

[image: Oracle Corporation]

What's New in Globalization Support?

This section describes new features of globalization support and provides pointers to additional information.

Oracle Database 10g Release 2 (10.2) New Features in Globalization

	
Unicode 4.0 Support

Unicode support has been enhanced to support the latest version of the Unicode standard.

	
See Also:

Chapter 6, "Supporting Multilingual Databases with Unicode"

	
Character Set Scanner Utilities Enhancements

The Database Character Set Scanner (CSSCAN) introduces two new parameters, QUERY and COLUMN, which offer finer control in performing selective scanning. Support for multilevel varrays and nested tables has also been added.

The Language and Character Set File Scanner (LCSSCAN) now supports the detection of HTML files. The detection quality of shorter text strings has also been enhanced.

	
See Also:

Chapter 12, "Character Set Scanner Utilities"

	
Globalization Development Kit

The Globalization Development Kit (GDK) for PL/SQL provides new locale mapping functions, and offers support for Japanese Kana conversion using the new transliteration function in the UTL_I18N package.

	
See Also:

Chapter 8, "Oracle Globalization Development Kit"

	
NCHAR String Literal Support

SQL NCHAR literals used in insert and update statements no longer rely on the database character set for conversion. This means that multilingual data can be added without restrictions such as having to provide hex Unicode values. The support for this feature is available in SQL, PL/SQL, OCI, and JDBC.

	
See Also:

"NCHAR String Literal Replacement" in Chapter 7, "Programming with Unicode"

	
Consistent Linguistic Ordering Support

The support for all SQL functions and operators to honor the NLS_SORT setting is now available using the new NLS_COMP mode LINGUISTIC. This feature ensures all SQL string comparisons are consistent, and that they follow the linguistic convention as specified in the NLS_SORT parameter.

	
See Also:

Chapter 5, "Linguistic Sorting and String Searching"

	
Recommended Database Character Sets and Statement of Direction

A list of character sets has been compiled that Oracle strongly recommends for usage as the database character set. Starting with the next major functional release after Oracle Database 10g Release 2, the choice for the database character set will be limited to this list of recommended character sets for new system deployment.

	
See Also:

Chapter 2, "Choosing a Character Set" and Appendix A, "Locale Data"

Oracle Database 10g Release 1 (10.1) New Features in Globalization

	
Accent Insensitive and Case-Insensitive Linguistic Sorts and Queries

Oracle provides linguistic sorts and queries that use information about base letter, accents, and case to sort character strings. This release enables you to specify a sort or query on the base letters only (accent-insensitive) or on the base letters and the accents (case-insensitive).

	
See Also:

"Linguistic Sort Features"

	
Character Set Scanner Utilities Enhancements

The Database Character Set Scanner now supports object types.

The new LCSD parameter enables the Database Character Set Scanner (CSSCAN) to perform language and character set detection on the data cells categorized by the LCSDATA parameter. The Database Character Set Scanner reports have also been enhanced.

	
Database Character Set Scanner CSALTER Script

The CSALTER script is a database administrator tool for special character set migration.

	
The Language and Character Set File Scanner Utility

The Language and Character Set File Scanner (LCSSCAN) is a high-performance, statistically-based utility for determining the character set and language for unspecified plain file text.

	
See Also:

Chapter 12, "Character Set Scanner Utilities"

	
Globalization Development Kit

The Globalization Development Kit (GDK) simplifies the development process and reduces the cost of developing Internet applications that will support a global multilingual market. GDK includes APIs, tools, and documentation that address many of the design, development, and deployment issues encountered in the creation of global applications. GDK lets a single program work with text in any language from anywhere in the world. It enables you to build a complete multilingual server application with little more effort than it takes to build a monolingual server application.

	
See Also:

Chapter 8, "Oracle Globalization Development Kit"

	
Regular Expressions

This release supports POSIX-compliant regular expressions to enhance search and replace capability in programming environments such as UNIX and Java. In SQL, this new functionality is implemented through new functions that are regular expression extensions to existing SQL functions such as LIKE, REPLACE, and INSTR. This implementation supports multilingual queries and is locale-sensitive.

	
See Also:

"SQL Regular Expressions in a Multilingual Environment"

	
Displaying Code Charts for Unicode Character Sets

Oracle Locale Builder can display code charts for Unicode character sets.

	
See Also:

"Displaying a Code Chart with the Oracle Locale Builder"

	
Locale Variants

In previous releases, Oracle defined language and territory definitions separately. This resulted in the definition of a territory being independent of the language setting of the user. In this release, some territories can have different date, time, number, and monetary formats based on the language setting of a user. This type of language-dependent territory definition is called a locale variant.

	
See Also:

"Locale Variants"

	
Transportable NLB Data

NLB files that are generated on one platform can be transported to another platform by, for example, FTP. The transported NLB files can be used the same way as the NLB files that were generated on the original platform. This is convenient because locale data can be modified on one platform and copied to other platforms.

	
See Also:

"Transportable NLB Data"

	
NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS is now supported as an environment variable.

	
See Also:

"NLS_LENGTH_SEMANTICS"

	
Implicit Conversion Between CLOB and NCLOB Datatypes

Implicit conversion between CLOB and NCLOB datatypes is now supported.

	
See Also:

"Choosing a National Character Set"

	
Updates to the Oracle Language and Territory Definition Files

Changes have been made to the content in some of the language and territory definition files in Oracle Database 10g Release 1.

	
See Also:

"Obsolete Locale Data"

3 Setting Up a Globalization Support Environment

This chapter tells how to set up a globalization support environment. It includes the following topics:

	
Setting NLS Parameters

	
Choosing a Locale with the NLS_LANG Environment Variable

	
NLS Database Parameters

	
Language and Territory Parameters

	
Date and Time Parameters

	
Calendar Definitions

	
Numeric and List Parameters

	
Monetary Parameters

	
Linguistic Sort Parameters

	
Character Set Conversion Parameter

	
Length Semantics

Setting NLS Parameters

NLS (National Language Support) parameters determine the locale-specific behavior on both the client and the server. NLS parameters can be specified in the following ways:

	
As initialization parameters on the server

You can include parameters in the initialization parameter file to specify a default session NLS environment. These settings have no effect on the client side; they control only the server's behavior. For example:

NLS_TERRITORY = "CZECH REPUBLIC"

	
As environment variables on the client

You can use NLS environment variables, which may be platform-dependent, to specify locale-dependent behavior for the client and also to override the default values set for the session in the initialization parameter file. For example, on a UNIX system:

% setenv NLS_SORT FRENCH

	
With the ALTER SESSION statement

You can use NLS parameters that are set in an ALTER SESSION statement to override the default values that are set for the session in the initialization parameter file or set by the client with environment variables.

ALTER SESSION SET NLS_SORT = FRENCH;

	
See Also:

Oracle Database SQL Reference for more information about the ALTER SESSION statement

	
In SQL functions

You can use NLS parameters explicitly to hardcode NLS behavior within a SQL function. This practice overrides the default values that are set for the session in the initialization parameter file, set for the client with environment variables, or set for the session by the ALTER SESSION statement. For example:

TO_CHAR(hiredate, 'DD/MON/YYYY', 'nls_date_language = FRENCH')

	
See Also:

Oracle Database SQL Reference for more information about SQL functions, including the TO_CHAR function

Table 3-1 shows the precedence order of the different methods of setting NLS parameters. Higher priority settings override lower priority settings. For example, a default value has the lowest priority and can be overridden by any other method.

Table 3-1 Methods of Setting NLS Parameters and Their Priorities

	Priority	Method
	
1 (highest)

	
Explicitly set in SQL functions

	
2

	
Set by an ALTER SESSION statement

	
3

	
Set as an environment variable

	
4

	
Specified in the initialization parameter file

	
5

	
Default

Table 3-2 lists the available NLS parameters. Because the SQL function NLS parameters can be specified only with specific functions, the table does not show the SQL function scope.

Table 3-2 NLS Parameters

	Parameter	Description	Default	Scope:I = Initialization Parameter File E = Environment Variable A = ALTER SESSION
	
NLS_CALENDAR

	
Calendar system

	
Gregorian

	
I, E, A

	
NLS_COMP

	
SQL, PL/SQL operator comparison

	
BINARY

	
I, E, A

	
NLS_CREDIT

	
Credit accounting symbol

	
Derived from NLS_TERRITORY

	
E

	
NLS_CURRENCY

	
Local currency symbol

	
Derived from NLS_TERRITORY

	
I, E, A

	
NLS_DATE_FORMAT

	
Date format

	
Derived from NLS_TERRITORY

	
I, E, A

	
NLS_DATE_LANGUAGE

	
Language for day and month names

	
Derived from NLS_LANGUAGE

	
I, E, A

	
NLS_DEBIT

	
Debit accounting symbol

	
Derived from NLS_TERRITORY

	
E

	
NLS_ISO_CURRENCY

	
ISO international currency symbol

	
Derived from NLS_TERRITORY

	
I, E, A

	
NLS_LANG

See Also: "Choosing a Locale with the NLS_LANG Environment Variable"

	
Language, territory, character set

	
AMERICAN_AMERICA. US7ASCII

	
E

	
NLS_LANGUAGE

	
Language

	
Derived from NLS_LANG

	
I, A

	
NLS_LENGTH_SEMANTICS

	
How strings are treated

	
BYTE

	
I, E, A

	
NLS_LIST_SEPARATOR

	
Character that separates items in a list

	
Derived from NLS_TERRITORY

	
E

	
NLS_MONETARY_CHARACTERS

	
Monetary symbol for dollar and cents (or their equivalents)

	
Derived from NLS_TERRITORY

	
E

	
NLS_NCHAR_CONV_EXCP

	
Reports data loss during a character type conversion

	
FALSE

	
I, A

	
NLS_NUMERIC_CHARACTERS

	
Decimal character and group separator

	
Derived from NLS_TERRITORY

	
I, E, A

	
NLS_SORT

	
Character sort sequence

	
Derived from NLS_LANGUAGE

	
I, E, A

	
NLS_TERRITORY

	
Territory

	
Derived from NLS_LANG

	
I, A

	
NLS_TIMESTAMP_FORMAT

	
Timestamp

	
Derived from NLS_TERRITORY

	
I, E, A

	
NLS_TIMESTAMP_TZ_FORMAT

	
Timestamp with time zone

	
Derived from NLS_TERRITORY

	
I, E, A

	
NLS_DUAL_CURRENCY

	
Dual currency symbol

	
Derived from NLS_TERRITORY

	
I, E, A

Choosing a Locale with the NLS_LANG Environment Variable

A locale is a linguistic and cultural environment in which a system or program is running. Setting the NLS_LANG environment parameter is the simplest way to specify locale behavior for Oracle software. It sets the language and territory used by the client application and the database server. It also sets the client's character set, which is the character set for data entered or displayed by a client program.

NLS_LANG is set as an environment variable on UNIX platforms. NLS_LANG is set in the registry on Windows platforms.

The NLS_LANG parameter has three components: language, territory, and character set. Specify it in the following format, including the punctuation:

NLS_LANG = language_territory.charset

For example, if the Oracle Installer does not populate NLS_LANG, then its value by default is AMERICAN_AMERICA.US7ASCII. The language is AMERICAN, the territory is AMERICA, and the character set is US7ASCII. The values in NLS_LANG and other NLS parameters are case-insensitive.

Each component of the NLS_LANG parameter controls the operation of a subset of globalization support features:

	
language

Specifies conventions such as the language used for Oracle messages, sorting, day names, and month names. Each supported language has a unique name; for example, AMERICAN, FRENCH, or GERMAN. The language argument specifies default values for the territory and character set arguments. If the language is not specified, then the value defaults to AMERICAN.

	
territory

Specifies conventions such as the default date, monetary, and numeric formats. Each supported territory has a unique name; for example, AMERICA, FRANCE, or CANADA. If the territory is not specified, then the value is derived from the language value.

	
charset

Specifies the character set used by the client application (normally the Oracle character set that corresponds to the user's terminal character set or the OS character set). Each supported character set has a unique acronym, for example, US7ASCII, WE8ISO8859P1, WE8DEC, WE8MSWIN1252, or JA16EUC. Each language has a default character set associated with it.

	
Note:

All components of the NLS_LANG definition are optional; any item that is not specified uses its default value. If you specify territory or character set, then you must include the preceding delimiter [underscore (_) for territory, period (.) for character set]. Otherwise, the value is parsed as a language name.
For example, to set only the territory portion of NLS_LANG, use the following format: NLS_LANG=_JAPAN

The three components of NLS_LANG can be specified in many combinations, as in the following examples:

NLS_LANG = AMERICAN_AMERICA.WE8MSWIN1252

NLS_LANG = FRENCH_CANADA.WE8ISO8859P1

NLS_LANG = JAPANESE_JAPAN.JA16EUC

Note that illogical combinations can be set but do not work properly. For example, the following specification tries to support Japanese by using a Western European character set:

NLS_LANG = JAPANESE_JAPAN.WE8ISO8859P1

Because the WE8ISO8859P1 character set does not support any Japanese characters, you cannot store or display Japanese data if you use this definition for NLS_LANG.

The rest of this section includes the following topics:

	
Specifying the Value of NLS_LANG

	
Overriding Language and Territory Specifications

	
Locale Variants

	
See Also:

	
Appendix A, "Locale Data" for a complete list of supported languages, territories, and character sets

	
Your operating system documentation for information about additional globalization settings that may be necessary for your platform

Specifying the Value of NLS_LANG

In a UNIX operating system C-shell session, you can specify the value of NLS_LANG by entering a statement similar to the following:

% setenv NLS_LANG FRENCH_FRANCE.WE8ISO8859P1

Because NLS_LANG is an environment variable, it is read by the client application at startup time. The client communicates the information defined by NLS_LANG to the server when it connects to the database server.

The following examples show how date and number formats are affected by the NLS_LANG parameter.

Example 3-1 Setting NLS_LANG to American_America.WE8ISO8859P1

Set NLS_LANG so that the language is AMERICAN, the territory is AMERICA, and the Oracle character set is WE8ISO8859P1:

% setenv NLS_LANG American_America.WE8ISO8859P1

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SEP-97 962.5
Urman 07-MAR-98 975
Popp 07-DEC-99 862.5

Example 3-2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANG so that the language is FRENCH, the territory is FRANCE, and the Oracle character set is WE8ISO8859P1:

% setenv NLS_LANG French_France.WE8ISO8859P1

Then the query shown in Example 3-1 returns the following output:

LAST_NAME HIRE_DAT SALARY
------------------------- -------- ----------
Sciarra 30/09/97 962,5
Urman 07/03/98 975
Popp 07/12/99 862,5

Note that the date format and the number format have changed. The numbers have not changed, because the underlying data is the same.

Overriding Language and Territory Specifications

The NLS_LANG parameter sets the language and territory environment used by both the server session (for example, SQL command execution) and the client application (for example, display formatting in Oracle tools). Using this parameter ensures that the language environments of both the database and the client application are automatically the same.

The language and territory components of the NLS_LANG parameter determine the default values for other detailed NLS parameters, such as date format, numeric characters, and linguistic sorting. Each of these detailed parameters can be set in the client environment to override the default values if the NLS_LANG parameter has already been set.

If the NLS_LANG parameter is not set, then the server session environment remains initialized with values of NLS_LANGUAGE, NLS_TERRITORY, and other NLS instance parameters from the initialization parameter file. You can modify these parameters and restart the instance to change the defaults.

You might want to modify the NLS environment dynamically during the session. To do so, you can use the ALTER SESSION statement to change NLS_LANGUAGE, NLS_TERRITORY, and other NLS parameters.

	
Note:

You cannot modify the setting for the client character set with the ALTER SESSION statement.

The ALTER SESSION statement modifies only the session environment. The local client NLS environment is not modified, unless the client explicitly retrieves the new settings and modifies its local environment.

	
See Also:

	
"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session"

	
Oracle Database SQL Reference

Locale Variants

Before Oracle Database 10g, Oracle defined language and territory definitions separately. This resulted in the definition of a territory being independent of the language setting of the user. In Oracle Database 10g, some territories can have different date, time, number, and monetary formats based on the language setting of a user. This type of language-dependent territory definition is called a locale variant.

For the variant to work properly, both NLS_TERRITORY and NLS_LANGUAGE must be specified.

Table 3-3 shows the territories that have been enhanced to support variations.

Table 3-3 Oracle Locale Variants

	Oracle Territory	Oracle Language
	
BELGIUM

	
DUTCH

	
BELGIUM

	
FRENCH

	
BELGIUM

	
GERMAN

	
CANADA

	
FRENCH

	
CANADA

	
ENGLISH

	
DJIBOUTI

	
FRENCH

	
DJIBOUTI

	
ARABIC

	
FINLAND

	
FINLAND

	
FINLAND

	
SWEDISH

	
HONG KONG

	
TRADITIONAL CHINESE

	
HONG KONG

	
ENGLISH

	
INDIA

	
ENGLISH

	
INDIA

	
ASSAMESE

	
INDIA

	
BANGLA

	
INDIA

	
GUJARATI

	
INDIA

	
HINDI

	
INDIA

	
KANNADA

	
INDIA

	
MALAYALAM

	
INDIA

	
MARATHI

	
INDIA

	
ORIYA

	
INDIA

	
PUNJABI

	
INDIA

	
TAMIL

	
INDIA

	
TELUGU

	
LUXEMBOURG

	
GERMAN

	
LUXEMBOURG

	
FRENCH

	
SINGAPORE

	
ENGLISH

	
SINGAPORE

	
MALAY

	
SINGAPORE

	
SIMPLIFIED CHINESE

	
SINGAPORE

	
TAMIL

	
SWITZERLAND

	
GERMAN

	
SWITZERLAND

	
FRENCH

	
SWITZERLAND

	
ITALIAN

Should the NLS_LANG Setting Match the Database Character Set?

