
Oracle9iAS Containers for J2EE
Release Notes

Release 2 (9.0.2) for Windows

May 2002

Part No. A97646-01
Copyright  2002, Oracle Corporation.

All Rights Reserved.
This document summarizes the differences between Oracle9iAS Containers
for J2EE (OC4J) and its documented functionality. It covers the following
topics:

■ Release Notes for J2EE Connector Architecture

■ Release Notes for Oracle9iAS EJB Container

■ Release Notes for Oracle SQLJ

■ Release Notes for Oracle JDBC

■ Release Notes for Oracle9iAS Servlet Container

■ Release Notes for Oracle9iAS JSP Container

■ Release Notes for JAAS

■ Release Notes for OC4J Administration and Management

■ Release Notes for MERANT DataDirect Connect JDBC Driver

■ Document Errata

1 Release Notes for J2EE Connector Architecture
This section includes issues with J2EE Connector Architecture that are not
reflected in the Oracle9iAS 9.0.2 documentation.

1.1 IllegalArgumentException
A bug causes an IllegalArgumentException; an example is:

java.lang.IllegalArgumentException: No such property: ConnectionURL,

See Also: Oracle9i Application Server Release Notes
Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle Corporation. Other names

may be trademarks of their respective owners.

existing writable properties are: [logWriter, connectionURL]

Such an exception may occur if the resource adapter deployment descriptor
specifies any configuration property whose <config-property> element
name attribute setting begins with a capital letter when the second character
is not a capital. This includes the standard properties defined in section
10.4.3 in Sun Microsystems’ J2EE Platform Connector Architecture 1.0
Specifications, such as ConnectionURL. This is in conflict with sections
8.3.1 and 8.8 of Sun’s JavaBeans 1.01 Specifications, which states that a
JavaBean with methods setConnectionURL() and
getConnectionURL() should have a property name connectionURL,
not ConnectionURL.

1.1.1 Workaround
The workaround here is to change the <config-property> element
name attribute setting in the resource adapter's ra.xml file from
ConnectionURL to connectionURL. The ra.xml file is found in the

%J2EE_HOME%\connectors\connector-name\rar-file-name\
META-INF

directory if the resource adapter is deployed standalone, or

%J2EE_HOME%\applications\app-name\rar-file-name\META-INF

directory if the resource adapter is packaged within an EAR file.
(%J2EE_HOME% is %ORACLE_HOME%\j2ee\home.) If the resource adapter
has been deployed, also change the value of the name setting in the
<config-property> element in the generated oc4j-ra.xml file under
the application-deployment directory. For example, change the
following <config-property> element from:

<config-property name="ConnectionURL"
value="jdbc:cloudscape:rmi:CloudscapeDB;create=true"/>

to:

<config-property name="connectionURL"
value="jdbc:cloudscape:rmi:CloudscapeDB;create=true"/>

and restart OC4J.

1.2 deployconnector Switch Not Available in this Release
The -deployconnector switch in the admin command line tool
(admin.jar) documented in Oracle9iAS Containers for J2EE Services Guide is
not available for deploying standalone resource adapters.
 2

1.2.1 Workaround
Standalone resource adapters can be deployed manually. Follow these
steps:

1. Create a new directory under the %J2EE_HOME%\connectors
directory.

2. Copy the resource adapter RAR file into the new directory.

3. Add the following to the
%J2EE_HOME%\config\oc4j-connectors.xml file:

<connector name="your_resource_adapter_name"
path="your_resource_adapter.rar"> </connector>

4. In the %J2EE_HOME%\config\server.xml file, make sure that the
connector-directory attribute is specified in the
<application-server> element as follows:

<application-server
 application-directory="..\applications"
 deployment-directory="..\application-deployments"
 connector-directory="..\connectors">

In the %J2EE_HOME%\config\application.xml file, if there is no
<connectors> element under <orion-application> that looks like
this, add it:

<connectors path=".\oc4j-connectors.xml"/>

In these first four steps, you have deployed the standalone resource adapter
to OC4J.

5. Start or restart OC4J process. OC4J will automatically unpack your RAR
file in the

%J2EE_HOME%\connectors\your-directory-name\
your-resource-adapter-name\

directory.

