techniques typically deal with allocation and collection of objects of

varying lifetimes and sizes. The result in a heavily multithreaded application is,

at best, dependent upon operating system support for native threads, which can

be unreliable and limited in scalability. High levels of scalability for such

implementations have not been convincingly demonstrated.

■ Oracle8i JServer model—Even when thousands of users connect to the server

and execute the same Java code, each user experiences it as if he is executing his

own Java code on his own Java virtual machine. The responsibility of the

Oracle8i JServer is to make use of operating system processes and threads,

using the scalable approach of the Oracle RDBMS. As a result of this approach,

the JVM’s garbage collector is more reliable and efficient because it never

collects garbage from more than one user at any time. Refer to "Threading in

JServer" on page 2-44 for more information on the thread model

implementation in JServer.
Introduction to Java in Oracle8i 1-13

Why Use Java in Oracle8i?
Automated Storage Management
Garbage collection is a major feature of Java’s automated storage management,

eliminating the need for Java developers to allocate and free memory explicitly.

Consequently, this eliminates a large source of memory leaks that commonly plague

C and C++ programs. There is a price for such a benefit: garbage collection

contributes to the overhead of program execution speed and footprint. Although

many papers have been written qualifying and quantifying the trade-off, the overall

cost is reasonable, considering the alternatives.

Garbage collection imposes a challenge to the JVM developer seeking to supply a

highly scalable and fast Java platform. Aurora’s JVM meets these challenges in the

following ways:

■ Aurora JVM uses the Oracle8i scheduling facilities, which can manage multiple

users efficiently.

■ Garbage collection is consistently performant for multiple users because

garbage collection is focused on a single user within a single session. The

Oracle8i Aurora JVM enjoys a huge advantage because the burden and

complexity of the memory manager’s job does not increase as the number of

users increases. The memory manager performs the allocation and collection of

objects within a single session—which typically translates to the activity of a

single user.

■ Aurora JVM uses different garbage collection techniques depending on the type

of memory used. These techniques provide high efficiency and low overhead.

Footprint
The footprint of an executing Java program is affected by many factors:

■ Size of the program itself—how many classes and methods and how much code

they contain.

■ Complexity of the program—the amount of core class libraries Aurora uses as

the program executes, as opposed to the program itself.

■ Amount of state Aurora uses—how many objects Aurora allocates, how large

they are, and how many must be retained across calls.

■ Ability of the garbage collector and memory manager to deal with the demands

of the executing program, which is often non-deterministic. The speed with

which objects are allocated and the way they are held on to by other objects

influences the importance of this factor.
1-14 Oracle8i Java Developer’s Guide

Why Use Java in Oracle8i?
From a scalability perspective, the key to supporting many concurrent clients is a

minimum per-user session footprint. Aurora keeps the per-user session footprint to

a minimum by placing all read-only data for users, such as Java bytecodes, in

shared memory. Appropriate garbage collection algorithms are applied against call

and session memories to maintain a small footprint for the user’s session. Aurora

uses three types of garbage collection algorithms to maintain the user’s session

memory:

■ Generational scavenging for short-lived objects

■ Mark and lazy sweep collection for objects that exist for the life of a single call

■ Copying collector for long-lived objects—objects that live across calls within a

session

Performance
JServer performance is enhanced by implementing a native compiler.

How Native Compilers Improve Performance
Java executes platform-independent bytecodes on top of a JVM, which in turn deals

with the specific hardware platform. Anytime you add levels within software, your

performance is degraded. Because Java requires going through an intermediary to

interpret platform-independent bytecodes, a degree of inefficiency exists for Java

applications that does not exists within a platform-dependent language, such as C.

To address this issue, several JVM suppliers create native compilers. Native

compilers translate Java bytecodes into platform-dependent native code. This

eliminates the interpreter step and improves performance. The following describes

two methods for native compilation:

Compiler Description

Just In Time (JIT)
Compilation

JIT compilers quickly compile Java bytecodes to native
(platform-specific) machine code during runtime. This does not
produce an executable to be executed on the platform; instead, it
provides platform-dependent code from Java bytecodes that is
executed directly after it is translated. This should be used for
Java code that is run frequently, which will be executed at
speeds closer to languages such as C.
Introduction to Java in Oracle8i 1-15

Why Use Java in Oracle8i?
Oracle8i uses static compilation to deliver its core Java class libraries, the

Aurora/ORB, and JDBC code in natively compiled form. It is applicable across all

the platforms Oracle supports, whereas a JIT approach requires low-level,

processor-dependent code to be written and maintained for each platform. You can

use this native compilation technology with your own Java code. Refer to "Natively

Compiled Code" on page 6-2 for more information.

Dynamic Class Loading
Another strong feature of Java is dynamic class loading. The class loader loads

classes from the disk (and places them in the JVM-specific memory structures

necessary for interpretation) only as they are used during program execution. The

class loader locates the classes in the CLASSPATH and loads them during program

execution. This approach, which works well for applets, poses the following

problems in a server environment:

Static Compilation Static compilation translates Java bytecodes to
platform-independent C code before runtime. Then, a standard
C compiler compiles the C code into an executable for the target
platform. This approach is more suitable for Java applications
that are modified infrequently. This approach takes advantage of
the mature and efficient platform-specific compilation
technology found in modern C compilers.

Problem Description Solution

Predictability The class loading operation places a severe
penalty on first-time execution. A simple
program can cause Aurora to load many core
classes to support its needs. A programmer
cannot easily predict or determine the
number of classes Aurora loads.

Aurora loads classes dynamically, just as with
any other Java virtual machine. The same
one-time class loading speed hit is
encountered. However, because Aurora loads
the classes into shared memory, no other
users of those classes will cause the classes to
load again—they will simply use the same
pre-loaded classes.

Compiler Description
1-16 Oracle8i Java Developer’s Guide

Oracle’s Java Application Strategy
Oracle’s Java Application Strategy
One appeal of Java is its ubiquity and the growing number of programmers capable

of developing applications using it. Oracle furnishes enterprise application

developers with an end-to-end Java solution for creating, deploying, and managing

Java applications. The total solution consists of client- and server-side

programmatic interfaces, tools to support Java development, and a Java virtual

machine integrated with the Oracle8i database server. All of these products are 100

percent compatible with Java standards.

In addition to the Aurora JVM, the Oracle8i’s Java programming environment

consists of:

■ Java stored procedures as the Java equivalent and companion for PL/SQL. Java

stored procedures are tightly integrated with PL/SQL. You can call a Java

stored procedure from a PL/SQL package; you can call PL/SQL procedures

from a Java stored procedure.

■ SQL data can be accessed through JDBC and SQLJ programming interfaces.

■ Distributed enterprise application development through an Object Request

Broker (the Aurora/ORB) and Enterprise JavaBeans support.

■ Dynamic HMTL pages through Servlets and JavaServer Pages.

■ Tools and scripts used in assisting in development, class loading, and class

management.

To enable your decision making for which Java APIs to use, examine the following

table:

Reliability A benefit of dynamic class loading is that it
supports program updating. For example,
you would update classes on a server, and
clients who download the program and load
it dynamically see the update whenever they
next use the program. Server programs tend
to emphasize reliability. As a developer, you
must know that every client executes a
specific program configuration. You do not
want clients to inadvertently load some
classes that you did not intend them to load.

Oracle8i separates the upload and resolve
operation from the class loading operation at
runtime. You upload Java code you
developed to the server using the loadjava
utility. Instead of using CLASSPATH, you
specify a resolver at installation time. The
resolver is analogous to CLASSPATH, but
allows you to specify the schemas in which
the classes reside. This separation of
resolution from class loading means you
always know what program users execute.
Refer to the Oracle8i Java Tools Reference, for
details on loadjava and resolvers.

Problem Description Solution
Introduction to Java in Oracle8i 1-17

Oracle’s Java Application Strategy
Java Stored Procedures
If you are a PL/SQL programmer exploring Java, you will be interested in Java

stored procedures. A Java stored procedure is a program you write in Java to

execute in the server, exactly as a PL/SQL stored procedure. You invoke it directly

with products like SQL*Plus or indirectly with a trigger and can access it from any

Net8 client—OCI, PRO*, JDBC or SQLJ. The Oracle8i Java Stored Procedures
Developer’s Guide. explains how to write stored procedures in Java, how to access

them from PL/SQL, and how to access PL/SQL functionality from Java.

In addition, you can use Java to develop powerful programs independently of

PL/SQL. Oracle8i provides a fully compliant implementation of the Java

programming language and JVM.

PL/SQL Integration and Oracle RDBMS Functionality
You can invoke existing PL/SQL programs from Java and invoke Java programs

from PL/SQL. This solution protects and leverages your existing investment while

opening up the advantages and opportunities of Java-based Internet computing.

Oracle offers two different application programming interfaces (APIs) for Java

developers to access SQL data—JDBC and SQLJ. Both APIs are available on client

and server, so you can deploy the same code in either place.

■ JDBC Drivers—Used to build client/server 2-tier applications.

■ SQLJ – Embedded SQL in Java—Used to access static SQL. You must know the

name of the columns.

Type of functionality you need Java API to use

To have a Java procedure invoked from SQL, such as a
trigger.

Java Stored Procedures

To invoke a static, simple SQL statement from a
known table with known column names from a Java
object.

SQLJ

To invoke dynamic, complex SQL statements from a
Java object.

JDBC

To invoke Java from an HTML page Servlets or JavaServer Pages

To create a multi-tier Java application. CORBA or EJB
1-18 Oracle8i Java Developer’s Guide

Oracle’s Java Application Strategy
JDBC Drivers
JDBC is a database access protocol that enables you to connect to a database and

then prepare and execute SQL statements against the database. Core Java class

libraries provide only one JDBC API. JDBC is designed, however, to allow vendors

to supply drivers that offer the necessary specialization for a particular database.

Oracle delivers JServer with the following three distinct JDBC drivers.

For more information on JDBC, see "Utilizing SQLJ and JDBC for Querying

Database" on page 3-11 or a complete detailed description within the Oracle8i JDBC
Developer’s Guide and Reference.

SQLJ – Embedded SQL in Java
JDBC provides a low-level API for accessing SQL data from Java. It introduces Java

classes that mirror their SQL equivalents. Oracle has worked with other vendors,

including IBM, Tandem, Sybase, and Sun Microsystems, to develop a standard way

to embed SQL statements in Java programs—SQLJ. This work has resulted in a new

standard (ANSI x.3.135.10-1998) for a simpler and more highly productive

programming API than JDBC. A user writes applications to this higher-level API

and then employs a preprocessor to translate the program to standard Java source

Driver Description

JDBC Thin Driver You can use the JDBC thin driver to write 100% pure Java
applications and applets that access Oracle SQL data. The JDBC
thin driver is especially well-suited to Web browser-based
applications and applets because you can dynamically
download it from a Web page just like any other Java applet.

JDBC Oracle Call
Interface Driver

The JDBC Oracle Call Interface (OCI) driver accesses
Oracle-specific native code (that is, non-Java) libraries on the
client or middle tier, providing a richer set of functionality and
some performance boost compared to the JDBC thin driver, at
the cost of significantly larger size and client-side installation.

JDBC Server-side
Internal Driver

Oracle8i uses the JServer server-side internal driver when Java
code executes on the server. It allows Java applications executing
in the server’s Java virtual machine to access locally defined
data (that is, on the same machine and in the same process) with
JDBC. It provides a further performance boost because of its
ability to use underlying Oracle RDBMS libraries directly,
without the overhead of an intervening network connection
between your Java code and SQL data. By supporting the same
Java-SQL interface on the server, Oracle 8i does not require you
to rework code when deploying it.
Introduction to Java in Oracle8i 1-19

Oracle’s Java Application Strategy
with JDBC calls. At runtime, the program can communicate with multi-vendor

databases using standard JDBC drivers. SQLJ provides a simple, but powerful, way

to develop both client-side and middle-tier applications that access databases from

Java. You can use it in stored procedures, triggers, methods within the JServer

environment, and with EJB and CORBA. In addition, you can combine SQLJ

programs with JDBC.

The SQLJ translator is a Java program that translates embedded SQL in Java source

code to pure JDBC-based Java code. Because JServer provides a complete Java

environment, you can not only compile SQLJ programs on a client for execution on

the JServer, but you can compile them directly on the server. Oracle8i’s adherence to

Internet standards allows you to choose the development style that fits your needs.

For more information on SQLJ, see "Utilizing SQLJ and JDBC for Querying

Database" on page 3-11 or for a complete detailed description, see the SQLJ
Developer’s Guide and Reference.

Dynamic HTML Invoking Java
You can invoke Java from within dynamic HTML protocols, such as servlets or

JavaServer Pages.

Servlets
A servlet is useful for managing requests between HTML and Java applications,

specifically within a web server context. Servlets are to servers what applets are to

browsers. Servlets, as a true Java and HTML based protocol is platform

independent, and thus can be used in multiple environments.

See the Oracle8i Oracle Servlet Engine User’s Guide for more information.

JavaServerPages
JavaServer Pages is a a method of generating dynamic content in pages that are

output by a Web application, such as an application running on a Web server. This

allows you to include Java code snippets and calls to external Java components

within the HTML code (or other markup code, such as XML) of your Web pages.

JavaServer Pages works nicely as a front-end for business logic and dynamic

functionality in JavaBeans and Enterprise JavaBeans (EJBs). In addition, anything

that you can include in a normal HTML page can be included in a JSP page as well.

For example, a JSP page can call a component such as a JavaBean or Enterprise

JavaBean, and the bean will directly or indirectly access the database, generally

through JDBC or perhaps SQLJ.
1-20 Oracle8i Java Developer’s Guide

Oracle’s Java Application Strategy
A JSP page is translated into a Java servlet before being executed. It processes HTTP

requests and generates responses similarly to any other servlet. JSP pages are fully

interoperable with servlets—JSP pages can include output from a servlet or forward

to a servlet, and servlets can include output from a JSP page or forward to a JSP

page.

See the Oracle JavaServer Pages Developer’s Guide and Reference for more information.

Distributed Application Development
In addition to support for traditional RDBMS-stored procedures, JServer comes

with a built-in CORBA 2.0 ORB and support for Enterprise JavaBeans (EJB).

CORBA and EJB allow you to distribute Java components and application logic

between client, middle-tier, and database server.

Using EJB Components
"Java and Object-Oriented Programming Terminology" on page 1-2 discusses

encapsulation as a key element of object-oriented programming. Each object

maintains its own private state and supports a set of behaviors, which you

implement as methods. Java provides a formal way to define components, using

JavaBeans. A JavaBean component is a reusable object or group of objects (more

precisely, an object graph) that you can manipulate in a builder tool of some type.

IDEs, such as JDeveloper, provide tools to build user interfaces that use JavaBeans

and create JavaBean components. Each bean specifies its public interface and

properties that can be manipulated. JavaBeans do not have to be visually-oriented

components. Virtually any Java programming abstraction can potentially be

represented and manipulated as a bean.

A large component library provides the basis for assembling an application from

pre-built, pre-tested building blocks. However, beans are limited in their ability to

build complex business applications involving transactional logic. To address this

limitation, a group of companies, including Oracle, Sun Microsystems, and IBM,

OMG CORBA ORB The ORB allows programs you develop in any language to

communicate directly with the Oracle8i database through

Internet Inter-ORB Protocol (IIOP), the standard

wire-protocol defined by the Object Management Group

(OMG).

Enterprise JavaBeans

(EJB)

For 100% pure Java applications, EJB is the standard

framework for deploying component-based, secure,

transactional applications on JServer.
Introduction to Java in Oracle8i 1-21

Overview of Oracle8i Java Documentation
developed the Enterprise JavaBean (EJB) specification. EJB introduces a declarative

mechanism for specifying how components deal with transactions and security.

Refer to the Oracle8i Enterprise JavaBeans Developer’s Guide and Reference or the

Oracle8i CORBA Developer’s Guide and Reference books for detailed information about

using EJB components in Oracle8i.

There are alternative component models to JavaBeans and Enterprise JavaBeans—

notably, Microsoft’s COM and COM+ models. If you have existing Microsoft

COM-oriented applications, they can interact with open Internet standards, such as

JavaBeans and EJB, with bridge products available from different vendors.

Development Tools
The introduction of Java to the Oracle8i server allows you to use several Java

Integrated Development Environments. JServer’s adherence to Java compatibility

and open Internet standards and protocols ensures that your 100% pure Java

programs work when you deploy them on JServer. Oracle delivers JServer with

many tools or utilities, all written in Java, that make development and deployment

of Java server applications easier. Oracle’s JDeveloper has many features designed

specifically to make deployment of Java stored procedures and Enterprise

JavaBeans easier.

Overview of Oracle8 i Java Documentation
This guide is the starting point for Oracle8i Java developers. It outlines some of the

unique features of Java programming with Oracle8i, including aspects of the

Aurora JVM, explaining how to take advantage of these features in your Java

programs.

Once you have mastered the basics of Java development within the Oracle8i
database, you might need more information for the specific protocol you will use in

implementing your Java application. The following list includes other books within

the documentation set that will help you in your application development:

Protocol Description Book Title

JDBC Oracle8i Java developers should become familiar with
Oracle's Java Database Connectivity (JDBC) product
because it provides the basis for accessing SQL data
from Java programs, as well as Oracle-specific
extensions to this Java standard. JDBC is an industry
standard.

Oracle8i JDBC
Developer’s Guide and
Reference
1-22 Oracle8i Java Developer’s Guide

Overview of Oracle8i Java Documentation
SQLJ You may find it easier to develop Java programs that
access SQL data using embedded SQL in Java (SQLJ).
SQLJ uses a preprocessor, written in Java, to translate
embedded SQL statements to standard JDBC-style
programs. SQLJ is an industry standard.

Oracle8i SQLJ
Developer’s Guide and
Reference

JPublisher JPublisher provides a simple and convenient tool to
create Java programs that access existing Oracle
relational database tables.

 Oracle8i JPublisher
User’s Guide

Java Stored
Procedures

If you are a PL/SQL programmer exploring Java, you
will be interested in Java stored procedures. A Java
stored procedure is a program you write in Java to
execute in the server, exactly as a PL/SQL stored
procedure. You invoke it directly with products like
SQL*Plus or indirectly with a trigger and can access it
from any Net8 client—OCI, PRO*, JDBC or SQLJ. The
Oracle8i Java Stored Procedures Developer’s Guide
explains how to write stored procedures in Java, how
to access them from PL/SQL, and how to access
PL/SQL functionality from Java.

In addition, you can use Java to develop powerful
programs independently of PL/SQL. Oracle8i
provides a fully compliant implementation of the Java
programming language and JVM.

Oracle8i Java
Stored Procedures
Developer’s Guide.

JavaServer
Pages and
Servlets

Dynamic HTML protocols that invoke back-end Java
that exists on the database or interact with the web
server,

Oracle8i Oracle
Servlet Engine User’s
Guide

Oracle JavaServer
Pages Developer’s
Guide and Reference

EJB and
CORBA

For distributed applications, you will utilize either the
ORB or EJB technology. Oracle's open distributed
object technology is included in its Object Request
Broker (the Aurora/ORB) and Enterprise JavaBeans
(EJB) functionality. The Aurora/ORB and EJB furnish
powerful standards-based frameworks and tools to
help you build scalable Java applications that provide
seamless transactional access to Oracle data across
your intranet or the Internet.

Oracle8i Enterprise
JavaBeans Developer’s
Guide and Reference

Oracle8i CORBA
Developer’s Guide and
Reference

Protocol Description Book Title
Introduction to Java in Oracle8i 1-23

Overview of Oracle8i Java Documentation
1-24 Oracle8i Java Developer’s Guide

Writing Java Applications on Or
2

Writing Java Applications on Oracle8 i

JServer runs standard Java applications. However, by integrating Java classes

within the database server, your environment is different from a typical Java

development environment. This chapter describes the basic differences for writing,

installing, and deploying Java applications within Oracle8i.

■ Overview

■ Database Sessions Imposed on Java Applications

■ Execution Control

■ Migrating from JDK 1.1 to Java 2

■ Java Code, Binaries, and Resources Storage

■ Preparing Java Class Methods for Execution

■ User Interfaces on the Server

■ Shortened Class Names

■ Class.forName() on JServer

■ Managing Your Operating System Resources

■ Threading in JServer

Note: You should refer to the detailed documentation for the

different JServer APIs, to fully explore their usage. The intent of this

chapter is to place Java APIs in an overall context, with enough

detail for you to see how they fit together and how you use them in

the JServer environment.
acle8i 2-1

Overview
Overview
As discussed in Chapter 1, the Oracle8i JServer platform is a standard, compatible

Java environment, which will execute any 100% pure Java application. It has been

implemented by Oracle to be compatible with the Java Language Specification and

the Java virtual machine specification. It supports the standard Java binary format

and the standard Java APIs. In addition, Oracle8i adheres to standard Java language

semantics, including dynamic class loading at runtime. However, unlike other Java

environments, the JServer is embedded within the Oracle8i RDBMS and, therefore,

introduces a number of new concepts. This section gives an overview of the

differences between Sun Microsystems’s JDK environment and the environment

that occurs when you combine Java within the Oracle8i database.

Terminology

In your standard Java environment, you run a Java application through the

interpreter by executing java < classname >. This causes the application to

execute within a process on your operating system.

With the Aurora JVM, you must load the application into the database, publish the

interface, and then run the application within a database session. This book

Term Definition

JServer Java-enabled Oracle8i database server.

Aurora Oracle8i JVM.

Session As a user who executes Java code, you must establish a session
in the server. The word session as we employ it here is identical
to the standard Oracle (or any other database server) usage. A
session is typically, although not necessarily, bounded by the
time a single user connects to the server.

Call When a user causes Java code to execute within a session, we
refer to it as a call. You can initiate a call in different ways.

■ A SQL client program executes a Java stored procedure.

■ A trigger can execute a Java stored procedure.

■ A PL/SQL program calls some Java code.

■ A CORBA client invokes a method on a CORBA object.

■ An EJB client invokes a method on an EJB object.

In all cases, a call begins, some combination of Java, SQL, or
PL/SQL code is executed to completion, and the call ends.
2-2 Oracle8i Java Developer’s Guide

Database Sessions Imposed on Java Applications
discusses how to run your Java applications within the database. Specifically, see

the following sections on instructions for Java in the database:

■ Load and publish your Java applications before execution—See "Java Code,

Binaries, and Resources Storage" and "Preparing Java Class Methods for

Execution" starting on page 2-14.

■ Running within a database session—See "Database Sessions Imposed on Java

Applications" on page 2-3.

In addition, certain features, included within standard Java, change when you run

your application within a database session. These are covered in the following

sections:

■ Execution Control

■ User Interfaces on the Server

■ Shortened Class Names

■ Class.forName() on JServer

■ Managing Your Operating System Resources

■ Threading in JServer

Once you are familiar with this chapter, see Chapter 3, "Invoking Java in the

Database" for directions on how to set up your client, and examples for invoking

different types of Java applications.

Database Sessions Imposed on Java Applications
In incorporating Java within the Oracle8i database, your Java application exists

within the context of a database session. JServer sessions are entirely analogous to

traditional Oracle sessions. Each JServer session maintains the client’s Java state

across calls within the session.

As demonstrated in Figure 2–1, each Java client starts up a database session as the

environment for executing Java within the database. Garbage collection, session

memory, and call memory exist solely for each client within its session.
Writing Java Applications on Oracle8i 2-3

Database Sessions Imposed on Java Applications
Figure 2–1 Java environment within each database session

Within the context of a session, the client performs the following:

1. Connects to the database and opens a session.

2. Executes Java within the database. This is referred to as a call.

3. Continues to work within the session performing as many calls as necessary.

4. Ends the session.

Within a single session, the client has its own Java environment, which is separate

from every other client’s environment. It appears to the client as if a separate,

individual JVM was invoked for each session, although the implementation is

vastly more efficient than this seems to imply. Within a session, the Aurora JVM

manages the scalability for you within the database. Every call executed from a

single client is managed within its own session—separately from other clients. The

Aurora JVM maximizes sharing read-only data between clients and emphasizes a

minimum amount of per-session incremental footprint to maximize performance

for multiple clients.

JVM

database session 1

database session 3

database session 2

client 1

client 3

client 2

session
memory

call
memory

Each Java
database
session

}

2-4 Oracle8i Java Developer’s Guide

Database Sessions Imposed on Java Applications
The underlying server environment hides the details associated with session,

network, state, and other shared resource management issues from Java server

code. Static variables are all local to the client. No client can access another client’s

static variables, because the memory is not available across session boundaries.

Each client executes its calls within its own session, so each client’s activities are

separate from any other client. During a call, you can store objects in static fields of

different classes, and you can expect this state to be available for your next call. The

entire state of your Java program is private to you and exists for your entire session.

The Aurora JVM manages the following within the session:

■ all the objects referenced by Java static variables, all the objects referred to by

these objects, and so on (their transitive closure)

■ garbage collection for the single client

■ session memory for static variables and across call memory needs

■ call memory for variables that exist within a single call

Session Lifetime
When you connect to Oracle8i, you start a database session. A session ends when

one of the following events occurs:

1. The user invokes the oracle.aurora.mts.session.Session.THIS_
SESSION().endSession() method.

2. The session times out. This is optional for CORBA or EJB sessions.

3. The user takes some action outside of Java code to end the database session.

Java Supported APIs
For the current Oracle8i release, we offer five Java APIs—Java stored procedures,

Servlets, JavaServer Pages, CORBA distributed objects, and Enterprise JavaBeans

(EJBs).
Writing Java Applications on Oracle8i 2-5

Execution Control
In addition, you can access SQL data through SQLJ or JDBC. See Chapter 3,

"Invoking Java in the Database" for examples of each Java API.

Execution Control
In Sun Microsystems’s JDK environment, you develop Java applications with a

main() method, which is called by the interpreter when the class is run. The

main() method is invoked when you execute java < classname > on the

command-line. This command starts the java interpreter and passes the desired

classname to be executed to the interpreter. The java interpreter loads the class and

starts the execution by invoking main() . However, Java applications within the

database do not start their execution from a main() method.

After loading your Java application within the database (see "Loading Classes" on

page 2-23), you can execute your Java code by invoking any static method within

the loaded class. The class or methods must be published for you to execute them

API Lifetime

Java stored procedures The lifetime of a Java stored procedure session is identical to the
SQL session in which it is embedded. This concept is familiar to
PL/SQL users. Any state represented in Java transparently
persists for the lifetime of the RDBMS session, simplifying the
process of writing stored procedures, triggers, and methods for
Oracle Abstract Data Types. Individual invocations of Java code
within a session are known as calls. For example, a call may be
initiated by a SQL call.

Servlets and JavaServer
Pages

Servlets and JavaServer pages provide a dynamic method for
invoking Java from within HTML. Used to manage
communication between HTML and Java applications stored on
the resource, whether middle-tier cache or database.

CORBA and EJB CORBA and EJB provide a more object-oriented style of message
sending between clients and servers. Clients must implicitly or
explicitly establish a session in the server. Every message you
send on the client to a server-resident object initiates a call. Refer
to the Oracle8i Enterprise JavaBeans Developer’s Guide and Reference
or the Oracle8i CORBA Developer’s Guide and Reference books for
specifics.

Note: The concepts of call and session apply across all uses of

Oracle8i.
2-6 Oracle8i Java Developer’s Guide

Migrating from JDK 1.1 to Java 2
(see "Publishing" on page 2-30). Your only entry point is no longer always assumed

to be main() . Instead, when you execute your Java application, you specify a

method name within the loaded class as your entry point.

For example, in a normal Java environment, you would start up the Java object on

the server by executing the following:

java myprogram

where myprogram is the name of a class that contains a main() method. In

myprogram , main() immediately calls mymethod for processing incoming

information.

In Oracle8i, you load the myprogram.class file into the database and publish

mymethod as an entry-point. Then, the client or trigger can invoke mymethod
explicitly.

Migrating from JDK 1.1 to Java 2
Java 2 is, for the most part, compatible with JDK 1.1. Sun Microsystems changed

certain features, such as the security feature, in Java 2. These changes are

documented at the following Sun Microsystems’s web site:

http://java.sun.com/products/jdk/1.2/compatibility.html

The following sections discuss how the changes made within Java 2 affected

Oracle8i:

■ Your Development Environment

■ JDBC 2.0

■ Java 2 Security

■ Java 2 ORB APIs

Your Development Environment
The level of your development environment determines your interoperability with

the server. If your development environment is Java 2-based, any code compiled

and debugged on your system can be loaded and executed on the database.

However, if you are developing applications in a JDK 1.1 development environment

on your client, you can only use JDK 1.1 classes. With very few exceptions, you can

load and execute your JDK 1.1 application in the Java 2 database server. Of course,
Writing Java Applications on Oracle8i 2-7

Migrating from JDK 1.1 to Java 2
you always have the option to code your Java 2-based application on your system,

load it into the database, and use the Java 2 compiler that exists on the database.

JDBC 2.0
Even though 8.1.5 was JDK 1.1-based, JDBC 2.0 support was added to 8.1.5 in an

Oracle-specific package—oracle.jdbc2 . However, the current version of Oracle8i
supports Java2, so JDBC 2.0 exists in its intended package—java.sql . If you have

JDBC programs that used the oracle.jdbc2 package for JDBC 2.0 APIs, you must

modify these programs before executing with JDBC 2.0 drivers.

With the addition of Java 2 in Oracle8i, the JDBC 2.0 support exists in the java.sql
package, which is contained in the JDK core libraries. This affects your application,

as follows:

Note: There is another workaround for using Java 2 security even

though your code is JDK 1.1-based. The security APIs are provided

within a PL/SQL package. You can use these call specifications

before your code executes; thus, enabling the correct Java 2

permissions.

Note: If your Java application does not use the oracle.jdbc2
package JDBC APIs (or return an object whose type is within this

package), no migration is necessary to connect to the 8.1.6 database.

Environment

Running a server application in

Oracle8i which uses JDBC 2.0.

You must use the java.sql package. If you use

oracle.jdbc2 , your application will not

compile.

