Backup and Recovery Reference
10g Release 2 (10.2)
B14194-03
November 2005
This book provides complete reference information on the Recovery Manager client, including command syntax, a compatibility matrix, and recovery catalog views.
Oracle Database Backup and Recovery Reference, 10g Release 2 (10.2)
B14194-03
Copyright © 1996, 2005, Oracle. All rights reserved.
Primary Author: Antonio Romero
Contributing Author: Lance Ashdown
Contributors: Tammy Bednar, Anand Beldalker, Timothy Chien, Raymond Guzman, Alex Hwang, Ashok Joshi, J. William Lee, Valarie Moore, Muthu Olagappan, Samitha Samaranayake, Francisco Sanchez, Steven Wertheimer, Wanli Yang
The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.
Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.
Backup and Recovery Reference is intended for database administrators who perform the following tasks:
Back up, restore, and recover Oracle databases
Perform maintenance on backups and copies of database files
To use this document, you need to know the following:
Relational database concepts and basic database administration as described in Oracle Database Concepts and the Oracle Database Administrator's Guide
Basic RMAN concepts and tasks as described in Oracle Database Backup and Recovery Basics
The operating system environment under which you are running Oracle
Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.
For more information, see these Oracle resources:
Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter describes the basic elements of RMAN syntax. It includes the following sections:	
This section explains the conventions used in this chapter including:	
The text in this reference adheres to the following conventions:	
UPPERCASE	
monospace :	
Calls attention to RMAN keywords, SQL keywords, column headings in tables and views, and initialization parameters.	
lowercase	
monospace	
: Calls attention to variable text in RMAN examples.	
italics	
: Calls attention to RMAN or SQL placeholders, that is, text that should not be entered as-is but represents a value to be entered by the user.	
This section describes the conventions for RMAN command syntax.	
The RMAN language is free-form. Keywords must be separated by at least one white space character (such as a space, tab, or line break). An RMAN command starts with a keyword corresponding to one of the commands described in Chapter 2, "RMAN Commands", followed by arguments and ending with a semicolon, as shown in the syntax diagrams. A command can span multiple lines.	
A comment can be inserted by using a #	
character at any point in a line. After the #	
character, the remainder of the line is ignored. For example:	
This reference uses syntax diagrams to show Recovery Manager commands. These syntax diagrams use lines and arrows to show syntactic structure, as shown in the following example for the RMAN CATALOG command.	
lcatalog::=	
This section describes the components of syntax diagrams and gives examples of how to write RMAN commands. Syntax diagrams are made up of these items:	
Keywords have special meanings in Recovery Manager syntax. In the syntax diagrams, keywords appear in rectangular boxes and an uppercase font, like the word CATALOG	
in the example diagram. When used in text and code examples, RMAN keywords appear in uppercase, monospace font, for example, CATALOG	
DATAFILECOPY	
. You must use keywords in RMAN statements exactly as they appear in the syntax diagram, except that they can be either uppercase or lowercase.	
Placeholders in syntax diagrams indicate non-keywords. In the syntax diagrams, they appear in ovals, as in the word integer in the example diagram. When described in text, RMAN placeholders appear in lowercase italic, for example, 'filename'. Placeholders are usually:	
Names of database objects (tablespace_name)	
Oracle datatype names (date_string)	
Subclauses (datafileSpec)	
When you see a placeholder in a syntax diagram, substitute an object or expression of the appropriate type in the RMAN statement. For example, to write a DUPLICATE	
TARGET	
DATABASE	
TO	
'database_name' command, use the name of the duplicate database you want to create, such as dupdb	
, in place of the database_name placeholder in the diagram.	
Some placeholder values are enclosed in required or optional quotes. The syntax diagrams show single quotes, though in all cases double quotes are also legal in RMAN syntax. For example, you specify either 'filename' or "filename". For the SQL	
command, it is recommended that you use double quotes because the SQL statement itself may also contain a quote, and the most common type of quote in a SQL statement is a single quote. Single and double quotes do not mean the same in SQL as they do in RMAN.	
The only system-independent, legal environment variables in RMAN quoted strings are ?	
for the Oracle home and @	
for the SID. However, you can use operating system specific environment variables on the target system within quoted strings. The environment variables are interpreted by the database server and not the RMAN client.	
The following table shows placeholders that appear in the syntax diagrams and provides examples of the values you might substitute for them in your statements.	
Placeholder	Description
---	---
Quoted strings such as 'filename ', 'tablespace_name ', 'channel_name ', 'channel_parms '	A string of characters contained in either single or double quotes. A quoted string may contain white space, punctuation, and RMAN and SQL keywords.
Nonquoted strings such as channel_id , tag_name , date_string	A sequence of characters containing no white space and no punctuation characters and starting with an alphabetic character.
integer	Any sequence of only number characters.
The RMAN language contains a number of reserved words, which are or have been in the past used in RMAN commands. The following table lists all of the current reserved words.	
Reserved Word	Reserved Word
---	---
If you must use one of the reserved words as an argument to an RMAN command (for example, as a filename, tablespace name, tag name, and so on), surround it with quotes. Otherwise, RMAN cannot parse your command correctly and generates an error. These are examples of correct and incorrect commands that use RMAN reserved words with quotes:	
In general, you should avoid using reserved words in ways that conflict with their primary meaning in the RMAN command language.	
The description of each command or subclause contains the following sections:	
Table 1-1 Sections of a Command Description	
Section	Content
---	---
Syntax	Shows the keywords and parameters that make up the statement. Note: Not all keywords and parameters are valid in all circumstances. Be sure to refer to the "Keywords and Parameters" section of each statement to learn about any restrictions on the syntax.
Purpose	Describes the basic uses of the statement.
Restrictions and Usage Notes	Lists requirements, restrictions, and guidelines for proper use of the command.
Keywords and Parameters	Describes the purpose of each keyword and parameter. Restrictions and usage notes can also appear in this section.
Examples	Shows how to use various clauses and options of the statement.
Note: Optional sections following the examples provide more information on how and when to use the statement.	
The command entries in this reference include many examples of RMAN commands, which illustrate how to use the different elements of each RMAN command for common tasks. These examples are generally set off from the text and appear in a monospace font, as in the following example:	
This chapter describes, in alphabetical order, Recovery Manager commands and subclauses. For a summary of the RMAN commands and command-line options, refer to "Summary of RMAN Commands".	
Table 2-1 provides a functional summary of RMAN commands that you can execute at the RMAN prompt, within a RUN	
command, or both. All commands from previous RMAN releases work with the current release.	
For command line options for the RMAN client, refer to "cmdLine".	
Table 2-1 Recovery Manager Commands	
Command	Purpose
---	---
Run a command file.	
Run a command file in the same directory as another command file that is currently running. The	
Establish a channel, which is a connection between RMAN and a database instance.	
"ALLOCATE CHANNEL FOR MAINTENANCE"	Allocate a channel in preparation for issuing maintenance commands such as DELETE.
A subclause that specifies channel control options such as	
Mount or open a database.	
Specify a range of archived redo logs files.	
Back up database files, copies of database files, archived logs, or backup sets.	
Recover an individual data block or set of data blocks within one or more datafiles.	
Add information about file copies and user-managed backups to the repository.	
Mark a backup piece, image copy, or archived redo log as having the status	
Specify a time range during which the backup or copy completed.	
Configure persistent RMAN settings. These settings apply to all RMAN sessions until explicitly changed or disabled.	
Establish a connection between RMAN and a target, auxiliary, or recovery catalog database.	
Specify the username, password, and net service name for connecting to a target, recovery catalog, or auxiliary database. The connection is necessary to authenticate the user and identify the database.	
Converts datafile formats for transporting tablespaces and databases across platforms.	
Create the schema for the recovery catalog.	
Create a stored script and store it in the recovery catalog.	
Determine whether files managed by RMAN, such as archived logs, datafile copies, and backup pieces, still exist on disk or tape.	
Specify a datafile by filename or absolute file number.	
Delete backups and copies, remove references to them from the recovery catalog, and update their control file records to status	
Delete a stored script from the recovery catalog.	
Specify the type of storage device for a backup or copy.	
Remove the schema from the recovery catalog.	
Deletes the target database from disk and unregisters it.	
Use backups of the target database to create a duplicate database that you can use for testing purposes or to create a standby database.	
Run an RMAN stored script.	
Quit the RMAN executable.	
Specify patterns to transform source to target filenames during	
Returns the database to its state at a previous time or SCN.	
Specify a filename format for a backup or copy.	
Invoke an operating system command-line subshell from within RMAN or run a specific operating system command.	
Specify that a backup or copy should or should not be exempt from the current retention policy.	
Produce a detailed listing of backup sets or copies.	
A subclause used to specify which items will be displayed by the LIST command.	
A subclause used to specify additional options for maintenance commands such as DELETE and CHANGE.	
A subclause used to specify the files operated on by maintenance commands such as CHANGE, CROSSCHECK, and DELETE.	
A subclause used to determine which backups and copies are obsolete.	
Display a stored script.	
Exit the RMAN executable.	
A subclause used to specify which objects the maintenance commands should operate on.	
Apply redo logs and incremental backups to datafiles restored from backup or datafile copies, in order to update them to a specified time.	
Register the target database in the recovery catalog.	
Release a channel that was allocated with an ALLOCATE CHANNEL command.	
Release a channel allocated with an ALLOCATE CHANNEL FOR MAINTENANCE command.	
Replace an existing script stored in the recovery catalog. If the script does not exist, then	
Perform detailed analyses of the content of the recovery catalog.	
Inform RMAN that the SQL statement	
Restore files from backup sets or from disk copies to the default or a new location.	
Perform a full resynchronization, which creates a snapshot control file and then copies any new or changed information from that snapshot control file to the recovery catalog.	
Execute a sequence of one or more RMAN commands, which are one or more statements executed within the braces of	
Send a vendor-specific quoted string to one or more specific channels.	
Sets the value of various attributes that affect RMAN behavior for the duration of a RUN block or a session.	
Displays the current	
Shut down the target database. This command is equivalent to the SQL*Plus	
Write RMAN output to a log file.	
Execute a SQL statement from within Recovery Manager.	
Start up the target database. This command is equivalent to the SQL*Plus	
Specify that a datafile copy is now the current datafile, that is, the datafile pointed to by the control file. This command is equivalent to the SQL statement	
Specifies a tempfile by path or by file number.	
Creates transportable tablespace sets from backup for one or more tablespaces.	
Unregisters a database from the recovery catalog.	
A subclause specifying an upper limit by time, SCN, or log sequence number. This clause is usually used to specify the desired point in time for an incomplete recovery.	
Upgrade the recovery catalog schema from an older version to the version required by the RMAN executable.	
Examine a backup set and report whether its data is intact. RMAN scans all of the backup pieces in the specified backup sets and looks at the checksums to verify that the contents can be successfully restored.	
Syntax	
Purpose	
To execute a series of RMAN commands stored in an operating system file with the specified full path name, for example, @/oracle/dbs/cmd/cmd1.rman	
. If you do not specify the full path name, then the current working directory is assumed, for example, @cmd1.rman	
. Do not use quotes around the string or leave whitespace between the @	
and filename. RMAN processes the specified file as if its contents had appeared in place of the @	
command.	
Note: The file must contain complete RMAN commands; partial commands generate syntax errors.	
Restrictions and Usage Notes	
None.	
Example	
Running a Command File from the Command Line: Example This example creates a command file and then runs it from the operating system command line:	
Running a Command File Within RMAN: Example This example runs a command file from the RMAN prompt and from within a RUN	
command:	
atat::=	
Purpose	
To execute a series of RMAN commands stored in an operating system file with the specified filename, for example, @@cmd2.rman	
. If @@	
is contained in a command file, then @@	
filename	
directs RMAN to look for the specified filename in the same directory as the command file from which it was called. If not used within a command file, the @@	
command is identical to the @	
command. For example, assume that you invoke RMAN as follows:	
Assume that the command @@cmd2.rman	
appears inside the cmd1.rman	
script. In this case, the @@	
command directs RMAN to look for the file cmd2.rman	
in the directory $ORACLE_HOME/rdbms/admin/dba/scripts/	
. Note that the file must contain complete RMAN commands.	
Restrictions and Usage Notes	
None.	
Example	
Calling a Command File Within Another Command File: Example Assume that you create command files called backup_logs.rman	
and backup_db.rman	
as in the following example. Then, you execute bkup_db.rman	
from the command line, which specifies that RMAN should look for the bkup_logs.rman	
script in the Oracle home directory:	
allocate::=	
Purpose	
To manually allocate a channel, which is a connection between RMAN and a database instance. Each connection initiates an database server session on the target or auxiliary instance: this server session performs the work of backing up, restoring, or recovering RMAN backups.	
Manually allocated channels (allocated by using ALLOCATE	
) should be distinguished from automatically allocated channels (specified by using CONFIGURE	
). Manually allocated channels apply only to the RUN	
job in which you issue the command. Automatic channels apply to any RMAN job in which you do not manually allocate channels. You can always override automatic channel configurations by manually allocating channels within a RUN	
command.	
Each channel operates on one backup set or image copy at a time. RMAN automatically releases the channel at the end of the job.	
You can control the degree of parallelism within a job by allocating the desired number of channels. Allocating multiple channels simultaneously allows a single job to read or write multiple backup sets or disk copies in parallel. If you establish multiple connections, then each connection operates on a separate backup set or disk copy.	
Whether ALLOCATE	
CHANNEL	
causes operating system resources to be allocated immediately depends on the operating system. On some platforms, operating system resources are allocated at the time the command is issued. On other platforms, operating system resources are not allocated until you open a file for reading or writing.	
Note: When you specifyDEVICE TYPE DISK , no operating system resources are allocated other than for the creation of the server session.	
Restrictions and Usage Notes	
You can only use ALLOCATE	
CHANNEL	
within a RUN block.	
The target instance must be started.	
You must either allocate a channel manually or configure a channel for automatic allocation before executing a BACKUP, DUPLICATE, CREATE CATALOG, RESTORE, RECOVER, or VALIDATE command.	
You cannot use BACKUP	
DEVICE	
TYPE	
or RESTORE	
DEVICE	
TYPE	
to use automatic channels after specifying manual channels with ALLOCATE	
CHANNEL	
.	
You must use a recovery catalog when backing up a standby database.	
You cannot prefix ORA_	
to a channel name. RMAN reserves channel names beginning with the ORA_	
prefix for its own use.	
Keywords and Parameters	
Syntax Element	Description
---	---
AUXILIARY	Specifies a connection between RMAN and an auxiliary database instance. An auxiliary instance is used when executing the DUPLICATE or TRANSPORT TABLESPACE command, and when performing TSPITR with RECOVER TABLESPACE . An auxiliary database can reside on the same host as its parent or on a different host. When specifying this option, the auxiliary database must be mounted but not open. See Also: "DUPLICATE" to learn how to duplicate a database, and "CONNECT" to learn how to connect to a duplicate database
CHANNEL 'channel_id'	Specifies a connection between RMAN and the target database instance. Each connection initiates a server session on the database instance: this server session performs the work of backing up, restoring, and recovering backups and copies. Specify a channel id, which is the case-sensitive name of the channel, after the
DEVICE TYPE = deviceSpecifier	Specifies the type of storage device. See Also: "deviceSpecifier" Note: If you do not specify the
allocOperandList	Specifies control options for the allocated channel. See Also: "allocOperandList"
Examples	
Allocating a Single Channel for a Backup: Example This command allocates a tape channel for a whole database and archived redo log backup:	
Spreading a Backup Across Multiple Disks: Example When backing up to disk, you can spread the backup across several disk drives. Allocate one DEVICE	
TYPE	
DISK	
channel for each disk drive and specify the format string so that the filenames are on different disks:	
Creating Multiple Copies of a Backup: Example When creating multiple copies of a backup, you can specify the SET BACKUP COPIES	
command. The following example generates a single backup of the database to disk, and then creates two identical backups of datafile 1	
to two different file systems:	
Allocating an Auxiliary Channel for Database Duplication: Example When creating a duplicate database, allocate a channel by using the AUXILIARY	
option:	
Syntax	
allocateForMaint::=	
Purpose	
To manually allocate a channel in preparation for issuing a CHANGE, DELETE, or CROSSCHECK command.	
Note: If you CONFIGURE at least one channel for each device type you use in your configuration, then you do not need to useALLOCATE CHANNEL FOR MAINTENANCE at all. Oracle recommends that you use configured channels instead of maintenance channels. Configured channels can be used for all RMAN I/O to the specified device, not just the maintenance tasks supported by maintenance channels, and they persist across RMAN sessions.	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt. This command cannot be used within a RUN block.	
The target instance must be started.	
Do not specify a channel ID.	
You cannot allocate a maintenance channel to a shared session.	
You cannot prefix ORA_	
to a channel name. RMAN reserves channel names beginning with the ORA_	
prefix for its own use.	
Manually allocated channels (maintenance or normal channels) and automatic channels based on configured settings are never mixed. To perform maintenance on both disk and SBT simultaneously using manually allocated maintenance channels, you must allocate both SBT and DISK channels explicitly.	
If you use ALLOCATE	
CHANNEL	
FOR	
MAINTENANCE	
, then RMAN uses the following convention for channel naming: ORA_MAINT_	
devicetype	
_	
n	
, where devicetype	
refers to DISK	
or sbt	
and n	
refers to the channel number. For example, RMAN uses these names for two manually allocated disk channels:	
You can allocate multiple maintenance channels for a single job, but you should only use this feature in these situations:	
To allow crosschecking or deletion of all backup pieces or proxy copies, both on disk and tape, with a single command	
To make crosschecking and deleting work correctly in an Oracle Real Application Clusters configuration in which each backup piece or proxy copy exists only on one node	
See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to crosscheck and delete on multiple channels	
Keywords and Parameters	
Syntax Element	Description
---	---
DEVICE TYPE = deviceSpecifier	Specifies the type of storage device. See Also: "deviceSpecifier" Note: If you do not specify the
allocOperandList	Specifies control options for the allocated channel. See Also: "allocOperandList"
Examples	
Deleting a Backup Set: Example This example deletes backup sets from tape created more than a week ago:	
Crosschecking Archived Logs: Example This example crosschecks all archived logs on disk and tape. For disk, the preconfigured disk channel is used; for tape, an SBT channel is allocated manually. If the logs are not found, then RMAN marks them as EXPIRED	
in the repository:	
Crosschecking on Multiple Nodes of an Oracle Real Application Clusters Configuration: Example In this example, you perform a crosscheck of backups on two nodes of an Oracle Real Application Clusters configuration, where each node has access to a subset of backups. It is assumed here that all backups are accessible by at least one of the two nodes used in the crosscheck. Any backups not accessible from at least one of the nodes are marked EXPIRED	
after the crosscheck.	
Note: Oracle recommends that all nodes in a Real Application Clusters configuration have the same access to all backups on all storage devices.	
Deleting on Disk and sbt Channels with One Command: Example In this example, you delete a backup from both disk and tape:	
Syntax	
allocOperandList::=	
Purpose	
A subclause specifying control options on a channel, which is a connection between RMAN and a database instance. Specify this clause on the following commands:	
Keywords and Parameters	
Syntax Element	Description
---	---
CONNECT = connectStringSpec	Specifies a connect string to the database instance where RMAN should conduct the backup or restore operations. Use this parameter to spread the work of backup or restore operations across different instances in an Oracle Real Application Clusters configuration. If you do not specify this parameter, and if you did not specify the See Also: "connectStringSpec" and "cmdLine"
FORMAT = formatSpec	Specifies the format to use for the names of backup pieces that are created on this channel. If you do not specify Because the channels correspond to server sessions on the target database, the You can specify up to four This parameter is useful if you allocate multiple disk channels and want each channel to write to a different directory. If you specify the See Also: "formatSpec" for available
MAXOPENFILES = integer	Controls the maximum number of input files that a BACKUP command can have open at any given time (the default is 8). Use this parameter to prevent "Too many open files" error messages when backing up a large number of files into a single backup set.
MAXPIECESIZE = integer	Specifies the maximum size of each backup piece created on this channel. Specify the size in bytes, kilobytes (K), megabytes (M), or gigabytes (G). The default setting is in bytes and is rounded down into kilobytes. For example, if you set MAXPIECESIZE to 5000, RMAN sets the maximum piece size at 4 kilobytes, which is the lower kilobyte boundary of 5000 bytes.
PARMS = ' channel_parms '	Specifies parameters for the device to allocate. Do not use this port-specific string if you have specified DEVICE TYPE DISK . See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to integrate media management libraries
'ENV=(var1 = val1 , var2 = val2 ,...)'	Specifies one or more environment variables required by the media management vendor in the server session corresponding to this RMAN client. Because RMAN is a client program, the ENV parameter can be used to set server session specific variables that perform backup and restore operations on behalf of the RMAN client. For example: PARMS="ENV=(TAPE_SERVER=srv1)"
'SBT_LIBRARY = lib_name '	Specifies which media library should be used on this sbt channel. The default library is operating system specific (for example, libobk.so in the Solaris Operating Environment and ORASBT.DLL on Windows). For example: PARMS="SBT_LIBRARY=/oracle/lib/mmv.so"
RATE = integer	Sets the maximum number of bytes (default), kilobytes (K), megabytes (M), or gigabytes (G) that RMAN reads each second on this channel. This parameter sets an upper limit for bytes read so that RMAN does not consume too much disk bandwidth and degrade performance.
SEND ' command '	Sends a vendor-specific command string to all allocated channels. See Also: Your media manager documentation to see whether this feature is supported and when it should be used.
Examples	
Configuring an Automatic Channel: Example This example configures a persistent disk channel:	
Configuring a Channel for a Backup: Example This example manually allocates an sbt	
channel and then runs a whole database backup:	
Allocating a Channel for a Backup: Example This example configures a default media management library, then makes a database backup by using this library. Then, the example backs up the database again using a different library, then finally makes a third backup using the default library:	
Syntax	
alterDatabase::=	
Purpose	
To mount or open a database.	
Restrictions and Usage Notes	
Execute this command either within the braces of a RUN command or at the RMAN prompt.	
The target instance must be started.	
Keywords and Parameters	
Syntax Element	Description
---	---
MOUNT	Mounts the database without opening it. This option is equivalent to the SQL statement ALTER DATABASE MOUNT .
OPEN	Opens the database.
RESETLOGS	Archives the current online redo logs (or up to the last redo record before redo corruption if corruption is found), clears the contents of the online redo logs, and resets the online redo logs to log sequence 1. The RMAN RESETLOGS option is equivalent to the SQL statement ALTER DATABASE OPEN RESETLOGS . If you use a recovery catalog, then RMAN performs an implicit
Examples	
Opening the Database After a Backup: Example This example mounts the database, takes a whole database backup, then opens the database. At the RMAN prompt enter:	
Mounting the Database After Restoring the Control File: Example To restore the control file to its default location when connected to a recovery catalog, enter the following:	
Performing RESETLOGS After Incomplete Recovery: Example This example uses a manually allocated channel to perform incomplete recovery and then resets the online redo logs:	
Syntax	
archlogRange::=	
Purpose	
A subclause used to specify an archived log or range of archived redo logs files for use in backup, restore, recovery, and maintenance operations.	
When backing up archived redo logs, RMAN can perform archived log failover automatically. RMAN backs up the log when at least one archived log corresponding to a given log sequence number and thread is available. Also, if the copy that RMAN is backing up contains corrupt blocks, then it searches for good copies of these blocks in other copies of the same archived logs.	
Specifying a range of archived redo logs does not guarantee that RMAN includes all redo data in the range: for example, the last available archived log file may end before the end of the range, or an archived log file in the range may be missing from all archiving destinations. RMAN includes the archived redo logs it finds and does not issue a warning for missing files.	
Note: Query theV$ARCHIVED_LOG view or RC_ARCHIVED_LOG recovery catalog view to determine the time stamps, SCNs, and log sequence numbers for an archived log. For information on how to use the NLS_LANG and NLS_DATE_FORMAT environment variables to specify the format for the time, see Oracle Database Reference.	
Keywords and Parameters	
archivelogRecordSpecifier	
Syntax Element	Description
---	---
ALL	Specifies all available archived logs.
LIKE ' string_pattern '	Specifies all archived logs that match the specified string_pattern . The same pattern matching characters that are valid in the LIKE operator in the SQL language can be used to match multiple files. See Also: Oracle Database Oracle Clusterware and Oracle Real Application Clusters Administration and Deployment Guide to learn about using RMAN in a RAC configuration
archlogRange	
Syntax Element	Description
---	---
FROM SCN = integer	Specifies the beginning SCN for a sequence of archived redo log files. If you do not specify the UNTIL SCN parameter, RMAN will include all available log files beginning with SCN specified in the from SCN parameter.
SCN BETWEEN integer AND integer	Specifies a range of SCNs. SCN BETWEEN integer1 AND integer2 is exactly equivalent to FROM SCN integer1 UNTIL SCN integer2 .
UNTIL SCN = integer	Specifies the ending SCN for a sequence of archived redo log files. If you do not specify the FROM SCN parameter, then RMAN will start with the earliest available archived log. If the database is open when you run
FROM SEQUENCE integer	Specifies the beginning log sequence number for a sequence of archived redo log files. If you do not specify the UNTIL SEQUENCE parameter, RMAN will include all available log files beginning with log sequence number specified in the FROM SEQUENCE parameter. Note: You can specify all log sequence numbers in a thread by using the following syntax, where ... ARCHIVELOG FROM SEQUENCE 0 THREAD thread_number
SEQUENCE	Specifies either a single log sequence number or a range of sequence numbers. If the database is open when you run BACKUP ARCHIVELOG , and if the SEQUENCE keyword is specified, then RMAN does not run ALTER SYSTEM ARCHIVE LOG CURRENT .
integer	Specifies a single log sequence number.
BETWEEN integer AND integer	Specifies a range of log sequence numbers. SEQUENCE BETWEEN integer1 AND integer2 is exactly equivalent to FROM SEQUENCE integer1 UNTIL SEQUENCE integer2 .
UNTIL SEQUENCE = integer	Specifies the terminating log sequence number for a sequence of archived redo log files. If you do not specify the FROM SEQUENCE parameter, RMAN uses the lowest available log sequence number to begin the sequence. If the database is open when you run
FROM TIME = 'date_string '	Specifies the beginning date for a sequence of archived redo log files. The clause specifies those logs that could be used in a recovery starting at the indicated time. The time specified in the string must be formatted according to the Globalization Technology date format specification currently in effect, but can also be any SQL expression with the If you do not specify the Note: The See Also: Oracle Database Reference for information on how to use the
TIME BETWEEN ' date_string ' AND 'date_string '	Specifies a range of times. Note that TIME BETWEEN ' date_string ' AND ' date_string ' is exactly equivalent to FROM TIME ' date_string ' UNTIL TIME ' date_string ' .
UNTIL TIME = ' date_string '	Specifies the end date for a sequence of archived redo log files. The clause specifies those logs that could be used to recover to the indicated time. The time specified in the string must be formatted according to the Globalization Technology date format specification currently in effect, but can also be any SQL expression with the If you do not specify the If the database is open when you run Note: The See Also: Oracle Database Reference for information on how to use the
THREAD = integer	Specifies the thread containing the archived redo log files you wish to include. You only need to specify this parameter when running the database in an Oracle Real Application Clusters (RAC) configuration.
Examples	
Specifying Records by Completion Time: Example This example deletes all archived redo logs that were created more than two weeks ago:	
Specifying Records by Recovery Point-in-Time : Example This example backs up all logs that could be used to recover to a point one week ago:	
Specifying Records by SCN: Example This example restores backup archived redo log files from tape that fall within a range of SCNs:	
Specifying a Single Log Sequence Number: Example This example backs up only archived log 30 of thread 1 and then deletes it.	
Specifying a Range of Records by Log Sequence Number: Example This example backs up all archived logs from sequence 431 to sequence 440 on thread 1 and deletes the archived logs after the backup is complete. If the backup fails, the logs are not deleted.	
Specifying All Log Sequence Numbers in a Thread This example crosschecks all archived redo logs in thread 1	
:	
Syntax	
backup::=	
backupSpec::=	
copyOfSpec::=	
duration::=	
sizeSpec::=	
skipSpec::=	
Purpose	
To back up a database, tablespace, datafile (current or copy), control file (current or copy), SPFILE, archived log, or backup set.	
Note: RMAN can only back up datafiles, controlfiles, SPFILEs, archived redo log files, as well as backups of these files created by RMAN.Although the database depends on other types of files for operation, such as network configuration files, password files, and the contents of the Oracle home, these files cannot be backed up with RMAN. Likewise, some features of Oracle, such as external tables or the BFILE datatype, store data in files other than those listed above. RMAN cannot back up those files. You must use some non-RMAN backup solution for any files not in the preceding list.	
RMAN can back up a target or standby database. The term backup refers to the files created by an RMAN BACKUP	
command.	
Backup Sets, Backup Pieces, Image Copies, and Proxy Copies	
When the AS	
BACKUPSET	
option is used, RMAN generates one or more backup sets, which are RMAN-specific logical structures. The backup set is the smallest unit of a backup. By default, each backup set contains 4 or fewer datafiles or 16 or fewer archived logs.	
Note: RMAN only records complete backup sets in the RMAN repository. There are no partial backup sets. When a BACKUP command creates backup pieces but does not produce a complete backup set for any reason, the backup pieces are discarded.	
Each backup set contains at least one backup piece, which is an RMAN-specific physical file containing the backed up data. You can also use the BACKUP	
command to generate a proxy copy, which is a backup to a third-party medium in which the entire data transfer is conducted by a media manager.	
Backup sets can be created on disk, or on media manager devices such as tape drives.	
When the AS	
COPY	
option is used, RMAN generates image copies of the input files. An image copy is a byte-for-byte identical copy of the original file. You can create image copy backups of datafiles, datafile copies, and archived redo log files. Image copy files can only exist on disk.	
You can create and restore image copy backups with RMAN, or with a native operating system command for copying files. However, when you use RMAN to create image copies, they are recorded in the RMAN repository, and are more easily available for use in restore and recovery operations. Otherwise, you must use the CATALOG command to add the image copies to the RMAN repository before RMAN can use them.	
By default, RMAN creates all backups as backup sets, on tape or on disk. You can change the default backup type for disk backups to be image copies using the CONFIGURE command. Backups to tape can only be backup sets.	
Incremental Backups	
Incremental backups copy only those blocks that have changed since a previous backup. A level 0 incremental backup captures all data blocks in a datafile. Level 1 incremental backups capture changes since a previous backup. Level 1 backups can be cumulative, in which case they capture changes since the last level 0 incremental backup, or differential, in which case they capture changes since the last level 0 or level 1 incremental backup.	
Block Change Tracking for Incremental Backups	
You can improve incremental backup performance by enabling block change tracking, in which case RMAN keeps a record of which blocks have changed, and uses this record whenever possible to avoid scanning entire datafiles.	
For details on block change tracking, including how to enable and disable it, see Oracle Database Backup and Recovery Basics.	
Incrementally Updated Backups: Rolling Forward Datafile Image Copies	
By using the BACKUP INCREMENTAL	
... FOR RECOVER OF COPY WITH TAG	
... syntax you can create level 1 incremental backups suitable for rolling forward a level 0 incremetal image copy backup of your database. RECOVER COPY OF... WITH TAG...	
is used to perform incremental update of a backup.	
Note: This technique is used in Enterprise Manager's Oracle-suggested Strategy for backups to disk.	
For more details on incrementally updated backups, see Oracle Database Backup and Recovery Basics.	
Incremental Roll Forward of Database Copy: Updating Standby Databases	
RMAN's Incremental Roll Forward of Database Copy feature enables you to synchronize a standby database with a source database by creating an incremental backup at the source database containing all changed blocks since the standby was created or last synchronized, and then applying that incremental backup at the standby.	
The incremental backup is created at the source database using the BACKUP	
INCREMENTAL	
FROM	
SCN	
=	
n	
form of the BACKUP	
command. All blocks changed at SCNs greater than or equal to the specified SCN are included in the incremental created by this BACKUP	
command.	
Note: The resulting backup is not considered to be part of any backup strategy at the source database. It is not suitable for use in a normalRECOVER DATABASE operation at the source database.	
At the standby database, the RECOVER	
command is used with the NOREDO	
option to apply the incremental backup to the standby. All changed blocks captured in the incremental backup are updated at the standby, bringing it up to date with the original.	
Encryption of Backup Sets	
RMAN can transparently encrypt data written to backup sets and decrypt those backup sets when they are needed in a RESTORE	
operation, based upon several different encryption algorithms (listed in V$RMAN_ENCRYPTION_ALGORITHMS	
). RMAN offers three modes of encryption:	
Transparent encryption, in which RMAN can create and restore encrypted backups with no special DBA intervention, as long as the required Oracle key management infrastructure is available	
Password-based encryption, where a password is specified during the backup, and the same password must be supplied to restore the backup.	
Dual-mode encryption, where backups can be created using either as with transparent encryption or password-based encryption, and where decryption can be performed based upon either the Oracle Encryption Wallet, or a password the DBA supplies at decryption time.	
For an overview of the encrypted backups mechanism, a guide to its use and information on choosing among the different modes of encryption, see Oracle Database Backup and Recovery Advanced User's Guide. The RMAN CONFIGURE, SET and SHOW commands are used to manage the encryption settings for your database backups. See the reference entries for those commands for more details.	
Binary Compression of Backup Sets	
RMAN can apply a binary compression algorithm as it writes data to backup sets. This compression is similar to the compression provided by many tape vendors when backing up data to tape. (The two types of compression should not be used together; see the discussion of BACKUP AS BACKUPSET	
below for details on choosing between using RMAN compression and the tape compression for backup sets.)	
Unused Block Compression Of Datafile Backups to Backup Sets	
When backing up datafiles into backup sets, RMAN does not back up the contents of data blocks that have never been allocated. (In previous releases, this behavior was referred to as NULL compression.)	
RMAN also skips other datafile blocks that do not currently contain data, if all of the following conditions apply:	
The COMPATIBLE	
initialization parameter is set to 10.2	
There are currently no guaranteed restore points defined for the database	
The datafile is locally managed	
The datafile is being backed up to a backup set as part of a full backup or a level 0 incremental backup	
The backup set is being created on disk.	
Skipping unused data blocks where possible enables RMAN to back up datafiles using less space, and can make I/O more efficient.	
Backup Optimization	
The BACKUP	
command optimizes backups, that is, does not back up files that are identical to files that are already backed up, when the following conditions are met:	
The CONFIGURE	
BACKUP	
OPTIMIZATION	
ON	
command has been run.	
You run BACKUP	
DATABASE	
, BACKUP	
ARCHIVELOG	
with ALL	
or LIKE	
options, or BACKUP	
BACKUPSET	
ALL	
.	
You specify a channel of only one device type, that is, you do not mix channels that use different device types.	
Channel Failover	
A BACKUP	
command is decomposed into multiple independent backup steps by RMAN. Each independent step can be executed on any channel allocated for a specific device. If you have multiple channels allocated, and one channel fails or encounters a problem during a backup step, then RMAN attempts to complete the work on another channel. RMAN reports a message in V$RMAN_OUTPUT	
and in the output to the interactive session or log file when channel failover occurs.	
Control File Autobackups	
If CONFIGURE CONTROLFILE	
AUTOBACKUP	
is set to ON	
, then RMAN automatically backs up the control file after BACKUP	
commands. "CONFIGURE" describes the complete set of circumstances in which autobackups occur.	
Restrictions and Usage Notes	
Although the database depends on other types of files for operation, such as network configuration files, password files, and the contents of the Oracle home, these files cannot be backed up with RMAN. Likewise, some features of Oracle, such as external tables or the BFILE datatype, store data in files other than those listed above. RMAN cannot back up those files. You must use some non-RMAN backup solution for any files not in the preceding list.	
The target database must be mounted or open when using the RMAN BACKUP	
command.	
RMAN can make an inconsistent backup when the database is in ARCHIVELOG	
mode, but you must apply redo logs after restoring such a backup, to make the database consistent.	
You must use a current control file when using the BACKUP	
command.	
If no automatic channel is configured for the specified device type, then you must manually allocate a channel for each execution of the BACKUP	
command. If no manual channel is allocated, then RMAN uses the default channels (as set using the CONFIGURE command). RMAN comes with a DISK	
channel preconfigured but no preconfigured channels for sbt	
devices.	
Note: Backups that use the disk test API are not supported for production backups. Instead, use the preconfiguredDISK channel or manually allocate a DISK channel.	
Backup pieces must have unique names.	
When backing up Oracle files to DISK	
, the logical block size of the Oracle file to be backed up must be an even multiple of the physical block size of the destination device. For example, a DISK	
device with a block size of 2K can only be used as a destination for backups of Oracle files with logical block sizes of 2K, 4K, 6K and so on. In practice, most disk drives have physical block sizes of 512 bytes, so this limitation rarely affects backup. However, you can encounter this limitation when using BACKUP	
... DEVICE	
TYPE	
DISK	
to back your database up to a writeable CD or DVD, or some other device which has a larger physical block size.	
You must back up files onto valid media. If you specify DEVICE	
TYPE	
DISK	
, then RMAN will back up to random access disks. You can make a backup on any device that can store a datafile: in other words, if the statement CREATE	
TABLESPACE	
tablespace_name	
DATAFILE	
'filename'	
works, then 'filename'	
is a valid backup path name. If you specify DEVICE	
TYPE	
sbt	
, then you can back up to any media supported by the media manager.	
You can only backup a database running in NOARCHIVELOG	
mode after a consistent shutdown. You cannot make a backup (either normal or incremental) in NOARCHIVELOG	
mode when the database is open or is closed after an instance failure or SHUTDOWN ABORT	
.	
You cannot stripe a single backup set across multiple channels.	
You cannot stripe a single input file across multiple backup sets.	
Archived redo log files and datafiles are never combined into a single backup set.	
When using encrypted backups, datafiles from tablespaces with different encryption settings are never written into the same backup set.	
There is no persistent configuration that controls whether archivelog backups as backupsets are encrypted. Backup sets containing archived logs are encrypted if any of the following are true:	
SET	
ENCRYPTION	
ON	
is in effect at the time that the archive log backup is being created.	
Encryption is configured for backups of the whole database or at least one tablespace.	
You cannot specify multiple, identical FORMAT	
strings within a single backupSpec	
(for example, BACKUP	
DATAFILE	
3	
TO	
'/tmp/foo',	
DATAFILE	
4	
TO	
'/tmp/foo'	
). However, RMAN permits a single FORMAT	
string to exist in multiple backupSpec	
clauses.	
You canot back up files with different block sizes into the same backup set. RMAN can back up tablespaces with different block sizes, but puts each differently sized datafile into its own backup set.	
You cannot back up locally-managed temporary tablespaces (although you can back up dictionary-managed tablespaces)	
You cannot back up transportable tablespaces that were not made read-write after being transported.	
You cannot use the DELETE	
INPUT	
option when backing up objects other than datafile copies, archived redo logs, or backup sets.	
You cannot specify the number of backup pieces that should go in a backup set.	
You cannot create image copies (that is, use BACKUP	
AS	
COPY	
) on a nondisk media device.	
You cannot back up a backup set from tape to disk, or from one tape to another tape.	
