

2 Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when planning your Oracle XML DB solution.

This chapter contains these topics:

	
Oracle XML DB Installation

	
When to Use Oracle XML DB

	
Designing Your XML Application

	
Oracle XML DB Design Issues: Introduction

	
Oracle XML DB Application Design: A. How Structured Is Your Data?

	
Oracle XML DB Application Design: B. Access Models

	
Oracle XML DB Application Design: C. Application Language

	
Oracle XML DB Application Design: D. Processing Models

	
Oracle XML DB Application Design: F. Storage Models

	
Oracle XML DB Performance

Oracle XML DB Installation

Oracle XML DB is installed automatically in the following situations:

	
If Database Configuration Assistant (DBCA) is used to build Oracle Database using the general-purpose template

	
If you use SQL script catqm to install Oracle Database

You can determine whether or not Oracle XML DB is already installed. If it is installed, then the following are true:

	
User XDB exists. To check: SELECT * FROM ALL_USERS;

	
View RESOURCE_VIEW exists. To check: DESCRIBE RESOURCE_VIEW

For a manual installation or de-installation of Oracle XML DB, see Chapter 28, "Administering Oracle XML DB".

When to Use Oracle XML DB

Oracle XML DB is suited for any application where some or all of the data processed by the application is represented using XML. Oracle XML DB provides for high performance ingestion, storage, processing and retrieval of XML data. Additionally, it also provides the ability to quickly and easily generate XML from existing relational data.

The type of applications that Oracle XML DB is particularly suited to include:

	
Business-to-Business (B2B) and Application-to-Application (A2A) integration

	
Internet applications

	
Content-management applications

	
Messaging

	
Web Services

A typical Oracle XML DB application has one or more of the following requirements and characteristics:

	
Large numbers of XML documents must be ingested or generated

	
Large XML documents need to be processed or generated

	
High performance searching, both within a document and across a large collections of documents

	
High Levels of security. Fine grained control of security

	
Data processing must be contained in XML documents and data contained in traditional relational tables

	
Uses languages such as Java that support open standards such as SQL, XML, XPath, and XSLT

	
Accesses information using standard Internet protocols such as FTP, HTTP(S)/WebDAV, or Java Database Connectivity (JDBC)

	
Full queriability from SQL and integration with analytic capabilities

	
Validation of XML documents is critical

Designing Your XML Application

Oracle XML DB provides you with the ability to fine tune how XML documents will be stored and processed in Oracle Database. Depending on the nature of the application being developed, XML storage must have at least one of the following features

	
High performance ingestion and retrieval of XML documents

	
High performance indexing and searching of XML documents

	
Be able to update sections of an XML document

	
Manage highly either or both structured and unstructured XML documents

Oracle XML DB Design Issues: Introduction

This section discusses the preliminary design criteria you can consider when planning your Oracle XML DB application. Figure 2-1 provides an overview of your main design options for building Oracle XML DB applications.

A. Data

Will your data be highly structured (mostly XML), semistructured, or mostly unstructured? If highly structured, will your tables be XML schema-based or non-schema-based? See "Oracle XML DB Application Design: A. How Structured Is Your Data?" and Chapter 3, "Using Oracle XML DB".

B. Access

How will other applications and users access your XML and other data? How secure must the access be? Do you need versioning? See "Oracle XML DB Application Design: B. Access Models".

C. Application Language

In which language(s) will you be programming your application? See "Oracle XML DB Application Design: C. Application Language".

D. Processing

Will you need to generate XML? See Chapter 16, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? Will you need to update fragments or the whole document?

Will you need to transform the XML to HTML, WML, or other languages, and how will your application transform the XML? See Chapter 9, "Transforming and Validating XMLType Data".

Does your application need to be primarily database resident or work in both database and middle tier?

Is your application data-centric, document- and content-centric, or integrated (is both data- and document-centric). "Oracle XML DB Application Design: D. Processing Models".

Will you be exchanging XML data with other applications, across gateways? Will you need Advanced Queuing (AQ) or SOAP compliance? See Chapter 31, "Exchanging XML Data with Oracle Streams AQ".

E. Storage

How and where will you store the data, XML data, XML schema, and so on? See "Oracle XML DB Application Design: F. Storage Models".

	
Note:

The choices you make for A–D are typically interdependent, but they are not dependent on the storage model you choose (E).

Figure 2-1 Oracle XML DB Design Options

[image: Description of Figure 2-1 follows]

Description of "Figure 2-1 Oracle XML DB Design Options"

Oracle XML DB Application Design: A. How Structured Is Your Data?

Figure 2-2 shows the following data-structure categories and associated suggested storage options:

	
Structured data. Is your data mostly XML data?

	
Semi/pseudo-structured data. Does your data include some XML data?

	
Unstructured data. Is most of your data not XML data?

XML Schema-Based or Non-Schema-Based

Also consider the following data modeling questions:

	
If your application is XML schema-based:

	
For structured data, you can use either Character Large Object (CLOB) or structured storage.

	
For semistructured data, you can use either CLOB, structured, or hybrid storage. Here your XML schema can be more loosely coupled. See also "Oracle XML DB Application Design: F. Storage Models".

	
For unstructured data, an XML schema design is not applicable.

	
If your application is non-schema-based. For structured, semi/ pseudo-structured, and unstructured data, you can store your data in either CLOB values in XMLType tables or views or in files in Oracle XML DB Repository folders. With this design you have many access options including path- and query-based access through resource views.

Figure 2-2 Data Storage Models: How Structured Is Your Data?

[image: Description of Figure 2-2 follows]

Description of "Figure 2-2 Data Storage Models: How Structured Is Your Data?"

Oracle XML DB Application Design: B. Access Models

Figure 2-3 shows the two main data access modes to consider when designing your Oracle XML DB applications:

	
Navigation- or path-based access. This is suitable for both content/document and data oriented applications. Oracle XML DB provides the following languages and access APIs:

	
SQL access through resource and path views. See Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW".

	
PL/SQL access through DBMS_XDB. See Chapter 23, "PL/SQL Access Using DBMS_XDB".

	
Protocol-based access using HTTP(S)/WebDAV or FTP, most suited to content-oriented applications. See Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data".

	
Query-based access. This can be most suited to data oriented applications. Oracle XML DB provides access using SQL queries through the following APIs:

	
Java access (through JDBC). See Java API for XMLType.

	
PL/SQL access. See Chapter 11, "PL/SQL API for XMLType".

These options for accessing Oracle XML DB Repository data are also discussed in Chapter 20, "Accessing Oracle XML DB Repository Data".

You can also consider the following access model criteria:

	
What level of security do you need? See Chapter 24, "Repository Resource Security".

	
What kind of indexing will best suit your application? Will you need to use Oracle Text indexing and querying? See Chapter 4, "XMLType Operations" and Chapter 10, "Full-Text Search Over XML".

	
Do you need to version the data? If yes, see Chapter 21, "Managing Resource Versions".

Figure 2-3 Data Access Models: How Will Users or Applications Access the Data?

[image: Description of Figure 2-3 follows]

Description of "Figure 2-3 Data Access Models: How Will Users or Applications Access the Data?"

Oracle XML DB Application Design: C. Application Language

You can program your Oracle XML DB applications in the following languages:

	
Java (JDBC, Java Servlets)

	
See Also:

	
Chapter 13, "Java API for XMLType"

	
Chapter 22, "Java Access to Repository Data Using Resource API for Java"

	
Chapter 27, "Writing Oracle XML DB Applications in Java"

	
Appendix D, "Java APIs: Quick Reference"

	
PL/SQL

	
See Also:

	
Chapter 11, "PL/SQL API for XMLType"

	
Chapter 23, "PL/SQL Access Using DBMS_XDB"

	
"APIs for XML"

Oracle XML DB Application Design: D. Processing Models

The following processing options are available and should be considered when designing your Oracle XML DB application:

	
XSLT. Will you need to transform the XML to HTML, WML, or other languages, and how will your application transform the XML? While storing XML documents in Oracle XML DB you can optionally ensure that their structure complies with (validates against) specific XML schemas. See Chapter 9, "Transforming and Validating XMLType Data".

	
DOM. See Chapter 11, "PL/SQL API for XMLType". Use object-relational columns, varray values, nested tables, as well as LOB values to store any element or element-subtree in your XML schema, and still maintain DOM fidelity.

	
Note:

If you choose the CLOB storage option, available with XMLType since Oracle9i release 1 (9.0.1), you can preserve whitespace. If you are using an XML schema, see the discussion on DOM fidelity in Chapter 5, "XML Schema Storage and Query: Basic".

	
XPath searching. You can use XPath syntax embedded in a SQL statement or as part of an HTTP(S) request to query XML content in the database. See Chapter 4, "XMLType Operations", Chapter 10, "Full-Text Search Over XML", Chapter 20, "Accessing Oracle XML DB Repository Data", and Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW".

	
XML Generation and XMLType views. Will you need to generate or regenerate XML? If yes, see Chapter 16, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? See Chapter 4, "XMLType Operations" and Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW".

Will you need to update fragments or the whole document? You can use XPath to specify individual elements and attributes of your document during updates, without rewriting the entire document. This is more efficient, especially for large XML documents. Chapter 5, "XML Schema Storage and Query: Basic".

Is your application data-centric, document- and content-centric, or integrated (is both data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

Messaging Options

Advanced Queuing (AQ) supports XML and XMLType applications. You can create queues with payloads that contain XMLType attributes. These can be used for transmitting and storing messages that contain XML documents. By defining Oracle Database objects with XMLType attributes, you can do the following:

	
Store more than one type of XML document in the same queue. The documents are stored internally as CLOB values.

	
Selectively dequeue messages with XMLType attributes using SQL functions such as existsNode and extract.

	
Define rule-based subscribers that query message content using SQL functions such as existsNode and extract.

	
Define transformations to convert Oracle Database objects to XMLType.

	
See Also:

	
Chapter 31, "Exchanging XML Data with Oracle Streams AQ"

	
Oracle Streams Advanced Queuing User's Guide and Reference

Oracle XML DB Application Design: F. Storage Models

Figure 2-4 summarizes the Oracle XML DB storage options with regards to using XMLType tables or views. If you have existing or legacy relational data, use XMLType views.

Regardless of which storage options you choose for your Oracle XML DB application, Oracle XML DB provides the same functionality. However, the option you choose will affect your application performance and the data fidelity (data accuracy).

Currently, the three main storage options for Oracle XML DB applications are:

	
LOB-based storage – LOB-based storage assures complete textual (document) fidelity, including preservation of whitespace. This means that if you store your XML documents as CLOB values, when the XML documents are retrieved there will be no data loss. Data integrity is high, and the cost of regeneration is low.

	
Structured storage – Structured storage loses whitespace information but maintains fidelity to the XML DOM, namely DOM stored = DOM retrieved. This provides:

	
Better SQL 'queriability' with improved performance

	
Piece-wise updatability

	
Semistructured storage – Semistructured, or hybrid, storage is a special case of structured storage in which a portion of the XML data is broken up into a structured format and the remainder of the data is stored as a CLOB value.

The storage options are totally independent of the following criteria:

	
Data queryability and updatability, namely, how and how often the data is queried and updated.

	
How your data is accessed. This is determined by your application processing requirements.

	
What language(s) your application uses. This is also determined by your application processing requirements.

	
See Also:

	
Chapter 1, "Introduction to Oracle XML DB", "XMLType Storage"

	
Chapter 3, "Using Oracle XML DB"

	
Chapter 4, "XMLType Operations"

	
Chapter 5, "XML Schema Storage and Query: Basic", "DOM Fidelity"

Using XMLType Tables

If you are using XMLType tables you can store your data in:

	
CLOB (unstructured) storage

	
Structured storage

	
Semistructured storage

	
Note:

Use the thick JDBC driver with schema-based XMLType values stored object-relationally. (You can use either the thin or the thick driver with CLOB storage of XMLType values.)

Using XMLType Views

Use XMLType views if you have existing relational data. You can use the following options to define the XMLType views:

	
SQL/XML SQL functions. Using these functions you can store the data in relational tables and also generate/regenerate the XML. See Chapter 16, "Generating XML Data from the Database".

	
Object Types:

	
Object tables

	
Object constructors. You can store the data in relational tables using object constructors.

	
Object views

Figure 2-4 Structured Storage Options

[image: Description of Figure 2-4 follows]

Description of "Figure 2-4 Structured Storage Options"

Oracle XML DB Performance

One objection to using XML to represent data is that it generates higher overhead than other representations. Oracle XML DB incorporates a number of features specifically designed to address this issue by significantly improving the performance of XML processing. These are described in the following sections:

	
XML Storage Requirements

	
XML Memory Management

	
XML Parsing Optimizations

	
Node-Searching Optimizations

	
XML Schema Optimizations

	
Load Balancing Through Cached XML Schema

	
Reduced Bottlenecks From Code That Is Not Native

	
Reduced Java Type Conversion Bottlenecks

XML Storage Requirements

Surveys show that data represented in XML and stored in a text file is three times the size of the same data in a Java object or in relational tables. There are two main reasons for this:

	
Tag names (metadata describing the data) and white space (formatting characters) take up a significant amount of space in the document, particularly for highly structured, data-centric XML.

	
All data in an XML file is represented in human readable (string) format.

Storing Structured Documents in Oracle XML DB Saves Space

The string representation of a numeric value needs about twice as many bytes as the native (binary) representation When XML documents are stored in Oracle XML DB using the structured storage option, the shredding process discards all tags and white space in the document.

The amount of space saved by this optimization depends on the ratio of tag names to data, and the number of collections in the document. For highly-structured, data-centric XML the savings can be significant. When a document is printed, or when node-based operations such as XPath evaluations take place, Oracle XML DB uses the information contained in the associated XML schema to dynamically reconstruct any necessary tag information.

XML Memory Management

Document Object Model (DOM) is the dominant programming model for XML documents. DOM APIs are easy to use but the DOM Tree that underpins them is expensive to generate, in terms of memory. A typical DOM implementation maintains approximately 80 to 120 bytes of system overhead for each node in the DOM tree. This means that for highly structured data, the DOM tree can require 10 to 20 times more memory than the document on which it is based.

A conventional DOM implementation requires the entire contents of an XML document to be loaded into the DOM tree before any operations can take place. If an application only needs to process a small percentage of the nodes in the document, this is extremely inefficient in terms of memory and processing overhead. The alternative SAX approach reduces the amount of memory required to process an XML document, but its disadvantage is that it only allows linear processing of nodes in the XML Document.

Oracle XML DB Reduces Memory Overhead for XML Schema-Based Documents by Using XML Objects (XOBs)

Oracle XML DB reduces memory overhead associated with DOM programming by managing XML schema-based XML documents using an internal in-memory structure called an XML Object (XOB). A XOB is much smaller than the equivalent DOM since it does not duplicate information like tag names and node types, that can easily be obtained from the associated XML schema. Oracle XML DB automatically uses a XOB whenever an application works with the contents of a schema-based XMLType. The use of the XOB is transparent to you. It is hidden behind the XMLType datatype and the C, PL/SQL, and Java APIs.

XOB Uses Lazily-Loaded Virtual DOM

The XOB can also reduce the amount of memory required to work with an XML document using the Lazily-Loaded Virtual DOM feature. This allows Oracle XML DB to defer loading in-memory representation of nodes that are part of sub-elements or collection until methods attempt to operate on a node in that object. Consequently, if an application only operates on a few nodes in a document, only those nodes and their immediate siblings are loaded into memory.The XOB can only used when an XML document is based on an XML schema. If the contents of the XML document are not based on an XML schema, a traditional DOM is used instead of the XOB.

XML Parsing Optimizations

To populate a DOM tree the application must parse the XML document. The process of creating a DOM tree from an XML file is very CPU- intensive. In a typical DOM-based application, where the XML documents are stored as text, every document has to be parsed and loaded into the DOM tree before the application can work with it. If the contents of the DOM tree are updated the whole tree has to be serialized back into a text format and written out to disk.

With Oracle XML DB No Re-Parsing is Needed

Oracle XML DB eliminates the need to keep re-parsing documents. Once an XML document has been stored using structured storage techniques no further parsing is required when the document is loaded from disk into memory. Oracle XML DB is able to map directly between the on disk format and in-memory format using information derived from the associated XML schema. When changes are made to the contents of a schema-based XMLType, Oracle XML DB is able to write just the updated data back to disk.Again, when the contents of the XMLType are not based on an XML schema a traditional DOM is used instead.

Node-Searching Optimizations

Most DOM implementations use string comparisons when searching for a particular node in the DOM tree. Even a simple search of a DOM tree can require hundreds or thousands of instruction cycles. Searching for a node in a XOB is much more efficient than searching for a node in a DOM. A XOB is based on a computed offset model, similar to a C/C++ object, and uses dynamic hashtables rather than string comparisons to perform node searches.

XML Schema Optimizations

Making use of the powerful features associated with XML schema in a conventional XML application can generate significant amounts of additional overhead. For example, before an XML document can be validated against an XML schema, the schema itself must be located, parsed, and validated.

Minimizing XML Schema Overhead After a Schema Is Registered

Oracle XML DB minimizes the overhead associated with using XML schema. When an XML schema is registered with the database it is loaded in the Oracle XML DB schema cache, along with all of the metadata required to map between the XML, XOB and on disk representations of the data. This means that once the XML schema has been registered with the database, no additional parsing or validation of the XML schema is required before it can be used. The schema cache is shared by all users of the database. Whenever an Oracle XML DB operation requires information contained in the XML schema it can access the required information directly from the cache.

Load Balancing Through Cached XML Schema

Some operations, such as performing a full schema validation, or serializing an XML document back into text form can still require significant memory and CPU resources. Oracle XML DB allows these operations to be off-loaded to the client or middle tier processor. Oracle Call Interface (OCI) interface and thick Java Database Connectivity (JDBC) driver both allow the XOB to be managed by the client.The cached representation of the XML schema can also be downloaded to the client. This allows operations such as XML printing, and XML schema validation to be performed using client or middle tier resources, rather than server resources.

Reduced Bottlenecks From Code That Is Not Native

Another bottleneck for XML-based Java applications happens when parsing an XML file. Even natively compiled or JIT compiled Java performs XML parsing operations twice as slowly compared to using native C language. One of the major performance bottlenecks in implementing XML applications is the cost of transforming data in an XML document between text, Java, and native server representations. The cost of performing these transformations is proportional to the size and complexity of the XML file and becomes severe even in moderately sized files.

Oracle XML DB Implements Java and PL/SQL APIs Over Native C

Oracle XML DB addresses these issues by implementing all of the Java and PL/SQL interfaces as very thin facades over a native 'C' implementation. This provides for language-neutral XML support (Java, C, PL/SQL, and SQL all use the same underlying implementation), as well as the higher performance XML parsing and DOM processing.

Reduced Java Type Conversion Bottlenecks

One of the biggest bottlenecks when using Java and XML is with type conversions. Internally Java uses UCS-2 to represent character data. Most XML files and databases do not contain UCS-2 encoded data. This means that all data contained in an XML file has to be converted from 8-Bit or UTF-8 encoding to UCS-2 encoding before it can be manipulated in a Java program.

Oracle XML DB Uses Lazy Type Conversion to Avoid Unneeded Type Conversions

Oracle XML DB addresses these problems with lazy type conversions. With lazy type conversions the content of a node is not converted into the format required by Java until the application attempts to access the contents of the node. Data remains in the internal representation till the last moment. Avoiding unnecessary type conversions can result in significant performance improvements when an application only needs to access a few nodes in an XML document.

Consider a JSP that loads a name from the Oracle Database and prints it out in the generated HTML output. Typical JSP implementations read the name from the database (that probably contains data in the ASCII or ISO8859 character sets) convert the data to UCS-2, and return it to Java as a string. The JSP would not look at the string content, but only print it out after printing the enclosing HTML, probably converting back to the same ASCII or ISO8859 for the client browser. Oracle XML DB provides a write interface on XMLType so that any element can write itself directly to a stream (such as a ServletOutputStream) without conversion through Java character sets. Figure 2-5 shows the Oracle XML DB Application Program Interface (API) stack.

Figure 2-5 Oracle XML DB Application Program Interface (API) Stack

[image: Description of Figure 2-5 follows]

Description of "Figure 2-5 Oracle XML DB Application Program Interface (API) Stack"

1 Introduction to Oracle XML DB

This chapter introduces the features and architecture of Oracle XML DB. It contains these topics:

	
Features of Oracle XML DB

	
Oracle XML DB Architecture

	
Oracle XML DB Features

	
Oracle XML DB Benefits

	
Searching XML Data Stored in CLOBs Using Oracle Text

	
Building Messaging Applications using Oracle Streams Advanced Queuing

	
Requirements for Running Oracle XML DB

	
Standards Supported by Oracle XML DB

	
Oracle XML DB Technical Support

	
Oracle XML DB Examples Used in This Manual

	
Further Oracle XML DB Case Studies and Demonstrations

Features of Oracle XML DB

Oracle XML DB is the name for a set of Oracle Database technologies related to high-performance XML storage and retrieval. It provides native XML support by encompassing both SQL and XML data models in an interoperable manner.

Oracle XML DB includes the following features:

	
Support for the World Wide Web Consortium (W3C) XML and XML Schema data models and standard access methods for navigating and querying XML. The data models are incorporated into Oracle Database.

	
Ways to store, query, update, and transform XML data while accessing it using SQL.

	
Ways to perform XML operations on SQL data.

	
A simple, lightweight XML repository where you can organize and manage database content, including XML, using a file/folder/URL metaphor.

	
A storage-independent, content-independent and programming language-independent infrastructure for storing and managing XML data. This provides new ways of navigating and querying XML content stored in the database. For example, Oracle XML DB Repository facilitates this by managing XML document hierarchies.

	
Industry-standard ways to access and update XML. The standards include the W3C XPath recommendation and the ISO-ANSI SQL/XML standard. FTP, HTTP(S), and WebDAV can be used to move XML content into and out of Oracle Database. Industry-standard APIs provide programmatic access and manipulation of XML content using Java, C, and PL/SQL.

	
XML-specific memory management and optimizations.

	
Enterprise-level Oracle Database features for XML content: reliability, availability, scalability, and security.

Oracle XML DB can be used in conjunction with Oracle XML Developer's Kit (XDK) to build applications that run in the middle tier in either Oracle Application Server or Oracle Database.

	
See Also:

Oracle XML Developer's Kit Programmer's Guide

Oracle XML DB Architecture

Figure 1-1 and Figure 1-2 show the software architecture of Oracle XML DB. The two main features are:

	
Storage of XMLType tables and views

	
Oracle XML DB Repository

Figure 1-1 Oracle XML DB Architecture: XMLType Storage and Repository

[image: Description of Figure 1-1 follows]

Description of "Figure 1-1 Oracle XML DB Architecture: XMLType Storage and Repository"

Figure 1-2 Oracle XML DB Architecture: XMLType Storage

[image: Description of Figure 1-2 follows]

Description of "Figure 1-2 Oracle XML DB Architecture: XMLType Storage"

XMLType Storage

Figure 1-2 shows XMLType storage in Oracle XML DB.

When XML schemas are registered with Oracle XML DB, a set of default tables are created and used to store XML instance documents associated with the schema. These documents can be viewed and accessed in Oracle XML DB Repository.

XMLType tables and columns can be stored as Character Large Object (CLOB) values or as a set of objects. When stored as a set of objects, we refer to structured, or shredded storage.

natively, using structured XML, or in Character Large Object (CLOB) values.

Data in XMLType views can be stored in local or remote tables. Remote tables can be accessed through database links.

Both XMLType tables and views can be indexed using B*Tree, Oracle Text, function-based indexes, or bitmap indexes.

You can access data in Oracle XML DB Repository using any of the following:

	
HTTP(S), through the HTTP protocol handler.

	
WebDAV and FTP, through the WebDAV and FTP protocol server.

	
SQL, through Oracle Net Services, including Java Database Connectivity (JDBC).

Oracle XML DB supports XML data messaging using Oracle Streams Advanced Queuing (AQ) and Web Services.

	
See Also:

	
Part II. "Storing and Retrieving XML Data in Oracle XML DB"

	
Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data"

	
Chapter 31, "Exchanging XML Data with Oracle Streams AQ"

APIs for XML

Table 1-1 lists the reference documentation for the PL/SQL, C, and C++ Application Programming Interfaces (APIs) that you can use to manipulate XML documents and data. The main reference for PL/SQL, C, and C++ APIs is Oracle Database PL/SQL Packages and Types Reference.

	
See Also:

Oracle Database XML Java API Reference for information on Java APIs for XML

Table 1-1 APIs Related to XML

	API	Documentation	Description
	
XMLType

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "XMLType", Oracle Database XML C API Reference, and Oracle Database XML C++ API Reference

	
PL/SQL, C, and C++ APIs with XML operations on XMLType data – validation, transformation.

	
Database URI types

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "Database URI TYPEs"

	
Functions used for various URI types.

	
DBMS_XDB

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB"

	
PL/SQL API for managing Oracle XML DB Repository resources, ACL-based security, and configuration sessions.

	
DBMS_XDB_VERSION

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB_VERSION"

	
PL/SQL API for version management of repository resources.

	
DBMS_XDBT

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBT"

	
PL/SQL API for creation of text indexes onrepository resources.

	
DBMS_XDBZ

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBZ"

	
Oracle XML DB Repository ACL-based security.

	
DBMS_XMLDOM

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLDOM"

	
PL/SQL implementation of the DOM API for XMLType.

	
DBMS_XMLGEN

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLGEN"

	
PL/SQL API for transformation of SQL query results into canonical XML format.

	
DBMS_XMLPARSER

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLPARSER"

	
PL/SQL implementation of the DOM Parser API for XMLType.

	
DBMS_XMLQUERY

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLQUERY"

	
PL/SQL API providing database-to-XMLType functionality. (Where possible, use DBMS_XMLGEN instead.)

	
DBMS_XMLSAVE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSAVE"

	
PL/SQL API providing XML- to-database type functionality.

	
DBMS_XMLSCHEMA

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSCHEMA"

	
PL/SQL API for managing XML schemas within Oracle Database – schema registration, deletion.

	
DBMS_XMLSTORE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSTORE"

	
PL/SQL API for storing XML data in relational tables.

	
DBMS_XSLPROCESSOR

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XSLPROCESSOR"

	
PL/SQL implementation of an XSLT processor.

XML Schema Catalog Views

Table 1-2 lists the XML schema catalog views for Oracle XML DB, which provide access to metadata about XML schemas that are registered with Oracle XML DB. Information about a given view can be obtained by using the SQL command DESCRIBE. Example:

DESCRIBE USER_XML_SCHEMAS

Table 1-2 XML Schema Catalog Views

	Schema	Description
	

USER_XML_SCHEMAS

	
Registered XML schemas owned by the current user

	

ALL_XML_SCHEMAS

	
Registered XML schemas usable by the current user

	

DBA_XML_SCHEMAS

	
Registered XML schemas in Oracle XML DB

	

USER_XML_TABLES

	
XMLType tables owned by the current user

	

ALL_XML_TABLES

	
XMLType tables usable by the current user

	

DBA_XML_TABLES

	
XMLType tables in Oracle XML DB

	

USER_XML_TAB_COLS

	
XMLType table columns owned by the current user

	

ALL_XML_TAB_COLS

	
XMLType table columns usable by the current user

	

DBA_XML_TAB_COLS

	
XMLType table columns in Oracle XML DB

	

USER_XML_VIEWS

	
XMLType views owned by the current user

	

ALL_XML_VIEWS

	
XMLType views usable by the current user

	

DBA_XML_VIEWS

	
XMLType views in Oracle XML DB

	

USER_XML_VIEW_COLS

	
XMLType view columns owned by the current user

	

ALL_XML_VIEW_COLS

	
XMLType view columns usable by the current user

	

DBA_XML_VIEW_COLS

	
XMLType view columns in Oracle XML DB

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

Views RESOURCE_VIEW and PATH_VIEW

Oracle XML DB views RESOURCE_VIEW and PATH_VIEW provide SQL access to data in Oracle XML DB Repository through protocols such as FTP and WebDAV. View PATH_VIEW has one row for each unique path in the repository; view RESOURCE_VIEW has one row for each resource in the repository.

The Oracle XML DB resource API for PL/SQL, DBMS_XDB, provides query and DML functions. It is based on RESOURCE_VIEW and PATH_VIEW.

	
See Also:

Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

Overview of Oracle XML DB Repository

Oracle XML DB Repository is a component of Oracle Database that is optimized for handling XML data. The Oracle XML DB repository contains resources, which can be either folders (directories, containers) or files. Each resource has these properties:

	
It is identified by a path and name.

	
It has content (data), which can be XML data but need not be.

	
It has a set of system-defined metadata (properties), such as Owner and CreationDate, in addition to its content. Oracle XML DB uses this information to manage the resource.

	
It might also have user-defined metadata: information that is not part of the content, but is associated with it.

	
It has an associated access control list that determines who can access the resource, and for what operations.

Although Oracle XML DB Repository treats XML content specially, you can use Oracle XML DB Repository to store other kinds of data, besides XML; in fact, you can use the repository to access any data that is stored in Oracle Database.

	
See Also:

	
Part V. "Oracle XML DB Repository: Foldering, Security, and Protocols"

	
Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data" for information on accessing XML data in XMLType tables and columns using external protocols

	
Chapter 26, "User-Defined Repository Metadata"

Accessing and Manipulating XML in the Oracle XML DB Repository

You can access data in Oracle XML DB Repository in the following ways (see Figure 1-1):

	
Using SQL, through views RESOURCE_VIEW and PATH_VIEW

	
Using PL/SQL, through the DBML_XDB API

	
Using Java, through the Oracle XML DB resource API for Java

XML Services

Besides supporting APIs that access and manipulate data, Oracle XML DB Repository provides APIs for the following services:

	
Versioning. Oracle XML DB uses the DBMS_XDB_VERSION PL/SQL package for versioning resources in Oracle XML DB Repository. Subsequent updates to a resource create a new version (the data corresponding to previous versions is retained). Versioning support is based on the IETF WebDAV standard.

	
ACL Security. Oracle XML DB resource security is based on Access Control Lists (ACLs). Every resource in Oracle XML DB has an associated ACL that lists its privileges. Whenever resources are accessed or manipulated, the ACLs determine if the operation is legal. An ACL is an XML document that contains a set of Access Control Entries (ACE). Each ACE grants or revokes a set of permissions to a particular user or group (database role). This access control mechanism is based on the WebDAV specification.

	
Foldering. Oracle XML DB Repository manages a persistent hierarchy of folder (directory) resources that contain other resources (files or folders). Oracle XML DB modules, such as protocol servers, the schema manager, and the Oracle XML DB RESOURCE_VIEW API, use foldering to map path names to resources.

Oracle XML DB Repository Architecture

Figure 1-3 describes the Oracle XML DB Repository architecture. You can access the repository in SQL, for example, using the RESOURCE_VIEW API. In addition to the resource information, the RESOURCE_VIEW also contains a Path column, which holds the paths to each resource.

	
See Also:

	
Chapter 20, "Accessing Oracle XML DB Repository Data"

	
Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

Figure 1-3 Oracle XML DB Repository Architecture

[image: Description of Figure 1-3 follows]

Description of "Figure 1-3 Oracle XML DB Repository Architecture"

How Does Oracle XML DB Repository Work?

The relational model table-row-column metaphor, is accepted as an effective mechanism for managing structured data. The model is not as effective for managing semistructured and unstructured data, such as document- or content-oriented XML. For example, a book is not easily represented as a set of rows in a table. It is more natural to represent a book as a hierarchy, book:chapter:section:paragraph, and to represent the hierarchy as a set of folders and subfolders.

	
A hierarchical metaphor manages document-centric XML content. Relational databases are traditionally poor at managing hierarchical structures and traversing a path or URL. Oracle XML DB provides a hierarchically organized repository that can be queried and through which document-centric XML content can be managed.

	
A hierarchical index speeds up folder and path traversals. Oracle XML DB includes a new, patented hierarchical index that speeds up folder and path traversals in Oracle XML DB Repository. The hierarchical index is transparent to end users, and allows Oracle XML DB to perform folder and path traversals at speeds comparable to or faster than conventional file systems.

	
You can access XML documents in Oracle XML DB Repository using standard connect-access protocols such as FTP, HTTP(S), and WebDAV, in addition to languages SQL, PL/SQL, Java, and C. The repository provides content authors and editors direct access to XML content stored in Oracle Database.

	
A resource in this context is a file or folder, identified by a URL. WebDAV is an IETF standard that defines a set of extensions to the HTTP protocol. It allows an HTTP server to act as a file server for a DAV-enabled client. For example, a WebDAV-enabled editor can interact with an HTTP/WebDAV server as if it were a file system. The WebDAV standard uses the term resource to describe a file or a folder. Each resource managed by a WebDAV server is identified by a URL. Oracle XML DB adds native support to Oracle Database for these protocols. The protocols were designed for document-centric operations. By providing support for these protocols, Oracle XML DB allows Windows Explorer, Microsoft Office, and products from vendors such as Altova, Macromedia, and Adobe to work directly with XML content stored in Oracle XML DB Repository. Figure 1-4 shows the root-level directory of the repository as seen from Microsoft Web Folder.

Figure 1-4 Microsoft Web Folder View of Oracle XML DB Repository

[image: Description of Figure 1-4 follows]

Description of "Figure 1-4 Microsoft Web Folder View of Oracle XML DB Repository"

	
See Also:

Chapter 3, "Using Oracle XML DB"

Hence, WebDAV clients such as Microsoft Windows Explorer can connect directly to Oracle XML DB Repository. No additional Oracle Database or Microsoft-specific software or other complex middleware is needed. End users can work directly with Oracle XML DB Repository using familiar tools and interfaces.

Oracle XML DB Protocol Architecture

One key feature of the Oracle XML DB architecture is that HTTP(S), WebDAV, and FTP protocols are supported using the same architecture used to support Oracle Data Provider for .NET (ODP.NET) in a shared server configuration. The Listener listens for HTTP(S) and FTP requests in the same way that it listens for ODP .NET service requests. When the Listener receives an HTTP(S) or FTP request, it hands it off to an Oracle Database shared server process which services it and sends the appropriate response back to the client.You can use the TNS Listener command lsnrctl status to verify that HTTP(S) and FTP support has been enabled – see Figure 1-5.

Figure 1-5 Listener Status with FTP and HTTP(S) Protocol Support Enabled

[image: Description of Figure 1-5 follows]

Description of "Figure 1-5 Listener Status with FTP and HTTP(S) Protocol Support Enabled"

	
See Also:

Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data"

Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

All Oracle XML DB functionality is accessible from C, PL/SQL, and Java. The most popular ways to build web-based applications are these:

	
Using servlets and JSPs (Java Server Pages). A typical API accesses data using Java Database Connectivity (JDBC).

	
Using XSL and XSPs (XML Style Sheets plus XML Server Pages). A typical API accesses data in the form of XML documents that are processed using a Document Object Model (DOM) API implementation.

Oracle XML DB supports both of these styles of application development. It provides Java, PL/SQL, and C implementations of the DOM API.Applications that use JDBC, such as those based on servlets, need prior knowledge of the data structure they are processing. Oracle JDBC drivers allow you to access and update XMLType tables and columns, and call PL/SQL procedures that access Oracle XML DB Repository.Applications that use DOM, such as those based on XSLT transformations, typically require less knowledge of the data structure. DOM-based applications use string names to identify pieces of content, and must dynamically walk through the DOM tree to find the required information. For this Oracle XML DB supports the use of the DOM API to access and update XMLType columns and tables. Programming to a DOM API is more flexible than programming through JDBC, but it may require more resources at run time.

Oracle XML DB Features

Any database used for managing XML must be able to persist XML documents. Oracle XML DB is capable of much more than this. It provides standard database features such as transaction control, data integrity, replication, reliability, availability, security, and scalability., while also allowing for efficient indexing, querying, updating, and searching of XML documents in an XML-centric manner.

The hierarchical nature of XML presents the traditional relational database with a number of challenges:

	
In a relational database the table-row metaphor locates content. Primary-Key Foreign-Key relationships help define the relationships between content. Content is accessed and updated using the table-row-column metaphor. XML on the other hand uses hierarchical techniques to achieve the same functionality. A URL is used to locate an XML document. URL-based standards such as XLink are used to defined the relationships between XML documents. W3C Recommendations like XPath are used to access and update content contained within XML documents. Both URLs and XPath expressions are based on hierarchical metaphors. A URL uses a path through a folder hierarchy to identify a document, whereas XPath uses a path through the node hierarchy of an XML document to access part of an XML document.

Oracle XML DB addresses these challenges by introducing new SQL functions and methods that allow the use of XML-centric metaphors, such as XPath expressions for querying and updating XML Documents. The major features of Oracle XML DB are these:

	
XMLType Datatype

	
XML Schema Support

	
Structured Versus Unstructured Storage

	
XML/SQL Duality

	
SQL/XML INCITS Standard SQL Functions

	
Rewriting of XPath Expressions: XPath Rewrite

	
XMLType Storage. This was described previously .

	
Overview of Oracle XML DB Repository. This was described previously .

XMLType Datatype

XMLType is a native server datatype that lets the database understand that a column or table contains XML. This is similar to the way that date and timestamp datatypes let the database understand that a column contains a date. Datatype XMLType also provides methods that allow common operations such as XML schema validation and XSL transformations on XML content.You can use XMLType like any other datatype. For example, you can use XMLType when:

	
Creating a column in a relational table

	
Declaring PL/SQL variables

	
Defining and calling PL/SQL procedures and functions

Since XMLType is an object type, you can also create a table of XMLType. By default, an XMLType table or column can contain any well-formed XML document.

The following example shows creating a simple table with an XMLType column.

Oracle XML DB Stores XML Text in CLOBs

Oracle XML DB stores the content of the document as XML text using the Character Large Object (CLOB) datatype. This allows for maximum flexibility in terms of the shape of the XML structures that can be stored in a single table or column and the highest rates of ingestion and retrieval.

XMLType Tables and Columns Can Conform to an XML Schema

XMLType tables or columns can be constrained and conform to an XML schema. This has several advantages:

	
The database will ensure that only XML documents that validate against the XML schema can be stored in the column or table.

	
Since the contents of the table or column conform to a known XML structure, Oracle XML DB can use the information contained in the XML schema to provide more intelligent query and update processing of the XML.

	
Constraining the XMLType to an XML schema provides the option of storing the content of the document using structured-storage techniques. Structured-storage decomposes or shreds the content of the XML document and stores it as a set of SQL objects rather than simply storing the document as text in a CLOB. The object-model used to store the document is automatically derived from the contents of the XML schema.

The XMLType API

Datatype XMLType provides the following:

	
Constructors. These allow an XMLType value to be created from a VARCHAR, CLOB, BLOB, or BFILE value.

	
Methods. A number of XML-specific methods that operate on XMLType instances. XMLType methods provide support for the following common operations:

	
Extract a subset of nodes contained in the XMLType – method extract().

	
Check whether or not a particular node exists in the XMLType – method existsNode().

	
Validate the contents of the XMLType against an XML schema – method schemaValidate().

	
Perform an XSL Transformation – method transform().

	
See Also:

Chapter 4, "XMLType Operations" and Chapter 9, "Transforming and Validating XMLType Data"

XML Schema Support

Support for the Worldwide Web Consortium (W3C) XML Schema Recommendation is a key feature in Oracle XML DB. XML Schema specifies the structure, content, and certain semantics of a set of XML documents. It is described in detail at http://www.w3.org/TR/xmlschema-0/.

XML Schema Unifies Document and Data Modeling

XML Schema unifies both document and data modeling. In Oracle XML DB, you can create tables and types automatically using XML Schema. In short, this means that you can develop and use a standard data model for all your data, structured, unstructured, and semistructured. You can use Oracle XML DB to enforce this data model for all your data.

You Can Create XMLType Tables and Columns, Ensure DOM Fidelity

You can create XML schema-based XMLType tables and columns and optionally specify, for example, that they:

	
Conform to pre-registered XML schemas

	
Are stored in structured storage format specified by the XML schema, maintaining DOM fidelity

Use XMLType Views to Wrap Relational Data

You can also choose to wrap existing relational and object-relational data into XML format using XMLType views.

You can store an XMLType object as an XML object that is based on an XML schema or not based on an XML schema:

	
schema-based objects. These are stored in Oracle XML DB as Large Objects (LOBs) or in structured storage (object-relationally) in tables, columns, or views.

	
Non-schema-based objects. These are stored in Oracle XML DB as LOBs.

You can map from XML instances to structured or LOB storage. The mapping can be specified in an XML schema, and the schema must be registered in Oracle XML DB. This is a required step before storing XML schema-based instance documents. Once registered, the XML schema can be referenced using its URL.

W3C Schema for Schemas

The W3C Schema Working Group publishes an XML schema, often referred to as the "Schema for Schemas". This XML schema provides the definition, or vocabulary, of the XML Schema language. An XML schema definition (XSD) is an XML document, that is compliant with the vocabulary defined by the "Schema for Schemas". An XML schema uses vocabulary defined by W3C XML Schema Working Group to create a collection of type definitions and element declarations that declare a shared vocabulary for describing the contents and structure of a new class of XML documents.

XML Schema Base Set of Data Types Can be Extended

The XML Schema language provides strong typing of elements and attributes. It defines 47 scalar data types. The base set of data types can be extended using object-oriented techniques like inheritance and extension to define more complex types. W3C XML Schema vocabulary also includes constructs that allow the definition of complex types, substitution groups, repeating sets, nesting, ordering, and so on. Oracle XML DB supports all of constructs defined by the XML Schema Recommendation, except for redefines.

XML schemas are most commonly used as a mechanism for checking whether instance documents conform with their specifications (validation). Oracle XML DB includes methods and SQL functions that allow an XML schema to be used for this.

	
Note:

This manual uses the term XML schema (lower-case "s") to reference any XML schema that conforms to the W3C XML Schema (upper-case "S") Recommendation. Since an XML schema is used to define a class of XML documents, the term instance document is often used to describe an XML document that conforms to a particular XML schema.

	
See Also:

Appendix A, "XML Schema Primer" and Chapter 5, "XML Schema Storage and Query: Basic" for more information about using XML schemas with Oracle XML DB

Structured Versus Unstructured Storage

One key decision to make when using Oracle XML DB for persisting XML documents is when to use structured storage and when to use unstructured storage.

	
Unstructured storage provides for the highest possible throughput when inserting and retrieving entire XML documents. It also provides the greatest degree of flexibility in terms of the structure of the XML that can be stored in a XMLType table or column. These throughput and flexibility benefits come at the expense of certain aspects of intelligent processing. There is little the database can do to optimize queries or updates on XML stored using a CLOB datatype.

	
Structured storage has a number of advantages for managing XML, including optimized memory management, reduced storage requirements, b-tree indexing and in-place updates. These advantages are at a cost of somewhat increased processing overhead during ingestion and retrieval and reduced flexibility in terms of the structure of the XML that can be managed by a given XMLType table or column.

Table 1-3 outlines the merits of structured and unstructured storage.

Table 1-3 XML Storage Options: Structured or Unstructured

	
	Unstructured Storage	Structured Storage
	
Throughput

	
Highest possible throughput when ingesting and retrieving the entire content of an XML document.

	
The decomposition process results in slightly reduced throughput when ingesting retrieving the entire content of an XML document.

	
Flexibility

	
Provides the maximum amount of flexibility in terms of the structure of the XML documents that can be stored in an XMLType column or table.

	
Limited Flexibility. Only documents that conform to the XML schema can be stored in the XMLType table or column. Changes to the XML schema may require data to be unloaded and re-loaded.

	
XML Fidelity

	
Delivers Document Fidelity: Maintains the original XML byte for byte, which may be important to some applications.

	
DOM Fidelity: A DOM created from an XML document that has been stored in the database will be identical to a DOM created from the original document. However trailing new lines, white space characters between tags and some data formatting may be lost.

	
Update Operations

	
When any part of the document is updated the entire document must be written back to disk.

	
The majority of update operations can be performed using XPath rewrite. This allows in-place, piece-wise update, leading to significantly reduced response times and greater throughput.

	
XPath based queries

	
XPath operations evaluated by constructing DOM from CLOB and using functional evaluations. This can be very expensive when performing operations on large collections of documents.

	
XPath operations may be evaluated using XPath rewrite, leading to significantly improved performance, particularly with large collections of documents.

	
SQL Constraint Support

	
SQL constraints are not currently available.

	
SQL constraints are supported.

	
Indexing Support

	
Text and function-based indexes.

	
B-Tree, text and function-based indexes.

	
Optimized Memory Management

	
XML operations on the document require creating a DOM from the document.

	
XML operations can be optimized to reduce memory requirements.

Much valuable information in an organization is in the form of semistructured and unstructured data. Typically this data is in files stored on a file server or in a CLOB column inside a database. The information in these files is in proprietary- or application-specific formats. It can only be accessed through specialist tools, such as word processors or spreadsheets, or programmatically using complex, proprietary APIs. Searching across this information is limited to facilities provided by a crawler or full-text indexing.

Major reasons for the rapid adoption of XML are that it allows for:

	
Stronger data management

	
More open access to semistructured and unstructured content.

Replacing proprietary file formats with XML allows organizations to achieve much higher levels of reuse of their semistructured and unstructured data. The content can be accurately described using XML schemas. The content can be easily accessed and updated using standard APIs based on DOM and XPath.

For example, information contained in an Excel spreadsheet is only accessible to the Excel program, or to a program that uses Microsoft COM APIs. The same information, stored in an XML document is accessible to any tool that can leverage the XML programming model. Structured data on the other hand does not suffer from these limitations. Structured data is typically stored as rows in tables within a relational database. These tables are accessed and searched using the relational model and the power and openness of SQL from a variety of tools and processing engines.

XML/SQL Duality

A key objective of Oracle XML DB is to provide XML/ SQL duality. This means that the XML programmer can leverage the power of the relational model when working with XML content and the SQL programmer can leverage the flexibility of XML when working with relational content. This provides application developers with maximum flexibility, allowing them to use the most appropriate tools for a particular business problem.

Relational and XML Metaphors are Interchangeable: Oracle XML DB erases the traditional boundary between applications that work with structured data and those that work with semistructured and unstructured content. With Oracle XML DB the relational and XML metaphors become interchangeable.

XML/SQL duality means that the same data can be exposed as rows in a table and manipulated using SQL or exposed as nodes in an XML document and manipulated using techniques such as DOM or XSL transformation. Access and processing techniques are totally independent of the underlying storage format.

These features provide new, simple solutions to common business problems. For example:

	
Relational data can quickly and easily be converted into HTML pages. Oracle XML DB provides new SQL functions that make it possible to generate XML directly from a SQL query. The XML can be transformed into other formats, such as HTML using the database-resident XSLT processor.

	
You can easily leverage all of the information contained in their XML documents without the overhead of converting back and forth between different formats. With Oracle XML DB you can access XML content using SQL queries, On-line Analytical Processing (OLAP), and Business-Intelligence/Data Warehousing operations.

	
Text, spatial data, and multimedia operations can be performed on XML Content.

SQL/XML INCITS Standard SQL Functions

Oracle XML DB provides the SQL functions defined in the SQL/XML standard. The SQL/XML standard is defined by specifications prepared by the International Committee for Information Technology Standards (INCITS) Technical Committee H2. INCITS is the main standards body for developing standards for the syntax and semantics of database languages, including SQL.

The SQL/XML standard is an evolving standard, so the syntax and semantics of its functions are subject to change in the future. The Oracle XML DB implementation of SQL/XML functions will evolve accordingly.

SQL/XML functions fall into two categories:

	
Functions that make it possible to query and access XML content as part of normal SQL operations.

	
Functions that provide a standard way of generating XML from the result of a SQL SELECT statement.

With the SQL/XML functions you can address XML content in any part of a SQL statement. They use XPath notation to traverse the XML structure and identify the node or nodes on which to operate. The ability to embed XPath expressions in SQL statements greatly simplifies XML access. The following describes briefly some of the more important SQL/XML functions:

	
existsNode – This is used in the WHERE clause of a SQL statement to restrict the set of documents returned by a query. The existsNode SQL function takes an XPath expression and applies it to an XML document. The function returns true (1) or false (0), depending on whether or not the document contains a node that matches the XPath expression.

	
extract – This takes an XPath expression and returns the nodes that match the expression, as an XML document or fragment. If only a single node matches the XPath expression, then the result is a well-formed XML document. If multiple nodes match the XPath expression, then the result is a document fragment.

	
extractValue – This takes an XPath expression and returns the corresponding leaf node. The XPath expression passed to extractValue should identify a single attribute or an element that has precisely one text node child. The result is returned in the appropriate SQL data type. Function extractValue is essentially a shortcut for extract plus either getStringVal() or getNumberVal().

	
updateXML – This allows partial updates to be made to an XML document, based on a set of XPath expressions. Each XPath expression identifies a target node in the document, and a new value for that node. SQL function updateXML allows multiple updates to be specified for a single XML document.

	
XMLSequence – This makes it possible to expose the members of a collection as a virtual table

	
See Also:

	
http://www.incits.org/tc_home/h2.htm for information on INCITS Technical Committee H2

	
http://www.w3.org/TR/xpath for the XPath recommendation

	
Chapter 4, "XMLType Operations" for detailed descriptions of the SQL/XML standard functions for querying XML data

	
Generating XML Using SQL Functions for detailed descriptions of the SQL/XML standard functions for generating XML data

	
Chapter 3, "Using Oracle XML DB" for examples that use the SQL/XML standard functions

Rewriting of XPath Expressions: XPath Rewrite

The SQL/XML SQL functions and their corresponding XMLType methods allow XPath expressions to be used to search collections of XML documents and to access a subset of the nodes contained within an XML document.

	
See Also:

"Generating XML Using SQL Functions" for information on SQL/XML functions

How XPath Expressions are Evaluated by Oracle XML DB

Oracle XML DB provides two ways of evaluating XPath expressions that operate on XMLType columns and tables, depending on the XML storage method used:

	
Structured-storage XML data: Oracle XML DB attempts to translate the XPath expression in a SQL/XML function into an equivalent SQL query. The SQL query references the object-relational data structures that underpin a schema-based XMLType. This process is referred to as XPath rewrite. It can occur when performing queries and UPDATE operations.

	
Unstructured-storage XML data: Oracle XML DB evaluates the XPath expression using functional evaluation. Functional evaluation builds a DOM tree for each XML document, and then resolves the XPath programmatically using the methods provided by the DOM API. If the operation involves updating the DOM tree, the entire XML document has to be written back to disc when the operation is completed.

Efficient Processing of SQL That Contains XPath Expressions

Oracle XML DB can rewrite SQL statements that contain XPath expressions to purely relational SQL statements, which can be processed efficiently. In this way, Oracle XML DB insulates the database optimizer from having to understand XPath notation and the XML data model. The database optimizer simply processes the rewritten SQL statement in the same manner as other SQL statements.

This means that the database optimizer can derive an execution plan based on conventional relational algebra. This allows Oracle XML DB to leverage all the features of the database and ensure that SQL statements containing XPath expressions are executed in a highly performant and efficient manner. To sum up, there is little overhead with XPath rewrites, and Oracle XML DB can execute XPath-based queries at near-relational speed, while preserving the XML abstraction.

When Can XPath Rewrite Occur?

XPath rewrite is possible when:

	
A SQL statement contains SQL/XML SQL functions or XMLType methods that use XPath expressions to refer to one or more nodes within a set of XML documents.

	
An XMLType column or table containing the XML documents is associated with a registered XML schema.

	
An XMLType column or table uses structured storage techniques to provide the underlying storage model.

	
The nodes referenced by an XPath expression can be mapped, using the XML schema, to attributes of the underlying SQL object model.

What is the XPath-Rewrite Process?

XPath rewrite performs the following tasks:

	
Identify the set of XPath expressions included in the SQL statement.

	
Translate each XPath expression into an object relational SQL expression that references the tables, types, and attributes of the underlying SQL: 1999 object model.

	
Rewrite the original SQL statement into an equivalent object relational SQL statement.

	
Pass the new SQL statement to the database optimizer for plan generation and query execution.

In certain cases, XPath rewrite is not possible. This normally occurs when there is no SQL equivalent of the XPath expression. In this situation Oracle XML DB performs a functional evaluation of the XPath expressions. In general, functional evaluation of a SQL statement is more expensive than XPath rewrite, particularly if the number of documents that needs to be processed is large. However the major advantage of functional evaluation is that it is always possible, regardless of whether or not the XMLType is stored using structured storage and regardless of the complexity of the XPath expression. When documents are stored using unstructured storage (in a CLOB value), functional evaluation is necessary any time SQL functions except existsNode are used. Function existsNode will also result in functional evaluation unless a CTXXPATH index or function-based index can be used to resolve the query.Understanding the concept of XPath rewrite, and the conditions under which it can take place, is a key step in developing Oracle XML DB applications that will deliver the required levels of scalability and performance.

	
See Also:

Chapter 6, "XPath Rewrite"

Oracle XML DB Benefits

The following sections describe several benefits for using Oracle XML DB advantages including:

	
Unifying Data and Content with Oracle XML DB

	
Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents

	
Oracle XML DB Helps You Integrate Applications

	
When Your Data Is Not XML You Can Use XMLType Views

Figure 1-6 summarizes the Oracle XML DB benefits.

Figure 1-6 Oracle XML DB Benefits

[image: Description of Figure 1-6 follows]

Description of "Figure 1-6 Oracle XML DB Benefits"

Unifying Data and Content with Oracle XML DB

Most application data and Web content is stored in a relational database or a file system, or both. XML is often used for transport, and it is generated from a database or a file system. As the volume of XML transported grows, the cost of regenerating these XML documents grows, and these storage methods become less effective at accommodating XML content.

Figure 1-7 Unifying Data and Content: Some Common XML Architectures

[image: Description of Figure 1-7 follows]

Description of "Figure 1-7 Unifying Data and Content: Some Common XML Architectures"

Organizations today typically manage their structured data and unstructured data differently:

	
Unstructured data, in tables, makes document access transparent and table access complex

	
Structured data, often in binary large objects (such as in BLOBs), makes access more complex and table access transparent.

With Oracle XML DB, you can store and manage data that is structured, unstructured, and semistructured using a standard data model and standard SQL and XML. You can perform SQL operations on XML documents and XML operations on object-relational (such as table) data.

Exploiting Database Capabilities

Oracle Database has strong XML support with the following key capabilities:

	
Indexing and Search: Applications use queries such as "find all the product definitions created between March and April 2002", a query that is typically supported by a B*Tree index on a date column. Oracle XML DB can enable efficient structured searches on XML data, saving content-management vendors the need to build proprietary query APIs to handle such queries. See Chapter 4, "XMLType Operations", Chapter 10, "Full-Text Search Over XML", and Chapter 16, "Generating XML Data from the Database".

	
Updates and Transaction Processing: Commercial relational databases use fast updates of subparts of records, with minimal contention between users trying to update. As traditionally document-centric data participate in collaborative environments through XML, this requirement becomes more important. File or CLOB storage cannot provide the granular concurrency control that Oracle XML DB does. See Chapter 4, "XMLType Operations".

	
Managing Relationships: Data with any structure typically has foreign key constraints. Currently, XML data-stores lack this feature, so you must implement any constraints in application code. Oracle XML DB enables you to constrain XML data according to XML schema definitions and hence achieve control over relationships that structured data has always enjoyed. See Chapter 5, "XML Schema Storage and Query: Basic" and the purchase-order examples in Chapter 4, "XMLType Operations".

	
Multiple Views of Data: Most enterprise applications need to group data together in different ways for different modules. This is why relational views are necessary—to allow for these multiple ways to combine data. By allowing views on XML, Oracle XML DB creates different logical abstractions on XML for, say, consumption by different types of applications. See Chapter 18, "XMLType Views".

	
Performance and Scalability: Users expect data storage, retrieval, and query to be fast. Loading a file or CLOB value, and parsing, are typically slower than relational data access. Oracle XML DB dramatically speeds up XML storage and retrieval. See Chapter 2, "Getting Started with Oracle XML DB" and Chapter 3, "Using Oracle XML DB".

	
Ease of Development: Databases are foremost an application platform that provides standard, easy ways to manipulate, transform, and modify individual data elements. While typical XML parsers give standard read access to XML data they do not provide an easy way to modify and store individual XML elements. Oracle XML DB supports a number of standard ways to store, modify, and retrieve data: using XML Schema, XPath, DOM, and Java.

	
See Also:

	
Chapter 13, "Java API for XMLType"

	
Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 23, "PL/SQL Access Using DBMS_XDB"

Exploiting XML Capabilities

If the drawbacks of XML file storage force you to break down XML into database tables and columns, there are several XML advantages you have left:

	
Structure Independence: The open content model of XML cannot be captured easily in the pure tables-and-columns world. XML schemas allow global element declarations, not just scoped to a container. Hence you can find a particular data item regardless of where in the XML document it moves to as your application evolves. See Chapter 5, "XML Schema Storage and Query: Basic".

	
Storage Independence: When you use relational design, your client programs must know where your data is stored, in what format, what table, and what the relationships are among those tables. XMLType enables you to write applications without that knowledge and allows DBAs to map structured data to physical table and column storage. See Chapter 5, "XML Schema Storage and Query: Basic" and Chapter 20, "Accessing Oracle XML DB Repository Data".

	
Ease of Presentation: XML is understood natively by Web browsers, many popular desktop applications, and most Internet applications. Relational data is not generally accessible directly from applications; programming is required to make relational data accessible to standard clients. Oracle XML DB stores data as XML and makes it available as XML outside the database; no extra programming is required to display database content. See:

	
Chapter 9, "Transforming and Validating XMLType Data".

	
Chapter 16, "Generating XML Data from the Database".

	
Chapter 18, "XMLType Views".

	
Oracle XML Developer's Kit Programmer's Guide, in the chapter, "XSQL Pages Publishing Framework". It includes XMLType examples.

	
Ease of Interchange: XML is the language of choice in business-to-business (B2B) data exchange. If you are forced to store XML in an arbitrary table structure, you are using some kind of proprietary translation. Whenever you translate a language, information is lost and interchange suffers. By natively understanding XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB enables a clean interchange. See:

	
Chapter 9, "Transforming and Validating XMLType Data"

	
Chapter 18, "XMLType Views"

Oracle XML DB Offers Faster Storage and Retrieval of Complex XML Documents

Users today face a performance barrier when storing and retrieving complex, large, or many XML documents. Oracle XML DB provides very high performance and scalability for XML operations. The major performance features are:

	
Native XMLType. See Chapter 4, "XMLType Operations".

	
The lazily evaluated virtual DOM support. See Chapter 11, "PL/SQL API for XMLType".

	
Database-integrated XPath and XSLT support. This support is described in several chapters, including Chapter 4, "XMLType Operations" and Chapter 9, "Transforming and Validating XMLType Data".

	
XML schema-caching support. See Chapter 5, "XML Schema Storage and Query: Basic".

	
CTXPATH Text indexing. See Chapter 10, "Full-Text Search Over XML".

	
The hierarchical index over Oracle XML DB Repository. See Chapter 20, "Accessing Oracle XML DB Repository Data".

Oracle XML DB Helps You Integrate Applications

Oracle XML DB enables data from disparate systems to be accessed through gateways and combined into one common data model. This reduces the complexity of developing applications that must deal with data from different stores.

When Your Data Is Not XML You Can Use XMLType Views

XMLType views provide a way for you wrap existing relational and object-relational data in XML format. This is especially useful if, for example, your legacy data is not in XML but you need to migrate to an XML format. Using XMLType views you do not need to alter your application code.

	
See Also:

Chapter 18, "XMLType Views"

To use XMLType views, you must first register an XML schema with annotations that represent the bi-directional mapping from XML to SQL object types and back to XML. An XMLType view conforming to this schema (mapping) can then be created by providing an underlying query that constructs instances of the appropriate SQL object type. Figure 1-6 summarizes the Oracle XML DB advantages.

Searching XML Data Stored in CLOBs Using Oracle Text

Oracle enables special indexing on XML, including Oracle Text indexes for section searching, special SQL functions to process XML, aggregation of XML, and special optimization of queries involving XML.

XML data stored in Character Large Objects (CLOB datatype) or stored in XMLType columns in structured storage (object-relationally), can be indexed using Oracle Text. SQL functions hasPath and inPath are designed to optimize XML data searches where you can search within XML text for substring matches.

Oracle XML DB also provides:

	
SQL function contains and XPath function ora:contains, which can be used with SQL function existsNode for XPath-based searches.

	
The ability to create indexes on URIType and XDBURIType columns.

	
Index type CTXXPATH, which allows higher performance XPath searching using existsNode.

	
See Also:

	
Chapter 10, "Full-Text Search Over XML"

	
Oracle Text Application Developer's Guide

	
Oracle Text Reference

Building Messaging Applications using Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing supports the use of:

	
XMLType as a message/payload type, including XML schema-based XMLType

	
Queuing or dequeuing of XMLType messages

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide and Reference for information about using XMLType with Oracle Streams Advanced Queuing

	
Chapter 31, "Exchanging XML Data with Oracle Streams AQ"

Requirements for Running Oracle XML DB

Oracle XML DB is available with Oracle9i release 2 (9.2) and higher.

	
See Also:

	
http://www.oracle.com/technology/tech/xml/ for the latest news and white papers on Oracle XML DB

	
Chapter 2, "Getting Started with Oracle XML DB"

Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

	
W3C XML Schema 1.0 Recommendation. You can register XML schemas, validate stored XML content against XML schemas, or constrain XML stored in the server to XML schemas.

	
W3C XPath 1.0 Recommendation. You can search or traverse XML stored inside the database using XPath, either from HTTP(S) requests or from SQL.

	
ISO-ANSI Working Draft for XML-Related Specifications (SQL/XML) [ISO/IEC 9075 Part 14 and ANSI]. You can use the emerging ANSI SQL/XML functions to query XML from SQL. The task force defining these specifications falls under the auspices of the International Committee for Information Technology Standards (INCITS). The SQL/XML specification will be fully aligned with SQL:2003. SQL/XML functions are sometimes referred to as SQLX functions.

	
Java Database Connectivity (JDBC) API. JDBC access to XML is available for Java programmers.

	
W3C XSL 1.0 Recommendation. You can transform XML documents at the server using XSLT.

	
W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML stored in the server as an XML DOM, for dynamic access.

	
Protocol support. You can store or retrieve XML data from Oracle XML DB using standard protocols such as HTTP(S), FTP, and IETF WebDAV, as well as Oracle Net.

	
Java Servlet version 2.2, (except that the servlet WAR file, web.xml is not supported in its entirety, and only one ServletContext and one web-app are currently supported, and stateful servlets are not supported).

	
Simple Object Access Protocol (SOAP). You can access XML stored in the server from SOAP requests. You can build, publish, or find Web Services using Oracle XML DB and Oracle9iAS, using WSDL and UDDI. You can use Oracle Streams Advanced Queuing IDAP, the SOAP specification for queuing operations, on XML stored in Oracle Database.

	
See Also:

	
"SQL/XML INCITS Standard SQL Functions" for more information on the ANSI SQL/XML functions

	
Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data" for more information on protocol support

	
Chapter 27, "Writing Oracle XML DB Applications in Java" for information on using the Java servlet

	
Chapter 31, "Exchanging XML Data with Oracle Streams AQ" and Oracle Streams Advanced Queuing User's Guide and Reference. for information on using SOAP

Oracle XML DB Technical Support

Besides your regular channels of support through your customer representative or consultant, technical support for Oracle Database XML-enabled technologies is available free through the Discussions option on Oracle Technology Network (OTN):

http://www.oracle.com/technology/tech/xml/

Oracle XML DB Examples Used in This Manual

This manual contains examples that illustrate the use of Oracle XML DB and XMLType. The examples are based on a number of database schema, sample XML documents, and sample XML schema.

	
See Also:

Appendix D, "Oracle-Supplied XML Schemas and Examples"

Further Oracle XML DB Case Studies and Demonstrations

Visit OTN to view Oracle XML DB examples, white papers, case studies, and demonstrations.

Oracle XML DB Examples and Tutorials

You can peruse more Oracle XML DB examples on OTN:

http://www.oracle.com/technology/tech/xml/

Comprehensive XML classes on how to use Oracle XML DB are also available. See the Oracle University link on OTN.

Oracle XML DB Case Studies and Demonstrations

Several detailed Oracle XML DB case studies are available on OTN and include the following:

	
Oracle XML DB Downloadable Demonstration. This detailed demonstration illustrates how to use many Oracle XML DB features. Parts of this demonstration are also included in Chapter 3, "Using Oracle XML DB".

	
Content Management System (CMS) application. This illustrates how you can store files on the database using Oracle XML DB Repository in hierarchically organized folders, place the files under version control, provide security using ACLs, transform XML content to a desired format, search content using Oracle Text, and exchange XML messages using Oracle Streams Advanced Queueing (to request privileges on files or for sending externalization requests). See http://www.oracle.com/technology/sample_code/tech/xml/xmldb/cmsxdb/content.html.

	
XML Dynamic News. This is a complete J2EE 1.3 based application that demonstrates Java and Oracle XML DB features for an online news portal. News feeds are stored and managed persistently in Oracle XML DB. Various other news portals can customize this application to provide static or dynamic news services to end users. End users can personalize their news pages by setting their preferences. The application also demonstrates the use of Model View Controller (MVC) architecture and various J2EE design patterns. See http://www.oracle.com/technology/sample_code/tech/xml/xmlnews/content.html

	
SAX Loader Application. This demonstrates an efficient way to break up large files containing multiple XML documents outside the database and insert them into the database as a set of separate documents. This is provided as a standalone and a web-based application. Oracle XML DB Utilities package. This highlights the subprograms provided with the XDB_Utilities package. These subprograms operate on BFILE values, CLOB values, DOM, and Oracle XML DB Resource APIs. With this package, you can perform basic Oracle XML DB foldering operations, read and load XML files into a database, and perform basic DOM operations through PL/SQL.Card Payment Gateway Application. This application uses Oracle XML DB to store all your data in XML format and enables access to the resulting XML data using SQL. It illustrates how a credit card company can store its account and transaction data in the database and also maintain XML fidelity. Survey Application. This application determines what members want from Oracle products. OTN posts the online surveys and studies the responses. This Oracle XML DB application demonstrates how a company can create dynamic, interactive HTML forms, deploy them to the Internet, store the responses as XML, and analyze them using the XML enabled Oracle Database.

15 Using Oracle Data Provider for .NET with Oracle XML DB

Oracle Data Provider for Microsoft .NET (ODP.NET) is an implementation of a data provider for Oracle Database. It uses Oracle native APIs to offer fast and reliable access to Oracle data and features from any .NET application. It also uses and inherits classes and interfaces available in the Microsoft .NET Framework Class Library. ODP.NET supports the following LOB datatypes natively with .NET: BLOB, CLOB, NCLOB, and BFILE.