Running a client in a Java 2

environment

You must use the java.sql package. If you use

oracle.jdbc2, your client will not compile.
2-8 Oracle8i Java Developer’s Guide

Migrating from JDK 1.1 to Java 2
Server Applications Using JDBC 2.0
Since the server application is loaded and runs within the database, which is always

a Java 2 environment, you must port your application, as stated below:

1. Replace all imports and other mentions of oracle.jdbc2 with java.sql in

your programs.

The oracle.jdbc2 package contains the JDBC 2.0 implementation that Oracle

implemented in the JDK 1.1 drivers. Because those classes and interfaces are

available in Java 2, oracle.jdbc2 is not included in classes12.zip.

2. The return type of the getTypeMap() method of Connection has been

changed from java.util.Dictionary to java.util.Map . Modify your

application accordingly. No change is necessary if you are using

java.util.Hashtable , because Hashtable implements java.util.Map .

3. Replace classes111.zip with classes12.zip in your makefile.

4. Recompile and relink your executable.

You must recompile all classes that used to import oracle.jdbc2 . In addition,

you must recompile any classes where an object is returned and its type exists

within the oracle.jdbc2 package. Consider the following example:

#import java.sql.*;
. . .
jd = (java.sql.Connection) getDC();

If the getDC method returns an object type from within the oracle.jdbc2
package, the compiler will not catch this as a problem because it is typecast to

java.sql.* . Instead, you will receive the following error when you load the

application in the database:

ORA-29521: referenced name oracle/jdbc2/< classname > could not be found.

Running a client in a JDK 1.1

environment.

You can continue to use the oracle.jdbc2
APIs, but only if you compile against

classes111.zip and you use this code only for

accessing the server as a client. If you try to load

this code within the server, you must migrate to

the java.sql package.

Environment
Writing Java Applications on Oracle8i 2-9

Migrating from JDK 1.1 to Java 2
Recompile all of these classes against classes12.zip, which will correct the object

type returned to java.sql.* .

For more information, See Chapter 4 in the Oracle8i JDBC Developer’s Guide and
Reference.

Clients Using JDBC 2.0
The following client applications can interoperate with 8.1.6:

■ Java client conforms to JDK 1.1 and uses the JDBC 2.0 APIs contained in

oracle.jdbc2 . This application imports the oracle.jdbc2 package within

classes111.zip.

■ Java client conforms to Java 2 and uses the JDBC 2.0 APIs contained in

java.sql . This application imports the java.sql package contained within

the classes12.zip, not the oracle.jdbc2 package.

Java 2 Security
Java 2 security is implemented in 8.1.6. The JDK 1.1 security sandbox is no longer

applicable within Oracle8i. To use the Java 2 security Permissions without

modifying your code, you can manage these Permissions through the PL/SQL

package—DBMS_JAVA. To execute any of the Java 2 security methods, such as

doPrivileged , you must compile your application within a Java 2 environment,

as the Permissions are new for the JDK 1.2 release.

See "Java 2 Security" on page 5-3 for more information on Java 2 security.

Java 2 ORB APIs
Oracle8i JServer updated its ORB implementation to Visigenic 3.4. This version is

compatible with both JDK 1.1 and Java 2.

Sun Microsystems’s Java 2 contains an ORB implementation; JDK 1.1 did not. Thus,

when you imported the Visigenic libraries and invoked the CORBA methods, it

always invoked the Visigenic implementation. With Java 2, if you invoke the

Note: All existing CORBA applications must regenerate their

stubs and skeletons to work with 8.1.6. You must use the 8.1.6 tools

when regenerating your application.
2-10 Oracle8i Java Developer’s Guide

Migrating from JDK 1.1 to Java 2
CORBA methods without any modifications—as discussed below—you will invoke

Sun Microsystems’s CORBA implementation, which can cause unexpected results.

The following lists the three methods for accessing CORBA server objects in

Oracle8i from your client and the recommendations for bypassing Sun

Microsystems’s CORBA implementation:

■ JNDI Lookup—The setup for the lookup method is identical for both JDK 1.1

and Java 2. However, you must regenerate the stubs and skeletons.

■ Aurora ORB Interface—The Aurora ORB provides an interface for initializing

the ORB. If you do not use JNDI, your client initializes an ORB on its node to

communicate with the ORB in the database. You can use an Aurora ORB on

your client through this class.

■ CORBA ORB Interface—If you want to use OMG’s CORBA ORB interface, you

must set a few properties to ensure you are accessing the correct

implementation. If you do not wish to use the Aurora ORB on your client, you

can use the pure CORBA interfaces. However, you need to set up your

environment to direct your calls to the correct implementation.

JNDI Lookup
If you are using JNDI on the client to access CORBA objects that reside in the server,

no code changes are required. However, you must regenerate your CORBA stubs

and skeletons.

Aurora ORB Interface
If your client environment uses JDK 1.1, you do not need to change your existing

code. You will need to regenerate your stubs and skeletons.

If your client environment has been upgraded to Java 2, you can initialize the ORB

through the oracle.aurora.jndi.orb_dep.Orb.init method. This method

guarantees that when you initialize the ORB, it will initialize only a single ORB

instance. That is, if you use the Java 2 ORB interface, it returns you a new ORB

instance each time you invoke the init method. Aurora’s init method initializes

a singleton ORB instance. Each successive call to init returns an object reference to

the existing ORB instance.

In addition, the Aurora ORB interface manages the session-based IIOP connection.

oracle.aurora.jndi.orb_dep.Orb Class There are several init methods, each with a

different parameter list. The following describes the syntax and parameters for each

init method.
Writing Java Applications on Oracle8i 2-11

Migrating from JDK 1.1 to Java 2
public com.visigenic.vbroker.orb.ORB init();
public org.omg.CORBA.ORB init(Properties props);
public org.omg.CORBA.ORB init(String[] args, Properties props);

Example 2–1 Using Aurora ORB init method

The following example shows a client instantiating an ORB using the Aurora Orb

class.

// Create the client object and publish it to the orb in the client
// Substitute Aurora’s Orb.init for OMG ORB.init call
// old way: org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init ();
com.visigenic.vbroker.orb.ORB orb = oracle.aurora.jndi.orb_dep.Orb.init();

Joining a Session If your client receives a reference to an object that is created in a

session, it can invoke a method on that object within the session. However, since all

clients must authenticate, you must provide a username and password to the

database. If the server requires client-side authentication in the form of SSL_

CREDENTIALS, you can provide the client’s username, password, and role, which

is passed on the connect handshake within the ORB.init method.

public org.omg.CORBA.ORB init(String un, String pw, String role,
boolean ssl, java.util.Properties props);

Note: The returned class for each init method are different. You

can safely cast the org.omg.CORBA.ORB class to

com.visigenic.vbroker.orb.ORB .

Parameter Description

Properties props ORB system properties.

String[] args Arguments that are passed to the ORB instance.

Parameter Description

String un The username for client-side authentication.

String pw The password for client-side authentication.

String role The role to use after logging on.

Boolean ssl If true, SSL is enabled for the connection. If false, a NON-SSL
connection is used.
2-12 Oracle8i Java Developer’s Guide

Migrating from JDK 1.1 to Java 2
CORBA ORB Interface
If you have implemented a pure CORBA client—that is, you do not use JNDI—you

need to set the following properties before the ORB initialization call. These

properties direct the call to the Aurora implementation, rather than the Java 2

implementation. This ensures the behavior that you expect. The behavior expected

from the Visigenic ORB is as follows:

■ Even if you invoke ORB.init more than once, only a single ORB instance is

created. If you do not set these properties, be aware that each invocation of

ORB.init will create a new ORB instance.

■ The session IIOP connection is managed correctly.

■ Callbacks from the server are managed correctly.

Example 2–2 Assigning Visigenic values to OMG properties

The following example shows how to set up the OMG properties for directing the

OMG CORBA init method to the Visigenic implementation.

System.getProperties().put("org.omg.CORBA.ORBClass",
"com.visigenic.vbroker.orb.ORB");

System.getProperties().put("org.omg.CORBA.ORBSingletonClass",
"com.visigenic.vbroker.orb.ORB");

Or you can set the properties on the command line, as follows:

java -Dorg.omg.CORBA.ORBClass=com.visigenic.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.visigenic.vbroker.orb.ORB

Properties props ORB system properties.

Note: The Aurora CORBA implementation is based upon

Visibroker 3.4.

Property Assign Value

org.omg.CORBA.ORBClass com.visigenic.vbroker.orb.ORB

org.omg.CORBA.ORBSingletonClass com.visigenic.vbroker.orb.ORB

Parameter Description
Writing Java Applications on Oracle8i 2-13

Java Code, Binaries, and Resources Storage
Backwards Compatibility for 8.1.5 CORBA and EJB Applications
The tools provided with Oracle8i, such as publish , have been modified to work

with either a JDK 1.1 or Java 2 environment. However, any CORBA or EJB code that

has been generated or loaded with the 8.1.5 version of any tool, will not succeed.

Make sure that you always use the 8.1.6 version of all tools. This rule applies to

your CORBA stubs and skeletons. You must regenerate all stubs and skeletons with

the 8.1.6 IDL compiler.

Java Code, Binaries, and Resources Storage
In the Sun Microsystems Java development environment, Java source code, binaries,

and resources are stored as files in a file system.

■ Source code files are known as .java files.

■ Compiled Java binary files are known as .class files.

■ Resources are any data files, such as .properties or .ser files held within

the file system hierarchy, which are loaded or used at runtime.

In addition, when you execute Java, you specify a CLASSPATH, which is a set of a

file system tree roots containing your files. Java also provides a way to group these

files into a single archive form—a ZIP or JAR file.

Both of these concepts are different within the database. The following describes

how JServer handles Java classes and locates dependent classes:

The terms call and session, used during our discussions, are not Java terms; but are

server terms that apply to the Oracle8i JServer platform. The Aurora memory

manager preserves Java program state throughout your session (that is, between

calls). The JServer uses the Oracle database to hold Java source, classes, and

Java code,

binaries, and

resources

In the JServer environment, source, classes, and resources reside

within the Oracle8i database. Because they reside in the database,

they are known as Java schema objects, where a schema

corresponds to a database user. There are three types of Java

objects: source, class, and resource. There are no .java , .class ,

.sqlj , .properties, or .ser files on the server; instead these

files map to source, class, and resource Java schema objects.

Locating Java

classes

Instead of a CLASSPATH, you use a resolver to specify one or more

schemas to search for source, class, and resource Java schema

objects.
2-14 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
resources within a schema—Java schema objects. You can use a resolver to specify

how Java, when executed in the server, locates source code, classes, and resources.

Preparing Java Class Methods for Execution
For your Java methods to be executed, you must do the following:

1. Decide when your source is going to be compiled.

2. Decide if you are going to use the default resolver or another resolver for

locating supporting Java classes within the database.

3. Load the classes into the database. If you do not wish to use the default resolver

for your classes, you should specify a separate resolver on the load command.

4. Publish your class or method.

Compiling Java Classes
Compilation of your source can be performed in one of the following ways:

■ You can compile the source explicitly on your client machine before loading it

into the database through a Java compiler, such as javac .

■ You can ask the database to compile the source during the loading process

managed within the loadjava tool.

■ You can force the compilation to occur dynamically at runtime.

Compiling Source through javac
You can compile your Java with a conventional Java compiler, such as javac . After

compilation, you load the compiled binary into the database, rather than the source

itself. This is a better option, because it is normally easier to debug your Java code

on your own system, rather than debugging it on the database.

Compiling Source through loadjava
When you specify the -resolve option on loadjava for a source file, the

following occurs:

Note: If you decide to compile through loadjava , you can

specify compiler options. See "Specifying Compiler Options" on

page 2-16 for more information.
Writing Java Applications on Oracle8i 2-15

Preparing Java Class Methods for Execution
1. The source file is loaded as a source schema object.

2. The source file is compiled.

3. Class schema objects are created for each class defined in the compiled .java
file.

4. The compiled code is stored in the class schema objects.

JServer logs all compilation errors both to loadjava ’s logfile and the USER_
ERRORS view. For more information on the USER_ERRORS view, see the Oracle8i
Reference for a description of this table.

Compiling Source at Runtime
When you load the Java source into the database without the -resolve option,

JServer compiles the source automatically when the class is needed during runtime.

The source file is loaded into a source schema object.

JServer logs all compilation errors both to loadjava ’s logfile and the USER_
ERRORS view. For more information on the USER_ERRORS view, see the Oracle8i
Reference for a description of this table.

Specifying Compiler Options
There are two ways to specify options to the compiler.

■ Specify compiler options on the loadjava command line. You can specify the

encoding option on the loadjava command line.

■ Specify persistent compiler options in a per-schema database table called

JAVA$OPTIONS. Every time you compile, the compiler uses these options.

However, any specified compiler options on the loadjava command override

the options defined in this table.

You must create this table yourself if you wish to specify compiler options this

way. See "Compiler Options Specified in a Database Table" on page 2-17 for

instructions to create the JAVA$OPTIONS table.

The following sections describe your compiler options:

■ Default Compiler Options

■ Compiler Options on the Command Line

■ Compiler Options Specified in a Database Table
2-16 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
Default Compiler Options When compiling a source schema object for which there is

neither a JAVA$OPTIONS entry nor a command line value for an option, the

compiler assumes a default value as follows:

■ encoding = latin1

■ online = true : See the Oracle8i SQLJ Developer’s Guide and Reference for a

description of this option, which applies only to Java sources that contain SQLJ

constructs.

■ debug = true : This option is equivalent to javac -g .

Compiler Options on the Command Line The loadjava compiler option, encoding ,

identifies the encoding of the .java file. This option overrides any matching value

in the JAVA$OPTIONS table. The values are identical to the javac -encoding
option. This option is relevant only when loading a source file.

Compiler Options Specified in a Database Table Each JAVA$OPTIONS row contains the

names of source schema objects to which an option setting applies; you can use

multiple rows to set the options differently for different source schema objects.

You can set JAVA$OPTIONS entries by means of the following functions and

procedures, which are defined in the database package DBMS_JAVA:

■ PROCEDURE set_compiler_option(name VARCHAR2, option
VARCHAR2, value VARCHAR2);

■ FUNCTION get_compiler_option(name VARCHAR2, option
VARCHAR2) RETURNS VARCHAR2;

■ PROCEDURE reset_compiler_option(name VARCHAR2, option
VARCHAR2);

The parameters for these methods are described below:

Parameter Description

name The name parameter is a Java package name, a fully qualified class name, or
the empty string. When the compiler searches the JAVA$OPTIONS table for
the options to use for compiling a Java source schema object, it uses the row
whose name most closely matches the schema object’s fully qualified class
name. A name whose value is the empty string matches any schema object
name.

option The option parameter is either 'online' , 'encoding' or ’debug’ . For
the value s you can specify for these options, see the Oracle8i SQLJ
Developer’s Guide and Reference.
Writing Java Applications on Oracle8i 2-17

Preparing Java Class Methods for Execution
A schema does not initially have a JAVA$OPTIONS table. To create a

JAVA$OPTIONS table, use the DBMS_JAVA package’s java.set_compiler_
option procedure to set a value. The procedure will create the table if it does not

exist. Specify parameters in single quotes. For example:

SQL> execute dbms_java.set_compiler_option('x.y', 'online', 'false');

Table 2–1 represents a hypothetical JAVA$OPTIONS database table. The pattern

match rule is to match as much of the schema name against the table entry as

possible. The schema name with a higher resolution for the pattern match is the

entry that applies. Because the table has no entry for the encoding option, the

compiler uses the default or the value specified on the command line. The online
option shown in the table matches schema object names as follows:

■ The name a.b.c.d matches class and package names beginning with

a.b.c.d ; the packages and classes are compiled with online = true .

■ The name a.b matches class and package names beginning with a.b . The

name a.b does not match a.b.c.d ; therefore, the packages and classes are

compiled with online = false .

■ All other packages and classes match the empty string entry and are compiled

with online = true .

Table 2–1 Example JAVA$OPTIONS Table

JAVA$OPTIONS Entries
Match Examples

Name Option Value

a.b.c.d online true ■ a.b.c.d —matches the pattern exactly.

■ a.b.c.d.e —first part matches the pattern
exactly; no other rule matches full name.

a.b online false ■ a.b —matches the pattern exactly

■ a.b.c.x —first part matches the pattern
exactly; no other rule matches beyond
specified rule name.

(empty string) online true ■ a.c —no pattern match with any defined
name; defaults to (empty string) rule

■ x.y —no pattern match with any defined
name; defaults to (empty string) rule
2-18 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
Automatic Recompilation
JServer provides a dependency management and automatic build facility that will

transparently recompile source programs when you make changes to the source or

binary programs upon which they depend. Consider the following cases:

public class A
{
 B b;
 public void assignB () {b = new B()}
}
public class B
{
 C c;
 public void assignC () {c = new C()}
}
public class C
{
 A a;
 public void assignA () {a = new A()}
}

The system tracks dependencies at a class level of granularity. In the preceding

example, you can see that classes A, B, and C depend on one another, because A

holds an instance of B, B holds an instance of C, and C holds an instance of A. If you

change the definition of class A by adding a new field to it, the dependency

mechanism in Oracle8i flags classes B and C as invalid. Before you use any of these

classes again, Oracle8i attempts to resolve them again and recompile, if necessary.

Note that classes can be recompiled only if source is present on the server.

The dependency system enables you to rely on Oracle8i to manage dependencies

between classes, to recompile, and to resolve automatically. You must only force

compilation and resolution yourself only if you are developing and you want to

find problems early. The loadjava utility also provides the facilities for forcing

compilation and resolution if you do not want to allow the dependency

management facilities to perform this for you.

Resolving Class Dependencies
Many Java classes contain references to other classes, which is the essence of

reusing code. A conventional Java virtual machine searches for classes, ZIP, and

JAR files within the directories specified in the CLASSPATH. In contrast, the Aurora

Java virtual machine searches database schemas for class objects. With Oracle8i, you
Writing Java Applications on Oracle8i 2-19

Preparing Java Class Methods for Execution
load all Java classes within the database, so you might need to specify where to find

the dependent classes for your Java class within the database.

All classes loaded within the database are referred to as class schema objects and

are loaded within certain schemas. All JVM classes, such as java.lang.* , are

loaded within PUBLIC. If your classes depend upon other classes you have defined,

you will probably load them all within your own schema. For example, if your

schema is SCOTT, the database resolver (the database replacement for CLASSPATH)
searches the SCOTT schema before PUBLIC. The listing of schemas to search is

known as a resolver spec. Resolver specs are per-class, whereas in a classic Java

virtual machine, CLASSPATH is global to all classes.

When locating and resolving the interclass dependencies for classes, the resolver

marks each class as valid or invalid, depending on if all interdependent classes are

located or not. If the class that you load contains a reference to a class that is not

found within the appropriate schemas, the class is listed as invalid. Unsuccessful

resolution at runtime produces a “class not found” exception. Furthermore, runtime

resolution can fail for lack of database resources if the tree of classes is very large.

For each interclass reference in a class, the resolver searches the schemas specified

by the resolver spec for a valid class schema object that satisfies the reference. If all

references are resolved, the resolver marks the class valid. A class that has never

been resolved, or has been resolved unsuccessfully, is marked invalid. A class that

depends on a schema object that becomes invalid is also marked invalid.

To make searching for dependent classes easier, Oracle8i provides a default resolver

and resolver spec that searches first the definer’s schema and then PUBLIC. This

covers most of the classes loaded within the database. However, if you are accessing

classes within a schema other than your own or PUBLIC, you must define your own

resolver spec.

■ loading using Oracle’s default resolver, which searches the definer’s schema

and PUBLIC:

loadjava -resolve

■ loading using your own resolver spec definition containing the SCOTT schema,

OTHER schema, and PUBLIC:

Note: As with the Java compiler, loadjava resolves references to

classes, but not to resources. Be sure to correctly load the resource

files your classes need.
2-20 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
loadjava -resolve -resolver "((* SCOTT)(* OTHER)(* PUBLIC))"

The -resolver option specifies the objects to search within the schemas defined. In

the example above, all class schema objects are searched within SCOTT, OTHER,

and PUBLIC. However, if you wanted to search for only a certain class or group of

classes within the schema, you could narrow the scope for the search. For example,

to search only for the classes "my/gui/*" within the OTHER schema, you would

define the resolver spec as follows:

loadjava -resolve -resolver ’((* SCOTT) ("my/gui/*" OTHER) (* PUBLIC))’

The first parameter within the resolver spec is for the class schema object; the

second parameter defines the schema to search for these class schema objects.

Allowing References to Non-Existent Classes
You can specify a special option within a resolver spec that allows an unresolved

reference to a non-existent class. Sometimes, internal classes are never used within a

product. For example, some ISVs do not remove all references to internal test classes

from the JAR file before shipping. In a normal Java environment, this is not a

problem, because as long as the methods are not called, Sun Microsystems’s JVM

ignores them. However, the Oracle8i resolver tries to resolve all classes referenced

within the JAR file—even unused classes. If the reference cannot be validated, the

classes within the JAR file are marked as invalid.

To ignore references, you can specify the "-" wildcard within the resolver spec. The

following example specifies that any references to classes within "my/gui " are to be

allowed even if it is not present within the resolver spec schema list.

loadjava -resolve -resolver ’((* SCOTT) (* PUBLIC) ("my/gui/*" -))’

In addition, you can define that all classes not found are to be ignored. Without the

wildcard, if a dependent class is not found within one of the schemas, your class is

listed as invalid and cannot be run. However, this is also dangerous, because if there

is a dependent class on a used class, you mark a class as valid that can never run

without the dependent class. In this case, you will receive an exception at runtime.

To ignore all classes not found within SCOTT or PUBLIC, specify the following

resolver spec:

loadjava -resolve -resolver "((* SCOTT) (* PUBLIC) (* -))"
Writing Java Applications on Oracle8i 2-21

Preparing Java Class Methods for Execution
ByteCode Verifier
According to the JVM specification, .class files are subject to verification before

the class they define is available in a JVM. In JServer, the verification process occurs

at class resolution. The resolver might find one of the following problems and issue

the appropriate Oracle error code:

The resolver also issues warnings, as defined below:

■ Resolvers containing “-”

This type of resolver marks your class valid regardless of whether classes it

references are present. Because of inheritance and interfaces, you might want to

write valid Java methods that use an instance of a class as if it were an instance

of a superclass or of a specific interface. When the method being verified uses a

reference to class A as if it were a reference to class B, the resolver must check

that A either extends or implements B. For example, consider the potentially

valid method below, whose signature implies a return of an instance of B, but

whose body returns an instance of A:

Note: Never use a resolver containing “-” if you later intend to

load the classes that were causing you to use such a resolver in the

first place. Instead, include all referenced classes in the schema

before resolving.

ORA-29545 If the resolver determines that the class is malformed, the resolver

does not mark it valid. When the resolver rejects a class, it issues

an ORA-29545 error (badly formed class). The loadjava tool

reports the error. For example, this error is thrown if the contents

of a .class file are not the result of a Java compilation or if the

file has been corrupted.

ORA-29552 In some situations, the resolver allows a class to be marked valid,

but will replace bytecodes in the class to throw an exception at

runtime. In these cases, the resolver issues an ORA-29552

(verification warning), which loadjava will report. The

loadjava tool issues this warning when the Java Language

Specification would require an

IncompatibleClassChangeError be thrown. JServer relies on

the resolver to detect these situations, supporting the proper

runtime behavior the JLS requires.
2-22 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
B myMethod(A a) { return a; }

The method is valid only if A extends B or A implements the interface B. If A or

B have been resolved using a “-” term, the resolver does not know that this

method is safe. It will replace the bytecodes of myMethod with bytecodes that

throw an Exception if myMethod is ever called.

■ Use of other resolvers

The resolver ensures that the class definitions of A and B are found and

resolved properly if they are present in the schemas they specifically identify.

The only time you might consider using the alternative resolver is if you must

load an existing JAR file containing classes that reference other non-system

classes not included in the JAR file.

For more information on class resolution and loading your classes within the

database, see the Oracle8i Java Tools Reference.

Loading Classes
This section gives an overview of the main points you should understand when

loading your classes into the database. It discusses various options for the

loadjava tool, but does not go into all the details. You can also execute loadjava
within your SQL. See the Oracle8i Java Tools Reference for complete information on

loadjava .

Unlike a conventional Java virtual machine, which compiles and loads from files,

the Aurora Java virtual machine compiles and loads from database schema objects.

You must load all classes or resources into the database to be used by other classes

within the database. In addition, at loadtime, you define who can execute your

classes within the database.

 .java source files or
 .sqlj source files

 correspond to Java source schema objects

 .class compiled Java files correspond to Java class schema objects

 .properties Java resource files,
 .ser SQLJ profile files, or data files

 correspond to Java resource schema objects
Writing Java Applications on Oracle8i 2-23

Preparing Java Class Methods for Execution
The loadjava tool performs the following for each type of file:

Schema object loadjava operations on object

 .java source files 1. It creates a source schema object within the
definer’s schema unless another schema is
specified

2. It loads the contents of the source file into a
schema object

3. It creates a class schema objects for all classes
defined in the source file

4. If -resolve is requested, it does the following:

a. It compiles the source schema object

b. It resolves the class and its dependencies

c. It stores the compiled class into a class schema
object

 .sqlj source files 1. It creates a source schema object within the
definer’s schema unless another schema is
specified

2. It loads contents of the source file into the schema
object

3. It creates a class schema objects for all classes and
resources defined in the source file

4. If -resolve is requested, it does the following:

a. It translates and compile the source schema
object

b. It stores the compiled class into a class schema
object

c. It stores profile into .ser resource schema
object and customizes it

 .class compiled Java files 1. It creates a class schema object within the
definer’s schema unless another schema is
specified

2. It loads the class file into the schema object

3. It resolves and verify the class and its
dependencies if -resolve is specified
2-24 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
The dropjava tool performs the reverse of the loadjava tool: it deletes schema

objects that correspond to Java files. You should always use dropjava to delete a

Java schema object created with loadjava . Dropping with SQL DDL commands

will not update auxiliary data maintained by loadjava and dropjava . You can

also execute dropjava from within SQL commands.

You must abide by certain rules when loading classes into the database, which are

detailed in the following sections:

■ Two Definitions of the Same Class

■ Need Database Privileges and JVM Permissions

■ Loading JAR or ZIP Files

After loading, you can access the USER_OBJECTS view in your database schema to

verify that your classes and resources loaded properly. For more information, see

"Checking Java Uploads" on page 2-28.

Two Definitions of the Same Class
You cannot have two different definitions for the same class. This rule affects you in

two ways:

■ You can load either a particular Java .class file or its .java file, but not both.

JServer tracks whether you loaded a class file or a source file. If you wish to

update the class, you must load the same type of file that you originally loaded.

 .properties Java resource files 1. It creates a resource schema object within the
definer’s schema unless another schema is
specified

2. It loads resource file into a schema object

.ser SQLJ profile 1. It creates a resource schema object within the
definer’s schema unless another schema is
specified

2. It loads .ser resource file into a schema object
and customizes it

Note: More options for loadjava are available. However, this

section discusses only the major options. See the Oracle8i Java Tools
Reference for complete information on loadjava and dropjava .
Writing Java Applications on Oracle8i 2-25

Preparing Java Class Methods for Execution
If you wish to update the other type, you must drop the first before loading the

second. For example, if you loaded x.java as the source for class y, to load

x.class , you must first drop x.java .

■ You cannot define the same class within two different schema objects within the

same schema. For example, suppose x.java defines class y and you want to

move the definition of y to z.java . If x.java has already been loaded,

loadjava rejects any attempt to load z.java (which also defines y). Instead,

do either of the following:

■ Drop x.java , load z.java (which defines y), then load the new x.java
(which does not define y).

■ Load the new x.java (which does not define y), then load z.java (which

defines y).

Need Database Privileges and JVM Permissions
You must have the following SQL database privileges to load classes:

■ CREATE PROCEDURE and CREATE TABLE privileges to load into your schema.

■ CREATE ANY PROCEDURE and CREATE ANY TABLE privileges to load into

another schema.

■ oracle.aurora.security.JServerPermission.loadLibraryInClass.<classname>. See

"Permission for Loading Classes" on page 5-25 for more information.

Loading JAR or ZIP Files
The loadjava tool accepts .class , .java , .properties, .sqlj , .ser , .jar , or

.zip files. The JAR or ZIP files can contain source, class, and data files. When you

pass loadjava a JAR or ZIP file, loadjava opens the archive and loads its

members individually. There is no JAR or ZIP schema object. If the JAR or ZIP

content has not changed since the last time it was loaded, it is not reloaded;

therefore, there is little performance penalty for loading JAR or ZIP files. In fact,

loading JAR or ZIP files is the simplest way to use loadjava .
2-26 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
How to Grant Execute Rights
When you are loading your classes, you can grant execution rights to another user

through an option for loadjava . There are two methods for defining who can

execute your class:

■ granting execution rights to a certain user or schema

The classes that define a Java application are stored within the Oracle8i RDBMS

under the SQL schema of their owner. By default, classes that reside in one

user’s schema are not executable by other users, because of security concerns.

You can allow other users (schemas) the right to execute your class through the

loadjava -grant option.

■ specifying what user or schema is evaluated for the execution rights to the class

You can specify that the user evaluated for execution rights is either the invoker

or the definer. Invoker’s and definer’s rights are SQL concepts that are

applicable to your Java classes. In SQL, when you execute under definer’s

rights, you execute with the user identifier for the schema that loaded the

PL/SQL. With invoker’s rights, your SQL executes with the user identifier for

the schema that actually invokes the PL/SQL. This applies to the Java classes in

that the schema that is evaluated for JVM security permission to execute is

based on whether the class was loaded under invoker’s or definer’s rights.

Note: JServer does not reload a class if it has not changed since

the last load. However, you can force a class to be reloaded through

the loadjava -force option.
Writing Java Applications on Oracle8i 2-27

Preparing Java Class Methods for Execution
Figure 2–2 Invoker’s Versus Definer’s Rights

With the example in Figure 2–2, which class, A or B, is checked when the

method in class C is executed? This depends on invoker’s or definer’s rights.

* Invoker’s rights—By default, classes run under the effective identity

and rights of the client’s schema that initially invokes the method in C.

In this case, the rights for class A is checked. Because class A does not

have permission to execute C, the request is rejected. This is the default.