In step 5, OC4J created a directory called
your_resource_adapter_name in
%J2EE_HOME%\application-deployments\default\ when you
started the OC4J process.

6. Configure the oc4j-ra.xml file under the

%J2EE_HOME%\application-deployments\default\
your_resource_adapter_name

directory with the desired connector property settings, each with its
distinct JNDI name for look-up from application components, and,
 3

optionally, with different configuration property values. Here is an
example of an oc4j-ra.xml file:

<oc4j-connector-factories>
 <connector-factory location="eis/eisJNDIforCloudscape"
 connector-name="BlackBoxNoTx">
 <config-property name="connectionURL"
 value="jdbc:cloudscape:rmi:CloudscapeDB;create=true"/>
 </connector-factory>
 <connector-factory location="eis/eisJNDIforOracle"
 connector-name="BlackBoxNoTx">
 <config-property name="connectionURL"
 value="jdbc:oracle:thin:@localhost:1521:orcl"/>
 </connector-factory>
</oc4j-connector-factories>

Restart the OC4J process again for the configuration to take effect.

1.3 native-library Element Problem
The <native-library> element under <connector> in
oc4j-connectors.xml does not work.

1.3.1 Workaround
Copy the native libraries, such as .so or .dll files, if any, to the top-level
directory in which the resource adapter files are expanded when your
application is deployed into OC4J. For example, suppose a standalone
resource adapter named myRAfile.rar is deployed into the

%J2EE_HOME%\connectors\myRAname

directory. The top-level directory would be

%J2EE_HOME%\connectors\myRAname\myRAfile

Copy any native libraries that are packaged within that RAR file to this
directory.

2 Release Notes for Oracle9iAS EJB Container
This section includes issues with EJB that are not reflected in the Oracle9iAS
9.0.2 documentation.

■ For read-only entity beans, the default for
exclusive-write-access is set to true. For all other entity-bean
locking modes, exclusive-write-access must be false.
 4

■ OC4J does not support using both emulated and non-emulated
OrionCMTDataSource data sources for database operations in one
transaction. Having multiple non-emulated OrionCMTDataSource
data sources result in a two-phase commit operation.

■ The property cacheScheme for non-emulated data sources takes
integer values, not String, as indicated in Oracle9iAS Containers for
J2EE Enterprise JavaBeans Developer’s Guide and Reference.

The correspondence is as follows:

DYNAMIC_SCHEME = 1
FIXED_WAIT_SCHEME = 2
FIXED_RETURN_NULL_SCHEME = 3

The following example sets the cache scheme to FIXED_WAIT_SCHEME:

<data-source
 class="com.evermind.sql.OrionCMTDataSource"
 name="OracleDS"
 location="jdbc/OracleCMTDS1"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="scott"
 password="tiger"
 url="jdbc:oracle:thin:@localhost:5521:derdbms"
 inactivity-timeout="30"
 max-connections="2">
 <property name="cacheScheme" value="2"/>
</data-source>

■ wsdl2ejb demos:

The shipped build.xml ant script generates and deploys EJBs from
sample WSDL files. The deployment is performed using OC4J’s
admin.jar file. This technique works for the OC4J standalone
package, but fails under a full Oracle9iAS installation. To execute the
demo in an Oracle9iAS environment, run the ant EJB generation target
(rpc_dog_gen or interop_gen), deploy the generated EAR file
using recommended Oracle9iAS tools, and then run the EJB client
target.

■ OC4J exposes two permissions:

- the RMI Login permission
(com.evermind.server.rmi.RMIPermission)

- the Administration permission
(com.evermind.server.AdministrationPermission)
 5

Both of these permissions are automatically granted to a group. EJB
clients must have the RMI permission assigned to themselves before
accessing an EJB.

See the Oracle9iAS Containers for J2EE Services Guide for information on
how to assign permissions using the JAZN-XML or JAZN-LDAP
providers.

■ If you specify max-connection-attempts in data-sources.xml,
then you must also specify connection-retry-interval in
data-sources.xml, or else there will be a null pointer exception (bug
2282743).

■ In data-sources.xml, you can specify a minimum number of
connections. However, emulated data sources do not support a setting
for minimum number of connections.

■ If you use a message-driven bean (MDB) with Oracle Java Messaging
Service (JMS), the MDB must be configured as a “durable subscriber.”
Oracle JMS supports only durable subscription in release 9.0.2 (bug
2237811).