This chapter describes how to use ODP.NET with Oracle XML DB. It contains these topics:

	
ODP.NET XML Support and Oracle XML DB

	
ODP.NET Sample Code

ODP.NET XML Support and Oracle XML DB

ODP.NET supports XML natively in the database, through Oracle XML DB. ODP.NET XML support includes the following features:

	
Stores XML data natively in Oracle Database as XMLType.

	
Accesses relational and object-relational data as XML data from Oracle Database to a Microsoft .NET environment, and processes the XML using Microsoft .NET framework.

	
Saves changes to the database server using XML data.

For the .NET application developer, these features include the following:

	
Enhancements to the OracleCommand, OracleConnection, and OracleDataReader classes. Provides the following XML-specific classes:

	
OracleXmlType

	
OracleXmlStream

	
OracleXmlQueryProperties

	
OracleXmlSaveProperties

ODP.NET Sample Code

Example 15-1 retrieves XMLType data from the database to .NET and outputs the results:

Example 15-1 Retrieve XMLType Data to .NET

//Create OracleCommand and query XMLType
OracleCommand xmlCmd = new OracleCommand();
poCmd.CommandText = "SELECT po FROM po_tab";
poCmd.Connection = conn;
// Execute OracleCommand and output XML results to an OracleDataReader
OracleDataReader poReader = poCmd.ExecuteReader();
// ODP.NET native XML data type object from Oracle XML DB
OracleXmlType poXml;
string str = ""; //read XML results
while (poReader.Read())
{
 // Return OracleXmlType object of the specified XmlType column
 poXml = poReader.GetOracleXmlType(0);
 // Concatenate output for all the records
 str = str + poXml.Value;
} //Output XML results to the screen
Console.WriteLine(str);

	
See Also:

Oracle Data Provider for .NET Developer's Guide for complete information about Oracle .NET support for Oracle XML DB.

20 Accessing Oracle XML DB Repository Data

This chapter describes how to access data in Oracle XML DB Repository using standard protocols such as FTP and HTTP(S)/WebDAV, and other Oracle XML DB resource Application Program Interfaces (APIs). It also introduces you to using RESOURCE_VIEW and PATH_VIEW as the SQL mechanism for accessing and manipulating repository data. It includes a table for comparing repository operations through the various resource APIs.

This chapter contains these topics:

	
Overview of Oracle XML DB Foldering

	
Repository Terminology and Supplied Resources

	
Oracle XML DB Resources

	
Accessing Oracle XML DB Repository Resources

	
Navigational or Path Access

	
Query-Based Access

	
Accessing Repository Data Using Servlets

	
Accessing Data Stored in Repository Resources

	
Managing and Controlling Access to Resources

Overview of Oracle XML DB Foldering

Using the foldering feature in Oracle XML DB you can store content in the database in hierarchical structures, as opposed to traditional relational database structures.

Figure 20-1 is an example of a hierarchical structure that shows a typical tree of folders and files in Oracle XML DB Repository. The top of the tree shows '/', the root folder.

Foldering allows applications to access hierarchically indexed content in the database using the FTP, HTTP(S), and WebDAV protocol standards as if the database content were stored in a file system.

This chapter provides an overview of how to access data in Oracle XML DB Repository folders using the standard protocols. It discusses APIs that you can use to access the repository object hierarchy using Java, SQL, and PL/SQL.

Figure 20-1 A Folder Tree, Showing Hierarchical Structures in the Repository

[image: Description of Figure 20-1 follows]

Description of "Figure 20-1 A Folder Tree, Showing Hierarchical Structures in the Repository"

	
Note:

Folder /sys is used by Oracle XML DB to maintain system-defined XML schemas, Access Control Lists (ACLs), and so on. Do not add or modify any data in folder /sys.

	
See Also:

	
Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 23, "PL/SQL Access Using DBMS_XDB"

	
Chapter 22, "Java Access to Repository Data Using Resource API for Java"

	
Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data"

Repository Terminology and Supplied Resources

Oracle XML DB Repository is the set of database objects, across all XML and database schemas, that are mapped to path names. It is a connected, directed, acyclic graph of resources, with a single root node (/). Each resource in the graph has one or more associated path names: the repository supports multiple links to a given resource. The repository can be thought of as a file system of objects rather than files.

Repository Terminology

The following list describes terms used in Oracle XML DB Repository:

	
resource – Any object or node in the repository hierarchy. Resources are identified by URLs.

	
See Also:

	
"Overview of Oracle XML DB Repository"

	
"Oracle XML DB Resources"

	
folder – A resource that can contain other resources. Sometimes called a directory.

	
path name – A hierarchical name representing a path to a resource. It is composed of a slash (/) representing the root, possibly followed by path elements separated by slashes. A path element is the name of a repository resource. A path element may be composed of any character in the database character set except \ and /, which have special meaning in Oracle XML DB. The slash (/) is the default name separator in a path name. The backslash (\) is used to escape special characters, giving them a literal interpretation. The Oracle XML DB configuration file, xdbconfig.xml, contains a list of user-defined characters that must not appear within a path name (<invalid-pathname-chars>).

	
resource name or link name – The name of a resource within its parent folder. Resource names must be unique within a folder and are case-sensitive. Resource names are always in the UTF-8 character set (NVARCHAR).

	
resource content – The body, or data, of a resource. This is what you get when you treat the resource as a file and ask for its content. This is always of type XMLType.

	
XDBBinary element – An XML element that contains binary data. It is defined by the Oracle XML DB XML schema. XDBBinary elements are stored in the repository whenever unstructured binary data is uploaded into Oracle XML DB.

	
access control list (ACL) – A list of database users that allowed access to one or more specific resources.

	
See Also:

Chapter 24, "Repository Resource Security"

Many terms used by Oracle XML DB have common synonyms used in other contexts, as shown in Table 20-1.

Table 20-1 Synonyms for Oracle XML DB Foldering Terms

	Synonym	Foldering Term	Usage
	
collection

	
folder

	
WebDAV

	
directory

	
folder

	
operating systems

	
privilege

	
privilege

	
permission

	
right

	
privilege

	
various

	
WebDAV folder

	
folder

	
web folder

	
role

	
group

	
access control

	
revision

	
version

	
RCS, CVS

	
file system

	
repository

	
operating systems

	
hierarchy

	
repository

	
various

	
file

	
resource

	
operating systems

	
binding

	
link

	
WebDAV

Supplied Files and Folders

The list of supplied Oracle XML DB Repository files and folders is as follows. In addition to using these, you can create your own folders and files wherever you want.

/public
/sys
/sys/acls
/sys/acls/all_all_acl.xml
/sys/acls/all_owner_acl.xml
/sys/acls/bootstrap_acl.xml
/sys/acls/ro_all_acl.xml
/sys/apps
/sys/asm
/sys/log
/sys/schemas
/sys/schemas/PUBLIC
/sys/schemas/PUBLIC/www.w3.org
/sys/schemas/PUBLIC/www.w3.org/2001
/sys/schemas/PUBLIC/www.w3.org/2001/xml.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBFolderListing.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBResource.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBSchema.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/XDBStandard.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/acl.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/dav.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/ftplog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/httplog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/log/xdblog.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/stats.xsd
/sys/schemas/PUBLIC/xmlns.oracle.com/xdb/xdbconfig.xsd
/xdbconfig.xml

Oracle XML DB Resources

Oracle XML DB Repository resources conform to the Oracle XML DB XML schema xdbresource.xsd. The elements in a resource include those needed to persistently store WebDAV-defined properties, such as creation date, modification date, WebDAV locks, owner, ACL, language, and character set.

Contents Element in Resource Index

A resource index has a special element called Contents that contains the contents of the resource.

any Element

The XML schema for a resource also defines an any element, with maxoccurs attribute unbounded. An any element can contain any element outside of the Oracle XML DB XML namespace. Arbitrary instance-defined properties can be associated with the resource.

Where Is Repository Data Stored?

Oracle XML DB stores Oracle XML DB Repository data in a set of tables and indexes to which you have access. If you register an XML schema and request that the tables be generated by Oracle XML DB, then the tables are created in your database schema. You are then able to see or modify them. Other users will not be able to see your tables unless you grant them permission to do so.

Names of Generated Tables

The names of the generated tables are assigned by Oracle XML DB and can be obtained by finding the xdb:defaultTable attribute in your XML schema document (or in the default XML schema document). When you register an XML schema, you can alternatively provide your own table name, instead of using the default name supplied by Oracle XML DB.

	
See Also:

"Creating Default Tables During XML Schema Registration"

Defining Structured Storage for Resources

Applications that need to define structured storage for resources can do so by either:

	
Subclassing the Oracle XML DB resource type. Subclassing Oracle XML DB resources requires privileges on the table XDB$RESOURCE.

	
Storing data that conforms to a visible, registered XML schema.

	
See Also:

Chapter 5, "XML Schema Storage and Query: Basic"

ASM Virtual Folder

The ASM virtual folder, /sys/asm, is an exception to the description of the previous sections – its contents are ASM files and folders that are managed automatically by Oracle Automatic Storage Management (ASM).

	
See Also:

	
"Accessing ASM Files Using Protocols and Resource APIs – For DBAs"

	
Oracle Database Administrator's Guide

Path-Name Resolution

The data relating a folder to its contents is managed by the Oracle XML DB hierarchical index. This provides a fast mechanism for evaluating path names, similar to the directory mechanisms used by operating-system file systems.

Resources that are folders have the Container attribute set to TRUE.

To resolve a resource name in a folder, the current user must have the following privileges:

	
resolve privilege on the folder

	
read-properties on the resource in that folder

If the user does not have these privileges, then the user receives an access denied error. Folder listings and other queries will not return a row when the read-properties privilege is denied on its resource.

	
Caution:

Error handling in path-name resolution differentiates between invalid resource names and resources that are not folders, for compatibility with file systems. Because Oracle XML DB resources are accessible from outside Oracle XML DB Repository (using SQL), denying read access on a folder that contains a resource does not prevent read access to that resource.

Resource Deletion

Deletion of a link deletes the resource pointed to by the link if and only if that was the last link to the resource and the resource is not versioned.

	
See Also:

"Deleting Repository Resources: Examples"

Accessing Oracle XML DB Repository Resources

There are two ways to access Oracle XML DB Repository resources:

	
Navigational or path-based access. This is achieved using a hierarchical index of objects or resources. Each resource has one or more unique path names that reflect its location in the hierarchy. You can use navigational access to reference any XMLType object in the database, without regard to its location in the relational tablespace. See "Navigational or Path Access".

	
SQL access to the repository. This is done using special views that expose resource properties and path names, and map hierarchical access operators onto the Oracle XML DB schema. See "Query-Based Access".

Figure 20-2 illustrates these two Oracle XML DB data access options.

	
See Also:

	
"Oracle XML DB Application Design: A. How Structured Is Your Data?" for guidance on selecting an access method

	
Table 20-3, "Accessing Oracle XML DB Repository: API Options" for a summary comparison of the access methods

Figure 20-2 Repository Data Access Options

[image: Description of Figure 20-2 follows]

Description of "Figure 20-2 Repository Data Access Options"

A Uniform Resource Locator (URL) is used to access an Oracle XML DB resource. A URL includes the host name, protocol information, path name, and resource name of the object.

Navigational or Path Access

Oracle XML DB folders support the same protocol standards used by many operating systems. This allows an Oracle XML DB folder to function just like a native folder or directory in supported operating-system environments. For example, you can:

	
Use Windows Explorer to open and access Oracle XML DB folders and resources the same way you access other directories or resources in the Windows NT file system, as shown in Figure 20-3.

	
Access Oracle XML DB Repository data using HTTP(S)/WebDAV from an Internet Explorer browser, such as when viewing Web Folders, as shown in Figure 20-4.

Figure 20-3 Oracle XML DB Folders in Windows Explorer

[image: Description of Figure 20-3 follows]

Description of "Figure 20-3 Oracle XML DB Folders in Windows Explorer"

Figure 20-4 Accessing Repository Data Using HTTP(S)/WebDAV and Navigational Access From IE Browser: Viewing Web Folders

[image: Description of Figure 20-4 follows]

Description of "Figure 20-4 Accessing Repository Data Using HTTP(S)/WebDAV and Navigational Access From IE Browser: Viewing Web Folders"

Accessing Oracle XML DB Resources Using Internet Protocols

Oracle Net Services provides one way of accessing database resources. Oracle XML DB support for Internet protocols provides another way of accessing database resources.

Where You Can Use Oracle XML DB Protocol Access

Oracle Net Services is optimized for record-oriented data. Internet protocols are designed for stream-oriented data, such as binary files or XML text documents. Oracle XML DB protocol access is a valuable alternative to Net Services in the following scenarios:

	
Direct database access from file-oriented applications using the database like a file system

	
Heterogeneous application server environments that require a uniform data access method (such as XML over HTTP, which is supported by most data servers, including MS SQL Server, Exchange, Notes, many XML databases, stock quote services and news feeds)

	
Application server environments that require data in the form of XML text

	
Web applications that use client-side XSL to format datagrams that do not need much application processing

	
Web applications that use Java servlets that run inside the database

	
Web access to XML-oriented stored procedures

Using Protocol Access

Follow these steps to use Oracle XML DB protocol access:

	
A connection object is established, and the protocol might read part of the request.

	
The protocol decides whether the user is already authenticated and wants to reuse an existing session or the connection must be re-authenticated (the latter is more common).

	
An existing session is pulled from the session pool, or else a new one is created.

	
If authentication has not been provided, and the request is HTTP get or head, then the session is run as the ANONYMOUS user. If the session has already been authenticated as the ANONYMOUS user, then there is no cost to reuse the existing session. If authentication has been provided, then the database re-authentication routines are used to authenticate the connection.

	
The request is parsed.

	
(HTTP only) If the requested path name maps to a servlet, then the servlet is invoked using Java Virtual Machine (VM). The servlet code writes the response to a response stream or asks XMLType instances to do so.

Retrieving Oracle XML DB Resources

When the protocol indicates that a resource is to be retrieved, the path name to the resource is resolved. Resources being fetched are always streamed out as XML, with the exception of resources containing the XDBBinary element, an element defined to be the XML binary data type, which have their contents streamed out in RAW form.

Storing Oracle XML DB Resources

When the protocol indicates that a resource must be stored, Oracle XML DB checks the document file name extension for .xml, .xsl, .xsd, and so on. If the document is XML, then a pre-parse step is done, whereby enough of the resource is read to determine the XML schemaLocation and namespace of the root element in the document. If a registered schema is located at the schemaLocation URL, and it has a definition for the root element of the current document, then the default table specified for that root element is used to store the contents of the resource.

Using Internet Protocols and XMLType: XMLType Direct Stream Write

Oracle XML DB supports Internet protocols at the XMLType level by using the writeToStream() Java method on XMLType. This method is natively implemented, and writes XMLType data directly to the protocol request stream. This avoids Java VM execution costs and the overhead of converting database data through Java datatypes and creating Java objects, resulting in significantly higher performance. Performance is further enhanced if the Java code deals only with XML element trees that are close to the root, and does not traverse too many of the leaf elements, so that relatively few Java objects are created.

	
See Also:

Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data"

Accessing ASM Files Using Protocols and Resource APIs – For DBAs

Automatic Storage Management (ASM) organizes database files into disk groups for simplified management and added benefits such as database mirroring and I/O balancing.

Repository access using protocols and resource APIs (such as DBMS_XDB) extends to Automatic Storage Management (ASM) files. ASM files are accessed in the virtual repository folder /sys/asm. However, this access is reserved for DBAs; it is not intended for developers.

A typical use of such access is to copy ASM files from one database instance to another. For example, a DBA can view folder /sys/asm in a graphical user interface using the WebDAV protocol, and then drag-and-drop a copy of a data-pump dumpset from an ASM disk group to an operating-system file system.

Virtual folder /sys/asm is created by default during Oracle XML DB installation. If the database is not configured to use ASM, the folder is empty and no operations are permitted on it.

Folder /sys/asm contains folders and subfolders that follow the hierarchy defined by the structure of an ASM fully qualified filename:

	
It contains a subfolder for each mounted disk group.

	
A disk-group folder contains a subfolder for each database that uses that disk group. In addition, a disk-group folder may contain files and folders corresponding to ASM aliases created by the administrator.

	
A database folder contains file-type folders.

	
A file-type folder contains ASM files, which are binary.

This hierarchy is shown in Figure 20-5, which omits directories created for aliases, for simplicity.

Figure 20-5 ASM Virtual Folder Hierarchy

[image: Description of Figure 20-5 follows]

Description of "Figure 20-5 ASM Virtual Folder Hierarchy"

The following usage restrictions apply to virtual folder /sys/asm. You cannot:

	
query /sys/asm using SQL

	
put regular files under /sys/asm (you can only only put ASM files there)

	
move (rename) an ASM file to a different ASM disk group or to a folder outside ASM

	
create hard links to existing ASM files or directories

In addition:

	
You must have DBA privileges to view folder /sys/asm.

	
To access /sys/asm using Oracle XML DB protocols, you must log in as a user other than SYS.

Again, ASM virtual-folder operations are intended only for DBAs, not developers.

	
See Also:

	
"Using FTP with ASM Files" for an example of using protocol FTP with /sys/asm

	
Oracle Database Administrator's Guide for information on the syntax of a fully qualified ASM filename and details on the virtual folder structure

Query-Based Access

There are two views that enable SQL access to Oracle XML DB Repository data:

	
PATH_VIEW

	
RESOURCE_VIEW

Table 20-2 summarizes the differences between PATH_VIEW and RESOURCE_VIEW.

Table 20-2 Differences Between PATH_VIEW and RESOURCE_VIEW

	PATH_VIEW	RESOURCE_VIEW
	
Contains link properties

	
No link properties

	
Has one row for each unique path in repository

	
Has one row for each resource in repository

Rows in these two repository views are of XMLType. In the RESOURCE_VIEW, the single path associated with a resource is arbitrarily chosen from among the possible paths that refer to the resource. Oracle XML DB provides SQL functions like under_path that enable applications to search for the resources contained (recursively) within a particular folder, obtain the resource depth, and so on.

DML can be used on the repository views to insert, rename, delete, and update resource properties and contents. Programmatic APIs must be used for other operations, such as creating links to existing resources.

	
See Also:

	
Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW" for details on SQL access to Oracle XML DB Repository

	
Chapter 24, "Repository Resource Security"

Accessing Repository Data Using Servlets

Oracle XML DB implements Java Servlet API, version 2.2, with the following exceptions:

	
All servlets must be distributable. They must expect to run in different VMs.

	
WAR and web.xml files are not supported. Oracle XML DB supports a subset of the XML configurations in this file. An XSL style sheet can be applied to the web.xml to generate servlet definitions. An external tool must be used to create database roles for those defined in the web.xml file.

	
JSP (Java Server Pages) support can be installed as a servlet and configured manually.

	
HTTPSession and related classes are not supported.

	
Only one servlet context (that is, one Web application) is supported.

	
See Also:

Chapter 27, "Writing Oracle XML DB Applications in Java"

Accessing Data Stored in Repository Resources

The three main ways you can access data stored in Oracle XML DB Repository resources are through:

	
Oracle XML DB resource APIs for Java

	
A combination of Oracle XML DB resource views API and Oracle XML DB resource API for PL/SQL

	
Internet protocols (HTTP(S)/WebDAV and FTP) and Oracle XML DB protocol server

Table 20-3 lists common Oracle XML DB Repository operations and describes how these operations can be accomplished using each of the three methods. The table shows functionality common to three methods. Note that not all the methods are equally suited to a particular set of tasks.

	
See Also:

	
Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 23, "PL/SQL Access Using DBMS_XDB"

	
Chapter 22, "Java Access to Repository Data Using Resource API for Java"

	
Chapter 25, "FTP, HTTP(S), and WebDAV Access to Repository Data"

	
Oracle Database PL/SQL Packages and Types Reference

Table 20-3 Accessing Oracle XML DB Repository: API Options

	Data Access	SQL and PL/SQL	Protocols
	
Create resource

	

DBMS_XDB.createResource()
INSERT INTO PATH_VIEW VALUES (path, res, linkprop);

	
HTTP: PUT;

FTP: PUT

	
Update resource contents

	

UPDATE RESOURCE_VIEW SET resource =
 updateXML(res, '/Resource/Contents', lob)
 WHERE equals_path(res, path) > 0

	
HTTP: PUT;

FTP: PUT

	
Update resource properties

	

UPDATE RESOURCE_VIEW SET resource =
 updateXML(res, '/Resource/propname1',
 newval, '/Resource/propname2' ...)
 WHERE equals_path(res, path) > 0

	
WebDAV: PROPPATCH;

	
Update resource ACL

	

UPDATE RESOURCE_VIEW SET resource =
 updateXML(res, '/ Resource/ACL', XMLType)
 WHERE equals_path(res, path) > 0

	
—

	
Unlink resource (delete if last link)

	

DBMS_XDB.deleteResource()
DELETE FROM RESOURCE_VIEW
 WHERE equals_path(res, path) > 0

	
HTTP: DELETE;

FTP:delete

	
Forcibly remove all links to resource

	

DBMS_XDB.deleteResource()
DELETE FROM PATH_VIEW
 WHERE extractValue(res, 'display_name')
 = 'My resource'

	
FTP: quote rm_rf resource

	
Move resource

	

UPDATE PATH_VIEW SET path = newpath
 WHERE equals_path(res, path) > 0

	
WebDAV: MOVE;

FTP: rename

	
Copy resource

	

INSERT INTO PATH_VIEW
 SELECT newpath, res, link FROM PATH_VIEW
 WHERE equals_path(res, oldpath) > 0

	
WebDAV: COPY;

	
Create link to existing resource

	

CALL DBMS_XDB.link(srcpath IN VARCHAR2,
 linkfolder IN VARCHAR2,
 linkname IN VARCHAR2);

	
—

	
Get binary or text representation of resource contents

	

SELECT XDBURIType(path).getBlob() FROM DUAL;

SELECT p.res.extract('/Resource/Contents')
 FROM RESOURCE_VIEW p
 WHERE equals_path(res, path) > 0

	
HTTP: GET;

FTP: get

	
Get XMLType representation of resource contents

	

SELECT XDBURIType(path).getBlob().getXML FROM DUAL;

SELECT extract(res, '/Resource/Contents/*')
 FROM RESOURCE_VIEW p
 WHERE equals_path(Res, path) > 0

	
—

	
Get resource properties

	

SELECT extractValue(res, '/Resource/XXX')
 FROM RESOURCE_VIEW
 WHERE equals_path(res, path) > 0

	
WebDAV: PROPFIND (depth = 0);

	
List directory

	

SELECT PATH FROM PATH_VIEW
 WHERE under_path(res, path, 1) > 0

	
WebDAV: PROPFIND (depth = 0);

	
Create folder

	

Call DBMS_XDB.createFolder(VARCHAR2)

	
WebDAV: MKCOL;

FTP: mkdir

	
Unlink folder

	

DBMS_XDB.deleteResource()
DELETE FROM PATH_VIEW
 WHERE equals_path(res, path) > 0;

	
HTTP: DELETE;

FTP: rmdir

	
Forcibly delete folder and all links to it

	

Call DBMS_XDB.deleteResource(VARCHAR2);

	
—

	
Get resource with a row lock

	

SELECT ... FROM RESOURCE_VIEW FOR UPDATE ...;

	
—

	
Add WebDAV lock on resource

	

DBMS_XDB.LockResource(path, true, true);

	
WebDAV: LOCK;

FTP: quote lock

	
Remove WebDAV lock

	

BEGIN
 DBMS_XDB.GetLockToken(path, deltoken);
 DBMS_XDB.UnlockToken(path, deltoken);
END;

	
WebDAV: UNLOCK;

FTP: quote unlock

	
Commit changes

	

COMMIT;

	
Automatic commit after each request

	
Rollback changes

	

ROLLBACK;

	
—

Managing and Controlling Access to Resources

You can set access control privileges on Oracle XML DB folders and resources.

	
See Also:

	
Chapter 24, "Repository Resource Security" for more detail on using access control on Oracle XML DB folders

	
Oracle Database PL/SQL Packages and Types Reference

[image: Oracle Corporation]

19 Accessing Data Through URIs

This chapter describes how to generate and store URLs in the database and how to retrieve data pointed to by those URLs. Three kinds of URIs are discussed:

	
DBUris – addresses to relational data in the database

	
XDBUris – addresses to data in Oracle XML DB Repository

	
HTTPUris – Web addresses that use the Hyper Text Transfer Protocol (HTTP(S))

This chapter contains these topics:

	
Overview of Oracle XML DB URL Features

	
URIs and URLs

	
URIType and its Subtypes

	
Accessing Data Using URIType Instances

	
XDBUris: Pointers to Repository Resources

	
DBUris: Pointers to Database Data

	
Creating New Subtypes of URIType using Package URIFACTORY

	
SYS_DBURIGEN SQL Function

	
DBUriServlet

Overview of Oracle XML DB URL Features

The two main features described in this chapter are these:

	
Using paths as an indirection mechanism – You can store a path in the database and then access its target indirectly by referring to the path. The paths in question are various kinds of Uniform Resource Identifier (URI).

	
Using paths that target database data to produce XML documents – One kind of URI that you can use for indirection in particular, a DBUri, provides a convenient XPath notation for addressing database data. You can use a DBUri to construct an XML document that contains database data and whose structure reflects the database structure.

URIs and URLs

In developing Web-based XML applications, you often refer to data located on a network using Uniform Resource Identifiers, or URIs. A URL, or Uniform Resource Locator, is a URI that accesses an object using an Internet protocol.

A URI has two parts, separated by a number sign (#):

	
A URL part, that identifies a document.

	
A fragment part, that identifies a fragment within the document. The notation for the fragment depends on the document type. For HTML documents, it is an anchor name. For XML documents, it is an XPath expression.

These are typical URIs:

	
For HTML – http://www.url.com/document1#some_anchor, where some_anchor is a named anchor in the HTML document.

	
For XML – http://www.xml.com/xml_doc#/po/cust/custname, where:

	
http://www.xml.com/xml_doc identifies the location of the XML document.

	
/po/cust/custname identifies a fragment within the document. This portion is defined by the W3C XPointer recommendation.

	
See Also:

	
http://www.w3.org/2002/ws/Activity.html an explanation of HTTP(S) URL notation

	
http://www.w3.org/TR/xpath for an explanation of the XML XPath notation

	
http://www.w3.org/TR/xptr/ for an explanation of the XML XPointer notation

	
http://xml.coverpages.org/xmlMediaMIME.html for a discussion of MIME types

URIType and its Subtypes

Oracle XML DB can represent paths of various kinds as database objects. These are the available path object types:

	
HTTPURIType – An object of this type is called an HTTPUri and represents a URL that begins with http://. With HTTPURIType, you can create objects that represent links to remote Web pages (or files) and retrieve those Web pages by calling object methods. This type implements the Hyper Text Transfer Protocol (HTTP(S)) for accessing remote Web pages. HTTPURIType uses package UTL_HTTP to fetch data, so session settings for this package can also be used to influence HTTP fetches.

	
See Also :

"HTTPURIType Method getContentType()"

	
DBURIType – An object of this type is called a DBUri and represents a URI that targets database data – a table, one or more rows, or a single column. With DBURIType, you can create objects that represent links to database data, and retrieve such data as XML by calling object methods. A DBUri uses a simple form of XPath expression as its URI syntax – for example, the following XPath expression is a DBUri reference to the row of database table hr, column employees where column first_name has value Jack:

/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]

	
See Also :

DBUris: Pointers to Database Data

	
XDBURIType – An object of this type is called an XDBUri and represents a URI that targets a resource in Oracle XML DB Repository. With XDBURIType, you can create objects that represent links to repository resources, and retrieve all or part of any resource by calling object methods. The URI syntax for an XDBUri is a repository resource address optionally followed by an XPath expression. For example, /public/hr/doc1.xml#/purchaseOrder/lineItem is an XDBUri reference to the lineItem child element of the root element purchaseOrder in repository file doc1.xml in folder /public/hr.

	
See Also :

XDBUris: Pointers to Repository Resources

Each of these object types is derived from an abstract object type, URIType. As an abstract type, it has no instances (objects); only its subtypes have instances.

Type URIType provides the following features:

	
Unified access to data stored inside and outside the server. Because you can use URIType values to store pointers to HTTP(S) and DBUris, you can create queries and indexes without worrying about where the data resides.

	
Mapping of URIs in XML Documents to Database Columns. When an XML document is shredded to database tables and columns, any URIs contained in the document are mapped to database columns of the appropriate URIType subtype.

You can reference data stored in relational columns and expose it to the external world using URIs. Oracle Database provides a standard servlet, DBUriServlet, that interprets DBUris. It also provides PL/SQL package UTL_HTTP and Java class java.net.URL, which you can use to fetch URL references.

URIType columns can be indexed natively in Oracle Database using Oracle Text – no special datastore is needed.

	
See Also:

	
"Creating New Subtypes of URIType using Package URIFACTORY" for information on defining new URIType subtypes

	
Chapter 4, "XMLType Operations", "Indexing XMLType Columns" for information on indexing XMLType columns

DBUris and XDBUris – What For?

The following are typical uses of DBUris and XDBUris:

	
You can reference XSLT style sheets from within database-generated Web pages. Package DBMS_METADATA uses DBUris to reference XSL style sheets. An XDBUri can be used to reference XSLT style sheets stored in Oracle XML DB Repository.

	
You can reference HTML text, images and other data stored in the database. URLs can be used to point to data stored in database tables or in repository folders.

	
You can improve performance by bypassing the Web server. Replace a global URL in your XML document with a reference to the database, and use a servlet, a DBUri, or a XDBUri to retrieve the targeted content. Using a DBUri or an XDBUri generally provides better performance than using a servlet, because you interact directly with the database rather than through a Web server.

	
With a DBUri, you can access an XML document in the database without using SQL.

	
Whenever a repository resource is stored in a database table to which you have access, you can use either an XDBUri or a DBUri to access its content.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference, "DBMS_METADATA package"

URIType Methods

Abstract object type URIType includes methods that can be used with each of its subtypes. Each of these methods can be overridden by any of the subtypes. Table 19-1 lists the URIType methods. In addition, each of the subtypes has a constructor with the same name as the subtype.

Table 19-1 URIType Methods

	URIType Method	Description
	

getURL()

	
Returns the URL of the URIType instance.

Use this method instead of referencing a URL directly. URIType subtypes override this method to provide the correct URL. For example, HTTPURIType stores a URL without prefix http://. Method getURL() then prepends the prefix and returns the entire URL.

	

getExternalURL()

	
Similar to getURL(), but getExternalURL() escapes characters in the URL, to conform with the URL specification. For example, spaces are converted to the escaped value %20.

	

getContentType()

	
Returns the MIME content type for the URI.

HTTPUri: The URL is followed and the MIME header examined, in order to return the actual content type.

DBUri: The returned content type is either text/plain (for a scalar value) or text/xml (otherwise).

XDBUri: The value of the ContentType metadata property of the repository resource is returned.

	

getClob()

	
Returns the target of the URI as a CLOB value. The database character set is used for encoding the data.

DBUri: XML data is returned (unless node-test text() is used, in which case the targeted data is returned as is). When a BLOB column is targeted, the binary data in the column is translated as hexadecimal character data.

	

getBlob()

	
Returns the target of the URI as a BLOB value. No character conversion is performed, and the character encoding is that of the URI target. This method can also be used to fetch binary data.

DBUri: When applied to a DBUri that targets a BLOB column, getBlob() returns the binary data translated as hexadecimal character data. When applied to a DBUri that targets non-binary data, the data is returned in the database character set.

	

getXML()

	
Returns the target of the URI as an XMLType instance. Using this, an application that performs operations other than getClob() and getBlob() can use XMLType methods to do those operations. This throws an exception if the URI does not target a well-formed XML document.

	

createURI()

	
Constructs an instance of one of the URIType subtypes.

HTTPURIType Method getContentType()

HTTPURIType method getContentType() returns the actual MIME information for its targeted document. You can use this information to decide whether to retrieve the document as a BLOB value or a CLOB value. For example, you might treat a Web page with a MIME type of x/jpeg as a BLOB value, and one with a MIME type of text/plain or text/html as a CLOB value.

Example 19-1 Using HTTPURIType Method getContentType()

In this example, the HTTP content type is tested to determine whether to retrieve data as a CLOB or BLOB value. The content-type data is the HTTP header, for HTTPURIType, or the metadata of the database column, for DBURIType.

DECLARE
 httpuri HTTPURIType;
 y CLOB;
 x BLOB;
BEGIN
 httpuri := HTTPURIType('http://www.oracle.com/object1');
 DBMS_OUTPUT.put_line(httpuri.getContentType());
 IF httpuri.getContentType() = 'text/html'
 THEN
 y := httpuri.getClob();
 END IF;
 IF httpuri.getContentType() = 'application-x/bin'
 THEN
 x := httpuri.getBlob();
 END IF;
END;
/
text/html

DBURIType Method getContentType()

Method getContentType() returns the MIME information for a URL. If a DBUri targets a scalar value, then the MIME content type returned is text/plain; otherwise, it is text/xml. For example, consider table dbtab:

CREATE TABLE DBTAB(a VARCHAR2(20), b BLOB);

DBUris corresponding to the following XPath expressions have content type text/xml, because each targets a complete column of XML data.

	
/HR/DBTAB/ROW/A

	
/HR/DBTAB/ROW/B

DBUris corresponding to the following XPath expressions have content type text/plain, because each targets a scalar value.

	
/HR/DBTAB/ROW/A/text()

	
/HR/DBTAB/ROW/B/text()

DBURIType Method getClob()

When method getClob() is applied to a DBUri, the targeted data is returned as XML data, using the targeted column or table name as an XML element name. If the target XPath uses node-test text(), then the data is returned as text without an enclosing XML tag. In both cases, the returned data is in the database character set.

For example: If appliedto a DBUri with XPath /HR/DBTAB/ROW/A/text(), where A is a non-binary column, the data in column A is returned as is. Without XPath node-test text(), the result is the data wrapped in XML:

<HR><DBTAB><ROW><A>...data_in_column_A...</ROW></DBTAB></HR>

When applied toa DBUri that targets a binary (BLOB) column, the binary data in the column is translated as hexadecimal character data.

For example: If applied to a DBUri with XPath /HR/DBTAB/ROW/B/text(), where B is a BLOB column, the targeted binary data is translated to hexadecimal character data and returned. Without XPath node-test text(), the result is the translated data wrapped in XML:

<HR><DBTAB><ROW>...data_translated_to_hex...</ROW></DBTAB></HR>

DBURIType Method getBlob()

When applied to a DBUri that targets a BLOB column, getBlob() returns the binary data translated as hexadecimal character data. When applied to a DBUri that targets non-binary data, getBlob() returns the data (as a BLOB value) in the database character set.

For example, consider table dbtab:

CREATE TABLE DBTAB(a VARCHAR2(20), b BLOB);

When getBlob() is applied to a DBUri corresponding to XPath expression /HR/DBTAB/ROW/B, it returns a BLOB value containing an XML document with root element B whose content is the hexadecimal-character translation of the binary data of column B.

When getBlob() is applied to a DBUri corresponding to XPath expression /HR/DBTAB/ROW/B/text(), it returns a BLOB value containing only the hexadecimal-character translation of the binary data of column B.

When getBlob() is applied to a DBUri corresponding to XPath expression /HR/DBTAB/ROW/A/text(), which targets non-binary data, it returns a BLOB value containing the data of column A, in the database character set.

Accessing Data Using URIType Instances

To use instances of URIType subtypes for indirection, you generally store such instances in the database and then use them in queries with a method such as getClob() to retrieve the targeted data. This section illustrates how to do this.

You can create database columns using URIType or any of its subtypes, or you can store just the text of each URI as a string and then create the needed URIType instances on demand, when the URIs are accessed. You can store objects of different URIType subtypes in the same URIType database column.

You can also define your own object types that inherit from the URIType subtypes. Deriving new types lets you use custom techniques to retrieve, transform, or filter data.

	
See Also:

	
"Creating New Subtypes of URIType using Package URIFACTORY" for information on defining new URIType subtypes

	
"XSL Transformation and Oracle XML DB" for information on transforming XML data

Example 19-2 Creating and Querying a URI Column

This example stores an HTTPUri and a DBUri (instances of URIType subtypes HTTPURIType and DBURIType) in the same database column of type URIType. A query retrieves the data addressed by each of the URIs. The first URI is a Web-page URL; the second references data in the employees table of standard schema hr. (For brevity, only the beginning of the Web page is shown.)

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES (HTTPURIType.createURI('http://www.oracle.com'));
1 row created.

INSERT INTO uri_tab VALUES (DBURIType.createURI(
 '/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]'));
1 row created.

SELECT e.url.getClob() FROM uri_tab e;

E.URL.GETCLOB()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Oracle Corporation</TITLE>
. . .

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>177</EMPLOYEE_ID>
 <FIRST_NAME>Jack</FIRST_NAME>
 <LAST_NAME>Livingston</LAST_NAME>
 <EMAIL>JLIVINGS</EMAIL>
 <PHONE_NUMBER>011.44.1644.429264</PHONE_NUMBER>
 <HIRE_DATE>23-APR-98</HIRE_DATE>
 <JOB_ID>SA_REP</JOB_ID>
 <SALARY>8400</SALARY>
 <COMMISSION_PCT>.2</COMMISSION_PCT>
 <MANAGER_ID>149</MANAGER_ID>
 <DEPARTMENT_ID>80</DEPARTMENT_ID>
 </ROW>

2 rows selected.

In order to use URIType method createURI(), you must know the particular URIType subtype to use. Method getURI() of package URIFACTORY lets you instead use the flexibility of late binding, determining the particular type information at runtime.

URIFACTORY.getURI() takes as argument a URI string; it returns a URIType instance of the appropriate subtype (HTTPURIType, DBURIType, or XDBURIType), based on the form of the URI string:

	
If the URI starts with http://, then getURI() creates and returns an HTTPUri.

	
If the URI starts with either /oradb/ or /dburi/, then getURI() creates and returns a DBUri.

	
Otherwise, getURI() creates and returns an XDBUri.

Example 19-3 Using Different Kinds of URI, Created in Different Ways

This example is similar to Example 19-2. However, it uses two different ways to obtain documents targeted by URIs:

	
Method SYS.URIFACTORY.getURI() with absolute URIs:

	
an HTTPUri that targets HTTP address http://www.oracle.com

	
a DBUri that targets database address /oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]

	
Constructor SYS.HTTPURIType() with a relative URL (no http://). The same HTTPUri is used as for the absolute URI: the Oracle home page.

In this example, the URI strings passed to getURI() are hard-coded, but they could just as easily be string values that are obtained by an application at runtime.

CREATE TABLE uri_tab (docUrl SYS.URIType, docName VARCHAR2(200));
Table created.

-- Insert an HTTPUri with absolute URL into SYS.URIType using URIFACTORY.
-- The target is Oracle home page.
INSERT INTO uri_tab VALUES
 (SYS.URIFACTORY.getURI('http://www.oracle.com'), 'AbsURL');
1 row created.

-- Insert an HTTPUri with relative URL using constructor SYS.HTTPURIType.
-- Note the absence of prefix http://. The target is the same.
INSERT INTO uri_tab VALUES (SYS.HTTPURIType('www.oracle.com'), 'RelURL');
1 row created.

-- Insert a DBUri that targets employee data from database table hr.employees.
INSERT INTO uri_tab VALUES
 (SYS.URIFACTORY.getURI('/oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]'), 'Emp200');
1 row created.

-- Extract all of the documents.
SELECT e.docUrl.getClob(), docName FROM uri_tab e;

E.DOCURL.GETCLOB()

DOCNAME

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Oracle Corporation</TITLE>
. . .
AbsURL

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Oracle Corporation</TITLE>
. . .
RelURL

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <FIRST_NAME>Jennifer</FIRST_NAME>
 <LAST_NAME>Whalen</LAST_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>17-SEP-87</HIRE_DATE>
 <JOB_ID>AD_ASST</JOB_ID>
 <SALARY>4400</SALARY>
 <MANAGER_ID>101</MANAGER_ID>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>
Emp200

3 rows selected.

-- In PL/SQL
CREATE OR REPLACE FUNCTION returnclob
RETURN CLOB
IS
 a SYS.URIType;
BEGIN
 SELECT docUrl INTO a FROM uri_Tab WHERE docName LIKE 'Emp200%';
 RETURN a.getClob;
END;
/
Function created.

SELECT returnclob() FROM DUAL;

RETURNCLOB()

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <FIRST_NAME>Jennifer</FIRST_NAME>
 <LAST_NAME>Whalen</LAST_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>17-SEP-87</HIRE_DATE>
 <JOB_ID>AD_ASST</JOB_ID>
 <SALARY>4400</SALARY>
 <MANAGER_ID>101</MANAGER_ID>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>

1 row selected.

XDBUris: Pointers to Repository Resources

XDBURIType is a subtype of URIType that provides a way to expose resources in Oracle XML DB Repository using URIs. Instances of type XDBURIType are called XDBUris.

XDBUri URI Syntax

The URL portion of an XDBUri URI is the hierarchical address of the targeted repository resource – it is a repository path (not an XPath expression).

The optional fragment portion of the URI uses the XPath syntax, and is separated from the URL part by a number-sign (#). It is appropriate only if the targeted resource is an XML document, in which case the fragment portion targets one or more parts of the XML document. If the targeted resource is not an XML document, then omit the fragment and number-sign.

The following are examples of XDBUri URIs:

	
/public/hr/image27.jpg

	
/public/hr/doc1.xml#/PurchaseOrder/LineItem

Based on the form of these URIs, we can determine the following:

	
/public/hr is a folder resource in Oracle XML DB Repository.

	
image27.jpg and doc1.xml are resources in folder /public/hr.

	
Resource doc1.xml is a file resource, and it contains an XML document.

	
The XPath expression /PurchaseOrder/LineItem refers to the LineItem child element in element PurchaseOrder of XML document doc1.xml.

You can create an XDBUri using method getURI() of package URIFACTORY.

XDBURIType is the default URIType used when generating instances using URIFACTORY method getURI(), unless the URI has one of the recognized prefixes http://, /dburi, or /oradb.

For example, if resource doc1.xml is present in repository folder /public/hr, then the following query will return an XDBUri that targets that resource.

SELECT SYS.URIFACTORY.getURI('/public/hr/doc1.xml') FROM DUAL;

It is the lack of a special prefix that determines that the type is XDBURIType, not any particular resource file extension or the presence of # followed by an XPath expression; if the resource were named foo.bar instead of doc1.xml, the returned URIType instance would still be an XDBUri.

XDBUri Examples

Example 19-4 Using an XDBUri to Access a Repository Resource by URI

This example creates an XDBUri, inserts values into a purchase-order table, and then selects all of the purchase orders. Because there is no special prefix used in the URI passed to URIFACTORY.getURI(), the created URIType instance is an XDBUri.

DECLARE
res BOOLEAN;
postring VARCHAR2(100):= '<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>';
BEGIN
res:=DBMS_XDB.createFolder('/public/orders/');
res:=DBMS_XDB.createResource('/public/orders/po1.xml', postring);
END;
/
PL/SQL procedure successfully completed.

CREATE TABLE uri_tab (poUrl SYS.URIType, poName VARCHAR2(1000));
Table created.

-- We create an abstract type column so any type of URI can be used
-- Insert an absolute URL into poUrl.
-- The factory will create an XDBURIType because there is no prefix.
-- Here, po1.xml is an XML file that is stored in /public/orders/
-- of the XML repository.
INSERT INTO uri_tab VALUES
 (URIFACTORY.getURI('/public/orders/po1.xml'), 'SomePurchaseOrder');
1 row created.

-- Get all the purchase orders
SELECT e.poUrl.getClob(), poName FROM uri_tab e;

E.POURL.GETCLOB()

PONAME

<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>
SomePurchaseOrder

1 row selected.

-- Using PL/SQL, you can access table uri_tab as follows:
CREATE OR REPLACE FUNCTION returnclob
RETURN CLOB
IS
 a URIType;
BEGIN
 -- Get absolute URL for purchase order named like 'Some%'
 SELECT poUrl INTO a FROM uri_tab WHERE poName LIKE 'Some%';
 RETURN a.getClob();
END;
/
Function created.

SELECT returnclob() FROM DUAL;

RETURNCLOB()

<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>

1 row selected.

Example 19-5 Using getXML() with EXTRACTVALUE

Because method getXML() returns an XMLType instance, you can use it with SQL functions like extractValue. This query retrieves all purchase orders numbered 999:

SELECT e.poUrl.getClob() FROM uri_tab e
 WHERE extractValue(e.poUrl.getXML(), '/ROW/PO') = '999';

E.POURL.GETCLOB()

<?xml version="1.0"?>
<ROW>
<PO>999</PO>
</ROW>

1 row selected.

DBUris: Pointers to Database Data

A DBUri is a URI that targets database data. As for all instances of URIType subtypes, a DBUri provides an indirection mechanism for accessing data. In addition, DBURIType lets you do the following:

	
Address database data using XPath notation. This, in effect, lets you visualize and access the database as if it were XML data.

For example, a DBUri can use an expression such as /HR/EMPLOYEES/ROW[FIRST_NAME="Jack"] to target the row of database table hr, column employees where column first_name has value Jack.

	
Construct an XML document that contains database data targeted by a DBUri and whose structure reflects the database structure.

For example: A DBUri with XPath /HR/DBTAB/ROW/A can be used to construct an XML document that wraps the data of column A in XML elements that reflect the database structure and are named accordingly:

<HR><DBTAB><ROW><A>...data_in_column_A...</ROW></DBTAB></HR>

A DBUri does not reference a global location as does an HTTPUri. You can, however, also access objects addressed by a DBUri in a global manner, by appending the DBUri to an HTTPUri that identifies a servlet that handles DBUris – see "DBUriServlet" .

Viewing the Database as XML Data

You can only access those database schemas to which you have been granted access privileges. This portion of the database is, in effect, your own view of the database.

Using DBURIType, you can have corresponding XML views of the database, which are portions of the database to which you have access, presented in the form of XML data. This means all kinds database data, not just data that is stored as XML. When visualized this way, the database data is effectively wrapped in XML elements, resulting in one or more XML documents.

Such "XML views" are not database views, in the technical sense of the term; "view" here means only an abstract perspective that can be useful for understanding DBURIType. You can think of DBURIType as providing a way to visualize and access the database as if it were XML data.

However, DBURIType does not just provide an exercise in visualization and an additional means to access database data. Each "XML view" can be realized as an XML document – that is, you can use DBURIType to generate XML documents using database data.

All of this is another way of saying that DBURIType lets you use XPath notation to 1) address and access any database data to which you have access and 2) construct XML representations of that data.

Figure 19-1 illustrates the relation between a relational table, hr.employees, a corresponding "XML view" of a portion of that table, and the corresponding DBUri URI (a simple XPath expression). In this case, the portion of the data exposed as XML is the row where employee_id is 200. The URI can be used to access the data and construct an XML document that reflects the "XML view".

Figure 19-1 A DBUri Corresponds to an XML Vizualization of Relational Data

[image: Description of Figure 19-1 follows]

Description of "Figure 19-1 A DBUri Corresponds to an XML Vizualization of Relational Data"

The XML elements in the "XML view" and the steps in the URI XPath expression both reflect the database table and column names. Note the use of ROW to indicate a row in the database table – both in the "XML view" and in the URI XPath expression.

Note also that the XPath expression contains a root-element step, oradb. This is used to indicate that the URI corresponds to a DBUri, not an HTTPUri or an XDBUri. Whenever this correspondence is understood from context, this XPath step can be skipped. For example, if it is known that the path in question is a path to database data, the following URIs are equivalent:

	
/oradb/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

	
/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME

Whenever the URI context is not clear, however, you must use the prefix /oradb to distinguish a URI as corresponding to a DBUri. In particular, you must supply the prefix to URIFACTORY methods and to DBUriServlet.

	
See Also:

	
"Creating New Subtypes of URIType using Package URIFACTORY"

	
"DBUriServlet"

	
Chapter 16, "Generating XML Data from the Database" for other ways to generate XML from database data

DBUri URI Syntax

An XPath expression is a path into XML data that addresses one or more XML nodes. A DBUri exploits the notion of a virtual XML user visualization of the database to use a simple form of XPath expression as a URI to address database data. This is so, regardless of the type of data, in particular, whether or not the data is XML.

Thus, for DBURIType, Oracle Database does not support the full XPath or XPointer syntax; only a subset is allowed. There are no syntax restrictions for XDBUri XPath expressions. There is also an exception in the DBUri case: data in XMLType tables. For an XMLType table, the simple XPath form is used to address the table itself within the database. Then, to address particular XML data in the table, the remainder of the XPath expression can use the full XPath syntax. This exception applies only to XMLType tables, not to XMLType columns.

In any case, unlike an XDBUri, a DBUri URI does not use a number-sign (#) to separate the URL portion of a URI from a fragment (XPath) portion. DBURIType does not use URI fragments; the entire URI is treated as a (simple) XPath expression.

You can create DBUris to any database data to which you have access. XPaths such as the following are allowed:

	
/database_schema/table

	
/database_schema/table/ROW[predicate_expression]/column

	
/database_schema/table/ROW[predicate_expression]/object_column/attribute

	
/database_schema/XMLType_table/ROW/XPath_expression

In the last case, XMLType_table is an XMLType table, and XPath_expression is any XPath expression. For tables that are not XMLType, a DBUri XPath expression must end at a column; it cannot address specific data inside a column. This restriction includes XMLType columns, LOB columns, and VARCHAR2 columns that contain XML data.

A DBUri XPath expression can do any of the following:

	
Target an entire table.

For example, /HR/EMPLOYEES targets table employees of database schema hr.

	
Include XPath predicates at any step in the path, except the database schema and table steps.

For example, /HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/EMAIL targets the email column of table hr.employees, where employee_id is 200.

	
Use the text() XPath node test on data with scalar content. This is the only node test that can be used, and it cannot be used with the table or row step.

The following can be used in DBUri (XPath) predicate expressions:

	
Boolean operators and, or, and not

	
Relational operators <, >, <=, !=, >=, =, mod, div, * (multiply)

A DBUri XPath expression must do all of the following:

	
Use only the child XPath axis – other axes, such as parent, are not allowed.

	
Either specify a database schema or specify PUBLIC to resolve the table name without a specific schema.

	
Specify a database view or table name.

	
Include a ROW step, if a database column is targeted.

	
Identify a single data value, which can be an object-type instance or a collection.

	
Result in well-formed XML when it is used to generate XML data using database data.

An example of a DBUri that does not result in well-formed XML is /HR/EMPLOYEES/ROW/LAST_NAME. It returns more than one <LAST_NAME> element fragment, with no single root element.

	
Use none of the following:

	
* (wildcard)

	
. (self)

	
.. (parent)

	
// (descendent or self)

	
XPath functions, such as count

A DBUri XPath expression can optionally be prefixed by /oradb or /dburi (the two are equivalent) to distinguish it. This prefix is case-insensitive. However, the rest of the DBUri XPath expression is case-sensitive, as are XPaths generally. Thus, for example, to specify database column hr.employees as a DBUri XPath expression, you must use HR/EMPLOYEES, not hr/employees (or a mixed-case combination), because table and column names are uppercase, by default.

	
See Also:

http://www.w3.org/TR/xpath on XPath notation

DBUris are Scoped to a Database and Session

The content of the "XML views" you have of the database, and hence of the XML documents that you can construct, reflects the permissions you have to access particular database data at a given time. That is, a DBUri is scoped to a given database session, so the same DBUri can give different results in the same query, depending on the session context (which user is connected and what privileges the user has).

To complicate things a bit, there is also an XML element PUBLIC, under which database data is accessible without any database-schema qualification. This is a convenience feature, but it can also lead to some confusion if you forget that the XML views of the database for a given user depend on the specific access the user has to the database at a given time.

XML element PUBLIC corresponds to the use of a public synonym. For example, when queried by user quine, the following query tries to match table foo under database schema quine, but if no such table exists, it tries to match a public synonym named foo.

SELECT * FROM foo;

In the same way, XML element PUBLIC contains all of the database data visible to a given user, as well as all of the data visible to that user through public synonyms. So, the same DBUri URI /PUBLIC/FOO can resolve to quine.foo when user quine is connected, and resolve to curry.foo when user curry is connected.

DBUri Examples

A DBUri can identify a table, a row, a column in a row, or an attribute of an object column. The following sections describe how to target different object types.

Targeting a Table

You can target a complete database table, using this syntax:

/database_schema/table

Example 19-6 Using a DBUri to Target a Complete Table

In this example, a DBUri targets a complete table. An XML document is returned that corresponds to the table contents. The top-level XML element is named for the table. The values of each row are enclosed in a ROW element.

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI('/HR/EMPLOYEES'));
1 row created.

SELECT e.url.getClob() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
<EMPLOYEES>
 <ROW>
 <EMPLOYEE_ID>100</EMPLOYEE_ID>
 <FIRST_NAME>Steven</FIRST_NAME>
 <LAST_NAME>King</LAST_NAME>
 <EMAIL>SKING</EMAIL>
 <PHONE_NUMBER>515.123.4567</PHONE_NUMBER>
 <HIRE_DATE>17-JUN-87</HIRE_DATE>
 <JOB_ID>AD_PRES</JOB_ID>
 <SALARY>24000</SALARY>
 <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 <ROW>
 <EMPLOYEE_ID>101</EMPLOYEE_ID>
 <FIRST_NAME>Neena</FIRST_NAME>
 <LAST_NAME>Kochhar</LAST_NAME>
 <EMAIL>NKOCHHAR</EMAIL>
 <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
 <HIRE_DATE>21-SEP-89</HIRE_DATE>
 <JOB_ID>AD_VP</JOB_ID>
 <SALARY>17000</SALARY>
 <MANAGER_ID>100</MANAGER_ID>
 <DEPARTMENT_ID>90</DEPARTMENT_ID>
 </ROW>
 . . .

1 row selected.

Targeting a Row in a Table

You can target one or more specific rows of a table, using this syntax:

/database_schema/table/ROW[predicate_expression]

Example 19-7 Using a DBUri to Target a Particular Row in a Table

In this example, a DBUri targets a single table row. The XPath predicate expression identifies the single table row that corresponds to employee number 200. The result is an XML document with ROW as the top-level element.

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI('/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]'));
1 row created.

SELECT e.url.getClob() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
 <ROW>
 <EMPLOYEE_ID>200</EMPLOYEE_ID>
 <FIRST_NAME>Jennifer</FIRST_NAME>
 <LAST_NAME>Whalen</LAST_NAME>
 <EMAIL>JWHALEN</EMAIL>
 <PHONE_NUMBER>515.123.4444</PHONE_NUMBER>
 <HIRE_DATE>17-SEP-87</HIRE_DATE>
 <JOB_ID>AD_ASST</JOB_ID>
 <SALARY>4400</SALARY>
 <MANAGER_ID>101</MANAGER_ID>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 </ROW>

1 row selected.

Targeting a Column

You can target a specific column, using this syntax:

/database_schema/table/ROW[predicate_expression]/column

You can target a specific attribute of an object column, using this syntax:

/database_schema/table/ROW[predicate_expression]/object_column/attribute

You can target a specific object column whose attributes have specific values, using this syntax:

/database_schema/table/ROW[predicate_expression_with_attributes]/object_column

Example 19-8 Using a DBUri to Target a Specific Column

In this example, a DBUri targets column last_name for the same employee as in Example 19-7. The top-level XML element is named for the targeted column.

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI('/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME'));
1 row created.

SELECT e.url.getClob() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
 <LAST_NAME>Whalen</LAST_NAME>

1 row selected.

Example 19-9 Using a DBUri to Target an Object Column with Specific Attribute Values

In this example, a DBUri targets a CUST_ADDRESS object column containing city and postal code attributes with certain values. The top-level XML element is named for the column, and it contains child elements for each of the object attributes.

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI(
 '/OE/CUSTOMERS/ROW[CUST_ADDRESS/CITY="Poughkeepsie" and
 CUST_ADDRESS/POSTAL_CODE=12601]/CUST_ADDRESS'));
1 row created.

SELECT e.url.getClob() FROM uri_tab e;

E.URL.GETCLOB()

<?xml version="1.0"?>
 <CUST_ADDRESS>
 <STREET_ADDRESS>33 Fulton St</STREET_ADDRESS>
 <POSTAL_CODE>12601</POSTAL_CODE>
 <CITY>Poughkeepsie</CITY>
 <STATE_PROVINCE>NY</STATE_PROVINCE>
 <COUNTRY_ID>US</COUNTRY_ID>
 </CUST_ADDRESS>

1 row selected.

The DBUri identifies the object that has a CITY attribute with Poughkeepsie as value and a POSTAL_CODE attribute with 12601 as value.

Retrieving the Text Value of a Column

In many cases, it can be useful to retrieve only the text values of a column and not the enclosing tags. For example, if XSLT style sheets are stored in a CLOB column, you can retrieve the document text without having any enclosing column-name tags. You can use the text() XPath node test for this. It specifies that you want only the text value of the node. Use the following syntax:

/oradb/database_schema/table/ROW[predicate_expression]/column/text()

Example 19-10 Using a DBUri to Retrieve Only the Text Value of a Node

This example retrieves the text value of the employee last_name column for employee number 200, , without the XML tags.

CREATE TABLE uri_tab (url URIType);
Table created.

INSERT INTO uri_tab VALUES
 (DBURIType.createURI(
 '/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME/text()'));

1 row created.

SELECT e.url.getClob() FROM uri_tab e;

E.URL.GETCLOB()

Whalen

1 row selected.

Targeting a Collection

You can target a database collection, such as a varray or nested table. You must, however, target the entire collection – you cannot target individual members of a collection. When a collection is targeted, the XML document produced by the DBUri contains each collection member as an XML element, with all such elements enclosed in a element named for the type of the collection.

Example 19-11 Using a DBUri to Target a Collection

In this example, a DBUri targets a collection of numbers. The top-level XML element is named for the collection, and its children are named for the collection type (NUMBER).

CREATE TYPE num_collection AS VARRAY(10) OF NUMBER;
/
Type created.

CREATE TABLE orders (item VARCHAR2(10), quantities num_collection);
Table created.

INSERT INTO orders VALUES ('boxes', num_collection(3, 7, 4, 9));
1 row created.

SELECT * FROM orders;

ITEM

QUANTITIES

boxes
NUM_COLLECTION(3, 7, 4, 9)

1 row selected.

SELECT DBURIType('/HR/ORDERS/ROW[ITEM="boxes"]/QUANTITIES').getClob() FROM DUAL;

DBURITYPE('/HR/ORDERS/ROW[ITEM="BOXES"]/QUANTITIES').GETCLOB()
--
<?xml version="1.0"?>
 <QUANTITIES>
 <NUMBER>3</NUMBER>
 <NUMBER>7</NUMBER>
 <NUMBER>4</NUMBER>
 <NUMBER>9</NUMBER>
 </QUANTITIES>

1 row selected.

Creating New Subtypes of URIType using Package URIFACTORY

You can use PL/SQL package URIFACTORY to do more than create URIType instances. Additional methods are listed in Table 19-2.

Table 19-2 URIFACTORY Methods

	Method	Description
	

getURI()

	
Returns the URL of the URIType instance.

	
escapeURI()

	
Escapes the URI string by replacing characters that are not permitted in URIs by their equivalent escape sequence.

	
unescapeURI()

	
Unescapes a given URI.

	
registerURLHandler()

	
Registers a particular type name for handling a particular URL. This is called by getURI() to generate an instance of the type.

A Boolean argument can be used to indicate that the prefix must be stripped off before calling the appropriate type constructor.

	
unregisterURLHandler()

	
Unregisters a URL handler.

Of particular note is that you can use package URIFACTORY to define new subtypes of type URIType. You can then use those subtypes to provide specialized processing of URIs. In particular, you can define URIType subtypes that correspond to particular protocols – URIFACTORY will then recognize and process instances of those subtypes accordingly.

Defining new types and creating database columns specific to the new types has these advantages:

	
It provides an implicit constraint on the columns to contain only instances of those types. This can be useful for implementing specialized indexes on a column for specific protocols. For a DBUri, for instance, you can implement specialized indexes that fetch data directly from disk blocks, rather than executing SQL queries.

	
You can have different constraints on different columns, based on the type. For a HTTPUri, for instance, you can define proxy and firewall constraints on a column, so that any access through the HTTP uses the proxy server.

Registering New URIType Subtypes with Package URIFACTORY

To provide specialized processing of URIs, you define and register a new URIType subtype, as follows:

	
Create the new type using SQL statement CREATE TYPE. The type must implement method createURI().

	
Optionally override the default methods, to perform specialized processing when retrieving data or to transform the XML data before displaying it.

	
Choose a new URI prefix, to identify URIs that use this specialized processing.

	
Register the new prefix using method registerURLHandler(), so that package URIFACTORY can create an instance of your new subtype when it receives a URI starting with the new prefix you defined.

After the new subtype is defined, a URI with the new prefix will be recognized by URIFACTORY methods, and you can create and use instances of the new type.

For example, suppose that you define a new protocol prefix, ecom://, and define a subtype of URIType to handle it. Perhaps the new subtype implements some special logic for method getCLOB(), or perhaps it makes some changes to XML tags or data in method getXML(). After you register prefix ecom:// with URIFACTORY, a call to getURI() will generate an instance of the new URIType subtype for a URI with that prefix.

Example 19-12 URIFACTORY: Registering the ECOM Protocol

This example creates a new type, ECOMURIType, to handle a new protocol, ecom://. The example stores three different kinds of URIs in a single table: an HTTPUri, a DBUri, and an instance of the new type, ECOMURIType. To actually run this example, you would need to define each of the ECOMURIType member functions.

CREATE TABLE url_tab (urlcol varchar2(80));
Table created.

-- Insert an HTTP URL reference
INSERT INTO url_tab VALUES ('http://www.oracle.com/');
1 row created.

-- Insert a DBUri
INSERT INTO url_tab VALUES ('/oradb/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]');
1 row created.

-- Create a new type to handle a new protocol called ecom://
-- This is just an example template. For this to run, the implementations
-- of these functions needs to be specified.
CREATE OR REPLACE TYPE ECOMURIType UNDER SYS.URIType (
 OVERRIDING MEMBER FUNCTION getClob RETURN CLOB,
 OVERRIDING MEMBER FUNCTION getBlob RETURN BLOB,
 OVERRIDING MEMBER FUNCTION getExternalURL RETURN VARCHAR2,
 OVERRIDING MEMBER FUNCTION getURI RETURN VARCHAR2,
 -- Must have this for registering with the URL handler
 STATIC FUNCTION createURI(url IN VARCHAR2) RETURN ECOMURIType);
/
-- Register a new handler for the ecom:// prefixes
BEGIN
 -- The handler type name is ECOMURIType; schema is HR
 -- Ignore the prefix case, so that URIFACTORY creates the same subtype
 -- for URIs beginning with ECOM://, ecom://, eCom://, and so on.
 -- Strip the prefix before calling method createURI(),
 -- so that the string 'ecom://' is not stored inside the
 -- ECOMURIType object. It is added back automatically when
 -- you call ECOMURIType.getURI().
 URIFACTORY.registerURLHandler (prefix => 'ecom://',
 schemaname => 'HR',
 typename => 'ECOMURITYPE',
 ignoreprefixcase => TRUE,
 stripprefix => TRUE);
END;
/
PL/SQL procedure successfully completed.

-- Insert this new type of URI into the table
INSERT INTO url_tab VALUES ('ECOM://company1/company2=22/comp');
1 row created.

-- Use the factory to generate an instance of the appropriate
-- subtype for each URI in the table.

-- You would need to define the member functions for this to work:
SELECT urifactory.getURI(urlcol) FROM url_tab;

-- This would generate:
HTTPURIType('www.oracle.com'); -- an HTTPUri
DBURIType('/oradb/HR/EMPLOYEES/ROW[FIRST_NAME="Jack"]', null); -- a DBUri
ECOMURIType('company1/company2=22/comp'); -- an ECOMURIType instance

SYS_DBURIGEN SQL Function

You can create a DBUri by providing an XPath expression to constructor DBURIType or to appropriate URIFACTORY methods. With SQL function sys_DburiGen, you can alternatively create a DBUri with an XPath that is composed from database columns and their values.

SQL function sys_DburiGen takes as its argument one or more database columns or attributes, and optionally a rowid, and generates a DBUri that targets a particular column or row object. Function sys_DburiGen takes an additional parameter that indicates whether the text value of the node is needed. See Figure 19-2.

Figure 19-2 SYS_DBURIGEN Syntax

[image: Description of Figure 19-2 follows]

Description of "Figure 19-2 SYS_DBURIGEN Syntax"

All columns or attributes referenced must reside in the same table. They must each reference a unique value. If you specify multiple columns, then the initial columns identify the row, and the last column identifies the column within that row. If you do not specify a database schema, then the table name is interpreted as a public synonym.

	
See Also:

Oracle Database SQL Reference

Example 19-13 SYS_DBURIGEN: Generating a DBUri that Targets a Column

This example uses SQL function sys_DburiGen to generate a DBUri that targets column email of table hr.employees where employee_id is 206:

SELECT sys_DburiGen(employee_id, email)
 FROM employees
 WHERE employee_id = 206;

SYS_DBURIGEN(EMPLOYEE_ID,EMAIL)(URL, SPARE)

DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID = "206"]/EMAIL', NULL)

1 row selected.

Rules for Passing Columns or Object Attributes to SYS_DBURIGEN

A column or attribute passed to SQL function sys_DburiGen must obey the following rules:

	
Same table: All columns referenced in function sys_DburiGen must come from the same table or view.

	
Unique mapping: The column or object attribute must be uniquely mappable back to the table or view from which it came. The only virtual columns allowed are those produced with VALUE or REF. The column can come from a subquery with SQL function table or from an inline view (as long as the inline view does not rename the columns).

	
Key columns: Either the rowid or a set of key columns must be specified. The list of key columns is not required to be declared as a unique or primary key, as long as the columns uniquely identify a particular row in the result.

	
PUBLIC element: If the table or view targeted by the rowid or key columns does not specify a database schema, then the PUBLIC keyword is used. When a DBUri is accessed, the table name resolves to the same table, synonym, or database view that was visible by that name when the DBUri was created.

	
Optional text() argument: By default, DBURIType constructs an XML document. Use text() as the third argument to sys_DburiGen to create a DBUri that targets a text node (no XML elements). For example:

SELECT sys_DburiGen(employee_id, last_name, 'text()') FROM hr.employees,
 WHERE employee_id=200;

This will construct a DBUri with the following URI:

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=200]/LAST_NAME/text()

	
Single-column argument: If there is a single-column argument, then the column is used as both the key column to identify the row and the referenced column.