* Definer’s rights—Classes execute under the effective identity of the

user that loaded the class. If, when you loaded class B, you specified

definer’s rights, class B is checked when the method in class C is

invoked. Because class B has the right to execute methods in class C, the

method completes successfully. Class B is loaded with definer’s rights

by executing loadjava -definer .

For information on JVM security permissions, see Chapter 6, "Oracle8i Java

Application Performance".

Checking Java Uploads
You can query the database view USER_OBJECTS to obtain information about

schema objects—including Java sources, classes, and resources—that you own. This

allows you, for example, to verify that sources, classes, or resources that you load

are properly stored into schema objects.

Class A Class B Class C

Method invocation: Class A invokes class B; class B invokes class C.
Execution rights for classes:
* Class A has execution rights for B.
* Class A does not have execution rights for C.
* Class B has execution rights for C.
2-28 Oracle8i Java Developer’s Guide

Preparing Java Class Methods for Execution
Columns in USER_OBJECTS include those contained in Table 2–2 below.

Object Name and Type
An OBJECT_NAMEin USER_OBJECTSis the short name. The full name is stored as a

short name if it exceeds 31 characters. See "Shortened Class Names" on page 2-32

for more information on full and short names.

If the server uses a short name for a schema object, you can use the LONGNAME()
routine of the server DBMS_JAVA package to receive it from a query in full name

format, without having to know the short name format or the conversion rules.

SQL*Plus> SELECT dbms_java.longname(object_name) FROM user_objects
 WHERE object_type=’JAVA SOURCE’;

This routine shows you the Java source schema objects in full name format. Where

no short name is used, no conversion occurs, because the short name and full name

are identical.

You can use the SHORTNAME() routine of the DBMS_JAVA package to use a full

name as a query criterion, without having to know whether it was converted to a

short name in the database.

SQL*Plus> SELECT object_type FROM user_objects
 WHERE object_name=dbms_java.shortname(’ known_fullname ’);

This routine shows you the OBJECT_TYPE of the schema object of the specified full

name. This presumes that the full name is representable in the database character

set.

SVRMGR> select * from javasnm;
SHORT LONGNAME
--
/78e6d350_BinaryExceptionHandl sun/tools/java/BinaryExceptionHandler
/b6c774bb_ClassDeclaration sun/tools/java/ClassDeclaration
/af5a8ef3_JarVerifierStream1 sun/tools/jar/JarVerifierStream$1

Table 2–2 Key USER_OBJECT Columns

Name Description

OBJECT_NAME name of the object

OBJECT_TYPE type of the object (such as JAVA SOURCE, JAVA CLASS, or JAVA
RESOURCE)

STATUS status of the object (VALID or INVALID) (always VALID for JAVA
RESOURCE)
Writing Java Applications on Oracle8i 2-29

Preparing Java Class Methods for Execution
Status
STATUS is a character string that indicates the validity of a Java schema object. A

source schema object is VALID if it compiled successfully; a class schema object is

VALID if it was resolved successfully. A resource schema object is always VALID,
because resources are not resolved.

Example: Accessing USER_OBJECTS The following SQL*Plus script accesses the

USER_OBJECTS view to display information about uploaded Java sources, classes,

and resources.

COL object_name format a30
COL object_type format a15
SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_type IN (’JAVA SOURCE’, ’JAVA CLASS’, ’JAVA RESOURCE’)
 ORDER BY object_type, object_name;

You can optionally use wildcards in querying USER_OBJECTS, as in the following

example.

SELECT object_name, object_type, status
 FROM user_objects
 WHERE object_name LIKE ’%Alerter’;

This routine finds any OBJECT_NAME entries that end with the characters:

Alerter .

For more information about USER_OBJECTS, see the Oracle8i Java Stored Procedures
Developer’s Guide.

Publishing
Oracle8i enables clients and SQL to invoke Java methods loaded within the

database, once published. You publish either the object itself or individual methods,

depending on the type of Java application it is, as shown below:
2-30 Oracle8i Java Developer’s Guide

User Interfaces on the Server
User Interfaces on the Server
Oracle8i furnishes all core Java class libraries on the server, including those

associated with presentation of user interfaces (java.awt and java.applet). It

is, however, inappropriate for code executing in the server to attempt to bring up or

materialize a user interface in the server. Imagine thousands of users worldwide

exercising an Internet application that executes code that requires someone to click

on a dialog presented on the server hardware. You can write Java programs that

reference and use java.awt classes as long as you do not attempt to materialize a

user interface.

When building applets, you test them using the java.awt and the Peer

implementation, which is a platform-specific set of classes for support of a specific

windowing system. When the user downloads an applet, it dynamically loads the

proper client Peer libraries, and the user sees a display appropriate for the

operating system or windowing system in use on the client side. Oracle8i takes the

Java API Publishing method Reference

Java stored
procedures

If you write a Java stored procedure that you intend to invoke
with a trigger, directly or indirectly in SQL DML or in PL/SQL,
you must publish individual methods within the class. You
specify how to access it through a call specification. Java
programs consist of many methods in many classes; however,
only a few static methods are typically exposed with call
specifications.

Oracle8i Java Stored
Procedures Developer’s
Guide.

Servlet and
JavaServer
Pages

Publish the servlet and JavaServer Pages URL within the JNDI
namespace.

Oracle8i Oracle Servlet
Engine User’s Guide

Oracle JavaServer Pages
Developer’s Guide and
Reference

CORBA and EJB
development

You do not use call specifications for CORBA or EJB objects.
Instead, you publish the object reference for the client to retrieve.
Once the object is retrieved, the client can invoke specific
methods within the object.

Oracle8i’s CORBA and EJB implementations support standard
CORBA and Java styles of exposing objects by name, with
accompanying CORBA and Java-style specifications of the
interfaces to those objects.

■ You publish CORBA IOR’s through the publish tool.

■ You publish EJB Home and Remote interfaces through the
deployejb tool.

 Oracle8i Enterprise
JavaBeans Developer’s
Guide and Reference or the
Oracle8i CORBA
Developer’s Guide and
Reference books
Writing Java Applications on Oracle8i 2-31

Shortened Class Names
same approach. We provide an Oracle-specific Peer implementation that throws an

exception, oracle.aurora.awt.UnsupportedOperation , if you execute Java

code on the Oracle8i server that attempts to materialize a user interface.

Oracle8i’s lack of support for materializing user interfaces in the server means that

we do not pass the Java 2 Compatibility Kit tests for java.awt ,

java.awt.manual , and java.applet . In the Oracle RDBMS, all user interfaces

are supported only on client applications, although they might be displayed on the

same physical hardware that supports the server—for example, in the case of

Windows NT. Because it does not make sense for the server to support user

interfaces, we exclude these tests from our complete Java Compatibility Kit testing.

A similar issue exists for vendors of Java-powered embedded devices and in

handheld devices (known as Personal Java). Future releases of Java and the Java

Compatibility Kit will provide improved factorization of user interface support so

that vendors of Java server platforms can better address this issue.

Shortened Class Names
Each Java source, class, and resource is stored in its own schema object in the server.

The name of the schema object is derived from the fully qualified name, which

includes relevant path or package information. Dots are replaced by slashes. These

fully qualified names (with slashes)—used for loaded sources, loaded classes,

loaded resources, generated classes, and generated resources—are referred to in this

chapter as schema object full names.

Schema object names, however, have a maximum of only 31 characters, and all

characters must be legal and convertible to characters in the database character set.

If any full name is longer than 31 characters or contains illegal or non-convertible

characters, the Oracle8i server converts the full name to a short name to employ as

the name of the schema object, keeping track of both names and how to convert

between them. If the full name is 31 characters or less and has no illegal or

inconvertible characters, then the full name is used as the schema object name.

Because Java classes and methods can have names exceeding the maximum SQL

identifier length, Oracle8i uses abbreviated names internally for SQL access.

Oracle8i provides a method within the DBMS_JAVA package for retrieving the

original Java class name for any truncated name.

FUNCTION longname (shortname VARCHAR2) RETURN VARCHAR2

This function returns the longname from a Java schema object. An example is to

print the fully qualified name of classes that are invalid for some reason.
2-32 Oracle8i Java Developer’s Guide

Class.forName() on JServer
select dbms_java.longname (object_name) from user_objects
 where object_type = 'JAVA CLASS' and status = 'INVALID';

In addition, you can specify a full name to the database by using the shortname()
routine of the DBMS_JAVA package, which takes a full name as input and returns

the corresponding short name. This is useful when verifying that your classes

loaded by querying the USER_OBJECTS view.

FUNCTION shortname (longname VARCHAR2) RETURN VARCHAR2

Refer to the Oracle8i Java Stored Procedures Developer’s Guide. for a detailed example

of the use of this function and ways to determine which Java schema objects are

present on the server.

Class.forName() on JServer
The Java Language Specification provides the following description of

Class.forName() :

Given the fully-qualified name of a class, this method attempts to locate, load,

and link the class. If it succeeds, a reference to the Class object for the class is

returned. If it fails, a ClassNotFoundException is thrown.

Class lookup is always on behalf of a referencing class through a ClassLoader. The

difference between the JDK implementation and JServer’s implementation is the

method on which the class is found:

■ The JDK uses one ClassLoader that searches the set of directory tree roots

specified by the environment variable CLASSPATH.

■ JServer defines several resolvers, which define how to locate classes. Every class

has a resolver associated with it, and each class can, potentially, have a different

resolver. When you execute a method that calls Class.forName() , the

resolver of the currently executing class (this) is used to locate the class. See

"Resolving Class Dependencies" on page 2-19 for more information on

resolvers.

You can receive unexpected results if you try to locate a class with an unexpected

resolver. For example, if a class X in schema X requests a class Y in schema Y to look

up class Z, you can experience an error if you expected class X’s resolver to be used.

Because class Y is performing the lookup, the resolver associated with class Y is

used to locate class Z. In summary, if the class exists in another schema and you

specified different resolvers for different classes—as would happen by default if

they are in different schemas— you might not find the class.
Writing Java Applications on Oracle8i 2-33

Class.forName() on JServer
You can solve this resolver problem as follows:

■ Avoid any class name lookup by passing the Class object itself.

■ Supply the ClassLoader in the Class.forName method.

■ Supply the class and the schema it resides in to JServer’s

classForNameAndSchema method.

■ Supply the schema and class name to ClassForName.lookupClass .

■ Serialize your objects with the schema name with the class name.

Supply the ClassLoader in Class.forName
JServer uses resolvers for locating classes within schemas. Every class has a

specified resolver associated with it. Each class can have a different resolver

associated with it. Thus, the locating of classes is dependent on the definition of the

associated resolver. The ClassLoader knows which resolver to use based upon the

class specified. When you supply a ClassLoader to Class.forName() , your class

is looked up in the schemas defined within the resolver of the class. The syntax for

this variant of Class.forName is as follows:

Class forName (String name, boolean initialize, ClassLoader loader);

The following examples show how to supply the class loader of either the current

class instance or the calling class instance.

Example 2–3 Retrieve Resolver from Current Class

You can retrieve the class loader of any instance through the

Class.getClassLoader method. The following example retrieves the class

loader of the class represented by instance x .

Class c1 = Class.forName (x.whatClass(), true, x.getClass().getClassLoader());

Note: Another unexpected behavior can occur if system classes

invoke Class.forName() . The desired class is only found if it

resides in SYS or in PUBLIC. If your class does not exist in either

SYS or PUBLIC, you can declare a PUBLIC synonym for the class.
2-34 Oracle8i Java Developer’s Guide

Class.forName() on JServer
Example 2–4 Retrieve Resolver from Calling Class

You can retrieve the class of the instance that invoked the executing method

through the oracle.aurora.vm.OracleRuntime.getCallerClass method.

Once you retrieve the class, invoke the Class.getClassLoader method on the

returned class. The following example retrieves the class of the instance that

invoked the workForCaller method. Then, its class loader is retrieved and

supplied to the Class.forName method. Thus, the resolver used for looking up

the class is the resolver of the calling class.

void workForCaller() {
ClassLoader c1 =

oracle.aurora.vm.OracleRuntime.getCallerClass().getClassLoader();
...
Class c = Class.forName (name, true, c1);

Supply Class and Schema Names to classForNameAndSchema
You can resolve the problem of where to find the class by either supplying the

resolver, which knows the schemas to search, or by supplying the schema in which

the class is loaded. If you know in which schema the class is loaded, you can use the

classForNameAndSchema method. JServer provides a method in the DbmsJava

class, which takes in both the name of the class and the schema that the class resides

in. This method locates the class within the designated schema.

Example 2–5 Providing Schema and Class Names

The following example shows how you can save the schema and class names in the

save method. Both names are retrieved and the class is located using the

DbmsJava.classForNameAndSchema method.

import oracle.aurora.rdbms.ClassHandle;
import oracle.aurora.rdbms.Schema;
import oracle.aurora.rdbms.DbmsJava;

void save (Class c1) {
ClassHandle handle = ClassHandle.lookup(c1);
Schema schema = handle.schema();
writeNmae (schema.getName());
writeName (c1.getName());

}

Writing Java Applications on Oracle8i 2-35

Class.forName() on JServer
Class restore() {
String schemaName = readName();
String className = readName();
return DbmsJava.classForNameAndSchema (schemaName, className);

}

Supply Class and Schema Names to lookupClass
You can supply a single String, containing both the schema and class names, to the

oracle.aurora.util.ClassForName.lookupClass method. When invoked,

this method locates the class in the specified schema. The string must be in the

following format:

"<schema>:<class>"

For example, to locate com.package.myclass in schema SCOTT, you would

execute the following:

oracle.aurora.util.ClassForName.lookupClass("SCOTT:com.package.myclass");

Supply Class and Schema Names when Serializing
When you de-serialize a class, part of the operation is to lookup a class based on a

name. In order to ensure that the lookup is successful, the serialized object must

contain both the class and schema names.

JServer provides the following classes for serializing and deserializing objects:

■ oracle.aurora.rdbms.DbmsObjectOutputStream

This class extends java.io.ObjectOutputStream and adds schema names in

the appropriate places.

■ oracle.aurora.rdbms.DbmsObjectInputStream

This class extends java.io.ObjectInputStream and reads streams written by

DbmsObjectOutputStream . This class can be used on any environment. If used

within JServer, the schema names are read out and used when performing the class

lookup. If used on a client, the schema names are ignored.

Note: You must uppercase the schema name. In this case, the

schema name is case-sensitive.
2-36 Oracle8i Java Developer’s Guide

Class.forName() on JServer
Class.forName Example
The following example shows several methods for looking up a class.

■ To use the resolver of this instance’s class, invoke lookupWithClassLoader .

This method supplies a class loader to the Class.forName method in the

from variable. The class loader specified in the from variable defaults to this

class.

■ To use the resolver from a specific class, call ForName with the designated class

name followed by lookupWithClassLoader . The ForName method sets the

from variable to the specified class. The lookupWithClassLoader method

uses the class loader from the specified class.

■ To use the resolver from the calling class, invoke the ForName method without

any parameters. It sets the from variable to the calling class. Then, invoke the

lookupWithClassLoader to locate the class using the resolver of the calling

class.

■ To lookup a class in a specified schema, invoke the lookupWithSchema
method. This provides the class and schema name to the

classForNameAndSchema method.

import oracle.aurora.vm.OracleRuntime;
import oracle.aurora.rdbms.Schema;
import oracle.aurora.rdbms.DbmsJava;

public class ForName {

 private Class from;
 /* Supply an explicit class to the constructor */
 public ForName(Class from) {
 this.from = from;
 }
 /* Use the class of the code containing the "new ForName()" */
 public ForName() {
 from = OracleRuntime.getCallerClass();
 }

 /* lookup relative to Class supplied to constructor */
 public Class lookupWithClassLoader(String name) throws ClassNotFoundException
{
 /* A ClassLoader uses the resolver associated with the class*/
 return Class.forName(name, true, from.getClassLoader());
 }
Writing Java Applications on Oracle8i 2-37

Managing Your Operating System Resources
 /* In case the schema containing the class is known */
 static Class lookupWithSchema(String name, String schema) {
 Schema s = Schema.lookup(schema);
 return DbmsJava.classForNameAndSchema(name, s);
 }
}

Managing Your Operating System Resources
Operating system resources are a limited commodity on any computer. Because

Java is targeted at providing a computing platform as well as a programming

language, it contains platform-independent classes and frameworks for accessing

platform-specific resources. The Java class methods access operating system

resources through the JVM. Java has potential problems with this model, because

programmers rely on the garbage collector to manage all resources, when all that

the garbage collector manages is Java objects, not the operating system resources

that the Java object holds on to.

In addition, because the Aurora JVM is embedded in the database, your operating

system resources, which are contained within Java objects, can be invalidated if they

are maintained across calls within a session.

The following sections discusses these potential problems:

■ Overview of Operating System Resources

■ Garbage Collection and Operating System Resources

■ Operating System Resources Affected Across Calls

Overview of Operating System Resources
In general, your operating system resources contain the following:

memory Aurora manages memory internally, allocating memory as you create

new objects and freeing objects as you no longer need them. The

language and class libraries do not support a direct means to allocate

and free memory. "Automated Storage Management" on page 1-14

discusses garbage collection.

files Java contains classes that represent file resources. Instances of these

classes hold on to your operating system’s file constructs, such as file

handles, which can become invalid between calls in a session.
2-38 Oracle8i Java Developer’s Guide

Managing Your Operating System Resources
Operating System Resource Access
By default, a Java user does not have direct access to most operating system

resources. A system administrator may give permission to a user to access these

resources by modifying the JVM security restrictions. The JVM security enforced

upon system resources conforms to Java 2 security. See "Java 2 Security" on page 5-3

for more information.

Operating System Resource Lifetime
You access operating system resources using the standard core Java classes and

methods. Once you access a resource, the time that it remains active (usable) varies

according to the type of resource.

sockets Java contains classes that represent socket resources. Instances of

these classes hold on to socket constructs, some of which can become

invalid between calls in a session. See "Sockets" on page 2-43 for

information specific to maintaining sockets across calls.

threads Threads are discouraged within the Aurora JVM because of

scalability issues. However, you can have a multi-threaded

application within the database. "Threading in JServer" on page 2-44

discusses in detail the Aurora’s JVM threading model.

Resource Lifetime

Files The system closes all files left open when a database call ends.

Memory Memory is garbage collected as described in "Automated Storage
Management" on page 1-14.

Threads All threads are terminated when a call ends.

Objects that
depend on
operating
system
resources

Regardless of the usable lifetime of the object (for example, the defined
lifetime for a thread object), the Java object can be valid for the duration of
the session. This can occur, for example, if the Java object is stored in a static
class variable or a class variable references it directly or indirectly. If you
attempt to use one of these Java objects after its usable lifetime is over,
Aurora throws an exception. This is true for the following examples:

■ If an attempt is made to read from a java.io.FileInputStream that
was closed at the end of a previous call, a java.io.IOException is
thrown.

■ java.lang.Thread.isAlive() is false for any Thread object
running in a previous call and still accessible in a subsequent call.
Writing Java Applications on Oracle8i 2-39

Managing Your Operating System Resources
Garbage Collection and Operating System Resources
Imagine that memory is divided up into two realms: Java object memory and

operating system constructs. The Java object memory realm contains all objects and

variables. Operating system constructs include resources that the operating system

allocates to the object when it asks. These resources include files, sockets, and so on.

Basic programming rules dictate that you close all memory—both Java objects and

operating system constructs. Java programmers incorrectly assume that all memory

is freed by the garbage collector. The garbage collector was created to collect all

unused Java object memory. However, it does not close any operating system

constructs. All operating system constructs must be closed by the program before

the Java object is collected.

For example, whenever an object opens a file, the operating system creates the file

and gives the object a file handle. If the file is not closed, the operating system will

hold the file handle construct open until the call ends or JVM exits. This can cause

you to run out of these constructs earlier than necessary. There are a finite number

of handles within each operating system. To guarantee that you do not run out of

handles, close your resources before exiting the method. This includes closing the

streams attached to your sockets. You should close the streams attached to the

socket before closing the socket.

So why not expand the garbage collector to close all operating system constructs?

For performance reasons, the garbage collector cannot examine each object to see if

it contains a handle. Thus, the garbage collector collects Java objects and variables,

but does not issue the appropriate operating system methods for freeing any

handles.

Example 2–6 shows how you should close the operating system constructs.

Sockets ■ Sockets can exist across calls.

■ ServerSockets on an MTS server terminate when the call ends.

■ ServerSockets on a dedicated server can exist across calls.

See "Sockets" on page 2-43 more information.

Resource Lifetime
2-40 Oracle8i Java Developer’s Guide

Managing Your Operating System Resources
Example 2–6 Closing your operating system resources

public static void addFile(String[] newFile) {
 File inFile = new File(newFile);
 FileReader in = new FileReader(inFile);
 int i;

 while ((i = in.read()) != -1)
 out.write(i);
 /*closing the file, which frees up the operating system file handle*/
 in.close();
 }

If you do not close the in file, eventually the File object will be garbage collected.

However, even if the File object is garbage collected, the operating system still

believes that the file is in use, because it was not closed.

Operating System Resources Affected Across Calls
You should close resources that are local to a single call when the call ends.

However, for static objects that hold on to operating system resources, you must be

aware of how these resources are affected after the call ends.

The JVM automatically closes any open operating system constructs—in

Example 2–7, the file handle—when the call ends. This can affect any operating

system resources within your Java object. For example, if you have a file opened

within a static variable, the file handle is closed at the end of the call for you. So, if

you hold on to the File object across calls, the next usage of the file handle throws

an exception.

In Example 2–7, class Concat enables multiple files to be written into a single file,

outFile . On the first call, outFile is created. The first input file is opened, read,

input into outFile , and the call ends. Because outFile is statically defined, it is

moved into session space between call invocations. However, the file handle—that

Note: You might want to use Java finalizers to close resources.

However, finalizers are not guaranteed to run in a timely manner.

Instead, finalizers are put on a queue to execute when the garbage

collector has time. If you close your resources within your finalizer,

it might not be freed up until the JVM exits. The best approach is to

close your resources within the method.
Writing Java Applications on Oracle8i 2-41

Managing Your Operating System Resources
is, the FileDescriptor —is closed at the end of the call. The next time you call

addFile , you will get an exception.

Example 2–7 Compromising your operating system resources

public class Concat {
 static File outFile = new File("outme.txt");
 FileWriter out = new FileWriter(outFile);

public static void addFile(String[] newFile) {
 File inFile = new File(newFile);
 FileReader in = new FileReader(inFile);
 int i;

 while ((i = in.read()) != -1)
 out.write(i);
 in.close();
 }
}

There is a workaround. To make sure that your handles stay valid, you should close

your files, buffers, and so on, at the end of every call; reopen the resource at the

beginning of the next call. Another option is to use the database, rather than using

operating system resources. For example, try to use database tables, rather than a

file. Or simply do not store operating system resources within static objects

expected to live across calls; use operating system resources only within objects

local to the call.

Example 2–8 shows how you can perform concatenation, as in Example 2–7,

without compromising your operating system resources. The addFile method

opens the outme.txt file within each call, making sure that anything written into

the file is appended to the end. At the end of each call, the file is closed. Two things

occur:

1. The File object no longer exists outside of a call.

2. The operating system resource, the outme.txt file, is reopened for each call. If

you had made the File object a static variable, the closing of outme.txt
within each call would ensure that the operating system resource is not

compromised.
2-42 Oracle8i Java Developer’s Guide

Managing Your Operating System Resources
Example 2–8 Correctly managing your operating system resources

public class Concat {

public static void addFile(String[] newFile) {
 /*open the output file each call; make sure the input*/
 /*file is written out to the end by making it "append=true"*/
 FileWriter out = new FileWriter("outme.txt", TRUE);
 File inFile = new File(newFile);
 FileReader in = new FileReader(inFile);
 int i;

 while ((i = in.read()) != -1)
 out.write(i);
 in.close();
 /*close the output file between calls*/
 out.close();
 }
}

Sockets
Sockets are used in setting up a connection between a client and a server. For each

database connection, sockets are used at either end of the connection. Your

application does not set up the connection; the connection is set up by the

underlying networking protocol: Net8’s TTC or IIOP. See "Configuring JServer" on

page 4-6 for information on how to configure your connection.

You might also wish to set up another connection—for example, connecting to a

specified URL from within one of the classes stored within the database. To do so,

instantiate sockets for servicing the client and server sides of the connection.

■ The java.net.Socket() constructor creates a client socket.

■ The java.net.ServerSocket() constructor creates a server socket.

A socket exists at each end of the connection. The server-side of the connection that

listens for incoming calls is serviced by a ServerSocket . The client-side of the

connection that sends requests is serviced through a Socket . You can use sockets

as defined within the JVM with the following restriction: a ServerSocket instance

within an MTS server cannot exist across calls.

Socket Because the client-side of the connection is outbound, the

Socket instance can be serviced across calls within either an

MTS or dedicated server.
Writing Java Applications on Oracle8i 2-43

Threading in JServer
Threading in JServer
The Aurora JVM implements a non-preemptive threading model. With this model,

the JVM runs all Java threads on a single operating system thread. It schedules them

in a round-robin fashion and switches between them only when they block.

Blocking occurs when you, for example, invoke the Thread.yield() method or

wait on a network socket by invoking mySocket.read() .

Oracle chose this model because any Java application written on a single-processor

system works identical to one written on a multi-processor system. Also, the lack of

concurrency among Java threads is not an issue because Aurora is embedded in the

database, which provides a higher degree of concurrency than any conventional

JVM.

There is no need to use threads within the application logic because the Oracle

server preemptively schedules the session JVMs. If you must support hundreds or

thousands of simultaneous transactions, start each one in its own JVM. This is

exactly what happens when you create a session on the JServer. The normal

ServerSocket The server-side of the connection is a listener.

■ Dedicated server—Your ServerSocket can listen across

calls only within a dedicated server; the dedicated server

exists solely for servicing the single client.

■ MTS server—The ServerSocket is closed at the end of a

call within an MTS server; the MTS uses shared servers,

which move on to another client at the end of every call. You

will receive an I/O exception stating that the socket was

closed if you try to use the ServerSocket outside of the

call it was created in.

Advantages of JServer’s Threading Model Disadvantages

■ simple to program

■ efficient to implement in the Java virtual
machine, because a thread switch does
not require any system calls

■ safer, because the JVM can detect a
deadlock that would hang a preemptive
JVM and can then raise a runtime
exception

■ does not exhibit any concurrency

■ lack of portability

■ performance considerations, because
of the system calls required for locking
when blocking the thread

■ memory scalability, because efficient
multi-threaded memory allocation
requires a larger pool of memory
2-44 Oracle8i Java Developer’s Guide

Threading in JServer
transactional capabilities of the Oracle database server accomplish coordination and

data transfer between the Java virtual machines. This is not a scalability issue,

because in contrast to the 6 to 8 MB memory footprint of the typical Java virtual

machine, the Oracle server can create thousands of Java virtual machines, with each

one taking less than 40 KB.

Threading is managed within Aurora by servicing a single thread until it completes

or blocks. If the thread blocks, by yielding or waiting on a network socket, the JVM

will service another thread. However, if the thread never blocks, it is serviced until

completed.

The Aurora JVM has added the following features for better performance and

thread management:

■ System calls are at a minimum. Aurora has exchanged some of the normal

system calls with non-system solutions. For example, entering a

monitor-synchronized block or method does not require a system call.

■ Deadlocks are detected.

* Aurora monitors for deadlocks between threads. If a deadlock occurs,

Aurora terminates one of the threads and throws the

oracle.aurora.vm.DeadlockError exception.

* Single-threaded applications cannot suspend. If the application has

only a single thread and you try to suspend it, the

oracle.aurora.vm.LimboError exception is thrown.

Thread Lifecycle
In the single-threaded execution case, the call ends when one of the following

events occurs:

1. The thread returns to its caller.

2. An exception is thrown and is not caught in Java code.

3. The System.exit() , oracle.aurora.vm.OracleRuntime.exitCall() ,

or oracle.aurora.mts.session.Session.THIS_
SESSION().endSession() method is invoked.

If the initial thread creates and starts other Java threads, the rules about when a call

ends are slightly more complicated. In this case, the call ends in one of the following

two ways:

1. The main thread returns to its caller, or an exception is thrown and not caught

in this thread, and all other non-daemon threads complete execution.
Writing Java Applications on Oracle8i 2-45

Threading in JServer
Non-daemon threads complete either by returning from their initial method or

because an exception is thrown and not caught in the thread.

2. Any thread invokes the System.exit() ,

oracle.aurora.vm.OracleRuntime.exitCall() , or

oracle.aurora.mts.session.Session.THIS_
SESSION().endSession() method.

When a call ends because of a return and/or uncaught exceptions, Aurora throws a

ThreadDeathException in all daemon threads. The ThreadDeathException
essentially forces threads to stop execution.

When a call ends because of a call to System.exit() ,

oracle.aurora.vm.OracleRuntime.exitCall() , or

oracle.aurora.vm.oracleRuntime.exitSession() , Aurora ends the call

abruptly and terminates all threads, but does not throw ThreadDeathException .

During the execution of a single call, a Java program can recursively cause more

Java code to be executed. For example, your program can issue a SQL query using

JDBC or SQLJ that in turn causes a trigger written in Java to be invoked. All the

preceding remarks regarding call lifetime apply to the top-most call to Java code,

not to the recursive call. For example, a call to System.exit() from within a

recursive call will exit the entire top-most call to Java, not just the recursive call.
2-46 Oracle8i Java Developer’s Guide

Invoking Java in the Datab
3

Invoking Java in the Database

We reviewed the basics of writing and deploying Java applications on Oracle8i in

Chapter 2, "Writing Java Applications on Oracle8i". This chapter gives you an

overview and examples for how to invoke Java within the database.

■ Overview

■ Invoking Java Methods

■ Utilizing SQLJ and JDBC for Querying Database

■ Debugging Server Applications

■ How To Tell You Are Executing in the Server

■ Redirecting Output on the Server
ase 3-1

Overview
Overview
In Oracle8i, you utilize Java in one of the following ways:

■ Invoking Java Methods—Invoke Java methods in classes loaded within the

database. This includes Java stored procedures, Servlets, JavaServer Pages,

CORBA, and EJB.

■ Utilizing SQLJ and JDBC for Querying Database—You can query the database

from a Java client through utilizing JDBC or SQLJ.