■ There is a functional difference when using the JNDI property
dedicated.rmicontext instead of dedicated.connection. In
either case, whenever you create a new InitialContext instance, a
new RMI context is created. With dedicated.rmicontext, these
RMI contexts all share the same RMI connection. With
dedicated.connection, the RMI contexts do not share the same
RMI connection.

■ To avoid wrapper cache problems, verify that the
disable-wrapper-cache attribute is set to true (the default) in the
orion-ejb-jar.xml configuration file.

■ Shutting down OC4J may result in a hung process. The workaround is
to issue a control-C, and the OC4J process should exit in approximately
3 to 4 minutes. (Bug 2021722)

■ The MDB runtime code doesn't yet implement a valid
MessageDrivenContext class to handle rollback requests. This will
be fixed in a future release.

■ Message listeners are not being triggered on a Windows NT / Windows
2000 client using DHCP. The workaround is to use static IP addresses
for the clients.

■ Currently there is no XA support for JMS.

■ Messages delivered to an MDB and the operations within the
onMessage method are not in the same transaction. For example, if the
onMessage method is rolled back, the message will not be redelivered.
 6

■ The data source configuration for MDBs is not supported. Use the
inline configuration instead.

■ Oracle JMS in Oracle9iAS release 2 supports only transactional JMS
sessions and durable subscriptions.

3 Release Notes for Oracle SQLJ
This section includes issues with SQLJ that are not reflected in the
Oracle9iAS 9.0.2 documentation.

■ The demo for SQLJ-specific connection support is called bmp.

■ To set up SQLJ-specific data sources, follow the demo instructions.

■ The SQLJ-specific OJSP connection beans are not distributed as part of
runtime12ee.jar:

oracle.sqlj.runtime.SqljConnBean
oracle.sqlj.runtime.SqljConnCacheBean

Instead, they are provided with ojsputil.jar, which also contains
the other OJSP connection bean classes. This library is located at:

%ORACLE_HOME%\jsp\lib\ojsputil.jar

To use the SQLJ-specific OJSP connection beans in Oracle9iAS, ensure
that ojsputil.jar is either directly included in server.xml or in a
path specified in server.xml.

For example, the following entry in server.xml makes SQLJ-specific
connection beans available to Oracle9iAS, assuming that
%ORACLE_HOME% has been set to c:\iasv2:

<library path = "c:\iasv2\jsp\lib">

4 Release Notes for Oracle JDBC
This section includes issues with JDBC that are not reflected in the
Oracle9iAS Release 2 (9.0.2) documentation.

The JDBC drivers shipped with this Oracle9iAS version have known
problems. A JDBC patch addresses the problems. The patch is accompanied
by a release note, which includes a list of known problems. Follow the
instructions in the Oracle9i Application Server Installation Guide to install the
necessary patches before you run Oracle9iAS.
 7

5 Release Notes for Oracle9iAS Servlet Container
This section includes issues with servlets that are not reflected in the
Oracle9iAS 9.0.2 documentation.

5.1 Unexpected Delay Instantiating java.security.SecureRandom
For security reasons, OC4J uses the class
java.security.SecureRandom for secure seed generation.
Session-based requests use this facility. Unfortunately, the amount of time
required for the first instantiation to complete can be unacceptable,
depending upon your application needs. Since OC4J makes this call lazily, it
can cause an unexpected delay when it is first called during the course of
application execution. If this occurs, one solution is for an application to
enable the load-on-startup attribute in the <web-site> element of the
web-site.xml configuration file and to create an instance of
SecureRandom during the class initialization of the application. The result
will be a longer startup time in place of a delay during the course of
servicing clients.

5.2 Sharing Cached Objects in an OC4J Servlet
To take advantage of the Java cache’s distributed functionality or to share a
cached object between servlets, some minor modification to an application’s
deployment may be necessary. Any user-defined objects that will be shared
between servlets or distributed between JVMs must be loaded by the
system class loader. By default, objects loaded by a servlet are loaded by the
context class loader. These objects are visible to only the servlets within the
context that loaded them. The object definition is not available to other
servlets or to the cache in another JVM. If the object is loaded by the system
class loader, the object definition will be available to other servlets and to
the cache on other JVMs.

