

2 Getting Started with Java XDK Components

This chapter contains these topics:

	
Installing Java XDK Components

	
Java XDK Component Dependencies

	
Setting Java XDK Environment Variables for UNIX

	
Setting Java XDK Environment Variables for Windows

	
Verifying the Java XDK Components Version

Installing Java XDK Components

The Java XDK components are included with Oracle Database. This chapter assumes that you have installed XDK with Oracle Database and also installed the demo programs on the Oracle Database Companion CD. Refer to "Installing the XDK" for installation instructions and a description of the XDK directory structure.

Example 2-1 shows the UNIX directory structure for the XDK demos and the libraries used by the XDK components. The $ORACLE_HOME/xdk/demo/java subdirectories contain sample programs and data files for the XDK for Java components. The chapters in Part I, "XDK for Java" explain how to understand and use these programs.

Example 2-1 Java XDK Libraries, Utilities, and Demos

- Oracle_home_directory
 | - bin/
 orajaxb
 orapipe
 oraxml
 oraxsl
 transx
 | - lib/
 classgen.jar
 jdev-rt.zip
 oraclexsql.jar
 transx.zip
 xml.jar
 xml.jar
 xmlcomp.jar
 xmlcomp2.jar
 xmldemo.jar
 xmlmesg.jar
 xmlparserv2.jar
 xschema.jar
 xsqlserializers.jar
 xsu12.jar
 | - jlib/
 classes12.jar
 orai18n.jar
 orai18n-collation.jar
 orai18n-mapping.jar
 orai18n-utility.jar
 | - jdbc/
 | - lib/
 ojdbc14.jar
 | - rdbms/
 | - jlib/
 xdb.jar

 | - xdk/
 | demo/
 | - java/
 | - classgen/
 | - jaxb/
 | - parser/
 | - pipeline/
 | - schema/
 | - transviewer/
 | - tranxs/
 | - xsql/
 | - xsu/

The subdirectories contain sample programs and data files for the Java XDK components. The chapters in Part I, "XDK for Java" explain how to use these programs to gain an understanding of the most important Java features.

Java XDK Component Dependencies

The Java XDK components are certified and supported with JDK versions 1.2, 1.3, and 1.4. Figure 2-1 shows the dependencies of Java XDK components when using JDK 1.2 and higher.

Figure 2-1 Java XDK Component Dependencies for JDK 1.2 and Higher

[image: Description of adxdk110.gif follows]

Description of the illustration adxdk110.gif

The Java XDK components require the libraries alphabetically listed in Table 2-1. Note that some of the libraries are not specific to the XDK, but are shared among other Oracle Database components.

Table 2-1 Java Libraries for XDK Components

	Library	Directory	Includes . . .
	classes12.jar	$ORACLE_HOME/jdbc/lib	Oracle JDBC drivers for Java 1.2 and 1.3. This JAR depends on orai18n.jar for character set support if you use a multibyte character set other than UTF-8, ISO8859-1, or JA16SJIS.
	classgen.jar	$ORACLE_HOME/lib	XML class generator for Java runtime classes.
Note: This library is maintained for backward compatibility only. You should use the JAXB class generator in xml.jar instead.

	jdev-rt.zip	$ORACLE_HOME/lib	Java GUI libraries for use when working with the demos with the JDeveloper IDE.
	ojdbc14.jar	$ORACLE_HOME/jdbc/lib	Oracle JDBC drivers for Java 1.4. This JAR depends on orai18n.jar for character set support if you use a multibyte character set other than UTF-8, ISO8859-1, or JA16SJIS.
	oraclexsql.jar	$ORACLE_HOME/lib	Most of the XSQL Servlet classes needed to construct XSQL pages.
Note: This archive is superseded by xml.jar and is maintained for backward compatibility only.

	orai18n.jar	$ORACLE_HOME/jlib	Globalization support for JDK 1.2 and later. It is a wrapper of all other Globalization jars and includes character set converters. If you use a multibyte character set other than UTF-8, ISO8859-1, or JA16SJIS, then place this archive in your CLASSPATH so that JDBC can convert the character set of the input file to the database character set when loading XML files with XSU, TransX Utility, or XSQL Servlet.
	orai18n-collation.jar	$ORACLE_HOME/jlib	Globalization collation features: the OraCollator class and the lx3*.glb and lx4001[0-9].glb files.
	orai18n-mapping.jar	$ORACLE_HOME/jlib	Globalization locale and character set name mappings: the OraResourceBundle class and lx4000[0-9].glb files. This archive is mainly used by the products that need only locale name mapping tables.
	orai18n-utility.jar	$ORACLE_HOME/jlib	Globalization locale objects: the OraLocaleInfo class, the OraNumberFormat and OraDateFormat classes, and the lx[01]*.glb files.
	transx.zip	$ORACLE_HOME/lib	TransX Utility classes.
Note: This archive is replaced by xml.jar and is retained for backward compatibility only.

	xdb.jar	$ORACLE_HOME/rdbms/jlib	Classes needed by xml.jar and xmlcomp2.jar to access XMLType. It also includes classes needed to access the XML DB Repository as well as the XMLType DOM classes for manipulation of the DOM tree.
	xml.jar	$ORACLE_HOME/lib	Classes from the following libraries:
	
oraclexsql.jar

	
xsqlserializers.jar

	
xmlcomp.jar

	
xmlcomp2.jar

	
transx.jar

The archive also contains the JAXB and Pipeline Processor classes.

	xmlcomp.jar	$ORACLE_HOME/lib	XML JavaBeans that do not depend on the database: DOMBuilder, XSLTransformer, DBAccess, XSDValidator, and XMLDiffer.
Note: This archive is included for backward compatibility only because its classes are included in xml.jar. They do not include the visuals Beans included in previous releases.

	xmlcomp2.jar	$ORACLE_HOME/lib	XML JavaBeans that depend on the database: XMLDBAccess and XMLCompress. Thus, it depends on xdb.jar, which includes the classes that support XML DB.
Note: This JAR is included for backward compatibility only because its classes are included in xml.jar. They do not include the visuals Beans included in previous releases.

	xmldemo.jar	$ORACLE_HOME/lib	The visual JavaBeans: XMLTreeView, XMLTransformPanel, XMLSourceView, and DBViewer.
	xmlmesg.jar	$ORACLE_HOME/lib	Needed if you use XML parser with a language other than English.
	xmlparserv2.jar	$ORACLE_HOME/lib	APIs for the following:
	
DOM and SAX parsers

	
XML Schema processor

	
XSLT processor

	
XML compression

	
JAXP

	
Utility functionality such as XMLSAXSerializer and asynchronous DOM Builder

This library includes xschema.jar.

	xschema.jar	$ORACLE_HOME/lib	Includes the XML Schema classes contained in xmlparserv2.jar.
Note: This JAR file is maintained for backward compatibility only.

	xsqlserializers.jar	$ORACLE_HOME/lib	Serializer classes for XSQL Servlet needed for serialized output such as PDF.
Note: This archive is superseded by xml.jar and is maintained for backward compatibility only.

	xsu12.jar	$ORACLE_HOME/lib	Classes that implement XSU. These classes have a dependency on xdb.jar for XMLType access.

	
See Also:

	
Oracle Database Globalization Support Guide to learn about the Globalization Support libraries

	
Oracle Database JDBC Developer's Guide and Reference to learn about the JDBC libraries

	
Oracle XML DB Developer's Guide to learn about XML DB

Setting Up the Java XDK Environment

In the Oracle Database installation of the XDK, you must manually set the $CLASSPATH (UNIX) or %CLASSPATH% (Windows) environment variables. Alternatively, set the -classpath option when compiling and running Java programs at the command line.

This section contains the following topics:

	
Setting Java XDK Environment Variables for UNIX

	
Setting Java XDK Environment Variables for Windows

Setting Java XDK Environment Variables for UNIX

Table 2-2 describes the UNIX environment variables required for use with the Java XDK components.

Table 2-2 UNIX Environment Settings for Java XDK Components

	Variable	Description
	$CLASSPATH	Includes the following (note that a single period "." to represent the current directory is not required but may be useful):

.:${CLASSPATHJ}:${ORACLE_HOME}/lib/xmlparserv2.jar:
${ORACLE_HOME}/lib/xsu12.jar:${ORACLE_HOME}/lib/xml.jar

	$CLASSPATHJ	For JDK 1.2 and 1.3, set as follows:

CLASSPATHJ=${ORACLE_HOME}/jdbc/lib/classes12.jar:
${ORACLE_HOME}/jlib/orai18n.jar

For JDK 1.4, set as follows:

CLASSPATHJ=${ORACLE_HOME}/jdbc/lib/ojdbc.jar:${ORACLE_HOME}/jlib/orai18n.jar

The orai18n.jar is needed to support certain character sets.

	$JAVA_HOME	Installation directory for the Java JDK, Standard Edition. Modify the path that links to the Java SDK.
	$LD_LIBRARY_PATH	For OCI JDBC connections:

${ORACLE_HOME}/lib:${LD_LIBRARY_PATH}

	$PATH	${JAVA_HOME}/bin

Testing the Java XDK Environment on UNIX

Table 2-3 describes the command-line utilities included in the Java XDK on UNIX. Before you can use these utilities, you must set up your environment.

Table 2-3 Java XDK Utilities

	Executable/Class	Directory/JAR	Description
	xsql	$ORACLE_HOME/bin	XSQL command-line utility. The script executes the oracle.xml.xsql.XSQLCommandLine class. Edit this shell script for your environment before use.
See Also: "Using the XSQL Pages Command-Line Utility"

	OracleXML	$ORACLE_HOME/lib/xsu12.jar	XSU command-line utility
See Also: "Using the XSU Command-Line Utility"

	orajaxb	$ORACLE_HOME/bin	JAXB command-line utility
See Also: "Using the JAXB Class Generator Command-Line Utility"

	orapipe	$ORACLE_HOME/bin	Pipeline command-line utility
See Also: "Using the XML Pipeline Processor Command-Line Utility"

	oraxml	$ORACLE_HOME/bin	XML parser command-line utility
See Also: "Using the XML Parser Command-Line Utility"

	oraxsl	$ORACLE_HOME/bin	XSLT processor command-line utility
See Also: "Using the XSLT Processor Command-Line Utility"

	transx	$ORACLE_HOME/bin	TransX command-line utility
See Also: "Using the TransX Command-Line Utility"

If your environment is set up correctly, then the UNIX shell script shown in Example 2-2 should generate version and usage information for the utilities.

Example 2-2 Testing the Java XDK Environment on UNIX

#!/usr/bin/tcsh
echo;echo "BEGIN TESTING";echo
echo;echo "now testing the XSQL utility...";echo
xsql
echo; echo "now testing the XSU utility...";echo
java OracleXML
echo;echo "now testing the JAXB utility...";echo
orajaxb -version
echo;echo "now testing the Pipeline utility...";echo
orapipe -version
echo;echo "now testing the XSLT Processor utility...";echo
oraxsl
echo;echo "now testing the TransX utility...";echo
transx
echo;echo "END TESTING"

Setting Java XDK Environment Variables for Windows

Table 2-4 describes the Windows environment variables required for use with the Java XDK components.

Table 2-4 Windows Environment Settings for Java XDK Components

	Variable	Notes
	%CLASSPATH%	Includes the following (note that a single period "." to represent the current directory is not required but may be useful):

.;%CLASSPATHJ%;%ORACLE_HOME%\lib\xmlparserv2.jar;
%ORACLE_HOME%\lib\xsu12.jar;%ORACLE_HOME%\lib\xml.jar;
%ORACLE_HOME%\lib\xmlmesg.jar;%ORACLE_HOME%\lib\oraclexsql.jar

	%CLASSPATHJ%	For JDK 1.2 and 1.3, set as follows:

CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\classes12.jar;%ORACLE_HOME%\jlib\orai18n.jar

For JDK 1.4, set as follows:

CLASSPATHJ=%ORACLE_HOME%\jdbc\lib\ojdbc.jar;%ORACLE_HOME%\jlib\orai18n.jar

The orai18n.jar is needed to support certain character sets.

	%JAVA_HOME%	Installation directory for the Java SDK, Standard Edition. Modify the path that links to the Java SDK.
	%PATH%	%JAVA_HOME%\bin

Testing the Java XDK Environment on Windows

Table 2-3 describes the command-line utilities included in the Java XDK on Windows. Before you can use these utilities, you must set up your environment.

Table 2-5 Java XDK Utilities

	Batch File/Class	Directory/JAR	Description
	xsql.bat	%ORACLE_HOME%\bin	XSQL command-line utility. The batch file executes the oracle.xml.xsql.XSQLCommandLine class. Edit the batch file for your environment before use.
See Also: "Using the XSQL Pages Command-Line Utility"

	OracleXML	%ORACLE_HOME%\lib\xsu12.jar	XSU command-line utility
See Also: "Using the XSU Command-Line Utility"

	orajaxb.bat	%ORACLE_HOME%\bin	JAXB command-line utility
See Also: "Using the JAXB Class Generator Command-Line Utility"

	orapipe.bat	%ORACLE_HOME%\bin	Pipeline command-line utility
See Also: "Using the XML Pipeline Processor Command-Line Utility"

	oraxml.bat	%ORACLE_HOME%\bin	XML parser command-line utility
See Also: "Using the XML Parser Command-Line Utility"

	oraxsl.bat	%ORACLE_HOME%\bin	XSLT processor command-line utility
See Also: "Using the XSLT Processor Command-Line Utility"

	transx.bat	%ORACLE_HOME%\bin	TransX command-line utility
See Also: "Using the TransX Command-Line Utility"

If your environment is set up correctly, then you can run the commands in Example 2-3 at the system prompt to generate version and usage information for the utilities.

Example 2-3 Testing the Java XDK Environment on Windows

xsql.bat
java OracleXML
orajaxb.bat -version
orapipe.bat -version
oraxsl.bat
transx.bat

Verifying the Java XDK Components Version

To obtain the version of XDK you are working with, use javac to compile the Java code shown in Example 2-4.

Example 2-4 XDKVersion.java

//
// XDKVersion.java
//
import java.net.URL;
import oracle.xml.parser.v2.XMLParser;
public class XDKVersion
{
 static public void main(String[] argv)
 {
 System.out.println("You are using version: ");
 System.out.println(XMLParser.getReleaseVersion());
 }
}

After compiling the source file with javac, run the program on the operating system command line as follows:

java XDKVersion

[image: Oracle Corporation]

7 Using the XML Pipeline Processor for Java

This chapter contains these topics:

	
Introduction to the XML Pipeline Processor

	
Using the XML Pipeline Processor: Overview

	
Processing XML in a Pipeline

Introduction to the XML Pipeline Processor

This section contains the following topics:

	
Prerequisites

	
Standards and Specifications

	
Multistage XML Processing

	
Customized Pipeline Processes

Prerequisites

This chapter assumes that you are familiar with the following topics:

	
XML Pipeline Definition Language. This XML vocabulary enables you to describe the processing relations between XML resources. If you require a more thorough introduction to the Pipeline Definition Language, consult the XML resources listed in "Related Documents" of the preface.

	
Document Object Model (DOM). DOM is an in-memory tree representation of the structure of an XML document.

	
Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

	
XML Schema language. Refer to Chapter 5, "Using the Schema Processor for Java" for an overview and links to suggested reading.

Standards and Specifications

The Oracle XML Pipeline processor is based on the W3C XML Pipeline Definition Language Version 1.0 Note. The W3C Note defines an XML vocabulary rather than an API. You can find the Pipeline specification at the following URL:

http://www.w3.org/TR/xml-pipeline/

"Pipeline Definition Language Standard for the XDK for Java" describes the differences between the Oracle XDK implementation of the Oracle XML Pipeline processor and the W3C Note.

	
See Also:

Table 29-1, "Summary of XML Standards Supported by the XDK"

Multistage XML Processing

The Oracle XML Pipeline processor is built on the XML Pipeline Definition Language. The processor can take an input XML pipeline document and execute pipeline processes according to derived dependencies. A pipeline document, which is written in XML, specifies the processes to be executed in a declarative manner. You can associate Java classes with processes by using the <processdef/> element in the pipeline document.

Use the Pipeline processor for mutistage processing, which occurs when you process XML components sequentially or in parallel. The output of one stage of processing can become the input of another stage of processing. You can write a pipeline document that defines the inputs and outputs of the processes. Figure 7-1 illustrates a possible pipeline sequence.

Figure 7-1 Pipeline Processing

[image: Describes a possible pipeline sequence.]

In addition to the XML Pipeline processor itself, the XDK provides an API for processes that you can pipe together in a pipeline document. Table 7-2 summarizes the classes provided in the oracle.xml.pipeline.processes package.

The typical stages of processing XML in a pipeline are as follows:

	
Parse the input XML documents. The oracle.xml.pipeline.processes package includes DOMParserProcess for DOM parsing and SAXParserProcess for SAX parsing.

	
Validate the input XML documents.

	
Serialize or transform the input documents. Note that the Pipeline processor does not enable you to connect the SAX parser to the XSLT processor, which requires a DOM.

In multistage processing, SAX is ideal for filtering and searching large XML documents. You should use DOM when you need to change XML content or require efficient dynamic access to the content.

	
See Also:

"Processing XML in a Pipeline" to learn how to write a pipeline document that provides the input for a pipeline application

Customized Pipeline Processes

The oracle.xml.pipeline.controller.Process class is the base class for all pipeline process definitions. The classes in the oracle.xml.pipeline.processes package extend this base class. To create a customized pipeline process, you need to create a class that extends the Process class.

At the minimum, every custom process should override the do-nothing initialize() and execute() methods of the Process class. If the customized process accepts SAX events as input, then it should override the SAXContentHandler() method to return the appropriate ContentHandler that handles incoming SAX events. It should also override the SAXErrorHandler() method to return the appropriate ErrorHandler. Table 7-1 provides further descriptions of the preceding methods.

Table 7-1 Methods in the oracle.xml.pipeline.controller.Process Class

	Class	Description
	initialize()	Initializes the process before execution.
Call getInput() to fetch a specific input object associated with the process element and call supportType() to indicate the types of input supported. Analogously, call getOutput() and supportType() for output.

	execute()	Executes the process.
Call getInParaValue(), getInput(), or getInputSource() to fetch the inputs to the process. If a custom process outputs SAX events, then it should call the getSAXContentHandler() and getSAXErrorHandler() methods in execute() to get the SAX handlers of the following processes in the pipeline.

Call setOutputResult(), getOutputStream(), getOutputWriter() or setOutParam() to set the outputs or outparams generated by this process.

Call getErrorSource(), getErrorStream(), or getErrorDocument() to access the pipeline error element associated with this process element. If an exception occurs during execute(), call error() or info() to propagate it to the PipelineErrorHandler.

	SAXContentHandler()	Returns the SAX ContentHandler.
If dependencies from other processes are not available at this time, then return null. When these dependencies are available the method will be executed till the end.

	SAXErrorHandler()	Returns the SAX ErrorHandler.
If you do not override this method, then the JAXB processor uses the default error handler implemented by this class to handle SAX errors.

	
See Also:

Oracle Database XML Java API Reference to learn about the oracle.xml.pipeline.processes package

Using the XML Pipeline Processor: Overview

This section contains the following topics:

	
Using the XML Pipeline Processor: Basic Process

	
Running the XML Pipeline Processor Demo Programs

	
Using the XML Pipeline Processor Command-Line Utility

Using the XML Pipeline Processor: Basic Process

The XML Pipeline processor is accessible through the following packages:

	
oracle.xml.pipeline.controller, which provides an XML Pipeline controller that executes XML processes in a pipeline based on dependencies.

	
oracle.xml.pipeline.processes, which provides wrapper classes for XML processes that can be executed by the XML Pipeline controller. The oracle.xml.pipeline.processes package contains the classes that you can use to design a pipeline application framework. Each class extends the oracle.xml.pipeline.controller.Process class.

Table 7-2 lists the components in the package. You can connect these components and processes through a combination of the XML Pipeline processor and a pipeline document.

Table 7-2 Classes in oracle.xml.pipeline.processes

	Class	Description
	CompressReaderProcess	Receives compressed XML and outputs parsed XML.
	CompressWriterProcess	Receives XML parsed with DOM or SAX and outputs compressed XML.
	DOMParserProcess	Parses incoming XML and outputs a DOM tree.
	SAXParserProcess	Parses incoming XML and outputs SAX events.
	XPathProcess	Accepts a DOM as input, uses an XPath pattern to select one or more nodes from an XML Document or an XML DocumentFragment, and outputs a Document or DocumentFragment.
	XSDSchemaBuilder	Parses an XML schema and outputs a schema object for validation. This process is built into the XML Pipeline processor and builds schema objects used for validating XML documents.
	XSDValProcess	Validates against a local schema, analyzes the results, and reports errors if necessary.
	XSLProcess	Accepts DOM as input, applies an XSL stylesheet, and outputs the result of the transformation.
	XSLStylesheetProcess	Receives an XSL stylesheet as a stream or DOM and creates an XSLStylesheet object.

Figure 7-2 illustrates how to pass a pipeline document to a Java application that uses the XML Pipeline processor, configure the processor, and execute the pipeline.

Figure 7-2 Using the Pipeline Processor for Java

[image: The program flow of an XML Pipeline processor application.]

The basic steps are as follows:

	
Instantiate a pipeline document, which forms the input to the pipeline execution. Create the object by passing a FileReader to the constructor as follows:

PipelineDoc pipe;
FileReader f;
pipe = new PipelineDoc((Reader)f, false);

	
Instantiate a pipeline processor. PipelineProcessor is the top-level class that executes the pipeline. Table 7-3 describes some of the available methods.

Table 7-3 PipelineProcessor Methods

	Method	Description
	executePipeline()	Executes the pipeline based on the PipelineDoc set by invoking setPipelineDoc().
	getExecutionMode()	Gets the type of execution mode: PIPELINE_SEQUENTIAL or PIPELINE_PARALLEL.
	setErrorHandler()	Sets the error handler for the pipeline. This call is mandatory to execute the pipeline.
	setExecutionMode()	Sets the execution mode. PIPELINE_PARALLEL is the default and specifies that the processes in the pipeline should execute in parallel. PIPELINE_SEQUENTIAL specifies that the processes in the pipeline should execute sequentially.
	setForce()	Sets execution behavior. If TRUE, then the pipeline executes regardless of whether the target is up-to-date with respect to the pipeline inputs.
	setPipelineDoc()	Sets the PipelineDoc object for the pipeline.

The following statement instantiates the pipeline processor:

proc = new PipelineProcessor();

	
Set the processor to the pipeline document. For example:

proc.setPipelineDoc(pipe);

	
Set the execution mode for the processor and perform any other needed configuration. For example, set the mode by passing a constant to PipelineProcessor.setExecutionMode().

The following statement specifies sequential execution:

proc.setExecutionMode(PipelineConstants.PIPELINE_SEQUENTIAL);

	
Instantiate an error handler. The error handler must implement the PipelineErrorHandler interface. For example:

errHandler = new PipelineSampleErrHdlr(logname);

	
Set the error handler for the processor by invoking setErrorHandler(). For example:

proc.setErrorHandler(errHandler);

	
Execute the pipeline. For example:

proc.executePipeline();

	
See Also:

	
Oracle Database XML Java API Reference to learn about the oracle.xml.pipeline subpackages

	
"Creating a Pipeline Document"

Running the XML Pipeline Processor Demo Programs

Demo programs for the XML Pipeline processor are included in $ORACLE_HOME/xdk/demo/java/pipeline. Table 7-4 describes the XML files and Java source files that you can use to test the utility.

Table 7-4 Pipeline Processor Sample Files

	File	Description
	README	A text file that describes how to set up the Pipeline processor demos.
	PipelineSample.java	A sample Pipeline processor application. The program takes pipedoc.xml as its first argument.
	PipelineSampleErrHdlr.java	A sample program to create an error handler used by PipelineSample.
	book.xml	A sample XML document that describes a series of books. This document is specified as an input by pipedoc.xml, pipedoc2.xml, and pipedocerr.xml.
	book.xsl	An XSLT stylesheet that transforms the list of books in book.xml into an HTML table.
	book_err.xsl	An XSLT stylesheet specified as an input by the pipedocerr.xml pipeline document. This stylesheet contains an intentional error.
	id.xsl	An XSLT stylesheet specified as an input by the pipedoc3.xml pipeline document.
	items.xsd	An XML schema document specified as an input by the pipedoc3.xml pipeline document.
	pipedoc.xml	A pipeline document. This document specifies that process p1 should parse book.xml with DOM, process p2 should parse book.xsl and create a stylesheet object, and process p3 should apply the stylesheet to the DOM to generate myresult.html.
	pipedoc2.xml	A pipeline document. This document specifies that process p1 should parse book.xml with SAX, process p2 should generate compressed XML compxml from the SAX events, and process p3 should regenerate the XML from the compressed stream as myresult2.html.
	pipedoc3.xml	A pipeline document. This document specifies that a process p5 should parse po.xml with DOM, process p1 should select a single node from the DOM tree with an XPath expression, process p4 should parse items.xsd and generate a schema object, process p6 should validate the selected node against the schema, process p3 should parse id.xsl and generate a stylesheet object, and validated node to produce myresult3.html.
	pipedocerr.xml	A pipeline document. This document specifies that process p1 should parse book.xml with DOM, process p2 should parse book_err.xsl and generate a stylesheet object if it encounters no errors and apply an inline stylesheet if it encounters errors, and process p3 should apply the stylesheet to the DOM to generate myresulterr.html. Because book_err.xsl contains an error, the program should write the text contents of the input XML to myresulterr.html.
	po.xml	A sample XML document that describes a purchase order. This document is specified as an input by pipedoc3.xml.

Documentation for how to compile and run the sample programs is located in the README. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/pipeline directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\pipeline directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment".

	
Run make (UNIX) or Make.bat (Windows) at the system prompt to generate class files for PipelineSample.java and PipelineSampleErrHdler.java and run the demo programs. The programs write output files to the log subdirectory.

Alternatively, you can run the demo programs manually by using the following syntax:

java PipelineSample pipedoc pipelog [seq | para]

The pipedoc option specifies which pipeline document to use. The pipelog option specifies the name of the pipeline log file, which is optional unless you specify seq or para, in which case a filename is required. If you do not specify a log file, then the program generates pipeline.log by default. The seq option processes threads sequentially; para processes in parallel. If you specify neither seq or para, then the default is parallel processing.

	
View the files generated from the pipeline, which are all named with the initial string myresult, and the log files.

Using the XML Pipeline Processor Command-Line Utility

The command-line interface for the XML Pipeline processor is named orapipe. The Pipeline processor is packaged with Oracle database. By default, the Oracle Universal Installer installs the utility on disk in $ORACLE_HOME/bin.

Before running the utility for the first time, make sure that your environment variables are set as described in "Setting Up the Java XDK Environment". Run orapipe at the operating system command line with the following syntax:

orapipe options pipedoc

The pipedoc is the pipeline document, which is required. Table 7-5 describes the available options for the orapipe utility.

Table 7-5 orapipe Command-Line Options

	Option	Purpose
	-help	Prints the help message
	-log logfile	Writes errors and messages to the specified log file. The default is pipeline.log.
	-noinfo	Does not log informational items. The default is on.
	-nowarning	Does not log warnings. The default is on.
	-validate	Validates the input pipedoc with the pipeline schema. Validation is turned off by default. If outparam feature is used, then validate fails with the current pipeline schema because this is an additional feature.
	-version	Prints the release version.
	-sequential	Executes the pipeline in sequential mode. The default is parallel.
	-force	Executes pipeline even if target is up-to-date. By default no force is specified.
	-attr name value	Sets the value of $name to the specified value. For example, if the attribute name is source and the value is book.xml, then you can pass this value to an element in the pipeline document as follows: <input ... label="$source">.

Processing XML in a Pipeline

This section contains the following topics:

	
Creating a Pipeline Document

	
Writing a Pipeline Processor Application

	
Writing a Pipeline Error Handler

Creating a Pipeline Document

To use the Oracle XML Pipeline processor, you must create an XML document according to the rules of the Pipeline Definition Language specified in the W3C Note.

The W3C specification defines the XML processing components and the inputs and outputs for these processes. The XML Pipeline processor includes support for the following XDK components:

	
XML parser

	
XML compressor

	
XML Schema validator

	
XSLT processor

Example of a Pipeline Document

The XML Pipeline processor executes a sequence of XML processing according to the rules in the pipeline document and returns a result. Example 7-1 shows pipedoc.xml, which is a sample pipeline document included in the demo directory.

Example 7-1 pipedoc.xml

<pipeline xmlns="http://www.w3.org/2002/02/xml-pipeline"
 xml:base="http://example.org/">

 <param name="target" select="myresult.html"/>

 <processdef name="domparser.p"
 definition="oracle.xml.pipeline.processes.DOMParserProcess"/>
 <processdef name="xslstylesheet.p"
 definition="oracle.xml.pipeline.processes.XSLStylesheetProcess"/>
 <processdef name="xslprocess.p"
 definition="oracle.xml.pipeline.processes.XSLProcess"/>

 <process id="p2" type="xslstylesheet.p" ignore-errors="false">
 <input name="xsl" label="book.xsl"/>
 <outparam name="stylesheet" label="xslstyle"/>
 </process>

 <process id="p3" type="xslprocess.p" ignore-errors="false">
 <param name="stylesheet" label="xslstyle"/>
 <input name="document" label="xmldoc"/>
 <output name="result" label="myresult.html"/>
 </process>

 <process id="p1" type="domparser.p" ignore-errors="true">
 <input name="xmlsource" label="book.xml "/>
 <output name="dom" label="xmldoc"/>
 <param name="preserveWhitespace" select="true"></param>
 <error name="dom">
 <html xmlns="http://www/w3/org/1999/xhtml">
 <head>
 <title>DOMParser Failure!</title>
 </head>
 <body>
 <h1>Error parsing document</h1>
 </body>
 </html>
 </error>
 </process>

</pipeline>

Processes Specified in the Pipeline Document

In Example 7-1, three processes are called and associated with Java classes in the oracle.xml.pipeline.processes package. The pipeline document uses the <processdef/> element to make the following associations:

	
domparser.p is associated with the DOMParserProcess class

	
xslstylesheet.p is associated with the XSLStylesheetProcess class

	
xslprocess.p is associated with the XSLProcess class

Processing Architecture Specified in the Pipeline Document

The PipelineSample program accepts the pipedoc.xml document shown in Example 7-1 as input along with XML documents book.xml and book.xsl. The basic design of the pipeline is as follows:

	
Parse the incoming book.xml document and generate a DOM tree. This task is performed by DOMParserProcess.

	
Parse book.xsl as a stream and generate an XSLStylesheet object. This task is performed by XSLStylesheetProcess.

	
Receive the DOM of book.xml as input, apply the stylesheet object, and write the result to myresult.html. This task is performed by XSLProcess.

Note the following aspects of the processing architecture used in the pipeline document:

	
The target information set, http://example.org/myresult.html, is inferred from the default value of the target parameter and the xml:base setting.

	
The process p2 has an input of book.xsl and an output parameter with the label xslstyle, so it has to run to produce the input for p3.

	
The p3 process depends on input parameter xslstyle and document xmldoc.

	
The p3 process has an output parameter with the label http://example.org/myresult.html, so it has to run to produce the target.

	
The process p1 depends on input document book.xml and outputs xmldoc, so it has to run to produce the input for p3.

In Example 7-1, more than one order of processing can satisfy all of the dependencies. Given the rules, the XML Pipeline processor must process p3 last but can process p1 and p2 in either order or process them in parallel.

Writing a Pipeline Processor Application

The PipelineSample.java source file illustrates a basic pipeline application. You can use the application with any of the pipeline documents in Table 7-4 to parse and transform an input XML document.

The basic steps of the program are as follows:

	
Perform the initial setup. The program declares references of type FileReader (for the input XML file), PipelineDoc (for the input pipeline document), and PipelineProcessor (for the processor). The first argument is the pipeline document, which is required. If a second argument is received, then it is stored in the logname String. The following code fragment illustrates this technique:

public static void main(String[] args)
{
 FileReader f;
 PipelineDoc pipe;
 PipelineProcessor proc;

 if (args.length < 1)
 {
 System.out.println("First argument needed, other arguments are ".
 "optional:");
 System.out.println("pipedoc.xml <output_log> <'seq'>");
 return;
 }
 if (args.length > 1)
 logname = args[1];
 ...

	
Create a FileReader object by passing the first command-line argument to the constructor as the filename. For example:

f = new FileReader(args[0]);

	
Create a PipelineDoc object by passing the reference to the FileReader object. The following example casts the FileReader to a Reader and specifies no validation:

pipe = new PipelineDoc((Reader)f, false);

	
Instantiate an XML Pipeline processor. The following statement instantiates the pipeline processor:

proc = new PipelineProcessor();

	
Set the processor to the pipeline document. For example:

proc.setPipelineDoc(pipe);

	
Set the execution mode for the processor and perform any other configuration. The following code fragment uses a condition to determine the execution mode. If three or more arguments are passed to the program, then it sets the mode to sequential or parallel depending on which argument is passed. For example:

String execMode = null;
if (args.length > 2)
{
 execMode = args[2];
 if(execMode.startsWith("seq"))
 proc.setExecutionMode(PipelineConstants.PIPELINE_SEQUENTIAL);
 else if (execMode.startsWith("para"))
 proc.setExecutionMode(PipelineConstants.PIPELINE_PARALLEL);
}

	
Instantiate an error handler. The error handler must implement the PipelineErrorHandler interface. The program uses the PipelineSampleErrHdler shown in PipelineSampleErrHdlr.java. The following code fragment illustrates this technique:

errHandler = new PipelineSampleErrHdlr(logname);

	
Set the error handler for the processor by invoking setErrorHandler(). The following statement illustrates this technique:

proc.setErrorHandler(errHandler);

	
Execute the pipeline. The following statement illustrates this technique:

proc.executePipeline();

	
See Also:

Oracle Database XML Java API Reference to learn about the oracle.xml.pipeline subpackages

Writing a Pipeline Error Handler

An application calling the XML Pipeline processor must implement the PipelineErrorHandler interface to handle errors received from the processor. Set the error handler in the processor by calling setErrorHandler(). When writing the error handler, you can choose to throw an exception for different types of errors.