The NLS_LANG character set should reflect the setting of the operating system character set of the client. For example, if the database character set is AL32UTF8 and the client is running on a Windows operating system, then you should not set AL32UTF8 as the client character set in the NLS_LANG parameter because there are no UTF-8 WIN32 clients. Instead, the NLS_LANG setting should reflect the code page of the client. For example, on an English Windows client, the code page is 1252. An appropriate setting for NLS_LANG is AMERICAN_AMERICA.WE8MSWIN1252.

Setting NLS_LANG correctly allows proper conversion from the client operating system character set to the database character set. When these settings are the same, Oracle assumes that the data being sent or received is encoded in the same character set as the database character set, so character set validation or conversion may not be performed. This can lead to corrupt data if the client code page and the database character set are different and conversions are necessary.

	
See Also:

Oracle Database Installation Guide for 32-Bit Windows for more information about commonly used values of the NLS_LANG parameter in Windows

NLS Database Parameters

When a new database is created during the execution of the CREATE DATABASE statement, the NLS-related database configuration is established. The current NLS instance parameters are stored in the data dictionary along with the database and national character sets. The NLS instance parameters are read from the initialization parameter file at instance startup.

You can find the values for NLS parameters by using:

	
NLS Data Dictionary Views

	
NLS Dynamic Performance Views

	
OCINlsGetInfo() Function

NLS Data Dictionary Views

Applications can check the session, instance, and database NLS parameters by querying the following data dictionary views:

	
NLS_SESSION_PARAMETERS shows the NLS parameters and their values for the session that is querying the view. It does not show information about the character set.

	
NLS_INSTANCE_PARAMETERS shows the current NLS instance parameters that have been explicitly set and the values of the NLS instance parameters.

	
NLS_DATABASE_PARAMETERS shows the values of the NLS parameters for the database. The values are stored in the database.

NLS Dynamic Performance Views

Applications can check the following NLS dynamic performance views:

	
V$NLS_VALID_VALUES lists values for the following NLS parameters: NLS_LANGUAGE, NLS_SORT, NLS_TERRITORY, NLS_CHARACTERSET

	
V$NLS_PARAMETERS shows current values of the following NLS parameters: NLS_CALENDAR, NLS_CHARACTERSET, NLS_CURRENCY, NLS_DATE_FORMAT, NLS_DATE_LANGUAGE, NLS_ISO_CURRENCY, NLS_LANGUAGE, NLS_NUMERIC_CHARACTERS, NLS_SORT, NLS_TERRITORY, NLS_NCHAR_CHARACTERSET, NLS_COMP, NLS_LENGTH_SEMANTICS, NLS_NCHAR_CONV_EXP, NLS_TIMESTAMP_FORMAT, NLS_TIMESTAMP_TZ_FORMAT, NLS_TIME_FORMAT, NLS_TIME_TZ_FORMAT

	
See Also:

Oracle Database Reference

OCINlsGetInfo() Function

User applications can query client NLS settings with the OCINlsGetInfo() function.

	
See Also:

"Getting Locale Information in OCI" for the description of OCINlsGetInfo()

Language and Territory Parameters

This section contains information about the following parameters:

	
NLS_LANGUAGE

	
NLS_TERRITORY

NLS_LANGUAGE

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter and ALTER SESSION
	Default value	Derived from NLS_LANG
	Range of values	Any valid language name

NLS_LANGUAGE specifies the default conventions for the following session characteristics:

	
Language for server messages

	
Language for day and month names and their abbreviations (specified in the SQL functions TO_CHAR and TO_DATE)

	
Symbols for equivalents of AM, PM, AD, and BC. (A.M., P.M., A.D., and B.C. are valid only if NLS_LANGUAGE is set to AMERICAN.)

	
Default sorting sequence for character data when ORDER BY is specified. (GROUP BY uses a binary sort unless ORDER BY is specified.)

	
Writing direction

	
Affirmative and negative response strings (for example, YES and NO)

The value specified for NLS_LANGUAGE in the initialization parameter file is the default for all sessions in that instance. For example, to specify the default session language as French, the parameter should be set as follows:

NLS_LANGUAGE = FRENCH

Consider the following server message:

ORA-00942: table or view does not exist

When the language is French, the server message appears as follows:

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the $ORACLE_HOME/product_name/mesg directory, or the equivalent for your operating system. Multiple versions of these files can exist, one for each supported language, using the following filename convention:

<product_id><language_abbrev>.MSB

For example, the file containing the server messages in French is called oraf.msb, because ORA is the product ID (<product_id>) and F is the language abbreviation (<language_abbrev>) for French. The product_name is rdbms, so it is in the $ORACLE_HOME/rdbms/mesg directory.

If NLS_LANG is specified in the client environment, then the value of NLS_LANGUAGE in the initialization parameter file is overridden at connection time.

Messages are stored in these files in one specific character set, depending on the language and the operating system. If this character set is different from the database character set, then message text is automatically converted to the database character set. If necessary, it is then converted to the client character set if the client character set is different from the database character set. Hence, messages are displayed correctly at the user's terminal, subject to the limitations of character set conversion.

The language-specific binary message files that are actually installed depend on the languages that the user specifies during product installation. Only the English binary message file and the language-specific binary message files specified by the user are installed.

The default value of NLS_LANGUAGE may be specific to the operating system. You can alter the NLS_LANGUAGE parameter by changing its value in the initialization parameter file and then restarting the instance.

	
See Also:

Your operating system-specific Oracle documentation for more information about the default value of NLS_LANGUAGE

All messages and text should be in the same language. For example, when you run an Oracle Developer application, the messages and boilerplate text that you see originate from three sources:

	
Messages from the server

	
Messages and boilerplate text generated by Oracle Forms

	
Messages and boilerplate text generated by the application

NLS_LANGUAGE determines the language used for the first two kinds of text. The application is responsible for the language used in its messages and boilerplate text.

The following examples show behavior that results from setting NLS_LANGUAGE to different values.

Example 3-3 NLS_LANGUAGE=ITALIAN

Use the ALTER SESSION statement to set NLS_LANGUAGE to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962.5
Urman 07-MAR-98 975
Popp 07-DIC-99 862.5

Note that the month name abbreviations are in Italian.

	
See Also:

"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session" for more information about using the ALTER SESSION statement

Example 3-4 NLS_LANGUAGE=GERMAN

Use the ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS_LANGUAGE=German;

Enter the same SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SEP-97 962.5
Urman 07-MÄR-98 975
Popp 07-DEZ-99 862.5

Note that the language of the month abbreviations has changed.

NLS_TERRITORY

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter and ALTER SESSION
	Default value	Derived from NLS_LANG
	Range of values	Any valid territory name

NLS_TERRITORY specifies the conventions for the following default date and numeric formatting characteristics:

	
Date format

	
Decimal character and group separator

	
Local currency symbol

	
ISO currency symbol

	
Dual currency symbol

	
First day of the week

	
Credit and debit symbols

	
ISO week flag

	
List separator

The value specified for NLS_TERRITORY in the initialization parameter file is the default for the instance. For example, to specify the default as France, the parameter should be set as follows:

NLS_TERRITORY = FRANCE

When the territory is FRANCE, numbers are formatted using a comma as the decimal character.

You can alter the NLS_TERRITORY parameter by changing the value in the initialization parameter file and then restarting the instance. The default value of NLS_TERRITORY can be specific to the operating system.

If NLS_LANG is specified in the client environment, then the value of NLS_TERRITORY in the initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new NLS_TERRITORY value in an ALTER SESSION statement. Modifying NLS_TERRITORY resets all derived NLS session parameters to default values for the new territory.

To change the territory to France during a session, issue the following ALTER SESSION statement:

ALTER SESSION SET NLS_TERRITORY = France;

The following examples show behavior that results from different settings of NLS_TERRITORY and NLS_LANGUAGE.

Example 3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA

Enter the following SELECT statement:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

When NLS_TERRITORY is set to AMERICA and NLS_LANGUAGE is set to AMERICAN, results similar to the following should appear:

SALARY

$24,000.00
$17,000.00
$17,000.00

Example 3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY

Use an ALTER SESSION statement to change the territory to Germany:

ALTER SESSION SET NLS_TERRITORY = Germany;
Session altered.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

You should see results similar to the following:

SALARY

€24.000,00
€17.000,00
€17.000,00

Note that the currency symbol has changed from $ to €. The numbers have not changed because the underlying data is the same.

	
See Also:

"Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session" for more information about using the ALTER SESSION statement

Example 3-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY

Use an ALTER SESSION statement to change the language to German:

ALTER SESSION SET NLS_LANGUAGE = German;
Sitzung wurde geändert.

Note that the server message now appears in German.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

You should see the same results as in Example 3-6:

SALARY

€24.000,00
€17.000,00
€17.000,00

Example 3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA

Use an ALTER SESSION statement to change the territory to America:

ALTER SESSION SET NLS_TERRITORY = America;
Sitzung wurde geändert.

Enter the same SELECT statement as in the other examples:

SQL> SELECT TO_CHAR(salary,'L99G999D99') salary FROM employees;

You should see output similar to the following:

SALARY

$24,000.00
$17,000.00
$17,000.00

Note that the currency symbol changed from € to $ because the territory changed from Germany to America.

Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a Session

Default values for NLS_LANGUAGE and NLS_TERRITORY and default values for specific formatting parameters can be overridden during a session by using the ALTER SESSION statement.

Example 3-9 NLS_LANG=ITALIAN_ITALY.WE8DEC

Set the NLS_LANG environment variable so that the language is Italian, the territory is Italy, and the character set is WE8DEC:

% setenv NLS_LANG Italian_Italy.WE8DEC

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see output similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962,5
Urman 07-MAR-98 975
Popp 07-DIC-99 862,5

Note the language of the month abbreviations and the decimal character.

Example 3-10 Change Language, Date Format, and Decimal Character

Use ALTER SESSION statements to change the language, the date format, and the decimal character:

SQL> ALTER SESSION SET NLS_LANGUAGE=german;

Session wurde geändert.

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD.MON.YY';

Session wurde geändert.

SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS='.,';

Session wurde geändert.

Enter the SELECT statement shown in Example 3-9:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see output similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30.SEP.97 962.5
Urman 07.MÄR.98 975
Popp 07.DEZ.99 862.5

Note that the language of the month abbreviations is German and the decimal character is a period.

The behavior of the NLS_LANG environment variable implicitly determines the language environment of the database for each session. When a session connects to a database, an ALTER SESSION statement is automatically executed to set the values of the database parameters NLS_LANGUAGE and NLS_TERRITORY to those specified by the language and territory arguments of NLS_LANG. If NLS_LANG is not defined, then no implicit ALTER SESSION statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all instances to which the session connects, for both direct and indirect connections. If the values of NLS parameters are changed explicitly with ALTER SESSION during a session, then the changes are propagated to all instances to which that user session is connected.

Date and Time Parameters

Oracle enables you to control the display of date and time. This section contains the following topics:

	
Date Formats

	
Time Formats

Date Formats

Different date formats are shown in Table 3-4.

Table 3-4 Date Formats

	Country	Description	Example
	
Estonia

	
dd.mm.yyyy

	
28.02.2003

	
Germany

	
dd-mm-rr

	
28-02-03

	
Japan

	
rr-mm-dd

	
03-02-28

	
UK

	
dd-mon-rr

	
28-Feb-03

	
US

	
dd-mon-rr

	
28-Feb-03

This section includes the following parameters:

	
NLS_DATE_FORMAT

	
NLS_DATE_LANGUAGE

NLS_DATE_FORMAT

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, and ALTER SESSION
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid date format mask

The NLS_DATE_FORMAT parameter defines the default date format to use with the TO_CHAR and TO_DATE functions. The NLS_TERRITORY parameter determines the default value of NLS_DATE_FORMAT. The value of NLS_DATE_FORMAT can be any valid date format mask. For example:

NLS_DATE_FORMAT = "MM/DD/YYYY"

To add string literals to the date format, enclose the string literal with double quotes. Note that when double quotes are included in the date format, the entire value must be enclosed by single quotes. For example:

NLS_DATE_FORMAT = '"Date: "MM/DD/YYYY'

Example 3-11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include the following line in the initialization parameter file:

NLS_DATE_FORMAT = "DD RM YYYY"

Enter the following SELECT statement:

SELECT TO_CHAR(SYSDATE) currdate FROM DUAL;

You should see the following output if today's date is February 12, 1997:

CURRDATE

12 II 1997

The value of NLS_DATE_FORMAT is stored in the internal date format. Each format element occupies two bytes, and each string occupies the number of bytes in the string plus a terminator byte. Also, the entire format mask has a two-byte terminator. For example, "MM/DD/YY" occupies 14 bytes internally because there are three format elements (month, day, and year), two 3-byte strings (the two slashes), and the two-byte terminator for the format mask. The format for the value of NLS_DATE_FORMAT cannot exceed 24 bytes.

You can alter the default value of NLS_DATE_FORMAT by:

	
Changing its value in the initialization parameter file and then restarting the instance

	
Using an ALTER SESSION SET NLS_DATE_FORMAT statement

	
See Also:

Oracle Database SQL Reference for more information about date format elements and the ALTER SESSION statement

If a table or index is partitioned on a date column, and if the date format specified by NLS_DATE_FORMAT does not specify the first two digits of the year, then you must use the TO_DATE function with a 4-character format mask for the year.

For example:

TO_DATE('11-jan-1997', 'dd-mon-yyyy')

	
See Also:

Oracle Database SQL Reference for more information about partitioning tables and indexes and using TO_DATE

NLS_DATE_LANGUAGE

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, ALTER SESSION, and SQL functions
	Default value	Derived from NLS_LANGUAGE
	Range of values	Any valid language name

The NLS_DATE_LANGUAGE parameter specifies the language for the day and month names produced by the TO_CHAR and TO_DATE functions. NLS_DATE_LANGUAGE overrides the language that is specified implicitly by NLS_LANGUAGE. NLS_DATE_LANGUAGE has the same syntax as the NLS_LANGUAGE parameter, and all supported languages are valid values.

NLS_DATE_LANGUAGE also determines the language used for:

	
Month and day abbreviations returned by the TO_CHAR and TO_DATE functions

	
Month and day abbreviations used by the default date format (NLS_DATE_FORMAT)

	
Abbreviations for AM, PM, AD, and BC

Example 3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names

As an example of how to use NLS_DATE_LANGUAGE, set the date language to French:

ALTER SESSION SET NLS_DATE_LANGUAGE = FRENCH;

Enter a SELECT statement:

SELECT TO_CHAR(SYSDATE, 'Day:Dd Month yyyy') FROM DUAL;

You should see output similar to the following:

TO_CHAR(SYSDATE,'DAY:DDMONTHYYYY')
--
Vendredi:07 Décembre 2001

When numbers are spelled in words using the TO_CHAR function, the English spelling is always used. For example, enter the following SELECT statement:

SQL> SELECT TO_CHAR(TO_DATE('12-Oct.-2001'),'Day: ddspth Month') FROM DUAL;

You should see output similar to the following:

TO_CHAR(TO_DATE('12-OCT.-2001'),'DAY:DDSPTHMONTH')
--
Vendredi: twelfth Octobre

Example 3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations

Month and day abbreviations are determined by NLS_DATE_LANGUAGE. Enter the following SELECT statement:

SELECT TO_CHAR(SYSDATE, 'Dy:dd Mon yyyy') FROM DUAL;

You should see output similar to the following:

TO_CHAR(SYSDATE,'DY:DDMO

Ve:07 Déc. 2001

Example 3-14 NLS_DATE_LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by NLS_DATE_LANGUAGE. For example, if the default date format is DD-MON-YYYY, then insert a date as follows:

INSERT INTO tablename VALUES ('12-Févr.-1997');

	
See Also:

Oracle Database SQL Reference

Time Formats

Different time formats are shown in Table 3-5.

Table 3-5 Time Formats

	Country	Description	Example
	
Estonia

	
hh24:mi:ss

	
13:50:23

	
Germany

	
hh24:mi:ss

	
13:50:23

	
Japan

	
hh24:mi:ss

	
13:50:23

	
UK

	
hh24:mi:ss

	
13:50:23

	
US

	
hh:mi:ssxff am

	
1:50:23.555 PM

This section contains information about the following parameters:

	
NLS_TIMESTAMP_FORMAT

	
NLS_TIMESTAMP_TZ_FORMAT

	
See Also:

Chapter 4, "Datetime Datatypes and Time Zone Support"

NLS_TIMESTAMP_FORMAT

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, and ALTER SESSION
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid datetime format mask

NLS_TIMESTAMP_FORMAT defines the default date format for the TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE datatypes. The following example shows a value for NLS_TIMESTAMP_FORMAT:

NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF'

Example 3-15 Timestamp Format

SQL> SELECT TO_TIMESTAMP('11-nov-2000 01:00:00.336', 'dd-mon-yyyy hh:mi:ss.ff')

FROM DUAL;

You should see output similar to the following:

TO_TIMESTAMP('11-NOV-200001:00:00.336','DD-MON-YYYYHH:MI:SS.FF')

2000-11-11 01:00:00.336000000

You can specify the value of NLS_TIMESTAMP_FORMAT by setting it in the initialization parameter file. You can specify its value for a client as a client environment variable.