With JServ, this was accomplished by including the cached object in the
classpath definition available when the JServ process was started.

With OC4J, the system classpath is derived from the manifest of the
oc4j.jar file and any associated jar files, including cache.jar. The
classpath in the environment is ignored. To include a cached object in the
classpath for OC4J, the class file should be copied to
%ORACLE_HOME%\javacache\sharedobjects\classes or added to
the jar file %ORACLE_HOME%\javacache\cachedobjects\share.jar.
Both the classes directory and the share.jar file have been included in
the manifest for cache.jar.
 8

6 Release Notes for Oracle9iAS JSP Container
This section includes issues with JSP that are not reflected in the Oracle9iAS
9.0.2 documentation.

6.1 General Notes
■ Starting with the 9.0.2.0 release, the default JSP engine is the Oracle9iAS

release 2 version. The JSP engine is configured in
global-web-application.xml. However, some JSP-related
attributes in the Orion configuration files, such as development in
global-web-application.xml, are not applicable.

■ For page scope, a new check_page_scope parameter has been
introduced. Users can set this parameter to true to enable page scope
checking by the JspScopeListener utility for OC4J environments. It
would be false by default, for performance reasons, but is set to true
in your predefined global-web-application.xml file.

■ You can use the location or ejb-location element (but not the
deprecated element pooled-location as mentioned in Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference).

6.2 Security Considerations
Follow these security practices:

■ On Oracle9iAS running JServ, we highly recommend that Web access to
the generated _pages directory be denied. On Oracle9iAS 9.0.2, access
is denied in the default _pages directory. However, if you are using
aliases, be sure to deny access to any _pages directory generated
under each alias.

Note: Starting with Oracle9iAS 9.0.2, components that
ship with Oracle9iAS use the same version numbering. The
major change in the Oracle9iAS JSP (OJSP) container in
release 9.0.2.0 is better integration with the other
Oracle9iAS containers for J2EE.

Note: OJSP demos are located in ojspdemos.ear in the
J2EE demo instance of a regular Oracle9iAS 9.0 installation.
They are not available with the oc4j\j2ee basic OTN
download.
 9

■ On Oracle9iAS running JServ, we highly recommend that Web access to
globals.jsa be denied. On Oracle9iAS 9.0.2, such access is denied by
default.

■ For applications using SQL tags, consider using the dbSetParam tag to
supply only parameter values rather than textual completion of the
SQL statement itself. This avoids “SQL poisoning,” which is the
possibility of users entering additional SQL along with the expected
value.

■ You can suppress the display of the physical file path when nonexistent
JSP files are requested, by setting the debug_mode parameter to
false.

6.3 Known Issues and Restrictions
■ In this release, you cannot use the JESI template-fragment model and

explicit ESI markup of the form <esi:inline> within the same HTTP
response. For example, there will be Web Cache errors if you use a JSP
page with <jesi:template> and <jesi:fragment> tags, and the
page includes a servlet that generates HTML with <esi:inline> tags
in it.

■ Desupport of the pre-1.1 JSP tag mechanism (bug 2125027). Prior to the
JSP 1.1 support of tag libraries, OJSP supported its own compile-time
mechanism for using custom code. This entailed using
uri="oracle.jsp.parser.OpenJspRegisterLib" in the taglib
directive. Now that 1.1 fully supports custom tag libraries, we intend to
desupport this mechanism in favor of the standard tag library
mechanism.

■ Aliases and JSP (bug 2189308). When using JServ alias directives in
combination with JSPs, there are issues when two aliases begin with the
same partial directory path. Consider the following two aliases as an
example:

Alias \foo\bar1 "c:\path\to\my\dir\x\bar1"
Alias \foo\bar2 "c:\path\to\my\dir\y\bar2"

An initial request for \foo\bar1\bar1.jsp will work, but a
subsequent request for \foo\bar2\bar2.jsp will incorrectly look in
c:\path\to\my\dir\x for bar2.jsp, and will fail with a
FileNotFound exception. This is due to further limitations with the
JServ getRealPath() implementation, which returns incorrect
information. There are two workarounds for this situation:

- Have only one alias, with real directories underneath:

Alias \foo "c:\path\to\my\dir"
 10

Here the bar1 and bar2 directories would physically exist as
c:\path\to\my\dir\bar1 and c:\path\to\my\dir\bar2,
and there would not be a problem.

or:

- Have more than one alias, but arrange it so that the physical
directories do not have the same names as the alias directories:

Alias \foo\bar1 "c:\path\to\my\dir\x_bar1"
Alias \foo\bar2 "c:\path\to\my\dir\y_bar2"

Note the use of x_bar1 instead of bar1 and y_bar2 instead of
bar2. In the problematic example earlier, the first alias used bar1,
which is the same as the directory name, and the second alias used
bar2, which is the same as the directory name.