You cannot make an image copy of a backup set, although you can make an image copy of an image copy. To backup a backupset, use BACKUP	
BACKUPSET	
.	
You cannot specify the PLUS	
ARCHIVELOG	
clause on the BACKUP	
ARCHIVELOG	
command.	
Do not open a NOARCHIVELOG	
mode database while it is being backed up. If you do, and some data blocks in the files being backed up are modified before being read by the backup session, then the backup is not usable after being restored because it requires recovery.	
The maximum length of a backup piece filename is platform-specific. For SBT backups using a media manager, the length is also limited by the limit in the supported version of the media management API. Vendors supporting SBT 1.1 must support filenames up to 14 characters. Some SBT1.1 vendors may support longer filenames. Vendors supporting SBT 2.0 must support filenames up to 512 characters. Some SBT2.0 vendors may support longer filenames.	
You cannot use the DEVICE	
TYPE	
option for a device other than DISK	
if you have not already run CONFIGURE	
DEVICE	
TYPE	
for this device.	
You cannot allocate channels and run BACKUP	
with the DEVICE	
TYPE	
option.	
You cannot validate the backup of backup sets.	
You cannot specify DEVICE	
TYPE	
DISK	
when running the BACKUP	
RECOVERY	
AREA	
command.	
You cannot back up the change tracking file with RMAN.	
Keywords and Parameters	
backup	
backupOperand	
Syntax Element	Description
---	---
backupOperand	Specifies various options for the BACKUP command.
backupTypeSpec	Specifies the type of backup being created, either backup sets or image copies. See "backupTypeSpec" for details.
CHANNEL channel_id	Specifies the case-sensitive name of a channel to use when creating backups. Use any name that is meaningful, for example ch1 or dev1 . The database uses the channel ID to report I/O errors. If you do not set this parameter, then RMAN dynamically assigns the backup sets to any available channels during execution. Note: You can also specify this parameter in the
CHECK LOGICAL	Tests data and index blocks that pass physical corruption checks for logical corruption, for example, corruption of a row piece or index entry. If RMAN finds logical corruption, then it logs the block in the alert.log and server session trace file. If the sum of physical and logical corruptions detected for a file is no more than its If the initialization parameter Note: The
COPIES = integer	Sets the number of identical backups (1 - 4) that RMAN should create. The default value is 1 . You can specify duplexing on more than one command. The order of precedence is as follows, with settings higher on the list overriding lower settings: Note: This option does not apply with Note: Duplexing cannot be used when creating files in the flash recovery area.
CUMULATIVE	Copies the data blocks used since the most recent backup at level 0 or lower, where n is 1. For example, in a cumulative level 1 backup RMAN backs up all blocks used since the most recent level 0 backup. Note: This option does not apply with
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. This option is valid only if you have configured channels and have not manually allocated channels. For example, if you configure disk and tape channels, then configure sbt as the default device type, this command allocates disk channels only: BACKUP DEVICE TYPE DISK DATABASE; See Also: "deviceSpecifier"
DISKRATIO [=] integer	Directs RMAN to populate each backup set with datafiles from at least integer disks. This parameter is only enabled when you are backing up datafiles or control files, and when the operating system can give RMAN disk contention and node affinity information. To manually disable this feature, set DISKRATIO = 0 . For example, assume that datafiles are distributed across 10 disks. If the disks supply data at 10 bytes/second, and if the tape drive requires 50 bytes/second to keep streaming, then set If you set The DISKRATIO parameter is easier for datafile backups when the datafiles are striped or reside on separate disk spindles and you either:
Note: Do not spread I/O over more than the minimum number of disks required to keep the tape streaming. Otherwise, you increase restore time for a file without increasing performance.	
duration	Specifies options related to the maximum time for a backup command to run. See Also: "duration"
filenameConversionSpec	This option is valid only when BACKUP is creating image copies. Files being copied are renamed according to the specified patterns. If a file being backed up has a name that does not match any of the specified rename patterns, then RMAN uses FORMAT to name the output image copies. If no FORMAT was specified, then RMAN uses the default format %U . See "fileNameConversionSpec" for details about file renaming patterns.
FILESPERSET [=] integer	When used with commands that create backupsets, specifies the maximum number of files to include in each backupset created. By default, RMAN divides files among backupsets in order to make optimal use of channel resources. The number of files to be backed up is divided by the number of channels. If the result is less than 64, then it is the number of files placed in each backupset. Otherwise, 64 files will be placed in each backupset.
FORCE	Causes RMAN to ignore backup optimization. In other words, even if CONFIGURE BACKUP OPTIMIZATION is set to ON , RMAN backs up all specified files. Note: You can also specify this option in the
FORMAT = formatSpec	Specifies a pattern to use in creating a filename for the backup pieces or image copies created by this command. For AS COPY , if one or more of the directories mentioned in the specified format do not exist, then RMAN signals an error. See Also: "formatSpec" for legal substitution variables
forRecoveryOfSpec	Identifies the backup being created as an incremental backup to be used in rolling forward an image copy. See "forRecoveryOfSpec" for details.
FULL	Creates a backup of all blocks of datafiles included in the backup. FULL is the opposite of INCREMENTAL . RMAN makes full backups by default if neither A full backup has no effect on subsequent incremental backups, and is not considered a part of any incremental backup strategy (though a full image copy backup can be incrementally updated by applying incremental backups with the RECOVER command). Note:Backup Unused Space Compression, described in "Unused Block Compression Of Datafile Backups to Backup Sets", causes some datafile blocks to be skipped during full backups of datafiles as backup sets.
INCREMENTAL LEVEL [=] integer	Copies only those data blocks that have changed since the last incremental integer backup, where integer is 0 or 1 . An incremental backup at level 0 backs up all data blocks in datafiles being backed up. An incremental backup at level 1 backs up only changed blocks. An incremental backup can be either differential or cumulative.In a cumulative level 1 incremental backup, RMAN backs up all blocks changed since the most recent level 0 backup. In a differential level 1 incremental backup, RMAN backs up blocks updated since the last level 0 or level 1 incremental backup. Incremental backups at level 0 can be either backup sets or image copies. Incremental backups at level 1 can only be backup sets. A level 0 backup must exist as the base backup for an incremental strategy. An incremental backup at level 0 is identical in content to a full backup, but unlike a full backup the level 0 backup is considered a part of the incremental strategy. If no level 0 backup exists when you run a level 1 backup, then RMAN makes a level 0 backup automatically. The database performs checks when attempting to create a level 1 incremental backup, to ensure that the incremental backup is usable by a subsequent RECOVER command. Among the checks performed are:
If you specify Note: You cannot make inconsistent incremental backups when the database is in Note: When creating an incremental backup, RMAN considers backups from parent incarnations as valid. For example, assume you make a level 0 backup and then See Also: "CHANGE"	
INCREMENTAL FROM SCN = integer	Creates an incremental backup of all specified datafiles which includes all datafile blocks changed at SCNs greater than or equal to the specified SCN. The expected use of this feature is in refreshing a standby database with changes from a primary database. See Oracle Database Backup and Recovery Advanced User's Guide for details. Note:
keepOption	Overrides any configured retention policy for this backup so that the backup is not considered obsolete. You can use CHANGE to alter the keep status. Note that you must be connected to a recovery catalog when you specify KEEP FOREVER . See Also: "keepOption"
MAXSETSIZE = integer [K	M
NOCHECKSUM	Suppresses block checksums. A checksum is a number that is computed from the contents of a data block. If the DB_BLOCK_CHECKSUM initialization parameter is true , then the database computes a checksum for each block during normal operations and stores it in the block before writing the block to disk. When the database reads the block from disk later, it recomputes the checksum and compares it to the stored value. If they do not match, then the block is damaged. By default, the database also computes a checksum for each block and stores it in the backup. The checksum is verified when restoring from the backup and written to the datafile when restored. If the database is already maintaining block checksums, then this flag has no effect. The checksum is always verified and stored in the backup in this case. If you wish to prevent the use of block checksums in your backup, use the See Also: Oracle Database Reference for more information about the
notBackedUpSpec	Limits the set of files to be backed up according to whether a specified number of backups are already present (and not obsolete), or whether the files have been backed up since a specified date. See "notBackedUpSpec" for details.
NOEXCLUDE	When specified on BACKUP DATABASE or BACKUP COPY OF DATABASE command, RMAN backs up all tablespaces, including any for which a CONFIGURE EXCLUDE command has been entered. This option does not override SKIP OFFLINE or SKIP READONLY .
POOL = integer	Specifies the media pool in which the backup should be stored. Consult your media management documentation to see whether the POOL option is supported. Note: This option does not apply with
PROXY	Backs up the specified files by means of the proxy copy functionality, which gives the media management software control over the data transfer between storage devices and the datafiles on disk. The media manager—not RMAN—decides how and when to move data. When you run
If you do not want RMAN to try a conventional copy when a proxy copy fails, use the Note: If you specify Note: This option cannot be used with	
ONLY	Causes the database to issue an error message when it cannot proxy copy rather than creating conventional backup sets.
REUSE	Enables RMAN to overwrite an already existing backup or copy with the same filename as the file that BACKUP is currently creating.
skipSpec	Excludes datafiles or archived redo logs from the backup if they are inaccessible, offline or read-only. See "skipSpec" for details.
TAG tag_name	Creates a user-specified tag name for a backup. The tag is not case sensitive. If you do not specify a tag name, then by default RMAN creates a tag for backups (except for control file autobackups) in the format A tag applies to each backup piece in a given copy of a backup set (for Typically, a tag is a meaningful name such as Tags must be 30 characters or less. The characters used in a tag must be limited to the characters that are legal in filenames on the target filesystem. For example, ASM does not support the use of the You can also specify the tag at the
VALIDATE	Causes RMAN to scan the specified files and verify their contents, testing whether this file can be backed up. RMAN creates no output files. Use this command periodically to check for physical and logical errors in database files. Note: You cannot validate backups of backup sets.
backupSpec	
Syntax Element	Description
---	---
backupSpec	A BACKUP specification list contains a list of one or more backupSpec clauses. A backupSpec clause contains, at a minimum, a list of one or more objects to be backed up. Each
archivelogRecordSpecifier	Specifies a range of archived redo logs to be backed up. RMAN does not signal an error if the command finds no logs to back up, because this situation probably exists because no new logs were generated after the previous BACKUP ARCHIVELOG ALL DELETE INPUT command. If you specify If the database is open when you run Note: If you run See Also: "archivelogRecordSpecifier" for syntax, and Oracle Database Backup and Recovery Advanced User's Guide explanations of backup failover for logs and automatic log switching
BACKUPSET { ALL	completedTimeSpec
CONTROLFILECOPY { ' filename '	ALL
The control file copy can be:	
RMAN inspects the header of the control file copy to determine whether it is a standby or nonstandby control file.	
copyOfSpec	Makes a backup of previous image copies of datafiles and possibly control files. See "copyOfSpec" for details.
CURRENT CONTROLFILE [FOR STANDBY]	Specifies the current control file. If you specify Note: You cannot assign a tag to a backup of the current control file.
DATABASE	Creates a backup set (AS BACKUPSET) or group of image copies (AS COPY) for all datafiles in the database. If generating a backup set, then RMAN can include only datafiles and control files: it cannot include archived redo logs. If the If the Note: To force RMAN to include the current control file in the backup when
datafileCopySpec	Specifies the filenames of one or more datafile image copies. See "datafileCopySpec" for details.
DATAFILE datafileSpec	Specifies a list of one or more datafiles. Refer to description of BACKUP DATABASE for RMAN behavior when datafile 1 is backed up. See Also: "datafileSpec"
RECOVERY AREA	DB_RECOVERY_FILE_DEST
Backup optimization is always Note: If the flash recovery area is not enabled but has been enabled in the past, then files that were created in the previous flash recovery area location are backed up.	
RECOVERY FILES	Backs up all recovery files on disk, whether they are stored in the flash recovery area or another locations on disk. Recovery files include full and incremental backup sets, control file autobackups, archived logs, and datafile copies. Backup optimization is always ON for this option. The backup must go to sbt , so RMAN issues an error if no sbt channels are allocated or configured.
SPFILE	Backs up the server parameter file currently used by the database. RMAN cannot back up other copies of the server parameter file, and cannot back up the server parameter file when the instance was started with an initialization parameter file. RMAN cannot make incremental backups of the SPFILE .
TABLESPACE tablespace_name [, tablespace_name]	Specifies the names of one or more tablespaces. RMAN backs up all datafiles that are currently part of the tablespaces. If the SYSTEM tablespace (and thus datafile 1) is included in the backup, and if CONTROLFILE AUTOBACKUP is not configured, then RMAN creates a copy of the control file. The
backupSpecOperand	The backupSpecOperand that follows a backupSpec specifies options that apply to the backupSpec.
backupSpecOperand	
Syntax Element	Description
---	---
backupSpecOperand	Specifies a variety of options and parameters that affect the backupSpec clause. Many subclauses of backupSpecOperand are also used with backupOperand. For those, see the description of "backupOperand". Those which are not shared in common with backupOperand are listed here.
DELETE [ALL] INPUT	Deletes the input files upon successful creation of the backup. Specify this option only when backing up archived logs, datafile copies (COPY OF or DATAFILECOPY), or backup sets. It is equivalent to issuing DELETE for the input files. The Note: The See Also: "CONNECT" for information on the effect of recovery catalog compatibility on this command
FROM TAG = 'tag_name'	Allows specifying a backup by tag. Defined in context with several other commands.
INCLUDE CURRENT CONTROLFILE [FOR STANDBY]	Creates a snapshot of the current control file and places it into each backup set produced by this clause. If you specify Note: This option does not apply with
backupTypeSpec	
Syntax Element	Description
---	---
AS [COMPRESSED] BACKUPSET	Creates backup sets (rather than image copies) on the specified device type. When backing up datafiles into backup sets, RMAN only backs up blocks that are currently in use. With the Note:
AS COPY	Creates image copies (rather than backup sets). Can only be used with backups created on disk. Note: When using
copyOfSpec	
Syntax Element	Description
---	---
COPY OF DATABASE	Makes a backup of previous image copies of all datafiles and control files in the database. All datafiles that would normally be included by BACKUP DATABASE are expected to have copies: if not, then RMAN signals an error. It is not necessary for all copies to have been produced by a single BACKUP command. If multiple copies exist of datafile, then RMAN backs up the latest. Optionally, specify the copies by tag name (for example, FULL_COLD_COPY). Note: The output of this command can be image copies or backup sets.
COPY OF TABLESPACE tablespace_name	Makes a backup of previous image copies of the datafiles in one or more specified tablespaces. All datafiles that would normally be included by BACKUP TABLESPACE should have copies: if not, then RMAN signals an error. It is not necessary for all copies to have been produced by a single BACKUP command. If multiple copies exist of datafile, then RMAN backs up the latest. Specify the tablespaces in the list by tablespace name (for example, Note: The output of this command can be image copies or backup sets.
COPY OF DATAFILE datafileSpec	Makes a backup of a previous image copy of one or more datafiles. Specify the datafile by file number (DATAFILE 3) or filename (DATAFILE '?/oradata/trgt/users01.dbf'). You specify the datafile filename and not the filename of the copy of the datafile. If more than one copy exists of a given datafile, then RMAN backs up the most recent copy. Note: It is not necessary for the image copies that you are backing up to have been created by a single Note: The output of this command can be image copies or backup sets. See Also: "datafileSpec"
datafileCopySpec	
Syntax Element	Description
---	---
DATAFILECOPY { filename [,filename...]	{ ALL
NODUPLICATES	Prevents the inclusion of identical datafile copies in a backup operation. For each set of duplicate datafile copies, the file with the most recent timestamp will be selected.
duration	
Syntax Element	Description
---	---
DURATION hh:mm	
Specifies a maximum time for a backup command to run. If a backup command does not complete in the specified duration, the backup being taken stops. With the Without the Whether With disk backups, you can use When	
forRecoveryOfSpec	
Syntax Element	Description
---	---
FOR RECOVER OF TAG [=] ' tag_name '	Lets you identify any tagged level 0 incremental to serve as the basis for this level 1 incremental. Useful in strategies other than the incrementally updated backups strategy, which uses the FOR RECOVER OF COPY clause.
FOR RECOVER OF COPY	Lets you specify that this incremental should contain all changes since the SCN of a specified datafile copy (level 0 incremental backup) of your database. The datafile copies should be identified with either a DATAFILE COPY or WITH TAG clause, to keep the incremental backup strategy for which this backup will be used separate from the rest of your backup strategies. Otherwise, the most recent copy of each datafile will be used as the basis for the incremental.
WITH TAG [=] 'tag_name'	Used with FOR RECOVER OF COPY , specifies a tag to identify the level 0 incremental backup to serve as the basis of the incremental. If no level 0 with the tag specified in WITH TAG option is found, then FOR RECOVER OF COPY option will create a level 0 datafile copy tagged with the value specified in the WITH TAG option. BACKUP... FOR RECOVER OF COPY WITH TAG ... is key to backup strategies based on incrementally updated backups, as described in Oracle Database Backup and Recovery Basics and used in some Enterprise Manager backup strategies.
DATAFILE COPY [=] formatSpec	Used with FOR RECOVER OF COPY , identifies the datafile copies to use as the basis for this incremental.
notBackedUpSpec	
Syntax Element	Description
---	---
NOT BACKED UP	Backs up only those files (of the files specified on the command) that RMAN has never backed up. This option is a convenient way to back up new files after adding them to the database.
SINCE TIME = 'date_string '	Specifies the date after which RMAN should back up files that have no backups. The date_string is either a date in the current NLS_DATE_FORMAT , or a SQL date expression such as 'SYSDATE-1' . When calculating the number of backups for a file, RMAN only considers backups created on the same device type as the current backup. This option is a convenient way to back up files that were not backed up during a previous failed backup. For example, you back up the database, but the instance fails halfway through. You can restart the backup with the When determining whether a file has been backed up, the
integer TIMES	Backs up only those archived logs that have not been backed up at least integer times. To determine the number of backups for a file, RMAN only considers backups created on the same device type as the current backup. This option is a convenient way to back up archived logs on a specified media (for example, you want to keep at least three copies of each log on tape).
sizeSpec	
Syntax Element	Description
---	---
integer [K	M
skipSpec	
Syntax Element	Description
---	---
SKIP	Excludes datafiles or archived redo logs from the backup according to the criteria specified by the following keywords. Note: You can also specify this option in the
INACCESSIBLE	Specifies that datafiles or archived redo logs that cannot be read due to I/O errors should be excluded from the backup. A datafile is only considered inaccessible if it cannot be read. Some offline datafiles can still be read because they still exist on disk. Others have been deleted or moved and so cannot be read, making them inaccessible.
OFFLINE	Specifies that offline datafiles should be excluded from the backup.
READONLY	Specifies that read-only datafiles should be excluded from the backup.
Examples	
Backing Up a Database: Example This example assumes that CONFIGURE	
CONTROLFILE	
AUTOBACKUP	
is OFF	
. The command backs up all datafiles to tape, as well as the current control file, the server parameter file, and archived logs:	
Scripting Incremental Backups: Example This example shows a series of scripts that you can run to make regular incremental backups of the database:	
Performing a Cumulative Incremental Backup: Example This example backs up all blocks changed in the database since the most recent level 0 backup:	
Backing Up Tablespaces and Datafiles to Disk as Backup Sets: Example This command uses two backupSpec	
clauses to back up tablespaces and datafiles and lets RMAN perform automatic parallelization of the backup:	
Backing Up Tablespaces and Datafiles to Disk as Image Copies: Example This command uses two backupSpec	
clauses to back up tablespaces and datafiles and lets RMAN perform automatic parallelization of the backup:	
Backing Up Datafile Copies: Example This example finds three datafile copies with the tag LATESTCOPY	
, copies them to directory /copies	
and names the new copies by means of subsitution variables:	
Backing Up Archived Logs and Deleting the Input: Example This example assumes that you have two archive destinations set: /arch1	
and /arch2	
. The command backs up one log for each unique sequence number and then deletes all logs from both archiving directories.	
Backing Up Backup Sets to Tape: Example In this example, the goal is to keep recent backup sets on disk and older backup sets on tape, and to avoid keeping copies of the same backup set on disk and tape simultaneously. This command backs up backup sets created more than two weeks ago to tape and then deletes the backed-up backup pieces from disk:	
Specifying DEVICE TYPE on the BACKUP Command: Example This example configures DISK	
as the default device type, then backs up the server parameter file and all archived logs to tape:	
Duplexing a Backup Set: Example This example duplexes a backup of datafile 1	
(which includes the current control file and server parameter file) to separate disks:	
Specifying How Channels Divide Workload: Example This example explicitly parallelizes a backup operation by specifying which channels should back up which files and to which locations:	
Creating a Control File for a Standby Database: Example This example creates a backup of the current control file that can be used to create a standby database:	
Creating an Incremental Backup for Refresh of a Standby Database: Example This example creates an incremental backup at a primary database that can be applied at a standby database to update it with changes since the specified SCN, as described inOracle Database Backup and Recovery Advanced User's Guide .	
Backing Up Datafiles, Tolerating Corrupt Blocks: Example This example backs up datafile 3	
and specifies that no more than two blocks with corruption should be tolerated:	
Making an Image Copy of a Database Copy: Example This example makes an image copy of the database copy with tag TEST	
to the default destination, gives the output copy the tag DUPTEST	
, and performs logical checking:	
Creating a Long-Term Database Backup: Example This example creates a consistent backup of the database and server parameter file that is exempt from the retention policy. The command instructs RMAN to keep the backup for the next year, but not to keep the archived logs necessary to recover it:	
Exempting Copies from the Retention Policy: Example The following example copies the control file and two datafiles and exempts them from the retention policy forever. (Note that KEEP FOREVER	
requires a recovery catalog.)	
Backing Up Files That Need Backups: Example This example backs up all datafiles that have not been backed up to tape in the last month, and then backs up all archived logs that do not have at least two backups on tape:	
Using NODUPLICATES To Back Up Datafile Copies: Example This example creates several duplicate datafiles, and then backs up only the most recent of the duplicates:	
Syntax	
blockrecover::=	
bmrBlockSpec::=	
bmrOption::=	
Purpose	
Block media recovery recovers an individual data block or set of data blocks within a datafile. This type of recovery is useful if the data loss or corruption applies to a small number of blocks rather than to an entire datafile.	
Typically, block corruption is reported in error messages in trace files. Block-level data loss usually results from:	
I/O errors causing minor data loss	
Memory corruptions that get flushed to disk	
You can either use BLOCKRECOVER	
CORRUPTION	
LIST	
to recover all blocks reported in the V$DATABASE_BLOCK_CORRUPTION	
view, or specify the datafile number and block number or the tablespace and data block address (DBA) when executing the BLOCKRECOVER	
command.	
Restrictions and Usage Notes	
The target database must be mounted or open. You do not have to take a datafile offline if you are performing block media recovery on it.	
You can only perform complete media recovery of individual blocks. Point-in-time recovery of individual data blocks is not supported.	
You can only perform block media recovery on corrupt blocks.	
Blocks marked media corrupt are not accessible until recovery completes.	
You cannot perform block media recovery when using a backup control file.	
You cannot use proxy backups to perform block media recovery. If the only backups that you have are proxy backups, then you can restore them to a nondefault location on disk, which causes RMAN to view the restored files as datafile copies. You can then use the datafile copies for block media recovery.	
You must have a full backup of the file containing the corrupt blocks: block media recovery cannot use incremental backups.	
If RMAN fails to access a specific archived redo log file needed for block media recovery, it performs restore failover, trying all other backups listed in the RMAN repository that are suitable for use in this operation, and only fails if no suitable backup is available. See Oracle Database Backup and Recovery Advanced User's Guide for details on restore failover.	
Block media recovery cannot survive a missing or inaccessible archived log, although it can sometimes survive missing or inaccessible records (Oracle Database Backup and Recovery Advanced User's Guide).	
The datafile header block (block 1	
) cannot be recovered.	
You cannot perform block media recovery in NOARCHIVELOG	
mode.	
Keywords and Parameters	
blockrecover	
Syntax Element	Description
---	---
DEVICE TYPE deviceSpecifier	Specifies the device type for the backup used in the block recovery. See Also: "deviceSpecifier"
bmrBlockSpec	
Syntax Element	Description
---	---
bmrBlockSpec	Specifies the data blocks that require recovery.
CORRUPTION LIST	Recovers all blocks listed in the V$DATABASE_BLOCK_CORRUPTION view. This view displays blocks marked corrupt by the most recent BACKUP (with or without the VALIDATE option), VALIDATE, or CREATE CATALOG command. The following types of corruption result in rows added to this view:
DATAFILE datafileSpec	Specifies a list of one or more datafiles that contain blocks requiring recovery. See Also: "datafileSpec"
BLOCK integer	Specifies the block number of the block requiring media recovery. Typically, the block number is obtained from error message output.
TABLESPACE tablespace_name	Specifies the tablespace name or number containing the corrupt blocks.
DBA integer	Specifies the data block address (DBA) of the corrupt block.
bmrOption	
Syntax Element	Description
---	---
bmrOption	Specifies various restore options relating to the block recovery.
FROM BACKUPSET	Indicates that only backup sets should be restored.
FROM DATAFILECOPY	Indicates that only datafile image copies should be restored.
FROM TAG= 'tag_name'	Indicates that only the copy of the backup with the specified tag should be restored. Tag names are not case sensitive. See Also: "BACKUP" to learn how a tag is applied to a copy of a backup.
RESTORE untilClause	Specifies that only backups and copies created before the specified time, SCN, or log sequence number should be restored. See Also: "untilClause"
Examples	
Recovering a Group of Corrupt Blocks: Example This example recovers corrupt blocks in three datafiles:	
Limiting Block Media Recovery by Type of Restore: Example The following example recovers a series of blocks and restores only from datafile copies:	
Limiting Block Media Recovery by Backup Tag: Example This example recovers blocks and restores only from the backup with the tag weekly_backup	
:	
Limiting Block Media Recovery by Time: Example The following example recovers two blocks in the SYSTEM	
tablespace. It restores only from backups that could be used to recover the database to a point two days ago:	
Repairing All Block Corruption in the Database: Example The following example runs a backup validation to populate V$DATABASE_BLOCK_CORRUPTION	
, then repairs any corrupt blocks recorded in the view:	
Syntax	
catalog::=	
Purpose	
Use the CATALOG	
command to do the following:	
Add backup pieces and image copies on disk to the RMAN repository.	
Record a datafile copy as a level 0 incremental backup in the RMAN repository, which enables you to use it as part of an incremental backup strategy.	
Record the existence of the last user-managed datafile copies made after the final shutdown in Oracle7, before migrating the database to Oracle8.	
See Also: Oracle Database Backup and Recovery Basics to learn how to manage target database records stored in the catalog	
Restrictions and Usage Notes	
You must be connected to the target database, which must be mounted or open.	
If RMAN is connected to a recovery catalog, then the catalog database must be open.	
For a user-managed copy to be cataloged, it must be:	
A datafile copy, control file copy, archived log, or backup piece.	
Accessible on disk.	
RMAN treats all user-managed backups as image copies. Note that during cataloging, RMAN does not check whether the file was correctly copied by the operating system utility: it just checks the header.	
You cannot catalog any datafile copies that were created in Oracle7 unless they were made after the final consistent shutdown in Oracle7 and before running the migration utility, or were made of a tablespace that was offline normal or read-only at the time of the migration. In other words, it must be possible to use the Oracle7 datafile copies without applying any archived logs.	
You cannot use CATALOG	
to catalog a file that belongs to a different database.	
You cannot use CATALOG	
to catalog a backup piece that exists on an sbt	
device.	
Keywords and Parameters	
Syntax Element	Description
---	---
ARCHIVELOG ' filename '	Specifies the filename of an archived log to be added to or updated in the RMAN repository.
BACKUPPIECE	Specifies the name of a backup piece to be added to the RMAN repository. The backup piece must be on disk. RMAN verifies the backup piece header before cataloging it. RMAN can catalog a backup piece from a prior incarnation. Typically, you would catalog a backup piece in the following situations:
If you specify a list of backup pieces, RMAN attempts to catalog all pieces in the given list even if some of them fail. Cataloging a backup piece creates a new row in Note: When cataloging backup pieces from releases prior to Oracle9i, performance improves when you catalog higher copy numbers first. For example, if you need to catalog copies 1, 2, and 3 of a backup piece, then specify copy 3 as the first item in the	
CONTROLFILECOPY ' filename '	Specifies the filename of a control file copy to be added to or updated in the RMAN repository. The control file copy can be:
DATAFILECOPY ' filename '	Specifies the filename of a datafile copy to be added to or updated in the RMAN repository.
LEVEL = 0	For datafile copies only, indicates that the copy should be recorded as a level 0 incremental backup. You can perform incremental backups by using this datafile copy as the base level 0 backup.
(RECOVERY AREA	DB_RECOVERY_FILE_DEST) [NOPROMPT]
START WITH ' string_pattern '	
Catalogs all valid backups in locations that match the string pattern, which can be an Automatic Storage Management disk group, Oracle Managed Files directory, or part of a filename. RMAN will report any files in the disk location that cannot be cataloged. RMAN must be connected to the target database and the target database must be mounted. Specify NOPROMPT if you do not want to be prompted after every match. If the string pattern specifies a filename, then it matches the left part of the filename pattern. For example, Note: You cannot use wildcard characters in the string pattern, only a strict prefix.	
Examples	
Cataloging an Archived Redo Log: Example This example assumes that you made operating system copies of archived logs or transferred them from another location, and then added them to the RMAN repository:	
Cataloging a File Copy as an Incremental Backup: Example The following example catalogs datafile copy users01.bak	
as an incremental level 0 backup:	
Note that you can create datafile copies either using the RMAN BACKUP AS COPY	
command, or by using operating system utilities in conjunction with ALTER	
TABLESPACE BEGIN/END	
BACKUP	
.	
Cataloging Multiple Copies in a Directory: Example The following example catalogs a directory full of archived logs that were copied into the /tmp/arch_logs directory	
with an operating system utility:	
Cataloging Files in the Flash Recovery Area: Example The following example catalogs all files in the currently enabled flash recovery area without prompting the user for each one:	
Cataloging Backup Pieces: Example The following example catalogs a backup piece that was copied with an operating system utility:	
Syntax	
change::=	
maintSpec::=	
Purpose	
To make the following changes:	
To change the status of backups, copies, and archived logs in the repository to AVAILABLE	
or UNAVAILABLE	
. This feature is useful when a previously unavailable file is made available again, or you do not want a specific backup or copy to be eligible to be restored but also do not want to delete it.	
To alter the repository status of usable backups and copies from prior incarnations.	
To remove catalog records for backups and copies, and update the corresponding records in the target control file to status DELETED	
. This feature is useful when you remove a file by using an operating system command rather than the RMAN CHANGE command, and want to remove its repository record as well.	
To specify that a backup or copy should either abide by the currently configured retention policy or be exempt from it.	
See Also: Oracle Database Backup and Recovery Basics to change the availability status of a backup or copy	
Restrictions and Usage Notes	
The target instance must be started.	
The KEEP	
FOREVER	
clause requires use of a recovery catalog.	
You cannot use CHANGE... UNAVAILABLE	
or KEEP	
attributes for files stored in the flash recovery area.	
The only CHANGE	
command that requires either a manual or automatic maintenance channel is the CHANGE	
...	
AVAILABLE	
command. However, a maintenance channel is not required when CHANGE	
...	
AVAILABLE	
is used with a file that is disk only (that is, an ARCHIVELOG	
, DATAFILECOPY	
, or CONTROLFILECOPY	
).	
If you use CHANGE	
...	
AVAILABLE	
on files that are not disk-only, and have objects created on device types that are not configured for automatic channels, then issue manual maintenance commands on these channels. For example, if you created a backup on an sbt	
channel, but have only a DISK	
channel automatically configured, then you must manually allocate an sbt	
channel before CHANGE	
...	
AVAILABLE	
can operate on the backup.	
Keywords and Parameters	
To obtain the primary keys of the records whose status you want to change, run a LIST command or query the recovery catalog views.	
Syntax Element	Description
---	---
maintSpec	Specifies which files you want to CHANGE . Refer to "maintSpec" for descriptions of the options in this caluse.
AVAILABLE	Changes the status of a backup or copy to AVAILABLE in the repository. View the status in the LIST output or recovery catalog views.
keepOption	Changes the exemption status of a backup or copy in relation to the configured retention policy. For example, specify CHANGE ... NOKEEP to make a backup that is currently exempt from the retention policy eligible for OBSOLETE status. You can also specify Note: You cannot use keepOption with flash recovery area files. See Also: "keepOption"
UNAVAILABLE	Changes the status of a backup or copy to UNAVAILABLE in the repository. View the status in the LIST output or recovery catalog views. This option is provided for cases when the file cannot be found or has migrated offsite. RMAN does not use a file that is marked UNAVAILABLE in a RESTORE or RECOVER command. If the file is later found or returns to the main site, then use the AVAILABLE option to update its status.
UNCATALOG	Removes references to a datafile copy, backup piece, or archived redo log from the recovery catalog, and updates records in the target control file to status DELETED . The CHANGE ... UNCATALOG command does not touch physical backups and copies. Use this command to notify RMAN when a file is deleted by some means other than a DELETE command. Caution: If you resynchronize from a backup control file, or upgrade the recovery catalog, then records previously removed from the RMAN repository with
DEVICE TYPE deviceSpecifier	Executes the CHANGE for the specified device type only (see "deviceSpecifier"). This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you run CHANGE UNCATALOG ... DEVICE TYPE DISK , then RMAN only uncatalogs files on disk.
Examples	
Updating Backups to Status UNAVAILABLE: Example This example changes the status of backup set 100	
as well as all backups of server parameter files created more than a day ago to UNAVAILABLE	
:	
You do not need to allocate a maintenance channel.	
Uncataloging and Cataloging Archived Logs: Example In this example, you move all archived logs to a new directory, uncatalog them, and then recatalog them in the new location:	
Changing the Retention Status of a Backupset: Example This example, which requires a recovery catalog, changes an ordinary backup into a long-term backup:	
Syntax	
cmdLine::=	
Purpose	
To start RMAN from the operating system command line. Use these arguments to:	
Connect to the target, recovery catalog, or auxiliary database.	
Note: On some platforms, you may not want to connect at the operating system command line because the credentials can be visible to other users on the system. For example, on many Unix systems the output of theps command can show the complete command line used to start RMAN, including any credentials provided on the command line. The CONNECT command is an alternative method that avoids this problem.	
Specify whether you are using RMAN without a recovery catalog.	
Run a command file (text file containing commands) or stored script (from the recovery catalog) on startup, and exit on completion, instead of starting an interactive session.	
Start an interactive session which only checks commands entered for correct syntax, or perform a syntax check on the contents of a command file.	
Specify the file in which RMAN records the results of processed commands.	
Append output to the existing RMAN log file.	
Send a command to the media manager.	
Cause RMAN to print message numbers in the RMAN output.	
If you start RMAN without specifying either CATALOG	
or NOCATALOG	
on the command line, then RMAN makes no connection to a repository. If you run a command that requires the repository, and if no CONNECT	
CATALOG	
command has been issued yet, then RMAN automatically connects in the default NOCATALOG	
mode. After that point, the CONNECT	
CATALOG	
command is not valid in the session.	
See Also: Oracle Database Backup and Recovery Basics to learn how to connect RMAN to database instances	
Restrictions and Usage Notes	
Use these arguments at the operating system command line rather than at the RMAN prompt.	
Keywords and Parameters	
Syntax Element	Description
---	---
APPEND	Causes new output to be appended to the end of the message log file. If you do not specify this parameter, and if a file with the same name as the message log file already exists, then RMAN overwrites it.
AUXILIARY = connectStringSpec	Specifies a connect string to an auxiliary database, for example, AUXILIARY SYS/change_on_install@dupdb . See Also: "connectStringSpec"
CATALOG = connectStringSpec	Specifies a connect string to the database containing the recovery catalog, for example, CATALOG rman/rman@inst2 . See Also: "connectStringSpec"
CATALOG = connectStringSpec	Specifies a connect string to the database containing the recovery catalog, for example, CATALOG rman/rman@inst2 . See Also: "connectStringSpec"
CHECKSYNTAX	Causes RMAN to start in a mode where commands entered are checked for syntax errors, but no other processing is performed. If used with a CMDFILE or @ argument, the RMAN client starts, checks all commands in the file, then exits. If used without specifying a command file, then RMAN prompts the user for input and parses each command until the user exits the RMAN client. RMAN reports an
CMDFILE = 'filename'	Parses and compiles all RMAN commands in a file and then sequentially executes each command in the file. RMAN exits if it encounters a syntax error during the parse phase or if it encounters a runtime error during the execution phase. If no errors are found, then RMAN exits after the job completes. If the first character of the filename is alphabetic, then you can omit the quotes around the filename. The contents of the command file should be identical to commands entered at the RMAN prompt. Note: If you run a command file at the RMAN prompt rather than as an option on the operating system command line, then RMAN does not run the file as a single job. RMAN reads each line sequentially and executes it, only exiting when it reaches the last line of the script.
@ filename	Equivalent to CMDFILE .
LOG = 'filename'	Specifies the file where RMAN records its output, that is, the commands that were processed and their results. If you do not specify this argument, then RMAN writes its message log file to standard output. The RMAN output is also stored in the V$RMAN_OUTPUT view (a memory-only view for jobs in progress) and in V$RMAN_STATUS (a control file view for completed jobs and jobs in progress). The
MSGNO	Causes RMAN to print message numbers, that is, RMAN- xxxx , for the output of all commands. By default, RMAN does not print the RMAN- xxxx prefix.
NOCATALOG	Indicates that you are using RMAN without a recovery catalog. Note: If you do not specify either
SEND = ' command '	Sends a vendor-specific command string to all allocated channels. See Also: Your media management documentation to determine whether this feature is supported, and "SEND"
PIPE = 'pipe_name'	Invokes the RMAN pipe interface. RMAN uses two public pipes: one for receiving commands and the other for sending output. The names of the pipes are derived from the value of the PIPE parameter. For example, you can invoke the RMAN pipe interface with the following options: PIPE rpi TARGET SYS/pwd@tdb . RMAN opens the following pipes in the target database:
All messages on both the input and output pipes are of type See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to pass commands to RMAN through a pipe	
SCRIPT = 'script_name'	Once connected to the target database and recovery catalog (which must be specified using the TARGET and CATALOG options), RMAN will run the named stored script from the recovery catalog against the target database. If there are both a global script.and a local stored script on the target database with the name script_name , RMAN will run the local script. The single-quotes around the stored script name are required when the script name either begins with a number or is an RMAN reserved word. You should avoid creating script names that begin with a number or that match RMAN reserved words. See "CREATE SCRIPT" for more details about stored scripts.