The oracle.xml.pipeline.controller.PipelineErrorHandler interface declares the methods shown in Table 7-6, all of which return void.

Table 7-6 PipelineErrorHandler Methods

	Method	Description
	error(java.lang.String msg, PipelineException e)	Handles PipelineException errors.
	fatalError(java.lang.String msg, PipelineException e)	Handles fatal PipelineException errors.
	warning(java.lang.String msg, PipelineException e)	Handles PipelineException warnings.
	info(java.lang.String msg)	Prints optional, additional information about errors.

The first three methods in Table 7-6 receive a reference to an oracle.xml.pipeline.controller.PipelineException object. The following methods of the PipelineException class are especially useful:

	
getExceptionType(), which obtains the type of exception thrown

	
getProcessId(), which obtains the process ID where the exception occurred

	
getMessage(), which returns the message string of this Throwable error

The PipelineSampleErrHdler.java source file implements a basic error handler for use with the PipelineSample program. The basic steps are as follows:

	
Implement a constructor. The constructor accepts the name of a log file and wraps it in a FileWriter object as follows:

PipelineSampleErrHdlr(String logFile) throws IOException
{
 log = new PrintWriter(new FileWriter(logFile));
}

	
Implement the error() method. This implementation prints the process ID, exception type, and error message. It also increments a variable holding the error count. For example:

public void error (String msg, PipelineException e) throws Exception
{
 log.println("\nError in: " + e.getProcessId());
 log.println("Type: " + e.getExceptionType());
 log.println("Message: " + e.getMessage());
 log.println("Error message: " + msg);
 log.flush();
 errCount++;
}

	
Implement the fatalError() method. This implementation follows the pattern of error(). For example:

public void fatalError (String msg, PipelineException e) throws Exception
{
 log.println("\nFatalError in: " + e.getProcessId());
 log.println("Type: " + e.getExceptionType());
 log.println("Message: " + e.getMessage());
 log.println("Error message: " + msg);
 log.flush();
 errCount++;
}

	
Implement the warning() method. This implementation follows the basic pattern of error() except it increments the warnCount variable rather than the errCount variable. For example:

public void warning (String msg, PipelineException e) throws Exception
{
 log.println("\nWarning in: " + e.getProcessId());
 log.println("Message: " + e.getMessage());
 log.println("Error message: " + msg);
 log.flush();
 warnCount++;
}

	
Implement the info() method. Unlike the preceding methods, this method does not receive a PipelineException reference as input. The following implementation prints the String received by the method and increments the value of the warnCount variable:

public void info (String msg)
{
 log.println("\nInfo : " + msg);
 log.flush();
 warnCount++;
}

	
Implement a method to close the PrintWriter. The following code implements the method closeLog(), which prints the number of errors and warnings and calls PrintWriter.close():

public void closeLog()
{
 log.println("\nTotal Errors: " + errCount + "\nTotal Warnings: " +
 warnCount);
 log.flush();
 log.close();
}

	
See Also:

Oracle Database XML Java API Reference to learn about the PipelineErrorHandler interface and the PipelineException class

13 Using SOAP with the Java XDK

This chapter contains these topics:

	
Introduction to SOAP

	
Using SOAP and the Java XDK: Overview

	
Developing SOAP Applications with the Java XDK

	
Tips and Techniques for Using SOAP with the Java XDK

	
See Also:

Oracle Application Server Web Services Developer's Guide at http://www.oracle.com/technology/documentation for more information about OracleAS SOAP and Web Services

Introduction to SOAP

This section introduces the Simple Object Access Protocol (SOAP).

Prerequisites

This chapter assumes that you have working knowledge of the following technologies:

	
HTTP. SOAP is independent of any transport protocol, but HTTP is the most commonly used.

	
XML Namespaces. Namespaces are a mechanism for differentiating element and attribute names.

If you are unfamiliar with these technologies or need to refresh your knowledge, you can consult the XML resources in "Related Documents" of the preface.

Standards and Specifications

Oracle Database 10g Release 2 implements SOAP 1.1, which is defined in a W3C Note. SOAP 1.2 is a W3C Recommendation. You can find the SOAP specifications at the following URLs:

	
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ for the SOAP 1.1 W3C Note

	
http://www.w3.org/TR/soap12-part1/ for the SOAP 1.2 W3C Recommendation

The Universal Description Discovery & Integration (UDDI) standard defines services supporting the description and discovery of data relating to Web services. You can find the UDDI Version 3 specification at the following URL:

http://uddi.org/pubs/uddi_v3.htm

Web Services Description Language (WSDL) is an XML format for describing network services. You can find the WSDL specifications at the following locations:

	
http://www.w3.org/TR/wsdl20 for the WSDL 2.0 W3C Working Draft

	
http://www.w3.org/TR/wsdl for the WSDL 1.1 W3C Note

Oracle Database SOAP is based on the Apache SOAP 2.3.1 implementation. The Apache SOAP 2.3.1 documentation is available at the following URL:

http://xml.apache.org/soap/docs/index.html

	
See Also:

Chapter 29, "XDK Standards" for a summary of the standards supported by the XDK

Using SOAP and the Java XDK: Overview

SOAP only defines how to encode and transmit method calls and responses. To use SOAP in your business environment, you must write code that does the following:

	
Builds and sends the SOAP request from the client

	
Interprets the SOAP request on the server, invokes the specified method, builds the response message, and returns it to the client.

The SOAP specification is silent on the implementation details. That is, the language bindings are not part of the SOAP standard itself.

The SOAP implementation in the Java XDK is based on Apache SOAP 2.3.1, which is an open-source implementation of the SOAP 1.1 and SOAP Messages with Attachments specifications in Java. Most of the documentation that applies to Apache SOAP 2.3.1 also applies to OracleAS SOAP. The Apache SOAP 2.3.1 documentation is available at the following URL:

http://xml.apache.org/soap/docs/index.html

The XDK SOAP API is located in the following JAR file in your Oracle Database installation:

$ORACLE_HOME/oc4j/soap/lib/soap.jar

The JAR file contains the base packages oracle.soap and org.apache.soap. Table 13-1 and Table 13-2 provide an overview of these packages.

	
See Also:

Oracle Database XML Java API Reference for complete API information for Oracle Database SOAP

Subpackages in oracle.soap

Table 13-1 describes the subpackages in the oracle.soap package. Refer to Oracle Database XML Java API Reference for the JavaDoc.

Table 13-1 oracle.soap Subpackages

	Subpackages	Description
	client	Contains classes that talk to the XML SOAP ProviderManager and ServiceManager.
	encoding.soapenc	Contains serializers and deserializers for XML data using SOAP-ENC encoding style.
	handlers.audit	Implements the Filter interface. See "Using SOAP Handlers".
	providers
providers.ejb

providers.ejbprov

providers.sp

	Contains classes that provide SOAP services. The oracle.soap.providers.JavaProvider class implements the Provider interface. See "Using SOAP Providers".
	server
server.http

server.impl

server.internal

server.util

	Contains classes and interfaces for implementing a SOAP server. For example, the SOAPServlet class in the server.http subpackage handles SOAP requests through pluggable providers. The server.impl subpackage contains classes for service and provider managers. The server.internal subpackage contains the OracleServerConstants class, which provides SOAP server constants. The server.util subpackage contains the ServerUtils class, which provides server-side utility methods.
	transport
transport.http

	Contains the OracleSOAPHTTPConnection class, which implements Oracle-specific transport extensions. See "Using SOAP Transports".
	util.xml	Contains the XmlUtils class, which creates and parses XML documents.

Subpackages in org.apache.soap

Table 13-2 describes the subpackages in the org.apache.soap package. Refer to Oracle Database XML Java API Reference for the JavaDoc.

Table 13-2 org.apache.soap Subpackages

	Subpackages	Description
	encoding
encoding.literalxml

encoding.soapenc

	Contains serializers and deserializers for XML data.
	messaging	Contains the Message class, whose instances represent one-way messages in SOAP.
	rpc	Contains classes for RPC messaging. The Call object is the main interface to the underlying SOAP RPC code. A Call object represents an RPC call, whereas a Response object represents an RPC response. RPCMessage is a superclass for Call and Response: work common to both Call and Response occurs here.
	server
server.http

	Contains the SOAPEventListener and SOAPFaultListener interfaces.
	transport
transport.http

transport.smtp

	Contains the SOAPTransport interface, which is an abstraction of the transport layer that's carrying the SOAP messages. The http subpackage contains the SOAPHTTPConnection class, which provides HTTP get and set methods. The smtp subpackage contains the SOAPSMTPConnection class, which enables you to send and receive a SOAP envelope through SMTP and POP3.
	util
util.mime

util.net

util.xml

	Contains a variety of utility classes. For example, org.apache.soap.util.xml.DOM2Writer is a utility class for serializing a DOM node as XML.

Developing SOAP Applications with the Java XDK

This section contains the following topics:

	
Using SOAP Providers

	
Using SOAP Transports

	
Using SOAP Handlers

Using SOAP Providers

SOAP application developers provide SOAP services. SOAP services, including Java services, represent user-written applications provided to remote SOAP clients. Developers make these services available by using the supplied default Java class provider or custom providers.

The oracle.soap.server.Provider interface enables the SOAP server to uniformly invoke service methods regardless of the type of provider: Java class, stored procedure, or some other provider type. There is one Provider interface implementation for each type of service provider that encapsulates all provider-specific information. The Provider interface makes SOAP implementation easily extensible to support new types of service providers.

Oracle Database SOAP includes a service deployment administration client that runs as a service to manage SOAP services. SOAP services, including Java services, represent user-written applications that are provided to remote SOAP clients.

Using SOAP Transports

Oracle Database SOAP supports the following transport protocols:

	
HTTP

This protocol is the basic SOAP transport. The Oracle Database SOAP request handler servlet manages HTTP requests and supplies responses directly over HTTP.

	
HTTPS

The Oracle Database SOAP request handler servlet manages HTTPS requests and supplies responses, with different security levels supported.

Using SOAP Handlers

A SOAP handler intercepts SOAP messages to perform pre- or post-processing as indicated by the SOAP request or response. You can use handlers on the client or server and can add features such as security, error handling, and so on. All SOAP handlers are scripts that live in the user.soap.handlers package namespace.

A SOAP service remote procedure call (RPC) request and response sequence includes the steps:

	
A SOAP client writes a request for service in a conforming XML document, using either an editor or the Oracle Database SOAP client API.

	
The client sends the document to a SOAP Request Handler running as a servlet on a Web server.

	
The Web Server dispatches the message as a service request to an appropriate server-side application providing the requested service.

	
The application must verify that the message contains supported parts. The response from the service is returned to the SOAP Request Handler servlet and then to the caller using the SOAP payload format.

Using the SOAP Request Handler

Oracle Database also supplies the SOAP Request Handler, which is a Java servlet that performs the following actions:

	
Receives SOAP requests

	
Looks up the appropriate service provider

	
Handles the service provider that invokes the requested method (service)

	
Returns the SOAP response, if any

The Oracle Database SOAP Request Handler uses an XML configuration file to set required servlet parameters. By default, this file is named soap.xml and is located in the soap.war file. The WAR file is located in the soap.ear file in the directory $ORACLE_HOME/oc4j/soap/webapps.

The XML namespace for the soap.xml file is the following:

http://xmlns.oracle.com/soap/2001/04/config

Tips and Techniques for Using SOAP with the Java XDK

This section contains the following topics:

	
Oracle Database SOAP and IDAP

	
Oracle Database SOAP Security Features

Oracle Database SOAP and IDAP

IDAP is an XML-based specification to perform AQ operations. SOAP defines a generic mechanism to invoke a service. IDAP defines these mechanisms to perform AQ operations.

IDAP has the following key properties not defined by SOAP:

	
Transactional behavior

You can perform AQ operations in a transactional manner. Your transaction can span multiple IDAP requests.

	
Security

The IDAP operations can be performed only by authorized and authenticated users.

	
Character set transformations

Transformations are an important requirement for any communication. The computer used by an Internet client may have different character set ID from the server computer.

	
Extensible AQ Servlet for AQ Internet operations

The AQ servlet performing AQ operations is extensible. You can specify time-out, connection pooling, TAF, apply XML stylesheets, perform post AQ and pre-AQ database operations in the AQ Servlet.

There is no difference between SOAP and IDAP access to AQ except the line specifying the namespace for the envelope.

For IDAP the line specifying the namespace is as follows:

<Envelope xmlns="http://ns.oracle.com/AQ/schemas/envelope">

For SOAP the line specifying the namespace is as follows:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

Oracle Database SOAP Security Features

Oracle Database SOAP uses the security capabilities in the transport to support secure access and to support other security features. For example, using HTTPS, Oracle Database SOAP provides confidentiality, authentication, and integrity over the Secure Sockets Layer (SSL). Other security features such as logging and authorization are provided by the service provider.

	
See Also:

	
http://www.oracle.com/technology/documentation/appserver10g.html for the Oracle Application Server SOAP documentation

	
Oracle Streams Advanced Queuing User's Guide and Reference for a discussion of Internet access to AQ

What's New in the XDK?

What's New contains this topic:

	
Features Introduced in Oracle XML Developer's Kit 10g Release 2 (10.2)

	
Features Introduced in Oracle XML Developer's Kit 10g Release 1 (10.1)

Features Introduced in Oracle XML Developer's Kit 10g Release 2 (10.2)

The new XDK features for the second release of Oracle Database 10g.

Globalization Development Kit (GDK) 2.0

Four .jar files are now required to provide Globalization support in XDK.

	
See Also:

Chapter 2, "Getting Started with Java XDK Components"

Easy XML Application Development Using JAXB XCustomization

JAXB now supports customization. There are several new sample programs in the XDK demo directory that deal with customization.

	
See Also:

	
"JAXB Customization"

	
Table 6-2, "JAXB Class Generator Demos"

XPATH 2.0 and XQuery 1.0 Functions and Operators Support in Java

This feature conforms to the external W3C standard.

	
See Also:

"Standards and Specifications"

SOAP APIs for C and C++

	
See Also:

	
Chapter 18, "Using SOAP with the C XDK"

	
Chapter 26, "Using SOAP with the C++ XDK"

Features Introduced in Oracle XML Developer's Kit 10g Release 1 (10.1)

This section describes features introduced in the first release of Oracle Database 10g.

JAXB Class Generator

The JAXB compiler generates the interfaces and the implementation classes corresponding to the XML schema. The JAXB class generator, which is based on the Java Specification Request (JSR) recommendation for JAXB, is to be used for new applications. The Oracle class generator for Java is deprecated and replaced by the JSR-31 implementation of XML Data Binding (JAXB). The runtime will be supported, so that the Java classes generated in older releases will continue to work.

	
See Also:

Chapter 6, "Using the JAXB Class Generator"

Unified API for C and C++

The functions in the unified APIs work in both XDK and XML DB and replace the C and C++ XDK functions of previous releases.

	
See Also:

Chapter 15, "Using the XML Parser for C", Chapter 20, "Overview of the Unified C++ Interfaces", and related chapters

XDK C/C++ Components Change

Previously, the globalization support data environment variable setting was ORA_NLS33. It has now been changed to ORA_NLS10.

Pipeline Definition Language

The W3C Note for the Pipeline Definition Language is implemented in the XDK for Java.

	
See Also:

Chapter 7, "Using the XML Pipeline Processor for Java"

XSLT Compiler and XSLT Virtual Machine (XVM)

For improved performance there are new interfaces for the XSLT processor for C and C++.

	
See Also:

"XVM Processor".

XSQL Pages Publishing Framework Updates

The following list highlights the key new features added to the XSQL Pages publishing framework. You can now perform the following actions:

	
Easily Work with Multi-Valued Parameters

	
Bind Multi-Valued Parameters as Collections in SQL and PL/SQL

	
Detect Action Handler Errors and React More Easily to Them

	
Conditionally Execute Actions or Include Content

	
Use JDBC Datasources from Your Servlet Container

	
Provide Custom XSQL Page Request Logging

	
Provide Custom XSQL Page Error Handling

	
Override the Name of the XSQL Configuration File

The XSQL Servlet processor has the following new features in10g Release 1 (10.1):

	
Support for Multi-Valued Parameters: This allows users to work with parameters whose values are arrays of strings. The most common scenario where multi-valued parameters occur is when a user submits an HTML form containing multiple occurrences of input controls that share the same name.

	
Conditionally Execute Actions or Include Content with xsql:if-param: The new <xsql:if-param> action enables you to conditionally include the elements and actions that are nested inside it if some condition is true.

	
New Commit="No" Flag on Actions That Performed an Implicit Commit: The <xsql:delete-request, <xsql:insert-request>, <xsql:insert-request>, and <xsql:insert-parameter> action elements each take a new optional commit attribute to control whether the action does an implicit commit or not.

	
Optionally Set an Error Parameter on Any Built-in Action: It is often convenient to know whether an action encountered a non-fatal error during its execution.

	
Use Your Servlet Container's DataSource Implementation: As an alternative to defining your named connections in the XSQLConfig.xml file, you can now se the data sources available through your servlet container's implementation of JDBC data sources.

	
Provides Custom XSQLErrorHandler Implementation: A new interface is introduced in release 1.1. oracle.xml.xsql.XSQLErrorHandler allows developers to achieve a programmatic control of how errors are reported to customize the treatment of the errors.

	
Provides Custom XSQLLogger Implementation: Two new interfaces are introduced in 10g Release 1 (10.1): oracle.xml.xsql.XSQLLoggerFactory and oracle.xml.xsql.XSQLLogger allow developers to log XSQL page requests.

	
You can override the Default Name of the XSQLConfig.xml file: You can easily provide different configuration files for test and production environments. For example, 10g Release 1 (10.1) introduces two ways to override the file name.

	
By setting the Java System property xsql.config

	
By defining a servlet initialization parameter xsql.config

	
Support for Apache FOP 0.20.3: If you need to render PDF output from XSQL pages, this release supports working with the 0.20.3 release candidate of Apache FOP.

	
Set Preserve Whitespace Config Option: It is now possible to control whether or not the XSQL Page Processor uses the XML parser to parse XSQL page templates and XSLT stylesheets with whitespace-preserving mode.

	
See Also:

Chapter 11, "Using the XSQL Pages Publishing Framework"

SOAP Documentation Improvements

This chapter includes new sections as well as an example of a SOAP project.

	
See Also:

Chapter 13, "Using SOAP with the Java XDK"

New XML JavaBeans

The following new JavaBeans were added:

	
XSDValidator, which encapsulates the oracle.xml.parser.schema.XSDValidator class and adds capabilities for validating a DOM tree.

	
XMLCompress, which encapsulates XML compression functionality.

	
XMLDBAccess, which is an extension of DBAccess JavaBean to support the XMLType column in which XML documents are stored in an Oracle database table.

	
See Also:

Chapter 8, "Using XDK JavaBeans"

Changes in this Manual

The following PL/SQL chapters have been moved to the Oracle XML DB Developer's Guide:

	
XML Parser for PL/SQL

	
XSLT Processor for PL/SQL

	
XML Schema Processor for PL/SQL

Upgrades to the XDK Components

Specifications of the levels of the components in this release are described in "XML Standards Supported by the XDK".

Java XDK Components Changes

	
The Java XDK components in this release have several fixes for J2EE conformance and XML 1.0 Conformance Test Suite. Some of the changes resulted in change in behavior with respect to previous release. These changes include the following:

	
The default value of preserve whitespace [XMLParser.setPreserveWhitespace()] is now dependent on the presence of a DTD. If a DTD is present, the default is false, else it is true. Earlier the default was always false.

	
getPrefix(), getNamespaceURI(), and getLocalName() return null instead of '""' (empty string), when not present in the element or attribute, or if the node was created using DOM 1.0 methods.

	
The DBMS_XMLPARSER, DBMS_XMLDOM and DBMS_XSLPROCESSOR packages replace the PL/SQL wrapper for parsing and transformation.

	
JAXP 1.2 supports XML schema validation.

	
XMLSAXSerializer provides support to handle the SAX output serialization.

4 Using the XSLT Processor for Java

This chapter contains these topics:

	
Introduction to the XSLT Processor

	
Using the XSLT Processor for Java: Overview

	
Transforming XML

	
Programming with Oracle XSLT Extensions

	
Tips and Techniques for Transforming XML

Introduction to the XSLT Processor

This section contains the following topics:

	
Prerequisites

	
Standards and Specifications

	
XML Transformation with XSLT 1.0 and 2.0

Prerequisites

XSLT is an XML-based language that you can use to transform one XML document into another text document. For example, you can use XSLT to accept an XML data document as input, perform arithmetic calculations on element values in the document, and generate an XHTML document that shows the calculation results.In XSLT, XPath is used to navigate and process elements in the source node tree. XPath models an XML document as a tree made up of nodes; the types of nodes in the XPath node tree correspond to the types of nodes in a DOM tree.

This chapter assumes that you are familiar with the following W3C standards:

	
eXtensible Stylesheet Language (XSL) and eXtensible Stylesheet Language Transformation (XSLT). If you require a general introduction to XSLT, consult the XML resources listed in "Related Documents" of the preface. You may find it useful to consult the XSLT primer in Oracle XML DB Developer's Guide.

	
XML Path (XPath). You may find it useful to consult the XPath primer in Oracle XML DB Developer's Guide.

Standards and Specifications

XSLT is currently available in two versions: a working draft for XSLT 2.0 and the XSLT 1.0 Recommendation. You can find the specifications at the following URLs:

	
http://www.w3.org/TR/xslt20/

	
http://www.w3.org/TR/xslt

XPath, which is the navigational language used by XSLT and other XML languages, is available in two versions: a working draft for XPath 2.0 and the XPath 1.0 Recommendation. You can find the specifications for the two XPath versions at the following URLs:

	
http://www.w3.org/TR/xpath20/

	
http://www.w3.org/TR/xpath

Oracle XDK XSLT processor implements both the XSLT and XPath 1.0 standards as well as the current working drafts of the XSLT and XPath 2.0 standards. The XDK XSLT processor supports the XPath 2.0 functions and operators. You can find the specification at the following URL:

http://www.w3.org/TR/xpath-functions/

	
See Also:

Chapter 29, "XDK Standards" for a summary of the standards supported by the XDK

XML Transformation with XSLT 1.0 and 2.0

In Oracle Database 10g, the XDK provides several useful features not included in XSLT 1.0. To use XSLT 2.0, set the version attribute in your stylesheet as follows:

<? xml-stylesheet version="2.0" ... ?>

Some of the most useful XSLT 2.0 features are the following:

	
User-defined functions

You can use the <xsl:function> declaration to define functions. This element must have one name attribute to define the function name. The value of the name attribute is a QName. The content of the <xsl:function> element is zero or more xsl:param elements that specify the formal arguments of the function, followed by a sequence constructor that defines the value returned by the function.

Note that QName can have a null namespace, but user-defined functions must have a non-null namespace. That is, if abc is defined as a namespace, then add is not a legal user-defined function, but abc:add is.

	
Grouping

You can use the <xsl:for-each-group> element, current-group() function, and current-grouping-key() function to group items.

	
Multiple result documents

You can use the <xsl:result-document> element to create a result tree. The content of the <xsl:result-document> element is a sequence constructor for the children of the document node of the tree.

For example, this element enables you to accept an XML document as input and break it into separate documents. You can take an XML document that describes a list of books and generate an XHTML document for each book. You can then validate each output document.

	
Temporary trees

Instead of representing the intermediate XSL transformation results and XSL variables as strings, as in XSLT 1.0, you can store them as a set of document nodes. The document nodes, which you can construct with the <xsl:variable>, <xsl:param>, and <xsl:with-param> elements, are called temporary trees.

	
Character mapping

In XSLT 1.0, you had to use the disable-output-escaping attribute of the <xsl:text> and <xsl:value-of> elements to specify character escaping. In XSLT 2.0, you can declare mapping characters with an <xsl:character-map> element as a top level stylesheet element. You can use this element to generate files with reserved or invalid XML characters in the XSLT outputs, such as <, >, and &.

	
See Also:

http://www.w3.org/TR/xslt20 for explanation and examples of XSLT 2.0 features

Using the XSLT Processor for Java: Overview

The Oracle XDK XSLT processor is a software program that transforms an XML document into another text-based format. For example, the processor can transform XML into XML, HTML, XHTML, or text. You can invoke the processor programmatically by using the APIs or run it from the command line. The XSLT processor can perform the following tasks:

	
Reads one or more XSLT stylesheets. The processor can apply multiple stylesheets to a single XML input document and generate different results.

	
Reads one or more input XML documents. The processor can use a single stylesheet to transform multiple XML input documents.

	
Builds output documents by applying the rules in the stylesheet to the input XML documents. The output is a DOM tree, output stream, or series of SAX events.

Whereas XSLT is a function-based language that generally requires a DOM of the input document and stylesheet to perform the transformation, the Java XDK implementation of the XSLT processor can use SAX to create a stylesheet object to perform transformations with higher efficiency and fewer resources. You can reuse this stylesheet object to transform multiple documents without reparsing the stylesheet.

Using the XSLT Processor: Basic Process

Figure 4-1 depicts the basic design of the XSLT processor for Java.

	
See Also:

Oracle Database XML Java API Reference to learn about the XMLParser and XSDBuilder classes

Figure 4-1 Using the XSLT Processor for Java

[image: Description of adxdk111.gif follows]

Description of the illustration adxdk111.gif

Running the XSLT Processor Demo Programs

Demo programs for the XSLT processor for Java are included in $ORACLE_HOME/xdk/demo/java/parser/xslt. Table 4-1 describes the XML files and programs that you can use to test the XSLT processor.

Table 4-1 XSLT Processor Sample Files

	File	Description
	match.xml	A sample XML document that you can use to test ID selection and pattern matching. Its associated stylesheet is match.xsl.
	match.xsl	A sample stylesheet for use with match.xml. You can use it to test simple identity transformations.
	math.xml	A sample XML data document that you can use to perform simple arithmetic. Its associated stylesheet is math.xsl.
	math.xsl	A sample stylesheet for use with math.xml. The stylesheet outputs an HTML page with the results of arithmetic operations performed on element values in math.xml.
	number.xml	A sample XML data document that you can use to test for source tree numbering. The document describes the structure of a book.
	number.xsl	A sample stylesheet for us with number.xml. The stylesheet outputs an HTML page that calculates section numbers for the sections in the book described by number.xml.
	position.xml	A sample XML data document that you can use to test for position()=X in complex patterns. Its associated stylesheet is position.xsl.
	position.xsl	A sample stylesheet for use with position.xml. The stylesheet outputs an HTML page with the results of complex pattern matching.
	reverse.xml	A sample XML data document that you can use with reverse.xsl to traverse backward through a tree.
	reverse.xsl	A sample stylesheet for us with reverse.xml. The stylesheet output the item numbers in reverse.xml in reverse order.
	string.xml	A sample XML data document that you can use to test perform various string test and manipulations. Its associated stylesheet is string.xsl.
	string.xsl	A sample stylesheet for us with string.xml. The stylesheet outputs an XML document that displays the results of the string manipulations.
	style.txt	A stylesheet that provides the framework for an HTML page. The stylesheet is included by number.xsl.
	variable.xml	A sample XML data document that you can use to test the use of XSL variables. The document describes the structure of a book. Its associated stylesheet is variable.xsl.
	variable.xsl	A stylesheet for use with variable.xml. The stylesheet makes extensive use of XSL variables.
	XSLSample.java	A sample application that offers a simple example of how to use the XSL processing capabilities of the Oracle XSLT processor. The program transforms an input XML document by using an input stylesheet. This program builds the result of XSL transformations as a DocumentFragment and does not show xsl:output features.
Run this program with any XSLT stylesheet in the directory as a first argument and its associated *.xml XML document as a second argument. For example, run the program with variable.xsl and variable.xml or string.xsl and string.xml.

	XSLSample2.java	A sample application that offers a simple example of how to use the XSL processing capabilities of the Oracle XSLT processor. The program transforms an input XML document by using an input stylesheet. This program outputs the result to a stream and supports xsl:output features. Like XSLSample.java, you can run it against any pair of XML data documents and stylesheets in the directory.

Documentation for how to compile and run the sample programs is located in the README. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/parser/xslt directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\parser\xslt directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment".

	
Run make (UNIX) or Make.bat (Windows) at the command line. The make file compiles the source code and then runs the XSLSample and XSLSample2 programs for each *.xml file and its associated *.xsl stylesheet. The program writes its output for each transformation to *.out.

	
You can view the *.out files to see the output for the XML transformations. You can also run the programs on the command line as follows, where name is replaced by match, math, and so forth:

java XSLSample name.xsl name.xml
java XSLSample2 name.xsl name.xml

For example, run the match.xml demos as follows:

java XSLSample match.xsl match.xml
java XSLSample2 match.xsl match.xml

Using the XSLT Processor Command-Line Utility

The XDK includes oraxsl, which is a command-line Java interface that can apply a stylesheet to multiple XML documents. The $ORACLE_HOME/bin/oraxsl and %ORACLE_HOME%\bin\oraxsl.bat shell scripts execute the oracle.xml.jaxb.oraxsl class. To use oraxsl ensure that your CLASSPATH is set as described in "Setting Up the Java XDK Environment".

Use the following syntax on the command line to invoke oraxsl:

oraxsl options source stylesheet result

The oraxsl utility expects a stylesheet, an XML file to transform, and an optional result file. If you do not specify a result file, then the utility sends the transformed document to standard output. If multiple XML documents need to be transformed by a stylesheet, then use the -l or -d options in conjunction with the -s and -r options. These and other options are described in Table 4-2.

Table 4-2 Command Line Options for oraxsl

	Option	Description
	-w	Shows warnings. By default, warnings are turned off.
	-e error_log	Specifies file into which the program writes errors and warnings.
	-l xml_file_list	Lists files to be processed.
	-d directory	Specifies the directory that contains the files to transform. The default behavior is to process all files in the directory. If only a subset of the files in that directory, for example, one file, need to be processed, then change this behavior by setting -l and specifying the files that need to be processed. You can also change the behavior by using the -x or -i option to select files based on their extension.
	-x source_extension	Specifies extensions for the files that should be excluded. Use this option in conjunction with -d. The program does not select any files with the specified extension.
	-i source_extension	Specifies extensions for the files that should be included. Use this option in conjunction with -d. The program selects only files with the specified extension.
	-s stylesheet	Specifies the stylesheet. If you set -d or -l, then set -s to indicate the stylesheet to be used. You must specify the complete path.
	-r result_extension	Specifies the extension to use for results. If you set -d or -l, then set -r to specify the extension to be used for the results of the transformation. So, if you specify the extension out, the program transformed an input document doc to doc.out. By default, the program places the results in the current directory. You can change this behavior by using the -o option, which allows you to specify a directory for the results.
	-o result_directory	Specifies the directory in which to place results. You must set this option in conjunction with the -r option.
	-p param_list	Lists parameters.
	-t num_of_threads	Specifies the number of threads to use for processing. Using multiple threads can provide performance improvements when processing multiple documents.
	-v	Generates verbose output. The program prints some debugging information and can help in tracing any problems that are encountered during processing.
	-debug	Generates debugging output. By default, debug mode is disabled. Note that a GUI version of the XSLT debugger is available in Oracle JDeveloper.

Using the XSLT Processor Command-Line Utility: Example

You can test oraxsl on the various XML files and stylesheets in $ORACLE_HOME/xdk/demo/java/parser/xslt. Example 4-1 displays the contents of math.xml.

Example 4-1 math.xml

<?xml version="1.0"?>
<doc>
 <n1>5</n1>
 <n2>2</n2>
 <div>-5</div>
 <mod>2</mod>
</doc>

The XSLT stylesheet named math.xsl is shown in Example 4-2.

Example 4-2 math.xsl

<?xml version="1.0"?><xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="doc">
 <HTML>
 <H1>Test for mod.</H1>
 <HR/>
 <P>Should say "1": <xsl:value-of select="5 mod 2"/></P>
 <P>Should say "1": <xsl:value-of select="n1 mod n2"/></P>
 <P>Should say "-1": <xsl:value-of select="div mod mod"/></P>
 <P><xsl:value-of select="div or ((mod)) | or"/></P>
 </HTML>
 </xsl:template>
</xsl:stylesheet

You can run the oraxsl utility on these files to produce HTML output as shown in the following example:

oraxsl math.xml math.xsl math.htm

The output file math.htm is shown in Example 4-3.

Example 4-3 math.htm

<HTML>
 <H1>Test for mod.</H1>
 <HR>
 <P>Should say "1": 1</P>
 <P>Should say "1": 1</P>
 <P>Should say "-1": -1</P>
 <P>true</P>
</HTML>

Transforming XML

This section contains the following topics:

	
Performing Basic XSL Transformation

	
Obtaining DOM Results from an XSL Transformation

Performing Basic XSL Transformation

As explained in "Using the XSLT Processor for Java: Overview", the fundamental classes used by the XSLT processor are DOMParser and XSLProcessor. The XSL2Sample.java demo program provides a good illustration of how to use these classes to transform an XML document with an XSLT stylesheet.

Use the following basic steps to write Java programs that use the XSLT processor:

	
Create a DOM parser object that you can use to parse the XML data documents and XSLT stylesheets. The following code fragment from XSL2Sample.java illustrates how to instantiate a parser:

XMLDocument xml, xsldoc, out;URL xslURL;URL xmlURL;
// ...
parser = new DOMParser();parser.setPreserveWhitespace(true);

Note that by default, the parser does not preserve whitespace unless a DTD is used. It is important to preserve whitespace because it enables XSLT whitespace rules to determine how whitespace is handled.