Example 19-14 Passing Columns With Single Arguments to SYS_DBURIGEN

This query uses employee_id as both the key column and the referenced column. It generates a DBUri that targets the row with employee_id 7369.

SELECT sys_DburiGen(employee_id) FROM employees
 WHERE employee_id=200;

SYS_DBURIGEN(EMPLOYEE_ID)(URL, SPARE)

DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''200'']/EMPLOYEE_ID', NULL)

1 row selected.

SYS_DBURIGEN SQL Function: Examples

Example 19-15 Inserting Database References Using SYS_DBURIGEN

CREATE TABLE doc_list_tab(docno NUMBER PRIMARY KEY, doc_ref SYS.DBURIType);
Table created.

-- Insert a DBUri that targets the row with employee_id=177
INSERT INTO doc_list_tab VALUES(1001, (SELECT sys_DburiGen(rowid, employee_id)
 FROM employees WHERE employee_id=177));
1 row created.

-- Insert a DBUri that targets the last_name column of table employees
INSERT INTO doc_list_tab VALUES(1002,
 (SELECT sys_DburiGen(employee_id, last_name)
 FROM employees WHERE employee_id=177));
1 row created.

SELECT * FROM doc_list_tab;

 DOCNO

DOC_REF(URL, SPARE)

 1001
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[ROWID=''AAAL3LAAFAAAABSABN'']/EMPLOYEE_ID', NULL)

 1002
DBURITYPE('/PUBLIC/EMPLOYEES/ROW[EMPLOYEE_ID=''177'']/LAST_NAME', NULL)

2 rows selected.

Returning Partial Results

When selecting from a large column, you might sometimes want to retrieve only a portion of the result, and create a URL to the column instead. For example, consider the case of a travel story Web site. If travel stories are stored in a table, and users search for a set of relevant stories, then you do not want to list each entire story in the search-result page. Instead, you might show just the first 20 characters of each story, to represent the gist, and then return a URL to the full story. This can be done as follows:

Example 19-16 Returning a Portion of the Results By Creating a View and Using SYS_DBURIGEN

Assume that the travel story table is defined as follows:

CREATE TABLE travel_story (story_name VARCHAR2(100), story CLOB);
Table created.

INSERT INTO travel_story
 VALUES ('Egypt', 'This is the story of my time in Egypt....');
1 row created.

We create a function that returns only the first 20 characters from the story:

CREATE OR REPLACE FUNCTION charfunc(clobval IN CLOB) RETURN VARCHAR2 IS
 res VARCHAR2(20);
 amount NUMBER := 20;
BEGIN
 DBMS_LOB.read(clobval, amount, 1, res);
 RETURN res;
END;
/
Function created.

We next create a view that selects only the first twenty characters from the story, and returns a DBUri to the story column.

CREATE OR REPLACE VIEW travel_view AS
 SELECT story_name, charfunc(story) short_story,
 sys_DburiGen(story_name, story, 'text()') story_link
 FROM travel_story;
View created.

SELECT * FROM travel_view;

STORY_NAME

SHORT_STORY

STORY_LINK(URL, SPARE)

Egypt
This is the story of
DBURITYPE('/PUBLIC/TRAVEL_STORY/ROW[STORY_NAME=''Egypt'']/STORY/text()', NULL)

1 row selected.

RETURNING URLs to Inserted Objects

You can use SQL function sys_DburiGen in the RETURNING clause of DML statements to retrieve the URL of an object as it is inserted.

Example 19-17 Using SYS_DBURIGEN in the RETURNING Clause to Retrieve a URL

In this example, whenever a document is inserted into table clob_tab, its URL is inserted into table uri_tab. This is done using SQL function sys_DburiGen in the RETURNING clause of the INSERT statement.

CREATE TABLE clob_tab (docid NUMBER, doc CLOB);
Table created.
CREATE TABLE uri_tab (docs SYS.DBURIType);
Table created.

In PL/SQL, we specify the storage of the URL of the inserted document as part of the insertion operation, using the RETURNING clause and EXECUTE IMMEDIATE :

DECLARE
 ret SYS.DBURIType;
BEGIN
 -- execute the insert operation and get the URL
 EXECUTE IMMEDIATE
 'INSERT INTO clob_tab VALUES (1, ''TEMP CLOB TEST'')
 RETURNING sys_DburiGen(docid, doc, ''text()'') INTO :1'
 RETURNING INTO ret;
 -- Insert the URL into uri_tab
 INSERT INTO uri_tab VALUES (ret);
END;
/

SELECT e.docs.getURL() FROM hr.uri_tab e;
E.DOCS.GETURL()
--
/ORADB/PUBLIC/CLOB_TAB/ROW[DOCID='1']/DOC/text()

1 row selected.

DBUriServlet

Oracle XML DB Repository resources can be retrieved using the HTTP server that is incorporated in Oracle XML DB. Oracle Database also includes a servlet, DBUriServlet, that makes any kind of database data available through HTTP(S) URLs. The data can be returned as plain text, HTML, or XML.

A Web client or application can access such data without using SQL or a specialized database API. You can retrieve the data by linking to it on a Web page or by requesting it through HTTP-aware APIs of Java, PL/SQL, and Perl. You can display or process the data using an application such as a Web browser or an XML-aware spreadsheet. DBUriServlet can generate content that is XML data or not, and it can transform the result using XSLT style sheets.

You make database data Web-accessible by using a URI that is composed of a servlet address (URL) plus a DBUri URI that specifies which database data to retrieve. This is the syntax, where http://server:port is the URL of the servlet (machine and port), and /oradb/database_schema/table is the DBUri URI (any DBUri URI can be used):

http://server:port/oradb/database_schema/table

When using XPath notation in a URL for the servlet, you might need to escape certain characters. You can use URIType method getExternalURL() to do this.

You can either use DBUriServlet, which is preinstalled as part of Oracle XML DB, or write your own servlet that runs on a servlet engine. The servlet reads the URI portion of the invoking URL, creates a DBUri using that URI, calls URIType methods to retrieve the data, and returns the values in a form such as a Web page, an XML document, or a plain-text document.

The MIME type to use is specified to the servlet through the URI:

	
By default, the servlet produces MIME types text/xml and text/plain. If the DBUri path ends in text(), then text/plain is used; otherwise, an XML document is generated with MIME type text/xml.

	
You can override the default MIME type, setting it to binary/x-jpeg or some other value, by using the contenttype argument to the servlet.

	
See Also:

Chapter 27, "Writing Oracle XML DB Applications in Java", for information on Oracle XML DB servlets

Example 19-18 Using a URL to Override the MIME Type

To retrieve the employee_id column of the employee table, you can use a URL such as one of the following, where computer server.oracle.com is running Oracle Database with a Web service listening to requests on port 8080. Step oradb is the virtual path that maps to the servlet.

-- Produces a content type of text/plain
http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C/text()

-- Produces a content type of text/xml
http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C

To override the content type, you can use a URL that passes text/html to the servlet as the contenttype parameter:

-- Produces a content type of text/html
http://server.oracle.com:8080/oradb/QUINE/A/ROW[B=200]/C?contenttype=text/html

Table 19-3 describes each of the optional URL parameters you can pass to DBUriServlet to customize its output.

Table 19-3 DBUriServlet: Optional Arguments

	Argument	Description
	

rowsettag

	
Changes the default root tag name for the XML document. For example:

http://server:8080/oradb/HR/EMPLOYEES?rowsettag=OracleEmployees

This can also be used to put a tag around a URI that points to multiple rows. For example:

	

contenttype

	
Specifies the MIME type of the generated document. For example:

http://server:8080/oradb/HR/EMPLOYEES?contenttype=text/plain

	

transform

	
Passes a URL to URIFACTORY, which retrieves the XSL style sheet at that location. This style sheet is then applied to the XML document being returned by the servlet. For example:

http://server:8080/oradb/HR/EMPLOYEES?transform=/oradb/QUINE/XSLS/DOC/text()&contenttype=text/html

Customizing DBUriServlet

DBUriServlet is built into the database – to customize the servlet, you must edit the Oracle XML DB configuration file, xdbconfig.xml. You can edit it as the Oracle XML DB user (XDB), using WebDAV, FTP, Oracle Enterprise Manager, or PL/SQL. To update the file using FTP or WebDAV, download the document, edit it, and save it back into the database.

	
See Also:

	
Chapter 27, "Writing Oracle XML DB Applications in Java"

	
Chapter 28, "Administering Oracle XML DB"

DBUriServlet is installed at /oradb/*, which is the address specified in the servlet-pattern tag of xdbconfig.xml. The asterisk (*) is necessary to indicate that any path following oradb is to be mapped to the same servlet. oradb is published as the virtual path. You can change the path that will be used to access the servlet.

Example 19-19 Changing the Installation Location of DBUriServlet

In this example, the configuration file is modified to install DBUriServlet under /dburi/*.

DECLARE
 doc XMLType;
 doc2 XMLType;
BEGIN
 doc := DBMS_XDB.cfg_get();
 SELECT
 updateXML(doc,
'/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-mappings/servlet-mapping[servlet-name="DBUriServlet"]/servlet-pattern/
text()',
 '/dburi/*')
 INTO doc2 FROM DUAL;
 DBMS_XDB.cfg_update(doc2);
 COMMIT;
END;
/

Security parameters, the servlet display-name, and the description can also be customized in configuration file xdbconfig.xml . The servlet can be removed by deleting its servlet-pattern. This can also be done using SQL function updateXML to update the servlet-mapping element to NULL.

DBUriServlet Security

Servlet security is handled by Oracle Database using roles. When users log in to the servlet, they use their database username and password. The servlet checks to ensure that the user logging has one of the roles specified in the configuration file using parameter security-role-ref). By default, the servlet is available to role authenticatedUser, and any user who logs into the servlet with a valid database password has this role.

The role parameter can be changed to restrict access to any specific database roles. To change from the default authenticated-user role to a role that you have created, you modify the Oracle XML DB configuration file.

Example 19-20 Restricting Servlet Access to a Database Role

This example changes the default authenticated-user role to role servlet-users (which it is assumed you have created).

DECLARE
 doc XMLType;
 doc2 XMLType;
 doc3 XMLType;
BEGIN
 doc := DBMS_XDB.cfg_get();
 SELECT updateXML(doc,
'/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-name/
text()',
 'servlet-users')
 INTO doc2 FROM DUAL;
 SELECT updateXML(doc2,
'/xdbconfig/sysconfig/protocolconfig/httpconfig/webappconfig/servletconfig/
servlet-list/servlet[servlet-name="DBUriServlet"]/security-role-ref/role-link/
text()',
 'servlet-users')
 INTO doc3 FROM DUAL;
 DBMS_XDB.cfg_update(doc3);
 COMMIT;
END;
/

Configuring Package URIFACTORY to Handle DBUris

A URL such as http://server/servlets/oradb is handled by DBUriServlet (or by a custom servlet). When a URL such as this is stored as a URIType instance, it is generally desirable to use subtype DBURIType, since this URI targets database data.

However, if a URIType instance is created using methods of package URIFACTORY such as getURI(), then by default the subtype used is HTTPURIType, not DBURIType. This is because URIFACTORY looks only at the URI prefix, sees http://, and assumes that the URI targets a Web page. This results in unnecessary layers of communication and perhaps extra character conversions.

To make things more efficient, you can teach URIFACTORY that URIs of the given form represent database accesses and so should be realized as DBUris, not HTTPUris. You do this by registering a handler for this URI as a prefix, specifying DBURIType as the type of instance to generate.

Example 19-21 Registering a Handler for a DBUri Prefix

This example effectively tells URIFACTORY that any URI string starting with http://server/servlets/oradb corresponds to a database access.

BEGIN
 URIFACTORY.registerURLHandler('http://server/servlets/oradb',
 'SYS', 'DBURIType', true, true);
END;
/

After you execute this code, all getURI() calls in the same session automatically create DBUris for any URI strings with prefix http://server/servlets/oradb.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information on URIFACTORY functions

What's New In Oracle XML DB?

This section describes the new features and functionality, enhancements, APIs, and product integration support added to Oracle XML DB for Oracle Database 10g Release 2 (10.2). New features information from previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle XML DB:

	
Oracle Database 10g Release 2 (10.2) New Features in Oracle XML DB

	
Oracle Database 10g Release 1 (10.1) New Features in Oracle XML DB

Oracle Database 10g Release 2 (10.2) New Features in Oracle XML DB

Support for XQuery Language

XQuery, the new W3C XML query language, is supported. SQL functions XMLQuery and XMLTable have been added: XMLQuery lets you construct XML data and query XML and relational data using the XQuery language. XMLTable lets you create relational tables and columns from XQuery query results. SQL*Plus command xquery has also been added, to let you execute XQuery expressions directly. See Chapter 17, "Using XQuery with Oracle XML DB".

New SQL Functions for Updating XML (DML)

New SQL functions have been added to help you update XML data in the database: insertChildXML, appendChildXML, insertXMLbefore, and deleteXML. These new functions complement the functionality already provided by SQL function updateXML. Like updateXML, they are generally used in SQL DML statements. The new functions let you add and remove XML nodes in various ways. They can perform updates that are more localized than with updateXML, which can greatly improve performance and make source code clearer and more concise. All of the functions are optimized using XPath Rewrite. See "Updating XML Instances and XML Data in Tables".

SQL/XML Standard Compliance (SQL:2005 Standard Part 14)

Support for the developing SQL/XML standard has been extended. The following SQL functions have been added: XMLPI, XMLComment, XMLRoot, XMLSerialize, XMLCDATA, and XMLParse. Escaping of identifiers has also been updated, in accordance with a change to the SQL/XML standard. See "Generating XML Using SQL Functions".

XML Schema-Based Resource Metadata

You can now add and manipulate custom metadata for Oracle XML DB Repository resources that are XML Schema-based (in addition to non-schema-based). Resource metadata can be used to improve query performance and resource management. See Chapter 26, "User-Defined Repository Metadata".

XPath Rewrite Enhancements

XPath Rewrite can handle additional operations on more complex XML Schema constructs, including substitution groups, derived XML Schema types (inheritance), and SQL/XML collections. Performance has improved significantly for querying and updating XML Schema-based XMLType data and SQL/XML views. See Chapter 6, "XPath Rewrite".

Support for HTTPS

Oracle Database can now be used with HTTPS (HyperText Transfer Protocol, HTTP 1.1 as defined in the RFC2616 specification). HTTPS is a secure-access protocol. It can be configured for the database using the Oracle XML DB configuration file, xdbconfig.xml. See "Configuring Secure HTTP (HTTPS)".

Deprecation of Oracle XDK PL/SQL Packages

The (Java-based) Oracle XDK PL/SQL packages XMLDOM, XMLPARSER, and XSL_PROCESSOR have been deprecated in favor of the (C-based) Oracle XML DB packages DBMS_XMLDOM, DBMS_XMLPARSER, and DBMX_XSLPROCESSOR. Synonyms have been provided to smooth the migration of legacy applications. See "APIs for XML".

ASM Virtual Folders

Automatic Storage Management (ASM) organizes database files into disk groups for simplified management and added benefits such as database mirroring and I/O balancing. DBAs can now access ASM resources in Oracle XML DB Repository using protocols and resource APIs (such as DBMS_XDB). ASM files are accessed in the virtual repository folder /sys/asm. See "Accessing ASM Files Using Protocols and Resource APIs – For DBAs".

Support for Transportable Tablespaces

The Transportable Tablespace feature works with XMLType tables in Oracle XML DB. In particular, XML schemas are treated like any other database objects with respect to import and export: they are moved along with their associated tablespaces. See "Using Transportable Tablespaces with Oracle XML DB".

Enterprise Manager Support for Oracle Database

Oracle Enterprise Manager can now be used to manage the following Oracle XML DB features:

	
configuration parameters

	
repository resources

	
repository access control lists (ACLs)

	
XML Schemas

	
XMLType tables and columns

Oracle Database 10g Release 1 (10.1) New Features in Oracle XML DB

This section summarizes the Oracle XML DB enhancements provided with Oracle Database 10g Release 2 (10.2).

	
See Also:

	
Oracle Database 10g Release Notes

	
http://www.oracle.com/technology/tech/xml/ for the latest Oracle XML DB updates and notes

Exporting and Importing XML Data

The IMPORT/EXPORT utility has been enhanced to help you load XML data into Oracle XML DB. See Chapter 30, "Importing and Exporting XMLType Tables".

XML Schema Evolution Support

Oracle Database 10g supports XML schema evolution by providing PL/SQL procedure copyEvolve as part of package DBMS_XMLSCHEMA.

In prior releases there was no standard procedure for schema evolution. Once registered with Oracle XML DB at a particular URL, an XML schema could not be modified, in case there were XMLType tables dependent on the schema.

Hierarchical Queries with DBMS_XMLGEN

Package DBMS_XMLGEN now supports hierarchical queries. See Generating XML Using DBMS_XMLGEN.

Character Conversion and Multibyte Characters

In Oracle Database 10g Release 1 (10.1), XML data retrieved from the database is automatically converted to your client character set. In addition, using FTP or HTTP, you can use multibyte characters in a directory name, filename, or URL, and you can transfer or receive data encoded in a different character set from the database. For full support of all valid XML characters, use UTF-8 as your database character set.

C and C++ APIs for XML

The C API for XML is used for both Oracle XML Developer's Kit (XDK) and Oracle XML DB. This is a DOM API that can be used with XML inside or outside the database. See Chapter 14, "Using the C API for XML".

	
See Also:

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle Database XML C API Reference

SQL*Loader Supports XMLType Tables and Columns Independent of Storage

In Oracle Database 10g Release 1 (10.1), SQL*Loader supports XMLType tables and columns. It can load XMLType data, regardless of whether the data is stored as LOBs or in an object-relational manner. See Chapter 29, "Loading XML Data Using SQL*Loader".

Disabling Pretty-Printing with DBMS_XMLGEN

Package DBMS_XMLGEN now has an option to turn off pretty-printing.

Oracle Text Enhancements

Oracle Database 10g Release 1 (10.1) offers the following Oracle Text enhancements:

	
Index CTXXPATH supports the following Xpath expressions:

	
Positional predicates such as /A/B[3]

	
Attribute existence expressions such as /A/B/@attr and /A/B[@attr]

	
Highlighting is supported for INPATH and HASPATH operators for INDEXTYPE ConText.

	
The syntax for the XPath function ora:contains has changed.

	
See Also:

Chapter 10, "Full-Text Search Over XML"

Oracle Streams Advanced Queuing (AQ) Support

Oracle Streams Advanced Queuing (AQ) Internet Data Access Presentation (iDAP) has been enhanced: you can now use the AQ XML servlet to access Oracle Database AQ using HTTP and Simple Object Access Protocol (SOAP). IDAP facilitates using AQ over the Internet.

IDAP is now the SOAP implementation for AQ operations; it defines the XML message structure used in the body of the SOAP request.

You can now use XMLType as the AQ payload type, instead of embedding XMLType as an attribute in an Oracle Database object type.

	
See Also:

	
Chapter 31, "Exchanging XML Data with Oracle Streams AQ"

	
Oracle Streams Advanced Queuing User's Guide and Reference

Oracle XDK Support for XMLType

	
See Also:

	
"Generating XML Using XSQL Pages Publishing Framework"

	
"Generating XML Using XML SQL Utility (XSU)"

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle Database XML Java API Reference

	
Oracle Database XML C API Reference

23 PL/SQL Access Using DBMS_XDB

This chapter describes the Oracle XML DB resource application program interface (API) for PL/SQL (PL/SQL package DBMS_XDB). It contains these topics:

	
Overview of PL/SQL Package DBMS_XDB

	
DBMS_XDB: Resource Management

	
DBMS_XDB: ACL-Based Security Management

	
DBMS_XDB: Configuration Management

Overview of PL/SQL Package DBMS_XDB

PL/SQL package DBMS_XDB is the Oracle XML DB resource application program interface (API) for PL/SQL. It is also known as the PL/SQL foldering API. This API provides functions and procedures to access and manage Oracle XML DB Repository resources using PL/SQL. It includes methods for managing resource security and Oracle XML DB configuration.

Oracle XML DB Repository is modeled on XML, and provides a database file system for any data. The repository maps path names (or URLs) onto database objects of XMLType and provides management facilities for these objects.

PL/SQL package DBMS_XDB is an API that you can use to manage all of the following:

	
Oracle XML DB resources

	
Oracle XML DB access control list-based Security. An ACL is a list of access control entries that determine which principals have access to which resources

	
Oracle XML DB configuration

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference

	
"APIs for XML"

DBMS_XDB: Resource Management

Table 23-1 describes the DBMS_XDB Oracle XML DB resource management functions and procedures.

Table 23-1 DBMS_XDB Resource Management Functions and Procedures

	Function/Procedure	Description
	
appendResourceMetadata

	
Adds user-defined metadata to a resource.

	
createFolder

	
Creates a new folder resource.

	
createOIDPath

	
Creates a virtual path to a resource, based on its object identifier (OID).

	
createResource

	
Creates a new file resource.

	
deleteResource

	
Deletes a resource from the repository.

	
deleteResourceMetadata

	
Deletes specific user-defined metadata from a resource.

	
existsResource

	
Indicates whether or not a resource exists, given its absolute path.

	
getLockToken

	
Returns a resource lock token for the current user, given a path to the resource.

	
getResOID

	
Returns the object identifier (OID) of a resource, given its absolute path.

	
getXDB_tablespace

	
Returns the current tablespace of user XDB.

	
link

	
Creates a link to an existing resource.

	

lockResource

	
Obtains a WebDAV-style lock on a resource, given a path to the resource.

	
moveXDB_tablespace

	
Moves user XDB to the specified tablespace.

	
purgeResourceMetadata

	
Deletes all user-defined metadata from a resource.

	
rebuildHierarchicalIndex

	
Rebuilds the repository hierarchical index, after import or export operations.

	
renameResource

	
Renames a resource.

	
unlockResource

	
Unlocks a resource, given its lock token and path.

	
updateResourceMetadata

	
Modifies user-defined resource metadata.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

The examples in this section illustrate the use of these functions and procedures.

Example 23-1 Using DBMS_XDB to Manage Resources

This example uses package DBMS_XDB to manage repository resources. It creates the following:

	
a folder, mydocs, under folder /public

	
two file resources, emp_selby.xml and emp_david.xml

	
two links to the file resources, person_selby.xml and person_david.xml

It then deletes each of the newly created resources and links. The folder contents are deleted before the folder itself.

DECLARE
 retb BOOLEAN;
BEGIN
 retb := DBMS_XDB.createfolder('/public/mydocs');
 retb := DBMS_XDB.createresource('/public/mydocs/emp_selby.xml',
 '<emp_name>selby</emp_name>');
 retb := DBMS_XDB.createresource('/public/mydocs/emp_david.xml',
 '<emp_name>david</emp_name>');
END;
/
PL/SQL procedure successfully completed.

CALL DBMS_XDB.link('/public/mydocs/emp_selby.xml',
 '/public/mydocs',
 'person_selby.xml');
Call completed.

CALL DBMS_XDB.link('/public/mydocs/emp_david.xml',
 '/public/mydocs',
 'person_david.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/emp_selby.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/person_selby.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/emp_david.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs/person_david.xml');
Call completed.

CALL DBMS_XDB.deleteresource('/public/mydocs');
Call completed.

	
See Also:

Chapter 26, "User-Defined Repository Metadata" for examples using appendResourceMetadata and deleteResourceMetadata

DBMS_XDB: ACL-Based Security Management

Table 23-2 lists the DBMS_XDB Oracle XML DB ACL- based security management functions and procedures.

Table 23-2 DBMS_XDB: Security Management Procedures and Functions

	Function/Procedure	Description
	
ACLCheckPrivileges

	
Checks the access privileges granted to the current user by an ACL.

	
changePrivileges

	
Adds an ACE to a resource ACL.

	
checkPrivileges

	
Checks the access privileges granted to the current user for a resource.

	
getACLDocument

	
Retrieves the ACL document that protects a resource, given the path name of the resource.

	
getPrivileges

	
Returns all privileges granted to the current user for a resource.

	
setACL

	
Sets the ACL on a resource.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference

	
Oracle XML Developer's Kit Programmer's Guide

The examples in this section illustrate the use of these functions and procedures.

Example 23-2 Using Procedure DBMS_XDB.getACLDocument

In this example, database sample-schema user hr creates two resources: a folder, /public/mydocs, with a file in it, emp_selby.xml. Procedure getACLDocument is called on the file resource, showing that the <principal> user for the document is PUBLIC.

CONNECT HR/HR
Connected.

DECLARE
 retb BOOLEAN;
BEGIN
 retb := DBMS_XDB.createFolder('/public/mydocs');
 retb := DBMS_XDB.createResource('/public/mydocs/emp_selby.xml',
 '<emp_name>selby</emp_name>');
END;
/
PL/SQL procedure successfully completed.

SELECT DBMS_XDB.getACLDocument('/public/mydocs/emp_selby.xml').getClobVal()
 FROM DUAL;

DBMS_XDB.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML').GETCLOBVAL()
--
<acl description="Public:All privileges to PUBLIC" xmlns="http://xmlns.oracle.co
m/xdb/acl.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaL
ocation="http://xmlns.oracle.com/xdb/acl.xsd http://xm
lns.oracle.com/xdb/acl.xsd">
 <ace>
 <principal>PUBLIC</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

1 row selected.

Example 23-3 Using Procedure DBMS_XDB.setACL

In this example, the system manager connects and uses procedure setACL to give the owner (hr) all privileges on the file resource created in Example 23-2. Procedure getACLDocument then shows that the <principal> user is dav:owner, the owner (hr).

CONNECT SYSTEM/MANAGER
Connected.

-- Give all privileges to owner, HR.
CALL DBMS_XDB.setACL('/public/mydocs/emp_selby.xml',
 '/sys/acls/all_owner_acl.xml');
Call completed.
COMMIT;
Commit complete.

SELECT DBMS_XDB.getACLDocument('/public/mydocs/emp_selby.xml').getClobVal()
 FROM DUAL;

DBMS_XDB.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML').GETCLOBVAL()
--
<acl description="Private:All privileges to OWNER only and not accessible to oth
ers" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:" xmlns:xsi="htt
p://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.
com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd">
 <ace>
 <principal>dav:owner</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

1 row selected.

Example 23-4 Using Function DBMS_XDB.changePrivileges

In this example, user hr connects and uses function changePrivileges to add a new access control entry (ACE) to the ACL, which gives all privileges on resource emp_selby.xml to user oe. Procedure getACLDocument shows that the new ACE was added to the ACL.

CONNECT HR/HR
Connected.

SET SERVEROUTPUT ON

-- Add an ACE giving privileges to user OE
DECLARE
 r PLS_INTEGER;
 ace XMLType;
 ace_data VARCHAR2(2000);
BEGIN
 ace_data := '<ace xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd
 DAV:http://xmlns.oracle.com/xdb/dav.xsd">
 <principal>OE</principal>
 <grant>true</grant>
 <privilege><all/></privilege>
 </ace>';
 ace := XMLType.createXML(ace_data);
 r := DBMS_XDB.changePrivileges('/public/mydocs/emp_selby.xml', ace);
END;
/

PL/SQL procedure successfully completed.

SELECT DBMS_XDB.getACLDocument('/public/mydocs/emp_selby.xml').getClobVal()
 FROM DUAL;

DBMS_XDB.GETACLDOCUMENT('/PUBLIC/MYDOCS/EMP_SELBY.XML').GETCLOBVAL()
--
<acl description="Private:All privileges to OWNER only and not accessible to oth
ers" xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:" xmlns:xsi="htt
p://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.
com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd" s
hared="false">
 <ace>
 <principal>dav:owner</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>
 <ace>
 <principal>OE</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>
</acl>

1 row selected.

Example 23-5 Using Function DBMS_XDB.changePrivileges

In this example, user oe connects and calls DBMS_XDB.getPrivileges, which shows all of the privileges granted to user oe on resource emp_selby.xml.

CONNECT OE/OE
Connected.

SELECT DBMS_XDB.getPrivileges('/public/mydocs/emp_selby.xml') FROM DUAL;

DBMS_XDB.GETPRIVILEGES('/PUBLIC/MYDOCS/EMP_SELBY.XML').GETCLOBVAL()
--
<privilege xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:xsi="http://www.w3.
org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl
.xsd http://xmlns.oracle.com/xdb/acl.xsd DAV: http://xmlns.oracle.com/xdb/dav.xs
d" xmlns:xdbacl="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:">
 <read-properties/>
 <read-contents/>
 <update/>
 <link/>
 <unlink/>
 <read-acl/>
 <write-acl-ref/>
 <update-acl/>
 <resolve/>
 <link-to/>
 <unlink-from/>
 <dav:lock/>
 <dav:unlock/>
</privilege>

1 row selected.

DBMS_XDB: Configuration Management

Table 23-3 lists the DBMS_XDB Oracle XML DB configuration management functions and procedures.

Table 23-3 DBMS_XDB: Configuration Management Functions and Procedures

	Function/Procedure	Description
	
cfg_get

	
Returns the configuration information for the current session.

	
cfg_refresh

	
Refreshes the session configuration information using the current Oracle XML DB configuration file, xdbconfig.xml.

	
cfg_update

	
Updates the Oracle XML DB configuration information. This writes the configuration file, xdbconfig.xml.

	
getFTPPort

	
Returns the current FTP port number.

	
getHTTPPort

	
Returns the current HTTP port number.

	
setFTPPort

	
Sets the Oracle XML DB FTP port to the specified port number.

	
setHTTPPort

	
Sets the Oracle XML DB HTTP port to the specified port number.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

The examples in this section illustrate the use of these functions and procedures.

Example 23-6 Using Function DBMS_XDB.cfg_get

In this example, function cfg_get is used to retrieve the Oracle XML DB configuration file, xdbconfig.xml.

CONNECT SYSTEM/MANAGER
Connected.

SELECT DBMS_XDB.cfg_get() FROM DUAL;

DBMS_XDB.CFG_GET()
--
<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/x
db/xdbconfig.xsd http://xmlns.oracle.com/xdb
/xdbconfig.xsd">
 <sysconfig>
 <acl-max-age>900</acl-max-age>
 <acl-cache-size>32</acl-cache-size>
 <invalid-pathname-chars>,</invalid-pathname-chars>
 <case-sensitive>true</case-sensitive>
 <call-timeout>300</call-timeout>
 <max-link-queue>65536</max-link-queue>
 <max-session-use>100</max-session-use>
 <persistent-sessions>false</persistent-sessions>
 <default-lock-timeout>3600</default-lock-timeout>
 <xdbcore-logfile-path/>
 <xdbcore-log-level>0</xdbcore-log-level>
 <resource-view-cache-size>1048576</resource-view-cache-size>
 <protocolconfig>
 <common>
 . . .
 </common>
 <ftpconfig>
 . . .
 </ftpconfig>
 <httpconfig>
 <http-port>8000</http-port>
 <http-listener>local_listener</http-listener>
 <http-protocol>tcp</http-protocol>
 <max-http-headers>64</max-http-headers>
 <max-header-size>16384</max-header-size>
 <max-request-body>2000000000</max-request-body>
 <session-timeout>6000</session-timeout>
 <server-name>XDB HTTP Server</server-name>
 <logfile-path/>
 <log-level>0</log-level>
 <servlet-realm>Basic realm="XDB"</servlet-realm>
 <webappconfig>
 . . .
 </webappconfig>
 </httpconfig>
 </protocolconfig>
 <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound>
 <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size>
 </sysconfig>
</xdbconfig>

1 row selected.

Example 23-7 Using Procedure DBMS_XDB.cfg_update

This example illustrates the use of procedure cfg_update. The current configuration is retrieved as an XMLType instance and modified. It is then rewritten using cfg_update.

DECLARE
 configxml SYS.XMLType;
 configxml2 SYS.XMLType;
BEGIN
 -- Get the current configuration
 configxml := DBMS_XDB.cfg_get();

 -- Modify the configuration
 SELECT updateXML(
 configxml,
 '/xdbconfig/sysconfig/protocolconfig/httpconfig/http-port/text()',
 '8000',
 'xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd"')
 INTO configxml2 FROM DUAL;

 -- Update the configuration to use the modified version
 DBMS_XDB.cfg_update(configxml2);
END;
/

PL/SQL procedure successfully completed.

SELECT DBMS_XDB.cfg_get() FROM DUAL;

DBMS_XDB.CFG_GET()
--
<xdbconfig xmlns="http://xmlns.oracle.com/xdb/xdbconfig.xsd" xmlns:xsi="http://w
ww.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/x
db/xdbconfig.xsd http://xmlns.oracle.com/xdb
/xdbconfig.xsd">
 <sysconfig>
 <acl-max-age>900</acl-max-age>
 <acl-cache-size>32</acl-cache-size>
 <invalid-pathname-chars>,</invalid-pathname-chars>
 <case-sensitive>true</case-sensitive>
 <call-timeout>300</call-timeout>
 <max-link-queue>65536</max-link-queue>
 <max-session-use>100</max-session-use>
 <persistent-sessions>false</persistent-sessions>
 <default-lock-timeout>3600</default-lock-timeout>
 <xdbcore-logfile-path/>
 <xdbcore-log-level>0</xdbcore-log-level>
 <resource-view-cache-size>1048576</resource-view-cache-size>
 <protocolconfig>
 <common>
 . . .
 </common>
 <ftpconfig>
 . . .
 </ftpconfig>
 <httpconfig>
 <http-port>8000</http-port>
 . . .
 </httpconfig>
 </protocolconfig>
 <xdbcore-xobmem-bound>1024</xdbcore-xobmem-bound>
 <xdbcore-loadableunit-size>16</xdbcore-loadableunit-size>
 </sysconfig>
</xdbconfig>

1 row selected.

C XSLT Primer

This appendix describes introductory information about the W3C XSL and XSLT Recommendation.

This appendix contains these topics:

	
Overview of XSL

	
XSL Transformation (XSLT)

	
XML Path Language (Xpath)

	
CSS Versus XSL

	
XSL Style Sheet Example, PurchaseOrder.xsl

Overview of XSL

XML documents have structure but no format. The Extensible Stylesheet Language (XSL) adds formatting to XML documents. It provides a way to display XML semantics and can map XML elements into other formatting languages such as HTML.

	
See Also:

	
http://www.oasis-open.org/cover/xsl.html

	
http://www.mulberrytech.com/xsl/xsl-list/

	
http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/index.html

	
Chapter 9, "Transforming and Validating XMLType Data"

W3C XSL Transformation Recommendation Version 1.0

This specification defines the syntax and semantics of XSLT, which is a language for transforming XML documents into other XML documents.

XSLT is designed for use as part of XSL, which is a style sheet language for XML. In addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL specifies the styling of an XML document by using XSLT to describe how the document is transformed into another XML document that uses the formatting vocabulary.

XSLT is also designed to be used independently of XSL. However, XSLT is not intended as a completely general-purpose XML transformation language. Rather it is designed primarily for the kinds of transformations that are needed when XSLT is used as part of XSL.

	
See Also:

http://www.w3.org/TR/xslt

This specification defines the syntax and semantics of the XSLT language. A transformation in the XSLT language is expressed as a well-formed XML document conforming to the Namespaces in XML Recommendation, which may include both elements that are defined by XSLT and elements that are not defined by XSLT.

XSLT-defined elements are distinguished by belonging to a specific XML namespace (see [2.1 XSLT Namespace]), which is referred to in this specification as the XSLT namespace. Thus this specification is a definition of the syntax and semantics of the XSLT namespace.

A transformation expressed in XSLT describes rules for transforming a source tree into a result tree. The transformation is achieved by associating patterns with templates. A pattern is matched against elements in the source tree. A template is instantiated to create part of the result tree. The result tree is separate from the source tree. The structure of the result tree can be completely different from the structure of the source tree. In constructing the result tree, elements from the source tree can be filtered and reordered, and arbitrary structure can be added.

A transformation expressed in XSLT is called a style sheet. This is because, when XSLT is transforming into the XSL formatting vocabulary, the transformation functions as a style sheet.

This appendix does not specify how an XSLT style sheet is associated with an XML document. It is recommended that XSLT processors support the mechanism described in. When this or any other mechanism yields a sequence of more than one XSLT style sheet to be applied simultaneously to a XML document, then the effect should be the same as applying a single style sheet that imports each member of the sequence in order.

A style sheet contains a set of template rules. A template rule has two parts: a pattern which is matched against nodes in the source tree and a template which can be instantiated to form part of the result tree. This allows a style sheet to be applicable to a wide class of documents that have similar source tree structures.

The W3C is developing the XSL specification as part of its Style Sheets Activity. XSL has document manipulation capabilities beyond styling. It is a style sheet language for XML.

The July 1999 W3C XSL specification, was split into two separate documents:

	
XSL syntax and semantics

	
How to use XSL to apply style sheets to transform one document into another

The formatting objects used in XSL are based on prior work on Cascading Style Sheets (CSS) and the Document Style Semantics & Specification Language (DSSSL). CSS use a simple mechanism for adding style (fonts, colors, spacing, and so on) to Web documents. XSL is designed to be easier to use than DSSSL.

Capabilities provided by XSL as defined in the proposal enable the following functionality:

	
Formatting of source elements based on ancestry and descendency, position, and uniqueness

	
The creation of formatting constructs including generated text and graphics

	
The definition of reusable formatting macros

	
Writing-direction independent style sheets

	
An extensible set of formatting objects.

	
See Also:

http://www.w3.org/Style/XSL/

Namespaces in XML

A namespace is a unique identifier or name. This is needed because XML documents can be authored separately with different Document Type Definitions (DTDs) or XML schemas. Namespaces prevent conflicts in markup tags by identifying which DTD or XML schema a tag comes from. Namespaces link an XML element to a specific DTD or XML schema.

Before you can use a namespace marker such as rml:, xhtml:, or xsl:, you must identify it using the namespace indicator, xmlns as shown in the next paragraph.

	
See Also:

http://www.w3.org/TR/REC-xml-names/

XSL Style Sheet Architecture

The XSLT style sheets must include the following syntax:

	
Start tag stating the style sheet, such as <xsl:stylesheet2>

	
Namespace indicator, such as xmlns:xsl="http//www.w3.org/TR/WD-xsl" for an XSL namespace indicator and xmlns:fo="http//www.w3.org/TR/WD-xsl/FO" for a formatting object namespace indicator

	
Template rules including font families and weight, colors, and breaks. The templates have instructions that control the element and element values

	
End of style sheet declaration, </xsl:stylesheet2>

XSL Transformation (XSLT)

XSLT is designed to be used as part of XSL. In addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL specifies the styling of an XML document by using XSLT to describe how the document is transformed into another XML document that uses the formatting vocabulary.

Meanwhile the second part is concerned with the XSL formatting objects, their attributes, and how they can be combined.

	
See Also:

Chapter 9, "Transforming and Validating XMLType Data"

XML Path Language (Xpath)

A separate, related specification is published as the XML Path Language (XPath) Version 1.0. XPath is a language for addressing parts of an XML document, essential for cases where you want to specify exactly which parts of a document are to be transformed by XSL. For example, XPath lets you select all paragraphs belonging to the chapter element, or select the elements called special notes. XPath is designed to be used by both XSLT and XPointer. XPath is the result of an effort to provide a common syntax and semantics for functionality shared between XSL transformations and XPointer.

	
See Also:

Appendix B, "XPath and Namespace Primer"

CSS Versus XSL

W3C is working to ensure that interoperable implementations of the formatting model is available.

Cascading Style Sheets (CSS) can be used to style HTML documents. CSS were developed by the W3C Style Working Group. CSS2 is a style sheet language that allows authors and users to attach styles (for example, fonts, spacing, or aural cues) to structured documents, such as HTML documents and XML applications.

By separating the presentation style of documents from the content of documents, CSS2 simplifies Web authoring and website maintenance.

XSL, on the other hand, is able to transform documents. For example, XSL can be used to transform XML data into HTML/CSS documents on the Web server. This way, the two languages complement each other and can be used together. Both languages can be used to style XML documents. CSS and XSL will use the same underlying formatting model and designers will therefore have access to the same formatting features in both languages.

The model used by XSL for rendering documents on the screen builds on years of work on a complex ISO-standard style language called DSSSL. Aimed mainly at complex documentation projects, XSL also has many uses in automatic generation of tables of contents, indexes, reports, and other more complex publishing tasks.

XSL Style Sheet Example, PurchaseOrder.xsl

The following example, PurchaseOrder.xsl, is an example of an XSLT style sheet. The example style sheet is used in examples in Chapter 3, "Using Oracle XML DB".

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:template match="/">
 <html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00"
 vlink="#66CC99" alink="#669999">

 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <center>

 Purchase Order

 </center>

 <center>
 <xsl:for-each select="Reference">

 <xsl:apply-templates/>

 </xsl:for-each>
 </center>
 </xsl:for-each>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 <P/>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 </P>
 </P>
 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <table border="0" width="100%" BGCOLOR="#000000">
 <tbody>
 <tr>
 <td WIDTH="296">
 <P>

 <FONT SIZE="+1" COLOR="#FF0000"
 FACE="Arial, Helvetica, sans-serif">Internal

 </P>
 <table border="0" width="98%" BGCOLOR="#000099">
 <tbody>
 <tr>
 <td WIDTH="49%">

 Actions

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="Actions">
 <xsl:for-each select="Action">
 <table border="1" WIDTH="143">
 <xsl:if test="position()=1">
 <thead>
 <tr>
 <td HEIGHT="21">
 <FONT
 COLOR="#FFFF00">User
 </td>
 <td HEIGHT="21">
 Date
 </td>
 </tr>
 </thead>
 </xsl:if>
 <tbody>
 <tr>
 <td>
 <xsl:for-each select="User">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="Date">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 </tbody>
 </table>
 </xsl:for-each>
 </xsl:for-each>
 </td>
 </tr>
 <tr>
 <td WIDTH="49%">

 Requestor

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="Requestor">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 <tr>
 <td WIDTH="49%">

 User

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="User">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 <tr>
 <td WIDTH="49%">

 Cost Center

 </td>
 <td WIDTH="51%">
 <xsl:for-each select="CostCenter">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </tr>
 </tbody>
 </table>
 </td>
 <td width="93"/>
 <td valign="top" WIDTH="340">

 Ship To

 <xsl:for-each select="ShippingInstructions">
 <xsl:if test="position()=1"/>
 </xsl:for-each>
 <xsl:for-each select="ShippingInstructions">
 <xsl:if test="position()=1">
 <table border="0" BGCOLOR="#999900">
 <tbody>
 <tr>
 <td WIDTH="126" HEIGHT="24">
 Name
 </td>
 <xsl:for-each
 select="../ShippingInstructions">
 <td WIDTH="218" HEIGHT="24">
 <xsl:for-each select="name">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </xsl:for-each>
 </tr>
 <tr>
 <td WIDTH="126" HEIGHT="34">
 Address
 </td>
 <xsl:for-each
 select="../ShippingInstructions">
 <td WIDTH="218" HEIGHT="34">
 <xsl:for-each select="address">

 <xsl:apply-templates/>

 </xsl:for-each>
 </td>
 </xsl:for-each>
 </tr>
 <tr>
 <td WIDTH="126" HEIGHT="32">
 Telephone
 </td>
 <xsl:for-each
 select="../ShippingInstructions">
 <td WIDTH="218" HEIGHT="32">
 <xsl:for-each select="telephone">
 <xsl:apply-templates/>
 </xsl:for-each>
 </td>
 </xsl:for-each>
 </tr>
 </tbody>
 </table>
 </xsl:if>
 </xsl:for-each>
 </td>
 </tr>
 </tbody>
 </table>

 Items:

 <table border="0">
 <xsl:for-each select="LineItems">
 <xsl:for-each select="LineItem">
 <xsl:if test="position()=1">
 <thead>
 <tr bgcolor="#C0C0C0">
 <td>

 ItemNumber

 </td>
 <td>

 Description

 </td>
 <td>

 PartId

 </td>
 <td>

 Quantity

 </td>
 <td>

 Unit Price

 </td>
 <td>

 Total Price

 </td>
 </tr>
 </thead>
 </xsl:if>
 <tbody>
 <tr bgcolor="#DADADA">
 <td>

 <xsl:for-each select="@ItemNumber">
 <xsl:value-of select="."/>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Description">
 <xsl:apply-templates/>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Part">
 <xsl:for-each select="@Id">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Part">
 <xsl:for-each select="@Quantity">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:for-each>

 </td>
 <td>

 <xsl:for-each select="Part">
 <xsl:for-each select="@UnitPrice">
 <xsl:value-of select="."/>
 </xsl:for-each>
 </xsl:for-each>

 </td>
 <td>
 <FONT FACE="Arial, Helvetica, sans-serif"
 COLOR="#000000">
 <xsl:for-each select="Part">
 <xsl:value-of select="@Quantity*@UnitPrice"/>
 </xsl:for-each>

 </td>
 </tr>
 </tbody>
 </xsl:for-each>
 </xsl:for-each>
 </table>
 </xsl:for-each>

 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

Oracle® XML DB

Developer's Guide

10g Release 2 (10.2)

B14259-02

August 2005

This manual describes Oracle XML DB. It includes guidelines and examples for loading, storing, generating, manipulating, managing, accessing, and querying XML data in Oracle Database.

Oracle XML DB Developer's Guide, 10g Release 2 (10.2)

B14259-02

Copyright © 2002, 2005, Oracle. All rights reserved.

Primary Author: Drew Adams

Contributing Author: Nipun Agarwal, Abhay Agrawal, Omar Alonso, David Anniss, Sandeepan Banerjee, Mark Bauer, Ravinder Booreddy, Stephen Buxton, Yuen Chan, Sivasankaran Chandrasekar, Vincent Chao, Ravindranath Chennoju, Dan Chiba, Mark Drake, Fei Ge, Wenyun He, Shelley Higgins, Thuvan Hoang, Sam Idicula, Namit Jain, Neema Jalali, Bhushan Khaladkar, Viswanathan Krishnamurthy, Muralidhar Krishnaprasad, Geoff Lee, Wesley Lin, Annie Liu, Anand Manikutty, Jack Melnick, Nicolas Montoya, Steve Muench, Ravi Murthy, Eric Paapanen, Syam Pannala, John Russell, Eric Sedlar, Vipul Shah, Cathy Shea, Asha Tarachandani, Tarvinder Singh, Simon Slack, Muralidhar Subramanian, Asha Tarachandani, Priya Vennapusa, James Warner

Contributor: Reema Al-Shaikh, Harish Akali, Vikas Arora, Deanna Bradshaw, Paul Brandenstein, Lisa Eldridge, Craig Foch, Wei Hu, Reema Koo, Susan Kotsovolos, Sonia Kumar, Roza Leyderman, Zhen Hua Liu, Diana Lorentz, Yasuhiro Matsuda, Valarie Moore, Bhagat Nainani, Visar Nimani, Sunitha Patel, Denis Raphaely, Rebecca Reitmeyer, Ronen Wolf

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

3 Using Oracle XML DB

This chapter provides an overview of how to use Oracle XML DB. The examples here illustrate techniques for accessing and managing XML content in purchase orders. The format and data of XML purchase orders are well suited for Oracle XML DB storage and processing techniques because purchase orders are highly structured XML documents. However, the majority of techniques introduced here can also be used to manage other types of XML documents, such as containing unstructured or semistructured data. This chapter also further explains Oracle XML DB concepts introduced in Chapter 1, "Introduction to Oracle XML DB".

This chapter contains these topics:

	
Storing XML as XMLType

	
Creating XMLType Tables and Columns

	
Loading XML Content into Oracle XML DB

	
Overview of the W3C XML Schema Recommendation

	
Using XML Schema with Oracle XML DB

	
Identifying XML Schema Instance Documents

	
Using the Database to Enforce XML Data Integrity

	
DML Operations on XML Content Using Oracle XML DB

	
Querying XML Content Stored in Oracle XML DB

	
Relational Access to XML Content Stored in Oracle XML DB Using Views

	
Updating XML Content Stored in Oracle XML DB

	
Namespace Support in Oracle XML DB

	
Processing XMLType Methods and XML-Specific SQL Functions

	
Understanding and Optimizing XPath Rewrite

	
Accessing Relational Database Content Using XML

	
XSL Transformation and Oracle XML DB

	
Using Oracle XML DB Repository

	
Viewing Relational Data as XML From a Browser

	
XSL Transformation Using DBUri Servlet

Storing XML as XMLType

Before the introduction of Oracle XML DB, there were two ways to store XML content in Oracle Database:

	
Use Oracle XML Developer's Kit (XDK) to parse the XML document outside Oracle Database, and store the extracted XML data as rows in one or more tables in the database.

	
Store the XML document in Oracle Database using a Character Large Object (CLOB), Binary Large Object (BLOB), Binary File (BFILE), or VARCHAR column.

In both cases, Oracle Database is unaware that it is managing XML content.

The introduction of Oracle XML DB and the XMLType datatype provides new techniques that facilitate the persistence of XML content in the database. These techniques include the ability to store XML documents in an XMLType column or table, or in Oracle XML DB Repository. Storing XML as an XMLType column or table makes Oracle Database aware that the content is XML. This allows the database to:

	
Perform XML-specific validations, operations, and optimizations on the XML content

	
Facilitate highly efficient processing of XML content by Oracle XML DB

What is XMLType?

Oracle9i release 1 (9.0.1) introduced a new datatype, XMLType, to facilitate native handling of XML data in the database:

	
XMLType can represent an XML document in the database, so it is accessible in SQL.

	
XMLType has built-in methods that operate on XML content. For example, you can use XMLType methods to create, extract, and index XML data stored in Oracle Database.

	
XMLType functionality is also available through a set of Application Program Interfaces (APIs) provided in PL/SQL and Java.

	
XMLType can be used in PL/SQL stored procedures for parameters, return values, and variables

With XMLType, SQL developers can leverage the power of the relational database while working in the context of XML. XML developers can leverage the power of XML standards while working in the context of a relational database.

XMLType can be used as the datatype of columns in tables and views. XMLType variables can be used in PL/SQL stored procedures as parameters and return values. You can also use XMLType in SQL, PL/SQL, C, Java (through JDBC), and Oracle Data Provider for .NET (ODP.NET).

The XMLType API provides a number of useful methods that operate on XML content. For example, method extract() extracts one or more nodes from an XMLType instance. Many of these XMLType methods are also provided as SQL functions. For example, SQL function extract corresponds to XMLType method extract().

Oracle XML DB functionality is based on the Oracle XML Developer's Kit C implementations of the relevant XML standards such as XML Parser, XML DOM, and XML Schema Validator.

Benefits of the XMLType Datatype and API

The XMLType datatype and application programming interface (API) enable SQL operations on XML content and XML operations on SQL content:

	
Versatile API. XMLType has a versatile API for application development that includes built-in functions, indexing, and navigation support.

	
XMLType and SQL. You can use XMLType in SQL statements, combined with other datatypes. For example, you can query XMLType columns and join the result of the extraction with a relational column. Oracle Database determines an optimal way to run such queries.

	
Indexing:

	
Oracle XML DB lets you create B*Tree indexes on the object-relational tables that provide structured storage of XMLType tables and columns.

	
Oracle Text indexing supports text indexing of the content of structured and unstructured XMLType tables and columns.

	
The CTXXPATH domain index type of Oracle Text provides an XML-specific text index with transactional semantics. This index type can speed up certain XPath-based searches on both structured and unstructured content.

	
Function-based indexes can be used to create indexes on explicit XPath expressions for both structured and unstructured XMLType storage.

When to Use XMLType

Use XMLType any time you want to use the database as a persistent storage of XML. XMLType functionality includes the following:

	
SQL queries on part of or the whole XML document – SQL functions existsNode and extract provide the necessary SQL query functions over XML documents.

	
XPath access using SQL functions existsNode and extract – XMLType uses the built-in C XML parser and processor and hence provides better performance and scalability when used inside the server.

	
Strong typing inside SQL statements and PL/SQL functions – The strong typing offered by XMLType ensures that the values passed in are XML values and not any arbitrary text string.

	
Indexing on XPath document queries – XMLType has methods that you can use to create function-based indexes that optimize searches.

	
Separation of applications from storage models – Using XMLType instead of CLOB values or relational storage allows applications to gracefully move to various storage alternatives later without affecting any of the query or DML statements in the application.

	
Support for future optimizations – New XML functionality will support XMLType. Because Oracle Database is natively aware that XMLType can store XML data, better optimizations and indexing techniques can be done. By writing applications to use XMLType, these optimizations and enhancements can be easily achieved and preserved in future releases without your needing to rewrite applications.

Two Ways to Store XMLType Data: LOBs and Structured

XMLType data can be stored in two ways:

	
In Large Objects (LOBs) – LOB storage maintains content fidelity, also called document fidelity. The original XML is preserved, including whitespace. An entire XML document is stored as a whole in a LOB. For non-schema-based storage, XMLType offers a Character Large Object (CLOB) storage option.

	
In Structured storage (in tables and views) – Structured storage maintains DOM (Document Object Model) fidelity.

Native XMLType instances contain hidden columns that store this extra information that does not fit into the SQL object model. This information can be accessed through APIs in SQL or Java, using functions such as extractNode().

Changing XMLType storage from structured storage to LOB, or vice versa, is possible using database IMPORT and EXPORT. Your application code does not need to change. You can then change XML storage options when tuning your application, because each storage option has its own benefits.

Advantages and Disadvantages of XML Storage Options in Oracle XML DB

Table 3-1 summarizes some advantages and disadvantages to consider when selecting your Oracle XML DB storage option. Storage options are also discussed in Table 1-3, "XML Storage Options: Structured or Unstructured" and Chapter 2, "Getting Started with Oracle XML DB".

Table 3-1 XML Storage Options in Oracle XML DB

	Feature	LOB Storage (with Oracle Text Index)	Structured Storage (with B*Tree index)
	
Database schema flexibility

	
Very flexible when schemas change.

	
Limited flexibility for schema changes. Similar to the ALTER TABLE restrictions.

	
Data integrity and accuracy

	
Maintains the original XML content fidelity, important in some applications.

	
Trailing new lines, whitespace within tags, and data format is lost. DOM fidelity is maintained.

	
Performance

	
Mediocre performance for DML.

	
Excellent DML performance.

	
Access to SQL

	
Some accessibility to SQL features.

	
Good accessibility to existing SQL features, such as constraints, indexes, and so on

	
Space needed

	
Can consume considerable space.

	
Needs less space in particular when used with an Oracle XML DB registered XML schema.

When to Use CLOB Storage for XMLType

Use CLOB storage for XMLType in the following cases:

	
When you are interested in storing and retrieving the whole document.

	
When you do not need to perform piece-wise updates on XML documents.

Creating XMLType Tables and Columns

The following examples create XMLType columns and tables for managing XML content in Oracle Database:

Example 3-1 Creating a Table with an XMLType Column

CREATE TABLE mytable1 (key_column VARCHAR2(10) PRIMARY KEY,
 xml_column XMLType);

Table created.

Example 3-2 Creating a Table of XMLType

CREATE TABLE mytable2 OF XMLType;

Table created.

Loading XML Content into Oracle XML DB

You can load XML content into Oracle XML DB using several techniques:

	
Table-based loading:

	
Loading XML Content Using SQL or PL/SQL

	
Loading XML Content Using Java

	
Loading XML Content Using C

	
Loading Large XML Files That Contain Small XML Documents

	
Loading Large XML Files Using SQL*Loader

	
Path-based repository loading techniques:

	
Loading XML Documents into the Repository Using DBMS_XDB

	
Loading Documents into the Repository Using Protocols

Loading XML Content Using SQL or PL/SQL

You can use a simple INSERT operation in SQL or PL/SQL to load an XML document into the database. Before the document can be stored as an XMLType column or table, it must be converted into an XMLType instance using one of the XMLType constructors.

	
See Also:

	
Chapter 4, "XMLType Operations"

	
"APIs for XML"

	
Oracle Database PL/SQL Packages and Types Reference for a description of the XMLType constructors

XMLType constructors allow an XMLType instance to be created from different sources, including VARCHAR, CLOB, and BFILE values. The constructors accept additional arguments that reduce the amount of processing associated with XMLType creation. For example, if you are sure that a given source XML document is valid, you can provide an argument to the constructor that disables the type-checking that is otherwise performed.

In addition, if the source data is not encoded in the database character set, an XMLType instance can be constructed using a BFILE or BLOB value. The encoding of the source data is specified through the character set id (csid) argument of the constructor.

Create a SQL Directory That Points to the Needed Directory

Example 3-3 shows how to insert XML content into an XMLType table. Before making this insertion, you must create a SQL directory object that points to the directory containing the file to be processed. To do this, you must have the CREATE ANY DIRECTORY privilege.

	
See Also:

Oracle Database SQL Reference, Chapter 18, under GRANT

CREATE DIRECTORY xmldir AS path_to_folder_containing_XML_file';

Example 3-3 Inserting XML Content into an XMLType Table

INSERT INTO mytable2 VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8')));

1 row created.

The value passed to nls_charset_id() indicates that the encoding for the file to be read is UTF-8.

Loading XML Content Using Java

Example 3-4 Inserting XML Content into an XML Type Table Using Java

This example shows how to load XML content into Oracle XML DB by first creating an XMLType instance in Java, given a Document Object Model (DOM).

public void doInsert(Connection conn, Document doc)
throws Exception
{
 String SQLTEXT = "INSERT INTO purchaseorder VALUES (?)";
 XMLType xml = null;
 xml = XMLType.createXML(conn,doc);
 OraclePreparedStatement sqlStatement = null;
 sqlStatement = (OraclePreparedStatement) conn.prepareStatement(SQLTEXT);
 sqlStatement.setObject(1,xml);
 sqlStatement.execute();
}

1 row selected.

The "Simple Bulk Loader Application" available on the Oracle Technology Network (OTN) site at http://www.oracle.com/technology/sample_code/tech/xml/xmldb/content.html demonstrates how to load a directory of XML files into Oracle XML DB using Java Database Connectivity (JDBC). JDBC is a set of Java interfaces to Oracle Database.

Loading XML Content Using C

Example 3-5 shows, in C, how to insert XML content into an XMLType table by creating an XMLType instance given a DOM.

Example 3-5 Inserting XML Content into an XMLType Table Using C

#include "stdio.h"
#include <xml.h>
#include <stdlib.h>
#include <string.h>
#include <ocixmldb.h>
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIServer *srvhp;
OCIDuration dur;
OCISession *sesshp;
oratext *username = "QUINE";
oratext *password = "CURRY";
oratext *filename = "AMCEWEN-20021009123336171PDT.xml";
oratext *schemaloc = "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd";

/*--*/
/* Execute a SQL statement that binds XML data */
/*--*/

sword exec_bind_xml(OCISvcCtx *svchp, OCIError *errhp, OCIStmt *stmthp,
 void *xml, OCIType *xmltdo, OraText *sqlstmt)
{
 OCIBind *bndhp1 = (OCIBind *) 0;
 sword status = 0;
 OCIInd ind = OCI_IND_NOTNULL;
 OCIInd *indp = &ind;
 if(status = OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,
 (ub4)strlen((const char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 return OCI_ERROR;
 if(status = OCIBindByPos(stmthp, &bndhp1, errhp, (ub4) 1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 return OCI_ERROR;
 if(status = OCIBindObject(bndhp1, errhp, (CONST OCIType *) xmltdo,
 (dvoid **) &xml, (ub4 *) 0,
 (dvoid **) &indp, (ub4 *) 0))
 return OCI_ERROR;
 if(status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 return OCI_ERROR;
 return OCI_SUCCESS;
}

/*--*/
/* Initialize OCI handles, and connect */
/*--*/

sword init_oci_connect()
{
. . .
}

/*--*/
/* Free OCI handles, and disconnect */
/*--*/

void free_oci()
{
. . .
}

void main()
{
 OCIType *xmltdo;
 xmldocnode *doc;
 ocixmldbparam params[1];
 xmlerr err;
 xmlctx *xctx;
 oratext *ins_stmt;
 sword status;
 xmlnode *root;
 oratext buf[10000];

 /* Initialize envhp, svchp, errhp, dur, stmthp */
 init_oci_connect();

 /* Get an XML context */
 params[0].name_ocixmldbparam = XCTXINIT_OCIDUR;
 params[0].value_ocixmldbparam = &dur;
 xctx = OCIXmlDbInitXmlCtx(envhp, svchp, errhp, params, 1);
 if (!(doc = XmlLoadDom(xctx, &err, "file", filename,
 "schema_location", schemaloc, NULL)))
 {
 printf("Parse failed.\n");
 return;
 }
 else
 printf("Parse succeeded.\n");
 root = XmlDomGetDocElem(xctx, doc);
 printf("The xml document is :\n");
 XmlSaveDom(xctx, &err, (xmlnode *)doc, "buffer", buf, "buffer_length", 10000, NULL);
 printf("%s\n", buf);

 /* Insert the document into my_table */
 ins_stmt = (oratext *)"insert into purchaseorder values (:1)";
 status = OCITypeByName(envhp, errhp, svchp, (const text *) "SYS",
 (ub4) strlen((const char *)"SYS"), (const text *) "XMLTYPE",
 (ub4) strlen((const char *)"XMLTYPE"), (CONST text *) 0,
 (ub4) 0, OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
 (OCIType **) &xmltdo);
 if (status == OCI_SUCCESS)
 {
 status = exec_bind_xml(svchp, errhp, stmthp, (void *)doc,
 xmltdo, ins_stmt);
 }
 if (status == OCI_SUCCESS)
 printf ("Insert successful\n");
 else
 printf ("Insert failed\n");

 /* Free XML instances */
 if (doc)
 XmlFreeDocument((xmlctx *)xctx, (xmldocnode *)doc);
 /* Free XML CTX */
 OCIXmlDbFreeXmlCtx(xctx);
 free_oci();
}

	
See Also:

Appendix D, "Oracle-Supplied XML Schemas and Examples" for a complete listing of this example

Loading Large XML Files That Contain Small XML Documents

When loading large XML files consisting of a collection of smaller XML documents, it is often more efficient to use Simple API for XML (SAX) parsing to break the file into a set of smaller documents, and then insert those documents. SAX is an XML standard interface provided by XML parsers for event-based applications.

You can use SAX to load a database table from very large XML files in the order of 30 Mb or larger, by creating individual documents from a collection of nodes. You can also bulk load XML files.

	
See Also:

http://www.oracle.com/technology/sample_code/tech/xml/xmldb/content.html, "SAX Loader Application" for an example of how to do this

Loading Large XML Files Using SQL*Loader

Use SQL*Loader to load large amounts of XML data into Oracle Database. SQL*Loader loads in one of two modes, conventional or direct path. Table 3-2 compares these modes.

Table 3-2 Comparing SQL*Loader Conventional and Direct Load Modes

	Conventional Load Mode	Direct Path Load Mode
	
Uses SQL to load data into Oracle Database. This is the default mode.

	
Bypasses SQL and streams the data directly into Oracle Database.

	
Advantage: Follows SQL semantics. For example triggers are fired and constraints are checked.

	
Advantage: This loads data much faster than the conventional load mode.

	
Disadvantage: This loads data slower than with the direct load mode.

	
Disadvantage: SQL semantics are not obeyed. For example triggers are not fired and constraints are not checked.

	
See Also:

	
Chapter 29, "Loading XML Data Using SQL*Loader"

	
Example 29-1, "Loading Very Large XML Documents Into Oracle Database Using SQL*Loader" for an example of direct loading of XML data.

Loading XML Documents into the Repository Using DBMS_XDB

You can also store XML documents in Oracle XML DB Repository, and access these documents using path-based rather than table-based techniques. To load an XML document into the repository under a given path, use PL/SQL package DBMS_XDB. This is illustrated by the following example.

Example 3-6 Inserting XML Content into the Repository Using PL/SQL DBMS_XDB

DECLARE
 res BOOLEAN;
BEGIN
 res := DBMS_XDB.createResource('/home/QUINE/purchaseOrder.xml',
 bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8'));
END;/

Many operations for configuring and using Oracle XML DB are based on processing one or more XML documents – for example, registering an XML schema and performing an XSL transformation. The easiest way to make these XML documents available to Oracle Database is to load them into Oracle XML DB Repository.

Loading Documents into the Repository Using Protocols

You can load XML documents from a local file system into Oracle XML DB Repository using protocols such as WebDAV, from Windows Explorer or other tools that support WebDAV. Figure 3-1 shows a simple drag and drop operation for copying the contents of the SCOTT folder from the local hard drive to the poSource folder in the Oracle XML DB Repository.

Figure 3-1 Using Windows Explorer to Load Content into the Repository

[image: Description of Figure 3-1 follows]

Description of "Figure 3-1 Using Windows Explorer to Load Content into the Repository"

The copied folder might contain, for example, an XML schema document, an HTML page, and some XSLT style sheets.

	
Note:

Oracle XML DB Repository can also store content that is not XML data, such as HTML files, JPEG images, word documents, as well as XML documents (schema-based and non-schema-based).

Character Sets of XML Documents

This section describes how character sets of XML documents are determined.

	
Caution:

AL32UTF8 is the Oracle Database character set that is appropriate for XMLType data. It is equivalent to the IANA registered standard UTF-8 encoding, which supports all valid XML characters.
Do not confuse Oracle Database database character set UTF8 (no hyphen) with database character set AL32UTF8 or with character encoding UTF-8. Database character set UTF8 has been superseded by AL32UTF8. Do not use UTF8 for XML data. UTF8 supports only Unicode version 3.1 and earlier; it does not support all valid XML characters. AL32UTF8 has no such limitation.

Using database character set UTF8 for XML data could potentially stop a system or affect security negatively. If a character that is not supported by the database character set appears in an input-document element name, a replacement character (usually "?") will be substituted for it. This will terminate parsing and raise an exception. It could cause a fatal error.

XML Encoding Declaration

Each XML document is composed of units called entities. Each entity in an XML document may use a different encoding for its characters. Entities that are stored in an encoding other than UTF-8 or UTF-16 must begin with a declaration containing an encoding specification indicating the character encoding in use. For example:

<?xml version='1.0' encoding='EUC-JP' ?>

Entities encoded in UTF-16 must begin with the Byte Order Mark (BOM), as described in Appendix F of the XML 1.0 Reference. For example, on big-endian platforms, the BOM required of a UTF-16 data stream is #xFEFF.

In the absence of both the encoding declaration and the BOM, the XML entity is assumed to be encoded in UTF-8. Because ASCII is a subset of UTF-8, ASCII entities do not require an encoding declaration.