TARGET = connectStringSpec	Specifies a connect string to the target database, for example, TARGET SYS/mypassword@inst1 . See Also: "connectStringSpec"
TIMEOUT = integer	Causes RMAN to exit automatically if it does not receive input from an input pipe within integer seconds. The PIPE parameter must be specified when using TIMEOUT . See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to pass commands to RMAN through a pipe
Examples	
Connecting Without a Recovery Catalog: Example This example connects to the target database prod1	
without a recovery catalog:	
Connecting in Default NOCATALOG Mode: Example This example connects to the target database prod1	
without specifying catalog options. Because CONNECT	
CATALOG	
is not run at the RMAN prompt, RMAN connects in default NOCATALOG	
mode when the first command requiring a repository connection is run:	
Connecting to an Auxiliary Instance: Example This example connects to target database prod1	
, recovery catalog database rcat	
, and auxiliary instance aux1	
:	
Specifying a Command File: Example This example connects to the target database prod1	
and the recovery catalog database rcat	
, and then runs the command file b_whole_10.rcv	
:	
Syntax Check of a Command File: Example This example checks syntax of the contents of a command file b_whole_10.rcv	
:	
Syntax Check in an Interactive Session: Example This example starts an interactive session to perform syntax checking:	
Specifying a Stored Script: Example This example connects to the target database prod1	
and the recovery catalog database rcat	
, and then runs the stored script full_backup	
:	
Specifying a Message Log in Append Mode: Example This example connects to the target database prod1	
without a recovery catalog and then specifies that RMAN should append messages to the message log:	
Invoking the RMAN Pipe Interface: Example This example invokes the RMAN pipe newpipe	
with a 90 second timeout option:	
Syntax	
completedTimeSpec::=	
Purpose	
A subclause that specifies when a backup or copy completed.	
Restrictions and Usage Notes	
All date strings must be either:	
Formatted according to the Global Technology date format specification currently in effect.	
Created by a SQL expression that returns a DATE	
value, as in the following examples:	
'SYSDATE-30	
'	
TO_DATE('09/30/2000 08:00:00','MM/DD/YY HH24:MI:SS')	
.	
The TO_DATE	
technique specifies dates independently of the current Global Technology environment variable settings.	
Note: In Oracle8i, theFROM /UNTIL ... TIME syntax in the LIST , CROSSCHECK , and DELETE commands was replaced with completedTimeSpec . If you are adapting an RMAN script from before Oracle8i for use in the current release, then you must update these commands for the script to work correctly.	
Keywords and Parameters	
Syntax Element	Description
---	---
AFTER ' date_string '	Specifies the time after which the backup was completed.
BEFORE ' date_string '	Specifies the time before which the backup was completed.
BETWEEN ' date_string ' AND ' date_string '	Specifies a time range during which the backup was completed. Note that BETWEEN ' date1 ' AND ' date2 ' is exactly equivalent to AFTER ' date1 ' BEFORE ' date2 ' .
Examples	
Crosschecking Backups Within a Time Range: Example This example crosschecks the backup sets of the database made last month:	
Deleting Expired Backups: Example This example deletes expired backup sets of datafile	
1	
made in the last two weeks:	
Listing Copies: Example This example lists image copies of datafile ?/oradata/trgt/users01.dbf	
made before September 27, 2001:	
Syntax	
configure::=	
backupConf::=	
cfauConf::=	
deviceConf::=	
Purpose	
To configure persistent settings affecting RMAN backup, restore, duplication, and maintenance jobs. These configurations are in effect for any RMAN session until the configuration is cleared or changed.	
Use CONFIGURE	
to set the following:	
An ongoing retention policy that automatically determines which backups and copies are eligible for deletion because they are no longer needed	
The device type (for example, DISK	
or sbt	
) for RMAN jobs	
The default number of channels of each device type that RMAN should allocate for automated backup and restore jobs	
The settings for automatic channels for a specified device type	
The maximum size of backup pieces and sets created on automatic channels	
Backup optimization either ON	
or OFF	
The exclusion policy for tablespaces in whole database backups	
The filename of the snapshot control file	
Filenames for files in an auxiliary database	
The control file autobackup feature to ON	
or OFF	
The default format for the control file autobackup output files	
RMAN uses default settings for CONFIGURE	
options. You can return to the default value for any CONFIGURE	
command by running the same command with the CLEAR	
option.	
Restrictions and Usage Notes	
Execute this command at the RMAN prompt. CONFIGURE	
cannot be used within a RUN block.	
The target database must be mounted or open, because configuration settings are stored in the control file.	
Channels allocated with ALLOCATE CHANNEL override any configured automatic channels.	
RMAN does not simultaneously allocate automatic channels for multiple device types in BACKUP	
command.	
To direct backups or restores to specific channels, use the RMAN-generated channel names. If you specify channel numbers in the CONFIGURE	
CHANNEL	
command, then RMAN uses the same numbers in the system-generated channel names.	
If you configure channels by using the nondefault CONNECT	
or PARMS	
options to create backups or copies, then you must either use the same configured channels or manually allocate channels with the same options to restore or crosscheck these backups.	
You cannot exclude the SYSTEM	
tablespace from whole database backups.	
The REDUNDANCY	
and RECOVERY	
WINDOW	
options are mutually exclusive. Only one type of retention policy can be in effect at any time.	
You cannot clear individual parameters when running CONFIGURE	
...	
CLEAR	
. For example, you can run CONFIGURE	
CHANNEL	
DEVICE	
TYPE	
sbt	
CLEAR	
but not CONFIGURE	
CHANNEL	
DEVICE	
TYPE	
sbt	
MAXPIECESIZE	
5M	
CLEAR	
.	
The channel number in a manually numbered channel must be less than 255.	
You must specify at least one channel option when running CONFIGURE	
CHANNEL	
. In other words, you cannot issue a command such as CONFIGURE	
CHANNEL	
2	
DEVICE	
TYPE	
DISK	
, but you can issue a command such as CONFIGURE	
CHANNEL	
2	
DEVICE	
TYPE	
DISK	
MAXPIECESIZE	
2500K	
.	
The CONFIGURE	
CONTROLFILE	
AUTOBACKUP	
FORMAT	
format string must include the %F substitution variable. It cannot contain any other substitution variable.	
With Oracle Database Release 10g in a Data Guard environment, configurations can be set for standby databases as well as primary databases. All configurations except for retention policy, tablespace exclude and auxiliary names can be set to node-specific values. This means that the primary and standby databases can have different channel configurations, autobackup locations, and so on.	
Keywords and Parameters	
configure	
Syntax Element	Description
---	---
ARCHIVELOG DELETION POLICY TO (APPLIED ON STANDBY	NONE
AUXNAME FOR DATAFILE datafileSpec TO ' filename '	Configures the auxiliary filename for the specified target datafile to ' filename ' . For example, you can set the auxiliary name for datafile 2 to /df2.f , and then unspecify this auxiliary name by running CONFIGURE AUXNAME FOR DATAFILE 2 CLEAR . If you are performing TSPITR or running the For example, use this command during TSPITR if the datafiles are on raw disk and you need to restore auxiliary datafiles to raw disk for performance reasons. Typically, you set the When renaming files with the See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to perform RMAN TSPITR, and Oracle Database Backup and Recovery Advanced User's Guide to learn how to duplicate a database with RMAN
backupConf	Configures default backup options such as duplexing, optimization, excluding tablespaces, backup set sizes, and retention policies.
cfauConf	Configures control file autobackup settings
deviceConf	Configures default backup settings for devices, such as the default backup device, channel configurations for devices, default backup types for each device, and parallelism.
ENCRYPTION	Used to specify encryption settings for the database or tablespaces within the database, which apply unless overridden using the SET command. Options specified for an individual tablespace take precedence over options specified for the whole database.
ALGORITHM {	Specifies the default algorithm to use for encryption, when writing encrypted backup sets. Possible values are listed in V$RMAN_ENCRYPTION_ALGORITHMS . With CLEAR , resets the database to the default algorithm, which is AES128 .
FOR { {	Specifies whether to use encryption for the database or specified tablespaces. With FOR DATABASE , the effect is as follows:
Configured settings for a tablespace always override configuration set at the database level. With	
With	
SNAPSHOT CONTROLFILE NAME [TO ' filename '	CLEAR]
backupConf	
Syntax Element	Description
---	---
{ARCHIVELOG	DATAFILE} BACKUP COPIES FOR DEVICE TYPE [=] deviceSpecifier [CLEAR
BACKUP OPTIMIZATION [CLEAR	OFF
The retention policy has an effect on which files backup optimization skips. See Also: Oracle Database Backup and Recovery Advanced User's Guide for a description of how RMAN determines that it can skip the backup of a file	
EXCLUDE FOR TABLESPACE tablespace_name [CLEAR]	Excludes the specified tablespace from BACKUP DATABASE commands. Note that you cannot exclude the SYSTEM tablespace. By default, each tablespace is not excluded, that is, the exclude functionality is disabled. The exclusion is stored as an attribute of the tablespace, not the individual datafiles, so the exclusion applies to any files that are added to this tablespace in the future. If you run CONFIGURE ... CLEAR on a tablespace after excluding it, then it returns to the default configuration of "not excluded." You can still back up the configured tablespace by explicitly specifying it in a
MAXSETSIZE [CLEAR	TO [sizeSpec
RETENTION POLICY	Specifies a persistent, ongoing policy for datafile and control file backups and copies that RMAN marks as obsolete, that is, not needed and eligible for deletion. As time passes, RMAN marks backups and copies as obsolete according to the criteria you specify in the retention policy. RMAN does not automatically delete any backups or copies: manually run the DELETE OBSOLETE command to remove obsolete files. By default, RETENTION POLICY is configured to REDUNDANCY 1 . For backups, the basic unit of the retention policy is a backup set (not a backup piece) or image copy. For example,
CLEAR	Resets the retention policy to its default (REDUNDANCY = 1).
TO RECOVERY WINDOW OF integer DAYS	Specifies a time window in which RMAN should be able to recover the database. The window stretches from the current time (SYSDATE) to the point of recoverability, which is the earliest date to which you want to recover. The point of recoverability is SYSDATE - integer days in the past.
TO REDUNDANCY integer	Specifies that RMAN should retain integer backups or copies of each datafile and control file. If more than integer backups or copies exist, RMAN marks these extra files as obsolete. Then, RMAN determines the oldest of the retained backups and copies, and marks all archived logs and log backups older than this backup or copy as obsolete. The DELETE OBSOLETE command removes obsolete backups and copies as well as archived log backups and copies.
TO NONE	Disables the retention policy feature. RMAN does not consider any backups or copies as obsolete.
cfauConf	
Syntax Element	Description
---	---
CONTROLFILE AUTOBACKUP	Controls the control file autobackup feature. By default, this feature is not enabled.
CLEAR	Returns the feature to its default setting of OFF .
FORMAT FOR DEVICE TYPE deviceSpecifier [CLEAR	TO formatSpec]
Specify The formatSpec can specify an Automatic Storage Management disk group. The following example configures a channel for an ASM disk group: CONFIGURE CONTROLFILE AUTOBACKUP FOR DEVICE TYPE DISK TO '+dgroup1'; See Also: "formatSpec", for the semantics of the	
OFF	Disables the autobackup feature. (OFF is the default value.) When this command is OFF , any BACKUP command that includes datafile 1 (including BACKUP DATABASE) automatically includes the current control file and server parameter file in the backup set. Otherwise, RMAN does not include these files.
ON	If CONFIGURE CONTROLFILE AUTOBACKUP is ON (by default it is OFF), then RMAN performs a control file autobackup in the following circumstances:
The first channel allocated during the backup or copy job creates the autobackup and places it into its own backup set; for post-structural autobackups, the default disk channel makes the backup. RMAN writes the control file and the server parameter file to the same backup piece. After the control file autobackup completes, the database writes a message containing the complete path of the backup piece and the device type to the alert log. The default location for the autobackup on disk is the flash recovery area (if configured) or a platform-specific location (if not configured). RMAN automatically backs up the current control file using the default format of	
deviceConf	
Syntax Element	Description
---	---
[AUXILIARY] CHANNEL [integer] DEVICE TYPE deviceSpecifier	Specifies the standard or AUXILIARY channel that you are configuring or clearing, as well as the device type (DISK or sbt) of the channel. Either configure a generic channel or specify a channel number, where integer is less than 255 . If you configure a generic channel (that is, if you do not specify a channel number), then RMAN uses the generic settings for every parallelized channel except any channel number that you have explicitly configured. A generic channel setting specifies options for all channels not configured explicitly. For generic channels of a specified device type, a new command erases previous settings for this device type. Assume that you run these commands: CONFIGURE CHANNEL DEVICE TYPE sbt MAXPIECESIZE 1G; CONFIGURE CHANNEL DEVICE TYPE sbt FORMAT 'bkup_%U'; The second command erases the If See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how configure automatic channels specified by channel number
allocOperandList	Specifies control options for the allocated channel. Note that the FORMAT parameter can specify an Automatic Storage Management disk group. The following example configures a channel for an ASM disk group: CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '+dgroup1'; See Also: "allocOperandList"
CLEAR	Clears the specified channel. For example, CONFIGURE CHANNEL 1 DEVICE TYPE DISK CLEAR returns only channel 1 to its default, whereas CONFIGURE CHANNEL DEVICE TYPE DISK CLEAR returns the generic disk channel to its default. Note that you cannot specify any other channel options (for example, PARMS) when you specify CLEAR .
DEFAULT DEVICE TYPE [TO deviceSpecifier	CLEAR]
DEVICE TYPE [=] deviceSpecifier	Specifies the device type (disk or sbt) to which to apply the settings specified in this CONFIGURE command.
CLEAR	Resets backup type and parallelism settings for this device to their defaults..
BACKUP TYPE TO [COPY	[COMPRESSED] BACKUPSET]
PARALLELISM integer	Configures the device types that are eligible for use in jobs that use automatic channels and sets the degree of channel parallelism (DISK is the default). The By default, To change the parallelism for a device type to CONFIGURE DEVICE TYPE sbt PARALLELISM 3; CONFIGURE DEVICE TYPE sbt PARALLELISM 2; Note: If you configure
Examples	
Configuring Backup Optimization: Example This example configures RMAN so that the BACKUP	
command does not back up files to a device type if the identical file has already been backed up to the device type:	
Configuring a Retention Policy: Example This example configures a retention policy with a recovery window of 2 weeks, and then resets the retention policy to its default value of REDUNDANCY	
=	
1	
:	
Configuring Automatic Disk and Tape Channels: Example This example configures generic DISK	
and sbt	
channels, sets the default device type to sbt	
, and sets PARALLELISM	
to 3	
:	
Overriding the Default Device Type: Example This example configures the default device type to sbt	
, backs up the archived logs on the default sbt	
channel, and then backs up the database to disk on the default disk channel:	
Configuring Automatic Channels Across File Systems: Example This example configures automatic disk channels across three file systems:	
Configuring Automatic Channels in an Oracle Real Application Clusters Configuration: Example This example allocates automatic sbt	
channels for two nodes of an Oracle Real Application Clusters database:	
Clearing Automatic Channels: Example This example clears manually numbered DISK	
channels 2	
and 3	
and the generic sbt	
channel:	
Configuring and Clearing Parallelism: Example This example sets DISK	
parallelism to 2	
, then changes it to 3	
, then returns it to the default parallelism of 1	
:	
Configuring Backup Copies: Example This example configures duplexing to 3	
for DISK	
backups of datafiles and control files (control file autobackups on disk are a special case and are never duplexed) and then runs a database backup, specifying three different file systems for the copies:	
Configuring the Snapshot Control File Location: Example This example configures a new location for the snapshot control file and then resynchronizes the recovery catalog.	
Excluding a Tablespace from a Whole Database Backup: Example This example excludes the example	
tablespace from whole database backups, then returns the tablespace to its default value of "not excluded":	
Specifying Auxiliary Filenames: Example This example duplicates a database to a remote host with a different directory structure, by using CONFIGURE	
AUXNAME	
to specify new filenames for the datafiles:	
Specifying the Default Format for the Control File Autobackup: Example This example turns on the autobackup feature, then changes the default format for the DISK	
and sbt	
devices, then clears the autobackup setting:	
Syntax	
connect::=	
Purpose	
To establish a connection between RMAN and a target, auxiliary, or recovery catalog database.	
Note: When connecting from the command line, the password may be visible to other users on the system. The CONNECT command used from within RMAN avoids this problem.	
Restrictions and Usage Notes	
You can only run the CONNECT	
TARGET	
, CONNECT	
CATALOG	
, and CONNECT	
AUXILIARY	
commands if you are at the RMAN prompt and if you are not already connected to the specified databases.	
If you need to connect to a different target, catalog, or auxiliary database, then you must start a new RMAN session.	
You cannot use the CONNECT	
CATALOG	
command when RMAN is in the default NOCATALOG	
mode, that is, when these conditions are met:	
You started RMAN without specifying either CATALOG	
or NOCATALOG	
.	
You have already run a command such as BACKUP	
that requires a repository connection.	
Keywords and Parameters	
Syntax Element	Description
---	---
CONNECT AUXILIARY connectStringSpec	Establishes a connection between RMAN and an auxiliary instance. Auxiliary instances are used with the TRANSPORT TABLESPACE and DUPLICATE commands, and during RMAN TSPITR.
CONNECT CATALOG connectStringSpec	Establishes a connection between RMAN and the recovery catalog database. You must run this command before running any command that requires a repository. Otherwise, RMAN defaults to NOCATALOG mode and invalidates the use of CONNECT CATALOG in the session.
CONNECT TARGET connectStringSpec	Establishes a connection between RMAN and the target database.
Examples	
Connecting Without a Recovery Catalog: Example This example starts RMAN and then connects to the target database with an Oracle Net service name prod1	
:	
Connecting in the Default NOCATALOG Mode: Example This example starts RMAN and then connects to the target through Oracle Net. Because BACKUP	
is run and no CONNECT	
CATALOG	
has been run, RMAN defaults to NOCATALOG	
mode:	
Connecting with a Recovery Catalog: Example This example starts RMAN and then connects to the target database prod1	
by using operating system authentication and the recovery catalog database rcat	
by using a password file:	
Connecting to Target, Recovery Catalog, and Auxiliary Databases: Example This example connects to three databases specifying a username and password for each:	
Syntax	
connectStringSpec::=	
Purpose	
A subclause specifying the username, password, and net service name for connecting to a target, recovery catalog, or auxiliary database. The connection is necessary to authenticate the user and identify the database.	
Restrictions and Usage Notes	
You must have SYSDBA	
privileges to connect to a target or auxiliary database.	
Do not connect to the recovery catalog database as user SYS	
.	
Keywords and Parameters	
Syntax Element	Description
---	---
/	If you do not specify a user ID or password when connecting to the target database, then a forward slash establishes a connection as user SYS by using operating system authentication. For example, enter the following to connect to the target database: % rman TARGET / Note: The forward slash depends on platform-specific environment variables.
userid	Establishes a connection to the database for the specified user. If you do not specify a password, RMAN obtains the password interactively by displaying a prompt. The characters will not be echoed to the terminal. You must have Note: The connect string must not contain any white space, but it can contain punctuation characters such as a forward slash (
/ password	Establishes a connection for the specified user by using a password. If the target database is not open, then a password file must exist.
@ net_service_name	Establishes a connection to the database through an optional Oracle Net net service name.
Examples	
Connecting to a Target Database Without a Recovery Catalog: Example This example connects to the target database by using a password and the Oracle Net service name prod1	
in the default NOCATALOG	
mode:	
Connecting to a Target Database and Entering the Password Interactively: Example This example connects to the target database as user SYS	
but without specifying a password at the command line. Note that you are prompted for a password.	
Connecting with Operating System Authentication: Example This example starts RMAN and then connects to the target database prod1	
by using operating system authentication and the recovery catalog database rcat	
using a net service name:	
Connecting to a Target Database, Recovery Catalog, and Auxiliary Instance: Example This example connects to three different databases from the command line, specifying a username, password, and net service name for each:	
Syntax	
convert::=	
Purpose	
To convert a datafile, tablespace or database to the format of a destination platform, in preparation for transport across different platforms.	
CONVERT TABLESPACE	
is used at the source database to produce datafiles for the specified tablespaces in the format of a different destination platform. The converted files can then be transported to the destination platform.	
CONVERT DATAFILE	
is used on the destination database to convert datafiles that are in the format of a different source platform. Once all of the datafiles required for a tablespace have been converted, the datafiles can be transported into the destination database.	
CONVERT DATABASE	
is used to transport an entire database from a source platform to a destination platform, converting the datafiles to the format of the destination platform and ensuring the creation of other required database files. Depending upon the requirements of your situation, CONVERT DATABASE	
on either the source or destination platform.	
The following list describes some situations in which CONVERT TABLESPACE	
and CONVERT DATAFILE	
can be useful:	
Content providers can publish structured data as transportable tablespaces and distribute it to customers who can easily and efficiently integrate this data into their Oracle databases, regardless of their chosen platform.	
Data from a large data warehouse server can be distributed to data marts on smaller computers such as Windows-based workstations or servers.	
Read-only tablespaces can be shared across a heterogeneous cluster.	
Note: TheCONVERT TABLESPACE and CONVERT DATAFILE commands are only one part of a multiple-step process for transporting datafiles and tablespaces across platforms. You can transport datafiles and tablespaces using your live datafiles with the process described in Oracle Database Administrator's Guide or from backups using the process described in Oracle Database Backup and Recovery Advanced User's Guide. You should refer to that document before attempting to transport a tablespace across platforms.	
See Also: Oracle Database Backup and Recovery Advanced User's Guide for a complete discussion of the use ofCONVERT DATAFILE , CONVERT TABLESPACE and CONVERT DATABASE	
CONVERT DATAFILE	
and CONVERT TABLESPACE	
can also be used to move files into and out of Automated Storage Management (ASM) disk groups. This capability is needed because native operating system file manipulation commands like Unix cp	
and Windows COPY	
cannot read from or write to ASM disk groups.	
Restrictions and Usage Notes	
This discussion includes the following sections:	
Restrictions and Usage Notes on All Forms of RMAN CONVERT	
The following restrictions apply to CONVERT	
DATAFILE	
, CONVERT	
TABLESPACE	
and CONVERT	
DATABASE	
:	
The input files are not altered by the CONVERT	
process. The conversion is not performed in place. Instead, converted files are written to a specified output destination.	
Both source and destination databases must be running with initialization parameter COMPATIBLE	
set to 10.0 or higher.	
Prior to Release 10g, CLOBs were created in a variable width character set and stored in an endian-dependent format. The CONVERT	
command does not perform conversions on these CLOBs. Instead, RMAN captures the endian format of each LOB column and propagates it to the target database. Subsequent reads of this data by the SQL layer will interpret the data correctly based on either endian format and write it out in an endian- independent way if the tablespace is writeable. CLOBs created in Oracle Database Release 10gare stored in character set AL16UTF16	
, which is platform independent.	
CONVERT	
does not process user datatypes that require endian conversions. If you need to transport objects between databases that are built on underlying types that store data in a platform-specific format, then use the Data Pump Import and Export utilities.	
A tablespace must have been made read-write at least once in Release 10g before it can be transported to another platform. Hence, any read-only tablespaces (or currently existing transported tablespaces) that exist from an earlier release must be first made read-write at least once before they can be transported to a different platform. (It is sufficient to open the tablespace read-write and then immediately make it read-only again.)	
Restrictions and Usage Notes on CONVERT DATAFILE and CONVERT TABLESPACE	
The following usage notes apply to CONVERT	
DATAFILE	
and CONVERT	
TABLESPACE	
:	
To convert the datafiles of a tablespace on the source host, use CONVERT TABLESPACE... TO	
and identify the tablespace to be converted and the destination platform. You cannot convert individual datafiles on the source platform using CONVERT	
DATAFILE	
.	
When converting on the destination host, use CONVERT DATAFILE... FROM	
to identify the source platform (and the destination platform is, implicitly, the platform of the destination host). You must use CONVERT	
DATAFILE	
, rather than CONVERT	
TABLESPACE	
, on the destination, because the destination database does not have any information to associate the datafiles being converted with tablespaces during the conversion process.	
You can use either the FORMAT	
or fileNameConversionSpec	
arguments to control the names of the output files generated by the CONVERT	
command. If you do not specify either, the rules governing the location of the output files are the same as those governing the output files from a BACKUP AS COPY	
operation. These rules are described in the "backupTypeSpec" reference entry .	
Not all platforms support the use of CONVERT	
. Query V$TRANSPORTABLE_PLATFORM	
to determine the platforms supported by the CONVERT	
command. Cross-platform tablespace transport is only supported when both the source and destination platforms are contained in this view.	
The database has a list of its own internal names for each platform it runs on. You may need the exact name of the source or target platform as a parameter to the CONVERT	
command. Query V$TRANSPORTABLE_PLATFORM	
to get the platform name from SQL*Plus as follows:	
Note: In Release 10g, theCONVERT DATAFILE or CONVERT TABLESPACE command is required when transporting datafiles between platforms for which the value in V$TRANSPORTABLE_PLATFORM.ENDIAN_FORMAT is different. When transporting between platforms for which the	
Because you cannot use operating system utilities to move files into ASM, you may want to use CONVERT	
TABLESPACE	
or CONVERT	
DATAFILE	
to move files into ASM even if no change in endian format is required. Using CONVERT	
in this manner provides the equivalent of an operating system-level file copy command for copying files into ASM. BACKUP	
AS	
COPY	
provides similar functionality but catalogs the file copies created in the RMAN repository, which is only desirable if the file copies created in ASM are intended for use as backups at the target database.	
Restrictions on CONVERT DATABASE	
Because CONVERT	
DATABASE	
uses the same mechanism as CONVERT	
TABLESPACE	
and CONVERT	
DATAFILE	
to convert the datafiles of the database, the usage notes and restrictions in "Restrictions and Usage Notes on CONVERT DATAFILE and CONVERT TABLESPACE" also apply to the conversion of databases.	
The primary additional restriction on transporting entire databases is that the source and target platform must share the same endian format. For example, while you can transport a database from Microsoft Windows to Linux for x86 (both little-endian), or from HP-UX to AIX (both big-endian), you cannot transport a whole database from Solaris to Linux to x86 using this feature. You can, however, create a new database on a target platform manually, and transport individual tablespaces from the source database using the RMAN CONVERT	
TABLESPACE	
or CONVERT	
DATAFILE	
commands.	
Note: In spite of the fact that the endian formats for the source and destination platform are the same, the datafiles for a transportable database must undergo a conversion process, on either the source or destination host. Unlike transporting tablespaces across platforms, where conversion is not necessary if the endian formats are the same, transporting an entire database requires that certain types of blocks, such as blocks in undo segments, be reformatted to ensure compatibility with the destination platform.	
Also note that some parts of the database are not transported directly:	
Redo log files and control files from the source database are not transported. New control files and redo log files are created for the target database during the transport process, and an OPEN	
RESETLOGS	
is performed once the new database is created.	
Note: The control file for the converted database does not contain a copy of the RMAN repository information from the source database. Backups from the source database cannot be used with the converted database.	
BFILEs are not transported. RMAN provides a list of objects using the BFILE datatype in the output for the CONVERT	
DATABASE	
command, but users must copy the BFILEs themselves and fix their locations on the target platform.	
Datafiles for locally managed temporary tablespaces are not transported. The temporary tablespaces are re-created at the target platform by running the transport script.	
External tables and directories are not transported. RMAN provides a list of affected objects as part of the output of the CONVERT	
DATABASE	
command, but users must redefine these on the target platform. See Oracle Database Administrator's Guide for more information on managing external tables and directories.	
Password files are not transported. If a password file was used with the source database, the output of CONVERT	
DATABASE	
includes a list of all usernames and their associated privileges. Create a new password file on the target database using this information. See Oracle Database Security Guide for more information on managing password files.	
Keywords and Parameters	
convert	
Syntax Element	Description
---	---
DATABASE	Used to transport entire databases across platforms (where the source and destination platforms have the same endian format).
NEW DATABASE	Specifies the DB_NAME for the new database produced by the CONVERT DATABASE command.
ON TARGET PLATFORM	Specifies that any CONVERT commands required for datafiles should be performed on the destination platform rather than the source database. Useful if you do not want the overhead of the conversion on the source platform, or if you do not know the destination platform (for example, if you are publishing a transportable tablespace to be used by recipients with many different target platforms).
CONVERT SCRIPT	Specifies the location of the file to contain the convert script generated by CONVERT DATABASE ... ON TARGET PLATFORM . If not specified, the convert script is not generated.
skipSpec	Specifies that CONVERT DATABASE should skip inaccessible, offline or read-only files during the conversion process.
TRANSPORT SCRIPT	Specifies the location of the file to contain the transport script generated by CONVERT DATABASE . If omitted, the transport script is not generated.
DATAFILE	
Specifies the name of a datafile that you want to transport into the destination database.	
TABLESPACE	
Specifies the name of a tablespace in the source database that you want to transport into the destination database on a different platform. CONVERT TABLESPACE can only be used when connected to the source database and converting on the source platform.	
convertOptionList	
Syntax Element	Description
---	---
A set of string pairs. Whenever any of the input filenames contains one of the first halves of a pair, anywhere in the filename, it will be replaced with the second half of the same pair.You can use as many pairs of replacement strings as required. You can use single or double quotation marks.	
FORMAT formatSpec	Specifies the name template for the output file(s). See the BACKUP AS COPY command for the format values that are valid here.
FROM PLATFORM = platform_name	Specifies the name of the source platform. This must be one of the platforms listed in the PLATFORM_NAME column of the V$TRANSPORTABLE_PLATFORM view.
PARALLELISM [=] integer	Specifies the number of channels to be used to performing the operation. If not used, then channels allocated or configured for disk determine the number of channels.
TO PLATFORM = platform_name	Specifies the name of the destination platform as displayed in the V$TRANSPORTABLE_PLATFORM.PLATFORM_NAME output. If used on the destination platform, then this must be the value for the destination platform in V$TRANSPORTABLE_PLATFORM.PLATFORM_NAME .
Examples	
Examples for Creating Transportable Tablespace Sets	
The procedure for creating and using a transportable tablespace set is documented at length in Oracle Database Administrator's Guide. RMAN's CONVERT	
command is only required in cases where you are moving transportable tablespaces between platforms with different byte ordering. If your platforms have the same byte ordering, then you can either use CONVERT	
or copy the files directly.	
The basic outline of the process is as follows:	
CONVERT	
TABLESPACE	
command at this point on the source platform to convert the tablespaces for the target platform. See the first example following this outline. (If you prefer to use the destination system's resources for the conversion, do nothing in this step.) For more details on this process, see Oracle Database Administrator's Guide. Read that discussion in its entirety before attempting any part of the tablespace transport process. The discussion in this document will focus on the specifics of using the CONVERT	
TABLESPACE	
and CONVERT	
DATAFILE	
commands.	
Converting Tablespaces on the Source Platform: Example Suppose you need to convert tablespaces finance	
(datafiles '/orahome/fin/fin01.dbf	
' and '/orahome/fin/fin02.dbf	
') and hr	
(datafiles '/orahome/fin/hr01.dbf	
' and '/orahome/fin/hr02.dbf	
') from a source database running on a Sun Solaris host to a destination database running on an Linux PC. You plan to store the converted datafiles in the temporary directory /tmp/transport_linux/	
on the source host.	
The example assumes that you have carried out the following steps in preparation for the tablespace transport:	
You have set the tablespaces to be transported to be read-only.	
You have looked up the name for the destination platform in V$TRANSPORTABLE_PLATFORM	
.	
The PLATFORM_NAME	
for Linux on a PC is 'Linux IA (32-bit)	
'.	
Now use RMAN to convert the datafiles to be transported to the destination host's format on the source host. The FORMAT	
argument controls the name and location of the converted datafiles.	
The result is a set of converted datafiles in the /tmp/transport_linux/	
directory, with data in the right endian-order for the Linux IA (32-bit) platform.	
From this point, you follow the rest of the general outline for tablespace transport. Use the export utility to create the file of structural information, if you have not already, move the structural information file and the converted datafiles from /tmp/transport_linux/	
to the desired directories on the destination host, and plug the tablespace into the new database with the Import utility.	
Converting Datafiles on the Target Platform: Example Suppose you need to transport tablespaces finance	
(datafiles '/orahome/fin/fin01.dbf	
' and '/orahome/fin/fin02.dbf	
') and hr	
(datafiles '/orahome/hr/hr01.dbf	
' and '/orahome/hr/hr02.dbf	
') from a source database running on a Sun Solaris host to a destination database running on an Linux PC host. You plan to perform conversion on the target host. You will temporarily store the unconverted datafiles in the directory /tmp/transport_solaris/	
on the target host. When the datafiles are plugged into the destination database, they will be stored in /orahome/dbs	
.	
The example assumes that you have carried out the following steps in preparation for the tablespace transport:	
You have set the source tablespaces to be transported to be read-only, used the Original Export utility to create the structural information file (named, in our example, expdat.dmp	
), gathered expdat.dmp	
and the unconverted tablespace datafiles to be transported, and copied these files to the destination host, in the /tmp/transport_solaris/'	
directory. You have preserved the subdirectory structure from the files' original location, that is, the datafiles are stored as:	
/tmp/transport_solaris/fin/fin01.dbf	
/tmp/transport_solaris/fin/fin02.dbf	
/tmp/transport_solaris/hr/hr01.dbf	
/tmp/transport_solaris/hr/hr02.dbf	
Now use RMAN's CONVERT	
command to convert the datafiles to be transported to the destination host's format and deposit the results in /orahome/dbs	
.	
Note the following:	
You have to identify the datafiles by filename, not by tablespace name. Until the datafiles are plugged in, the local instance has no way of knowing the desired tablespace names.	
The FORMAT	
argument controls the name and location of the converted datafiles.	
When converting on the destination host, you must specify the source platform using the FROM argument. Otherwise, RMAN will assume that the source platform is the same as the platform of the host performing the conversion.	
The result is a set of converted datafiles in the /orahome/dbs/	
directory, named thus:	
/orahome/dbs/fin/fin01.dbf	
/orahome/dbs/fin/fin02.dbf	
/orahome/dbs/hr/hr01.dbf	
/orahome/dbs/hr/hr02.dbf	
From this point, follow the rest of the general outline for tablespace transport. Use Import to plug the converted tablespaces into the new database with the import utility, and make the tablespaces read-write if applicable.	
Copying Datafiles To and From ASM Using CONVERT DATAFILE: Examples	
The following example illustrates copying datafiles into ASM from normal storage. Use CONVERT	
DATAFILE	
without specifying a source or destination platform, and specifying ASM disk group +DATAFILE	
for the output location, as shown here:	
The following example illustrates copying the datafiles of a tablespace out of ASM storage, to directory /tmp	
, with uniquely generated filenames.	
Transporting Databases: Examples	
Transporting databases is documented in Oracle Database Backup and Recovery Advanced User's Guide. Read that discussion in its entirety before attempting any part of the process of transporting a database. The discussion in this document will focus on the specifics of using the CONVERT	
DATABASE	
command.	
The arguments to CONVERT	
DATABASE	
vary depending upon whether the conversion of the datafiles is performed on the source or destination platform. For a description of the conversion process on source and destination platforms and extended examples, refer to Oracle Database Backup and Recovery Advanced User's Guide.	
The following example illustrates using the CONVERT	
DATABASE	
command and converting the datafiles to the destination platform format on the source host:	
The following example illustrates using the CONVERT	
DATABASE	
command and converting the datafiles to the destination platform format on the destination host:	
Syntax	
createCatalog::=	
Purpose	
To create a schema for the recovery catalog. Typically, you create this schema in a separate recovery catalog database. The catalog is created in the default tablespace of the recovery catalog owner.	
Note: In releases prior to 8.1.5, you created the recovery catalog schema by connecting to the recovery catalog database and executing thecatrman.sql script.	
See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to create the recovery catalog	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt.	
RMAN must be connected to the recovery catalog either through the CATALOG	
command-line option or the CONNECT CATALOG	
command, and the catalog database must be open. A connection to the target database is not required.	
The recovery catalog owner must be granted the RECOVERY_CATALOG_OWNER	
role, and also be granted space privileges in the tablespace where the recovery catalog tables will reside.	
If you specify the tablespace name in the CREATE	
CATALOG	
command, and if the tablespace name is an RMAN reserved word (as listed in "RMAN Reserved Words"), then it must be uppercase and enclosed in quotes.	
Do not create the recovery catalog in the SYS	
schema.	
See Also:	
Keywords and Parameters	
None	
Example	
Creating a Catalog Schema: Example	
The following example creates a user rman	
, grants rman	
the RECOVERY_CATALOG_OWNER	
role, then creates the recovery catalog in the schema rman.cattbs	
of the database rcat	
:	
Syntax	
createScript::=	
Purpose	
To create a stored script in the recovery catalog.	
A stored script is a sequence of RMAN commands, given a name and stored in the recovery catalog for later execution. A stored script may be local (that is, associated with one target database) or global (available for use with any database registered in the recovery catalog).	
Any command that is legal within a RUN command is permitted in the stored script.	
Several other commands are used with stored scripts:	
The PRINT SCRIPT command is used to view the contents of a stored script.	
The REPLACE SCRIPT command is used to update the contents of a stored script.	
The EXECUTE SCRIPT command is used to execute the commands in the stored script.	
The SCRIPT	
command line arguments for RMAN (described in "cmdLine") runs a stored script automatically when starting RMAN.	
The LIST SCRIPT NAMES command is used to find out what stored scripts are defined for the current target database and recovery catalog.	
The DELETE SCRIPT command is used to delete a stored script from the recovery catalog.	
See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to use stored scripts	
Restrictions and Usage Notes	
Note the following restrictions:	
Execute CREATE	
SCRIPT	
only at the RMAN prompt, not within a RUN block.	
When creating a script, RMAN must be connected to a target database and a recovery catalog, and the catalog database must be open.	
You cannot run CREATE	
SCRIPT	
once to create a local script, and then use this same script on multiple target databases. If you want to create a global script, you must connect to some target database (as well as a recovery catalog) and then use CREATE GLOBAL SCRIPT	
instead of CREATE SCRIPT	
.	
You cannot execute a RUN command within a stored script.	
Quotes must be used around the script name when the name contains either spaces or reserved words.	
RMAN returns an error RMAN-20401: script already exists	
if you try to create a local script when another local script already exists for the same target database with the same name. The same error is returned if you try to create a global script and a global script already exists with the same name in the recovery catalog. If the script already exists, you must use REPLACE SCRIPT	
to update its contents.	
Keywords and Parameters	
Syntax Element	Description
---	---
GLOBAL	Identifies the script being created as global. If omitted, RMAN creates a local stored script script_name defined on the current target database. If no such script is defined on the target database, RMAN creates for a global stored script script_name .
' script_name '	The name of the script to create.
COMMENT [=] 'comment'	Associates an explanatory comment with the stored script in the catalog.
FROM FILE ' filename '	Reads the sequence of commands to define the script from the specified file. The file should look like the body of a valid stored script. The first line of the file must be a '
backupCommands	
Commands valid in a stored script. The statements allowable within the brackets of the CREATE SCRIPT 'script_name' { ... } command are the same commands supported within a RUN block. See "RUN" for more details.	
Example	
Creating a Local Stored Script: Example This example creates a stored script called backup_whole	
that backs up the database and archived redo logs:	
Creating a Global Stored Script: Example This example creates a stored script called backup_whole	
that backs up the database and archived redo logs:	
Syntax	
crosscheck::=	
maintSpec::=	
Purpose	
To verify the status of backups and copies recorded in the RMAN repository against media such as disk or tape. The CROSSCHECK	
command only processes files created on the same device type as the channels running the crosscheck.	