	
Parse the XSLT stylesheet with the DOMParser.parse() method. The following code fragment from XSL2Sample.java illustrates how to perform the parse:

xslURL = DemoUtil.createURL(args[0]);
parser.parse(xslURL);
xsldoc = parser.getDocument();

	
Parse the XML data document with the DOMParser.parse() method. The following code fragment from XSL2Sample.java illustrates how to perform the parse:

xmlURL = DemoUtil.createURL(args[1]);
parser.parse(xmlURL);
xml = parser.getDocument();

	
Create a new XSLT stylesheet object. You can pass objects of the following classes to the XSLProcessor.newXSLStylesheet() method:

	
java.io.Reader

	
java.io.InputStream

	
XMLDocument

	
java.net.URL

For example, XSL2Sample.java illustrates how to create a stylesheet object from an XMLDocument object:

XSLProcessor processor = new XSLProcessor();
processor.setBaseURL(xslURL);
XSLStylesheet xsl = processor.newXSLStylesheet(xsldoc);

	
Set the XSLT processor to display any warnings. For example, XSL2Sample.java calls the showWarnings() and setErrorStream() methods as follows:

processor.showWarnings(true);
processor.setErrorStream(System.err);

	
Use the XSLProcessor.processXSL() method to apply the stylesheet to the input XML data document. Table 4-3 lists some of the other available XSLProcessor methods.

Table 4-3 XSLProcessor Methods

	Method	Description
	removeParam()	Removes parameters.
	resetParams()	Resets all parameters.
	setParam()	Sets parameters for the transformation.
	setBaseUrl()	Sets a base URL for any relative references in the stylesheet.
	setEntityResolver()	Sets an entity resolver for any relative references in the stylesheet.
	setLocale()	Sets a locale for error reporting.

The following code fragment from XSL2Sample.java shows how to apply the stylesheet to the XML document:

processor.processXSL(xsl, xml, System.out);

	
Process the transformed output. You can transform the results by creating an XML document object, writing to an output stream, or reporting SAX events.

The following code fragment from XSL2Sample.java shows how to print the results:

processor.processXSL(xsl, xml, System.out);

	
See Also:

	
http://www.w3.org/TR/xslt

	
http://www.w3.org/style/XSL

	
Chapter 3, "Using the XML Parser for Java"

Obtaining DOM Results from an XSL Transformation

The XSLSample.java demo program illustrates how to generate an oracle.xml.parser.v2.XMLDocumentFragment object as the result of an XSL transformation. An XMLDocumentFragment is a "lightweight" Document object that extracts a portion of an XML document tree. The XMLDocumentFragment class implements the org.w3c.dom.DocumentFragment interface.

The XSL2Sample.java program illustrates how to generate a DocumentFragment object. The basic steps for transforming XML are the same as those described in "Performing Basic XSL Transformation". The only difference is in the arguments passed to the XSLProcessor.processXSL() method. The following code fragment from XSL2Sample.java shows how to create the DOM fragment and then print it to standard output:

XMLDocumentFragment result = processor.processXSL(xsl, xml);
result.print(System.out);

Table 4-4 lists some of the XMLDocumentFragment methods that you can use to manipulate the object.

Table 4-4 XMLDocumentFragment Methods

	Method	Description
	getAttributes()	Gets a NamedNodeMap containing the attributes of this node (if it is an Element) or null otherwise
	getLocalName()	Gets the local name for this element
	getNamespaceURI()	Gets the namespace URI of this element
	getNextSibling()	Gets the node immediately following the current node
	getNodeName()	Gets the name of the node
	getNodeType()	Gets a code that represents the type of the underlying object
	getParentNode()	Gets the parent of the current node
	getPreviousSibling()	Gets the node immediately preceding the current node
	reportSAXEvents()	Reports SAX events from a DOM Tree

Programming with Oracle XSLT Extensions

This section contains these topics:

	
Overview of Oracle XSLT Extensions

	
Specifying Namespaces for XSLT Extension Functions

	
Using Static and Non-Static Java Methods in XSLT

	
Using Constructor Extension Functions

	
Using Return Value Extension Functions

Overview of Oracle XSLT Extensions

The XSLT 1.0 standard defines two kinds of extensions: extension elements and extension functions. The XDK provides extension functions for XSLT processing that enable users of the XSLT processor to call any Java method from XSL expressions. Note the following guidelines when using Oracle XSLT extensions:

	
When you define an XSLT extension in a given programming language, you can only use the XSLT stylesheet with XSLT processors that can invoke this extension. Thus, only the Java version of the processor can invoke extension functions that are defined in Java.

	
Use XSLT extensions only if the built-in XSL functions cannot solve a given problem.

	
As explained in the following section, the namespace of the extension class must start with the proper URL.

The following Oracle extension functions are particularly useful:

	
<ora:output>, you can use <ora:output> as a top-level element or in an XSL template. If used as a top-level element, it is similar to the <xsl:output> extension function, except that it has an additional name attribute. When used as a template, it has the additional attributes use and href. This function is useful for creating multiple outputs from one XSL transformation.

	
<ora:node-set>, which converts a result tree fragment into a node-set. This function is useful when you want to refer the existing text or intermediate text results in XSL for further transformation.

Specifying Namespaces for XSLT Extension Functions

The Oracle Java extension functions belong to the namespace that corresponds to the following URI:

http://www.oracle.com/XSL/Transform/java/

An extension function that belongs to the following namespace refers to methods in the Java classname, so that you can construct URIs in the following format:

http://www.oracle.com/XSL/Transform/java/classname

For example, you can use the following namespace to call java.lang.String methods from XSL expressions:

http://www.oracle.com/XSL/Transform/java/java.lang.String

	
Note:

When assigning the xsl prefix to a namespace, the correct URI is xmlns:xsl="http://www.w3.org/1999/XSL/Transform". Any other URI fails to give correct output.

Using Static and Non-Static Java Methods in XSLT

If the Java method is a non-static method of the class, then the first parameter is used as the instance on which the method is invoked, and the rest of the parameters are passed to the method. If the extension function is a static method, however, then all the parameters of the extension function are passed as parameters to the static function. Example 4-4 shows how to use the java.lang.Math.ceil() method in an XSLT stylesheet.

Example 4-4 Using a Static Function in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:math="http://www.oracle.com/XSL/Transform/java/java.lang.Math">
 <xsl:template match="/">
 <xsl:value-of select="math:ceil('12.34')"/>
 </xsl:template>
</xsl:stylesheet>

For example, you can create Example 4-4 as stylesheet ceil.xsl and then apply it to any well-formed XML document. For example, run the oraxsl utility as follows:

oraxsl ceil.xsl ceil.xsl ceil.out

The output document ceil.out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
13

	
Note:

The XSL class loader only knows about statically added JARs and paths in the CLASSPATH as well as those specified by wrapper.classpath. Files added dynamically are not visible to XSLT processor.

Using Constructor Extension Functions

The extension function new creates a new instance of the class and acts as the constructor. Example 4-5 creates a new String object with the value "Hello World," stores it in the XSL variable str1, and then outputs it in uppercase.

Example 4-5 Using a Constructor in an XSLT Stylesheet

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:jstring="http://www.oracle.com/XSL/Transform/java/java.lang.String">
 <xsl:template match="/">
 <!-- creates a new java.lang.String and stores it in the variable str1 -->
 <xsl:variable name="str1" select="jstring:new('HeLlO wOrLd')"/>
 <xsl:value-of select="jstring:toUpperCase($str1)"/>
 </xsl:template>
</xsl:stylesheet>

For example, you can create this stylesheet as hello.xsl and apply it to any well-formed XML document. For example, run the oraxsl utility as follows:

oraxsl hello.xsl hello.xsl hello.out

The output document hello.out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
HELLO WORLD

Using Return Value Extension Functions

The result of an extension function can be of any type, including the five types defined in XSL and the additional simple XML Schema data types defined in XSLT 2.0:

	
NodeSet

	
Boolean

	
String

	
Number

	
ResultTree

You can store these data types in variables or pass to other extension functions. If the result is of one of the five types defined in XSL, then the result can be returned as the result of an XSL expression.

The XSLT Processor supports overloading based on the number of parameters and type. The processor performs implicit type conversion between the five XSL types as defined in XSL. It performs type conversion implicitly among the following datatypes, and also from NodeSet to the following datatypes:

	
String

	
Number

	
Boolean

	
ResultTree

Overloading based on two types that can be implicitly converted to each other is not permitted. The following overloading results in an error in XSL because String and Number can be implicitly converted to each other:

	
overloadme(int i){}

	
overloadme(String s){}

Mapping between XSL datatypes and Java datatypes is done as follows:

String -> java.lang.String
Number -> int, float, double
Boolean -> boolean
NodeSet -> XMLNodeList
ResultTree -> XMLDocumentFragment

The stylesheet in Example 4-6 parses the variable.xml document, which is located in the directory $ORACLE_HOME/xdk/demo/java/parser/xslt, and retrieves the value of the <title> child of the <chapter> element.

Example 4-6 gettitle.xsl

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:parser = "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.DOMParser"
 xmlns:document =
 "http://www.oracle.com/XSL/Transform/java/oracle.xml.parser.v2.XMLDocument">

 <xsl:template match ="/">
 <!-- Create a new instance of the parser and store it in myparser variable -->
 <xsl:variable name="myparser" select="parser:new()"/>

 <!-- Call an instance method of DOMParser. The first parameter is the object.
 The PI is equivalent to $myparser.parse('file:/my_path/variable.xml'). Note
 that you should replace my_path with the absolute path on your system. -->
 <xsl:value-of select="parser:parse($myparser, 'file:/my_path/variable.xml')"/>

 <!-- Get the document node of the XML Dom tree -->
 <xsl:variable name="mydocument" select="parser:getDocument($myparser)"/>

 <!-- Invoke getelementsbytagname on mydocument -->
 <xsl:for-each select="document:getElementsByTagName($mydocument,'chapter')">
 The value of the title element is: <xsl:value-of select="docinfo/title" />
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

You can create Example 4-6 as gettitle.xsl and then run oraxsl as follows:

oraxsl gettitle.xsl gettitle.xsl variable.out

The output document variable.out has the following content:

<?xml version = '1.0' encoding = 'UTF-8'?>
The value of the title element is: Section Tests

Tips and Techniques for Transforming XML

This section lists XSL and XSLT Processor for Java hints, and contains these topics:

	
Merging XML Documents with XSLT

	
Creating an HTML Input Form Based on the Columns in a Table

Merging XML Documents with XSLT

"Merging Documents with appendChild()" discusses the DOM technique for merging documents. If the merging operation is simple, then you can also use an XSLT-based approach. Suppose that you want to merge the XML documents in Example 4-7 and Example 4-8.

Example 4-7 msg_w_num.xml

<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 </msg>
</messages>

Example 4-8 msg_w_text.xml

<messages>
 <msg>
 <key>AAA</key>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <text>This is another Message</text>
 </msg>
</messages>

Example 4-9 displays a sample stylesheet that merges the two XML documents based on matching the <key/> element values.

Example 4-9 msgmerge.xsl

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output indent="yes"/>
 <!-- store msg_w_text.xml in doc2 variable -->
 <xsl:variable name="doc2" select="document('msg_w_text.xml')"/>

 <!-- match each node in input xml document, that is, msg_w_num.xml -->
 <xsl:template match="@*|node()">
 <!-- copy the current node to the result tree -->
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- match each <msg> element in msg_w_num.xml -->
 <xsl:template match="msg">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 <!-- insert two spaces so indentation is correct in output document -->
 <xsl:text> </xsl:text>
 <!-- copy <text> node from msg_w_text.xml into result tree -->
 <text><xsl:value-of
 select="$doc2/messages/msg[key=current()/key]/text"/>
 </text>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Create the XML files in Example 4-7, Example 4-8, and Example 4-9 and run the following at the command line:

oraxsl msg_w_num.xml msgmerge.xsl msgmerge.xml

Example 4-10 shows the output document, which merges the data contained in msg_w_num.xml and msg_w_text.xml.

Example 4-10 msgmerge.xml

<?xml version = '1.0' encoding = 'UTF-8'?>
<messages>
 <msg>
 <key>AAA</key>
 <num>01001</num>
 <text>This is a Message</text>
 </msg>
 <msg>
 <key>BBB</key>
 <num>01011</num>
 <text>This is another Message</text>
 </msg>
</messages>

This technique is not as efficient for larger files as an equivalent database join of two tables, but it is useful if you have only XML files to work with.

Creating an HTML Input Form Based on the Columns in a Table

Suppose that you want to generate an HTML form for inputting data that uses column names from a database table. You can achieve this goal by using XSU to obtain an XML document based on the user_tab_columns table and XSLT to transform the XML into an HTML form.

	
Use XSU to generate an XML document based on the columns in the table. For example, suppose that the table is hr.employees. You can run XSU from the command line as follows:

java OracleXML getXML -user "hr/hr" "SELECT column_name FROM user_tab_columns
 WHERE table_name = 'EMPLOYEES'"

	
Save the XSU output as an XML file called emp_columns.xml. The XML should look like the following, with one <ROW> element corresponding to each column in the table (some <ROW> elements have been removed to conserve space):

<?xml version = '1.0'?><ROWSET>
 <ROW num="1">
 <COLUMN_NAME>EMPLOYEE_ID</COLUMN_NAME>
 </ROW>
 <ROW num="2">
 <COLUMN_NAME>FIRST_NAME</COLUMN_NAME>
 </ROW>
 <!-- rows 3 through 10 -->
 <ROW num="11">
 <COLUMN_NAME>DEPARTMENT_ID</COLUMN_NAME>
 </ROW>
</ROWSET>

	
Create a stylesheet to transform the XML into HTML. For example, create the columns.xsl stylesheet as follows:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 <xsl:template match="/">
 <HTML>
 <xsl:apply-templates select="@*|node()"/>
 </HTML>
 </xsl:template>
 <xsl:template match="ROW">
 <xsl:value-of select="COLUMN_NAME"/>
 <xsl:text> </xsl:text>
 <INPUT NAME="{COLUMN_NAME}"/>

 </xsl:template>
</xsl:stylesheet>

	
Run the oraxsl utility to generate the HTML form. For example:

oraxsl emp_columns.xml columns.xsl emp_form.htm

	
Review the output HTML form, which should have the following contents:

<HTML>
 EMPLOYEE_ID <INPUT NAME="EMPLOYEE_ID">

 FIRST_NAME <INPUT NAME="FIRST_NAME">

 LAST_NAME <INPUT NAME="LAST_NAME">

 EMAIL <INPUT NAME="EMAIL">

 PHONE_NUMBER <INPUT NAME="PHONE_NUMBER">

 HIRE_DATE <INPUT NAME="HIRE_DATE">

 JOB_ID <INPUT NAME="JOB_ID">

 SALARY <INPUT NAME="SALARY">

 COMMISSION_PCT <INPUT NAME="COMMISSION_PCT">

 MANAGER_ID <INPUT NAME="MANAGER_ID">

 DEPARTMENT_ID <INPUT NAME="DEPARTMENT_ID">

</HTML>

Oracle® XML Developer's Kit

Programmer's Guide

10g Release 2 (10.2)

Part No. B14252-01

June 2005

Oracle XML Developer's Kit Programmer's Guide, 10g Release 2 (10.2)

Part No. B14252-01

Copyright © 2001, 2005, Oracle. All rights reserved.

Primary Author: Lance Ashdown

Contributing Authors: Jack Melnick, Steve Muench, Mark Scardina, Jinyu Wang

Contributors: Sandeepan Banerjee, Sivasankaran Chandrasekar, Dan Chiba, Steve Ding, Stanley Guan, Bill Han, K. Karun, Murali Krishnaprasad, Dmitry Lenkov, Roza Leyderman, Bruce Lowenthal, Ian Macky, Anjana Manian, Meghna Mehta, Valarie Moore, Ravi Murthy, Anguel Novoselsky, Arkady Rabinov, Tomas Saulys, Helen Slattery, Asha Tarachandani, Tim Yu, Jim Warner, Simon Wong, Kongyi Zhou

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

List of Examples

	2-1 Java XDK Libraries, Utilities, and Demos
	2-2 Testing the Java XDK Environment on UNIX
	2-3 Testing the Java XDK Environment on Windows
	2-4 XDKVersion.java
	3-1 Sample XML Document
	3-2 Sample XML Document Without Namespaces
	3-3 Sample XML Document with Namespaces
	3-4 Extracting Contents of a DOM Tree with selectNodes()
	3-5 Incorrect Use of appendChild()
	3-6 Merging Documents with appendChild
	3-7 DTDSample.java
	3-8 Converting XML in a String
	3-9 Parsing a Document with Accented Characters
	4-1 math.xml
	4-2 math.xsl
	4-3 math.htm
	4-4 Using a Static Function in an XSLT Stylesheet
	4-5 Using a Constructor in an XSLT Stylesheet
	4-6 gettitle.xsl
	4-7 msg_w_num.xml
	4-8 msg_w_text.xml
	4-9 msgmerge.xsl
	4-10 msgmerge.xml
	5-1 family.dtd
	5-2 family.xml
	5-3 report.xml
	5-4 report.xsd
	5-5 Using oraxml to Validate Against a Schema
	5-6 Using oraxml to Validate Against a DTD
	6-1 sample3.xml
	6-2 sample3.xsd
	6-3 Address.java
	6-4 sample10.xml
	6-5 sample10.xsd
	6-6 BusinessType.java
	7-1 pipedoc.xml
	9-1 Specifying skipRows and maxRows on the Command Line
	9-2 upd_emp.xml
	9-3 insertClob.sql
	9-4 insertEmployee.sql
	9-5 Form of the INSERT Statement
	9-6 insertClob2.sql
	9-7 insertEmployee2.sql
	9-8 insertClob3.sql
	9-9 updateEmployee.sql
	9-10 updateEmployee2.sql
	9-11 Deleting by Row
	9-12 Deleting by Key
	9-13 XSU-Generated Sample Document
	9-14 customer.xml
	9-15 createRelSchema.sql
	10-1 Structure of Table translated_messages
	10-2 Query of translated_messages
	10-3 example.xml
	10-4 dateTime Row
	10-5 example_e.xml
	10-6 txdemo1.java
	11-1 Sample XSQL Page
	11-2 Connection Definitions Section of XSQLConfig.xml
	11-3 AvailableFlightsToday.xsql
	11-4 Wrapping the <xsql:query> Element
	11-5 CustomerPortfolio.xsql
	11-6 CustomerPortfolio.xsql
	11-7 DevOpenBugs.xsql
	11-8 DevOpenBugs.xsql
	11-9 Setting a Default Value
	11-10 Setting Multiple Default Values
	11-11 Defaults for Bind Variables
	11-12 Bind Variables with No Defaults
	11-13 flight-list.xsl
	11-14 flight-list.xsl
	11-15 flight-display.xsl
	11-16 XSQLRequestSample Class
	11-17 Conditional Statements in XSQL Pages
	11-18 Passing Values Among SQL Queries
	11-19 Handling Multi-Valued Parameters
	11-20 Using Multi-Valued Page Parameters in a SQL Statement
	11-21 addmult PL/SQL Procedure
	11-22 addmultwrapper PL/SQL Procedure
	11-23 addmult.xsql
	11-24 Obtaining the Name of the Current XSQL Page
	12-1 empToExcel.xsl
	12-2 emp_test.xsql
	12-3 emp_test_dynamic.xsql
	12-4 Multiple <?xml-stylesheet ?> Processing Instructions
	12-5 Using an Array-Valued Parameter in an XSQL Page
	12-6 testTableFunction
	12-7 XSQL Page with Array-Valued Parameters
	12-8 Using an Array-Valued Parameter to Restrict Rows
	12-9 Setting an Error Parameter
	12-10 Achieving Conditional Behavior with an Error Parameter
	12-11 XSLTStylesheet
	12-12 Aggregating a Dynamically-Constructed XML Document
	12-13 Movie XML Document
	12-14 Using XPath to Extract an Aggregate List
	12-15 Including an XMLType Query Result
	12-16 Using XSQL Bind Variables in an XPath Expression
	12-17 XML Document Generated from HTML Form
	12-18 Source Code for FOP Serializer
	12-19 MyIncludeXSQLHandler.java
	12-20 Testing for the Servlet Request
	12-21 Custom Serializer
	12-22 Assigning Short Names to Custom Serializers
	12-23 Writing a Dynamic GIF Image
	12-24 myErrorHandler class
	12-25 SampleCustomLogger Class
	12-26 SampleCustomLoggerFactory Class
	12-27 Registering a Custom Logger Factory
	14-1 C XDK Libraries, Header Files, Utilities, and Demos
	14-2 Editing a C XDK Make.bat File on Windows
	15-1 NSExample.xml
	15-2 xml.out
	15-3 Constructing a Schema-Based Document with the DOM API
	15-4 Modifying a Database Document with the DOM API
	18-1 SOAP Request Message
	18-2 SOAP Response Message
	18-3 SOAP C Functions Defined in xmlsoap.h
	18-4 Example 1 SOAP Message
	18-5 Example 1 SOAP C Client
	18-6 Example 2 SOAP Message
	18-7 Example 2 SOAP C Client
	18-8 Example 3 SOAP Message
	18-9 Example 3 SOAP C Client
	27-1 Retrieving Stock Quotes
	27-2 Deleting Rows
	27-3 Inserting a Username into a Table
	27-4 Testing Conditions
	27-5 Including XML Content Created by a Stored Procedure
	27-6 Including an XML Representation of a Parameter Value
	27-7 Including Posted XML
	27-8 Including Request Parameters
	27-9 Including Request Parameters
	27-10 Including Request Parameters
	27-11 Testing for Conditions in a Stylesheet
	27-12 Including an XML Document
	27-13 Categories.xsql
	27-14 TopTenTopics.xsql
	27-15 HTMLCategories.xsql
	27-16 WMLCategories.xsql
	27-17 Inserting XML Contained in an HTML Form Parameter
	27-18 Inserting XML Received in a Parameter
	27-19 Hello World
	27-20 Nested Structure Example
	27-21 Query with Error
	27-22 Query with Column Aliasing
	27-23 DynCursor PL/SQL Package
	27-24 Executing a REF CURSOR Function
	27-25 Setting a Cookie to a Parameter Value
	27-26 Setting a Cookie to a Database-Generated Value
	27-27 Setting Three Cookies
	27-28 Setting Multiple Page Parameters
	27-29 Setting a Parameter to a Database-Generated Value
	27-30 Setting Session Parameters
	27-31 Setting a Stylesheet Parameter
	27-32 Updating XML Received in a Parameter
	28-1 DLF Tree Structure
	28-2 Minimal DLF Document
	28-3 Sample DLF Document
	28-4 DLF with Localization

16 Using the XSLT and XVM Processors for C

This chapter contains these topics:

	
XVM Processor

	
XSLT processor

	
Using the Demo Files Included with the Software

	
Note:

Use the new unified C API for new XDK and Oracle XML DB applications. The old C functions are deprecated and supported only for backward compatibility, but will not be enhanced. They will be removed in a future release.
The new C API is described in Chapter 15, "Using the XML Parser for C".

XVM Processor

The Oracle XVM Package implements the XSL Transformation (XSLT) language as specified in the W3C Recommendation of 16 November 1999. The package includes XSLT Compiler and XSLT Virtual Machine (XVM). The implementation by Oracle of the XSLT compiler and the XVM enables compilation of XSLT (Version 1.0) into bytecode format, which is executed by the virtual machine. XSLT Virtual Machine is the software implementation of a "CPU" designed to run compiled XSLT code. The virtual machine assumes a compiler compiling XSLT stylesheets to a sequence of bytecodes or machine instructions for the "XSLT CPU". The bytecode program is a platform-independent sequence of 2-byte units. It can be stored, cached and run on different XVMs. The XVM uses the bytecode programs to transform instance XML documents. This approach clearly separates compile-time from run-time computations and specifies a uniform way of exchanging data between instructions. The benefits of this approach are:

	
An XSLT stylesheet can be compiled, saved in a file, and re-used often, even on different platforms.

	
The XVM is significantly faster and uses less memory than other XSLT processors.

	
The bytecodes are not language-dependent. There is no difference between code generated from a C or C++ XSLT compiler.

XVM Usage Example

A typical scenario of using the package APIs has the following steps:

	
Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);

	
Create and use an XSLT compiler object.

comp = XmlXvmCreateComp(xctx);

	
Compile an XSLT stylesheet or XPath expression and store or cache the resulting bytecode.

code = XmlXvmCompileFile(comp, xslFile, baseuri, flags, &err);

or

code = XmlXvmCompileDom (comp, xslDomdoc, flags, &err);

or

code = XmlXvmCompileXPath (comp, xpathexp, namespaces, &err);

	
Create and use an XVM object. The explicit stack size setting is needed when XVM terminates with a "Stack Overflow" message or when smaller memory footprints are required. See XmlXvmCreate().

vm = XmlXvmCreate(xctx, "StringStack", 32, "NodeStack", 24, NULL);

	
Set the output (optional). Default is a stream.

err = XmlXvmSetOutputDom (vm, NULL);

or

err = XmlXvmSetOutputStream(vm, &xvm_stream);

or

err = XmlXvmSetOutputSax(vm, &xvm_callback, NULL);

	
Set a stylesheet bytecode to the XVM object. Can be repeated with other bytecode.

len = XmlXvmGetBytecodeLength(code, &err);
err = XmlXvmSetBytecodeBuffer(vm, code, len);

or

err = XmlXvmSetBytecodeFile (vm, xslBytecodeFile);

	
Transform an instance XML document or evaluate a compiled XPath expression. Can be repeated with the same or other XML documents.

err = XmlXvmTransformFile(vm, xmlFile, baseuri);

or

err = XmlXvmTransformDom (vm, xmlDomdoc);

or

obj = (xvmobj*)XmlXvmEvaluateXPath (vm, code, 1, 1, node);

	
Get the output tree fragment (if DOM output is set at step 5).

node = XmlXvmGetOutputDom (vm);

	
Delete the objects.

XmlXvmDestroy(vm);
XmlXvmDestroyComp(comp);
XmlDestroy(xctx);

Using the XVM Processor Command-Line Utility

The XVM processor is accessed from the command-line this way:

xvm

Usage:

xvm options xslfile xmlfile

xvm options xpath xmlfile

Options:

-c Compile xslfile. The bytecode is in "xmlfile.xvm".
-ct Compile xslfile and transform xmlfile.
-t Transform xmlfile using bytecode from xslfile.
-xc Compile xpath. The bytecode is in "code.xvm".
-xct Compile and evaluate xpath with xmlfile.
-xt Evaluate XPath bytecode from xpath with xmlfile.

Examples:

xvm -ct db.xsl db.xml
xvm -t db.xvm db.xml
xvm -xct "doc/employee[15]/family" db.xml

Accessing XVM Processor for C

Oracle XVM Processor for C is part of the standard installation of Oracle Database.

	
See Also:

	
Oracle Database XML C API Reference "XSLTVM APIs for C"

	
http://www.oracle.com/technology/tech/xml/

XSLT processor

The Oracle XSL/XPath Package implements the XSL Transformation (XSLT) language as specified in the W3C Recommendation of 16 November 1999. The package includes the XSLT processor and XPath Processor. The Oracle implementation of the XSLT processor follows the more common design approach, which melts 'compiler' and 'processor' into one object.

XSLT Processor Usage Example

A typical scenario of using the package APIs has the following steps:

	
Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);

	
Parse the XSLT stylesheet.

xslDomdoc = XmlLoadDom(xctx, &err, "file", xslFile, "base_uri", baseuri, NULL);

	
Create an XSLT processor for the stylesheet

xslproc = XmlXslCreate (xctx, xslDomdoc, baseuri, &err);

	
Parse the instance XML document.

xmlDomdoc = XmlLoadDom(xctx, &err, "file", xmlFile, "base_uri", baseuri, NULL);

	
Set the output (optional). Default is DOM.

err = XmlXslSetOutputStream(xslproc, &stream);

	
Transform the XML document. This step can be repeated with the same or other XML documents.

err = XmlXslProcess (xslproc, xmlDomdoc, FALSE);

	
Get the output (if DOM).

node = XmlXslGetOutput(xslproc);

	
Delete objects.

XmlXslDestroy(xslproc);
XmlDestroy(xctx);

XPath Processor Usage Example

A typical scenario of using the package APIs has the following steps:

	
Create and use an XML meta-context object.

xctx = XmlCreate(&err,...);

	
Parse the XML document or get the current node from already existing DOM.

node = XmlLoadDom(xctx, &err, "file", xmlFile, "base_uri", baseuri, NULL);

	
Create an XPath processor.

xptproc = XmlXPathCreateCtx(xctx, NULL, node, 0, NULL);

	
Parse the XPath expression.

exp = XmlXPathParse (xptproc, xpathexpr, &err);

	
Evaluate the XPath expression.

obj = XmlXPathEval(xptproc, exp, &err);

	
Delete the objects.

XmlXPathDestroyCtx (xptproc);
XmlDestroy(xctx);

Using the C XSLT Processor Command-Line Utility

You can call the C Oracle XSLT processor as an executable by invoking bin/xsl:

xsl [switches] stylesheet instance
or
xsl -f [switches] [document filespec]

If no style sheet is provided, no output is generated. If there is a style sheet, but no output file, output goes to stdout.

Table 16-1 lists the command line options.

Table 16-1 XSLT Processor for C: Command Line Options

	Option	Description
	

-B BaseUri

	Set the Base URI for XSLT processor: BaseUri of http://pqr/xsl.txt resolves pqr.txt to http://pqr/pqr.txt
	

-e encoding

	Specify default input file encoding (-ee to force).
	

-E encoding

	Specify DOM or SAX encoding.
	

-f

	File - interpret as filespec, not URI.
	

-G xptrexprs

	Evaluates XPointer schema examples given in a file.
	

-h

	Help - show this usage. (Use -hh for more options.)
	

-hh

	Show complete options list.
	

-i n

	Number of times to iterate the XSLT processing.
	

-l language

	Language for error reporting.
	

-o XSLoutfile

	Specifies output file of XSLT processor.
	

-v

	Version - display parser version then exit.
	

-V var value

	Test top-level variables in C XSLT.
	

-w

	Whitespace - preserve all whitespace.
	

-W

	Warning - stop parsing after a warning.

Accessing Oracle XSLT processor for C

Oracle XSLT processor for C is part of the standard installation of Oracle Database.

	
See Also:

	
Oracle Database XML C API Reference "XSLT APIs for C"

	
Oracle Database XML C API Reference "XPath APIs for C"

	
http://www.oracle.com/technology/tech/xml/

Using the Demo Files Included with the Software

$ORACLE_HOME/xdk/demo/c/parser/ directory contains several XML applications to illustrate how to use the XSLT for C.

Table 16-2 lists the files in that directory:

Table 16-2 XSLT for C Demo Files

	Sample File Name	Description
	
XSLSample.c

	Source for XSLSample program
	
XSLSample.std

	Expected output from XSLSample
	
class.xml

	XML file that can be used with XSLSample
	
iden.xsl

	Stylesheet that can be used with XSLSample
	
cleo.xml

	XML version of Shakespeare's play
	
XVMSample.c

	Sample usage of XSLT Virtual Machine and compiler. It takes two filenames as input - XML file and XSLT stylesheet file.
	
XVMXPathSample.c

	Sample usage of XSLT Virtual Machine and compiler. It takes XML file name and XPath expression as input. Generates the result of the evaluated XPath expression.
	
XSLXPathSample.c

	Sample usage of XSL/XPath processor. It takes XML file name and XPath expression as input. Generates the result of the evaluated XPath expression.

Building the C Demo Programs for XSLT

Change directories to the demo directory and read the README file. This will explain how to build the sample programs according to your operating system.

Here is the usage of XSLT processor sample XSLSample, which takes two files as input, the XML file and the XSLT stylesheet:

XSLSample xmlfile xslss

Glossary

access control entry (ACE)

An entry in the access control list that grants or denies access to a given principal.

access control list (ACL)

A list of access control entries that determines which principals have access to a given resource or resources.

ACE

Access Control Entry. See access control entry.

ACL

Access Control List. See access control list.

application server

A server designed to host applications and their environments, permitting server applications to run. A typical example is Oracle Application Server, which is able to host Java, C, C++, and PL/SQL applications in cases where a remote client controls the interface.

attribute

A property of an element that consists of a name and a value separated by an equals sign and contained within the start-tags after the element name. In this example, <Price units='USD'>5</Price>, units is the attribute and USD is its value, which must be in single or double quotes. Attributes may reside in the document or DTD. Elements may have many attributes but their retrieval order is not defined.

BLOB

See binary large object.

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods and services to each other. The software infrastructure to enable this is referred to as an exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the selling of goods and services.

callback

A programmatic technique in which one process starts another and then continues. The second process then calls the first as a result of an action, value, or other event. This technique is used in most programs that have a user interface to allow continuous interaction.

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the database to understand and manipulate a new datatype. Cartridges interface through the Extensibility Framework within Oracle Database version 8 or later. Oracle Text is such a cartridge, adding support for reading, writing, and searching text documents stored within the database.

Cascading Style Sheets

A simple mechanism for adding style (fonts, colors, spacing, and so on) to Web documents.

CDATA

See character data.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This allows for the inclusion of characters that would otherwise have special functions, such as &, <, >, and so on. CDATA sections can be used in the content of an element or in attributes.

child element

An element that is wholly contained within another, which is referred to as its parent element. For example <Parent><Child></Child></Parent> illustrates a child element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have corresponding functionality. In the case of the XML class generator, the input file is a DTD and the output is a series of classes that can be used to create XML documents conforming with the DTD.

CLASSPATH

The operating system environmental variable that the JVM uses to find the classes it needs to run applications.