We recommend that you approach Java development in Oracle8i incrementally,

building on what you learn at each step. The easiest way to invoke Java within the

database is through Java stored procedures. Once you have mastered that, you

should move on to CORBA and EJB applications.

1. You should master the process of writing simple Java stored procedures as

listed in "Preparing Java Class Methods for Execution" on page 2-15 and the

Oracle8i Java Stored Procedures Developer’s Guide. This includes writing the Java

class, deciding on a resolver, loading the class into the database, and publishing

the class.

2. You should understand how to access and manipulate SQL data from Java.

Most Java server programs, and certainly Java programs executing on Oracle8i,
interact with database-resident data. The two standard APIs for accomplishing

this are JDBC and SQLJ. Because JDBC forms the foundation for SQLJ, you

should understand how the two work together, even though you might be

using only SQLJ in your code.

3. If you intend to distribute Java logic between client and server or in an N-tier

architecture, you should understand how CORBA and EJB work in Oracle8i.
CORBA and EJB provide the simplest solution to this difficult problem, in an

Internet-standard manner, enabling you to leverage component-based

development for transactional applications. Furthermore, EJB and CORBA

utilize Oracle8i’s facilities for Java stored procedures and JDBC.

Java is a simple, general purpose language for writing stored procedures. JDBC and

SQLJ allow Java to access SQL data. They support SQL operations and concepts,

variable bindings between Java and SQL types, and classes that map Java classes to

Note: For more information on JavaServer Pages and Servlets, see

the Oracle JavaServer Pages Developer’s Guide and Oracle8i Oracle
Servlet Engine User’s Guide.
3-2 Oracle8i Java Developer’s Guide

Invoking Java Methods
SQL types. You can write portable Java code that can execute on a client or a server

without change. With JDBC and SQLJ, the dividing line between client and server is

usually obvious—SQL operations happen in the server, and application program

logic resides in the client.

As you write more complex Java programs, you can gain performance and

scalability by controlling the location where the program logic executes. You can

minimize network traffic and maximize locality of reference to SQL data. JDBC and

SQLJ furnish ways to accomplish these goals. However, as you tend to leverage the

object model in your Java application, a more significant portion of time is spent in

Java execution, as opposed to SQL data access and manipulation. It becomes more

important to understand and specify where Java objects reside and execute in an

Internet application. Now you have become a candidate for moving into the world

of CORBA and Enterprise JavaBeans.

Invoking Java Methods
The way your client calls a Java method depends on the type of Java application.

The following sections discuss each of the Java APIs available for creating a Java

class that can be loaded into the database and accessed by your client:

■ Utilizing Java Stored Procedures

■ Utilizing Distributed Objects With CORBA and EJB

■ Utilizing Remote Method Invocation (RMI)

■ Utilizing Java Native Interface (JNI) Support

■ Utilizing SQLJ and JDBC for Querying Database

Utilizing Java Stored Procedures
You execute Java stored procedures similarly to PL/SQL. Normally, calling a Java

stored procedure is a by-product of database manipulation in that it is usually the

result of a trigger or DML call.

To invoke a Java stored procedure, you must publish it through a call specification.

The following example shows how to create, resolve, load, and publish a simple

Java stored procedure that echoes “Hello world”.

1. Write the Java class.

Define a class, Hello , with one method, Hello.world() , that returns the

string “Hello world ”.
Invoking Java in the Database 3-3

Invoking Java Methods
public class Hello
{
 public static String world ()
 {
 return "Hello world";
 }
}

2. Compile the class on your client system. Using Sun Microsystem’s JDK, for

example, you invoke the Java compiler, javac , as follows:

javac Hello.java

Normally, it is a good idea to specify your CLASSPATH on the javac command

line, especially when writing shell scripts or make files. The Java compiler

produces a Java binary file—in this case, Hello.class .

Keep in mind where this Java code will execute. If you execute Hello.class
on your client system, it searches the CLASSPATH for all supporting core

classes it must execute. This search should result in locating the dependent class

in one of the following:

■ as an individual file in a directory, where the directory is specified in the

CLASSPATH

■ within a .jar or .zip file, where the directory is specified in the

CLASSPATH

3. Decide on the resolver for your class.

In this case, you load Hello.class in the server, where it is stored in the

database as a Java schema object. When you execute the world() method of

the Hello.class on the server, it finds the necessary supporting classes, such

as String , using a resolver—in this case, the default resolver. The default

resolver looks for classes in the current schema first and then in PUBLIC. All

core class libraries, including the java.lang package, are found in PUBLIC.

You may need to specify different resolvers, and you can force resolution to

occur when you use loadjava , to determine if there are any problems earlier,

rather than at runtime. Refer to "Resolving Class Dependencies" on page 2-19 or

the Oracle8i Java Tools Reference for more details on resolvers and loadjava .

4. Load the class on the Oracle8i server using loadjava . You must specify the

username and password.

loadjava -user scott/tiger Hello.class
3-4 Oracle8i Java Developer’s Guide

Invoking Java Methods
5. Publish the stored procedure through a call specification

To invoke a Java static method with a SQL CALL, you must publish it with a

call specification. A call specification defines for SQL which arguments the

method takes and the SQL types it returns.

In SQL*Plus, connect to the database and define a top-level call specification for

Hello.world() :

SQL> connect scott/tiger
connected
SQL> create or replace function HELLOWORLD return VARCHAR2 as
 2 language java name 'Hello.world () return java.lang.String';
 3 /
Function created.

6. Invoke the stored procedure

SQL> variable myString varchar2[20];
SQL> call HELLOWORLD() into :myString;
Call completed.
SQL> print myString;

MYSTRING

Hello world

SQL>

The call HELLOWORLD() into :myString statement performs a top-level

call in Oracle8i. The Oracle-specific select HELLOWORLD from DUAL also

works. Note that SQL and PL/SQL see no difference between a stored

procedure written in Java, PL/SQL, or any other language. The call

specification provides a means to tie inter-language calls together in a

consistent manner. Call specifications are necessary only for entry points

invoked with triggers or SQL and PL/SQL calls. Furthermore, JDeveloper can

automate the task of writing call specifications.

For more information on Java stored procedures, using Java in triggers, call

specifications, rights models, and inter-language calls, refer to the Oracle8i Java
Stored Procedures Developer’s Guide.
Invoking Java in the Database 3-5

Invoking Java Methods
Utilizing Distributed Objects With CORBA and EJB
In a program whose logic is distributed, the architecture of choice has three

tiers—the client, the middle tier, and the database server.

The server object within the three-tier model does the business logic. This may or

may not include accessing a database for SQL queries. Oracle8i removes the need

for a physical middle tier for distributed applications where the server object

requires access to a database. Oracle8i still maintains a three-tier logical

architecture, but by combining the middle tier and the database server, the physical

architecture is two-tier. The flexibility inherent in this architecture is ideally suited

to Internet applications where the client presents information in a Web browser,

interacting with servers across the network. Those servers, in turn, can be federated

and cooperate in their own client-server interactions to provide information to

Web-based clients in an intranet or Internet application.

To use the two-tier distributed object approach for your application, you can use

either the CORBA or EJB APIs.

■ CORBA uses Interface Definition Language (IDL) to specify, in a

language-independent manner, how to access and use a group of objects known

Client tier Typically limited to display of information provided by the

middle tier.

Middle tier Facilitates the communication between client and server.

Typically manages the server objects. Marshals and unmarshals

the parameters and return values.

Server tier Performs the business or application logic.

object
reference

Client Server

object

Middle
3-6 Oracle8i Java Developer’s Guide

Invoking Java Methods
as a component. Oracle8i interacts with each client as if it had its own Java

virtual machine running in the server. There is no single ORB in the JServer

servicing multiple client requests. Instead, JServer leverages off of Oracle8i’s
Multithreaded Server (MTS) architecture, providing an ORB per session.

■ Enterprise JavaBeans relies on the following:

* Java class definitions specify the interface to a component.

* RMI-style declarative deployment descriptors define how the

component is treated in a transactional, secure application.

An EJB programmer writes business logic and the interfaces to the component;

a deployment tool, deployejb , loads and publishes the component. No

knowledge of IDL is necessary. This portable Java-based server framework

provides a fast, scalable, and easy solution to Java-based, three-tier applications.

CORBA and EJB are complementary. The JServer implementation of the Enterprise

JavaBeans 1.1 specification builds on the underlying support and services of

CORBA.

IIOP Transport
Unlike a session in which the client communicates through Net8, you access

CORBA and EJB sessions through IIOP, which is capable of servicing multiple client

connections. Although scalable applications generally provide one session per

client-server interaction, the ability to service multiple clients extends the flexibility

of the session. IIOP enables callouts, callbacks, and loopbacks in your distributed

communications.

Naming
You can access components through a name service, which forms a tree, similar to a

file system, where you can store objects by name. When you put a CORBA or EJB

object into the namespace, you are publishing it.

There are two supported naming protocols within Oracle8i:

■ Java Naming and Directory Interface (JNDI)—This package provides a unified

interface to name services. Part of JNDI provides a platform-independent

abstraction for accessing a file system, which is platform dependent.

■ CORBA’s CosNaming—If you are a CORBA programmer, you are familiar with

bootstrapping your application using CosNaming. Your client Java code obtains

handles to objects that reside on the server. Those objects are reachable through

the name service. The ORB supplies the name service, which presupposes that
Invoking Java in the Database 3-7

Invoking Java Methods
the ORB is running when you attempt to locate the server objects when

bootstrapping your client application. JServer provides an activation service

based on CORBA’s CosNaming. You use a URL-based name within JNDI as an

interface to CosNaming when referring and activating CORBA objects in a

session. This namespace incorporates the idea of a session directly in the URL,

allowing the client to easily manipulate multiple sessions. All bootstrapping is

performed by establishing a session with the JServer and using objects always

reachable from the Oracle8i database that the standard JNDI and CORBA

CosNaming make visible to you. You do not use Inter-ORB References (IORs) as

with most CORBA applications.

Creating and Deploying Enterprise JavaBeans
CORBA and EJB application development are complicated topics covered in the

Oracle8i Enterprise JavaBeans Developer’s Guide and Reference and the Oracle8i CORBA
Developer’s Guide and Reference. This section gives an example of how to create an EJB

component. This example creates an EmployeeBean to look up an employee record

in the Oracle RDBMS.

1. Create the home interface. The home interface will reside in the server, enabling

you to create instances of your EJB on the server. A home interface is a Java

interface that extends EJBHome. The home interface is the only object published

in the namespace to be visible to clients. The client can access the component

through JNDI.

2. Create the remote interface. The remote interface specifies the methods you

implement in the EJB, such as instance methods you can invoke from a client. A

remote interface is a Java interface that extends EJBObject. As an interface, you

use it to specify the methods implemented in the bean.

3. Implement the bean class and the methods that the remote interface defines. In

the EmployeeBean example, the only method is getEmployee() . You write a

bean by creating a class that implements the SessionBean interface.

4. Create the deployment descriptor. The deployment descriptor specifies

attributes of the bean, including its transactional properties and security

treatment. You specify the attributes, and the deployejb tool ensures that the

server enforces them.

5. Deploy the EJB. When you deploy the EJB, the deployejb tool does the

following:

■ Places your home interface and the EJB on the server.

■ Publishes the home interface in the namespace.
3-8 Oracle8i Java Developer’s Guide

Invoking Java Methods
■ Generates the Java code on the server side to manage transactions and

security specified in the deployment descriptor.

■ Generates and returns the stub interfaces that provide the client access to

the remote functionality of the bean.

Using an EJB
Once you create and deploy an EJB, you will want to use it from a client program.

You can use EJBs between servers in n-tier applications also, in which case the client

for one server can also be the server for other clients. In your client code, you must

perform the following steps:

1. Locate the home interface object that resides on the server. You will locate the

object using Java-standard JNDI lookup facilities.

2. Authenticate the client to the server. EJB and CORBA clients use database

sessions, just as with any other Oracle client. To initiate a session, you must let

the server know you are a valid user. You can use several different approaches

to accomplish authentication in a secure manner.

3. Activate an instance of the bean. Because the object you locate with JNDI is the

home interface, you will use one of its create() methods to return an

activated instance of the EJB.

4. Invoke methods on the bean. When you invoke a method on the bean, the

method is actually executed in the server, and the appropriate parameter and

return objects are transparently transported (by copy) across the underlying

IIOP connection. All objects the EJBs return must be serializable—they must

implement java.io.Serializable .

The Oracle8i Enterprise JavaBeans Developer’s Guide and Reference and the Oracle8i
CORBA Developer’s Guide and Reference books discuss the details of these steps. Java

IDEs, as with Oracle’s JDeveloper, can automate and simplify the deployment and

descriptor process.

Session Shell
Session shell is an example of a tool written completely in Java using Java stored

procedures and CORBA. It interacts with server-resident objects that are visible

through CORBA within your session by using UNIX shell commands. For more

information, see the The Oracle8i Enterprise JavaBeans Developer’s Guide and Reference
and the Oracle8i CORBA Developer’s Guide and Reference books. This tool

demonstrates how you can use CORBA to build tools that make life simpler for

developers and end users.
Invoking Java in the Database 3-9

Invoking Java Methods
The session shell provides a shell-like interface to the server. This shell allows users

to manipulate the session namespace with familiar UNIX commands, such as

mkdir , ls , and rm. In addition, the session shell furnishes a convenient way to run

Java programs in the server, using the java command. The session shell java
command takes the name of a class and any arguments the user types in. The

session shell calls the static main(String[]) method on the class, running the

Java program in the server. System.out and System.err are captured and

transparently redirected back to the user’s console.

Utilizing Remote Method Invocation (RMI)
JServer fully supports Java Remote Method Invocation (RMI). All RMI classes and

java.net support are in place. In general, RMI is not useful or scalable in JServer

applications. CORBA and EJB are the preferred APIs for invoking methods of

remote objects. The RMI Server that Sun Microsystem supplies does function on the

JServer platform. Because Sun Microsystem’s RMI Server uses operating system

sockets and is not accessible through a presentation, it is useful only within the

context of a single call. It relies heavily on Java language level threads. By contrast,

the Oracle8i ORB and EJB rely on the database server to gain scalability. You can

efficiently implement an RMI server as a presentation; however, CORBA and EJB

currently serves this purpose.

Utilizing Java Native Interface (JNI) Support
The Java Native Interface (JNI) is a standard programming interface for writing Java

native methods and embedding the Java virtual machine into native applications.

The primary goal of JNI is to provide binary compatibility of Java applications that

use platform-specific native libraries.

Oracle does not support the use of JNI in JServer applications. If you use JNI, your

application is not 100% pure Java, and the native methods require porting between

platforms. Native methods have the potential for crashing the server, violating

security, and corrupting data.

Note: A presentation is an object that accepts either a Net8 or IIOP

incoming connection into the database. See "Configuring JServer"

on page 4-6 for more information.
3-10 Oracle8i Java Developer’s Guide

Invoking Java Methods
Utilizing SQLJ and JDBC for Querying Database
You can use one of two protocols for querying the database from a Java client. Both

protocols establish a session with a given username/password to the database and

execute SQL queries against the database.

JDBC
JDBC is an industry-standard API developed by Sun Microsystems that allows you

to embed SQL statements as Java method arguments. JDBC is based on the X/Open

SQL Call Level Interface and complies with the SQL92 Entry Level standard. Each

vendor, such as Oracle, creates its JDBC implementation by implementing the

interfaces of the Sun Microsystems java.sql package. Oracle offers three JDBC

drivers that implement these standard interfaces:

1. The JDBC Thin driver, a 100% pure Java solution you can use for either

client-side applications or applets and requires no Oracle client installation.

2. The JDBC OCI drivers (OCI 8 or OCI 7), which you use for client-side

applications and requires an Oracle client installation.

3. The server-side JDBC driver embedded in the Oracle8i server.

For the developer, using JDBC is a step-by-step process of creating a statement

object of some type for your desired SQL operation, assigning any local variables

that you want to bind to the SQL operation, and then executing the operation. This

process is sufficient for many applications but becomes cumbersome for any

complicated statements. Dynamic SQL operations, where the operations are not

known until runtime, require JDBC. In typical applications, however, this represents

a minority of the SQL operations.

SQLJ
SQLJ offers an industry-standard way to embed any static SQL operation directly

into Java source code in one simple step, without requiring the individual steps of

JDBC. Oracle SQLJ complies with ANSI standard X3H2-98-320.

JDBC Use this protocol for more complex or dynamic SQL queries. JDBC

requires you to establish the session, construct the query, and so on.

SQLJ Use this protocol for static, easy SQL queries. SQLJ is typically a

one-liner that executes against a known table with known column

names.
Invoking Java in the Database 3-11

Invoking Java Methods
SQLJ consists of a translator—a precompiler that supports standard SQLJ

programming syntax—and a runtime component. After creating your SQLJ source

code in a .sqlj file, you process it with the translator, which translates your SQLJ

source code to standard Java source code, with SQL operations converted to calls to

the SQLJ runtime. In the Oracle SQLJ implementation, the translator invokes a Java

compiler to compile the Java source. When your Oracle SQLJ application runs, the

SQLJ runtime calls JDBC to communicate with the database.

SQLJ also allows you to catch errors in your SQL statements before runtime. JDBC

code, being pure Java, is compiled directly. The compiler has no knowledge of SQL,

so it is unaware of any SQL errors. By contrast, when you translate SQLJ code, the

translator analyzes the embedded SQL statements semantically and syntactically,

catching SQL errors during development, instead of allowing an end-user to catch

them when running the application.

An Example Comparing JDBC and SQLJ
The following is an example of a simple operation, first in JDBC code and then SQLJ

code.

JDBC:

// (Presume you already have a JDBC Connection object conn)
// Define Java variables
String name;
int id=37115;
float salary=20000;

// Set up JDBC prepared statement.
PreparedStatement pstmt = conn.prepareStatement
 (“select ename from emp where empno=? and sal>?”);
pstmt.setInt(1, id);
pstmt.setFloat(2, salary);

// Execute query; retrieve name and assign it to Java variable.
ResultSet rs = pstmt.executeQuery();
while (rs.next()) {
 name=rs.getString(1);
 System.out.println(“Name is: ” + name);
}

// Close result set and statement objects.
rs.close()
pstmt.close();
3-12 Oracle8i Java Developer’s Guide

Invoking Java Methods
1. Define the Java variables name, id , and salary .

2. Define a prepared statement (this presumes you have already established a

connection to the database so that you can use the prepareStatement()
method of the connection object).

You can use a prepared statement whenever values within the SQL statement

must be dynamically set (you can use the same prepared statement repeatedly

with different variable values). The question marks in the prepared statement

are placeholders for Java variables and are given values in the

pstmt.setInt() and pstmt.setFloat() lines of code. The first “?” is set

to the int variable id (with a value of 37115). The second “?” is set to the

float variable salary (with a value of 20000).

3. Execute the query and return the data into a JDBC result set object. (You can use

result sets to gather query data.)

4. Retrieve the data of interest (the name) from the result set and print it. A result

set usually contains multiple rows of data, although this example has only one

row.

By comparison, here is some SQLJ code that performs the same task. Note that all

SQLJ statements, both declarations and executable statements, start with the #sql
token.

SQLJ:

String name;
int id=37115;
float salary=20000;
#sql {select ename into :name from emp where empno=:id and sal>:salary};
System.out.println(“Name is: ” + name);

SQLJ, in addition to allowing SQL statements to be directly embedded in Java code,

supports Java host expressions (also known as bind expressions) to be used directly

in the SQL statements. In the simplest case, a host expression is a simple variable as

in this example, but more complex expressions are allowed as well. Each host

expression is preceded by “: ” (colon). This example uses Java host expressions

name, id , and salary . In SQLJ, because of its host expression support, you do not

need a result set or equivalent when you are returning only a single row of data.

Complete SQLJ Example
This section presents a complete example of a simple SQLJ program:
Invoking Java in the Database 3-13

Invoking Java Methods
import java.sql.*;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
#sql iterator MyIter (String ename, int empno, float sal);

public class MyExample
{
 public static void main (String args[]) throws SQLException
 {
 Oracle.connect
 ("jdbc:oracle:thin:@oow11:5521:sol2", "scott", "tiger");

 #sql { insert into emp (ename, empno, sal)
 values ('SALMAN', 32, 20000) };
 MyIter iter;

 #sql iter={ select ename, empno, sal from emp };
 while (iter.next()) {
 System.out.println
 (iter.ename()+" "+iter.empno()+" "+iter.sal());
 }
 }
}

1. Declare your iterators. SQLJ uses a strongly typed version of JDBC result sets,

known as iterators. The main difference between the two is that an iterator has a

specific number of columns of specific datatypes. You must define your iterator

types beforehand, as in this example:

#sql iterator MyIter (String ename, int empno, float sal);

This declaration results in SQLJ creating an iterator class MyIter . Iterators of

type MyIter can store results whose first column maps to a Java String ,

whose second column maps to a Java int , and whose third column maps to a

Java float . This definition also names the three columns—ename, empno, and

sal , respectively—to match the table column names in the database. MyIter is

a named iterator. See Chapter 3 of the Oracle8i SQLJ Developer’s Guide and
Reference to learn about positional iterators, which do not require column

names.

2. Connect to the database.

Oracle.connect("jdbc:oracle:thin:@oow11:5521:sol2","scott", "tiger");
3-14 Oracle8i Java Developer’s Guide

Invoking Java Methods
Oracle SQLJ furnishes the Oracle class, and its connect() method

accomplishes three important things:

a. Registers the Oracle JDBC drivers SQLJ uses to access the database.

b. Opens a database connection for the specified schema (user scott ,

password tiger) at the specified URL (host oow11, port 5521 , SID so12 ,

“thin” JDBC driver).

c. Establishes this connection as the default connection for your SQLJ

statements. Although each JDBC statement must explicitly specify a

connection object, a SQLJ statement can either implicitly use a default

connection or optionally specify a different connection.

3. Execute a SQL statement.

a. Insert a row into the emp table:

#sql {insert into emp (ename, empno, sal) values ('SALMAN', 32, 20000)};

b. Instantiate and populate the iterator:

MyIter iter;
#sql iter={select ename, empno, sal from emp};

4. Access the data that was populated within the iterator.

while (iter.next()){
 System.out.println(iter.ename()+" "+iter.empno()+" "+iter.sal());
}

The next() method is common to all iterators and plays the same role as the

next() method of a JDBC result set, returning true and moving to the next

row of data if any rows remain. You access the data in each row by calling

iterator accessor methods whose names match the column names (this is a

characteristic of all named iterators). In this example, you access the data using

the methods ename() , empno() , and sal() .

SQLJ Strong Typing Paradigm
SQLJ uses strong typing—such as iterators—instead of result sets, which allows

your SQL instructions to be checked against the database during translation. For

example, SQLJ can connect to a database and check your iterators against the

database tables that will be queried. The translator will verify that they match,

allowing you to catch SQL errors during translation that would otherwise not be

caught until a user runs your application. Furthermore, if changes are subsequently
Invoking Java in the Database 3-15

Invoking Java Methods
made to the schema, you can determine if this affects the application simply by

re-running the translator.

Translating a SQLJ Program
Integrated development environments such as Oracle JDeveloper, a Windows-based

visual development environment for Java programming, can translate, compile, and

customize your SQLJ program for you as you build it. If you are not using an IDE,

then you can use the front-end SQLJ utility, sqlj . You can run it as follows:

%sqlj MyExample.sqlj

The SQLJ translator checks the syntax and semantics of your SQL operations. You

can enable online checking to check your operations against the database. If you

choose to do this, you must specify an example database schema in your translator

option settings. It is not necessary for the schema to have identical data to the one

the program will eventually run against; however, the tables should have columns

with corresponding names and datatypes. Use the user option to enable online

checking and specify the username, password, and URL of your schema, as in the

following example:

%sqlj -user=scott/tiger@jdbc:oracle:thin:@oow11:5521:sol2 MyExample.sqlj

Running a SQLJ Program in the Server
Many SQLJ applications run on a client; however, SQLJ offers an advantage in

programming stored procedures—which are usually SQL-intensive—to run in the

server.

There is almost no difference between coding for a client-side SQLJ program and a

server-side SQLJ program. The SQLJ runtime packages are automatically available

on the server, and there are just the following few considerations:

■ There are no explicit database connections for code running in the server, only a

single implicit connection. You do not need the usual connection code. If you

are porting an existing client-side application, you do not have to remove your

connection code, because it will be ignored.

■ The JDBC server-side internal driver does not support auto-commit

functionality. Use SQLJ syntax for manual commits and rollbacks of your

transactions.

■ On the server, the default output device is a trace file, not the user screen. This

is normally an issue or question only for development because you would not

write to System.out in a deployed server application.
3-16 Oracle8i Java Developer’s Guide

Invoking Java Methods
To run a SQLJ program in the server, presuming you developed the code on a client,

you have two options:

■ Translate your SQLJ source code on the client and load the individual

components (Java classes and resources) to the server. In this case, it is easiest to

bundle them into a .jar file first.

■ Load your SQLJ source code to the server for the embedded translator to

translate.

In either case, you can use the Oracle loadjava utility to load the file or files to the

server. See the Oracle8i SQLJ Developer’s Guide and Reference for more information.

Converting a Client Application to Run in the Server
The steps in converting an existing SQLJ client-side application to run in the server

are as follows. Assume this is an application that has already been translated on the

client:

1. Create a .jar file for your application components.

2. Use the loadjava utility to load the .jar file to the server.

3. Create a SQL wrapper in the server for your application. For example, to run

the preceding MyExample application in the server:

create or replace procedure SQLJ_MYEXAMPLE as language java
 name ‘MyExample.main(java.lang.String[])’;

You can then execute SQLJ_MYEXAMPLE as with any other stored procedure.

Interacting with PL/SQL
All the Oracle JDBC drivers communicate seamlessly with Oracle SQL and

PL/SQL, and it is important to note that SQLJ interoperates with PL/SQL. You can

start using SQLJ without having to rewrite any PL/SQL stored procedures. Oracle

SQLJ includes syntax for calling PL/SQL stored procedures and also allows

PL/SQL anonymous blocks to be embedded in SQLJ executable statements, just as

with SQL operations.
Invoking Java in the Database 3-17

Debugging Server Applications
Debugging Server Applications
JServer furnishes a debugging capability useful for developers who use the JDK’s

jdb debugger. Oracle’s JDeveloper provides a user-friendly integration with this

JServer debugging feature. See the JDeveloper documentation for more information

on how to debug your Java application through JDeveloper. Other independent IDE

vendors will be able to integrate their own debuggers with JServer.

The Sun Microsystems jdb debugger attaches itself to an executing process, and

helps you debug the executing process. The application that you are debugging

must have been compiled with the debug option (-g).

In JServer, your Java program executes remotely on a server. The server can reside

on the same physical machine, but it typically resides on a separate machine.

Oracle8i provides a method for jdb to debug a Java application loaded into JServer.

This method involves an debug agent that is executing on the Oracle8i server and

communicating with the executing Java application, a debug proxy that exists on

the client and communicates with the Oracle8i server, and a way for jdb to attach

itself to the debug proxy. Figure 3–1 shows the relationship between the debug

agent, the debug proxy, and the jdb debugger.

Figure 3–1 Debug Proxy and Debug Class Facilitate jdb Debugger

As shown in Figure 3–1, the steps for remotely debugging your Java application are

as follows:

1. Prepare your code for debugging.

Oracle8i Database Server

DebugAgentDebugProxy

Client
connect

2.Start

jdb
4.

1. Prepare code

3. Startattach
3-18 Oracle8i Java Developer’s Guide

Debugging Server Applications
2. Start the DebugProxy . The DebugProxy waits for a DebugAgent to attach to

it from the server.

3. Start the DebugAgent giving it the debug proxy address. This starts the

communication between the debug agent and the debug proxy.

4. Attach the jdb debugger to the debug proxy. Once attached, you can use the

regular jdb commands.

1. Prepare the Code for Debugging
The code must be compiled with the -g option and the source must be made

available for the debug agent to locate.

You can cause your application to be compiled with the debug option (-g) in one of

the two following ways:

■ Inform the server to compile the class with the debug option through the

set_compiler_option procedure, as follows:

SQL> call dbms_java.set_compiler_option(’myPackage.myCode’,’debug’,’true’);

Then, you must load the source code using loadjava , as follows:

% loadjava -u SCOTT/TIGER -v -f -r myCode.java

The server will compile this class with the debug option. Also, the server now

has access to both the source and the compiled binary, which the debug agent

needs for showing the breakpoints.

■ Compile your code on the client with the -g option, load the compiled class into

the server, and copy the Java source file to the file system where Oracle8i
JServer exists, as follows:

% javac -g MyCode.java
% loadjava -u SCOTT/TIGER -v -f -r myCode.class
% ftp dbhost
> cd /private/sourcecode
> put myCode.java

Note: The set_compiler_option procedure specifies many

different compiler options on a certain class, package, or all classes.

This example shows setting the option for a single class. See the

loadjava section of the Oracle8i Java Tools Reference for more

information on this procedure.
Invoking Java in the Database 3-19

Debugging Server Applications
When jdb starts, set the location of the source code with jdb ’s ’use ’ command.

This enables the debug agent to find the source code.

> use /private/sourcecode

2. Start the Debug Proxy
The DebugProxy class enables your remote Java application appear to be local. The

debug proxy forwards all jdb requests to the debug agent on the server and returns

the results to the attached jdb debugger.

Once started, the debug proxy waits for the debug agent to attach itself. Assuming

the aurora_client.jar file is part of your CLASSPATH, you start the debug

proxy as follows:

debugproxy

You can also specify a particular port to wait on.

debugproxy -port 2286

The proxy prints out its name, its address, and the port it is waiting on.

Proxy Name: yourmachinename
Proxy Address: aaa.bbb.ccc.ddd
Proxy Port: 2286

However, the easiest method to start the DebugProxy is to append a command to

start up the jdb debugger at the end of the debugproxy command. The

debugproxy command takes in any option given, beyond the optional port, as a

command to execute after it has started. If you choose this method, you do not need

to execute step 4.