You can also alter the value of NLS_TIMESTAMP_FORMAT by:

	
Changing its value in the initialization parameter file and then restarting the instance

	
Using the ALTER SESSION SET NLS_TIMESTAMP_FORMAT statement

	
See Also:

Oracle Database SQL Reference for more information about the TO_TIMESTAMP function and the ALTER SESSION statement

NLS_TIMESTAMP_TZ_FORMAT

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, and ALTER SESSION
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid datetime format mask

NLS_TIMESTAMP_TZ_FORMAT defines the default date format for the TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE datatypes. It is used with the TO_CHAR and TO_TIMESTAMP_TZ functions.

You can specify the value of NLS_TIMESTAMP_TZ_FORMAT by setting it in the initialization parameter file. You can specify its value for a client as a client environment variable.

Example 3-16 Setting NLS_TIMESTAMP_TZ_FORMAT

The format value must be surrounded by quotation marks. For example:

NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

The following example of the TO_TIMESTAMP_TZ function uses the format value that was specified for NLS_TIMESTAMP_TZ_FORMAT:

SQL> SELECT TO_TIMESTAMP_TZ('2000-08-20, 05:00:00.55 America/Los_Angeles', 'yyyy-mm-dd hh:mi:ss.ff TZR') FROM DUAL;

You should see output similar to the following:

TO_TIMESTAMP_TZ('2000-08-20,05:00:00.55AMERICA/LOS_ANGELES','YYYY-MM-DDHH:M

2000-08-20 05:00:00.550000000 -07:00

You can change the value of NLS_TIMESTAMP_TZ_FORMAT by:

	
Changing its value in the initialization parameter file and then restarting the instance

	
Using the ALTER SESSION statement.

	
See Also:

	
Oracle Database SQL Reference for more information about the TO_TIMESTAMP_TZ function and the ALTER SESSION statement

	
"Choosing a Time Zone File" for more information about time zones

Calendar Definitions

This section includes the following topics:

	
Calendar Formats

	
NLS_CALENDAR

Calendar Formats

The following calendar information is stored for each territory:

	
First Day of the Week

	
First Calendar Week of the Year

	
Number of Days and Months in a Year

	
First Year of Era

First Day of the Week

Some cultures consider Sunday to be the first day of the week. Others consider Monday to be the first day of the week. A German calendar starts with Monday, as shown in Table 3-6.

Table 3-6 German Calendar Example: March 1998

	Mo	Di	Mi	Do	Fr	Sa	So
	
-

	
-

	
-

	
-

	
-

	
-

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
12

	
13

	
14

	
15

	
16

	
17

	
18

	
19

	
20

	
21

	
22

	
23

	
24

	
25

	
26

	
27

	
28

	
29

	
30

	
31

	
-

	
-

	
-

	
-

	
-

The first day of the week is determined by the NLS_TERRITORY parameter.

	
See Also:

"NLS_TERRITORY"

First Calendar Week of the Year

Some countries use week numbers for scheduling, planning, and bookkeeping. Oracle supports this convention. In the ISO standard, the week number can be different from the week number of the calendar year. For example, 1st Jan 1988 is in ISO week number 53 of 1987. An ISO week always starts on a Monday and ends on a Sunday.

	
If January 1 falls on a Friday, Saturday, or Sunday, then the ISO week that includes January 1 is the last week of the previous year, because most of the days in the week belong to the previous year.

	
If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the ISO week is the first week of the new year, because most of the days in the week belong to the new year.

To support the ISO standard, Oracle provides the IW date format element. It returns the ISO week number.

Table 3-7 shows an example in which January 1 occurs in a week that has four or more days in the first calendar week of the year. The week containing January 1 is the first ISO week of 1998.

Table 3-7 First ISO Week of the Year: Example 1, January 1998

	Mo	Tu	We	Th	Fr	Sa	Su	ISO Week
	
-

	
-

	
-

	
1

	
2

	
3

	
4

	
First ISO week of 1998

	
5

	
6

	
7

	
8

	
9

	
10

	
11

	
Second ISO week of 1998

	
12

	
13

	
14

	
15

	
16

	
17

	
18

	
Third ISO week of 1998

	
19

	
20

	
21

	
22

	
23

	
24

	
25

	
Fourth ISO week of 1998

	
26

	
27

	
28

	
29

	
30

	
31

	
-

	
Fifth ISO week of 1998

Table 3-8 shows an example in which January 1 occurs in a week that has three or fewer days in the first calendar week of the year. The week containing January 1 is the 53rd ISO week of 1998, and the following week is the first ISO week of 1999.

Table 3-8 First ISO Week of the Year: Example 2, January 1999

	Mo	Tu	We	Th	Fr	Sa	Su	ISO Week
	
-

	
-

	
-

	
-

	
1

	
2

	
3

	
Fifty-third ISO week of 1998

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
First ISO week of 1999

	
11

	
12

	
13

	
14

	
15

	
16

	
17

	
Second ISO week of 1999

	
18

	
19

	
20

	
21

	
22

	
23

	
24

	
Third ISO week of 1999

	
25

	
26

	
27

	
28

	
29

	
30

	
31

	
Fourth ISO week of 1999

The first calendar week of the year is determined by the NLS_TERRITORY parameter.

	
See Also:

"NLS_TERRITORY"

Number of Days and Months in a Year

Oracle supports six calendar systems in addition to Gregorian, the default:

	
Japanese Imperial—uses the same number of months and days as Gregorian, but the year starts with the beginning of each Imperial Era

	
ROC Official—uses the same number of months and days as Gregorian, but the year starts with the founding of the Republic of China

	
Persian—has 31 days for each of the first six months. The next five months have 30 days each. The last month has either 29 days or 30 days (leap year).

	
Thai Buddha—uses a Buddhist calendar

	
Arabic Hijrah—has 12 months with 354 or 355 days

	
English Hijrah—has 12 months with 354 or 355 days

The calendar system is specified by the NLS_CALENDAR parameter.

	
See Also:

"NLS_CALENDAR"

First Year of Era

The Islamic calendar starts from the year of the Hegira.

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For example, 1998 is the tenth year of the Heisei era. It should be noted, however, that the Gregorian system is also widely understood in Japan, so both 98 and Heisei 10 can be used to represent 1998.

NLS_CALENDAR

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, ALTER SESSION, and SQL functions
	Default value	Gregorian
	Range of values	Any valid calendar format name

Many different calendar systems are in use throughout the world. NLS_CALENDAR specifies which calendar system Oracle uses.

NLS_CALENDAR can have one of the following values:

	
Arabic Hijrah

	
English Hijrah

	
Gregorian

	
Japanese Imperial

	
Persian

	
ROC Official (Republic of China)

	
Thai Buddha

	
See Also:

Appendix A, "Locale Data" for a list of calendar systems, their default date formats, and the character sets in which dates are displayed

Example 3-17 NLS_CALENDAR='English Hijrah'

Set NLS_CALENDAR to English Hijrah.

SQL> ALTER SESSION SET NLS_CALENDAR='English Hijrah';

Enter a SELECT statement to display SYSDATE:

SELECT SYSDATE FROM DUAL;

You should see output similar to the following:

SYSDATE

24 Ramadan 1422

Numeric and List Parameters

This section includes the following topics:

	
Numeric Formats

	
NLS_NUMERIC_CHARACTERS

	
NLS_LIST_SEPARATOR

Numeric Formats

The database must know the number-formatting convention used in each session to interpret numeric strings correctly. For example, the database needs to know whether numbers are entered with a period or a comma as the decimal character (234.00 or 234,00). Similarly, applications must be able to display numeric information in the format expected at the client site.

Examples of numeric formats are shown in Table 3-9.

Table 3-9 Examples of Numeric Formats

	Country	Numeric Formats
	
Estonia

	
1 234 567,89

	
Germany

	
1.234.567,89

	
Japan

	
1,234,567.89

	
UK

	
1,234,567.89

	
US

	
1,234,567.89

Numeric formats are derived from the setting of the NLS_TERRITORY parameter, but they can be overridden by the NLS_NUMERIC_CHARACTERS parameter.

	
See Also:

"NLS_TERRITORY"

NLS_NUMERIC_CHARACTERS

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, ALTER SESSION, and SQL functions
	Default value	Default decimal character and group separator for a particular territory
	Range of values	Any two valid numeric characters

This parameter specifies the decimal character and group separator. The group separator is the character that separates integer groups to show thousands and millions, for example. The group separator is the character returned by the G number format mask. The decimal character separates the integer and decimal parts of a number. Setting NLS_NUMERIC_CHARACTERS overrides the values derived from the setting of NLS_TERRITORY.

Any character can be the decimal character or group separator. The two characters specified must be single-byte, and the characters must be different from each other. The characters cannot be any numeric character or any of the following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>). Either character can be a space.

Example 3-18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period, define NLS_NUMERIC_CHARACTERS as follows:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ",.";

SQL statements can include numbers represented as numeric or text literals. Numeric literals are not enclosed in quotes. They are part of the SQL language syntax and always use a dot as the decimal character and never contain a group separator. Text literals are enclosed in single quotes. They are implicitly or explicitly converted to numbers, if required, according to the current NLS settings.

The following SELECT statement formats the number 4000 with the decimal character and group separator specified in the ALTER SESSION statement:

SELECT TO_CHAR(4000, '9G999D99') FROM DUAL;

You should see output similar to the following:

TO_CHAR(4

 4.000,00

You can change the default value of NLS_NUMERIC_CHARACTERS by:

	
Changing the value of NLS_NUMERIC_CHARACTERS in the initialization parameter file and then restarting the instance

	
Using the ALTER SESSION statement to change the parameter's value during a session

	
See Also:

Oracle Database SQL Reference for more information about the ALTER SESSION statement

NLS_LIST_SEPARATOR

	Property	Description
	Parameter type	String
	Parameter scope	Environment variable
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid character

NLS_LIST_SEPARATOR specifies the character to use to separate values in a list of values (usually , or . or ; or :). Its default value is derived from the value of NLS_TERRITORY. For example, a list of numbers from 1 to 5 can be expressed as 1,2,3,4,5 or 1.2.3.4.5 or 1;2;3;4;5 or 1:2:3:4:5.

The character specified must be single-byte and cannot be the same as either the numeric or monetary decimal character, any numeric character, or any of the following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>), period (.).

Monetary Parameters

This section includes the following topics:

	
Currency Formats

	
NLS_CURRENCY

	
NLS_ISO_CURRENCY

	
NLS_DUAL_CURRENCY

	
NLS_MONETARY_CHARACTERS

	
NLS_CREDIT

	
NLS_DEBIT

Currency Formats

Different currency formats are used throughout the world. Some typical ones are shown in Table 3-10.

Table 3-10 Currency Format Examples

	Country	Example
	
Estonia

	
1 234,56 kr

	
Germany

	
1.234,56€

	
Japan

	
¥1,234.56

	
UK

	
£1,234.56

	
US

	
$1,234.56

NLS_CURRENCY

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, ALTER SESSION, and SQL functions
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid currency symbol string

NLS_CURRENCY specifies the character string returned by the L number format mask, the local currency symbol. Setting NLS_CURRENCY overrides the setting defined implicitly by NLS_TERRITORY.

Example 3-19 Displaying the Local Currency Symbol

Connect to the sample order entry schema:

SQL> connect oe/oe
Connected.

Enter a SELECT statement similar to the following:

SQL> SELECT TO_CHAR(order_total, 'L099G999D99') "total" FROM orders

WHERE order_id > 2450;

You should see output similar to the following:

total

 $078,279.60
 $006,653.40
 $014,087.50
 $010,474.60
 $012,589.00
 $000,129.00
 $003,878.40
 $021,586.20

You can change the default value of NLS_CURRENCY by:

	
Changing its value in the initialization parameter file and then restarting the instance

	
Using an ALTER SESSION statement

	
See Also:

Oracle Database SQL Reference for more information about the ALTER SESSION statement

NLS_ISO_CURRENCY

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, ALTER SESSION, and SQL functions
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid string

NLS_ISO_CURRENCY specifies the character string returned by the C number format mask, the ISO currency symbol. Setting NLS_ISO_CURRENCY overrides the value defined implicitly by NLS_TERRITORY.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer to US dollars or Australian dollars. ISO specifications define unique currency symbols for specific territories or countries. For example, the ISO currency symbol for the US dollar is USD. The ISO currency symbol for the Australian dollar is AUD.

More ISO currency symbols are shown in Table 3-11.

Table 3-11 ISO Currency Examples

	Country	Example
	
Estonia

	
1 234 567,89 EEK

	
Germany

	
1.234.567,89 EUR

	
Japan

	
1,234,567.89 JPY

	
UK

	
1,234,567.89 GBP

	
US

	
1,234,567.89 USD

NLS_ISO_CURRENCY has the same syntax as the NLS_TERRITORY parameter, and all supported territories are valid values.

Example 3-20 Setting NLS_ISO_CURRENCY

This example assumes that you are connected as oe/oe in the sample schema.

To specify the ISO currency symbol for France, set NLS_ISO_CURRENCY as follows:

ALTER SESSION SET NLS_ISO_CURRENCY = FRANCE;

Enter a SELECT statement:

SQL> SELECT TO_CHAR(order_total, 'C099G999D99') "TOTAL" FROM orders

WHERE customer_id = 146;

You should see output similar to the following:

TOTAL

EUR017,848.20
EUR027,455.30
EUR029,249.10
EUR013,824.00
EUR000,086.00

You can change the default value of NLS_ISO_CURRENCY by:

	
Changing its value in the initialization parameter file and then restarting the instance

	
Using an ALTER SESSION statement

	
See Also:

Oracle Database SQL Reference for more information about the ALTER SESSION statement

NLS_DUAL_CURRENCY

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environmental variable, ALTER SESSION, and SQL functions
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid symbol

Use NLS_DUAL_CURRENCY to override the default dual currency symbol defined implicitly by NLS_TERRITORY.

NLS_DUAL_CURRENCY was introduced to support the euro currency symbol during the euro transition period. See Table A-8, "Character Sets that Support the Euro Symbol" for the character sets that support the euro symbol.

Oracle Support for the Euro

Twelve members of the European Monetary Union (EMU) have adopted the euro as their currency. Setting NLS_TERRITORY to correspond to a country in the EMU (Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain) results in the default values for NLS_CURRENCY and NLS_DUAL_CURRENCY being set to EUR.

During the transition period (1999 through 2001), Oracle support for the euro was provided in Oracle Database 8i and later as follows:

	
NLS_CURRENCY was defined as the primary currency of the country

	
NLS_ISO_CURRENCY was defined as the ISO currency code of a given territory

	
NLS_DUAL_CURRENCY was defined as the secondary currency symbol (usually the euro) for a given territory

Beginning with Oracle Database 9i Release 2, the value of NLS_ISO_CURRENCY results in the ISO currency symbol being set to EUR for EMU member countries who use the euro. For example, suppose NLS_ISO_CURRENCY is set to FRANCE. Enter the following SELECT statement:

SELECT TO_CHAR(order_total, 'C099G999D99') "TOTAL" FROM orders
 WHERE customer_id=116;

You should see output similar to the following:

TOTAL

EUR006,394.80
EUR011,097.40
EUR014,685.80
EUR000,129.00

Customers who must retain their obsolete local currency symbol can override the default for NLS_DUAL_CURRENCY or NLS_CURRENCY by defining them as parameters in the initialization file on the server and as environment variables on the client.

	
Note:

NLS_LANG must also be set on the client for NLS_CURRENCY or NLS_DUAL_CURRENCY to take effect.

It is not possible to override the ISO currency symbol that results from the value of NLS_ISO_CURRENCY.

NLS_MONETARY_CHARACTERS

	Property	Description
	Parameter type	String
	Parameter scope	Environment variable
	Default value	Derived from NLS_TERRITORY
	Range of values	Any valid character

NLS_MONETARY_CHARACTERS specifies the character that separates groups of numbers in monetary expressions. For example, when the territory is America, the thousands separator is a comma, and the decimal separator is a period.

NLS_CREDIT

	Property	Description
	Parameter type	String
	Parameter scope	Environment variable
	Default value	Derived from NLS_TERRITORY
	Range of values	Any string, maximum of 9 bytes (not including null)

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default value of this parameter is determined by NLS_TERRITORY. For example, a space is a valid value of NLS_CREDIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNlsInfo() function.

NLS_DEBIT

	Property	Description
	Parameter type	String
	Parameter scope	Environment variable
	Default value	Derived from NLS_TERRITORY
	Range of values	Any string, maximum or 9 bytes (not including null)

NLS_DEBIT sets the symbol that displays a debit in financial reports. The default value of this parameter is determined by NLS_TERRITORY. For example, a minus sign (-) is a valid value of NLS_DEBIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNlsInfo() function.

Linguistic Sort Parameters

You can choose how to sort data by using linguistic sort parameters.

This section includes the following topics:

	
NLS_SORT

	
NLS_COMP

	
See Also:

Chapter 5, "Linguistic Sorting and String Searching"

NLS_SORT

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, ALTER SESSION, and SQL functions
	Default value	Derived from NLS_LANGUAGE
	Range of values	BINARY or any valid linguistic sort name

NLS_SORT specifies the type of sort for character data. It overrides the default value that is derived from NLS_LANGUAGE.