Common Object Request Broker API (CORBA)

An Object Management Group standard for communicating between distributed objects across a network. These self-contained software modules can be used by applications running on different platforms or operating systems. CORBA objects and their data formats and functions are defined in the Interface Definition Language (IDL), which can be compiled in a variety of languages including Java, C, C++, Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create code that can be easily ported to virtually any platform and operating system.

CORBA

See Common Object Request Broker API.

CSS

See Cascading Style Sheets.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD specifies information such as the database name or the Oracle Net service name, the ORACLE_HOME directory, and Globalization Support configuration information such as language, sort type, and date language.

datagram

A text fragment, which may be in XML format, that is returned to the requester embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DBUriType

The datatype used for storing instances of the datatype that permits XPath-based navigation of database schemas.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML document. For example, <!DOCTYPE person SYSTEM "person.dtd"> declares the root element name as person and an external DTD as person.dtd in the file system. Internal DTDs are declared within the DOCTYPE declaration.

Document Location Hint

Oracle XML DB uses the Document Location Hint to determine which XML schemas are relevant to processing the instance document. It assumes that the Document Location Hint will map directly to the URL used when registering the XML schema with the database. When the XML schema includes elements defined in multiple namespaces, an entry must occur in the schemaLocation attribute for each of the XML schemas. Each entry consists of the namespace declaration and the Document Location Hint. The entries are separated from each other by one or more whitespace characters. If the primary XML schema does not declare a target namespace, then the instance document also needs to include a noNamespaceSchemaLocation attribute that provides the Document Location Hint for the primary XML schema.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables programmatic access to its elements and attributes. The DOM object and its interface is a W3C recommendation. It specifies the Document Object Model of an XML Document including the APIs for programmatic access. DOM views the parsed document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the legal structure of an XML document. DTDs are text files that derive their format from SGML and can either be included in an XML document by using the DOCTYPE element or by using an external file through a DOCTYPE reference.

DOM

See Document Object Model.

DOM fidelity

To assure the integrity and accuracy of this data, for example, when regenerating XML documents stored in Oracle XML DB, Oracle XML DB uses a data integrity mechanism, called DOM fidelity. DOM fidelity refers to when the returned XML documents are identical to the original XML document, particularly for purposes of DOM traversals. Oracle XML DB assures DOM fidelity by using a binary attribute, SYS_XDBPD$.

DTD

See Document Type Definition.

EDI

Electronic Data Interchange.

element

The basic logical unit of an XML document that can serve as a container for other elements such as children, data, and attributes and their values. Elements are identified by start-tags, such as <name>, and end-tags, such as </name>, or in the case of empty elements, <name/>.

empty element

An element without text content or child elements. It can only contain attributes and their values. Empty elements are of the form <name/> or <name></name>, where there is no space between the tags.

Enterprise JavaBean (EJB)

An independent program module that runs within a JVM on the server. CORBA provides the infrastructure for EJBs, and a container layer provides security, transaction support, and other common functions on any supported server.

empty element

An element without text content or child elements. It may only contain attributes and their values. Empty elements are of the form <name/> or <name></name> where there is no space between the tags.

entity

A string of characters that may represent either another string of characters or special characters that are not part of the document character set. Entities and the text that is substituted for them by the parser are declared in the DTD.

eXtensible Markup Language (XML)

An open standard for describing data developed by the World Wide Web Consortium (W3C) using a subset of the SGML syntax and designed for Internet use.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents. There are two W3C recommendations covering XSL stylesheets—XSL Transformations (XSLT) and XSL Formatting Objects (XSLFO).

XSL consists of two W3C recommendations: XSL Transformations for transforming one XML document into another and XSL Formatting Objects for specifying the presentation of an XML document. XSL is a language for expressing stylesheets. It consists of two parts:

	
A language for transforming XML documents (XSLT), and

	
An XML vocabulary for specifying formatting semantics (XSLFO).

An XSL stylesheet specifies the presentation of a class of XML documents by describing how an instance of the class is transformed into an XML document that uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying formatting semantics. See FOP.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a transformation language to convert one XML document into another.

FOP

Print formatter driven by XSL formatting objects. It is a Java application that reads a formatting object tree and then renders the resulting pages to a specified output. Output formats currently supported are PDF, PCL, PS, SVG, XML (area tree representation), Print, AWT, MIF and TXT. The primary output target is PDF.

HASPATH

The SQL operator that is part of Oracle Text and used for querying XMLType datatypes for the existence of a specific XPath.

hierarchical indexing

The data relating a folder to its children is managed by the Oracle XML DB hierarchical index, which provides a fast mechanism for evaluating path names similar to the directory mechanisms used by operating system filesystems. Any path name-based access will normally use the Oracle XML DB hierarchical index.

HTTP

See Hypertext Transport Protocol.

HTTPS

See Hypertext Transport Protocol, Secure.

HTTPUriType

The datatype used for storing instances of the datatype that permits XPath-based navigation of database schemas in remote databases.

IDE

See Integrated Development Environment.

INPATH

The SQL operator that is part of Oracle Text and is used for querying XMLType datatypes for searching for specific text within a specific XPath.

instance document

An XML document validated against an XML schema. If the instance document conforms to the rules of the schema, then it is said to be valid.

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation of an object of a specific class.

Integrated Development Environment (IDE)

A set of programs designed to aid in the development of software run from a single user interface. JDeveloper is an IDE for Java development, because it includes an editor, compiler, debugger, syntax checker, help system, and so on, to permit Java software development through a single user interface.

interMedia

The collection of complex datatypes and their access in Oracle. These include text, video, time-series, and spatial data.

Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as the Internet.

J2EE

See Java 2 Platform, Enterprise Edition.

Java

A high-level programming language developed and maintained by Sun Microsystems where applications run in a virtual machine known as a JVM. The JVM is responsible for all interfaces to the operating system. This architecture permits developers to create Java applications that can run on any operating system or platform that has a JVM.

Java 2 Platform, Enterprise Edition (J2EE)

The Java platform (Sun Microsystems) that defines multitier enterprise computing.

Java API for XML Processing (JAXP)

Enables applications to parse and transform XML documents using an API that is independent of a particular XML processor implementation.

Java Architecture for XML Binding (JAXB)

API and tools that map to and from XML documents and Java objects. A JSR-31 recommendation.

JavaBeans

An independent program module that runs within a JVM, typically for creating user interfaces on the client. Also known as Java Bean. The server equivalent is called an Enterprise JavaBean (EJB). See also Enterprise JavaBean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through the SQL language. JDBC drivers are written in Java for platform independence but are specific to each database.

Java Developer's Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code for a version of Java that makes up a Java development environment. JDKs are designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Naming and Directory Interface (JNDI)

A programming interface from Sun for connecting Java programs to naming and directory services such as DNS, LDAP, and NDS. Oracle XML DB Resource API for Java/JNDI supports JNDI.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a platform. JREs are designated by versions, and Java 2 is used to designate versions from 1.2 onward.

JavaServer Pages (JSP)

An extension to the servlet functionality that enables a simple programmatic interface to Web pages. JSPs are HTML pages with special tags and embedded Java code that is executed on the Web server or application server providing dynamic functionality to HTML pages. JSPs are actually compiled into servlets when first requested and run in the JVM of the server.

Java Specification Request (JSR)

A recommendation of the Java Community Process organization (JCP), such as JAXB.

Java Virtual Machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine language of the platform and runs it. JVMs can run on a client, in a browser, in a middle tier, on an intranet, on an application server, or in a database server.

JAXB

See Java Architecture for XML Binding.

JAXP

See Java API for XML Processing.

JDBC

See Java Database Connectivity.

JDeveloper

Oracle Java IDE that enables application, applet, and servlet development and includes an editor, compiler, debugger, syntax checker, help system, an integrated UML class modeler, and so on. JDeveloper has been enhanced to support XML-based development by including the Oracle Java XDK components, integrated for use along with XML support, in its editor.

JDK

See Java Developer's Kit.

JNDI

See Java Naming and Directory Interface

JSR

See Java Specification Request

JVM

See Java virtual machine.

lazy type conversions

A mechanism used by Oracle XML DB to only convert the XML data for Java when the Java application first asks for it. This saves typical type conversion bottlenecks with JDBC.

listener

A separate application process that monitors the input process.

LOB

See large object.

marshalling

The process of traversing a Java content tree and writing an XML document that reflects the content of the tree. It is the inverse of unmarshalling.

name-level locking

Oracle XML DB provides for name-level locking rather than collection-level locking. When a name is added to a collection, an exclusive write lock is not placed on the collection, only that name within the collection is locked. The name modification is put on a queue, and the collection is locked and modified only at commit time.

node

In XML, the term used to denote each addressable entity in the DOM tree.

notation attribute declaration

In XML, the declaration of a content type that is not part of those understood by the parser. These types include audio, video, and other multimedia.

OAG

Open Applications Group.

OASIS

See Organization for the Advancement of Structured Information.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on clients and between objects on servers. ORBs pass the action request and its parameters to the object and return the results back. Common implementations are JCORB and EJBs. See also CORBA.

OCT

See Ordered Collection in Tables.

OC4J

Oracle Containers for J2EE, a J2EE deployment tool that comes with JDeveloper.

Oracle Application Server

The Oracle Application Server product integrates all the core services and features required for building, deploying, and managing high-performance, n-tier, transaction-oriented Web applications within an open standards framework.

ORACLE_HOME

The operating system environment variable that identifies the location of the Oracle database installation for use by applications.

Oracle CM SDK

See Oracle Content Management Software Development Kit.

Oracle Content Management SDK

The Oracle file system and Java-based development environment that either runs inside the database or on a middle tier and provides a means of creating, storing, and managing multiple types of documents in a single database repository.

Oracle XML Developer's Kit (XDK)

The set of libraries, components, and utilities that provide software developers with the standards-based functionality to XML-enable their applications. In the case of the Oracle Java components of XDK, the kit contains an XML parser, an XSLT processor, the XML class generator, the JavaBeans, and the XSQL Servlet.

Ordered Collection in Tables (OCT)

When elements of a VARRAY are stored in a separate table, they are referred to as an Ordered Collection in Tables.

Oracle Text

An Oracle tool that provides full-text indexing of documents and the capability to do SQL queries over documents, along with XPath-like searching.

Oracle XML DB

A high-performance XML storage and retrieval technology provided with Oracle database server. It is based on the W3C XML data model.

ORB

See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information standards through conferences, seminars, exhibits, and other educational events. XML is a standard that OASIS is actively promoting as it is doing with SGML.

parent element

An element that surrounds another element, which is referred to as its child element. For example, <Parent><Child></Child></Parent> illustrates a parent element wrapping its child element.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag or nonparsed data.

path name

The name of a resource that reflects its location in the repository hierarchy. A path name is composed of a root element (the first /), element separators (/) and various sub-elements (or path elements). A path element may be composed of any character in the database character set except ("\", "/"). These characters have a special meaning for Oracle XML DB. Forward slash is the default name separator in a path name and backward slash may be used to escape characters.

PCDATA

See Parsed Character Data.

PDA

Personal Digital Assistant, such as a Palm Pilot.

principal

An entity that may be granted access control privileges to an Oracle XML DB resource. Oracle XML DB supports as principals:

	
Database users.

	
Database roles. A database role can be understood as a group, for example, the DBA role represents the DBA group of all the users granted the DBA role.

Users and roles imported from an LDAP server are also supported as a part of the database general authentication model.

prolog

The opening part of an XML document containing the XML declaration and any DTD or other declarations needed to process the document.

PUBLIC

The term used to specify the location on the Internet of the reference that follows.

RDF

Resource Definition Framework.

renderer

A software processor that produces a document in a specified format.

repository

The set of database objects, in any schema, that are mapped to path names. There is one root to the repository ("/") which contains a set of resources, each with a path name.

resource

An object in the repository hierarchy.

resource name

The name of a resource within its parent folder. Resource names must be unique (potentially subject to case-insensitivity) within a folder. Resource names are always in the UTF-8 character set (NVARCHAR2).

result set

The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is between the optional prolog and epilog. An XML document is only permitted to have one root element.

SAX

See Simple API for XML.

schema

The definition of the structure and data types within a database. It can also be used to refer to an XML document that support the XML Schema W3C recommendation.

schema evolution

The process used to modify XML schemas that are registered with Oracle XML DB. Oracle XML DB provides the PL/SQL procedure DBMS_XMLSCHEMA.CopyEvolve(). This copies existing XML instance documents to temporary tables, drops and re-registers the XML schema with Oracle XML DB, and copies the XML instance documents to the new XMLType tables.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet; it utilizes a public key /private key form of encryption between browsers and servers.

Server-Side Include (SSI)

The HTML command used to place data or other content into a Web page before sending it to the requesting browser.

servlet

A Java application that runs in a server, typically a Web or application server, and performs processing on that server. Servlets are the Java equivalent to CGI scripts.

SGML

See Structured Generalized Markup Language.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based applications.

Simple Object Access Protocol (SOAP)

An XML-based protocol for exchanging information in a decentralized, distributed environment.

SOAP

See Simple Object Access Protocol.

SQL

See Structured Query Language.

SQL/XML

An ANSI specification for representing XML in SQL. Oracle SQL includes SQL/XML functions that query XML. The specification is not yet completed.

SSI

See Server-side Include.

SSL

See Secure Sockets Layer.

Structured Generalized Markup Language (SGML)

An ISO standard for defining the format of a text document implemented using markup and DTDs.

Structured Query Language (SQL)

The standard language used to access and process data in a relational database.

stylesheet

In XML, the term used to describe an XML document that consists of XSL processing instructions used by an XSLT processor to transform or format an input XML document into an output one.

SYSTEM

Specifies the location on the host operating system of the reference that follows.

SYS_XMLAGG

The native SQL function that returns as a single XML document the results of a passed-in SYS_XMLGEN SQL query. This can also be used to instantiate an XMLType.

SYS_XMLGEN

The native SQL function that returns as an XML document the results of a passed-in SQL query. This can also be used to instantiate an XMLType.

tag

A single piece of XML markup that delimits the start or end of an element. Tags start with < and end with >. In XML, there are start-tags (<name>), end-tags (</name>), and empty tags (<name/>).

TransX Utility

TransX Utility is a Java API that simplifies the loading of translated seed data and messages into a database.

UDDI

See Universal Description, Discovery and Integration.

UIX

See User Interface XML.

Uniform Resource Identifier (URI)

The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are used by browsers to navigate the World Wide Web and consist of a protocol prefix, port number, domain name, directory and subdirectory names, and the file name. For example http://www.oracle.com:80/technology/tech/xml/index.htm specifies the location and path a browser will travel to find the OTN XML site on the World Wide Web.

Universal Description, Discovery and Integration (UDDI)

This specification provides a platform-independent framework using XML to describe services, discover businesses, and integrate business services on the Internet.

unmarshalling

The process of reading an XML document and constructing a tree of Java content objects. Each content object corresponds directly to an instance in the input document of the corresponding schema component.

See Also: marshalling

URI

See Uniform Resource Identifier.

URL

See Uniform Resource Locator.

User Interface XML (UIX)

A set of technologies that constitute a framework for building Web applications.

valid

The term used to refer to an XML document when its structure and element content is consistent with that declared in its associated DTD or XML schema.

W3C

See World Wide Web Consortium (W3C).

WebDAV

See World Wide Web distributed authoring and versioning.

Web Request Broker

The cartridge within Oracle Application Server that processes URLs and sends them to the appropriate cartridge.

Web Services Description Language (WSDL)

A general purpose XML language for describing the interface, protocol bindings, and deployment details of Web services.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML version declared in its XML declaration. This includes having a single root element, properly nested tags, and so forth.

Working Group (WG)

The committee within the W3C that is made up of industry members that implement the recommendation process in specific Internet technology areas.

World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the World Wide Web. It is located at http://www.w3c.org.

World Wide Web Distributed Authoring and Versioning (WebDAV)

The Internet Engineering Task Force (IETF) standard for collaborative authoring on the Web. Oracle XML DB Foldering and Security features are WebDAV-compliant.

WSDL

See Web Services Description Language.

World Wide Web

A worldwide hypertext system that uses the Internet and the HTTP protocol.

XDBbinary

An XML element defined by the Oracle XML DB schema that contains binary data. XDBbinary elements are stored in the repository when completely unstructured binary data is uploaded into Oracle XML DB.

XDK

See Oracle XML Developer's Kit.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks in XML documents. These rules are being developed by the XML Linking Group under the W3C recommendation process. This is one of the three languages XML supports to manage document presentation and hyperlinks (XLink, XPointer, and XPath).

XML

See eXtensible Markup Language.

XML Base

A W3C recommendation that describes the use of the xml:base attribute, which can be inserted in an XML document to specify a base URI other than the base URI of the document or external entity. The URIs in the document are resolved by means of the given base.

XML Gateway

A set of services that allows for integration with the Oracle E-Business Suite to create and consume XML messages triggered by business events.

XML Namespaces

The term to describe a set of related element names or attributes within an XML document. The namespace syntax and its usage is defined by a W3C Recommendation. For example, the <xsl:apply-templates/ > element is identified as part of the XSL namespace. Namespaces are declared in the XML document or DTD before they are used, with the following attribute syntax: xmlns:xsl="http://www.w3.org/TR/WD-xsl".

XML Parser

In XML, a software program that receives an XML document and determines whether it is well-formed and, optionally, valid. The Oracle XML parser supports both SAX and DOM interfaces.

XML Pipeline Definition Language

W3C recommendation that enables you to describe the processing relations between XML resources.

XML processor

A software program that reads an XML document and processes it, that is, performs actions on the document based on a set of rules. Validity checkers and XML editors are examples of processors.

XML Query (XQuery)

The on-going effort of the W3C to create a standard for the language and syntax to query XML documents.

XML schema

A document written in the XML Schema language.

XML Schema

See XML Schema language.

XML Schema Definition

Equivalent to XML Schema language.

XML Schema language

The XML Schema language, also called simply "XML Schema," is a W3C standard for the use of simple data types and complex structures within an XML document. It addresses areas currently lacking in DTDs, including the definition and validation of data types.

Oracle XML Schema processor automatically ensures validity of XML documents and data used in e-business applications, including online exchanges. It adds simple and complex datatypes to XML documents and replaces DTD functionality with an XML schema definition XML document.

XMLSchema-instance mechanism

Allows Oracle XML DB protocol servers to recognize that an XML document inserted into Oracle XML DB repository is an instance of a registered XML schema. This means that the content of the instance document is automatically stored in the default table defined by that XML schema. Defined by the W3C XML Schema working group and based on adding attributes that identify the target XML schema to the root element of the instance document. These attributes are defined by the XMLSchema-instance namespace.

XMLSchema-instance namespace

Used to identify an instance document as a member of the class defined by a particular XML schema. You must declare the XMLSchema-instance namespace by adding a namespace declaration to the root element of the instance document. For example: xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance.

XML schema registration

When using Oracle XML DB, you must first register your XML schema. You can then use the XML schema URLs while creating XMLType tables, columns, and views.

XML SQL Utility (XSU)

This Oracle utility can generate an XML document (string or DOM) given a SQL query or a JDBC ResultSet object. XSU can also extract the data from an XML document, then insert, update, or delete rows in a database table.

XMLType

XMLType is an Oracle datatype that stores XML data using an underlying CLOB column or object-relational columns within a table or view.

XMLType views

Oracle XML DB provides a way to wrap existing relational and object-relational data in XML format. This is especially useful if, for example, your legacy data is not in XML but you have to migrate it to an XML format.

XPath

The open standard syntax for addressing elements within a document used by XSL and XPointer. XPath is currently a W3C recommendation. It specifies the data model and grammar for navigating an XML document utilized by XSLT, XLink and XML Query.

XPath rewrite

Can be used when the XMLType is stored in structured storage (object-relational) using an XML schema. Queries using XPath can potentially be rewritten directly to underlying object-relational columns. XPath query rewrite is used for XPaths in SQL functions such as existsNode(), extract(), extractValue(), and updateXML(). It enables the XPath to be evaluated against the XML document without constructing the XML document in memory.

XPointer

The term and W3C recommendation to describe a reference to an XML document fragment. An XPointer can be used at the end of an XPath-formatted URI. It specifies the identification of individual entities or fragments within an XML document using XPath navigation.

XSL

See eXtensible Stylesheet Language.

XSLFO

See eXtensible Stylesheet Language Formatting Object.

XSLT

See eXtensible Stylesheet Language Transformation.

XSLT Virtual Machine (XVM)

Oracle's XSLT Virtual Machine is the software implementation of a "CPU" designed to run compiled XSLT code. The concept of virtual machine assumes a compiler compiling XSLT stylesheets to a program of byte-codes, or machine instructions for the "XSLT CPU".

XSQL pages

XML pages that contain instructions for the XSQL servlet.

XSQL servlet

A Java-based servlet that can dynamically generate XML documents from one or more SQL queries and optionally transform the documents in the server with an XSLT stylesheet.

XSU

See XML SQL Utility.

23 Using the XML Schema Processor for C++

This chapter contains these topics:

	
Oracle XML Schema Processor for C++

	
XML Schema Processor API

	
Running the Provided XML Schema for C++ Sample Programs

	
Note:

Use the new unified C++ API in xml.hpp for new XDK applications. The old C++ API in oraxml.hpp is deprecated and supported only for backward compatibility, but will not be enhanced. It will be removed in a future release.

Oracle XML Schema Processor for C++

The XML Schema processor for C++ is a companion component to the XML parser for C++ that allows support to simple and complex datatypes into XML applications.

The XML Schema processor for C++ supports the W3C XML Schema Recommendation. This makes writing custom applications that process XML documents straightforward, and means that a standards-compliant XML Schema processor is part of the XDK on each operating system where Oracle is ported.

Oracle XML Schema for C++ Features

XML Schema processor for C++ has the following features:

	
Supports simple and complex types

	
Built upon the XML parser for C++

	
Supports the W3C XML Schema Recommendation

The XML Schema processor for C++ class is OracleXml::Parser::SchemaValidator.

	
See Also:

Oracle Database XML C++ API Reference schema validator interface

Online Documentation

Documentation for Oracle XML Schema processor for C++ is located in /xdk/doc/cpp/schema directory in your install area.

Standards Conformance

The XML Schema processor for C++ conforms to the following standards:

	
W3C recommendation for Extensible Markup Language (XML) 1.0

	
W3C recommendation for Document Object Model Level 1.0

	
W3C recommendation for Namespaces in XML 1.0

	
W3C recommendation for XML Schema 1.0

XML Schema Processor API

Interface SchemaValidator is an abstract template class to handle XML schema-based validation of XML documents.

Invoking XML Schema Processor for C++

The XML Schema processor for C++ can be called as an executable by invoking bin/schema in the install area. This takes the arguments:

	
XML instance document

	
Optionally, a default schema

	
Optionally, the working directory

Table 23-1 lists the options (can be listed if the option is invalid or -h is the option):

Table 23-1 XML Schema Processor for C++ Command Line Options

	Option	Description
	-0	Always exit with code 0 (success).
	-e encoding	Specify default input file encoding.
	-E encoding	Specify output/data/presentation encoding.
	-h	Help. Prints these choices.
	-i	Ignore provided schema.
	-o num	Validation option.
	-p	Print document instance to stdout on success.
	-u	Force the Unicode path.
	-v	Version - display version, then exit.

The XML Schema processor for C++ can also be invoked by writing code using the supplied APIs. The code must be compiled using the headers in the include subdirectory and linked against the libraries in the lib subdirectory. See Makefile or Make.bat in the xdk/demo/cpp/schema directory for details on how to build your program.

Error message files in different languages are provided in the mesg subdirectory.

Running the Provided XML Schema for C++ Sample Programs

The directory xdk/demo/cpp/schema contains a sample application that illustrates how to use Oracle XML Schema processor for C++ with its API. Table 23-2 lists the sample files provided.

Table 23-2 XML Schema Processor for C++ Samples Provided

	Sample File	Description
	
Makefile

	Makefile to build the sample programs and run them, verifying correct output.
	
xsdtest.cpp

	Trivial program which invokes the XML Schema for C++ API
	
car.{xsd,xml,std}

	Sample schema, instance document, expected output respectively, after running xsdtest on them.
	
aq.{xsd,xml,std}

	Second sample schema's, instance document, expected output respectively, after running xsdtest on them.
	
pub.{xsd,xml,std}

	Third sample schema's, instance document, expected output respectively, after running xsdtest on them.

To build the sample programs, run make.

To build the programs and run them, comparing the actual output to expected output:

make sure

Preface

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle XML Developer's Kit Programmer's Guide is intended for application developers interested in learning how the various language components of the Oracle XML Developer's Kit (XDK) can work together to generate and store XML data in a database or in a document outside the database. Examples and sample applications are introduced where possible.

To use this document, you need familiarity with XML and a third-generation programming language such as Java, C, or C++.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents

For more information, see these Oracle resources:

	
Oracle XML DB Developer's Guide

	
Oracle Database XML C API Reference

	
Oracle Database XML C++ API Reference

Oracle Database XML Java API Reference

	
Oracle Streams Advanced Queuing User's Guide and Reference

	
http://www.oracle.com/technology/tech/xml/

Many of the examples in this documentation are provided with your software in the following directories:

	
$ORACLE_HOME/xdk/demo/java/

	
$ORACLE_HOME/xdk/demo/c/

	
$ORACLE_HOME/xdk/java/sample/

	
$ORACLE_HOME/rdbms/demo

Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

For additional information about XML, see:

	
The following appendixes in Oracle XML DB Developer's Guide, which are intended as general introductions to XML technologies:

	
XML Schema Primer

	
XPath and Namespace Primer

	
XSLT Primer

	
Oracle Database 10g XML & SQL: Design, Build, & Manage XML Applications in Java, C, C++, & PL/SQL by Mark Scardina, Ben Chang, and Jinyu Wang, Oracle Press, http://www.osborne.com/oracle/

	
WROX publications, especially XML Design and Implementation by Paul Spencer, which covers XML, XSL, and development.

	
Building Oracle XML Applications by Steve Muench, O'Reilly, http://www.oreilly.com/catalog/orxmlapp/

	
The XML Bible, http://www.ibiblio.org/xml/books/biblegold/

	
XML, Java, and the Future of the Web by Jon Bosak, Sun Microsystems, http://www.ibiblio.org/bosak/xml/why/xmlapps.htm

	
XML for the Absolute Beginner by Mark Johnson, JavaWorld, http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html

	
XML And Databases by Ronald Bourret, http://www.rpbourret.com/xml/XMLAndDatabases.htm

	
XML Specifications by the World Wide Web Consortium (W3C), http://www.w3.org/XML/

	
XML.com, a broad collection of XML resources and commentary, http://www.xml.com/

	
Annotated XML Specification by Tim Bray, XML.com, http://www.xml.com/axml/testaxml.htm

	
XML.org, hosted by OASIS as a resource to developers of purpose-built XML languages, http://xml.org/

Conventions

This section describes the conventions used in the text and code examples of this documentation set. It describes:

	
Conventions in Text

	
Conventions in Code Examples

	
Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms. The following table describes those conventions and provides examples of their use.

	Convention	Meaning	Example
	Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
	Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts
Ensure that the recovery catalog and target database do not reside on the same disk.

	UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, datatypes, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, usernames, and roles.	You can specify this clause only for a NUMBER column.
You can back up the database by using the BACKUP command.

Query the TABLE_NAME column in the USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS procedure.

	lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executable programs, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names and connect identifiers, user-supplied database objects and structures, column names, packages and classes, usernames and roles, program units, and parameter values.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	Enter sqlplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the /disk1/oracle/dbs directory.

The department_id, department_name, and location_id columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

	lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause.
Run old_release.SQL where old_release refers to the release you installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. They are displayed in a monospace (fixed-width) font and separated from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and provides examples of their use.

	Convention	Meaning	Example
	

[]

	Anything enclosed in brackets is optional.	

DECIMAL (digits [, precision])

	

{ }

	Braces are used for grouping items.	

{ENABLE | DISABLE}

	

|

	A vertical bar represents a choice of two options.	

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

	

...

	Ellipsis points mean repetition in syntax descriptions.
In addition, ellipsis points can mean an omission in code examples or text.

	

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM employees;

	Other symbols	You must use symbols other than brackets ([]), braces ({ }), vertical bars (|), and ellipsis points (...) exactly as shown.	

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

	

Italics

	Italicized text indicates placeholders or variables for which you must supply particular values.	

CONNECT SYSTEM/system_password
DB_NAME = database_name

	

UPPERCASE

	Uppercase typeface indicates elements supplied by the system. We show these terms in uppercase in order to distinguish them from terms you define. Unless terms appear in brackets, enter them in the order and with the spelling shown. Because these terms are not case sensitive, you can use them in either UPPERCASE or lowercase.	

SELECT last_name, employee_id FROM employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

	

lowercase

	Lowercase typeface indicates user-defined programmatic elements, such as names of tables, columns, or files.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	

SELECT last_name, employee_id FROM employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and provides examples of their use.

	Convention	Meaning	Example
	Choose Start > menu item	How to start a program.	To start the Database Configuration Assistant, choose Start > Programs > Oracle - HOME_NAME > Configuration and Migration Tools > Database Configuration Assistant.
	File and directory names	File and directory names are not case sensitive. The following special characters are not allowed: left angle bracket (<), right angle bracket (>), colon (:), double quotation marks ("), slash (/), pipe (|), and dash (-). The special character backslash (\) is treated as an element separator, even when it appears in quotes. If the filename begins with \\, then Windows assumes it uses the Universal Naming Convention.	c:\winnt"\"system32 is the same as C:\WINNT\SYSTEM32
	C:\>	Represents the Windows command prompt of the current hard disk drive. The escape character in a command prompt is the caret (^). Your prompt reflects the subdirectory in which you are working. Referred to as the command prompt in this manual.	

C:\oracle\oradata>

	Special characters	The backslash (\) special character is sometimes required as an escape character for the double quotation mark (") special character at the Windows command prompt. Parentheses and the single quotation mark (') do not require an escape character. Refer to your Windows operating system documentation for more information on escape and special characters.	

C:\>exp HR/HR TABLES=employees QUERY=\"WHERE job_id='SA_REP' and salary<8000\"

	

HOME_NAME

	Represents the Oracle home name. The home name can be up to 16 alphanumeric characters. The only special character allowed in the home name is the underscore.	

C:\> net start OracleHOME_NAMETNSListener

	ORACLE_HOME and ORACLE_BASE	In releases prior to Oracle8i release 8.1.3, when you installed Oracle components, all subdirectories were located under a top level ORACLE_HOME directory. The default for Windows NT was C:\orant.
This release complies with Optimal Flexible Architecture (OFA) guidelines. All subdirectories are not under a top level ORACLE_HOME directory. There is a top level directory called ORACLE_BASE that by default is C:\oracle\product\10.1.0. If you install the latest Oracle release on a computer with no other Oracle software installed, then the default setting for the first Oracle home directory is C:\oracle\product\10.1.0\db_n, where n is the latest Oracle home number. The Oracle home directory is located directly under ORACLE_BASE.

All directory path examples in this guide follow OFA conventions.

Refer to Oracle Database Installation Guide for Microsoft Windows (32-Bit) for additional information about OFA compliances and for information about installing Oracle products in non-OFA compliant directories.

	Go to the ORACLE_BASE\ORACLE_HOME\rdbms\admin directory.