For UNIX, provide the following within an executable shell script called startjdb :

#!/bin/sh
xterm -e jdb -password &1 &

Then, you can automatically start up the jdb debugger within the debugproxy
command, as follows:

Note: In order to copy any files to the database file system, you

must have the correct FilePermission . See the Security chapter

for more information.
3-20 Oracle8i Java Developer’s Guide

Debugging Server Applications
debugproxy -port 1638 startjdb

For all Windows NT environments, provide the following within a batch file called

startjdb.bat :

start jdb -password %1

Then, you can automatically start up the jdb debugger within the debugproxy
command, as follows:

debugproxy -port 1638 startjdb.bat

3. Starting, Stopping, and Restarting the Debug Agent
After you connect to the server (starting a session) and start a debug proxy, you can

start a debug agent on the server that will connect to the proxy. When the

DebugAgent starts, the DebugProxy displays a password to use when attaching

the debugger in step 4.

Once a proxy is running, you can start a debug agent to connect to the proxy from

SQL*Plus. You must specify the IP address or URL for a machine running a debug

proxy, the port the proxy is waiting on, and a timeout in seconds. You start and stop

the debug agent using methods specified within the DBMS_JAVA package.

SQL> call dbms_java.start_debugging('yourmachinename', 2286, 66);

There is no way to cause server-resident code to execute and break, that is, execute

and remain indefinitely in a halted mode. Instead, when you start the DebugAgent ,

you must specify a timeout period for the DebugAgent to wait before terminating.

The start call waits until the timeout expires or until the main thread is suspended

and resumed before it completes. Calculate a timeout that includes enough time for

your debugger to start up, but not so much as to delay your session if you cannot

connect a debugger.

Note: You must have the debug permission, JAVADEBUGPRIV,

granted to your user to run a debug agent. See "Debugging

Permissions" in the Oracle8i Java Developer’s Guide for more

information.
Invoking Java in the Database 3-21

Debugging Server Applications
You can stop the debug agent explicitly through the stop_debugging method.

SQL> call dbms_java.stop_debugging();

Once a debug agent starts, it runs until you stop it, the debugger disconnects, or the

session ends.

You can restart a stopped agent with any breakpoints still set with the restart_
debugging method. The call waits until the timeout expires before it completes.

You can also restart a running agent just to buy some seconds to suspend threads

and set breakpoints.

SQL> call dbms_java.restart_debugging(66);

OracleAgent Class
The DBMS_JAVA debug agent and proxy calls are published entry points to static

methods that reside in oracle.aurora.debug.OracleAgent class. You can

start, stop, and restart the debug agent in Java code using the class

oracle.aurora.debug.OracleAgent directly through the following methods:

public static void start(String host, int port, long timeout_seconds);
public static void stop();
public static void restart(long timeout_seconds);

4. Connecting a Debugger
Start jdb and attach it to the debug proxy using the password provided by the

DebugProxy when the DebugAgent connected to it. In order to preserve your

timeout, suspend all threads through jdb , set your breakpoints, and then resume.

Each time a debug agent connects to a debug proxy, the debug proxy starts a thread

to wait for connections from a debugger. The thread prints out the number, name

and address of the connecting agent, the port it is waiting on, and the port encoded

as a password. Here, a specific port and password are provided for illustration only:

Agent Number: 1
Agent Name: servername
Agent Address: eee.fff.jjj.kkk
Agent Port: 2286
Agent Password: 3i65bn

Note: If an agent is already running, Aurora stops it and starts a

new agent.
3-22 Oracle8i Java Developer’s Guide

Debugging Server Applications
You can then pass the password to a jdb -compatible debugger (JDK 1.1.6 or later):

jdb -password 3i65bn

The first thing you should do in the debugger is suspend all threads. Otherwise,

your start_debugging call might time out and complete before you get your

breakpoints set.

If your code writes to System.out or System.err , then you may also want to use

the dbgtrace flag to jdb , which redirects these streams to the debugging console:

jdb -dbgtrace -password 3i65bn

Example 3–1 Starting a DebugAgent on the Server

The following example shows how to debug an object that exists on the server. First,

you need to start a proxy through the debugproxy command-line tool. This

example starts up the proxy on the server, tstHost , and informs the debugproxy
to start up the jdb debugger when contacted by the debug agent.

In another window, make sure that the debug agent user has the correct privileges

and then start up the debug agent. Once the agent starts, the debugproxy starts up

the jdb debugger and allows you to set your breakpoints. Since you have a

specified amount of time before the agent times out, the first thing you should do is

suspend all threads. Then, set all of your breakpoints before resuming. This

suspends the timeout until you are ready to execute.

window 1 on tstHost

% debugproxy -port 2286 start jdb -password
. (wait until a debug agent starts up and
. contact this proxy... when it does, jdb
. starts up automatically and you can set

SQL> grant JavaDebugPriv to SCOTT

. breakpoints and debug the object, as follows:)
> suspend

> stop in myCode:updateAccount
> resume
> ...

% loadjava -u SCOTT/TIGER -v -f -r myCode.java

SQL> call dbms_java.set_compiler_option(’’, ’debug’, ’true’);
SQL> exit

window 2 on tstHost

SQL> call dbms_java.start_debugging(’tstHost’,2286,30);

> load SCOTT:myCode
Invoking Java in the Database 3-23

How To Tell You Are Executing in the Server
How To Tell You Are Executing in the Server
You might want to write Java code that executes in a certain way in the server and

another way on the client. In general, Oracle does not recommend this. In fact, JDBC

and SQLJ go to some trouble to enable you to write portable code that avoids this

problem, even though the drivers used in the server and client are different.

If you must determine whether your code is executing in the server, use the

System.getProperty method, as follows:

System.getProperty (“oracle.jserver.version”)

The getProperty method returns the following:

■ If executing in the server, returns a String that represents the Oracle8i
database version (“8.1.5” or "8.1.6").

■ If executing on the client, returns null.

Redirecting Output on the Server
System.out and System.err print to the current trace files. To redirect output to

the SQL*Plus text buffer, use this workaround:

SQL> SET SERVEROUTPUT ON
SQL> CALL dbms_java.set_output(2000);

The minimum (and default) buffer size is 2,000 bytes; the maximum size is 1,000,000

bytes. In the following example, the buffer size is increased to 5,000 bytes:

SQL> SET SERVEROUTPUT ON SIZE 5000
SQL> CALL dbms_java.set_output(5000);

Output prints at the end of the call.

For more information about SQL*Plus, see the SQL*Plus User’s Guide and Reference.
3-24 Oracle8i Java Developer’s Guide

Java Installation and Configu
4

Java Installation and Configuration

This chapter details what you need to know to install and configure JServer within

your Oracle8i database. To configure Java memory, see the "Java Memory Usage"

section in Chapter 6, "Oracle8i Java Application Performance".

■ Initializing a Java-Enabled Database

■ Configuring JServer

■ Enabling the Java Client
ration 4-1

Initializing a Java-Enabled Database
Initializing a Java-Enabled Database
If you installed Oracle8i with JServer, the database is Java-enabled. That is, it is

ready to run Java stored procedures, JDBC, SQLJ, and CORBA/EJB objects. If you

are using your own scripts to create your Oracle instance, you must initialize the

JServer explicitly.

You install JServer in one of three ways:

■ Oracle8i Typical or Minimal Install—Choose the Typical or Minimal Oracle8i
installation, which results in JServer being automatically installed.

■ Oracle8i Custom Install—Choose the JServer option within a "Custom" Oracle8i
installation.

■ Manual Install—Install JServer by invoking the initjvm.sql script.

Manual Install
If you did not install JServer through any of the Oracle8i install options, you can

add JServer to an existing database with the initjvm.sql script in ORACLE_
HOME/javavm/install .

The initjvm.sql script loads the initial set of Java classes necessary to support

Java, initializes the tables for supporting Java and for the CORBA namespace, and

publishes top-level entry points through call-specifications. The initjvm.sql
script loads the support Java classes into the database, which include the following:

■ the standard Java runtime

■ bytecode verifier and optimizer

■ Java and SQLJ compilers

■ JDBC runtime

■ CORBA ORB and EJB runtime

■ some additional support classes, such as DBMS_JAVA, which are described in

"Package DBMS_JAVA" on page 4-3

The initjvm.sql script performs the following actions:

1. Loads the classes to the SYS schema.

2. Creates public synonyms for the loaded classes to be accessible to all users.

3. Alters some of these classes to run with definer’s rights to support CORBA

callouts.
4-2 Oracle8i Java Developer’s Guide

Initializing a Java-Enabled Database
4. Defines database start up and shut down triggers.

Requirements
Initializing a Java-enabled database requires a SHARED_POOL_SIZE of 50 MB, a

JAVA_POOL_SIZE of about 20 MB, an additional 30 MB of system tablespace, and

enough rollback segments. If the script fails for some reason, such as a lack of

resources, you can adjust resources as necessary and re-execute initjvm.sql .

Refer to "Java Memory Usage" on page 6-7 and the /javavm/README.txt file for

the most up-to-date information on database initialization file configuration

parameters and requirements.

In addition, there are specific requirements for enabling EJB and CORBA

communications. The initial settings that the Oracle8i JServer installations furnish

should be sufficient to get you started. Consult the specifics of the documentation in

the Oracle8i Enterprise JavaBeans Developer’s Guide and Reference, the Oracle8i CORBA
Developer’s Guide and Reference, and the Net8 Administrator’s Guide for more details.

Package DBMS_JAVA
When initializing the JServer, the initjvm.sql script creates the PL/SQL package

DBMS_JAVA. Some entrypoints of DBMS_JAVA are for your use; others are only for

internal use. The corresponding Java class DbmsJava provides methods for

accessing RDBMS functionality from Java.

The DBMS_JAVA package supplies the following entrypoints:

FUNCTION longname (shortname VARCHAR2) RETURN VARCHAR2

Return the full name from a Java schema object. Because Java classes and methods

can have names exceeding the maximum SQL identifier length, Aurora uses

abbreviated names internally for SQL access. This function simply returns the

original Java name for any (potentially) truncated name. An example of this

function is to print the fully qualified name of classes that are invalid:

select dbms_java.longname (object_name) from user_objects
 where object_type = 'JAVA CLASS' and status = 'INVALID';

FUNCTION shortname (longname VARCHAR2) RETURN VARCHAR2

Note: The initjvm.sql script can take up to an hour to execute.
Java Installation and Configuration 4-3

Initializing a Java-Enabled Database
You can specify a full name to the database by using the shortname() routine of

the DBMS_JAVA package, which takes a full name as input and returns the

corresponding short name. This is useful when verifying that your classes loaded

by querying the USER_OBJECTS view.

Refer to "Shortened Class Names" on page 2-32 and Oracle8i Java Stored Procedures
Developer’s Guide for examples of these functions.

FUNCTION get_compiler_option(what VARCHAR2, optionName VARCHAR2)
PROCEDURE set_compiler_option(what VARCHAR2, optionName VARCHAR2,

value VARCHAR2)
PROCEDURE reset_compiler_option(what VARCHAR2, optionName VARCHAR2)

These three entry points control the options of the JServer Java and SQLJ compiler

Oracle8i delivers. See "Compiling Java Classes" on page 2-15 for an example of

these options. Additionally, both the Oracle8i Java Stored Procedures Developer’s Guide
and the Oracle8i SQLJ Developer’s Guide and Reference document the options and

these entry points.

PROCEDURE set_output (buffersize NUMBER)

This procedure redirects the output of Java stored procedures and triggers to the

DBMS_OUTPUT package. See "Redirecting Output on the Server" on page 3-24 for an

example.

PROCEDURE loadjava(options varchar2)
PROCEDURE loadjava(options varchar2, resolver varchar2)
PROCEDURE dropjava(options varchar2)

These procedures allow you to load and drop classes within the database using a

call rather than through the loadjava or dropjava command-line tools. To

execute within your Java application, do the following:

call dbms_java.loadjava(’... options...’);
call dbms_java.dropjava(’... options...’);

The options are identical to those specified for the loadjava and dropjava
command-line tools. Each option should be separated by a blank. You should not

separate the options with a comma. The only exception for this is the loadjava
-resolver option, which contains blanks. For -resolver , you should specify all

other options first, separate these options by a comma, and then specify the

-resolver option with its definition. You should not specify the following options,

because they relate to the database connection for the loadjava command-line

tool: -thin, -oci8, -user, -password . The output is directed to stderr.
4-4 Oracle8i Java Developer’s Guide

Initializing a Java-Enabled Database
For more information on the available options, see the Oracle8i Java Tools Reference
for complete information on loadjava .

PROCEDURE grant_permission(grantee varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

PROCEDURE restrict_permission(grantee varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

PROCEDURE grant_policy_permission(grantee varchar2,
permission_schema varchar2,
permission_type varchar2,
permission_name varchar2)

PROCEDURE revoke_permission(permission_schema varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

PROCEDURE disable_permission(key number)

PROCEDURE enable_permission(key number)

PROCEDURE delete_permission(key number)

These entry points control the JVM permissions. See "Setting Permissions" on

page 5-6 for a description and example of these options.

PROCEDURE start_debugging(host varchar2, port number,
timeout number)

PROCEDURE stop_debugging

PROCEDURE restart_debugging(timeout number)

These entry points start and stop the debug agent when debugging. See "Debugging

Server Applications" on page 3-18 for a description and example of these options.
Java Installation and Configuration 4-5

Configuring JServer
Configuring JServer
When you install JServer as part of your normal Oracle8i installation, you will

encounter configuration requirements for JServer within the Oracle8i Database

Configuration Assistant and the Net8 Assistant. However, if you install using

initjvm.sql , you must configure either by bringing up certain configuration

tools or manually editing the initialization files.

The main configuration for Java classes within Oracle8i includes configuring Java

memory requirements, the type of database processes, and the underlying

connection protocol to the server.

■ Java memory requirements—You must have at least 20 MB of JAVA_POOL_
SIZE and 50 MB of SHARED_POOL_SIZE. If you installed JServer through the

Oracle installer, these parameters are configured correctly. If you installed using

the SQL script initjvm.sql , see "Java Memory Usage" on page 6-7 for

information on configuring these parameters within the database initialization

files.

■ Database processes—You must decide whether to use dedicated server

processes or MTS processes for your database server.

■ Connection protocol—The presentation layer within the database defines the

type of connection your client is using to access the database. In most

networking protocols, the presentation layer is responsible for making sure data

is represented in a format the application and session layers can accommodate.

Within the database, a presentation is a service protocol that accepts incoming

network requests and activates routines in the database kernel layer or in the

Aurora JVM to process the requests. Currently, the two basic presentation types

are Net8 and GIOP. The GIOP presentation is used for IIOP connections for EJB

and CORBA applications. Most database connections default to the Net8

connection type.

Presentation
protocol Description

GIOP Accepts IIOP or IIOP over SSL requests for CORBA or EJB
applications. See the Oracle8i Enterprise JavaBeans Developer’s Guide and
Reference or the Oracle8i CORBA Developer’s Guide and Reference for
configuration information.
4-6 Oracle8i Java Developer’s Guide

Configuring JServer
You will require a different configuration for your database type and connection

configuration, depending on the type of Java application, as listed below:

Java Stored Procedure Configuration
To configure the database to run Java stored procedures, you must decide whether

you want the database to run in dedicated server mode or MTS mode.

Net8 Processes incoming Net8 requests for database SQL services from
Oracle tools (such as SQL*Plus) and customer-written applications
(using Forms, Pro*C, or the OCI). See "Configuring Multi-Threaded
Server" in Chapter 9 of the Net8 Administrator’s Guide for configuration
information.

Java API Database type Connection configuration

Java stored procedures Java stored procedures can run either in
dedicated server mode or multi-threaded
server (MTS) mode. If you are primarily
developing Java stored procedures, you
can run them in the dedicated server
configuration.

Java clients or PL/SQL clients that
trigger a Java stored procedure connect
over a Net8 connection. See the Net8
Administrator’s Guide for information
on configuring a Net8 connection.

Enterprise Java Beans
(EJB) or CORBA

EJB and CORBA applications run only in
the MTS configuration. See Net8
Administrator’s Guide for information on
configuring MTS.

EJB and CORBA clients use the
CORBA Internet Inter-Orb Protocol
(IIOP). See the Oracle8i Enterprise
JavaBeans Developer’s Guide and
Reference or the Oracle8i CORBA
Developer’s Guide and Reference books
for information on IIOP configuration.

Both Java stored
procedures and EJB or
CORBA applications

If you are combining both EJB and CORBA
applications with Java stored procedures in
a single application, you can configure both
application types as follows:

■ Configure your database to support
EJB and CORBA applications in an
MTS configuration

■ Configure your database to support
stored procedures in a dedicated
server configuration.

You must configure both a Net8 and an
IIOP connection.

Presentation
protocol Description
Java Installation and Configuration 4-7

Enabling the Java Client
■ Dedicated server mode—You must configure the database and clients, as

described in the Oracle8i Java Stored Procedures Developer’s Guide.

■ MTS mode—You must configure the server for MTS mode with the MTS_

DISPATCHERS parameter, as described in Chapter 9 of the Net8 Administrator’s
Guide.

Java, SQL, or PL/SQL clients, which execute Java stored procedures on the server,

connect to the database over a Net8 connection. For a full description of how to

configure the Net8 connection, see the Net8 Administrator’s Guide.

Enterprise JavaBeans and CORBA Configuration
Clients access EJB and CORBA applications in the database over an Inter-Orb

Protocol (IIOP) connection. IIOP is an implementation of GIOP over TCP/IP. To

support an IIOP connection, you must configure the database in MTS mode with

the General Inter-Orb Protocol (GIOP) presentation.

Oracle8i also supports the use of authentication data such as certificates and private

keys required for use by SSL in combination with both types of GIOP protocols—

regular GIOP and session-based GIOP.

For a complete description of how to configure MTS, see the Net8 Administrator’s
Guide. For a full description of how to configure the GIOP presentation, see the

Oralce8i Enterprise JavaBeans Developer’s Guide and Reference or the Oracle8i CORBA
Developer’s Guide and Reference books..

Enabling the Java Client
In order to run Java between the client and server, your client system must perform

the following:

1. Install JDK on the Client.

2. Set up CLASSPATH.

3. Verify the Port/SID.

4. Test Install with Samples.

1. Install JDK on the Client
The client system is defined as the system where you execute the JServer tools, such

as loadjava , deployejb . You can use the same system for both your client and

server.
4-8 Oracle8i Java Developer’s Guide

Enabling the Java Client
The client system requires JDK 1.1.6 or later. Solaris 2.6 bundles JDK 1.1.3, which

does not work with our samples. Verify that your PATH includes JDK 1.1.6 or later

and does not include JDK 1.1.3. To confirm what version of the JDK you are using,

perform the following:

$ which java
/usr/local/packages/jdk1.1.6/bin/java
$ which javac
/usr/local/packages/jdk1.1.6/bin/javac
$ java -version
java version "1.1.6"

If JDK 1.1.6 does not appear within these commands, either put your JDK 1.1.6

installation at the start of PATH or remove the 1.1.3 installation. In addition, check

your CLASSPATH for references to the incorrect JDK version.

2. Set up CLASSPATH
If your client is a Java client involved with a distributed application—CORBA, EJB,

or RMI—you must perform one of the following before compiling your client code:

■ Set up CLASSPATH to include support JAR or ZIP files.

■ Include support JAR or ZIP files within an option on the compile line.

For the Java client to work across nodes in a distributed application, it must be

compiled with appropriate server stubs. The required JAR or ZIP files that must be

included in the client’s CLASSPATH are as follows:

Basic Included JAR files:
$ORACLE_HOME/lib/aurora_client.jar
$ORACLE_HOME/lib/mts.jar
$ORACLE_HOME/lib/vbjorb.jar
$ORACLE_HOME/lib/vbjapp.jar

Note: All Oracle8i Java-based client tools work in the Java 2

environment.

Note: For NT users, the environment variables would be

%ORACLE_HOME% and %JAVA_HOME%.
Java Installation and Configuration 4-9

Enabling the Java Client
For execution, include $ORACLE_HOME/lib/aurora.zip on the CLASSPATH.

JAR Files Necessary for JDK 1.1 Clients
In order for a JDK 1.1 client to communicate with the Java 2 server, you must

include the following JVM JAR file:

$JAVA_HOME/lib/classes.zip

For any interaction with JDBC, include the following ZIP file:

$ORACLE_HOME/jdbc/lib/classes111.zip

For any client that uses SSL, include the following JAR files:

$ORACLE_HOME/jlib/jssl-1_1.jar
$ORACLE_HOME/jlib/javax-ssl-1_1.jar

JAR Files Necessary for Java 2 Clients
In order for a Java 2 client to communicate with the Java 2 server, you must make

sure that one of the following JVM JAR files are in the CLASSPATH:

■ For JDK 1.2, include dt.jar

■ For JRE 1.2, include rt.jar

For any interaction with JDBC, include the following ZIP file:

$ORACLE_HOME/jdbc/lib/classes12.zip

For any client that uses SSL, include the following JAR files:

$ORACLE_HOME/jlib/jssl-1_2.jar
$ORACLE_HOME/jlib/javax-ssl-1_2.jar

JAR Files Included for Clients that use SQLJ
$ORACLE_HOME/sqlj/lib/translator.zip

In addition to this files, add the appropriate runtime X.zip file, as follows:

■ Java 2 client using JDBC 8.1.7—$ORACLE_HOME/sqlj/lib/runtime12.zip

■ Java 2 Enterprise Edition client using JDBC 8.1.7—$ORACLE_HOME/sqlj/
lib/runtime12ee.zip

■ JDK 1.1 client using JDBC 8.1.7—$ORACLE_HOME/sqlj/
lib/runtime11.zip
4-10 Oracle8i Java Developer’s Guide

Enabling the Java Client
■ Any JDK client using JDBC 8.1.6 or previous version—$ORACLE_HOME/sqlj/
lib/runtime.zip

JAR Files Included for Clients that use JSP
$ORACLE_HOME/jsp/lib/ojsp.jar
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/servlet.jar

If your JSP pages use OracleJML tags or database utility JavaBeans, add the

following:

$ORACLE_HOME/jsp/lib/ojsputil.jar
$ORACLE_HOME/jsp/lib/oraclexmlsql.jar

See the appropriate feature documentation for more information. You can also see

examples of these JAR and ZIP files used in both the readme or makefile within the

feature demo samples.

3. Verify the Port/SID
If you do not configure the default listener port numbers or database SID in your

installation—such as ports 1521, 2481, and SID orcl —the samples will not work

correctly. All the samples expect the default port numbers and database SID

provided by an Oracle8i Typical install. If you have different values, specify the new

port numbers as follows:

4. Test Install with Samples
We provide a set of samples in $ORACLE_HOME/javavm/demo/demo.tar (or

demo.zip for Windows NT). These samples compile and run for a database

installed with the Oracle8i Typical install option. Execute these samples as a test of

your installation.

$ORACLE_HOME/javavm/demo/examples/jsp/helloworld
$ORACLE_HOME/javavm/demo/examples/corba/basic/helloworld
$ORACLE_HOME/javavm/demo/examples/ejb/basic/helloworld

Host type Directions

UNIX $ make SERVICE=sess_iiop://localhost:myportnum:mysid

Windows NT In the control panel, set the system environment variable
ORACLE_SERVICE to sess_iiop://localhost:myportnum:mysid
Java Installation and Configuration 4-11

Enabling the Java Client
If these samples do not compile or run, your environment is incorrect. Similarly, if

these samples compile and run, but your code does not, then a problem exists

within your build environment or code.

Verify that the samples work before using more complex build environments, such

as Visual Cafe, JDeveloper, or VisualAge.

Note: It is important that you run these examples using the

supplied Makefiles (or batch files on NT) when verifying your

installation.
4-12 Oracle8i Java Developer’s Guide

Security For Oracle8i Java Applica
5

Security For Oracle8 i Java Applications

Security is a large arena that includes network security for the connection, access

and execution control of operating system resources or of JVM and user-defined

classes, and bytecode verification of imported JAR files from an external source. You

should be aware of what type of security you desire for your Java applications. The

following sections describe the various security support available for Java

applications within Oracle8i.

■ Network Connection Security

■ Database Contents and JVM Security
tions 5-1

Network Connection Security
Network Connection Security
There are two major aspects to network security: authentication and data

confidentiality. The type of authentication and data confidentiality is dependent on

how you connect to the database—through Net8, JDBC, or distributed object (EJB or

CORBA) connection.

Database Contents and JVM Security
Once you are connected to the database, you still must have the correct Java 2

Permissions and database privileges to access the resources stored within the

database. These resources include the following:

■ database resources, such as tables and PL/SQL packages

■ operating system resources, such as files and sockets

■ Aurora JVM classes

■ user-loaded classes

These resources can be protected by the following two methods:

Connection Security Description

Net8 The database can require both authentication and authorization
before allowing a user to connect to the database. Net8 database
connection security can require one or more of the following:

■ Use a username and password for client verification. Each
incoming connection into the database has to provide the
correct username/password configured within Net8. For
more information, see the Net8 Administrator’s Guide.

■ Use Advanced Networking Option for encryption, kerberos,
or secureId. See the Oracle Advanced Security Administrator’s
Guide.

■ Use SSL for certificate authentication. See the Oracle
Advanced Security Administrator’s Guide.

JDBC JDBC connection security required is similar to the constraints
required on a Net8 database connection. In addition to the books
listed in the Net8 database connection section, see the Oracle8i
JDBC Developer’s Guide and Reference.

Distributed Object Encryption and authentication might be required for distributed
applications, such as EJB and CORBA. For more information, see
the Oracle8i Enterprise JavaBeans Developer’s Guide and Reference or
the Oracle8i CORBA Developer’s Guide and Reference books.
5-2 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
Java 2 Security
Each user or schema must be assigned the proper permissions to access operating

system resources. For example, this includes sockets, files, and system properties.

Java 2 security was created to provide a flexible, configurable security for Java

applications. With Java 2 security, you can define exactly what permissions on each

loaded object a schema or role will have. In 8.1.5, the security provided you the

choice of two secure roles:

■ JAVAUSERPRIV—few Permissions, including examining properties

■ JAVASYSPRIV—major Permissions, including updating JVM protected

packages

Resource Security Description

Database Resource
Security

Authorization for database resources requires that database
privileges (not the same as the Java 2 security permissions) are
granted to resources. For example, database resources include
tables, classes, or PL/SQL packages. For more information, see
the Oracle8i Application Developer’s Guide - Fundamentals.

All user-defined classes are secured against users from other
schemas. You can grant execution permission to other
users/schemas through an option on the loadjava command.
For more information on setting execution rights when loading
the class, see the -grant option discussed in "Loading Classes"
on page 2-23 or the Oracle8i Java Tools Reference for complete
information on loadjava.

JVM Security JServer uses Java 2 security, which uses Permission objects to
protect operating system resources. Java 2 security is
automatically installed upon startup and protects all operating
system resources and JVM classes from all users, except JAVA_
ADMIN. JAVA_ADMIN can grant permission to other users to
access these classes.

See "Java 2 Security" on page 5-3 for how to manage and modify
Java 2 Permissions and policies.
Security For Oracle8i Java Applications 5-3

Database Contents and JVM Security
Because JServer security is based on Java 2 security, you assign Permissions on a

class by class basis. Permissions contains two string attributes:

■ target (name) attribute

■ action attribute

These permissions are assigned through database management tools. Each

permission is encapsulated in a Permission object and is stored within a Permission

table. The methods for managing all permissions are the subject for most of this

chapter.

Java security was created for the non-database world. When you apply the Java 2

security model within the database, certain differences manifest themselves. For

example, Java 2 security defines that all applets are implicitly untrusted and all

classes within the CLASSPATH are trusted. Within Oracle8i, all classes are loaded

within a secure database; thus, no classes are trusted.

The following table briefly describes the differences between Sun Microsystem’s

Java 2 security and Oracle8i’s implementation. This table assumes that you already

understand Sun Microsystem’s Java 2 security model. For more information, we

recommend the following books:

■ Inside Java 2 Platform Security by Li Gong

■ Java Security by Scott Oaks

Note: Both roles still exist within 8.1.6 for backward compatibility;

however, Oracle recommends that you specify each Permission

explicitly, rather than utilize these roles.

Java 2 Security standard Oracle8 i implementation

Java classes located within the
CLASSPATH are trusted.

All Java classes are loaded within the
database. Classes are trusted on a class by
class basis according to the Permission
granted.

You can specify the policy through the
-usepolicy flag on the java
command line.

You must specify the policy within the
PolicyTable .
5-4 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
You can write your own
SecurityManager or use the Launcher.

You can write your own SecurityManager;
Oracle recommends that you use only
Aurora’s SecurityManager or that you
extend Aurora’s SecurityManager. If you
want to modify the behavior, you should not
define a SecurityManager; instead, you
should extend
oracle.aurora.rdbms.SecurityManagerImpl
and override specific methods.

SecurityManager is not initialized for
you. You must initialize the
SecurityManager.

Aurora always initializes SecurityManager at
startup.

Permissions are determined by the
location where the application or
applet is loaded from (the URL) or
keycode (signed code).

Permissions are determined by the schema
in which the class is loaded. JServer does not
support signed code.

The security policy is defined in a file. The PolicyTable definition is contained
within a secure database table.

You can update the security policy file
through a text editor (if you have the
correct Permissions) or through a tool.

You update the PolicyTable through DBMS_
JAVA procedures. After initialization, only
JAVA_ADMIN has permission to modify the
PolicyTable. JAVA_ADMIN must grant you
the right to modify the PolicyTable for you to
grant Permissions to others.

Permissions are assigned to a
protection domain, which classes can
belong to.

All classes within the same schema are
within the same protection domain.

Use CodeSource class for identifying
code.

■ The equals method returns true
if the URL and certificates are
equal.

■ The implies method returns
true if the first CodeSource is a
generic representation that
includes the specific CodeSource
object.

Use CodeSource class for identifying
schema.

■ The equals method returns true if the
schemas are the same.

■ The implies method returns true if the
schemas are the same.

Supports positive Permissions only
(grant).

Supports both positive (grant) and limitation
(restrict) Permissions.

Java 2 Security standard Oracle8 i implementation
Security For Oracle8i Java Applications 5-5

Database Contents and JVM Security
Setting Permissions
As designed in Java 2 security, Oracle8i supports the security classes. Normally, you

set the Permissions for the code base either through a tool or by editing the security

policy file. In Oracle8i, you set the Permissions dynamically through DBMS_JAVA

procedures. These procedures modify a policy table, which is a new table within the

database that exclusively manages Java 2 security Permissions.