Status of RMAN Backups	
The CROSSCHECK	
command checks only objects marked AVAILABLE	
or EXPIRED	
by examining the files on disk for DISK	
channels or by querying the media manager for sbt	
channels. Table 2-2 describes the meaning of each status.	
Table 2-2 Meaning of Crosscheck Status	
Status	Description
---	---
Object is not found either in file system (for Note:	
Object is available for use by RMAN. For a backup set to be	
Object is not available for use by RMAN. For a backup set to be	
The CROSSCHECK	
command does not delete any files that it is unable to find, but updates their repository records to EXPIRED	
. Then, you can run DELETE EXPIRED	
to remove the repository records for all expired files as well as any existing physical files whose records show the status EXPIRED	
.	
If some backup pieces or copies were erroneously marked as EXPIRED	
, for example, because the media manager was misconfigured, then after ensuring that the files really do exist in the media manager, run the CROSSCHECK	
BACKUP	
command again to restore those files to AVAILABLE	
status.	
See Also: Oracle Database Backup and Recovery Basics to learn how to manage target database records in the catalog	
Restrictions and Usage Notes	
The target instance must be started.	
A maintenance channel is not required when CROSSCHECK	
is used with a file that is on disk. However, if you run CROSSCHECK	
on files stored on a media manager, and you have not configured automatic channels for the media manager, then you must manually allocate maintenance channels for these objects. For example, if you created a backup on an sbt	
channel, but have not configured automatic channels for your sbt	
device, then you must manually allocate an sbt	
channel before the CROSSCHECK	
command can check the backup.	
Crosscheck validates all specified backups and copies, even if they were created in prior incarnations (that is, before the most recent OPEN	
RESETLOGS	
).	
Keywords and Parameters	
Syntax Element	Description
---	---
maintSpec	Crosschecks files output by the BACKUP command. For maintSpec options, refer to the parameter descriptions in "maintSpec".
Examples	
Crosschecking All Backups and Copies: Example The following example, which assumes that the default configured channel is DEVICE	
TYPE	
sbt	
, queries the status of all backups and copies on tape and disk. Because RMAN preconfigures a disk channel, you do not need to manually allocate a disk channel:	
Crosschecking Within a Range of Dates: Example The following example queries the media manager for the status of the backup sets in a given six month range. Note that RMAN uses the date format specified in the NLS_DATE_FORMAT	
parameter, which is 'DD-MON-YY	
' in this example:	
Syntax	
datafileSpec::=	
Purpose	
A subclause that specifies a datafile by filename or absolute file number.	
Restrictions and Usage Notes	
You can specify the relative or absolute path name.	
Double and single quotes are both legal (although only single quotes are shown in the diagram). Double quotes are recommended in the SQL	
command.	
Use ?	
to represent the Oracle home and @	
for the Oracle SID.	
See Also: "Placeholders" to learn about the difference between single and double quotes, as well as the behavior of environment variables in RMAN quoted strings	
Keywords and Parameters	
Syntax Element	Description
---	---
' filename '	Specifies the datafile by using either the full path or a relative filename. If you specify a relative filename, the filename is qualified in a port-specific manner by the target database.
integer	Specifies the datafile by using its absolute file number. Obtain the file number from the V$DATAFILE , V$DATAFILE_COPY , or V$DATAFILE_HEADER views or REPORT SCHEMA command output.
Examples	
Specifying a Datafile by Filename: Example This example copies datafile ?/oradata/trgt/users01.dbf	
to disk, specifying it by filename:	
Specifying a Datafile by Absolute File Number: Example This example copies datafiles 3	
and 4	
to disk, specifying them by file number:	
Syntax	
delete::=	
maintSpec::=	
Purpose	
To delete physical backups and copies as well as do the following:	
Update their repository records in the target control file to status DELETED	
Remove their repository records from the recovery catalog (if you use a catalog)	
When running RMAN interactively, DELETE	
displays a list of the files and prompts you for confirmation before deleting any file in the list. When reading commands from a command file, RMAN will not prompt for confirmation.	
Relationship Between Repository and Media	
The repository record for a backup can sometimes fail to reflect the physical status of the backup. For example, files backed up to disk can be deleted using an operating system utility. The record in the RMAN repository is not updated by the operating system utility, so the RMAN repository still shows the object as available even though it has been deleted. If you do not run the CROSSCHECK	
command to update the repository, and if you then run DELETE	
against the backup, then the repository shows that the object is AVAILABLE	
while the object is in fact missing. The following table indicates the behavior of DELETE	
in such situations.	
Repository Status	Physical Status
---	---
AVAILABLE	Not found on media
EXPIRED	Found on media
UNAVAILABLE	Any
FORCE	Any
Restrictions and Usage Notes	
The target instance must be started.	
The DELETE	
command can delete usable backups and copies from prior incarnations.	
A maintenance channel is not required when DELETE	
is used with a file that is disk-only (that is, an ARCHIVELOG	
, DATAFILECOPY	
, CONTROLFILECOPY	
). Otherwise, you must use a manual or automatic maintenance channel.	
If you use DELETE	
on files that are not disk-only, and if you have objects created on device types that are not configured for automatic channels, then run manual maintenance commands on these channels. For example, if you created a backup using an sbt	
channel, but have only a DISK	
channel automatically configured, you must manually allocate an sbt	
channel for DELETE	
.	
Keywords and Parameters	
Syntax Element	Description
---	---
FORCE	Deletes specified files (whether or not they exist on the media) and removes repository records. RMAN ignores any I/O errors for the deleted objects. RMAN displays the number of deleted objects at the end of the job.
NOPROMPT	Deletes specified files without first listing the files or prompting for confirmation. The DELETE NOPROMPT command still displays each item as it is deleted. By default,
EXPIRED	Removes only files whose status in the repository is EXPIRED . RMAN marks backups and copies as expired when you run a CROSSCHECK command and the files are absent or inaccessible. To determine which files are expired, run a LIST EXPIRED command. If for some reason a backup or copy marked
maintSpec	Deletes files output by the BACKUP command. For maintSpec options, refer to the parameter descriptions in "maintSpec".
OBSOLETE	Deletes backups and datafile copies recorded in the RMAN repository that are obsolete, that is, no longer needed. In addition to obsolete datafile backups, RMAN deletes obsolete archived logs and archived log backups. RMAN determines which backups and copies of datafiles are no longer needed, which in turn determines when logs (and backups of logs) are no longer needed. RMAN considers the creation of a datafile as a backup when deciding which logs to keep. RMAN first uses the options that you specify with obsOperandList to determine what is obsolete. If you do not specify options in obsOperandList, then RMAN uses the options specified in CONFIGURE Note: Even if you use a
obsOperandList	Specifies the criteria for determining which backups and copies are obsolete. See Also: "obsOperandList"
DEVICE TYPE deviceSpecifier	Restricts the deletion to obsolete backups and copies created on the specified device type only. See Also: "deviceSpecifier"
Examples	
Deleting Expired Backups: Example The following example uses a configured sbt	
channel to check the media manager for expired backups of the tablespace users	
that are more than one month old and removes their catalog records:	
Deleting Obsolete Backups: Example The following example deletes backups and copies that are not needed to recover the database to a random point within the last week. RMAN also deletes archived redo logs that are no longer needed:	
Deleting Files That Have Already Been Backed Up: Example The following example deletes backups and copies (including archived redo logs) that have already been backed up at least twice to tape:	
Forcing the Deletion of a Backup Set: Example The following example attempts to delete the backup set copy with tag weekly_bkup	
:	
However, RMAN displays a warning because the repository shows the backup set as available, but the object is not actually available on the media:	
The following command forces RMAN to delete the backup set:	
Syntax	
deleteScript::=	
Purpose	
To delete a local or global stored script from the recovery catalog.	
Restrictions and Usage Notes	
Execute DELETE	
SCRIPT	
only at the RMAN prompt.	
RMAN must be connected to a recovery catalog and target database, and the catalog database must be open.	
To delete a local script, you must be connected to the target database for which the local script is defined.	
Quotes must be used around the script name when the name contains either spaces or reserved words.	
Keywords and Parameters	
Syntax Element	Description
---	---
GLOBAL	Specifies that the script to delete is a global stored script. Otherwise, RMAN will look for a local stored script called script_name defined on the current target database. (If no such script is defined on the target database, RMAN will check for a global stored script named script_name and delete that script if it exists.)
'script_name'	Specifies the name of the script to delete. See Also: "CREATE SCRIPT", "EXECUTE SCRIPT", "REPLACE SCRIPT", and "LIST" for LIST SCRIPT NAMES.
Example	
Deleting a Script: Example The following example deletes a stored script b_whole_10	
from the recovery catalog:	
If a local stored script b_whole_10	
is defined, it is deleted. If no local stored script b_whole_10	
is defined but a global stored script b_whole_10	
is defined, the global script is deleted.	
Syntax	
deviceSpecifier::=	
Purpose	
A subclause specifying the type of storage for a backup or copy.	
Keywords and Parameters	
Syntax Element	Description
---	---
DISK	Specifies disk storage device.
'media_device'	Specifies a sequential I/O device or access method for storage. The syntax and semantics of sequential I/O device types are platform-specific. Example values are sbt and sbt_tape (with or without quotes). These values are synonymous. The
Examples	
Allocating a Tape Channel: Example This example allocates a maintenance channel for a media management device:	
Backing Up to Disk: Example This example backs up the database to disk:	
Restoring from Tape: Example This example restores archived logs from tape:	
Syntax	
dropCatalog::=	
Purpose	
To remove the schema from the recovery catalog.	
Caution: This command deletes all RMAN repository data from the recovery catalog. If you have no backups of the catalog, then all backups of all databases managed by this recovery catalog become unusable.	
See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to drop the recovery catalog schema	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt.	
You must be connected to the recovery catalog database through the CATALOG	
command-line option or the CONNECT	
CATALOG	
command. The catalog database must be open. You do not have to be connected to the target database.	
Enter the command twice to confirm that you want to drop the schema.	
Example	
Deleting the Catalog: Example This example drops the schema from the recovery catalog (you must enter the command twice to confirm):	
Syntax	
dropDatabase::=	
Purpose	
Deletes the target database and, if RMAN is connected to a recovery catalog, unregisters it. RMAN removes all datafiles, online logs, and control files belonging to the target database.	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt.	
You must be connected to the target database, which must mounted exclusive and not open, and started in RESTRICT	
mode.	
If you want RMAN to delete archived logs, copies, and backups belonging to the database, then you must use the DROP DATABASE INCLUDING BACKUPS	
form of the command.	
Keywords and Parameters	
Syntax Element	Description
---	---
INCLUDING BACKUPS	Deletes backup sets, proxy copies, image copies, and archived logs associated with the target database from all configured device types. Note: If you have been using a recovery catalog but run RMAN in
NOPROMPT	Specifies that you do not want RMAN to prompt you for confirmation before deleting the database. By default, RMAN prompts for confirmation.
Example	
Deleting a Database: Example In this example, you want to delete a test database called test1	
that is registered in the recovery catalog. You connect to test1	
which is started in RESTRICT	
mode, and delete the database files, as well as all backups, copies, and archived logs associated with the database:	
Syntax	
duplicate::=	
logSpec::=	
sizeSpec::=	
Purpose	
To use backups (backup sets or image copies) of the target database to create either of the following:	
A duplicate database, which is a copy of the target database (or a subset of the target database) with a unique DBID. Because a duplicate database has a unique DBID, it is entirely independent of the primary database and can be registered in the same recovery catalog as the primary database. Typically, duplicate databases are used for testing.	
A standby database, which is a special copy of the primary database that is updated by applying archived redo logs from the primary database. A standby database does not get a new DBID.	
To create a standby database with the DUPLICATE	
command you must specify the FOR	
STANDBY	
option. The DUPLICATE	
...	
FOR	
STANDBY	
command creates the standby database by restoring a standby control file, mounting the standby control file, and then restoring and recovering backups of the target datafiles. The standby database is left mounted after duplication is complete. Note that backups of the standby database are interchangeable with backups of the primary database.	
When duplicating a database that is currently in NOARCHIVELOG	
mode, recovery occurs with the NOREDO	
option. Hence, if incremental backups exist, RMAN applies only these backups to the restored files during recovery. For databases in ARCHIVELOG	
mode, DUPLICATE	
recovers by default up to the last archived redo log generated at the time the command was executed, or until a time specified with a SET	
UNTIL	
clause.	
See Also: Oracle Database Backup and Recovery Advanced User's Guide to learn how to create a duplicate database with the Oracle Data Guard Concepts and Administration to learn how to create, manage, and back up a standby database	
Restrictions and Usage Notes	
These restrictions apply to all uses of the DUPLICATE	
command (both for creation of a standby database and creation of a nonstandby duplicate database):	
The target SCN for a DUPLICATE	
command cannot be before the most recent OPEN	
RESETLOGS	
. DUPLICATE	
to previous incarnations is not supported.	
Issue one or more ALLOCATE	
AUXILIARY	
CHANNEL	
commands before executing the DUPLICATE	
command, or CONFIGURE automatic auxiliary channels. RMAN uses the channel configuration from the target for auxiliary channels in the following circumstances:	
You have not manually allocated auxiliary channels.	
You have not configured auxiliary channels.	
The automatic target channels do not have CONNECT	
strings.	
The DUPLICATE	
command does not require non-AUXILIARY	
channels (that is, normal target database channels).	
You must be connected to both the target database and auxiliary instance. The auxiliary instance must be started with the NOMOUNT	
option, and the target database must be mounted or open. The target database cannot be a standby database.	
If you need to duplicate a database when some backups of the target database do not exist then you must specify SKIP	
TABLESPACE	
. If you do not specify SKIP	
TABLESPACE	
, then RMAN attempts to duplicate the following:	
All datafiles in online tablespaces, whether or not the datafiles are online.	
All tablespaces taken offline with an option other than NORMAL	
. For example, RMAN attempts to duplicate tablespaces taken offline with the IMMEDIATE	
option. You cannot duplicate OFFLINE	
NORMAL	
tablespaces, although you can add these tablespaces manually after duplication.	
If no valid backups exist of any tablespace or datafile, then the DUPLICATE	
command fails.	
You can skip all tablespaces in the target database except the SYSTEM	
tablespace, undo tablespaces, and tablespaces containing rollback segments. RMAN does not check for completeness. For example, you can duplicate a data tablespace but not the tablespace containing the index for the data, or duplicate a tablespace that contains only one partition of a partitioned table.	
If the target and duplicate databases reside on the same host, set the CONTROL_FILES	
parameter appropriately so that the DUPLICATE	
command does not generate an error because the target control file is in use.	
If the target and duplicate databases share the same host, set all *_PATH	
and *_DEST	
initialization parameters appropriately so that the target database files are not overwritten by the duplicate database files.	
You cannot set the DB_NAME	
parameter in the duplicate parameter file to a value different from the database name specified in the DUPLICATE	
command.	
You cannot use the same database name for the target and duplicate databases when the duplicate database resides in the same Oracle home as the target. Note that if the duplicate database resides in a different Oracle home from the target, then its database name just has to differ from other database names in that same Oracle home.	
If the target and duplicate databases reside on different hosts, then you must do one of the following tasks for duplication to be successful:	
Move backups and disk copies from the target host to the duplicate host to the same location as the target host so that the path names are identical	
Move backups and disk copies from the target host to the duplicate host to a new location (so that the path names are different), and then CATALOG them.	
Make sure that all backups and copies (disk or sbt	
) on the target host are remotely accessible from the duplicate host. Make sure that the archived redo logs are available in the expected location in the new host.	
Duplication must be done to the same platform as the source datababse.	
You cannot recover the duplicate database to the current point in time, that is, the most recent SCN. RMAN recovers the duplicate database up to or before the most recent available archived log: it cannot recover into the online redo logs.	
Specify new filenames or convert target filenames for the datafiles and online redo logs when the duplicate filenames must be different from the target filenames (as when duplicating to the same host as the primary). If you do not specify filenames for duplicate online redo logs and datafiles, then RMAN reuses the target datafile names.	
If you want the duplicate filenames to be the same as the target filenames, and if the databases are in different hosts, then you must specify NOFILENAMECHECK	
.	
If duplicating a database on the same host as the target database, do not specify the NOFILENAMECHECK	
option. Otherwise, RMAN may signal this error:	
The following restrictions and notes apply when you use the DUPLICATE	
command with the FOR	
STANDBY	
option:	
All backups and copies located on disk must be available at the standby host with the same path names as in the target host.	
Backups on tape must be accessible from the standby host.	
If archived logs have not been backed up, then archived logs must be available at the standby host with the same path names as in the target host.	
If RMAN recovers the standby database, then the checkpoint SCN of the control file must be included in an archived redo log that is either available at the standby site or included in an RMAN backup. For example, assume that you create the standby control file and then immediately afterward archive the current log, which has a sequence of 100. In this case, you must recover the standby database up to at least log sequence 100, or the database signals an ORA-1152	
error message because the standby control file backup or copy was taken after the point in time.	
You cannot use SET	
NEWNAME	
or CONFIGURE	
AUXNAME	
to transform the filenames for the online redo logs on the standby database.	
You cannot use the DUPLICATE	
command to activate a standby database.	
You cannot connect to the standby database and then DUPLICATE	
...	
FOR	
STANDBY	
to create an additional standby database. To create additional standby databases, connect to the original primary database and run DUPLICATE	
...	
FOR	
STANDBY	
.	
Do not attempt to register the standby database in the primary database repository.	
The DB_FILE_NAME_CONVERT	
and LOG_FILE_NAME_CONVERT	
initialization parameters cannot be used to control generation of new names for files at the duplicate which are Oracle Managed Files (OMF) at the target database. When using Oracle Managed Files at the target instance, it is not generally possible to generate valid OMF filenames for the duplicate instance by replacing a substring of the target instance OMF filename. When duplicating Oracle Managed Files and storing the duplicates in an ASM disk group, RMAN uses DB_FILE_NAME_CONVERT	
or LOG_FILE_NAME_CONVERT	
to convert the disk group name, and then generates a new, valid filename based on the converted disk group name.	
You can avoid this issue by using one of the other supported options for naming datafiles being duplicated from OMF:	
Use SET	
NEWNAME	
to specify names for individual datafiles	
Use DB_CREATE_FILE_DEST	
for any datafile names not specifically renamed by SET	
NEWNAME	
, and do not specify DB_FILE_NAME_CONVERT	
.	
The supported options for naming online logs being duplicated from OMF are to use DB_CREATE_FILE_DEST	
, DB_RECOVERY_FILE_DEST	
or DB_CREATE_ONLINE_LOG_DEST_	
n	
. Do not use the LOG_FILE_NAME_CONVERT	
parameter.	
When creating a standby or duplicate database and using Oracle Managed Files, tempfiles are re-created in the current DB_CREATE_FILE_DEST	
, either when the database is opened to become a primary, or when it is opened read-only. When not using Oracle Managed Files, DB_FILE_NAME_CONVERT	
is used to convert the tempfile names for the new database. When the standby or duplicate database is opened in read-only or read/write mode, Oracle automatically creates temporary files as needed, with the converted names based upon DB_FILE_NAME_CONVERT	
. To specify different filenames for the tempfiles, see the discussion of SWITCH TEMPFILE	
.	
Keywords and Parameters	
duplicate	
Syntax Element	Description
---	---
FOR STANDBY	Specifies that database being duplicated is to be used as a standby database. RMAN restores the most recent files, unless SET UNTIL is specified. If DORECOVER is specified, then RMAN also recovers database. RMAN always leaves standby database in mounted state after executing DUPLICATE command.
dupsbyOptionList	Specifies options that only apply when creating a standby database.
DORECOVER	Specifies that RMAN should recover the database after creating it. If you specify an untilClause, then RMAN recovers to the specified point and leaves the database mounted.
NOFILENAMECHECK	Prevents RMAN from checking whether target datafiles sharing the same names as the duplicated files are in use. Note that the NOFILENAMECHECK option is required when the standby and primary datafiles and logs have identical filenames. See Also: The description in
TO 'database_name'	Specifies the name of the duplicate database. The name should match the name in the initialization parameter file of the duplicate database or the database signals an error when creating the control file.
dupOptionList	
Syntax Element	Description
---	---
dupOptionList	Specifies options that apply when creating a duplicate database not intended for use as a standby database.
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specific deviceSpecifier only (for example, DISK or sbt). This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you CONFIGURE automatic disk and tape channels, and if you run DUPLICATE ... DEVICE TYPE DISK , then RMAN allocates only disk channels. See Also: "deviceSpecifier"
fileNameConversionSpec	Specifies one or more patterns to map original to duplicate filenames. Note that this parameter overrides the initialization parameter See Also: "fileNameConversionSpec"
LOGFILE logSpec	Specifies the online redo logs when creating a nonstandby duplicate database. The syntax is the same used in the LOGFILE option of the CREATE DATABASE statement. Refer to the description of
NOFILENAMECHECK	Prevents RMAN from checking whether target datafiles sharing the same names as the duplicated files are in use. The user is responsible for determining that the duplicate operation will not overwrite useful data. This option is necessary when you are creating a duplicate database in a different host that has the same disk configuration, directory structure, and filenames as the host of the target database. For example, assume that you have a small database located in the /oracle/dbs/system_prod1.dbf /oracle/dbs/users_prod1.dbf /oracle/dbs/tools_prod1.dbf /oracle/dbs/rbs_prod1.dbf Assume that you want to duplicate the database in machine
OPEN RESTRICTED	Enables a restricted session in the duplicate database by issuing the following SQL statement: ALTER SYSTEM ENABLE RESTRICTED SESSION . RMAN issues this statement immediately before the duplicate database is opened.
PFILE = 'filename'	Specifies a client-side initialization parameter used by the auxiliary instance. RMAN automatically shuts down and restarts the auxiliary instance during duplication. If the auxiliary does not use a server-side parameter file in the default location, you must specify the client-side parameter file that RMAN should use when starting the auxiliary instance. Otherwise, you do not need to specify PFILE .
SKIP READONLY	Excludes datafiles in read-only tablespaces from the duplicate database. Note: A record for the skipped read-only tablespace still appears in
SKIP TABLESPACE ' tablespace_name '	Excludes the specified tablespace from the duplicate database. Note that you cannot exclude the SYSTEM tablespace, undo tablespaces, and tablespaces with rollback segments.
untilClause	Sets the end point for incomplete recovery of the duplicate database. You can achieve the same result by running SET UNTIL before the DUPLICATE command. See Also: "untilClause"
logSpec	
Syntax Element	Description
---	---
logSpec	Specifies the online redo logs when creating a nonstandby duplicate database. If you do not specify LOGFILE , then RMAN uses LOG_FILE_NAME_CONVERT if it is set. If neither LOGFILE nor LOG_FILE_NAME_CONVERT is set, then RMAN uses the original target log filenames for the duplicate files. You must specify the NOFILENAMECHECK option in this case. See Also: Oracle Database SQL Reference for
' filename ' SIZE integer	Specifies the filename of the online redo log member and the size of the file in kilobytes (K) or megabytes (M). The default is in bytes.
REUSE	Allows the database to reuse an existing file. If the file already exists, then the database verifies that its size matches the value of the SIZE parameter. If the file does not exist, then it is created.
GROUP integer	Specifies the group containing the online redo log members.
dupsbyOptionList	
Syntax Element	Description
---	---
dupsbyOptionList	Specifies options that only apply when creating a standby database.
DORECOVER	Specifies that RMAN should recover the database after creating it. If you specify an untilClause, then RMAN recovers to the specified point and leaves the database mounted.
fileNameConversionSpec	Specifies how to convert original datafile names to new datafile names in the standby database. See Also:"fileNameConversionSpec"
NOFILENAMECHECK	Prevents RMAN from checking whether target datafiles sharing the same names as the duplicated files are in use. Note that the NOFILENAMECHECK option is required when the standby and primary datafiles and logs have identical filenames. See Also: The description in dupOptionList
Examples	
Setting New Filenames Manually: Example This example assumes that the target datafiles are on host1	
in directory /h1/oracle/dbs/trgt	
. You wish to duplicate the database to newdb	
on host2	
in the directory /h2/oracle/oradata/newdb	
. The DUPLICATE	
command uses backup sets stored on tape to duplicate the target database to database newdb	
, and recovers it to a point 24 hours ago:	
Reusing the Target Filenames: Example This example assumes the following:	
You are restoring to a new host without a catalog.	
You have configured automatic channels.	
The target host and duplicate host have the same file structure.	
You wish to name the duplicate files exactly like the target database files.	
You do not want to duplicate read-only tablespaces.	
You want to prevent RMAN from checking whether files on the target database that have the same names as the duplicated files are in use.	
Creating a Standby Database: Example This example creates a standby database on a remote host with the same directory structure as the primary host. In this example, the NOFILENAMECHECK	
option is specified because the standby and primary datafiles and logs have the same names. Note that an automatic auxiliary channel is already configured, so you do not need to manually allocate a channel:	
Syntax	
executeScript::=	
Purpose	
To run a local or global RMAN script stored in the recovery catalog.	
See Also: "CREATE SCRIPT" and Oracle Database Backup and Recovery Advanced User's Guide for more details about stored scripts	
Restrictions and Usage Notes	
Use EXECUTE SCRIPT	
only within the braces of a RUN command.	
RMAN must be connected to the catalog with the CATALOG	
command-line option or the CONNECT CATALOG	
command, and the catalog must be open.	
For a local script, RMAN must be connected to the target database for which the local script is created.	
When you run an EXECUTE	
SCRIPT	
command within a RUN	
block, RMAN places the contents of the script in the context of that RUN block. For this reason, you should not allocate a channel within the RUN block if you also allocate it in the script.	
Keywords and Parameters	
Syntax Element	Description
---	---
GLOBAL	Specifies the execution of a global stored script instead of a local one.
'script_name'	The name of the stored script to execute. If no local stored script defined for the current target database is found with the name specified, RMAN searches for a global script by the same name and executes it if one is found. See Also: "LIST" for more information about listing the scripts stored in the recovery catalog, and "CREATE SCRIPT" for information about creating scripts
Example	
Executing a Script: Example This example runs a stored script called backup_whole_10	
:	
Syntax	
fileNameConversionSpec::=	
Purpose	
A subclause that specifies one or more patterns to be used in generating new database file names based on old ones. Used with BACKUP , CONVERT and DUPLICATE as one way of generating output file names.	
Restrictions and Usage Notes	
The rules for these patterns and how they affect file naming are the same as those for the initialization parameter DB_FILE_NAME_CONVERT	
. In parentheses, provide an even number of string patterns.	
When a new filename is generated based on an old one, the original filename is compared to the first member of each pair of string patterns. The first time a pattern is found which is a substring of the original filename, the new filename is generated by substituting the second member of the pair for the substring that matched.	
Set the string_pattern	
to a value such as:	
where:	
string1	
is a pattern matching the orignal filename	
string2	
is the pattern replacing string1	
in the generated filename	
string3	
is a pattern matching the orignal filename	
string4	
is the pattern replacing string3	
in the generated filename	
You can use as many pairs of primary and standby replacement strings as required.	
For example, when making image copy backups of tablespaces users	
(with datafiles in directory /disk1/dbs/users	
) and tools	
(with datafiles in /disk1/dbs/tools/	
), to direct the converted datafiles to /newdisk/users	
and /newdisk/tools	
respectively, use the DB_FILE_NAME_CONVERT	
pattern shown here:	
For each datafile to be converted where 'disk1/dbs	
' is a substring of the filename, the new filename is created by replacing 'disk1/dbs	
' with 'newdisk	
'. For example, the converted datafile corresponding to /disk1/dbs/users/users01.dbf	
is stored in /newdisk/users/users01.dbf	
, the converted datafile corresponding to /disk1/dbs/tools/tools01.dbf	
is stored in /newdisk/tools/tools.dbf	
, and so on.	
Be aware of the following details:	
The pattern does not have to match at the beginning of the filename. In the previous example, the match of the pattern to the original filename began at the second character. The command	
would direct the image copies to /disk1/newdbs/users	
and /disk1/newdbs/tools	
.	
For the CONVERT TABLESPACE, CONVERT DATABASE, and BACKUP AS COPY commands, if the source files for these operations are Oracle Managed Files, then fileNameConversionSpec	
cannot be used to convert the source filenames into new output filenames. For Oracle Managed Files, either in Automated Storage Management (ASM) or in ordinary filesystem storage, the database must be allowed to generate the filenames for the output files.	
For example, an OMF filename for a datafile in non-ASM storage might be of the form:	
An OMF filename from ASM storage might be of the form:	
Only the database can generate and manage specific OMF filenames, and substituting the name of a different disk group or a different OMF location into an OMF filename generally does not produce a valid filename in the new destination. To convert OMF filenames for storage in another OMF location, use an alternative such as a FORMAT clause with these commands to specify the new output location and allow the database to manage the specific output filenames.	
Keywords and Parameters	
Syntax Element	Description
---	---
'string_pattern'	Specifies the pattern, consisting of the pairs of strings used to convert the filenames..
Examples	
Using DB_FILE_NAME_CONVERT with Multiple String Patterns: Example This example shows the use of DB_FILE_NAME_CONVERT	
with BACKUP AS COPY	
to create image copies of the users	
and tools	
tablespaces from the previous discussion, directing users	
to /newdisk1	
and tools	
to /newdisk2	
:	
Syntax	
flashback::=	
Purpose	
Performs a Flashback Database operation, returning the database to (or to just before) target time, as specified by time, SCN or log sequence number.	
The result of using flashback database is generally similar to a database point-in-time recovery performed with RECOVER, except for the following principal differences:	
You do not need to restore a backup.	
RMAN uses flashback logs to undo changes to a point before the target time or SCN, and then uses archived redo logs to recover the database forward to make it consistent. RMAN automatically restores from backup any archived logs that are needed. (Flashback logs are stored as Oracle-managed files in the flash recovery area, and cannot be created if no flash recovery area is configured.)	
Some NOLOGGING	
changes may be reflected in the flashback which would not be reflected in the results of a point-in-time recovery, because flashback database uses backed-up block images as the basis for undoing changes to your current datafiles instead of relying on full and incremental backups and redo logs.	
Because FLASHBACK	
DATABASE	
does not require you to restore a backup, it is usually much faster than incomplete recovery.	
Flashback Database also has a number of applications in the context of standby databases, including providing functionality comparable to storage snapshots for reporting and testing databases, more flexibility in testing disaster recovery, and recovery from unwanted changes at a standby such as application of corrupted or erroneous updates at the standby database. These uses are discussed in more detail in Oracle Data Guard Concepts and Administration.	
Restrictions and Usage Notes	
You can run this command from the RMAN prompt or from within a RUN	
command.	
The target database must be in ARCHIVELOG	
mode.	
The target database must be a Release 10g database.	
You must be connected to the target database.	
You must have enabled the flashback logging functionality before the target time for flashback, using the SQL statement ALTER	
DATABASE	
...	
FLASHBACK	
ON	
. You can check V$DATABASE.FLASHBACK_ON	
to determine whether flashback logging has been enabled.	
The target database must be mounted with a current control file, that is, the control file cannot be a backup or have been re-created.	
The flash recovery area must be enabled to enable logging for Flashback Database (that is, DB_RECOVERY_FILE_DEST	
and DB_RECOVERY_FILE_DEST_SIZE	
must be set). Flashback logs can only be stored in the flash recovery area.	
The FLASHBACK	
command does not start modifying the database until it has made sure that it has all the files and resources that it needs. A Flashback Database operation should never fail due to missing datafiles, redo log files or flashback logs.	
RMAN performs restore failover when unable to restore an archvied redo log file for use in a Flashback Database operation. See Oracle Database Backup and Recovery Advanced User's Guide for details on restore failover.	
The earliest SCN that can be used for a Flashback Database operation depends on the setting of the DB_FLASHBACK_RETENTION_TARGET	
initialization parameter, and upon the actual retention of flashback logs permitted by available disk space	
If the FLASHBACK	
command does not have enough flashback data to return the database to the requested SCN or time, then RMAN issues an error and does not modify the database.	
Flashback logs may be deleted if disk space in the flash recovery area is low. If there is not enough space in the flash recovery area for the retention of other files, then the database may delete an archived redo log file that is eligible for deletion because it is backed up to another location, or because it is obsolete. In such a case, flashback logs that cannot be used without that redo log file are also deleted. To ensure that this does not occur, make sure the flash recovery area is large enough to accomodate your flashback logs and other backups.	
FLASHBACK DATABASE	
can be used to return your database to a point prior to the most recent OPEN RESETLOGS operation, if your database has been upgraded to 10g Relase 2.	
If the database has not retained enough flashback logs to allow a Flashback Database operation on all of your datafiles, then you can identify the datafiles for which there are not enough flashback logs, and take these datafiles offline. You can then run FLASHBACK	
DATABASE	
on the database and only the datafiles that are online will be affected. Then, you can perform point-in-time recovery on those files where there was not sufficient flashback log data.	
RMAN issues an error if you attempt to perform Flashback Database on online tablespaces on which flashback was disabled using the SQL statement ALTER	
TABLESPACE	
...	
FLASHBACK	
OFF	
.	
RMAN never flashes back data for temporary tablespaces.	
If a datafile has changed status between the current SCN and the SCN to which you are flashing back, then the FLASHBACK	
command behaves differently depending on the nature of the status change. Refer to Table 2-3 for details.	
If the FLASHBACK DATABASE	
command fails or is interrupted, then the database is left mounted. At that point you can issue another FLASHBACK DATABASE	
command ouse the RECOVER	
to perform complete recovery, returning the database to its original state.	
When performing a FLASHBACK DATABASE	
operation, your database may not be left at the SCN most immediately before the target time you specify. There are events other than transactions which cause the SCN for your database to be updated. If you use the FLASHBACK DATABASE TO	
form of the command and there is a transaction associated with your specified SCN, the database after the flashback operation will include all changes up to and including that transaction. Otherwise, all changes up to but not including that transaction will be included in your datafiles, whether you use the FLASHBACK DATBASE TO	
or FLASHBACK DATABASE TO BEFORE	
form of the command. Changes after the specified target time or SCN are never applied as a result of a FLASHBACK DATBASE	
operation.	
After the FLASHBACK DATABASE	
operation is complete, you may wish to open the database read-only and run some queries to see if you have achieved the desired result. If you are not satisfied with your flashback operation, you can perform RECOVER DATABASE	
to re-apply all changes and bring the database back to its state when you started the flashback operation. You can then attempt flashb ack again. If you are satisfied, you can either perform an OPEN RESETLOGS	
to abandon all changes after the target time for the flashback, or you can export lost data, use RECOVER DATABASE	
to return your database to its state before the flashback database operation, and then re-import the lost data.	
If you perform a FLASHBACK DATABASE	
operation, and some datafiles are not flashed back because they are offline, then you may encounter an error when you attempt to open the database with an OPEN	
RESETLOGS	
. In such a case you must do one of the following:	
Table 2-3 How FLASHBACK Responds to Datafile Operations	
If this datafile operation occurred during the flashback window ...	Then the FLASHBACK command ...
---	---
Added	Removes the datafile record from the control file.
Dropped	Adds the datafile to the control file, but marks it as offline and does not flash it back. You can then restore and recover the datafile to the same time or SCN.
Renamed	Ignores the renaming. The datafile retains its current name.
Resized	May fail. You can take the datafile offline and then rerun the
Taken offline	Ignores the operation. The datafile retains its current online status.
Brought online	Ignores the operation. The datafile retains its current offline status.
Made read-only or read-write	Changes the status of the datafile in the control file.
Keywords and Parameters	
Syntax Element	Description
---	---
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. For example, if you configure automatic disk and tape channels, and issue FLASHBACK ... DEVICE TYPE DISK , then RMAN allocates only disk channels. RMAN may need to restore redo logs from backup during the flashback database process. Changes between the last flashback log and the target time must be re-created based on the archived redo log. If no automatic channels are allocated for tape and a needed redo log is on tape, the FLASHBACK operation will fail. See Also: "deviceSpecifier"
DATABASE	Returns the database to the specified point. Query OLDEST_FLASHBACK_SCN and OLDEST_FLASHBACK_TIME in V$FLASHBACK_DATABASE_LOG to display the approximate lowest SCN and time to which you can flash back. View the current database SCN in V$DATABASE.CURRENT_SCN .
TO RESTORE POINT = ' restore_point_name	Returns the database to the SCN associated with the specified restore point. This can be an ordinary restore point or a guaranteed restore point.
TO SCN = integer	Returns the database to the point up to (and including) the specified SCN. By default, the provided SCN resolves to the current or ancestor incarnation. The DBA can override the default by using the RMAN RESET DATABASE INCARNATION command to set the recovery target incarnation.
TO BEFORE SCN = integer	Returns the database to its state just before the specified SCN. Any changes at an SCN lower than that specified are applied, but if there is a change associated with the specified SCN it is not applied. By default, the provided SCN resolves to the current or ancestor incarnation. The DBA can override the default by using the RMAN RESET DATABASE INCARNATION command to set the recovery target incarnation.
TO SEQUENCE = integer THREAD = integer	Specifies a redo log sequence number and thread as an upper limit. RMAN applies changes up to (and including) the last change in the log with the specified sequence and thread number.
TO BEFORE SEQUENCE = integer [THREAD = integer]	Specifies a redo log sequence number and thread as an upper limit. RMAN applies changes up to (but not including) the last change in the log with the specified sequence and thread number.
TO TIME = ' date_string '	Returns the database to its state at the specified time. You can use any SQL DATE expressions to convert the time to the current format, for example, FLASHBACK DATABASE UNTIL TIME 'SYSDATE-7' .
TO BEFORE TIME = ' date_string '	Similar to the TO TIME clause, but returns the database to its state including all changes up to but not including changes at the specified time.
TO BEFORE RESETLOGS	Returns the database to its state including all changes up to the SCN of the lastOPEN RESETLOGS .
Examples	
FLASHBACK DATABASE to a Specific SCN: Example The following command uses Flashback Database to return the database to the specified SCN:	
FLASHBACK DATABASE to One Hour Ago: Example The following command uses Flashback Database to return the database to 1/24 of a day (one hour) in the past:	
FLASHBACK DATABASE to a Specific Time: Example The following command uses SQL date conversion functions to specify the target time:	
FLASHBACK DATABASE to a Restore Point: Example The following command uses a restore point to identify the target time for a Flashback Database operation:	
FLASHBACK DATABASE to Before the Last Resetlogs: Example The following command returns the database to immediately before the most recent OPEN RESETLOGS	
:	
Syntax	
formatSpec::=	
Purpose	
To specify a filename format or an Automatic Storage Management disk group for a backup piece or image copy. If you do not specify a value for the FORMAT	
parameter, then RMAN either creates the backup in the flash recovery area if it is enabled, or in a port-specific directory (for example, ?/dbs	
on UNIX) if a flash recovery area is not enabled. In either case, RMAN uses the variable %U	
to name the backup.	
The entire format_string	
is processed in a port-specific manner by the target instance to derive the final backup piece name. The substitution variables listed in "Keywords and Parameters" are available in FORMAT	
strings to aid in generating unique filenames. The formatting of this information varies by platform.	