Index

A B C D E F G H I J L M N O P R S T U V W X

Symbols

	<xsql:dml> action, 27.1, 27.1, 27.1, 27.1, 27.1, 27.1
	<xsql:include-owa> action, 27.1
	<xsql:include-param> action, 27.1
	<xsql:include-posted-xml> action, 27.1
	<xsql:include-request-params> action, 27.1
	<xsql:include-xml> action, 27.1, 27.1, 27.1
	<xsql:query> action, 27.1
	<xsql:set-cookie> action, 27.1
	<xsql:set-page-param> action, 27.1
	<xsql:set-session-param> action, 27.1
	<xsql:set-stylesheet-param> action, 27.1

A

	access control entry, definition, Glossary
	access control list, definition, Glossary
	ACE, definition, Glossary
	ACL, definition, Glossary
	application server, definition, Glossary
	attribute, definition, Glossary

B

	B2B, definition, Glossary
	B2C, definition, Glossary
	binding
	
	clearBindValues(), 9.2.1.3

	Built-in Action Handler, 12.8.1.2
	Built-in Action Handler, XSQL, 12.8.1.2
	Business-to-Business, definition, Glossary
	Business-to-Consumer, definition, Glossary

C

	C++ class generator, 1.2.4
	C++ interface, 20.2
	callback, definition, Glossary
	cartridge, definition, Glossary
	Cascading Style Sheets, definition, Glossary, Glossary
	CDATA, definition, Glossary
	Class Generator
	
	XML C++, 25

	Class Generator, definition, Glossary
	CLASSPATH
	
	XSQL Pages, 11.2.2.2

	CLASSPATH, definition, Glossary
	clearBindValues(), 9.2.1.3
	clearUpdateColumnNames(), 9.4.6.2
	command-line interface
	
	oraxml, 3.2.3, 6.2.3

	Common Object Request Broker API, definition, Glossary
	Common Oracle Runtime Environment, definition, Glossary
	Connection Definitions, 11.2.2.4
	context, creating one in XSU PL/SQL API, 9.4.10
	CORBA, definition, Glossary
	CORE, definition, Glossary
	creating context handles
	
	getCtx, 9.2.1.3

	custom connection manager, 12.8.4.1

D

	DAD, definition, Glossary
	Data Provider for .NET, 1.4.5
	data variables into XML, 3.7.2
	Database Access Descriptor, definition, Glossary
	datagram, definition, Glossary
	DB Access JavaBean, 8.1.3.3
	DBMS_XMLQuery
	
	clearBindValues(), 9.2.1.3
	getXMLClob, 9.2.1.3

	DBMS_XMLQuery(), 9.2.1.3
	DBMS_XMLSave, 9.2.1.4
	
	deleteXML, 9.2.1.4
	getCtx, 9.2.1.4
	insertXML, 9.2.1.4
	updateXML, 9.2.1.4

	DBMS_XMLSave(), 9.2.1.4
	DBURITYPE, definition, Glossary
	Default SQL to XML Mapping, 9.5.1.1
	DOCTYPE, definition, Glossary
	Document Location Hint, definition, Glossary
	Document Object Model, definition, Glossary
	Document Type Definition, definition, Glossary
	DOM
	
	specifications, 29.1.2.1

	DOM fidelity, definition, Glossary
	DOM, definition, Glossary
	DOMBuilder Bean, 8.1.3.1
	DTD, definition, Glossary
	DTDs
	
	external, 3.7.3.1

E

	EDI, definition, Glossary
	EJB, definition, Glossary
	Electronic Data Interchange, definition, Glossary
	element, definition, Glossary
	empty element, definition, Glossary, Glossary
	Enterprise JavaBean, definition, Glossary
	entity, definition, Glossary
	eXtensible Stylesheet Language Formatting Object, definition, Glossary
	eXtensible Stylesheet Language Transformation, definition, Glossary
	eXtensible Stylesheet Language, definition, Glossary

F

	FileReader not for system files, 3.7.4.1
	FOP
	
	serializer, 11.2.3
	serializer to produce PDF, 12.7

	FOP, definition, Glossary

G

	generated XML
	
	customizing, 9.5.1.3

	generating XML, 9.2.4.1
	
	using DBMS_XMLQuery, 9.2.1.3
	using XSU command line, getXML, 9.2.4.1

	getCtx, 9.2.1.3, 9.2.1.4
	getXML, 9.2.4.1
	getXMLClob, 9.2.1.3

H

	HASPATH, definition, Glossary
	hierarchical indexing, definition, Glossary
	HTML Form Parameters, 11.5.2.4
	HTTP Parameters, 11.5.1
	HTTP POST method, 11.5.3.2
	HTTPURITYPE, definition, Glossary

I

	IDAP, 13.4.1
	IDE, definition, Glossary
	IIOP, definition, Glossary
	INPATH, definition, Glossary
	insert, XSU, 9.5.2.2
	insertXML, 9.2.1.4
	instantiate, definition, Glossary
	Integrated Development Environment, definition, Glossary
	interMedia, definition, Glossary
	invalid characters, 3.7.4.6

J

	JAR files, DTDs, 3.7.3.1
	Java 2 Platform, Enterprise Edition, definition, Glossary
	Java API for XML Processing (JAXP), definition, Glossary
	Java Architecture for XML Binding (JAXB), definition, Glossary
	Java components
	
	environment in Windows, 2.3.2
	installation, 2.1, 14.1

	Java Database Connectivity, definition, Glossary
	Java Naming and Directory Interface, definition, Glossary
	Java Runtime Environment, definition, Glossary
	Java, definition, Glossary
	JavaBean, definition, Glossary
	JAXB
	
	class generator, 1.2.4
	compared with JAXP, 6.1, 6.2
	features not supported, 6.2.4
	marshalling and unmarshalling, 6.1
	validating, 6.1
	what is, 6.2

	JAXP
	
	compared with JAXB, 6.1

	JAXP (Java API for XML Processing), 3.5
	JDBC driver, 9.2.1.1
	JDBC, definition, Glossary, Glossary
	JDeveloper, 1.4.1
	JDeveloper, definition, Glossary
	JDK, definition, Glossary
	JNDI, definition, Glossary
	JRE, definition, Glossary
	JSP, definition, Glossary
	JSR, definition, Glossary
	JVM, definition, Glossary, Glossary

L

	lazy type conversions, definition, Glossary
	listener, definition, Glossary

M

	mapping
	
	primer, XSU, 9.5.1

	method
	
	getDocument(), DOMBuilder Bean, 8.2.1.1

	methods
	
	addXSLTransformerListener(), 8.2.1.2
	domBuilderError(), 8.2.1.1
	DOMBuilderOver(), 8.2.1.1, 8.2.1.2
	domBuilderStarted(), 8.2.1.1

	Microsoft .NET, 1.4.5

N

	name-level locking, definition, Glossary
	namespace, definition, Glossary
	.NET, 1.4.5
	no rows exception, 9.3.9.2
	node, definition, Glossary
	notation attribute declaration, definition, Glossary

O

	OAG, definition, Glossary
	OASIS, definition, Glossary
	OC4J, definition, Glossary
	OCI examples, 15.5.5
	Open Applications Group, definition, Glossary
	Oracle Content Management SDK, definition, Glossary
	Oracle Text, definition, Glossary
	Oracle XML DB, definition, Glossary
	ORACLE_HOME, definition, Glossary
	Oracle9i JVM, 3.2
	OracleXML
	
	XSU command line, 9.2.4

	OracleXml namespace, 20.3
	OracleXMLSQLException, 9.3.9
	oraxml, 3.2.3, 6.2.3
	oraxsl
	
	command line interfaces, 4.2.3

	ORB, definition, Glossary
	Ordered Collection in Tables, definition, Glossary
	Out Variable, using xsql
	
	dml, 11.5.2.5

P

	parent element, definition, Glossary
	parseDTD() method, 3.7.3.1
	Parser for Java, 3
	
	constructor extension functions, 4.4.4
	oraxsl, 4.2.3
	return value extension function, 4.4.5
	supported database, 3.2
	using DTDs, 3.7.3

	Parser for Java, overview, 3.2
	path name, definition, Glossary
	PCDATA, definition, Glossary
	PDA, definition, Glossary
	PDF results using FOP, 11.2.3
	Personal Digital Assistant, definition, Glossary
	Pipeline Definition Language, 7.1
	Pipeline Definition Language, definition, Glossary
	PL/SQL
	
	generating XML with DBMS_XMLQuery, 9.2.1.3

	principal, definition, Glossary
	prolog, definition, Glossary
	PUBLIC, definition, Glossary

R

	renderer, definition, Glossary
	Reports, Oracle, 1.4.3
	repository, definition, Glossary
	Resource Definition Framework, definition, Glossary
	resource name, definition, Glossary
	resource, definition, Glossary
	result set, definition, Glossary
	root element, definition, Glossary

S

	SAX, definition, Glossary
	schema evolution, definition, Glossary
	schema, definition, Glossary
	Secure Sockets Layer, definition, Glossary
	security, XSQL Pages, 11.5.4
	select
	
	with XSU, 9.5.2.1

	Server-Side Include (SSI), definition, Glossary
	servlet, definition, Glossary
	servlet, XSQL, 11, 12
	setKeyColumn(), 9.3.8.2, 9.4.8.2
	setMaxRows, 9.4.3
	setRaiseNoRowsException(), 9.4.3
	setSkipRows, 9.4.3
	setStylesheetHeader(), 9.4.4
	setUpdateColumnName(), 9.4.6.2
	setUpdateColumnNames()
	
	XML SQL Utility (XSU)
	
	setUpdateColumnNames(), 9.2.3, 9.3.7.2

	setXSLT(), 9.4.4
	SGML, definition, Glossary
	Simple API for XML, definition, Glossary
	Simple Object Access Protocol (SOAP), definition, Glossary
	SOAP
	
	C clients, 18.1.2
	C examples, 18.3
	C Functions, 18.2
	for C, 18.1
	server, 18.1.3
	what is, 18.1.1

	SOAP, definition, Glossary
	SQL, definition, Glossary
	SQL/XML, definition, Glossary
	SSI, definition, Glossary
	storing XML in the database, 9.2.1.4
	string data, 3.7.4.6
	stylesheet, definition, Glossary
	SYS_XMLAGG, definition, Glossary
	SYS_XMLGEN, definition, Glossary
	SYSTEM, definition, Glossary

T

	tag, definition, Glossary
	TransX Utility, 10
	TransX Utility, definition, Glossary

U

	UIX, 1.4.2
	UIX, definition, Glossary
	Unicode in a system file, 3.7.4.1
	Uniform Resource Identifier, definition, Glossary
	Uniform Resource Locator, definition, Glossary
	update, XSU, 9.5.2.3
	URI, definition, Glossary
	URL, definition, Glossary
	usage techniques, 9.5
	User Interface XML, 1.4.2
	User Interface XML (UIX), definition, Glossary
	UTF-16 Encoding, 3.7.4.5
	UTF-8 output, 3.7.4.3

V

	valid, definition, Glossary
	validation
	
	auto validation mode, 3.1.5, 3.1.5
	DTD validating Mode, 3.1.5
	partial validation mode, 3.1.5
	schema validation, 3.1.5
	schema validation mode, 3.1.5

W

	W3C, definition, Glossary
	Web Request Broker, definition, Glossary
	WebDAV, definition, Glossary, Glossary
	well-formed, definition, Glossary
	WG, definition, Glossary
	WML Document, 11.5.2.1
	World Wide Web Consortium, definition, Glossary
	World Wide Web Distributed Authoring and Versioning, definition, Glossary
	World Wide Web, definition, Glossary
	WRB, definition, Glossary

X

	XDBbinary, definition, Glossary
	XDK components, 1.1
	XDK version
	
	using Java, 2.4, 14.2.5, 19.2.5

	XDK, definition, Glossary
	XLink, definition, Glossary
	XML Base, 29.1.1
	XML Base, definition, Glossary
	XML C++ Class Generator, 25
	XML Developer's Kit (XDK), definition, Glossary
	XML documents
	
	generating from C, 1.3.2
	generating from C++, 1.3.3
	generating from Java, 1.3.1

	XML Gateway, 1.4.4
	XML Gateway, definition, Glossary
	XML Namespaces 1.0, 29.1.1
	XML output in UTF-8, 3.7.4.3
	XML parser
	
	oraxml command-line interface, 3.2.3, 6.2.3

	XML parser for C
	
	sample programs, 16.3.1

	XML parser, definition, Glossary
	XML Query, definition, Glossary
	XML Schema
	
	explained, 5.1.4
	processor for Java
	
	how to run the sample program, 4.2.2, 5.2.2, 6.2.2, 7.2.2, 10.2.2

	XML schema registration, definition, Glossary
	XML Schema, definition, Glossary
	XML SQL Utility, Glossary
	XML SQL Utility (XSU), 1.2.7
	
	advanced techniques, exception handling (PL/SQL), 9.4.9
	clearBindValues() with PL/SQL API, 9.2.1.3
	connecting with OCI* JDBC driver, 9.2.1.1
	creating context handles with getCtx, 9.2.1.3
	customizing generated XML, 9.5.1.3
	DBMS_XMLQuery, 9.2.1.3
	DBMS_XMLSave(), 9.2.1.4
	dependencies and installation, 9.2.1
	explained, 9.2
	getXML command line, 9.2.4.1
	getXMLClob, 9.2.1.3
	inserts, 9.5.2.2
	mapping primer, 9.5.1
	selects, 9.5.2.1
	setKeyColumn() function, 9.3.8.2
	setRaiseNoRowsException(), 9.4.3
	updates, 9.5.2.3

	XML SQL Utility XSU)
	
	setXSLT(), 9.4.4

	XML, definition, Glossary
	xmlcg usage, 25.3
	XMLCompress JavaBean, 8.1.3.6
	XMLDBAccess JavaBean, 8.1.3.4
	XMLDiff JavaBean, 8.1.3.5
	XMLGEN, is obsolete. See DBMS_XMLQUERY and DBMS_XMLSAVE, 9.2.1
	XMLNode.selectNodes() method, 3.7.1
	XMLSchema-instance mechanism, definition, Glossary
	XMLSchema-instance namespace, definition, Glossary
	XMLType views, definition, Glossary
	XPath rewrite, definition, Glossary
	XPath, definition, Glossary
	XPointer, definition, Glossary
	XSDBuilder, 3.1.5
	XSL Transformation (XSLT) Processor, 1.2.2
	XSL Transformation (XSLT) Processor for Java, 4.2, 7.2, 10.2
	XSL Transformations Specifications, 29.1.2.2
	XSL, definition, Glossary
	XSLFO, definition, Glossary
	XSLT
	
	XSLTransformer bean, 8.2.1.2

	XSLT compiler, 16.1
	XSLT processor, 16.2
	XSLT Processor for Java
	
	hints for using, 4.5

	XSLT stylesheets
	
	setStylesheetHeader() in XSU PL/SQL, 9.4.4
	setXSLT() with XSU PL/SQL, 9.4.4

	XSLT, definition, Glossary
	XSLTransformer JavaBean, 8.1.3.2
	XSLValidator JavaBean, 8.1.3.7
	XSQL
	
	action handler errors, 12.4.2
	advanced topics, 12
	built-in action handler elements, 12.8.1.2
	connection, 11.5.2.6, 11.5.2.7
	current page name, 11.5.2.8
	errors, 11.5.3.1
	setting up demos, 11.2.3.1, 11.2.3.2
	SOAP support, 11.5.2.6
	stylesheets, 12.2
	two queries, 11.5.2.3

	XSQL Pages security, 11.5.4
	XSQL servlet
	
	hints, 11.5.2

	XSQL Servlet examples, 11.2.3
	XSQL, definition, Glossary, Glossary
	XSU
	
	generating XML, 9.2.4.1
	mapping primer, 9.5.1
	usage guidelines, 9.5.1

	XSU (XML SQL Utility), 1.2.7
	XVM
	
	XSLT compiler, 16.1.2

	XVM (XSLT Virtual Machine) processor, 16.1
	XVM, definition, Glossary

10 Using the TransX Utility

This chapter contains these topics:

	
Introduction to the TransX Utility

	
Using the TransX Utility: Overview

	
Loading Data with the TransX Utility

	
See Also:

Chapter 28, "Data Loading Format (DLF) Specification"

Introduction to the TransX Utility

TransX Utility enables you to transfer XML to a database. More specifically, the TransX utility is an application of XML SQL Utility (XSU) that loads translated seed data and messages into a database schema. If you have data to be populated into a database in multiple languages, then the utility provides the functionality that you would otherwise need to develop with XSU.

The TransX utility is particularly useful when handling multilingual XML. The utility does the following:

	
Automatically manages the change variables, start sequences, and additional SQL statements that would otherwise require multiple inserts or sessions. Thus, translation vendors do not need to work with unfamiliar SQL and PL/SQL scripts.

	
Automates character encoding. Consequently, loading errors due to incorrect encoding are impossible so long as the data file conforms to the XML standard.

	
Reduces globalization costs by preparing strings to be translated, translating the strings, and loading them into the database.

	
Minimizes translation data format errors and accurately loads the translation contents into pre-determined locations in the database. When the data is in a predefined format, the TransX utility validates it.

	
Eliminates syntax errors due to varying Globalization Support settings.

	
Does not require the UNISTR construct for every piece of NCHAR data.

Prerequisites

This chapter assumes that you are familiar with XML SQL Utility (XSU) because TransX is an application of XSU.

	
See Also:

Chapter 9, "Using the XML SQL Utility (XSU)"

TransX utility Features

This section describes the following features of the TransX utility:

	
Simplified Multilingual Data Loading

	
Simplified Data Format Support and Interface

	
Additional TransX utility Features

Simplified Multilingual Data Loading

When inserting multilingual data or data translations into an Oracle database, or when encoding, each XML file requires validation. The traditional translation data loading method is to change the NLS_LANG environment variable setting when switching load files. This variable sets the language and territory used by the client application and the database server. It also sets the client character set, which is the character set for data entered or displayed by a client program.

In the traditional method, each load file is encoded in a character set suitable for its language, which is necessary because translations must be performed in the same file format—typically in a SQL script—as the original. The NLS_LANG setting changes as files are loaded to adapt to the character set that corresponds to the language. As well as consuming time, this approach is error-prone because the encoding metadata is separate from the data itself.

With the TransX utility you use an XML document with a predefined format called a dataset. The dataset contains the encoding information and the data so that you can transfer multilingual data without changing NLS_LANG settings. The TransX utility frees development and translation groups by maintaining the correct character set while loading XML data into the database.

	
See Also:

Oracle Database Globalization Support Guide to learn about the NLS_LANG environment variable

Simplified Data Format Support and Interface

The TransX utility provides a command-line interface and programmable API. The utility complies with a data format defined to be the canonical method for the representation of seed data loaded into the database. The format is intuitive and simplified for use by translation groups. The format specification defines how translators can describe the data so that it is loaded in an expected way. You can represent the values in the data set with scalar values or expressions such as constants, sequences, and queries.

Additional TransX utility Features

Table 10-1 describes other useful TransX utility features.

Table 10-1 TransX Utility Features

	Feature	TransX Utility . . .
	Command-line interface	Provides easy-to-use commands.
	User API	Exposes a Java API.
	Validation	Validates the data format and reports errors.
	Whitespace handling	Does not consider whitespace characters in the data set as significant unless otherwise specified in various granularity.
	Unloading	Exports the result into the standard data format based on an input query.
	Intimacy with translation exchange format	Enables transformation to and from translation exchange format.
	Localized user interface	Provides messages in many languages.

Using the TransX Utility: Overview

This section contains the following topics:

	
Using the TransX Utility: Basic Process

	
Running the TransX Utility Demo Programs

	
Using the TransX Command-Line Utility

Using the TransX Utility: Basic Process

TransX is accessible through the following API:

	
oracle.xml.transx.loader class, which contains the getLoader() method to obtain a TransX instance

	
oracle.xml.transx.TransX interface, which is the TransX API

Figure 10-1 illustrates the basic process for using the TransX API to transfer XML to an Oracle database.

Figure 10-1 Basic Process of a TransX Application

[image: This graphic is described in the following text.]

The basic process of a TransX application is as follows:

	
Create a TransX loader object. Instantiate the TransX class by calling getLoader() as follows:

TransX transx = loader.getLoader();

	
Start a data loading session by supplying database connection information with TransX.open(). You create a session by supplying the JDBC connect string, database username, and database password. You have the following options:

	
Create the connection with the JDBC OCI driver. The following code fragment illustrates this technique and connect as user hr with password hr:

transx.open("jdbc:oracle:oci8:@", "hr", "hr");

	
Create the connection with the JDBC thin driver. The thin driver is written in pure Java and can be called from any Java program. The following code fragment illustrates this technique and connects as user hr with password hr:

transx.open("jdbc:oracle:thin:@myhost:1521:ORCL", "hr","hr");

The thin driver requires the host name (dlsun489), port number (1521), and the Oracle SID (ORCL). The database must have an active TCP/IP listener.

	
Note:

If you are just validating your data format, then you do not need to establish a database connection because the validation is performed by TransX. Thus, you can invoke the TransX.validate() method without a preceding open() call.

	
Configure the TransX loader. Table 10-2 describes configuration methods.

Table 10-2 TransX Configuration Methods

	Method	Description
	setLoadingMode()	Sets the operation mode on duplicates. The mode determines TransX behavior when there are one or more existing rows in the database whose values in the key columns are the same as those in the dataset to be loaded. You can specify the constants EXCEPTION_ON_DUPLICATES, SKIP_DUPLICATES, or UPDATE_DUPLICATES in class oracle.xml.transx.LoadingMode. By default the loader skips duplicates.
	setPreserveWhitespace()	Specifies how the loader should handle whitespace. The default is FALSE, which means that the loader ignores the type of whitespace characters in the dataset and loads them as space characters. The loader treats consecutive whitespace characters in the dataset as one space character.
	setValidationMode()	Sets the validation mode. The default is TRUE, which means that the loader performs validation of the dataset format against the canonical schema definition on each load() call. The validation mode should be disabled only if the dataset has already been validated.

The following example specifies that the loader should skip duplicate rows and not validate the dataset:

transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

	
Load the datasets by invoking TransX.load(). The same JDBC connection is used during the iteration of the load operations. For example, load three datasets as follows:

String datasrc[] = {"data1.xml", "data2.xml", "data3.xml"};
...
for (int i = 0 ; i < datasrc.length ; i++)
{
 transx.load(datasrc[i]);
}

	
Close the loading session by invoking TransX.close(). This method call closes the database connection:

transx.close();

	
See Also:

	
Oracle Database Java Developer's Guide to learn about Oracle JDBC

	
Oracle Database XML Java API Reference to learn about TransX classes and methods

Running the TransX Utility Demo Programs

Demo programs for the TransX utility are included in $ORACLE_HOME/xdk/demo/java/transx. Table 10-3 describes the XML files and programs that you can use to test the utility.

Table 10-3 TransX Utility Sample Files

	File	Description
	README	A text file that describes how to set up the TransX demos.
	emp-dlf.xml	A sample output file. The following command generates a file emp.xml that contains all data in the table emp:

transx -s "localhost:1521:mydb" scott tiger emp.xml emp

The emp-dlf.xml file should be identical to emp.xml.

	txclean.sql	A SQL file that drops the tables and sequences created for the demo.
	txdemo1.java	A sample Java application that creates a JDBC connection and loads three datasets into the database.
	txdemo1.sql	A SQL script that creates two tables and a sequence for use by the demo application.
	txdemo1.xml	A sample dataset.

Documentation for how to compile and run the sample programs is located in the README. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/transx directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\transx directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment". It is recommended that you set the $ORACLE_SID (UNIX) or %ORACLE_SID% (Windows) environment variables to the default database.

	
Set up the sample database objects by executing txdemo1.sql. Connect to the database as scott and run the txdemo1.sql script as follows:

@txdemo1

	
Run the TransX utility from the command line. For example, assume that you want to connect with the Java thin driver and that your host is localhost, your port is 1521, and your SID is mydb. You can execute the following command to load dataset txdemo1.xml:

transx "localhost:1521:mydb" scott tiger txdemo1.xml

When the operation is successful, nothing is printed out on your terminal.

	
Query the database to determine whether the load was successful. For example:

SELECT * FROM i18n_messages;

	
Drop the demo objects to prepare for another test. Connect to the database as scott and run the txclean.sql script as follows:

@txclean

	
Compile the Java demo program. For example:

javac txdemo1.java

	
Run the Java program, using the same JDBC and database connection data that you when invoking the command-line interface. For example:

java txdemo1 "localhost:1521:mydb" scott tiger txdemo1.xml

Perform the same query test (step 5) and clean-up operation (step 6) as before.

	
Run the TransX Utility to unload data into the predefined XML format. For example:

transx -s "localhost:1521:mydb" scott tiger emp.xml emp

Compare the data in emp.xml with emp-dlf.xml.

Using the TransX Command-Line Utility

TransX utility is packaged with Oracle Database. By default, the Oracle Universal Installer installs the utility on disk. As explained in "Java XDK Component Dependencies", the TransX library is $ORACLE_HOME/bin/xml.jar (UNIX) and %ORACLE_HOME%\bin\xml.jar (Windows).

You can run the TransX utility from the operating system command line with the following syntax:

java oracle.xml.transx.loader

The XDK includes a script version of TransX named $ORACLE_HOME/bin/transx (UNIX) and %ORACLE_HOME%\bin\transx.bat (Windows). Assuming that your PATH variable is set correctly, you can run TransX as follows:

transx options parameters
transx.bat options parameters

For example, the following command shows valid syntax:

transx -s "localhost:1521:mydb" scott tiger emp.xml emp

TransX utility Command-Line Options

Table 10-4 describes the options for the TransX utility.

Table 10-4 TransX utility Command-line Options

	Option	Meaning	Description
	

-u

	Update existing rows.	Does not skip existing rows but updates them. To exclude a column from the update operation, set the useforupdate attribute to no.
	

-e

	Raise exception if a row is already existing in the database.	Throws an exception if a duplicate row is found. By default, TransX skips duplicate rows. Rows are considered duplicate if the values for lookup-key column(s) in the database and the data set are the same.
	

-x

	Print data in the database in the predefined format.	Similar to the -s option, it causes the utility to perform the opposite operation of loading. Unlike the -s option, it prints to stdout. Redirecting this output to a file is discouraged because intervention of the operating system may result in data loss due to unexpected transcoding.
	-s	Save data in the database into a file in the predefined format.	Performs unloading. TransX Utility queries the database, formats the result into the predefined XML format, and stores it under the specified file name.
	-p	Print the XML to load.	Prints out the data set for insert in the canonical format of XSU.
	-t	Print the XML for update.	Prints out the data set for update in the canonical format of XSU.
	-o	Omit validation (as the data set is parsed it is validated by default).	Causes TransX Utility to skip the format validation, which is performed by default.
	-v	Validate the data format and exit without loading.	Causes TransX Utility to perform validation and exit.
	-w	Preserve white space.	Causes TransX Utility to treat whitespace characters (such as \t, \r, \n, and ' ') as significant. The utility condenses consecutive whitespace characters in string data elements into one space character by default.

Note the following command-line option exceptions:

	
-u and -e are mutually exclusive.

	
-v must be the only option followed by data, as shown in the examples.

	
-x must be the only option followed by connect information and a SQL query, as shown in the examples.

Omitting all arguments results in the display of the usage information shown in Table 10-4.

TransX Utility Command-Line Parameters

Table 10-5 describes the command-line parameters for the TransX utility.

Table 10-5 TransX utility Command-line Parameters

	Parameter	Description
	

connect_string

	The JDBC connect string (not the Oracle net service name). You can omit the connect string information by using the at symbol (@), in which case jdbc:oracle:thin:@ is supplied.
	

username

	Database user name.
	

password

	Password for the database user.
	

datasource

	An XML document specified by filename or URL.
	

options

	Described in Table 10-4, "TransX utility Command-line Options".

	
See Also:

Oracle Database XML Java API Reference for complete details of the TransX interface

Loading Data with the TransX Utility

The TransX utility is especially useful for populating a database with multilingual data. To use the utility to transfer data in and out of a database schema you must create a dataset that maps to this schema. This section describes a typical use scenario in which you use TransX to organize translated application messages in a database.

This section contains the following topics:

	
Storing Messages in the Database

	
Creating a Dataset in a Predefined Format

	
Loading the Data

	
Querying the Data

Storing Messages in the Database

To build an internationalized system, it is essential to decouple localizable resources from business logic. A typical example of such a resource is translated text information. Data that is specific to a particular region and shares a common language and cultural conventions needs to be organized with a resource management facility that can retrieve locale-specific information. A database is often used to store such data because of easy maintenance and flexibility.

Assume that you create the table with the structure and content shown in Example 10-1 and insert data.

Example 10-1 Structure of Table translated_messages

CREATE TABLE translated_messages
(
 MESSAGE_ID NUMBER(4)
 CONSTRAINT tm_mess_id_nn NOT NULL
, LANGUAGE_ID VARCHAR2(3)
, MESSAGE VARCHAR2(200)
);

The column language_id is defined in this table so that applications can retrieve messages based on the preferred language of the end user. It contains abbreviations of language names to identify the language of messages.

Example 10-2 shows sample data for the table.

Example 10-2 Query of translated_messages

MESSAGE_ID LANGUAGE_ID MESSAGE
---------- ----------- ----------------------------------
1 us Welcome to System X
2 us Please enter username and password

	
See Also:

Oracle Database Globalization Support Guide for Oracle language abbreviations

Creating a Dataset in a Predefined Format

Chapter 28, "Data Loading Format (DLF) Specification" describes the complete syntax of the Data Loading Format (DLF) language. This language is used to create a DLF document that provides the input to TransX.

Given the dataset (the input data) in the canonical format, the TransX utility loads the data into the designated locations in the database. Note that TransX does not create the database objects: you must create the tables or views before attempting to load data.

An XML document that represents the translated_messages table created in Example 10-1 looks something like Example 10-3. The dataset reflects the structure of the target table, which in this case is called translated_messages.

Example 10-3 example.xml

<?xml version="1.0"?>
<table name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" constant="us" translate="yes"/>
 <column name="message" type="string" translate="yes"/>
 </columns>
 <!-- Specify the data to be inserted -->
 <dataset>
 <row>
 <col name="message_id">1</col>
 <col name="message" translation-note="dnt'X'">Welcome to System X</col>
 </row>
 <row>
 <col name="message_id">2</col>
 <col name="message">Please enter username and password</col>
 </row>
 <!-- ... -->
 </dataset>
</table>

Format of the Input XML Document

The XML document in Example 10-3 starts with the following declaration:

<?xml version="1.0"?>

Its root element <table>, which has an attribute that specifies the name of the table, encloses all the other elements:

<table name="translated_messages">
...
</table>

As explained in "Elements in DLF", the <table> element contains three subsections:

	
Lookup Key Elements

	
Metadata Elements

	
Data Elements

The preceding sections map to element in Example 10-3 as follows:

<lookup-key>...</lookup-key>
<columns>...</columns>
<dataset>...</dataset>

The lookup keys are columns used to evaluate rows if they already exist in the database. Because we want a pair of message and language IDs to identify a unique string, the document lists the corresponding columns. Thus, the message_id, language_id, and message columns in table translated_messages map to the attributes in the <column> element as follows:

<column name="message_id" type="number"/>
<column name="language_id" type="string" constant="us" translate="yes"/>
<column name="message" type="string" translate="yes"/>

The columns section should mirror the table structure because it specifies which piece of data in the dataset section maps to which table column. The column names should be consistent throughout the XML dataset and database. You can use the <column> attributes in Table 10-6 to describe the data to be loaded. Note that these attributes form a subset of the DLF attributes described in "Attributes in DLF".

Table 10-6 <column> Attributes

	Attribute	Description	Example
	type	Specifies the datatype of a column in the dataset. This attribute specifies the kind of text contained in the <col> element in the dataset. Depending on this type, the data loading tool applies different datatype conventions to the data.	

<column name="col" type="string" />

	constant	Specifies a constant value. A column with a fixed value for each row does not have to repeat the same value.	

<column name="col" type="string" constant="us" />

	sequence	Specifies a sequence in the database used to fill in the value for this column.	

<column name="id" type="number" sequence="id_sq" />

	translate	Indicates whether the text of this column or parameter should be translated.	

<column name="msg" type="string" translate="yes"/>

The constant attribute of a <column> element specifies a value to be stored into the corresponding column for every row in the dataset section. Because in this example we are working in the original language, the language_id column is set to the value us.

As explained in Table 28-10, the valid values for the type attribute are string, number, date, and dateTime. These values correspond to the datatypes defined in the XML schema standard, so each piece of data should conform to the respective datatype definition. In particular, it is important to use the ISO 8601 format for the date and dateTime datatypes, as shown in Table 10-7.

Table 10-7 date and dateTime Formats

	Datatype	Format	Example
	date	CCYY-MM-DD	2009-05-20
	dateTime	CCYY-MM-DDThh:mm:ss	2009-05-20T16:01:37

Example 10-4 shows how you can represent a table row with dateTime data in a TransX dataset.

Example 10-4 dateTime Row

<row>
 <col name="article_id">12345678</col>
 <col name="author_id">10500</col>
 <col name="submission">2002-03-09T16:01:37</col>
 <col name="title">...</col>
 <!-- some columns follows -->
</row>

Specifying Translations in a Dataset

As explained in "Attributes in DLF", you can use the translation attribute to specify whether the column contains translated data. In Example 10-3, two <column> elements use the translate attribute differently. The attribute for the language_id column specifies that the value of the constant attribute should be translated:

<column name="language_id" type="string" constant="us" translate="yes"/>

In contrast, the following translate attribute requests translation of the data in the dataset section with a name that matches this column:

<column name="message" type="string" translate="yes"/>

For example, the preceding element specifies that the following messages in the dataset section should be translated:

<col name="message" translation-note="dnt'X'">Welcome to System X</col>
<col name="message">Please enter username and password</col>

When translating messages for applications, you may decide that specified words or phrases should be left untranslated. The translation-note attribute shown in the preceding example achieves this goal.

An XSLT processor can convert the preceding format into another format for exchanging translation data among localization service providers for use with XML-based translation tools. This transformation insulates developers from tasks such as keeping track of revisions, categorizing translatable strings into units, and so on.

Example 10-5 shows what the document in Example 10-3 looks like after translation.

Example 10-5 example_e.xml

<?xml version="1.0"?>
<table name="translated_messages">
 <!-- Specify the unique identifier -->
 <lookup-key>
 <column name="message_id" />
 <column name="language_id" />
 </lookup-key>
 <!-- Specify the columns into which data will be inserted -->
 <columns>
 <column name="message_id" type="number"/>
 <column name="language_id" type="string" constant="e" translate="yes"/>
 <column name="message" type="string" translate="yes"/>
 </columns>
 <!-- Specify the data to be inserted -->
 <dataset>
 <row>
 <col name="message_id">1</col>
 <col name="message" translation-note="dnt'System X'">Bienvenido al Sistema X</col>
 </row>
 <row>
 <col name="message_id">2</col>
 <col name="message">Porfavor entre su nombre de usuario y su contraseña</col>
 </row>
 <!-- ... -->
 </dataset>
</table>

If you use a text editor or a traditional text-based translation tool during the translation process, it is important to maintain the encoding of the document. After a document is translated, it is probably in a different encoding from the original. As explained in "XML Declaration in DLF", If the translated document is in an encoding other than Unicode, then add the encoding declaration to the XML declaration on the first line. A declaration for non-Unicode encoding looks like the following:

<?xml version="1.0" encoding="ISO-8859-15"?>

To ensure that the translation process does not lose syntactic integrity, process the document as XML. Otherwise, you can check the format by specifying the -v option of the command-line interface. If a syntactic error exists, the utility prints the location and description of the error. You must fix errors for the data transfer to succeed.

	
See Also:

Chapter 28, "Data Loading Format (DLF) Specification"

Loading the Data

Suppose that you want to load the sample documents in Example 10-3 and Example 10-5 into the translated_messages table that you created in Example 10-1. You can use the sample program in Example 10-6, which you can find in the TransX demo directory, to load the data.