Two views have been created for you to view the policy table: USER_JAVA_POLICY

and DBA_JAVA_POLICY. Both views contain information about granted and

limitation Permissions. The DBA_JAVA_POLICY view can see all rows within the

policy table; the USER_JAVA_POLICY table can only see Permissions relevant to the

current user. The following is a description of the rows within each view:

There are two ways to set your Permissions:

■ Fine-Grain Definition for Each Permission—You grant each Permission

individually for specific users or roles. If you do not grant a Permission for

access, the schema will be denied access.

Table Column Description

Kind GRANT or RESTRICT. Shows whether this Permission is a positive
(GRANT) or a limitation (RESTRICT) Permission.

Grantee The name of the user, schema, or role that the Permission object is
assigned to.

Permission_schema The schema that the Permission object is loaded into.

Permission_type The Permission class type, which is designated by a string containing
the full class name, such as, java.io.FilePermission.

Permission_name The target attribute (name) of the Permission object. You use this
name when defining the Permission. When defining the target for a
Permission of type PolicyTablePermission, the name can become
quite complicated. See "Acquiring Administrative Permission to
Update Policy Table" on page 5-12 for more information.

Permission_action The action attribute for this Permission. Many Permissions expect a
null value if no action is appropriate for the Permission.

Status ACTIVE or INACTIVE. After creating a row for a Permission, you
can disable or re-enable it. This column shows the status of whether
the Permission is enabled (ACTIVE) or disabled (INACTIVE).

Key Sequence number you use to identify this row. This number should
be supplied when disabling, enabling, or deleting the Permission.
5-6 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
■ General Permission Definition Assigned to Roles—If you do not want to grant

specific Permissions for each user, you can grant roles, which grants a collection

of Permissions to the user. Oracle8i supplies the roles: JAVAUSERPRIV or

JAVASYSPRIV.

Fine-Grain Definition for Each Permission
To set individual Permissions within the policy table, you must provide the

following information:

You can grant either Java 2 Permissions or create your own. The Java 2 Permissions

are listed in Table 5–1. If you would like to create your own Permissions, see

"Creating Permissions" on page 5-14.

Note: For absolute certainty about your security, you should

implement the fine-grain definition. The general definition is easier;

but you might not get the exact security you require.

Parameter Description

Grantee The name of the user, schema, or role that you want the grant to
apply to. PUBLIC specifies that the row applies to all users.

Permission type The Permission class that you are granting Permission on. For
example, if you are defining access to a file, the Permission type
would be FilePermission . This parameter requires a
fully-qualified name of a class that extends
java.lang.security.Permission . If the class is not within
SYS, the name should be prefixed by <schema>:. For example,
mySchema:myPackage.MyPermission is a valid name for a
user generated Permission.

Permission name The meaning of the target attribute is defined by the Permission
class. Examine the appropriate Permission class for the relevant
name.

Permission action The type of actions that you can specify vary according to the
Permission type. For example, FilePermission can have the
actions of read or write.

Key Number returned from grant or limit to use on enable, disable,
or delete methods.
Security For Oracle8i Java Applications 5-7

Database Contents and JVM Security
You can grant permissions using either SQL or Java, as shown below. However,

each returns a row key identifier that identifies the row within the permission table.

In the Java version of DBMS_JAVA, each method returns the row key identifier,

either as a returned parameter or as an OUT variable in the parameter list. In the

PL/SQL DBMS_JAVA package, the row key is returned only in the procedure that

defines the key OUT parameter. This key is used to enable and disable specific

Permissions. See "Enabling or Disabling Permissions" on page 5-17 for more

information.

If, after executing the grant, a row already exists for the exact Permission, no update

occurs, but the key for that row is returned. If the row was disabled, executing the

grant enables the existing row.

Granting Permissions using the DBMS_JAVA package:

Table 5–1 Permission Types

■ java.util.PropertyPermission

■ java.io.SerializablePermission

■ java.io.FilePermission

■ java.net.NetPermission

■ java.net.SocketPermission

■ java.lang.RuntimePermission

■ java.lang.reflect.ReflectPermission

■ java.security.SecurityPermission

■ oracle.aurora.rdbms.security.PolicyTablePermission

■ oracle.aurora.security.JServerPermission

Note: If granting FilePermission , you must provide the

physical name of the directory or file, such as /private/oracle .

You cannot provide either an environment variable, such as

$ORACLE_HOME, or a symbolic link. Also, to denote all files

within a directory, provide the ’*’ symbol, as follows:

’/private/oracle/* ’. To denote all directories and files within a

directory, provide the ’-’ symbol, as follows:

’/private/oracle/- ’.
5-8 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
procedure grant_permission (grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

procedure grant_permission (grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2, key OUT number)

Granting Permissions using Java:

long oracle.aurora.rdbms.security.PolicyTableManager. grant (
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
java.lang.String permission_action);

void oracle.aurora.rdbms.security.PolicyTableManager. grant (
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
java.lang.String permission_action,
long[] key);

Limiting Permissions using the DBMS_JAVA package:

procedure restrict_permission (grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

procedure restrict_permission (grantee varchar2, permission_type varchar2,
permission_name varchar2,
permission_action varchar2, key OUT number)

Limiting Permissions using Java:

long oracle.aurora.rdbms.security.PolicyTableManager. restrict (
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
java.lang.String permission_action);

void oracle.aurora.rdbms.security.PolicyTableManager. restrict (
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
Security For Oracle8i Java Applications 5-9

Database Contents and JVM Security
java.lang.String permission_action,
long[] key);

Example 5–1 Granting Permissions

Assuming that you have appropriate Permissions to modify the policy table, you

use the grant_permission method within the DBMS_JAVA package to modify

the PolicyTable to allow the user access to the indicated file. In this example, the

user, Larry, has PolicyTable modification Permission . Within a SQL package,

Larry grants permission to read and write a file to the user Dave.

connect larry/larry

REM Grant DAVE permission to read and write the Test1 file.
call dbms_java.grant_permission(’DAVE’,

’java.io.FilePermission’, ’/test/Test1’,
’read,write’);

REM commit the changes to the PolicyTable
commit;

Example 5–2 Limiting Permissions

You use the restrict method for specifying a limitation or exception for general

rules. A general rule is a rule where, in most cases, the Permission is true. However,

there may be exceptions to this rule. For these exceptions, you specify a limitation

Permission.

That is, if you have defined a general rule that no one can read or write for an entire

directory, you can define a limitation on an aspect of this rule through the

restrict method. For example, if you want to allow access to all files within the

/tmp directory—except for your password file that exists in that directory—you

would grant permission for read and write to all files within /tmp and limit read

and write access to the password file.

If you want to specify an exception to the limitation, you would create an explicit

grant Permission to override the limitation Permission. In the scenario mentioned

above, if you want the file owner to still be able to modify the password file, you

can grant a more explicit Permission to allow access to one user, which will override
5-10 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
the limitation. JServer security combines all rules to understand who really has

access to the password file. This is demonstrated in the following diagram:

The explicit rule is as follows:

If the limitation Permission implies the request, then for a grant to be effective,

the limitation Permission must also imply the grant.

The following is the code that implements this example:

1. Grant everyone (PUBLIC) read and write permission to all files in /tmp .

2. Limit everyone (PUBLIC) from reading or writing one file in /tmp /password .

3. Grant Larry (owner) explicit permission to read and write the password file.

connect larry/larry

REM Grant permission to all users (PUBLIC) to be able to read and write
REM all files in /tmp.
call dbms_java.grant_permission(’PUBLIC’,

’java.io.FilePermission’,
’/tmp/*’,
’read,write’);

REM Limit permission to all users (PUBLIC) from reading or writing the
REM password file in /tmp.
call dbms_java.restrict_permission(’PUBLIC’,

’java.io.FilePermission’,
’/tmp/password’,
’read,write’);

REM By providing a more specific rule that overrides the limitation,
REM Larry can read and write /tmp/password.

Grant PUBLIC permission to "/tmp /*"

/tmp % ls -al
.
..
password
test
myCode.java
myCode.class
updSQL.sqlj
Makefile

limitation permission to PUBLIC

grant permission assigned to owner that
 overrides the above limitation
Security For Oracle8i Java Applications 5-11

Database Contents and JVM Security
call dbms_java.grant_permission(’LARRY’,
’java.io.FilePermission’,
’/tmp/password’,
’read,write’);

commit;

Acquiring Administrative Permission to Update Policy Table
All Permissions are rows within the policy table. As it is a table within the database

and thus a resource, permission is needed to modify it. Specifically, the

PolicyTablePermission object is required to modify the table. After the first

initialization for JServer, only a single role—JAVA_ADMIN—is granted the

PolicyTablePermission to modify the policy table. The JAVA_ADMIN role is

immediately assigned to DBA; thus, if you are assigned to the DBA group, you will

automatically take on all JAVA_ADMIN Permissions.

In order for you to be able to add Permissions as rows to this table, JAVA_ADMIN

must grant your schema update rights for the PolicyTablePermission . This

Permission defines that your schema can add rows to the table. Each

PolicyTablePermission is for a specific Permission type. For example, in order for

you to add a Permission that controls access to a file, you must have a

PolicyTablePermission that allows you to grant or limit a Permission on a

FilePermission . Once this occurs, you have administrative Permission for

FilePermission.

The administrator could grant and limit the PolicyTablePermissions in the

same manner as other Permissions, but the syntax is complicated. For ease of use,

use one of the following methods within the DBMS_JAVA package to grant

administrative Permissions.

Granting policy table administrative Permissions using DBMS_JAVA:

procedure grant_policy_permission (grantee varchar2, permission_schema varchar2,
permission_type varchar2,
permission_name varchar2)

procedure grant_policy_permission (grantee varchar2, permission_schema varchar2,
permission_type varchar2,
permission_name varchar2,
key OUT number)

Granting policy table administrative permission using Java:

long oracle.aurora.rdbms.security.PolicyTableManager. grantPolicyPermission (
java.lang.String grantee,
java.lang.String permission_type,
5-12 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
java.lang.String permission_name);

void oracle.aurora.rdbms.security.PolicyTableManager. grantPolicyPermission (
java.lang.String grantee,
java.lang.String permission_type,
java.lang.String permission_name,
long[] key);

Example 5–3 Granting PolicyTable Permission

The following example shows JAVA_ADMIN (as SYS) giving Larry permission to

update the PolicyTable for FilePermission . Once this Permission is granted,

Larry can grant permissions to other users for reading, writing, and deleting files.

Parameter Description

Grantee The name of the user, schema, or role that you want the grant to
apply to. PUBLIC specifies that the row applies to all users.

Permission_schema The <schema> where the Permission class is loaded.

Permission_type The Permission class that you are granting Permission on. For
example, if you are defining access to a file, the Permission type
would be FilePermission . This parameter requires a
fully-qualified name of a class that extends
java.lang.security.Permission . If the class is not within
SYS, the name should be prefixed by <schema>:. For example,
mySchema:myPackage.MyPermission is a valid name for a
user generated Permission.

Permission_name The meaning of the target attribute is defined by the Permission
class. Examine the appropriate Permission class for the relevant
name.

Row_ number Number returned from grant or limitation to use on enable,
disable, or delete methods.

Note: When looking at the policy table, the name within the

PolicyTablePermission rows contains both the Permission type and

the Permission name, which are separated by a ’#’. For example, to

grant a user administrative rights for reading a file, the name in the

row contains java.io.FilePermission#read . The ’#’

separates the Permission class from the Permission name.
Security For Oracle8i Java Applications 5-13

Database Contents and JVM Security
REM Connect as SYS, which is assigned JAVA_ADMIN role, to give Larry permission
REM to modify the PolicyTable
connect SYS/SYS as SYSDBA

REM SYS grants Larry the right to administer permissions for
REM FilePermission
call dbms_java.grant_policy_permission(’LARRY’, ’SYS’,

’java.io.FilePermission’, ’*’);

Creating Permissions
You can create your own Permission type by performing the following:

1. Create and load the user Permission.

2. Grant administrative and action Permissions to specified users.

3. Implement security checks using the Permission.

1. Create and load the user Permission You can create your own Permission by

extending the Java 2 Permission class. Any user created Permission must extend

Permission . The following example creates MyPermission . MyPermission
extends BasicPermission , which in turn extends Permission .

package test.larry;
import java.security.Permission;
import java.security.BasicPermission;

public class MyPermission extends BasicPermission {

 public MyPermission(String name) {
 super(name);
 }

 public boolean implies(Permission p) {
 boolean result = super.implies(p);
 return result;
 }
}

2. Grant administrative and action Permissions to specified users When you create a

Permission, you are designated as owner of that Permission. The owner is implicitly

granted administrative Permission. This means that the owner can be an

administrator for this Permission and can execute grant_policy_permission .

Administrative Permission permits the user to update the policy table for the

user-defined Permission.
5-14 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
For example, if LARRY creates a Permission, MyPermission , only LARRY can

invoke grant_policy_permission for himself or another user. This method

updates the PolicyTable on who can grant rights to MyPermission . The

following code demonstrates this:

REM Since Larry is the user that owns MyPermission, Larry connects to
REW the database to assign permissions for MyPermission.
connect larry/larry

REM As the owner of MyPermission, Larry grants himself the right to
REM administer permissions for test.larry.MyPermission within the JVM
REM security PolicyTable. Only the owner of the user-defined permission
REM can grant administrative rights.
call dbms_java. grant_policy_permission (’LARRY’, ’LARRY’,

 ’test.larry.MyPermission’, ’*’);

REM commit the changes to the PolicyTable
commit;

Once you have granted administrative rights, you can grant action Permissions for

the user created Permission. For example, the following SQL grants permission for

LARRY to execute anything within MyPermission and DAVE to be able to only

execute actions that start with "act.".

REM Since Larry is the user that creates MyPermission, Larry connects to
REW the database to assign permissions for MyPermission.
connect larry/larry

REM Once able to modify the PolicyTable for MyPermission, Larry grants himself
REM full permission for MyPermission. Notice that the Permission is prepended
REM with its owner schema.
call dbms_java.grant_permission(’LARRY’,

’LARRY:test.larry.MyPermission’, ’*’, null);

REM Larry grants Dave permission to do any actions that start with ’act.*’.
call dbms_java.grant_permission
 (’DAVE’, ’LARRY:test.larry.MyPermission’, ’act.*’, null);

REM commit the changes to the PolicyTable
commit;

3. Implement security checks using the Permission Once you have created, loaded, and

assigned Permissions for MyPermission , you must implement the call to

SecurityManager for having the Permission checked. There are four methods in the

following example: sensitive , act , print , and hello . Because of the
Security For Oracle8i Java Applications 5-15

Database Contents and JVM Security
Permissions granted in the SQL example in step 2, the following users can execute

methods within the example class:

■ LARRY can execute any of the methods.

■ DAVE is given permission to execute only the act method.

■ Anyone can execute the print and hello methods. The print method does

not check any Permissions, so anyone can execute the print method. The

hello method executes AccessController.doPrivileged , which means

that the method executes with LARRY’s Permissions. This is referred to as

definer’s rights.

package test.larry;
import java.security.AccessController;
import java.security.Permission;
import java.security.PrivilegedAction;

import java.sql.Connection;
import java.sql.SQLException;

/**
 * MyActions is a class with a variety of public methods that
 * have some security risks associated with them. We will rely
 * on the Java security mechanisms to ensure that they are
 * performed only by code that is authorized to do so.
 */

public class Larry {

 private static String secret = "Larry’s secret";

 MyPermission sensitivePermission = new MyPermission("sensitive");

 /**
 * This is a security sensitive operation. That is it can
 * compromise our security if it is executed by a "bad guy".
 * Only larry has permission to execute sensitive.
 */
 public void sensitive() {
 checkPermission(sensitivePermission);
 print();
 }

 /**
 * Will print a message from Larry. We need to be
5-16 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
 * careful about who is allowed to do this
 * because messages from Larry may have extra impact.
 * Both larry and dave have permission to execute act.
 */
public void act(String message) {
 MyPermission p = new MyPermission("act." + message);
 checkPermission(p);
 System.out.println("Larry says: " + message);
 }

 /**
 * Print our secret key
 * No permission check is made; anyone can execute print.
 */
 private void print() {
 System.out.println(secret);
 }

 /**
 * Print "Hello"
 * This method invokes doPrivileged, which makes the method run
 * under definer’s rights. So, this method runs under Larry’s
 * rights, so anyone can execute hello.
 * Only Larry can execute hello
 */
 public void hello() {
 AccessController.doPrivileged(new PrivilegedAction() {
 public Object run() { act("hello"); return null; }
});
 }

 /**
 * If a security manager is installed ask it to check permission
 * otherwise use the AccessController directly
 */
 void checkPermission(Permission permission) {
 SecurityManager sm = System.getSecurityManager();
 sm.checkPermission(permission);
 }
}

Enabling or Disabling Permissions
Once you have created a row that defines a Permission, you can disable it so that it

is no longer applied. However, if you decide you want the row action again, you
Security For Oracle8i Java Applications 5-17

Database Contents and JVM Security
can enable the row. You can delete the row from the table if you believe that it will

never be used again. To delete, you must first disable the row. If you do not disable

the row, the deletion will not occur.

To disable rows, you can use either the disable_permission or the revoke
method.

■ The revoke_permission method takes in parameters similar to the grant
and restrict methods. It searches the entire policy table for all rows that

match the supplied parameters.

■ The disable_permission method disables only a single row within the

policy table. To do this, it takes in the policy table key. This key is also necessary

to enable or delete a Permission. To retrieve the Permission key number,

perform one of the following:

* Save the key when it is returned on the grant or limit calls. If you do not

foresee a need to ever enable or disable the Permission, you can use the

grant and limit calls that do not return the Permission number.

* View DBA_JAVA_POLICY or USER_JAVA_POLICY for the appropriate

Permission key number.

Disabling Permissions using DBMS_JAVA:

procedure revoke_permission (permission_schema varchar2,
permission_type varchar2,
permission_name varchar2,
permission_action varchar2)

procedure disable_permission (key number)

Disabling Permissions using Java:

void revoke (String schema, String type, String name, String action);

void oracle.aurora.rdbms.security.PolicyTableManager. disable (long number);

Enabling Permissions using DBMS_JAVA:

procedure enable_permission (key number)

Enabling Permissions using Java:

void oracle.aurora.rdbms.security.PolicyTableManager. enable (long number);

Deleting Permissions using DBMS_JAVA:
5-18 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
procedure delete_permission (key number)

Deleting Permissions using Java:

void oracle.aurora.rdbms.security.PolicyTableManager. delete (long number);

Permission Types
Table 5–2 lists the installed Permission types. Whenever you want to grant or limit a

Permission, you must provide the Permission type within the DBMS_JAVA method.

The Permission types with which you control access are the following:

■ Oracle-provided Permission types listed in Table 5–2

■ user created Permission types that extend java.security.Permission

All the Java Permission types are documented in Sun Microsystem’s Java 2

documentation.

Table 5–2 Permission Types

■ java.util.PropertyPermission

■ java.io.SerializablePermission

■ java.io.FilePermission

■ java.net.NetPermission

■ java.net.SocketPermission

■ java.lang.RuntimePermission

■ java.lang.reflect.ReflectPermission

■ java.security.SecurityPermission

■ oracle.aurora.rdbms.security.PolicyTablePermission

■ oracle.aurora.security.JServerPermission

Note: SYS is granted permission to load libraries that come with

Oracle. However, Aurora does not support other users loading

libraries, because loading C within the database is insecure. So, you

are not allowed to grant permission for loadLibrary.* of

RuntimePermission .
Security For Oracle8i Java Applications 5-19

Database Contents and JVM Security
The Oracle-specific Permissions, PolicyTablePermission and

JServerPermission are described below:

oracle.aurora.rdbms.security.PolicyTablePermission This Permission controls who can

update the policy table. Once granted the right to update the policy table for a

certain Permission type, the user can control other user’s access to some resource.

After JServer initialization, only the JAVA_ADMIN role can grant administrative

rights for the policy table through PolicyTablePermission . Once it grants this

right to other users, these users can in turn update the policy table with their own

grant and limitation Permissions.

To grant policy table updates, you use the DBMS_JAVA method: grant_policy_
permission , as discussed in "Acquiring Administrative Permission to Update

Policy Table" on page 5-12. Once you have updated the table, you can view either

the DBA_JAVA_POLICY or USER_JAVA_POLICY views to see who has been

granted Permissions.

oracle.aurora.security.JServerPermission You use this Permission to grant and limit

access to Aurora JVM resources. The JServerPermission extends from

BasicPermission . The following table lists the names that

JServerPermission grants access for:

Permission Name Description

LoadClassInPackage.<package_name> grants the ability to load a class within the specified
package

Verifier grants the ability to turn the bytecode verifier on or off

Debug grants the ability for debuggers to connect to a session

JRIExtensions grants the use of MEMSTAT

Memory.Call grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on call
settings

Memory.Stack grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on stack
settings

Memory.SGAIntern grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on SGA
settings
5-20 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
Initial Permission Grants
When you first initialize JServer, several roles are populated with certain Permission

grants. The following tables show these roles and their initial Permissions:

1. The JAVA_ADMIN role is given access to modify the policy table for all

Permissions. All DBAs, including SYS, are granted JAVA_ADMIN. Full

administrative rights to update the policy table are granted for the following

Permissions:

2. In addition to the JAVA_ADMIN Permissions, SYS is also granted the following

Permissions:

Memory.GC grants rights to call certain methods in
oracle.aurora.vm.OracleRuntime on garbage
collector settings

■ java.util.PropertyPermission

■ java.io.SerializablePermission

■ java.io.FilePermission

■ java.net.NetPermission

■ java.net.SocketPermission

■ java.lang.RuntimePermission

■ java.lang.reflect.ReflectPermission

■ java.security.SecurityPermission

■ oracle.aurora.rdbms.security.PolicyTablePermission

■ oracle.aurora.security.JServerPermission

Permission Name Description
Security For Oracle8i Java Applications 5-21

Database Contents and JVM Security
3. All users are initially granted the following Permissions. For the

JServerPermission , all users can load classes, except for the list specified in

the table. These exceptions are limitation Permissions. For more information on

limitation Permissions, see Example 5–2.

Note: Within the RuntimePermission grants, there seems to be

unnecessary granting of more specific Permission for

loadlibrary .<package >. The reason for this is to override the

limitation given to PUBLIC for loadLibrary.* .

Table 5–3 SYS Initial Permissions

Permission Type Permission Name Action Granted

oracle.aurora.rdbms.security.
 PolicyTablePermission

* Administrative rights
to modify the policy
table

oracle.aurora.security.JServerPermission * null

java.net.NetPermission * null

java.security.SecurityPermission * null

java.util.PropertyPermission * write

java.lang.reflect.ReflectPermission * null

java.lang.RuntimePermission * null

loadLibrary.xaNative null

loadLibrary.corejava null

loadLibrary.corejava_d null

Table 5–4 PUBLIC Default Permissions

Permission Type Permission Name
Granted
Action

oracle.aurora.rdbms.security.
 PolicyTablePermission

java.lang.RuntimePermission.
 loadLibrary.*

null

java.util.PropertyPermission * read

user.language write
5-22 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
java.lang.RuntimePermission null

exitVM null

createSecurityManager null

modifyThread null

modifyThreadGroup null

oracle.aurora.security.
 JServerPermission

loadClassInPackage.* except for
loadClassInPackage.java.*,
loadClassInPackage.oracle.aurora.*,
and loadClassInPackage.jdbc.*

null

Table 5–5 JAVAUSERPRIV Permissions

Permission Type Permission Name Action

java.net.SocketPermission * connect, resolve

java.io.FilePermission <<ALL FILES>> read

java.lang.RuntimePermission modifyThreadGroup,
stopThread,
getProtectionDomain,
readFileDescriptor,
accessClassInPackage.* , and
defineClassInPackage.*

null

Table 5–6 JAVASYSPRIV Permissions

Permission Type Permission Name Action

java.io.SerializablePermission * no applicable action

java.io.FilePermission <<ALL FILES>> read ,write, execute, delete

java.net.SocketPermission * accept, connect, listen, resolve

java.lang.RuntimePermission createClassLoader null

getClassLoader null

setContextClassLoader null

setFactory null

Table 5–4 PUBLIC Default Permissions

Permission Type Permission Name
Granted
Action
Security For Oracle8i Java Applications 5-23

Database Contents and JVM Security
General Permission Definition Assigned to Roles
In 8.1.5, JVM security was controlled by granting the roles of JAVASYSPRIV,

JAVAUSERPRIV, or JAVADEBUGPRIV to schemas. In the current version, these

roles still exist as Permission groups. See the previous section, "Initial Permission

Grants" on page 5-21 for the explicit Permissions set for each role. You can set up

and define your own collection of Permissions. Once defined, you can grant any

collection of Permissions to any user. That user will then have the same Permissions

that exist within the role. In addition, if you need additional Permissions, you can

add individual Permissions to either your specified user or role. Permissions

defined within the policy table have a cumulative effect. See "Fine-Grain Definition

for Each Permission" on page 5-7 for information on how to grant Permissions to a

user or a role.

The following example gives Larry and Dave the following Permissions:

■ Larry receives JAVASYSPRIV Permissions.

setIO null

setFileDescriptor null

readFileDescriptor null

writeFileDescriptor null

Table 5–7 JAVADEBUGPRIV Permissions

Permission Type Permission Name Action

oracle.aurora.security.JServerPermission Debug null

java.net.SocketPermission * connect, resolve

Note: The ability to write to properties, granted through the write

action on PropertyPermission , is no longer granted to all users.

Instead, you must either have JAVA_ADMIN grant you this

Permission or you can receive this Permission by being granted the

role of JAVASYSPRIV.

Table 5–6 JAVASYSPRIV Permissions (Cont.)

Permission Type Permission Name Action
5-24 Oracle8i Java Developer’s Guide

Database Contents and JVM Security
■ Dave receives JAVADEBUGPRIV Permissions and the ability to read and write

all files on the system.

REM Granting Larry the same permissions as exist within JAVASYSPRIV
grant javasyspriv to larry;

REM Granting Dave the ability to debug
grant javadebugpriv to dave;

commit;

REM I also want Dave to be able to read and write all files on the system
call dbms_java.grant_permission(’DAVE’, ’SYS:java.io.FilePermission’,

’<<ALL FILES>>’, ’read,write’, null);

Debugging Permissions
A debug role, JAVADEBUGPRIV, was created to grant Permissions for running the

debugger. The Permissions assigned to this role are listed in Table 5–7. In order to

have permission to invoke the debug agent, the caller must have been granted

JAVADEBUGPRIV or the debug JServerPermission as follows:

REM Granting Dave the ability to debug
grant javadebugpriv to dave;

REM Larry grants himself permission to start the debug agent.
call dbms_java.grant_permission
 (’LARRY’, ’oracle.aurora.security.JServerPermission’, ’Debug’, null);

A debugger provides extensive access to both code and data on the server, but at

this time, we envision its use to be limited to development environments. Refer to

the discussion in the section "Debugging Server Applications" on page 3-18 for

information on using the debugging facilities in this release.

Permission for Loading Classes
In order to load classes, you must have the following Permission:

JServerPermission("LoadClassInPackage." + <class_name>)

The class name is the fully qualified name of the class that you are loading.

This excludes loading into system packages or replacing any system classes. Even if

you are granted permission to load a system class, JServer prevents you from

performing the load. System classes are classes that are installed by Oracle8i with
Security For Oracle8i Java Applications 5-25

Database Contents and JVM Security
CREATE JAVA SYSTEM. The following error is thrown if you try to replace a

system class:

ORA-01031 "Insufficient privileges"

The following shows the ability of each user after database installation, including

Permissions and JServer restrictions:

■ SYS can load any class, except for system classes.

■ Any user can load classes in its own schema that do not start with the following

patterns: java.* , oracle.aurora.* , oracle.jdbc.* . If the user wants to

load such classes into another schema, it must be granted the

JServerPermission(LoadClassInPackage.<class>) Permission.

The following example shows how to grant SCOTT Permission to load classes into

the oracle.aurora.* package:

dbms_java.grant_permission(’SCOTT’, ’SYS:oracle.aurora.tools.*’, null);
5-26 Oracle8i Java Developer’s Guide

Oracle8i Java Application Perform
6

Oracle8 i Java Application Performance

You can increase your Java application performance through one of the following

methods:

■ Natively Compiled Code

■ Java Memory Usage

■ End-of-Call Migration

■ Memory Profiling Utility
ance 6-1

Natively Compiled Code
Natively Compiled Code
The Java language was designed for a platform-independent, secure development

model. To accomplish these goals, some execution performance was sacrificed.

Translating Java bytecodes into machine instructions degrades performance. To

regain some of the performance loss, you may choose to natively compile certain

classes. For example, you may decide to natively compile code with CPU intensive

classes.

Without native compilation, the Java code you load to the server is interpreted and

the underlying core classes upon which your code relies (java.lang.*) are

natively compiled.

Native compilation provides a speed increase ranging from two to ten times the

speed of the bytecode interpretation. The exact speed increase is dependent on

several factors, including:

■ use of numerics

■ degree of polymorphic message sends

■ use of direct field access, as opposed to accessor methods

■ amount of Array accessing

■ casts

Because Java bytecodes were designed to be compact, natively compiled code can

be considerably larger than the original bytecode. However, because the native code

is stored in a shared library, it is shared among all users of the database.

Most JVMs use Just-In-Time compilers that convert the Java bytecodes to native

machine instructions when methods are invoked. The JServer Accelerator uses an

Ahead-Of-Time approach to recompiling the Java classes.

Native Compiler Description

Just-In-Time Provides the JVM the ability to translate the Java

instructions just before needed by the JDK. The benefits

depends on how accurately the native compiler

anticipates code branches and the next instruction. If

incorrect, no performance gain is realized.
6-2 Oracle8i Java Developer’s Guide

Natively Compiled Code
This static compilation approach provides a large, consistent performance gain,

regardless of the number of users or the code paths they traverse on the server.

After compilation, the tool loads the statically compiled libraries into JServer, which

are then shared between users, processes, and sessions.