■ On Windows NT, the ojspc translator tool does not support wildcards
in file lists. Wildcards will work on UNIX shells, as the shell expands
them.

■ The database access beans do not support any classes from the
oracle.jdbc2 package. This is to be consistent with different JDK
versions.

■ Not specifying the included page in a JSP include statement results in
StringIndexOutOfBoundsException (bug 1234581). For example,
the following directive:

 <jsp:include page="" flush="true" />

would result in the following error:

java.lang.StringIndexOutOfBoundsException: String index out of
range: Provide a non-empty string for the page attribute.

■ Display of null values in JSP.

In Oracle9iAS, a null value printed from a JSP page displays, by
default, as the string “null.” To display nothing instead, set the attribute
jsp-print-null to false in the <web-app> element of
global-web-app.xml or orion-web.xml.

7 Release Notes for JAAS
This section includes issues with JAAS that are not reflected in the
Oracle9iAS 9.0.2 documentation.
 11

7.1 Admintool Changes
The JAZN Admintool now enforces authentication and authorization for
most of the JAZN commands, including the JAZN shell. There are two
ways to specify the user name and password for authentication purposes:

■ You can specify the user name and password with the -user and
-password switches.

This option is considered insecure as the password is specified in clear
text.

■ You can enter the credentials information interactively when prompted
by the Admintool.

The Admintool obfuscates the password as you type it in.
Unfortunately, due to limitations with the JDK I/O library, the
mechanism sometimes does not fully obfuscate your password on the
screen. Note that authentication is not required for the -checkpasswd
and -setpasswd commands, and when JAZN-LDAP is the specified
provider.

7.2 Updating OC4J Admin Password Using JAAS Administration
Tool
Perform the following steps to update the OC4J admin password using the
JAAS administration tool:

1. Make sure that your ORACLE_HOME environment variable is set and
you are using the correct java from the %ORACLE_HOME%\jdk\bin
directory.

2. In the %ORACLE_HOME%\j2ee\home directory, use the following
command to change the admin password to the ias_admin password:

java -Doracle.security.jazn.config=
%ORACLE_HOME%\j2ee\home\jazn\install\jazn.xml -jar jazn.jar
 -setpasswd jazn.com admin welcome welcome1

In this example, the ias_admin password is welcome1.

3. Verify the change by performing the following:

java -Doracle.security.jazn.config=%ORACLE_HOME%
\j2ee\home\jazn\install\jazn.xml

Note: Some class and component names contain the word
“JAZN,” which is the internal code name for “JAAS
provider.”
 12

-jar jazn.jar -checkpasswd jazn.com admin -pw welcome1

You should see the following message:

Successful verification of user/password pair

The affected jazn-data.xml file is located in the
%ORACLE_HOME%\j2ee\home\config directory.

7.3 JAZNUserManager Delegation Support
JAZNUserManager now supports the OC4J “user manager delegation”
model. If a user or group is not found at the application level
JAZNUserManager instance, it delegates the request to the global user
manager.

A known limitation is that delegation between principals.xml, which is
the storage for XMLUserManager) and JAZNUserManager is not
supported. For example, a configuration that sets principals.xml as the
global user manager and JAZNUserManager as the application level user
manager is not supported. (JAZNUserManager is the implementation
class; it can be configured to use an XML file, jazn-data.xml, as storage
or OID as storage.) This feature should be distinguished from the “identity
delegation” feature discussed in the Oracle9iAS Containers for J2EE Services
Guide. The “identity delegation” feature refers to the fact that when a servlet
calls an enterprise bean on behalf of a client's request, the primary caller's
identity is propagated to the enterprise bean for authorization purposes.