In many cases, external sources of information are available, besides the XML data, to provide the character encoding in use. For example, the encoding of the data can be obtained from the charset parameter of the Content-Type field in an HTTP(S) request as follows:

Content-Type: text/xml; charset=ISO-8859-4

Character-Set Determination When Loading XML Documents into the Database

In releases prior to Oracle Database 10g Release 1, all XML documents were assumed to be in the database character set, regardless of the document encoding declaration. With Oracle Database 10g Release 1, the document encoding is detected from the encoding declaration when the document is loaded into the database.

However, if the XML data is obtained from a CLOB or VARCHAR value, then the encoding declaration is ignored, because these two data types are always encoded in the database character set.

In addition, when loading data into Oracle XML DB, either through programmatic APIs or transfer protocols, you can provide external encoding to override the document encoding declaration. An error is raised if you try to load a schema-based XML document that contains characters that are not legal in the determined encoding.

The following examples show different ways to specify external encoding:

	
Using PL/SQL function DBMS_XDB.createResource to create a file resource from a BFILE, you can specify the file encoding with the CSID argument. If a zero CSID is specified then the file encoding is auto-detected from the document encoding declaration.

CREATE DIRECTORY xmldir AS '/private/xmldir';
CREATE OR REPLACE PROCEDURE loadXML(filename VARCHAR2, file_csid NUMBER) IS
 xbfile BFILE;
 RET BOOLEAN;
BEGIN
 xbfile := bfilename('XMLDIR', filename);
 ret := DBMS_XDB.createResource('/public/mypurchaseorder.xml',
 xbfile,
 file_csid);
END;/

	
Use the FTP protocol to load documents into Oracle XML DB. Use the quote set_charset FTP command to indicate the encoding of the files to be loaded.

FTP> quote set_charset Shift_JIS
FTP> put mypurchaseorder.xml

	
Use the HTTP(S) protocol to load documents into Oracle XML DB. Specify the encoding of the data to be transmitted to Oracle XML DB in the request header.

Content-Type: text/xml; charset= EUC-JP

Character-Set Determination When Retrieving XML Documents from the Database

XML documents stored in Oracle XML DB can be retrieved using a SQL client, programmatic APIs, or transfer protocols. You can specify the encoding of the retrieved data (except in Oracle Database releases prior to 10g, where XML data is retrieved only in the database character set).The character set for an XML document retrieved from the database is determined in the following ways:

	
SQL Client – If a SQL client (such as SQL*Plus) is used to retrieve XML data, then the character set is determined by the client-side environment variable NLS_LANG. In particular, this setting overrides any explicit character-set declarations in the XML data itself.

For example, if you set the client side NLS_LANG variable to AMERICAN_AMERICA.AL32UTF8 and then retrieve an XML document with encoding EUC_JP provided by declaration <?xml version="1.0" encoding="EUC-JP"?>, the character set of the retrieved document is AL32UTF8, not EUC_JP.

	
See Also:

Oracle Database Globalization Support Guide for information on NLS_LANG

	
PL/SQL and APIs – Using PL/SQL or programmatic APIs, you can retrieve XML data into VARCHAR, CLOB, or XMLType datatypes. As for SQL clients, you can control the encoding of the retrieved data by setting NLS_LANG.

You can also retrieve XML data into a BLOB value using XMLType and URIType methods. These methods let you specify the character set of the returned BLOB value. Here is an example:

CREATE OR REPLACE FUNCTION getXML(pathname VARCHAR2, charset VARCHAR2)
 RETURN BLOB IS
 xblob BLOB;
BEGIN
 SELECT e.RES.getBlobVal(nls_charset_id(charset)) INTO xblob
 FROM RESOURCE_VIEW e WHERE ANY_PATH = pathname;
 RETURN xblob;
END;/

	
FTP – You can use the FTP quote set_nls_locale command to set the character set:

FTP> quote set_nls_locale EUC-JP
FTP> get mypurchaseorder.xml

	
See Also:

FTP Quote Methods

	
HTTP(S) – You can use the Accept-Charset parameter in an HTTP(S) request:

/httptest/mypurchaseorder.xml 1.1 HTTP/Host: localhost:2345
Accept: text/*
Accept-Charset: iso-8859-1, utf-8

	
See Also:

Controlling Character Sets for HTTP(S)

Overview of the W3C XML Schema Recommendation

The W3C XML Schema Recommendation defines a standardized language for specifying the structure, content, and certain semantics of a set of XML documents. An XML schema can be considered the metadata that describes a class of XML documents. The XML Schema Recommendation is described at: http://www.w3.org/TR/xmlschema-0/

XML Instance Documents

Documents conforming to a given XML schema can be considered as members or instances of the class defined by that XML schema. Consequently the term instance document is often used to describe an XML document that conforms to a given XML schema. The most common use of an XML schema is to validate that a given instance document conforms to the rules defined by the XML schema.

XML Schema for Schemas

The W3C Schema working group publishes an XML schema, often referred to as the "Schema for Schemas". This XML schema provides the definition, or vocabulary, of the XML Schema language. All valid XML schemas can be considered as members of the class defined by this XML schema. This means that an XML schema is an XML document that conforms to the class defined by the XML schema published at http://www.w3.org/2001/XMLSchema.

Editing XML Schemas

XML schemas can be authored and edited using any of the following:

	
A simple text editor, such as emacs or vi

	
An XML schema-aware editor, such as the XML editor included with Oracle JDeveloper

	
An explicit XML schema-authoring tool, such as XMLSpy from Altova Corporation

XML Schema Features

The XML Schema language defines 47 scalar datatypes. This provides for strong typing of elements and attributes. The W3C XML Schema Recommendation also supports object-oriented techniques such as inheritance and extension, hence you can design XML schema with complex objects from base data types defined by the XML Schema language. The vocabulary includes constructs for defining and ordering, default values, mandatory content, nesting, repeated sets, and redefines. Oracle XML DB supports all the constructs, except for redefines.

Text Representation of the PurchaseOrder XML Schema

The following example purchaseOrder.xsd, is a standard W3C XML schema example fragment, in its native form, as an XML Document:

Example 3-7 Purchase-Order XML Schema, purchaseOrder.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
 <xs:element name="PurchaseOrder" type="PurchaseOrderType"/>
 <xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="Reference" type="ReferenceType"/>
 <xs:element name="Actions" type="ActionsType"/>
 <xs:element name="Reject" type="RejectionType" minOccurs="0"/>
 <xs:element name="Requestor" type="RequestorType"/>
 <xs:element name="User" type="UserType"/>
 <xs:element name="CostCenter" type="CostCenterType"/>
 <xs:element name="ShippingInstructions" type="ShippingInstructionsType"/>
 <xs:element name="SpecialInstructions" type="SpecialInstructionsType"/>
 <xs:element name="LineItems" type="LineItemsType"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemsType">
 <xs:sequence>
 <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemType">
 <xs:sequence>
 <xs:element name="Description" type="DescriptionType"/>
 <xs:element name="Part" type="PartType"/>
 </xs:sequence>
 <xs:attribute name="ItemNumber" type="xs:integer"/>
 </xs:complexType>
 <xs:complexType name="PartType">
 <xs:attribute name="Id">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="10"/>
 <xs:maxLength value="14"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Quantity" type="moneyType"/>
 <xs:attribute name="UnitPrice" type="quantityType"/>
 </xs:complexType>
 <xs:simpleType name="ReferenceType">
 <xs:restriction base="xs:string">
 <xs:minLength value="18"/>
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ActionsType">
 <xs:sequence>
 <xs:element name="Action" maxOccurs="4">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="User" type="UserType"/>
 <xs:element name="Date" type="DateType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RejectionType">
 <xs:all>
 <xs:element name="User" type="UserType" minOccurs="0"/>
 <xs:element name="Date" type="DateType" minOccurs="0"/>
 <xs:element name="Comments" type="CommentsType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="ShippingInstructionsType">
 <xs:sequence>
 <xs:element name="name" type="NameType" minOccurs="0"/>
 <xs:element name="address" type="AddressType" minOccurs="0"/>
 <xs:element name="telephone" type="TelephoneType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="moneyType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 <xs:totalDigits value="12"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="quantityType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="4"/>
 <xs:totalDigits value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="UserType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="10"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="RequestorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="128"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CostCenterType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="VendorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PurchaseOrderNumberType">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="SpecialInstructionsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="AddressType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TelephoneType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="24"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DateType">
 <xs:restriction base="xs:date"/>
 </xs:simpleType>
 <xs:simpleType name="CommentsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DescriptionType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

	
See Also:

Appendix A, "XML Schema Primer" for a more detailed listing of XML schema purchaseOrder.xsd

Graphical Representation of the Purchase-Order XML Schema

Figure 3-2 shows the purchase-order XML schema displayed using XMLSpy. XMLSpy is a graphical and user-friendly tool from Altova Corporation for creating and editing XML schema and XML documents. See http://www.altova.com for details. XMLSpy also supports WebDAV and FTP protocols hence can directly access and edit content stored in Oracle XML DB Repository.

Figure 3-2 XMLSpy Graphical Representation of the PurchaseOrder XML Schema

[image: Description of Figure 3-2 follows]

Description of "Figure 3-2 XMLSpy Graphical Representation of the PurchaseOrder XML Schema"

The PurchaseOrder XML schema is a simple XML schema that demonstrates key features of a typical XML document:

	
Global element PurchaseOrder is an instance of the complexType PurchaseOrderType

	
PurchaseOrderType defines the set of nodes that make up a PurchaseOrder element

	
LineItems element consists of a collection of LineItem elements

	
Each LineItem element consists of two elements: Description and Part

	
Part element has attributes Id, Quantity, and UnitPrice

Using XML Schema with Oracle XML DB

This section describes the use of XML Schema with Oracle XML DB.

Why Use XML Schema With Oracle XML DB?

The following paragraphs describe the main reasons for using XML schema with Oracle XML DB.

Validating Instance Documents with XML Schema

The most common usage of XML Schema is as a mechanism for validating that instance documents conform to a given XML schema. The XMLType datatype methods isSchemaValid() and schemaValidate() allow Oracle XML DB to validate the contents of an instance document stored in an XMLType, against an XML schema.

Constraining Instance Documents for Business Rules or Format Compliance

An XML schema can also be used as a constraint when creating tables or columns of XMLType. For example, the XMLType is constrained to storing XML documents compliant with one of the global elements defined by the XML schema.

Defining How XMLType Contents Must be Stored in the Database

Oracle XML DB also uses XML schema as a mechanism for defining how the contents of an XMLType should be stored inside the database. Currently Oracle XML DB provides two options:

	
Unstructured storage. The content of the XMLType is persisted as XML text using a CLOB datatype. This option is available for non-schema-based and schema-based XML content. When the XML is to be stored and retrieved as complete documents, unstructured storage may be the best solution as it offers the fastest rates of throughput when storing and retrieving XML content.

	
Structured storage. The content of the XMLType is persisted as a set of SQL objects. The structured storage option is only available when the XMLType table or column has been constrained to a global element defined by XML schema.

If there is a need to extract or update sections of the document, perform XSL transformation on the document, or work through the DOM API, then structured storage may be the preferred storage type. Structured storage allows all these operations to take place more efficiently but at a greater overhead when storing and retrieving the entire document.

Structured Storage of XML Documents

Structured storage of XML documents is based on decomposing the content of the document into a set of SQL objects. These SQL objects are based on the SQL 1999 Type framework. When an XML schema is registered with Oracle XML DB, the required SQL type definitions are automatically generated from the XML schema.

A SQL type definition is generated from each complexType defined by the XML schema. Each element or attribute defined by the complexType becomes a SQL attribute in the corresponding SQL type. Oracle XML DB automatically maps the 47 scalar data types defined by the XML Schema Recommendation to the 19 scalar datatypes supported by SQL. A varray type is generated for each element and this can occur multiple times.

The generated SQL types allow XML content, compliant with the XML schema, to be decomposed and stored in the database as a set of objects without any loss of information. When the document is ingested the constructs defined by the XML schema are mapped directly to the equivalent SQL types. This allows Oracle XML DB to leverage the full power of Oracle Database when managing XML and can lead to significant reductions in the amount of space required to store the document. It can also reduce the amount of memory required to query and update XML content.

Annotating an XML Schema to Control Naming, Mapping, and Storage

The W3C XML Schema Recommendation defines an annotation mechanism that allows vendor-specific information to be added to an XML schema. Oracle XML DB uses this to control the mapping between the XML schema and the SQL object model.

Annotating an XML schema allows control over the naming of the SQL objects and attributes created. Annotations can also be used to override the default mapping between the XML schema data types and SQL data types and to specify which table should be used to store the data.

	
Note:

As always:
	
SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless you enclose them in double-quotes.

	
XML is case-sensitive. You must refer to SQL names in XML code using the correct case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double-quotes, then you must refer to it in XML as "MY_TABLE".

Controlling How XML Collections are Stored in the Database

Annotations are also used to control how collections in an XML document are stored in the database. Currently there are four options:

	
Character Large Object (CLOB). The entire set of elements is persisted as XML text stored in a CLOB column.

	
Varray in a LOB. Each element in the collection is converted into a SQL object. The collection of SQL objects is serialized and stored in a LOB column.

	
Varray as a nested table. Each element in the collection is converted into a SQL object. The collection of SQL objects is stored as a set of rows in an Index Organized Nested Table (IOT).

	
Varray as a set of XMLType values. Each element in the collection is treated as a separate XMLType value. The collection of XMLType values is stored as a set of rows in an XMLType table.

These storage options allow you to tune the performance of applications that use XMLType datatypes to store XML in the database.

However, there is no requirement to annotate an XML schema before using it with Oracle XML DB. Oracle XML DB uses a set of default assumptions when processing an XML schema that contains no annotations.

	
See Also:

Chapter 5, "XML Schema Storage and Query: Basic"

Collections: Default Mapping

When no annotations are supplied by the user, Oracle XML DB stores a collection as a varray in a LOB.

Declaring the Oracle XML DB Namespace

Before annotating an XML schema you must first declare the Oracle XML DB namespace. The Oracle XML DB namespace is defined as:

http://xmlns.oracle.com/xdb

The namespace is declared in the XML schema by adding a namespace declaration such as the following to the root element of the XML schema:

xmlns:xdb="http://xmlns.oracle.com/xdb"

Note the use of a namespace prefix (xdb). This makes it possible to abbreviate the namespace to xdb when adding annotations.

Example 3-8 shows the beginning of the PurchaseOrder XML schema with annotations. See Example D-1 for the complete schema listing.

Example 3-8 Annotated Purchase-Order XML Schema, purchaseOrder.xsd

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0"
 xdb:storeVarrayAsTable="true">
 <xs:element name="PurchaseOrder" type="PurchaseOrderType" xdb:defaultTable="PURCHASEORDER"/>
 <xs:complexType name="PurchaseOrderType" xdb:SQLType="PURCHASEORDER_T">
 <xs:sequence>
 <xs:element name="Reference" type="ReferenceType" minOccurs="1" xdb:SQLName="REFERENCE"/>
 <xs:element name="Actions" type="ActionsType" xdb:SQLName="ACTIONS"/>
 <xs:element name="Reject" type="RejectionType" minOccurs="0" xdb:SQLName="REJECTION"/>
 <xs:element name="Requestor" type="RequestorType" xdb:SQLName="REQUESTOR"/>
 <xs:element name="User" type="UserType" minOccurs="1" xdb:SQLName="USERID"/>
 <xs:element name="CostCenter" type="CostCenterType" xdb:SQLName="COST_CENTER"/>
 <xs:element name="ShippingInstructions" type="ShippingInstructionsType"
 xdb:SQLName="SHIPPING_INSTRUCTIONS"/>
 <xs:element name="SpecialInstructions" type="SpecialInstructionsType"
 xdb:SQLName="SPECIAL_INSTRUCTIONS"/>
 <xs:element name="LineItems" type="LineItemsType" xdb:SQLName="LINEITEMS"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemsType" xdb:SQLType="LINEITEMS_T">
 <xs:sequence>
 <xs:element name="LineItem" type="LineItemType" maxOccurs="unbounded"
 xdb:SQLName="LINEITEM" xdb:SQLCollType="LINEITEM_V"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="LineItemType" xdb:SQLType="LINEITEM_T">
 <xs:sequence>
 <xs:element name="Description" type="DescriptionType"
 xdb:SQLName="DESCRIPTION"/>
 <xs:element name="Part" type="PartType" xdb:SQLName="PART"/>
 </xs:sequence>
 <xs:attribute name="ItemNumber" type="xs:integer" xdb:SQLName="ITEMNUMBER"
 xdb:SQLType="NUMBER"/>
 </xs:complexType>
 <xs:complexType name="PartType" xdb:SQLType="PART_T">
 <xs:attribute name="Id" xdb:SQLName="PART_NUMBER" xdb:SQLType="VARCHAR2">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="10"/>
 <xs:maxLength value="14"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Quantity" type="moneyType" xdb:SQLName="QUANTITY"/>
 <xs:attribute name="UnitPrice" type="quantityType" xdb:SQLName="UNITPRICE"/>
 </xs:complexType>
 <xs:simpleType name="ReferenceType">
 <xs:restriction base="xs:string">
 <xs:minLength value="18"/>
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ActionsType" xdb:SQLType="ACTIONS_T">
 <xs:sequence>
 <xs:element name="Action" maxOccurs="4" xdb:SQLName="ACTION" xdb:SQLCollType="ACTION_V">
 <xs:complexType xdb:SQLType="ACTION_T">
 <xs:sequence>
 <xs:element name="User" type="UserType" xdb:SQLName="ACTIONED_BY"/>
 <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_ACTIONED"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="RejectionType" xdb:SQLType="REJECTION_T">
 <xs:all>
 <xs:element name="User" type="UserType" minOccurs="0" xdb:SQLName="REJECTED_BY"/>
 <xs:element name="Date" type="DateType" minOccurs="0" xdb:SQLName="DATE_REJECTED"/>
 <xs:element name="Comments" type="CommentsType" minOccurs="0" xdb:SQLName="REASON_REJECTED"/>
 </xs:all>
 </xs:complexType>
 <xs:complexType name="ShippingInstructionsType" xdb:SQLType="SHIPPING_INSTRUCTIONS_T">
 <xs:sequence>
 <xs:element name="name" type="NameType" minOccurs="0" xdb:SQLName="SHIP_TO_NAME"/>
 <xs:element name="address" type="AddressType" minOccurs="0" xdb:SQLName="SHIP_TO_ADDRESS"/>
 <xs:element name="telephone" type="TelephoneType" minOccurs="0" xdb:SQLName="SHIP_TO_PHONE"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="moneyType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 <xs:totalDigits value="12"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="quantityType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="4"/>
 <xs:totalDigits value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="UserType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="10"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="RequestorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="128"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CostCenterType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="VendorType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PurchaseOrderNumberType">
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
 <xs:simpleType name="SpecialInstructionsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="20"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="AddressType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TelephoneType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="24"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DateType">
 <xs:restriction base="xs:date"/>
 </xs:simpleType>
 <xs:simpleType name="CommentsType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="2048"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="DescriptionType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

The PurchaseOrder XML schema defines the following two namespaces:

	
http://www.w3c.org/2001/XMLSchema. This is reserved by W3C for the Schema for Schemas.

	
http://xmlns.oracle.com/xdb. This is reserved by Oracle for the Oracle XML DB schema annotations.

The PurchaseOrder schema uses several annotations, including the following:

	
defaultTable annotation in the PurchaseOrder element. This specifies that XML documents, compliant with this XML schema are stored in a database table called purchaseorder.

	
SQLType annotation.

The first occurrence of SQLType specifies that the name of the SQL type generated from complexType PurchaseOrderType is purchaseorder_t.

The second occurrence of SQLType specifies that the name of the SQL type generated from the complexType LineItemType is lineitem_t and the SQL type that manages the collection of LineItem elements is lineitem_v.

	
SQLName annotation. This provides an explicit name for each SQL attribute of purchaseorder_t.

Figure 3-3 shows the XMLSpy Oracle tab, which facilitates adding Oracle XML DB schema annotations to an XML schema while working in the graphical editor.

Figure 3-3 XMLSpy Showing Support for Oracle XML DB Schema Annotations

[image: Description of Figure 3-3 follows]

Description of "Figure 3-3 XMLSpy Showing Support for Oracle XML DB Schema Annotations"

Registering an XML Schema with Oracle XML DB

For an XML schema to be useful to Oracle XML DB you must first register it with Oracle XML DB. After it has been registered, it can be used for validating XML documents and for creating XMLType tables and columns bound to the XML schema.

Two items are required to register an XML schema with Oracle XML DB:

	
The XML schema document

	
A string that can be used as a unique identifier for the XML schema, after it is registered with Oracle Database. Instance documents use this unique identifier to identify themselves as members of the class defined by the XML schema. The identifier is typically in the form of a URL, and is often referred to as the schema location hint.

You register an XML schema with PL/SQL procedure DBMS_XMLSCHEMA.registerschema. See Example 3-9. By default, when an XML schema is registered, Oracle XML DB automatically generates all of the SQL object types and XMLType tables required to manage the instance documents.

XML schemas can be registered as global or local.

	
See Also:

	
"Schema Registration Considerations" for considerations to keep in mind when you register an XML schema

	
Chapter 5, "XML Schema Storage and Query: Basic" for a discussion of the differences between global and local schemas

	
Oracle Database PL/SQL Packages and Types Reference for information on DBMS_XMLSCHEMA.registerschema

Example 3-9 Registering an XML Schema with DBMS_XMLSCHEMA.registerSchema

BEGIN
 DBMS_XMLSCHEMA.registerSchema(
 'http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd',
 XDBURIType('/source/schemas/poSource/xsd/purchaseOrder.xsd').getClob(),
 TRUE,
 TRUE,
 FALSE,
 TRUE);
END;
/

In this example, the unique identifier for the XML schema is:

http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd

The XML schema document was previously loaded into Oracle XML DB Repository at this path: /source/schemas/poSource/xsd/purchaseOrder.xsd.

During XML schema registration, an XDBURIType accesses the content of the XML schema document, based on its location in the repository. Flags passed to procedure registerSchema specify that the XML schema must be registered as a local schema, and that SQL objects and tables must be generated by the registration process.

Procedure DBMS_XMLSCHEMA.registerSchema performs the following operations:

	
Parses and validates the XML schema

	
Creates a set of entries in Oracle Data Dictionary that describe the XML schema

	
Creates a set of SQL object definitions, based on complexTypes defined in the XML schema

	
Creates an XMLType table for each global element defined by the XML schema

SQL Types and Tables Created During XML Schema Registration

Example 3-10 illustrates the creation of object types during XML schema registration with Oracle XML DB.

Example 3-10 Objects Created During XML Schema Registration

DESCRIBE purchaseorder_t
 purchaseorder_t is NOT FINAL
 Name Null? Type
 --- -------- ----------------------------
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 REFERENCE VARCHAR2(30 CHAR)
 ACTIONS ACTIONS_T
 REJECTION REJECTION_T
 REQUESTOR VARCHAR2(128 CHAR)
 USERID VARCHAR2(10 CHAR)
 COST_CENTER VARCHAR2(4 CHAR)
 SHIPPING_INSTRUCTIONS SHIPPING_INSTRUCTIONS_T
 SPECIAL_INSTRUCTIONS VARCHAR2(2048 CHAR)
 LINEITEMS LINEITEMS_T

DESCRIBE lineitems_t
 lineitems_t is NOT FINAL
 Name Null? Type
 --- -------- ----------------------------
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 LINEITEM LINEITEM_V

DESCRIBE lineitem_v
 lineitem_v VARRAY(2147483647) OF LINEITEM_T
 LINEITEM_T is NOT FINAL
 Name Null? Type
 --- -------- ----------------------------
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 ITEMNUMBER NUMBER(38)
 DESCRIPTION VARCHAR2(256 CHAR)
 PART PART_T

This example shows that SQL type definitions were created when the XML schema was registered with Oracle XML DB. These SQL type definitions include:

	
purchaseorder_t. This type is used to persist the SQL objects generated from a PurchaseOrder element. When an XML document containing a PurchaseOrder element is stored in Oracle XML DB the document is shredded (broken up), and the contents of the document are stored as an instance of purchaseorder_t.

	
lineitems_t, lineitem_v, and lineitem_t. These types manage the collection of LineItem elements that may be present in a PurchaseOrder document. Type lineitems_t consists of a single attribute lineitem, defined as an instance of type lineitem_v. Type lineitem_v is defined as a varray of linteitem_t objects. There is one instance of the lineitem_t object for each LineItem element in the document.

Working with Large XML Schemas

A number of issues can arise when working with large, complex XML schemas. Sometimes the error ORA-01792: maximum number of columns in a table or view is 1000 is encountered when registering an XML schema or creating a table based on a global element defined by an XML schema. This error occurs when an attempt is made to create an XMLType table or column based on a global element, and the global element is defined as a complexType that contains a very large number of element and attribute definitions. The error only occurs when creating an XMLType table or column that uses object-relational storage. When object-relational storage is selected, the XMLType is persisted as a SQL type. When a table or column is based on a SQL type, each attribute defined by the type counts as a column in the underlying table. If the SQL type contains attributes that are based on other SQL types, the attributes defined by those types also count as columns in the underlying table. If the total number of attributes in all the SQL types exceeds the Oracle Database limit of 1000 columns in a table the storage table cannot be created. As the total number of elements and attributes defined by a complexType reaches 1000, it is no longer possible to create a single table that can manage the SQL objects generated when an instance of the type is stored in the database.To resolve this, you must reduce the total number of attributes in the SQL types that are used to create the storage tables. Looking at the schema, there are two approaches for achieving this:

	
Use a top-down technique with multiple XMLType tables that manage the XML documents. This technique reduces the number of SQL attributes in the SQL type hierarchy for a given storage table. As long as none of the tables have to manage more than 1000 attributes, the problem is resolved.

	
Use a bottom-up technique that reduces the number of SQL attributes in the SQL type hierarchy, collapsing some of elements and attributes defined by the XML schema so that they are stored as a single CLOB value.

Both techniques rely on annotating the XML schema to define how a particular complexType will be stored in the database.

For the top-down technique, annotations SQLInline="false" and defaultTable force some subelements in the XML document to be stored as rows in a separate XMLType table. Oracle XML DB maintains the relationship between the two tables using a REF of XMLType. Good candidates for this approach are XML schemas that define a choice, where each element within the choice is defined as a complexType, or where the XML schema defines an element based on a complexType that contains a very large number of element and attribute definitions.

The bottom-up technique involves reducing the total number of attributes in the SQL object types by choosing to store some of the lower level complexTypes as CLOB values, rather than as objects. This is achieved by annotating the complexType or the usage of the complexType with SQLType="CLOB".

Which technique you use depends on the application and the type of queries and updates to be performed against the data.

Working with Global Elements

By default, when an XML schema is registered with the database, Oracle XML DB generates a default table for each global element defined by the XML schema.

You can use the xdb:defaultTable attribute to specify the name of the default table for a given global element. Each xdb:defaultTable attribute value you provide must be unique among all schemas registered by a given database user. If you do not supply a nonempty default table name for some element, then a unique name is provided automatically.

In practice, however, you do not want to create a default table for most global elements. Elements that never serve as the root element for an XML instance document do not need default tables — such tables are never used. Creating default tables for all global elements can lead to significant overhead in processor time and space used, especially if an XML schema contains a large number of global element definitions.

As a general rule, then, you want to prevent the creation of a default table for any global element (or any local element stored out of line) that you are sure will not be used as a root element in any document. You can do this in one of the following ways:

	
Add the annotation xdb:defaultTable="" to the definition of each global element that will not appear as the root element of an XML instance document. Using this approach, you allow automatic default-table creation, in general, and you prohibit it explicitly where needed, using xdb:defaultTable="".

	
Set the genTables parameter to false when registering the XML schema, and then manually create the default table for each global element that can legally appear as the root element of an instance document. Using this approach, you inhibit automatic default-table creation, and you create only the tables that are needed, by hand.

Creating XML Schema-Based XMLType Columns and Tables

After an XML schema has been registered with Oracle XML DB, it can be referenced when defining tables that contain XMLType columns or creating XMLType tables.

Example 3-11 shows how to manually create the PurchaseOrder table, the default table for PurchaseOrder elements.

Example 3-11 Creating an XMLType Table that Conforms to an XML Schema

CREATE TABLE purchaseorder OF XMLType
 XMLSCHEMA "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
 ELEMENT "PurchaseOrder"
 VARRAY "XMLDATA"."ACTIONS"."ACTION"
 STORE AS TABLE action_table
 ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$))
 ORGANIZATION INDEX OVERFLOW)
 VARRAY "XMLDATA"."LINEITEMS"."LINEITEM"
 STORE AS TABLE lineitem_table
 ((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$))
 ORGANIZATION INDEX OVERFLOW);

Each member of the varray that manages the collection of LineItem elements is stored as a row in nested table lineitem_table. Each member of the varray that manages the collection of Action elements is stored in the nested table action_table. Because of the column specification ORGANIZATION INDEX OVERFLOW, the nested tables are index-organized. Because of the PRIMARY KEY specification, they automatically contain pseudocolumn NESTED_TABLE_ID and column SYS_NC_ARRAY_INDEX$, which are required to link them back to the parent column.

This CREATE TABLE statement is equivalent to the CREATE TABLE statement automatically generated by Oracle XML DB when the schema annotation storeVarrayAsTable="true" is included in the root element of the PurchaseOrder XML schema (and genTables="true" is set during schema registration). When this annotation is used, the nested tables generated by the XML schema registration process are given system-generated names, which can be difficult to work with. You can give them more meaningful names using the SQL statement RENAME TABLE.

	
Note:

Annotation storeVarrayAsTable="true" causes element collections to be persisted as rows in an index-organized table (IOT). Oracle Text does not support IOTs. Do not use this annotation if you will need to use Oracle Text indexes for text-based ora:contains searches over a collection of elements. See "ora:contains Searches Over a Collection of Elements". To provide for searching with Oracle Text indexes:
	
Set genTables="false" during schema registration.

	
Create the necessary tables manually, without using the clause ORGANIZATION INDEX OVERFLOW, so the tables will be heap-organized instead of index-organized (IOT).

Example 3-12 Using DESCRIBE for an XML Schema-Based XMLType Table

A SQL*Plus DESCRIBE statement (it can be abbreviated to DESC), can be used to view information about an XMLType table.

DESCRIBE purchaseorder
 Name Null? Type
 --- -------- ----------------------------
TABLE of SYS.XMLTYPE(XMLSchema
"http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd"
Element "PurchaseOrder") STORAGE Object-relational TYPE "PURCHASEORDER_T"

The output of the DESCRIBE statement shows the following information about the purchaseorder table:

	
The table is an XMLType table

	
The table is constrained to storing PurchaseOrder documents as defined by the PurchaseOrder XML schema

	
Rows in this table are stored as a set of objects in the database

	
SQL type purchaseorder_t is the base object for this table

Default Tables

The XML schema in Example 3-11 specifies that the PurchaseOrder table is the default table for PurchaseOrder elements. When an XML document compliant with the XML schema is inserted into Oracle XML DB Repository using protocols or PL/SQL, the content of the XML document is stored as a row in the purchaseorder table.

When an XML schema is registered as a global schema, you must grant the appropriate access rights on the default table to all other users of the database before they can work with instance documents that conform to the globally registered XML schema.

Identifying XML Schema Instance Documents

Before an XML document can be inserted into an XML schema-based XMLType table or column the document must identify the associated XML schema. There are two ways to do this:

	
Explicitly identify the XML schema when creating the XMLType. This can be done by passing the name of the XML schema to the XMLType constructor, or by invoking the XMLType createSchemaBasedXML() method.

	
Use the XMLSchema-instance mechanism to explicitly provide the required information in the XML document. This option can be used when working with Oracle XML DB.

The advantage of the XMLSchema-instance mechanism is that it allows the Oracle XML DB protocol servers to recognize that an XML document inserted into Oracle XML DB Repository is an instance of a registered XML schema. The content of the instance document is automatically stored in the default table defined by that XML schema.

The XMLSchema-instance mechanism is defined by the W3C XML Schema working group. It is based on adding attributes that identify the target XML schema to the root element of the instance document. These attributes are defined by the XMLSchema-instance namespace.

To identify an instance document as a member of the class defined by a particular XML schema you must declare the XMLSchema-instance namespace by adding a namespace declaration to the root element of the instance document. For example:

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

Once the XMLSchema-instance namespace has been declared and given a namespace prefix, attributes that identify the XML schema can be added to the root element of the instance document. In the preceding example, the namespace prefix for the XMLSchema-instance namespace was defined as xsi. This prefix can then be used when adding the XMLSchema-instance attributes to the root element of the instance document.

Which attributes must be added depends on a number of factors. There are two possibilities, noNamespaceSchemaLocation and schemaLocation. Depending on the XML schema, one or both of these attributes is required to identify the XML schemas that the instance document is associated with.

Attributes noNamespaceSchemaLocation and schemaLocation

If the target XML schema does not declare a target namespace, the noNamespaceSchemaLocation attribute is used to identify the XML schema. The value of the attribute is the schema location hint. This is the unique identifier passed to PL/SQL procedure DBMS_XMLSCHEMA.registerSchema when the schema is registered with the database.

For the purchaseOrder.xsd XML schema, the correct definition of the root element of the instance document would read as follows:

<PurchaseOrder
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

If the target XML schema declares a target namespace, then the schemaLocation attribute is used to identify the XML schema. The value of this attribute is a pair of values separated by a space:

	
the value of the target namespace declared in the XML schema

	
the schema location hint, the unique identifier passed to procedure DBMS_XMLSCHEMA.registerSchema when the schema is registered with the database

For example, assume that the PurchaseOrder XML schema includes a target namespace declaration. The root element of the schema would look like this:

<xs:schema targetNamespace="http://demo.oracle.com/xdb/purchaseOrder"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 version="1.0" xdb:storeVarrayAsTable="true">
 <xs:element name="PurchaseOrder" type="PurchaseOrderType"
 xdb:defaultTable="PURCHASEORDER"/>

In this case, the correct form of the root element of the instance document would read as follows:

<PurchaseOrder
 xnlns="http://demo.oracle.com/xdb/purchaseOrder"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation=
 "http://demo.oracle.com/xdb/purchaseOrder
 http://mdrake-lap:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">

Dealing with Multiple Namespaces

When the XML schema includes elements defined in multiple namespaces, an entry must occur in the schemaLocation attribute for each of the XML schemas. Each entry consists of the namespace declaration and the schema location hint. The entries are separated from each other by one or more whitespace characters. If the primary XML schema does not declare a target namespace, then the instance document also needs to include a noNamespaceSchemaLocation attribute that provides the schema location hint for the primary XML schema.

Using the Database to Enforce XML Data Integrity

One advantage of using Oracle XML DB to manage XML content is that SQL can be used to supplement the functionality provided by XML schema. Combining the power of SQL and XML with the ability of the database to enforce rules makes the database a powerful framework for managing XML content.

Only well-formed XML documents can be stored in XMLType tables or columns. A well-formed XML document is one that conforms to the syntax of the XML version declared in its XML declaration. This includes having a single root element, properly nested tags, and so forth. Additionally, if the XMLType table or column is constrained to an XML schema, only documents that conform to that XML schema can be stored in that table or column. Any attempt to store or insert any other kind of XML document in an XML schema-based XMLType raises an error. Example 3-13 illustrates this.

Example 3-13 Error From Attempting to Insert an Incorrect XML Document

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'Invoice.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
 *
ERROR at line 1:
ORA-30937: No schema definition for 'Invoice' (namespace '') in parent '#document'

Such an error only occurs when content is inserted directly into an XMLType table. It indicates that Oracle XML DB did not recognize the document as a member of the class defined by the XML schema. For a document to be recognized as a member of the class defined by the schema, the following conditions must be true:

	
The name of the XML document root element must match the name of global element used to define the XMLType table or column.

	
The XML document must include the appropriate attributes from the XMLSchema-instance namespace, or the XML document must be explicitly associated with the XML schema using the XMLType constructor or the createSchemaBasedXML() method.

If the constraining XML schema declares a targetNamespace, then the instance documents must contain the appropriate namespace declarations to place the root element of the document in the targetNamespace defined by the XML schema.

	
Note:

XML constraints are enforced only within individual XML documents. Database (SQL) constraints are enforced across sets of XML documents.

Comparing Partial to Full XML Schema Validation

This section describes the differences between partial and full XML schema validation used when inserting XML documents into the database.

Partial Validation

When an XML document is inserted into an XML schema-based XMLType table or column, Oracle XML DB performs a partial validation of the document. It ensures only that all the mandatory elements and attributes are present and that there are no unexpected elements or attributes in the document. That is, it ensures only that the structure of the XML document conforms to the SQL type definitions that were derived from the XML schema. Because complete schema validation is very costly, Oracle XML DB does not try to ensure that the instance document is fully compliant with the XML schema. Example 3-14 provides an example of failing partial validation while inserting an XML document into table PurchaseOrder:

Example 3-14 ORA-19007 When Inserting Incorrect XML Document (Partial Validation)

INSERT INTO purchaseorder
 VALUES(XMLType(bfilename('XMLDIR', 'InvalidElement.xml'),
 nls_charset_id('AL32UTF8')));
 XMLType
 *
ERROR at line 4:
ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
 'PurchaseOrder'
ORA-06512: at "SYS.XMLTYPE", line 259
ORA-06512: at "SYS.XMLTYPE", line 284
ORA-06512: at line 1

Full Validation

When full validation of the instance document against the XML schema is required, you can enable XML schema validation using either of the following:

	
Table level CHECK constraint

	
PL/SQL BEFORE INSERT trigger

Both approaches ensure that only valid XML documents can be stored in the XMLType table.

The advantage of a TABLE CHECK constraint is that it is easy to code. The disadvantage is that it is based on the XMLisValid() SQL function, so it can only indicate whether or not the XML document is valid. When the XML document is invalid it cannot provide any information as to why it is invalid.

A BEFORE INSERT trigger requires slightly more code. The trigger validates the XML document by invoking the XMLType schemaValidate() method. The advantage of using schemaValidate() is that the exception raised provides additional information about what was wrong with the instance document. Using a BEFORE INSERT trigger also makes it possible to attempt corrective action when an invalid document is encountered.

Full XML Schema Validation Costs Processing Time and Memory Usage

Full XML schema validation costs processing time and memory. By leaving the decision of whether or not to force a full XML schema validation to you, Oracle XML DB lets you perform full XML schema validation only when necessary. If you can rely on the application validating the XML document, you can obtain higher overall throughput by avoiding overhead associated with a full validation. If you cannot be sure about the validity of the incoming XML documents, you can rely on the database to ensure that the XMLType table or column only contains schema-valid XML documents.

In Example 3-15, the XML document InvalidReference is a not a valid XML document, according to the XML schema. The XML schema defines a minimum length of 18 characters for the text node associated with the Reference element. In this document, the node contains the value SBELL-20021009, which is only 14 characters long. Partial validation would not catch this error. Unless the constraint or trigger are present, attempts to insert this document into the database would succeed. Example 3-15 shows how to force a full XML schema validation by adding a CHECK constraint to an XMLType table.

Example 3-15 Using CHECK Constraint to Force Full XML Schema Validation

Here, a CHECK constraint is added to PurchaseOrder table. Any attempt to insert an invalid document into the table fails:

ALTER TABLE purchaseorder
 ADD CONSTRAINT validate_purchaseorder
 CHECK (XMLIsValid(OBJECT_VALUE) = 1);

Table altered.

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*

ERROR at line 1:
ORA-02290: check constraint (QUINE.VALIDATE_PURCHASEORDER) violated

The pseudocolumn name OBJECT_VALUE can be used to access the content of an XMLType table from within a trigger.

Example 3-16 Using BEFORE INSERT Trigger to Enforce Full XML Schema Validation

This example shows how to use a BEFORE INSERT trigger to validate that the data being inserted into the XMLType table conforms to the specified XML schema.

CREATE OR REPLACE TRIGGER validate_purchaseorder
 BEFORE INSERT ON purchaseorder
 FOR EACH ROW
BEGIN
 IF (:new.OBJECT_VALUE IS NOT NULL) THEN :new.OBJECT_VALUE.schemavalidate();
 END IF;
END;
/

Trigger created.

INSERT INTO purchaseorder VALUES (XMLType(bfilename('XMLDIR', 'InvalidReference.xml'),
 nls_charset_id('AL32UTF8')));
 *
ERROR at line 2:
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "SBELL-20021009" is too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 333
ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3
ORA-04088: error during execution of trigger 'QUINE.VALIDATE_PURCHASEORDER'

Using SQL Constraints to Enforce Referential Integrity

The W3C XML Schema Recommendation defines a powerful language for defining the contents of an XML document. However, there are a number of simple data management concepts not currently addressed by the W3C XML Schema Recommendation. These include the ability to ensure that the value of an element or attribute:

	
Is unique across a set of XML documents (a UNIQUE constraint)

	
Exists in a particular data source outside the current document (FOREIGN KEY constraint)

The mechanisms used to enforce integrity on XML are the same mechanisms used to enforce integrity on conventional relational data. Simple rules such as uniqueness and foreign-key relationships, are enforced by specifying constraints. More complex rules are enforced by specifying database triggers. Example 3-17 and Example 3-18 illustrate how you can use SQL constraints to enforce referential integrity.

Oracle XML DB makes it possible to use the database to enforce business rules on XML content, in addition to rules that can be specified using the XML schema constructs. The database enforces these business rules regardless of whether XML is inserted directly into a table or uploaded using one of the protocols supported by Oracle XML DB Repository.

Example 3-17 Applying Database Integrity Constraints and Triggers to an XMLType Table

ALTER TABLE purchaseorder
 ADD CONSTRAINT reference_is_unique
 UNIQUE (XMLDATA."REFERENCE");

Table altered.

ALTER TABLE purchaseorder
 ADD CONSTRAINT user_is_valid
 FOREIGN KEY (XMLDATA."USERID") REFERENCES hr.employees(email);

Table altered.

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'purchaseOrder.xml'),
 nls_charset_id('AL32UTF8')));

1 row created.

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'DuplicateReference.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*

ERROR at line 1:
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated

INSERT INTO purchaseorder
 VALUES (XMLType(bfilename('XMLDIR', 'InvalidUser.xml'),
 nls_charset_id('AL32UTF8')));

INSERT INTO purchaseorder
*

ERROR at line 1:
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent key not
 found

The uniqueness constraint reference_is_unique ensures that the value of the node /PurchaseOrder/Reference/text() is unique across all documents stored in the purchaseorder table. The foreign key constraint user_is_valid ensures that the value of the node /PurchaseOrder/User/text() corresponds to one of the values in the email column in the employees table.

Oracle XML DB constraints must be specified in terms of attributes of the SQL types used to manage the XML content.

The text node associated with the Reference element in the XML document DuplicateRefernce.xml contains the same value as the corresponding node in XML document PurchaseOrder.xml. This means that attempting to store both documents in Oracle XML DB violates the constraint reference_is_unique.

The text node associated with the User element in XML document InvalidUser.xml contains the value HACKER. There is no entry in the employees table where the value of the email column is HACKER. Attempting to store this document in Oracle XML DB violates the constraint user_is_valid.

Integrity rules defined using constraints and triggers are also enforced when XML schema-based XML content is loaded into Oracle XML DB Repository.

Example 3-18 Enforcing Database Integrity When Loading XML Using FTP

This example shows that database integrity is also enforced when a protocol, such as FTP, is used to upload XML schema-based XML content into Oracle XML DB Repository.

$ ftp localhost 2100
Connected to localhost.
220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise Edition
Release 10.1.0.0.0 - Beta) ready.
Name (localhost:oracle10): QUINE
331 pass required for QUINE
Password:
230 QUINE logged in
ftp> cd /source/schemas
250 CWD Command successful
ftp> put InvalidReference.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00221: "SBELL-20021009" is too short (minimum length is 18)
ORA-06512: at "SYS.XMLTYPE", line 333
ORA-06512: at "QUINE.VALIDATE_PURCHASEORDER", line 3
ORA-04088: error during execution of trigger 'QUINE.VALIDATE_PURCHASEORDER'
550 End Error Response
ftp> put InvalidElement.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-30937: No schema definition for 'UserName' (namespace '##local') in parent
'PurchaseOrder'
550 End Error Response
ftp> put DuplicateReference.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-00001: unique constraint (QUINE.REFERENCE_IS_UNIQUE) violated
550 End Error Response
ftp> put InvalidUser.xml
200 PORT Command successful
150 ASCII Data Connection
550- Error Response
ORA-00604: error occurred at recursive SQL level 1
ORA-02291: integrity constraint (QUINE.USER_IS_VALID) violated - parent key not
 found
550 End Error Response

Full SQL Error Trace

When an error occurs while a document is being uploaded with a protocol, Oracle XML DB provides the client with the full SQL error trace. How the error is interpreted and reported to you is determined by the error-handling built into the client application. Some clients, such as the command line FTP tool, reports the error returned by Oracle XML DB, while others, such as Microsoft Windows Explorer, simply report a generic error message.

	
See also:

Oracle Database Error Messages

DML Operations on XML Content Using Oracle XML DB

Another major advantage of using Oracle XML DB to manage XML content is that it leverages the power of Oracle Database to deliver powerful, flexible capabilities for querying and updating XML content, including the following:

	
Retrieving nodes and fragments within an XML document

	
Updating nodes and fragments within an XML document

	
Creating indexes on specific nodes within an XML document

	
Indexing the entire content of an XML document

	
Determining whether an XML document contains a particular node

XPath and Oracle XML

Oracle XML DB includes new XMLType methods and XML-specific SQL functions. WIth these you can query and update XML content stored in Oracle Database. They use the W3C XPath Recommendation to identify the required node or nodes. Every node in an XML document can be uniquely identified by an XPath expression. An XPath expression consists of a slash-separated list of element names, attributes names, and XPath functions. XPath expressions may contain indexes and conditions that determine which branch of the tree is traversed in determining the target nodes.

By supporting XPath-based methods and functions, Oracle XML DB makes it possible for XML programmers to query and update XML documents in a familiar, standards-compliant manner.

	
Note:

Oracle SQL functions and XMLType methods respect the W3C XPath recommendation, which states that if an XPath expression targets no nodes when applied to XML data, then an empty sequence must be returned; an error must not be raised.
The specific semantics of an Oracle SQL function or XMLType method that applies an XPath-expression to XML data determines what is returned. For example, SQL function extract returns NULL if its XPath-expression argument targets no nodes, and the updating SQL functions, such as deleteXML, return the input XML data unchanged. An error is never raised if no nodes are targeted, but updating SQL functions may raise an error if an XPath-expression argument targets inappropriate nodes, such as attribute nodes or text nodes.

Querying XML Content Stored in Oracle XML DB

This section describes techniques for querying Oracle XML DB and retrieving XML content. This section contains these topics:

	
PurchaseOrder XML Document

	
Retrieving the Content of an XML Document Using Pseudocolumn OBJECT_VALUE

	
Accessing Fragments or Nodes of an XML Document Using EXTRACT

	
Accessing Text Nodes and Attribute Values Using EXTRACTVALUE

	
Searching the Content of an XML Document Using EXISTSNODE

	
Using EXTRACTVALUE and EXISTSNODE in a WHERE Clause

	
Using XMLSEQUENCE to Perform SQL Operations on XMLType Fragments

PurchaseOrder XML Document

Examples in this section are based on the following PurchaseOrder XML document:

Example 3-19 PurchaseOrder XML Instance Document

<PurchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd">
 <Reference>SBELL-2002100912333601PDT</Reference>
 <Actions>
 <Action>
 <User>SVOLLMAN</User>
 </Action>
 </Actions>
 <Reject/>
 <Requestor>Sarah J. Bell</Requestor>
 <User>SBELL</User>
 <CostCenter>S30</CostCenter>
 <ShippingInstructions>
 <name>Sarah J. Bell</name>
 <address>400 Oracle Parkway
 Redwood Shores
 CA
 94065
 USA</address>
 <telephone>650 506 7400</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Air Mail</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">
 <Description>The Unbearable Lightness Of Being</Description>
 <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>Sisters</Description>
 <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

Retrieving the Content of an XML Document Using Pseudocolumn OBJECT_VALUE

The OBJECT_VALUE pseudocolumn can be used as an alias for the value of an object table. For an XMLType table that consists of a single column of XMLType, the entire XML document is retrieved. (OBJECT_VALUE replaces the value(x) and SYS_NC_ROWINFO$ aliases used in releases prior to Oracle Database10g Release 1.)

Example 3-20 Using OBJECT_VALUE to Retrieve an Entire XML Document

In this example, the SQL*Plus settings PAGESIZE and LONG are used to ensure that the entire document is printed correctly, without line breaks. (The output has been formatted for readability.)

SET LONG 10000
SET PAGESIZE 100

SELECT OBJECT_VALUE FROM purchaseorder;

OBJECT_VALUE

<PurchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://localhost:8080/source/schemas
/poSource/xsd/purchaseOrder.xsd">
 <Reference>SBELL-2002100912333601PDT</Reference>
 <Actions>
 <Action>
 <User>SVOLLMAN</User>
 </Action>
 </Actions>
 <Reject/>
 <Requestor>Sarah J. Bell</Requestor>
 <User>SBELL</User>
 <CostCenter>S30</CostCenter>
 <ShippingInstructions>
 <name>Sarah J. Bell</name>
 <address>400 Oracle Parkway
Redwood Shores
CA
94065
USA</address>
 <telephone>650 506 7400</telephone>
 </ShippingInstructions>
 <SpecialInstructions>Air Mail</SpecialInstructions>
 <LineItems>
 <LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="2">
 <Description>The Unbearable Lightness Of Being</Description>
 <Part Id="37429140222" UnitPrice="29.95" Quantity="2"/>
 </LineItem>
 <LineItem ItemNumber="3">
 <Description>Sisters</Description>
 <Part Id="715515011020" UnitPrice="29.95" Quantity="4"/>
 </LineItem>
 </LineItems>
</PurchaseOrder>

1 row selected.

Accessing Fragments or Nodes of an XML Document Using EXTRACT

SQL function extract returns the nodes that match an XPath expression. Nodes are returned as an instance of XMLType. The result of extract can be either a complete document or an XML fragment. The functionality of SQL function extract is also available through XMLType method extract().

Example 3-21 Accessing XML Fragments Using EXTRACT

This query returns an XMLType value containing the Reference element that matches the XPath expression.

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/Reference')
 FROM purchaseorder;

EXTRACT(OBJECT_VALUE, '/PURCHASEORDER/REFERENCE')

<Reference>SBELL-2002100912333601PDT</Reference>

1 row selected.

This query returns an XMLType value containing the first LineItem element in the LineItems collection:

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem[1]')
 FROM purchaseorder;

EXTRACT(OBJECT_VALUE, '/PURCHASEORDER/LINEITEMS/LINEITEM[1]')
--
<LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>

1 row selected.

The following query returns an XMLType value containing the three Description elements that match the XPath expression. These elements are returned as nodes in a single XMLType, so the XMLType value does not have a single root node. It is treated as an XML fragment.

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem/Description')
 FROM purchaseorder;

EXTRACT(OBJECT_VALUE, '/PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION')
--
<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

1 row selected.

Accessing Text Nodes and Attribute Values Using EXTRACTVALUE

The SQL function extractValue returns the value of the text node or attribute value that matches the supplied XPath expression. The value is returned as a SQL scalar value. The XPath expression passed to extractValue must uniquely identify a single text node or attribute value within the document.

Example 3-22 Accessing a Text Node Value Using EXTRACTVALUE

This query returns the value of the text node associated with the Reference element that matches the XPath expression. The value is returned as a VARCHAR2 value:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference')
FROM purchaseorder;

EXTRACTVALUE(OBJECT_VALUE, '/PURCHASEORDER/REFERENCE)
--
SBELL-2002100912333601PDT

1 row selected.

The followingquery returns the value of the text node associated with the Description element associated with the first LineItem element. The value is returned as a VARCHAR2 value. The first LineItem element is indicated by the index [1].

SELECT extractValue(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[1]/Description')
 FROM purchaseorder;

EXTRACTVALUE(OBJECT_VALUE, '/PURCHASEORDER/LINEITEMS/LINEITEM[1]/DESCRIPTION')
--
A Night to Remember

1 row selected.

The following query returns the value of the text node associated with a Description element contained in a LineItem element. The particular LineItem element is specified by an Id attribute value. The value returned is of type VARCHAR2. The predicate that identifies which LineItem element to process is enclosed in square brackets ([]). The at-sign character (@) specifies that Id is an attribute rather than an element.

SELECT extractValue(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[Part/@Id="715515011020"]/Description')
FROM purchaseorder;

EXTRACTVALUE(OBJECT
_VALUE, '/PURCHASEORDER/LINEITEMS/LINEITEM[PART/@ID="715515011020"]/DESCRIPTION')

Sisters

1 row selected.

Invalid Use of EXTRACTVALUE

The following examples show invalid uses of SQL function extractValue. In the first example, the XPath expression matches three nodes in the document (to be valid, it must match only one). In the second example, the XPath expression identifies a parent node, not a leaf node (text node or attribute value).

Example 3-23 Invalid Uses of EXTRACTVALUE

SELECT extractValue(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description')
 FROM purchaseorder;
SELECT extractValue(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description')
 *
ERROR at line 1:
ORA-01427: single-row subquery returns more than one row

SELECT extractValue(OBJECT_VALUE,'/PurchaseOrder/LineItems/LineItem[1]')
 FROM purchaseorder;
 FROM purchaseorder
 *
ERROR at line 3:
ORA-19026: EXTRACTVALUE can only retrieve value of leaf node

SELECT extractValue(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description/text()')
 FROM purchaseorder;
SELECT extractValue(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description/text()')
 *
ERROR at line 1:
ORA-01427: single-row subquery returns more than one row

Depending on whether or not XPath rewrite takes place, the last two queries can also result in the following error being reported:

ORA-01427: single-row subquery returns more than one row

Searching the Content of an XML Document Using EXISTSNODE

The SQL function existsNode evaluates whether or not a given document contains a node that matches a W3C XPath expression. Function existsNode returns true (1) if the document contains the node specified by the XPath expression supplied to the function and false (0) if it does not. Since XPath expressions can contain predicates, existsNode can determine whether or not a given node exists in the document, and whether or not a node with the specified value exists in the document. The functionality provided by SQL function existsNode is also available through XMLType method existsNode.

Example 3-24 Searching XML Content Using EXISTSNODE

This query uses SQL function existsNode to check if the XML document contains an element named Reference that is a child of the root element PurchaseOrder:

SELECT COUNT(*)
 FROM purchaseorder
WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder/Reference') = 1;

 COUNT(*)

 132

1 row selected.

This query checks if the value of the text node associated with the Reference element is SBELL-2002100912333601PDT:

SELECT count(*)
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;
 COUNT(*)

 1
1 row selected.

This query checks if the value of the text node associated with the Reference element is SBELL-XXXXXXXXXXXXXXXXXX:

SELECT count(*)
 FROM purchaseorder
 WHERE existsNode(
 OBJECT_VALUE,
 '/PurchaseOrder/Reference[Reference="SBELL-XXXXXXXXXXXXXXXXXX"]')
 = 1;

 COUNT(*)

 0

1 row selected.

This query checks if the XML document contains a root element PurchaseOrder that contains a LineItems element that contains a LineItem element that contains a Part element with an Id attribute:

SELECT count(*)
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem/Part/@Id')
 = 1;

 COUNT(*)

 132

1 row selected.

This query checks if the XML document contains a root element PurchaseOrder that contains a LineItems element that contains a LineItem element that contains a Part element with Id attribute value 715515009058:

SELECT count(*)
 FROM purchaseorder
 WHERE existsNode(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]')
 = 1;

 COUNT(*)

 21

This query checks if the XML document contains a root element PurchaseOrder that contains a LineItems element whose third LineItem element contains a Part element with Id attribute value 715515009058:

SELECT count(*)
 FROM purchaseorder
 WHERE existsNode(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[3]/Part[@Id="715515009058"]')
 = 1;

 COUNT(*)

 1
1 row selected.

This query uses SQL function extractValue to limit the results of the SELECT statement to rows where the text node associated with the User element starts with the letter S. XPath 1.0 does not include support for LIKE-based queries:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE extractValue(OBJECT_VALUE, '/PurchaseOrder/User') LIKE 'S%';

Reference

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SKING-20021009123336321PDT
...
36 rows selected.

This query uses extractValue to perform a join based on the values of a node in an XML document and data in another table:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder, hr.employees e
 WHERE extractValue(OBJECT_VALUE, '/PurchaseOrder/User') = e.email
 AND e.employee_id = 100;

Reference

SKING-20021009123336321PDT
SKING-20021009123337153PDT
SKING-20021009123335560PDT
SKING-20021009123336952PDT
SKING-20021009123336622PDT
SKING-20021009123336822PDT
SKING-20021009123336131PDT
SKING-20021009123336392PDT
SKING-20021009123337974PDT
SKING-20021009123338294PDT
SKING-20021009123337703PDT
SKING-20021009123337383PDT
SKING-20021009123337503PDT

13 rows selected.

Using EXTRACTVALUE and EXISTSNODE in a WHERE Clause

The examples in the preceding section demonstrate how SQL function extractValue can be used in a SELECT list to return information contained in an XML document. You can also use these functions in a WHERE clause to determine whether or not a document must be included in the result set of a SELECT, UPDATE, or DELETE statement.

You can use SQL function existsNode to restrict the result set to documents containing nodes that match an XPath expression. You can use SQL function extractValue when joining across multiple tables based on the value of one or more nodes in the XML document. Also, you can use use extractValue whenever specifying a condition is easier with SQL (for example, using keyword LIKE for pattern matching) than with XPath.

Example 3-25 Limiting the Results of a SELECT Using EXISTSNODE in a WHERE Clause

This query shows how to use SQL function existsNode to limit the results of the SELECT statement to rows where the text node associated of the User element contains the value SBELL:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[User="SBELL"]') = 1;

Reference

SBELL-20021009123336231PDT
SBELL-20021009123336331PDT
SBELL-20021009123337353PDT
SBELL-20021009123338304PDT
SBELL-20021009123338505PDT
SBELL-20021009123335771PDT
SBELL-20021009123335280PDT
SBELL-2002100912333763PDT
SBELL-2002100912333601PDT
SBELL-20021009123336362PDT
SBELL-20021009123336532PDT
SBELL-20021009123338204PDT
SBELL-20021009123337673PDT

13 rows selected.

Example 3-26 Finding the Reference for any PurchaseOrder Using extractValue and existsNode

This example uses SQL functions extractValue and existsNode to find the Reference element for any PurchaseOrder element whose first LineItem element contains an order for the item with Id 715515009058. Function existsNode is used in the WHERE clause to determine which rows are selected, and extractValue is used in the SELECT list to control which part of the selected documents appears in the result.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE existsNode(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[1]/Part[@Id="715515009058"]')
 = 1;

Reference

SBELL-2002100912333601PDT

1 row selected.

Using XMLSEQUENCE to Perform SQL Operations on XMLType Fragments

Example 3-21 demonstrates how the SQL function extract returns an XMLType value containing the node or nodes that matched the supplied XPath expression. When the document contains multiple nodes that match the supplied XPath expression, extract returns an XML fragment containing all of the matching nodes. A fragment differs from a document in that it has no single root element.

This kind of result is common when extract is used to retrieve the set of elements contained in a collection (in this case each node in the fragment will be of the same type), or when the XPath expression terminates in a wildcard (where the nodes in the fragment can be of different types).

SQL function XMLSequence can perform SQL operations on an XMLType value that contains a fragment. It generates a collection of XMLType objects from an XMLType containing a fragment. The collection contains one XMLType value for each of the top-level elements in the fragment. This collection of XMLType objects can then be converted into a virtual table using the SQL table function. Converting the fragment into a virtual table makes it easier to use SQL to process the results of an extract function call that returns multiple nodes.

Example 3-27 Using XMLSEQUENCE and TABLE to View Description Nodes

This example demonstrates how to access the text nodes for each Description element in the PurchaseOrder document.

An initial attempt uses SQL function extractValue. It fails, because there is more than one Description element in the document.

SELECT extractValue(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description')
 FROM purchaseorder p
 WHERE existsNode(p.OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;
SELECT extractValue(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description')
 *
ERROR at line 1:
ORA-01427: single-row subquery returns more than one row

A second attempt uses SQL function extract to access the required values. This returns the set of Description nodes as a single XMLType object containing a fragment consisting of the three Description nodes. This is better, but not ideal, because the objective is to perform further SQL-based processing on the values in the text nodes.

SELECT extract(p.OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem/Description')
 FROM purchaseorder p
 WHERE existsNode(p.OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACT(P.OBJECT_VALUE,'/PURCHASEORDER/LINEITEMS/LINEITEM/DESCRIPTION')
--
<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

1 row selected.

To use SQL to process the contents of the text nodes, you must convert the collection of Description nodes into a virtual table using SQL functions XMLSequence and table. These functions convert the three Description nodes retuned by extract into a virtual table consisting of three XMLType objects, each of which contains a single Description element.

SELECT value(des)
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) des
 WHERE existsNode(p.OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

VALUE(DES)
--
<Description>A Night to Remember</Description>
<Description>The Unbearable Lightness Of Being</Description>
<Description>Sisters</Description>

3 rows selected.

Since each XMLType value in the virtual table contains a single Description element, the SQL function extractValue can be used to access the value of the text node associated with the each Description element.

SELECT extractValue(value(des), '/Description')
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) des
 WHERE existsNode(p.OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACTVALUE(VALUE(DES),'/DESCRIPTION')
--
A Night to Remember
The Unbearable Lightness Of Being
Sisters

3 rows selected.

	
Note:

There is a correlated join between the results of the SQL function table and the row operated on by the SQL function extract. The table that provides input to extract must appear before the table expression in the FROM list. The correlated join ensures a one-to-many (1:N) relationship between the rows generated by the SQL function table and the row containing the value that is processed by extract.

Example 3-28 Counting the Number of Elements in a Collection Using XMLSEQUENCE

This example demonstrates how to use SQL function XMLSequence to count the number of elements in a collection. It also shows how SQL keywords such as ORDER BY and GROUP BY can be applied to results returned by the SQL function extractValue.

In this case, the query first locates the set of XML documents that match the XPath argument to SQL function existsNode. It then generates a virtual table containing the set of LineItem nodes for each document selected. Finally, it counts the number of LineItem nodes for each PurchaseOrder document. The correlated join ensures that the GROUP BY correctly determines which LineItem elements belong to which PurchaseOrder element.

SELECT extractValue(p.OBJECT_VALUE, '/PurchaseOrder/Reference'),
 count(*)
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem'))) d
 WHERE existsNode(p.OBJECT_VALUE, '/PurchaseOrder[User="SBELL"]') = 1
 GROUP BY extractValue(p.OBJECT_VALUE, '/PurchaseOrder/Reference')
 ORDER BY extractValue(p.OBJECT_VALUE, '/PurchaseOrder/Reference');

EXTRACTVALUE(P.OBJECT_VALUE,'/ COUNT(*)
------------------------------ ----------
SBELL-20021009123335280PDT 20
SBELL-20021009123335771PDT 21
SBELL-2002100912333601PDT 3
SBELL-20021009123336231PDT 25
SBELL-20021009123336331PDT 10
SBELL-20021009123336362PDT 15
SBELL-20021009123336532PDT 14
SBELL-20021009123337353PDT 10
SBELL-2002100912333763PDT 21
SBELL-20021009123337673PDT 10
SBELL-20021009123338204PDT 14
SBELL-20021009123338304PDT 24
SBELL-20021009123338505PDT 20

13 rows selected.

Example 3-29 Counting the Number of Child Elements in an Element Using XMLSEQUENCE

The following example demonstrates how to use SQL function XMLSequence to count the number of child elements of a given element. The XPath expression passed to the SQL function extract contains a wildcard (*) that matches the elements that are direct descendants of a PurchaseOrder element. The XMLType value returned by extract contains the set of nodes that match the XPath expression. Function XMLSequence transforms each top-level element in the fragment into a separate XMLType object, and the SQL function table converts the collection returned by XMLSequence into a virtual table. Counting the number of rows in the virtual table provides the number of child elements in the PurchaseOrder element.

SELECT count(*)
 FROM purchaseorder p,
 table(XMLSequence(extract(p.OBJECT_VALUE, '/PurchaseOrder/*'))) n
 WHERE existsNode(p.OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

 COUNT(*)

 9

1 row selected.

Relational Access to XML Content Stored in Oracle XML DB Using Views

The XML-specific functions and methods provided by Oracle XML DB can be used to create conventional relational views that provide relational access to XML content. This allows programmers, tools, and applications that understand Oracle Database, but not XML, to work with XML content stored in the database.

The relational views can use XPath expressions and SQL functions such as extractValue to define a mapping between columns in the view and nodes in the XML document. For performance reasons this approach is recommended when XML documents are stored as XMLType instead of CLOB; that is, when they are stored using object-relational storage techniques.

Example 3-30 Creating Relational Views On XML Content

This example shows how to create a simple relational view that exposes XML content:

CREATE OR REPLACE VIEW
 purchaseorder_master_view(reference, requestor, userid, costcenter,
 ship_to_name, ship_to_address, ship_to_phone,
 instructions)
AS SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference'),
 extractValue(OBJECT_VALUE, '/PurchaseOrder/Requestor'),
 extractValue(OBJECT_VALUE, '/PurchaseOrder/User'),
 extractValue(OBJECT_VALUE, '/PurchaseOrder/CostCenter'),
 extractValue(OBJECT_VALUE, '/PurchaseOrder/ShippingInstructions/name'),
 extractValue(OBJECT_VALUE,
 '/PurchaseOrder/ShippingInstructions/address'),
 extractValue(OBJECT_VALUE,
 '/PurchaseOrder/ShippingInstructions/telephone'),
 extractValue(OBJECT_VALUE, '/PurchaseOrder/SpecialInstructions')
 FROM purchaseorder;

View created.

DESCRIBE purchaseorder_master_view

Name Null? Type

REFERENCE VARCHAR2(30 CHAR)
REQUESTOR VARCHAR2(128 CHAR)
USERID VARCHAR2(10 CHAR)
COSTCENTER VARCHAR2(4 CHAR)
SHIP_TO_NAME VARCHAR2(20 CHAR)
SHIP_TO_ADDRESS VARCHAR2(256 CHAR)
SHIP_TO_PHONE VARCHAR2(24 CHAR)
INSTRUCTIONS VARCHAR2(2048 CHAR)

This example creates view purchaseorder_master_view. There is one row in the view for each row in table purchaseorder.

The CREATE OR REPLACE VIEW statement defines the set of columns that make up the view. The SELECT statement uses XPath expressions and function extractValue to map the nodes in the XML document to the columns defined by the view. This technique can be used when there is a one-to-one (1:1) relationship between documents in the XMLType table and the rows in the view.