Example 10-6 txdemo1.java

// Copyright (c) 2001 All rights reserved Oracle Corporation

import oracle.xml.transx.*;

public class txdemo1 {

 /**
 * Constructor
 */
 public txdemo1() {
 }

 /**
 * main
 * @param args
 *
 * args[0] : connect string
 * args[1] : username
 * args[2] : password
 * args[3+] : xml file names
 */
 public static void main(String[] args) throws Exception {

 // instantiate a transx class
 TransX transx = loader.getLoader();

 // start a data loading session
 transx.open(args[0], args[1], args[2]);

 // specify operation modes
 transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
 transx.setValidationMode(false);

 // load the dataset(s)
 for (int i = 3 ; i < args.length ; i++)
 {
 transx.load(args[i]);
 }

 // cleanup
 transx.close();
 }
}

The txdemo1.java program follows these steps:

	
Create a TransX loader object. For example:

TransX transx = loader.getLoader();

	
Open a data loading session. The first three command-line parameters are the JDBC connect string, database username, and database password. These parameters are passed to the TransX.open() method. The program includes the following statement:

transx.open(args[0], args[1], args[2]);

	
Configure the TransX loader. The program configures the loader to skip duplicate rows and to validate the input dataset. The program includes the following statements:

transx.setLoadingMode(LoadingMode.SKIP_DUPLICATES);
transx.setValidationMode(false);

	
Load the data. The first three command-line parameters specify connection information; any additional parameters specify input XML documents. The program invokes the load() method for every specified document:

for (int i = 3 ; i < args.length ; i++)
{
 transx.load(args[i]);
}

	
Close the data loading session. The program includes the following statement:

transx.close();

After compiling the program with javac, you can run it from the command line. The following example uses the Java thin driver to connect to instance mydb on port 1521 of computer myhost. It connects to the hr schema and loads the XML documents in Example 10-3 and Example 10-5:

java txdemo1 "myhost:1521:mydb" hr hr example.xml example_e.xml

In building a multilingual software system, translations usually become available at a later stage of development. They also tend to evolve over a period of time. If you need to add messages to the database, then you can add new rows in your <dataset> definition by running the TransX utility again. TransX recognizes which rows are new and inserts only the new messages based on the columns specified in the <lookup-key> section. If some messages are updated, then run TransX with the -u option to update existing rows with the data specified in XML, as shown in the following example:

transx -u "myhost:1521:mydb" hr hr example.xml example_e.xml

Querying the Data

After using the program in Example 10-6 to load the data, you can query the translated_messages table to see the results. The results should look like the following:

MESSAGE_ID LANGUAGE_ID MESSAGE
---------- ----------- ----------------------------------
1 us Welcome to System X
1 e Bienvenido al Sistema X
2 us Please enter username and password
2 e Porfavor entre su nombre de usuario y su contraseña

An application can retrieve a message in a specific language by using the language_id and message_id columns in a WHERE clause. For example, you can execute the following query:

SELECT message
FROM translated_messages
WHERE message_id = 2
AND language_id = 'e';

MESSAGE

Porfavor entre su nombre de usuario y su contraseña

8 Using XDK JavaBeans

This chapter contains these topics:

	
Introduction to XDK JavaBeans

	
Using the XDK JavaBeans: Overview

	
Processing XML with the XDK JavaBeans

Introduction to XDK JavaBeans

The Oracle XML JavaBeans are a set of XML components that you can use in Java applications and applets.

This section contains the following topics:

	
Prerequisites

	
Standards and Specifications

	
XDK JavaBeans Features

Prerequisites

This chapter assumes that you are familiar with the following technologies:

	
JavaBeans. JavaBeans components, or Beans, are reusable software components that can be manipulated visually in a builder tool.

	
Java Database Connectivity (JDBC). Database connectivity is included with the XDK JavaBeans. The beans can connect directly to a JDBC-enabled database to retrieve and store XML and XSL files.

	
Document Object Model (DOM). DOM is an in-memory tree representation of the structure of an XML document.

	
Simple API for XML (SAX). SAX is a standard for event-based XML parsing.

	
XML Schema language. Refer to Chapter 5, "Using the Schema Processor for Java" for an overview and links to suggested reading.

Standards and Specifications

The XDK JavaBeans require version 1.2 of higher of the XDK and can be used with any version of JDK 1.2. All of the XDK beans conform to the Sun JavaBeans specification and include the required BeanInfo class that extends java.beans.SimpleBeanInfo.

The JavaBeans 1.01 specification, which describes JavaBeans as present in JDK 1.1, is available at the following URL:

http://java.sun.com/products/javabeans/docs/spec.html

The additions for the Java 2 platform to the JavaBeans core specification provide developers with standard means to create more sophisticated JavaBeans components. The JavaBeans specifications for Java 2 are available at the following URL:

http://java.sun.com/products/javabeans/glasgow/index.html

	
See Also:

Chapter 29, "XDK Standards" for a summary of the standards supported by the XDK

XDK JavaBeans Features

The Oracle XDK JavaBeans facilitate the addition of GUIs to XML applications. Bean encapsulation includes documentation and descriptors that you can access directly from Java IDEs such as Oracle JDeveloper.

The XDK includes the following beans:

	
DOMBuilder

	
XSLTransformer

	
DBAccess

	
XMLDiff

	
XMLCompress

	
XMLDBAccess

	
XSDValidator

DOMBuilder

The oracle.xml.async.DOMBuilder bean constructs a DOM tree from an XML document. The DOMBuilder JavaBean encapsulates the XML parser for Java DOMParser class with a bean interface and enhances by supporting asynchronous parsing. By registering a listener, Java programs can initiate parsing of large or successive documents and immediately return control to the caller.

One of the main benefits of this bean is increased efficiency when parsing multiple files, especially if the files are large. DOMBuilder can also provide asynchronous parsing in a background thread in interactive visual applications. Without asynchronous parsing, the GUI is useless until the document to be parsed. With DOMBuilder, the application calls the parse method and then resumes control. The application can display a progress bar, allow the user to cancel the parse, and so forth.

	
See Also:

"Using the DOMBuilder JavaBean: Basic Process"

XSLTransformer

The oracle.xml.async.XSLTransformer bean supports asynchronous transformation. It accepts an XML document, applies an XSLT stylesheet, and creates an output file. The XSLTransformer JavaBean enables you to transform an XML document to almost any text-based format, including XML, HTML, and DDL. This bean can also be used as the basis of a server-side application or servlet to render an XML document, such as an XML representation of a query result, into HTML for display in a browser.

The main benefit of the XSLTransformer bean is that it can transform multiple files in parallel. Like DOMBuilder, you can also use it in visual applications to avoid long periods of time when the GUI is nonresponsive. By implementing the XSLTransformerListener interface, the calling application receives notification when the transformation completes.

	
See Also:

"Using the XSLTransformer JavaBean: Basic Process"

DBAccess

The oracle.xml.dbaccess.DBAccess bean maintains CLOB tables that contain multiple XML and text documents. You can use it when you need to store and retrieve XML documents in the database, but do not need to process them within the database. Java applications that use the DBAccess bean connect to the database through JDBC. Note that XML documents stored in CLOB tables that are not of type XMLType do not have their entities expanded.

The DBAccess bean enables you to do perform the following tasks:

	
Create and delete tables of type CLOB.

	
Query the contents of CLOB tables.

	
Perform INSERT, UPDATE, and DELETE operations on XML documents stored in CLOB tables.

XMLDBAccess

The oracle.xml.xmldbaccess.XMLDBAccess bean extends the DBAccess bean to support XML documents stored in XMLType tables. The class provides methods to list, delete, or retrieve XMLType instances and their tables. For example, the getXMLXPathTextData() method retrieves the value of an XPath expression from an XML document.

DBAccess JavaBean maintains XMLType tables that can hold multiple XML and text documents. Each XML or text document is stored as a row in the table. The table is created with the following SQL statement:

CREATE TABLE (FILENAME CHAR() UNIQUE,
 FILEDATA SYS.XMLType);

The FILENAME field holds a unique string used as a key to retrieve, update, or delete the row. Document text is stored in the FILEDATA field.

The XMLDBAccess bean performs the following tasks:

	
Creates and deletes XMLType tables

	
Lists the contents of an XMLType column

	
Performs INSERT, UPDATE, and DELETE operations on XML documents stored in XMLType tables

	
See Also:

"Using the XMLDBAccess JavaBean: Basic Process"

XMLDiff

When comparing XML documents, it is usually unhelpful to compare them character by character. Most XML comparisons are concerned with differences in structure and significant textual content, not differences in whitespace. The oracle.xml.differ.XMLDiff bean performs the following useful tasks:

	
Constructs and compares the DOM trees for two input XML documents and indicates whether the documents are different.

	
Provides a graphical display of the differences between two XML files. Specifically, you can see node insert, delete, modify, or move.

	
Generates an XSLT stylesheet that can convert one of the input XML documents into the other document.

The XMLDiff bean is especially useful in pipeline applications. For example, an application could an XML document, compare it with a previous version of the document, and store the XSLT stylesheet that shows the differences between them.

	
See Also:

	
Chapter 7, "Using the XML Pipeline Processor for Java"

	
"Using the XMLDiff JavaBean: Basic Process"

XMLCompress

As explained in "Compressing XML", the Oracle XML parser includes a compressor that can serialize XML document objects as binary streams. Although a useful tool, compression with XML parser has the following disadvantages:

	
When XML data is deserialized, it must be reparsed.

	
The encapsulation of XML data in tags greatly increase its size.

The oracle.xml.xmlcomp.XMLCompress bean is an encapsulation of the XML compression functionality. It provides the following advantages when serializing and deserializing XML:

	
It encapsulates the method that serializes the DOM, which results in a stream.

	
XML processors can regenerate the DOM from the compressed stream without reparsing the XML.

The bean supports compression and decompression of input XML parsed by DOMParser or SAXParser. DOM compression supports inputs of type XMLType, CLOB, and BLOB.

To use different parsing options, parse the document before input and then pass the XMLDocument object to the compressor bean. The compression factor is a rough value based on the file size of the input XML file and the compressed file. The limitation of the compression factor method is that it can only be used when the compression is performed with java.io.File objects as parameters.

XSDValidator

The oracle.xml.schemavalidator.XSDValidator bean encapsulates the XSDValidator class and adds capabilities for validating a DOM tree. One of the most useful features of this bean concerns validation errors. If the application throws a validation error, the getStackList() method returns a list of DOM tree paths that lead to the invalid node. Nodes with errors are returned in a vector of stack trees in which the top element of the stack represents the root node. You can obtain child nodes by pulling them from the stack. To use getStackList() you must use instantiate the java.util.Vector and java.util.Stack classes.

Using the XDK JavaBeans: Overview

This section contains the following topics:

	
Using the XDK JavaBeans: Basic Process

	
Running the JavaBean Demo Programs

Using the XDK JavaBeans: Basic Process

This section describes the program flow of Java applications that use the more useful beans: DOMBuilder, XSLTransformer, XMLDBAccess, and XMLDiff. The section contains the following topics:

	
Using the DOMBuilder JavaBean: Basic Process

	
Using the XSLTransformer JavaBean: Basic Process

	
Using the XMLDBAccess JavaBean: Basic Process

	
Using the XMLDiff JavaBean: Basic Process

Using the DOMBuilder JavaBean: Basic Process

The DOMBuilder class implements an XML 1.0 parser according to the W3C recommendation. It parses an XML document and builds a DOM tree. The parsing is done in a separate thread. The DOMBuilderListener interface must be used for notification when the tree is built.

When developing applications that use this bean, you should import the following subpackages:

	
oracle.xml.async, which provides asynchronous Java beans for DOM building

	
oracle.xml.parser.v2, which provides APIs for SAX, DOM, and XSLT

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3, "Using the XML Parser for Java". The most important DOM-related classes and interfaces in the javax.xml.async package are described in Table 8-1.

Table 8-1 javax.xml.async DOM-Related Classes and Interfaces

	Class/Interface	Description
	DOMBuilder class	Encapsulates an XML parser to parse an XML document and build a DOM tree. The parsing is done in a separate thread. The DOMBuilderListener interface must be used for notification when the tree is built.
	DOMBuilderEvent class	Instantiates the event object that DOMBuilder uses to notify all registered listeners about parse events.
	DOMBuilderListener interface	Must be implemented so that the program can receive notifications about events during the asynchronous parsing. The class implementing this interface must be added to the DOMBuilder with the addDOMBuilderListener() method.
	DOMBuildeErrorEvent class	Defines the error event that is sent when parse exception occurs.
	DOMBuilderErrorListener interface	Must be implemented so that the program can receive notifications when errors are found during parsing. The class implementing this interface must be added to the DOMBuilder with the addDOMBuilderErrorListener() method.

Figure 8-1 depicts the basic process of an application that uses the DOMBuilder JavaBean.

Figure 8-1 DOMBuilder JavaBean Usage

[image: Graphic is described in the following text.]

Description of the illustration adxdk080.gif

Figure 8-1 shows the following stages of XML processing:

	
Parse the input XML document. The program can receive the XML document as a file, string buffer, or URL.

	
Add the DOMBuilder listener. The program invokes the method DOMBuilder.addDOMBuilderListener(DOMBuilderListener).

	
Parse the XML document. The program invokes the DOMBuilder.parse() method.

	
Optionally, process the parsed result further.

	
Call the listener when the program receives an asynchronous call. The listener, which must implement the DOMBuilderListener interface, is called by invoking the DOMBuilderOver() method.

The available DOMBuilderListener methods are:

	
domBuilderError(DOMBuilderEvent), which is called when parse errors occur.

	
domBuilderOver(DOMBuilderEvent), which is called when parsing completes.

	
domBuilderStarted(DOMBuilderEvent), which is called when parsing begins.

	
Fetch the DOM. Invoke the DOMBuilder.getDocument() method to fetch the resulting DOM document and output it.

Using the XSLTransformer JavaBean: Basic Process

The XSLTransformer bean encapsulates the Java XML parser XSLT processing engine with a bean interface and extends its functionality to permit asynchronous transformation. By registering a listener, your Java application can transform large and successive documents by having the control returned immediately to the caller.

When developing applications that use this bean, you should import the following subpackages:

	
oracle.xml.async, which provides asynchronous Java beans for XSL transformations

	
oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM, and XSLT

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3, "Using the XML Parser for Java". The most important XSL-related classes and interfaces in the javax.xml.async package are described in Table 8-2.

Table 8-2 javax.xml.async XSL-Related Classes and Interfaces

	Class/Interface	Description
	XSLTransformer class	Applies XSL transformation in a background thread.
	XSLTransformerEvent class	Represents the event object used by XSLTransformer to notify XSL transformation events to all of its registered listeners.
	XSLTransformerListener interface	Must be implemented so that the program can receive notifications about events during asynchronous transformation. The class implementing this interface must be added to the XSLTransformer with the addXSLTransformerListener() method.
	XSLTransformerErrorEvent class	Instantiates the error event object that XSLTransformer uses to notify all registered listeners about transformation error events.
	XSLTransformerErrorListener interface	Must be implemented so that the program can receive notifications about error events during the asynchronous transformation. The class implementing this interface must be added to the XSLTransformer using addXSLTransformerListener() method.

Figure 8-2 illustrates XSLTransformer bean usage.

Figure 8-2 XSLTransformer JavaBean Usage

[image: This graphic illustrates the use of the XSLTransformer bean.]

Description of the illustration adxdk079.gif

Figure 8-2 goes through the following stages:

	
Input an XSLT stylesheet and XML instance document.

	
Add an XSLT listener. The program invokes the XSLTransfomer.addXSLTransformerListener()method.

	
Apply the stylesheets. The XSLTransfomer.processXSL() method initiates the XSL transformation in the background.

	
Optionally, perform further processing with the XSLTransformer bean.

	
Call the XSLT listener when the program receives an asynchronous call. The listener, which must implement the XSLTransformerListener interface, is called by invoking the xslTranfsformerOver() method.

	
Fetch the result of the transformation. Invoke the XSLTransformer.getResult() method to return the XML document fragment for the resulting document.

	
Output the XML document fragment.

Using the XMLDBAccess JavaBean: Basic Process

When developing applications that use the XMLDBAccess bean, you should use the following subpackages:

	
oracle.xml.xmldbaccess, which includes the XMLDBAccess bean

	
oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM, and XSLT

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3, "Using the XML Parser for Java". Some of the more important methods in the XMLDBAccess class are described in Table 8-3.

Table 8-3 XMLDBAccess Methods

	Class/Interface	Description
	createXMLTypeTable()	Creates an XMLType table.
	insertXMLTypeData()	Inserts a text file as a row in an XMLType table.
	replaceXMLTypeData()	Replaces a text file as a row in an XMLType table.
	getXMLTypeTableNames()	Retrieves all XML tables with names starting with a specified string.
	getXMLTypeData()	Retrieves text file from an XMLType table.
	getXMLTypeXPathTextData()	Retrieves the text data based on the XPath expression from an XMLType table.

Figure 8-3 illustrates typical XMLDBAccess bean usage. It shows how the DBAccess bean maintains and manipulates XML documents stored in XMLTypes.

Figure 8-3 XMLDBAccess JavaBean Usage

[image: This graphic is described in the following text.]

Description of the illustration adxdk104.gif

For example, an XMLDBAaccess program could process XML documents in the following stages:

	
Create an XMLType table. Invoke createXMLTypeTable() by passing it database connection information and a table name.

	
List the XMLType tables. Invoke getXMLTypeTableNames() by passing it database connection information and an empty string.

	
Load XML data into the table. Invoke replaceXMLTypeData() by passing it database connection information, the table name, the XML file name, and a string containing the XML.

	
Retrieve the XML data into a String. Invoke getXMLTypeData() by passing it the connection information, the table name, and the XML file name.

	
Retrieve XML data based on an XPath expression. Invoke getXMLXPathTextData() by passing it the connection information, the table name, the XML file name, and the XPath expression.

	
Close the connection.

Using the XMLDiff JavaBean: Basic Process

When developing applications that use the XMLDiff bean, you typically use the following subpackages:

	
oracle.xml.xmldiff, which includes the XMLDiff bean

	
oracle.xml.parser.v2, which provides APIs for XML parsing SAX, DOM, and XSLT

	
oracle.xml.async, which provides asynchronous Java beans for DOM building

The oracle.xml.parser.v2 subpackage is described in detail in Chapter 3, "Using the XML Parser for Java". Some important methods in the XMLDiff class are described in Table 8-4.

Table 8-4 XMLDiff Methods

	Class/Interface	Description
	diff()	Determines the differences between two input XML files or two XMLDocument objects.
	generateXSL()	Generates an XSL file that represents the differences between the input two XML files. The first XML file can be transformed into the second XML file with the generated stylesheet. If the XML files are the same, then the XSL generated can transform the first XML file into the second XML file, where the first and second files are equivalent.
Related methods are generateXSLDoc() and generateXSLFile().

	setFiles()	Sets the XML files that need to be compared.
	getDocument1()	Gets the document root as an XMLDocument object of the first XML tree. getDocument2() is the equivalent method for the second tree.
	getDiffPane1()	Gets the text panel as JTextPane object that visually shows the diffs in the first XML file. getDiffPane2() is the equivalent method for the second file.

Figure 8-4 illustrates typical XMLDiff bean usage. It shows how XMLDiff bean compares and displays the differences between input XML documents.

Figure 8-4 XMLDiff JavaBean Usage

[image: This graphic is described in the following text.]

For example, an XMLDiff program could process XML documents in the following stages:

	
Create an XMLDiff object.

	
Set the files to be compared. Create File objects for the input files and pass references to the objects to XMLDiff.setFiles().

	
Compare the documents. The diff() method returns false if the XML files are the same and true if they are different.

	
Respond depending on the whether the input XML documents are the same or different. For example, if they are the same, invoke JOptionPane.showMessageDialog() to print a message.

	
Generate an XSLT stylesheet that shows the differences between the input XML documents. For example, generateXSLDoc() generates an XSL stylesheet as an XMLDocument.

	
Display the DOM trees created by XMLDiff.

Running the JavaBean Demo Programs

Demo programs for the XDK JavaBeans are included in the $ORACLE_HOME/xdk/demo/java/transviewer directory. The demos illustrate the use of the XDK beans described in "XDK JavaBeans Features" as well as some visual beans that are now deprecated. The following list shows all of the beans used in the demos:

	
XSLTransformer

	
DOMBuilder

	
DBAccess

	
XMLDBAccess

	
XMLDiff

	
XMLCompress

	
XSDValidator

	
oracle.xml.srcviewer.XMLSourceView (deprecated)

	
oracle.xml.treeviewer.XMLTreeView (deprecated)

	
oracle.xml.transformer.XMLTransformPanel (deprecated)

	
oracle.xml.dbviewer.DBViewer (deprecated)

Although the visual beans are deprecated, they remain useful as educational tools. Consequently, the deprecated beans are included in $ORACLE_HOME/lib/xmldemo.jar. The nondeprecated beans are included in $ORACLE_HOME/lib/xml.jar.

Table 8-5 lists the sample programs provided in the demo directory. The first column of the table indicates which sample program use deprecated beans.

Table 8-5 JavaBean Sample Java Source Files

	Sample	File Name	Description
	sample1
(deprecated)

	XMLTransformPanelSample.java	A visual application that uses the XMLTransformPanel, DOMBuilder, and XSLTransformer beans. This bean applies XSL transformations to XML documents and shows the result.
See Also: "Running sample1"

	sample2
(deprecated)

	ViewSample.java	A sample visual application that uses the XMLSourceView and XMLTreeView beans. It visualizes XML document files.
See Also: "Running sample2"

	sample3	AsyncTransformSample.java	A nonvisual application that uses the XSLTransformer and DOMBuilder beans. It applies the XSLT stylesheet specified in doc.xsl on all .xml files in the current directory. It writes the results to files with the extension .log.
See Also: "Running sample3"

	sample4
(deprecated)

	DBViewSample.java	A visual application that uses the DBViewer bean to implement a simple application that handles insurance claims.
See Also: "Running sample4"

	
	DBViewClaims.java	This JFrame subclass is instantiated in the DBViewFrame class, which is in turn instantiated in the DBViewSample program.
	
	DBViewFrame.java	This JFrame subclass is instantiated in the DBViewSample program.
	sample5	XMLDBAccessSample.java	A nonvisual application for the XMLDBAccess bean. This program demonstrates how to use the XMLDBAccess bean APIs to store and retrieve XML documents in XMLType tables.
To use XMLType, an Oracle database is necessary along with xdb.jar. The program accepts values for HOSTNAME, PORT, SID, USERID, and PASSWORD. The program creates tables in the database and loads data from file booklist.xml. The program writes output to xmldbaccess.log.

See Also: "Running sample5"

	sample6
(deprecated)

	XMLDiffSample.java	A visual application that uses the XMLDiff bean to find differences between two XML files and generate an XSLT stylesheet. You can use this stylesheet to transform the first input XML into the second input XML file.
See Also: "Running sample6"

	
	XMLDiffFrame.java	A class that implements the ActionListener interface. This class is used by the XMLDiffSample program.
	
	XMLDiffSrcView.java	A JPanel subclass used by the XMLDiffSample program.
	sample7
(deprecated)

	compviewer.java	A visual application that uses the XMLCompress bean to compress XML. The XML input can be an XML file or XML data obtained through a SQL query. The application enables you to decompress the compressed stream and view the resulting DOM tree.
See Also: "Running sample7"

	
	compstreamdata.java	A simple class that pipes information from the GUI to the bean. This class is used in dbpanel.java, filepanel.java, and xmlcompressutil.java.
	
	dbpanel.java	A JPanel subclass used in xmlcompressutil.java.
	
	filepanel.java	A JPanel subclass used in xmlcompressutil.java.
	
	xmlcompressutil.java	A JPanel subclass used in compviewer.java.
	sample8
(deprecated)

	XMLSchemaTreeViewer.java	A visual application that uses the Treeviewer, sourceviewer, and XSDValidator beans. The application accepts an XML instance document and an XML schema document as inputs. The application parses both the documents and validates the instance document against the schema. If the document is invalid, then the nodes where the errors occurred are highlighted and an error message is shown in a tool tip.
See Also: "Running sample8"

	
	TreeViewerValidate.java	A JPanel subclass that displays a parsed XML instance document as a tree. This class is used by the XMLSchemaTreeViewer.java program.
	sample9
(deprecated)

	XMLSrcViewer.java	A visual application that uses the sourceviewer and XSDValidator beans. The demo takes an XML file as input. You can select the validation mode: DTD, XML schema, or no validation. The program validates the XML data file against the DTD or schema and displays it with syntax highlighting. It also logs validation errors. For schema validation it also highlights the error nodes appropriately. External and internal DTDs can be viewed.
See Also: "Running sample9"

	
	XMLSrcViewPanel.java	A class that shows how to use the XMLSourceView and DTDSourceView objects. This class is used by the XMLSrcViewer.java program.Each XMLSourceView object is set as a Component of a JPanel by invoking goButton_actionPerformed(). The XML file to be viewed is parsed and the resulting XML document is set in the XMLSourceView object by invoking makeSrcPane(). The highlighting and DTD display properties are specified at this time. For performing schema validation, build the schema object by invoking makeSchemaValPane(). You can can check for errors and display the source code accordingly with different highlights. You can retrieve a list of schema validation errors from the XMLSourceView by invoking dumpErrors().
	sample10	XSDValidatorSample.java	An application that shows how to use the XSDValidator bean. It accepts an XML file and an XML schema file as input. The program displays errors occurring during validation, including line numbers.
See Also: "Running sample10"

Table 8-6 describes additional files that are used by the demo programs.

Table 8-6 JavaBean Sample Files

	File Name	Description
	XMLDiffData1.txt	An XML document used by the XMLDiffSample.java program. By default the 2 XML files XMLDiffData1.txt and XMLDiffData2.txt are compared and the output XSLT is stored as XMLDiffSample.xsl.
	XMLDiffData2.txt	An XML document used by the XMLDiffSample.java program. By default the 2 XML files XMLDiffData1.txt and XMLDiffData2.txt are compared and the output XSLT is stored as XMLDiffSample.xsl.
	booklist.xml	An XML document for use by XMLDBAccessSample.java.
	claim.sql	An XML document used by ViewSample.java and XMLDBAccessSample.java.
	doc.xml	An XML document for use by AsyncTransformSample.java.
	doc.xsl	An XSLT stylesheet for use by AsyncTransformSample.java.
	emptable.xsl	An XSLT stylesheet for use by AsyncTransformSample.java, ViewSample.java, or XMLTransformPanelSample.java.
	note_in_dtd.xml	A sample XML document for use in XMLSrcViewer.java. You can use this file in DTD validation mode to view an internal DTD with validation errors. An internal DTD can be optionally displayed along with the XML data.
	purchaseorder.xml	An XML document used by the XSDValidatorSample.java program. The instance document purchaseorder.xml does not comply with XML schema defined in purchaseorder.xsd, which causes the program to display the errors.
	purchaseorder.xsd	An XML schema document used by the XSDValidatorSample.java program. The instance document purchaseorder.xml does not comply with XML schema defined in purchaseorder.xsd, which causes the program to display the errors.

Documentation for how to compile and run the sample programs is located in the README in the same directory. The basic steps are as follows:

	
Change into the $ORACLE_HOME/xdk/demo/java/transviewer directory (UNIX) or %ORACLE_HOME%\xdk\demo\java\transviewer directory (Windows).

	
Make sure that your environment variables are set as described in "Setting Up the Java XDK Environment". The beans require JDK 1.2 or higher. The DBViewer and DBTransformPanel beans require JDK 1.2.2 when rendering HTML. Prior versions of the JDK may not render HTML in the result buffer properly.

	
Edit the Makefile (UNIX) or Make.bat (Windows) for your environment. In particular, do the following:

	
Change the JDKPATH in the Makefile to point to your JDK path.

	
Change PATHSEP to the appropriate path separator for your operating system.

	
Change the HOSTNAME, PORT, SID, USERID, and PASSWORD parameters so that you can connect to the database through the JDBC thin driver. These parameters are used in sample4 and sample5.

	
Run make (UNIX) or Make.bat (Windows) at the system prompt to generate the class files.

	
Run gmake as follows to run the demos:

gmake sample1
gmake sample2
gmake sample3
gmake sample4
gmake sample5
gmake sample6
gmake sample7
gmake sample8
gmake sample9
gmake sample10

The following sections explain how to run the demos.

Running sample1

Sample1 is the program that uses the XMLTransViewer bean. You can run the program manually as follows:

java XMLTransformPanelSample

You can use the program to import and export XML files from Oracle database, store XSL transformation files in the database, and apply stylesheets to XML interactively. To use the database connectivity feature in this program, you need to know the network name of the computer where the database runs, the port (usually 1521), and the name of the Oracle instance (usually orcl). You also need an account with CREATE TABLE privileges. If you have installed the sample schemas, then you can use the account hr. You can the XMLTransViewer program to apply stylesheet transformation to XML files and display the result.The program displays a panel with tabs on the top and the bottom. The first two top tabs are used to switch between the XML buffer and the XSLT buffer. The third tab performs XSL transformation on the XML buffer and displays the result. The first two tabs on the bottom can be used to load and save data from Oracle database and from the file system. The remaining bottom tabs switch the display of the current content to tree view, XML source, edit mode and, in case of the result view after the transformation, HTML.

Running sample2

Sample2 is a GUI-based demo for the XMLSourceView and XMLTreeView beans, which are deprecated. The ViewSample program displays the booklist.xml file in separate source and tree views. You can run the program manually as follows:

java ViewSample

Running sample3

Sample3 is a nonvisual demo for the asynchronous DOMBuilder and XSLTransformer beans. The AsyncTransformSample program applies the doc.xsl XSLT stylesheet to all *.xml files in the current directory. The program writes output to files with the extension .log. You can run the program as follows:

java AsyncTransformSample

Running sample4

Sample4 is a visual demo for the DBViewer bean, which is deprecated. It runs in the following stages:

	
It starts SQL*Plus, connects to the database with the USERID and PASSWORD specified in the Makefile, and runs the claim.sql script. This script creates a number of tables, views, and types for use by the DBViewSample demo program.

	
It runs the DBViewSample program as follows:

java -classpath "$(MAKE_CLASSPATH)" DBViewSample

JDBC connection information is hard-coded in the DBViewClaims.java source file, which implements a class used by the demo. Specifically, the program assumes the values for USERID, PASSWORD, and so forth set in the Makefile. If your configuration is different, navigate to line 92 in DBViewClaims.java and modify setUsername(), setPassword(), and so forth with values that reflect your Oracle database configuration.

Running sample5

Sample5 is a nonvisual demo for the XMLDBAccess bean. It uses the XMLType objects to store XML documents inside the database.The following program connects to the database with the Java thin client, creates XMLType tables, and loads the data from booklist.xml. To run the program you must specify the following pieces of information as command-line arguments:

	
Host name (for example, myhost)

	
Port number (for example, 1521)

	
SID of the database (for example, ORCL)

	
Database account in which the tables will be created (for example, hr)

	
Password for the database account (for example, hr)

For example, you can run the program as follows:

java XMLDBAccessSample myhost 1521 ORCL hr hr

The following text shows sample output from dbaccess.log:

Demo for createXMLTypeTables():
Table +'testxmltype' successfully created.

Demo for listXMLTypeTables():
tablenamename=TESTXMLTYPE

Demo for replaceXMLTypeData() (similar to insert):
XML Data from +'booklist.xml' successfully replaced in table 'testxmltype'.

Demo for getXMLTypeData():
XMLType data fetched:
<?xml version="1.0"?>
<booklist>
 <book isbn="1234-123456-1234">
 <title>C Programming Language</title>
 <author>Kernighan and Ritchie</author>
 <publisher>EEE</publisher>
 <price>7.99</price>
 </book>
...
 <book isbn="1230-23498-2349879">
 <title>Emperor's New Mind</title>
 <author>Roger Penrose</author>
 <publisher>Oxford Publishing Company</publisher>
 <price>15.99</price>
 </book>
</booklist>

Demo for getXMLTypeXPathTextData():
Data fetched using XPath exp '/booklist/book[3]':
<book isbn="2137-598354-65978">
 <title>Twelve Red Herrings</title>
 <author>Jeffrey Archer</author>
 <publisher>Harper Collins</publisher>
 <price>12.95</price>
</book>

Running sample6

The sample6 program is a visual demo for the XMLDiff bean. The XMLDiffSample class invokes a GUI that enables you to choose the input data files from the File menu by selecting Compare XML Files. The Transform menu enables you to apply the generated XSLT generated to the first input XML. Select Save As in the File menu to save the output XML file, which will be the same as the second input file. By default, the program compares XMLDiffData1.txt to XMLDiffData2.txt and stores the XSLT output as XMLDiffSample.xsl.

You can run the program manually as follows:

java -mx50m XMLDiffSample XMLDiffData1.txt XMLDiffData2.txt

If the input XML files use a DTD that accesses a URL outside a firewall, then modify XMLDiffSample.java to include the proxy server settings before the setFiles() call. For example, modify the program as follows:

/* Set proxy to access dtd through firewall */
Properties p = System.getProperties();
p.put("proxyHost", "www.proxyservername.com");
p.put("proxyPort", "80");
p.put("proxySet", "true");
/* You will also have to import java.util.*; */

Running sample7

The sample7 visual demo illustrates the use of the XMLCompress bean. The compviewer class invokes a GUI which lets the user compress and uncompress XML files and data obtained from the database. The loading options enable the user to retrieve the data either from a file system or a database. This application does not support loading and saving compressed data from the database. The compression factor indicates a rough estimate by which the XML data is reduced.

You can run the program manually as follows:

java compviewer

Running sample8

The sample8 demo illustrates the use of the XMLTreeViewer bean. The XMLSchemaTreeViewer program enables the user to view an XMLDocument in a tree format. The user can input a schema document and validate the instance document against the schema. If the document is invalid, then the invalid nodes are highlighted with the error message. Also, the program displays a log of all the line information in a separate panel, which enables the user to edit the instance document and revaluated. Test the program with sample files purchaseorder.xml and purchaseorder.xsd. The instance document purchaseorder.xml does not comply with schema defined in purchaseorder.xsd.