JServer Accelerator Overview
Most Ahead-Of-Time native compilers compile directly into a platform-dependent

language. For portability requirements, this was not feasible. As shown in

Figure 6–1, the JServer Accelerator translates the Java classes into a version of C that

is platform-independent. This C code is compiled and linked to supply the final

platform-dependent, natively compiled shared libraries or DLLs.

Ahead-Of-Time The Jserver Accelerator natively compiles all Java code

within a JAR file into native shared libraries, which are

organized by Java package, before execution time. At

runtime, JServer Accelerator checks if a Java package has

been natively compiled; and if so, uses the machine code

library instead of interpreting the deployed Java code.

Native Compiler Description
Oracle8i Java Application Performance 6-3

Natively Compiled Code
Figure 6–1 Native Compilation using JServer Accelerator

Given a JAR file, the JServer Accelerator performs the following:

1. The classes, loaded in the database, are verified.

2. The Java bytecodes for these classes are retrieved from the database and stored

in a project directory where the JServer Accelerator was invoked.

3. The Java bytecodes are translated to C.

4. The C code is compiled and linked with the C compiler for your platform.

JServer Accelerator translates, compiles, and links the retrieved classes on the

client. For this reason, you must natively compile on the intended platform

environment that this application will be deployed to. The result is a single

deployment JAR file for all classes within the project.

5. The resulting shared library is loaded into the

$ORACLE_HOME/javavm/admin directory.

JServer Accelerator

Platform Independent
 C Code

Platform Dependent
C Runtime Libraries

JAVA CLASS FILES

Translate Java
Class files into C

Platform Dependent
 Shared Libraries
 (or DLLs)Compile and

Link C Code
6-4 Oracle8i Java Developer’s Guide

Natively Compiled Code
JServer Core Java Class Libraries
All core Java class libraries and Oracle-provided Java code within JServer is natively

compiled for greater execution speed. Java classes exist as shared libraries in

$ORACLE_HOME/javavm/admin , where each shared library corresponds to a Java

package. For example, orajox8java_lang.so on Solaris and orajox8java_
lang.dll on Windows NT hold java.lang classes. Specifics of packaging and

naming can vary by platform. The Aurora JVM uses natively compiled Java files

internally and opens them, as necessary, at runtime.

Natively Compiling Java Application Class Libraries
The JServer Accelerator can be used by Java application products that need an

performance increase and are deployed on JServer. The JServer Accelerator

command-line tool, ncomp, natively compiles your code and loads it in JServer.

However, in order to use ncomp, you must first provide some initial setup.

Installation Requirements
You must install the following before invoking JServer Accelerator:

1. Install a C compiler for the intended platform on the machine you are running

ncomp.

2. Verify that the correct compiler and linker commands are referenced within the

System*.properties file located in the $ORACLE_HOME/javavm/jahome
directory. Since the compiler and linker information is platform-specific, the

configuration for these items is detailed in the README for your platform.

3. Grant the user that executes ncomp the following role and security permissions:

Note: The JServer Accelerator natively compiled libraries can only

be used within JServer. Also, these libraries can only be used within

the same version of JServer that it was produced in. If you want

your application to be natively compiled on subsequent releases,

you must recompile these classes. That is, native recompilation of

existing libraries will not be performed automatically by any

upgrade process.
Oracle8i Java Application Performance 6-5

Natively Compiled Code
a. JAVA_DEPLOY: The user must be assigned to the JAVA_DEPLOY role in

order to be able to deploy the shared libraries on the server, which both the

ncomp and deploync utilities perform. For example, the role is assigned to

DAVE, as follows:

SQL> GRANT JAVA_DEPLOY TO DAVE;

b. FilePermission : JServer Accelerator stores the shared libraries with the

natively compiled code on the server. In order for JServer Accelerator to

store these libraries, the user must be granted FilePermission for read

and write access to directories and files under $ORACLE_HOME on the

server. One method for granting FilePermission for all desired

directories is to grant the user the JAVASYSPRIV role, as follows:

SQL> GRANT JAVASYSPRIV TO DAVE;

See the Security chapter in the Oracle8i Java Developer’s Guide for more

information JAVASYSPRIV and granting FilePermission .

Executing JServer Accelerator
The following sections show how to do basic native compilation using JServer

Accelerator. All ncomp options are fully described in the Oracle8i Java Tools
Reference.

All of the Java classes contained within a JAR file must already be loaded within the

database. Execute the ncomp tool to instruct JServer Accelerator to natively compile

Note: DBA role contains both the JAVA_DEPLOY role and the

FilePermission for all files under $ORACLE_HOME.

Note: Before you natively compile your Java server code, you

must have already loaded and tested it within JServer. Native

compilation of untested code is not recommended.

Keep in mind that debuggers, such as the debugger provided with

JDeveloper, are useful only with interpreted Java code. You cannot

debug a natively compiled library.
6-6 Oracle8i Java Developer’s Guide

Java Memory Usage
all of these classes. The following natively compiles all classes within the

pubProject.JAR file:

ncomp -user scott/tiger pubProject.JAR

If you change any of the classes within this JAR file, JServer Accelerator recompiles

the shared library for the package that contains the changed classes. It will not

recompile all shared libraries. However, if you want all classes within a JAR file to

be recompiled—regardless of whether they were previously natively

compiled—you execute ncomp with the -force option, as follows:

ncomp -user scott/tiger -force pubProject.JAR

For more options, see the Oracle8i Java Tools Reference.

Java Memory Usage
The typical and custom database installation process furnishes a database that has

been configured for reasonable Java usage during development. However, runtime

use of Java should be determined by the usage of system resources for a given

deployed application. Resources you use during development can vary widely,

depending on your activity. The following sections describe how you can configure

memory depending on your performance needs, how to tell how much SGA

memory you are using, and what errors denote a Java memory issue:

■ Configuring Memory Initialization Parameters

■ Java Pool Memory

■ Displaying Used Amounts of Java Pool Memory

■ Correcting Out of Memory Errors

Note: Because native compilation must compile and link all of

your Java classes, this process may execute over the span of a few

hours. The time involved in natively compiling your code depends

on the number of classes to compile and the type of hardware on

your machine.
Oracle8i Java Application Performance 6-7

Java Memory Usage
Configuring Memory Initialization Parameters
You can modify the following database initialization parameters to tune your

memory usage to reflect more accurately your application needs:

■ SHARED_POOL_SIZE—Shared pool memory is used by the class loader within

the JVM. The class loader uses an average of about 8 KB for each loaded class.

Shared pool memory is used when loading and resolving classes into the

database. It is also used when compiling source in the database or when using

Java resource objects in the database.

The memory specified in SHARED_POOL_SIZE is consumed transiently when

you use loadjava . The database initialization process (executing

initjvm.sql against a clean database, as opposed to the installed seed

database) requires SHARED_POOL_SIZE to be set to 50 MB as it loads the Java

binaries for approximately 8,000 classes and resolves them. The SHARED_
POOL_SIZE resource is also consumed when you create call specifications and

as the system tracks dynamically loaded Java classes at runtime.

■ JAVA_POOL_SIZE—Aurora’s memory manager allocates all other Java state

during runtime execution from the amount of memory allocated using java_
pool_size . This memory includes the shared in-memory representation of

Java method and class definitions, as well as the Java objects migrated to

session space at end-of-call. In the first case, you will be sharing the memory

cost with all Java users. In the second case, under MTS, you must adjust JAVA_
POOL_SIZE allocation based on the actual amount of state held in static

variables for each session. See "Java Pool Memory" on page 6-9 for more

information on JAVA_POOL_SIZE.

■ JAVA_SOFT_SESSIONSPACE_LIMIT—This parameter allows you to specify a

soft limit on Java memory usage in a session, which will warn you if you must

increase your Java memory limits. The memory that you request in this

parameter is allocated when the session is started.

When a user's session-duration Java state exceeds this size, Aurora generates a

warning that is written into the trace files. The default is 1 MB. You should

understand the memory requirements of your deployed classes, especially as

they relate to usage of session space.

■ JAVA_MAX_SESSIONSPACE_SIZE—If a user-invokable Java program

executing in the server can be used in a way that is not self-limiting in its

memory usage, this setting may be useful to place a hard limit on the amount of

session space made available to it. The default is 4 GB. This limit is purposely

set extremely high to be normally invisible.
6-8 Oracle8i Java Developer’s Guide

Java Memory Usage
When a user's session-duration Java state attempts to exceeds this size, your

application can receive an out-of-memory failure.

JServer’s unique memory management facilities and sharing of read-only artifacts

(such as bytecodes) enables HelloWorld to execute with a per-session incremental

memory requirement of only 35 KB. More stateful server applications, such as the

Aurora/ORB that CORBA and EJB applications use, have a per-session incremental

memory requirement of approximately 200 KB. Such applications must retain a

significant amount of state in static variables across multiple calls. Refer to the

discussion in the section, "End-of-Call Migration" on page 6-12, for more

information on understanding and controlling migration of static variables

at end-of-call.

Java Pool Memory
Java pool memory is used in server memory for all session-specific Java code and

data within the JVM. Java pool memory is used in different ways, depending on

what mode the Oracle8i server is running in.

Java pool memory used within a dedicated server
The shared part of each Java class used per session. This includes readonly memory,

such as code vectors, and methods. In total, this can average about 4-8 KB for each

class.

None of the per-session Java state of each session. For a dedicated server, this is

stored in UGA within the PGA—not within the SGA.

Under dedicated servers, which is probably the case for applications using only

Java Stored Procedures, the total required Java pool memory is not much more than

10 MB.

Java pool memory used within a Multi-Threaded Server (MTS)
The shared part of each Java class that is used per session. This includes readonly

memory, such as vectors, and methods. In total, this can average about 4-8 KB for

each class.

Some of the UGA used for per-session state of each session is allocated from the

Java pool memory within the SGA. Since Java pool memory size is fixed, you must

estimate the total requirement for your applications and multiply by the number of

concurrent sessions they want to create a total amount of necessary Java pool

memory. Each UGA grows and shrinks as necessary; however, all UGAs combined

must be able to fit within the entire fixed Java pool space.
Oracle8i Java Application Performance 6-9

Java Memory Usage
Under MTS servers, which is the case for applications using CORBA or EJB, this

figure could be very large. Java-intensive, multi-user benchmarks could require

more than 1 GB. Current size limitations are unknown; however, it is platform

dependent.

Displaying Used Amounts of Java Pool Memory
You can find out how much of Java pool memory is being used by viewing the

V$SGASTAT table. Its rows include pool, name, and bytes. Specifically, the last two

rows show the amount of Java pool memory used and how much is free. The total

of these two items equals what you configured in the database initialization file.

SVRMGR> select * from v$sgastat;
POOL NAME BYTES
----------- -------------------------- ----------
 fixed_sga 69424
 db_block_buffers 2048000
 log_buffer 524288
shared pool free memory 22887532
shared pool miscellaneous 559420
shared pool character set object 64080
shared pool State objects 98504
shared pool message pool freequeue 231152
shared pool PL/SQL DIANA 2275264
shared pool db_files 72496
shared pool session heap 59492
shared pool joxlod: init P 7108
shared pool PLS non-lib hp 2096
shared pool joxlod: in ehe 4367524
shared pool VIRTUAL CIRCUITS 162576
shared pool joxlod: in phe 2726452
shared pool long op statistics array 44000
shared pool table definiti 160
shared pool KGK heap 4372
shared pool table columns 148336
shared pool db_block_hash_buckets 48792

Note: If you are compiling code on the server, rather than

compiling on the client and loading to the server, you might need a

bigger JAVA_POOL_SIZE than the default 20 MB. EJB deployment

uses the Java compiler on the server; therefore, it also requires a

larger JAVA_POOL_SIZE.
6-10 Oracle8i Java Developer’s Guide

Java Memory Usage
shared pool dictionary cache 1948756
shared pool fixed allocation callback 320
shared pool SYSTEM PARAMETERS 63392
shared pool joxlod: init s 7020
shared pool KQLS heap 1570992
shared pool library cache 6201988
shared pool trigger inform 32876
shared pool sql area 7015432
shared pool sessions 211200
shared pool KGFF heap 1320
shared pool joxs heap init 4248
shared pool PL/SQL MPCODE 405388
shared pool event statistics per sess 339200
shared pool db_block_buffers 136000
java pool free memory 30261248
java pool memory in use 19742720
37 rows selected.

Correcting Out of Memory Errors
■ Running out of memory while compiling

■ Running out of memory while loading

Running out of memory while compiling
If you run out of memory while compiling (within loadjava or deployejb), you

should see an error:

A SQL exception occurred while compiling: : ORA-04031: unable to allocate bytes
of shared memory ("shared pool","unknown object","joxlod: init h", "JOX: ioc_
allocate_pal")

The cure is to shut down your database and to reset JAVA_POOL_SIZE to a larger

value. The mention of "shared pool" in the error message is a misleading reference

to running out of memory in the "Shared Global Area". It does not mean you should

increase your SHARED_POOL_SIZE. Instead, you must increase your JAVA_

POOL_SIZE, restart your server, and try again.

Running out of memory while loading
If you run out of memory while loading classes, it can fail silently, leaving invalid

classes in the database. Later, if you try to invoke or resolve any invalid classes, you

will see ClassNotFoundException or NoClassDefFoundException
Oracle8i Java Application Performance 6-11

End-of-Call Migration
exceptions being thrown at runtime. You would get the same exceptions if you were

to load corrupted class files. You should perform the following:

■ Verify that the class was actually included in the set you are loading to the

server. Many people have accidently forgotten to load just one class out of

hundreds and spend considerable time chasing this down.

■ Use the loadjava -force option to force the new class being loaded to

replace the class already resident in the server.

■ Use the loadjava -resolve option to attempt resolution of a class during

the load process. This allows you to catch missing classes at load time, not run

time.

■ Double check the status of a newly loaded class by connecting to the database

in the schema containing the class, and execute the following:

select * from user_objects where object_name = dbms_java.shortname(’’);

The STATUS field should be "VALID". If loadjava complains about memory

problems or failures such as "connection lost", increase SHARED_POOL_SIZE

and JAVA_POOL_SIZE, and try again.

End-of-Call Migration
Aurora preserves the state of your Java program between calls by migrating all

objects reachable from static variables into session space at the end of the call.

Session space exists within the client’s session to store static variables and objects

that exist between calls. Aurora performs this migration operation at the end of

every call, without any intervention by you.

This migration operation is a memory and performance consideration; thus, you

should be aware of what you designate to exist between calls and keep the static

variables and objects to a minimum. If you store objects in static variables

needlessly, you impose an unnecessary burden on the memory manager to perform

the migration and consume per-session resources. By limiting your static variables

to only what is necessary, you help the memory manager and improve your

server’s performance.

To maximize the number of users who can execute your Java program at the same

time, it is important to minimize the footprint of a session. In particular, to achieve

maximum scalability, an inactive session should take up as little memory space as

possible. A simple technique to minimize footprint is to release large data structures

at the end of every call. You can lazily recreate many data structures when you need

them again in another call. For this reason, the Aurora JVM has a mechanism for
6-12 Oracle8i Java Developer’s Guide

End-of-Call Migration
calling a specified Java method when a session is about to become inactive, such as

at end-of-call time.

This mechanism is the EndOfCallRegistry notification. It enables you to clear

static variables at the end of the call and reinitialize the variables using a lazy

initialization technique when the next call comes in. You should execute this only if

you are concerned about the amount of storage you require the memory manager to

store in between calls. It becomes a concern only for more complex stateful server

applications you implement in Java.

The decision of whether to null-out data structures at end-of-call and then recreate

them for each new call is a typical time and space trade-off. There is some extra time

spent in recreating the structure, but you can save significant space by not holding

on to the structure between calls. In addition, there is a time consideration because

objects—especially large objects—are more expensive to access after they have been

migrated to session space. The penalty results from the differences in representation

of session, as opposed to call-space based objects.

Examples of data structures that are candidates for this type of optimization

include:

■ Buffers or caches.

■ Static fields, such as Arrays, that once initialized can remain unchanged during

the course of the program.

■ Any dynamically built data structure that could have a space efficient

representation between calls and a more speed efficient representation for the

duration of a call. This can be tricky and complicate your code, making it hard

to maintain, so you should consider doing this only after demonstrating that

the space saved is worth the effort.

Oracle-Specific Support for End-of-Call Optimization
You can register the static variables that you want cleared at the end of the call

when the buffer, field, or data structure is created. Within the Oracle-specified

oracle.aurora.memoryManager .EndOfCallRegistry class, the

registerCallback method takes in an object that implements a Callback
object. The registerCallback object stores this object until the end of the call.

When end-of-call occurs, Aurora invokes the act method within all registered

Callback objects. The act method within the Callback object is implemented to

clear the user-defined buffer, field, or data structure. Once cleared, the Callback is

removed from the registry.
Oracle8i Java Application Performance 6-13

End-of-Call Migration
The way you use the EndOfCallRegistry depends on whether you are dealing

with objects held in static fields or instance fields.

■ Static fields—You use EndOfCallRegistry to clear state associated with an

entire class. In this case, the Callback object should be held in a private static

field. Any code that requires access to the cached data dropped between calls

must invoke a method that lazily creates—or recreates—the cached data. The

example below does the following:

1. Creates a Callback object within a static field, thunk .

2. Registers this Callback object for end-of-call migration.

3. Implements the Callback.act method to free up all static variables,

including the Callback object itself.

4. Provides a method, createCachedField , for lazily recreating the cache.

When the user creates the cache, the Callback object is automatically

registered within the getCachedField method. At end-of-call, Aurora

invokes the registered Callback.act method, which frees the static memory.

import oracle.aurora.memoryManager.Callback;
import oracle.aurora.memoryManager.EndOfCallRegistry;

class Example {
 static Object cachedField = null;
 private static Callback thunk = null;

 static void clearCachedField() {
 // clear out both the cached field, and the thunk so they don't
 // take up session space between calls
 cachedField = null;
 thunk = null;
 }

 private static Object getCachedField() {
 if (cachedField == null) {
 // save thunk in static field so it doesn't get reclaimed
 // by garbage collector
 thunk = new Callback () {

Note: If the end of the call is also the end of the session, callbacks

are not invoked, because the session space will be cleared anyway.
6-14 Oracle8i Java Developer’s Guide

End-of-Call Migration
 public void act(Object obj) {
 Example.clearCachedField();
 }
 };

 // register thunk to clear cachedField at end-of-call.
 EndOfCallRegistry.registerCallback(thunk);
 // finally, set cached field
 cachedField = createCachedField();
 }
 return cachedField;
 }

 private static Object createCachedField() {

 }
}

■ Instance fields—Use EndOfCallRegistry to clear state in data structures

held in instance fields. For example, when a state is associated with each

instance of a class, each instance has a field that holds the cached state for the

instance and fills in the cached field as necessary. You can access the cached

field with a method that ensures the state is cached.

1. Implements the instance as a Callback object.

2. Implements the Callback.act method to free up the instance’s fields.

3. When the user requests a cache, the Callback object registers itself for

end-of-call migration.

4. Provides a method, createCachedField , for lazily recreating the cache.

When the user creates the cache, the Callback object is automatically

registered within the getCachedField method. At end-of-call, Aurora

invokes the registered Callback.act method, which frees the cache.

This approach ensures that the lifetime of the Callback object is identical to

the lifetime of the instance, because they are the same object.

import oracle.aurora.memoryManager.Callback;
import oracle.aurora.memoryManager.EndOfCallRegistry;

class Example2 implements Callback {
 private Object cachedField = null;

 public void act (Object obj) {
Oracle8i Java Application Performance 6-15

End-of-Call Migration
 // clear cached field
 cachedField = null;
 obj = null;
 }

 // our accessor method
 private static Object getCachedField() {
 if (cachedField == null) {
 // if cachedField is not filled in then we need to
 // register self, and fill it in.
 EndOfCallRegistry.registerCallback(self);
 cachedField = createCachedField();
 }
 return cachedField;
 }

 private Object createCachedField() {

 }
}

A weak table holds the registry of end-of-call callbacks. If either the Callback object

or value are not reachable (see JLS section 12.6) from the Java program, they will

both be dropped from the table. The use of a weak table to hold callbacks also

means that registering a callback will not prevent the garbage collector from

reclaiming that object. Therefore, you must hold on to the callback yourself if you

need it—you cannot rely on the table holding it back.

You can find other ways in which end-of-call notification will be useful to your

applications. The following sections give the details for methods within the

EndOfCallRegistry class and the Callback interface:

EndOfCallRegistry.registerCallback method
The registerCallback method installs a Callback object within a registry. At

the end of the call, Aurora invokes the act methods of all registered Callback
objects.

You can register your Callback object by itself or with a value object. If you need

additional information stored within an object to be passed into act , you can

register this object within the value parameter.

public static void registerCallback(Callback thunk, Object value);
public static void registerCallback(Callback thunk);
6-16 Oracle8i Java Developer’s Guide

Memory Profiling Utility

d

EndOfCallRegistry.runCallbacks method
static void runCallbacks()

The JVM calls this method at end-of-call and calls act for every Callback object

registered using registerCallback . You should never call this method in your

code. It is called at end-of-call, before object migration and before the last

finalization step.

Callback Interface
Interface oracle.aurora.memoryManager.Callback

Any object you want to register using

EndOfCallRegistry.registerCallback implements the Callback interface.

This interface can be useful in your application, where you require notification at

end-of-call.

Callback.act method
public void act(Object value)

You can implement any activity that you require to occur at the end of the call.

Normally, this method will contain procedures for clearing any memory that would

be saved to session space.

Memory Profiling Utility
The purpose of the Memory Profiling Utility (MemStat) is to trace, profile, and

report on the allocated memory that is accessible through static variables in your

Oracle8i Java program. You can then use the information in this report to locate and

eliminate unnecessary static data in your Java classes, thereby reducing the static

footprint of your Java program and improving the performance of repeated Java

calls into the database.

Parameter Description

thunk The Callback object to be invoked at end-of-call migration.

value If you need additional information stored within an object to be passe
into act , you can register this object within thevalue parameter.In
some cases, the value parameter is necessary to hold state the
callback needs. However, most users do not need to specify a
value .
Oracle8i Java Application Performance 6-17

Memory Profiling Utility
The Oracle8i JVM uses three kinds of memory:

■ call memory, which exists for the duration of a (possibly recursive) call into the

database

■ session memory, which exists for the duration of the session connected to the

database

■ permanent or global memory, which persists as long as the database instance is

running

Java language semantics specify that static variables persist across calls. At the end

of each call, the Oracle8i JVM copies the call memory that is accessible through the

static variables in each class into session memory so that it can be saved and restored

on subsequent calls to methods in those Java classes. If there is a lot of static data or

a complex graph of interconnected objects, then there is considerable overhead

during the end-of-call processing while the JVM allocates session memory and

copies the static data to it.

A typical technique for tuning object-oriented programs for faster performance is to

eliminate the allocation of unnecessary objects from your program. For example,

you can create a static instance of a commonly used object and reuse it rather than

creating a new one every time you need it. However, the interactions among the

different database memories complicate such techniques, and can require analysis

of the speed trade-off for allocating dynamic objects versus the space trade-off for

the end-of-call copying of static objects. If a static object is large, or if there are many

such objects, or if there are many calls, then the speed advantage gained by caching

the object may be lost, due to the traversal of the object graph during end-of-call

processing.

How MemStat Works
Depending on how you invoke it, MemStat will analyze either a single class or all

classes that are loaded into the current session. For each class, MemStat enumerates

the static variables of the class. These variables are known as the roots. Depending

on the structure of each variable, MemStat performs three different analyses:

■ If the variable is a primitive object, such as an integer, MemStat records its class

and size.

■ If it is a non-primitive object (for example, one that refers to another object),

MemStat follows the reference and recursively enumerates all objects to which

it refers.

■ If it is an array, MemStat enumerates all elements of the array.
6-18 Oracle8i Java Developer’s Guide

Memory Profiling Utility
This process is repeated recursively until all objects reachable from all static

variables have been recorded. Because it is possible for large object graphs to

contain cycles, MemStat also records any circular references it encounters during

the analysis.

Using MemStat
The purpose of MemStat is to analyze and report on the object graph accessible

from the static variables in your program. You can invoke the analysis directly from

any point in your program, and you can also register it to run at the end of a call.

Because there is no standard output mechanism for database calls, MemStat

produces its report in the form of HTML files, in a directory you specify. When the

report is finished, you can view these files with any HTML-capable Web browser.

MemStat is implemented in three static methods on the class

oracle.aurora.memstat.MemStat.

You can call it in three different ways:

■ to report immediately on the static variables in a single class

■ to report immediately on the static variables of all classes used in the current

session

■ to report at end-of-call on the static variables of all classes used in the current

session

The method call for reporting on a single class is:

MemStat.writeDump (Class MyClass, String outputPath, String filePrefix);

The method call for reporting on all loaded classes is:

MemStat.writeDump (String outputPath, String filePrefix);

The method call for reporting on all loaded classes at the end-of-call is:

MemStat.writeDumpAtEOC (String outputPath, String filePrefix);

The outputPath parameter represents the directory in which the MemStat reports

are generated. The outputPath string must be in a file name format that is suitable

to the platform on which the report is generated. For example,

/home/base/memstat is suitable for a Solaris platform; the Windows format

might be c:\\base\\memstat. Note that Java requires doubling of the

backslashes inside a string, but not the forward slashes.
Oracle8i Java Application Performance 6-19

Memory Profiling Utility
The filePrefix is the base file name for the HTML files that are generated in the

outputPath directory. Because MemStat reports can be voluminous, and many

Web browsers have limitations on the size of the files they can browse, MemStat

breaks long reports into separate files. The filePrefix is the basis for all file

names in a given report and is augmented by an incremental numeric suffix. If, for

example, the test report produces three files, the main report file will be named

test.htm , and additional report files will be named test1.htm and

test2.htm.

If you call MemStat more than once in a given call, be careful to use different base

names or different output directories, lest the subsequent reports overwrite the

previous ones. For example, if you call MemStat before and after you perform some

memory-consuming operation, naming the first report before and the second

report after will prevent name collisions, while still writing the report files into

the same directory. Using multiple directories is more complicated: you must

remember to grant separate FilePermissions (see below) for each directory in which

you want to write.

Here are some sample MemStat calls:

MemStat.writeDump (MyClass.class, “c:\\base\\memstat”, “myclass”);
MemStat.writeDump (“/home/base/memstat”, “test”);
MemStat.writeDumpAtEOC (“/home/base/memstat”, “eoc”);

MemStat Permissions
MemStat requires certain permissions to be granted to the user or role under which

it runs. Because MemStat runs in the Oracle server process, these permissions grant

access to the resources that MemStat requires:

■ Access to the private variables of the objects in the graph. If this permission is

not granted, MemStat will still run, but it will not trace any objects pointed to

by private variables.

■ Access to the Java run-time system for determining which classes are loaded in

the current session. If this permission is not granted, MemStat will find zero

classes loaded and will generate an empty report.

■ Access to the server file system where the MemStat HTML reports are

generated. If this permission is not granted, MemStat will raise an exception

when it tries to create the report files.

The following SQL statements grant these permissions to user JIM:

call dbms_java.grant_permission ('JIM',
'SYS:java.lang.reflect.ReflectPermission', 'suppressAccessChecks', null);
6-20 Oracle8i Java Developer’s Guide

Memory Profiling Utility
call dbms_java.grant_permission ('JIM',
'SYS:oracle.aurora.security.JServerPermission', 'JRIExtensions', null);

call dbms_java.grant_permission ('JIM', 'SYS:java.io.FilePermission',
'/home/base/memstat', 'read,write'); // Solaris

call dbms_java.grant_permission ('JIM', 'SYS:java.io.FilePermission',
'c:\base\memstat', 'read,write'); // Windows

If the Oracle Server is running on a Windows platform, the output file path named

in the MemStat call is subtly different from the path in the SQL grant_
permission call. In Java strings, you must use double backslashes; in SQL you

need only one backslash.

The MemStat Report Format
This section describes the format of the MemStat report; see the example below. You

can browse the MemStat output report with any HTML-capable Web browser. To do

this, point the browser at the base file name that is specified, for example,

c:\base\memstat\test.htm.

The report begins with a summary of the memory usage at the time MemStat is

invoked. This summary should give you an overall idea of the amount of memory

used by the Java call that you are analyzing.

Following the summary is a list of the unique classes that are traversed during the

MemStat analysis. For every object found during the memory analysis, MemStat

has recorded its class and its size in each of call, session, and permanent memory.

The largest objects are sorted first, because eliminating these will yield the largest

performance improvement. The list is actually sorted by the largest of these three

sizes, calculated as max (call, max (session, permanent)). For each class, this table also

shows how many bytes are occupied by objects of that class, how many objects

there are, their minimum, maximum and average size, and for arrays, the standard

deviation of the sizes.

Following the class summary is one or more tables describing each root object. The

title of the object describes the package and class of the object. Each row of the table

describes:

■ a field of the object

■ a description of the object in that field

■ the total size of the object in each of the three memory spaces
Oracle8i Java Application Performance 6-21

Memory Profiling Utility
Following the root objects are the objects pointed to by the roots; the objects are

separated by a dividing rule. One, two, or three tables describe each object:

■ the object itself

■ any other objects that the object refers to

■ any objects that refer to this object

The title for each object describes the memory in which the object resides: Call,

Session, or Permanent. Each object is described by:

■ a unique identifier

■ the output of applying the toString() method to the object

■ the object’s direct size: the size of the object header and the fields of the object

■ the object’s total size: the sum of the sizes of all the objects to which it refers

An object that refers to another object is linked by an HTML link to the tables

representing the object to which it refers. You can navigate the object graph using

these links as you would navigate hyperlinks in a text document.