7.4 JAAS Clustering Support
JAZN-XML is integrated with DCM/SMI (System Management Interface,
an API that EM uses to manage OC4J and OC4J applications) to provide
cluster support. Any changes to jazn-data.xml via EM will be
automatically propagated to all nodes participating in the same cluster.

However, be aware that any modification of jazn-data.xml will not be
instantly picked up by the running OC4J instances. An OC4J instance needs
to be restarted for the changes to take effect.

7.5 OC4J Services Guide, Chapter 5
The description regarding our demo application, callerInfo, is out of
date. Refer to the file README.txt located at
%ORACLE_HOME%\j2ee\home\jazn\demo\callerInfo for a more
up-to-date description of this JAAS demo.
 13

7.6 JAAS and Java 2 Security
Oracle9iAS 9.0.2 does not support using the JAAS provider as the J2SE
policy (the Java 2 security policy) provider. For code-based security, we
recommend using the J2SE 1.3.1 reference implementation. We provide a
J2SE policy file that works with the J2SE 1.3.1 reference implementation.
This file is located at %J2EE_HOME%\config\java2.policy.

7.6.1 How to Enable an Application with Java 2 Security
To enable an application with Java 2 security, do one of the following:

■ You can start up any standard compliant JVM (Java Virtual Machine)
with Java 2 security enabled by defining the system property
java.security.manager (and, optionally,
java.security.policy).

For example, you can start up a JVM with Java 2 security enabled by
the following command:

java -Djava.security.manager -Djava.security.policy=
%ORACLE_HOME%\j2ee\home\config\java2.policy ...

■ Alternatively, you can enable Java 2 security programmatically,
enabling the security manager through the
System.setSecurityManager() API.

7.6.2 How to Enable OC4J with Java 2 Security
OPMN (Oracle Process Management Notification) supports specification of
Java options in opmn.xml. The following opmn.xml fragment illustrates
how to enable OC4J for Java 2 security in an ADE view:

<oc4j instanceName="home" numProcs="1" maxRetry="3">
 <config-file path=
 "c:\ade\rkng_oc4j902\oracle\j2ee\home\config\server.xml" />
 <java-bin path="c:\jdk1.3.1\bin\java" />
 <java-option
 value="-Djava.security.manager
 -Djava.security.policy=
 \c:\ade\rkng_oc4j902\j2ee\home\config\java2.policy" />
 <port ajp="0"/>
...
</oc4j>

To start up OC4J in standalone mode, specify the relevant system properties
before the -jar option. For example:

java -Djava.security.manager
-Djava.security.policy=%ORACLE_HOME%\j2ee\home\config\java2.policy
-Doracle.home=%ORACLE_HOME% -jar oc4j.jar
 14

At the minimum, the following system properties must be set:

7.7 JAAS Login Module Configuration Provider
The JAZN-XML provider type of JAAS is also a JAAS login module
configuration provider.

This subsection documents JAAS login module support.

7.7.1 Configure JAAS

7.7.1.1 Configure JVM Add the following lines to your java.security
configuration file, if not present already:

auth.policy.provider=oracle.security.jazn.spi.PolicyProvider
login.configuration.provider=oracle.security.jazn.spi.
LoginConfigProvider

This indicates that JAAS is to be used as the provider for JAAS login
configuration as well as policy. This is the default configuration for the JDK
shipped with Oracle9iAS release 2.

The java.security file is located in the
%JAVA_HOME%\jre\lib\security directory.

7.7.1.2 Configure JAAS Configure your jazn.xml file to use JAZN-XML as
the provider:

For example, consider this simple jazn.xml file:

<jazn provider="XML" location="jazn-data.xml" />

This informs JAAS that JAZN-XML is the provider of choice (as opposed to
JAZN-LDAP, which does not yet support login module configuration).

You must also configure jazn-data.xml properly for login module
configuration. You can accomplish that by invoking the

Table 1 System Properties

Property Name Description

java.security.manager property to enable Java 2 security in this JVM

java.security.policy location of your java2.policy (the default policy is
located at %ORACLE_HOME%\j2ee\home\config
\java2.policy)

oracle.home value of %ORACLE_HOME%
 15

oracle.security.jazn.login.LoginModuleManager API or editing
jazn-data.xml manually.