NLS_SORT contains either of the following values:

NLS_SORT = BINARY | sort_name

BINARY specifies a binary sort. sort_name specifies a linguistic sort sequence.

Example 3-21 Setting NLS_SORT

To specify the German linguistic sort sequence, set NLS_SORT as follows:

NLS_SORT = German

	
Note:

When the NLS_SORT parameter is set to BINARY, the optimizer can, in some cases, satisfy the ORDER BY clause without doing a sort by choosing an index scan.
When NLS_SORT is set to a linguistic sort, a sort is needed to satisfy the ORDER BY clause if there is no linguistic index for the linguistic sort specified by NLS_SORT.

If a linguistic index exists for the linguistic sort specified by NLS_SORT, then the optimizer can, in some cases, satisfy the ORDER BY clause without doing a sort by choosing an index scan.

You can alter the default value of NLS_SORT by doing one of the following:

	
Changing its value in the initialization parameter file and then restarting the instance

	
Using an ALTER SESSION statement

	
See Also:

	
Chapter 5, "Linguistic Sorting and String Searching"

	
Oracle Database SQL Reference for more information about the ALTER SESSION statement

	
"Linguistic Sorts" for a list of linguistic sort names

NLS_COMP

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter, environment variable, and ALTER SESSION
	Default value	BINARY
	Range of values	BINARY , LINGUISTIC, or ANSI

The value of NLS_COMP affects the comparison behavior of SQL operations.

You can use NLS_COMP to avoid the cumbersome process of using the NLSSORT function in SQL statements when you want to perform a linguistic comparison instead of a binary comparison. When NLS_COMP is set to LINGUISTIC, SQL operations perform a linguistic comparison based on the value of NLS_SORT. A setting of ANSI is for backward compatibility; in general, you should set NLS_COMP to LINGUISTIC when you want to perform a linguistic comparison.

Set NLS_COMP to LINGUISTIC as follows:

ALTER SESSION SET NLS_COMP = LINGUISTIC;

When NLS_COMP is set to LINGUISTIC, a linguistic index improves the performance of the linguistic comparison. To enable a linguistic index, use the following syntax:

CREATE INDEX i ON t(NLSSORT(col, 'NLS_SORT=FRENCH'));

	
See Also:

	
"Using Linguistic Sorts"

	
"Using Linguistic Indexes"

Character Set Conversion Parameter

This section includes the following topic:

	
NLS_NCHAR_CONV_EXCP

NLS_NCHAR_CONV_EXCP

	Property	Description
	Parameter type	String
	Parameter scope	Initialization parameter and ALTER SESSION
	Default value	FALSE
	Range of values	TRUE or FALSE

NLS_NCHAR_CONV_EXCP determines whether an error is reported when there is data loss during an implicit or explicit character type conversion between NCHAR/NVARCHAR data and CHAR/VARCHAR2 data. The default value results in no error being reported.

	
See Also:

Chapter 11, "Character Set Migration" for more information about data loss during character set conversion

Length Semantics

This section includes the following topic:

	
NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS

	Property	Description
	Parameter type	String
	Parameter scope	Environment variable, initialization parameter, and ALTER SESSION
	Default value	BYTE
	Range of values	BYTE or CHAR

By default, the character datatypes CHAR and VARCHAR2 are specified in bytes, not characters. Hence, the specification CHAR(20) in a table definition allows 20 bytes for storing character data.

This works well if the database character set uses a single-byte character encoding scheme because the number of characters is the same as the number of bytes. If the database character set uses a multibyte character encoding scheme, then the number of bytes no longer equals the number of characters because a character can consist of one or more bytes. Thus, column widths must be chosen with care to allow for the maximum possible number of bytes for a given number of characters. You can overcome this problem by switching to character semantics when defining the column size.

NLS_LENGTH_SEMANTICS enables you to create CHAR, VARCHAR2, and LONG columns using either byte or character length semantics. NCHAR, NVARCHAR2, CLOB, and NCLOB columns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with existing applications.

NLS_LENGTH_SEMANTICS does not apply to tables in SYS and SYSTEM. The data dictionary always uses byte semantics.

Note that if the NLS_LENGTH_SEMANTICS environment variable is not set on the client, then the client session defaults to the value for NLS_LENGTH_SEMANTICS on the database server. This enables all client sessions on the network to have the same NLS_LENGTH_SEMANTICS behavior. Setting the environment variable on an individual client enables the server initialization parameter to be overridden for that client.

	
See Also:

	
"Length Semantics"

	
Oracle Database Concepts for more information about length semantics

Oracle® Database

Globalization Support Guide

10g Release 2 (10.2)

B14225-02

December 2005

Oracle Database Globalization Support Guide, 10g Release 2 (10.2)

B14225-02

Copyright © 1996, 2005, Oracle. All rights reserved.

Primary Author: Cathy Shea

Contributing Authors: Paul Lane, Cathy Baird

Contributors: Dan Chiba, Winson Chu, Claire Ho, Gary Hua, Simon Law, Geoff Lee, Peter Linsley, Qianrong Ma, Keni Matsuda, Meghna Mehta, Valarie Moore, Shige Takeda, Linus Tanaka, Makoto Tozawa, Barry Trute, Ying Wu, Peter Wallack, Chao Wang, Huaqing Wang, Simon Wong, Michael Yau, Jianping Yang, Qin Yu, Tim Yu, Weiran Zhang, Yan Zhu

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

8 Oracle Globalization Development Kit

This chapter includes the following sections:

	
Overview of the Oracle Globalization Development Kit

	
Designing a Global Internet Application

	
Developing a Global Internet Application

	
Getting Started with the Globalization Development Kit

	
GDK Quick Start

	
GDK Application Framework for J2EE

	
GDK Java API

	
The GDK Application Configuration File

	
GDK for Java Supplied Packages and Classes

	
GDK for PL/SQL Supplied Packages

	
GDK Error Messages

Overview of the Oracle Globalization Development Kit

Designing and developing a globalized application can be a daunting task even for the most experienced developers. This is usually caused by lack of knowledge and the complexity of globalization concepts and APIs. Application developers who write applications using the Oracle database need to understand the Globalization Support architecture of the database, including the properties of the different character sets, territories, languages and linguistic sort definitions. They also need to understand the globalization functionality of their middle-tier programming environment, and find out how it can interact and synchronize with the locale model of the database. Finally, to develop a globalized Internet application, they need to design and write code that is capable of simultaneously supporting multiple clients running on different operating systems with different character sets and locale requirements.

Oracle Globalization Development Kit (GDK) simplifies the development process and reduces the cost of developing Internet applications that will be used to support a global environment.

This release of the GDK includes comprehensive programming APIs for both Java and PL/SQL, code samples, and documentation that address many of the design, development, and deployment issues encountered while creating global applications.

The GDK mainly consists of two parts: GDK for Java and GDK for PL/SQL. GDK for Java provides globalization support to Java applications. GDK for PL/SQL provides globalization support to the PL/SQL programming environment. The features offered in GDK for Java and GDK for PL/SQL are not identical.

Designing a Global Internet Application

There are two architectural models for deploying a global Web site or a global Internet application, depending on your globalization and business requirements. Which model to deploy affects how the Internet application is developed and how the application server is configured in the middle-tier. The two models are:

	
Multiple instances of monolingual Internet applications

Internet applications that support only one locale in a single binary are classified as monolingual applications. A locale refers to a national language and the region in which the language is spoken. For example, the primary language of the United States and Great Britain is English. However, the two territories have different currencies and different conventions for date formats. Therefore, the United States and Great Britain are considered to be two different locales.

This level of globalization support is suitable for customers who want to support one locale for each instance of the application. Users need to have different entry points to access the applications for different locales. This model is manageable only if the number of supported locales is small.

	
Single instance of a multilingual application

Internet applications that support multiple locales simultaneously in a single binary are classified as multilingual applications. This level of globalization support is suitable for customers who want to support several locales in an Internet application simultaneously. Users of different locale preferences use the same entry point to access the application.

Developing an application using the monolingual model is very different from developing an application using the multilingual model. The Globalization Development Kit consists of libraries, which can assist in the development of global applications using either architectural model.

The rest of this section includes the following topics:

	
Deploying a Monolingual Internet Application

	
Deploying a Multilingual Internet Application

Deploying a Monolingual Internet Application

Deploying a global Internet application with multiple instances of monolingual Internet applications is shown in Figure 8-1.

Figure 8-1 Monolingual Internet Application Architecture

[image: Description of Figure 8-1 follows]

Description of "Figure 8-1 Monolingual Internet Application Architecture"

Each application server is configured for the locale that it serves. This deployment model assumes that one instance of an Internet application runs in the same locale as the application in the middle tier.

The Internet applications access a back-end database in the native encoding used for the locale. The following are advantages of deploying monolingual Internet applications:

	
The support of the individual locales is separated into different servers so that multiple locales can be supported independently in different locations and that the workload can be distributed accordingly. For example, customers may want to support Western European locales first and then support Asian locales such as Japanese (Japan) later.

	
The complexity required to support multiple locales simultaneously is avoided. The amount of code to write is significantly less for a monolingual Internet application than for a multilingual Internet application.

The following are disadvantages of deploying monolingual Internet applications:

	
Extra effort is required to maintain and manage multiple servers for different locales. Different configurations are required for different application servers.

	
The minimum number of application servers required depends on the number of locales the application supports, regardless of whether the site traffic will reach the capacity provided by the application servers.

	
Load balancing for application servers is limited to the group of application servers for the same locale.

	
More QA resources, both human and machine, are required for multiple configurations of application servers. Internet applications running on different locales must be certified on the corresponding application server configuration.

	
It is not designed to support multilingual content. For example, a web page containing Japanese and Arabic data cannot be easily supported in this model.

As more and more locales are supported, the disadvantages quickly outweigh the advantages. With the limitation and the maintenance overhead of the monolingual deployment model, this deployment architecture is suitable for applications that support only one or two locales.

Deploying a Multilingual Internet Application

Multilingual Internet applications are deployed to the application servers with a single application server configuration that works for all locales. Figure 8-2 shows the architecture of a multilingual Internet application.

Figure 8-2 Multilingual Internet Application Architecture

[image: Description of Figure 8-2 follows]

Description of "Figure 8-2 Multilingual Internet Application Architecture"

To support multiple locales in a single application instance, the application may need to do the following:

	
Dynamically detect the locale of the users and adapt to the locale by constructing HTML pages in the language and cultural conventions of the locale

	
Process character data in Unicode so that data in any language can be supported. Character data can be entered by users or retrieved from back-end databases.

	
Dynamically determine the HTML page encoding (or character set) to be used for HTML pages and convert content from Unicode to the page encoding and the reverse.

The following are major advantages of deploying multilingual Internet application:

	
Using a single application server configuration for all application servers simplifies the deployment configuration and hence reduces the cost of maintenance.

	
Performance tuning and capacity planning do not depend on the number of locales supported by the Web site.

	
Introducing additional locales is relatively easy. No extra machines are necessary for the new locales.

	
Testing the application across different locales can be done in a single testing environment.

	
This model can support multilingual content within the same instance of the application. For example, a web page containing Japanese, Chinese, English and Arabic data can be easily supported in this model.

The disadvantage of deploying multilingual Internet applications is that it requires extra coding during application development to handle dynamic locale detection and Unicode, which is costly when only one or two languages need to be supported.

Deploying multilingual Internet applications is more appropriate than deploying monolingual applications when Web sites support multiple locales.

Developing a Global Internet Application

Building an Internet application that supports different locales requires good development practices.

For multilingual Internet applications, the application itself must be aware of the user's locale and be able to present locale-appropriate content to the user. Clients must be able to communicate with the application server regardless of the client's locale. The application server then communicates with the database server, exchanging data while maintaining the preferences of the different locales and character set settings. One of the main considerations when developing a multilingual Internet application is to be able to dynamically detect, cache, and provide the appropriate contents according to the user's preferred locale.

For monolingual Internet applications, the locale of the user is always fixed and usually follows the default locale of the runtime environment. Hence the locale configuration is much simpler.

The following sections describe some of the most common issues that developers encounter when building a global Internet application:

	
Locale Determination

	
Locale Awareness

	
Localizing the Content

Locale Determination

To be locale-aware or locale-sensitive, Internet applications need to be able to determine the preferred locale of the user.

Monolingual applications always serve users with the same locale, and that locale should be equivalent to the default runtime locale of the corresponding programming environment.

Multilingual applications can determine a user locale dynamically in three ways. Each method has advantages and disadvantages, but they can be used together in the applications to complement each other. The user locale can be determined in the following ways:

	
Based on the user profile information from a LDAP directory server such as the Oracle Internet Directory or other user profile tables stored inside the database

The schema for the user profile should include preferred locale attribute to indicate the locale of a user. This way of determining a locale user does not work if a user has not been logged on before.

	
Based on the default locale of the browser

Get the default ISO locale setting from a browser. The default ISO locale of the browser is sent through the Accept-Language HTTP header in every HTTP request. If the Accept-Language header is NULL, then the desired locale should default to English. The drawback of this approach is that the Accept-Language header may not be a reliable source of information for the locale of a user.

	
Based on user selection

Allow users to select a locale from a list box or from a menu, and switch the application locale to the one selected.

The Globalization Development Kit provides an application framework that enables you to use these locale determination methods declaratively.

	
See Also:

"Getting Started with the Globalization Development Kit"

Locale Awareness

To be locale-aware or locale-sensitive, Internet applications need to determine the locale of a user. After the locale of a user is determined, applications should:

	
Construct HTML content in the language of the locale

	
Use the cultural conventions implied by the locale

Locale-sensitive functions, such as date, time, and monetary formatting, are built into various programming environments such as Java and PL/SQL. Applications may use them to format the HTML pages according to the cultural conventions of the locale of a user. A locale is represented differently in different programming environments. For example, the French (Canada) locale is represented in different environments as follows:

	
In the ISO standard, it is represented by fr-CA where fr is the language code defined in the ISO 639 standard and CA is the country code defined in the ISO 3166 standard.

	
In Java, it is represented as a Java locale object constructed with fr, the ISO language code for French, as the language and CA, the ISO country code for Canada, as the country. The Java locale name is fr_CA.

	
In PL/SQL and SQL, it is represented mainly by the NLS_LANGUAGE and NLS_TERRITORY session parameters where the value of the NLS_LANGUAGE parameter is equal to CANADIAN FRENCH and the value of the NLS_TERRITORY parameter is equal to CANADA.

If you write applications for more than one programming environment, then locales must be synchronized between environments. For example, Java applications that call PL/SQL procedures should map the Java locales to the corresponding NLS_LANGUAGE and NLS_TERRITORY values and change the parameter values to match the user's locale before calling the PL/SQL procedures.

The Globalization Development Kit for Java provides a set of Java classes to ensure consistency on locale-sensitive behaviors with Oracle databases.

Localizing the Content

For the application to support a multilingual environment, it must be able to present the content in the preferred language and in the locale convention of the user. Hard-coded user interface text must first be externalized from the application, together with any image files, so that they can be translated into the different languages supported by the application. The translation files then must be staged in separate directories, and the application must be able to locate the relevant content according to the user locale setting. Special application handling may also be required to support a fallback mechanism, so that if the user-preferred locale is not available, then the next most suitable content is presented. For example, if Canadian French content is not available, then it may be suitable for the application to switch to the French files instead.

Getting Started with the Globalization Development Kit

The Globalization Development Kit (GDK) for Java provides a J2EE application framework and Java APIs to develop globalized Internet applications using the best globalization practices and features designed by Oracle. It reduces the complexities and simplifies the code that Oracle developers require to develop globalized Java applications.

GDK for Java complements the existing globalization features in J2EE. Although the J2EE platform already provides a strong foundation for building globalized applications, its globalization functionalities and behaviors can be quite different from Oracle's functionalities. GDK for Java provides synchronization of locale-sensitive behaviors between the middle-tier Java application and the database server.

GDK for PL/SQL contains a suite of PL/SQL packages that provide additional globalization functionalities for applications written in PL/SQL.

Figure 8-3 shows the major components of the GDK and how they are related to each other. User applications run on the J2EE container of Oracle Application Server in the middle tier. GDK provides the application framework that the J2EE application uses to simplify coding to support globalization. Both the framework and the application call the GDK Java API to perform locale-sensitive tasks. GDK for PL/SQL offers PL/SQL packages that help to resolve globalization issues specific to the PL/SQL environment.

Figure 8-3 GDK Components

[image: Description of Figure 8-3 follows]

Description of "Figure 8-3 GDK Components"

The functionalities offered by GDK for Java can be divided into two categories:

	
The GDK application framework for J2EE provides the globalization framework for building J2EE-based Internet application. The framework encapsulates the complexity of globalization programming, such as determining user locale, maintaining locale persistency, and processing locale information. It consists of a set of Java classes through which applications can gain access to the framework. These associated Java classes enable applications to code against the framework so that globalization behaviors can be extended declaratively.

	
The GDK Java API offers development support in Java applications and provides consistent globalization operations as provided in Oracle database servers. The API is accessible and is independent of the GDK framework so that standalone Java applications and J2EE applications that are not based on the GDK framework are able to access the individual features offered by the Java API. The features provided in the Java API include data and number formatting, sorting, and handling character sets in the same way as the Oracle Database.

	
Note:

The GDK Java API is certified with JDK versions 1.3 and later with the following exception: The character set conversion classes depend on the java.nio.charset package, which is available in JDK 1.4 and later.