Sample Output
MemStat Results

2000-06-01 17:07:05.645

Run-Time Values

Session Size 143360

NewSpace Size 262144

NewSpace Enabled true

Intern Table Size 261814

Total Memory Allocation

Call Session Permanent

Objects 726 926 3217

Total Size 54861 39348 127418

Minimum 12 12 12
6-22 Oracle8i Java Developer’s Guide

Memory Profiling Utility
Maximum 16396 2060 8076

Average 75.6 42.5 39.6

Std Deviation 679.2 93.7 233.7

Allocated Objects by Class (Call, Session, Permanent)

Class Bytes Objects Minimum Maximum Average Standard
Deviation

char[] 25316 5134 43296 161 104 1177 2 0 0 16384 800 8064 157.2 49.4 36.8 1,283.2 105.0 276.9

java.lang.String 3816 3240 30528 159 135 1272

java.util.Hash
table$Entry

4956 10696 12460 177 382 445

byte[] 8195 2421 2107 2 34 57 3 0 0 8192 2048 1024 4,097.5 71.2 37.0 4,094.5 344.2 143.3

Objects Accessible From
java.util.Properties

Field Reference Total Size

keyValueSeparators 946: java.lang.String 0 0 50

strictKeyValueSeparators 948: java.lang.String 0 0 40

specialSaveChars 950: java.lang.String 0 0 54

whiteSpaceChars 952: java.lang.String 0 0 46

hexDigit 954: char[16] 0 0 44

Total Memory Allocation
Oracle8i Java Application Performance 6-23

Memory Profiling Utility
6-24 Oracle8i Java Developer’s Guide

Glossary

API

Application Programming Interface. As applied to Java, a well-defined set of classes

and methods that furnish a specific set of functionality to the Java programmer.

JDBC and SQLJ are APIs for accessing SQL data.

Bytecodes

The set of single-byte, machine-independent instructions to which Java source code

is compiled using the Java compiler.

Call Memory

The memory that the memory manager uses to allocate new objects.

CLASSPATH

The environment variable (or command line argument) the JDK or JRE uses to

specify the set of directory tree roots in which Java source, classes, and resources

are located.

Context switch

In a uniprocessor system, the current thread is interrupted by a higher priority

thread or by some external event, and the system switches to a different thread. The

choice of which thread to dispatch is usually made on a priority basis or based on

how long a thread has been waiting.

Cooperative Multitasking

The programmer places calls to the Thread.yield() method in locations in the

code where it is appropriate to suspend execution so that other threads can run.
Glossary-1

This is quite error-prone because it is often difficult to assess the concurrent

behavior of a program as it is being written.

CORBA

Common Object Request Broker Architecture. Specified by the Object Management

Group (OMG), CORBA provides a language-independent architecture for

distributing object-oriented programming logic between logical and physical tiers

in a network, connected through ORBs.

Core Class Libraries

Generally, the Java packages delivered with Sun Microsystem’s JDK, java.*. We also

use this term to denote some sun.* packages.

Deadlock

The conflict state where two or more synchronized Java objects depend on locking

each other but cannot because they themselves are locked by the dependent object.

For example, object A tries to lock object B while object B is trying to lock object A.

This situation is difficult to debug because a preemptive Java virtual machine can

neither detect nor prevent deadlock. Without deadlock detection, a deadlocked

program simply hangs.

Dispatch

The system saves the state of the currently executing thread, restores the state of the

thread to be executed, and branches to the stored program counter for the new

thread, effectively continuing the new thread as if it had not been interrupted.

Driver

As used with JDBC, a layer of code that determines the low-level libraries

employed to access SQL data and/or communicate across a network. The three

JDBC drivers in JServer are: thin, OCI, and server.

EJB

Enterprise JavaBeans. JServer provides an implementation of the Enterprise

JavaBeans 1.0 Specification. JServer supports only Session Beans; Entity Beans are

an optional part of the EJB 1.0 Specification, and JServer does not support them.

End-of-Call

Within your session, you may invoke Java many times. Each time you perform this,

end-of-call occurs at the point at which Java code execution completes. The memory

manager migrates static variables to session space at end-of-call.
Glossary-2

Garbage Collection

The popular name for the automatic storage reclamation facility provided by the

Java virtual machine.

IDE

Integrated Development Environment. A Java IDE runs on a client workstation,

providing a graphical user interface for access to the Java class library and

development tools.

Interface Definition Language (IDL)

The platform-independent language CORBA specifies for defining the interface to a

CORBA component. You use a tool like idl2java to convert IDL to Java code.

Java Schema Object

The term JServer uses to denote either Java source, binary, or resources when stored

in the Oracle8i database. These three Java schema objects correspond to files under

the JDK—.java, .class, or other files (such as .properties files) used in the JDK

CLASSPATH.

JCK

Java Compatibility Kit. The set of Java classes that test a Java virtual machine and

Java compiler’s compliance with the Java standard. JCK releases correspond to Sun

Microsystem’s JDK releases, although in the case of JServer, only the Java classes

and not the virtual machine, are identical to Sun Microsystem’s JDK.

JDBC

Java Database Connectivity. The standard Java classes that provide

vendor-independent access to databases.

JDBC Driver

The vendor-specific layer of JDBC that provides access to a particular database.

Oracle provides three JDBC drivers—thin, OCI, and server.

JDK

Java Development Kit. The Java virtual machine, together with the set of Java

classes and tools Sun Microsystems furnishes to support Java application and

applet development. The JDK includes a Java compiler; the JRE does not.
Glossary-3

JRE

Java Runtime Environment. The set of Java classes supporting a Java application or

applet at runtime. The JRE classes are a subset of the JDK classes.

JServer

Oracle’s scalable Java server platform, composed of the Aurora Java virtual

machine running within the Oracle8i database server, the Java runtime environment

and Oracle extensions, including the Aurora/ORB and Enterprise JavaBeans

implementation.

Lazy Initialization

A technique for initializing data, typically used in accessor methods. The technique

checks to see if a field has been initialized (is non-null) before returning the

initialized object to it. The overhead associated with the check is often small,

especially in comparison to initializing a data structure that may never be accessed.

You can employ this technique in conjunction with end-of-call processing to

minimize session space overhead.

Object Graph

An object is said to reference the objects held in its fields. This collection of objects

forms an object graph. The memory manager actually migrates the object graphs

held in static variables; that is, it migrates not only the objects held in static fields,

but the objects that those objects reference, and so on.

ORB

 Object Request Broker. An ORB is a program that executes on the server, receiving

encoded messages from clients for execution by server-side objects and returning

objects to the client. ORBs typically support different services that clients can use,

such as a name service. The JServer ORB is known as the Aurora/ORB.

Preemptive Multitasking

The operating system preempts, or takes control away from a thread, under certain

conditions, such as when another thread of higher priority is ready to run, or when

an external interrupt occurs, or when the current thread waits on an I/O operation,

such as a socket accept or a file read. Some Java virtual machines implement a type

of round-robin preemption by preempting the current thread on certain virtual

machine instructions, such as backward branches, method calls, or other changes in

control flow. For a Java virtual machine that maps Java threads to actual operating

system threads, the preemption takes place in the operating system kernel, outside
Glossary-4

the control of the virtual machine. Although this yields decent parallelism, it

complicates garbage collection and other virtual machine activities.

Process

An address space and one or more threads.

Session Memory

The memory that the memory manager uses to hold objects that survive past the

end-of-call—those objects reachable from Java static variables within your session.

SQLJ

Embedded SQL in Java. The standard that defines how SQL statements can be

embedded in Java programs to access SQL data. A translator transforms the SQLJ

programs to standard JDBC programs.

Strong Typing

In Java, the requirement that the class of each field and variable, and the return type

of each method be explicitly declared.

Symmetric Multiprocessing (SMP)

The hardware has multiple processors, and the operating system maps threads to

different processors depending on their load and availability. This assumes that the

Java virtual machine maps OS threads to Java threads. This mechanism provides

true concurrency among the threads but can lead to subtle programming errors and

deadlock conflicts on synchronized objects.

System

Often used in discussion as the combination of the hardware, the operating system

and the Java virtual machine.

Thread

An execution context consisting of a set of registers, a program counter, and a stack.

Virtual Machine

A program that emulates the functionality of a traditional processor. A Java virtual

machine must conform to the requirements of the Java Virtual Machine

Specification. The JServer virtual machine is known as the Aurora virtual machine.
Glossary-5

Glossary-6

Index

Symbols
#sql, 3-13, 3-14

A
act method, 6-13

application

compiling, 2-15

development, 2-3

distributed, 1-21

executing in a session, 2-3

execution control, 2-6

execution rights, 2-27

invoking, 3-3, 3-24

threading, 2-44

attributes

definition, 1-3

types of, 1-4

Aurora

definition, 2-2

authentication, 5-2

B
BasicPermission, 5-14

bean, 1-21

bytecode

defined, 1-8

verification, 2-22

C
call

definition, 2-2

managing resources across calls, 2-41

static fields, 2-5

call specification, 3-5

Callback class

act method, 6-13

class

attributes, 1-3, 1-5

definition, 1-2

dynamic loading, 1-16

execution, 2-2

hierarchy, 1-5

inheritance, 1-5, 1-6

loading, 2-2, 2-6, 2-23

marking valid, 2-20

methods, 1-3, 1-5

name, 2-32

publish, 2-2

resolving references, 2-19

Class class

getClassLoader method, 2-35

.class files, 2-14, 2-23, 2-24

Class interface

forName method, 2-33

class schema object, 2-14, 2-20, 2-23, 2-24

classes

loading, 3-2

protected, 5-25

publishing, 2-30, 3-2

resolving, 3-2

classes111.zip, 2-9

classes12.zip, 2-10

ClassForName class

lookupClass method, 2-36
Index-1

classForNameAndSchema method, 2-36

ClassNotFoundException, 2-33

CLASSPATH, 2-14, 2-33, 4-9

client

setup, 4-8

code

native compilation, 6-2

CodeSource class, 5-5

equals method, 5-5

implies method, 5-5

COM, 1-22

compiling, 2-15

error messages, 2-16

memory problems, 6-11

options, 2-16

runtime, 2-15

setting options, 3-19

component, 1-21

configuration, 4-1

JServer, 4-6 to 4-8

performance, 6-7

connection

configuration, 4-6

security, 5-2

CORBA

configuring, 4-7, 4-8

CosNaming, 3-7

defined, xii, 1-17, 1-21, 2-5, 3-2, 3-6

documentation, 1-22

example, 3-9

invoking, 3-2

Java 2 support, 2-10

pure CORBA using Java 2, 2-13

security, 5-2

CosNaming, 3-7

D
data confidentiality, 5-2

database

configuration, 4-6

privileges, 5-2

DBA_JAVA_POLICY view, 5-6, 5-18, 5-20

DBMS_JAVA package, 3-21, 4-3

defined, 5-5

delete_permission method, 4-5, 5-18

disable_permission method, 4-5, 5-18

dropjava method, 4-4

enable_permission method, 4-5, 5-18

get_compiler_option method, 4-4

grant_permission method, 4-5, 5-8, 5-10

grant_policy_permission method, 4-5, 5-12, 5-20

loadjava method, 4-4

longname method, 2-29, 2-33, 4-3

manipulating security, 2-10

modifying permissions, 5-19

modifying PolicyTable permissions, 5-10, 5-12

reset_compiler_option method, 4-4

restart_debugging method, 3-22, 4-5

restrict_permission method, 4-5, 5-9, 5-10

revoke_permission method, 4-5, 5-18

set_compiler_option, 3-19

set_compiler_option method, 4-4

set_output method, 3-24, 4-4

setting permissions, 5-6

shortname method, 2-29, 2-33, 4-3

start_debugging method, 3-21, 4-5

stop_debugging method, 4-5

DBMS_OUTPUT package, 4-4

DbmsJava class, see DBMS_JAVA package

DbmsObjectInputStream class, 2-36

DbmsObjectOutputStream class, 2-36

deadlock, 2-45

DeadlockError exception, 2-45

debug

compiler option, 2-17

DebugAgent class, 3-19

debugging, 4-5, 5-25

agent, 3-19, 3-21

connecting a debugger, 3-22

Java applications, 3-18

necessary permissions, 5-25

setting compiler options, 3-19

starting Debug Agent, 3-21

starting proxy, 3-20

using OracleAgent class, 3-22

DebugProxy class, 3-19, 3-20

definer rights, 2-27

delete method, 5-18

delete_permission method, 4-5, 5-18
Index-2

deployejb tool, 2-31

disable method, 5-18

disable_permission method, 4-5, 5-18

distributed objects, 1-21, 3-6

dropjava method, 4-4

dropjava tool, 2-25

E
EJB

component, 1-21

configuring, 4-7, 4-8

defined, xii, 1-17, 1-21, 2-5, 3-2, 3-6

documentation, 1-22

example, 3-8

invoking, 3-2

security, 5-2

state, 1-21

enable method, 5-18

enable_permission method, 4-5, 5-18

encoding

compiler option, 2-17

end-of-call migration, 6-12

EndOfCallRegistry class, 6-13

registerCallback method, 6-13

endSession method, 2-5, 2-46

Enterprise Java Beans, see EJB

equals method, 5-5

errors

compilation, 2-16

exception

ClassNotFoundException, 2-33

DeadlockError, 2-45

IOException, 2-39

LimboError, 2-45

ThreadDeathException, 2-46

execution rights, 2-27

exitCall method, 2-46

F
FilePermission, 5-8, 5-19, 5-21, 5-23

FilePermission permission, 6-6

files, 2-38

across calls, 2-41

lifetime, 2-39

finalizers, 2-41

footprint, 1-14, 2-4

forName method, 2-33

G
garbage collection, 1-13, 1-14, 2-5

managing resources, 2-38

misuse, 2-40

purpose, 2-40

General Inter-Orb Protocol, see GIOP

get_compiler_option method, 2-17, 4-4

getCallerClass method, 2-35

getClassLoader method, 2-35

GIOP

configuring, 4-6, 4-7

presentation, 4-8

grant method, 5-8

grant_permission method, 4-5, 5-8, 5-10

grant_policy_permission method, 4-5, 5-12, 5-20

granting permission, 5-5

grantPolicyPermission method, 5-13

GUI, 2-31

I
IIOP

configuring, 4-7

defined, 3-7

SSL, 4-8

implies method, 5-5

inheritance, 1-5, 1-6

init method, 2-11

initjvm.sql, 4-2, 4-3, 4-6

installation, 4-1, 4-2

integrity, 5-2

interfaces

defined, 1-6

user, 2-31

internet newsgroups, xiii

invoker rights, 2-27

IOException, 2-39
Index-3

J
Java

applications, 2-1, 2-15

loading, 2-23

attributes, 1-3

class, 1-2

client

CLASSPATH, 4-9

setup, 4-8

compiling, 2-15

development environment, 2-14

differences from Sun JDK, 2-3

distributed applications, xii, 3-2

documentation, xii, 1-1, 1-22

execution control, 2-6

execution rights, 2-27

features, 1-11

in the database, 1-1, 1-12, 2-1, 2-2

interpreter, 2-2

introduction, xi

invoking, 2-2, 3-3

loading classes, 2-6, 3-2

checking results, 2-28

methods, 1-3

natively compiling, 6-2

overview, 1-1, 1-2

permissions, 4-5

polymorphism, 1-6

programming models, xii

publishing, 2-7

resolving classes, 2-19

resources, 1-2

stored procedures, see Java stored procedures

Java 2

migrating from JDK 1.1, 2-7

migrating security, 2-10

security, 5-2

Java Compatibility Kit, see JCK

.java files, 2-14, 2-23, 2-24

java interpreter, 2-2, 2-6

Java language specification, see JLS

Java Naming and Directory Interface, see JNDI

Java Native Interface, see JNI

Java Remote Method Invocation, see RMI

Java stored procedures, xii, 2-5

configuring, 4-7

defined, 1-17, 1-18, 3-3

documentation, 1-22

invoking, 3-2

publishing, 2-30

Java virtual machine, see JVM

JAVA$OPTIONS table, 2-16

JAVA_ADMIN role

assigned permissions, 5-21

example, 5-13

granting permission, 5-3, 5-5, 5-12, 5-20

JAVA_DEPLOY role, 6-6

JAVA_MAX_SESSIONSPACE_SIZE

parameter, 6-8

JAVA_POOL_SIZE parameter

default, 4-6

defined, 6-8, 6-9

errors, 6-11

minimum value, 4-3

JAVA_SOFT_SESSIONSPACE_LIMIT

parameter, 6-8

JAVADEBUGPRIV role, 5-24, 5-25

JavaServer Pages, 3-2

java.sql package, 2-8

JAVASYSPRIV role, 5-3, 5-23, 5-24

JAVAUSERPRIV role, 5-3, 5-23, 5-24

JCK, 1-11

jdb debugging tool, 3-18, 3-23

JDBC

2.0 support, 2-8

accessing SQL, 1-18

defined, 1-17, 3-2, 3-11

documentation, 1-22

driver types, 1-19, 3-11

example, 3-12

interacting with SQL, 3-17

security, 5-2

web information, xii

JDeveloper

debugging, 3-18

development environment, 1-22, 3-16, 4-12

JDK

requirements, 4-8

web location, xiii
Index-4

JLS

specification, 1-11

web information, xiii

JNDI

defined, 3-7

name lookup, 3-8

JNI support, 3-10

JPublisher

documentation, 1-22

JServer

configure, 4-1

definition, xiii, 2-2

install, 4-1, 4-2

JServer Accelerator

for user applications, 6-5

installation requirements, 6-5

overview, 6-2, 6-3

JServerPermission, 5-8, 5-19, 5-20, 5-21, 5-22, 5-23,

5-24

defined, 5-20

JVM

bytecodes, 1-8

defined, 1-2, 1-8

garbage collection, 1-13, 1-14

multithreading, 1-13

responsibilities, 2-4

security, 4-5

specification, 1-11

web information, xiii

L
LimboError exception, 2-45

loading, 2-23 to 2-30

checking results, 2-25, 2-28

class, 1-16, 2-6, 2-15

compilation option, 2-15

granting execution, 2-27

JAR or ZIP files, 2-26

necessary privileges and permissions, 2-26

reloading classes, 2-27

restrictions, 2-25

loadjava method, 4-4

loadjava tool, 2-24 to 2-26

compiling source, 2-15, 6-12

example, 3-4

execution rights, 2-27, 5-3

loading class, 2-23

loading ZIP or JAR files, 2-26

restrictions, 2-25

using memory, 6-8

logging, 2-16

longname method, 2-29, 2-33, 4-3

lookupClass method, 2-36

M
main method, 2-6

memory

across calls, 2-40

call, 2-5

java pool, 6-10

leaks, 2-40

lifetime, 2-38, 2-39

manager, 2-14

performance configuration, 6-7

report allocation, 6-17

running out of, 6-11

session, 2-5, 6-13

Memory Profiling Utility, see MemStat

MemStat

analysis options, 6-18

example, 6-20, 6-22

reporting, 6-21

security permissions, 6-20

using, 6-19

warning, 6-20

MemStat class, 6-19

writeDump method, 6-19

writeDumpAtEOC method, 6-19

MemStat utility

overview, 6-17

methods, 1-3, 1-5

multithreading, 1-13

N
name service, 3-7

CosNaming, 3-7

JNDI, 3-7
Index-5

native compilation, 1-15, 6-2

static, 6-3

native compiler, 6-2

ncomp

security, 6-6

ncomp tool, 6-5

executing, 6-7

Net8

configuring, 4-6

NetPermission, 5-8, 5-19, 5-21, 5-22

networking

configuration, 4-6

O
object

full to short name conversion, 2-29

lifetime, 2-39

schema, 2-14

serialization, 2-36

short name, 2-29

ObjectInputStream class, 2-36

ObjectOutputStream class, 2-36

online

compiler option, 2-17

operating system

resources, 2-38

across calls, 2-41

lifetime, 2-39

performance, 6-7

permission, 2-39

OracleAgent class

restart method, 3-22

start method, 3-22

stop method, 3-22

oracle.jdbc2 package, 2-8, 2-10

OracleRuntime class

exitCall method, 2-46

getCallerClass method, 2-35

Orb Class

init method, 2-11

ORBClass property, 2-13

ORBSingletonClass property, 2-13

output

redirecting, 3-24

P
packages

DBMS_JAVA, 4-3

oracle.jdbc2, 2-8

protected, 5-25

performance, 1-15, 6-1 to 6-17

Permission class, 5-7, 5-13, 5-14, 5-19

permissions, 4-5, 5-2 to 5-25

administrating, 5-12

assigning, 5-4, 5-6

creating, 5-14

deleting, 5-18

disabling, 5-17

enabling, 5-17

FilePermission, 6-6

granting, 5-5, 5-8, 5-10

granting policy, 5-12

grouped into roles, 5-24

JAVA_ADMIN role, 5-21

JAVA_DEPLOY role, 6-6

JAVADEBUGPRIV role, 5-24

JAVASYSPRIV role, 5-23

JAVAUSERPRIV role, 5-23

PUBLIC, 5-22

restricting, 5-5, 5-9, 5-10

specifying policy, 5-4

SYS permissions, 5-22

types, 5-7, 5-19

policy table

managing, 5-12

modifying, 5-6

setting permissions, 5-6

viewing, 5-6

PolicyTable class

specifying policy, 5-4

updating, 5-5, 5-14

PolicyTableManager class

delete method, 5-18

disable method, 5-18

enable method, 5-18

revoke method, 5-18

PolicyTablePermission, 5-8, 5-12, 5-19, 5-20, 5-21,

5-22

polymorphism, 1-6
Index-6

presentation

compatibility for RMI, 3-10

presentation layer

GIOP, 4-8

privileges

database, 5-2

.properties files, 2-14, 2-23, 2-25

property

ORBClass, 2-13

ORBSingletonClass, 2-13

PropertyPermission, 5-8, 5-19, 5-21, 5-22, 5-24

PUBLIC permissions, 5-22

publish tool, 2-31

publishing, 2-7, 2-15, 2-30, 3-2

example, 3-5

R
ReflectPermission, 5-8, 5-19, 5-21, 5-22

registerCallback method, 6-13

requirements

JDK version, 4-8

reset_compiler_option method, 2-17, 4-4

resolver, 2-19 to 2-23

default, 2-20

defined, 2-14, 2-15, 2-20, 2-33, 3-2

example, 3-4

ignoring non-existent references, 2-20, 2-22

resource schema object, 2-14, 2-23, 2-25

restart method, 3-22

restart_debugging method, 3-22, 4-5

restrict method, 5-9

restrict_permission method, 4-5, 5-9, 5-10

revoke method, 5-18

revoke_permission method, 4-5, 5-18

RMI

support, 3-10

RuntimePermission, 5-8, 5-19, 5-21, 5-22, 5-23

S
schema object

defined, 2-23

name, 2-32

using, 2-14

security, 5-1 to 5-26

book recommendations, 5-4

CORBA, 5-2

EJB, 5-2

Java 2, 5-3

JDBC, 5-2

JVM, 4-5

network, 5-2

operating system resources, 2-39

SecurityManager class, 5-5

SecurityPermission, 5-8, 5-19, 5-21, 5-22

.ser files, 2-14, 2-23, 2-25

SerializablePermission, 5-8, 5-19, 5-21, 5-23

serialization, 2-36

ServerSocket class, 2-43

Servlets, 3-2

session

coordination with JVM, 2-4

definition, 2-2

footprint, 1-14

lifetime, 2-5

role in Java execution, 2-3

timeout, 2-5

session shell tool, 3-9

set_compiler_option method, 2-17, 4-4

set_compiler_option procedure, 3-19

set_output method, 3-24, 4-4

SHARED_POOL_SIZE parameter

default, 4-6

defined, 6-8

errors, 6-11

minimum value, 4-3

shortname method, 2-29, 2-33, 4-3

Socket class, 2-43

SocketPermission, 5-8, 5-19, 5-21, 5-23, 5-24

sockets

across calls, 2-38, 2-43

defined, 2-43

lifetime, 2-39, 2-43

source schema object, 2-14, 2-23, 2-24

SQL

query, 3-2, 3-11

SQLJ

accessing SQL, 1-18

converting, 3-17
Index-7

defined, xii, 1-17, 1-19, 3-2, 3-11

documentation, xii, 1-22

example, 3-13

interoperates with PL/SQL, 3-17

running, 3-16

translating, 3-16

typing paradigm, 3-15

using JDBC, 1-19

.sqlj files, 2-14, 2-23, 2-24

sqlj utility, 3-16

SSL, 4-8

configuring, 4-6

start method, 3-22

start_debugging method, 3-21, 4-5

static variable, 2-5

end of call migration, 6-12

stop method, 3-22

stop_debugging method, 3-21, 4-5

SYS

assigned permissions, 5-22

security permissions, 5-19

System class

getProperty method, 3-24

T
ThreadDeathException, 2-46

threading

applications, 2-44

lifecycle, 2-45

model, 1-13, 2-44

using in JServer, 2-38

timeout, 2-5

trigger

using Java stored procedures, 3-3

U
user interface, 2-31

USER_ERRORS view, 2-16

USER_JAVA_POLICY view, 5-6, 5-20

USER_OBJECTS view, 2-25, 2-28, 4-4

V
V$SGASTAT table, 6-10

variables

static, 2-5

version

retrieving, 3-24

Visigenic, 2-10

Visigenic

version supported, 2-10

W
web sites, xii
Index-8

	PDF Directory
	Send Us Your Comments
	Preface
	1 Introduction to Java in Oracle8i
	Contents
	Overview of Java
	Java and Object-Oriented Programming Terminology
	Classes
	Attributes
	Methods

	Class Hierarchy
	Interfaces
	Polymorphism
	The Java Virtual Machine (JVM)
	Key Features of the Java Language

	Why Use Java in Oracle8i?
	Multithreading
	Automated Storage Management
	Footprint
	Performance
	How Native Compilers Improve Performance

	Dynamic Class Loading

	Oracle’s Java Application Strategy
	Java Stored Procedures
	PL/SQL Integration and Oracle RDBMS Functionality
	JDBC Drivers
	SQLJ – Embedded SQL in Java

	Dynamic HTML Invoking Java
	Servlets
	JavaServerPages

	Distributed Application Development
	Using EJB Components

	Development Tools

	Overview of Oracle8i Java Documentation

	2 Writing Java Applications on Oracle8i
	Overview
	Terminology

	Database Sessions Imposed on Java Applications
	Session Lifetime
	Java Supported APIs

	Execution Control
	Migrating from JDK 1.1 to Java 2
	Your Development Environment
	JDBC 2.0
	Server Applications Using JDBC 2.0
	Clients Using JDBC 2.0

	Java 2 Security
	Java 2 ORB APIs
	JNDI Lookup
	Aurora ORB Interface
	CORBA ORB Interface
	Backwards Compatibility for 8.1.5 CORBA and EJB Applications

	Java Code, Binaries, and Resources Storage
	Preparing Java Class Methods for Execution
	Compiling Java Classes
	Compiling Source through javac
	Compiling Source through loadjava
	Compiling Source at Runtime
	Specifying Compiler Options
	Automatic Recompilation

	Resolving Class Dependencies
	Allowing References to Non-Existent Classes
	ByteCode Verifier

	Loading Classes
	Two Definitions of the Same Class
	Need Database Privileges and JVM Permissions
	Loading JAR or ZIP Files

	How to Grant Execute Rights
	Checking Java Uploads
	Object Name and Type
	Status

	Publishing

	User Interfaces on the Server
	Shortened Class Names
	Class.forName() on JServer
	Supply the ClassLoader in Class.forName
	Supply Class and Schema Names to classForNameAndSchema
	Supply Class and Schema Names to lookupClass
	Supply Class and Schema Names when Serializing
	Class.forName Example

	Managing Your Operating System Resources
	Overview of Operating System Resources
	Operating System Resource Access
	Operating System Resource Lifetime

	Garbage Collection and Operating System Resources
	Operating System Resources Affected Across Calls
	Sockets

	Threading in JServer
	Thread Lifecycle

	3 Invoking Java in the Database
	Overview
	Invoking Java Methods
	Utilizing Java Stored Procedures
	Utilizing Distributed Objects With CORBA and EJB
	IIOP Transport
	Naming
	Creating and Deploying Enterprise JavaBeans
	Using an EJB
	Session Shell

	Utilizing Remote Method Invocation (RMI)
	Utilizing Java Native Interface (JNI) Support
	Utilizing SQLJ and JDBC for Querying Database
	JDBC
	SQLJ

	An Example Comparing JDBC and SQLJ
	Complete SQLJ Example
	SQLJ Strong Typing Paradigm
	Translating a SQLJ Program
	Running a SQLJ Program in the Server
	Converting a Client Application to Run in the Server
	Interacting with PL/SQL

	Debugging Server Applications
	1. Prepare the Code for Debugging
	2. Start the Debug Proxy
	3. Starting, Stopping, and Restarting the Debug Agent
	OracleAgent Class
	4. Connecting a Debugger

	How To Tell You Are Executing in the Server
	Redirecting Output on the Server

	4 Java Installation and Configuration
	Initializing a Java-Enabled Database
	Manual Install
	Requirements
	Package DBMS_JAVA

	Configuring JServer
	Java Stored Procedure Configuration
	Enterprise JavaBeans and CORBA Configuration

	Enabling the Java Client
	1. Install JDK on the Client
	2. Set up CLASSPATH
	Basic Included JAR files:
	JAR Files Necessary for JDK 1.1 Clients
	JAR Files Necessary for Java 2 Clients
	JAR Files Included for Clients that use SQLJ
	JAR Files Included for Clients that use JSP

	3. Verify the Port/SID
	4. Test Install with Samples

	5 Security For Oracle8i Java Applications
	Network Connection Security
	Database Contents and JVM Security
	Java 2 Security
	Setting Permissions
	Fine-Grain Definition for Each Permission
	Acquiring Administrative Permission to Update Policy Table
	Creating Permissions
	Enabling or Disabling Permissions
	Permission Types
	Initial Permission Grants
	General Permission Definition Assigned to Roles

	Debugging Permissions
	Permission for Loading Classes

	6 Oracle8i Java Application Performance
	Natively Compiled Code
	JServer Accelerator Overview
	JServer Core Java Class Libraries
	Natively Compiling Java Application Class Libraries
	Installation Requirements

	Executing JServer Accelerator

	Java Memory Usage
	Configuring Memory Initialization Parameters
	Java Pool Memory
	Displaying Used Amounts of Java Pool Memory
	Correcting Out of Memory Errors
	Running out of memory while compiling
	Running out of memory while loading

	End-of-Call Migration
	Oracle-Specific Support for End-of-Call Optimization

	Memory Profiling Utility
	How MemStat Works
	Using MemStat
	MemStat Permissions
	The MemStat Report Format
	Sample Output

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