You can run the program manually as follows:

java XMLSchemaTreeViewer

Running sample9

The sample9 demo illustrates the use of the SourceViewer bean. The XMLSrcViewer program enables you to view an XML document or a DTD with syntax highlighting turned on. You can validate the XML document against an input XML Schema or DTD. The DTD can be internal or external.

If the validation is successful, then you can view the instance document and XML schema or DTD in the Source View pane. If errors were encountered during schema validation, then an error log with line numbers is available in the Error pane. The Source View pane shows the XML document with error nodes highlighted.You can use sample files purchaseorder.xml and purchaseorder.xsd for testing XML schema validation with errors. You can use note_in_dtd.xml with DTD validation mode to view an internal DTD with validation errors. You can run the program manually as follows:

java XMLSrcViewer

Running sample10

The sample10 demo illustrates the use of the XSDValidator bean. The XSDValidatorSample program two arguments as input: an XML document and its associated XML schema. The program displays errors occurring during validation, including line numbers.

The following program uses purchaseorder.xsd to validate the contents of purchaseorder.xml:

java XSDValidatorSample purchaseorder.xml purchaseorder.xsd

The XML document fails (intentionally) to validate against the schema. The program displays the following errors:

Sample purchaseorder.xml purchaseorder.xsd
<Line 2, Column 41>: XML-24523: (Error) Invalid value 'abc' for attribute: 'orderDate'
#document->purchaseOrder
<Line 7, Column 27>: XML-24525: (Error) Invalid text 'CA' in element: 'state'
#document->purchaseOrder->shipTo->state->#text
<Line 8, Column 25>: XML-24525: (Error) Invalid text 'sd' in element: 'zip'
#document->purchaseOrder->shipTo->zip->#text
<Line 14, Column 27>: XML-24525: (Error) Invalid text 'PA' in element: 'state'
#document->purchaseOrder->billTo->state->#text
<Line 17, Column 22>: XML-24534: (Error) Element 'coment' not expected.
#document->purchaseOrder->coment
<Line 29, Column 31>: XML-24534: (Error) Element 'shipDae' not expected.
#document->purchaseOrder->items->item->shipDae

Processing XML with the XDK JavaBeans

This section contains the following topics:

	
Processing XML Asynchronously with the DOMBuilder and XSLTransformer Beans

	
Comparing XML Documents with the XMLDiff Bean

Processing XML Asynchronously with the DOMBuilder and XSLTransformer Beans

As explained in "DOMBuilder" and "XSLTransformer", you can use XDK beans to perform asynchronous XML processing.

The AsyncTransformSample.java program illustrates how to use both the DOMBuilder and XSLTransformer beans. The program implements the following methods:

	
runDOMBuilders()

	
runXSLTransformer()

	
saveResult()

	
makeXSLDocument()

	
createURL()

	
init()

	
exitWithError()

	
asyncTransform()

The basic architecture of the program is as follows:

	
The program declares and initializes the fields used by the class. Note that the input XSLT stylesheet is hard-coded in the program as doc.xsl. The class defines the following fields:

String basedir = new String (".");
OutputStream errors = System.err;
Vector xmlfiles = new Vector();
int numXMLDocs = 1;
String xslFile = new String ("doc.xsl");
URL xslURL;
XMLDocument xsldoc

	
The main() method invokes the init() method to perform the initial setup. This method lists the files in the current directory, and if it finds files that end in the extension .xml, it adds them to a Vector object. The implementation for the init() method is as follows:

boolean init () throws Exception
{
 File directory = new File (basedir);
 String[] dirfiles = directory.list();
 for (int j = 0; j < dirfiles.length; j++)
 {
 String dirfile = dirfiles[j];

 if (!dirfile.endsWith(".xml"))
 continue;

 xmlfiles.addElement(dirfile);
 }

 if (xmlfiles.isEmpty()) {
 System.out.println("No files in directory were selected for processing");
 return false;
 }
 numXMLDocs = xmlfiles.size();

 return true;
}

	
The main() method instantiates AsyncTransformSample as follows:

AsyncTransformSample inst = new AsyncTransformSample();

	
The main() method invokes the asyncTransform() method. The asyncTransform() method performs the following main tasks:

	
Invokes makeXSLDocument() to parse the input XSLT stylesheet.

	
Calls runDOMBuilders() to initiate parsing of the instance documents, that is, the documents to be transformed, and then transforms them.

After initiating the XML processing, the program resumes control and waits while the processing occurs in the background. When the last request completes, the method exits.

The following code shows the implementation of the asyncTransform() method:

void asyncTransform () throws Exception
{
 System.err.println (numXMLDocs +
 " XML documents will be transformed" +
 " using XSLT stylesheet specified in " + xslFile +
 " with " + numXMLDocs + " threads");

 makeXSLDocument ();
 runDOMBuilders ();

 // wait for the last request to complete
 while (rm.activeFound())
 Thread.sleep(100);
}

The following sections explain the makeXSLDocument() and runDOMBuilders() methods.

Parsing the Input XSLT Stylesheet

The makeXSLDocument() method illustrates a simple DOM parse of the input stylesheet. It does not use asynchronous parsing. The technique is the same described in "Performing Basic DOM Parsing".

The method follows these steps:

	
Create a new DOMParser() object. The following code fragment from DOMSample.java illustrates this technique:

DOMParser parser = new DOMParser();

	
Configure the parser. The following code fragment specifies that whitespace should be preserved:

parser.setPreserveWhitespace(true);

	
Create a URL object from the input stylesheet. The following code fragment invokes the createURL() helper method to accomplish this task:

xslURL = createURL (xslFile);

	
Parse the input XSLT stylesheet. The following statement illustrates this technique:

parser.parse (xslURL);

	
Obtain a handle to the root of the in-memory DOM tree. You can use the XMLDocument object to access every part of the parsed XML document. The following statement illustrates this technique:

xsldoc = parser.getDocument();

Processing the XML Documents Asynchronously

The runDOMBuilders() method illustrates how you can use the DOMBuilder and XSLTransformer beans to perform asynchronous processing. The parsing and transforming of the XML occurs in the background.

The method follows these steps:

	
Create a resource manager to manage the input XML documents. The program creates a for loop and obtains the The following code fragment illustrates this technique:

rm = new ResourceManager (numXMLDocs);
for (int i = 0; i < numXMLDocs; i++)
{
 rm.getResource();
 ...
}

	
Instantiate the DOM builder bean for each input XML document. For example:

DOMBuilder builder = new DOMBuilder(i);

	
Create a URL object from the XML file name. For example:

DOMBuilder builder = new DOMBuilder(i);
URL xmlURL = createURL(basedir + "/" + (String)xmlfiles.elementAt(i));
if (xmlURL == null)
 exitWithError("File " + (String)xmlfiles.elementAt(i) + " not found");

	
Configure the DOM builder. The following code fragment specifies the preservation of whitespace and sets the base URL for the document:

builder.setPreserveWhitespace(true);
builder.setBaseURL (createURL(basedir + "/"));

	
Add the listener for the DOM builder. The program adds the listener by invoking addDOMBuilderListener().

The class instantiated to create the listener must implement the DOMBuilderListener interface. The program provides a do-nothing implementation for domBuilderStarted() and domBuilderError(), but must provide a substantive implementation for domBuilderOver(), which is the method called when the parse of the XML document completes. The method invokes runXSLTransformer(), which is the method that transforms the XML. Refer to "Transforming the XML with the XSLTransformer Bean" for an explanation of this method.

The following code fragment illustrates how to add the listener:

builder.addDOMBuilderListener
(
 new DOMBuilderListener()
 {
 public void domBuilderStarted(DOMBuilderEvent p0) {}
 public void domBuilderError(DOMBuilderEvent p0) {}
 public synchronized void domBuilderOver(DOMBuilderEvent p0)
 {
 DOMBuilder bld = (DOMBuilder)p0.getSource();
 runXSLTransformer (bld.getDocument(), bld.getId());
 }
 }
);

	
Add the error listener for the DOM builder. The program adds the listener by invoking addDOMBuilderErrorListener().

The class instantiated to create the listener must implement the DOMBuilderErrorListener interface. The following code fragment show the implementation:

builder.addDOMBuilderErrorListener
(
 new DOMBuilderErrorListener()
 {
 public void domBuilderErrorCalled(DOMBuilderErrorEvent p0)
 {
 int id = ((DOMBuilder)p0.getSource()).getId();
 exitWithError("Error occurred while parsing " +
 xmlfiles.elementAt(id) + ": " +
 p0.getException().getMessage());
 }
 }
);

	
Parse the document. The following statement illustrates this technique:

builder.parse (xmlURL);
System.err.println("Parsing file " + xmlfiles.elementAt(i));

Transforming the XML with the XSLTransformer Bean

When the DOM parse completes, the DOM listener receives notification. The domBuilderOver() method implements the behavior in response to this event. The program passes the DOM to the runXSLTransformer() method, which initiates the XSL transformation.

The method follows these steps:

	
Instantiate the XSLTransformer bean. This object performs the XSLT processing. The following statement illustrates this technique:

XSLTransformer processor = new XSLTransformer (id);

	
Create a new stylesheet object. For example:

XSLStylesheet xsl = new XSLStylesheet (xsldoc, xslURL);

	
Configure the XSLT processor. For example, the following statement sets the processor to show warnings and configures the error output stream:

processor.showWarnings (true);
processor.setErrorStream (errors);

	
Add the listener for the XSLT processor. The program adds the listener by invoking addXSLTransformerListener().

The class instantiated to create the listener must implement the XSLTransformerListener interface. The program provides a do-nothing implementation for xslTransformerStarted() and xslTransformerError(), but must provide a substantive implementation for xslTransformerOver(), which is the method called when the parse of the XML document completes. The method invokes saveResult(), which prints the transformation result to a file.

The following code fragment illustrates how to add the listener:

processor.addXSLTransformerListener
(
 new XSLTransformerListener()
 {
 public void xslTransformerStarted (XSLTransformerEvent p0) {}
 public void xslTransformerError(XSLTransformerEvent p0) {}
 public void xslTransformerOver (XSLTransformerEvent p0)
 {
 XSLTransformer trans = (XSLTransformer)p0.getSource();
 saveResult (trans.getResult(), trans.getId());
 }
 }
);

	
Add the error listener for the XSLT processor. The program adds the listener by invoking addXSLTransformerErrorListener().

The class instantiated to create the listener must implement the XSLTransformerErrorListener interface. The following code fragment show the implementation:

processor.addXSLTransformerErrorListener
(
 new XSLTransformerErrorListener()
 {
 public void xslTransformerErrorCalled(XSLTransformerErrorEvent p0)
 {
 int i = ((XSLTransformer)p0.getSource()).getId();
 exitWithError("Error occurred while processing " +
 xmlfiles.elementAt(i) + ": " +
 p0.getException().getMessage());
 }
 }
);

	
Transform the XML document with the XSLT stylesheet. The following statement illustrates this technique:

processor.processXSL (xsl, xml);

Comparing XML Documents with the XMLDiff Bean

As explained in "XMLDiff", you can use XDK beans to compare the structure and significant content of XML documents.

The XMLDiffSample.java program illustrates how to use the XMLDiff bean. The program implements the following methods:

	
showDiffs()

	
doXSLTransform()

	
createURL()

The basic architecture of the program is as follows:

	
The program declares and initializes the fields used by the class. Note that one field is of type XMLDiffFrame, which is the class implemented in the XMLDiffFrame.java demo. The class defines the following fields:

protected XMLDocument doc1; /* DOM tree for first file */
protected XMLDocument doc2; /* DOM tree for second file */
protected static XMLDiffFrame diffFrame; /* GUI frame */
protected static XMLDiffSample dfxApp; /* XMLDiff sample application */
protected static XMLDiff xmlDiff; /* XML diff object */
protected static XMLDocument xslDoc; /* parsed xsl file */
protected static String outFile = new String("XMLDiffSample.xsl"); /* output
 xsl file name */

	
The main() method creates an XMLDiffSample object as follows:

dfxApp = new XMLDiffSample();

	
The main() method adds and initializes a JFrame to display the output of the comparison. The following code illustrates this technique:

diffFrame = new XMLDiffFrame(dfxApp);
diffFrame.addTransformMenu();

	
The main() method instantiates the XMLDiff bean. The following code illustrates this technique:

xmlDiff = new XMLDiff();

	
The main() method invokes the showDiffs() method. This method performs the following tasks:

	
Invokes XMLDiff.diff() to compare the input XML documents.

	
Generates and displays an XSLT stylsheet that can transform one input document into the other document.

The following code fragment shows the showDiffs() method call:

if (args.length == 3)
 outFile = args[2];
if(args.length >= 2)
 dfxApp.showDiffs(new File(args[0]), new File(args[1]));
diffFrame.setVisible(true);

The following section explains the showDiffs() method.

Comparing the XML Files and Generating a Stylesheet

The showDiffs() method illustrates the use of the XMLDiff bean.

The method follows these steps:

	
Set the files for the XMLDiff processor. The following statement illustrates this technique:

xmlDiff.setFiles(file1, file2);

	
Compare the files. The diff() method returns a boolean value that indicates whether the input documents have identical structure and content. If they are equivalent, then the method prints a message to the JFrame implemented by the XMLDiffFrame class. The following code fragment illustrates this technique:

if(!xmlDiff.diff())
{
 JOptionPane.showMessageDialog
 (
 diffFrame,
 "Files are equivalent in XML representation",
 "XMLDiffSample Message",
 JOptionPane.PLAIN_MESSAGE
);
}

	
Generate a DOM for the XSLT stylesheet that shows the differences between the two documents. The following code fragment illustrates this technique:

xslDoc = xmlDiff.generateXSLDoc();

	
Display the documents in the JFrame implemented by XMLDiffFrame. Note that XMLDiffFrame instantiates the XMLSourceView bean, which is deprecated. The method follows these steps:

	
Create the source pane for the input documents. Pass the DOM handles of the two documents to the diffFrame object to make the source pane:

diffFrame.makeSrcPane(xmlDiff.getDocument1(), xmlDiff.getDocument2());

	
Create the pane that shows the differences between the documents. Pass references to the text panes to diffFrame as follows:

diffFrame.makeDiffSrcPane(new XMLDiffSrcView(xmlDiff.getDiffPane1()),
 new XMLDiffSrcView(xmlDiff.getDiffPane2()));

	
Create the pane for the XSLT stylesheet. Pass the DOM of the stylesheet as follows:

diffFrame.makeXslPane(xslDoc, "Diff XSL Script");
diffFrame.makeXslTabbedPane();

Part II

XDK for C

This part contains chapters describing how the Oracle XDK is used for development in C.

This part contains the following chapters:

	
Chapter 14, "Getting Started with C XDK Components"

	
Chapter 15, "Using the XML Parser for C"

	
Chapter 16, "Using the XSLT and XVM Processors for C"

	
Chapter 17, "Using the XML Schema Processor for C"

	
Chapter 18, "Using SOAP with the C XDK"

A Oracle XDK for Java Error Messages

This section lists error messages that may be encountered in applications that use Oracle XDK for Java. These are divided into these principal sections:

	
XML Error Messages

	
TXU Error Messages

	
XSU Error Messages

	
See Also:

http://www.w3.org/TR/xquery/#id-errors for the XQuery error messages

XML Error Messages

These error messages may occur during the execution of XML interfaces.

XML Parser Error Messages

These error messages are in the range XML-20000 through XML-20999.

XML-20003: missing token string at line string, column string

An expected token was not found in the input data.

Action: Check/update the input data to fix the syntax error.

XML-20004: missing keyword string at line string, column string

Cause: An expected keyword was not found in the input data.

Action: Check/update the input data to the correct keyword.

XML-20005: missing keyword string or string at line string, column string

Cause: An expected keyword was not found in the input data.

Action: Check/update the input data to the correct keyword.

XML-20006: unexpected text at line string, column string; expected EOF

Cause: More text was found after the end-tag of the root element.

Action: The end-tag of the root element can be followed only by comments, PI, or white space. Remove the extra text after the end-tag.

XML-20007: missing content model in element declaration at line string, column string

Cause: The element declaration was missing the required content model spec See Production [45] in XML 1.0 2nd Edition.

Action: Add the required content spec to the element declaration.

XML-20008: missing element name in content model at line string, column string

Cause: The content model in the element declaration was invalid, the content particle requires an element name. See Production [48] in XML 1.0 2nd Edition.

Action: Add the element name to fix the content spec syntactically.

XML-20009: target name string of processing instruction at line string, column string is reserved

Cause: The target names "XML: xml", and so on are reserved for standardization in future versions of XML specification. See Production [17] in XML 1.0 2nd Edition.

Action: If the PI is meant to be XML declaration, make sure the declaration occurs at the very beginning of the file. Otherwise, change to name of the PI.

XML-20010: missing notation name in unparsed entity declaration at line string, column string

Cause: The notation name used in the unparsed entity declaration did not match the name in a declared notation. See Production [76] in XML 1.0 2nd Edition.

Action: Add the notation declaration to the DTD.

XML-20011: missing attribute type in attribute-list declaration at line string, column string

Cause: The attribute type was missing the attribute-list declaration. One of the following types CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or NMTOKENS must be added. See Production [52], [53] in XML 1.0 2nd Edition.

Action: Check and correct attribute declaration.

XML-20012: missing white space at line string, column string

Cause: The required white space was missing.

Action: Add white space to fix the syntax error.

XML-20013: invalid character string in entity value at line string, column string

Cause: An invalid character was used in the entity value, the characters'&', '%' and (" or ' based on the value delimiters) are invalidSee Production [9] in XML 1.0 2nd Edition.

Action: Use entity or character references instead of the characters For example, & or & can be used instead of '&'

XML-20014: -- not allowed in comment at line string, column string

Cause: A syntax error in comment due to the use of "--"See Production [15] in XML 1.0 2nd Edition.

Action: Fix the comment, and use "--" only as part of end of comment "-->"

XML-20015:]]> not allowed in text at line string, column string

Cause: "]]>" is not allowed in text, it is used only as end marker forCDATA Section. See Production [14] in XML 1.0 2nd Edition.

Action: Fix the text content by using > or char ref for '>'

XML-20016: white space not allowed before occurrence indicator at line string, column string

Cause: White space is not allowed in the contentspec before the occurrenceindicator. For example, <!ELEMENT x (a,b) *> is not valid. See Production [47], [48] in XML 1.0 2nd Edition.

Action: Fix the contentspec by removing the extra space

XML-20017: occurrence indicator string not allowed in mixed-content at line string, column string

Cause: Occurrence is not allowed in mixed content declaration.For example, <!ELEMENT x (#PCDATA)?> is not valid. See Production [51] in XML 1.0 2nd Edition.

Action: Fix the syntax to remove the occurrence indicator.

XML-20018: content list not allowed inside mixed-content at line string, column string

Cause: Content list is not allowed in mixed-content declaration. For example, <!ELEMENT x (#PCDATA | (a,b))> is not valid.See Production [51] in XML 1.0 2nd Edition.

Action: Fix the syntax to remove the content list.

XML-20019: duplicate element string in mixed-content declaration at line string, column string

Cause: Duplicate element name was found in mixed-content declaration. For example, <!ELEMENT x (#PCDATA | a | a)> is not valid. See Production [51] in XML 1.0 2nd Edition.

Action: Remove the duplicate element name.

XML-20020: root element string does not match the DOCTYPE name string at line string, column string

Cause: failed: The Name in the document type declaration must match the element type of the root element. For example: <?xml version="1.0"?> <!DOCTYPE greeting [<!ELEMENT greeting (#PCDATA)>]> <salutation>Hello!</salutation> The document's root element, salutation, does not match the root element declared in the DTD (greeting).

Action: Correct the document.

XML-20021: duplicate element declaration string at line string, column string

Cause: Element was declared twice in the DTD.

Action: Remove the duplicate declaration.

XML-20022: element string has multiple ID attributes at line string, column string

Cause: failed: No element type may have more than one ID attribute specified.

Action: Correct the document, by removing the duplicate ID attribute decl

XML-20023: ID attribute string in element string must be #IMPLIED or #REQUIRED at line string, column string

Cause: failed: An ID attribute must have a declared default of #IMPLIED or #REQUIRED.

Action: Fix the attribute declaration.

XML-20024: missing required attribute string in element string at line string, column string

Cause: failed: If the default declaration is the keyword #REQUIRED, then the attribute must be specified for all elements of the type in the attribute-list declaration.

Action: Fix the input document by specifying the required attribute.

XML-20025: duplicate ID value: string

Cause: Values of type ID must match the Name production. A name must not appear more than once in an XML document as a value of this type; i.e., ID values must uniquely identify the elements which bear them.

Action: Fix the input document by removing the duplicate ID value.

XML-20026: undefined ID value string in IDREF

Cause: failed "Values of type IDREF must match value of some ID attribute.

Action: Fix the document by adding an ID corresponding the to the IDREF, or removing the IDREF

XML-20027: attribute string in element string has invalid enumeration value string at line string, column string

Cause: failed: Values of this type must match one of the Nmtoken tokens in the declaration.

Action: Fix the attribute value to match one of the enumerated values.

XML-20028: attribute string in element string has invalid value string, must be string at line string, column {5}

Cause: failed: If an attribute has a default value declared with the #FIXED keyword, instances of that attribute must match the default value.

Action: Update the attribute value to match the fixed default value.

XML-20029: attribute default must be REQUIRED, IMPLIED, or FIXED at line string, column string

Cause: The declared default value must meet the lexical constraints o the declared attribute type.

Action: Use one of REQUIRED, IMPLIED, or FIXED for attribute default decl.

XML-20030: invalid text in content of element string at line string, column string

Cause: The element does not allow text in content. An element is valid if there is a declaration matching element decl where the Name matches the element type, and one of the following holds:

The declaration matches children and the sequence of child elements belongs to the language generated by the regular expression in the content model, with optional white space (characters matching the nonterminal S) between the start-tag and the first child element, between child elements, or between the last child element and the end-tag. Note that a CDATA section containing only white space does not match the nonterminal S, and hence cannot appear in these positions.

Action: Fix the content by removing unexpected text.

XML-20031: invalid element string in content of element string at line string, column string

Cause: The element has invalid content. An element is valid if there is a declaration matching element decl where the Name matches the element type, and one of the following holds:

1. The declaration matches children and the sequence of child elements belongs to the language generated by the regular expression in the content model, with optional white space (characters matching the nonterminal S) between the start-tag and the first child element, between child elements, or between the last child element and the end-tag. Note that a CDATA section containing only white space does not match the non-terminal S, and hence cannot appear in these positions.

2. The declaration matches Mixed and the content consists of character data and child elements whose types match names in the content model.

Action: Fix the content by removing unexpected elements.

XML-20032: incomplete content in element string at line string, column string

Cause: The element has invalid content. An element is valid if there is a declaration matching elementdecl where the Name matches the element type, and one of the following holds:

1. The declaration matches children and the sequence of child elements belongs to the language generated by the regular expression in the content model, with optional white space (characters matching the non-terminal S) between the start-tag and the first child element, between child elements, or between the last child element and the end-tag. Note that a CDATA section containing only white space does not match the nonterminal S, and hence cannot appear in these positions.

2. The declaration matches Mixed and the content consists of character data and child elements whose types match names in the content model.

Action: Fix the content by removing unexpected elements.

XML-20033: invalid replacement-text for entity string at line string, column string

Cause: Parameter-entity replacement text must be properly nested with markup declarations. That is to say, if either the first character or the last character of a markup declaration (markup decl above) is contained in the replacement text for a parameter-entity reference, both must be contained in the same replacement text.

Action: Fix the entity value.

XML-20034: end-element tag string does not match start-element tag string at line string, column string

Cause: The Name in an element's end-tag must match the element type in the start-tag.

Action: Fix the end-tag or start-tag to match the other.

XML-20035: duplicate attribute string in element string at line string, column string

Cause: No attribute name may appear more than once in the same start-tag o rempty-element tag.

Action: Remove the duplicate attribute.

XML-20036: invalid character string in attribute value at line string, column string

Cause: An invalid character was used in the attribute value, the characters'&', '<' and (" or ' based on the value delimiters) are invalid. See Production [10] in XML 1.0 2nd Edition.

Action: Use entity or character references instead of the characters For example, & or & can be used instead of '&'

XML-20037: invalid reference to external entity string in attribute string at line string, column string

Cause: Attribute values cannot contain direct or indirect entity references to external entities.

Action: Fix document to remove reference to external entity in attribute.

XML-20038: invalid reference to unparsed entity string in element string at line string, column string

Cause: An entity reference must not contain the name of an unparsed entity.Unparsed entities may be referred to only in attribute values declared to be of type ENTITY or ENTITIES.

Action: Fix document to remove reference to unparsed entity in content.

XML-20039: invalid attribute type string in attribute-list declaration at line string, column string

Cause: Invalid attribute type was used in the attribute-list declaration. One of the following types CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, or NMTOKENS must be added. See Production [52], [53] in XML 1.0 2nd Edition. failed.

Action: Check and correct attribute declaration.

XML-20040: invalid character string in element content at line string, column string

Cause: Characters referred to using character references must match the production for Char.

Action: Fix the document by removing the invalid character or char-ref.

XML-20041: entity reference string refers to itself at line string, column string

Cause: A parsed entity must not contain a recursive reference to itself, either directly or indirectly.

Action: Fix the document.

XML-20042: invalid Nmtoken: string

Cause: Values of this type must match one of the Nmtoken tokens in the declaration, and must be valid Nmtoken"

Action: Fix the attribute value.

XML-20043: invalid character string in public identifier at line string, column string

Cause: Invalid character used in public identifier. See Production [12], [13] in XML 1.0 2nd Edition.

Action: Fix the public identifier.

XML-20044: undeclared namespace prefix string used at line string, column string

Cause: The prefix was not defined in any namespace declaration in scope.

Action: Add a namespace declaration to define the prefix.

XML-20045: attribute string in element string must be an unparsed entity at line string, column string

Cause: Values of type ENTITY must match the Name production, values of type ENTITIES must match Names; each Name must match the name of an unparsed entity declared in the DTD.

Action: Fix the attribute value to refer to an unparsed entity.

XML-20046: undeclared notation string used in unparsed entity string at line string, column string

Cause: Values of this type must match one of the notation names included in the declaration; all notation names in the declaration must be declared.

Action: Fix the notation name in the unparsed entity declaration.

XML-20047: missing element declaration string

Cause: The element declaration referred to by an attribute declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20048: duplicate entity declaration string at line string, column string

Cause: Warning regarding duplicate entity declaration.

Action: No action required.

XML-20049: invalid use of NDATA in parameter entity declaration at line string, column string

Cause: NDATA declaration was found in parameter entity declaration. It is allowed only in general unparsed entity declaration. See Production [72], [74] in XML 1.0 2nd Edition.

Action: Fix the entity declaration.

XML-20050: duplicate attribute declaration string at line string, column string

Cause: Warning regarding duplicate attribute declaration.

Action: No action required.

XML-20051: duplicate notation declaration string at line string, column string

Cause: Only one notation declaration can declare a given Name.

Action: Fix the document by removing the duplicate notation.

XML-20052: undeclared attribute string used at line string, column string

Cause: The attribute declaration was not found in the DTD.

Action: Fix the DTD by adding the attribute declaration.

XML-20053: undeclared element string used at line string, column string

Cause: The element declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20054: undeclared entity string used at line string, column string

Cause: The entity declaration was not found in the DTD.

Action: Fix the DTD by adding the element declaration.

XML-20055: invalid document returned by NodeFactory's createDocument

Cause: The document returned by createDocument function of NodeFactory was invalid, either it was null or instance of an unsupported class.

Action: Fix NodeFactory implementation to return an instance of XMLDocument or its subclass.

XML-20056: invalid SAX feature string

Cause: The SAX feature supplied was not a valid feature name.

Action: Refer to documentation for a valid list of features.

XML-20057: invalid value string passed for SAX feature string

Cause: The value supplied for the SAX feature was not valid.

Action: Refer to documentation for a valid list of features and their corresponding values.

XML-20058: invalid SAX property string

Cause: The SAX property supplied was not a valid property name.

Action: Refer to documentation for a valid list of properties.

XML-20059: invalid value passed for SAX property string

Cause: The value supplied for the SAX property was not valid.

Action: Refer to documentation for a valid list of properties and their corresponding values.

XML-20060: Error occurred while opening URL string

Cause: An error occurred while opening the supplied URL.

Action: Verify the URL, and take appropriate action to allow data to be read.

XML-20061: invalid byte stream string in UTF8 encoded data

Cause: The input data contained bytes that are not valid w.r.t to UTF8encoding scheme.

Action: Fix the input data.

XML-20062: 5-byte UTF8 encoding not supported

Cause: The XML Parser does not support 5-byte UTF8 encoding scheme. It is also possible that invalid UTF8 characters were misinterpreted as5-byte UTF8 encoding.

Action: If the data contains invalid UTF8 bytes, fix the input, otherwise if 5-byte UTF8 supported is required, please contact Oracle Support.

XML-20063: 6-byte UTF8 encoding not supported

Cause: The XML Parser does not support 6-byte UTF8 encoding scheme. It is also possible that invalid UTF8 characters were misinterpreted as6-byte UTF8 encoding.

Action: If the data contains invalid UTF8 bytes, fix the input, otherwise if 6-byte UTF8 supported is required, please contact Oracle Support.

XML-20064: invalid XML character string

Cause: Invalid XML character was found in the input data.

Action: Fix the input data.

XML-20065: encoding string doesn't match encoding string in XML declaration

Cause: The encoding of the data (either by auto-detection or user supplied)didn't match the encoding specified in the XML declaration.

Action: Fix the XML declaration to match the encoding of the data.

XML-20066: encoding string not supported

Cause: The XML Parser does not support the specified encoding.

Action: If the support for the encoding is required, please contact Oracle Support.

XML-20067: invalid InputSource returned by EntityResolver's resolveEntity

Cause: An invalid instance of InputSource was returned by the EntityResolverAn InputSource can be invalid if the none of Reader, InputStream, andSystemId were initialized or if the SystemId was invalid.

Action: Fix the EntityResolver class to return a valid instance of InputSource

XML-20100: Expected string.

XML-20101: Expected string or string.

XML-20102: Expected string, string, or string.

XML-20103: Illegal token in content model.

XML-20104: Could not find element with ID string.

XML-20105: ENTITY type Attribute value string does not match any unparsed Entity.

XML-20106: Could not find Notation string.

XML-20107: Could not find declaration for element string.

XML-20108: Start of root element expected.

XML-20109: PI with the name 'xml' can occur only in the beginning of the document.

XML-20110: #PCDATA expected in mixed-content declaration.

XML-20111: Element string repeated in mixed-content declaration.

XML-20112: Error opening external DTD string.

XML-20113: Unable to open input source (string).

XML-20114: Bad conditional section start syntax, expected '['.

XML-20115: Expected ']]>' to end conditional section.

XML-20116: Entity string already defined, using the first definition.

XML-20117: NDATA not allowed in parameter entity declaration.

XML-20118: NDATA value required.

XML-20119: Entity Value should start with quote.

XML-20120: Entity value not well-formed.

XML-20121: End tag does not match start tag string.

XML-20122: '=' missing in attribute.

XML-20123: '>' Missing from end tag.

XML-20124: An attribute cannot appear more than once in the same start tag.

XML-20125: Attribute value should start with quote.

XML-20126: '<' cannot appear in attribute value.

XML-20127: Reference to an external entity not allowed in attribute value.

XML-20128: Reference to unparsed entity not allowed in element content.

XML-20129: Namespace prefix string used but not declared.

XML-20130: Root element name must match the DOCTYPE name.

XML-20131: Element string already declared.

XML-20132: Element cannot have more than one ID attribute.

XML-20133: Attr type missing.

XML-20134: ID attribute must be declared #IMPLIED or #REQUIRED.

XML-20135: Attribute string already defined, using the first definition.

XML-20136: Notation string already declared.

XML-20137: Attribute string used but not declared.

XML-20138: REQUIRED attribute string is not specified.

XML-20139: ID value string is not unique.

XML-20140: IDREF value string does not match any ID attribute value.

XML-20141: Attribute value string should be one of the declared enumerated values.

XML-20142: Unknown attribute type.

XML-20143: Unrecognized text at end of attribute value.

XML-20144: FIXED type Attribute value not equal to the default value string.

XML-20145: Unexpected text in content of Element string.

XML-20146: Unexpected text in content of Element string, expected elements string.

XML-20147: Invalid element string in content of string, expected closing tag.

XML-20148: Invalid element string in content of string, expected elements string.

XML-20149: Element string used but not declared.

XML-20150: Element string not complete, expected elements string.

XML-20151: Entity string used but not declared.

XML-20170: Invalid UTF8 encoding.

XML-20171: Invalid XML character(string).

XML-20172: 5-byte UTF8 encoding not supported.

XML-20173: 6-byte UTF8 encoding not supported.

XML-20180: User Supplied NodeFactory returned a Null Pointer.

XML-20190: Whitespace required.

XML-20191: '>' required to end DTD.

XML-20192: Unexpected text in DTD.

XML-20193: Unexpected EOF.

XML-20194: Unable to write to output stream.

XML-20195: Encoding not supported in PrintWriter.

XML-20200: Expected string instead of string.

XML-20201: Expected string instead of string.

XML-20202: Expected string to be string.

XML-20205: Expected string.

XML-20206: Expected string or string.

XML-20210: Unexpected string.

XML-20211: string is not allowed in string.

XML-20220: Invalid InputSource.

XML-20221: Invalid char in text.

XML-20230: Illegal change of encoding: from string to string.

XML-20231: Encoding string is not currently supported.

XML-20240: Unable to open InputSource.

XML-20241: Unable to open entity string.

XML-20242: Error opening external DTD string.

XML-20250: Missing entity string.

XML-20251: Cyclic Entity Reference in entity string.

XML-20280: Bad character (string).