GDK for Java is contained in nine .jar files, all in the form of orai18n*jar. These files are shipped with the Oracle Database, in the $ORACLE_HOME/jlib directory. If the application using the GDK is not hosted on the same machine as the database, then the GDK files must be copied to the application server and included into the CLASSPATH to run your application. You do not need to install the Oracle Database into your application server to be able to run the GDK inside your Java application. GDK is a pure Java library that runs on every platform. The Oracle client parameters NLS_LANG and ORACLE_HOME are not required.

GDK Quick Start

This section explains how to modify a monolingual application to be a global, multilingual application using GDK. The subsequent sections in this chapter provide detailed information on using GDK.

Figure 8-4 shows a screenshot from a monolingual Web application.

Figure 8-4 Original HelloWorld Web Page

[image: Description of Figure 8-4 follows]

Description of "Figure 8-4 Original HelloWorld Web Page"

The initial, non-GDK HelloWorld Web application simply prints a "Hello World!" message, along with the current date and time in the top right hand corner of the page. The following code shows the original HelloWorld JSP source code for the preceding image.

Example 8-1 HelloWorld JSP Page Code

<%@ page contentType="text/html;charset=windows-1252"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 <title>Hello World Demo</title>
 </head>
 <body>
 <div style="color: blue;" align="right">
 <%= new java.util.Date(System.currentTimeMillis()) %>
 </div>
 <hr/>
 <h1>Hello World!</h1>
 </body>
</html>

The following code example shows the corresponding Web application descriptor file for the HelloWorld message.

Example 8-2 HelloWorld web.xml Code

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <description>web.xml file for the monolingual Hello World</description>
 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

The HelloWorld JSP code in Example 8-1 is only for English-speaking users. Some of the problems with this code are as follows:

	
There is no locale determination based on user preference or browser setting.

	
The title and the heading are included in the code.

	
The date and time value is not localized based on any locale preference.

	
The character encoding included in the code is for Latin-1.

The GDK framework can be integrated into the HelloWorld code to make it a global, multilingual application. The preceding code can be modified to include the following features:

	
Automatic locale negotiation to detect the user's browser locale and serve the client with localized HTML pages. The supported application locales are configured in the GDK configuration file.

	
Locale selection list to map the supported application locales. The list can have application locale display names which are the name of the country representing the locale. The list will be included on the Web page so users can select a different locale.

	
GDK framework and API for globalization support for the HelloWorld JSP. This involves selecting display strings in a locale-sensitive manner and formatting the date and time value.

Modifying the HelloWorld Application

This section explains how to modify the HelloWorld application to support globalization. The application will be modified to support three locales, Simplified Chinese (zh-CN), Swiss German (de-CH), and American English (en-US). The following rules will be used for the languages:

	
If the client locale supports one of these languages, then that language will be used for the application.

	
If the client locale does not support one of these languages, then American English will be used for the application.

In addition, the user will be able to change the language by selecting a supported locales from the locale selection list. The following tasks describe how to modify the application:

	
Task 1: Enable the Hello World Application to use the GDK Framework

	
Task 2: Configure the GDK Framework for Hello World

	
Task 3: Enable the JSP or Java Servlet

	
Task 4: Create the Locale Selection List

	
Task 5: Build the Application

Task 1: Enable the Hello World Application to use the GDK Framework

In this task, the GDK filter and a listener are configured in the Web application deployment descriptor file, web.xml. This allows the GDK framework to be used with the HelloWorld application. Example 8-3 shows the GDK-enabled web.xml file.

Example 8-3 The GDK-enabled web.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <description>web.xml file for Hello World</description>
 <!-- Enable the application to use the GDK Application Framework.-->
 <filter>
 <filter-name>GDKFilter</filter-name>
 <filter-class>oracle.i18n.servlet.filter.ServletFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>GDKFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>

 <listener>
 <listener-class>oracle.i18n.servlet.listener.ContextListener</listener-class>
 </listener>

 <session-config>
 <session-timeout>35</session-timeout>
 </session-config>
 <mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
 </mime-mapping>
</web-app>

The following tags were added to the file:

	
<filter>

The filter name is GDKFilter, and the filter class is oracle.i18n.servlet.filter.ServletFilter.

	
<filter-mapping>

The GDKFilter is specified in the tag, as well as the URL pattern.

	
<listener>

The listener class is oracle.i18n.servlet.listener.ContextListener. The default GDK listener is configured to instantiate GDK ApplicationContext, which controls application scope operations for the framework.

Task 2: Configure the GDK Framework for Hello World

The GDK application framework is configured with the application configuration file gdkapp.xml. The configuration file is located in the same directory as the web.xml file. Example 8-4 shows the gdkapp.xml file.

Example 8-4 GDK Configuration File gdkapp.xml

<?xml version="1.0" encoding="UTF-8"?>
<gdkapp xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="gdkapp.xsd">

 <!-- The Hello World GDK Configuration -->
 <page-charset default="yes">UTF-8</page-charset>

 <!-- The supported application locales for the Hello World Application -->

 <application-locales>
 <locale>de-CH</locale>
 <locale default="yes">en-US</locale>
 <locale>zh-CN</locale>
 </application-locales>

 <locale-determine-rule>
 <locale-source>oracle.i18n.servlet.localesource.UserInput</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HttpAcceptLanguage</locale-source>
 </locale-determine-rule>

 <message-bundles>
 <resource-bundle name="default">com.oracle.demo.Messages</resource-bundle>
 </message-bundles>
</gdkapp>

The file must be configured for J2EE applications. The following tags are used in the file:

	
<page-charset>

The page encoding tag specifies the character set used for HTTP requests and responses. The UTF-8 encoding is used as the default because many languages can be represented by this encoding.

	
<application-locales>

Configuring the application locales in the gdkapp.xml file makes a central place to define locales. This makes it easier to add and remove locales without changing source code. The locale list can be retrieved using the GDK API call ApplicationContext.getSupportedLocales.

	
<locale-determine-rule>

The language of the initial page is determined by the language setting of the browser. The user can override this language by choosing from the list. The locale-determine-rule is used by GDK to first try the Accept-Language HTTP header as the source of the locale. If the user selects a locale from the list, then the JSP posts a locale parameter value containing the selected locale. The GDK then sends a response with the contents in the selected language.

	
<message-bundles>

The message resource bundles allow an application access to localized static content that may be displayed on a Web page. The GDK framework configuration file allows an application to define a default resource bundle for translated text for various languages. In the HelloWorld example, the localized string messages are stored in the Java ListResourceBundle bundle named Messages. The Messages bundle consists of base resources for the application which are in the default locale. Two more resource bundles provide the Chinese and German translations. These resource bundles are named Messages_zh_CN.java and Messages_de.java respectively. The HelloWorld application will select the right translation for "Hello World!" from the resource bundle based on the locale determined by the GDK framework. The <message-bundles> tag is used to configure the resource bundles that the application will use.

Task 3: Enable the JSP or Java Servlet

JSPs and Java servlets must be enabled to use the GDK API. Example 8-5 shows a JSP that has been modified to enable to use the GDK API and services. This JSP can accommodate any language and locale.

Example 8-5 Enabled HelloWorld JSP

. . .
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title><%= localizer.getMessage("helloWorldTitle") %></title>
 </head>

 <body>
 <div style="color: blue;" align="right">
 <% Date currDate= new Date(System.currentTimeMillis()); %>
 <%=localizer.formatDateTime(currDate, OraDateFormat.LONG)%>
 </div>
 <hr/>

 <div align="left">
 <form>
 <select name="locale" size="1">
 <%= getCountryDropDown(request)%>
 </select>
 <input type="submit" value="<%= localizer.getMessage("changeLocale") %>">
 </input>
 </form>
 </div>
 <h1><%= localizer.getMessage("helloWorld") %></h1>
 </body>
</html>

Figure 8-5 shows the HelloWorld application that has been configured with the zh-CN locale as the primary locale for the browser preference. The HelloWorld string and page title are displayed in Simplified Chinese. In addition, the date is formatted in the zh-CN locale convention. This example allows the user to override the locale from the locale selection list.

Figure 8-5 HelloWorld Localized for the zh-CN Locale

[image: Description of Figure 8-5 follows]

Description of "Figure 8-5 HelloWorld Localized for the zh-CN Locale"

When the locale changes or is initialized using the HTTP Request Accept-Language header or the locale selection list, the GUI behaves appropriately for that locale. This means the date and time value in the upper right corner is localized properly. In addition, the strings are localized and displayed on the HelloWorld page.

The GDK Java Localizer class provides capabilities to localize the contents of a Web page based on the automatic detection of the locale by the GDK framework.

The following code retrieves an instance of the localizer based on the current HTTPServletRequest object. In addition, several imports are declared for use of the GDK API within the JSP page. The localizer retrieves localized strings in a locale-sensitive manner with fallback behavior, and formats the date and time.

<%@page contentType="text/html;charset=UTF-8"%>
<%@page import="java.util.*, oracle.i18n.servlet.*" %>
<%@page import="oracle.i18n.util.*, oracle.i18n.text.*" %>

<%
 Localizer localizer = ServletHelper.getLocalizerInstance(request);
%>

The following code retrieves the current date and time value stored in the currDate variable. The value is formatted by the localizer formatDateTime method. The OraDateFormat.LONG parameter in the formatDateTime method instructs the localizer to format the date using the locale's long formatting style. If the locale of the incoming request is changed to a different locale with the locale selection list, then the date and time value will be formatted according to the conventions of the new locale. No code changes need to be made to support newly-introduced locales.

div style="color: blue;" align="right">

 <% Date currDate= new Date(System.currentTimeMillis()); %>
 <%=localizer.formatDateTime(currDate, OraDateFormat.LONG)%>
 </div>

The HelloWorld JSP can be reused for any locale because the HelloWorld string and title are selected in a locale-sensitive manner. The translated strings are selected from a resource bundle.

The GDK uses the OraResourceBundle class for implementing the resource bundle fallback behavior. The following code shows how the Localizer picks the HelloWorld message from the resource bundle.

The default application resource bundle Messages is declared in the gdkapp.xml file. The localizer uses the message resource bundle to pick the message and apply the locale-specific logic. For example, if the current locale for the incoming request is "de-CH", then the message will first be looked for in the messages_de_CH bundle. If it does not exist, then it will look up in the Messages_de resource bundle.

<h1><%= localizer.getMessage("helloWorld") %></h1>

Task 4: Create the Locale Selection List

The locale selection list is used to override the selected locale based on the HTTP Request Accept-Language header. The GDK framework checks the locale parameter passed in as part of the HTTP POST request as a value for the new locale. A locale selected with the locale selection list is posted as the locale parameter value. GDK uses this value for the request locale. All this happens implicitly within the GDK code.

The following code sample displays the locale selection list as an HTML select tag with the name locale. The submit tag causes the new value to be posted to the server. The GDK framework retrieves the correct selection.

<form>
 <select name="locale" size="1">
 <%= getCountryDropDown(request)%>
 </select>
 <input type="submit" value="<%= localizer.getMessage("changeLocale") %>">
 </input>
</form>

The locale selection list is constructed from the HTML code generated by the getCountryDropDown method. The method converts the configured application locales into localized country names.

A call is made to the ServletHelper class to get the ApplicationContext object associated with the current request. This object provides the globalization context for an application, which includes information such as supported locales and configuration information. The getSupportedLocales call retrieves the list of locales in the gdkapp.xml file. The configured application locale list is displayed as options of the HTML select. The OraDisplayLocaleInfo class is responsible for providing localization methods of locale-specific elements such as country and language names.

An instance of this class is created by passing in the current locale automatically determined by the GDK framework. GDK creates requests and response wrappers for HTTP request and responses. The request.getLocale() method returns the GDK determined locale based on the locale determination rules.

The OraDsiplayLocaleInfo.getDisplayCountry method retrieves the localized country names of the application locales. An HTML option list is created in the ddOptBuffer string buffer. The getCountryDropDown call returns a string containing the following HTML values:

 <option value="en_US" selected>United States [en_US]</option>
 <option value="zh_CN">China [zh_CN]</option>
 <option value="de_CH">Switzerland [de_CH]</option>

In the preceding values, the en-US locale is selected for the locale. Country names are generated are based on the current locale.

Example 8-6 shows the code for constructing the locale selection list.

Example 8-6 Constructing the Locale Selection List

<%!
 public String getCountryDropDown(HttpServletRequest request)
 {
 StringBuffer ddOptBuffer=new StringBuffer();
 ApplicationContext ctx = ServletHelper.getApplicationContextInstance(request);
 Locale[] appLocales = ctx.getSupportedLocales();
 Locale currentLocale = request.getLocale();

 if (currentLocale.getCountry().equals(""))
 {
 // Since the Country was not specified get the Default Locale
 // (with Country) from the GDK
 OraLocaleInfo oli = OraLocaleInfo.getInstance(currentLocale);
 currentLocale = oli.getLocale();
 }

 OraDisplayLocaleInfo odli = OraDisplayLocaleInfo.getInstance(currentLocale);
 for (int i=0;i<appLocales.length; i++)
 {
 ddOptBuffer.append("<option value=\"" + appLocales[i] + "\"" +
 (appLocales[i].getLanguage().equals(currentLocale.getLanguage()) ? " selected" : "") +
 ">" + odli.getDisplayCountry(appLocales[i]) +
 " [" + appLocales[i] + "]</option>\n");
 }

 return ddOptBuffer.toString();
 }
%>

Task 5: Build the Application

In order to build the application, the following files must be specified in the classpath:

	
orai18n.jar

	
regexp.jar

The orai18n.jar file contains the GDK framework and the API. The regexp.jar file contains the regular expression library. The GDK API also has locale determination capabilities. The classes are supplied by the ora18n-lcsd.jar file.

GDK Application Framework for J2EE

GDK for Java provides the globalization framework for middle-tier J2EE applications. The framework encapsulates the complexity of globalization programming, such as determining user locale, maintaining locale persistency, and processing locale information. This framework minimizes the effort required to make Internet applications global-ready. The GDK application framework is shown in Figure 8-6.

Figure 8-6 GDK Application Framework for J2EE

[image: Description of Figure 8-6 follows]

Description of "Figure 8-6 GDK Application Framework for J2EE"

The main Java classes composing the framework are as follows:

	
ApplicationContext provides the globalization context of an application. The context information includes the list of supported locales and the rule for determining user-preferred locale. The context information is obtained from the GDK application configuration file for the application.

	
The set of LocaleSource classes can be plugged into the framework. Each LocaleSource class implements the LocaleSource interface to get the locale from the corresponding source. Oracle bundles several LocaleSource classes in GDK. For example, the DBLocaleSource class obtains the locale information of the current user from a database schema. You can also write a customized LocaleSource class by implementing the same LocaleSource interface and plugging it into the framework.

	
ServletRequestWrapper and ServletResponseWrapper are the main classes of the GDK Servlet filter that transforms HTTP requests and HTTP responses. ServletRequestWrapper instantiates a Localizer object for each HTTP request based on the information gathered from the ApplicationContext and LocaleSource objects and ensures that forms parameters are handled properly. ServletResponseWrapper controls how HTTP response should be constructed.

	
Localizer is the all-in-one object that exposes the important functions that are sensitive to the current user locale and application context. It provides a centralized set of methods for you to call and make your applications behave appropriately to the current user locale and application context.

	
The GDK Java API is always available for applications to enable finer control of globalization behavior.

The GDK application framework simplifies the coding required for your applications to support different locales. When you write a J2EE application according to the application framework, the application code is independent of what locales the application supports, and you control the globalization support in the application by defining it in the GDK application configuration file. There is no code change required when you add or remove a locale from the list of supported application locales.

The following list gives you some idea of the extent to which you can define the globalization support in the GDK application configuration file:

	
You can add and remove a locale from the list of supported locales.

	
You can change the way the user locale is determined.

	
You can change the HTML page encoding of your application.

	
You can specify how the translated resources can be located.

	
You can plug a new LocaleSource object into the framework and use it to detect a user locale.

This section includes the following topics:

	
Making the GDK Framework Available to J2EE Applications

	
Integrating Locale Sources into the GDK Framework

	
Getting the User Locale From the GDK Framework

	
Implementing Locale Awareness Using the GDK Localizer

	
Defining the Supported Application Locales in the GDK

	
Handling Non-ASCII Input and Output in the GDK Framework

	
Managing Localized Content in the GDK

Making the GDK Framework Available to J2EE Applications

The behavior of the GDK application framework for J2EE is controlled by the GDK application configuration file, gdkapp.xml. The application configuration file allows developers to specify the behaviors of globalized applications in one centralized place. One application configuration file is required for each J2EE application using the GDK. The gdkapp.xml file should be placed in the ./WEB-INF directory of the J2EE environment of the application. The file dictates the behavior and the properties of the GDK framework and the application that is using it. It contains locale mapping tables, character sets of content files, and globalization parameters for the configuration of the application. The application administrator can modify the application configuration file to change the globalization behavior in the application, without needing to change the programs and to recompile them.

	
See Also:

"The GDK Application Configuration File"

For a J2EE application to use the GDK application framework defined by the corresponding GDK application configuration file, the GDK Servlet filter and the GDK context listener must be defined in the web.xml file of the application. The web.xml file should be modified to include the following at the beginning of the file:

<web-app>
<!-- Add GDK filter that is called after the authentication -->

<filter>
 <filter-name>gdkfilter</filter-name>
 <filter-class>oracle.i18n.servlet.filter.ServletFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>gdkfilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
</filter-mapping>

<!-- Include the GDK context listener -->

 <listener>
<listener-class>oracle.i18n.servlet.listener.ContextListener</listener-class>
 </listener>
</web-app>

Examples of the gdkapp.xml and web.xml files can be found in the $ORACLE_HOME/nls/gdk/demo directory.