Example 3-31 Using a View to Access Individual Members of a Collection

This example shows how to use SQL functions extract and XMLSequence for a one-to-many (1:N) relationship between the documents in the XMLType table and rows in the view. This situation arises when the view must provide access to the individual members of a collection and expose the members of a collection as a set of rows.

CREATE OR REPLACE VIEW
 purchaseorder_detail_view(reference, itemno, description,
 partno, quantity, unitprice)
AS SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference'),
 extractValue(value(ll), '/LineItem/@ItemNumber'),
 extractValue(value(ll), '/LineItem/Description'),
 extractValue(value(ll), '/LineItem/Part/@Id'),
 extractValue(value(ll), '/LineItem/Part/@Quantity'),
 extractValue(value(ll), '/LineItem/Part/@UnitPrice')
 FROM purchaseorder p,
 table(XMLSequence(extract(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem'))) ll;

View created.

DESCRIBE purchaseorder_detail_view
Name Null? Type
--
REFERENCE VARCHAR2(30 CHAR)
ITEMNO NUMBER(38)
DESCRIPTION VARCHAR2(1024)
PARTNO VARCHAR2(56)
QUANTITY NUMBER(12,2)
UNITPRICE NUMBER(8,4)

This example creates a view called purchaseorder_detail_view. There will be one row in the view for each LineItem element that occurs in the XML documents stored in table purchaseorder.

The CREATE OR REPLACE VIEW statement defines the set of columns that make up the view. The SELECT statement uses extract to access the set of LineItem elements in each PurchaseOrder document. It then uses SQL functions XMLSequence and table to create a virtual table that contains one XML document for each LineItem in the purchaseorder table.

The XPath expressions passed to SQL function extractValue are used to map the nodes in the LineItem documents to the columns defined by the view. The Reference element included in the view to create a foreign key that can used to joins rows in purchaseorder_detail_view to the corresponding row in purchaseorder_master_view. The correlated join in the CREATE VIEW statement ensures that the one-to-many (1:N) relationship between the Reference element and the associated LineItem elements is maintained when the view is accessed.

As can be seen from the output of the DESCRIBE statement, both views appear to be a standard relational views. Since the XMLType table referenced in the CREATE OR REPLACE VIEW statements is based on an XML schema, Oracle XML DB can determine the datatypes of the columns in the views from the information contained in the XML schema.

The following examples show some of the benefits provided by creating relational views over XMLType tables and columns.

Example 3-32 SQL queries on XML Content Using Views

This example uses a simple query against the master view. A conventional SELECT statement selects rows where the userid column starts with S.

SELECT reference, costcenter, ship_to_name
 FROM purchaseorder_master_view
 WHERE userid LIKE 'S%';

REFERENCE COST SHIP_TO_NAME
------------------------------ ---- --------------
SBELL-20021009123336231PDT S30 Sarah J. Bell
SBELL-20021009123336331PDT S30 Sarah J. Bell
SKING-20021009123336321PDT A10 Steven A. King
...
36 rows selected.

The following query is based on a join between the master view and the detail view. A conventional SELECT statement finds the purchaseorder_detail_view rows where the value of the itemno column is 1 and the corresponding purchaseorder_master_view row contains a userid column with the value SBELL.

SELECT d.reference, d.itemno, d.partno, d.description
 FROM purchaseorder_detail_view d, purchaseorder_master_view m
 WHERE m.reference = d.reference
 AND m.userid = 'SBELL'
 AND d.itemno = 1;

REFERENCE ITEMNO PARTNO DESCRIPTION
------------------------------ --
SBELL-20021009123336231PDT 1 37429165829 Juliet of the Spirits
SBELL-20021009123336331PDT 1 715515009225 Salo
SBELL-20021009123337353PDT 1 37429141625 The Third Man
SBELL-20021009123338304PDT 1 715515009829 Nanook of the North
SBELL-20021009123338505PDT 1 37429122228 The 400 Blows
SBELL-20021009123335771PDT 1 37429139028 And the Ship Sails on
SBELL-20021009123335280PDT 1 715515011426 All That Heaven Allows
SBELL-2002100912333763PDT 1 715515010320 Life of Brian - Python
SBELL-2002100912333601PDT 1 715515009058 A Night to Remember
SBELL-20021009123336362PDT 1 715515012928 In the Mood for Love
SBELL-20021009123336532PDT 1 37429162422 Wild Strawberries
SBELL-20021009123338204PDT 1 37429168820 Red Beard
SBELL-20021009123337673PDT 1 37429156322 Cries and Whispers

13 rows selected.

Because the views look and act like standard relational views they can be queried using standard relational syntax. No XML-specific syntax is required in either the query or the generated result set.

By exposing XML content as relational data, Oracle XML DB allows advanced database features, such as business intelligence and analytic capabilities, to be applied to XML content. Even though the business intelligence features themselves are not XML-aware, the XML-SQL duality provided by Oracle XML DB allows these features to be applied to XML content.

Example 3-33 Querying XML Using Views of XML Content

This example demonstrates how to use relational views over XML content to perform business-intelligence queries on XML documents. The query selects PurchaseOrder documents that contain orders for titles identified by UPC codes 715515009058 and 715515009126.

SELECT partno, count(*) "No of Orders", quantity "No of Copies"
 FROM purchaseorder_detail_view
 WHERE partno IN (715515009126, 715515009058)
 GROUP BY rollup(partno, quantity);

PARTNO No of Orders No of Copies
-------------- ------------ ------------
715515009058 7 1
715515009058 9 2
715515009058 5 3
715515009058 2 4
715515009058 23
715515009126 4 1
715515009126 7 3
715515009126 11
 34
9 rows selected.

The query determines the number of copies of each title that are ordered in each PurchaseOrder document. For part number 715515009126, there are four PurchaseOrder documents where one copy of the item is ordered and seven PurchaseOrder documents where three copies of the item are ordered.

	
See Also:

	
Chapter 4, "XMLType Operations" for a description of XMLType datatype and functions

	
Appendix B, "XPath and Namespace Primer" for an introduction to the W3C XPath Recommendation

Updating XML Content Stored in Oracle XML DB

Oracle XML DB allows update operations to take place on XML content. Update operations can either replace the entire contents of a document or parts of a document. The ability to perform partial updates on XML documents is very powerful, particularly when trying to make small changes to large documents, as it can significantly reduce the amount of network traffic and disk input-output required to perform the update.

SQL function updateXML enables partial update of an XML document stored as an XMLType value. It allows multiple changes to be made to the document in a single operation. Each change consists of an XPath expression that identifies a node to be updated, and the new value for the node.

Example 3-34 Updating XML Content Using UPDATEXML

This example uses SQL function updateXML to update the text node associated with the User element.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACTVAL

SBELL

1 row selected.

UPDATE purchaseorder
SET OBJECT_VALUE = updateXML(OBJECT_VALUE, '/PurchaseOrder/User/text()','SKING')
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

1 row updated.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACTVAL

SKING

1 row selected.

Example 3-35 Replacing an Entire Element Using UPDATEXML

This example uses SQL function updateXML to replace an entire element within the XML document. The XPath expression references the element, and the replacement value is passed as an XMLType object.

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem[1]')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACT(OBJECT_VALUE,'/PURCHASEORDER/LINEITEMS/LINEITEM[1]')
--
<LineItem ItemNumber="1">
 <Description>A Night to Remember</Description>
 <Part Id="715515009058" UnitPrice="39.95" Quantity="2"/>
</LineItem>

1 row selected.

UPDATE purchaseorder
 SET OBJECT_VALUE =
 updateXML(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[1]',
 XMLType('<LineItem ItemNumber="1">
 <Description>The Lady Vanishes</Description>
 <Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
 </LineItem>'))
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

1 row updated.

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem[1]')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACT(OBJECT_VALUE, '/PURCHASEORDER/LINEITEMS/LINEITEM[1]')
--
<LineItem ItemNumber="1">
 <Description>The Lady Vanishes</Description>
 <Part Id="37429122129" UnitPrice="39.95" Quantity="1"/>
</LineItem>

1 row selected.

Example 3-36 Incorrectly Updating a Node That Occurs Multiple Times In a Collection

This example show a common error that occurs when using SQL function updateXML to update a node occurring multiple times in a collection. The UPDATE statement sets the value of the text node of a Description element to "The Wizard of Oz", where the current value of the text node is "Sisters". The statement includes an existsNode expression in the WHERE clause that identifies the set of nodes to be updated.

SELECT extractValue(value(li), '/Description')
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) li
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACTVALUE(VALUE(LI),'/DESCRIPTION')

The Lady Vanishes
The Unbearable Lightness Of Being
Sisters

3 rows selected.

UPDATE purchaseorder
 SET OBJECT_VALUE =
 updateXML(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description/text()',
 'The Wizard of Oz')
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem[Description="Sisters"]')
 = 1
 AND existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

1 row updated.

SELECT extractValue(value(li), '/Description')
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) li
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACTVALUE(VALUE(LI),'/DESCRIPTION')
--
The Wizard of Oz
The Wizard of Oz
The Wizard of Oz

3 rows selected.

Instead of updating the required node, SQL function updateXML updates the values of all text nodes that belong to the Description element. This is the correct behavior, but it is not what was intended. The WHERE clause can only be used to identify which documents must be updated, not which nodes within the document must be updated.

After the document has been selected, the XPath expression passed to updateXML determines which nodes within the document must be updated. In this case, the XPath expression identified all three Description nodes, so all three of the associated text nodes were updated. See Example 3-37 for the correct way to update the nodes.

Example 3-37 Correctly Updating a Node That Occurs Multiple Times In a Collection

To correctly use SQL function updateXML to update a node that occurs multiple times within a collection, use the XPath expression passed to updateXML to identify which nodes in the XML document to update. By introducing the appropriate predicate into the XPath expression, you can limit which nodes in the document are updated. This example shows the correct way of updating one node within a collection:

SELECT extractValue(value(des), '/Description')
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) des WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

EXTRACTVALUE(OBJECT_VALUE,'/DESCRIPTION')
--
A Night to Remember
The Unbearable Lightness Of Being
Sisters
3 rows selected.

UPDATE purchaseorder
 SET OBJECT_VALUE =
 updateXML(
 OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description[text()="Sisters"]/text()',
 'The Wizard of Oz')
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')
 = 1;

1 row updated.

SELECT extractValue(value(des), '/Description')
 FROM purchaseorder p,
 table(XMLSequence(
 extract(p.OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) des
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

EXTRACTVALUE(VALUE(L),'/DESCRIPTION')

A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

Example 3-38 Changing Text Node Values Using UPDATEXML

SQL function updateXML allows multiple changes to be made to the document in one statement. This example shows how to change the values of text nodes belonging to the User and SpecialInstructions elements in one statement.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/CostCenter') "Cost Center",
 extractValue(OBJECT_VALUE,
 '/PurchaseOrder/SpecialInstructions') "Instructions"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

Cost Center Instructions
------------ ------------
S30 Air Mail

1 row selected.

This single UPDATE SQL statement changes the User and SpecialInstruct element text node values:

UPDATE purchaseorder
 SET OBJECT_VALUE =
 updateXML(OBJECT_VALUE,
 '/PurchaseOrder/CostCenter/text()',
 'B40',
 '/PurchaseOrder/SpecialInstructions/text()',
 'Priority Overnight Service')
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

1 row updated.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/CostCenter') "Cost Center",
 extractValue(OBJECT_VALUE,
 '/PurchaseOrder/SpecialInstructions') "Instructions"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

Cost Center Instructions
------------ --------------------------
B40 Priority Overnight Service

1 row selected.

Updating XML Schema-Based and Non-Schema-Based XML Documents

The way SQL functions like updateXML modify an XML document is determined mainly by whether or not the XML document is based on an XML schema, and how the XML document is stored:

	
XML documents stored in CLOB values. When a SQL function like updateXML modifies an XML document stored as a CLOB (whether schema-based or not), Oracle XML DB performs the update by creating a Document Object Model (DOM) from the XML document and using DOM API methods to modify the appropriate XML data. After modification, the updated DOM is returned back to the underlying CLOB object.

	
XML documents stored object-relationally. When a SQL function like updateXML modifies a schema-based XML document that is stored object-relationally, Oracle XML DB can use XPath rewrite to modify the underlying object in place. This is a partial update. Partial updates translate the XPath argument to the SQL function into an equivalent SQL operation. The SQL operation then directly modifies the attributes of underlying objects. Such a partial update can be much quicker than a DOM-based update. This can make a significant difference when executing a SQL statement that applies a SQL function like updateXML to a large number of documents.

	
See Also:

Chapter 6, "XPath Rewrite"

Namespace Support in Oracle XML DB

Namespace support is a key feature of the W3C XML Recommendations. Oracle XML DB fully supports the W3C Namespace Recommendation. All XMLType methods and XML-specific SQL functions work with XPath expressions that include namespace prefixes. All methods and functions accept an optional namespace argument that provides the namespace declarations for correctly resolving namespace prefixes used in XPath expressions. The namespace parameter is required whenever the provided XPath expression contains namespace prefixes. When the namespace parameter is not provided, Oracle XML DB makes the following assumptions about the XPath expression:

	
If the content of the XMLType is not based on a registered XML schema any term in the XPath expression that does include a namespace prefix is assumed to be in the noNamespace namespace.

	
If the content of the XMLType is based on a registered XML schema any term in the XPath expression that does not include a namespace prefix is assumed to be in the targetNamespace declared by the XML schema. If the XML schema does not declare a targetnamespace, this defaults to the noNamespace namespace.

	
When the namespace parameter is provided the parameter must provide an explicit declaration for the default namespace in addition to the prefixed namespaces, unless the default namespace is the noNamespace namespace.

Failing to correctly define the namespaces required to resolve XPath expressions results in XPath-based operations not working as expected. When the namespace declarations are incorrect or missing, the result of the operation is normally null, rather than an error. To avoid confusion, Oracle strongly recommends that you always pass the set of namespace declarations, including the declaration for the default namespace, when any namespaces other than the noNamespace namespace are present in either the XPath expression or the target XML document.

Processing XMLType Methods and XML-Specific SQL Functions

Oracle XML DB processes SQL functions such as extract, extractValue, and existsNode — and their equivalent XMLType methods — using DOM-based or SQL-based techniques:

	
DOM-Based XMLType Processing (Functional Evaluation). Oracle XML DB performs the required processing by constructing a DOM from the contents of the XMLType object. It uses methods provided by the DOM API to perform the required operation on the DOM. If the operation involves updating the DOM tree, then the entire XML document has to be written back to disc when the operation is completed. The process of using DOM-based operations on XMLType data is referred to as functional evaluation.

The advantage of functional evaluation is that it can be used regardless of whether the XMLType is stored using structured or unstructured storage techniques The disadvantage of functional evaluation is that it much more expensive than XPath rewrite, and does not scale across large numbers of XML documents.

	
SQL-Based XMLType Processing (XPath rewrite). Oracle XML DB constructs a SQL statement that performs the processing required to complete the function or method. The SQL statement works directly against the object-relational data structures that underly a schema-based XMLType. This process is referred to as XPath rewrite. See Chapter 6, "XPath Rewrite".

The advantage of XPath rewrite is that it allows Oracle XML DB to evaluate XPath-based SQL functions and methods at near relational speeds. This allows these operations to scale across large numbers of XML documents. The disadvantage of XPath rewrite is that since it relies on direct access and updating the objects used to store the XML document, it can only be used when the XMLType is stored using XML schema-based object-relational storage techniques.

Understanding and Optimizing XPath Rewrite

XPath rewrite improves the performance of SQL statements containing XPath-based functions by converting the functions into conventional relational SQL statements. This insulates the database optimizer from having to understand the XPath notation and the XML data model. The database optimizer processes the rewritten SQL statement in the same manner as any other SQL statement. In this way, it can derive an execution plan based on conventional relational algebra. This results in the execution of SQL statements with XPath-based functions with near relational performance.

When Can XPath Rewrite Occur?

For XPath rewrite to take place the following conditions must be satisfied:

	
The XMLType column or table containing the XML documents must be based on a registered XML schema.

	
The XMLType column or table must be stored using structured (object-relational) storage techniques.

	
It must be possible to map the nodes referenced by the XPath expression to attributes of the underlying SQL object model.

Understanding the concept of XPath rewrite and the conditions under which XPath rewrite takes place is key to developing Oracle XML DB applications that deliver satisfactory levels of scalability and performance.

	
See Also:

Chapter 6, "XPath Rewrite"

Using EXPLAIN PLAN to Tune XPath Rewrites

XPath rewrite on its own cannot guarantee scalable and performant applications. The performance of SQL statements generated by XPath rewrite is ultimately determined by the available indexes and the way data is stored on disk. Also, as with any other SQL application, a DBA must monitor the database and optimize storage and indexes if the application is to perform well.

The good news, from a DBA perspective, is that this information is nothing new. The same skills are required to tune an XML application as for any other database application. All of the tools that DBAs typically use with SQL-based applications can be applied to XML-based applications using Oracle XML DB functions.

Example 3-39 Using EXPLAIN PLAN to Analyze the Selection of PurchaseOrders

This example shows how to use an EXPLAIN PLAN to look at the execution plan for selecting the set of PurchaseOrders created by user SBELL.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[User="SBELL"]') = 1;

Explained.

PLAN_TABLE_OUTPUT
--
Plan hash value: 841749721

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 24 | 5 (0)| 00:00:01|
|* 1 | TABLE ACCESS FULL| PURCHASEORDER | 1 | 24 | 5 (0)| 00:00:01|
--

Predicate Information (identified by operation id):

 1 - filter("PURCHASEORDER"."SYS_NC00022$"='SBELL')

Note----- - dynamic sampling used for this statement
17 rows selected.

Using Indexes to Improve Performance of XPath-Based Functions

Oracle XML DB supports the creation of three kinds of index on XML content:

	
Text-based indexes – These can be created on any XMLType table or column.

	
Function-based indexes – These can be created on any XMLType table or column.

	
B-Tree indexes – When the XMLType table or column is based on structured storage techniques, conventional B-Tree indexes can be created on underlying SQL types.

Indexes are typically created by using SQL function extractValue, although it is also possible to create indexes based on other functions such as existsNode. During the index creation process Oracle XML DB uses XPath rewrite to determine whether it is possible to map between the nodes referenced in the XPath expression used in the CREATE INDEX statement and the attributes of the underlying SQL types. If the nodes in the XPath expression can be mapped to attributes of the SQL types, then the index is created as a conventional B-Tree index on the underlying SQL objects. If the XPath expression cannot be restated using object-relational SQL then a function-based index is created.

Example 3-40 Creating an Index on a Text Node

This example shows creation of index purchaseorder_user_index on the value of the User element text node.

CREATE INDEX purchaseorder_user_index
 ON purchaseorder(extractValue(OBJECT_VALUE, '/PurchaseOrder/User'));

At first glance, the index appears to be a function-based index. However, where the XMLType table or column being indexed is based on object-relational storage, XPath rewrite determines whether the index can be re-stated as an index on the underlying SQL types. In this example, the CREATE INDEX statement results in the index being created on the userid attribute of the purchaseorder_t object.

The following EXPLAIN PLAN is generated when the same query used in Example 3-39 is executed after the index has been created. It shows that the query plan will make use of the newly created index. The new execution plan is much more scalable —  compare the EXPLAIN PLAN of Example 3-39.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[User="SBELL"]') = 1;

Explained.

PLAN_TABLE_OUTPUT
--
Plan hash value: 713050960

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	24	3 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	24	3 (0)	00:00:01
* 2	INDEX RANGE SCAN	PURCHASEORDER_USER_INDEX	1		1 (0)	00:00:01
--

Predicate Information (identified by operation id):

 2 - access("PURCHASEORDER"."SYS_NC00022$"='SBELL')

18 rows selected.

One key benefit of the relational database is that you do not need to change your application logic when the indexes change. This is also true for XML applications that leverage Oracle XML DB capabilities. The optimizer automatically uses the index whenever it is appropriate.

Optimizing Operations on Collections

The majority of XML documents contain collections of repeating elements. For Oracle XML DB to be able to efficiently process the collection members, it is important that the storage model for managing the collection provide an efficient way of accessing the individual members of the collection. Selecting the correct storage structure makes it possible to index elements within the collection and perform direct operations on individual elements within the collection.

Oracle XML DB offers the following ways to manage the members of a collection:

	
When a collection is stored as a CLOB value, you cannot directly access its members.

	
When a varray is stored as a LOB, you cannot directly access members of the collection.

Storing the members as XML text in a CLOB value means that any operation on the collection requires parsing the contents of the CLOB and then using functional evaluation to perform the required operation.

Converting the collection into a set of SQL objects that are serialized into a LOB removes the need to parse the documents. However any operations on the members of the collection still require that the collection be loaded from disk into memory before the necessary processing can take place.

	
When a varray is stored as a nested table, you can directly access members of the collection.

	
When a varray is stored as an XMLType value, you can directly access members of the collection.

In the latter two cases (nested table and XMLType), each member of the varray becomes a row in a table, so you can access it directly though SQL.

Using Indexes to Tune Queries on Collections Stored as Nested Tables

Example 3-41 shows the execution plan for a query to find the Reference element from any document that contains an order for part number 717951002372 (Part element with an Id attribute of value 717951002372).

Example 3-41 EXPLAIN PLAN For a Selection of LineItem Elements

In this example, the collection of LineItem elements has been stored as rows in the index-organized, nested table lineitem_table.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem/Part[@Id="717951002372"]') = 1;

Explained.

PLAN_TABLE_OUTPUT

Plan hash value: 47905112

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		22	14300	10 (10)	00:00:01
1	NESTED LOOPS		22	14300	10 (10)	00:00:01
2	SORT UNIQUE		22	2640	8 (0)	00:00:01
* 3	INDEX UNIQUE SCAN	LINEITEM_TABLE_DATA	22	2640	8 (0)	00:00:01
* 4	INDEX RANGE SCAN	LINEITEM_PART_INDEX	9		2 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	530	1 (0)	00:00:01
* 6	INDEX UNIQUE SCAN	LINEITEM_TABLE_MEMBERS	1		0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("SYS_NC00011$"='717951002372')
 4 - access("SYS_NC00011$"='717951002372')
 6 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")

20 rows selected.

The execution plan shows that the query will be resolved by performing a full scan of the index that contains the contents of the nested table. Each time an entry is found that matches the XPath expression passed to existsNode, the parent row is located using the value of pseudocolumn NESTED_TABLE_ID. Since the nested table is an Indexed Organized Table (IOT), this plan effectively resolves the query by a full scan of lineitem_table. This plan might be acceptable if there are only a few hundred documents in the purchaseorder table, but it would be unacceptable if there are thousands or millions of documents in the table.

To improve the performance of this query, create an index that allows direct access to pseudocolumn NESTED_TABLE_ID, given the value of the Id attribute. Unfortunately, Oracle XML DB does not allow indexes on collections to be created using XPath expressions. To create the index, you must understand the structure of the SQL object used to manage the LineItem elements. Given this information, you can create the required index using conventional object-relational SQL.

Here, the LineItem element is stored as an instance of the lineitem_t object. The Part element is stored as an instance of the SQL type part_t. The Id attribute is mapped to the part_number attribute. Given this information, you can create a composite index on the part_number attribute and pseudocolumn NESTED_TABLE_ID that will allow direct access to the purchaseorder documents that contain LineItem elements that reference the required part.

Example 3-42 Creating an Index for Direct Access to a Nested Table

This example uses object-relational SQL to create the required index:

CREATE INDEX lineitem_part_index
 ON lineitem_table l(l.part.part_number, l.NESTED_TABLE_ID);

Index created.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference') "Reference"
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder/LineItems/LineItem/Part[@Id="717951002372"]') = 1;

Explained.

PLAN_TABLE_OUTPUT

Plan hash value: 497281434

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		22	1012	4 (25)	00:00:01
1	NESTED LOOPS		22	1012	4 (25)	00:00:01
2	SORT UNIQUE		22	418	2 (0)	00:00:01
* 3	INDEX RANGE SCAN	LINEITEM_PART_INDEX	22	418	2 (0)	00:00:01
4	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER	1	27	1 (0)	00:00:01
* 5	INDEX UNIQUE SCAN	LINEITEM_TABLE_MEMBERS	1		0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("SYS_NC00011$"='717951002372')
 5 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")

18 rows selected.

The EXPLAIN PLAN output shows that the same query as Example 3-42 will now make use of the newly created index. The query is resolved by using index lineitem_part_index to determine which documents in the purchaseorder table satisfy the condition in the XPath expression argument to function existsNode. This query is much more scalable with the indexes.

The query syntax has not changed. XPath rewrite has allowed the optimizer to analyze the query and this analysis determines that the new indexes purchaseorder_user_index and lineitem_part_index provide a more efficient way to resolve the queries.

EXPLAIN PLAN with ACL-Based Security Enabled: SYS_CHECKACL() Filter

The EXPLAIN PLAN output for a query on an XMLType table created as a result of calling PL/SQL procedure DBMS_XMLSCHEMA.register_schema contains a filter similar to the following:

3 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype(''<privilege
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd
 DAV:http://xmlns.oracle.com/xdb/dav.xsd">
 <read-properties/><read-contents/></privilege>''))=1)

This shows that ACL-based security is implemented for this table. In this example, the filter checks that the user performing the SQL query has read-contents privilege on each of the documents to be accessed.

Oracle XML DB Repository uses an ACL-based security mechanism that allows control of access to XML content document by document, rather than table by table. When XML content is accessed using a SQL statement, the SYS_CHECKACL predicate is automatically added to the WHERE clause to ensure that the security defined is enforced at the SQL level.

Enforcing ACL-based security adds overhead to the SQL query. If ACL-based security is not required, use procedure disable_hierarchy in package DBMS_XDBZ to turn off ACL checking. After calling this procedure, the SYS_CHECKACL filter no longer appears in the output generated by EXPLAIN PLAN.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information on procedure DBMS_XDBZ.disable_hierarchy

Example 3-43 EXPLAIN PLAN Generated When XPath Rewrite Does Not Occur

This example shows the kind of EXPLAIN PLAN output generated when Oracle XML DB cannot perform XPath rewrite. Function existsNode appears in the EXPLAIN output (line 3), indicating that the query will not be rewritten.

Predicate Information (identified by operation id):

 1 - access("NESTED_TABLE_ID"=:B1)
 2 - access("NESTED_TABLE_ID"=:B1)
 3 - filter(EXISTSNODE(SYS_MAKEXML('C0A5497E8DCF110BE034080020E5CF39',
 3044, "SYS_ALIAS_4". "XMLEXTRA",
 "SYS_ALIAS_4"."XMLDATA"),
 '/PurchaseOrder[User="SBELL"]')
 =1)
 5 - access("NESTED_TABLE_ID"=:B1)
 6 - access("NESTED_TABLE_ID"=:B1)

In this situation, Oracle XML DB constructs a pre-filtered result set based on any other conditions specified in the query WHERE clause. It then filters the rows in this potential result set to determine which rows belong in the actual result set. The filtering is performed by constructing a DOM on each document and performing a functional evaluation (using the methods defined by the DOM API) to determine whether or not each document is a member of the actual result set.

Performance can be poor when there are many documents in the potential result set. However, when the use of additional predicates in the WHERE clause leads to a small number of documents in the potential result set, this may be not be a problem.

XMLType and XPath abstractions make it possible for you to develop applications that are independent of the underlying storage technology. As in conventional relational applications, creating and dropping indexes makes it possible to tune the performance of an application without having to rewrite it.

Accessing Relational Database Content Using XML

Oracle XML DB provides a number of ways to generate XML from relational data. The most powerful and flexible method is based on the evolving SQL/XML standard. This ANSI standard defines a set of SQL functions that allow XML to be generated directly from a SELECT statement. Using these functions, a query can generate one or more XML documents, rather than a traditional tabular result set. The SQL/XML standard functions are allow almost any shape of XML data to be generated. These functions include the following:

	
XMLElement creates a element

	
XMLAttributes adds attributes to an element

	
XMLForest creates forest of elements

	
XMLAgg creates a single element from a collection of elements

	
See Also:

Chapter 16, "Generating XML Data from the Database"

Example 3-44 Using SQL/XML Functions to Generate XML

This query generates an XML document that contains information from the tables departments, locations, countries, employees, and jobs:

SELECT XMLElement(
 "Department",
 XMLAttributes(d.Department_id AS "DepartmentId"),
 XMLForest(d.department_name AS "Name"),
 XMLElement(
 "Location",
 XMLForest(street_address AS "Address",
 city AS "City",
 state_province AS "State",
 postal_code AS "Zip",
 country_name AS "Country")),
 XMLElement(
 "EmployeeList",
 (SELECT XMLAgg(
 XMLElement(
 "Employee",
 XMLAttributes(e.employee_id AS "employeeNumber"),
 XMLForest(
 e.first_name AS "FirstName",
 e.last_name AS "LastName",
 e.email AS "EmailAddress",
 e.phone_number AS "PHONE_NUMBER",
 e.hire_date AS "StartDate",
 j.job_title AS "JobTitle",
 e.salary AS "Salary",
 m.first_name || ' ' || m.last_name AS "Manager"),
 XMLElement("Commission", e.commission_pct)))
 FROM hr.employees e, hr.employees m, hr.jobs j
 WHERE e.department_id = d.department_id
 AND j.job_id = e.job_id
 AND m.employee_id = e.manager_id)))
 AS XML
 FROM hr.departments d, hr.countries c, hr.locations l
 WHERE department_name = 'Executive'
 AND d.location_id = l.location_id
 AND l.country_id = c.country_id;

The query returns the following XML:

XML
--
<Department DepartmentId="90"><Name>Executive</Name><Location><Address>2004
 Charade Rd</Address><City>Seattle</City><State>Washingto
n</State><Zip>98199</Zip><Country>United States of
 America</Country></Location><EmployeeList><Employee
 employeeNumber="101"><FirstNa
me>Neena</FirstName><LastName>Kochhar</LastName><EmailAddress>NKOCHHAR</EmailAdd
ess><PHONE_NUMBER>515.123.4568</PHONE_NUMBER><Start
Date>1989-09-21</StartDate><JobTitle>Administration Vice
 President</JobTitle><Salary>17000</Salary><Manager>Steven King</Manager><Com
mission></Commission></Employee><Employee
 employeeNumber="102"><FirstName>Lex</FirstName><LastName>De
 Haan</LastName><EmailAddress>L
DEHAAN</EmailAddress><PHONE_NUMBER>515.123.4569</PHONE
NUMBER><StartDate>1993-01-13</StartDate><JobTitle>Administration Vice Presiden
t</JobTitle><Salary>17000</Salary><Manager>Steven
 King</Manager><Commission></Commission></Employee></EmployeeList></Department>

This query generates element Department for each row in the departments table.

	
Each Department element contains attribute DepartmentID. The value of DepartmentID comes from the department_id column. The Department element contains sub-elements Name, Location, and EmployeeList.

	
The text node associated with the Name element will come from the name column in the departments table.

	
The Location element will have child elements Address, City, State, Zip, and Country. These elements are constructed by creating a forest of named elements from columns in the locations and countries tables. The values in the columns become the text node for the named element.

	
The Employeelist element will contain an aggregation of Employee Elements. The content of the EmployeeList element is created by a subquery that returns the set of rows in the employees table that correspond to the current department. Each Employee element will contain information about the employee. The contents of the elements and attributes for each Employee element is taken from tables employees and jobs.

The output generated by the SQL/XML functions is not pretty-printed. This allows these functions to avoid creating a full DOM when generating the required output, and reduce the size of the generated document.

This lack of pretty-printing by SQL/XML functions will not matter to most applications. However, it makes verifying the generated output manually more difficult. When pretty-printing is required, invoke XMLType method extract() on the generated document to force construction of a DOM and pretty-print the output. Since invoking extract() forces a conventional DOM to be constructed, this technique should not be used when working with queries that create large documents.

Example 3-45 Forcing Pretty-Printing by Invoking Method extract() on the Result

This example shows how to force pretty-printing by invoking XMLType method extract() on the result generated by SQL function XMLElement.

SELECT XMLElement(
 "Department",
 XMLAttributes(d.department_id AS "DepartmentId"),
 XMLForest(d.department_name AS "Name"),
 XMLElement("Location",
 XMLForest(street_address AS "Address",
 city AS "City",
 state_province AS "State",
 postal_code AS "Zip",
 country_name AS "Country")),
 XMLElement(
 "EmployeeList",
 (SELECT XMLAgg(
 XMLElement(
 "Employee",
 XMLAttributes(e.employee_id AS "employeeNumber"),
 XMLForest(e.first_name AS "FirstName",
 e.last_name AS "LastName",
 e.email AS "EmailAddress",
 e.phone_number AS "PHONE_NUMBER",
 e.hire_date AS "StartDate",
 j.job_title AS "JobTitle",
 e.salary AS "Salary",
 m.first_name || ' ' || m.last_name AS "Manager"),
 XMLElement("Commission", e.commission_pct)))
 FROM hr.employees e, hr.employees m, hr.jobs j
 WHERE e.department_id = d.department_id
 AND j.job_id = e.job_id
 AND m.employee_id = e.manager_id))).extract('/*')
 AS XML
 FROM hr.departments d, hr.countries c, hr.locations l
 WHERE department_name = 'Executive'
 AND d.location_id = l.location_id
 AND l.country_id = c.country_id;

XML
--
<Department DepartmentId="90">
 <Name>Executive</Name>
 <Location>
 <Address>2004 Charade Rd</Address>
 <City>Seattle</City>
 <State>Washington</State>
 <Zip>98199</Zip>
 <Country>United States of America</Country>
 </Location>
 <EmployeeList>
 <Employee employeeNumber="101">
 <FirstName>Neena</FirstName>
 <LastName>Kochhar</LastName>
 <EmailAddress>NKOCHHAR</EmailAddress>
 <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
 <StartDate>1989-09-21</StartDate>
 <JobTitle>Administration Vice President</JobTitle>
 <Salary>17000</Salary>
 <Manager>Steven King</Manager>
 <Commission/>
 </Employee>
 <Employee employeeNumber="102">
 <FirstName>Lex</FirstName>
 <LastName>De Haan</LastName>
 <EmailAddress>LDEHAAN</EmailAddress>
 <PHONE_NUMBER>515.123.4569</PHONE_NUMBER>
 <StartDate>1993-01-13</StartDate>
 <JobTitle>Administration Vice President</JobTitle>
 <Salary>17000</Salary>
 <Manager>Steven King</Manager>
 <Commission/>
 </Employee>
 </EmployeeList>
</Department>

1 row selected.

All SQL/XML functions return XMLType values. This means that you can use them to create XMLType views over conventional relational tables. Example 3-46 illustrates this. XMLType views are object views, so each row in the view must be identified by an object id. The object id must be specified in the CREATE VIEW statement.

Example 3-46 Creating XMLType Views Over Conventional Relational Tables

CREATE OR REPLACE VIEW department_xml OF XMLType
 WITH OBJECT ID (substr(extractValue(OBJECT_VALUE, '/Department/Name'), 1, 128))
 AS
 SELECT XMLElement(
 "Department",
 XMLAttributes(d.department_id AS "DepartmentId"),
 XMLForest(d.department_name AS "Name"),
 XMLElement("Location", XMLForest(street_address AS "Address",
 city AS "City",
 state_province AS "State",
 postal_code AS "Zip",
 country_name AS "Country")),
 XMLElement(
 "EmployeeList",
 (SELECT XMLAgg(
 XMLElement(
 "Employee",
 XMLAttributes (e.employee_id AS "employeeNumber"),
 XMLForest(e.first_name AS "FirstName",
 e.last_name AS "LastName",
 e.email AS "EmailAddress",
 e.phone_number AS "PHONE_NUMBER",
 e.hire_date AS "StartDate",
 j.job_title AS "JobTitle",
 e.salary AS "Salary",
 m.first_name || ' ' ||
 m.last_name AS "Manager"),
 XMLElement("Commission", e.commission_pct)))
 FROM hr.employees e, hr.employees m, hr.jobs j
 WHERE e.department_id = d.department_id
 AND j.job_id = e.job_id
 AND m.employee_id = e.manager_id))).extract('/*')
 AS XML
 FROM hr.departments d, hr.countries c, hr.locations l
 WHERE d.location_id = l.location_id
 AND l.country_id = c.country_id;

View created.

The XMLType view allows relational data to be persisted as XML content. Rows in XMLType views can be persisted as documents in Oracle XML DB Repository. The contents of an XMLType view can be queried, as shown in Example 3-47.

Example 3-47 Querying XMLType Views

This example shows a simple query against an XMLType view. The XPath expression passed to SQL function existsNode restricts the result set to the node that contains the Executive department information.

SELECT OBJECT_VALUE FROM department_xml
 WHERE existsNode(OBJECT_VALUE, '/Department[Name="Executive"]') = 1;

OBJECT_VALUE
--
<Department DepartmentId="90">
 <Name>Executive</Name>
 <Location>
 <Address>2004 Charade Rd</Address>
 <City>Seattle</City>
 <State>Washington</State>
 <Zip>98199</Zip>
 <Country>United States of America</Country>
 </Location>
 <EmployeeList>
 <Employee employeeNumber="101">
 <FirstName>Neena</FirstName>
 <LastName>Kochhar</LastName>
 <EmailAddress>NKOCHHAR</EmailAddress>
 <PHONE_NUMBER>515.123.4568</PHONE_NUMBER>
 <StartDate>1989-09-21</StartDate>
 <JobTitle>Administration Vice President</JobTitle>
 <Salary>17000</Salary>
 <Manager>Steven King</Manager>
 <Commission/>
 </Employee>
 <Employee employeeNumber="102">
 <FirstName>Lex</FirstName>
 <LastName>De Haan</LastName>
 <EmailAddress>LDEHAAN</EmailAddress>
 <PHONE_NUMBER>515.123.4569</PHONE_NUMBER>
 <StartDate>1993-01-13</StartDate>
 <JobTitle>Administration Vice President</JobTitle>
 <Salary>17000</Salary>
 <Manager>Steven King</Manager>
 <Commission/>
 </Employee>
 </EmployeeList>
</Department>

1 row selected.

As can be seen from the following EXPLAIN PLAN output, Oracle XML DB is able to correctly rewrite the XPath in the existsNode expression into a SELECT statement on the underlying relational tables .

EXPLAIN PLAN FOR
SELECT OBJECT_VALUE FROM department_xml
 WHERE existsNode(OBJECT_VALUE, '/Department[Name="Executive"]') = 1;

Explained.

PLAN_TABLE_OUTPUT

Plan hash value: 1218413855

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		27	2160	12 (17)	00:00:01
1	SORT AGGREGATE		1	114		
* 2	HASH JOIN		10	1140	7 (15)	00:00:01
* 3	HASH JOIN		10	950	5 (20)	00:00:01
4	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	10	680	2 (0)	00:00:01
* 5	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	10		1 (0)	00:00:01
6	TABLE ACCESS FULL	JOBS	19	513	2 (0)	00:00:01
7	TABLE ACCESS FULL	EMPLOYEES	107	2033	2 (0)	00:00:01
* 8	FILTER					
* 9	HASH JOIN		27	2160	5 (20)	00:00:01
10	NESTED LOOPS		23	1403	2 (0)	00:00:01
11	TABLE ACCESS FULL	LOCATIONS	23	1127	2 (0)	00:00:01
* 12	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	1	12	0 (0)	00:00:01
13	TABLE ACCESS FULL	DEPARTMENTS	27	513	2 (0)	00:00:01
14	SORT AGGREGATE		1	114		
* 15	HASH JOIN		10	1140	7 (15)	00:00:01
* 16	HASH JOIN		10	950	5 (20)	00:00:01
17	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	10	680	2 (0)	00:00:01
* 18	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	10		1 (0)	00:00:01
19	TABLE ACCESS FULL	JOBS	19	513	2 (0)	00:00:01
20	TABLE ACCESS FULL	EMPLOYEES	107	2033	2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("M"."EMPLOYEE_ID"="E"."MANAGER_ID")
 3 - access("J"."JOB_ID"="E"."JOB_ID")
 5 - access("E"."DEPARTMENT_ID"=:B1)
 8 - filter(EXISTSNODE("XMLTYPE"."EXTRACT"(XMLELEMENT("Department",XMLATTRIBUTES(TO_CHAR("D".
 "DEPARTMENT_ID") AS "DepartmentId"),XMLELEMENT("Name","D"."DEPARTMENT_NAME"),XMLELEMENT("Locati
 on",CASE WHEN "STREET_ADDRESS" IS NOT NULL THEN XMLELEMENT("Address","STREET_ADDRESS") ELSE
 NULL END ,XMLELEMENT("City","CITY"),CASE WHEN "STATE_PROVINCE" IS NOT NULL THEN
 XMLELEMENT("State","STATE_PROVINCE") ELSE NULL END ,CASE WHEN "POSTAL_CODE" IS NOT NULL THEN
 XMLELEMENT("Zip","POSTAL_CODE") ELSE NULL END ,CASE WHEN "COUNTRY_NAME" IS NOT NULL
 THEN XMLELEMENT("Country","COUNTRY_NAME") ELSE NULL END),XMLELEMENT("EmployeeList", (SELECT
 "XMLAGG"(XMLELEMENT("Employee",XMLATTRIBUTES(TO_CHAR("E"."EMPLOYEE_ID") AS
 "employeeNumber"),CASE WHEN "E"."FIRST_NAME" IS NOT NULL THEN
 XMLELEMENT("FirstName","E"."FIRST_NAME") ELSE NULL END
 ,XMLELEMENT("LastName","E"."LAST_NAME"),XMLELEMENT("EmailAddress","E"."EMAIL"),CASE WHEN
 "E"."PHONE_NUMBER" IS NOT NULL THEN XMLELEMENT("PHONE_NUMBER","E"."PHONE_NUMBER") ELSE NULL
 END ,XMLELEMENT("StartDate",LTRIM(TO_CHAR("E"."HIRE_DATE",'SYYYY-MM-DD'))),XMLELEMENT("JobTitle
 ","J"."JOB_TITLE"),CASE WHEN "E"."SALARY" IS NOT NULL THEN
 XMLELEMENT("Salary",TO_CHAR("E"."SALARY")) ELSE NULL END ,CASE WHEN "M"."FIRST_NAME"||'
 '||"M"."LAST_NAME" IS NOT NULL THEN XMLELEMENT("Manager","M"."FIRST_NAME"||'
 '||"M"."LAST_NAME") ELSE NULL END ,XMLELEMENT("Commission",TO_CHAR("E"."COMMISSION_PCT"))))
 FROM "HR"."JOBS" "J","HR"."EMPLOYEES" "M","HR"."EMPLOYEES" "E" WHERE "E"."DEPARTMENT_ID"=:B1
 AND "M"."EMPLOYEE_ID"="E"."MANAGER_ID" AND "J"."JOB_ID"="E"."JOB_ID"))),'/*'),'/Department[Name
 ="Executive"]')=1)
 9 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 12 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")
 15 - access("M"."EMPLOYEE_ID"="E"."MANAGER_ID")
 16 - access("J"."JOB_ID"="E"."JOB_ID")
 18 - access("E"."DEPARTMENT_ID"=:B1)

59 rows selected.

	
Note:

XPath rewrite on XML expressions that operate on XMLType views is only supported when nodes referenced in the XPath expression are not descendants of an element created using SQL function XMLAgg.

Generating XML From Relational Tables Using DBURIType

Another way to generate XML from relational data is with SQL function DBURIType. Function DBURIType exposes one or more rows in a given table or view as a single XML document. The name of the root element is derived from the name of the table or view. The root element contains a set of ROW elements. There is one ROW element for each row in the table or view. The children of each ROW element are derived from the columns in the table or view. Each child element contains a text node with the value of the column for the given row.

Example 3-48 Accessing DEPARTMENTS Table XML Content Using DBURIType and getXML()

This example shows how to use SQL function DBURIType to access the contents of the deptartments table in schema hr. The example uses method getXML() to return the resulting document as an XMLType instance.

SELECT DBURIType('/HR/DEPARTMENTS').getXML() FROM DUAL;

DBURITYPE('/HR/DEPARTMENTS').GETXML()
--
<?xml version="1.0"?>
<DEPARTMENTS>
 <ROW>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
 <MANAGER_ID>200</MANAGER_ID>
 <LOCATION_ID>1700</LOCATION_ID>
 </ROW>
...
 <ROW>
 <DEPARTMENT_ID>20</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Marketing</DEPARTMENT_NAME>
 <MANAGER_ID>201</MANAGER_ID>
 <LOCATION_ID>1800</LOCATION_ID>
 </ROW>
</DEPARTMENTS>

SQL function DBURIType allows XPath notations to be used to control how much of the data in the table or view is returned when the table or view is accessed using DBURIType. Predicates in the XPath expression allow control over which of the rows in the table are included in the generated document.

Example 3-49 Using a Predicate in the XPath Expression to Restrict Which Rows Are Included

This example demonstrates how to use a predicate in an XPath expression to restrict the rows that are included in the generated XML document. Here, the XPath expression restricts the XML document to DEPARTMENT_ID columns with value 10.

SELECT DBURIType('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]').getXML()
 FROM DUAL;

DBURITYPE('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]').GETXML()
--
<?xml version="1.0"?>
 <ROW>
 <DEPARTMENT_ID>10</DEPARTMENT_ID>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>
 <MANAGER_ID>200</MANAGER_ID>
 <LOCATION_ID>1700</LOCATION_ID>
 </ROW>

1 row selected.

As can be seen from the examples in this section, SQL function DBURIType provides a simple way to expose some or all rows in a relational table as one or more XML documents. The URL passed to function DBURIType can be extended to return a single column from the view or table, but in that case the URL must also include predicates that identify a single row in the target table or view. For example, the following URI would return just the value of the department_name column for the departments row where the department_id column has value 10.

SELECT DBURIType(
 '/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]/DEPARTMENT_NAME').getXML()
 FROM DUAL;

DBURITYPE('/HR/DEPARTMENTS/ROW[DEPARTMENT_ID="10"]/DEPARTMENT_NAME').GETXML()

<?xml version="1.0"?>
 <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME>

1 row selected.

SQL function DBURIType does not provide the flexibility of the SQL/XML SQL functions: DBURIType provides no way to control the shape of the generated document. The data can only come from a single table or view. The generated document consists of one or more ROW elements. Each ROW element contains a child for each column in the target table. The names of the child elements are derived from the column names.

To control the names of the XML elements, to include columns from more than one table, or to control which columns from a table appear in the generated document, create a relational view that exposes the desired set of columns as a single row, and then use function DBURIType to generate an XML document from the contents of that view.

XSL Transformation and Oracle XML DB

The W3C XSLT Recommendation defines an XML language for specifying how to transform XML documents from one form to another. Transformation can include mapping from one XML schema to another or mapping from XML to some other format such as HTML or WML.

	
See Also:

Appendix C, "XSLT Primer" for an introduction to the W3C XSL and XSLT recommendations

XSL transformation is typically expensive in terms of the amount of memory and processing required. Both the source document and style sheet have to be parsed and loaded into memory structures that allow random access to different parts of the documents. Most XSL processors use DOM to provide the in-memory representation of both documents. The XSL processor then applies the style sheet to the source document, generating a third document.

Oracle XML DB includes an XSLT processor that allows XSL transformations to be performed inside the database. In this way, Oracle XML DB can provide XML-specific memory optimizations that significantly reduce the memory required to perform the transformation. It can also eliminate overhead associated with parsing the documents. These optimizations are only available when the source for the transformation is a schema-based XML document, however.

Oracle XML provides three options for invoking the XSL processor.

	
SQL function XMLtransform

	
XMLType method transform()

	
PL/SQL package DBMS_XSLPROCESSOR

Each of these options expects the source document and XSL style sheet to be provided as XMLType objects. The result of the transformation is also expected to be a valid XML document. This means that any HTML generated by the transformation must be XHTML, which is valid XML and valid HTML

Example 3-50 XSLT Style Sheet Example: PurchaseOrder.xsl

This example shows part of an XSLT style sheet, PurchaseOrder.xsl. The complete style sheet is given in "XSL Style Sheet Example, PurchaseOrder.xsl".

<?xml version="1.0" encoding="WINDOWS-1252"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsl:template match="/">
 <html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">

 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <center>

 PurchaseOrder

 </center>

 <center>
 <xsl:for-each select="Reference">

 <xsl:apply-templates/>

 </xsl:for-each>
 </center>
 </xsl:for-each>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 <P/>
 <P>
 <xsl:for-each select="PurchaseOrder">

 </xsl:for-each>
 </P>
 </P>
 <xsl:for-each select="PurchaseOrder"/>
 <xsl:for-each select="PurchaseOrder">
 <table border="0" width="100%" BGCOLOR="#000000">
 <tbody>
 <tr>
 <td WIDTH="296">
 <P>

 Internal

 </P>

 ...

 </td>
 <td width="93"/>
 <td valign="top" WIDTH="340">

 Ship To

 <xsl:for-each select="ShippingInstructions">
 <xsl:if test="position()=1"/>
 </xsl:for-each>
 <xsl:for-each select="ShippingInstructions">
 </xsl:for-each>

 ...

These is nothing Oracle XML DB-specific about this style sheet. The style sheet can be stored in an XMLType table or column, or stored as non-schema-based XML inside Oracle XML DB Repository.

Performing transformations inside the database allows Oracle XML DB to optimize features such as memory usage, I/O operations, and network traffic. These optimizations are particularly effective when the transformation operates on a small subset of the nodes in the source document.

In traditional XSL processors, the entire source document must be parsed and loaded into memory before XSL processing can begin. This process requires significant amounts of memory and processor. When only a small part of the document is processed this is inefficient.

When Oracle XML DB performs XSL transformations on a schema-based XML document there is no need to parse the document before processing can begin. The lazily loaded virtual DOM eliminates the need to parse the document, by loading content directly from disk as the nodes are accessed. The lazy load also reduces the amount of memory required to perform the transformation, because only the parts of the document that are processed are loaded into memory.

Example 3-51 Applying a Style Sheet Using TRANSFORM

This example shows how to use SQL function XMLtransform to apply an XSL style sheet to a document stored in an XMLType table, producing HTML code. SQL function XDBURIType reads the XSL style sheet from Oracle XML DB Repository. Method extract() is called here on the result of XMLtransform merely to force pretty-printing, for clarity.

In the interest of brevity, only part of the result of the transformation is shown here; omitted parts are indicated with an ellipsis (. . .). Figure 3-8 shows what the transformed result looks like in a Web browser.

SELECT
 XMLtransform(
 OBJECT_VALUE,
 XDBURIType('/source/schemas/poSource/xsl/purchaseOrder.xsl').getXML()).extract('/*')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]')=1;

XMLTRANSFORM(OBJECT_VALUE,
 XDBURITYPE('/SOURCE/SCHEMAS/POSOURCE/XSL/PURCHASEORDER.XSL').GETXML())
--
<html>
 <head/>
 <body bgcolor="#003333" text="#FFFFCC" link="#FFCC00" vlink="#66CC99" alink="#669999">

 <center>

 PurchaseOrder

 </center>

 <center>
 SBELL-2002100912333601PDT
 </center>
 <P>

 <P/>
 <P>

 </P>
 </P>
 <table border="0" width="100%" BGCOLOR="#000000">
 <tbody>
 <tr>
 <td WIDTH="296">
 <P>

 <FONT SIZE="+1" COLOR="#FF0000" FACE="Arial, Helvetica,
 sans-serif">Internal

 </P>
 <table border="0" width="98%" BGCOLOR="#000099">
 . . .
 </table>
 </td>
 <td width="93"/>
 <td valign="top" WIDTH="340">

 Ship To

 <table border="0" BGCOLOR="#999900">
 . . .
 </table>
 </td>
 </tr>
 </tbody>
 </table>

 Items:

 <table border="0">
 . . .
 </table>

 </body>
</html>

1 row selected.

	
See Also:

Chapter 9, "Transforming and Validating XMLType Data"

Using Oracle XML DB Repository

Oracle XML DB Repository makes it possible to organize XML content using a file - folder metaphor. This lets you use a URL to uniquely identify XML documents stored in the database. This approach appeals to XML developers used to using constructs such as URLs and XPath expressions to identify content.

Oracle XML DB Repository is modelled on the DAV standard. The DAV standard uses the term resource to describe any file or folder managed by a WebDAV server. A resource consists of a combination of metadata and content. The DAV specification defines the set of (system-defined) metadata properties that a WebDAV server is expected to maintain for each resource and the set of XML documents that a DAV server and DAV-enabled client uses to exchange metadata.

Although Oracle XML DB Repository can manage any kind of content, it provides specialized capabilities and optimizations related to managing resources where the content is XML.

Installing and Uninstalling Oracle XML DB Repository

All of the metadata and content managed by Oracle XML DB Repository is stored using a set of tables in the database schema owned by database user XDB. User XDB is a locked account installed with DBCA or by running the script catqm.sql. Script catqm.sql is located in the directory ORACLE_HOME/rdbms/admin. The repository can be uninstalled using DBCA or by running the script catnoqm.sql. Great care should be taken when running catnoqm.sql as this will drop all content stored in Oracle XML DB Repository and invalidate any XMLType tables or columns associated with registered XML schemas.

Oracle XML DB Provides Name-Level Locking

When using a relational database to maintain hierarchical folder structures, ensuring a high degree of concurrency when adding and removing items in a folder is a challenge. In conventional file system there is no concept of a transaction. Each operation (add a file, create a subfolder, rename a file, delete a file, and so on) is treated as an atomic transaction. Once the operation has completed the change is immediately available to all other users of the file system.

	
Note:

As a consequence of transactional semantics enforced by the database, folders created using SQL statements will not be visible to other database users until the transaction is committed. Concurrent access to Oracle XML DB Repository is controlled by the same mechanism used to control concurrency in Oracle Database. The integration of the repository with Oracle Database provides strong management options for XML content.

One key advantage of Oracle XML DB Repository is the ability to use SQL for repository operations in the context of a logical transaction. Applications can create long-running transactions that include updates to one or more folders. In this situation a conventional locking strategy that takes an exclusive lock on each updated folder or directory tree would quickly result in significant concurrency problems.

Queued Folder Modifications are Locked Until Committed

Oracle XML DB solves this by providing for name-level locking rather than folder-level locking. Repository operations such as creating, renaming, moving, or deleting a sub-folder or file do not require that your operation be granted an exclusive write lock on the target folder. The repository manages concurrent folder operations by locking the name within the folder rather than the folder itself. The name and the modification type are put on a queue.Only when the transaction is committed is the folder locked and its contents modified. Hence Oracle XML DB allows multiple applications to perform concurrent updates on the contents of a folder. The queue is also used to manage folder concurrency by preventing two applications from creating objects with the same name.Queuing folder modifications until commit time also minimizes I/O when a number of changes are made to a single folder in the same transaction.This is useful when several applications generate files quickly in the same directory, for example when generating trace or log files, or when maintaining a spool directory for printing or email delivery.

Use Protocols or SQL to Access and Process Repository Content

There are two ways to work with content stored in Oracle XML DB Repository:

	
Using industry standard protocols such as HTTP(S), WebDAV, or FTP to perform document level operations such as insert, update and delete.

	
By directly accessing Oracle XML DB Repository content at the table or row level using SQL.

Using Standard Protocols to Store and Retrieve Content

Oracle XML DB supports industry-standard internet protocols such as HTTP(S), WebDav, and FTP. The combination of protocol support and URL-based access makes it possible to insert, retrieve, update, and delete content stored in Oracle Database from standard desktop applications such as Windows Explorer, Microsoft Word, and XMLSpy.

Figure 3-4 shows Windows Explorer used to insert a folder from the local hard drive into Oracle Database. Windows Explorer includes support for the WebDAV protocol. WebDAV extends the HTTP standard, adding additional verbs that allow an HTTP server to act as a file server.

When a Windows Explorer copy operation or FTP input command is used to transfer a number of documents into Oracle XML DB Repository, each put or post command is treated as a separate atomic operation. This ensures that the client does not get confused if one of the file transfers fails. It also means that changes made to a document through a protocol are visible to other users as soon as the request has been processed.

Figure 3-4 Copying Files into Oracle XML DB Repository

[image: Description of Figure 3-4 follows]

Description of "Figure 3-4 Copying Files into Oracle XML DB Repository"

Uploading Content Into Oracle XML DB Using FTP

The following example shows commands issued and output generated when a standard command line FTP tool loads documents into Oracle XML DB Repository:

Example 3-52 Uploading Content into the Repository Using FTP

$ ftp mdrake-sun 2100
Connected to mdrake-sun.
220 mdrake-sun FTP Server (Oracle XML DB/Oracle Database 10g Enterprise Edition
Release 10.1.0.1.0 - Beta) ready.
Name (mdrake-sun:oracle10): QUINE
331 pass required for QUINE
Password:
230 QUINE logged in
ftp> cd /source/schemas
250 CWD Command successful
ftp> mkdir PurchaseOrders
257 MKD Command successful
ftp> cd PurchaseOrders
250 CWD Command successful
ftp> mkdir 2002
257 MKD Command successful
ftp> cd 2002
250 CWD Command successful
ftp> mkdir "Apr"
257 MKD Command successful
ftp> put "Apr/AMCEWEN-20021009123336171PDT.xml"
"Apr/AMCEWEN-20021009123336171PDT.xml"
200 PORT Command successful
150 ASCII Data Connection
226 ASCII Transfer Complete
local: Apr/AMCEWEN-20021009123336171PDT.xml remote:
Apr/AMCEWEN-20021009123336171PDT.xml
4718 bytes sent in 0.0017 seconds (2683.41 Kbytes/s)
ftp> put "Apr/AMCEWEN-20021009123336271PDT.xml"
"Apr/AMCEWEN-20021009123336271PDT.xml"
200 PORT Command successful
150 ASCII Data Connection
226 ASCII Transfer Complete
local: Apr/AMCEWEN-20021009123336271PDT.xml remote:
Apr/AMCEWEN-20021009123336271PDT.xml
4800 bytes sent in 0.0014 seconds (3357.81 Kbytes/s)
.....
ftp> cd "Apr"
250 CWD Command successful
ftp> ls -l
200 PORT Command successful
150 ASCII Data Connection
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336171PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 AMCEWEN-20021009123336271PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 EABEL-20021009123336251PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 PTUCKER-20021009123336191PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 PTUCKER-20021009123336291PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SBELL-20021009123336231PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SBELL-20021009123336331PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SKING-20021009123336321PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336151PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 SMCCAIN-20021009123336341PDT.xml
-rw-r--r1 QUINE oracle 0 JUN 24 15:41 VJONES-20021009123336301PDT.xml
226 ASCII Transfer Complete
remote: -l
959 bytes received in 0.0027 seconds (349.45 Kbytes/s)
ftp> cd ".."
250 CWD Command successful
....
ftp> quit
221 QUIT Goodbye.
$

The key point demonstrated by both of these examples is that neither Windows Explorer nor the FTP tool is aware that it is working with Oracle XML DB. Since the tools and Oracle XML DB both support open Internet protocols they simply work with each other out of the box.

Any tool that understands the WebDAV or FTP protocol can be used to create content managed by Oracle XML DB Repository. No additional software has to installed on the client or the mid-tier.

When the contents of the folders are viewed using a tool such as Windows Explorer or FTP, the length of any schema-based XML documents contained in the folder is shown as zero (0) bytes. This was designed as such for two reasons:

	
It is not clear what the size of the document should be. Is it the size of the CLOB instance generated by printing the document, or the number of bytes required to store the objects used to persist the document inside the database?

	
Regardless of which definition is chosen, calculating and maintaining this information is costly.

Figure 3-5 shows Internet Explorer using a URL and the HTTP protocol to view an XML document stored in the database.

Figure 3-5 Path-Based Access Using HTTP and a URL

[image: Description of Figure 3-5 follows]

Description of "Figure 3-5 Path-Based Access Using HTTP and a URL"

Accessing Oracle XML DB Repository Programmatically

Oracle XML DB Repository can be accessed and updated directly from SQL. This means that any application or programming language that can use SQL to interact with Oracle Database can also access and update content stored in the repository. Oracle XML DB includes PL/SQL package DBMS_XDB, which provides methods that allow resources to be created, modified, and deleted programmatically.

Example 3-53 Creating a Text Document Resource Using DBMS_XDB

This example shows how to create a resource using DBMS_XDB. Here the resource will be a simple text document containing the supplied text.

DECLARE
 res BOOLEAN;
BEGIN
 res := DBMS_XDB.createResource('/home/QUINE/NurseryRhyme.txt',
 bfilename('XMLDIR', 'tdadxdb-03-01.txt'),
 nls_charset_id('AL32UTF8'));
END;
/

Accessing and Updating XML Content in the Repository

This section describes features for accessing and updating Oracle XML DB Repository content.

Access XML Documents Using SQL

Content stored in the repository can be accessed and updated from SQL and PL/SQL. You can interrogate the structure of the repository in complex ways. For example, you can query to determine how many files with extension .xsl are under a location other than /home/mystylesheetdir.

You can also mix path-based repository access with content-based access. You can, for example, ask "How many documents not under /home/purchaseOrders have a node identified by the XPath /PurchaseOrder/User/text() with a value of KING?"

All of the metadata for managing the repository is stored in a database schema owned by the database user XDB. This user is created during Oracle XML DB installation. The primary table in this schema is an XMLType table called XDB$RESOURCE. This contains one row for each resource (file or folder) in the repository. Documents in this table are referred to as resource documents . The XML schema that defines the structure of an Oracle XML DB resource document is registered under URL, "http://xmlns.oralce.com/xdb/XDBResource.xsd.

Repository Content is Exposed Through RESOURCE_VIEW and PATH_VIEW

Table XDB$RESOURCE is not directly exposed to SQL programmers. Instead, the contents of the repository are exposed through two public views, RESOURCE_VIEW and PATH_VIEW. Through these views, you can access and update both the metadata and the content of documents stored in the repository. Both views contain a virtual column, RES. Use RES to access and update resource documents with SQL statements using a path notation. Operations on the views use underlying tables in the repository.

Use EXISTS_PATH and UNDER_PATH to Include Path-Based Predicates in the WHERE Clause

Oracle XML DB includes two repository-specific SQL functions: exists_path and under_path. Use these functions to include path-based predicates in the WHERE clause of a SQL statement. SQL operations can select repository content based on the location of the content in the repository folder hierarchy. The hierarchical index ensures that path-based queries are executed efficiently.

When XML schema-based XML documents are stored in the repository, the document content is stored as an object in the default table identified by the XML schema. The repository contains only metadata about the document and a pointer (REF of XMLType) that identifies the row in the default table that contains the content.

Documents Other Than XML Can Be Stored In the Repository

It is also possible to store other kinds of documents in the repository. When a document that is not XML or is not schema-based XML is stored in the repository, the document content is stored in a LOB along with the metadata about the document.

PL/SQL Packages to Create, Delete, Rename, Move, ... Folders and Documents

Since Oracle XML DB repository can be accessed and updated using SQL, any application capable of calling a PL/SQL procedure can use the repository. All SQL and PL/SQL repository operations are transactional, and access to the repository and its contents is subject to database security, as well as the repository Access Control Lists (ACLs).

With supplied PL/SQL packages DBMS_XDB, DBMS_XDBZ, and DBMS_XDB_VERSION, you can create, delete, and rename documents and folders, move a file or folder within the folder hierarchy, set and change the access permissions on a file or folder, and initiate and manage versioning.

Example 3-54 Using PL/SQL Package DBMS_XDB To Create Folders

This example shows PL/SQL package DBMS_XDB used to create a set of subfolders beneath folder /public.

DECLARE
 RESULT BOOLEAN;
BEGIN
 IF (NOT DBMS_XDB.existsResource('/public/mysource')) THEN
 result := DBMS_XDB.createFolder('/public/mysource');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas/poSource');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource/xsd')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas/poSource/xsd');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/mysource/schemas/poSource/xsl')) THEN
 result := DBMS_XDB.createFolder('/public/mysource/schemas/poSource/xsl');
 END IF;
END;
/

Accessing the Content of Documents Using SQL

You can access the content of documents stored in Oracle XML DB Repository in several ways. The easiest way is to use XDBURIType. XDBURIType uses a URL to specify which resource to access. The URL passed to the XDBURIType is assumed to start at the root of the repository. Datatype XDBURIType provides methods getBLOB(), getCLOB(), and getXML() to access the different kinds of content that can be associated with a resource.

Example 3-55 Using XDBURIType to Access a Text Document in the Repository

This example shows how to use XDBURIType to access the content of the text document:

SELECT XDBURIType('/home/QUINE/NurseryRhyme.txt').getClob()
 FROM DUAL;

XDBURITYPE('/HOME/QUINE/NURSERYRHYME.TXT').GETCLOB()
--
Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go

1 row selected.

Example 3-56 Using XDBURIType and a Repository Resource to Access Content

The contents of a document can also be accessed using the resource document. This example shows how to access the content of a text document:

SELECT
 DBMS_XMLGEN.convert(
 extract(RES,
 '/Resource/Contents/text/text()',
 'xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"').getClobVal(),
 1)
 FROM RESOURCE_VIEW r
 WHERE equals_path(RES, '/home/QUINE/NurseryRhyme.txt') = 1;

DBMS_XMLGEN.CONVERT(EXTRACT(RES,'/RESOURCE/CONTENTS/TEXT/TEXT()','XMLNS="HTTP://
--
Mary had a little lamb
Its fleece was white as snow
and everywhere that Mary went
that lamb was sure to go

1 row selected.

SQL function extract, rather than extractValue, is used to access the text node. This returns the content of the text node as an XMLType instance, which makes it possible to access the content of the node using XMLType method getCLOBVal(). Hence, you can access the content of documents larger than 4K. Here, DBMS_XMLGEN.convert removes any entity escaping from the text.

Example 3-57 Accessing XML Documents Using Resource and Namespace Prefixes

The content of non-schema-based and schema-based XML documents can also be accessed through the resource. This example shows how to use an XPath expression that includes nodes from the resource document and nodes from the XML document to access the contents of a PurchaseOrder document using the resource.

SELECT extractValue(value(des), '/Description')
 FROM RESOURCE_VIEW r,
 table(
 XMLSequence(
 extract(RES,
 '/r:Resource/r:Contents/PurchaseOrder/LineItems/LineItem/Description',
 'xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"'))) des
 WHERE
 equals_path(RES, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml') = 1;

EXTRACTVALUE(VALUE(L),'/DESCRIPTION')
--
A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

In this case, a namespace prefix was used to identify which nodes in the XPath expression are members of the resource namespace. This was necessary as the PurchaseOrder XML schema does not define a namespace and it was not possible to apply a namespace prefix to nodes in the PurchaseOrder document.

Accessing the Content of XML Schema-Based Documents

The content of a schema-based XML document can be accessed in two ways.