Here is a sample fragment of jazn-data.xml that configures a login
module for an application:

<!-- Login Module Data -->
<jazn-loginconfig>
 <application>
 <name>JAZNUserManager</name>
 <login-modules>
 <login-module>
 <class>oracle.security.
 jazn.realm.RealmLoginModule</class>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>addRoles</name>
 <value>true</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>
</jazn-loginconfig>

The preceding fragment specifies that for the application
JAZNUserManager, the login module RealmLoginModule is a required
component in the authentication process, with the addRoles option set to
true.

For more information about JAAS and JAAS login modules, refer to the
JAAS Web site (http://java.sun.com/products/jaas/).

7.7.1.3 Start up JVM with JAAS Enabled Since JAAS is based on Java 2 security,
you must first enable the Java 2 security manager according to Section 7.6,
"JAAS and Java 2 Security".

In addition to the system properties related to Java 2, the following
property must be set:

Table 2 Security Properties

Property Name Description

oracle.security.jazn.config The location of your jazn.xml configuration file.
The default location for this file:
%ORACLE_HOME%\j2ee\home\config
\jazn.xml
 16

For example, the following script (a command consisting of one continuous
line) starts up OC4J with Java 2 and JAAS enabled, in an ADE view:

%JAVA_HOME%\bin\java -Djava.security.manager
 -Djava.security.policy=%J2EE_HOME%\config\java2.policy
 -Doracle.home=%ADE_VIEW_ROOT%
 -Doracle.security.jazn.config=%J2EE_HOME%\config\jazn.xml
 -jar oc4j.jar

This feature is not supported by JAZN-LDAP in release 9.0.2.

7.8 Default Realm Should Be Specified if User Repository Has
Multiple Realms
When the user repository (either the XML-based file or OID, that is,
LDAP-based Oracle Internet Directory), has multiple realms, the default
realm should be specified in the jazn.xml file. For example, if you are
using JAZN-XML, and your default realm is called jazn.com, your
jazn.xml file would consist of the following:

<jazn provider="XML"
 default-realm="jazn.com"
 location=".\jazn-data.xml" />

If you are using JAZN-LDAP, the location would be the URL for the OID
server, as, for example:

<jazn provider="LDAP"
 default-realm="jazn.com"
 location="ldap://oid.us.oracle.com:389" />

Furthermore, the jazn tag in
%ORACLE_HOME%\j2ee\home\config\application.xml must also
specify the default realm if there is more than one.

7.9 Updated Information for the Default jazn.xml File Location
The default jazn.xml file is located in this directory:
%ORACLE_HOME%\j2ee\home\config. The jazn.xml file found in
%ORACLE_HOME%\j2ee\home\jazn\config is a private copy used by
the Oracle Universal Installer.

Note: In the JAAS context, a realm refers to a user
community. This is a namespace for users and roles. When
there are multiple realms in the user repository, the default
realm must be specified, so that JAAS knows the default
namespace in which to look up users and roles.
 17

7.10 JAAS Demo Data Needs to Be Loaded into LDAP if
JAZN-LDAP Is Global User Manager
If the user manager for the default application for an OC4J instance is
changed to JAZN-LDAP, the JAAS demo data needs to be loaded into the
specified LDAP database. (This is documented in the README file in the
%ORACLE_HOME%\j2ee\home\jazn\install directory.) Additionally,
the default @ realm needs to be specified as jazn.com.

If the preceding is not done, deployment of the demos through EM or
dcmctl will fail with an error when looking up
java:comp/ServerAdministrator.

8 Release Notes for OC4J Administration and Management
In an Oracle9iAS environment, the tools and steps used to manage OC4J
processes and modify XML configuration files are not the same as for a
standalone OC4J environment. This is a change from the Oracle9iAS 1.0.2.2
release.

In particular, in an Oracle9iAS environment you can no longer do the
following:

■ Use any Java -jar commands to start oc4j.jar.

■ Use admin.jar for any purpose.

■ Make direct edits to the file system to change configuration and expect
OC4J to process them automatically.

In Oracle9iAS, two Oracle tools—Oracle Enterprise Manager and the
command-line dcmctl tool—are used to start, stop, and configure OC4J.

You must run the dcmctl tool appropriately after any manual
modifications to XML configuration files.