Order of Precedence for Multiple Format Strings	
You can specify up to four FORMAT	
strings. RMAN uses the second, third, and fourth values only when BACKUP	
COPIES	
, SET	
BACKUP	
COPIES	
, or CONFIGURE	
...	
BACKUP	
COPIES	
is in effect. When choosing the format for each backup piece, RMAN uses the first format value for copy 1, the second format value for copy 2, and so on. If the number of format values exceeds the number of copies, then the extra formats are not used. If the number of format values is less than the number of copies, then RMAN reuses the format values, starting with the first one.	
Specify format_string	
in any of these places, listed in order of precedence:	
backupSpec	
clause CHANNEL	
command If specified in more than one of these places, then RMAN searches for the FORMAT	
parameter in the order shown.	
Restrictions and Usage Notes	
Any name that is legal as a sequential filename on the platform is allowed, so long as each backup piece or copy has a unique name. If backing up to disk, then any legal disk filename is allowed, provided it is unique.	
Keywords and Parameters	
Syntax Element	Description
---	---
%a	Specifies the activation ID of the database.
%c	Specifies the copy number of the backup piece within a set of duplexed backup pieces. If you did not duplex a backup, then this variable is 1 for backup sets and 0 for proxy copies. If one of these commands is enabled, then the variable shows the copy number. The maximum value for %c is 256.
%d	Specifies the name of the database.
%D	Specifies the current day of the month from the Gregorian calendar in format DD .
%e	Specifies the archived log sequence number.
%f	Specifies the absolute file number.
%F	Combines the DBID, day, month, year, and sequence into a unique and repeatable generated name. This variable translates into c-IIIIIIIIII-YYYYMMDD-QQ , where:
%h	Specifies the archived redo log thread number.
%I	Specifies the DBID.
%M	Specifies the month in the Gregorian calendar in format MM .
%N	Specifies the tablespace name.
%n	Specifies the name of the database, padded on the right with x characters to a total length of eight characters. For example, if the prod1 is the database name, then the padded name is prod1xxx .
%p	Specifies the piece number within the backup set. This value starts at 1 for each backup set and is incremented by 1 as each backup piece is created. Note: If you specify
%s	Specifies the backup set number. This number is a counter in the control file that is incremented for each backup set. The counter value starts at 1 and is unique for the lifetime of the control file. If you restore a backup control file, then duplicate values can result. Also, CREATE CONTROLFILE initializes the counter back to 1 .
%t	Specifies the backup set time stamp, which is a 4-byte value derived as the number of seconds elapsed since a fixed reference time. The combination of %s and %t can be used to form a unique name for the backup set.
%T	Specifies the year, month, and day in the Gregorian calendar in this format: YYYYMMDD .
%u	Specifies an 8-character name constituted by compressed representations of the backup set or image copy number and the time the backup set or image copy was created.
%U	Specifies a system-generated unique filename (default). The meaning of %U is different for image copies and backup pieces. For a backup piece, For an image copy of a datafile,
For an image copy of an archived redo velog, %U means the following:	
For an image copy of a control file, %U means the following:	
%Y	Specifies the year in this format: YYYY .
%%	Specifies the literal ' % ' character. For example, %%Y translates to the string %Y .
Example	
Specifying an ASM Disk Group: Example This example copies the database to ASM disk group disk1	
:	
Specifying a Format for Datafile Copies: Example This example creates copies of three datafiles with tag 'LATESTCOPY	
' to directory /copies	
:	
Creating a Database Copy for Use as a Standby Database: Example This example creates an image copy of the database to instantiate a physical standby in /stby:	
Syntax	
host::=	
Purpose	
To invoke an operating system command-line sub-shell from within RMAN.	
Restrictions and Usage Notes	
Execute this command at the RMAN prompt or within the braces of a RUN command.	
Keywords and Parameters	
Syntax Element	Description
---	---
HOST	Enables you to execute an operating system command. Use this parameter:
Examples	
Executing an Operating System Copy Within RMAN: Example This example shuts down the database, makes a backup of datafile system01.dbf	
, then executes the UNIX ls	
command to display all backed up datafiles:	
Hosting to the Operating System Within a Backup: Example This example makes an image copy of datafile	
3	
, hosts out to the UNIX prompt to check that the copy is in the directory (the UNIX session output is indented and displayed in bold), then resumes the RMAN session:	
Syntax	
keepOption::=	
Purpose	
A subclause specifying the status of a backup or copy in relation to a retention policy. The KEEP	
option marks the backup or copy as exempt from the retention policy (that is, not obsolete), and the NOKEEP	
option undoes any existing exemptions.	
Limitations and Restrictions	
This option cannot be used to override the retention politcy for files stored in the flash recovery area.	
The KEEP	
UNTIL	
clause never causes RMAN to consider a backup obsolete, if it is still required to satisfy the retention policy. KEEP	
UNTIL	
can cause backups to be kept longer than the retention policy would otherwise require, but never causes a backup to become obsolete sooner than the retention policy requires.	
Keywords and Parameters	
Syntax Element	Description
---	---
KEEP	Overrides any configured retention policy for this backup or copy so that the backup is not obsolete. The BACKUP ... KEEP command specifies a new retention time for this backup. Use this option to create a long-term backup, that is, a backup that want you to archive.
FOREVER	Specifies that the backup or copy never expires. You must use a recovery catalog when FOREVER is specified, because the backup records eventually age out of the control file.
UNTIL TIME = ' date_string '	Specifies the date until which the backup or copy must be kept. You can either specify a specific time by using the current NLS_DATE_FORMAT , or a SQL date expression, such as 'SYSDATE+365' .
LOGS	Specifies that all of the archived logs required to recover this backup or copy must remain available as long as this backup or copy is available.
NOLOGS	Specifies that this backup or copy cannot be recovered because the archived logs needed to recover this backup will not be kept. The only use for this backup or copy is to restore the database to the point in time that the backup or copy was taken. This is the only valid recoverability option when the database operates in NOARCHIVELOG mode. This option is not valid if the backup or copy is inconsistent.
NOKEEP	Specifies that the backup or copy expires according to the user's retention policy. This is the default behavior if no KEEP option is specified.
Examples	
Making a Long-Term Backup: Example This example makes a long-term backup of the database and specifies that it should never become obsolete and that the logs required to recover it should not be retained:	
Changing the Status of a Copy: Example This example specifies that any long-term image copies of datafiles and control files should lose their exempt status and so become eligible to be obsolete according to the existing retention policy:	
Syntax	
list::=	
Purpose	
To display information about backup sets, proxy copies, and image copies recorded in the repository. The LIST	
command displays the files against which you can run CROSSCHECK and DELETE commands. Use this command to list:	
Backups and copies that do not have the status AVAILABLE	
in the RMAN repository	
Backups and copies of datafiles that are available and can possibly be used in a restore operation	
Specified archived logs, backup sets, backup pieces, control file copies, datafile copies, and proxy copies	
Backups and copies restricted by tag, completion time, recoverability, or device	
Incarnations of a specified database or of all databases known to the repository	
Stored scripts in the recovery catalog	
RMAN records the output to either standard output or the message log, but not to both at the same time. You can control how the output is organized (BY	
BACKUP	
or BY	
FILE	
) as well as the level of detail in the output (VERBOSE	
or SUMMARY	
).	
See Also: Oracle Database Backup and Recovery Basics to learn how to make lists and reports, and "cmdLine"	
Restrictions and Usage Notes	
Execute LIST	
only at the RMAN prompt.	
RMAN must be connected to the target database. If RMAN is connected in NOCATALOG	
mode, then the database must be mounted. If RMAN is connected to a recovery catalog, then the target instance must be started but the target database does not need to be mounted.	
Keywords and Parameters	
list	
Syntax Element	Description
---	---
EXPIRED	Displays backup sets, proxy copies, and image copies marked in the repository as EXPIRED , that is, "not found." To ensure that
RECOVERABLE	Specifies datafile backups or copies whose status in the repository is AVAILABLE and which can be used for restore and recovery in the target database's current incarnation. This list includes all backups and copies except the incremental backups that have no valid parent to which the incremental can be applied.
untilClause	Specifies an end time, SCN, or log sequence number. See "untilClause".
recordSpec	Specifies the object or objects that you are listing. Refer to "recordSpec".
INCARNATION	Displays information about the incarnations of a database. Whenever you open a database with the RESETLOGS option, then you create a new incarnation of the database. So, if LIST INCARNATION displays n incarnations of a database, then you have reset the online logs for this database n -1 times. The See Also: Table 2-19 for an explanation of the column headings of the
OF DATABASE 'database_name'	Specifies the name of the database. If you do not specify the OF DATABASE option, then the command lists all databases registered in the recovery catalog.
maintQualifier	Restricts the range of the listing. Refer to "maintQualifier".
SCRIPT NAMES	Lists names of RMAN stored scripts in the currently connected recovery catalog, along with any descriptive comments. Without You must connect to a target database and a recovery catalog to list names for scripts defined for that target database.
ALL	RMAN lists all global and local scripts defined for all databases in the connected recovery catalog. You must be connected to a recovery catalog to use
GLOBAL	RMAN lists only global scripts defined in the connected recovery catalog. You must be connected to a recovery catalog to use
listObjectSpec	
Syntax Element	Description
---	---
listObjectSpec	Specifies the type of object or objects that you are listing. See Also: "recordSpec"
BACKUP	Displays information about BACKUP output: backup sets (including detail on backup pieces), proxy copies, and image copies.
BACKUPSET	Displays only information about backup sets, backup pieces, and proxy copies. The output displays a unique key for each. The LIST BACKUPSET command defaults to BY BACKUP . By default, RMAN lists both usable and unusable backups, even those that cannot be restored, are expired or unavailable, or are incrementals that cannot be restored because their parent full backup or copy no longer exists. To see only backups that can be used for recovery, use the See Also: "LIST Output" for an explanation of the column headings of the
COPY	Displays only information about datafile copies, archived redo logs, and image copies of archived redo logs. By default, LIST COPY displays copies of all database files and archived redo logs. Both usable and unusable image copies are included in the output, even those that cannot be restored or are expired or unavailable. See Also: Table 2-16 and Table 2-18 for an explanation of the column headings of the LIST
OF listObjList	Restricts the list of objects operated on to the object type specified in the listObjList clause. If you do not specify an object, then LIST defaults to OF DATABASE CONTROLFILE ARCHIVELOG ALL . Note: The See Also: "listObjList"
archivelogRecordSpecifier	Displays information about a range of archived redo logs.
listBackupOption	
Syntax Element	Description
---	---
listBackupOption	Specifies whether to list summary information about backups or detailed information. See Also: "recordSpec"
BY BACKUP	Lists backup sets, then the contents of each backup set (pieces and files), and then proxy copies. This is the default option for LIST BACKUP . If you specify the
VERBOSE	Gives detailed description of contents of each backup set (default).
SUMMARY	Gives a one-line summary for each datafile (when using BY FILE) or backup (when using BY BACKUP).
BY FILE	Lists a datafile, then its backup sets, and then proxy copies.
LIST Output	
The information that appears in the output is shown in the following tables:	
Table 2-5, "List of Backup Pieces (for sets with only one piece)"	
Table 2-8, "Backup Set Copy ... of backup set ... (only if multiple pieces)"	
Table 2-9, "List of Backup Pieces for backup set ... Copy ... (if multiple pieces)"	
Table 2-13, "List of Datafile Backups (LIST BACKUP ... BY FILE)"	
Table 2-14, "List of Archived Log Backups (LIST BACKUP ... BY FILE)"	
Table 2-15, "List of Controlfile Backups (LIST BACKUP ... BY FILE)"	
Table 2-4 List of Backup Sets (for datafile backup sets)	
Table 2-5 List of Backup Pieces (for sets with only one piece)	
Column	Indicates
---	---
A unique identifier for this backup piece in the recovery catalog or target database control file. If you are connected to a recovery catalog, then Note: The values for	
The backup piece status:	
The tag applied to the backup set;	
The filename or handle of the backup piece. If the backup piece is on sbt, the Media ID is displayed with the name.	
A control file is included in the backup. Note: This row appears only if the current control file is included in the backup.	
A server parameter file is included in the backup.	
The SCN of the backup control file checkpoint. All database changes recorded in the redo records before the specified SCN are reflected in this control file. Note: This row appears only if the current control file is included in the backup.	
The time of the backup control file checkpoint. All database changes recorded in the redo records before the specified time are reflected in this control file. Note: This row appears only if the current control file is included in the backup.	
Table 2-6 List of Datafiles in backup set ...	
Column	Indicates
---	---
The number of the file that was backed up.	
The level of the backup:	
The type of backup:	
The checkpoint of the datafile at the time it was backed up. All database changes prior to the SCN have been written to the file; changes after the specified SCN have not been written to the file.	
The checkpoint of the datafile at the time it was backed up. All database changes prior to the time have been written to the file; changes after the specified time have not been written to the file.	
The location where this file would be restored now if it were restored from this backup set and no See Also: "SET"	
Table 2-7 List of Archived Logs in backup set ...	
Column	Indicates
---	---
The thread number of the redo log.	
The log sequence number of the archived log.	
The lowest SCN in the archived log.	
The time when the database switched into the redo log having this sequence number.	
The low SCN of the next archived log sequence.	
The low time of the next archived log sequence.	
Table 2-8 Backup Set Copy ... of backup set ... (only if multiple pieces)	
Column	Indicates
---	---
The type of device on which the backup was made, for example,	
The duration of the backup.	
The date and time that the backup set completed. Note that the format of this field depends on the	
The tag applied to the backup set;	
Table 2-9 List of Backup Pieces for backup set ... Copy ... (if multiple pieces)	
Column	Indicates
---	---
A unique identifier for this backup piece in the recovery catalog or target database control file. If you are connected to a recovery catalog, then Note: The values for	
The number of the backup piece in the backup set.	
The backup piece status:	
The filename or handle of the backup piece. If the backup piece is stored on sbt, the media ID is also displayed.	
Table 2-10 List of Proxy Copies	
Column	Indicates
---	---
A unique key identifying this proxy copy. If you are connected to a catalog, then	
The absolute datafile number of the file that was copied.	
The proxy copy status:	
The date and time that the backup set completed. Note that the format of this field depends on the	
The SCN of the proxy copy control file checkpoint. All database changes recorded in the redo records before the specified SCN are reflected in this control file.	
The time of the proxy copy control file checkpoint. All database changes recorded in the redo records before the specified time are reflected in this control file.	
The location where this file would be restored now if it were restored from this backup set and no See Also: "SET"	
The media manager's handle for the proxy copy. If the object is on sbt, then the media ID is also displayed.	
The tag applied to the proxy copy;	
Table 2-11 List of Backup Sets (LIST BACKUP ... SUMMARY)	
Column	Indicates
---	---
A unique key identifying this backup set. If you are connected to a recovery catalog, then	
The type of backup: backup set (
For incremental backups, the incremental backup level (For backup sets containing full backups of datafiles, For backup sets containing archived redo logs,	
The status of the backup:	
The type of device on which the backup was made, for example,	
The date and time that the backup set completed. Note that the format of this field depends on the	
The number of backup pieces in the backup set.	
The number of copies made of each backup piece in the set. The number is	
The tag applied to the backup set;	
Table 2-12 List of Backup Pieces (LIST BACKUPPIECE ...)	
Column	Indicates
---	---
A unique identifier for this backup piece in the recovery catalog or target database control file. If you are connected to a catalog, then Note: The values for	
A unique key identifying this backup set. If you are connected to a recovery catalog, then	
The number of the backup piece in the backup set.	
The copy number of this backup piece in the backup set. The number is	
The backup piece status:	
The type of device on which the backup was made, for example,	
The filename or handle of the backup piece. If the piece is stored on SBT then the Handle and media ID are displayed.	
Table 2-13 List of Datafile Backups (LIST BACKUP ... BY FILE)	
Column	Indicates
---	---
The absolute datafile number.	
A unique key identifying this backup set. If you are connected to a recovery catalog, then	
The type of backup: backup set (
The backup level:	
The status of the backup:	
The checkpoint of the datafile at the time it was backed up. All database changes prior to the SCN have been written to the file; changes after the specified SCN have not been written to the file.	
The checkpoint of the datafile at the time it was backed up. All database changes prior to the time have been written to the file; changes after the specified time have not been written to the file.	
The number of backup pieces in the backup set.	
The number of copies made of each backup piece in the set. The number is	
The tag applied to the backup set;	
Table 2-14 List of Archived Log Backups (LIST BACKUP ... BY FILE)	
Column	Indicates
---	---
The thread number of the redo log.	
The log sequence number of the archived log.	
The lowest SCN in the archived log.	
The time when the database switched into the redo log having this sequence number.	
A unique key identifying this backup set. If you are connected to a recovery catalog, then	
The status of the backup:	
The number of backup pieces in the backup set.	
The number of copies made of each backup piece in the set. The number is	
The tag applied to the backup set;	
Table 2-15 List of Controlfile Backups (LIST BACKUP ... BY FILE)	
Column	Indicates
---	---
Checkpoint SCN of the control file.	
The log sequence number of the archived log.	
A unique key identifying this backup set. If you are connected to a recovery catalog, then	
The status of the backup:	
The number of backup pieces in the backup set.	
The number of copies made of each backup piece in the set. The number is	
The tag applied to the backup set;	
Table 2-16 List of Datafile Copies	
Column	Indicates
---	---
The unique identifier for the datafile copy. Use this value in a CHANGE command to alter the status of the datafile copy. If you are connected to a recovery catalog, then Note: The values for	
The file number of the datafile from which this copy was made.	
The status of the copy:	
The date and time that the copy completed. Note that the value of this field is sensitive to the	
The checkpoint of this datafile when it was copied. All database changes prior to this SCN have been written to this datafile.	
The checkpoint of this datafile when it was copied. All database changes prior to this time have been written to this datafile.	
The filename of the datafile copy.	
Table 2-17 List of Controlfile Copies	
Column	Indicates
---	---
The unique identifier for the control file copy. Use this value in a CHANGE command to alter the status of the copy. If you are connected to a recovery catalog, then Note: The values for	
The status of the copy:	
The date and time that the copy completed. Note that the value of this field is sensitive to the	
The checkpoint of this control file when it was copied.	
The checkpoint of this control file when it was copied.	
The filename of the control file copy.	
Table 2-18 List of Archived Log Copies	
Column	Indicates
---	---
The unique identifier for this archived redo log copy. Use this value in a CHANGE command to alter the status of the copy. If you are connected to a recovery catalog, then Note: The values for	
The redo log thread number.	
The log sequence number.	
The status of the copy:	
The time when the database switched into the redo log having this sequence number.	
The filename of the archived redo log copy.	
Table 2-19 List of Database Incarnations	
Column	Indicates
---	---
When combined with the	
When combined with	
The database name as listed in the	
The database identification number, which the database generates automatically at database creation.	
The SCN at which the incarnation was created.	
The time at which the incarnation was created.	
Table 2-20 List Script Names Output	
Column	Indicates
---	---
The name of the stored script.	
The comment provided when the script was created.	
Examples	
Listing Backups: Example This example lists all backups in default verbose mode:	
Listing a Summary of Backups: Example The following example lists a summarized version of all RMAN backups:	
Listing Backups by File: Example This example groups all backups by file:	
Listing Archived Redo Logs: Example The following example lists archived logs and copies of logs:	
Listing Backups of Specific Datafiles: Example The following example lists backups of datafile 3	
in summary mode:	
Listing Database Incarnations: Example This example lists all database incarnations recorded in the recovery catalog:	
Listing Stored Scripts: Example This example shows the output of running LIST ALL SCRIPT NAMES	
:	
Syntax	
listObjList::=	
dbObject::=	
Purpose	
A subclause used to specify database files and archived redo logs.	
Restrictions and Usage Notes	
Use this clause in the following commands:	
Keywords and Parameters	
listObjList	
Syntax Element	Description
---	---
archivelogRecordSpecifier	Specifies a range of archived redo logs. See Also: "archivelogRecordSpecifier"
CONTROLFILE	Specifies the current control file.
DATABASE SKIP TABLESPACE 'tablespace_name' [, 'tablespace_name']	Omits the specified tablespaces from the DATABASE specification.
SPFILE	Specifies the current server parameter file.
dbObject	
Syntax Element	Description
---	---
DATABASE	Specifies backup sets or image copies of all files in the current database.
DATAFILE datafileSpec	Specifies datafiles by filename or file number. The clause specifies datafile image copies or backup sets that contain at least one of the datafiles. See Also: "datafileSpec"
TABLESPACE 'tablespace_name'	Specifies tablespace names. The clause specifies datafile image copies or backup sets that contain at least one of the datafile from the specified tablespace.
Examples	
Listing Datafile Copies: Example The following command lists image copies of all the files in the database, skipping the temp	
tablespace, which is a dictionary-managed temporary tablespace:	
Crosschecking Archived Redo Logs: Example The following example queries the media manager for the status of server parameter file and archived redo log backups (either backup sets or image copies) created in the last three months:	
Deleting Expired Control File Backup Sets: Example The following command deletes expired backups (either backup sets or image copies) of the control file:	
Syntax	
maintQualifier::=	
Purpose	
A subclause used to specify database files and archived redo logs.	
Restrictions and Usage Notes	
Use this clause in the following commands:	
The BACKED	
UP	
integer	
TIMES	
clause applies only to archived redo logs.	
You cannot use LIKE	
with backup pieces.	
Keywords and Parameters	
Syntax Element	Description
---	---
completedTimeSpec	Specifies a range of time for completion of the backup or copy. See Also: "completedTimeSpec"
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you configure automatic disk and tape channels, and issue CHANGE ... DEVICE TYPE DISK , then RMAN allocates only disk channels. See Also: "deviceSpecifier"
LIKE ' string_pattern '	Restricts datafile copies by specifying a filename pattern. The pattern can contain Oracle pattern matching characters % and _ . RMAN only operates on those files whose name matches the pattern. Note: You cannot use the
BACKED UP integer TIMES TO DEVICE TYPE deviceSpecifier	Restricts the command to archived logs that have been successfully backed up integer or more times to the specified media.
TAG = 'tag_name'	Specifies the datafile copies and backup sets by tag. Tag names are not case sensitive and display in all uppercase. See Also: "BACKUP" for a description of how a tag can be applied to an individual copy of a duplexed backup set, and also for a description of the default filename format for tags
Example	
Listing Backups on a Specific Device: Example The following command lists all backups located on tape and copies located in /tmp	
:	
Deleting Archived Logs That Are Already Backed Up: Example The following command deletes only those archived logs that have been successfully backed up three or more times to tape:	
Syntax	
maintSpec::=	
Purpose	
To specify the backup files operated on by the CHANGE	
, CROSSCHECK	
, and DELETE	
commands.	
Keywords and Parameters	
Syntax Element	Description
---	---
BACKUP	Processes files output by the BACKUP command. With CHANGE BACKUP: Specify one or more objects using the " With CROSSCHECK If you are running CROSSCHECK Specify one or more objects using the " With DELETE BACKUP: Deletes backup sets and proxy copies. Specify one or more objects using the "
BACKUPSET	When followed by a list of primary keys: this is actually a case of the recordSpec syntax element in the syntax diagram for maintSpec. In such a case, the keys identify backupsets for use with the CHANGE , CROSSCHECK and DELETE commands. For more details, see "recordSpec" and "LIST Output" for an explanation of the column headings of the LIST output tables. Use the KEY column of the output to obtain the primary key usable in the CHANGE and DELETE commands. When not followed by a list of primary keys: A synonym for
COPY	Processes datafile copies, control file copies, archived redo logs, and image copies of archived redo logs. If you do not specify an option for CHANGE If you are running CROSSCHECK By default,
OF listObjList	Restricts the list of objects operated on to the object type specified in the listObjList clause. If you do not specify an object, then the command defaults to all copies. Note that CHANGE COPY OF DATABASE includes datafiles but not control files. See Also: "listObjList"
archivelogRecordSpecifier	Processes the specified archived redo logs. See Also: "archivelogRecordSpecifier"
maintQualifier	Restricts the command based on the specified options. See Also: "maintQualifier"
recordSpec	Specifies the file that you are performing maintenance on. See "recordSpec".
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you configure automatic disk and tape channels and run CROSSCHECK ... DEVICE TYPE DISK , then RMAN allocates only disk channels. See Also: "deviceSpecifier"
Examples	
To see the maintSpec	
clause in use, refer to the commands where it is used:	
Syntax	
obsOperandList::=	
Purpose	
A subclause used to specify which criteria are used to mark backups and copies as obsolete.	
Restrictions and Usage Notes	
Use this clause in the following commands:	
Using both RECOVERY WINDOW	
and REDUNDANCY	
clause in a single REPORT OBSOLETE	
or DELETE OBSOLETE	
command is not supported.	
Keywords and Parameters	
Syntax Element	Description
---	---
RECOVERY WINDOW OF integer DAYS	Specifies that RMAN should report as obsolete those backups and copies that are not needed to recover the database to any point within the last integer days. See Also: "CONFIGURE" for an explanation of the recovery window
REDUNDANCY = integer	Specifies the minimum level of redundancy considered necessary for a backup or copy to be obsolete. A datafile copy is obsolete if there are at least integer more recent backups or image copies of this file; a datafile backup set is obsolete if there are at least integer more recent backups or image copies of each file contained in the backup set. For example, REDUNDANCY 2 means that there must be at least two more recent backups or copies of a datafile for any other backup or copy to be obsolete.
Example	
Deleting Obsolete Backups: Example The following command deletes all backups and copies not needed to recover the database to a random point within the last 30 days:	
Syntax	
printScript::=	
Purpose	
To print a local or global stored script to standard output or to a file.	
For more information about stored scripts, see "CREATE SCRIPT".	
Restrictions and Usage Notes	
Use this command only at the RMAN prompt.	
You must be connected to the target database that you connected to when you created or replaced the script.	
You must be connected to the recovery catalog, and the recovery catalog database must be open.	
Keywords and Parameters	
Syntax Element	Description
---	---
GLOBAL	With the GLOBAL option, PRINT SCRIPT prints the global script named 'script_name ' instead of the local script. If omitted, RMAN looks for a local or global script See "CREATE SCRIPT" for more details about local and global stored scripts.
' script_name '	The name of the script to print.
TO FILE ' filename '	With TO FILE 'filename ' option, PRINT SCRIPT sends its output to the specified file instead of standard output.
Examples	
Printing a Script to a File: Example The following example prints a script to the file '/tmp/backup_db.rman	
':	
Printing a Script to the Screen: Example This example prints a stored script to standard output (includes sample output):	
Syntax	
recordSpec::=	
Purpose	
A subclause that specifies which objects the CHANGE, CROSSCHECK, DELETE, and LIST commands should operate on.	
Most recordSpec	
options allow you to specify a primary key. Use the output of the LIST	
command to obtain keys.	
Keywords and Parameters	
Syntax Element	Description
---	---
ARCHIVELOG	Specifies an archived redo log by either primary_key or ' filename ' .
BACKUPSET primary_key	Specifies a backup set by primary_key .
BACKUPPIECE	Specifies a backup piece by ' media_handle ' , primary_key , or tag_name .
PROXY	Specifies a proxy copy by ' media_handle ' , primary_key , or tag_name .
CONTROLFILECOPY	Specifies a control file copy by primary_key , filename pattern ('filename'), or TAG = tag_name . If you crosscheck a control file copy, you must specify a filename rather than a primary key.
DATAFILECOPY	Specifies a datafile copy by either primary_key , filename pattern ('filename'), or TAG = tag_name .
NODUPLICATES	With CONTROLFILECOPY or DATAFILECOPY , specifies that only one copy of the control file or datafile copy specified by the rest of the clause should be the target of the operation, even when there are multiple copies.
Examples	
Crosschecking Backups: Example This example crosschecks backup sets specified by primary key:	
Deleting Datafile Copies: Example This example deletes a specified datafile copy:	
Syntax	
recover::=	
dbObject::=	
sizeSpec::=	
Purpose	
The RECOVER command has three distinct uses:	
Performing complete recovery of one or more restored datafiles, or the entire database.	
Performing point-in-time recovery of a database (DBPITR) or tablespace (TSPITR).	
Applying incremental backups to a datafile image copy (not a restored datafile) to roll it forward in time.	
When performing media recovery, RMAN first looks for archived logs on disk, and if none are available, then it restores logs from backups to the LOG_ARCHIVE_DEST_1	
destination (or the SET	
ARCHIVELOG	
DESTINATION	
) as needed for the recovery.	
Complete and point-in-time recovery of a database can use both incremental backups and archived logs. If RMAN has a choice between applying an incremental backup or applying redo, then it always chooses the incremental backup. Applying incremental backups is faster and captures NOLOGGING changes. If overlapping levels of incremental backup are available, then RMAN automatically chooses the one covering the longest period of time.	
RMAN also applies incremental backups to restored files that were not restored from an incremental backup.	
Note: When RMAN applies incremental backups, it also recovers changes to objects created with theNOLOGGING option. Applying archived redo logs to datafiles does not recover these changes.	
See Also:	
Restrictions and Usage Notes	
You cannot arbitrarily recover individual datafiles to different points in time. You can recover the whole database to a single point in time (DBPITR, in which case you should useSET UNTIL	
, followed by RESTORE DATABASE	
and RECOVER DATABASE	
) or recover wholly contained tablespaces to a point in time different from the rest of the database (TSPITR, in which case you must use RECOVER TABLESPACE... UNTIL...	
). For more information on DBPITR, see Oracle Database Backup and Recovery Advanced User's Guide. For more information on TSPITR, see the procedure described in Oracle Database Backup and Recovery Advanced User's Guide .	
For whole database recovery, the database must be mounted but not open. For recovery of datafiles or tablespaces, the target database must be mounted or open, but if the database is open, then the datafiles or tablespaces to be recovered must be offline.	
The RECOVER	
DATABASE	
command does not recover any files that are offline normal or read-only at the point in time to which the files are being recovered. RMAN omits offline normal files with no further checking. If CHECK	
READONLY	
is specified, then RMAN checks each read-only file on disk to ensure that it is already current at the desired point in time. If CHECK	
READONLY	
is not specified, then RMAN skips read-only files completely during the RECOVER	
command.	
You must open the database with the RESETLOGS	
option after incomplete recovery or recovery with a backup control file.	
If RMAN is unable to restore files needed for the recovery operation from the first backup it tries, it uses restore failover to try to restore the file from other suitable backups. See Oracle Database Backup and Recovery Advanced User's Guide for details on restore failover.	
If the recovery operation requires that RMAN restore archived log redo or incremental backups from backup, then you must either configure channels for the devices from which files are to be restored (disk or SBT) or use ALLOCATE CHANNEL commands in a RUN	
block with your RECOVER	
command.	
You must have already configured a device type with the CONFIGURE DEVICE	
TYPE	
command (except for DISK	
, which is preconfigured) before specifying the DEVICE	
TYPE	
option.	
You cannot manually allocate channels and then run RECOVER	
with the DEVICE	
TYPE	
option.	
If incremental backups or archived logsis need to be restored during recovery, then you must either use configured channels or manually allocate channels of the same type that created these backups.	
RMAN can recover through RESETLOGS	
operations transparently if the datafiles to be recovered are from a parent incarnation. If required, the RECOVER	
command can also restore and apply archived logs and incremental backups from prior incarnations.	
If, during recovery of a tablespace or database, the database encounters redo for adding a datafile, RMAN automatically creates a new datafile, unless the tablespace containing the added datafile is skipped during recovery. This situation can arise when a backup control file is restored prior to recovery, and the backup control file does not contain a record of the recently-added datafile.	
When opening a database after recovery, any locally managed tempfiles recorded in the RMAN repository are re-created if necessary. If you are recovering using a backup control file and no recovery catalog, then tempfiles created after the control file backup are not recorded in the RMAN repository and are not created automatically.	
If you want to perform DBPITR, the best practice is to enter a SET UNTIL	
command before both the RESTORE and RECOVER	
commands. If you run SET	
UNTIL	
after the RESTORE operation, then you may not be able to perform media recovery on the database to the target time, because the restored files may have time stamps later than the target time.	
Keywords and Parameters	
recover	
Syntax Element	Description
---	---
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. For example, if you configure automatic disk and tape channels, and issue RECOVER DEVICE TYPE DISK ... , then RMAN allocates only disk channels. See Also: "deviceSpecifier"
recoverObject	
Syntax Element	Description
---	---
COPY OF	Applies incremental backups to the specified image copy to roll it forward to any time equal to or before the most recent incremental backup of the file. The existing image copy is overwritten, and remains in a fuzzy state during the recovery. RECOVER COPY is a method for updating a copy and is not a media recovery of a current database file. This command is meant to be used in conjunction with the BACKUP... FOR RECOVER OF COPY syntax, to implement a strategy using incrementally updated backups. The following requirements must be met:
RMAN selects one suitable copy if there are multiple possible copies to which the incrementals can be applied to carry out the operation. Note: RMAN issues a warning (not an error) if it cannot recover to the specified time (or current time if none is specified) because no incrementals are available.	
WITH TAG 'tag_name'	Specifies a tag name to identify the image copy to be rolled forward.
DATAFILECOPY	Applies incremental backups to the specified datafile image copy. Refer to description of RECOVER COPY OF ..
SKIP [FOREVER] TABLESPACE	Specifies tablespaces that should not be recovered, which is useful for avoiding recovery of tablespaces containing only temporary data or for postponing recovery of some tablespaces. The SKIP clause takes the datafiles in the specified tablespaces offline before starting media recovery. These files are left offline after the media recovery is complete. If you perform incomplete recovery, then
untilClause	Specifies a past time, SCN, or log sequence number for termination of the RECOVER command. When used with one or more tablespaces, indicates a TSPITR operation for the named tablespaces. It cannot be used with RECOVER DATAFILE . It should not be used for RECOVER DATABASE (see "Restrictions and Usage Notes" for details). After DBPITR, you must open the database with the RESETLOGS option. See Also: "untilClause"
dbObject	
Syntax Element	Description
---	---
DATABASE	Specifies that the entire database is to be recovered. By default, RMAN performs complete recovery. For incomplete recovery, specify an untilClause .
DATAFILE datafileSpec	Specifies a list of one or more datafiles to recover. Specify datafiles by either filename (by using a quoted string) or absolute datafile number (by using an integer). If you are using the control file as the exclusive repository for RMAN metadata, then the filename must be the name of the datafile as recorded in the control file. If you are using a recovery catalog, then the filename of the datafile must be the most recent name recorded in the catalog, even if the name in the control file has been updated more recently. For example, assume that a datafile was renamed in the control file. The instance then fails before you can resynchronize the catalog. Specify the old name of the datafile in the RECOVER command, because this is the name recorded in the catalog. See Also: "datafileSpec"
TABLESPACE 'tablespace_name'	Specifies tablespaces by tablespace name.
recoverOptionList	
Syntax Element	Description
---	---
recoverOptionList	Specifies various recovery options.
ARCHIVELOG TAG = tag_name	Specifies the tag for an archived log backup to be used during recovery. If the tagged backup does not contain all the necessary logs for recovery, RMAN uses logs or incremental backups as needed from whatever is available. Note that tag names are not case sensitive and display in all uppercase.
AUXILIARY DESTINATION [=] ' location '	Can only be used when performing TSPITR. Used to automate the management of auxiliary set files during TSPITR. Specifies a location where auxiliary set datafiles, control files and online logs are created during TSPITR if another location for an individual file is not explicitly specified. If you do not specify See also: The chapter on TSPITR in Oracle Database Backup and Recovery Advanced User's Guide for more details about the auxiliary destination.
CHECK LOGICAL	Tests data and index blocks that pass physical corruption checks for logical corruption, for example, corruption of a row piece or index entry. If RMAN finds logical corruption, it logs the block in the alert.log and server session trace file. The If the total number of physical and logical corruptions detected for a file is less than its
CHECK READONLY	Checks the headers of read-only files to ensure that they are current before omitting them from the recovery.
DELETE ARCHIVELOG [MAXSIZE integer [K	M
FROM TAG = tag_name	Specifies the tag for an incremental backup to be used during recovery. If the tagged backup does not contain all the necessary incrementals for recovery, then RMAN uses logs or incremental backups as needed from whatever is available. Note that tag names are not case sensitive and display in all uppercase. See Also: "BACKUP" to learn how a tag can be applied to an individual copy of a duplexed backup set, and to learn about the default filename format for backup tags
NOREDO	Suppresses the application of redo logs during recovery. Only incremental backups are applied. One use of this option is in updating full backups of Note: Incremental backups of Another use is in updating standby or duplicate databases. Incremental backups created with the
TEST	Use the TEST clause to conduct a trial recovery. A trial recovery is useful if a normal recovery procedure has encountered some problem. It lets you look ahead into the redo stream to detect possible additional problems. The trial recovery applies redo in a way similar to normal recovery, but it does not write changes to disk, and it rolls back its changes at the end of the trial recovery. Note: You can use this clause only if you have restored a backup taken since the last RESETLOGS operation. Otherwise, the database returns an error.
UNDO TABLESPACE	Only for use with RECOVER TABLESPACE . During TSPITR, RMAN needs information about which tablespaces had undo segments at the TSPITR target time. This information is usually available in the recovery catalog, if one is used. If there is no recovery catalog, or if the information is not found in the recovery catalog, RMAN proceeds assuming that the set of tablespaces with undo segments at the target time is the same as the set of tablespaces with undo segments at the present time. If this assumption is not correct, TSPITR fails with an error. In such a case, use this clause to provide a list of tablespaces with undo segments at the target time.
ALLOW integer CORRUPTION	The ALLOW integer CORRUPTION clause lets you specify, in the event of logfile corruption, the number of corrupt blocks that can be tolerated while allowing recovery to proceed. When you use this clause during trial recovery (that is, in conjunction with the
NOPARALLEL	Specifies not to perform recovery in parallel. Parallel execution is the default for RECOVER .
PARALLEL [integer]	Specifies to perform recovery in parallel (the default). By default, the database determines the optimal degree of parallelism, which is the number of parallel threads used in the recovery operation. It is generally not necessary for you to specify the degree of parallelism. However, you can specify the degree of parallelism directly by including the For more complete information on
Examples	
Recovering a Tablespace in an Open Database: Example The following example takes tablespace tools	
offline, uses automatic channels to restore and recover it (deleting the logs that it restored from tape), then brings it back online:	
Recovering Datafiles Restored to New Locations: Example The following example uses the preconfigured disk channel and manually allocates one media management channel to use datafile copies on disk and backups on tape, and restores one of the datafiles in tablespace users	
to a different location:	
Performing DBPITR with a Backup Control File and Recovery Catalog: Example Assume that all datafiles and control files as well as archived redo log 40 were lost due to a disk failure. Also assume that you do not have incremental backups. You need to recover the database with available archived redo logs. You do not need to restore tablespace history	
because it has not changed since log 40. After connecting to the target and recovery catalog, follow the example shown here:	
If the database uses locally-managed temporary tablespaces, and you restore a backup control file, and you do not have a recovery catalog, then you must add tempfiles to these tablespaces afterwards, using the SQL ALTER TABLESPACE	
... ADD TEMPFILE	
command:	
RECOVER an Image Copy of a Datafile to a Point in Time: Example Assume that you have an image copy backup of a datafile and you want to roll it forward in time using incremental backups. Use RECOVER	
DATAFILECOPY	
with the UNTIL	
TIME	
option. For example, run the following command:	
Available incremental backups are applied to the datafile copy to recover it to the desired point in time. Redo from the archived redo logs is not applied by this command.	