	
In the same manner as for non-schema-based XML documents, by using the resource document. This allows the RESOURCE_VIEW to be used to query different types of schema-based XML documents with a single SQL statement.

	
As a row in the default table that was defined when the XML schema was registered with Oracle XML DB.

Using the XMLRef Element in Joins to Access Resource Content in the Repository

The XMLRef element in the resource document provides the join key required when a SQL statement needs to access or update metadata and content as part of a single operation.

The following queries use joins based on the value of the XMLRef to access resource content.

Example 3-58 Querying Repository Resource Data Using REF and the XMLRef Element

This example locates a row in the defaultTable based on a path in Oracle XML DB Repository. SQL function ref locates the target row in the default table based on value of the XMLRef element contained in the resource document.

SELECT extractValue(value(des), '/Description')
 FROM RESOURCE_VIEW r,
 purchaseorder p,
 table(XMLSequence(extract(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Description'))) des
 WHERE equals_path(res, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml') = 1
 AND ref(p) = extractValue(res, '/Resource/XMLRef');

EXTRACTVALUE(VALUE(L),'/DESCRIPTION')

A Night to Remember
The Unbearable Lightness Of Being
The Wizard of Oz

3 rows selected.

Example 3-59 Selecting XML Document Fragments Based on Metadata, Path, and Content

This example shows how this technique makes it possible to select fragments from XML documents based on metadata, path, and content. The statement returns the value of the Reference element for documents foldered under the path /home/QUINE/PurchaseOrders/2002/Mar and contain orders for part number 715515009058.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference')
 FROM RESOURCE_VIEW r, purchaseorder p
 WHERE under_path(res, '/home/QUINE/PurchaseOrders/2002/Mar') = 1
 AND ref(p) = extractValue(res, '/Resource/XMLRef')
 AND existsNode(OBJECT_VALUE,
 '/PurchaseOrder/LineItems/LineItem/Part[@Id="715515009058"]')
 = 1;

EXTRACTVALUE(OBJECT_VALUE,'/PU

CJOHNSON-20021009123335851PDT
LSMITH-2002100912333661PDT
SBELL-2002100912333601PDT

3 rows selected.

In general, when accessing the content of schema-based XML documents, joining RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using the RESOURCE_VIEW or PATH_VIEW on their own. The explicit join between the resource document and the default table tells Oracle XML DB that the SQL statement will only work on one type of XML document. This allows XPath rewrite to be used to optimize the operation on the default table as well as the operation on the resource.

Updating the Content of Documents Stored in the Repository

You can also update the content of documents stored in Oracle XML DB Repository using protocols or SQL.

Updating Repository Content Using Protocols

The most popular content authoring tools now support HTTP, FTP, and WebDAV protocols. These tools can use a URL and the HTTP verb get to access the content of a document, and the HTTP verb put to save the contents of a document. Hence, given the appropriate access permissions, a simple URL is all you need to access and edit content stored in Oracle XML DB Repository.

Figure 3-6 shows how, with the WebDAV support included in Microsoft Word, you can use Microsoft Word to update and edit a document stored in Oracle XML DB Repository.

Figure 3-6 Using Microsoft Word to Update and Edit Content Stored in Oracle XML DB

[image: Description of Figure 3-6 follows]

Description of "Figure 3-6 Using Microsoft Word to Update and Edit Content Stored in Oracle XML DB"

When an editor like Microsoft Word updates an XML document stored in Oracle XML DB the database receives an input stream containing the new content of the document. Unfortunately products such as Word do not provide Oracle XML DB with any way of identifying what changes have taken place in the document. This means that partial updates are not possible and it is necessary to re-parse the entire document, replacing all the objects derived from the original document with objects derived from the new content.

Updating Repository Content Using SQL

SQL functions such as updateXML can be used to update the content of any document stored in Oracle XML DB Repository. The content of the document can be modified by updating the resource document, or, in the case of schema-based XML documents, by updating the default table that contains the content of the document.

Example 3-60 Updating a Document Using UPDATE and UPDATEXML on the Resource

This example shows how to update the contents of a simple text document using the SQL UPDATE statement and SQL function updateXML on the resource document. An XPath expression is passed to updateXML as the target of the update operation, identifying the text node belonging to element /Resource/Contents/text.

DECLARE
 file BFILE;
 contents CLOB;
 dest_offset NUMBER := 1;
 src_offset NUMBER := 1;
 lang_context NUMBER := 0;
 conv_warning NUMBER := 0;
BEGIN
 file := bfilename('XMLDIR', 'tdadxdb-03-02.txt');
 DBMS_LOB.createTemporary(contents, true, DBMS_LOB.SESSION);
 DBMS_LOB.fileopen(file, DBMS_LOB.file_readonly);
 DBMS_LOB.loadClobfromFile(contents,
 file,
 DBMS_LOB.getLength(file),
 dest_offset,
 src_offset,
 nls_charset_id('AL32UTF8'),
 lang_context,
 conv_warning);
 DBMS_LOB.fileclose(file);
 UPDATE RESOURCE_VIEW
 SET res = updateXML(res,
 '/Resource/Contents/text/text()',
 contents,
 'xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"')
 WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;
 DBMS_LOB.freeTemporary(contents);
END;
/

The technique for updating the content of a document by updating the associated resource has the advantage that it can be used to update any kind of document stored in Oracle XML DB Repository.

Example 3-61 Updating a Node in the XML Document Using UPDATE and UPDATEXML

This example shows how to update a node in an XML document by performing an update on the resource document. Here, SQL function updateXML changes the value of the text node associated with the User element.

UPDATE RESOURCE_VIEW
 SET res = updateXML(res,
 '/r:Resource/r:Contents/PurchaseOrder/User/text()',
 'SKING',
 'xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"')
 WHERE equals_path(
 res,
 '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1;

1 row updated.

SELECT extractValue(res,
 '/r:Resource/r:Contents/PurchaseOrder/User/text()',
 'xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"')
 FROM RESOURCE_VIEW
 WHERE equals_path(
 res,
 '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1;

EXTRACTVALUE(RES, '/R:RESOURCE/R:CONTENTS/PURCHASEORDER/USER/TEXT()',
 'XMLNS:R="HTTP://XMLNS.ORACLE.COM/XDB/XDBRESOURCE.XSD"')

SKING

1 row selected.

Updating XML Schema-Based Documents in the Repository

You can update XML schema-based XML documents by performing the update operation directly on the default table used to manage the content of the document. If the document must be located by a WHERE clause that includes a path or conditions based on metadata, then the UPDATE statement must use a join between the resource and the default table.

In general, when updating the contents of XML schema-based XML documents, joining the RESOURCE_VIEW or PATH_VIEW with the default table is more efficient than using the RESOURCE_VIEW or PATH_VIEW on their own. The explicit join between the resource document and the default table tells Oracle XML DB that the SQL statement will only work on one type of XML document. This allows a partial-update to be used on the default table and resource.

Example 3-62 Updating XML Schema-Based Documents in the Repository

In this example, SQL function updateXML operates on the default table with the target row identified by a path. The row to be updated is identified by a ref. The value of the ref is obtained from the resource document identified by SQL function equals_path. This effectively limits the update to the row corresponding to the resource identified by the specified path.

UPDATE purchaseorder p
 SET OBJECT_VALUE = updateXML(OBJECT_VALUE, '/PurchaseOrder/User/text()', 'SBELL')
 WHERE ref(p) =
 (SELECT extractValue(res,'/Resource/XMLRef')
 FROM RESOURCE_VIEW
 WHERE equals_path(res,
 '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1);

1 row updated.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User/text()')
 FROM purchaseorder p, RESOURCE_VIEW
 WHERE ref(p) = extractValue(res, '/Resource/XMLRef')
 AND equals_path(res, '/home/QUINE/PurchaseOrders/2002/Mar/SBELL-2002100912333601PDT.xml')
 = 1;

EXTRACTVAL

SBELL

1 row selected.

Controlling Access to Repository Data

You can control access to the resources in Oracle XML DB Repository by using Access Control Lists (ACLs). An ACL is a list of access control entries, each of which grants or denies a set of privileges to a specific principal. The principal can be a database user, a database role, an LDAP user, an LDAP group or the special principal dav:owner, which refers to the owner of the resource. Each resource in the repository is protected by an ACL. The ACL determines what privileges, such as read-properties and update, a user has on the resource. Each repository operation includes a check of the ACL to determine if the current user is allowed to perform the operation. By default, a new resource inherits the ACL of its parent folder. But you can set the ACL of a resource using procedure DBMS_XDB.setACL(). For more details on Oracle XML DB resource security, see Chapter 24, "Repository Resource Security".

In the following example, the current user is QUINE. The query gives the number of resources in the folder /public. Assume that there are only two resources in this folder: f1 and f2. Also assume that the ACL on f1 grants the read-properties privilege to QUINE while the ACL on f2 does not grant QUINE any privileges. A user needs the read-properties privilege on a resource for it to be visible to the user. The result of the query is 1, because only f1 is visible to QUINE.

SELECT count(*) FROM RESOURCE_VIEW r
 WHERE under_path(r.res, '/public') = 1;

 COUNT(*)

 1

Oracle XML DB Transactional Semantics

When working from SQL, normal transactional behavior is enforced. Multiple calls to SQL functions such as updateXML can be used within a single logical unit of work. Changes made through functions like updateXML are not visible to other database users until the transaction is committed. At any point, ROLLBACK can be used to back out the set of changes made since the last commit.

Querying Metadata and the Folder Hierarchy

In Oracle XML DB, the system-defined metadata for each resource is preserved as an XML document. The structure of these resource documents is defined by the XDBResource.xsd XML schema. This schema is registered as a global XML schema at URL http://xmlns.oracle.com/xdb/XDBResource.xsd.

Oracle XML DB allows you access to metadata and information about the folder hierarchy using two public views, RESOURCE_VIEW and PATH_VIEW.

RESOURCE_VIEW and PATH_VIEW

RESOURCE_VIEW contains one entry for each file or folder stored in Oracle XML DB Repository. The view has two columns. Column RES contains the resource – an XML document that manages the metadata properties associated with the resource content. Column ANY_PATH contains a valid URL that the current user can pass to XDBURIType to access the resource content. If this content is not binary data, then the resource itself also contains the content.

Oracle XML DB supports the concept of linking. Linking makes it possible to define multiple paths to a given document. A separate XML document, called the link-properties document, maintains metadata properties that are specific to the path, rather than to the resource. Whenever a resource is created, an initial link is also created.

PATH_VIEW exposes the link-properties documents. There is one entry in PATH_VIEW for each possible path to a document. PATH_VIEW has three columns. Column RES contains the resource document pointed to by this link. Column PATH contains the path that the link allows to be used to access the resource. Column LINK contains the link-properties document (metadata) for this PATH.

Example 3-63 Viewing RESOURCE_VIEW and PATH_VIEW Structures

The following example shows the description of public views RESOURCE_VIEW and PATH_VIEW:

DESCRIBE RESOURCE_VIEW

Name Null? Type

RES SYS.XMLTYPE(XMLSchema
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Element
 "Resource")
ANY_PATH VARCHAR2(4000)
RESID RAW(16)

DESCRIBE PATH_VIEW

Name Null? Type

PATH VARCHAR2(1024)
RES SYS.XMLTYPE(XMLSchema
 "http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Element
 "Resource")
LINK SYS.XMLTYPE
RESID RAW(16)

	
See Also:

Chapter 22, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

Querying Resources in RESOURCE_VIEW and PATH_VIEW

Oracle XML DB provides two SQL functions, equals_path and under_path, that can be used to perform folder-restricted queries. Such queries limit SQL statements that operate on the RESOURCE_VIEW or PATH_VIEW to documents that are at a particular location in Oracle XML DB folder hierarchy. Function equals_path restricts the statement to a single document identified by the specified path. Function under_path restricts the statement to those documents that exist beneath a certain point in the hierarchy.

The following examples demonstrate simple folder-restricted queries against resource documents stored in RESOURCE_VIEW and PATH_VIEW.

Example 3-64 Accessing Resources Using EQUALS_PATH and RESOURCE_VIEW

The following query uses SQL function equals_path and RESOURCE_VIEW to access the resource created in Example 3-63.

SELECT r.RES.getClobVal()
 FROM RESOURCE_VIEW r
 WHERE equals_path(res, '/home/QUINE/NurseryRhyme.txt') = 1;

R.RES.GETCLOBVAL()
--
<Resource xmlns="http://xmlns.oracle.com/xdb/XDBResource.xsd"
 Hidden="false"
 Invalid="false"
 Container="false"
 CustomRslv="false"
 VersionHistory="false"
 StickyRef="true">
 <CreationDate>2004-08-06T12:12:48.022251</CreationDate>
 <ModificationDate>2004-08-06T12:12:53.215519</ModificationDate>
 <DisplayName>NurseryRhyme.txt</DisplayName>
 <Language>en-US</Language>
 <CharacterSet>UTF-8</CharacterSet>
 <ContentType>text/plain</ContentType>
 <RefCount>1</RefCount>
 <ACL>
 <acl description=
 "Private:All privileges to OWNER only and not accessible to others"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd" xmlns:dav="DAV:"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd">
 <ace>
 <principal>dav:owner</principal>
 <grant>true</grant>
 <privilege>
 <all/>
 </privilege>
 </ace>
 </acl>
 </ACL>
 <Owner>QUINE</Owner>
 <Creator>QUINE</Creator>
 <LastModifier>QUINE</LastModifier>
 <SchemaElement>http://xmlns.oracle.com/xdb/XDBSchema.xsd#text</SchemaElement>
 <Contents>
 <text>Hickory Dickory Dock
The Mouse ran up the clock
The clock struck one
The Mouse ran down
Hickory Dickory Dock
 </text>
 </Contents>
</Resource>

1 row selected.

As Example 3-64 shows, a resource document is an XML document that captures the set of metadata defined by the DAV standard. The metadata includes information such as CreationDate, Creator, Owner, ModificationDate, and DisplayName. The content of the resource document can be queried and updated just like any other XML document, using SQL functions such as extract, extractValue, existsNode, and updateXML.

Example 3-65 Determining the Path to XSL Style Sheets Stored in the Repository

The first query finds a path to each of the XSL style sheets stored in Oracle XML DB Repository. It performs a search based on the DisplayName ending in .xsl.

SELECT ANY_PATH FROM RESOURCE_VIEW
 WHERE extractValue(RES, '/Resource/DisplayName') LIKE '%.xsl';

ANY_PATH

/source/schemas/poSource/xsl/empdept.xsl
/source/schemas/poSource/xsl/purchaseOrder.xsl

2 rows selected.

Example 3-66 Counting Resources Under a Path

This example counts the number of resources (files and folders) under the path /home/QUINE/PurchaseOrders. Using RESOURCE_VIEW rather than PATH_VIEW ensures that any resources that are the target of multiple links are only counted once. SQL function under_path restricts the result set to documents that can be accessed using a path that starts from /home/QUINE/PurchaseOrders.

SELECT count(*)
 FROM RESOURCE_VIEW
 WHERE under_path(RES, '/home/QUINE/PurchaseOrders') = 1;

 COUNT(*)

 145

1 row selected.

Example 3-67 Listing the Folder Contents in a Path

This query lists the contents of the folder identified by path /home/QUINE/PurchaseOrders/2002/Apr. This is effectively a directory listing of the folder.

SELECT PATH
 FROM PATH_VIEW
 WHERE under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

PATH
--
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336291PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/VJONES-20021009123336301PDT.xml

11 rows selected.

Example 3-68 Listing the Links Contained in a Folder

This query lists the set of links contained in the folder identified by the path /home/QUINE/PurchaseOrders/2002/Apr where the DisplayName element in the associated resource starts with an S.

SELECT PATH
 FROM PATH_VIEW
 WHERE extractValue(RES, '/Resource/DisplayName') like 'S%'
 AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

PATH
--
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336231PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SBELL-20021009123336331PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SKING-20021009123336321PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336151PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/SMCCAIN-20021009123336341PDT.xml

5 rows selected.

Example 3-69 Finding Paths to Resources that Contain Purchase-Order XML Documents

This query finds a path to each resource in Oracle XML DB Repository that contains a PurchaseOrder document. The documents are identified based on the metadata property SchemaElement that identifies the XML schema URL and global element for schema-based XML data stored in the repository.

SELECT ANY_PATH
 FROM RESOURCE_VIEW
 WHERE existsNode(RES,
 '/Resource[SchemaElement=
 "http://localhost:8080/source/schemas/poSource/xsd/purchaseOrder.xsd#PurchaseOrder"]')
 = 1;

This returns the following paths, each of which contains a PurchaseOrder document:

ANY_PATH

/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336171PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/AMCEWEN-20021009123336271PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/EABEL-20021009123336251PDT.xml
/home/QUINE/PurchaseOrders/2002/Apr/PTUCKER-20021009123336191PDT.xml

...

132 rows selected.

Oracle XML DB Hierarchical Index

In a conventional relational database, path-based access and folder-restricted queries would have to be implemented using CONNECT BY operations. Such queries are expensive, so path-based access and folder-restricted queries would become inefficient as the number of documents and depth of the folder hierarchy increase.

To address this issue, Oracle XML DB introduces a new index type, the hierarchical index. A hierarchical index allows the database to resolve folder-restricted queries without relying on a CONNECT BY operation. Hence Oracle XML DB can execute path-based and folder-restricted queries efficiently. The hierarchical index is implemented as an Oracle domain index. This is the same technique used to add Oracle Text indexing support and many other advanced index types to the database.

Example 3-70 EXPLAIN Plan Output for a Folder-Restricted Query

This example shows the EXPLAIN PLAN output generated for a folder-restricted query. As shown, the hierarchical index XDBHI_IDX will be used to resolve the query.

EXPLAIN PLAN FOR
 SELECT PATH
 FROM PATH_VIEW
 WHERE extractValue(RES, '/Resource/DisplayName') LIKE 'S%'
 AND under_path(RES, '/home/QUINE/PurchaseOrders/2002/Apr') = 1;

Explained.

PLAN_TABLE_OUTPUT
--
Plan hash value: 2568289845

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		127	22606	35 (9)	00:00:01
1	NESTED LOOPS		127	22606	35 (9)	00:00:01
2	NESTED LOOPS		127	20447	34 (6)	00:00:01
3	NESTED LOOPS		127	16891	34 (6)	00:00:01
* 4	TABLE ACCESS BY INDEX ROWID	XDB$RESOURCE	1	131	3 (0)	00:00:01
* 5	DOMAIN INDEX	XDBHI_IDX				
6	COLLECTION ITERATOR PICKLER FETCH					
* 7	INDEX UNIQUE SCAN	XDB_PK_H_LINK	1	28	0 (0)	00:00:01
* 8	INDEX UNIQUE SCAN	SYS_C003013	1	17	0 (0)	00:00:01
--

Predicate Information (identified by operation id):

 4 - filter("P"."SYS_NC00011$" LIKE 'S%')
 5 - access("XDB"."UNDER_PATH"(SYS_MAKEXML('8758D485E6004793E034080020B242C6',734,"XMLEXTRA"
 ,"XMLDATA"),'/home/QUINE/PurchaseOrders/2002/Apr',9999)=1)
 7 - access("H"."PARENT_OID"=SYS_OP_ATG(VALUE(KOKBF$),3,4,2) AND
 "H"."NAME"=SYS_OP_ATG(VALUE(KOKBF$),2,3,2))
 8 - access("R2"."SYS_NC_OID$"=SYS_OP_ATG(VALUE(KOKBF$),3,4,2))

25 rows selected.

How Documents are Stored in the Repository

Oracle XML DB provides special handling for XML documents. The rules for storing the contents of schema-based XML document are defined by the XML schema. The content of the document is stored in the default table associated with the global element definition.

Oracle XML DB Repository also stores files that do not contain XML data, such as JPEG images or Word documents. The XML schema for each resource defines which elements are allowed, and specifies whether the content of these files is to be stored as BLOB or CLOB instances. The content of a non-schema-based XML document is stored as a CLOB instance in the repository.

There is one resource and one link-properties document for every file or folder in the repository. If there are multiple access paths to a given document there will be a link-properties document for each possible link. Both the resource document and the link-properties are stored as XML documents. All these documents are stored in tables in the repository.

When an XML file is loaded into the repository, the following sequence of events that takes place:

	
Oracle XML DB examines the root element of the XML document to see if it is associated with a known (registered) XML schema. This involves looking to see if the document includes a namespace declaration for the XMLSchema-instance namespace, and then looking for a schemaLocation or noNamespaceSchemaLocation attribute that identifies which XML schema the document is associated with.

	
If the document is based on a known XML schema, then the metadata for the XML schema is loaded from the XML schema cache.

	
The XML document is parsed and decomposed into a set the SQL objects derived from the XML schema.

	
The SQL objects created from the XML file are stored in the default table defined when the XML schema was registered with the database.

	
A resource document is created for each document processed. This allows the content of the document to be accessed using the repository. The resource document for a schema-based XMLType includes an element XMLRef. This contents of this element is a REF of XMLType that can be used to locate the row in the default table containing the content associated with the resource.

Viewing Relational Data as XML From a Browser

The HTTP server built into Oracle XML DB makes it possible to use a browser to access any document stored in Oracle XML DB Repository. Since a resource can include a REF to a row in an XMLType table or view it is possible to use path-based access to access this type of content.

Using DBUri Servlet to Access Any Table or View From a Browser

Oracle XML DB includes the DBUri servlet that makes it possible to access the content of any table or view directly from a browser. DBUri servlet uses the facilities of the DBURIType to generate a simple XML document from the contents of the table. The servlet is C- based and installed in the Oracle XML DB HTTP server. By default the servlet is installed under the virtual directory /oradb.

The URL passed to the DBUri Servlet is an extension of the URL passed to the DBURIType. The URL is simply extended with the address and port number of the Oracle XML DB HTTP server and the virtual root that directs HTTP(S) requests to the DBUri servlet. The default configuration for this is /oradb.

This means that the URL: http://localhost:8080/oradb/HR/DEPTARTMENTS,

would return an XML document containing the contents of the DEPARTMENTS table in the HR database schema, assuming that the Oracle XML DB HTTP server is running on port 8080, the virtual root for the DBUri servlet is /oradb, and that the user making the request has access to the HR database schema.

DBUri servlet accepts parameters that allow you to specify the name of the ROW tag and MIME-type of the document that is returned to the client.

Content in XMLType table or view can also be accessed through the DBUri servlet. When the URL passed to the DBUri servlet references an XMLType table or XMLType view the URL can be extended with an XPath expression that can determine which documents in the table or row are returned. The XPath expression appended to the URL can reference any node in the document.

XML generated by DBUri servlet can be transformed using the XSLT processor built into Oracle XML DB. This allows XML generated by DBUri servlet to be presented in a more legible format such as HTML.

	
See Also:

"DBUriServlet"

Style sheet processing is initiated by specifying a transform parameter as part of the URL passed to DBUri servlet. The style sheet is specified using a URI that references the location of the style sheet within database. The URI can either be a DBURIType value that identifies a XMLType column in a table or view, or a path to a document stored in Oracle XML DB Repository. The style sheet is applied directly to the generated XML before it is returned to the client. When using DBUri servlet for XSLT processing it is good practice to use the contenttype parameter to explicitly specify the MIME type of the generated output.

If the XML document being transformed is stored as schema-based XMLType, then Oracle XML DB can reduce the overhead associated with XSL transformation by leveraging the capabilities of the lazily loaded virtual DOM.

Figure 3-7 shows how DBUri can access a row in the purchaseorder table.

Figure 3-7 Using DBUri Servlet to Access XML Content

[image: Description of Figure 3-7 follows]

Description of "Figure 3-7 Using DBUri Servlet to Access XML Content"

The root of the URL is /oradb, so the URL is passed to the DBUri servlet that accesses the purchaseorder table in the SCOTT database schema, rather than as a resource in Oracle XML DB Repository. The URL includes an XPath expression that restricts the result set to those documents where node /PurchaseOrder/Reference/text() contains the value specified in the predicate. The contenttype parameter sets the MIME type of the generated document to text/xml.

XSL Transformation Using DBUri Servlet

Figure 3-8 shows how an XSL transformation can be applied to XML content generated by the DBUri servlet. In this example the URL passed to the DBUri includes the transform parameter. This causes the DBUri servlet to use SQL functino XMLtransform to apply the style sheet /home/SCOTT/xsl/purchaseOrder.xsl to the PurchaseOrder document identified by the main URL, before returning the document to the browser. This style sheet transforms the XML document to a more user-friendly HTML page. The URL also uses contentType parameter to specify that the MIME-type of the final document will be text/html.

Figure 3-8 Database XSL Transformation of a PurchaseOrder Using DBUri Servlet

[image: Description of Figure 3-8 follows]

Description of "Figure 3-8 Database XSL Transformation of a PurchaseOrder Using DBUri Servlet"

Figure 3-9 shows the departments table displayed as an HTML document. You need no code to achieve this, you only need an XMLType view, based on SQL/XML functions, an industry-standard XSL style sheet, and DBUri servlet.

Figure 3-9 Database XSL Transformation of Departments Table Using DBUri Servlet

[image: Description of Figure 3-9 follows]

Description of "Figure 3-9 Database XSL Transformation of Departments Table Using DBUri Servlet"

29 Loading XML Data Using SQL*Loader

This chapter describes how to load XML data into Oracle XML DB with a focus on SQL*Loader.

This chapter contains these topics:

	
Overview of Loading XMLType Data into Oracle Database

	
Using SQL*Loader to Load XMLType Data

	
Loading Very Large XML Documents into Oracle Database

	
See Also:

Chapter 3, "Using Oracle XML DB"

Overview of Loading XMLType Data into Oracle Database

In Oracle9i release 1 (9.0.1) and higher, the Export-Import utility and SQL*Loader support XMLType as a column type. In Oracle Database 10g, SQL*Loader also supports loading XMLType tables, and the loading is independent of the underlying storage. You can load XMLType data whether it is stored in LOBs or object-relationally. The XMLType data can be loaded by SQL*Loader using both the conventional and direct-path methods.

	
Note:

SQL*Loader does not support direct-path loading if the data involves inheritance.

	
See Also:

Chapter 30, "Importing and Exporting XMLType Tables" and Oracle Database Utilities

Oracle XML DB Repository information is not exported when user data is exported. This means that neither the resources nor any information are exported.

Using SQL*Loader to Load XMLType Data

XML columns are columns declared to be of type XMLType.

SQL*Loader treats XMLType columns and tables like any other object-relational columns and tables. All methods described in the following sections for loading LOB data from the primary datafile or from a LOBFILE value also apply to loading XMLType columns and tables when the XMLType data is stored as a LOB.

	
See Also:

Oracle Database Utilities

	
Note:

You cannot specify a SQL string for LOB fields. This is true even if you specify LOBFILE_spec.

XMLType data can be present in a control file or in a LOB file. In this case, the LOB file name is present in the control file.

Because XMLType data can be quite large, SQL*Loader can load LOB data from either a primary datafile (in line with the rest of the data) or from LOB files independent of how the data is stored. That is, the underlying storage can still be object-relational. This section addresses the following topics:

	
Loading XMLType Data from a Primary Datafile

	
Loading XMLType Data from an External LOBFILE (BFILE)

	
Loading XMLType Data from LOBFILEs

	
Loading XMLType Data from a Primary Datafile

Using SQL*Loader to Load XMLType Data in LOBs

To load internal LOBs, Binary Large Objects (BLOBs), Character Large Objects (CLOBs), and National Character Large Object (NCLOBs), or XMLType columns and tables from a primary datafile, use the following standard SQL*Loader formats:

	
Predetermined size fields

	
Delimited fields

	
Length-value pair fields

These formats are described in the following sections and in more detail in Oracle Database Utilities.

Loading LOB Data in Predetermined Size Fields

This is a very fast and conceptually simple format to load LOBs.

	
Note:

Because the LOBs you are loading may not be of equal size, you can use whitespace to pad the LOB data to make the LOBs all of equal length within a particular data field.

Loading LOB Data in Delimited Fields

This format handles LOBs of different sizes within the same column (datafile field) without problem. However, this added flexibility can affect performance, because SQL*Loader must scan through the data, looking for the delimiter string.

As with single-character delimiters, when you specify string delimiters, you should consider the character set of the datafile. When the character set of the datafile is different than that of the control file, you can specify the delimiters in hexadecimal (that is, hexadecimal string). If the delimiters are specified in hexadecimal notation, then the specification must consist of characters that are valid in the character set of the input datafile. In contrast, if hexadecimal specification is not used, then the delimiter specification is considered to be in the client (that is, the control file) character set. In this case, the delimiter is converted into the datafile character set before SQL*Loader searches for the delimiter in the datafile.

Loading XML Columns Containing LOB Data from LOBFILEs

LOB data can be lengthy enough so that it makes sense to load it from a LOBFILE instead of from a primary datafile. In LOBFILEs, LOB data instances are still considered to be in fields (predetermined size, delimited, length-value), but these fields are not organized into records (the concept of a record does not exist within LOBFILEs). Therefore, the processing overhead of dealing with records is avoided. This type of organization of data is ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader reads LOBFILEs in 64 KB chunks.

In LOBFILEs the data can be in any of the following types of fields, any of which can be used to load XML columns:

	
A single LOB field into which the entire contents of a file can be read

	
Predetermined size fields (fixed-length fields)

	
Delimited fields (that is, TERMINATED BY or ENCLOSED BY)

The clause PRESERVE BLANKS is not applicable to fields read from a LOBFILE.

	
Length-value pair fields (variable-length fields) .

To load data from this type of field, use the  VARRAY, VARCHAR, or VARCHAR2 SQL*Loader datatypes.

Specifying LOBFILEs

You can specify LOBFILEs either statically (you specify the actual name of the file) or dynamically (you use a FILLER field as the source of the filename). In either case, when the EOF of a LOBFILE is reached, the file is closed and additional attempts to read data from that file produce results equivalent to reading data from an empty field.

You should not specify the same LOBFILE as the source of two different fields. If you do so, then typically, the two fields will read the data independently.

Using SQL*Loader to Load XMLType Data Directly From the Control File

XMLType data can be loaded directly from the control file itself. In this release, SQL*Loader treats XMLType data like any other scalar type. For example, consider a table containing a NUMBER column followed by an XMLType column stored object-relationally. The control file used for this table can contain the value of the NUMBER column followed by the value of the XMLType instance.

SQL*Loader also accommodates XMLType instances that are very large. In this case you also have the option to load the data from a LOB file.

Loading Very Large XML Documents into Oracle Database

You can use SQL*Loader to load large amounts of XML data into Oracle Database.

	
See Also:

Chapter 3, "Using Oracle XML DB", "Loading Large XML Files Using SQL*Loader"

Example 29-1 illustrates how to load XMLType data into Oracle Database.

Example 29-1 Loading Very Large XML Documents Into Oracle Database Using SQL*Loader

This example uses the control file, load_data.ctl to load XMLType data into table foo. The code registers the XML schema, person.xsd, in Oracle XML DB, and then creates table foo. You can alternatively create the table within the XML schema registration process.

CREATE TYPE person_t AS OBJECT(name VARCHAR2(100), city VARCHAR2(100));/
BEGIN
 -- Delete schema if it already exists (else error)
 DBMS_XMLSCHEMA.deleteSchema('http://www.oracle.com/person.xsd', 4);
END;/
BEGIN
 DBMS_XMLSCHEMA.registerschema('http://www.oracle.com/person.xsd',
 '<schema xmlns="http://www.w3.org/2001/XMLSchema"' ||
 ' xmlns:per="http://www.oracle.com/person.xsd"' ||
 ' xmlns:xdb="http://xmlns.oracle.com/xdb"' ||
 ' elementFormDefault="qualified"' ||
 ' targetNamespace="http://www.oracle.com/person.xsd">' ||
 ' <element name="person" type="per:persontype"' ||
 ' xdb:SQLType="PERSON_T"/>' ||
 ' <complexType name="persontype" xdb:SQLType="PERSON_T">' ||
 ' <sequence>' ||
 ' <element name="name" type="string" xdb:SQLName="NAME"' ||
 ' xdb:SQLType="VARCHAR2"/>' ||
 ' <element name="city" type="string" xdb:SQLName="CITY"' ||
 ' xdb:SQLType="VARCHAR2"/>' ||
 ' </sequence>' ||
 ' </complexType>' ||
 ' </schema>',
 TRUE,
 FALSE,
 FALSE);
END;/
CREATE TABLE foo OF XMLType
 XMLSCHEMA "http://www.oracle.com/person.xsd" ELEMENT "person";

Here is the content of the control file, load_data.ctl, for loading XMLType data using the registered XML schema, person.xsd:

LOAD DATA
INFILE *
INTO TABLE foo TRUNCATE
XMLType(xmldata)
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(
xmldata
)
BEGINDATA
<person xmlns="http://www.oracle.com/person.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/person.xsd
http://www.oracle.com/person.xsd"> <name> xyz name 2</name> </person>

Here is the SQL*Loader command for loading the XML data into Oracle Database:

sqlldr [username]/[password] load_data.ctl (optional: direct=y)

In load_data.ctl, the data is present in the control file itself, and a record spanned only one line (it is split over several lines here, for printing purposes).

In the following example, the data is present in a separate file, person.dat, from the control file, lod2.ctl. File person.dat contains more than one row, and each row spans more than one line. Here is the control file, lod2.ctl:

LOAD DATA
INFILE *
INTO TABLE foo TRUNCATE
XMLType(xmldata)
FIELDS(fill filler CHAR(1),
 xmldata LOBFILE (CONSTANT person.dat)
 TERMINATED BY '<!-- end of record -->')
BEGINDATA
0
0
0

The three zeroes (0) after BEGINDATA indicate that three records are present in the data file, person.dat. Each record is terminated by <!-- end of record -->. The contents of person.dat are as follows:

<person xmlns="http://www.oracle.com/person.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/person.xsd
 http://www.oracle.com/person.xsd">
 <name>xyz name 2</name>
</person>
<!-- end of record -->
<person xmlns="http://www.oracle.com/person.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/person.xsd
 http://www.oracle.com/person.xsd">
 <name> xyz name 2</name>
</person>
<!-- end of record -->
<person xmlns="http://www.oracle.com/person.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/person.xsd
 http://www.oracle.com/person.xsd">
 <name>xyz name 2</name>
</person>
<!-- end of record -->

Here is the SQL*Loader command for loading the XML data into Oracle Database:

sqlldr [username]/[password] lod2.ctl (optional: direct=y)

List of Examples

	3-1 Creating a Table with an XMLType Column
	3-2 Creating a Table of XMLType
	3-3 Inserting XML Content into an XMLType Table
	3-4 Inserting XML Content into an XML Type Table Using Java
	3-5 Inserting XML Content into an XMLType Table Using C
	3-6 Inserting XML Content into the Repository Using PL/SQL DBMS_XDB
	3-7 Purchase-Order XML Schema, purchaseOrder.xsd
	3-8 Annotated Purchase-Order XML Schema, purchaseOrder.xsd
	3-9 Registering an XML Schema with DBMS_XMLSCHEMA.registerSchema
	3-10 Objects Created During XML Schema Registration
	3-11 Creating an XMLType Table that Conforms to an XML Schema
	3-12 Using DESCRIBE for an XML Schema-Based XMLType Table
	3-13 Error From Attempting to Insert an Incorrect XML Document
	3-14 ORA-19007 When Inserting Incorrect XML Document (Partial Validation)
	3-15 Using CHECK Constraint to Force Full XML Schema Validation
	3-16 Using BEFORE INSERT Trigger to Enforce Full XML Schema Validation
	3-17 Applying Database Integrity Constraints and Triggers to an XMLType Table
	3-18 Enforcing Database Integrity When Loading XML Using FTP
	3-19 PurchaseOrder XML Instance Document
	3-20 Using OBJECT_VALUE to Retrieve an Entire XML Document
	3-21 Accessing XML Fragments Using EXTRACT
	3-22 Accessing a Text Node Value Using EXTRACTVALUE
	3-23 Invalid Uses of EXTRACTVALUE
	3-24 Searching XML Content Using EXISTSNODE
	3-25 Limiting the Results of a SELECT Using EXISTSNODE in a WHERE Clause
	3-26 Finding the Reference for any PurchaseOrder Using extractValue and existsNode
	3-27 Using XMLSEQUENCE and TABLE to View Description Nodes
	3-28 Counting the Number of Elements in a Collection Using XMLSEQUENCE
	3-29 Counting the Number of Child Elements in an Element Using XMLSEQUENCE
	3-30 Creating Relational Views On XML Content
	3-31 Using a View to Access Individual Members of a Collection
	3-32 SQL queries on XML Content Using Views
	3-33 Querying XML Using Views of XML Content
	3-34 Updating XML Content Using UPDATEXML
	3-35 Replacing an Entire Element Using UPDATEXML
	3-36 Incorrectly Updating a Node That Occurs Multiple Times In a Collection
	3-37 Correctly Updating a Node That Occurs Multiple Times In a Collection
	3-38 Changing Text Node Values Using UPDATEXML
	3-39 Using EXPLAIN PLAN to Analyze the Selection of PurchaseOrders
	3-40 Creating an Index on a Text Node
	3-41 EXPLAIN PLAN For a Selection of LineItem Elements
	3-42 Creating an Index for Direct Access to a Nested Table
	3-43 EXPLAIN PLAN Generated When XPath Rewrite Does Not Occur
	3-44 Using SQL/XML Functions to Generate XML
	3-45 Forcing Pretty-Printing by Invoking Method extract() on the Result
	3-46 Creating XMLType Views Over Conventional Relational Tables
	3-47 Querying XMLType Views
	3-48 Accessing DEPARTMENTS Table XML Content Using DBURIType and getXML()
	3-49 Using a Predicate in the XPath Expression to Restrict Which Rows Are Included
	3-50 XSLT Style Sheet Example: PurchaseOrder.xsl
	3-51 Applying a Style Sheet Using TRANSFORM
	3-52 Uploading Content into the Repository Using FTP
	3-53 Creating a Text Document Resource Using DBMS_XDB
	3-54 Using PL/SQL Package DBMS_XDB To Create Folders
	3-55 Using XDBURIType to Access a Text Document in the Repository
	3-56 Using XDBURIType and a Repository Resource to Access Content
	3-57 Accessing XML Documents Using Resource and Namespace Prefixes
	3-58 Querying Repository Resource Data Using REF and the XMLRef Element
	3-59 Selecting XML Document Fragments Based on Metadata, Path, and Content
	3-60 Updating a Document Using UPDATE and UPDATEXML on the Resource
	3-61 Updating a Node in the XML Document Using UPDATE and UPDATEXML
	3-62 Updating XML Schema-Based Documents in the Repository
	3-63 Viewing RESOURCE_VIEW and PATH_VIEW Structures
	3-64 Accessing Resources Using EQUALS_PATH and RESOURCE_VIEW
	3-65 Determining the Path to XSL Style Sheets Stored in the Repository
	3-66 Counting Resources Under a Path
	3-67 Listing the Folder Contents in a Path
	3-68 Listing the Links Contained in a Folder
	3-69 Finding Paths to Resources that Contain Purchase-Order XML Documents
	3-70 EXPLAIN Plan Output for a Folder-Restricted Query
	4-1 Selecting XMLType Columns Using Method getClobVal()
	4-2 Using EXISTSNODE to Find a node
	4-3 Purchase-Order XML Document
	4-4 Using EXTRACT to Extract the Value of a Node
	4-5 Extracting the Scalar Value of an XML Fragment Using extractValue
	4-6 Querying XMLType Using EXTRACTVALUE and EXISTSNODE
	4-7 Querying Transient XMLType Data
	4-8 Extracting XML Data with EXTRACT, and Inserting It into a Table
	4-9 Extracting XML Data with EXTRACTVALUE, and Inserting It into a Table
	4-10 Searching XML Data with XMLType Methods extract() and existsNode()
	4-11 Searching XML Data with EXTRACTVALUE
	4-12 Extracting Fragments From an XMLType Instance Using EXTRACT
	4-13 Updating XMLType Using the UPDATE SQL Statement
	4-14 Updating XMLType Using UPDATE and UPDATEXML
	4-15 Updating Multiple Text Nodes and Attribute Values Using UPDATEXML
	4-16 Updating Selected Nodes Within a Collection Using UPDATEXML
	4-17 NULL Updates With UPDATEXML – Element and Attribute
	4-18 NULL Updates With UPDATEXML – Text Node
	4-19 XPath Expressions in UPDATEXML Expression
	4-20 Object Relational Equivalent of UPDATEXML Expression
	4-21 Creating Views Using UPDATEXML
	4-22 Inserting a LineItem Element into a LineItems Element
	4-23 Inserting an Element that Uses a Namespace
	4-24 Inserting a LineItem Element Before the First LineItem ELement
	4-25 Inserting a Date Element as the Last Child of an Action Element
	4-26 Deleting LineItem Element Number 222
	4-27 Using EXTRACTVALUE to Create an Index on a Singleton Element or Attribute
	4-28 XPath Rewrite of an Index on a Singleton Element or Attribute
	4-29 Using extractValue() to Create an Index on a Repeating Element or Attributes
	4-30 Using getStringVal() to Create a Function-Based Index on an EXTRACT
	4-31 Creating a Function-Based Index on a CLOB-based XMLType()
	4-32 Queries that use Function-Based Indexes
	4-33 Creating a Function-Based index on Schema-Based XMLType
	4-34 Using CTXXPATH Index and EXISTSNODE for XPath Searching
	4-35 Creating and Using Storage Preferences for CTXXPATH Indexes
	4-36 Synchronizing the CTXXPATH Index
	4-37 Optimizing the CTXXPATH Index
	4-38 Creating a CTXXPATH Index on a Schema-Based XMLType Table
	4-39 Creating an Oracle Text Index
	4-40 Searching XML Data Using CONTAINS
	5-1 XML Schema Instance purchaseOrder.xsd
	5-2 purchaseOrder.XML: Document That Conforms to purchaseOrder.xsd
	5-3 Registering an XML Schema with DBMS_XMLSCHEMA.REGISTERSCHEMA
	5-4 Creating SQL Object Types to Store XMLType Tables
	5-5 Default Table for Global Element PurchaseOrder
	5-6 Data Dictionary Table for Registered Schemas
	5-7 Deleting an XML Schema with DBMS_XMLSCHEMA.DELETESCHEMA
	5-8 Registering A Local XML Schema
	5-9 Registering A Global XML Schema
	5-10 Creating XML Schema-Based XMLType Tables and Columns
	5-11 Specifying CLOB Storage for Schema-Based XMLType Tables and Columns
	5-12 Specifying Storage Options for Schema-Based XMLType Tables and Columns
	5-13 Using Common Schema Annotations
	5-14 Results of Registering an Annotated XML Schema
	5-15 Querying Metadata from a Registered XML Schema
	5-16 Capturing SQL Mapping Using SQLType and SQLName Attributes
	6-1 XPath Rewrite
	6-2 XPath Rewrite with UPDATEXML
	6-3 Rewritten Object Relational Equivalent of XPath Rewrite with UPDATEXML
	6-4 SELECT Statement and XPath Rewrites
	6-5 DML Statement and XPath Rewrites
	6-6 CREATE INDEX Statement and XPath Rewrites
	6-7 Creating XML Schema-Based Purchase-Order Data
	6-8 Mapping Predicates
	6-9 Mapping Collection Predicates
	6-10 Mapping Collection Predicates, Using EXISTSNODE
	6-11 Document Ordering with Collection Traversals
	6-12 Handling Namespaces
	6-13 Date Format Conversions
	6-14 EXISTSNODE Mapping with Document Order Preserved
	6-15 Rewriting EXTRACTVALUE
	6-16 Creating Indexes with EXTRACTVALUE
	6-17 XPath Mapping for EXTRACT with Document Ordering Preserved
	7-1 Generating an XML Schema with Function GENERATESCHEMA
	7-2 Adding a Unique Constraint to the Parent Element of an Attribute
	7-3 complexType Mapping - Setting SQLInline to False for Out-of-Line Storage
	7-4 Using a Fully Qualified XML Schema URL
	7-5 Oracle XML DB XML Schema: Mapping complexType XML Fragments to LOBs
	7-6 Inheritance in XML Schema: complexContent as an Extension of complexTypes
	7-7 Inheritance in XML Schema: Restrictions in complexTypes
	7-8 XML Schema complexType: Mapping complexType to simpleContent
	7-9 Oracle XML DB XML Schema: Mapping complexType to Any/AnyAttributes
	7-10 Using ora:instanceof-only
	7-11 Using ora:instanceof
	7-12 Using ora:instanceof with Heterogeneous XML Schema-Based Data
	7-13 An XML Schema With Circular Dependency
	7-14 XML Schema: Cycling Between complexTypes
	7-15 XML Schema: Cycling Between complexTypes, Self-Reference
	7-16 Cyclic Dependencies
	7-17 Using Bind Variables in XPath
	7-18 Creating Constraints on Repetitive Elements in a Schema-Based Table
	8-1 Revised Purchase-Order XML Schema
	8-2 evolvePurchaseOrder.xsl: Style Sheet to Update Instance Documents
	8-3 Loading Revised XML Schema and XSL Style Sheet
	8-4 Using DBMS_XMLSCHEMA.COPYEVOLVE to Update an XML Schema
	9-1 Registering XML Schema and Inserting XML Data
	9-2 Using XMLTRANSFORM and DBURITYPE to Retrieve a Style Sheet
	9-3 Using XMLTRANSFORM and a Subquery to Retrieve a Style Sheet
	9-4 Using XMLType.transform() with a Transient Style Sheet
	9-5 Using isSchemaValid()
	9-6 Validating XML Using isSchemaValid()
	9-7 Using schemaValidate() Within Triggers
	9-8 Using XMLIsValid() Within CHECK Constraints
	10-1 Simple CONTAINS Query
	10-2 CONTAINS with a Structured Predicate
	10-3 CONTAINS Using XML Structure to Restrict the Query
	10-4 CONTAINS with Structure Inside Full-Text Predicate
	10-5 ora:contains with an Arbitrarily Complex Text Query
	10-6 CONTAINS Query with Simple Boolean
	10-7 CONTAINS Query with Complex Boolean
	10-8 CONTAINS Query with Stemming
	10-9 CONTAINS Query with Complex Query Expression
	10-10 Simple CONTAINS Query with SCORE
	10-11 WITHIN
	10-12 Nested WITHIN
	10-13 WITHIN an Attribute
	10-14 WITHIN and AND: Two Words in Some Comment Section
	10-15 WITHIN and AND: Two Words in the Same Comment
	10-16 WITHIN and AND: No Parentheses
	10-17 WITHIN and AND: Parentheses Illustrating Operator Precedence
	10-18 Structure Inside Full-Text Predicate: INPATH
	10-19 Structure Inside Full-Text Predicate: INPATH
	10-20 INPATH with Complex Path Expression (1)
	10-21 INPATH with Complex Path Expression (2)
	10-22 Nested INPATH
	10-23 Nested INPATH Rewritten
	10-24 Simple HASPATH
	10-25 HASPATH Equality
	10-26 HASPATH with Other Operators
	10-27 Using EXTRACT to Scope the Results of a CONTAINS Query
	10-28 Using EXTRACT and ora:contains to Project the Result of a CONTAINS Query
	10-29 Simple CONTEXT Index on Table PURCHASE_ORDERS
	10-30 Simple CONTEXT Index on Table PURCHASE_ORDERS with Path Section Group
	10-31 Simple CONTEXT Index on Table PURCHASE_ORDERS_xmltype
	10-32 Simple CONTEXT Index on XMLType Table
	10-33 CONTAINS Query on XMLType Table
	10-34 CONTAINS: Default Case Matching
	10-35 Create a Preference for Mixed Case
	10-36 CONTEXT Index on PURCHASE_ORDERS Table, Mixed Case
	10-37 CONTAINS: Mixed (Exact) Case Matching
	10-38 Simple CONTEXT Index on purchase_orders Table with Path Section Group
	10-39 ora:contains with an Arbitrarily Complex Text Query
	10-40 ora:contains in EXISTSNODE and EXTRACT
	10-41 Create a Policy to Use with ora:contains
	10-42 Query on a Common Word with ora:contains
	10-43 Query on a Common Word with ora:contains and Policy my_nostopwords_policy
	10-44 ora:contains, Default Case-Sensitivity
	10-45 Create a Preference for Mixed Case
	10-46 Create a Policy with Mixed Case (Case-Insensitive)
	10-47 ora:contains, Case-Sensitive (1)
	10-48 ora:contains, Case-Sensitive (2)
	10-49 Creating a Heap-Organized Table that Conforms to an XML Schema
	10-50 ora:contains in EXISTSNODE, Large Table
	10-51 EXPLAIN PLAN: EXISTSNODE
	10-52 B-Tree Index on ID
	10-53 ora:contains in EXISTSNODE, Mixed Query
	10-54 EXPLAIN PLAN: EXISTSNODE
	10-55 ora:contains in EXISTSNODE, Large Table
	10-56 EXPLAIN PLAN: EXISTSNODE
	10-57 Create a CTXXPATH Index on purchase_orders_xmltype_big(doc)
	10-58 EXPLAIN PLAN: EXISTSNODE with CTXXPATH Index
	10-59 Equality Predicate in XPath, Big Table
	10-60 Gathering Index Statistics
	10-61 ora:contains in existsNode
	10-62 Purchase Order XML Document, po001.xml
	10-63 CREATE TABLE purchase_orders
	10-64 CREATE TABLE purchase_orders_xmltype
	10-65 CREATE TABLE purchase_orders_xmltype_table
	10-66 Purchase-Order XML Schema for Full-Text Search Examples
	11-1 Creating and Manipulating a DOM Document
	11-2 Creating an Element Node and Obtaining Information About It
	11-3 Parsing an XML Document
	11-4 Transforming an XML Document Using an XSL Style Sheet
	12-1 Inserting data with specified columns
	12-2 Updating Data With Key Columns
	12-3 Simple deleteXML() Example
	13-1 XMLType Java: Using JDBC to Query an XMLType Table
	13-2 XMLType Java: Selecting XMLType Data
	13-3 XMLType Java: Directly Returning XMLType Data
	13-4 XMLType Java: Returning XMLType Data
	13-5 XMLType Java: Updating, Inserting, or Deleting XMLType Data
	13-6 XMLType Java: Getting Metadata on XMLType
	13-7 XMLType Java: Updating an Element in an XMLType Column
	13-8 Manipulating an XMLType Column
	13-9 Loading a Large XML Document
	13-10 Creating a DOM Object with the Java DOM API
	14-1 Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx()
	14-2 Using the DOM to Count Ordered Parts
	15-1 Retrieve XMLType Data to .NET
	16-1 XMLELEMENT: Formatting a Date
	16-2 XMLELEMENT: Generating an Element for Each Employee
	16-3 XMLELEMENT: Generating Nested XML
	16-4 XMLELEMENT: Generating Employee Elements with ID and Name Attributes
	16-5 XMLELEMENT: Using Namespaces to Create a Schema-Based XML Document
	16-6 XMLELEMENT: Generating an Element from a User-Defined Datatype Instance
	16-7 XMLFOREST: Generating Elements with Attribute and Child Elements
	16-8 XMLFOREST: Generating an Element from a User-Defined Datatype Instance
	16-9 XMLSEQUENCE Returns Only Top-Level Element Nodes
	16-10 XMLSEQUENCE: Generating One XML Document from Another
	16-11 XMLSEQUENCE: Generate a Document for Each Row of a Cursor
	16-12 XMLSEQUENCE: Unnesting Collections in XML Documents into SQL Rows
	16-13 XMLCONCAT: Concatenating XMLType Instances from a Sequence
	16-14 XMLCONCAT: Concatenating XML Elements
	16-15 XMLAGG: Generating Department Elements with a List of Employee Elements
	16-16 XMLAGG: Generating Nested Elements
	16-17 Using XMLPI
	16-18 Using XMLCOMMENT
	16-19 Using XMLRoot
	16-20 Using XMLSERIALIZE
	16-21 Using XMLPARSE
	16-22 XMLCOLATTVAL: Generating Elements with Attribute and Child Elements
	16-23 Using XMLCDATA
	16-24 DBMS_XMLGEN: Generating Simple XML
	16-25 DBMS_XMLGEN: Generating Simple XML with Pagination (fetch)
	16-26 DBMS_XMLGEN: Generating Nested XML With Object Types
	16-27 DBMS_XMLGEN: Generating Nested XML With User-Defined Datatype Instances
	16-28 DBMS_XMLGEN: Generating an XML Purchase Order
	16-29 DBMS_XMLGEN: Generating a New Context Handle from a Ref Cursor
	16-30 DBMS_XMLGEN: Specifying NULL Handling
	16-31 DBMS_XMLGEN : Generating Recursive XML with a Hierarchical Query
	16-32 DBMS_XMLGEN : Binding Query Variables with setBindValue()
	16-33 Using SYS_XMLGEN to Create XML
	16-34 SYS_XMLGEN: Generating an XML Element from a Database Column
	16-35 SYS_XMLGEN: Converting a Scalar Value to XML Element Contents
	16-36 SYS_XMLGEN: Default Element Name ROW
	16-37 Overriding the Default Element Name: Using SYS_XMLGEN with XMLFormat
	16-38 SYS_XMLGEN: Converting a User-Defined Datatype Instance to XML
	16-39 SYS_XMLGEN: Converting an XMLType Instance
	16-40 Using SYS_XMLGEN with Object Views
	16-41 Using XSQL Servlet <xsql:include-xml> with Nested XMLAgg Functions
	16-42 Using XSQL Servlet <xsql:include-xml> with XMLElement and XMLAgg
	16-43 Using XMLAGG ORDER BY Clause
	16-44 Returning a Rowset using XMLSEQUENCE, EXTRACT, and TABLE
	17-1 Creating Resources for Examples
	17-2 XMLQuery Applied to a Sequence of Items of Different Types
	17-3 FLOWR Expression Using For, Let, Order By, Where, and Return
	17-4 FLOWR Expression Using Built-In Functions
	17-5 Using ora:view to Query Relational Tables as XML Views
	17-6 Using ora:view in a Nested FLWOR Query
	17-7 Using ora:view with XMLTable to Query a Relational Table as XML
	17-8 Using XMLQuery with PASSING Clause, to Query an XMLType Column
	17-9 Using XMLTable with XML Schema-Based Data
	17-10 Using XMLQuery with Schema-Based Data
	17-11 Using XMLTable with PASSING and COLUMNS Clauses
	17-12 Using XMLTable to Shred XML Collection Elements into Relational Data
	17-13 Using XMLTable with the NAMESPACES Clause
	17-14 Optimization of XMLQuery with ora:view
	17-15 Optimization of XMLTable with ora:view
	17-16 Optimization of XMLQuery with Schema-Based XMLType Data
	17-17 Optimization of XMLTable with Schema-Based XMLType Data
	17-18 Static Type-Checking of XQuery Expressions: ora:view
	17-19 Static Type-Checking of XQuery Expressions: Schema-Based XML
	17-20 Using the SQL*Plus XQUERY Command
	17-21 Using XQuery with PL/SQL
	17-22 Using XQuery with JDBC
	17-23 Using XQuery with ODP.NET and C#
	18-1 Creating an XMLType View Using XMLELEMENT
	18-2 Creating an XMLType View Using Object Types and SYS_XMLGEN
	18-3 Registering XML Schema emp_simple.xsd
	18-4 Creating an XMLType View Using SQL/XML Functions
	18-5 Querying an XMLType View
	18-6 Using Namespace Prefixes in XMLType Views
	18-7 Using SQL/XML Generation Functions in Schema-Based XMLType Views
	18-8 Creating Object Types for Schema-Based XMLType Views
	18-9 Generating an XML Schema with DBMS_XMLSCHEMA.GENERATESCHEMA
	18-10 Registering XML Schema emp_complex.xsd
	18-11 Creating an XMLType View
	18-12 Creating an Object View and an XMLType View on the Object View
	18-13 Creating Object Types
	18-14 Registering XML Schema dept_complex.xsd
	18-15 Creating XMLType Views on Relational Tables
	18-16 Creating XMLType Views Using SQL/XML Functions
	18-17 Creating an XMLType View by Restricting Rows From an XMLType Table
	18-18 Creating an XMLType View by Transforming an XMLType Table
	18-19 Identifying When a View is Implicitly Updatable
	18-20 Non-Schema-Based Views Constructed Using SQL/XML
	18-21 XML-Schema-Based Views Constructed With SQL/XML
	18-22 Non-Schema-Based Views Constructed Using SYS_XMLGEN
	18-23 Non-Schema-Based Views Constructed Using SYS_XMLGEN on an Object View
	18-24 XML-Schema-Based Views Constructed Using Object Types
	18-25 Generating XML Schema-Based XML Without Creating Views
	19-1 Using HTTPURIType Method getContentType()
	19-2 Creating and Querying a URI Column
	19-3 Using Different Kinds of URI, Created in Different Ways
	19-4 Using an XDBUri to Access a Repository Resource by URI
	19-5 Using getXML() with EXTRACTVALUE
	19-6 Using a DBUri to Target a Complete Table
	19-7 Using a DBUri to Target a Particular Row in a Table
	19-8 Using a DBUri to Target a Specific Column
	19-9 Using a DBUri to Target an Object Column with Specific Attribute Values
	19-10 Using a DBUri to Retrieve Only the Text Value of a Node
	19-11 Using a DBUri to Target a Collection
	19-12 URIFACTORY: Registering the ECOM Protocol
	19-13 SYS_DBURIGEN: Generating a DBUri that Targets a Column
	19-14 Passing Columns With Single Arguments to SYS_DBURIGEN
	19-15 Inserting Database References Using SYS_DBURIGEN
	19-16 Returning a Portion of the Results By Creating a View and Using SYS_DBURIGEN
	19-17 Using SYS_DBURIGEN in the RETURNING Clause to Retrieve a URL
	19-18 Using a URL to Override the MIME Type
	19-19 Changing the Installation Location of DBUriServlet
	19-20 Restricting Servlet Access to a Database Role
	19-21 Registering a Handler for a DBUri Prefix
	21-1 Using DBMS_XDB_VERSION.GetResourceByResId To Retrieve a Resource
	21-2 Using DBMS_XDB_VERSION.MakeVersioned To Create a VCR
	21-3 Retrieving the Resource ID of the New Version After Check-In
	21-4 Oracle XML DB: Creating and Updating a Version-Controlled Resource (VCR)
	21-5 VCR Check-Out
	21-6 VCR Check-In
	21-7 VCR UnCheckOut()
	22-1 Determining Paths Under a Path: Relative
	22-2 Determining Paths Under a Path: Absolute
	22-3 Determining Paths Not Under a Path
	22-4 Determining Paths Using Multiple Correlations
	22-5 Using ANY_PATH with LIKE
	22-6 Relative Path Names for Three Levels of Resources
	22-7 Extracting Resource Metadata using UNDER_PATH
	22-8 Using Functions PATH and DEPTH with PATH_VIEW
	22-9 Extracting Link and Resource Information from PATH_VIEW
	22-10 All Paths to a Certain Depth Under a Path
	22-11 Using EQUALS_PATH to Locate a Path
	22-12 Retrieve RESID of a Given Resource
	22-13 Obtaining the Path Name of a Resource from its RESID
	22-14 Folders Under a Given Path
	22-15 Joining RESOURCE_VIEW with an XMLType Table
	22-16 Deleting Resources
	22-17 Deleting Links to Resources
	22-18 Deleting a Nonempty Folder
	22-19 Updating a Resource
	22-20 Updating a Path in the PATH_VIEW
	22-21 Updating Resources Based on Attributes
	22-22 Finding Resources Inside a Folder
	22-23 Copying Resources
	22-24 Find All Resources Containing "Paper"
	22-25 Find All Resources Containing "Paper" that are Under a Specified Path
	23-1 Using DBMS_XDB to Manage Resources
	23-2 Using Procedure DBMS_XDB.getACLDocument
	23-3 Using Procedure DBMS_XDB.setACL
	23-4 Using Function DBMS_XDB.changePrivileges
	23-5 Using Function DBMS_XDB.changePrivileges
	23-6 Using Function DBMS_XDB.cfg_get
	23-7 Using Procedure DBMS_XDB.cfg_update
	24-1 Creating an ACL Using DBMS_XDB.createResource
	24-2 Setting the ACL of a Resource
	24-3 Deleting an ACL
	24-4 Updating (Replacing) an Access Control List
	24-5 Appending ACEs to an Access Control List
	24-6 Deleting an ACE from an Access Control List
	24-7 Retrieving the ACL Document for a Resource
	24-8 Retrieving Privileges Granted to the Current User for a Particular Resource
	24-9 Checking If a User Has a Certain Privileges on a Resource
	24-10 Checking User Privileges using ACLCheckPrivileges
	24-11 Retrieving the Path of the ACL that Protects a Given Resource
	24-12 Retrieving the Paths of All Resources Protected by a Given ACL
	24-13 ACL Referencing an LDAP User
	24-14 ACL Referencing an LDAP Group
	25-1 Navigating ASM Folders
	25-2 Transferring ASM Files Between Databases with FTP proxy Method
	25-3 Modifying the Default Timeout Value of an FTP Session
	26-1 Register an XML Schema for Technical Photo Information
	26-2 Register an XML Schema for Photo Categorization
	26-3 Add Metadata to a Resource – Technical Photo Information
	26-4 Add Metadata to a Resource – Photo Content Categories
	26-5 Delete Specific Metadata from a Resource
	26-6 Add Metadata to a Resource Using DML with RESOURCE_VIEW
	26-7 Add Metadata with WebDAV PROPPATCH
	26-8 Query XML Schema-Based Resource Metadata
	26-9 Add Non-Schema-Based Metadata to a Resource
	27-1 Writing an Oracle XML DB Servlet
	28-1 Oracle XML DB Configuration File
	28-2 Updating the Configuration File Using cfg_update() and cfg_get()
	29-1 Loading Very Large XML Documents Into Oracle Database Using SQL*Loader
	30-1 Exporting XMLType Data
	30-2 Exporting XMLType Tables
	30-3 Importing Data from a File
	30-4 Exporting XML Data in TABLE Mode
	30-5 Importing XML Data in TABLE Mode
	31-1 XMLType and AQ: Creating a Table and Queue, and Transforming Messages
	31-2 XMLType and AQ: Dequeuing Messages
	D-1 Annotated Purchase-Order XML Schema, purchaseOrder.xsd
	D-2 Revised Purchase-Order XML Schema
	D-3 Inserting XML Content into an XMLType Table Using C
	D-4 Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx()

6 XPath Rewrite

This chapter explains the fundamentals of XPath rewrite in Oracle XML DB and how to use it for XML schema-based structured storage. It details the rewriting of XPath-expression arguments to these important SQL functions: existsNode, extract, extractValue, XMLSequence, updateXML, insertChildXMl, and deleteXML.

This chapter contains these topics:

	
Overview of XPath Rewrite

	
Where Does XPath Rewrite Occur?

	
Which XPath Expressions Are Rewritten?

	
XPath Rewrite Can Change Comparison Semantics

	
How Are XPath Expressions Rewritten?

	
Diagnosing XPath Rewrite

	
XPath Rewrite of SQL Functions

	
See Also:

"XPath Rewrite on XMLType Views"

Overview of XPath Rewrite

When XMLType data is stored in structured storage (object-relationally) using an XML schema and queries using XPath are used, they can potentially be rewritten directly to the underlying object-relational columns. This rewrite of queries can also potentially happen when queries using XPath are issued on certain non-schema-based XMLType views. The optimization process of rewriting XPath expressions is called XPath rewrite.

This enables the use of B*Tree or other indexes, if present on the column, to be used in query evaluation by the Optimizer. This XPath rewrite mechanism is used for XPath-expression arguments to SQL functions such as existsNode, extract, extractValue, and updateXML. This enables the XPath expression to be evaluated against the XML document without constructing the XML document in memory.

The XPath expressions that are rewritten by Oracle XML DB are a proper subset of those that are supported by Oracle XML DB. Whenever you can do so without losing functionality, use XPath expressions that can be rewritten.

Example 6-1 XPath Rewrite

For example, a query such as the following tries to obtain the Company element and compare it with the literal 'Oracle':

SELECT OBJECT_VALUE FROM mypurchaseorders p
 WHERE extractValue(OBJECT_VALUE, '/PurchaseOrder/Company') = 'Oracle';

Because table mypurchaseorders was created with XML schema-based structured storage, extractValue is rewritten to the underlying relational column that stores the company information for the purchaseOrder. The query is rewritten to the following:

SELECT VALUE(p) FROM mypurchaseorders p WHERE p.xmldata.Company = 'Oracle';

	
Note:

XMLDATA is a pseudo-attribute of datatype XMLType that enables direct access to the underlying object column. See Chapter 4, "XMLType Operations".

If there is a regular index created on the Company column, such as the following, then the preceding query uses the index for its evaluation.

CREATE INDEX company_index
 ON mypurchaseorders e (extractValue(OBJECT_VALUE, '/PurchaseOrder/Company'));

XPath rewrite happens for XML schema-based tables and both schema-based and non-schema-based views. In this chapter, we consider only examples related to schema-based tables.

Example 6-2 XPath Rewrite with UPDATEXML

The XPath argument to SQL function updateXML in this example is rewritten to the equivalent object relational SQL statement given in Example 6-3.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

EXTRACTVAL

SBELL

1 row selected.

UPDATE purchaseorder
 SET OBJECT_VALUE = updateXML(OBJECT_VALUE, '/PurchaseOrder/User/text()', 'SVOLLMAN')
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

1 row updated.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

EXTRACTVAL

SVOLLMAN

1 row selected.

Example 6-3 Rewritten Object Relational Equivalent of XPath Rewrite with UPDATEXML

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

EXTRACTVAL

SBELL

1 row selected.

UPDATE purchaseorder p
 SET p."XMLDATA"."userid" = 'SVOLLMAN'
 WHERE p."XMLDATA"."reference" = 'SBELL-2002100912333601PDT';

1 row updated.

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/User')
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

EXTRACTVAL

SVOLLMAN

1 row selected.

	
See Also:

Chapter 3, "Using Oracle XML DB", "Understanding and Optimizing XPath Rewrite", for additional examples of rewrite over schema-based and non-schema-based views

Where Does XPath Rewrite Occur?

XPath rewrite happens for the following SQL functions:

	
extract

	
existsNode

	
extractValue

	
updateXML

	
insertChildXML

	
deleteXML

	
XMLSequence

XPath rewrite can happen when these SQL functions are present in any expression in a query, DML, or DDL statement. For example, you can use function extractValue to create indexes on the underlying relational columns.