XML-20281: NMToken must contain atleast one NMChar.

XML-20282: string not allowed in a PubIdLiteral.

XML-20284: Illegal white space before optional character in content model.

XML-20285: Illegal mixed content model.

XML-20286: Content list not allowed inside mixed content model.

XML-20287: Content particles not allowed inside mixed content model.

XML-20288: Invalid default declaration in attribute declaration.

XML-20500: SAX feature string not recognized.

XML-20501: SAX feature string not supported.

XML-20502: SAX property string not recognized.

XML-20503: SAX property string not supported.

DOM Error Messages

These error messages are in the range XML-21000 through XML-21999.

XML-21000: invalid size string specified

Cause: An invalid size or count was passed to a DOM function.

Action: Correct the argument passed to a valid value.

XML-21001: invalid index string specified; must be between 0 and string

Cause: An invalid index was passed to a DOM function.

Action: Correct the argument passed to a valid value specified by the bounds in the error message.

XML-21002: cannot add an ancestor as a child node

Cause: The DOM operation was trying to a add an ancestor node as a child. This can lead to inconsistencies in the tree, so it is not allowed.

Action: Check the application to fix the usage.

XML-21003: node of type string cannot be added to node of type string

Cause: The DOM specification does not allow the parent-child combinationused in the DOM operation.

Action: Refer to DOM specification to fix the usage.

XML-21004: document node can have only one string node as child

Cause: The XML well-formedness requires that the document node have onlyone element node as its child. The application tried adding addinga second element node.

Action: Fix usage in the application.

XML-21005: node of type string cannot be added to attribute list

Cause: The attribute list (instance of NamedNodeMap) can contain onlyattribute nodes.

Action: Fix usage of NamedNodeMap.

XML-21006: cannot add a node belonging to a different document

Cause: The node being added was created by a different document. The DOMspecification does not allow use of nodes across documents.

Action: Use importNode or adoptNode to move a node from one document to another, before adding it.

XML-21007: invalid character string in name

Cause: The qualified or local name passed was invalid.

Action: Fix the name to contain only valid

XML-21008: cannot set value for node of type string

Cause: The node of the specified type cannot have value.

Action: Fix usage of DOM functions.

XML-21009: cannot modify descendants of entity or entity reference nodes

Cause: The descendants of entity or entity reference nodes are read-onlynodes, and modification is not allowed.

Action: Fix usage of DOM functions.

XML-21010: cannot modify DTD's content

Cause: DTD and all its content is read-only and cannot be modified.

Action: Fix usage of DOM functions.

XML-21011: cannot remove attribute; not found in the current element

Cause: An attempt was made to remove an attribute that does not belong thecurrent element.

Action: Fix usage in application.

XML-21012: cannot remove or replace node; it is not a child of the current node

Cause: An attempt was made to remove an node that does not belong thecurrent node as a child.

Action: Fix usage in application.

XML-21013: parameter string not recognized

Cause: The DOM parameter was not recognized.

Action: See documentation for a valid list of parameters.

XML-21014: value string of parameter string is not supported

Cause: The DOM parameter was not recognized.

Action: See documentation for a valid list of parameters.

XML-21015: cannot add attribute belonging to another element

Cause: An attempt was made to add an attribute that belonged theanother element.

Action: Fix usage in application.

XML-21016: invalid namespace string for prefix string

Cause: The namespace for xml, and xmlns prefixes is fixed, and usage mustmatch these.

Action: Correct the namespace for the prefixes, namespaces are xml = http://www.w3.org/XML/1998/namespace xmlns = http://www.w3.org/2000/xmlns/

XML-21017: invalid qualified name: string

Cause: The qualified name passed to a DOM function was invalid.

Action: Fix the qualified name.

XML-21018: conflicting namespace declarations string and string for prefix string

Cause: The DOM tree has conflicting namespace declarations for the sameprefix. Such a DOM tree cannot be serialized.

Action: Fix the DOM tree, before printing it.

XML-21019: string object is detached

Cause: The object was detached, no operations are supported ona detached object. The object can be a Range or iterator object

Action: Fix the usage in application.

XML-21020: bad boundary specified; cannot partially select a node of type string

Cause: The boundary specified in the range was invalid. The selectioncan be partial only for text nodes.

Action: Fix the usage in the application.

XML-21021: node of type string does not support range operation string

Cause: The range operation is not supported on the node type specified.

Action: Refer to DOM documentation for restrictions of node types for each range operation.

XML-21022: invalid event type: string

Cause: The event type passed was invalid.

Action: Fix usage in the application.

XML-21023: prefix not allowed on nodes of type string

Cause: The application tried to set prefix on a node on which prefix is notallowed

Action: Fix usage in the application.

XML-21024: import not allowed on nodes of type string

Cause: The application tried to import a node of type DOCUMENT orDOCUMENT FRAGMENT.

Action: Fix usage in the application.

XML-21025: rename not allowed on nodes of type string

Cause: The application tried to import a node of type other than ELEMENT orATTRIBUTE.

Action: Fix usage in the application.

XML-21026: Unrepresentable character in node: string

Cause: A node contains an invalid character, eg. CDATA section contain a termination character -]]>

Action: Set appropriate DOMConfiguration parameter.

XML-21027: Namespace normalization error in node: string

Cause: Namespace fixup cannot be performed on this node -]]>

Action: Set namespace normalization to false.

XML-21997: function not supported on THICK DOM

Cause: A function on THICK (for example, XDB based) DOM which is not supported was called.

Action: Refer to the XDK documentation for possible alternatives for functions not supported on THICK DOM.

XML-21998: system error occurred: string

Cause: Non-dom related system errors occurred.

Action: Check with ORA error(s) embedded in the message and consult with developers for possible causes.

XSL Transformation Error Messages

These error messages are in the range XML-22000 through XML-22999.

XML-22000: Error while parsing XSL file (string).

XML-22001: XSL Stylesheet does not belong to XSLT namespace.

XML-22002: Error while processing include XSL file (string).

XML-22003: Unable to write to output stream (string).

XML-22004: Error while parsing input XML document (string).

XML-22005: Error while reading input XML stream (string).

XML-22006: Error while reading input XML URL (string).

XML-22007: Error while reading input XML reader (string).

XML-22008: Namespace prefix string used but not declared.

XML-22009: Attribute string not found in string.

XML-22010: Element string not found in string.

XML-22011: Cannot construct XML PI with content: string.

XML-22012: Cannot construct XML comment with content: string.

XML-22013: Error in expression: string.

XML-22014: Expecting node-set before relative location path.

XML-22015: Function string not found.

XML-22016: Extension function namespace should start with string.

XML-22017: Literal expected in string function. Found string.

XML-22018: Parse Error in string function.

XML-22019: Expected string instead of string.

XML-22020: Error in extension function arguments.

XML-22021: Error parsing external document: string.

XML-22022: Error while testing predicates. Not a nodeset type.

XML-22023: Literal Mismatch.

XML-22024: Unknown multiply operator.

XML-22025: Expression error: Empty string.

XML-22026: Unknown expression at EOF: string.

XML-22027: Closing } not found in Attribute Value template.

XML-22028: Expression value type string not recognized by string.

XML-22029: Cannot transform child string in string.

XML-22030: Attribute value string not expected for string.

XML-22031: Variable not defined: string.

XML-22032: Found a single } outside expression in Attribute value template.

XML-22033: Token not recognized:!.

XML-22034: Namespace definition not found for prefix string.

XML-22035: Axis string not found

XML-22036: Cannot convert string to string.

XML-22037: Unsupported feature: string.

XML-22038: Expected Node-set in Path Expression.

XML-22039: Extension function error: Error invoking constructor for string

XML-22040: Extension function error: Overloaded constructors for string

XML-22041: Extension function error: Constructor not found for string

XML-22042: Extension function error: Overloaded method string

XML-22043: Extension function error: Method not found string

XML-22044: Extension function error: Error invoking string:string

XML-22045: Extension function error: Class not found string

XML-22046: Apply import cannot be called when current template is null.

XML-22047: Invalid instantiation of string in string context.

XML-22048: The string element children must precede all other element children of an string element.

XML-22049: Template string invoked but not defined.

XML-22050: Duplicate variable string definition.

XML-22051: only a literal or a reference to a variable or parameter is allowed in id() function when used as a pattern

XML-22052: no sort key named as: string was defined

XML-22053: cannot detect encoding in unparsed-text(), please specify

XML-22054: no such xsl:function with namespace: string and local name: string was defined

XML-22055: range expression can only accept xs:integer data type, but not string

XML-22056: exactly one of four group attributes must be present in xsl:for-each-group

XML-22057: string can only have string as children

XML-22058: wrong child of xsl:function

XML-22059: wrong child order of xsl:function

XML-22060: TERMINATE PROCESSING

XML-22061: teminate attribute in <xsl:message> can only be yes or no

XML-22062: string must have at least one string child

XML-22063: no definition for character-map with qname string

XML-22064: cannot define character-map with the same name string and the same import precedence

Cause: A required child was not found.

Action: After error mesgfreeze is over, throws an error (without the required child element, it can do nothing).

XML-22065: at least one string must be defined under string

Cause: a required child is missing.

Action: without the required child, it can do nothing, so throws an error.

XML-22066: if select attribute is present, string instructions sequence-constructor must be empty

Cause: the "select" attribute and sequence constructor should be mutually exclusive for this instruction.

Action: None. Throw an error.

XML-22067: if use attribute is present, string instructions sequence-constructor must be empty

Cause: the "use" attribute and sequence constructor should be mutually exclusive for this instruction.

Action: None. Throw an error.

XML-22068: only primary sort key is allowed to have the stable attribute.

Cause: the secondary sort key has a stable attribute.

Action: None. Throw an error.

XML-22069: only string or string is allowed.

Cause: user's typo.

Action: None. Throw an error.

XML-22101: DOMSource node as this type not supported.

XML-22103: DOMResult can not be this kind of node.

XML-22106: Invalid StreamSource - InputStream, Reader, and SystemId are null.

XML-22107: Invalid SAXSource - InputSource is null.

XML-22108: Invalid Source - URL format is incorrect.

XML-22109: Internal error while reporting SAX events.

XML-22110: Invalid StreamResult set in TransformerHandler.

XML-22111: Invalid Result set in TransformerHandler.

XML-22112: Namespace URI missing }.

XML-22113: Namespace URI should start with {.

XML-22117: URL format has problems (null or bad format or missing 'href' or missing '=').

XML-22121: Could not get associated stylesheet.

XML-22122: Invalid StreamResult - OutputStream, Writer, and SystemId are null.

XML-22900: An internal error condition occurred.

XPath Error Messages

These error messages are in the range XML-23000 through XML-23999.

XML-23002: internal xpath error

Cause: This was an error returned by the XPath/XQuery datamodel or XPathF&O.

Action: Check the XPath expression.

XML-23003: XPath 2.0 feature schema-element/schema-attribute not supported

Cause: This error was caused by using the kindtest schema-element or schema-attribute. These are not supported for this release.

Action: Remove usage of schema-element or schema-attribute kindtest

XML-23006: value does not match required type

Cause: During the evaluation phase, there was a type error as thevalue did not match a required type specified by the matchingrules in XPath 2.0 SequenceType Matching.

Action: Modify the stylesheet to reflect the correct type.

XML-23007: FOAR0001: division by zero

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23008: FOAR0002: numeric operation overflow/unflow

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23009: FOCA0001: Error in casting to decimal

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23010: FOCA0002: invalid lexical value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23011: FOCA0003: input value too large for integer

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23012: FOCA0004: Error in casting to integer

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23013: FOCA0005: NaN supplied as float/double value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23014: FOCH0001: invalid codepoint

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23015: FOCH0002: unsupported collation

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23016: FOCH0003: unsupported normalization form

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23017: FOCH0004: collation does not support collation units

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23018: FODC0001: no context document

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23019: FODC0002: Error retrieving resource

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23020: FODC0003: Error parsing contents of resource

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23021: FODC0004: invalid argument to fn:collection()

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23022: FODT0001: overflow in date/time arithmetic

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23023: FODT0002: overflow in duration arithmetic

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23024: FONC0001: undefined context item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23025: FONS0002: default namespace is defined

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23026: FONS0003: no prefix defined for namespace

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23027: FONS0004: no namespace found for prefix

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23028: FONS0005: base URI not defined in the static context

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23029: FORG0001: invalid value for cast/constructor

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23030: FORG0002: invalid argument to fn:resolve-uri()

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23031: FORG0003: zero-or-one called with sequence containing more than one item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23032: FORG0004: fn:one-or-more called with sequence containing no items

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23033: FORG0005: exactly-one called with sequence containing zero or more than one item

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23034: FORG0006: invalid argument type

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23035: FORG0007: invalid argument to aggregate function

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23036: FORG0008: both arguments to fn:dateTime have a specified timezone

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23037: FORG0009: base uri argument to fn:resolve-uri is not an absolute URI

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23038: FORX0001: invalid regular expression flags

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23039: FORX0002: invalid regular expression

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23040: FORX0003: regular expression matches zero-length string

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23041: FORX0004: invalid replacement string

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23042: FOTY0001: type error

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23043: FOTY0011: context item is not a node

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23044: FOTY0012: items not comparable

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23045: FOTY0013: type does not have equality defined

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23046: FOTY0014: type exception

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23047: FORT0001: invalid number of parameters

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23048: FOTY0002: type definition not found

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23049: FOTY0021: invalid node type

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23050: FOER0000: unidentified error

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23051: FODC0005: invalid argument to fn:doc

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML-23052: FODT0003: invalid timezone value

Cause: This was an XPath 2.0 F&O specification error.

Action: Check the XPath expression.

XML Schema Validation Error Messages

These error messages are in the range XML-24000 through XML-24099.

XML-24000: internal error

Cause: An unexpected error occoured during processing

Action: Report the error

XML-24001: attribute string not expected at line string, column string

Cause: [cvc-assess-attr.1] The attribute were not expected for owner element

Action: Add the attribute declaration to the type of the owner element

XML-24002: can not find element declaration string.

Cause: [cvc-assess-elt.1.1.1.1]The element declaration required by processorfor validation was absent.

Action: Add the element declaration to schema, or change the instance document to comply to schema.

XML-24003: context-determined element declaration string absent.

Cause: [cvc-assess-elt.1.1.1.2] The element declaration required by context was missing in schema

Action: Add the element declaration to schema

XML-24004: declaration for element string absent.

Cause: [cvc-assess-elt.1.1.1.3] The context-determined declaration was not skip and the declaration that matches the element could not be foundin schema

Action: Add the element declaration to schema or change the context-determined declaration to skip

XML-24005: element string not assessed

Cause:[cvc-assess-elt.2]

XML-24006: element string laxly assessed

Cause: [cvc-assess-elt.2]

XML-24007: missing attribute declaration stringin element string

Cause: [cvc-attribute.1] Attribute declaration was absent from element declaration

Action: Add the attribute declaration to schema.

XML-24008: type absent for attribute string

Cause: [cvc-attribute.2] Missing type definition for the attribute declaration

Action: Specify a data type for the attribute declaration.

XML-24009: invalid attribute value string

Cause: [cvc-attribute.3] Invalid attribute value with respect to its type

Action: Correct the attribute value in instance.

XML-24010: attribute value string and fixed value string not match

Cause: [cvc-au] Attribute's normalized value was not the same as the fixedvalue declared.

Action: Change attribute value to the required value.

XML-24011: type of element string is abstract.

Cause: [cvc-complex-type.1] The type of this element was specified as abstract.

Action: Remove the abstract attribute from the type definition.

XML-24012: no children allowed for element string with empty content type

Cause: [cvc-complex-type.2.1] The content type was specified empty while the actual content was not.

Action: Make the content empty or modify the content type of this element.

XML-24013: element child string not allowed for simple content

Cause: [cvc-complex-type.2.2] Element was declared with simple content, but instance had element children.

Action: Use only character content for this element.

XML-24014: characters string not allowed for element-only content

Cause: [cvc-complex-type.2.3] Characters appeared in the content of element with element-only content.

Action: Use only element children for this element.

XML-24015: multiple ID attributes in element string at line string, column string

Cause:[cvc-complex-type.2.5] More than one attributes with type ID or its derivation matched attribute wildcard.

Action: Do not use more than one attriubtes with ID or ID derived type.

XML-24016: invalid string value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to string type.

Action: Correct the value to satisfy the declared type

XML-24017: invalid boolean value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to boolean type.

Action: Correct the value to satisfy boolean type, valid values are "0: 1", "true", and"false".

XML-24018: invalid decimal value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters could not be parsed into a decimal value.

Action: Correct the data value to satisfy decimal type.

XML-24019: invalid float value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters could not be parsed into a float value.

Action: Correct the value to satisfy string type

XML-24020: invalid double value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid double format as specified in IEEE 754-1985.

Action: Correct the value to satisfy double format.

XML-24021: invalid duration string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in correct extended date time format defined in ISO 8601.

Action: Correct the value to satisfy format PnYnMnDTnHnMnS.

XML-24022: invalid date value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid calendar date format specified in ISO 8601.

Action: Correct the value to satisfy CCYY-MM-DD format.

Comments: cvc-datatype-valid.1.2.2

XML-24023: invalid dateTime value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid combined data time format as specified in ISO 8601

Action: Correct the value to satisfy format CCYY-MM-DDThh:mm:ss with optional timezoon.

XML-24024: invalid time value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid time format as specified in ISO 8601.

Action: Correct the value to satisfy foramt DDThh:mm:ss with optional timezone.

XML-24025: invalid gYearMonth value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid right-truncated date format, as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY-MM.

XML-24026: invalid gYear value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid right-truncateddate format, as specified in ISO 8601.

Action: Correct the value to satisfy format CCYY.

XML-24027: invalid gMonthDay value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-truncateddate format, as specified in ISO 8601.

Action: Correct the value to required foramt --MM-DD.

XML-24028: invalid gDay value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-truncated date format, as specified in ISO 8601.

Action: Correct the value to required format ---DD.

XML-24029: invalid gMonth value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid left-and-right-truncated date format, as specified in ISO 8601.

Action: Correct the value to required format --MM--.

XML-24030: invalid hexBinary value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid hex encoded binary.

Action: Correct the value to satisfy hexBinary type

XML-24031: invalid base64Binary value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid with respect to base64 encoding.

Action: Correct the value to satisfy base64 binary encoding.

XML-24032: invalid anyURI value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid format as specified in RFC 2396 and RFC 2732.

Action: Correct the value to satisfy anyURI type

XML-24033: invalid QName value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not in valid QName format.

Action: Correct the value to satisfy QName type

XML-24034: invalid NOTATION value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NOTATION type.

Action: Correct the value to satisfy NOTATION type

XML-24035: invalid normalizedString value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid normalizedStringvalue.

Action: Correct the value to satisfy normalizedString type

XML-24036: invalid token value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for token type.

Action: Correct the value to satisfy token type

XML-24037: invalid language value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for language type.

Action: Correct the value to satisfy language type

XML-24038: invalid NMTOKEN value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NMTOKEN type.

Action: Correct the value to satisfy NMTOKEN type

XML-24039: invalid NMTOKENS value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid list of NMTOKEN type.

Action: Correct the value to satisfy NMTOKENS type.

XML-24040: invalid Name value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for Name type.

Action: Correct the value to satisfy Name type

XML-24041: invalid NCName value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for NCName type.

Action: Correct the value to satisfy NCName type

XML-24042: invalid ID value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for ID type.

Action: Correct the value to satisfy ID type

XML-24043: invalid IDREF value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for IDREF type.

Action: Correct the value to satisfy IDREF type

XML-24044: invalid ENTITY value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for ENTITY type

Action: Correct the value to satisfy ENTITY type

XML-24045: invalid ENTITIES value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid list ofENTITY value.

Action: Correct the value to satisfy ENTITIES type

XML-24046: invalid integer value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for integertype.

Action: Correct the value to satisfy integer type

XML-24047: invalid nonPositiveInteger value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for nonPositiveInteger type.

Action: Correct the value to satisfy nonPositiveInteger type

XML-24048: invalid negativeInteger value string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for negativeInteger type.

Action: Correct the value to satisfy negativeInteger type

XML-24049: invalid long value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for long type.

Action: Correct the value to satisfy long type

XML-24050: invalid int value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for int type.

Action: Correct the value to satisfy int type

XML-24051: invalid short value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for short type.

Action: Correct the value to satisfy short type

XML-24052: invalid byte value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for byte type.

Action: Correct the value to satisfy byte type

XML-24053: invalid nonNegativeInteger value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for nonNegativeInteger type.

Action: Correct the value to satisfy nonNegativeInteger type

XML-24054: invalid unsignedLong value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedlong type.

Action: Correct the value to satisfy unsignedlong type

XML-24055: invalid unsignedInt value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value of unsignedInt.

Action: Correct the value to satisfy unsignedInt type

XML-24056: invalid unsignedShort value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedShort type.

Action: Correct the value to satisfy unsignedShort type

XML-24057: invalid unsignedByte value string at line string, column string

Cause: [cvc-datatype-valid.1.2.2] Characters were not valid value for unsignedByte type.

Action: Correct the value to satisfy unsignedByte type

XML-24058: value string must be valid with respect to one member type

Cause: [cvc-datatype-valid.1.2.3] Characters were invalid with respect to any member type of union.

Action: Correct data value to satisfy at least one member type

XML-24059: element string not expected at line string, column string

Cause: [cvc-elt.1]

XML-24060: element string abstract

Cause:[cvc-elt.2] Element declared abstract was used in instance document.

Action: Do not declare the element as abstract.

XML-24061: element string not nillable

Cause: [cvc-elt.3.1] There was an attriube xsi:nil, which was not allowed because the element declaration was not nillable.

Action: Remove xsi:nil attribute from the the element

XML-24062: no character or element children allowed for nil content string

Cause: [cvc-elt.3.2.1] Element was specified nil but had character or element children.

Action: Remove any element content or remove nil attribute.

XML-24063: nil element does not satisfy fixed value constraint

Cause: [cvc-elt.3.2.2] Element had an fixed value while the content in instance was empty.

Action: Remove nil attribute from element.

XML-24064: xsi:type not a QName at line string, column string

Cause: [cvc-elt.4.1] The value of xsi:type attribute was not a QName.

Action: Change the value to a valid QName that references to a type.

XML-24065: xsi:type string not resolved to a type definition

Cause: [cvc-elt.4.2] The referenced type specified by xsi:type was absent.

Action: Correct the value of xsi:type so it points to a valide type definition.

XML-24066: local type string not validly derived from the type of element string

Cause: [cvc-elt.4.3] The type referenced by xsi:type was not derived from original type.

Action: Modify the reference type defintion so it satisfy the constraint, or use another type that is derived from original type.

XML-24067: value string not in enumeration

Cause: [cvc-enumeration-valid] The value was not one in the enumeration constraint.

Action: Use valid value specified in enumeration.

XML-24068: invalid facet string for type string

Cause: [cvc-facet-valid] The given data value violates the constraining facet.

Action: Correct the data value.

XML-24069: too many fraction digits in value string at line string, column string

Cause: [cvc-fractionDigits-valid] The given number violated the fractionDigits constraining facet.

Action: Use fewer fraction digits.

XML-24070: missing ID definition for ID reference string at line string, column string

Cause: [cvc-id.1] There is no ID binding in the ID/IDREF table for validation root

Action: Define the ID for the ID reference

XML-24071: duplicate ID string at line string, column string

Cause: [cvc-id.2] Same ID was defined more than once.

Action: Eliminate duplicate ID attributes.

XML-24072: duplicate key sequence string

Cause: [cvc-identity-constraint] The document contained duplicate key sequence thatviolated uniqueness constraint.

Action: Correct the document to make key sequence unique, or modify xpath to avoid it.

XML-24073: target node set not equals to qualified node set for key string

Cause: [cvc-identity-constraint.4.2.1] There were empty key sequences in key constraint.

Action: Make sure every element in target node set has a non-empty key sequence.

XML-24074: element member string in key sequence is nillable

Cause: [cvc-identity-constraint.4.2.3] The element selected as a member in a key sequence was nillable, which is not allowed.

Action: Modify the schema to make corrsponding element declaration not nillable.

XML-24075: missing key sequence for key reference string

Cause: [cvc-identity-constraint.4.3] A keyref referenced to empty key sequence.

Action: Make sure every key sequence for keyref is has a corresponding key sequence for referenced key.

XML-24076: incorrect length of value string

Cause: [cvc-length-valid] The length of the value was not the same as specified in length facet.

Action: Use data value with correct length.

XML-24077: value string greater than or equal to maxExclusive

Cause: [cvc-maxExclusive-valid] The data value was out of boundary specified in maxExclusive facet.

Action: Correct the data value.

XML-24078: value string greater than the maxInclusive

Cause: [cvc-maxInclusive-valid] The data value was out of boundary specified in maxInclusive facet.

Action: Correct the data value.

XML-24079: value length of string greater than maxLength

Cause: [cvc-maxLength-valid] The length of the data value was greater than maxLength.

Action: Make the data value's length smaller than maxLength.

XML-24080: value string smaller or equals to minExclusive

Cause: [cvc-minExclusive-valid] The data value was out of lower boundary of value range.

Action: Use data valude that is greater to minExclusive.

XML-24081: value string smaller than minInclusive

Cause: [cvc-minInclusive-valid] The data value was too small.

Action: Use data value not smaller than the value of minInclusive.

XML-24082: value string shorter than minLength

Cause: [cvc-minLength-valid] The length of value was smaller than that specified in minLength.

Action: Use data value with length greater than or equals to minLength.

XML-24083: wildcard particle in the content of element string not done

Cause: [cvc-particle.1.1] The wildcard particle's minOccurs had not been met.

Action: Have more elements in the content that match the wildcard.

XML-24084: element particle string not done

Cause: [cvc-particle.1.2] The element particle's minOccurs had not been met.

Action: Have more elements that match the element declaration or members in its substitution group.

XML-24085: model group string in the content of element string not done

Cause: [cvc-particle.1.3] The model group particle's minOccurs had not been met.

Action: Have more elements in the content that match the model group.

XML-24086: invlid literal string with respect to pattern facet string

Cause: [cvc-pattern-valid] The literal did not match the pattern constraining facet.

Action: Correct the lexical data to match pattern facet.

XML-24087: undefined type string

Cause: [cvc-resolve-instance.1] Could not resolve the type reference to a type definition

Action: Add the type definition to schema

XML-24088: undeclared attribute string

Cause: [cvc-resolve-instance.2] Could not resolve attributre reference to an attribute declaraton.

Action: Add the attribute declaration to schema.

XML-24089: undeclared element string

Cause: [cvc-resolve-instance.3] Could not resolve element reference to an element declaraton

Action: Add the element declaration to schema

XML-24090: undefined attribute group string

Cause: [cvc-resolve-instance.4] Could not resolve the attribute group reference to an attribute group definition.

Action: Define the attribute group definition in schema

XML-24091: undefined model group string

Cause: [cvc-resolve-instance.5] Could not resolve the model group reference to a model group definition

Action: Define the model group in schema

XML-24092: undeclared notation string

Cause: [cvc-resolve-instance.6] Could not resolve the notation reference to a notation declaration

Action: Add the notation declaration to schema

XML-24093: too many digits in value string at line string, column string

Cause: [cvc-totalDigits-valid] The number of digits in numeric value was greater than the value oftotalDigits facet.

Action: Use smaller numbers.

Schema Representation Constraint Error Messages

These error messages are in the range XML-24100 through XML-24199.

XML-24100: element string must belong to XML Schema namespace

Cause: Element in XML Schema document did not have Schema namespace.

Action: Specify XML Schema namespace http://www.w3.org/2001/XMLSchema

XML-24101: can not build schema from location string

Cause: [schema_reference.2] Processor could not find schema from given schema location

Action: Fix the schema location

XML-24102: can not resolve schema by target namespace string

Cause: [schema_reference.3] Processor was unable to retrieve schema based on given namespace.

Action: Fix the schema namespace

XML-24103: invalid annotation representation at line string, column string

Cause:[src-annotation]

XML-24104: multiple annotations at line string, column string

Cause: [src-annotation] More than one annotation elements appeared in component.

Action: Remove extra annotation.

XML-24105: annotation must be the first element at line string, column string

Cause: [src-annotation] Annotation was not the first element in component.

Action: Move annotation to the begining of component content.

XML-24106: attribute wildcard before attribute declaration at line string, column string

Cause: The attribute wildcard appeared before attribute declarations.

Action: Move attribute wildcard to the end of declaration.

XML-24107: multiple attribute wildcard

Cause: [src-attribute.1] More than one anyAttributes were declared.

Action: Remove extra attribute wildcards.

XML-24108: default string and fixed string both present

Cause: [src-attribute.1] Both default and fixed attriubtes were present in attriubte declaration.

Action: Remove either default or fixed attribute.

XML-24109: default value string conflicts with attribute use stringXML-24109: default value string conflicts with attribute use string

Cause: [src-attribute.2] Both default and use were present, and value for use is not optional.

Action: Remove either default or use value.

XML-24110: missing name or ref attribute

Cause: [src-attribute.3.1] Neither name nor ref attribute was present in declaration.

Action: Add name or ref to the declaration.

XML-24111: both name and ref presented in attribute declaration

Cause: [src-attribute.3.1] Name and ref attribute were both present in attribute declaration.

Action: Add name or ref to the declaration.

XML-24112: ref conflicits with form, type, or simpleType child

Cause: [src-attribute.3.2] The attribute was a reference, and form, type or simpleType child were specified.

Action: Either change ref to name, or remove form, type and/or childrens.

XML-24113: type attribute conflicts with simpleType child

Cause: [src-attribute.4] Both type attribute and simpleType child were present.

Action: Remove either type reference or type definition.

XML-24114: intersecton of attribute wildcard is not expressible

Cause: [src-attribute_group.2] Attriubes wildcards defined were not expressible with a wildcard.

Action: Remove inexpressible attribute wildcards.

XML-24115: circular attribute group reference string

Cause: [src-attribute_group.3] Attriubte group were circularly referenced outside redefine

Action: Remove circular reference

XML-24116: circular group reference string

Cause: group were circularly referenced outside redefine.

Action: Remove circular reference

XML-24117: base type string for complexContent is not complex type

Cause: [src-ct.1] Derived a complexType with complex content from simple type

Action: Change base type to complex type

XML-24118: simple content required in base type string

Cause: [src-ct.2] A complexType with simpleContent was derived from a complexType with complex content

Action: Change base type to simple type (if derivation is extension) or simpleContent complex type.

XML-24119: properties specified with element reference string

Cause: [src-element.2.2] Element reference also had complexType, simpleType, key, keyrefunique children or nillable, form, default, block, or type attribute.

Action: Remove conflict attributes or children.

XML-24120: simpleType and complexType can not both present in element declaration string

Cause: [src-element.3] Element declaration had both complexType, simpleType children.

Action: Remove either simpleType or complexType child.

XML-24121: imported namespace string must different from namespace string

Cause: [src-import.1.1] The namespce of import was the same as the target namespace of importing schema

Action: Change import to inclusion.

XML-24122: target namespace string required

Cause: [src-import.1.2] Imported namespace was specified but absent imported schema.

Action: Remove namespace attribute in element import, or add target namespac to the imported schema.

XML-24123: namespace stringis different from expedted targetNamespace string

Cause: [src-import.3.1] Specified namespace was different from actual targetNamespace impported.

Action: Correct the namespace attribute in import element.

XML-24124: targetNamespace string not expected in schema

Cause: [src-import.3.2] Specified a no-namespace schema, but actual schema had targetNamespace.

Action: Remove the imported schema's targetNamespace attribute

XML-24125: can not include schema fromstring

Cause: [src-include.1] Processor was unable to include a schema from given location.

Action: Check correctness of URL and URL resolver

XML-24126: included targetNamespace string must the same as string

Cause: [src-include.2.1] Tried to include a achema with different targetNamespace.

Action: Use import instead of include.

XML-24127: no-namespace schema can not include schema with target namespace string

Cause: [src-include.2.2] A schema without targetNamespace tried to include a schema with targetNamespace.

Action: Use import instead of include

XML-24128: itemType attribute conflicits with simpleType child

Cause: [src-list-itemType-or-simpleType] Both itemType attribute and simpleType child were present in list simple type declaration.

Action: Remove either itemType attribute or simpleType child.

XML-24129: prefix of qname string can not be resolved

Cause: [src-qname] Prefix of a qname was present, but did not map to any in-scope namespace.

Action: Declare a namespace corresponding to the prefix.

XML-24130: redefined schema has different namespace. line string column string

Cause: Redefined schema's targetNamespace was not the same as the targetNamespace of redefining schema.

Action: Correct the targetNamespace in redefined schema.

Comments: src-redefine.3.1

XML-24131: no-namespace schema can only redefine schema without targetNamespace

Cause: [src-redefine.3.2] A no-namespace schema tried to redefine a schema with namespace

Action: Remove the targetNamespace attribute from redefined schema.

XML-24132: type derivation string must be restriction

Cause: [src-redefine.5] A simpleType or complexType was present in redefine, but the derivation was not restriction.

Action: Change the type redefinition, make it a restriction.

XML-24132: type string must redefine itself at line string, column string

Cause: [src-redefine.5] A simpleType or complexType was present in redefine, but its base type was not itself.

Action: Change the base type to redefine itself.

XML-24133: group string can have only one self reference in redefinition

Cause: [src-redefine.6.1.1] A group was present in redefine and it had more than onereferences to itself in its content.

Action: Remove extra self references in the group redefinition.

XML-24134: self reference of group string must not have minOccurs or maxOccurs other than 1 in redefinition

Cause: [src-redefine.6.1.2] A minOccurs or maxOccurs with value other than 1 was specified in a group self reference in redefine.

Action: Remove the minOccurs or maxOccurs attribute.

XML-24135: redefined group stringis not a restriction of its orginal group

Cause: [src-redefine.6.2.2] A group presented in redefine, wi