Syntax	
register::=	
Purpose	
To register the target database in the recovery catalog so that RMAN can access it. RMAN obtains all information it needs to register the target database from the target database itself.	
Note: If you perform aRESETLOGS operation on a database and later register it in the recovery catalog, the catalog records the DB_NAME for the old incarnations as UNKNOWN because the old incarnations were not previously registered. You should not try to remove these records.	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt.	
You must be connected to the target database and recovery catalog database.	
You can register multiple databases in the same recovery catalog, but the database identifiers of the databases must be unique.	
You can only register a database once in a given recovery catalog.	
The target database must be mounted or open.	
You should not register a standby database.	
The REGISTER	
DATABASE	
command fails when RMAN detects duplicate DBIDs. This situation can arise when databases are created by copying files from an existing database rather than by using the DUPLICATE	
command.	
If this failure occurs, then you can change the DBID of the copied database with the standalone DBNEWID utility.	
Note: If you are using RMAN with different target databases that have the same database name and DBID, be careful to always specify the correct recovery catalog schema when invoking RMAN.	
Example	
Registering a Database: Example The following commands register a new target database, catalogs an existing datafile copy, then opens the database for use:	
Syntax	
release::=	
Purpose	
To release a channel while maintaining the connection to the target database instance. Specify the channel name with the same identifier used in the ALLOCATE CHANNEL command. This command is optional because RMAN automatically releases all channels allocated when a RUN block terminates.	
Restrictions and Usage Notes	
Execute this command only within a RUN block. See "releaseForMaint" for the form of RELEASE CHANNEL	
used for maintenance channels.	
Keywords and Parameters	
Syntax Element	Description
---	---
channel_id	The case-sensitive channel ID used in the ALLOCATE CHANNEL command.
Examples	
Releasing a Channel: Example This example makes three identical backup sets of datafiles 1	
to 4	
to tape with channel ch1	
, then releases it. RMAN then makes three identical backups of datafiles 5	
to 7	
to tape with channel ch2	
and then releases it:	
Syntax	
releaseForMaint::=	
Purpose	
To release a sequential I/O device specified in an ALLOCATE CHANNEL FOR MAINTENANCE command. Note that maintenance channels are unaffected by ALLOCATE CHANNEL and RELEASE CHANNEL command issued within a RUN command.	
Requirements	
Execute this command only at the RMAN prompt, not within a RUN block.	
You must have a maintenance channel allocated in order to release it.	
Examples	
Releasing a Maintenance Channel After a Delete Operation: Example This example allocates and then releases a maintenance channel to the media manager:	
Syntax	
replaceScript::=	
Purpose	
To replace an existing script stored in the recovery catalog. If the script does not exist, then REPLACE	
SCRIPT	
creates it.	
A stored script is a sequence of RMAN commands, given a name and stored in the recovery catalog for later execution. A stored script may be local (that is, associated with one target database) or global (available for use with any database registered in the recovery catalog).	
For more information about stored scripts and commands used to create, update, delete and execute stored scripts, see "CREATE SCRIPT".	
Restrictions and Usage Notes	
Execute REPLACE	
SCRIPT	
only at the RMAN prompt.	
You must be connected to a target database and recovery catalog. If you are replacing a local script, then you must be connected to the target database that you connected to when you created the script.	
When using REPLACE SCRIPT	
, RMAN must be connected to a recovery catalog, and the catalog database must be open.	
If no script by the specified name exists, one will be created.	
Keywords and Parameters	
Syntax Element	Description
---	---
GLOBAL	Restricts RMAN to replacing or creating a global stored script, instead of a local one. If omitted, RMAN looks for a local stored script
'script_name'	Identifies the local or global script being replaced.
COMMENT =' comment '	An explanatory comment, used in the output of LIST SCRIPT NAMES..
FROM FILE 'filename'	The new contents of the script are to be read from this file. The first line of the file must begin with a "{ ", the last line must contain a "} " and the commands must be valid within a RUN block.
{ backupCommands	
Example	
Replacing a Recovery Catalog Script: Example This example updates a stored script called backup_full	
:	
If there is a local script backup_full	
, it is updated. If there is no local script backup_full	
but there is a global script backup_full	
, the global script is updated.	
Syntax	
report::=	
reportObject::=	
atClause::=	
Purpose	
To perform detailed analyses of the RMAN repository. The Database writes the output from the REPORT	
command to standard output or the message log file.	
Use the REPORT	
command to answer questions such as the following:	
Which files need a backup?	
Which files have not had a backup for some time?	
Which files are not recoverable due to unrecoverable operations?	
Which backup files can be deleted?	
What was the physical schema of the database at a previous time?	
See Also: Oracle Database Backup and Recovery Basics to learn how to use RMAN's reporting functionality	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt.	
You must connect to a recovery catalog when issuing a REPORT	
SCHEMA	
command with the AT	
TIME	
, AT	
SCN	
, or AT	
SEQUENCE	
options. Otherwise, a recovery catalog is not required for the REPORT	
command.	
Keywords and Parameters	
report	
Syntax Element	Description
---	---
NEED BACKUP	Lists all datafiles in need of a new backup. The report assumes that you will use the most recent backup for restore operations. If you do not specify any option, then RMAN uses the current retention policy configuration. If the retention policy is disabled (CONFIGURE RETENTION POLICY TO NONE), RMAN generates an error.
DAYS = integer	Lists all datafiles requiring more than the specified number of days' worth of archived redo log files for complete recovery. For example, REPORT NEED BACKUP DAYS 7 DATABASE shows the datafiles whose recovery requires more than seven days' worth of archived redo logs. If the target database control file is mounted and current, then RMAN makes the following optimizations to this report:
INCREMENTAL = integer	Specifies a threshold number of incremental backups required for recovery. If complete recovery of a datafile requires more than integer incremental backups, then the datafile requires a new full backup. Note: Files for which no backups exist will not appear in this list: issue the
RECOVERY WINDOW OF integer DAYS	Reports datafiles for which there are not sufficient backups to satisfy a recovery window-based retention policy for the specified number of days, that is, datafiles without sufficient backups for point-in-time recovery to any point back to the time SYSDATE - integer .
REDUNDANCY = integer	Specifies the minimum number of backups or copies that must exist for a datafile to be considered not in need of a backup. In other words, a datafile needs a backup if there are fewer than integer backups or copies of this file. For example, REDUNDANCY 2 means that if there are fewer than two copies or backups of a datafile, then it needs a new backup.
OBSOLETE obsOperandList	Lists full backups, datafile copies, and archived logs recorded in the RMAN repository that can be deleted because they are no longer needed. The subclause obsOperandList describes the criteria that RMAN uses to determine what is obsolete. If you do not specify parameters in obsOperandList, then RMAN uses the options specified in CONFIGURE RETENTION POLICY . If you use this option in conjunction with DEVICE TYPE , then RMAN only considers backups and copies created on the specified device. Note: Even if you use a
SCHEMA	Lists the names of all datafiles and tablespaces at the specified point in time.
UNRECOVERABLE	Lists all unrecoverable datafiles. A datafile is considered unrecoverable if an unrecoverable operation has been performed against an object residing in the datafile since the last backup of the datafile. Note: The nonexistence of any backup of a datafile is not sufficient reason to consider it unrecoverable. Such datafiles can be recovered through the use of the
DEVICE TYPE deviceSpecifier	Specifies the type of storage device. RMAN only considers backups and copies available on the specified device for its report.
reportObject	
Syntax Element	Description
---	---
reportObject	Specifies the datafiles to be included in the report. The report can include the entire database (optionally skipping certain tablespaces), a list of tablespaces, or a list of datafiles. Note: RMAN includes objects from prior incarnations.
DATAFILE datafileSpec	Lists the specified datafiles. RMAN reports on backups or datafile copies that contain at least one of the specified datafiles.
TABLESPACE 'tablespace_name'	Lists datafiles in the specified tablespace. RMAN reports on backups or datafile copies that include at least one datafile from a specified tablespace.
DATABASE	Lists backups or datafile copies of all files in the current database. Specify SKIP TABLESPACE tablespace_name to exclude the specified tablespace from the DATABASE specification.
atClause	
Syntax Element	Description
---	---
atClause	Specifies a point in time as a time, an SCN, or a log sequence number.
AT TIME = ' date_string '	Specifies a date. The NLS_LANG and NLS_DATE_FORMAT environment variables specify the format for the time.
AT SCN = integer	Specifies an SCN.
AT SEQUENCE = integer THREAD = integer	Specifies a log sequence number for a specified redo THREAD number. The integer indicates the time when the specified log and thread were first opened.
Report Output	
The information that appears in the output is described in the following tables:	
Table 2-23, "Report of Files that Need Backup Due to Unrecoverable Operations"	
Table 2-24, "Report of Files with Fewer Than n Redundant Backups"	
Table 2-25, "Report of Files Whose Recovery Needs More Than n Days of Archived Logs"	
Table 2-26, "Report of Files That Need More than n Incrementals During Recovery"	
Table 2-21 Report of Database Schema	
Column	Indicates
---	---
The absolute datafile number.	
The size of the file in kilobytes.	
The tablespace name.	
For datafiles only.	
For datafiles only. The filename of the datafile.	
For tempfiles only. The maximum size of the tempfile.	
For tempfiles only. The filename of the tempfile.	
Table 2-22 Report of Obsolete Backups and Copies	
Column	Indicates
---	---
Whether the object is a backup set, backup piece, proxy copy, or datafile copy.	
A unique key that identifies this backup in the target database control file.	
The time that the backup or copy completed.	
The filename or media handle of the backup or datafile copy.	
Table 2-23 Report of Files that Need Backup Due to Unrecoverable Operations	
Column	Indicates
---	---
The absolute number of the datafile that needs a new backup due to unrecoverable operations.	
The name of the datafile.	
Table 2-24 Report of Files with Fewer Than n Redundant Backups	
Column	Indicates
---	---
The absolute datafile number of a datafile with less than n redundant backups.	
The number of backups that exist for this file.	
The name of the file.	
Table 2-25 Report of Files Whose Recovery Needs More Than n Days of Archived Logs	
Column	Indicates
---	---
The absolute file number of a datafile that requires more than n days of archived redo logs for recovery.	
The number of days of archived redo data required for recovery.	
The name of the datafile.	
Table 2-26 Report of Files That Need More than n Incrementals During Recovery	
Column	Indicates
---	---
The absolute file number of a datafile that requires more than n incrementals for complete recovery.	
The number of incremental backups required for complete recovery.	
The name of the datafile.	
Examples	
Reporting Database Schema: Example This example, which requires a recovery catalog, reports the names of all datafiles and tablespaces one week ago:	
Reporting Datafiles Needing Incremental Backups: Example This example reports all datafiles in the database that require the application of five or more incremental backups to be recovered to their current state:	
Reporting Datafiles Needing Backups: Example The following example reports all datafiles from tablespace SYSTEM	
that will need more than two days of archived redo logs to be applied during recovery after being restored from the most recent backup:	
Reporting Unrecoverable Datafiles: Example The following example reports all datafiles that cannot be recovered from existing backups because redo may be missing:	
Reporting Obsolete Backups and Copies: Example The following example reports obsolete backups and copies with a redundancy of 1	
:	
Syntax	
reset::=	
Purpose	
To reset the incarnation of the target database in the RMAN repository, which means to do either of the following actions:	
Inform RMAN that the SQL statement ALTER	
DATABASE	
OPEN	
RESETLOGS	
has been executed and that a new incarnation of the target database has been created. Note that if you run the RMAN command ALTER DATABASE OPEN	
RESETLOGS	
(not the SQL statement with the same keywords), then RMAN resets the target database automatically so that you do not have to run RESET	
DATABASE	
. By resetting the database, RMAN considers the new incarnation as the current incarnation of the database.	
To reset the database to a previous incarnation. Typically, you would reset the incarnation when performing incomplete recovery to a point before a RESETLOGS	
operation, or when attempting to undo the affects of a RESETLOGS	
by restoring backups taken before a RESETLOGS	
.	
Restrictions and Usage Notes	
Execute RESET	
DATABASE	
only at the RMAN prompt.	
You must be connected to the target database.	
A recovery catalog connection is optional. Unlike in catalog mode, RESET	
DATABASE	
in nocatalog mode changes the incarnation only for the current RMAN session.	
You must issue a RESET	
DATABASE	
command before you can use RMAN with a target database that has been opened with the SQL statement ALTER	
DATABASE	
OPEN	
RESETLOGS	
option. If you do not, then RMAN refuses to access the recovery catalog because it cannot distinguish between a RESETLOGS	
operation and an accidental restore of an old control file. The RESET	
DATABASE	
command informs RMAN that you issued a RESETLOGS	
command.	
If RMAN is connected NOCATALOG	
, then you can only specify TO	
INCARNATION	
if the database is mounted and the control file contains a record of the prior incarnation. If you do not run RESET	
DATABASE	
, RMAN recovers to the last incarnation recorded in the control file.	
If RMAN is connected in CATALOG	
mode, then you can specify TO	
INCARNATION	
when the database is mounted. If database is mounted, however, then the control file must have a record of the prior incarnation.	
Keywords and Parameters	
Syntax Element	Description
---	---
TO INCARNATION primary_key	Changes the current incarnation to an older incarnation. Specify the primary key of the DBINC record for the database incarnation. Run LIST INCARNATION OF DATABASE to obtain possible key values. After you issue RESET DATABASE TO INCARNATION , then you can run RMAN commands such as RESTORE and RECOVER .
Examples	
Resetting RMAN to a Previous Incarnation in NOCATALOG Mode: Example In NOCATALOG	
mode, you must mount a control file that knows about the incarnation that you want to recover. The following scenario makes an old incarnation of database trgt	
current again:	
Resetting the Database After Incomplete Recovery: Example	
This example assumes that an incomplete recovery or recovery with a backup control file was performed in NOCATALOG	
mode. Later, RMAN is started in CATALOG	
mode, but the RESYNC	
command fails because the incarnation has not been reset in the catalog.	
Syntax	
restore::=	
Purpose	
The primary use of RESTORE is to restore files from backups or image copies. Typically, you restore when a media failure has damaged a current datafile, control file, or archived log or prior to performing a point-in-time recovery.	
There are other uses of RESTORE that do not actually restore files from backup:	
RESTORE... VALIDATE causes RMAN to select existing backups that it would use to perform a RESTORE operation, and scan them all to ensure that they are present and free of corruption.	
RESTORE... PREVIEW identifies the backups which RMAN will use to perform any RESTORE operation. Output from a RESTORE... PREVIEW is in the same format as the output of the LIST command.	
RESTORE... PREVIEW RECALL is used to request the recall of backups needed for a RESTORE operation that are stored on remote storage.	
RMAN chooses which backups to restore based on the criteria that you specify. For example, you can limit the restore to backups before a given point of time (within the current incarnation) with the untilClause.	
Locations of Restored Files	
If you restore to the default location (that is, you do not run SET NEWNAME	
), then RMAN overwrites files with the same filenames. If you restore to a new location, then issue SET	
NEWNAME	
commands to rename the files and issue a SWITCH command to make the restored files current. If you do not issue SWITCH	
commands, then RMAN considers the restored files as valid copies for use in future restore operations.	
If you do not run SET	
NEWNAME	
and RMAN detects that the default filename cannot be used (for example, because the filename is in use by another database that shares the storage), and if the file is an Oracle Managed File or is on an Automatic Storage Management disk group, then RMAN attempts to create a new file in the same location or disk group.	
Note: By default, RMAN does not restore a datafile if the file is in the correct place and its header contains the expected data (RMAN does not scan the datafile body for corrupt blocks). TheFORCE option overrides this behavior and restores the requested files unconditionally.	
Channel Allocation in a Restore	
If you do not manually allocate channels, then RMAN allocates all automatic channels possibly needed by the RESTORE	
command, subject to any restrictions imposed by the use of the DEVICE	
TYPE	
option.	
For example, assume you configure 3 separate sbt	
channels (each with different PARMS	
) and then configure parallelism for DISK	
and sbt	
as follows:	
If you run RESTORE	
in this configuration, then RMAN allocates three sbt	
channels and the two preconfigured DISK	
channels.	
Restore Failover	
If a backup piece, image copy or proxy copy is inaccessible (for instance, deleted from the device) or if a block is corrupted, then the RESTORE command automatically looks for a another usable copy of this backup piece or image copy on both the same device and other devices. If no usable copies are available, then RMAN searches for prior backups. RMAN continously searches for prior usable backups until it has exhaused all possibilities.	
Restore failover also occurs when restoring archivelogs for use in RECOVER, BLOCKRECOVER and FLASHBACK operations. RMAN records messages about failover due to block corruption in the alert log and trace files.	
See Oracle Database Backup and Recovery Advanced User's Guide for details on restore failover.	
Restoring from Encrypted Backup Sets	
How RMAN handles encrypted backup sets during restore operations depends upon the encryption mode with which the backup was created.	
For transparent-mode encrypted backups, the required passwords must be available in the database wallet. This means that the same wallet that was used when creating the backup must be open, and available, when restoring it. No SET DECRYPTION	
command is required.	
For password-mode encrypted backups, the required passwords must be provided using SET DECRYPTION	
.	
For dual-mode encrypted backups, the required passwords must be available in the database wallet or provided using SET DECRYPTION	
.	
For an overview of the encrypted backups mechanism, a guide to its use and information on choosing among the different modes of encryption, see "Encryption of Backup Sets" and the extended discussion in Oracle Database Backup and Recovery Advanced User's Guide.	
The RMAN CONFIGURE, SET and SHOW commands are used to manage the RMAN backup encryption settings for your database. See the reference entries for those commands for more details.	
Restoring Files in a Real Application Cluster Configuration	
In a Real Application Clusters configuration, RMAN automatically restores backups, control file copies, and datafile copies from channels that can read the files on tape or a local file system. For example, if channel 1 connected to instance 1 can read log 1000 from its tape drive, but channel 2 connected to instance 2 cannot read the same log from its tape drive, then channel 1 restores the log. Autolocation is automatically enabled when the channels meet any of the following criteria:	
Different PARMS	
settings	
Different CONNECT	
strings	
Restrictions and Usage Notes	
To restore datafiles to their current location, the database must be started, mounted, or open with the tablespaces or datafiles to be restored offline. If the database is started but not mounted, then it is recommended that you only restore the control file, if necessary (refer to "Restrictions and Usage Notes for RESTORE CONTROLFILE"). To restore other files, mount the database and then continue.	
Note: When performing a database validation by usingRESTORE ... VALIDATE , the database can be open.	
To restore to a new location, run SET	
NEWNAME	
commands to rename the datafiles and SWITCH commands to make them the current database files. If you do not use SWITCH	
, then the repository lists restored datafiles as datafile copies.	
If you use the FROM	
DATAFILECOPY	
option, then the allocated channels must be of DEVICE	
TYPE	
DISK	
.	
If you use the FROM	
BACKUPSET	
clause, then channels for the appropriate type of storage devices must be allocated for the backup sets that need to be restored. For example, if needed backups are only available on tape, and no SBT channels have been allocated, then RMAN cannot find a candidate backup set to restore, and the RESTORE	
command fails.	
RMAN only restores backups that were created on the same type of channels that are allocated for the RESTORE	
command.	
For example, if you made some backups of a datafile to DISK	
channels and others to sbt	
channels, and only a DISK	
channel is allocated for the RESTORE	
command, RMAN will not restore backups that were created on sbt	
channels.	
If there are no backups available for a lost datafile, RMAN will create an empty datafile with the checkpoint change as creation SCN. During recovery, all archived logs back to the creation of the datafile will be restored, and all changes during the history of the datafile will be re-applied to re-create its contents.	
If datafile names are symbolic links, that is, files pointing to other files, then the control file stores the filenames of the link files but RMAN performs I/O on the datafiles pointed to by the link files. If a link file is lost and you RESTORE	
a datafile without re-creating the symbolic link, then RMAN restores the datafile to the location of the link file rather than to the location pointed to by the link.	
If the database is started but not mounted in NOCATALOG	
mode, then the RESTORE	
SPFILE	
command requires the FROM	
AUTOBACKUP	
clause.	
If you are restoring the server parameter file and the control file in a disaster recovery situation, you cannot run RESTORE	
CONTROLFILE	
FROM	
AUTOBACKUP	
, mount this control file, and then run RESTORE	
SPFILE	
without the FROM	
AUTOBACKUP	
clause.	
Do not specify a datafile more than once in a restore job. For example, the following command is illegal because datafile	
1	
is both specified explicitly and implied by the SYSTEM	
tablespace:	
You must have already configured a device type by using CONFIGURE	
(except for DISK	
, which is preconfigured) before specifying the DEVICE	
TYPE	
option.	
You cannot manually allocate channels and then run RESTORE	
DEVICE	
TYPE	
.	
When you run RESTORE	
with a backup control file while connected to a recovery catalog, RMAN automatically updates the control file to reflect the structure of the restored database, based on the information in the recovery catalog.	
RMAN can back up and restore dictionary-managed temporary tablespaces, but it cannot back up locally managed temporary tablespaces. It can, however, re-create locally managed temporary tablespaces after a database restore.	
RMAN does not support backup and recovery of the change tracking file. Note that database restore and recovery has no user-visible effect on change tracking. The change tracking file is re-created upon database restore and recovery, and the next incremental backup after any recovery is able to use the change-tracking file.	
If no suitable backups are available in the current incarnation of the database, then you can force RMAN to use backups from a previous incarnation. Using the CHANGE... UNAVAILABLE command, you can make all backups since the RESETLOGS that ended the incarnation unavailable. Run LIST RECOVERABLE	
to see valid parent incarnations.	
Restrictions and Usage Notes for RESTORE CONTROLFILE	
After you restore a backup control file, you must run RECOVER	
DATABASE	
and then open the database with the RESETLOGS	
option.	
Table 2-27 indicates the restrictions that apply in different situations involving the RESTORE	
CONTROLFILE	
command.	
Table 2-27 RESTORE CONTROLFILE Scenarios	
RESTORE CONTROLFILE;	RESTORE CONTROLFILE FROM AUTOBACKUP;
---	---
No catalog, target started in NOMOUNT state	Error. Must specify
No catalog, target mounted or open	Error. Must use
Catalog, target started in NOMOUNT state	Restores to
Catalog, target mounted or open	Error. Must use
Restrictions and Usage Notes on RESTORE... PREVIEW	
Backup media may be stored remotely, whether in a backup vaulting scenario where media is shipped to an off-site location, or in a tape library where media is on-site but not immediately accessible. Some media managers maintain information about whether the media containing specific backups is stored remotely, and make this information available to RMAN.	
Backups stored remotely are marked as AVAILABLE in the RMAN repository, even though the media must be retrieved from storage before the backup can be restored. If RMAN attempts to use a remotely stored backup in a RESTORE operation, the RESTORE operation fails.	
You can use RESTORE... PREVIEW to identify backups RMAN needs for a RESTORE operation that are stored on media that requires retrieval. The output of RESTORE... PREVIEW indicates whether backups are stored remotely. If a needed backup is stored remotely, your options are:	
Use CHANGE... UNAVAILABLE to prevent RMAN from selecting the needed remote backups, and attempt the RESTORE... PREVIEW operation again to see if RMAN selects another remote backup. When RMAN does not select any remote backups, you can perform your RESTORE operation.	
Use RESTORE... PREVIEW with the RECALL option. If your media manager supports this functionality, RESTORE... PREVIEW RECALL automatically requests the retrieval of the remotely stored backup media. Use RESTORE... PREVIEW again, periodically, to monitor whether the needed backups are stored locally again.	
Keywords and Parameters	
restore	
Syntax Element	Description
---	---
CHANNEL 'channel_id'	Refer to the restoreSpecOperand clause.
CHECK LOGICAL	Tests data and index blocks that pass physical corruption checks for logical corruption, for example, corruption of a row piece or index entry. If RMAN finds logical corruption, it logs the block in the alert.log and server session trace file. If the total number of physical and logical corruptions detected in a file is less than its If the initialization parameter Note: The
CHECK READONLY	Checks the read-only datafiles to make sure they exist, are readable, and have the appropriate checkpoint. If any of these conditions is not met, then RMAN restores the files—whether or not they are read-only. By default, RMAN does not restore read-only files when you issue the RESTORE DATABASE command.
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. For example, if you configure automatic disk and tape channels, and issue RESTORE ... DEVICE TYPE DISK , then RMAN allocates only disk channels. See Also: "deviceSpecifier"
FORCE	Overrides the restartable restore feature and restores all files regardless of whether they need to be restored. If you do not specify FORCE , then RMAN restores a file only if its header information does not match the information in the control file.
FROM [BACKUPSET	DATAFILECOPY]
FROM TAG = 'tag_name'	Refer to the restoreSpecOperand clause.
PREVIEW	
When PREVIEW or PREVIEW SUMMARY is appended to any RESTORE command, instead of performing the restore RMAN will report the backups (on disk or sequential media) it will use during the restore. The output will be in the same format as is generated by the LIST BACKUPS and LIST BACKUPS ... SUMMARY commands. Some media managers provide status information to RMAN about which backups are vaulted, that is, stored in a remote location such as a secure storage facility, and which therefore cannot be used without retrieving media. The output of When used with the See Also: "LIST", and specifically the	
untilClause	Limits the selection to backup sets or file copies that are suitable for a point-in-time recovery to the specified time. In the absence of any other criteria, RMAN selects the most current file copy or backup set to restore. Note that the time specified in the untilClause must fall within the current incarnation. See Also: "untilClause"
VALIDATE	Lets RMAN decide which backup sets, datafile copies, and archived logs need to be restored, and then scans them to verify their contents. No files are restored. Use VALIDATE to verify that the backups required to restore the specified files are intact and usable.
restoreObject	
Syntax Element	Description
---	---
restoreObject	Specifies the objects to be restored. The RESTORE command restores full backups, incremental backups (level 0 only), or copies of datafiles, control files, and archived redo logs.
archivelogRecordSpecifier	Restores the specified range of archived redo logs. The default restore location is DB_RECOVERY_FILE_DEST (if one of LOG_ARCHIVE_DEST_n is configured to USE_DB_RECOVERY_FILE_DEST either implicitly or explicitly). Otherwise, the default restore filenames are constructed with the LOG_ARCHIVE_FORMAT and LOG_ARCHIVE_DEST_1 parameters of the target database. These parameters combine in a port-specific fashion to derive the name of the restored log. You can override the default location with the SET ARCHIVELOG DESTINATION command. Because the RECOVER command automatically restores archived logs as needed, you should seldom need to restore logs manually. Possible reasons for manually restoring archived logs are to speed up recovery or to stage the logs to multiple destinations. See Also: "archivelogRecordSpecifier" Note: The database can be started, mounted, or open for this operation.
CONTROLFILE	Restores the current control file for a primary database. See Also: Table 2-27 for restrictions and usage notes. Note: You must always run the RECOVER command after restoring a control file, and must also always open the database with the
DATABASE [SKIP [FOREVER] TABLESPACE tablespace_name]	Restores all datafiles in the database except those that are offline or read-only. Unlike BACKUP DATABASE , RESTORE DATABASE does not automatically include the control file and the server parameter file—you must issue additional RESTORE CONTROLFILE and RESTORE SPFILE commands to restore these files. If you specify the Use an optional If you specify
DATAFILE datafileSpec	Restores the datafiles specified by filename or absolute datafile number. See Also: "datafileSpec"
SPFILE [TO [PFILE] ' filename ']	Restores a primary or standby server parameter file to the location from which it was backed up (default), or to a different location specified by the TO clause. RMAN cannot overwrite a server parameter file currently in use by the target database. Specify If the server parameter file is lost, connect to the target (and catalog if used) and then run SET See Also: "Restrictions and Usage Notes for the SET DBID Command"
[FOR DB_UNIQUE_NAME ' DB_UNIQUE_NAME ']	The FOR DB_UNIQUE_NAME clause for RESTORE SPFILE is only useful in a Data Guard environment. In a Data Guard environment, the primary and standby nodes may have different channel configurations for communicating with their associated SBT backup and disk devices. If both the primary and standby databases are known to the recovery catalog, then the configuration settings for both databases are recorded in the recovery catalog. Because the two databases have the same RMAN cannot determine the The Note: Using See Also: Oracle Data Guard Concepts and Administration for a detailed procedure for restoring the SPFILE in a Data Guard environment.
STANDBY CONTROLFILE [TO ' filename ']	Restores the current control file for a standby database. See Also: Table 2-27 for restrictions and usage notes. Note: You must always run the RECOVER command after restoring a control file, and must also always open the database with the
TABLESPACE 'tablespace_name'	Restores all datafiles in the specified tablespaces. The translates the tablespace name internally into a list of datafiles. If you rename a tablespace (for example, from
restoreSpecOperand	
Syntax Element	Description
---	---
restoreSpecOperand	Specifies options for the restoreObject clause. Note: These parameters override the parameters with the same name at the
CHANNEL 'channel_id'	Specifies the case-sensitive name of a channel to use for this restore operation. If you do not specify a channel, then RESTORE uses any available channel allocated with the correct device type.
FROM AUTOBACKUP [autoBackupOptionList]	Restores a control file autobackup. You can only specify this option on the RESTORE CONTROLFILE and RESTORE SPFILE commands. When restoring either type of file in NOCATALOG mode, the FROM AUTOBACKUP clause is required. RMAN begins the search on the current day or on the day specified with the SET See Also: Table 2-27 for restrictions and usage notes.
FROM ' media_handle '	Specifies the name of the control file copy or backup piece containing a control file. The media_handle can be any backup piece that contains a backup of a control file: the control file backup does not need to be an autobackup. See Also: Table 2-27 for restrictions and usage notes.
FROM TAG [=] 'tag_name'	Overrides the default selection of the most recent backups or file copy available. The tag restricts the automatic selection to backup sets or file copies that were created with the specified tag. If multiple backup sets or file copies have a matching tag, then RMAN selects the most recent one. Note that tag names are not case sensitive. See Also: "BACKUP" for a description of how a tag can be applied to an individual copy of a duplexed backup set, and for a description of the default filename format for tags
autoBackupOptList	
Syntax Element	Description
---	---
autoBackupOptList	Parameters that control the search for a control file autobackup.
DB_NAME = 'database_name'	Provides a DB_NAME to be used in searching for control file autobackups.
MAXDAYS = integer	Limits the search for a control file autobackup to within the specified number of days in the past.
MAXSEQ = integer	Specifies the highest sequence number for the control file autobackup search.
(RECOVERY AREA	DB_RECOVERY_FILE_DEST) = password
DB_NAME = database_name	Provides the DB_NAME of the database in the specified flash recovery area that is the target of the restore operation.
DB_UNIQUE_NAME = { identifier	quoted-string }
Examples	
Restoring a Tablespace: Example This example takes a tablespace offline, restores it, then performs media recovery:	
Restoring the Control File When Using a Recovery Catalog: Example This example restores the control file to its default location, replicates it automatically to all CONTROL_FILES	
locations, and mounts the database:	
Restoring the Control File with a Tag: Example This NOCATALOG	
example restores the control file specified by a tag, and then mounts the database:	
Restoring the Database with a Backup Control File: Example This example restores the control file to a temporary location, replicates it to all control file locations specified in the CONTROL_FILES	
initialization parameter, and then restores and recovers the database:	
Restoring Archived Redo Logs to a New Location: Example This example restores all archived redo logs to the /oracle/temp_restore	
directory:	
Restoring a Control File Autobackup to a Nondefault Location: Example This example restores the latest control file autobackup made on or before June 23, 2000 with a nondefault format of PROD_CF_AUTOBACKUP_%F	
. It starts searching for backups with a sequence number of 20, and searches backward for 5 months:	
Restoring the Server Parameter File to Current Location: Example The following series of commands restores the current server parameter file in NOCATALOG	
mode:	
Identifying Needed Backups with RESTORE... PREVIEW: Example The following example shows the results of a RESTORE PREVIEW	
, which identifies the backupsets RMAN selects for use in restoring archivelogs from backup. (Note that in this output, one of the archivelog backups is stored remotely.)	
Recalling Vaulted Backups from Remote Storage with RESTORE... PREVIEW RECALL: Example When used with a media manager that reports information about remote storage of backups and supports recalling vaulted backups, the following command requests that any media needed in the restore of archivelogs from backup be recalled from remote storage:	
Validating a Restore with RESTORE VALIDATE: Example The following example illustrates using RESTORE... VALIDATE	
to confirm that backups required for the restore of datafile 1 are present on disk or tape, readable, and not corrupted:	
Syntax	
resync::=	
Purpose	
To perform a full resynchronization of the recovery catalog. You can also use RESYNC	
CONTROLFILE	
to resynchronize the current control file with the RMAN repository in a control file copy.	
Resynchronizations can be full or partial. When full, RMAN updates all changed records for the physical schema: datafiles, tablespaces, redo threads, and online redo logs. If the database is open, RMAN also obtains data about rollback segments. When partial, RMAN reads the current control file to update data, but does not resynchronize metadata about the physical schema or rollback segments.	
When you run RESYNC	
CATALOG	
, RMAN creates a snapshot control file in order to obtain a read-consistent view of the control file, then updates the recovery catalog with any new information from the snapshot. The RESYNC	
CATALOG	
command updates the classes or records described in the following table.	
Record Type	Description
---	---
Log history	Records that are created whenever a log switch occurs. Note that log history records describe an online log switch, not a log archival.
Archived redo logs	Records associated with archived logs that were created by archiving an online redo log, copying an existing archived redo log, or restoring backups of archived redo logs.
Backups	Records associated with backup sets, backup pieces, proxy copies, and image copies.
Physical schema	Records associated with datafiles and tablespaces. If the target database is open, then rollback segment information is also updated.
RMAN automatically executes a full or partial resynchronization of the recovery catalog as needed when you execute RMAN commands, so long as the control file is mounted and the recovery catalog database is available at command execution. RMAN reads the current control file and resynchronizes metadata about the physical schema if it determines that this information has changed. If RMAN does detect a change, then it performs a full resynchronization.	
Use RESYNC	
CATALOG	
to perform manual full resynchronizations when:	
The recovery catalog is unavailable when you issue any of the commands that automatically perform a resynchronization.	
You are running in ARCHIVELOG	
mode, because the catalog is not updated automatically when a log switch occurs or when an online redo log is archived.	
You have made changes to the physical structure of the target database such as adding or dropping a tablespace. As with archive operations, the recovery catalog is not updated automatically when the physical schema changes.	
The primary use for RESYNC	
CONTROLFILE	
occurs when you re-create the control file (for example, to change the database name), which causes you to lose RMAN records. You can then resynchronize the newly created control file with an old copy.	
Restrictions and Usage Notes	
You must be connected to a recovery catalog when running RESYNC	
CATALOG	
, but a catalog connection is not required for RESYNC	
CONTROLFILE	
.	
RMAN updates physical schema information in the recovery catalog only when the target database has the current control file mounted. If the target database has mounted a backup control file, a freshly created control file, or a control file that is less current than a control file that was used previously, then RMAN does not update physical schema information in the recovery catalog.	
Keywords and Parameters	
Syntax Element	Description
---	---
CATALOG	Updates the recovery recovery catalog with RMAN metadata in the current control file (default) or a control file copy.
CONTROLFILE	Updates the current control file (and recovery catalog, if RMAN is connected to one) with RMAN metadata from a control file copy.
FROM CONTROLFILECOPY ' filename '	Specifies the name of the control file copy to use for resynchronization. Physical schema information is not updated when you use this option. Note: The control file copy can either be in the current database incarnation, or created in a prior incarnation (that is, prior to the most recent
Examples	
Resynchronizing the Recovery Catalog in ARCHIVELOG Mode: Example This example performs a full resynchronization after archiving all unarchived redo logs:	
Resynchronizing the Current Control File from a Backup: Example This example updates the RMAN repository in the current control file with metadata from a backup control file:	
Resynchronizing the Recovery Catalog After a Structural Change: Example This example adds a datafile to tablespace users	
and then resynchronizes the catalog:	
Syntax	
run::=	
backupCommands::=	
restoreCommands::=	
maintenanceCommands::=	
miscellaneousCommands::=	
Purpose	
The RUN command lets you group a series RMAN commands into a block to be executed sequentially. It also creates a scope within which a script can override default configured channels for a task using the ALLOCATE CHANNEL and RELEASE CHANNEL commands, and other parameters using the SET command with appropriate arguments. On completing the execution of the commands listed in the RUN block, the channels allocated within the RUN block are released and settings returned to their values.	
Upon reading the closing brace of the RUN	
block, RMAN compiles the list of job commands into one or more job steps and then executes the steps immediately.	
Restrictions and Usage Notes	
Execute this command only at the RMAN prompt.	
You must precede and follow the list of job commands with an opening and closing brace.	
Keywords and Parameters	
Refer to individual entries for information about commands that you can run from the RMAN prompt.	
Examples	
Making a Backup: Example This example backs up a database by using a single manually allocated channel to perform the backup:	
Restoring and Recovering a Tablespace: Example This example takes tablespace tools	
offline, restores it, then performs complete media recovery:	
Executing an RMAN Script: Example This example executes the stored script backup_db	
:	
Syntax	
send::=	
Purpose	
To send a vendor-specific string to one or more channels supported by a media manager. Refer to your media management documentation to determine which commands are supported.	
Restrictions and Usage Notes	
You must only SEND	
commands supported by the media manager. The contents of the string are not interpreted by the databasethe database, but are passed unaltered to the media management subsystem.	
Keywords and Parameters	
Syntax Element	Description
---	---
CHANNEL 'channel_id'	Specifies which channel to use. If you do not specify DEVICE TYPE or CHANNEL , then RMAN uses all allocated channels. You must specify a case-sensitive channel ID, which is the name of the channel, after the CHANNEL keyword. the database uses the channel ID to report I/O errors.
DEVICE TYPE deviceSpecifier	Specifies the type of storage device and sends the command to all channels of the specified type. See Also: "deviceSpecifier"
' command '	Specifies a vendor-specific media management command. See Also: Your media management documentation to determine which commands are supported
PARMS = ' channel_parms '	Parameters for the channel communicating with the media manager.
Example	
Sending a String to the Media Manager: Example This example sends vendor-specific commands to a media manager:	
Syntax	
set::=	
setRunOption::=	
Purpose	
You can use the SET	
command either at the RMAN prompt or within a RUN block.	
When used outside a RUN	
block, attributes changed by SET	
remain in effect until you exit the RMAN client.	
Outside of a RUN	
block, the SET	
command supports the attributes shown in "setRmanOption". Use this form of the SET	
command to:	
Cause RMAN to echo any commands executed in the message log	
Specify the location to search for control file autobackups during RESTORE	
operations	
Specify the database identifier (DBID) of a database, when restoring a control file or server parameter file from autobackup	
Specify a command ID for an RMAN command, so that rows in V$SESSION	
corresponding to sessions related to that command have V$SESSION.CLIENT_INFO	
set to this ID	
Specify settings related to encryption and decryption of backup sets for the duration of an RMAN session	
Specify the location to use for auxiliary instance datafiles, when performing TSPITR or creating transportable tablespaces sets from backup	
Within a RUN	
block, the SET	
command supports the attributes shown in "setRunOption". Changes made with SET	
within a RUN	
block persist until the end of the RUN	
block, or the next SET	
command that changes the value of the same attribute.	