Example 6-4 SELECT Statement and XPath Rewrites

This example gets the existing purchase orders:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/Company')
 FROM mypurchaseorders x
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder/Item[1]/Part') = 1;

Here are some examples of statements that get rewritten to use underlying columns:

Example 6-5 DML Statement and XPath Rewrites

This example deletes all PurchaseOrders where the Company is not Oracle:

DELETE FROM mypurchaseorders x
 WHERE extractValue(OBJECT_VALUE, '/PurchaseOrder/Company') = 'Oracle Corp';

Example 6-6 CREATE INDEX Statement and XPath Rewrites

This example creates an index on the Company column, because this is stored object relationally and the XPath rewrite happens, a regular index on the underlying relational column will be created:

CREATE INDEX company_index
 ON mypurchaseorders e (extractValue(OBJECT_VALUE,'/PurchaseOrder/Company'));

In this case, if the rewrite of the SQL functions results in a simple relational column, then the index is turned into a B*Tree or a domain index on the column, rather than a function-based index.

Which XPath Expressions Are Rewritten?

An XPath expression can generally be rewritten if all of the following are true:

	
The XML function or method is rewritable.

SQL functions extract, existsNode, extractValue, updateXML, insertChildXML, deleteXML, and XMLSequence are rewritten. Except method existsNode(), none of the corresponding XMLType methods are rewritten.

	
The XPath expression uses only the descendent axis.

Expressions involving axes (such as parent and sibling) other than descendent are not rewritten. Expressions that select attributes, elements, or text nodes can be rewritten. XPath predicates are rewritten to SQL predicates.

	
The XML Schema constructs for the XPath expression are rewritable.

XML Schema constructs such as complex types, enumerated values, lists, inherited (derived) types, and substitution groups are rewritten. Constructs such as recursive type definitions are not rewritten.

	
The storage structure chosen during XML-schema registration is rewritable.

Storage using the object-relational mechanism is rewritten. Storage of complex types using CLOBs are not rewritten

Table 6-1 lists the kinds of XPath expressions that can be translated into underlying SQL queries.

Table 6-1 Sample List of XPath Expressions for Translation to Underlying SQL constructs

	XPath Expression for Translation	Description
	
Simple XPath expressions:

/PurchaseOrder/@PurchaseDate

/PurchaseOrder/Company

	
Involves traversals over object type attributes only, where the attributes are simple scalar or object types themselves. The only axes supported are the child and the attribute axes.

	
Collection traversal expressions:

/PurchaseOrder/Item/Part

	
Involves traversal of collection expressions. The only axes supported are child and attribute axes. Collection traversal is not supported if the SQL function is used during a CREATE INDEX operation.

	
Predicates:

[Company="Oracle"]

	
Predicates in the XPath are rewritten into SQL predicates.

	
List index (positional predicate):

lineitem[1]

	
Indexes are rewritten to access the nth item in a collection. These are not rewritten for updateXML, insertChildXML, and deleteXML.

	
Wildcard traversals:

/PurchaseOrder/*/Part

	
If the wildcard can be translated to a unique XPath (for example, /PurchaseOrder/Item/Part), then it is rewritten, unless it is the last entry in the path expression.

	
Descendent axis:

/PurchaseOrder//Part

	
Similar to a wildcard expression. The descendent axis gets rewritten, if it can be mapped to a unique XPath expression and the subsequent element is not involved in a recursive type definition.

	
Oracle-provided extension functions and some XPath functions

not, floor, ceiling, substring, string-length, translate

ora:contains

	
Any function from the Oracle XML DB namespace (http://xmlns.oracle.com/xdb) gets rewritten into the underlying SQL function. Some XPath functions also get rewritten.

	
String bind variables inside predicates

'/PurchaseOrder[@Id="'|| :1 || '"]'

	
XPath expressions using SQL bind variables are rewritten if they occur between the concatenation (||) operators and are inside the double-quotes.

	
Unnest operations using XMLSequence

table(XMLSequence(extract(...)))

	
When used in a table function call, XMLSequence combined with extract is rewritten to use the underlying nested table structures.

Common XPath Constructs Supported in XPath Rewrite

The following are some of the XPath constructs that get rewritten. This is not an exhaustive list and only illustrates some of the common forms of XPath expressions that get rewritten.

	
Simple XPath traversals

	
Predicates and index accesses

	
Oracle-provided extension functions on scalar values

	
SQL Bind variables

	
Descendant axis (XML schema-based data only): Rewrites over the descendant axis (//) are supported if:

	
There is at least one XPath child or attribute access following the //

	
Only one descendant of the children can potentially match the XPath child or attribute name following the //. If the XML schema indicates that multiple descendants of the children potentially match, and there is no unique path that the // can be expanded to, then no rewrite is done.

	
None of the descendants have an element of type xsi:anyType

	
There is no substitution group that has the same element name at any descendant.

	
Wildcards (XML schema-based only). Rewrites over wildcard axis (/*) are supported if:

	
There is at least one XPath child or attribute access following the /*

	
Only one of the grandchildren can potentially match the XPath child or attribute name following the /*. If the XML schema indicates that multiple grandchildren potentially match, and there is no unique path that the /* can be expanded to, then no rewrite is done.

	
None of the children or grandchildren of the node before the /* have an element of type xsi:anyType

	
There is no substitution group that has the same element name for any child of the node before the /*.

Unsupported XPath Constructs in XPath Rewrite

The following XPath constructs are not rewritten:

	
XPath functions other than those listed earlier. The listed functions are rewritten only if the input is an element with scalar content.

	
XPath variable references.

	
All axes other than the child and attribute axes.

	
Recursive type definitions with descendent axes.

	
UNION operations.

Common XMLSchema Constructs Supported in XPath Rewrite

In addition to standard XML Schema constructs such as complexTypes and sequences, the following additional XML Schema constructs are also supported. This is not an exhaustive list and seeks to illustrate the common schema constructs that get rewritten.

	
Collections of scalar values where the scalar values are used in predicates.

	
Simple type extensions containing attributes.

	
Enumerated simple types.

	
Boolean simple type.

	
Inheritance of complex types.

	
Substitution groups.

Unsupported XML Schema Constructs in XPath Rewrite

The following XML Schema constructs are not supported. This means that if the XPath expression includes nodes with the following XML Schema construct then the entire expression will not get rewritten:

	
XPath expressions accessing children of elements containing open content, namely any content. When nodes contain any content, then the expression cannot be rewritten, except when the any targets a namespace other than the namespace specified in the XPath. The any attributes are handled in a similar way.

	
Datatype operations that cannot be coerced, such as addition of a Boolean value and a number.

Common Storage Constructs Supported in XPath Rewrite

All rewritable XPath expressions over object-relational storage get rewritten. In addition to that, the following storage constructs are also supported for rewrite.

	
Simple numeric types mapped to SQL RAW datatype.

	
Various date and time types mapped to the SQL TIMESTAMP_WITH_TZ datatype.

	
Collections stored inline, out-of-line, as OCTs, and as nested tables.

	
XML functions over schema-based and non-schema-based XMLType views and SQL/XML views also get rewritten.

	
See Also:

Chapter 18, "XMLType Views"

Unsupported Storage Constructs in XPath Rewrite

The following XML Schema storage constructs are not supported. This means that if the XPath expression includes nodes with the following storage construct then the entire expression will not get rewritten:

	
CLOB storage: If the XML schema maps part of the element definitions to a SQL CLOB value, then XPath expressions traversing such elements are not supported

XPath Rewrite Can Change Comparison Semantics

For the most part, there is no difference between rewritten XPath queries and functionally evaluated ones. However, since XPath rewrite uses XML Schema information to turn XPath predicates into SQL predicates, comparison of nonnumeric entities is different.

In XPath 1.0, the comparison operators, >, <, >=, and <=, use only numeric comparison. The two operands are converted to numeric values before comparison. If either of them fails to be converted to a numeric value, the comparison returns false.

For instance, if I have an XML-schema element definition such as the following, then an XPath predicate such as [ShipDate < '2003-02-01'] will always evaluate to false with functional evaluation.

<element name="ShipDate" type="xs:date" xdb:SQLType="DATE"/>

This is because the string value '2003-02-01' cannot be converted to a numeric quantity. With XPath rewrite, however, this predicate gets translated to a SQL date comparison, and will evaluate to true or false, depending on the value of ShipDate.

Similarly if a collection value is compared with another collection value, the XPath 1.0 semantics dictate that the values must be converted to strings and then compared. With XPath rewrite, the comparison uses the rules for comparing SQL values.

To suppress this behavior, you can turn off rewrite either using query hints or session level events.

How Are XPath Expressions Rewritten?

This section uses the same purchase-order XML schema introduced earlier in this chapter.

Example 6-7 Creating XML Schema-Based Purchase-Order Data

DECLARE
 doc VARCHAR2(2000) :=
 '<schema
 targetNamespace="http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
 xmlns:po="http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal"/>
 <element name="Company">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Item" maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part">
 <simpleType>
 <restriction base="string">
 <maxLength value="20"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Price" type="float"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <element name="PurchaseOrder" type="po:PurchaseOrderType"/>
 </schema>';
BEGIN
 DBMS_XMLSCHEMA.registerSchema(
 'http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd', doc);
END;
/

The registration creates the internal types. We can now create a table to store the XML values and also create a nested table to store the items.

CREATE TABLE mypurchaseorders OF XMLType
 XMLSchema "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
 ELEMENT "PurchaseOrder"
 VARRAY xmldata."Item" STORE AS TABLE item_nested;

Table created

Now, we insert a purchase order into this table.

INSERT INTO mypurchaseorders
 VALUES(
 XMLType(
 '<PurchaseOrder
 xmlns="http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation
 = "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd
 http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
 <Item>
 <Part>8i Doc Set</Part>
 <Price>350</Price>
 </Item>
 </PurchaseOrder>'));

Because the XML schema did not specify anything about maintaining the ordering, the default is to maintain the ordering and DOM fidelity. Hence the types have the SYS_XDBPD$ (PD) attribute to store the extra information needed to maintain the ordering of nodes and to capture extra items such as comments, processing instructions and so on.

The SYS_XDBPD$ attribute also maintains the existential information for the elements (that is, whether or not the element was present in the input document). This is needed for simpleType elements, because they map to simple relational columns. In this case, both empty and missing simpleType elements map to NULL values in the column, and the SYS_XDBPD$ attribute can be used to distinguish the two cases. The XPath rewrite mechanism takes into account the presence or absence of the SYS_XDBPD$ attribute, and rewrites queries appropriately.

This table has a hidden XMLDATA column of type purchaseorder_t that stores the actual data.

Rewriting XPath Expressions: Mapping Types and Path Expressions

XPath-expression mapping of types and path expressions is described in the following sections.

Schema-Based: Mapping for a Simple XPath

A rewrite for a simple XPath involves accessing the attribute corresponding to the XPath expression – see Table 6-2.

Table 6-2 Simple XPath Mapping for purchaseOrder XML Schema

	XPath Expression	Maps to
	
/PurchaseOrder

	
column XMLDATA

	
/PurchaseOrder/@PurchaseDate

	
column XMLDATA."PurchaseDate"

	
/PurchaseOrder/PONum

	
column XMLDATA."PONum"

	
/PurchaseOrder/Item

	
elements of the collection XMLDATA."Item"

	
/PurchaseOrder/Item/Part

	
attribute "Part" in the collection XMLDATA."Item"

Schema-Based: Mapping for simpleType Elements

An XPath expression can contain a text() node test, which targets the text node (content) of an element. When rewriting, this maps directly to the underlying relational columns. For example, the XPath expression "/PurchaseOrder/PONum/text()" maps directly to the SQL column XMLDATA."PONum".

A NULL in the PONum column implies that the text value is not available: either the text() node test is not present in the input document or the element itself is missing. If the column is NULL, there is no need to check for the existence of the element in the SYS_XBDPD$ attribute.

The XPath "/PurchaseOrder/PONum" also maps to the SQL attribute XMLDATA."PONum". However, in this case, XPath rewrite must check for the existence of the element itself, using attribute SYS_XDBPD$ in column XMLDATA.

Schema-Based: Mapping of Predicates

Predicates are mapped to SQL predicate expressions. Since the predicates are rewritten to SQL, the comparison rules of SQL are used instead of the XPath 1.0 semantics.

Example 6-8 Mapping Predicates

The predicate in the XPath expression:

/PurchaseOrder[PONum=1001 and Company = "Oracle Corp"]

maps to the SQL predicate:

(XMLDATA."PONum" = 20 AND XMLDATA."Company" = "Oracle Corp")

The following query is rewritten to the structured (object-relational) equivalent, and will not require functional evaluation of the XPath.

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/Item').getClobval()
 FROM mypurchaseorders p
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[PONum=1001 AND Company = "Oracle Corp"]') = 1;

Schema-Based: Mapping of Collection Predicates XPath expressions can involve relational collection expressions. In Xpath 1.0, these are treated as existential checks: if at least one member of the collection satisfies the expression, then the expression is true.

Example 6-9 Mapping Collection Predicates

The collection predicate in this XPath expression involves the relational greater-than operator (>):

/PurchaseOrder[Items/Price > 200]

This maps to the following SQL collection expression:

exists(SELECT NULL FROM table(XMLDATA."Item") x WHERE x."Price" > 200)

In this example, a collection is related to a scalar value. More complicated rewrites occur with a relation between two collections. For example, in the following XPath expression, both LineItems and ShippedItems are collections.

/PurchaseOrder[LineItems = ShippedItems]

In this case, if any combination of nodes from these two collections satisfies the equality, then the predicate is considered satisfied.

Example 6-10 Mapping Collection Predicates, Using EXISTSNODE

Consider a fictitious XPath that checks if a Purchaseorder has Items whose Price and Part number are the same:

/PurchaseOrder[Items/Price = Items/Part]
-- maps to a SQL collection expression:
 exists(SELECT NULL
 FROM table(XMLDATA."Item") x
 WHERE exists(SELECT NULL
 FROM table(XMLDATA."Item") y
 WHERE y."Part" = x."Price"))

The following query is rewritten to the structured equivalent:

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/Item').getClobval()
 FROM mypurchaseorders p
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Item/Price = Item/Part]') = 1;

Schema-Based: Document Ordering with Collection Traversals

Most of the rewrite preserves the original document ordering. However, because SQL does not guarantee ordering on the results of subqueries when selecting elements from a collection using SQL function extract, the resultant nodes may not be in document order.

Example 6-11 Document Ordering with Collection Traversals

For example:

SELECT extract(OBJECT_VALUE, '/PurchaseOrder/Item[Price>2100]/Part')
 FROM mypurchaseorders p;

This query is rewritten to use a subquery:

SELECT (SELECT XMLAgg(XMLForest(x."Part" AS "Part"))
 FROM table(XMLDATA."Item") x WHERE x."Price" > 2100)
 FROM mypurchaseorders p;

In most cases, the result of the aggregation is in the same order as the collection elements, but this is not guaranteed. So, the results may not be in document order.

Schema-Based: Collection Position

An XPath expression can also access an element at a particular position of a collection. For example, "/PurchaseOrder/Item[1]/Part" is rewritten to extract out the first Item element of the collection, and access the Part attribute within that.

If the collection is stored as a varray, then this operation retrieves the nodes in the same order as in the original document. If the collection is stored as a nested table, then the order is indeterminate.

Schema-Based: XPath Expressions That Cannot Be Satisfied

An XPath expression can contain references to nodes that cannot be present in the input document. Such parts of the expression map to SQL NULL values during rewrite. For example, the XPath expression /PurchaseOrder/ShipAddress cannot be satisfied by any instance document conforming to the purchaseorder.xsd XML schema, because the schema does not allow for ShipAddress elements under PurchaseOrder. Hence this expression would map to a SQL NULL literal.

Schema-Based: Namespace Handling

Namespaces are handled in the same way as function-based evaluation. For schema-based documents, if the function (such as existsNode or extract) does not specify any namespace parameter, then the target namespace of the schema is used as the default namespace for the XPath expression.

Example 6-12 Handling Namespaces

For example, the XPath expression /PurchaseOrder/PONum is treated as /a:PurchaseOrder/a:PONum with xmlns:a= "http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd" if the SQL function does not explicitly specify the namespace prefix and mapping. In other words:

SELECT * FROM mypurchaseorders p
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder/PONum') = 1;

is equivalent to the query:

SELECT *
 FROM mypurchaseorders p
 WHERE existsNode(
 OBJECT_VALUE,
 '/PurchaseOrder/PONum',
 'xmlns="http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd')
 = 1;

When performing XPath rewrite, the namespace for a particular element is matched with that of the XML schema definition. If the XML schema contains elementFormDefault="qualified" then each node in the XPath expression must target a namespace (this can be done using a default namespace specification or by prefixing each node with a namespace prefix).

If the elementFormDefault is unqualified (which is the default), then only the node that defines the namespace should contain a prefix. For instance if the purchaseorder.xsd had the element form to be unqualified, then existsNode expression should be rewritten as follows:

existsNode(
 OBJECT_VALUE,
 '/a:PurchaseOrder/PONum',
 'xmlns:a="http://xmlns.oracle.com/xdb/documentation/purchaseOrder.xsd")
= 1;

	
Note:

For the case where elementFormDefault is unqualified, omitting the namespace parameter in the existsNode expression in the preceding example would cause each node to default to the target namespace. This would not match the XML schema definition and consequently would not return any result. This is true whether or not the function is rewritten.

Schema-Based: Date Format Conversions

Date datatypes such as DATE, gMONTH, and gDATE have different format in XML Schema and SQL. If an expression has a string value for columns of such datatypes, then the rewrite automatically provides the XML format string to convert the string value correctly. Thus, the string value specified for a DATE column must match the XML date format, not the SQL DATE format.

Example 6-13 Date Format Conversions

For example, the expression [@PurchaseDate="2002-02-01"] cannot be simply rewritten as XMLDATA."PurchaseDate"="2002-02-01", because the default date format for SQL is not YYYY-MM-DD. Hence during XPath rewrite, the XML format string is added to convert text values into date datatypes correctly. Thus the preceding predicate would be rewritten as:

XMLDATA."PurchaseDate" = TO_DATE("2002-02-01","SYYYY-MM-DD");

Similarly when converting these columns to text values (needed for functions such as extract), XML format strings are added to convert them to the same date format as XML.

Existential Checks for Attributes and Elements with Scalar Values

SQL function existsNode checks for the existence of a node addressed by an XPath; function extract returns a node addressed by an XPath. Oracle XML DB needs to perform special checks for simpleType elements and for attributes used in existsNode expressions. This is because the SQL column value alone cannot distinguish whether an attribute or a simpleType element is missing or is empty; a NULL SQL column can represent either. These special checks are not required for intermediate elements, because the value of the user-defined SQL datatype indicates the absence or emptiness of the element.

Consider, for example, this expression:

existsNode(OBJECT_VALUE, '/PurchaseOrder/PONum/text()') = 1;

Because the query is only interested in the text value of the node, this is rewritten to:

(p.XMLDATA."PONum" IS NOT NULL)

Consider this expression, without the text() node test:

existsNode(OBJECT_VALUE, '/PurchaseOrder/PONum') = 1;

In this case, Oracle XML DB must check the SYS_XDBPD$ attribute in the parent node to determine whether the element is empty or is missing. This check is done internally. It can be represented in pseudocode as follows:

node_exists(p.XMLDATA."SYS_XDBPD$", "PONum")

The pseudofunction node_exists is used for illustration only. It represents an Oracle XML DB implementation that uses its first argument, the positional-descriptor (PD) column (SYS_XDBPD$), to determine whether or not its second argument (element or attribute) node exists. It returns true if so, and false if not.

In the case of extract expressions, this check needs to be done for both attributes and elements. An expression of the form extract(OBJECT_VALUE, '/PurchaseOrder/PONum') maps to pseudocode such as the following:

CASE WHEN node_exists(p.XMLDATA.SYS_XDBPD$", "PONum")
 THEN XMLElement("PONum", p.XMLDATA."PONum")
 ELSE NULL END;

	
Note:

Be aware of this overhead when writing existsNode and extract expressions. You can avoid this overhead by using a text() node test in the XPath expression; using extractValue to obtain only the node value; or by turning off DOM fidelity for the parent node. DOM fidelity can be turned off by setting the value of the attribute maintainDOM in the element definition to be false. When turned off, empty elements and attributes are treated as missing.

Diagnosing XPath Rewrite

To determine if your XPath expressions are getting rewritten, you can use one of the following techniques:

Using EXPLAIN PLAN with XPath Rewrite

This section shows how you can use EXPLAIN PLAN to examine the query plans after rewrite. See "Understanding and Optimizing XPath Rewrite" for examples on how to use EXPLAIN PLAN to optimize XPath rewrite.

With the explained plan, if the plan does not pick applicable indexes and shows the presence of the SQL function (such as existsNode or extract), then you know that the rewrite has not occurred. You can then use the events described later to understand why the rewrite did not happen.

For example, using table mypurchaseorders we can see the use of EXPLAIN PLAN. We create an index on the Company element of PurchaseOrder to show how the plans differ.

CREATE INDEX company_index ON mypurchaseorders
 (extractValue(OBJECT_VALUE,'/PurchaseOrder/Company'));

Index created.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum')
 FROM mypurchaseorders
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Company="Oracle"]') = 1;

Explained.

SELECT PLAN_TABLE_OUTPUT
 FROM table(DBMS_XPLAN.display('plan_table', NULL, 'serial'))
/

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost |

0	SELECT STATEMENT				
1	TABLE ACCESS BY INDEX ROWID	MYPURCHASEORDERS			
* 2	INDEX RANGE SCAN	COMPANY_INDEX			

Predicate Information (identified by operation id):

 2 - access("MYPURCHASEORDERS"."SYS_NC00010$"='Oracle')

In this explained plan, you can see that the predicate uses internal columns and picks up the index on the Company element. This shows clearly that the query has been rewritten to the underlying relational columns.

In the following query, we are trying to perform an arithmetic operation on the Company element which is a string type. This is not rewritten and hence the EXPLAIN PLAN shows that the predicate contains the original existsNode expression. Also, since the predicate is not rewritten, a full table scan instead of an index range scan is used.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum')
 FROM mypurchaseorders
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Company+PONum="Oracle"]') = 1;

Explained.

SELECT PLAN_TABLE_OUTPUT
 FROM table(DBMS_XPLAN.display('plan_table', NULL, 'serial'))/

PLAN_TABLE_OUTPUT

| Id | Operation | Name

| 0 | SELECT STATEMENT |
|* 1 | FILTER |
| 2 | TABLE ACCESS FULL| MYPURCHASEORDERS
|* 3 | TABLE ACCESS FULL| ITEM_NESTED

Predicate Information (identified by operation id):

 1 - filter(EXISTSNODE(SYS_MAKEXML('C6DB2B4A1A3B0
 6CDE034080020E5CF39',2300,"MYPURCHASEORDERS"."XMLEXTRA",
 "MYPURCHASEORDERS"."XMLDATA"),
 '/PurchaseOrder[Company+PONum="Oracle"]')=1)
 3 - filter("NESTED_TABLE_ID"=:B1)

Using Events with XPath Rewrite

Events can be set in the initialization file or can be set for each session using the ALTER SESSION statement. The XML events can be used to turn off functional evaluation, turn off the XPath rewrite mechanism and to print diagnostic traces.

Turning Off Functional Evaluation (Event 19021)

By turning on this event, you can raise an error whenever any of the XML functions is not rewritten and is instead evaluated functionally. The error ORA-19022 - XML XPath functions are disabled will be raised when such functions execute. This event can also be used to selectively turn off functional evaluation of functions. Table 6-3 lists the various levels and the corresponding behavior.

Table 6-3 Event Levels and Behaviors

	Event	Turn off functional evaluation of . . .
	
Level 0x1

	
all XML functions

	
Level 0x2

	
extract

	
Level 0x4

	
existsNode

	
Level 0x8

	
transform

	
Level 0x10

	
extractValue

	
Level 0x20

	
updateXML

	
Level 0x40

	
insertXMLbefore

	
Level 0x80

	
appendChildXMl

	
Level 0x100

	
deleteXML

	
Level 0x200

	
XMLSequence

	
Level 0x4000

	
insertChildXML

	
Level 0x8000

	
XMLQuery

For example,

ALTER SESSION SET EVENTS '19021 trace name context forever, level 1';

would turn off the functional evaluation of all the XML operators listed earlier. Hence when you perform the query shown earlier that does not get rewritten, you will get an error during the execution of the query.

SELECT OBJECT_VALUE FROM mypurchaseorders
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Company+PONum="Oracle"]')=1 ;

ERROR:
ORA-19022: XML XPath functions are disabled

Tracing Reasons that Rewrite Does Not Occur

Event 19027 with level 8192 (0x2000) can be used to dump traces that indicate the reason that a particular XML function is not rewritten. For example, to check why the query described earlier, did not rewrite, we can set the event and run an EXPLAIN PLAN:

ALTER SESSION SET EVENTS '19027 TRACE NAME CONTEXT FOREVER, LEVEL 8192';

Session altered.

EXPLAIN PLAN FOR
 SELECT OBJECT_VALUE FROM mypurchaseorders
 WHERE existsNode(OBJECT_VALUE, '/PurchaseOrder[Company+100="Oracle"]') = 1;

Explained.

This writes the following the Oracle trace file explaining that the rewrite for the XPath did not occur since there are inputs to an arithmetic function that are not numeric.

NO REWRITE
 XPath ==> /PurchaseOrder[Company+PONum = "Oracle"] Reason ==> non numeric inputs to arith{2}{4}

XPath Rewrite of SQL Functions

This section details XPath rewrite for SQL functions existsNode, extractValue, extract, XMLSequence, updateXML, insertChildXML, and deleteXML. It explains the overhead involved in certain types of operations using existsNode or extract, and how to avoid it.

An update using one of these SQL functions normally involves updating a copy of the XML document and then replacing the entire document with the newly modified document.

When XMLType data is stored in an object-relational manner using XML-schema mapping, updates are optimized to directly modify pieces of the document in place. For example, an update of the PONum element can be rewritten to directly update the XMLDATA.PONum column, instead of materializing the whole document in memory and then performing the update.

Each of the functions updateXML, insertChildXML, and deleteXML must satisfy different conditions for it to use such rewrite optimization during update. If all of the conditions are satisfied, then the functional expression is rewritten into a simple relational update. For example:

UPDATE purchaseorder_table
 SET OBJECT_VALUE =
 updateXML(OBJECT_VALUE,
 '/PurchaseOrder/@PurchaseDate', '2002-01-02',
 '/PurchaseOrder/PONum/text()', 2200);

This update operation is rewritten as something like the following:

UPDATE purchaseorder_table p
 SET p.XMLDATA."PurchaseDate" = TO_DATE('2002-01-02', 'SYYYY-MM-DD'),
 p.XMLDATA."PONum" = 2100;

XPath Rewrite for EXISTSNODE

SQL function existsNode returns one (1) if the XPath argument targets a nonempty sequence of nodes (text, element, or attribute); otherwise, it returns zero (0). The value is determined differently, depending on the kind of node targeted by the XPath argument:

	
If the XPath argument targets a text node (using node test text()) or a complexType element node, Oracle XML DB simply checks whether the database representation of the element content is NULL.

	
Otherwise, the XPath argument targets a simpleType element node or an attribute node. Oracle XML DB checks for the existence of the node using the positional-descriptor attribute SYS_XDBPD$. If SYS_XDBPD$ is absent, then the existence of the node is determined by checking whether or not the column is NULL.

EXISTSNODE Mapping with Document Order Preserved

Table 6-4 shows the mapping of various XPaths in the case of SQL function existsNode when document ordering is preserved; that is, when SYS_XDBPD$ exists and maintainDOM="true" is present in the schema document.

Table 6-4 XPath Mapping for EXISTSNODE with Document Ordering Preserved

	XPath Expression	Maps to
	

/PurchaseOrder

	

CASE WHEN XMLDATA IS NOT NULL THEN 1 ELSE 0 END

	

/PurchaseOrder/@PurchaseDate

	

CASE WHEN node_existsFoot 1 (XMLDATA.SYS_XDBPD$, 'PurchaseDate')
 THEN 1 ELSE 0 END

	

/PurchaseOrder/PONum

	

CASE WHEN node_existsFootref 1(XMLDATA.SYS_XDBPD$, 'PONum')
 THEN 1 ELSE 0 END

	

/PurchaseOrder[PONum = 2100]

	

CASE WHEN XMLDATA."PONum"=2100 THEN 1 ELSE 0

	

/PurchaseOrder[PONum = 2100]/@PurchaseDate

	

CASE WHEN XMLDATA."PONum"=2100
 AND node_existsFootref 1(XMLDATA.SYS_XDBPD$, 'PurchaseDate')
 THEN 1 ELSE 0 END

	

/PurchaseOrder/PONum/text()

	

CASE WHEN XMLDATA."PONum" IS NOT NULL THEN 1 ELSE 0

	

/PurchaseOrder/Item

	

CASE WHEN exists(SELECT NULL FROM table(XMLDATA."Item") x
 WHERE value(x) IS NOT NULL)
 THEN 1 ELSE 0 END

	

/PurchaseOrder/Item/Part

	

CASE WHEN exists(SELECT NULL FROM table(XMLDATA."Item") x
 WHERE node_existsFootref 1(x.SYS_XDBPD$, 'Part'))
 THEN 1 ELSE 0 END

	

/PurchaseOrder/Item/Part/text()

	

CASE WHEN exists(SELECT NULL FROM table(XMLDATA."Item") x
 WHERE x."Part" IS NOT NULL)
 THEN 1 ELSE 0 END

Footnote 1 Pseudofunction node_exists is used for illustration only. It represents an Oracle XML DB implementation that uses its first argument, the PD column, to determine whether or not its second argument node exists. It returns true if so, and false if not.

Example 6-14 EXISTSNODE Mapping with Document Order Preserved

Using the preceding mapping, this query checks whether purchase order 1001 contains a part with price greater than 2000:

SELECT count(*)
 FROM purchaseorder
 WHERE existsNode(OBJECT_VALUE,
 '/PurchaseOrder[PONum=1001 and Item/Price > 2000]') = 1;

This is rewritten as something like the following:

SELECT count(*)
 FROM purchaseorder p
 WHERE CASE WHEN p.XMLDATA."PONum" = 1001
 AND exists(SELECT NULL FROM table(XMLDATA."Item") p
 WHERE p."Price" > 2000))
 THEN 1
 ELSE 0
 END = 1;

This CASE expression is further optimized due to the constant relational equality expressions. The query becomes:

SELECT count(*)
 FROM purchaseorder p
 WHERE p.XMLDATA."PONum"=1001
 AND exists(SELECT NULL FROM table(p.XMLDATA."Item") x
 WHERE x."Price" > 2000);

This uses relational indexes for its evaluation, if present on the Part and PONum columns.

EXISTSNODE Mapping Without Document Order Preserved

If the positional-descriptor attribute SYS_XDBPD$ does not exist (that is, if the XML schema specifies maintainDOM="false") then NULL scalar columns map to simpleType elements that do not exist. In that case, you do not need to check for node existence using attribute SYS_XDBPD$. Table 6-5 shows the mapping of existsNode in the absence of the SYS_XDBPD$ attribute.

Table 6-5 XPath Mapping for EXISTSNODE Without Document Ordering

	XPath Expression	Maps to
	

/PurchaseOrder

	

CASE WHEN XMLDATA IS NOT NULL THEN 1 ELSE 0 END

	

/PurchaseOrder/@PurchaseDate

	

CASE WHEN XMLDATA.'PurchaseDate' IS NOT NULL THEN 1 ELSE 0 END

	

/PurchaseOrder/PONum

	

CASE WHEN XMLDATA."PONum" IS NOT NULL THEN 1 ELSE 0 END

	

/PurchaseOrder[PONum = 2100]

	

CASE WHEN XMLDATA."PONum" = 2100 THEN 1 ELSE 0 END

	

/PurchaseOrder[PONum = 2100]/@PurchaseOrderDate

	

CASE WHEN XMLDATA."PONum" = 2100
 AND XMLDATA."PurchaseDate" NOT NULL
 THEN 1 ELSE 0 END

	

/PurchaseOrder/PONum/text()

	

CASE WHEN XMLDATA."PONum" IS NOT NULL THEN 1 ELSE 0 END

	

/PurchaseOrder/Item

	

CASE WHEN exists(SELECT NULL FROM table(XMLDATA."Item") x
 WHERE value(x) IS NOT NULL)
 THEN 1 ELSE 0 END

	

/PurchaseOrder/Item/Part

	

CASE WHEN exists(SELECT NULL FROM table(XMLDATA."Item") x
 WHERE x."Part" IS NOT NULL)
 THEN 1 ELSE 0 END

	

/PurchaseOrder/Item/Part/text()

	

CASE WHEN exists(SELECT NULL FROM table(XMLDATA."Item") x
 WHERE x."Part" IS NOT NULL)
 THEN 1 ELSE 0 END

XPath Rewrite for EXTRACTVALUE

SQL function extractValue is a shortcut for extracting text nodes and attributes using function extract and then using method getStringVal() or getNumberVal() to obtain the scalar content. Function extractValue returns the values of attribute nodes or the text nodes of elements with scalar values. Function extractValue cannot handle XPath expressions that return multiple values or complexType elements.

Table 6-6 shows the mappings of various XPath expressions for function extractValue. If an XPath expression targets an element, then extractValue retrieves the text node of the element. For example, /PurchaseOrder/PONum and /PurchaseOrder/PONum/text() are handled identically by extractValue: both retrieve the scalar content of PONum.

Table 6-6 XPath Mapping for EXTRACTVALUE

	XPath Expression	Maps to
	

/PurchaseOrder

	
Not supported. Function extractValue can only retrieve values for scalar elements and attributes.

	

/PurchaseOrder/@PurchaseDate

	

XMLDATA."PurchaseDate"

	

/PurchaseOrder/PONum

	

XMLDATA."PONum"

	

/PurchaseOrder[PONum = 2100]

	

(SELECT TO_XML(x.XMLDATA) FROM DUAL
 WHERE x."PONum" = 2100)

	

/PurchaseOrder[PONum =
 2100]/@PurchaseDate

	

(SELECT x.XMLDATA."PurchaseDate") FROM DUAL
 WHERE x."PONum" = 2100)

	

/PurchaseOrder/PONum/text()

	

XMLDATA."PONum"

	

/PurchaseOrder/Item

	
Not supported. Function extractValue can only retrieve values for scalar elements and attributes.

	

/PurchaseOrder/Item/Part

	
Not supported. Function extractValue cannot retrieve multiple scalar values.

	

/PurchaseOrder/Item/Part/text()

	
Not supported. Function extractValue cannot retrieve multiple scalar values.

Example 6-15 Rewriting EXTRACTVALUE

Consider this SQL query:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum') FROM purchaseorder
 WHERE extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum') = 1001;

This query would be rewritten as something like the following:

SELECT p.XMLDATA."PONum" FROM purchaseorder p WHERE p.XMLDATA."PONum" = 1001;

Because it gets rewritten to simple scalar columns, any indexes on attribute PONum can be used to satisfy the query.

Creating Indexes with EXTRACTVALUE

Function extractValue can be used in index expressions. If the expression gets rewritten into scalar columns, then the index is turned into a B*Tree index instead of a function-based index.

Example 6-16 Creating Indexes with EXTRACTVALUE

CREATE INDEX my_po_index ON purchaseorder
 (extractValue(OBJECT_VALUE, '/PurchaseOrder/Reference);

This would would get rewritten into something like the following:

CREATE INDEX my_po_index ON purchaseorder x (x.XMLDATA."Reference");

This produces a regular B*Tree index. Unlike a function-based index, the same index can now satisfy queries that target the column, such as the following:

existsNode(OBJECT_VALUE, '/PurchaseOrder[Reference="SBELL-2002100912333601PDT"]') = 1;

XPath Rewrite for EXTRACT

SQL function extract retrieves XPath results as XML. For Xpath expressions involving text nodes, extract is rewritten similarly to extractValue.

EXTRACT Mapping with Document Order Maintained

Table 6-7 shows the mapping of various XPath expressions inside extract expressions when document order is preserved (that is, when SYS_XDBPD$ exists and maintainDOM="true" in the XML schema document).

Table 6-7 XPath Mapping for EXTRACT with Document Ordering Preserved

	XPath	Maps to
	

/PurchaseOrder

	

XMLForest(XMLDATA AS "PurchaseOrder")

	

/PurchaseOrder/@PurchaseDate

	

CASE WHEN node_existsFoot 1 (XMLDATA.SYS_XDBPD$, 'PurchaseDate')
 THEN XMLElement("", XMLDATA."PurchaseDate") ELSE NULL END;

	

/PurchaseOrder/PONum

	

CASE WHEN node_existsFootref 1(XMLDATA.SYS_XDBPD$, 'PONum')
 THEN XMLElement("PONum", XMLDATA."PONum") ELSE NULL END

	

/PurchaseOrder[PONum = 2100]

	

SELECT XMLForest(XMLDATA as "PurchaseOrder") FROM DUAL
 WHERE XMLDATA."PONum" = 2100

	

/PurchaseOrder
[PONum = 2100]/@PurchaseDate

	

SELECT CASE WHEN node_existsFootref 1(XMLDATA.SYS_XDBPD$, 'PurchaseDate')
 THEN XMLElement("", XMLDATA."PurchaseDate")
 ELSE NULL END
 FROM DUAL WHERE XMLDATA."PONum" = 2100

	

/PurchaseOrder/PONum/text()

	

XMLElement("", XMLDATA."PONum")

	

/PurchaseOrder/Item

	

SELECT XMLAgg(XMLForest(value(it) AS "Item"))
 FROM table(XMLDATA."Item") it

	

/PurchaseOrder/Item/Part

	

SELECT XMLAgg(CASE WHEN node_existsFootref 1(p.SYS_XDBPD$, 'Part')
 THEN XMLForest(p."Part" AS "Part")
 ELSE NULL END)
 FROM table(XMLDATA."Item") p

	

/PurchaseOrder/Item/Part/text()

	

SELECT XMLAgg(XMLElement("", p."Part"))
 FROM table(XMLDATA."Item") p

Footnote 1 Pseudofunction node_exists is used for illustration only. It represents an Oracle XML DB implementation that uses its first argument, the PD column, to determine whether or not its second argument node exists. It returns true if so, and false if not.

Example 6-17 XPath Mapping for EXTRACT with Document Ordering Preserved

Using the mapping in Table 6-7, consider this query that extracts the PONum element, where the purchase order contains a part with price greater than 2000:

SELECT extract(OBJECT_VALUE, '/PurchaseOrder[Item/Part > 2000]/PONum')
 FROM purchaseorder_table;

This query would become something like the following:

SELECT (SELECT CASE WHEN node_exists(p.XMLDATA.SYS_XDBPD$, 'PONum')
 THEN XMLElement("PONum", p.XMLDATA."PONum")
 ELSE NULL END
 FROM DUAL
 WHERE exists(SELECT NULL FROM table(XMLDATA."Item") p
 WHERE p."Part" > 2000))
 FROM purchaseorder_table p;

EXTRACT Mapping Without Maintaining Document Order

If attribute SYS_XDBPD$ does not exist (that is, if the XML schema specifies maintainDOM="false"), then NULL scalar columns map to simpleType elements that do not exist. Hence you do not need to check for the node existence using attribute SYS_XDBPD$. Table 6-8 shows the mapping for function existsNode in the absence of SYS_XDBPD$.

Table 6-8 XPath Mapping for EXTRACT Without Document Ordering Preserved

	XPath	Equivalent to
	

/PurchaseOrder

	

XMLForest(XMLDATA AS "PurchaseOrder")

	

/PurchaseOrder/@PurchaseDate

	

XMLForest(XMLDATA."PurchaseDate" AS "PurchaseDate")

	

/PurchaseOrder/PONum

	

XMLForest(XMLDATA."PONum" AS "PONum")

	

/PurchaseOrder[PONum = 2100]

	

SELECT XMLForest(XMLDATA AS "PurchaseOrder")
 FROM DUAL WHERE XMLDATA."PONum" = 2100

	

/PurchaseOrder
 [PONum = 2100]/@PurchaseDate

	

SELECT XMLForest(XMLDATA."PurchaseDate" AS "PurchaseDate "")
 FROM DUAL WHERE XMLDATA."PONum" = 2100

	

/PurchaseOrder/PONum/text()

	

XMLForest(XMLDATA.PONum AS "")

	

/PurchaseOrder/Item

	

SELECT XMLAgg(XMLForest(value(p) AS "Item")
 FROM table(XMLDATA."Item") p

	

/PurchaseOrder/Item/Part

	

SELECT XMLAgg(XMLForest(p."Part" AS "Part")
 FROM table(XMLDATA."Item") p

	

/PurchaseOrder/Item/Part/text()

	

SELECT XMLAgg(XMLForest(p. "Part" AS "Part"))
 FROM table(XMLDATA."Item") p

XPath Rewrite for XMLSEQUENCE

You can use SQL function XMLSequence in conjunction with SQL functions extract and table to unnest XML collection values. When used with schema-based storage, these functions also get rewritten to access the underlying relational collection storage.

For example, this query obtains the price and part numbers of all items in a relational form:

SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum') AS ponum,
 extractValue(value(it), '/Item/Part') AS part,
 extractValue(value(it), '/Item/Price') AS price
 FROM purchaseorder,
 table(XMLSequence(extract(OBJECT_VALUE, '/PurchaseOrder/Item'))) it;

PONUM PART PRICE
----- -------------------- ---------
 1001 9i Doc Set 2550
 1001 8i Doc Set 350

In this example, SQL function extract returns a fragment containing the list of Item elements. Function XMLSequence converts the fragment into a collection of XMLType values one for each Item element. Function table converts the elements of the collection into rows of XMLType. The XML data returned from table is used to extract the Part and the Price elements.

The applications of functions extract and XMLSequence are rewritten to a simple SELECT operation from the item_nested nested table.

EXPLAIN PLAN
 FOR SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum') AS ponum,
 extractValue(value(it) , '/Item/Part') AS part,
 extractValue(value(it), '/Item/Price') AS price
 FROM purchaseorder,
 table(XMLSequence(extract(OBJECT_VALUE, '/PurchaseOrder/Item'))) it;

Explained

PLAN_TABLE_OUTPUT
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	NESTED LOOPS	
2	TABLE ACCESS FULL	ITEM_NESTED
3	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER
* 4	INDEX UNIQUE SCAN	SYS_C002973
--

Predicate Information (identified by operation id)
--
 4 - access("NESTED_TABLE_ID"="SYS_ALIAS_1"."SYS_NC0001100012$")

The EXPLAIN PLAN output shows that the optimizer is able to use a simple nested-loops join between nested table item_nested and table purchaseorder. You can also query the Item values further and create appropriate indexes on the nested table to speed up such queries.

For example, to search on the price to get all the expensive items, we could create an index on the Price column of the nested table. The following EXPLAIN PLAN uses a price index to obtain the list of items and then joins with table purchaseorder to obtain the PONum value.

CREATE INDEX price_index ON item_nested ("Price");

Index created.

EXPLAIN PLAN FOR
 SELECT extractValue(OBJECT_VALUE, '/PurchaseOrder/PONum') AS ponum,
 extractValue(value(it), '/Item/Part') AS part,
 extractValue(value(it), '/Item/Price') AS price
 FROM purchaseorder,
 table(XMLSequence(extract(OBJECT_VALUE, '/PurchaseOrder/Item'))) it
 WHERE extractValue(value(it), '/Item/Price') > 2000;

Explained.

PLAN_TABLE_OUTPUT
--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	NESTED LOOPS	
2	TABLE ACCESS BY INDEX ROWID	ITEM_NESTED
* 3	INDEX RANGE SCAN	PRICE_INDEX
4	TABLE ACCESS BY INDEX ROWID	PURCHASEORDER
* 5	INDEX UNIQUE SCAN	SYS_C002973
--

Predicate Information (identified by operation id):

 3 - access("ITEM_NESTED"."Price">2000)
 5 - access("NESTED_TABLE_ID"="SYS_ALIAS_1"."SYS_NC0001100012$")

XPath Rewrite for UPDATEXML

SQL function updateXML must satisfy the following conditions for it to use rewrite optimization:

	
The XMLType argument must be based on a registered XML schema.

	
The XMLType argument must also be the target of the UPDATE operation. For example:

UPDATE purchaseorder_table SET OBJECT_VALUE = updateXML(OBJECT_VALUE,...);

	
XPath arguments must all be different (no duplicates).

	
XPath arguments must otherwise be rewritable, as described in "Which XPath Expressions Are Rewritten?".

	
XPath arguments must target only text nodes or attribute nodes.

	
XPath arguments cannot target nodes that have default values (as defined in the XML schema).

	
XPath arguments must not have a positional predicate (for example, foo[2]).

	
If an XPath argument has a predicate, the predicate must not come before a collection.

For example, /PurchaseOrder/LineItems[@MyAtt="3"]/LineItem will not be rewritten, because the predicate occurs before the LineItem collection. (This assumes an XML schema where LineItems has an attribute MyAtt.)

	
If an XPath argument references a collection, the collection must be stored as a separate table (varray or nested table), not out of line (REF storage) or in line.

	
If an XPath argument references a collection, the collection must not be scalar (simpleType with maxOccurs > 1).

	
See Also:

Example 6-2, Example 6-3, Example 3-34, and Example 3-34 for examples of rewriting updateXML expressions

XPath Rewrite for INSERTCHILDXML and DELETEXML

SQL function deleteXML must satisfy the following conditions for it to use rewrite optimization:

	
The XMLType argument must be based on a registered XML schema.

	
The XMLType argument must also be the target of the UPDATE operation. For example:

UPDATE purchaseorder_table SET OBJECT_VALUE = updateXML(OBJECT_VALUE,...);

	
XPath arguments must otherwise be rewritable, as described in "Which XPath Expressions Are Rewritten?".

	
The XPath argument must not have a positional predicate (for example, foo[2]).

	
If the XPath argument has a predicate, the predicate must not come before a collection.

For example, /PurchaseOrder/LineItems[@MyAtt="3"]/LineItem will not be rewritten, because the predicate occurs before the LineItem collection. (This assumes an XML schema where LineItems has an attribute MyAtt.)

	
The XPath argument must target an unbounded collection (element with maxOccurs = "unbounded").

	
The XPath argument must not target a choice of collections, as defined in the XML schema.

	
The parent of the targeted collection must be defined in the XML schema with annotation maintainDOM = "false".

	
If an XPath argument references a collection, the collection must be stored as a separate table (varray or nested table), not out of line (REF storage) or in line.

	
If an XPath argument references a collection, the collection must not be scalar (simpleType with maxOccurs > 1).

B XPath and Namespace Primer

This appendix describes introductory information about the W3C XPath Recommendation, Namespace Recommendation, and the Information Set (infoset).

This appendix contains these topics:

	
Overview of the W3C XML Path Language (XPath) 1.0 Recommendation

	
XPath Expression

	
Location Paths

	
XPath 1.0 Data Model

	
Overview of the W3C Namespaces in XML Recommendation

	
Overview of the W3C XML Information Set

Overview of the W3C XML Path Language (XPath) 1.0 Recommendation

XML Path Language (XPath) is a language for addressing parts of an XML document, designed to be used by both XSLT and XPointer. It can be used as a searching or query language as well as in hypertext linking. Parts of this brief XPath primer are extracted from the W3C XPath Recommendation.

XPath also facilities the manipulation of string, number, and Boolean values.

XPath uses a compact syntax that is not XML syntax to facilitate the use of XPath expressions in URIs and XML attribute values. XPath operates on the abstract, logical structure of an XML document, rather than its surface syntax. It gets its name from its use of a path notation as in URLs for navigating through the hierarchical structure of an XML document.

In addition to its use for addressing, XPath is also designed so that it has a natural subset that can be used for matching, that is, testing whether or not a node matches a pattern. This use of XPath is described in the W3C XSLT Recommendation.

	
Note:

In this release, Oracle XML DB supports a subset of the XPath 1.0 Recommendation. It does not support XPath values that return Boolean, number, or string values. However, Oracle XML DB does support these XPath types within predicates.

XPath Models an XML Document as a Tree of Nodes

XPath models an XML document as a tree of nodes. There are different types of nodes, including element nodes, attribute nodes, and text nodes. XPath defines a way to compute a string-value for each type of node. Some types of nodes also have names. XPath fully supports XML Namespaces. Thus, the name of a node is modeled as a pair consisting of a local part and a possibly null namespace URI; this is called an expanded-name. The data model is described in detail in "XPath 1.0 Data Model". A summary of XML Namespaces is provided in "Overview of the W3C Namespaces in XML Recommendation".

	
See Also:

	
http://www.w3.org/TR/xpath

	
http://www.w3.org/TR/xpath20/

	
http://www.zvon.org/xxl/XPathTutorial/General/examples.html

	
http://www.mulberrytech.com/quickref/XSLTquickref.pdf

	
XML In a Nutshell, by Elliotte Rusty Harold and W. Scott Means, O'Reilly, January 2001, http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html

	
http://www.w3.org/TR/2002/NOTE-unicode-xml-20020218/ for information about using Unicode in XML

XPath Expression

The primary syntactic construct in XPath is the expression. An expression matches the production Expr. An expression is evaluated to yield an object, which has one of the following four basic types:

	
node-set (an unordered collection of nodes without duplicates)

	
Boolean (true or false)

	
number (a floating-point number)

	
string (a sequence of UCS characters)

Evaluating Expressions with Respect to a Context

Expression evaluation occurs with respect to a context. XSLT and XPointer specify how the context is determined for XPath expressions used in XSLT and XPointer respectively. The context consists of the following:

	
Node, the context node

	
Pair of nonzero positive integers, context position and context size. Context position is always less than or equal to the context size.

	
Set of variable bindings. These consist of a mapping from variable names to variable values. The value of a variable is an object, which can be of any of the types possible for the value of an expression, can also be of additional types not specified here.

	
Function library. This consists of a mapping from function names to functions. Each function takes zero or more arguments and returns a single result. See the XPath Recommendation for the core function library definition, that all XPath implementations must support. For a function in the core function library, arguments and result are of the four basic types:

	
Node Set functions

	
String Functions

	
Boolean functions

	
Number functions

Both XSLT and XPointer extend XPath by defining additional functions; some of these functions operate on the four basic types; others operate on additional data types defined by XSLT and XPointer.

	
Set of namespace declarations in scope for the expression. These consist of a mapping from prefixes to namespace URIs.

Evaluating Subexpressions

The variable bindings, function library, and namespace declarations used to evaluate a subexpression are always the same as those used to evaluate the containing expression.

The context node, context position, and context size used to evaluate a subexpression are sometimes different from those used to evaluate the containing expression. Several kinds of expressions change the context node; only predicates change the context position and context size. When the evaluation of a kind of expression is described, it will always be explicitly stated if the context node, context position, and context size change for the evaluation of subexpressions; if nothing is said about the context node, context position, and context size, then they remain unchanged for the evaluation of subexpressions of that kind of expression.

XPath Expressions Often Occur in XML Attributes

The grammar specified here applies to the attribute value after XML 1.0 normalization. So, for example, if the grammar uses the character less-than (<), then this must not appear in the XML source as a less-than character, but must be quoted according to XML 1.0 rules by, for example, entering it as <.

Within expressions, literal strings are delimited by single or double quotation marks, which are also used to delimit XML attributes. To avoid a quotation mark in an expression being interpreted by the XML processor as terminating the attribute value:

	
The quotation mark can be entered as a character reference (" or ')

	
The expression can use single quotation marks if the XML attribute is delimited with double quotation marks or vice-versa

Location Paths

One important kind of expression is a location path. A location path is the route to be taken. The route can consist of directions and several steps, each step being separated by a /.

A location path selects a set of nodes relative to the context node. The result of evaluating an expression that is a location path is the node-set containing the nodes selected by the location path.

Location paths can recursively contain expressions used to filter sets of nodes. A location path matches the production LocationPath.

Expressions are parsed by first dividing the character string to be parsed into tokens and then parsing the resulting sequence of tokens. Whitespace can be freely used between tokens.

Although location paths are not the most general grammatical construct in the XPath language (a LocationPath is a special case of an Expr), they are the most important construct.

Location Path Syntax Abbreviations

Every location path can be expressed using a straightforward but rather verbose syntax. There are also a number of syntactic abbreviations that allow common cases to be expressed concisely. The next sections:

	
"Location Path Examples Using Unabbreviated Syntax" describes the semantics of location paths using the unabbreviated syntax

	
"Location Path Examples Using Abbreviated Syntax" describes the abbreviated syntax

Location Path Examples Using Unabbreviated Syntax

Table B-1 lists examples of location paths using the unabbreviated syntax.

Table B-1 XPath: Location Path Examples Using Unabbreviated Syntax

	Unabbreviated Location Path	Description
	
child::para

	
Selects the para element children of the context node

	
child::*

	
Selects all element children of the context node

	
child::text()

	
Selects all text node children of the context node

	
child::node()

	
Selects all children of the context node, whatever their node type

	
attribute::name

	
Selects the name attribute of the context node

	
attribute::*

	
Selects all attributes of the context

	
nodedescendant::para

	
Selects the para element descendants of the context node

	
ancestor::div

	
Selects all div ancestors of the context node

	
ancestor-or-self::div

	
Selects the div ancestors of the context node and, if the context node is a div element, the context node as well

	
descendant-or-self::para

	
Selects the para element descendants of the context node and, if the context node is a para element, the context node as well

	
self::para

	
Selects the context node if it is a para element; otherwise, selects nothing

	
child::chapter/descendant::para

	
Selects the para element descendants of the chapter element children of the context node

	
child::*/child::para

	
Selects all para grandchildren of the context node

	
/

	
Selects the document root, which is always the parent of the document element

	
/descendant::para

	
Selects all para elements in the same document as the context node

	
/descendant::olist/child::item

	
Selects all item elements that have an olist parent and are in the same document as the context node

	
child::para[position()=1]

	
Selects the first para child of the context node

	
child::para[position()=last()]

	
Selects the last para child of the context node

	
child::para[position()=last()-1]

	
Selects the penultimate para child of the context node

	
child::para[position()>1]

	
Selects all para children of the context node other than its first para child

	
following-sibling::chapter[position()=1]

	
Selects the next chapter sibling of the context node

	
preceding-sibling::chapter[position()=1]

	
Selects the previous chapter sibling of the context node

	
/descendant::figure[position()=42]

	
Selects the forty-second figure element in the document

	
/child::doc/child::chapter[position()=5]/child::section [position()=2]

	
Selects the second section of the fifth chapter of the doc document element

	
child::para[attribute::type="warning"]

	
Selects all para children of the context node that have a type attribute with value warning

	
child::para[attribute::type='warning'][position()=5]

	
Selects the fifth para child of the context node that has a type attribute with value warning

	
child::para[position()=5][attribute::type= "warning"]

	
Selects the fifth para child of the context node, if that child has a type attribute with value warning

	
child::chapter[child::title='Introduction']

	
Selects the chapter children of the context node that have one or more title children with string-value Introduction

	
child::chapter[child::title]

	
Selects the chapter children of the context node that have one or more title children

	
child::*[self::chapter or self::appendix]

	
Selects the chapter and appendix children of the context node

	
child::*[self::chapter or self::appendix][position()=last()]

	
Selects the last chapter or appendix child of the context node

Location Path Examples Using Abbreviated Syntax

Table B-2 lists examples of location paths using abbreviated syntax.

Table B-2 XPath: Location Path Examples Using Abbreviated Syntax

	Abbreviated Location Path	Description
	
para

	
Selects the para element children of the context node

	
*

	
Selects all element children of the context node

	
text()

	
Selects all text node children of the context node

	
@name

	
Selects the name attribute of the context node

	
@*

	
Selects all attributes of the context node

	
para[1]

	
Selects the first para child of the context node

	
para[last()]

	
Selects the last para child of the context node

	
*/para

	
Selects all para grandchildren of the context node

	
/doc/chapter[5]/section[2]

	
Selects the second section of the fifth chapter of document element doc

	
chapter//para

	
Selects the para element descendants of the chapter element children of the context node

	
//para

	
Selects all para descendants of the document root, and thus selects all para elements in the same document as the context node

	
//olist/item

	
Selects all item elements in the same document as the context node that have an olist parent

	
.

	
Selects the context node

	
.//para

	
Selects the para element descendants of the context node

	
..

	
Selects the parent of the context node

	
../@lang

	
Selects the lang attribute of the parent of the context node

	
para[@type="warning"]

	
Selects all para children of the context node that have a type attribute with value warning

	
para[@type="warning"][5]

	
Selects the fifth para child of the context node that has a type attribute with value warning

	
para[5][@type="warning"]

	
Selects the fifth para child of the context node, if that child has a type attribute with value warning

	
chapter[title="Introduction"]

	
Selects the chapter children of the context node that have one or more title children with string-value Introduction

	
chapter[title]

	
Selects the chapter children of the context node that have one or more title children

	
employee[@secretary and @assistant]

	
Selects all employee children of the context node that have both a secretary attribute and an assistant attribute

The most important abbreviation is that child:: can be omitted from a location step. In effect, child is the default axis. For example, a location path div/para is short for child::div/child::para.

Attribute Abbreviation @

There is also an abbreviation for attributes: attribute:: can be abbreviated to an at-sign (@).

For example, a location path para[@type="warning"] is short for child::para[attribute::type="warning"] and so selects para children with a type attribute with value equal to warning.

Path Abbreviation //

Two slashes (//) is short for /descendant-or-self::node()/. For example, //para is short for /descendant-or-self::node()/child::para and so will select any para element in the document (even a para element that is a document element will be selected by //para because the document element node is a child of the root node);

div//para is short for div/descendant-or-self::node()/child::para and so will select all para descendants of div children.

	
Note:

Location path //para[1] does not mean the same as the location path /descendant::para[1]. The latter selects the first descendant para element; the former selects all descendant para elements that are the first para children of their parents.

Location Step Abbreviation .

A location step of a period (.) is short for self::node(). This is particularly useful in conjunction with //. For example, the location path .//para is short for:

self::node()/descendant-or-self::node()/child::para

and so will select all para descendant elements of the context node.

Location Step Abbreviation ..

Similarly, a location step of two periods (..) is short for parent::node(). For example, ../title is short for:

parent::node()/child::title

and so will select the title children of the parent of the context node.

Abbreviation Summary

AbbreviatedAbsoluteLocationPath ::= '//' RelativeLocationPath

AbbreviatedRelativeLocationPath ::= RelativeLocationPath '//' Step

AbbreviatedStep ::= '.' | '..'

AbbreviatedAxisSpecifier ::= '@'?

Relative and Absolute Location Paths

There are two kinds of location path:

	
Relative location paths. A relative location path consists of a sequence of one or more location steps separated by /. The steps in a relative location path are composed together from left to right. Each step in turn selects a set of nodes relative to a context node. An initial sequence of steps is composed together with a following step as follows. The initial sequence of steps selects a set of nodes relative to a context node. Each node in that set is used as a context node for the following step. The sets of nodes identified by that step are unioned together. The set of nodes identified by the composition of the steps is this union.

For example, child::div/child::para selects the para element children of the div element children of the context node, or, in other words, the para element grandchildren that have div parents.

	
Absolute location paths. An absolute location path consists of / optionally followed by a relative location path. A / by itself selects the root node of the document containing the context node. If it is followed by a relative location path, then the location path selects the set of nodes that would be selected by the relative location path relative to the root node of the document containing the context node.

Location Path Syntax Summary

Location path provides a means to search for target nodes. Here is the general syntax for location path:

axisname :: nodetest expr1 expr2 ...

LocationPath ::= RelativeLocationPath
 | AbsoluteLocationPath
AbsoluteLocationPath ::= '/' RelativeLocationPath?
 | AbbreviatedAbsoluteLocationPath
RelativeLocationPath ::= Step
 | RelativeLocationPath '/' Step
 | AbbreviatedRelativeLocationPath

XPath 1.0 Data Model

XPath operates on an XML document as a tree. This section describes how XPath models an XML document as a tree. The relationship of this model to the XML documents operated on by XPath must conform to the XML Namespaces Recommendation.

	
See Also:

Overview of the W3C Namespaces in XML Recommendation

Nodes

The tree contains nodes. There are seven types of node:

	
Root Nodes

	
Element Nodes

	
Text Nodes

	
Attribute Nodes

	
Namespace Nodes

	
Processing Instruction Nodes

	
Comment Nodes

Root Nodes

The root node is the root of the tree. It does not occur except as the root of the tree. The element node for the document element is a child of the root node. The root node also has as children processing instruction and comment nodes for processing instructions and comments that occur in the prolog and after the end of the document element. The string-value of the root node is the concatenation of the string-values of all text node descendants of the root node in document order. The root node does not have an expanded-name.

Element Nodes

There is an element node for every element in the document. An element node has an expanded-name computed by expanding the QName of the element specified in the tag in accordance with the XML Namespaces Recommendation. The namespace URI of the element expanded-name will be null if the QName has no prefix and there is no applicable default namespace.

	
Note:

In the notation of Appendix A.3 of http://www.w3.org/TR/REC-xml-names/, the local part of the expanded-name corresponds to the type attribute of the ExpEType element; the namespace URI of the expanded-name corresponds to the ns attribute of the ExpEType element, and is null if the ns attribute of the ExpEType element is omitted.

The children of an element node are the element nodes, comment nodes, processing instruction nodes and text nodes for its content. Entity references to both internal and external entities are expanded. Character references are resolved. The string-value of an element node is the concatenation of the string-values of all text node descendants of the element node in document order.

Unique IDs. An element node may have a unique identifier (ID). This is the value of the attribute that is declared in the Document Type Definition (DTD) as type ID. No two elements in a document may have the same unique ID. If an XML processor reports two elements in a document as having the same unique ID (which is possible only if the document is invalid), then the second element in document order must be treated as not having a unique ID.

	
Note:

If a document does not have a DTD, then no element in the document will have a unique ID.

Text Nodes

Character data is grouped into text nodes. As much character data as possible is grouped into each text node: a text node never has an immediately following or preceding sibling that is a text node. The string-value of a text node is the character data. A text node always has at least one character of data. Each character within a CDATA section is treated as character data. Thus, <![CDATA[<]]> in the source document will treated the same as <. Both will result in a single < character in a text node in the tree. Thus, a CDATA section is treated as if the <![CDATA[and]]> were removed and every occurrence of < and & were replaced by < and & respectively.

	
Note:

When a text node that contains a < character is written out as XML, an escape character must precede the < character must be escaped for example, by using <, or including it in a CDATA section. Characters inside comments, processing instructions and attribute values do not produce text nodes. Line endings in external entities are normalized to #xA as specified in the XML Recommendation. A text node does not have an expanded name.

Attribute Nodes

Each element node has an associated set of attribute nodes; the element is the parent of each of these attribute nodes; however, an attribute node is not a child of its parent element.

	
Note:

This is different from the Document Object Model (DOM), which does not treat the element bearing an attribute as the parent of the attribute.

Elements never share attribute nodes: if one element node is not the same node as another element node, then none of the attribute nodes of the one element node will be the same node as the attribute nodes of another element node.

	
Note:

The = operator tests whether two nodes have the same value, not whether they are the same node. Thus attributes of two different elements may compare as equal using =, even though they are not the same node.

A defaulted attribute is treated the same as a specified attribute. If an attribute was declared for the element type in the DTD, but the default was declared as #IMPLIED, and the attribute was not specified on the element, then the element attribute set does not contain a node for the attribute.

Some attributes, such as xml:lang and xml:space, have the semantics that they apply to all elements that are descendants of the element bearing the attribute, unless overridden with an instance of the same attribute on another descendant element. However, this does not affect where attribute nodes appear in the tree: an element has attribute nodes only for attributes that were explicitly specified in the start-tag or empty-element tag of that element or that were explicitly declared in the DTD with a default value.

An attribute node has an expanded-name and a string-value. The expanded-name is computed by expanding the QName specified in the tag in the XML document in accordance with the XML Namespaces Recommendation. The namespace URI of the attribute name will be null if the QName of the attribute does not have a prefix.

	
Note:

In the notation of Appendix A.3 of XML Namespaces Recommendation, the local part of the expanded-name corresponds to the name attribute of the ExpAName element; the namespace URI of the expanded-name corresponds to the ns attribute of the ExpAName element, and is null if the ns attribute of the ExpAName element is omitted.

An attribute node has a string-value. The string-value is the normalized value as specified by the XML Recommendation. An attribute whose normalized value is a zero-length string is not treated specially: it results in an attribute node whose string-value is a zero-length string.

	
Note:

It is possible for default attributes to be declared in an external DTD or an external parameter entity. The XML Recommendation does not require an XML processor to read an external DTD or an external parameter unless it is validating. A style sheet or other facility that assumes that the XPath tree contains default attribute values declared in an external DTD or parameter entity may not work with someXML processors that do not validate.

There are no attribute nodes corresponding to attributes that declare namespaces.

Namespace Nodes

Each element has an associated set of namespace nodes, one for each distinct namespace prefix that is in scope for the element (including the xml prefix, which is implicitly declared by the XML Namespaces Recommendation) and one for the default namespace if one is in scope for the element. The element is the parent of each of these namespace nodes; however, a namespace node is not a child of its parent element.

Elements never share namespace nodes: if one element node is not the same node as another element node, then none of the namespace nodes of the one element node will be the same node as the namespace nodes of another element node. This means that an element will have a namespace node:

	
For every attribute on the element whose name starts with xmlns:;

	
For every attribute on an ancestor element whose name starts xmlns: unless the element itself or a nearer ancestor re-declares the prefix;

	
For an xmlns attribute, if the element or some ancestor has an xmlns attribute, and the value of the xmlns attribute for the nearest such element is nonempty

	
Note:

An attribute xmlns="" undeclares the default namespace.

A namespace node has an expanded-name: the local part is the namespace prefix (this is empty if the namespace node is for the default namespace); the namespace URI is always NULL.

The string-value of a namespace node is the namespace URI that is being bound to the namespace prefix; if it is relative, then it must be resolved just like a namespace URI in an expanded-name.

Processing Instruction Nodes

There is a processing instruction node for every processing instruction, except for any processing instruction that occurs within the document type declaration. A processing instruction has an expanded-name: the local part is the processing instruction target; the namespace URI is NULL. The string-value of a processing instruction node is the part of the processing instruction following the target and any whitespace. It does not include the terminating ?>.

	
Note:

The XML declaration is not a processing instruction. Therefore, there is no processing instruction node corresponding to the XML declaration.

Comment Nodes

There is a comment node for every comment, except for any comment that occurs within the document type declaration. The string-value of comment is the content of the comment not including the opening <!-- or the closing -->. A comment node does not have an expanded-name.

For every type of node, there is a way of determining a string-value for a node of that type. For some types of node, the string-value is part of the node; for other types of node, the string-value is computed from the string-value of descendant nodes.

	
Note:

For element nodes and root nodes, the string-value of a node is not the same as the string returned by the DOM nodeValue method.