The GDK application framework supports Servlet container version 2.3 and later. It uses the Servlet filter facility for transparent globalization operations such as determining the user locale and specifying the character set for content files. The ContextListener instantiates GDK application parameters described in the GDK application configuration file. The ServletFilter overrides the request and response objects with a GDK request (ServletRequestWrapper) and response (ServletResponseWrapper) objects, respectively.

If other application filters are used in the application to also override the same methods, then the filter in the GDK framework may return incorrect results. For example, if getLocale returns en_US, but the result is overridden by other filters, then the result of the GDK locale detection mechanism is affected. All of the methods that are being overridden in the filter of the GDK framework are documented in Oracle Globalization Development Kit Java API Reference. Be aware of potential conflicts when using other filters together with the GDK framework.

Integrating Locale Sources into the GDK Framework

Determining the user's preferred locale is the first step in making an application global-ready. The locale detection offered by the J2EE application framework is primitive. It lacks the method that transparently retrieves the most appropriate user locale among locale sources. It provides locale detection by the HTTP language preference only, and it cannot support a multilevel locale fallback mechanism. The GDK application framework provides support for predefined locale sources to complement J2EE. In a web application, several locale sources are available. Table 8-1 summarizes locale sources that are provided by the GDK.

Table 8-1 Locale Resources Provided by the GDK

	Locale	Description
	
HTTP language preference

	
Locales included in the HTTP protocol as a value of Accept-Language. This is set at the web browser level. A locale fallback operation is required if the browser locale is not supported by the application.

	
User input locale

	
Locale specified by the user from a menu or a parameter in the HTTP protocol

	
User profile locale preference from database

	
Locale preference stored in the database as part of the user profiles

	
Application default locale

	
A locale defined in the GDK application configuration file. This locale is defined as the default locale for the application. Typically, this is used as a fallback locale when the other locale sources are not available.

	
See Also:

"The GDK Application Configuration File" for information about the GDK multilevel locale fallback mechanism

The GDK application framework provides seamless support for predefined locale sources, such as user input locale, HTTP language preference, user profile locale preference in the database, and the application default locale. You can incorporate the locale sources to the framework by defining them under the <locale-determine-rule> tag in the GDK application configuration file as follows:

<locale-determine-rule>
 <locale-source>oracle.i18n.servlet.localesource.UserInput</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HTTPAcceptLanguage</locale-source>
</locale-determine-rule>

The GDK framework uses the locale source declaration order and determines whether a particular locale source is available. If it is available, then it is used as the source, otherwise, it tries to find the next available locale source for the list. In the preceding example, if the UserInput locale source is available, it is used first, otherwise, the HTTPAcceptLanguage locale source will be used.

Custom locale sources, such as locale preference from an LDAP server, can be easily implemented and integrated into the GDK framework. You need to implement the LocaleSource interface and specify the corresponding implementation class under the <locale-determine-rule> tag in the same way as the predefined locale sources were specified.

The LocaleSource implementation not only retrieves the locale information from the corresponding source to the framework but also updates the locale information to the corresponding source when the framework tells it to do so. Locale sources can be read-only or read/write, and they can be cacheable or noncacheable. The GDK framework initiates updates only to read/write locale sources and caches the locale information from cacheable locale sources. Examples of custom locale sources can be found in the $ORACLE_HOME/nls/gdk/demo directory.

	
See Also:

Oracle Globalization Development Kit Java API Reference for more information about implementing a LocaleSource

Getting the User Locale From the GDK Framework

The GDK offers automatic locale detection to determine the current locale of the user. For example, the following code retrieves the current user locale in Java. It uses a Locale object explicitly.

Locale loc = request.getLocale();

The getLocale() method returns the Locale that represents the current locale. This is similar to invoking the HttpServletRequest.getLocale() method in JSP or Java Servlet code. However, the logic in determining the user locale is different, because multiple locale sources are being considered in the GDK framework.

Alternatively, you can get a Localizer object that encapsulates the Locale object determined by the GDK framework. For the benefits of using the Localizer object, see "Implementing Locale Awareness Using the GDK Localizer".

Localizer localizer = ServletHelper.getLocalizerInstance(request);
Locale loc = localizer.getLocale();

The locale detection logic of the GDK framework depends on the locale sources defined in the GDK application configuration file. The names of the locale sources are registered in the application configuration file. The following example shows the locale determination rule section of the application configuration file. It indicates that the user-preferred locale can be determined from either the LDAP server or from the HTTP Accept-Language header. The LDAPUserSchema locale source class should be provided by the application. Note that all of the locale source classes have to be extended from the LocaleSource abstract class.

<locale-determine-rule>
 <locale-source>LDAPUserSchema</locale-source>
 <locale-source>oracle.i18n.localesource.HTTPAcceptLanguage</locale-source>
</locale-determine-rule>

For example, when the user is authenticated in the application and the user locale preference is stored in an LDAP server, then the LDAPUserSchema class connects to the LDAP server to retrieve the user locale preference. When the user is anonymous, then the HttpAcceptLanguage class returns the language preference of the web browser.

The cache is maintained for the duration of a HTTP session. If the locale source is obtained from the HTTP language preference, then the locale information is passed to the application in the HTTP Accept-Language header and not cached. This enables flexibility so that the locale preference can change between requests. The cache is available in the HTTP session.

The GDK framework exposes a method for the application to overwrite the locale preference information persistently stored in locale sources such as the LDAP server or the user profile table in the database. This method also resets the current locale information stored inside the cache for the current HTTP session. The following is an example of overwriting the preferred locale using the store command.

<input type="hidden"
name="<%=appctx.getParameterName(LocaleSource.Parameter.COMMAND)%>"
value="store">

To discard the current locale information stored inside the cache, the clean command can be specified as the input parameter. The following table shows the list of commands supported by the GDK:

	Command	Functionality
	store	Updates user locale preferences in the available locale sources with the specified locale information. This command is ignored by the read-only locale sources.
	clean	Discards the current locale information in the cache.

Note that the GDK parameter names can be customized in the application configuration file to avoid name conflicts with other parameters used in the application.

Implementing Locale Awareness Using the GDK Localizer

The Localizer object obtained from the GDK application framework is an all-in-one globalization object that provides access to functions that are commonly used in building locale awareness in your applications. In addition, it provides functions to get information about the application context, such as the list of supported locales. The Localizer object simplifies and centralizes the code required to build consistent locale awareness behavior in your applications.

The oracle.i18n.servlet package contains the Localizer class. You can get the Localizer instance as follows:

Localizer lc = ServletHelper.getLocalizerInstance(request);

The Localizer object encapsulates the most commonly used locale-sensitive information determined by the GDK framework and exposes it as locale-sensitive methods. This object includes the following functionalities pertaining to the user locale:

	
Format date in long and short formats

	
Format numbers and currencies

	
Get collation key value of a string

	
Get locale data such as language, country and currency names

	
Get locale data to be used for constructing user interface

	
Get a translated message from resource bundles

	
Get text formatting information such as writing direction

	
Encode and decode URLs

	
Get the common list of time zones and linguistic sorts

For example, when you want to display a date in your application, you may want to call the Localizer.formatDate() or Localizer.formateDateTime() methods. When you want to determine the writing direction of the current locale, you can call the Localizer.getWritingDirection() and Localizer.getAlignment() to determine the value used in the <DIR> tag and <ALIGN> tag respectively.

The Localizer object also exposes methods to enumerate the list of supported locales and their corresponding languages and countries in your applications.

The Localizer object actually makes use of the classes in the GDK Java API to accomplish its tasks. These classes include, but are not limited to, the following: OraDateFormat, OraNumberFormat, OraCollator, OraLocaleInfo, oracle.i18n.util.LocaleMapper, oracle.i18n.net.URLEncoder, and oracle.i18n.net.URLDecoder.

The Localizer object simplifies the code you need to write for locale awareness. It maintains caches of the corresponding objects created from the GDK Java API so that the calling application does not need to maintain these objects for subsequent calls to the same objects. If you require more than the functionality the Localizer object can provide, then you can always call the corresponding methods in the GDK Java API directly.

	
See Also:

Oracle Globalization Development Kit Java API Reference for detailed information about the Localizer object

Defining the Supported Application Locales in the GDK

The number of locales and the names of the locales that an application needs to support are based on the business requirements of the application. The names of the locales that are supported by the application are registered in the application configuration file. The following example shows the application locales section of the application configuration file. It indicates that the application supports German (de), Japanese (ja), and English for the US (en-US), with English defined as the default fallback application locale. Note that the locale names are based on the IANA convention.

<application-locales>
 <locale>de</locale>
 <locale>ja</locale>
 <locale default="yes">en-US</locale>
</application-locales>

When the GDK framework detects the user locale, it verifies whether the locale that is returned is one of the supported locales in the application configuration file. The verification algorithm is as follows:

	
Retrieve the list of supported application locales from the application configuration file.

	
Check whether the locale that was detected is included in the list. If it is included in the list, then use this locale as the current client's locale.

	
If there is a variant in the locale that was detected, then remove the variant and check whether the resulting locale is in the list. For example, the Java locale de_DE_EURO has a EURO variant. Remove the variant so that the resulting locale is de_DE.

	
If the locale includes a country code, then remove the country code and check whether the resulting locale is in the list. For example, the Java locale de_DE has a country code of DE. Remove the country code so that the resulting locale is de.

	
If the detected locale does not match any of the locales in the list, then use the default locale that is defined in the application configuration file as the client locale.

By performing steps 3 and 4, the application can support users with the same language requirements but with different locale settings than those defined in the application configuration file. For example, the GDK can support de-AT (the Austrian variant of German), de-CH (the Swiss variant of German), and de-LU (the Luxembourgian variant of German) locales.

The locale fallback detection in the GDK framework is similar to that of the Java Resource Bundle, except that it is not affected by the default locale of the Java VM. This exception occurs because the Application Default Locale can be used during the GDK locale fallback operations.

If the application-locales section is omitted from the application configuration file, then the GDK assumes that the common locales, which can be returned from the OraLocaleInfo.getCommonLocales method, are supported by the application.

Handling Non-ASCII Input and Output in the GDK Framework

The character set (or character encoding) of an HTML page is a very important piece of information to a browser and an Internet application. The browser needs to interpret this information so that it can use correct fonts and character set mapping tables for displaying pages. The Internet applications need to know so they can safely process input data from a HTML form based on the specified encoding.

The page encoding can be translated as the character set used for the locale to which an Internet application is serving. In order to correctly specify the page encoding for HTML pages without using the GDK framework, Internet applications must:

	
Determine the desired page input data character set encoding for a given locale.

	
Specify the corresponding encoding name for each HTTP request and HTTP response.

Applications using the GDK framework can ignore these steps. No application code change is required. The character set information is specified in the GDK application configuration file. At runtime, the GDK automatically sets the character sets for the request and response objects. The GDK framework does not support the scenario where the incoming character set is different from that of the outgoing character set.

The GDK application framework supports the following scenarios for setting the character sets of the HTML pages:

	
A single local character set is dedicated to the whole application. This is appropriate for a monolingual Internet application. Depending on the properties of the character set, it may be able to support more than one language. For example, most Western European languages can be served by ISO-8859-1.

	
Unicode UTF-8 is used for all contents regardless of the language. This is appropriate for a multilingual application that uses Unicode for deployment.

	
The native character set for each language is used. For example, English contents are represented in ISO-8859-1, and Japanese contents are represented in Shift_JIS. This is appropriate for a multilingual Internet application that uses a default character set mapping for each locale. This is useful for applications that need to support different character sets based on the user locales. For example, for mobile applications that lack Unicode fonts or Internet browsers that cannot fully support Unicode, the character sets must to be determined for each request.

The character set information is specified in the GDK application configuration file. The following is an example of setting UTF-8 as the character set for all the application pages.

<page-charset>UTF-8</page-charset>

The page character set information is used by the ServletRequestWrapper class, which sets the proper character set for the request object. It is also used by the ContentType HTTP header specified in the ServletResponseWrapper class for output when instantiated. If page-charset is set to AUTO-CHARSET, then the character set is assumed to be the default character set for the current user locale. Set page-charset to AUTO-CHARSET as follows:

<page-charset>AUTO-CHARSET</page-charset>

The default mappings are derived from the LocaleMapper class, which provides the default IANA character set for the locale name in the GDK Java API.

Table 8-2 lists the mappings between the common ISO locales and their IANA character sets.

Table 8-2 Mapping Between Common ISO Locales and IANA Character Sets

	ISO Locale	NLS_LANGUAGE Value	NLS_TERRITORY Value	IANA Character Set
	
ar-SA

	
ARABIC

	
SAUDI ARABIA

	
WINDOWS-1256

	
de-DE

	
GERMAN

	
GERMANY

	
WINDOWS-1252

	
en-US

	
AMERICAN

	
AMERICA

	
WINDOWS-1252

	
en-GB

	
ENGLISH

	
UNITED KINGDOM

	
WINDOWS-1252

	
el

	
GREEK

	
GREECE

	
WINDOWS-1253

	
es-ES

	
SPANISH

	
SPAIN

	
WINDOWS-1252

	
fr

	
FRENCH

	
FRANCE

	
WINDOWS-1252

	
fr-CA

	
CANADIAN FRENCH

	
CANADA

	
WINDOWS-1252

	
iw

	
HEBREW

	
ISRAEL

	
WINDOWS-1255

	
ko

	
KOREAN

	
KOREA

	
EUC-KR

	
ja

	
JAPANESE

	
JAPAN

	
SHIFT_JIS

	
it

	
ITALIAN

	
ITALY

	
WINDOWS-1252

	
pt

	
PORTUGUESE

	
PORTUGAL

	
WINDOWS-1252

	
pt-BR

	
BRAZILIAN PORTUGUESE

	
BRAZIL

	
WINDOWS-1252

	
tr

	
TURKISH

	
TURKEY

	
WINDOWS-1254

	
nl

	
DUTCH

	
THE NETHERLANDS

	
WINDOWS-1252

	
zh

	
SIMPLIFIED CHINESE

	
CHINA

	
GBK

	
zh-TW

	
TRADITIONAL CHINESE

	
TAIWAN

	
BIG5

The locale to character set mapping in the GDK can also be customized. To override the default mapping defined in the GDK Java API, a locale-to-character-set mapping table can be specified in the application configuration file.

<locale-charset-maps>
 <locale-charset>
 <locale>ja</locale><charset>EUC-JP</charset>
 </locale-charset>
</locale-charset-maps>

The previous example shows that for locale Japanese (ja), the GDK changes the default character set from SHIFT_JIS to EUC-JP.

	
See Also:

"Oracle Locale Information in the GDK"

Managing Localized Content in the GDK

This section includes the following topics:

	
Managing Localized Content in JSPs and Java Servlets

	
Managing Localized Content in Static Files

Managing Localized Content in JSPs and Java Servlets

Resource bundles enable access to localized contents at runtime in J2SE. Translatable strings within Java servlets and Java Server Pages (JSPs) are externalized into Java resource bundles so that these resource bundles can be translated independently into different languages. The translated resource bundles carry the same base class names as the English bundles, using the Java locale name as the suffix.

To retrieve translated data from the resource bundle, the getBundle() method must be invoked for every request.

<% Locale user_locale=request.getLocale();
 ResourceBundle rb=ResourceBundle.getBundle("resource",user_locale); %>
<%= rb.getString("Welcome") %>

The GDK framework simplifies the retrieval of text strings from the resource bundles. Localizer.getMessage() is a wrapper to the resource bundle.

<% Localizer.getMessage ("Welcome") %>

Instead of specifying the base class name as getBundle() in the application, you can specify the resource bundle in the application configuration file, so that the GDK automatically instantiates a ResourceBundle object when a translated text string is requested.

<message-bundles>
 <resource-bundle name="default">resource</resource-bundle>
</message-bundles>

This configuration file snippet declares a default resource bundle whose translated contents reside in the "resource" Java bundle class. Multiple resource bundles can be specified in the configuration file. To access a nondefault bundle, specify the name parameter in the getMessage method. The message bundle mechanism uses the OraResourceBundle GDK class for its implementation. This class provides the special locale fallback behaviors on top of the Java behaviors. The rules are as follows:

	
If the given locale exactly matches the locale in the available resource bundles, it will be used.

	
If the resource bundle for Chinese in Singapore (zh_SG) is not found, it will fall back to the resource bundle for Chinese in China (zh_CN) for Simplified Chinese translations.

	
If the resource bundle for Chinese in Hong Kong (zh_HK) is not found, it will fall back to the resource bundle for Chinese in Taiwan (zh_TW) for Traditional Chinese translations.

	
If the resource bundle for Chinese in Macau (zh_MO) is not found, it will fall back to the resource bundle for Chinese in Taiwan (zh_TW) for Traditional Chinese translations.

	
If the resource bundle for any other Chinese (zh_ and zh) is not found, it will fall back to the resource bundle for Chinese in China (zh_CN) for Simplified Chinese translations.

	
The default locale, which can be obtained by the Locale.getDefault() method, will not be considered in the fallback operations.