Use SET	
specified within a RUN block to:	
Specify new filenames for restored datafiles	
Specify the filenames for the auxiliary database during TSPITR or database duplication.	
Specify a limit for the number of permissible block corruptions.	
Override default archived redo log destinations.	
Set an end time, SCN, or log sequence number for recovery.	
Specify that backup sets should be duplexed, that is, multiple copies should be created of each backup piece in the backup set.	
Determine which server session corresponds to which channel.	
Turn RMAN's automatic location feature on or off.	
Override the default format for control file autobackups at the session level.	
Restrictions and Usage Notes for SET Command Within RUN	
The following restrictions apply to SET	
when issued within a RUN command:	
The SET	
BACKUP	
COPIES	
command affects all backups in the RUN	
block after issuing the command and is in effect until explicitly disabled or changed. The SET	
BACKUP	
COPIES	
command does not affect previous backups.	
SET	
BACKUP	
COPIES	
does not apply to the BACKUP AS	
COPY	
command.	
You must include the %F	
substitution variable in the autobackup format.	
You cannot use SET	
NEWNAME	
TO	
NEW	
when creating a duplicate or standby database or performing RMAN TSPITR.	
Restrictions and Usage Notes for the SET DBID Command	
You should only run the SET DBID command in the following specialized circumstances:	
You are not connected to a recovery catalog and want to restore the control file or server parameter file.	
You are connected to a recovery catalog and want to restore the control file, but the database name is not unique in the recovery catalog.	
The server parameter file is lost and you want to restore it.	
Keywords and Parameters	
setRmanOption	
Syntax Element	Description
---	---
AUXILIARY INSTANCE PARAMETER FILE TO ' filename '	For use in customizing TSPITR with an automatic auxiliary instance, or in online tablespace cloning with RMAN. Specifies the path (on the host running the RMAN client) to the parameter file to use in starting the instance. Note: This is a client-side location, not a location on the database node. See Also: Oracle Database Reference for more on
COMMAND ID TO ' string '	Enters the specified string into the V$SESSION.CLIENT_INFO column of all channels. Use this information to determine which database server sessions correspond to which RMAN channels. The SET COMMAND ID command applies only to channels that are already allocated. The
The first form appears in the RMAN target database connection. The second form appears in all allocated channels. When the current job is complete, the See Also: Oracle Database Reference for more on	
CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE deviceSpecifier TO formatSpec	Overrides the default filename format for the control file autobackup on the specified device type. The override occurs at the session level only. You can run this command either in RUN or at the RMAN prompt. The order of precedence is as follows:
Note that the %F substitution variable is required to be in the new See Also: "formatSpec" for the semantics of the	
DBID integer	Specifies the DBID, which is a unique 32-bit identification number computed when the database is created. RMAN displays the DBID upon connection to the target database. You can obtain the DBID by querying the V$DATABASE view or the RC_DATABASE and RC_DATABASE_INCARNATION recovery catalog views. See Also: "Restrictions and Usage Notes for the SET DBID Command"
DECRYPTION IDENTIFIED BY password [, password...]	Specifies one or more decryption passwords to be used when reading dual-mode or password-encrypted backups. When RMAN reads encrypted backup pieces, it tries each password in the list until it finds the correct one to decrypt that backup piece. An error is signaled if none of the specified keys work. See Also: "Encryption of Backup Sets" for more details on encryption of backup sets
ECHO {ON	OFF}
ENCRYPTION	Specifies encryption-related options that apply to BACKUP commands that create backup sets for the duration of the RMAN session. See Also: "Encryption of Backup Sets" for more details on encryption of backup sets
ALGORITHM	Specifies the algorithm used during this RMAN session. Overrides the configured default encryption algorithm. Possible values are listed in V$RMAN_ENCRYPTION_ALGORITHMS .
IDENTIFIED BY [Specifies whether to use a user-specified password in encryption.
See "Encryption of Backup Sets" for details on the different encryption modes. Note: If the password provided is not surrounded by quotes, then it is translated internally into upper case. Thus, the following are all synonyms for	
{ OFF	ON } [
setRunOption	
Syntax Element	Description
---	---
NEWNAME FOR DATAFILE datafileSpec TO	Sets the default name for all subsequent RESTORE or SWITCH commands that affect the specified datafile. If you do not issue this command before the datafile restore operation, then RMAN restores the file to its default location. After you restore a datafile to a new location, then you can run SWITCH to rename the file in the control file to the Note: The See Also: "datafileSpec"
NEWNAME FOR TEMPFILE tempfileSpec TO password	NEW
' filename '	Specifies a user-defined filename or Automatic Storage Management disk group for the restored datafile. If you set the NEWNAME to a disk group and run a RESTORE , then RMAN restores the file to the disk group.
NEW	Creates an Oracle-managed file in the directory specified in DB_CREATE_FILE_DEST . If the original file is an Oracle Managed File or is on an Automatic Storage Management disk group, then RMAN attempts to delete the original file. You cannot use this option when using the See Also: Oracle Database Administrator's Guide for information about Oracle Managed Files
MAXCORRUPT FOR DATAFILE datafileSpec TO integer	Sets a limit on the number of previously undetected block corruptions that the database will allow in a specified datafile or group of datafiles. If a BACKUP or CREATE CATALOG command detects more than the specified number of corruptions, then the command terminates. The default limit is zero, meaning that RMAN tolerates no corrupt blocks. Note: If you specify See Also: "datafileSpec"
ARCHIVELOG DESTINATION TO ' log_archive_dest '	Overrides the LOG_ARCHIVE_DEST_1 initialization parameter in the target database when forming names for restored archive logs during subsequent RESTORE and RECOVER commands. RMAN restores the logs to the destination specified in ' log_archive_dest ' . Use this parameter to restore archived redo logs that are not already on disk. Use this command to stage many archived logs to different locations while a database restore is occurring. RMAN knows where to find the newly restored archive logs; it does not require them to be in the destination specified by
untilClause	Specifies an end time, SCN, or log sequence number for a subsequent RESTORE or RECOVER command. See Also: "untilClause"
BACKUP COPIES = integer	Specifies the number of copies of each backup piece that the channels should create: 1, 2, 3, or 4. The SET BACKUP COPIES command, which affects only the BACKUP command, affects all channels allocated in the session. The order of precedence is as follows, with settings higher on the list overriding settings lower on the list:
The names of the backup pieces are dependent on the Note: Note: Control file autobackups on disk are a special case and are never duplexed: RMAN always writes one and only copy.	
COMMAND ID TO ' string '	Enters the specified string into the V$SESSION.CLIENT_INFO column of all channels. Use this information to determine which database server sessions correspond to which RMAN channels. The SET COMMAND ID command applies only to channels that are already allocated. The
The first form appears in the RMAN target database connection. The second form appears in all allocated channels. When the current job is complete, the See Also: Oracle Database Reference for more on	
CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE deviceSpecifier TO formatSpec	Overrides the default filename format for the control file autobackup on the specified device type. The override occurs at the session level only. You can run this command either in RUN or at the RMAN prompt. The order of precedence is as follows:
Note that the %F substitution variable is required to be in the new See Also: "formatSpec" for the semantics of the	
Examples	
Restoring the Control File When Databases Share the Same Name: Example The following example uses the DBID to restore the control file because multiple target databases share the same DB_NAME	
in the catalog. After you have restored the target control file, you can mount the database to restore the rest of the database:	
Setting the Command ID: Example This example sets the command ID, backs up the users	
tablespace, then archives the online redo logs:	
SQL 'ALTER SYSTEM ARCHIVE LOG ALL';	
}	
Duplexing a Backup Set: Example Assume that you have used the CONFIGURE	
command to set duplexing as follows:	
The following example overrides these configurations and makes two copies of each datafile and archived log in the backup:	
Overriding the Autobackup Format During a Restore: Example This example sets the DBID, sets a boundary time for the restore, then restores a control file autobackup with a nondefault format. First start RMAN and then run:	
Restoring the Server Parameter File: Example This example restores a lost server parameter file:	
Syntax	
show::=	
Purpose	
To display the current CONFIGURE command settings. The output of SHOW	
consists of the CONFIGURE	
commands used to set the configuration. RMAN default configurations are suffixed with #default	
.	
Restrictions and Usage Notes	
Execute this command at the RMAN prompt, not in a RUN block.	
If SHOW	
ALL	
is executed when connected to a target database, only node-specific configurations and database configurations are displayed. Thus, in a standby configuration, SHOW ALL	
on the primary database or the standby database shows the node-specific configuration for the primary or standby databases, for all values except retention policy, tablespace exclude and auxiliary names.	
Keywords and Parameters	
Syntax Element	Description
---	---
ALL	Displays all user-entered CONFIGURE commands as well as default configurations.
ARCHIVELOG BACKUP COPIES	Shows the currently configured degree of duplexing for archived redo log backups.
ARCHIVELOG DELETION POLICY	Shows the currently configured archived redo log deletion policy.
AUXNAME	Displays the CONFIGURE AUXNAME settings.
BACKUP OPTIMIZATION	Displays the CONFIGURE BACKUP OPTIMIZATION settings: ON or OFF (default).
[AUXILIARY] CHANNEL	Displays the CONFIGURE CHANNEL settings. You can specify a normal channel or an AUXILIARY channel.
FOR DEVICE TYPE deviceSpecifier	Specifies the device type of the channel. For example, SHOW CHANNEL FOR DEVICE TYPE DISK displays only channel settings for disk channels.
CONTROLFILE AUTOBACKUP	Displays the CONFIGURE CONTROLFILE AUTOBACKUP settings: ON or OFF .
FORMAT	Displays the format for the control file autobackup file for configured devices.
{DATAFILE	ARCHIVELOG} BACKUP COPIES
[DEFAULT] DEVICE TYPE	Displays the configured device types and parallelism settings. If DEFAULT is specified, then SHOW displays the default device type and settings.
ENCRYPTION	Shows currently configured encryption settings for the database or tablespaces within the database, when used with ALGORITHM or FOR {DATABASE
ALGORITHM	Displays the configured default algorithm to use for encryption, when writing encrypted backup sets. Possible values are listed in V$RMAN_ENCRYPTION_ALGORITHMS .
FOR {	Displays current encryption settings for the database or for each tablespace.
EXCLUDE	Displays only the tablespaces that you have specified should be excluded.
MAXSETSIZE	Displays the CONFIGURE MAXSETSIZE settings.
RETENTION POLICY	Displays the settings for CONFIGURE RETENTION POLICY for the current target database.
SNAPSHOT CONTROLFILE NAME	Displays the CONFIGURE SNAPSHOT CONTROLFILE settings.
Examples	
Showing Channel Configurations: Example This example shows commands relevant for displaying automatic channel configurations:	
Showing All Configurations: Example This example shows all persistent configurations for the target database (and includes sample output):	
Syntax	
shutdown::=	
Purpose	
To shut down the target database without exiting RMAN. This command is equivalent to using the SQL*Plus SHUTDOWN	
statement.	
See Also: Oracle Database Administrator's Guide for information on how to start up and shut down a database, and SQL*Plus User's Guide and Reference forSHUTDOWN syntax	
Restrictions and Usage Notes	
You cannot use the RMAN SHUTDOWN	
command to shut down the recovery catalog database. To shut down this database, start a SQL*Plus session and issue a SHUTDOWN	
statement.	
The NORMAL	
, TRANSACTIONAL	
, and IMMEDIATE	
options all perform a clean close of the database. The ABORT	
option does not cleanly close the database; the database will perform instance recovery at startup.	
If the database operates in NOARCHIVELOG	
mode, then you must shut down the database cleanly and then issue a STARTUP MOUNT	
before a making a backup.	
Keywords and Parameters	
Syntax Element	Description
---	---
ABORT	Shuts down the target instance, with the following consequences:
IMMEDIATE	Shuts down the target database immediately, with the following consequences:
NORMAL	Shuts down the database with normal priority (default option), which means:
TRANSACTIONAL	Shuts down the target database while minimizing interruption to clients, with the following consequences:
Examples	
Shutting Down a Database by Using the Immediate Option: Example This example waits for current SQL transactions to be processed before shutting down, then mounts the database:	
Shutting Down a Database in NOARCHIVELOG Mode: Example This example backs up a database running in NOARCHIVELOG	
mode:	
Syntax	
spool::=	
Purpose	
To write RMAN output to a log file.	
If the file does not already exist, then RMAN creates it. If the file does exist, then RMAN overwrites the file by default. If you specify APPEND	
, RMAN will append its output to the end of the file.	
If the specified file cannot be opened for writing. Instead, RMAN turns SPOOL	
to OFF	
and continues execution.	
Restrictions and Usage Notes	
Execute the SPOOL	
command outside of a RUN	
block.	
Keywords and Parameters	
Syntax Element	Description
---	---
OFF	Turns off spooling.
TO filename	Specifies the name of the log file to which RMAN directs its output. RMAN creates the file if it does not exist, or overwrites the file if it does exist.
APPEND	Specifies that RMAN should append its output to the end of the existing log.
Examples	
Spooling RMAN Output to a File: Example This example directs RMAN output to standard output for the backup of datafile 1	
, then directs output to a log file for the backup of datafile 2	
, then directs output to a different log file for the whole database backup:	
Syntax	
sql::=	
Purpose	
To execute a SQL statement or a PL/SQL stored procedure from within Recovery Manager.	
Restrictions and Usage Notes	
If the string that RMAN passes to PL/SQL contains a filename, then the filename must be enclosed in duplicate single quotes and the entire string following the SQL	
keyword must be enclosed in double quotes. For example, use the following syntax:	
If you attempt to use single quotes for the string following the SQL keyword or use only one set of single quotes for the filename, then the command fails.	
You cannot execute SELECT	
statements.	
Keywords and Parameters	
Syntax Element	Description
---	---
' command '	Specifies a SQL statement for execution. For example, issue the following at the RMAN prompt to archive the online redo logs: SQL 'ALTER SYSTEM ARCHIVE LOG ALL'; Because SQL 'BEGIN rman.rman_purge; END;';
Examples	
Archiving the Unarchived Online Logs: Example This example backs up a tablespace and then archives all unarchived online logs:	
Specifying a Filename within a Quoted String: Example This example specifies a filename by using duplicate single quotes within the context of a double-quoted string:	
Executing a PL/SQL Stored Procedure Within RMAN: Example This example issues a PL/SQL stored procedure called scott.update_log	
:	
Syntax	
startup::=	
Purpose	
To start the target database from within the RMAN environment. This command is equivalent to using the SQL*Plus STARTUP	
command. You can:	
Start the instance without mounting a database.	
Start the instance and mount the database, but leave it closed.	
Start the instance, and mount and open the database in:	
unrestricted mode (accessible to all users)	
restricted mode (accessible to DBAs only)	
Additionally, the RMAN STARTUP	
command can start an instance in NOMOUNT	
mode even if no server parameter file or initialization parameter file exists. This feature is useful when you need to restore a lost server parameter file.	
See Also: Oracle Database Administrator's Guide to learn how to start up and shut down a database, and SQL*Plus User's Guide and Reference for SQL*PlusSTARTUP syntax	
Restrictions and Usage Notes	
You cannot use the RMAN STARTUP	
command to open the recovery catalog database: execute a STARTUP	
statement in a SQL*Plus session instead.	
Keywords and Parameters	
If you do not specify any options, then RMAN mounts and opens the database with the default server parameter file.	
Syntax Element	Description
---	---
STARTUP	If you specify only STARTUP with no other options, then the instance starts, then mounts and open the database.
DBA	Restricts access to users with the RESTRICTED SESSION privilege.
FORCE	If the database is open, then FORCE shuts down the database with a SHUTDOWN ABORT statement before re-opening it.If the database is closed, then FORCE opens the database.
MOUNT	Starts the instance, then mounts the database without opening it
NOMOUNT	Starts the instance without mounting the database. If no parameter file exists, then RMAN starts the instance with a "dummy" parameter file. You can then run RESTORE SPFILE to restore a backup server parameter file.
PFILE = 'filename'	Specifies the filename of the init.ora file for the target database. If this parameter is not specified, then the default init.ora filename is used.
Examples	
Opening the Database by Using the Default Parameter File: Example This example starts and opens the database:	
Mounting the Database While Specifying the Parameter File: Example This example forces a SHUTDOWN	
ABORT	
and then mounts the database with restricted access, specifying a nondefault parameter file location:	
Starting an Instance Without a Parameter File: Example The following example starts an instance without using a parameter file, then runs RESTORE	
SPFILE	
:	
Syntax	
switch::=	
switchFile::=	
Purpose	
To specify that a datafile copy is now the current datafile, that is, the datafile pointed to by the control file. A SWITCH	
is equivalent to using the PL/SQL ALTER	
DATABASE	
RENAME	
FILE	
statement: the names of the files in the RMAN repository are updated, but the database does not actually rename the files at the operating system level. Note that this command deletes the RMAN repository records for the datafile copy from the recovery catalog and updates the control file records to status DELETED	
.	
Restrictions and Usage Notes	
Execute the forms of SWITCH	
in the switch	
syntax diagram outside of a RUN block. Execute the forms of SWITCH	
in the switchFile	
syntax diagram within a RUN block.	
If RMAN is connected to a recovery catalog, and the database is using a control file restored from backup, SWITCH	
updates the control file with records of any datafiles known to the recovery catalog but missing from the control file.	
Keywords and Parameters	
switch	
Syntax Element	Description
---	---
DATABASE TO COPY	Renames the datafiles and control files to use the filenames of image copies of these files. RMAN switches to the latest image copy of each file. After a database switch, RMAN considers the previous database files as datafile copies.
DATAFILE datafileSpec TO COPY	Specifies the datafile that you wish to rename. As with DATABASE TO COPY , specifies to switch this datafile to the latest image copy. After the switch, the control file no longer considers the specified file as current.
TABLESPACE ' tablespace_name ' TO COPY	Switches all datafiles within the tablespace, as with SWITCH DATAFILE ... TO COPY .
switchFile	
Syntax Element	Description
---	---
DATAFILE ALL	Specifies that all datafiles for which a SET NEWNAME FOR DATAFILE command has been issued in this job are switched to their new name.
DATAFILE datafileSpec TO DATAFILECOPY {' filename '	TAG = 'tag_name' }
Specifies the datafile that you wish to rename. After the switch, the control file no longer considers the specified file as current. For example, this command points the control file from tbs_1.f to cp1.f : SWITCH DATAFILE '?/dbs/tbs_1.f' TO DATAFILECOPY '?/dbs/copies/cp1.f'; If you do not specify a The filename or tag provided in the SWITCH DATAFILE 2 TO DATAFILECOPY '?/dbs/df2.copy'; Note that if you specify a tag and more than one copy uses this tag name, then RMAN uses the most current copy, that is, the one needing the least recovery. The following command switches datafile SWITCH DATAFILE 3 TO DATAFILECOPY TAG mondayPMcopy;	
TEMPFILE ALL	Specifies that all tempfiles for which a SET NEWNAME FOR TEMPFILE command has been issued in this job are switched to their new name.
TEMPFILE tempFileSpec TO { quoted_string	NEW
Examples	
Switching Datafile Filenames After a Restore: Example This example allocates one disk device and one tape device to allow RMAN to restore from disk and tape.	
Renaming a Tempfile Directly Using SWITCH TEMPFILE: Example This example renames a tempfile without using the SET NEWNAME	
command to specify the new name for the file. Note that the database must not be open for this operation.	
Renaming a Tempfile Using SET NEWNAME and SWITCH TEMPFILE: Example This example demonstrates using SET	
NEWNAME	
to specify a new name for a tempfile, and SWITCH	
to actually rename the tempfile to the specified name. Note that the database is not open at the start of this procedure. The tempfile is re-created when the database is opened.	
Renaming Tempfiles Using SET NEWNAME and SWITCH TEMPFILE ALL: Example This example demonstrates using SET NEWNAME	
to specify new names for several tempfiles, and SWITCH TEMPFILE ALL	
to actually rename the tempfiles to the specified names. The database must be offline at the beginning of this procedure. The tempfiles are re-created at the new locations when the database is opened.	
Renaming Tempfiles Using SET NEWNAME and SWITCH TEMPFILE ALL: Example This example illustrates specifying names for tempfiles when duplicating a database for standby.	
Syntax	
tempFileSpec::=	
Purpose	
A subclause that specifies a tempfile by name or absolute file number.	
Restrictions and Usage Notes	
You can specify an absolute path name, or a path name relative to the Oracle home.	
Double and single quotes are both legal (although only single quotes are shown in the diagram).	
Use ?	
to represent the Oracle home and @	
for the Oracle SID.	
See Also: "Placeholders" to learn about the difference between single and double quotes, as well as the behavior of environment variables in RMAN quoted strings	
You can use the REPORT SCHEMA	
command or the V$TEMPFILE	
control file view to get information about the current tempfiles.	
Keywords and Parameters	
Syntax Element	Description
---	---
' filename '	Specifies the datafile by using either the full path or a relative filename. If you specify a relative filename, the filename is qualified in a platform-specific manner by the target database.
integer	Specifies the datafile by absolute file number. Obtain the file number from the V$TEMPFILE view or REPORT SCHEMA .
Examples	
Specifying a Tempfile by Filename: Example This example renames tempfile ?/oradata/trgt/tmp1.f	
to /newdisk/tmp1.f	
, specifying it by filename:	
Note that the database must not be open when performing this example.	
Specifying a Tempfile by Absolute File Number: Example This example renames tempfile 1	
to /newdisk/tmp1.f	
, specifying it by absolute file number:	
Note that the database must not be open when performing this example.	
Syntax	
transpt_tbs::=	
transpt_tbs_optlist::=	
Purpose	
To create transportable tablespace sets from RMAN backups, instead of the live datafiles of the source database. Also, to create transportable tablespace sets that are recovered to a point in time in the past instead of the present time.	
Restrictions and Usage Notes	
The limitations on creating transportable tablespace sets described in Oracle Database Administrator's Guide apply to transporting tablespaces from backup, with the exception of the requirement to make the tablespaces read-only.	
TRANSPORT	
TABLESPACE	
does not perform endian format conversion. If the target platform has a different endian format, then you must use the RMAN CONVERT command to perform the separate step of converting the endian format of the datafiles in the transportable set.	
See Also: "CONVERT" to learn how to convert a tablespace for transport to a target platform with a different endian format.	
There are also limitations specific to creating a transportable tablespace set using RMAN:	
You must have a backup of all needed tablespaces (including those in the auxiliary set) and archived redo log files available for use by RMAN that can be recovered to the target point in time for the TRANSPORT	
TABLESPACE	
operation.	
Note: If RMAN is not part of the backup strategy for your database, you can still use RMANTRANSPORT TABLESPACE , as long as the needed datafile copies and archived redo logs are available on disk. Use the RMAN CATALOG command to record the datafile copies and archived logs in the RMAN repository. You can then use TRANSPORT TABLESPACE . See Oracle Database Backup and Recovery Basics for details on using CATALOG . You also have the option of using RMAN to back up your database specifically to create backups for use in creating a transportable tablespace set from backup.	
Because the RMAN process for creating transportable tablespaces from backup uses the Data Pump Export and Import utilities, you cannot use this process if the tablespaces to be transported use XMLTypes. In such a case, you must use the process documented in Oracle Database Administrator's Guide.	
Because RMAN creates the automatic auxiliary instance used for restore and recovery on the same node as the source instance, there is some performance overhead during the operation of the TRANSPORT	
TABLESPACE	
command.	
If you drop a tablespace, then you cannot later use TRANSPORT	
TABLESPACE	
to include that tablespace in a transportable tablespace set, even if the SCN for TRANSPORT	
TABLESPACE	
is earlier than the SCN at which the table was dropped.	
If you renname a tablespace, you cannot use TRANSPORT	
TABLESPACE	
to create a transportable tablespace set as of a point in time before the tablespace was renamed. (RMAN has no information about the previous name of the tablespace.)	
You cannot TRANSPORT	
tables without their associated constraints, or constraints without their associated tables.	
Neither the transportable set nor the auxiliary set datafiles can contain any of the following:	
Replicated master tables	
Partial tables	
Tables with VARRAY columns, nested tables, or external files	
Snapshot logs and snapshot tables	
Tablespaces containing undo or rollback segments	
Tablespaces that contain objects owned by SYS, including rollback segments	
If you are performing TRANSPORT	
TABLESPACE	
without a recovery catalog, the following additional restrictions apply:	
If not using a recovery catalog and transporting tablespaces as of a point in time in the past, then the set of tablespaces with undo segments at the time TRANSPORT	
TABLESPACE	
is executed must be the same as the set of tablespaces with undo segments at the time selected for transport.	
Tablespaces including undo segments as of the target SCN for TRASNPORT	
TABLESPACE	
must be part of the auxiliary set. The RMAN repository in the control file only contains a record of tablespaces that include undo segments at the current time. If the set of tablespaces with undo segments was different at the target SCN, then TRANSPORT	
TABLESPACE	
fails.	
If the database has re-used the control file records for the RMAN repository that contained information about backups required for the TRANSPORT	
TABLESPACE	
process, then the process fails because RMAN cannot locate the required backups. You may be able to use CATALOG	
to add the needed backups to the RMAN repository if they are still available, but if the database is already overwriting control file records you may lose records of other needed backups.	
Keywords and Parameters	
Syntax Element	Description
---	---
tablespace_name	Specifies the name of each tablespace to transport.
transpt_tbs_oplist	
Syntax Element	Description
---	---
AUXILIARY DESTINATION	Optional argument that specifies the location for files for the auxiliary instance. The SET NEWNAME and CONFIGURE AUXNAME can be used to override this argument for individual files, and the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT initialization parameters can be used instead of AUXILIARY DESTINATION , if using your own initialization parameter file to customize the auxiliary instance. See Oracle Database Backup and Recovery Advanced User's Guide for details on the interactions among the different methods of naming the auxiliary instance files.
DATAPUMP DIRECTORY	Optional argument that specifies a database directory object where Data Pump Export outputs are created. If not specified, files will be created in the location specified by TABLESPACE DESTINATION . See Oracle Database Utilities for more details on Data Pump Export and database directory objects.
DUMP FILE	Optional argument that specifies where to create the export dump file. If not specified, the export dump file is named dmpfile.dmp and stored in the location specified by the DATAPUMP DIRECTORY clause or in the tablespace destination.
EXPORT LOG	Optional argument that specifies the location of the log generated by Data Pump Export. If omitted, the export log is named explog.log and stored in the location specified by the DATAPUMP DIRECTORY clause or in the tablespace destination.
IMPORT SCRIPT	Optional argument that specifies the filename for the sample input script generated by RMAN for use in plugging in the transported tablespace at the destination database. If omitted, the import script is named impscript.sql . The script is stored in the tablespace destination.
TABLESPACE DESTINATION	Argument that specifies the directory where the datafiles for the transported tablespaces are left at the end of the tablespace transport operation.
untilClause	Optional argument that specifies a past point in time. If specified, RMAN restores and recovers the tablespaces at the auxiliary instance to their contents at that past point in time before export.
Examples	
Creating Transporable Tablespaces from Backup with TRANSPORT TABLESPACE: Example In this example, the tablespaces for the transportable set are tbs_2	
and tbs_3	
, the transportable set files are to be stored at /disk1/transport_dest	
, and the transportable tablespaces are to be recovered to the present time:	
Using TRANSPORT TABLESPACE with a Past Point in Time: Example In this example, the tablespaces for the transportable set are tbs_2	
and tbs_3	
, the transportable set files are to be stored at /disk1/transport_dest	
, and the transportable tablespaces are to be recovered to a specific SCN:	
Using TRANSPORT TABLESPACE with Custom File Locations: Example This example illustrates the use of the optional arguments of TRANSPORT	
TABLESPACE	
that control the locations of the Data Pump-related files such as the dump file, as well as the DATAPUMP	
DIRECTORY	
which in this case references a directory object mypumpdir	
:	
Syntax	
unregister::=	
Purpose	
To unregister a database from the recovery catalog.	
Restrictions and Usage Notes	
Execute only at the RMAN prompt.	
RMAN must be connected to the recovery catalog in which the target database is registered.	
You can identify the database to unregister in one of three ways:	
Connect RMAN to the target database	
Provide the database_name argument to identify the database to unregister, if the database name is unique;	
Use SET DBID	
to identify the database if RMAN is not connected to the target database and the database_name is not unique in the recovery catalog.	
Keywords and Parameters	
Syntax Element	Description
---	---
database_name	Specifies the name of the target database that you are unregistering. You do not have to specify db_name if RMAN is connected to the target database.
NOPROMPT	Specifies that RMAN should not prompt for confirmation before unregistering the database.
Example	
Unregistering a Database: Example In this example, you connect to the target database test1	
and then unregister it:	
Unregistering a Database That is Not Unique in Catalog: Example The following UNIX shell script unregisters database testdb	
from the recovery catalog. Because multiple databases called testdb	
are registered in the recovery catalog, and because RMAN is not connected to the target database (which has already been deleted from the file system), you must run SET	
DBID	
:	
Syntax	
untilClause::=	
Purpose	
A subclause that specifies an upper limit by time, SCN, restore point or log sequence number for various RMAN operations.	
See Also: Oracle Database Backup and Recovery Basics to learn how to set the date format used by RMAN	
Restrictions and Usage Notes	
When specifying dates in RMAN commands, the date string must be either:	
A literal string whose format matches the NLS_DATE_FORMAT	
setting.	
A SQL expression of type DATE	
, for example, 'SYSDATE-10'	
or "TO_DATE('01/30/1997',	
'MM/DD/YYYY')"	
. Note that the second example includes its own date format mask and so is independent of the current NLS_DATE_FORMAT	
setting.	
Following are examples of typical date settings in RMAN commands:	
SET	
UNTIL	
RESTORE	
POINT	
can only be used when the database is mounted, because the defined restore points are recorded in the control file. For example, you cannot use SET	
UNTIL	
RESTORE	
POINT	
to specify the target point in time for a RESTORE	
CONTROLFILE	
operation.	
Keywords and Parameters	
Syntax Element	Description
---	---
UNTIL SCN = integer	Specifies an SCN as an upper limit. RMAN selects only files that can be used to restore or recover up to but not including the specified SCN. For example, RESTORE DATABASE UNTIL SCN 1000 chooses only backups that could be used to recover to SCN 1000.
UNTIL RESTORE POINT restore_point_name	Specifies a restore point, so that the SCN at which the restore point was created is the upper limit. RMAN selects only files that can be used to restore or recover up to but not including the corresponding SCN. Note: The database must be mounted when using
UNTIL SEQUENCE = integer THREAD = integer	Specifies a redo log sequence number and thread as an upper limit. RMAN selects only files that can be used to restore or recover up to but not including the specified sequence number. For example, REPORT OBSOLETE UNTIL SEQUENCE 8000 THREAD 1 reports only backups that could be used to recover through log sequence 7999.
UNTIL TIME = ' date_string '	Specifies a time as an upper limit. RMAN selects only files that can be used to restore and recover up to but not including the specified time. For example, LIST BACKUP UNTIL TIME 'SYSDATE-7' lists all backups that could be used to recover to a point one week ago.
Examples	
Performing Incomplete Recovery Until a Log Sequence Number: Example This example assumes that log sequence 1234 was lost due to a disk failure and the database needs to be recovered by using available archived redo logs.	
Performing Incomplete Recovery to a Specified SCN: Example This example (which assumes a mounted database) recovers the database until a specified SCN:	
Performing Incomplete Recovery to a Restore Point: Example This example (which assumes that the database starts out not mounted) recovers the database until a specified restore point:	
Reporting Obsolete Backups: Example This example assumes that you want to be able to recover to any point within the last week. It considers as obsolete all backups that could be used to recover the database to a point one week ago:	
Syntax	
upgradeCatalog::=	
Purpose	
To upgrade the recovery catalog schema from an older version to the version required by the RMAN executable. For example, if you use a release 8.0 recovery catalog with a release 8.1 version of RMAN, then you must upgrade the catalog.	
Note that UPGRADE	
CATALOG	
does not run scripts to perform the upgrade. Instead, RMAN sends various SQL DDL statements to the recovery catalog to update the recovery catalog schema with new tables, views, columns, and so forth.	
Restrictions and Usage Notes	
You must be connected to the catalog database, and the catalog database must be open. You do not have to be connected to the target database.	
You must enter the UPGRADE	
command twice in a row to confirm the upgrade.	
You will receive an error if the recovery catalog is already at a version greater than needed by the RMAN executable. RMAN permits the command to be run if the recovery catalog is already current, however, so that the packages can be re-created if necessary. RMAN displays all error messages generated during the upgrade in the message log.	
Keywords and Parameters	
None.	
Example	
Upgrading a Recovery Catalog: Example This example connects to recovery catalog database recdb	
at the operating system command line and then upgrades it to a more current version:	
Syntax	
validate::=	
Purpose	
To examine a backup set and report whether it can be restored. RMAN scans all of the backup pieces in the specified backup sets and looks at the checksums to verify that the contents are intact so that the backup can be successfully restored if necessary.	
Note: TheVALIDATE BACKUPSET command tests whether the backup sets can be restored, whereas CROSSCHECK examines the headers of the specified files if they are on disk or queries the media management catalog if they are on tape.	
Use this command when you suspect that one or more backup pieces in a backup set are missing or have been damaged. Use VALIDATE	
BACKUPSET	
to specify which backups to test; use the VALIDATE	
option of the RESTORE command to let RMAN choose which backups to validate. For validating image copies, run RESTORE	
VALIDATE	
FROM	
DATAFILECOPY	
.	
Restrictions and Usage Notes	
If you do not have automatic channels configured, manually allocate at least one channel before executing a VALIDATE	
BACKUPSET	
statement.	
The target instance must be started.	
Keywords and Parameters	
Syntax Element	Description
---	---
primary_key	Specifies the backup sets to be validated by primary_key . Obtain the primary keys of backup sets by executing a LIST statement or, if you use a recovery catalog, by querying the RC_BACKUP_SET recovery catalog view.
CHECK LOGICAL	Tests data and index blocks in the backup set that pass physical corruption checks for logical corruption, for example, corruption of a row piece or index entry. If RMAN finds logical corruption, then it logs the block in the alert.log and server session trace file. The RMAN command completes and V$DATABASE_BLOCK_CORRUPTION is populated with corrupt block ranges. Note:
DEVICE TYPE deviceSpecifier	Allocates automatic channels for the specified device type only. This option is valid only if you have configured automatic channels and have not manually allocated channels. For example, if you configure automatic disk and tape channels, and run VALIDATE ... DEVICE TYPE DISK , RMAN allocates only disk channels. See Also: "deviceSpecifier"
Example	
Validating a Backup Set: Example This example validates the status of the backup set whose primary key is 218	
:	
This chapter contains descriptions of recovery catalog views. You can only access these views if you have created a recovery catalog. For a summary of the recovery catalog views, refer to "Summary of RMAN Recovery Catalog Views".	
Note: These views are not normalized, but are optimized for RMAN and Enterprise Manager usage. Hence, most catalog views have redundant values that result from joining of several underlying tables.The views intended for use by Enterprise Manager are generally less useful for direct querying than the other views.	
The following table provides a functional summary of RMAN recovery catalog views.	
Table 3-1 Recovery Catalog Views	
Recovery Catalog View	Corresponding V$ View
---	---
Archived and unarchived redo logs	
Details about archived redo log backups for Enterprise Manager	
Summary of information about archived redo log backups for Enterprise Manager	
Control files backed up in backup sets	
Details about control file backups for Enterprise Manager	
Summary of information about control file backups for Enterprise Manager	
Details about datafile image copy backups for Enterprise Manager	
Summary of information about datafile image copy backups for Enterprise Manager	
Corrupt block ranges in datafile backups	
Datafiles in backup sets	
Details about datafile backups for Enterprise Manager	
Summary of information about datafile backups for Enterprise Manager	
RMAN backups and copies known to the repository.	
Backup pieces	
Details about backup pieces for Enterprise Manager	
Archived redo logs in backup sets	
Backup sets for all incarnations of databases registered in the catalog	
Details about backup sets for Enterprise Manager	
Summary of information about backup sets for Enterprise Manager	
Server parameter files in backups	
Details about SPFILE backups for Enterprise Manager	
Summary of information about SPFILE backups for Enterprise Manager	
n/a	Deprecated in favor of RC_RESYNC
Control file copies on disk	
Corrupt block ranges in datafile copies	
Databases registered in the recovery catalog	
Database blocks marked as corrupted in the most recent RMAN backup or copy	
Database incarnations registered in the recovery catalog	
Datafiles registered in the recovery catalog	
Datafile copies on disk	
Online redo log history indicating when log switches occurred	
Offline ranges for datafiles	
Output from RMAN commands for use in Enterprise Manager	
Archived log backups taken with the proxy copy functionality	
Details about proxy archived redo logs for Enterprise Manager	
Summary of information about proxy archived redo logs for Enterprise Manager	
Control file backups taken with the proxy copy functionality	
Details about datafile proxy copies for Enterprise Manager	
Summary of information about datafile proxy copies for Enterprise Manager	
Datafile backups that were taken using the proxy copy functionality	
Online redo logs for all incarnations of the database since the last catalog resynchronization	
All redo threads for all incarnations of the database since the last catalog resynchronization	
n/a	Recovery catalog resynchronizations
Details about backup jobs for Enterprise Manager	
Details about backup subjobs for Enterprise Manager	
Used internally by Enterprise Manager	
RMAN configuration settings	
Historical status information about RMAN operations.	
n/a	Names of scripts stored in the recovery catalog
n/a	Contents of the scripts stored in the recovery catalog
All tablespaces registered in the recovery catalog, all dropped tablespaces, and tablespaces that belong to old incarnations	
All tempfiles registered in the recovery catalog	
RC_UNUSABLE_BACKUPFILE_DETAILS	
Unusable backup files registered in the recovery catalog	
This view contains historical information about archived and unarchived redo logs. It corresponds to the V$ARCHIVED_LOG	
view in the target database control file.	
Oracle inserts an archived redo log record after the online redo log is successfully archived. If a log that has not been archived is cleared, a record is inserted with the NAME	
column set to NULL	
.	
If the log is archived multiple times, then the view will contain multiple archived log records with the same THREAD#	
, SEQUENCE#	
, and RESETLOGS_CHANGE#	
, but with a different name.	
An archived log record is also inserted when an archived log is restored from a backup set or a copy.	