Expanded-Name

Some types of node also have an expanded-name, which is a pair consisting of:

	
A local part. This is a string.

	
A namespace URI. The namespace URI is either null or a string. If specified in the XML document it can be a URI reference as defined in RFC2396; this means it can have a fragment identifier and be relative. A relative URI should be resolved into an absolute URI during namespace processing: the namespace URIs of expanded-names of nodes in the data model should be absolute.

Two expanded names are equal if they have the same local part, and both have a null namespace URI or both have namespace URIs that are equal.

Document Order

There is an ordering, document order, defined on all the nodes in the document corresponding to the order in which the first character of the XML representation of each node occurs in the XML representation of the document after expansion of general entities. Thus, the root node will be the first node.

Element nodes occur before their children. Thus, document order orders element nodes in order of the occurrence of their start-tag in the XML (after expansion of entities). The attribute nodes and namespace nodes of an element occur before the children of the element. The namespace nodes are defined to occur before the attribute nodes.

The relative order of namespace nodes is implementation-dependent.

The relative order of attribute nodes is implementation-dependent.

Reverse document order is the reverse of document order.

Root nodes and element nodes have an ordered list of child nodes. Nodes never share children: if one node is not the same node as another node, then none of the children of the one node will be the same node as any of the children of another node.

Every node other than the root node has exactly one parent, which is either an element node or the root node. A root node or an element node is the parent of each of its child nodes. The descendants of a node are the children of the node and the descendants of the children of the node.

Overview of the W3C Namespaces in XML Recommendation

Software modules must recognize tags and attributes which they are designed to process, even in the face of collisions occurring when markup intended for some other software package uses the same element type or attribute name.

Document constructs should have universal names, whose scope extends beyond their containing document. The W3C Namespaces in XML Recommendation describes the mechanism, XML namespaces, which accomplishes this.

	
See Also:

http://www.w3.org/TR/REC-xml-names/

What Is a Namespace?

An XML namespace is a collection of names, identified by a URI reference [RFC2396], which are used in XML documents as element types and attribute names. XML namespaces differ from the namespaces conventionally used in computing disciplines in that the XML version has internal structure and is not, mathematically speaking, a set. These issues are discussed in the W3C Namespace Recommendation, appendix, "A. The Internal Structure of XML Namespaces".

URI References

URI references which identify namespaces are considered identical when they are exactly the same character-for-character. Note that URI references which are not identical in this sense may in fact be functionally equivalent. Examples include URI references which differ only in case, or which are in external entities which have different effective base URIs.

Names from XML namespaces may appear as qualified names, which contain a single colon, separating the name into a namespace prefix and a local part.

The prefix, which is mapped to a URI reference, selects a namespace. The combination of the universally managed URI namespace and the namespace of the document produces identifiers that are universally unique. Mechanisms are provided for prefix scoping and defaulting.

URI references can contain characters not allowed in names, so cannot be used directly as namespace prefixes. Therefore, the namespace prefix serves as a proxy for a URI reference. An attribute-based syntax described in the following section is used to declare the association of the namespace prefix with a URI reference; software which supports this namespace proposal must recognize and act on these declarations and prefixes.

Notation and Usage

Many of the nonterminals in the productions in this specification are defined not here but in the W3C XML Recommendation. When nonterminals defined here have the same names as nonterminals defined in the W3C XML Recommendation, the productions here in all cases match a subset of the strings matched by the corresponding ones there.

In productions of this document, the NSC is a Namespace Constraint, one of the rules that documents conforming to this specification must follow.

All Internet domain names used in examples, with the exception of w3.org, are selected at random and should not be taken as having any import.

Declaring Namespaces

A namespace is declared using a family of reserved attributes. Such an attribute name must either be xmlns or have xmlns: as a prefix. These attributes, like any other XML attributes, can be provided directly or by default.

Attribute Names for Namespace Declaration

[1] NSAttName ::= PrefixedAttName
 | DefaultAttName
[2] PrefixedAttName ::= 'xmlns:' NCName [NSC: Leading "XML"]
[3] DefaultAttName ::= 'xmlns'
[4] NCName ::= (Letter | '_') (NCNameChar)* /* An XML Name, minus the ":" */
[5] NCNameChar ::= Letter | Digit | '.' | '-' | '_' | CombiningChar | Extender

The attribute value, a URI reference, is the namespace name identifying the namespace. The namespace name, to serve its intended purpose, should have the characteristics of uniqueness and persistence. It is not a goal that it be directly usable for retrieval of a schema (if any exists). An example of a syntax that is designed with these goals in mind is that for Uniform Resource Names [RFC2141]. However, it should be noted that ordinary URLs can be managed in such a way as to achieve these same goals.

When the Attribute Name Matches the PrefixedAttName

If the attribute name matches PrefixedAttName, then the NCName gives the namespace prefix, used to associate element and attribute names with the namespace name in the attribute value in the scope of the element to which the declaration is attached. In such declarations, the namespace name may not be empty.

When the Attribute Name Matches the DefaultAttName

If the attribute name matches DefaultAttName, then the namespace name in the attribute value is that of the default namespace in the scope of the element to which the declaration is attached. In such a default declaration, the attribute value may be empty. Default namespaces and overriding of declarations are discussed in section "Applying Namespaces to Elements and Attributes" of the W3C Namespace Recommendation.

The following example namespace declaration associates the namespace prefix edi with the namespace name http://ecommerce.org/schema:

<x xmlns:edi='http://ecommerce.org/schema'>
 <!-- the "edi" prefix is bound to http://ecommerce.org/schema
 for the "x" element and contents -->
</x>

Namespace Constraint: Prefixes Beginning X-M-L

Prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved for use by XML and XML-related specifications.

Qualified Names

In XML documents conforming to the W3C Namespace Recommendation, some names (constructs corresponding to the nonterminal Name) may be given as qualified names, defined as follows:

Qualified Name Syntax

[6] QName ::= (Prefix ':')? LocalPart
[7] Prefix ::= NCName
[8] LocalPart::= NCName

What is the Prefix?

The Prefix provides the namespace prefix part of the qualified name, and must be associated with a namespace URI reference in a namespace declaration.

The LocalPart provides the local part of the qualified name. Note that the prefix functions only as a placeholder for a namespace name. Applications should use the namespace name, not the prefix, in constructing names whose scope extends beyond the containing document.

Using Qualified Names

In XML documents conforming to the W3C Namespace Recommendation, element types are given as qualified names, as follows:

Element Types

[9] STag ::= '<' QName (S Attribute)* S? '>' [NSC: Prefix Declared]
[10] ETag::= '</' QName S? '>'[NSC: Prefix Declared]
[11] EmptyElemTag ::= '<' QName (S Attribute)* S? '/>' [NSC: Prefix Declared]

The following is an example of a qualified name serving as an element type:

<x xmlns:edi='http://ecommerce.org/schema'>
 <!-- namespace of 'price' element is http://ecommerce.org/schema -->
 <edi:price units='Euro'>32.18</edi:price>
</x>

Attributes are either namespace declarations or their names are given as qualified names:

Attribute

[12] Attribute::= NSAttName Eq AttValue|QName Eq AttValue [NSC:Prefix Declared]

The following is an example of a qualified name serving as an attribute name:

<x xmlns:edi='http://ecommerce.org/schema'>
 <!-- namespace of 'taxClass' attribute is http://ecommerce.org/schema -->
 <lineItem edi:taxClass="exempt">Baby food</lineItem>
</x>

Namespace Constraint: Prefix Declared

The namespace prefix, unless it is xml or xmlns, must have been declared in a namespace declaration attribute in either the start-tag of the element where the prefix is used or in an ancestor element, that is, an element in whose content the prefixed markup occurs:

The prefix xml is by definition bound to the namespace name http://www.w3.org/XML/1998/namespace.

The prefix xmlns is used only for namespace bindings and is not itself bound to any namespace name.

This constraint may lead to operational difficulties in the case where the namespace declaration attribute is provided, not directly in the XML document entity, but through a default attribute declared in an external entity. Such declarations may not be read by software which is based on an XML processor that does not validate.

Many XML applications, presumably including namespace-sensitive ones, fail to require validating processors. For correct operation with such applications, namespace declarations must be provided either directly or through default attributes declared in the internal subset of the DTD.

Element names and attribute types are also given as qualified names when they appear in declarations in the DTD:

Qualified Names in Declarations

[13] doctypedecl::= '<!DOCTYPE' S QName (S ExternalID)? S? ('[' (markupdecl |
 PEReference | S)* ']' S?)? '>'
[14] elementdecl::= '<!ELEMENT' S QName S contentspec S? '>'
[15] cp ::= (QName | choice | seq) ('?' | '*' | '+')?
[16] Mixed ::= '(' S? '#PCDATA' (S? '|' S? QName)* S? ')*'
 | '(' S? '#PCDATA' S? ')'
[17] AttlistDecl::= '<!ATTLIST' S QName AttDef* S? '>'
[18] AttDef ::= S (QName | NSAttName) S AttType S DefaultDecl

Applying Namespaces to Elements and Attributes

This section describes how to apply namespaces to elements and attributes.

Namespace Scoping

The namespace declaration is considered to apply to the element where it is specified and to all elements within the content of that element, unless overridden by another namespace declaration with the same NSAttName part:

<?xml version="1.0"?>
 <!-- all elements here are explicitly in the HTML namespace -->
 <html:html xmlns:html='http://www.w3.org/TR/REC-html40'>
 <html:head><html:title>Frobnostication</html:title></html:head>
 <html:body><html:p>Moved to
 <html:a href='http://frob.com'>here.</html:a></html:p></html:body>
</html:html>

Multiple namespace prefixes can be declared as attributes of a single element, as shown in this example:

<?xml version="1.0"?>
 <!-- both namespace prefixes are available throughout -->
 <bk:book xmlns:bk='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <bk:title>Cheaper by the Dozen</bk:title>
 <isbn:number>1568491379</isbn:number>
 </bk:book>

Namespace Defaulting

A default namespace is considered to apply to the element where it is declared (if that element has no namespace prefix), and to all elements with no prefix within the content of that element. If the URI reference in a default namespace declaration is empty, then un-prefixed elements in the scope of the declaration are not considered to be in any namespace. Note that default namespaces do not apply directly to attributes.

<?xml version="1.0"?>
 <!-- elements are in the HTML namespace, in this case by default -->
 <html xmlns='http://www.w3.org/TR/REC-html40'>
 <head><title>Frobnostication</title></head>
 <body><p>Moved to
 here.</p></body>
 </html>

<?xml version="1.0"?>
 <!-- unprefixed element types are from "books" -->
 <book xmlns='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 </book>

A larger example of namespace scoping:

<?xml version="1.0"?>
 <!-- initially, the default namespace is "books" -->
 <book xmlns='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 <notes>
 <!-- make HTML the default namespace for some commentary -->
 <p xmlns='urn:w3-org-ns:HTML'>
 This is a <i>funny</i> book!
 </p>
 </notes>
 </book>

The default namespace can be set to the empty string. This has the same effect, within the scope of the declaration, of there being no default namespace.

<?xml version="1.0"?>
 <Beers>
 <!-- the default namespace is now that of HTML -->
 <table xmlns='http://www.w3.org/TR/REC-html40'>
 <th><td>Name</td><td>Origin</td><td>Description</td></th>
 <tr>
 <!-- no default namespace inside table cells -->
 <td><brandName xmlns="">Huntsman</brandName></td>
 <td><origin xmlns="">Bath, UK</origin></td>
 <td>
 <details xmlns=""><class>Bitter</class><hop>Fuggles</hop>
 <pro>Wonderful hop, light alcohol, good summer beer</pro>
 <con>Fragile; excessive variance pub to pub</con>
 </details>
 </td>
 </tr>
 </table>
 </Beers>

Uniqueness of Attributes

In XML documents conforming to this specification, no tag may contain two attributes which:

	
Have identical names, or

	
Have qualified names with the same local part and with prefixes which have been bound to namespace names that are identical.

For example, each of the bad start-tags is not permitted in the following:

<!-- http://www.w3.org is bound to n1 and n2 -->
 <x xmlns:n1="http://www.w3.org"
 xmlns:n2="http://www.w3.org" >
 <bad a="1" a="2" />
 <bad n1:a="1" n2:a="2" />
 </x>

However, each of the following is legal, the second because the default namespace does not apply to attribute names:

<!-- http://www.w3.org is bound to n1 and is the default -->
 <x xmlns:n1="http://www.w3.org"
 xmlns="http://www.w3.org" >
 <good a="1" b="2" />
 <good a="1" n1:a="2" />
 </x>

Conformance of XML Documents

In XML documents which conform to the W3C Namespace Recommendation, element types and attribute names must match the production for QName and must satisfy the Namespace Constraints.

An XML document conforms to this specification if all other tokens in the document which are required, for XML conformance, to match the XML production for Name, match the production of this specification for NCName.

The effect of conformance is that in such a document:

	
All element types and attribute names contain either zero or one colon.

	
No entity names, PI targets, or notation names contain any colons.

Strictly speaking, attribute values declared to be of types ID, IDREF(S), ENTITY(IES), and NOTATION are also Names, and thus should be colon-free.

However, the declared type of attribute values is only available to processors which read markup declarations, for example validating processors. Thus, unless the use of a validating processor has been specified, there can be no assurance that the contents of attribute values have been checked for conformance to this specification.

The following W3C Namespace Recommendation Appendixes are not included in this primer:

	
A. The Internal Structure of XML Namespaces (Non-Normative)

	
A.1 The Insufficiency of the Traditional Namespace

	
A.2 XML Namespace Partitions

	
A.3 Expanded Element Types and Attribute Names

	
A.4 Unique Expanded Attribute Names

Overview of the W3C XML Information Set

The W3C XML Information Set specification defines an abstract data set called the XML Information Set (Infoset). It provides a consistent set of definitions for use in other specifications that must refer to the information in a well-formed XML document.

The primary criterion for inclusion of an information item or property has been that of expected usefulness in future specifications. It does not constitute a minimum set of information that must be returned by an XML processor.

An XML document has an information set if it is well-formed and satisfies the namespace constraints described in the following section.

There is no requirement for an XML document to be valid in order to have an information set.

	
See Also:

http://www.w3.org/TR/xml-infoset/

Information sets may be created by methods (not described in this specification) other than parsing an XML document. See "Synthetic Infosets".

The information set of an XML document consists of a number of information items; the information set for any well-formed XML document will contain at least a document information item and several others. An information item is an abstract description of some part of an XML document: each information item has a set of associated named properties. In this specification, the property names are shown in square brackets, [thus]. The types of information item are listed in section 2.

The XML Information Set does not require or favor a specific interface or class of interfaces. This specification presents the information set as a modified tree for the sake of clarity and simplicity, but there is no requirement that the XML Information Set be made available through a tree structure; other types of interfaces, including (but not limited to) event-based and query-based interfaces, are also capable of providing information conforming to the XML Information Set.

The terms "information set" and "information item" are similar in meaning to the generic terms "tree" and "node", as they are used in computing. However, the former terms are used in this specification to reduce possible confusion with other specific data models. Information items do not map one-to-one with the nodes of the DOM or the "tree" and "nodes" of the XPath data model.

In this specification, the words "must", "should", and "may" assume the meanings specified in [RFC2119], except that the words do not appear in uppercase.

Namespaces and the W3C XML Information Set

XML 1.0 documents that do not conform to the W3C Namespace Recommendation, though technically well-formed, are not considered to have meaningful information sets. That is, this specification does not define an information set for documents that have element or attribute names containing colons that are used in other ways than as prescribed by the W3C Namespace Recommendation.

Also, the XML Infoset specification does not define an information set for documents which use relative URI references in namespace declarations. This is in accordance with the decision of the W3C XML Plenary Interest Group described in Relative Namespace URI References in the W3C Namespace Recommendation.

The value of a namespace name property is the normalized value of the corresponding namespace attribute; no additional URI escaping is applied to it by the processor.

Entities

An information set describes its XML document with entity references already expanded, that is, represented by the information items corresponding to their replacement text. However, there are various circumstances in which a processor may not perform this expansion. An entity may not be declared, or may not be retrievable. A processor that does not validate may choose not to read all declarations, and even if it does, may not expand all external entities. In these cases an un-expanded entity reference information item is used to represent the entity reference.

End-of-Line Handling

The values of all properties in the Infoset take account of the end-of-line normalization described in the XML Recommendation, 2.11 "End-of-Line Handling".

Base URIs

Several information items have a base URI or declaration base URI property. These are computed according to XML Base. Note that retrieval of a resource may involve redirection at the parser level (for example, in an entity resolver) or at a lower level; in this case the base URI is the final URI used to retrieve the resource after all redirection.

The value of these properties does not reflect any URI escaping that may be required for retrieval of the resource, but it may include escaped characters if these were specified in the document, or returned by a server in the case of redirection.

In some cases (such as a document read from a string or a pipe) the rules in XML Base may result in a base URI being application dependent. In these cases this specification does not define the value of the base URI or declaration base URI property.

When resolving relative URIs the base URI property should be used in preference to the values of xml:base attributes; they may be inconsistent in the case of Synthetic Infosets.

Unknown and No Value

Some properties may sometimes have the value unknown or no value, and it is said that a property value is unknown or that a property has no value respectively. These values are distinct from each other and from all other values. In particular they are distinct from the empty string, the empty set, and the empty list, each of which simply has no members. This specification does not use the term null because in some communities it has particular connotations which may not match those intended here.

Synthetic Infosets

This specification describes the information set resulting from parsing an XML document. Information sets may be constructed by other means, for example by use of an application program interface (API) such as the DOM or by transforming an existing information set.

An information set corresponding to a real document will necessarily be consistent in various ways; for example the in-scope namespaces property of an element will be consistent with the [namespace attributes] properties of the element and its ancestors. This may not be true of an information set constructed by other means; in such a case there will be no XML document corresponding to the information set, and to serialize it will require resolution of the inconsistencies (for example, by producing namespace declarations that correspond to the namespaces in scope).

Part VI

Oracle Tools that Support Oracle XML DB

Part VI of this manual provides information on Oracle tools that you can use with Oracle XML DB. It describes tools for managing Oracle XML DB, loading XML data, and exchanging XML data.

Part VI contains the following chapters:

	
Chapter 28, "Administering Oracle XML DB"

	
Chapter 29, "Loading XML Data Using SQL*Loader"

	
Chapter 30, "Importing and Exporting XMLType Tables"

	
Chapter 31, "Exchanging XML Data with Oracle Streams AQ"

17 Using XQuery with Oracle XML DB

This chapter describes how to use the XQuery language with Oracle XML DB. It covers Oracle XML DB support for the language, including SQL functions XMLQuery and XMLTable and the SQL*Plus XQUERY command.

This chapter contains these topics:

	
Overview of XQuery in Oracle XML DB

	
Overview of the XQuery Language

	
SQL Functions XMLQuery and XMLTable

	
Predefined Namespaces and Prefixes

	
Oracle XQuery Extension Functions

	
XMLQuery and XMLTable Examples

	
Performance Tuning for XQuery

	
XQuery Static Type-Checking in Oracle XML DB

	
SQL*Plus XQUERY Command

	
Using XQuery with PL/SQL, JDBC, and ODP.NET

	
Oracle XML DB Support for XQuery

Overview of XQuery in Oracle XML DB

	
Note:

At the time of release of Oracle Database 10g Release 2, the W3C XQuery working group had not yet published the XQuery recommendation. Oracle will continue to track the evolution of the XQuery standard, until such time as it becomes a recommendation. During this period, in order to follow the evolution of the XQuery standard, Oracle may release updates to the XQuery implementation which are not backwards compatible with previous releases or patch sets.

Oracle XML DB support for the XQuery language is provided through a native implementation of SQL/XML functions XMLQuery and XMLTable. As a convenience, SQL*Plus command XQUERY is also provided, which lets you enter XQuery expressions directly — in effect, this command turns SQL*Plus into an XQuery command-line interpreter.

Oracle XML DB generally evaluates XQuery expressions by compiling them into the same underlying structures as relational queries. Queries are optimized, leveraging both relational-database and XQuery-specific optimization technologies, so that Oracle XML DB serves as a native XQuery engine.

There are a few XQuery expressions that cannot be rewritten to relational expressions. To provide you the full power of XQuery, Oracle XML DB evaluates these XQuery expressions using a functional XQuery interpreter, or evaluation engine (which itself has been compiled into the database). The treatment of all XQuery expressions, whether natively compiled or evaluated functionally, is transparent to you: you will never need to change your code in any way to take advantage of available XQuery optimizations.

	
See Also:

	
SQL Functions XMLQuery and XMLTable and SQL*Plus XQUERY Command

	
Oracle XQuery Extension Functions for Oracle-specific XQuery functions that extend the language

	
Oracle XML DB Support for XQuery for details on Oracle XML DB support for XQuery

Overview of the XQuery Language

Oracle XML DB supports the latest version of the XQuery language specifications. This section presents a brief overview of the language. For more information, consult a recent book on the language or refer to the standards documents that define it, which are available at http://www.3.org.

Functional Language Based on Sequences

XQuery 1.0 is the W3C language designed for querying XML data. It is similar to SQL in many ways, but just as SQL is designed for querying structured, relational data, XQuery is designed especially for querying semistructured, XML data from a variety of data sources. You can use XQuery to query XML data wherever it is found, whether it is stored in database tables, available through Web Services, or otherwise created on the fly. In addition to querying XML data, XQuery can be used to construct XML data. In this regard, XQuery can serve as an alternative or a complement to both XSLT and the other SQL/XML publishing functions, such as XMLElement.

XQuery builds on the Post-Schema-Validation Infoset (PSVI) data model, which unites the XML Information Set (Infoset) data model and the XML Schema type system. XQuery defines a new data model based on sequences: the result of each XQuery expression is a sequence. XQuery is all about manipulating sequences. This makes XQuery similar to a set-manipulation language, except that sequences are ordered and can contain duplicate items. XQuery sequences differ from the sequences in some other languages in that nested XQuery sequences are always flattened in their effect.

In many cases, sequences can be treated as unordered, to maximize optimization – where this is available, it is under your control. This unordered mode can be applied to join order in the treatment of nested iterations (for), and it can be applied to the treatment of XPath expressions (for example, in /a/b, the matching b elements can be processed without regard to document order).

An XQuery sequence consists of zero or more items, which can be either atomic (scalar) values or XML nodes. Items are typed using a rich type system that is based upon the types of XML Schema. This type system is a major change from that of XPath 1.0, which is limited to simple scalar types such as Boolean, number, and string.

XQuery is a functional language. As such, it consists of a set of possible expressions that are evaluated and return values (which, in the case of XQuery, are sequences). As a functional language, XQuery is also referentially transparent, generally: the same expression evaluated in the same context returns the same value.

Exceptions to this desirable mathematical property include the following:

	
XQuery expressions that derive their value from interaction with the external environment. For example, an expression such as fn:current-time(...) or fn:doc(...) does not necessarily always return the same value, since it depends on external conditions that can change (the time changes; the content of the target document might change).

In some cases, like that of fn:doc, XQuery is defined to be referentially transparent within the execution of a single query: within a query, each invocation of fn:doc with the same argument results in the same document.

	
XQuery expressions that are defined to be dependent on the particular XQuery language implementation. The result of evaluating such expressions might vary between implementations. Function fn:doc is an example of a function that is essentially implementation-defined.

Referential transparency applies also to XQuery variables: the same variable in the same context has the same value. Functional languages are like mathematics formalisms in this respect and unlike procedural, or imperative, programming languages. A variable in a procedural language is really a name for a memory location; it has a current value, or state, as represented by its content at any time. A variable in a declarative language such as XQuery is really a name for a static value.

XQuery Expressions

XQuery expressions are case-sensitive. The expressions include the following:

	
primary expression – literal, variable, or function application. A variable name starts with a dollar-sign ($) – for example, $foo. Literals include numerals, strings, and character or entity references.

	
XPath expression – Any XPath expression. The developing XPath 2.0 standard will be a subset of XQuery. XPath 1.0 is currently a subset, although XQuery uses a richer type system.

	
FLWOR expression – The most important XQuery expression, composed of the following, in order, from which FLWOR takes its name: for, let, where , order by, return.

	
XQuery sequence – The comma (,) constructor creates sequences. Sequence-manipulating functions such as union and intersect are also available. All XQuery sequences are effectively flat: a nested sequence is treated as its flattened equivalent. Thus, for instance, (1, 2, (3, 4, (5), 6), 7) is treated as (1, 2, 3, 4, 5, 6, 7). A singleton sequence, such as (42), acts the same in most XQuery contexts as does its single item, 42. Remember that the result of any XQuery expression is a sequence.

	
Direct (literal) constructions – XML element and attribute syntax automatically constructs elements and attributes: what you see is what you get. For example, the XQuery expression <a>33 constructs the XML element <a>33.

	
Computed (dynamic) constructions – You can construct XML data at runtime using computed values. For example, the following XQuery expression constructs this XML data: <foo toto="5"><bar>tata titi</bar> why? </foo>.

<foo>{attribute toto {2+3}, element bar {"tata", "titi"}, text {" why? "}</foo>

In this example, element foo is a direct construction; the other constructions are computed. In practice, the arguments to computed constructors are not literals (such as toto and "tata"), but expressions to be evaluated (such as 2+3). Both the name and the value arguments of an element or attribute constructor can be computed. Braces ({, }) are used to mark off an XQuery expression to be evaluated.

	
Conditional expression – As usual, but remember that each part of the expression is itself an arbitrary expression. For instance, in this conditional expression, each of these subexpressions can be any XQuery expression: something, somethingElse, expression1, and expression2.

 if (something < somethingElse) then expression1 else expression2

	
Arithmetic, relational expression – As usual, but remember that each relational expression returns a (BooleanFoot 1) value. Examples:

2 + 3
42 < $a + 5
(1, 4) = (1, 2)
5 > 3 eq true()

	
Quantifier expression – Universal (every) and existential (some) quantifier functions provide shortcuts to using a FLWOR expression in some cases. Examples:

every $foo in doc("bar.xml")//Whatever satisfies $foo/@bar > 42
some $toto in (42, 5), $titi in ("xyz12", "abc", 5) satisfies $toto = $titi

	
Regular expression – XQuery regexes are based on XML Schema 1.0 and Perl. (See Support for XQuery Functions and Operators.)

	
Type expression – An XQuery expression that represents an XQuery type. Examples: item(), node(), attribute(), element(), document-node(), namespace(), text(), xs:integer, xs:string.Foot 2

Type expressions can have occurrence indicators: ? (optional: zero or one), * (zero or more), + (one or more). Examples: document-node(element())*, item()+, attribute()?.

XQuery also provides operators for working with types. These include cast as, castable as, treat as, instance of, typeswitch, and validate. For example, "42" cast as xs:integer is an expression whose value is the integer 2. (It is not, strictly speaking, a type expression, because its value does not represent a type.)

FLWOR Expressions

As for XQuery in general, there is a lot to learn about FLWOR expressions. This section provides only a brief overview.

FLWOR is the most general expression syntax in XQuery. FLWOR (pronounced "flower") stands for for, let, where, order by, and return. A FLWOR expression has at least one for or let clause and a return clause; single where and order by clauses are optional.

	
for – Bind one or more variables each to any number of values, in turn. That is, for each variable, iterate, binding the variable to a different value for each iteration.

At each iteration, the variables are bound in the order they appear, so that the value of a variable $earlier that is listed before a variable $later in the for list, can be used in the binding of variable $later. For example, during its second iteration, this expression binds $i to 4 and $j to 6 (2+4):

 for $i in (3, 4), $j in ($i, 2+$i)

	
let – Bind one or more variables.

Just as with for, a variable can be bound by let to a value computed using another variable that is listed previously in the binding list of the let (or an enclosing for or let). For example, this expression binds $j to 5 (3+2):

let $i := 3, $j := $i + 2

	
where – Filter the for and let variable bindings according to some condition. This is similar to a SQL WHERE clause.

	
order by – Sort the result of where filtering.

	
return – Construct a result from the ordered, filtered values. This is the result of the FLWOR expression as a whole. It is a flattened sequence.

Expressions for and let function similarly to a SQL FROM clause; where acts like a SQL WHERE clause; order by is similar to ORDER BY in SQL; and return is like SELECT in SQL. In other words, except for the two keywords whose names are the same in both languages (where, order by), FLWOR clause order is more or less opposite to the SQL clause order, but the meanings of the corresponding clauses are quite similar.

Note that using a FLWOR expression (with order by) is the only way to construct a sequence in any order other than document order.

SQL Functions XMLQuery and XMLTable

SQL functions XMLQuery and XMLTable are defined by the SQL/XML standard as a general interface between the SQL and XQuery languages. As is the case for the other SQL/XML functions, XMLQuery and XMLTable let you take advantage of the power and flexibility of both SQL and XML. Using these functions, you can construct XML data using relational data, query relational data as if it were XML, and construct relational data from XML data.

The SQL/XML standard is ISO/IEC 9075–14:2005(E), Information technology – Database languages – SQL – Part 14: XML-Related Specifications (SQL/XML). As part of the SQL standard, it is aligned with SQL:2003. It is being developed under the auspices of these two standards bodies:

	
ISO/IEC JTC1/SC32 ("International Organization for Standardization and International Electrotechnical Committee Joint Technical Committee 1, Information technology, Subcommittee 32, Data Management and Interchange").

	
INCITS Technical Committee H2 ("INCITS" stands for "International Committee for Information Technology Standards"). INCITS is an Accredited Standards Development Organization operating under the policies and procedures of ANSI, the American National Standards Institute. Committee H2 is the committee responsible for SQL and SQL/MM.

This SQL/XML standardization process is ongoing. Please refer to http://www.sqlx.org for the latest information about XMLQuery and XMLTable.

	
See Also:

	
http://www.sqlx.org for information on SQL functions XMLQuery and XMLTable

	
http://www.w3.org for information on the XQuery language

	
"Generating XML Using SQL Functions" for information on using other SQL/XML functions with Oracle XML DB

XMLQUERY SQL Function in Oracle XML DB

You use SQL function XMLQuery to construct or query XML data. This function takes as arguments an XQuery expression, as a string literal, and an optional XQuery context item, as a SQL expression. The context item establishes the XPath context in which the XQuery expression is evaluated. Additionally, XMLQuery accepts as arguments any number of SQL expressions whose values are bound to XQuery variables during the XQuery expression evaluation. The function returns the result of evaluating the XQuery expression, as an XMLType instance.

Figure 17-1 XMLQUERY Syntax

[image: Description of Figure 17-1 follows]

Description of "Figure 17-1 XMLQUERY Syntax"

XML_passing_clause::=

[image: Description of XML_passing_clause.gif follows]

Description of the illustration XML_passing_clause.gif

	
XQuery_string is a complete XQuery expression, possibly including a prolog, as a literal string.

	
The XML_passing_clause is the keyword PASSING followed by one or more SQL expressions (expr) that each return an XMLType instance. All but possibly one of the expressions must each be followed by the keyword AS and an XQuery identifier. The result of evaluating each expr is bound to the corresponding identifier for the evaluation of XQuery_string. If there is an expr that is not followed by an AS clause, then the result of evaluating that expr is used as the context item for evaluating XQuery_string. Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the clause BY VALUE is implicit and can be omitted.

	
RETURNING CONTENT indicates that the value returned by an application of XMLQuery is an instance of parameterized XML type XML(CONTENT), not parameterized type XML(SEQUENCE). It is a document fragment that conforms to the extended Infoset data model. As such, it is a single document node with any number of children. The children can each be of any XML node type; in particular, they can be text nodes.

Oracle XML DB supports only the RETURNING CONTENT clause of SQL/XML function XMLQuery; it does not support the RETURNING SEQUENCE clause.

You can pass an XMLType column, table, or view as the context-item argument to function XMLQuery — see, for example, Example 17-8. To query a relational table or view as if it were XML, without having to first create a SQL/XML view on top of it, use XQuery function ora:view within an XQuery expression — see, for example, Example 17-6.

	
See Also:

	
http://www.sqlx.org for information on the definition of SQL function XMLQuery

	
Oracle Database SQL Reference for reference information on SQL function XMLQuery in Oracle Database

	
"ora:view XQuery Function"

XMLTABLE SQL Function in Oracle XML DB

You use SQL function XMLTable to shred the result of an XQuery-expression evaluation into the relational rows and columns of a new, virtual table. You can then insert the virtual table into a pre-existing database table, or you can query it using SQL — in a join expression, for example (see Example 17-9). You use XMLTable in a SQL FROM clause.

Figure 17-2 XMLTABLE Syntax

[image: Description of Figure 17-2 follows]

Description of "Figure 17-2 XMLTABLE Syntax"

XML_namespaces_clause::=

[image: Description of XML_namespaces_clause.gif follows]

Description of the illustration XML_namespaces_clause.gif

XMLTABLE_options::=

[image: Description of XMLTABLE_options.gif follows]

Description of the illustration XMLTABLE_options.gif

XML_passing_clause::=

[image: Description of XML_passing_clause.gif follows]

Description of the illustration XML_passing_clause.gif

XML_table_column::=

[image: Description of XML_table_column.gif follows]

Description of the illustration XML_table_column.gif

	
XQuery_string is a complete XQuery expression, possibly including a prolog, as a literal string. The value of the expression serves as input to the XMLTable function; it is this XQuery result that is shredded into relational data.

	
The optional XMLNAMESPACES clause contains XML namespace declarations that are referenced by XQuery_string and by the XPath expression in the PATH clause of XML_table_column.

	
The XML_passing_clause is the keyword PASSING followed by one or more SQL expressions (expr) that each return an XMLType instance. All but possibly one of the expressions must each be followed by the keyword AS and an XQuery identifier. The result of evaluating each expr is bound to the corresponding identifier for the evaluation of XQuery_string. If there is an expr that is not followed by an AS clause, then the result of evaluating that expr is used as the context item for evaluating XQuery_string. Oracle XML DB supports only passing BY VALUE, not passing BY REFERENCE, so the clause BY VALUE is implicit and can be omitted.

	
The optional COLUMNS clause defines the columns of the virtual table to be created by XMLTable.

	
If you omit the COLUMNS clause, then XMLTable returns a row with a single XMLType pseudo-column, named COLUMN_VALUE.

	
FOR ORDINALITY specifies that column is to be a column of generated row numbers (SQL datatype NUMBER). There must be at most one FOR ORDINALITY clause.

	
You must specify the datatype of each resulting column except the FOR ORDINALITY column.

	
The optional PATH clause specifies that the portion of the XQuery result that is addressed by XPath expression string is to be used as the column content. You can use multiple PATH clauses to split the XQuery result into different virtual-table columns.

If you omit PATH, then the XPath expression column is assumed. For example, these two expressions are equivalent:

XMLTable(... COLUMNS foo)
XMLTable(... COLUMNS foo PATH 'FOO')

	
The optional DEFAULT clause specifies the value to use when the PATH expression results in an empty sequence (or NULL). Its expr is an XQuery expression that is evaluated to produce the default value.

	
See Also:

	
http://www.sqlx.org for information on the definition of SQL function XMLTable

	
Oracle Database SQL Reference for reference information on SQL function XMLTable in Oracle Database

Predefined Namespaces and Prefixes

The following namespaces and prefixes are predefined for use with XQuery in Oracle XML DB:

Table 17-1 Predefined Namespaces and Prefixes

	Prefix	Namespace	Description
	
ora

	
http://xmlns.oracle.com/xdb

	
Oracle XML DB namespace

	
local

	
http://www.w3.org/2003/11/xpath-local-functions

	
XPath local function declaration namespace

	
fn

	
http://www.w3.org/2003/11/xpath-functions

	
XPath function namespace

	
xdt

	
http://www.w3.org/2003/11/xpath-datatypes

	
XPath datatype namespace

	
xml

	
http://www.w3.org/XML/1998/namespace

	
XML namespace

	
xs

	
http://www.w3.org/2001/XMLSchema

	
XML Schema namespace

	
xsi

	
http://www.w3.org/2001/XMLSchema-instance

	
XML Schema instance namespace

You can use these prefixes in XQuery expressions without first declaring them in the XQuery-expression prolog. You can redefine any of them except xml in the prolog. All of these prefixes except ora are predefined in the XQuery standard.

Oracle XQuery Extension Functions

Oracle XML DB adds some XQuery functions to those provided in the W3C standard. These additional functions are in the Oracle XML DB namespace, http://xmlns.oracle.com/xdb, which uses the predefined prefix ora. This section describes these Oracle extension functions.

ora:contains XQuery Function

Syntax

ora:contains (input_text, text_query [, policy_name] [, policy_owner])

XPath function ora:contains can be used in an XPath expression inside an XQuery expression or in a call to SQL function existsNode, extract, or extractValue. It is used to restrict a structural search with a full-text predicate. Function ora:contains returns a positive integer when the input_text matches text_query (the higher the number, the more relevant the match), and zero otherwise. When used in an XQuery expression, the XQuery return type is xs:integer(); when used in an XPath expression outside of an XQuery expression, the XPath return type is number.

Argument input_text must evaluate to a single text node or an attribute. The syntax and semantics of text_query in ora:contains are the same as text_query in contains, with a few restrictions.

	
See Also:

"ora:contains XPath Function"

ora:matches XQuery Function

Syntax

ora:matches (target_string, match_pattern [, match_parameter])

XQuery function ora:match lets you use a regular expression to match text in a string. It returns true() if its target_string argument matches its regular-expression match_pattern argument and false() otherwise. If target_string is the empty sequence, false() is returned. Optional argument match_parameter is a code that qualifies matching: case-sensitivity and so on.

The behavior of XQuery function ora:matches is the same as that of SQL condition REGEXP_LIKE, but the types of its arguments are XQuery types instead of SQL datatypes. The argument types are as follows:

	
target_string – xs:string?Foot 3

	
match_pattern – xs:string

	
match_parameter – xs:string

	
See Also:

Oracle Database SQL Reference for information on SQL condition REGEXP_LIKE

ora:replace XQuery Function

Syntax

ora:replace (target_string, match_pattern, replace_string [, match_parameter])

XQuery function ora:replace lets you use a regular expression to replace matching text in a string. Each occurrence in target_string that matches regular-expression match_pattern is replaced by replace_string. It returns the new string that results from the replacement. If target_string is the empty sequence, then the empty string ("") is returned. Optional argument match_parameter is a code that qualifies matching: case-sensitivity and so on.

The behavior of XQuery function ora:matches is the same as that of SQL function regexp_replace, but the types of its arguments are XQuery types instead of SQL datatypes. The argument types are as follows:

	
target_string – xs:string?Foot 4

	
match_pattern – xs:string

	
replace_string – xs:string

	
match_parameter – xs:string

In addition, ora:replace requires argument replace_string (it is optional in regexp_replace) and it does not use arguments for position and number of occurences – search starts with the first character and all occurrences are replaced.

	
See Also:

Oracle Database SQL Reference for information on SQL function regexp_replace

ora:sqrt XQuery Function

Syntax

ora:sqrt (number)

XQuery function ora:sqrt returns the square root of its numerical argument, which can be of XQuery type xs:decimal, xs:float, or xs:double. The returned value is of the same XQuery type as the argument.

ora:view XQuery Function

Syntax

ora:view ([db-schema STRING,] db-table STRING)
RETURNS document-node(element())*Foot 5

XQuery function ora:view lets you query existing database tables or views inside an XQuery expression, as if they were XML documents. In effect, ora:view creates XML views over the relational data, on the fly. You can thus use ora:view to avoid explicitly creating XML views on top of relational data.

The input parameters are as follows:

	
db-schema – An optional string literal that names a database schema.

	
db-table – A string literal naming a database table or view. If db-schema is present, then db-table is in database schema db-schema.

Function ora:view returns an unordered sequence of document nodes, one for each row of db-table. The SQL/XML standard is used to map each input row to the output XML document: relational column names become XML element names. Unless db-table is of type XMLType, the column elements derived from a given table row are wrapped together in a ROW element. In that case, the return type is, more precisely, document-node(element(ROW))*.

XMLQuery and XMLTable Examples

XQuery is a very general and expressive language, and SQL functions XMLQuery and XMLTable combine that power of expression and computation with the similar strengths of SQL. This section illustrates some of what you can do with these two SQL/XML functions.

You will typically use XQuery with Oracle XML DB in the following ways. The examples here are organized to reflect these different uses.

	
Query XML data in Oracle XML DB Repository.

See "Using XQuery to Query XML Data in Oracle XML DB Repository".

	
Query a relational table or view as if it were XML data. To do this, you use Oracle XQuery function ora:view to create an XML view over the relational data, on the fly.

See "Using ora:view to Query Relational Data in XQuery Expressions".

	
Query XMLType relational data, possibly shredding the resulting XML into relational data using function XMLTable.

See "Using XQuery with XMLType Data".

Example 17-1 Creating Resources for Examples

This example creates repository resources that are used in some of the other examples.

DECLARE
 res BOOLEAN;
 empsxmlstring VARCHAR2(300):=
 '<?xml version="1.0"?>
 <emps>
 <emp empno="1" deptno="10" ename="John" salary="21000"/>
 <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
 <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
 </emps>';
 empsxmlnsstring VARCHAR2(300):=
 '<?xml version="1.0"?>
 <emps xmlns="http://emp.com">
 <emp empno="1" deptno="10" ename="John" salary="21000"/>
 <emp empno="2" deptno="10" ename="Jack" salary="310000"/>
 <emp empno="3" deptno="20" ename="Jill" salary="100001"/>
 </emps>';
 deptsxmlstring VARCHAR2(300):=
 '<?xml version="1.0"?>
 <depts>
 <dept deptno="10" dname="Administration"/>
 <dept deptno="20" dname="Marketing"/>
 <dept deptno="30" dname="Purchasing"/>
 </depts>';
BEGIN
 res := DBMS_XDB.createResource('/public/emps.xml', empsxmlstring);
 res := DBMS_XDB.createResource('/public/empsns.xml', empsxmlnsstring);
 res := DBMS_XDB.createResource('/public/depts.xml', deptsxmlstring);
END;
/

XQuery Is About Sequences

It is important to keep in mind that XQuery is a general sequence-manipulation language. Its expressions and their results are not necessarily XML data. An XQuery sequence can contain items of any XQuery type, which includes numbers, strings, Boolean values, dates, as well as various types of XML node (document-node(), element(), attribute(), text(), namespace(), and so on). Example 17-2 provides a sampling.

Example 17-2 XMLQuery Applied to a Sequence of Items of Different Types

This example applies SQL function XMLQuery to an XQuery sequence that contains items of several different kinds:

	
an integer literal: 1

	
a arithmetic expression: 2 + 3

	
a string literal: "a"

	
a sequence of integers: 100 to 102

	
a constructed XML element node: <A>33

This example also shows construction of a sequence using the comma operator (,) and parentheses ((,)) for grouping.

SELECT XMLQuery('(1, 2 + 3, "a", 100 to 102, <A>33)'
 RETURNING CONTENT) AS output
 FROM DUAL;

OUTPUT

1 5 a 100 101 102<A>33

1 row selected.

The sequence expression 100 to 102 evaluates to the sequence (100, 101, 102), so the argument to XMLQuery is actually a sequence that contains a nested sequence. The sequence argument is automatically flattened, as is always the case for XQuery sequences. The actual argument is, in effect, (1, 5, "a", 100, 101, 102, <A>33).

Using XQuery to Query XML Data in Oracle XML DB Repository

This section presents examples of using XQuery with XML data in Oracle XML DB Repository. In Oracle XML DB, functions fn:doc and fn:collection return file and folder resources in the repository, respectively. Each example in this section uses XQuery function fn:doc to obtain a repository file that contains XML data, and then binds XQuery variables to parts of that data using for and let FLWOR-expression clauses.

	
See Also:

XQuery Functions doc and collection

Example 17-3 FLOWR Expression Using For, Let, Order By, Where, and Return

This example queries two XML-document resources in Oracle XML DB Repository: /public/emps.xml and /public/depts.xml. It illustrates the use of each of the possible FLWOR-expression clauses, as well as the use of fn:doc.

SELECT XMLQuery('for $e in doc("/public/emps.xml")/emps/emp
 let $d :=
 doc("/public/depts.xml")//dept[@deptno = $e/@deptno]/@dname
 where $e/@salary > 100000
 order by $e/@empno
 return <emp ename="{$e/@ename}" dept="{$d}"/>'
 RETURNING CONTENT) FROM DUAL;

XMLQUERY('FOR$EINDOC("/PUBLIC/EMPS.XML")/EMPS/EMPLET$D:=DOC("/PUBLIC/DEPTS.XML")
--
<emp ename="Jack" dept="Administration"></emp><emp ename="Jill" dept="Marketing"
></emp>

1 row selected.

In Example 17-3, the various FLWOR clauses perform these operations:

	
for iterates over the emp elements in /public/emps.xml, binding variable $e to the value of each such element, in turn. That is, it iterates over a general list of employees, binding $e to each employee.

	
let binds variable $d to a sequence consisting of all of the values of dname attributes of those dept elements in /public/emps.xml whose deptno attributes have the same value as the deptno attribute of element $e (this is a join operation). That is, it binds $d to the names of all of the departments that have the same department number as the department of employee $e. (It so happens that the dname value is unique for each deptno value in depts.xml.) Note that, unlike for, let never iterates over values; $d is bound only once in this example.

	
Together, for and let produce a stream of tuples ($e, $d), where $e represents an employee and $d represents the names of all of the departments to which that employee belongs —in this case, the unique name of the employee's unique department.

	
where filters this tuple stream, keeping only tuples with employees whose salary is greater than 100,000.

	
order by sorts the filtered tuple stream by employee number, empno (in ascending order, by default).

	
return constructs emp elements, one for each tuple. Attributes ename and dept of these elements are constructed using attribute ename from the input and $d, respectively. Note that the element and attribute names emp and ename in the output have no necessary connection with the same names in the input document emps.xml.

Example 17-4 also uses each of the FLWOR-expression clauses. In addition, it demonstrates the use of other XQuery functions, besides fn:doc.

Example 17-4 FLOWR Expression Using Built-In Functions

This example shows the use of XQuery functions doc, count, avg, and integer, which are in the namespace for built-in XQuery functions, http://www.w3.org/2003/11/xpath-functions. This namespace is bound to the prefix fn.

SELECT XMLQuery('for $d in fn:doc("/public/depts.xml")/depts/dept/@deptno
 let $e := fn:doc("/public/emps.xml")/emps/emp[@deptno = $d]
 where fn:count($e) > 1
 order by fn:avg($e/@salary) descending
 return
 <big-dept>{$d,
 <headcount>{fn:count($e)}</headcount>,
 <avgsal>{xs:integer(fn:avg($e/@salary))}</avgsal>}
 </big-dept>'
 RETURNING CONTENT) FROM DUAL;

XMLQUERY('FOR$DINFN:DOC("/PUBLIC/DEPTS.XML")/DEPTS/DEPT/@DEPTNOLET$E:=FN:DOC("/P
--
<big-dept>10<headcount>2</headcount><avgsal>165500</avgsal></big-dept>

1 row selected.

In Example 17-4, the various FLWOR clauses perform these operations:

	
for iterates over deptno attributes in input document /public/depts.xml, binding variable $d to the value of each such attribute, in turn.

	
let binds variable $e to a sequence consisting of all of the emp elements in input document /public/emps.xml whose deptno attributes have value $d (this is a join operation).

	
Together, for and let produce a stream of tuples ($d, $e), where $d represents a department number and $e represents the set of employees in that department.

	
where filters this tuple stream, keeping only tuples with more than one employee.

	
order by sorts the filtered tuple stream by average salary in descending order. The average is computed by applying XQuery function avg (in namespace fn) to the values of attribute salary, which is attached to the emp elements of $e.

	
return constructs big-dept elements, one for each tuple produced by order by. The text() node of big-dept contains the department number, bound to $d. A headcount child element contains the number of employees, bound to $e, as determined by XQuery function count. An avgsal child element contains the computed average salary.

Using ora:view to Query Relational Data in XQuery Expressions

This section presents examples of using Oracle XQuery function ora:view to query relational data as if it were XML data, from within an XQuery expression.

	
See Also:

"ora:view XQuery Function"

Example 17-5 Using ora:view to Query Relational Tables as XML Views

This example uses Oracle XQuery function ora:view in a FLWOR expression to query two relational tables, regions and countries joining. Both tables belong to sample database schema hr.

SELECT XMLQuery('for $i in ora:view("REGIONS"), $j in ora:view("COUNTRIES")
 where $i/ROW/REGION_ID = $j/ROW/REGION_ID
 and $i/ROW/REGION_NAME = "Asia"
 return $j'
 RETURNING CONTENT) AS asian_countries
 FROM DUAL;

This produces the following result (the actual result is not pretty-printed).

ASIAN_COUNTRIES
--
<ROW>
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>CN</COUNTRY_ID>
 <COUNTRY_NAME>China</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>HK</COUNTRY_ID>
 <COUNTRY_NAME>HongKong</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>IN</COUNTRY_ID>
 <COUNTRY_NAME>India</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>
<ROW>
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <REGION_ID>3</REGION_ID>
</ROW>

1 row selected.

In Example 17-5, the various FLWOR clauses perform these operations:

	
for iterates over sequences of XML elements returned by calls to ora:view. In the first call, each element corresponds to a row of relational table regions and is bound to variable $i. Similarly, in the second call to ora:view, $j is bound to successive rows of table countries. Since regions and countries are not XMLType tables, the top-level element corresponding to a row in each table is ROW (a wrapper element). Iteration over the row elements is unordered.

	
where filters the rows from both tables, keeping only those pairs of rows whose region_id is the same for each table (it performs a join on region_id) and whose region_name is Asia.

	
return returns the filtered rows from the countries table as an XML document containing XML fragments with ROW as their top-level element.

Example 17-6 uses ora:view within nested FLWOR expressions.

Example 17-6 Using ora:view in a Nested FLWOR Query

This query is an example of using nested FLWOR expressions. It accesses relational table warehouses, which is in sample database schema oe, and relational table locations, which is in sample database schema hr. To run this example as user oe, you must first connect as user hr and grant permission to user oe to perform SELECT operations on table locations. The two-argument form of ora:view is used here, to specify the database schema (first argument) in addition to the table (second argument).

CONNECT HR/HR
GRANT SELECT ON LOCATIONS TO OE
/
CONNECT OE/OE

SELECT XMLQuery(
 'for $i in ora:view("OE", "WAREHOUSES")/ROW
 return <Warehouse id="{$i/WAREHOUSE_ID}">
 <Location>
 {for $j in ora:view("HR", "LOCATIONS")/ROW
 where $j/LOCATION_ID eq $i/LOCATION_ID
 return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
 </Location>
 </Warehouse>'
 RETURNING CONTENT) FROM DUAL;

This produces the following result (the actual result is not pretty-printed).

XMLQUERY('FOR$IINORA:VIEW("OE","WAREHOUSES")/ROWRETURN<WAREHOUSEID="{$I/WAREHOUS
--
<Warehouse id="1">
 <Location>
 <STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
 <CITY>Southlake</CITY>
 <STATE_PROVINCE>Texas</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="2">
 <Location>
 <STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
 <CITY>South San Francisco</CITY>
 <STATE_PROVINCE>California</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="3">
 <Location>
 <STREET_ADDRESS>2007 Zagora St</STREET_ADDRESS>
 <CITY>South Brunswick</CITY>
 <STATE_PROVINCE>New Jersey</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="4">
 <Location>
 <STREET_ADDRESS>2004 Charade Rd</STREET_ADDRESS>
 <CITY>Seattle</CITY>
 <STATE_PROVINCE>Washington</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="5">
 <Location>
 <STREET_ADDRESS>147 Spadina Ave</STREET_ADDRESS>
 <CITY>Toronto</CITY>
 <STATE_PROVINCE>Ontario</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="6">
 <Location>
 <STREET_ADDRESS>12-98 Victoria Street</STREET_ADDRESS>
 <CITY>Sydney</CITY>
 <STATE_PROVINCE>New South Wales</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="7">
 <Location>
 <STREET_ADDRESS>Mariano Escobedo 9991</STREET_ADDRESS>
 <CITY>Mexico City</CITY>
 <STATE_PROVINCE>Distrito Federal,</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="8">
 <Location>
 <STREET_ADDRESS>40-5-12 Laogianggen</STREET_ADDRESS>
 <CITY>Beijing</CITY>
 </Location>
</Warehouse>
<Warehouse id="9">
 <Location>
 <STREET_ADDRESS>1298 Vileparle (E)</STREET_ADDRESS>
 <CITY>Bombay</CITY>
 <STATE_PROVINCE>Maharashtra</STATE_PROVINCE>
 </Location>
</Warehouse>

1 row selected.

In Example 17-6, the various FLWOR clauses perform these operations:

	
The outer for iterates over the sequence of XML elements returned by ora:view: each element corresponds to a row of relational table warehouses and is bound to variable $i. Since warehouses is not an XMLType table, the top-level element corresponding to a row is ROW. The iteration over the row elements is unordered.

	
The inner for iterates, similarly, over a sequence of XML elements returned by ora:view: each element corresponds to a row of relational table locations and is bound to variable $j.

	
where filters the tuples ($i, $j), keeping only those whose location_id child is the same for $i and $j (it performs a join on location_id).

	
The inner return constructs an XQuery sequence of elements STREET_ADDRESS, CITY, and STATE_PROVINCE, all of which are children of locations-table ROW element $j; that is, they are the values of the locations-table columns of the same name.

	
The outer return wraps the result of the inner return in a Location element, and wraps that in a Warehouse element. It provides the Warehouse element with an id attribute whose value comes from the warehouse_id column of table warehouses.

	
See Also:

Example 17-14 for the EXPLAIN PLAN of Example 17-6

Example 17-7 Using ora:view with XMLTable to Query a Relational Table as XML

In this example, SQL function XMLTable is used to shred the result of an XQuery query to virtual relational data. The XQuery expression used in this example is identical to the one used in Example 17-6; the result of evaluating the XQuery expression is a sequence of Warehouse elements. Function XMLTable produces a virtual relational table whose rows are those Warehouse elements. More precisely, the value of pseudocolumn COLUMN_VALUE for each virtual-table row is an XML fragment (of type XMLType) with a single Warehouse element.

SELECT *
 FROM XMLTable(
 'for $i in ora:view("OE", "WAREHOUSES")/ROW
 return <Warehouse id="{$i/WAREHOUSE_ID}">
 <Location>
 {for $j in ora:view("HR", "LOCATIONS")/ROW
 where $j/LOCATION_ID eq $i/LOCATION_ID
 return ($j/STREET_ADDRESS, $j/CITY, $j/STATE_PROVINCE)}
 </Location>
 </Warehouse>');

This produces the same result as Example 17-6, except that each Warehouse element is output as a separate row, instead of all Warehouse elements being output together in a single row.

COLUMN_VALUE
--
<Warehouse id="1">
 <Location>
 <STREET_ADDRESS>2014 Jabberwocky Rd</STREET_ADDRESS>
 <CITY>Southlake</CITY>
 <STATE_PROVINCE>Texas</STATE_PROVINCE>
 </Location>
</Warehouse>
<Warehouse id="2">
 <Location>
 <STREET_ADDRESS>2011 Interiors Blvd</STREET_ADDRESS>
 <CITY>South San Francisco</CITY>
 <STATE_PROVINCE>California</STATE_PROVINCE>
 </Location>
</Warehouse>
. . .

9 rows selected.

	
See Also:

Example 17-15 for the EXPLAIN PLAN of Example 17-7

Using XQuery with XMLType Data

This section presents examples of using XQuery with XMLType relational data.

Example 17-8 Using XMLQuery with PASSING Clause, to Query an XMLType Column

This example passes an XMLType column, oe.warehouse_spec, as context item to XQuery, using function XMLQuery with the PASSING clause. It constructs a Details element for each of the warehouses whose area is greater than 80,000: /Warehouse/ Area > 80000.

SELECT warehouse_name,
 XMLQuery(
 'for $i in /Warehouse
 where $i/Area > 80000
 return <Details>
 <Docks num="{$i/Docks}"/>
 <Rail>{if ($i/RailAccess = "Y") then "true" else "false"}
 </Rail>
 </Details>'
 PASSING warehouse_spec RETURNING CONTENT) big_warehouses
 FROM warehouses;

This produces the following output:

WAREHOUSE_NAME

BIG_WAREHOUSES

Southlake, Texas

San Francisco

New Jersey
<Details><Docks></Docks><Rail>false</Rail></Details>

Seattle, Washington
<Details><Docks num="3"></Docks><Rail>true</Rail></Details>

Toronto

Sydney

Mexico City

Beijing

Bombay

9 rows selected.

In Example 17-8, function XMLQuery is applied to the warehouse_spec column in each row of table warehouses. The various FLWOR clauses perform these operations:

	
for iterates over the Warehouse elements in each row of column warehouse_spec (the passed context item): each such element is bound to variable $i, in turn. The iteration is unordered.

	
where filters the Warehouse elements, keeping only those whose Area child has a value greater than 80,000.

	
return constructs an XQuery sequence of Details elements, each of which contains a Docks and a Rail child elements. The num attribute of the constructed Docks element is set to the text() value of the Docks child of Warehouse. The text() content of Rail is set to true or false, depending on the value of the RailAccess attribute of element Warehouse.

The SELECT statement applies to each row in table warehouses. The XMLQuery expression returns the empty sequence for those rows that do not match the XQuery expression. Only the warehouses in New Jersey and Seattle satisfy the XQuery query, so they are the only warehouses for which <Details>...</Details> is returned.

Example 17-9 Using XMLTable with XML Schema-Based Data

This example uses SQL function XMLTable to query an XMLType table, hr.purchaseorder, which contains XML Schema-based data. It uses the PASSING clause to provide the purchaseorder table as the context item for the XQuery-expression argument to XMLTable. Pseudocolumn COLUMN_VALUE of the resulting virtual table holds a constructed element, A10po, which contains the Reference information for those purchase orders whose CostCenter element has value A10 and whose User element has value SMCCAIN. The query performs a join between the virtual table and database table purchaseorder.

SELECT xtab.COLUMN_VALUE
 FROM purchaseorder, XMLTable('for $i in /PurchaseOrder
 where $i/CostCenter eq "A10"
 and $i/User eq "SMCCAIN"
 return <A10po pono="{$i/Reference}"/>'
 PASSING OBJECT_VALUE) xtab;

COLUMN_VALUE

<A10po pono="SMCCAIN-20021009123336151PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336341PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337173PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335681PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335470PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336972PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336842PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336512PDT"></A10po>
<A10po pono="SMCCAIN-2002100912333894PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337403PDT"></A10po>

10 rows selected.

Example 17-10 Using XMLQuery with Schema-Based Data

This example is similar to Example 17-9 in its effect. It uses XMLQuery, instead of XMLTable, to query hr.purchaseorder. These two examples differ in their treatment of the empty sequences returned by the XQuery expression. In Example 17-9, these empty sequences are not joined with the purchaseorder table, so the overall SQL-query result set has only ten rows. In Example 17-10, these empty sequences are part of the overall result set of the SQL query, which contains 132 rows, one for each of the rows in table purchaseorder. All but ten of those rows are empty, and show up in the output as empty lines. To save space here, those empty lines have been removed.

SELECT XMLQuery('for $i in /PurchaseOrder
 where $i/CostCenter eq "A10"
 and $i/User eq "SMCCAIN"
 return <A10po pono="{$i/Reference}"/>'
 PASSING OBJECT_VALUE
 RETURNING CONTENT)
 FROM purchaseorder;

XMLQUERY('FOR$IIN/PURCHASEORDERWHERE$I/COSTCENTEREQ"A10"AND$I/USEREQ"SMCCAIN"RET
--
<A10po pono="SMCCAIN-20021009123336151PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336341PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337173PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335681PDT"></A10po>
<A10po pono="SMCCAIN-20021009123335470PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336972PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336842PDT"></A10po>
<A10po pono="SMCCAIN-20021009123336512PDT"></A10po>
<A10po pono="SMCCAIN-2002100912333894PDT"></A10po>
<A10po pono="SMCCAIN-20021009123337403PDT"></A10po>

132 rows selected.

	
See Also:

Example 17-16 for the EXPLAIN PLAN of Example 17-10

Example 17-11 Using XMLTable with PASSING and COLUMNS Clauses

This example uses XMLTable clauses PASSING and COLUMNS. The XQuery expression iterates over top-level PurchaseOrder elements, constructing a PO element for each purchase order with cost center A10. The resulting PO elements are then passed to XMLTable for processing.

Data from the children of PurchaseOrder is used to construct the children of PO, which are Ref, Type, and Name. The content of Type is taken from the content of /PurchaseOrder/SpecialInstructions, but the classes of SpecialInstructions are divided up differently for Type.

Function XMLTable shreds the result of XQuery evaluation, returning it as three VARCHAR2 columns of a virtual table: poref, priority, and contact. The DEFAULT clause is used to supply a default priority of Regular.

SELECT xtab.poref, xtab.priority, xtab.contact
 FROM purchaseorder,
 XMLTable('for $i in /PurchaseOrder
 let $spl := $i/SpecialInstructions
 where $i/CostCenter eq "A10"
 return <PO>
 <Ref>{$i/Reference}</Ref>
 {if ($spl eq "Next Day Air" or $spl eq "Expedite") then
 <Type>Fastest</Type>
 else if ($spl eq "Air Mail") then
 <Type>Fast</Type>
 else ()}
 <Name>{$i/Requestor}</Name>
 </PO>'
 PASSING OBJECT_VALUE
 COLUMNS poref VARCHAR2(20) PATH '/PO/Ref',
 priority VARCHAR2(8) PATH '/PO/Type' DEFAULT 'Regular',
 contact VARCHAR2(20) PATH '/PO/Name') xtab;

POREF PRIORITY CONTACT
-------------------- -------- --------------------
SKING-20021009123336 Fastest Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
SMCCAIN-200210091233 Fastest Samuel B. McCain
JCHEN-20021009123337 Fastest John Z. Chen
JCHEN-20021009123337 Regular John Z. Chen
SKING-20021009123337 Regular Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
JCHEN-20021009123338 Regular John Z. Chen
SMCCAIN-200210091233 Regular Samuel B. McCain
SKING-20021009123335 Regular Steven X. King
SMCCAIN-200210091233 Regular Samuel B. McCain
SKING-20021009123336 Regular Steven A. King
SMCCAIN-200210091233 Fast Samuel B. McCain
SKING-20021009123336 Fastest Steven A. King
SKING-20021009123336 Fastest Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
JCHEN-20021009123335 Regular John Z. Chen
SKING-20021009123336 Regular Steven A. King
JCHEN-20021009123336 Regular John Z. Chen
SKING-20021009123336 Regular Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
SKING-20021009123337 Regular Steven A. King
SKING-20021009123338 Fastest Steven A. King
SMCCAIN-200210091233 Regular Samuel B. McCain
JCHEN-20021009123337 Regular John Z. Chen
JCHEN-20021009123337 Regular John Z. Chen
JCHEN-20021009123337 Regular John Z. Chen
SKING-20021009123337 Regular Steven A. King
JCHEN-20021009123337 Regular John Z. Chen
SKING-20021009123337 Regular Steven A. King
SKING-20021009123337 Regular Steven A. King
SMCCAIN-200210091233 Fast Samuel B. McCain

32 rows selected.

Example 17-12 Using XMLTable to Shred XML Collection Elements into Relational Data

In this example, SQL function XMLTable is used to shred the XML data in an XMLType collection element, LineItem, into separate columns of a virtual table.

SELECT lines.lineitem, lines.description, lines.partid,
 lines.unitprice, lines.quantity
 FROM purchaseorder,
 XMLTable('for $i in /PurchaseOrder/LineItems/LineItem
 where $i/@ItemNumber >= 8
 and $i/Part/@UnitPrice > 50
 and $i/Part/@Quantity > 2
 return $i'
 PASSING OBJECT_VALUE
 COLUMNS lineitem NUMBER PATH '@ItemNumber',
 description VARCHAR2(30) PATH 'Description',
 partid NUMBER PATH 'Part/@Id',
 unitprice NUMBER PATH 'Part/@UnitPrice',
 quantity NUMBER PATH 'Part/@Quantity') lines;

LINEITEM DESCRIPTION PARTID UNITPRICE QUANTITY
-------- ------------------------------ ------------- --------- --------
 11 Orphic Trilogy 37429148327 80 3
 22 Dreyer Box Set 37429158425 80 4
 11 Dreyer Box Set 37429158425 80 3
 16 Dreyer Box Set 37429158425 80 3
 8 Dreyer Box Set 37429158425 80 3
 12 Brazil 37429138526 60 3
 18 Eisenstein: The Sound Years 37429149126 80 4
 24 Dreyer Box Set 37429158425 80 3
 14 Dreyer Box Set 37429158425 80 4
 10 Brazil 37429138526 60 3
 17 Eisenstein: The Sound Years 37429149126 80 3
 16 Orphic Trilogy 37429148327 80 4
 13 Orphic Trilogy 37429148327 80 4
 10 Brazil 37429138526 60 4
 12 Eisenstein: The Sound Years 37429149126 80 3
 12 Dreyer Box Set 37429158425 80 4
 13 Dreyer Box Set 37429158425 80 4

17 rows selected.

	
See Also:

Example 17-17 for the EXPLAIN PLAN of Example 17-12

Using Namespaces with XQuery

You can use the XQuery declare namespace declaration in the prolog of an XQuery expression to define a namespace prefix. You can use declare default namespace to establish the namespace as the default namespace for the expression.

An XQuery namespace declaration has no effect outside of its XQuery expression, however. To declare a namespace prefix for use in an XMLTable expression outside of the XQuery expression, use the XMLNAMESPACES clause. This clause also covers the XQuery expression argument to XMLTable, eliminating the need for a separate declaration in the XQuery prolog.

In Example 17-13, XMLNAMESPACES is used to define the prefix e for the namespace http://emp.com. This namespace is used in the COLUMNS clause as well as the XQuery expression of the XMLTable expression.

Example 17-13 Using XMLTable with the NAMESPACES Clause

SELECT * FROM XMLTable(XMLNAMESPACES('http://emp.com' AS "e"),
 'for $i in doc("/public/empsns.xml")
 return $i/e:emps/e:emp'
 COLUMNS name VARCHAR2(6) PATH '@ename',
 id NUMBER PATH '@empno');

This produces the following result:

NAME ID
------ ----------
John 1
Jack 2
Jill 3

3 rows selected.

It is the presence of qualified names e:ename and e:empno in the COLUMNS clause that necessitates using the XMLNAMESPACES clause. Otherwise, a prolog namespace declaration (declare namespace e = "http://emp.com") would suffice for the XQuery expression itself.

Because the same namespace is used throughout the XMLTable expression, a default namespace could be used: XMLNAMESPACES (DEFAULT 'http://em