For example, assume the default locale is ja_JP and the resource handle for it is available. When the resource bundle for es_MX is requested, and neither resource bundle for es or es_MX is provided, the base resource bundle object that does not have a local suffix is returned.

The usage of the OraResourceBundle class is similar to the java.util.ResourceBundle class, but the OraResearchBundle class does not instantiate itself. Instead, the return value of the getBundle method is an instance of the subclass of the java.util.ResourceBundle class.

Managing Localized Content in Static Files

For a application, which supports only one locale, the URL that has a suffix of /index.html typically takes the user to the starting page of the application.

In a globalized application, contents in different languages are usually stored separately, and it is common for them to be staged in different directories or with different file names based on the language or the country name. This information is then used to construct the URLs for localized content retrieval in the application.

The following examples illustrate how to retrieve the French and Japanese versions of the index page. Their suffixes are as follows:

/fr/index.html
/ja/index.html

By using the rewriteURL() method of the ServletHelper class, the GDK framework handles the logic to locate the translated files from the corresponding language directories. The ServletHelper.rewriteURL() method rewrites a URL based on the rules specified in the application configuration file. This method is used to determine the correct location where the localized content is staged.

The following is an example of the JSP code:

<img src="<%="ServletHelper.rewriteURL("image/welcome.jpg", request)%>">
<a href="<%="ServletHelper.rewriteURL("html/welcome.html", request)%>">

The URL rewrite definitions are defined in the GDK application configuration file:

 <url-rewrite-rule fallback="yes">
 <pattern>(.*)/(a-zA-Z0-9_\]+.)$</pattern>
 <result>$1/$A/$2</result>
 </url-rewrite-rule>

The pattern section defined in the rewrite rule follows the regular expression conventions. The result section supports the following special variables for replacing:

	
$L is used to represent the ISO 639 language code part of the current user locale

	
$C represents the ISO 3166 country code

	
$A represents the entire locale string, where the ISO 639 language code and ISO 3166 country code are connected with an underscore character (_)

	
$1 to $9 represent the matched substrings

For example, if the current user locale is ja, then the URL for the welcome.jpg image file is rewritten as image/ja/welcome.jpg, and welcome.html is changed to html/ja/welcome.html.

Both ServletHelper.rewriteURL()and Localizer.getMessage() methods perform consistent locale fallback operations in the case where the translation files for the user locale are not available. For example, if the online help files are not available for the es_MX locale (Spanish for Mexico), but the es (Spanish for Spain) files are available, then the methods will select the Spanish translated files as the substitute.

GDK Java API

Java's globalization functionalities and behaviors are not the same as those offered in the database. For example, J2SE supports a set of locales and character sets that are different from Oracle's locales and character sets. This inconsistency can be confusing for users when their application contains data that is formatted based on 2 different conventions. For example, dates that are retrieved from the database are formatted using Oracle conventions, (such as number and date formatting and linguistic sort ordering), but the static application data is typically formatted using Java locale conventions. Java's globalization functionalities can also be different depending on the version of the JDK that the application runs on.

Before Oracle Database 10g, when an application was required to incorporate Oracle globalization features, it had to make connections to the database server and issue SQL statements. Such operations make the application complicated and generate more network connections to the database server.

The GDK Java API extends Oracle's database globalization features to the middle tier. By enabling applications to perform globalization logic such as Oracle date and number formatting and linguistic sorting in the middle tier, the GDK Java API allows developers to eliminate expensive programming logic in the database, hence improving the overall application performance by reducing the database load in the database server and the unnecessary network traffic between the application tier and the database server.

The GDK Java API also offers advance globalization functionalities, such as language and character set detection, and the enumeration of common locale data for a territory or a language (for example, all time zones supported in Canada). These are globalization features that are not available in most programming platforms. Without the GDK Java API, developers must write business logic to handle them inside an application.

The following are the key functionalities of the GDK Java API:

	
Oracle Locale Information in the GDK

	
Oracle Locale Mapping in the GDK

	
Oracle Character Set Conversion (JDK 1.4 and Later) in the GDK

	
Oracle Date, Number, and Monetary Formats in the GDK

	
Oracle Binary and Linguistic Sorts in the GDK

	
Oracle Language and Character Set Detection in the GDK

	
Oracle Translated Locale and Time Zone Names in the GDK

	
Using the GDK for E-Mail Programs

Oracle Locale Information in the GDK

Oracle locale definitions, which include languages, territories, linguistic sorts, and character sets, are exposed in the GDK Java API. The naming convention that Oracle uses may also be different from other vendors. Although many of these names and definitions follow industry standards, some are Oracle-specific, tailored to meet special customer requirements.

OraLocaleInfo is an Oracle locale class that includes language, territory, and collator objects. It provides a method for applications to retrieve a collection of locale-related objects for a given locale, for example, a full list of the Oracle linguistic sorts available in the GDK, the local time zones defined for a given territory, or the common languages used in a particular territory.

The following are examples of using the OraLocaleInfo class:

// All Territories supported by GDK
String[] avterr = OraLocaleInfo.getAvailableTerritories();

// Local TimeZones for a given Territory

OraLocaleInfo oloc = OraLocaleInfo.getInstance("English", "Canada");
TimeZone[] loctz = oloc.getLocalTimeZones();

Oracle Locale Mapping in the GDK

The GDK Java API provides the LocaleMapper class. It maps equivalent locales and character sets between Java, IANA, ISO, and Oracle. A Java application may receive locale information from the client that is specified in Oracle's locale name or an IANA character set name. The Java application must be able to map to an equivalent Java locale or Java encoding before it can process the information correctly.

The following is an example of using the LocaleMapper class.

// Mapping from Java locale to Oracle language and Oracle territory

Locale locale = new Locale("it", "IT");
String oraLang = LocaleMapper.getOraLanguage(locale);
String oraTerr = LocaleMapper.getOraTerritory(locale);

// From Oracle language and Oracle territory to Java Locale

locale = LocaleMapper.getJavaLocale("AMERICAN","AMERICA");
locale = LocaleMapper.getJavaLocale("TRADITONAL CHINESE", "");

// From IANA & Java to Oracle Character set

String ocs1 = LocaleMapper.getOraCharacterSet(
 LocaleMapper.IANA, "ISO-8859-1");
String ocs2 = LocaleMapper.getOraCharacterSet(
 LocaleMapper.JAVA, "ISO8859_1");

The LocaleMapper class can also return the most commonly used e-mail character set for a specific locale on both Windows and UNIX platforms. This is useful when developing Java applications that need to process e-mail messages.

	
See Also:

"Using the GDK for E-Mail Programs"

Oracle Character Set Conversion (JDK 1.4 and Later) in the GDK

The GDK Java API contains a set of character set conversion classes APIs that enable users to perform Oracle character set conversions. Although Java JDK is already equipped with classes that can perform conversions for many of the standard character sets, they do not support Oracle-specific character sets and Oracle's user-defined character sets.

In JDK 1.4, J2SE introduced an interface for developers to extend Java's character sets. The GDK Java API provides implicit support for Oracle's character sets by using this plug-in feature. You can access the J2SE API to obtain Oracle-specific behaviors.

Figure 8-7 shows that the GDK character set conversion tables are plugged into J2SE in the same way as the Java character set tables. With this pluggable framework of J2SE, the Oracle character set conversions can be used in the same way as other Java character set conversions.

Figure 8-7 Oracle Character Set Plug-In

[image: Description of Figure 8-7 follows]

Description of "Figure 8-7 Oracle Character Set Plug-In"

Because the java.nio.charset Java package is not available in JDK versions before 1.4, you must install JDK 1.4 or later to use Oracle's character set plug-in feature.

The GDK character conversion classes support all Oracle character sets including user-defined characters sets. It can be used by Java applications to properly convert to and from Java's internal character set, UTF-16.

Oracle's character set names are proprietary. To avoid potential conflicts with Java's own character sets, all Oracle character set names have an X-ORACLE- prefix for all implicit usage through Java's API.

The following is an example of Oracle character set conversion:

// Converts the Chinese character "three" from UCS2 to JA16SJIS

String str = "\u4e09";
byte[] barr = str.getBytes("x-oracle-JA16SJIS");

Just as with other Java character sets, the character set facility in java.nio.charset.Charset is applicable to all of the Oracle character sets. For example, if you wish to check whether the specified character set is a superset of another character set, then you can use the Charset.contains method as follows:

Charset cs1 = Charset.forName("x-oracle-US7ASCII");
Charset cs2 = Charset.forName("x-oracle-WE8WINDOWS1252");
// true if WE8WINDOWS1252 is the superset of US7ASCII, otherwise false.
boolean osc = cs2.contains(cs1);

For a Java application that is using the JDBC driver to communicate with the database, the JDBC driver provides the necessary character set conversion between the application and the database. Calling the GDK character set conversion methods explicitly within the application is not required. A Java application that interprets and generates text files based on Oracle's character set encoding format is an example of using Oracle character set conversion classes.

Oracle Date, Number, and Monetary Formats in the GDK

The GDK Java API provides formatting classes that support date, number, and monetary formats using Oracle conventions for Java applications in the oracle.i18n.text package.

New locale formats introduced in Oracle Database 10g, such as the short and long date, number, and monetary formats, are also exposed in these format classes.

The following are examples of Oracle date, Oracle number, and Oracle monetary formatting:

// Obtain the current date and time in the default Oracle LONG format for
// the locale de_DE (German_Germany)

Locale locale = new Locale("de", "DE");
OraDateFormat odf =
 OraDateFormat.getDateTimeInstance(OraDateFormat.LONG, locale);

// Obtain the numeric value 1234567.89 using the default number format
// for the Locale en_IN (English_India)

locale = new Locale("en", "IN");
OraNumberFormat onf = OraNumberFormat.getNumberInstance(locale);
String nm = onf.format(new Double(1234567.89));

// Obtain the monetary value 1234567.89 using the default currency
// format for the Locale en_US (American_America)

locale = new Locale("en", "US");

onf = OraNumberFormat.getCurrencyInstance(locale);
nm = onf.format(new Double(1234567.89));

Oracle Binary and Linguistic Sorts in the GDK

Oracle provides support for binary, monolingual, and multilingual linguistic sorts in the database. In Oracle Database 10g, these sorts have been expanded to provide case-insensitive and accent-insensitive sorting and searching capabilities inside the database. By using the OraCollator class, the GDK Java API enables Java applications to sort and search for information based on the latest Oracle binary and linguistic sorting features, including case-insensitive and accent-insensitive options.

Normalization can be an important part of sorting. The composition and decomposition of characters are based on the Unicode Standard, so sorting also depends on the Unicode standard. Because each version of the JDK may support a different version of the Unicode Standard, the GDK provides an OraNormalizer class based on the Unicode 4.0 standard. It contains methods to perform composition.

The sorting order of a binary sort is based on the Oracle character set that is being used. Except for the UTFE character set, the binary sorts of all Oracle character sets are supported in the GDK Java API. The only linguistic sort that is not supported in the GDK Java API is JAPANESE, but a similar and more accurate sorting result can be achieved by using JAPANESE_M.

The following are examples of string comparisons and string sorting:

// compares strings using XGERMAN

private static String s1 = "abcSS";
private static String s2 = "abc\u00DF";

String cname = "XGERMAN";
OraCollator ocol = OraCollator.getInstance(cname);
int c = ocol.compare(s1, s2);

// sorts strings using GENERIC_M

private static String[] source =
 new String[]
 {
 "Hochgeschwindigkeitsdrucker",
 "Bildschirmfu\u00DF",
 "Skjermhengsel",
 "DIMM de Mem\u00F3ria",
 "M\u00F3dulo SDRAM com ECC",
 };

 cname = "GENERIC_M";
 ocol = OraCollator.getInstance(cname);
 List result = getCollationKeys(source, ocol);

private static List getCollationKeys(String[] source, OraCollator ocol)
{
 List karr = new ArrayList(source.length);
 for (int i = 0; i < source.length; ++i)
 {
 karr.add(ocol.getCollationKey(source[i]));
 }
 Collections.sort(karr); // sorting operation
 return karr;
}

Oracle Language and Character Set Detection in the GDK

The Oracle Language and Character Set Detection Java classes in the GDK Java API provide a high performance, statistically based engine for determining the character set and language for unspecified text. It can automatically identify language and character set pairs, from throughout the world. With each text, the language and character set detection engine sets up a series of probabilities, each probability corresponding to a language and character set pair. The most probable pair statistically identifies the dominant language and character set.

The purity of the text submitted affects the accuracy of the language and character set detection. Only plain text strings are accepted, so any tagging needs to be stripped before hand. The ideal case is literary text with almost no foreign words or grammatical errors. Text strings that contain a mix of languages or character sets, or nonnatural language text like addresses, phone numbers, and programming language code may yield poor results.

The LCSDetector class can detect the language and character set of a byte array, a character array, a string, and an InputStream class. It supports both plain text and HTML file detection. It can take the entire input for sampling or only portions of the input for sampling, when the length or both the offset and the length are supplied. For each input, up to three potential language and character set pairs can be returned by the LCSDetector class. They are always ranked in sequence, with the pair with the highest probability returned first.

	
See Also:

"Language and Character Set Detection Support" for a list of supported language and character set pairs

The following are examples of using the LCSDetector class to enable language and character set detection:

// This example detects the character set of a plain text file "foo.txt" and
// then appends the detected ISO character set name to the name of the text file

LCSDetector lcsd = new LCSDetector();
File oldfile = new File("foo.txt");
FileInputStream in = new FileInputStream(oldfile);
lcsd.detect(in);
String charset = lcsd.getResult().getIANACharacterSet();
File newfile = new File("foo."+charset+".txt");
oldfile.renameTo(newfile);

// This example shows how to use the LCSDector class to detect the language and
// character set of a byte array

int offset = 0;
LCSDetector led = new LCSDetector();
/* loop through the entire byte array */
while (true)
{
 bytes_read = led.detect(byte_input, offset, 1024);
 if (bytes_read == -1)
 break;
 offset += bytes_read;
}
LCSDResultSet res = led.getResult();

/* print the detection results with close ratios */
System.out.println("the best guess ");
System.out.println("Langauge " + res.getOraLanguage());
System.out.println("CharacterSet " + res.getOraCharacterSet());
int high_hit = res.getHiHitPairs();
if (high_hit >= 2)
{
 System.out.println("the second best guess ");
 System.out.println("Langauge " + res.getOraLanguage(2));
 System.out.println("CharacterSet " +res.getOraCharacterSet(2));
}
if (high_hit >= 3)
{
 System.out.println("the third best guess ");
 System.out.println("Langauge " + res.getOraLanguage(3));
 System.out.println("CharacterSet " +res.getOraCharacterSet(3));
}

Oracle Translated Locale and Time Zone Names in the GDK

All of the Oracle language names, territory names, character set names, linguistic sort names, and time zone names have been translated into 27 languages including English. They are readily available for inclusion into the user applications, and they provide consistency for the display names across user applications in different languages. OraDisplayLocaleInfo is a utility class that provides the translations of locale and attributes. The translated names are useful for presentation in user interface text and for drop-down selection boxes. For example, a native French speaker prefers to select from a list of time zones displayed in French than in English.

The following is an example of using OraDisplayLocaleInfo to return a list of time zones supported in Canada, using the French translation names:

OraLocaleInfo oloc = OraLocaleInfo.getInstance("CANADIAN FRENCH", "CANADA");
OraDisplayLocaleInfo odloc = OraDisplayLocaleInfo.getInstance(oloc);
TimeZone[] loctzs = oloc.getLocaleTimeZones();
String [] disptz = new string [loctzs.length];
for (int i=0; i<loctzs.length; ++i)
{
 disptz [i]= odloc.getDisplayTimeZone(loctzs[i]);
 ...
}

Using the GDK for E-Mail Programs

You can use the GDK LocaleMapper class to retrieve the most commonly used e-mail character set. Call LocaleMapper.getIANACharSetFromLocale, passing in the locale object. The return value is an array of character set names. The first character set returned is the most commonly used e-mail character set.

The following is an example of sending an e-mail message containing Simplified Chinese data in the GBK character set encoding:

import oracle.i18n.util.LocaleMapper;
import java.util.Date;
import java.util.Locale;
import java.util.Properties;
import javax.mail.Message;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeUtility;
/**
 * Email send operation sample
 *
 * javac -classpath orai18n.jar:j2ee.jar EmailSampleText.java
 * java -classpath .:orai18n.jar:j2ee.jar EmailSampleText
 */
public class EmailSampleText
{
 public static void main(String[] args)
 {
 send("localhost", // smtp host name
 "your.address@your-company.com", // from email address
 "You", // from display email
 "somebody@some-company.com", // to email address
 "Subject test zh CN", // subject
 "Content ˘4E02 from Text email", // body
 new Locale("zh", "CN") // user locale
);
 }
 public static void send(String smtp, String fromEmail, String fromDispName,
 String toEmail, String subject, String content, Locale locale
)
 {
 // get the list of common email character sets
 final String[] charset = LocaleMapper.getIANACharSetFromLocale(LocaleMapper.
EMAIL_WINDOWS,
locale
);
 // pick the first one for the email encoding
 final String contentType = "text/plain; charset=" + charset[0];
 try
 {
 Properties props = System.getProperties();
 props.put("mail.smtp.host", smtp);
 // here, set username / password if necessary
 Session session = Session.getDefaultInstance(props, null);
 MimeMessage mimeMessage = new MimeMessage(session);
 mimeMessage.setFrom(new InternetAddress(fromEmail, fromDispName,
 charset[0]
)
);
 mimeMessage.setRecipients(Message.RecipientType.TO, toEmail);
 mimeMessage.setSubject(MimeUtility.encodeText(subject, charset[0], "Q"));
 // body
 mimeMessage.setContent(content, contentType);
 mimeMessage.setHeader("Content-Type", contentType);
 mimeMessage.setHeader("Content-Transfer-Encoding", "8bit");
 mimeMessage.setSentDate(new Date());
 Transport.send(mimeMessage);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

The GDK Application Configuration File

The GDK application configuration file dictates the behavior and the properties of the GDK application framework and the application that is using it. It contains locale mapping tables and parameters for the configuration of the application. One configuration file is required for each application.