Note that an archived log can have no record if the record ages out of the control file.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
AL_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
NAME	VARCHAR2(1024)
THREAD#	NUMBER
SEQUENCE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
FIRST_CHANGE#	NUMBER
FIRST_TIME	DATE
NEXT_CHANGE#	NUMBER
NEXT_TIME	DATE
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
COMPLETION_TIME	DATE
ARCHIVED	VARCHAR2(3)
STATUS	VARCHAR2(1)
IS_STANDBY	VARCHAR2(3)
DICTIONARY_BEGIN	VARCHAR2(3)
DICTIONARY_END	VARCHAR2(3)
IS_RECOVERY_DEST_FILE	VARCHAR2(3)
RC_BACKUP_ARCHIVELOG_DETAILS	
provides detailed information about backups of archived redo log files.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
BTYPE	CHAR(9)
BTYPE_KEY	NUMBER
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
ID1	NUMBER
ID2	NUMBER
THREAD#	NUMBER
SEQUENCE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
FIRST_CHANGE#	NUMBER
FIRST_TIME	DATE
NEXT_CHANGE#	NUMBER
NEXT_TIME	DATE
FILESIZE	NUMBER
COMPRESSION_RATIO	NUMBER
FILESIZE_DISPLAY	VARCHAR2(4000)
RC_BACKUP_ARCHIVELOG_SUMMARY	
contains summary information about backups of archived redo log files.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
NUM_FILES_BACKED	NUMBER
NUM_DISTINCT_FILES_BACKED	NUMBER
MIN_FIRST_CHANGE#	NUMBER
MAX_NEXT_CHANGE#	NUMBER
MIN_FIRST_TIME	DATE
MAX_NEXT_TIME	DATE
INPUT_BYTES	NUMBER
OUTPUT_BYTES	NUMBER
COMPRESSION_RATIO	NUMBER
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view lists information about control files in backup sets. Note that the V$BACKUP_DATAFILE	
view contains both datafile and control file records: a backup datafile record with file number 0	
represents the backup control file. In the recovery catalog, the RC_BACKUP_CONTROLFILE	
view contains only control file records, while the RC_BACKUP_DATAFILE	
view contains only datafile records.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
BCF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
CREATION_TIME	DATE
BLOCK_SIZE	NUMBER
OLDEST_OFFLINE_RANGE	NUMBER
STATUS	VARCHAR2(1)
BS_RECID	NUMBER
BS_STAMP	NUMBER
BS_LEVEL	NUMBER
COMPLETION_TIME	DATE
CONTROLFILE_TYPE	VARCHAR2(1)
BLOCKS	NUMBER
AUTOBACKUP_DATE	DATE
AUTOBACKUP_SEQUENCE	NUMBER
RC_BACKUP_CONTROLFILE_DETAILS	
provides detailed information about control file backups that can be restored, including backups in control file image copies, backup sets, and proxy copies.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
BTYPE	CHAR(9)
BTYPE_KEY	NUMBER
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
ID1	NUMBER
ID2	NUMBER
CREATION_TIME	DATE
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
FILESIZE	NUMBER
COMPRESSION_RATIO	NUMBER
FILESIZE_DISPLAY	VARCHAR2(4000)
RC_BACKUP_CONTROLFILE_SUMMARY	
provides summary information about control file backups that can be restored, including backups in control file image copies, backup sets, and proxy copies.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
NUM_FILES_BACKED	NUMBER
NUM_DISTINCT_FILES_BACKED	NUMBER
MIN_CHECKPOINT_CHANGE#	NUMBER
MAX_CHECKPOINT_CHANGE#	NUMBER
MIN_CHECKPOINT_TIME	DATE
MAX_CHECKPOINT_TIME	DATE
INPUT_BYTES	NUMBER
OUTPUT_BYTES	NUMBER
COMPRESSION_RATIO	NUMBER
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
RC_BACKUP_COPY_DETAILS	
contains detailed information all AVAILABLE	
control file and datafile copies. Columns SESSION_KEY	
, SESSION_RECID	
, SESSION_STAMP	
, and COPY_KEY	
uniquely identify an RMAN session and datafile copy. Other columns for this view have the same semantics as in RC_DATAFILE_COPY	
.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RSR_KEY	NUMBER
COPY_KEY	NUMBER
FILE#	NUMBER
NAME	VARCHAR2(1024)
TAG	VARCHAR2(32)
CREATION_CHANGE#	NUMBER
CREATION_TIME	DATE
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
MARKED_CORRUPT	NUMBER
OUTPUT_BYTES	NUMBER
COMPLETION_TIME	DATE
CONTROLFILE_TYPE	VARCHAR2(1)
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(10)
IS_RECOVERY_DEST_FILE	VARCHAR2(3)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
RC_BACKUP_COPY_SUMMARY	
contains summary information all AVAILABLE	
control file and datafile copies.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
NUM_COPIES	NUMBER
NUM_DISTINCT_COPIES	NUMBER
MIN_CHECKPOINT_CHANGE#	NUMBER
MAX_CHECKPOINT_CHANGE#	NUMBER
MIN_CHECKPOINT_TIME	DATE
MAX_CHECKPOINT_TIME	DATE
OUTPUT_BYTES	NUMBER
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view lists corrupt block ranges in datafile backups. It corresponds to the V$BACKUP_CORRUPTION	
view in the control file. Note that corruptions are not tolerated in control file and archived redo log backups.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
PIECE#	NUMBER
BDF_KEY	NUMBER
BDF_RECID	NUMBER
BDF_STAMP	NUMBER
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
BLOCK#	NUMBER
BLOCKS	NUMBER
CORRUPTION_CHANGE#	NUMBER
MARKED_CORRUPT	VARCHAR2(3)
CORRUPTION_TYPE	VARCHAR2(9)
This view lists information about datafiles in backup sets. It corresponds to the V$BACKUP_DATAFILE	
view. A backup datafile is uniquely identified by BDF_KEY	
.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
BDF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
BS_RECID	NUMBER
BS_STAMP	NUMBER
BACKUP_TYPE	VARCHAR2(1)
INCREMENTAL_LEVEL	NUMBER
COMPLETION_TIME	DATE
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
INCREMENTAL_CHANGE#	NUMBER
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
ABSOLUTE_FUZZY_CHANGE#	NUMBER
DATAFILE_BLOCKS	NUMBER
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
STATUS	VARCHAR2(1)
BS_LEVEL	NUMBER
PIECES	NUMBER
RC_BACKUP_DATAFILE_DETAILS	
provides detailed information about available datafile backups for databases registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
BTYPE	CHAR(9)
BTYPE_KEY	NUMBER
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
ID1	NUMBER
ID2	NUMBER
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
CREATION_TIME	DATE
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
INCREMENTAL_LEVEL	NUMBER
INCREMENTAL_CHANGE#	NUMBER
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
MARKED_CORRUPT	NUMBER
FILESIZE	NUMBER
COMPRESSION_RATIO	NUMBER
TS#	NUMBER
TSNAME	VARCHAR2(30)
FILESIZE_DISPLAY	VARCHAR2(4000)
RC_BACKUP_DATAFILE_SUMMARY	
provides summary information about available backups of datafiles.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
NUM_FILES_BACKED	NUMBER
NUM_DISTINCT_FILES_BACKED	NUMBER
NUM_DISTINCT_TS_BACKED	NUMBER
MIN_CHECKPOINT_CHANGE#	NUMBER
MAX_CHECKPOINT_CHANGE#	NUMBER
MIN_CHECKPOINT_TIME	DATE
MAX_CHECKPOINT_TIME	DATE
INPUT_BYTES	NUMBER
OUTPUT_BYTES	NUMBER
COMPRESSION_RATIO	NUMBER
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view lists backups known to the RMAN repository as reflected in the recovery catalog. This view corresponds to the V$BACKUP_FILES	
control file view.	
Note:	
Column	Datatype
---	---
PKEY	NUMBER
BACKUP_TYPE	VARCHAR2(32)
FILE_TYPE	VARCHAR2(32)
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(13)
STATUS	VARCHAR2(16)
FNAME	VARCHAR2(1024)
TAG	VARCHAR2(32)
MEDIA	VARCHAR2(80)
RECID	NUMBER
STAMP	NUMBER
DEVICE_TYPE	VARCHAR2(255)
BLOCK_SIZE	NUMBER
COMPLETION_TIME	NUMBER
COMPRESSED	VARCHAR2(3)
OBSOLETE	VARCHAR2(3)
BYTES	NUMBER
BS_KEY	NUMBER
BS_COUNT	NUMBER
BS_STAMP	NUMBER
BS_TYPE	VARCHAR2(32)
BS_INCR_TYPE	VARCHAR(32)
BS_PIECES	NUMBER
BS_COPIES	NUMBER
BS_COMPLETION_TIME	DATE
BS_STATUS	VARCHAR2(16)
BS_BYTES	NUMBER
BS_COMPRESSED	VARCHAR2(3)
BS_TAG	VARCHAR2(1024)
BS_DEVICE_TYPE	VARCHAR2(255)
BP_PIECE#	NUMBER
BP_COPY#	NUMBER
DF_FILE#	NUMBER
DF_TABLESPACE	VARCHAR2(30)
DF_RESETLOGS_CHANGE#	NUMBER
DF_CREATION_CHANGE#	NUMBER
DF_CHECKPOINT_CHANGE#	NUMBER
DF_CKP_MOD_TIME	DATE
RL_THREAD#	NUMBER
RL_SEQUENCE#	NUMBER
RL_RESETLOGS_CHANGE#	NUMBER
RL_FIRST_CHANGE#	NUMBER
RL_FIRST_TIME	DATE
RL_NEXT_CHANGE#	NUMBER
RL_NEXT_TIME	DATE
This view lists information about backup pieces. This view corresponds to the V$BACKUP_PIECE	
view. Each backup set contains one or more backup pieces.	
Multiple copies of the same backup piece can exist, but each copy has its own record in the control file and its own row in the view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_ID	NUMBER
BP_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
BACKUP_TYPE	VARCHAR2(1)
INCREMENTAL_LEVEL	NUMBER
PIECE#	NUMBER
COPY#	NUMBER
DEVICE_TYPE	VARCHAR2(255)
HANDLE	VARCHAR2(1024)
COMMENTS	VARCHAR2(255)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
CONCUR	VARCHAR2(3)
TAG	VARCHAR2(32)
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
STATUS	VARCHAR2(1)
BYTES	NUMBER
IS_RECOVERY_DEST_FILE	VARCHAR2(3)
RC_BACKUP_PIECE_DETAILS	
contains detailed information about all available backup pieces recorded in the recovery catalog. The semantics of most columns are the same as for the RC_BACKUP_PIECE	
recovery catalog view.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
DBID	NUMBER
BP_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
BACKUP_TYPE	VARCHAR2(1)
INCREMENTAL_LEVEL	NUMBER
PIECE#	NUMBER
COPY#	NUMBER
DEVICE_TYPE	VARCHAR2(255)
HANDLE	VARCHAR2(1024)
COMMENTS	VARCHAR2(255)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
CONCUR	VARCHAR2(3)
TAG	VARCHAR2(32)
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
STATUS	VARCHAR2(1)
BYTES	NUMBER
IS_RECOVERY_DEST_FILE	VARCHAR2(3)
RSR_KEY	NUMBER
COMPRESSED	VARCHAR2(3)
PIECES_PER_SET	NUMBER
SIZE_BYTES_DISPLAY	VARCHAR2(4000)
This view lists information about archived redo logs in backup sets. It corresponds to the V$BACKUP_REDOLOG	
view.	
You cannot back up online logs directly: you must first archive them to disk and then back them up. An archived log backup set contains one or more archived logs.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
BRL_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
BACKUP_TYPE	VARCHAR2(1)
COMPLETION_TIME	DATE
THREAD#	NUMBER
SEQUENCE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
FIRST_CHANGE#	NUMBER
FIRST_TIME	DATE
NEXT_CHANGE#	NUMBER
NEXT_TIME	DATE
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
STATUS	VARCHAR2(1)
BS_RECID	NUMBER
BS_STAMP	NUMBER
PIECES	NUMBER
This view lists information about backup sets for all incarnations of the database. It corresponds to the V$BACKUP_SET	
view. A backup set record is inserted after the backup has successfully completed.	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_ID	NUMBER
BS_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
BACKUP_TYPE	VARCHAR2(1)
INCREMENTAL_LEVEL	NUMBER
PIECES	NUMBER
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
STATUS	VARCHAR2(1)
CONTROLFILE_INCLUDED	VARCHAR2(7)
INPUT_FILE_SCAN_ONLY	VARCHAR2(3)
KEEP	VARCHAR2(3)
KEEP_OPTIONS	VARCHAR2(10)
The KEEP options specified for this backup set. Options can be LOGS (RMAN keeps the logs needed to recover this backup), NOLOGS (RMAN does not keep the logs needed to recover this backup), or NULL (the backup has no KEEP options and is subject to the default retention policy).	
KEEP_UNTIL	DATE
RC_BACKUP_SET_DETAILS	
provides details about currently available backup sets, including backup sets created by the use of the BACKUP BACKUPSET command.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
BS_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
BACKUP_TYPE	VARCHAR2(1)
CONTROLFILE_INCLUDED	VARCHAR2(7)
INCREMENTAL_LEVEL	NUMBER
PIECES	NUMBER
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
BLOCK_SIZE	NUMBER
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(10)
DEVICE_TYPE	VARCHAR2(255)
COMPRESSED	VARCHAR2(3)
NUM_COPIES	NUMBER
OUTPUT_BYTES	NUMBER
ORIGINAL_INPUT_BYTES	NUMBER
COMPRESSION_RATIO	NUMBER
STATUS	CHAR(1)
ORIGINAL_INPRATE_BYTES	NUMBER
OUTPUT_RATE_BYTES	NUMBER
ORIGINAL_INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
ORIGINAL_INPRATE_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_RATE_BYTES_DISPLAY	VARCHAR2(4000)
TIME_TAKEN_DISPLAY	VARCHAR2(4000)
RC_BACKUP_SET_SUMMARY	
provides aggregate information about available backup sets for each database registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
NUM_BACKUPSETS	NUMBER
OLDEST_BACKUP_TIME	DATE
NEWEST_BACKUP_TIME	DATE
OUTPUT_BYTES	NUMBER
ORIGINAL_INPUT_BYTES	NUMBER
ORIGINAL_INPRATE_BYTES	NUMBER
OUTPUT_RATE_BYTES	NUMBER
COMPRESSION_RATIO	NUMBER
ORIGINAL_INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
ORIGINAL_INPRATE_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_RATE_BYTES_DISPLAY	VARCHAR2(4000)
This view lists information about server parameter files in backup sets.	
Column	Datatype
---	---
DB_KEY	NUMBER
BSF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
MODIFICATION_TIME	DATE
STATUS	VARCHAR2(1)
BS_RECID	NUMBER
BS_STAMP	NUMBER
COMPLETION_TIME	DATE
BYTES	NUMBER
RC_BACKUP_SPFILE_DETAILS	
provides detailed information about SPFILE backups for each database registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
BS_KEY	NUMBER
SET_STAMP	NUMBER
SET_COUNT	NUMBER
MODIFICATION_TIME	DATE
FILESIZE	NUMBER
FILESIZE_DISPLAY	VARCHAR2(4000)
RC_BACKUP_SPFILE_SUMMARY	
provides summary information about SPFILE backups for databases registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
NUM_FILES_BACKED	NUMBER
NUM_DISTINCT_FILES_BACKED	NUMBER
MIN_MODIFICATION_TIME	DATE
MAX_MODIFICATION_TIME	DATE
INPUT_BYTES	NUMBER
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view lists information about control file copies on disk. A datafile copy record with a file number of 0 represents the control file copy in V$DATAFILE_COPY	
.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
CCF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
NAME	VARCHAR2(1024)
TAG	VARCHAR2(32)
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
CREATION_TIME	DATE
BLOCK_SIZE	NUMBER
MIN_OFFR_RECID	NUMBER
OLDEST_OFFLINE_RANGE	NUMBER
COMPLETION_TIME	DATE
STATUS	VARCHAR2(1)
CONTROLFILE_TYPE	VARCHAR2(1)
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(10)
IS_RECOVERY_DEST_FILE	VARCHAR2(3)
This view lists corrupt block ranges in datafile copies. It corresponds to the V$COPY_CORRUPTION	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RECID	NUMBER
STAMP	NUMBER
CDF_KEY	NUMBER
COPY_RECID	NUMBER
COPY_STAMP	NUMBER
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
BLOCK#	NUMBER
BLOCKS	NUMBER
CORRUPTION_CHANGE#	NUMBER
MARKED_CORRUPT	VARCHAR2(3)
CORRUPTION_TYPE	VARCHAR2(9)
This view gives information about the databases registered in the recovery catalog. It corresponds to the V$DATABASE	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DBID	NUMBER
NAME	VARCHAR2(8)
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
This view gives information about database blocks that were corrupted after the last backup. It corresponds to the V$DATABASE_BLOCK_CORRUPTION	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
FILE#	NUMBER
BLOCK#	NUMBER
BLOCKS	NUMBER
CORRUPTION_CHANGE#	NUMBER
CORRUPTION_TYPE	VARCHAR2(9)
This view lists information about all database incarnations registered in the recovery catalog. Oracle creates a new incarnation whenever you open a database with the RESETLOGS	
option. Records about the current and immediately previous incarnation are also contained in the V$DATABASE	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBID	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
CURRENT_INCARNATION	VARCHAR2(8)
PARENT_DBINC_KEY	NUMBER
PRIOR_RESETLOGS_CHANGE#	NUMBER
PRIOR_RESETLOGS_TIME	DATE
This view lists information about all datafiles registered in the recovery catalog. It corresponds to the V$DATAFILE	
view. A datafile is shown as dropped if its tablespace was dropped.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
TS#	NUMBER
TABLESPACE_NAME	VARCHAR2(30)
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
CREATION_TIME	DATE
DROP_CHANGE#	NUMBER
DROP_TIME	DATE
BYTES	NUMBER
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
NAME	VARCHAR2(1024)
STOP_CHANGE#	NUMBER
STOP_TIME	DATE
READ_ONLY	NUMBER
RFILE#	NUMBER
INCLUDED_IN_DATABASE_BACKUP	VARCHAR2(3)
AUX_NAME	VARCHAR2(1024)
This view lists information about datafile copies on disk. It corresponds to the V$DATAFILE_COPY	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
CDF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
NAME	VARCHAR2(1024)
TAG	VARCHAR2(32)
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
INCREMENTAL_LEVEL	NUMBER
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
ABSOLUTE_FUZZY_CHANGE#	NUMBER
RECOVERY_FUZZY_CHANGE#	NUMBER
RECOVERY_FUZZY_TIME	DATE
ONLINE_FUZZY	VARCHAR2(3)
BACKUP_FUZZY	VARCHAR2(3)
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
COMPLETION_TIME	DATE
STATUS	VARCHAR2(1)
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(10)
SCANNED	VARCHAR2(3)
IS_RECOVERY_DEST_FILE	VARCHAR2(3)
This view lists historical information about the online redo logs. RMAN adds a new row during a catalog resynchronization whenever Oracle has switched out of the online redo log. This catalog view corresponds to the V$LOG_HISTORY	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RECID	NUMBER
STAMP	NUMBER
THREAD#	NUMBER
SEQUENCE#	NUMBER
FIRST_CHANGE#	NUMBER
FIRST_TIME	DATE
NEXT_CHANGE#	NUMBER
CLEARED	VARCHAR2(3)
This view lists the offline ranges for datafiles. It corresponds to the V$OFFLINE_RANGE	
view.	
An offline range is created for a datafile when its tablespace is first altered to be offline normal or read-only, and then subsequently altered to be online or read/write. Note that no offline range is created if the datafile itself is altered to be offline or if the tablespace is altered to be offline immediate.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RECID	NUMBER
STAMP	NUMBER
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
OFFLINE_CHANGE#	NUMBER
ONLINE_CHANGE#	NUMBER
ONLINE_TIME	DATE
CF_CREATE_TIME	DATE
RC_RMAN_OUTPUT	
corresponds to the control file view V$RMAN_OUTPUT	
.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_KEY	NUMBER
RSR_KEY	NUMBER
SESSION_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
OUTPUT	VARCHAR2(129)
This view contains descriptions of archived log backups that were taken using the proxy copy functionality. It corresponds to the V$PROXY_ARCHIVEDLOG	
view.	
In a proxy copy, the media manager takes over the operations of backing up and restoring data. Each row represents a backup of one control file.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
XAL_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
TAG	VARCHAR2(32)
DEVICE_TYPE	VARCHAR2(255)
HANDLE	VARCHAR2(1024)
COMMENTS	VARCHAR2(255)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
STATUS	VARCHAR2(1)
THREAD#	NUMBER
SEQUENCE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
FIRST_CHANGE#	NUMBER
FIRST_TIME	DATE
NEXT_CHANGE#	NUMBER
NEXT_TIME	DATE
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
DEVICE_TYPE	VARCHAR2(255)
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
RC_PROXY_ARCHIVELOG_DETAILS	
provides detailed information about proxy copy backups of archived redo log for each database registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
COPY_KEY	NUMBER
THREAD#	NUMBER
SEQUENCE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
HANDLE	VARCHAR2(1024)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
TAG	VARCHAR2(32)
FIRST_CHANGE#	NUMBER
NEXT_CHANGE#	NUMBER
FIRST_TIME	DATE
NEXT_TIME	DATE
OUTPUT_BYTES	NUMBER
COMPLETION_TIME	DATE
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
RC_PROXY_ARCHIVELOG_SUMMARY	
contains a summary of proxy copy backups of archived redo logs.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
NUM_FILES_BACKED	NUMBER
NUM_DISTINCT_FILES_BACKED	NUMBER
MIN_FIRST_CHANGE#	NUMBER
MAX_NEXT_CHANGE#	NUMBER
MIN_FIRST_TIME	DATE
MAX_NEXT_TIME	DATE
OUTPUT_BYTES	NUMBER
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view contains descriptions of control file backups that were taken using the proxy copy functionality. It corresponds to the V$PROXY_DATAFILE	
view.	
In a proxy copy, the media manager takes over the operations of backing up and restoring data. Each row represents a backup of one control file.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
XCF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
TAG	VARCHAR2(32)
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
CREATION_TIME	DATE
BLOCK_SIZE	NUMBER
MIN_OFFR_RECID	NUMBER
OLDEST_OFFLINE_RANGE	NUMBER
DEVICE_TYPE	VARCHAR2(255)
HANDLE	VARCHAR2(1024)
COMMENTS	VARCHAR2(255)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
STATUS	VARCHAR2(1)
KEEP	VARCHAR2(3)
KEEP_OPTIONS	VARCHAR2(10)
KEEP_UNTIL	DATE
CONTROLFILE_TYPE	VARCHAR2(1)
RC_PROXY_COPY_DETAILS	
contains detailed information about proxy copy backups for databases registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RSR_KEY	NUMBER
COPY_KEY	NUMBER
FILE#	NUMBER
HANDLE	VARCHAR2(1024)
COMMENTS	VARCHAR2(255)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
TAG	VARCHAR2(32)
CREATION_CHANGE#	NUMBER
CREATION_TIME	DATE
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
OUTPUT_BYTES	NUMBER
COMPLETION_TIME	DATE
CONTROLFILE_TYPE	VARCHAR2(1)
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(10)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
RC_PROXY_COPY_SUMMARY	
contains aggregate information about all available proxy copy backups for databases registered in the recovery catalog.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
NUM_COPIES	NUMBER
NUM_DISTINCT_COPIES	NUMBER
MIN_CHECKPOINT_CHANGE#	NUMBER
MAX_CHECKPOINT_CHANGE#	NUMBER
MIN_CHECKPOINT_TIME	DATE
MAX_CHECKPOINT_TIME	DATE
OUTPUT_BYTES	NUMBER
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view contains descriptions of datafile backups that were taken using the proxy copy functionality. It corresponds to the V$PROXY_DATAFILE	
view.	
In a proxy copy, the media manager takes over the operations of backing up and restoring data. Each row represents a backup of one database file.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
XDF_KEY	NUMBER
RECID	NUMBER
STAMP	NUMBER
TAG	VARCHAR2(32)
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
RESETLOGS_CHANGE#	NUMBER
RESETLOGS_TIME	DATE
INCREMENTAL_LEVEL	NUMBER
CHECKPOINT_CHANGE#	NUMBER
CHECKPOINT_TIME	DATE
ABSOLUTE_FUZZY_CHANGE#	NUMBER
RECOVERY_FUZZY_CHANGE#	NUMBER
RECOVERY_FUZZY_TIME	DATE
ONLINE_FUZZY	VARCHAR2(3)
BACKUP_FUZZY	VARCHAR2(3)
BLOCKS	NUMBER
BLOCK_SIZE	NUMBER
DEVICE_TYPE	VARCHAR2(255)
HANDLE	VARCHAR2(1024)
COMMENTS	VARCHAR2(255)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
START_TIME	DATE
COMPLETION_TIME	DATE
ELAPSED_SECONDS	NUMBER
STATUS	VARCHAR2(1)
KEEP	VARCHAR2(3)
KEEP_UNTIL	DATE
KEEP_OPTIONS	VARCHAR2(10)
This view lists information about the online redo logs for all incarnations of the database since the last catalog resynchronization. This view corresponds to a combination of the V$LOG	
and V$LOGFILE	
views.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
THREAD#	NUMBER
GROUP#	NUMBER
NAME	VARCHAR2(1024)
This view lists data about all redo threads for all incarnations of the database since the last catalog resynchronization. This view corresponds to V$THREAD	
.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
THREAD#	NUMBER
STATUS	VARCHAR2(1)
SEQUENCE#	NUMBER
ENABLE_CHANGE#	NUMBER
ENABLE_TIME	DATE
DISABLE_CHANGE#	NUMBER
DISABLE_TIME	DATE
This view lists information about recovery catalog resynchronizations. Every full resynchronization takes a snapshot of the target database control file and resynchronizes the recovery catalog from the snapshot.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
RESYNC_KEY	NUMBER
CONTROLFILE_CHANGE#	NUMBER
CONTROLFILE_TIME	DATE
CONTROLFILE_SEQUENCE#	NUMBER
CONTROLFILE_VERSION	DATE
RESYNC_TYPE	VARCHAR2(7)
DB_STATUS	VARCHAR2(7)
RESYNC_TIME	DATE
RC_RMAN_BACKUP_JOB_DETAILS	
provides detailed information on individual RMAN backup sessions, combining all operations within the session. Details for individual types of operation performed during the session are available in the RC_RMAN_BACKUP_SUBJOB_DETAILS view.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
COMMAND_ID	VARCHAR2(33)
START_TIME	DATE
END_TIME	DATE
INPUT_BYTES	NUMBER
OUTPUT_BYTES	NUMBER
STATUS_WEIGHT	NUMBER
OPTIMIZED_WEIGHT	NUMBER
INPUT_TYPE_WEIGHT	NUMBER
OUTPUT_DEVICE_TYPE	VARCHAR2(17)
AUTOBACKUP_COUNT	NUMBER
AUTOBACKUP_DONE	VARCHAR2(3)
STATUS	VARCHAR2(23)
INPUT_TYPE	VARCHAR2(13)
OPTIMIZED	VARCHAR2(3)
ELAPSED_SECONDS	NUMBER
COMPRESSION_RATIO	NUMBER
INPUT_BYTES_PER_SEC	NUMBER
OUTPUT_BYTES_PER_SEC	NUMBER
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
INPUT_BYTES_PER_SEC_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_PER_SEC_DISPLAY	VARCHAR2(4000)
TIME_TAKEN_DISPLAY	VARCHAR2(4000)
RC_RMAN_BACKUP_SUBJOB_DETAILS	
provides details for groups of similar operations within an RMAN session.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
SESSION_KEY	NUMBER
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
OPERATION	VARCHAR2(33)
COMMAND_ID	VARCHAR2(33)
START_TIME	DATE
END_TIME	DATE
INPUT_BYTES	NUMBER
OUTPUT_BYTES	NUMBER
STATUS_WEIGHT	NUMBER
OBJECT_TYPE_WEIGHT	NUMBER
OPTIMIZED_WEIGHT	NUMBER
OUTPUT_DEVICE_TYPE	VARCHAR2(17)
AUTOBACKUP_DONE	VARCHAR2(3)
STATUS	VARCHAR2(23)
INPUT_TYPE	VARCHAR2(13)
OPTIMIZED	VARCHAR2(3)
AUTOBACKUP_COUNT	NUMBER
COMPRESSION_RATIO	NUMBER
INPUT_BYTES_DISPLAY	VARCHAR2(4000)
OUTPUT_BYTES_DISPLAY	VARCHAR2(4000)
This view is used internally by Enterprise Manager.	
It contains information used in filtering the other Enterprise Manager views when generating reports on specific backup types.	
Column	Datatype
---	---
WEIGHT	NUMBER
INPUT_TYPE	VARCHAR2(13)
This view lists information about RMAN persistent configuration settings. It corresponds to the V$RMAN_CONFIGURATION	
view.	
Column	Datatype
---	---
DB_KEY	NUMBER
CONF#	NUMBER
NAME	VARCHAR2(65)
VALUE	VARCHAR2(1025)
This view contains information about the history of RMAN operations on all databases associated with this recovery catalog. It contains essentially the same information as V$RMAN_STATUS	
, except that it does not contain information about current sessions.	
All RMAN operations such as backups, restores, deletion of backups, and so on are logged in this table. The table is organized to show the status of each RMAN session (the invocation of an RMAN client, including all actions taken until the RMAN client exits), operations executed during the session, and recursive operations.	
RC_RMAN_STATUS	
also contains the RSR_KEY	
, PARENT_KEY	
and SESSION_KEY	
columns, which do not appear in V$RMAN_STATUS	
.	
Column	Datatype
---	---
SID	NUMBER
RECID	NUMBER
STAMP	NUMBER
PARENT_RECID	VARCHAR2(40)
PARENT_STAMP	VARCHAR2(40)
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
ROW_LEVEL	NUMBER
ROW_TYPE	VARCHAR2(19)
COMMAND_ID	VARCHAR2(33)
OPERATION	VARCHAR2(33)
STATUS	VARCHAR2(23)
MBYTES_PROCESSED	NUMBER
START_TIME	DATE
END_TIME	DATE
RSR_KEY	NUMBER
PARENT_KEY	NUMBER
SESSION_KEY	NUMBER
INPUT_MBYTES	NUMBER
OUTPUT_MBYTES	NUMBER
OPTIMIZED_ID	NUMBER
OBJECT_TYPE_ID	NUMBER
OUTPUT_DEVICE_TYPE_ID	NUMBER
OPTIMIZED	VARCHAR2(3)
OBJECT_TYPE	VARCHAR2(50)
OUTPUT_DEVICE_TYPE	VARCHAR2(4)
SESSION_RECID	NUMBER
SESSION_STAMP	NUMBER
This view lists information about scripts stored in the recovery catalog. The view contains one row for each stored script. (Note that RMAN's commands for script management such as LIST SCRIPT NAMES	
and LIST SCRIPT	
provide more convenient ways of viewing this information.)	
Column	Datatype
---	---
DB_KEY	NUMBER
DB_NAME	VARCHAR2(8)
SCRIPT_NAME	VARCHAR2(100)
This view lists information about individual lines of stored scripts in the recovery catalog. The view contains one row for each line of each stored script.	
Column	Datatype
---	---
DB_KEY	NUMBER
SCRIPT_NAME	VARCHAR2(100)
LINE	NUMBER
TEXT	VARCHAR2(1024)
This view lists all tablespaces registered in the recovery catalog, all dropped tablespaces, and tablespaces that belong to old incarnations. It corresponds to the V$TABLESPACE	
view. The current value is shown for tablespace attributes.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
TS#	NUMBER
NAME	VARCHAR2(30)
CREATION_CHANGE#	NUMBER
CREATION_TIME	DATE
DROP_CHANGE#	NUMBER
DROP_TIME	DATE
INCLUDED_IN_DATABASE_BACKUP	VARCHAR2(3)
BIGFILE	VARCHAR2(3)
TEMPORARY	VARCHAR2(3)
This view lists information about all tempfiles registered in the recovery catalog. It corresponds to the V$TEMPFILE	
view. A tempfile is shown as dropped if its tablespace is dropped.	
Column	Datatype
---	---
DB_KEY	NUMBER
DBINC_KEY	NUMBER
DB_NAME	VARCHAR2(8)
TS#	NUMBER
TABLESPACE_NAME	VARCHAR2(30)
FILE#	NUMBER
CREATION_CHANGE#	NUMBER
CREATION_TIME	DATE
DROP_CHANGE#	NUMBER
DROP_TIME	DATE
BYTES	NUMBER
BLOCK_SIZE	NUMBER
NAME	VARCHAR2(1024)
RFILE#	NUMBER
AUTOEXTEND	VARCHAR2(3)
MAXSIZE	NUMBER
NEXTSIZE	NUMBER
This view lists all backup files (backup pieces, proxy copies or image copies) that are marked UNAVAILABLE or EXPIRED. You can select one of the rows and, using BTYPE_KEY or FILETYPE_KEY, change the status of a backup set or specific file to AVAILABLE.	
This view is primarily intended to be used internally by Enterprise Manager.	
Column	Datatype
---	---
DB_NAME	VARCHAR2(8)
DB_KEY	NUMBER
SESSION_KEY	NUMBER
RSR_KEY	NUMBER
BTYPE	CHAR(9)
BTYPE_KEY	NUMBER
ID1	NUMBER
ID2	NUMBER
FILETYPE	VARCHAR2(15)
FILETYPE_KEY	NUMBER
STATUS	VARCHAR2(1)
FILESIZE	NUMBER
DEVICE_TYPE	VARCHAR2(255)
FILENAME	VARCHAR2(1024)
MEDIA	VARCHAR2(80)
MEDIA_POOL	NUMBER
This appendix describes Recovery Manager syntax that is deprecated and describes preferred syntax if any exists.	
Deprecated RMAN syntax continues to be supported in subsequent releases for backward compatibility. For example, the SET	
AUXNAME	
command replaced the SET	
CLONENAME	
command in Oracle8i, and the CONFIGURE	
AUXNAME	
command replaced the SET	
AUXNAME	
command in Oracle9i, but you can continue to run both SET	
CLONENAME	
and SET	
AUXNAME	
in all subsequent RMAN releases.	
Table A-1 Deprecated RMAN Syntax	
Deprecated in Release	Deprecated Syntax
---	---
10.0.1	BACKUP
10.0.1	BACKUP
10.0.1	CONFIGURE
10.0.1	
BACKUP	
10.0.1	RESTORE
10.0.1	SEND
9.2	
RESTORE	
9.2	SET
9.0.1	
n/a	
9.0.1	ALLOCATE CHANNEL
9.0.1	ALLOCATE CHANNEL
9.0.1	ALLOCATE CHANNEL
9.0.1	
9.0.1	BACKUP
9.0.1	CHANGE
9.0.1	CHANGE
9.0.1	REPORT
9.0.1	SET
9.0.1	SET
9.0.1	SET
9.0.1	SET
9.0.1	
8.1.7	CONFIGURE
8.1.5	ALLOCATE CHANNEL
8.1.5	CHANGE
8.1.5	
8.1.5	CONFIGURE
8.1.5	
8.1.5	
This appendix describes the requirements for compatibility among the different components of the Recovery Manager (RMAN) environment. This appendix contains these topics:
The following table describes the components of an RMAN environment. Each component has a release number associated with it.
Component | Release Number Refers to ... |
---|---|
RMAN client | Version of RMAN client (displayed when you start RMAN) |
Recovery catalog database | Version of Oracle database |
Recovery catalog schema in recovery catalog database | Version of RMAN client used to create the recovery catalog |
Target database | Version of Oracle database |
Auxiliary database | Version of Oracle database |
For example, you can use a release 9.0.1 RMAN client with:
A release 9.0.1 target database
A release 9.0.1 duplicate database
A release 8.1.7 recovery catalog database whose catalog tables were created with RMAN release 9.0.1
To determine the current release of the catalog schema, you must run a SQL query.
rcver
catalog table. For example, run this query: If multiple versions are listed, then the last row is the current version, and the rows before it are prior versions. In the preceding example, the current catalog schema version is 09.00.01.00 and the previous version was 08.01.05.00.
Note that for releases 10.2 and later, the last two digits indicate patch level. For earlier releases, they are always zeros.
In general, the rules of RMAN compatibility are as follows:
You can create 8.X or 9.X RMAN catalog schema in any Oracle database release 8.1.X (or higher) and Release 10g RMAN catalog schema in any Oracle database release 9.0.1 (or higher).
The recovery catalog schema version must be greater than or equal to the RMAN client version.
Ideally, the versions of the RMAN client and the target database should be the same (although there are other legal combinations, listed in Table B-1). The RMAN client cannot be of a greater version than the target or auxiliary database.
While backing up a Release 10g database using the 9.X RMAN client, you cannot include a control file that was created using compatible=10.0.0 in a datafile backupset. The workaround is to turn control file autobackup ON.
Table B-1 shows version requirements for RMAN components. Note the following conventions when interpreting this table:
">=8.1.7" means 8.1.7, 9.0.1, 9.2.0 and 10.1.0 and their patches
">=8.0.6" means 8.0.6, 8.1.7, 9.0.1, 9.2.0 and 10.1.0 and their patches
When using an older version of the RMAN client with a newer version of the database, you do not get the features of the newer version. For example, when using the Oracle9i RMAN client to back up an Oracle Release 10g database, you will not have access to features like the flash recovery area, flashback database, TSPITR with an RMAN-managed auxiliary instance, or recovery through resetlogs.
Table B-1 RMAN Compatibility Table
Target/Auxiliary Database | RMAN client | Catalog Database | Catalog Schema |
---|---|---|---|
8.0.6 | 8.0.6 | >=8.1.7 | >=8.0.6 |
8.1.7 | 8.0.6.1 | >=8.1.7 | >=8.1.7 |
8.1.7 | 8.1.7 | >=8.1.7 | >=RMAN client |
8.1.7.4 | 8.1.7.4 | >=8.1.7 | 8.1.7.4 |
8.1.7.4 | 8.1.7.4 | >=8.1.7 | >= 9.0.1.4 |
9.0.1 | 9.0.1 | >=8.1.7 | >= RMAN client |
9.2.0 | >=9.0.1.3 and <= target database executable | >=8.1.7 | >= RMAN client |
10.1.0 | >=9.0.1.3 and <=target database executable | >=9.0.1 | >= RMAN client |
10.2.0 | >=9.0.1.3 and <=target database executable | >=9.0.1 | >= RMAN client |
Exports of the recovery catalog are often used as a way to backup its contents. When planning to use Oracle export utilities to back up the recovery catalog, refer to Oracle Database Utilities for details on compatibility issues surrounding the use of database exports across versions of Oracle. Exports from a later version of Oracle cannot be imported into databases running under earlier versions of Oracle. You must export your recovery catalog data using the export utility from the earliest version of Oracle that you need to use for a recovery catalog.
For example, if you want to export recovery catalog data from a 9.2.0.5 database and you expect to import it into an 8.1.7.4 version of Oracle for disaster recovery, you must use the export utility from the 8.1.7.4 release of Oracle to perform the export operation. Otherwise, the import operation will fail.
Assume that you maintain a production databases of the following releases:
8.1.7
9.0.1
9.2.0
10.1.0
10.2.0
You want to record RMAN repository data about these databases in a single recovery catalog database. According to Table B-1, you can use a single 9.2.0 recovery catalog database with a 10.2.0 catalog schema for all target databases.
The solution for this combination of target databases is to do the following:
Use a single 9.2.0 catalog database.
Use a single 10.2.0 catalog schema for all databases.
Ensure that the version of the RMAN client used to back up each target database meets the requirements specified in Table B-1.
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
If this document is in private preproduction status:
The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.