Refer to the Oracle9iAS Containers for J2EE User’s Guide for additional
information. (There are separate versions of this document for Oracle9iAS
and OC4J standalone. The standalone version is available through OTN.)

9 Release Notes for MERANT DataDirect Connect JDBC
Driver
A customized version of the MERANT DataDirect Connect JDBC driver is
shipped with Oracle9iAS, Release 2 (9.0.2) to provide connectivity to
non-Oracle databases. Refer to standard MERANT documentation and
release notes for technical information on the MERANT JDBC driver. In
addition, be aware of the following differences between the standard
MERANT JDBC driver and this customized version:
 18

■ The customized MERANT driver jar files use the YM prefix. The
following MERANT jar files are distributed with Oracle9iAS, Release 2
(9.0.2):

- YMbase.jar

- YMinformix.jar

- YMsqlserver.jar

- YMutil.jar

- YMdb2.jar

- YMsybase.jar

■ The URL sub-protocol prefix is oracle instead of merant. When you
connect, use the correct sub-protocol. For example:

jdbc:oracle:db2://server1:1433

■ The package names are com.oracle.ias (instead of
com.merant.datadirect).

■ The vendor message prefix is [oias].

■ The customized MERANT driver is configured to run within the
Oracle9iAS, Release 2 (9.0.2) product. Attempting to use the customized
MERANT JDBC driver outside Oracle9iAS, Release 2 (9.0.2) causes the
following exception:

java.sql.SQLException: [oias][... JDBC Driver]
This driver is locked for use with embedded applications.

10 Document Errata
This section describes material that is wrong or missing from the
documentation.

10.1 XML-Based JAAS Demo README.TXT Refers to a
Nonexistent README
The file README.txt in the following directory:

%ORACLE_HOME%\j2ee\home\jazn\demo\callerInfo

has a reference to the file %ORACLE_HOME%\dcm\README, which does not
exist. Instead, from a core install, go to the following page for a link to the
JAAS Readme file:

http://servername/J2EE.htm
 19

10.2 Incorrect Documentation of File Locations for
xmlparserv2.jar, xsu12.jar, and JSP Tag Library Descriptor Files
The release 9.0.2 versions of the Oracle9iAS Containers for J2EE User’s Guide,
Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference, and
Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference contain
inaccuracies or incomplete information regarding file locations. The files
involved are xmlparserv2.jar, xsu12.jar, and the JSP tag library
descriptor (TLD) files.

In Oracle9iAS Release 2 (9.0.2), note the following:

■ The xmlparserv2.jar file is automatically installed on your system
and into your classpath. It is located in the Oracle9iAS lib directory
and is picked up from there automatically.

■ The xsu12.jar file may not have been installed in the OC4J_Demos
instance. This file is under the rdbms\jlib directory. To access the
xsu12.jar file for OC4J demos, add the following to the
j2ee\OC4J_Demos\config\application.xml file:

<library path="..\..\..\rdbms\jlib\xsu12.jar" />

And, in accordance with the instructions found in the Oracle9i
Application Server Administrator’s Guide Release 2 (9.0.2), the DCM
Command-Line Utility updateConfig command must be run after
making any hand edits to OC4J XML files.

■ JSP TLD files are in the %OC4J_HOME%\jsp\lib\tlds directory.
Copy them to your application WEB-INF directories as needed. (JSP
TLD files are also available from the ojspdemos.ear file in the
OC4J_Demos instance in Oracle9iAS.)

10.3 Issue in the Oracle9iAS Containers for J2EE Services Guide
Here is a known issue in the Oracle9iAS Containers for J2EE Services Guide:

■ The “Data Sources” chapter of the Oracle9iAS Containers for J2EE
Services Guide refers to “Merant Drivers.” This should be changed to
“DataDirect Connect Drivers.”
 20

	1� Release Notes for J2EE Connector Architecture
	2� Release Notes for Oracle9iAS EJB Container
	3� Release Notes for Oracle SQLJ
	4� Release Notes for Oracle JDBC
	5� Release Notes for Oracle9iAS Servlet Container
	6� Release Notes for Oracle9iAS JSP Container
	7� Release Notes for JAAS
	8� Release Notes for OC4J Administration and Management
	9� Release Notes for MERANT DataDirect Connect JDBC Driver
	10� Document Errata