The gdkapp.xml application configuration file is an XML document. This file resides in the ./WEB-INF directory of the J2EE environment of the application.

The following sections describe the contents and the properties of the application configuration file in detail:

	
locale-charset-maps

	
page-charset

	
application-locales

	
locale-determine-rule

	
locale-parameter-name

	
message-bundles

	
url-rewrite-rule

	
Example: GDK Application Configuration File

locale-charset-maps

This section enables applications to override the mapping from the language to the default character set provided by the GDK. This mapping is used when the page-charset is set to AUTO-CHARSET.

For example, for the en locale, the default GDK character set is windows-1252. However, if the application requires ISO-8859-1, this can be specified as follows:

 <locale-charset-maps>
 <locale-charset>
 <locale>en</locale>
 <charset>ISO_8859-1</charset>
 </locale-charset>
 </locale-charset-maps>

The locale name is comprised of the language code and the country code, and they should follow the ISO naming convention as defined in ISO 639 and ISO 3166, respectively. The character set name follows the IANA convention.

Optionally, the user-agent parameter can be specified in the mapping table to distinguish different clients.

<locale-charset>
 <locale>en,de</locale>
 <user-agent>^Mozilla⁄4.0</user-agent>
 <charset>ISO-8859-1</charset>
</locale-charset>

The previous example shows that if the user-agent value in the HTTP header starts with Mozilla/4.0 (which indicates older version of web clients) for English (en) and German (de) locales, then the GDK sets the character set to ISO-8859-1.

Multiple locales can be specified in a comma-delimited list.

	
See Also:

"page-charset"

page-charset

This tag section defines the character set of the application pages. If this is explicitly set to a given character set, then all pages use this character set. The character set name must follow the IANA character set convention.

<page-charset>UTF-8</page-charset>

However, if the page-charset is set to AUTO-CHARSET, then the character set is based on the default character set of the current user locale. The default character set is derived from the locale to character set mapping table specified in the application configuration file.

If the character set mapping table in the application configuration file is not available, then the character set is based on the default locale name to IANA character set mapping table in the GDK. Default mappings are derived from OraLocaleInfo class.

	
See Also:

	
"locale-charset-maps"

	
"Handling Non-ASCII Input and Output in the GDK Framework"

application-locales

This tag section defines a list of the locales supported by the application.

<application-locales>
 <locale default="yes">en-US</locale>
 <locale>de</locale>
 <locale>zh-CN</locale>
</application-locales>

If the language component is specified with the * country code, then all locale names with this language code qualify. For example, if de-* (the language code for German) is defined as one of the application locales, then this supports de-AT (German- Austria), de (German-Germany), de-LU (German-Luxembourg), de-CH (German-Switzerland), and even irregular locale combination such as de-CN (German-China). However, the application can be restricted to support a predefined set of locales.

It is recommended to set one of the application locales as the default application locale (by specifying default="yes") so that it can be used as a fall back locale for customers who are connecting to the application with an unsupported locale.

locale-determine-rule

This section defines the order in which the preferred user locale is determined. The locale sources should be specified based on the scenario in the application. This section includes the following scenarios:

	
Scenario 1: The GDK framework uses the accept language at all times.

 <locale-source>oracle.i18n.servlet.localesource.HTTPAcceptLanguage</locale-source>

	
Scenario 2: By default, the GDK framework uses the accept language. After the user specifies the locale, the locale is used for further operations.

 <locale-source>oracle.i18n.servlet.localesource.UserInput</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HTTPAcceptLanguage</locale-source>

	
Scenario 3: By default, the GDK framework uses the accept language. After the user is authenticated, the GDK framework uses the database locale source. The database locale source is cached until the user logs out. After the user logs out, the accept language is used again.

 <db-locale-source
 data-source-name="jdbc/OracleCoreDS"
 locale-source-table="customer"
 user-column="customer_email"
 user-key="userid"
 language-column="nls_language"
 territory-column="nls_territory"
 timezone-column="timezone"
 >oracle.i18n.servlet.localesource.DBLocaleSource</db-locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HttpAcceptLanguage</locale-source>

Note that Scenario 3 includes the predefined database locale source, DBLocaleSource. It enables the user profile information to be specified in the configuration file without writing a custom database locale source. In the example, the user profile table is called "customer". The columns are "customer_email", "nls_language", "nls_territory", and "timezone". They store the unique e-mail address, the Oracle name of the preferred language, the Oracle name of the preferred territory, and the time zone ID of a customer. The user-key is a mandatory attribute that specifies the attribute name used to pass the user ID from the application to the GDK framework.

	
Scenario 4: The GDK framework uses the accept language in the first page. When the user inputs a locale, it is cached and used until the user logs into the application. After the user is authenticated, the GDK framework uses the database locale source. The database locale source is cached until the user logs out. After the user logs out, the accept language is used again or the user input is used if the user inputs a locale.

 <locale-source>demo.DatabaseLocaleSource</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.UserInput</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HttpAcceptLanguage</locale-source>

Note that Scenario 4 uses the custom database locale source. If the user profile schema is complex, such as user profile information separated into multiple tables, then the custom locale source should be provided by the application. Examples of custom locale sources can be found in the $ORACLE_HOME/nls/gdk/demo directory.

locale-parameter-name

The tag defines the name of the locale parameters that are used in the user input so that the current user locale can be passed between requests.

Table 8-3 shows the parameters used in the GDK framework.

Table 8-3 Locale Parameters Used in the GDK Framework

	Default Parameter Name	Value
	
locale

	
ISO locale where ISO 639 language code and ISO 3166 country code are connected with an underscore (_).or a hyphen (-). For example, zh_CN for Simplified Chinese used in China

	
language

	
Oracle language name. For example, AMERICAN for American English

	
territory

	
Oracle territory name. For example, SPAIN

	
timezone

	
Timezone name. For example, American/Los_Angeles

	
iso-currency

	
ISO 4217 currency code. For example, EUR for the euro

	
date-format

	
Date format pattern mask. For example, DD_MON_RRRR

	
long-date-format

	
Long date format pattern mask. For example, DAY-YYY-MM-DD

	
date-time-format

	
Date and time format pattern mask. For example, DD-MON-RRRR HH24:MI:SS

	
long-date-time-format

	
Long date and time format pattern mask. For example, DAY YYYY-MM-DD HH12:MI:SS AM

	
time-format

	
Time format pattern mask. For example, HH:MI:SS

	
number-format

	
Number format. For example, 9G99G990D00

	
currency-format

	
Currency format. For example, L9G99G990D00

	
linguistic-sorting

	
Linguistic sort order name. For example, JAPANESE_M for Japanese multilingual sort

	
charset

	
Character set. For example, WE8ISO8859P15

	
writing-direction

	
Writing direction string. For example, LTR for left-to-right writing direction or RTL for right-to-left writing direction

	
command

	
GDK command. For example, store for the update operation

The parameter names are used in either the parameter in the HTML form or in the URL.

message-bundles

This tag defines the base class names of the resource bundles used in the application. The mapping is used in the Localizer.getMessage method for locating translated text in the resource bundles.

<message-bundles>
 <resource-bundle>Messages</resource-bundle>
 <resource-bundle name="newresource">NewMessages</resource-bundle>
</message-bundles>

If the name attribute is not specified or if it is specified as name="default" to the <resource-bundle> tag, then the corresponding resource bundle is used as the default message bundle. To support more than one resource bundle in an application, resource bundle names must be assigned to the nondefault resource bundles. The nondefault bundle names must be passed as a parameter of the getMessage method.

For example:

 Localizer loc = ServletHelper.getLocalizerInstance(request);
 String translatedMessage = loc.getMessage("Hello");
 String translatedMessage2 = loc.getMessage("World", "newresource");

url-rewrite-rule

This tag is used to control the behavior of the URL rewrite operations. The rewriting rule is a regular expression.

<url-rewrite-rule fallback="no">
 <pattern>(.*)/([^/]+)$</pattern>
 <result>$1/$L/$2</result>
</url-rewrite-rule>

	
See Also:

"Managing Localized Content in the GDK"

If the localized content for the requested locale is not available, then it is possible for the GDK framework to trigger the locale fallback mechanism by mapping it to the closest translation locale. By default the fallback option is turned off. This can be turned on by specifying fallback="yes".

For example, suppose an application supports only the following translations: en, de, and ja, and en is the default locale of the application. If the current application locale is de-US, then it falls back to de. If the user selects zh-TW as its application locale, then it falls back to en.

A fallback mechanism is often necessary if the number of supported application locales is greater than the number of the translation locales. This usually happens if multiple locales share one translation. One example is Spanish. The application may need to support multiple Spanish-speaking countries and not just Spain, with one set of translation files.

Multiple URL rewrite rules can be specified by assigning the name attribute to nondefault URL rewrite rules. To use the nondefault URL rewrite rules, the name must be passed as a parameter of the rewrite URL method. For example:

<img src="<%=ServletHelper.rewriteURL("images/welcome.gif", request) %>">
<img src="<%=ServletHelper.rewriteURL("US.gif", "flag", request) %>">

The first rule changes the "images/welcome.gif" URL to the localized welcome image file. The second rule named "flag" changes the "US.gif" URL to the user's country flag image file. The rule definition should be as follows:

<url-rewrite-rule fallback="yes">
 <pattern>(.*)/([^/]+)$</pattern>
 <result>$1/$L/$2</result>
</url-rewrite-rule>
<url-rewrite-rule name="flag">
 <pattern>US.gif/pattern>
 <result>$C.gif</result>
</url-rewrite-rule>

Example: GDK Application Configuration File

This section contains an example of an application configuration file with the following application properties:

	
The application supports the following locales: Arabic (ar), Greek (el), English (en), German (de), French (fr), Japanese (ja) and Simplified Chinese for China (zh-CN).

	
English is the default application locale.

	
The page character set for the ja locale is always UTF-8.

	
The page character set for the en and de locales when using an Internet Explorer client is windows-1252.

	
The page character set for the en, de, and fr locales on other web browser clients is iso-8859-1.

	
The page character sets for all other locales are the default character set for the locale.

	
The user locale is determined by the following order: user input locale and then Accept-Language.

	
The localized contents are stored in their appropriate language subfolders. The folder names are derived from the ISO 639 language code. The folders are located in the root directory of the application. For example, the Japanese file for /shop/welcome.jpg is stored in /ja/shop/welcome.jpg.

<?xml version="1.0" encoding="utf-8"?>
<gdkapp
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="gdkapp.xsd">
 <!-- Language to Character set mapping -->
 <locale-charset-maps>
 <locale-charset>
 <locale>ja</locale>
 <charset>UTF-8</charset>
 </locale-charset>
 <locale-charset>
 <locale>en,de</locale>
 <user-agent>^Mozilla\/[0-9\.]+\(compatible; MSIE [^;]+; \)</user-agent>
 <charset>WINDOWS-1252</charset>
 </locale-charset>
 <locale-charset>
 <locale>en,de,fr</locale>
 <charset>ISO-8859-1</charset>
 </locale-charset>
 </locale-charset-maps>

 <!-- Application Configurations -->
 <page-charset>AUTO-CHARSET</page-charset>
 <application-locales>
 <locale>ar</locale>
 <locale>de</locale>
 <locale>fr</locale>
 <locale>ja</locale>
 <locale>el</locale>
 <locale default="yes">en</locale>
 <locale>zh-CN</locale>
 </application-locales>
 <locale-determine-rule>
 <locale-source>oracle.i18n.servlet.localesource.UserInput</locale-source>
 <locale-source>oracle.i18n.servlet.localesource.HttpAcceptLanguage</locale-source>
 </locale-determine-rule>
 <!-- URL rewriting rule -->
 <url-rewrite-rule fallback="no">
 <pattern>(.*)/([^/]+)$</pattern>
 <result>/$L/$1/$2</result>
 </url-rewrite-rule>
</gdkapp>

GDK for Java Supplied Packages and Classes

Oracle Globalization Services for Java contains the following packages:

	
oracle.i18n.lcsd

	
oracle.i18n.net

	
oracle.i18n.servlet

	
oracle.i18n.text

	
oracle.i18n.util

	
See Also:

Oracle Globalization Development Kit Java API Reference

oracle.i18n.lcsd

Package oracle.i18n.lcsd provides classes to automatically detect and recognize language and character set based on text input. It supports the detection of both plain text and HTML files. Language is based on ISO; encoding is based on IANA or Oracle character sets. It includes the following classes:

	
LCSDetector: Contains methods to automatically detect and recognize language and character set based on text input.

	
LCSDResultSet: The LCSDResultSet class is for storing the result generated by LCSDetector. Methods in this class can be used to retrieve specific information from the result.

	
LCSDetectionInputStream: Transparently detects the language and encoding for the stream object.

	
LCSDetectionReader: Transparently detects the language and encoding and converts the input data to Unicode.

	
LCSDetectionHTMLInputStream: Extends the LCSDetectionInputStream class to support the language and encoding detection for input in HTML format.

	
LCSDetectionHTMLReader: Extends the LCSDetectionReader class to support the language and encoding detection for input in HTML format.

oracle.i18n.net

Package oracle.i18n.net provides Internet-related data conversions for globalization. It includes the following classes:

	
CharEntityReference: A utility class to escape or unescape a string into character reference or entity reference form

	
CharEntityReference.Form: A form parameter class that specifies the escaped form

oracle.i18n.servlet

Package oracle.i18n.Servlet enables JSP and JavaServlet to have automatic locale support and also returns the localized contents to the application. It includes the following classes:

	
ApplicationContext: An application context class that governs application scope operation in the framework

	
Localizer: An all-in-one object class that enables access to the most commonly used globalization information

	
ServletHelper: A delegate class that bridges between Java servlets and globalization objects

oracle.i18n.text

Package oracle.i18n.text provides general text data globalization support. It includes the following classes:

	
OraCollationKey: A class which represents a String under certain rules of a specific OraCollator object

	
OraCollator: A class to perform locale-sensitive string comparison, including linguistic collation and binary sorting

	
OraDateFormat: An abstract class to do formatting and parsing between datetime and string locale. It supports Oracle datetime formatting behavior.

	
OraDecimalFormat: A concrete class to do formatting and parsing between number and string locale. It supports Oracle number formatting behavior.

	
OraDecimalFormatSymbol: A class to maintain Oracle format symbols used by Oracle number and currency formatting

	
OraNumberFormat: An abstract class to do formatting and parsing between number and string locale. It supports Oracle number formatting behavior.

	
OraSimpleDateFormat: A concrete class to do formatting and parsing between datetime and string locale. It supports Oracle datetime formatting behavior.

oracle.i18n.util

Package oracle.i18n.util provides general utilities for globalization support. It includes the following classes:

	
LocaleMapper: Provides mappings between Oracle locale elements and equivalent locale elements in other vendors and standards

	
OraDisplayLocaleInfo: A translation utility class that provides the translations of locale and attributes

	
OraLocaleInfo: An Oracle locale class that includes the language, territory, and collator objects

	
OraSQLUtil: An Oracle SQL Utility class that includes some useful methods of dealing with SQL

GDK for PL/SQL Supplied Packages

The GDK for PL/SQL includes the following PL/SQL packages:

	
UTL_I18N

	
UTL_LMS

UTL_I18N is a set of PL/SQL services that help developers to build globalized applications. The UTL_I18N PL/SQL package provides the following functions:

	
String conversion functions for various datatypes

	
Escape and unescape sequences for predefined characters and multibyte characters used by HTML and XML documents

	
Functions that map between Oracle, Internet Assigned Numbers Authority (IANA), ISO, and e-mail application character sets, languages, and territories

	
A function that returns the Oracle character set name from an Oracle language name

	
A function that performs script transliteration

	
Functions that return the ISO currency code, local time zones, and local languages supported for a given territory

	
Functions that return the most commonly used linguistic sort, a listing of all applicable linguistic sorts, and the local territories supported for a given language

	
Functions that map between Oracle full and short language names

	
A function that returns the language translation of a given language and territory name

	
A function that returns a listing of the most commonly used time zones

UTL_LMS retrieves and formats error messages in different languages.

	
See Also:

PL/SQL Packages and Types Reference

GDK Error Messages

	GDK-03001 Invalid or unsupported sorting rule
	
Cause: An invalid or unsupported sorting rule name was specified.

	
Action: Choose a valid sorting rule name and check the Globalization Support Guide for the list of sorting rule names.

	GDK-03002 The functional-driven sort is not supported.
	
Cause: A functional-driven sorting rule name was specified.

	
Action: Choose a valid sorting rule name and check the Globalization Support Guide for the list of sorting rule names.

	GDK-03003 The linguistic data file is missing.
	
Cause: A valid sorting rule was specified, but the associated data file was not found.

	
Action: Make sure the GDK jar files are correctly installed in the Java application.

	GDK-03005 Binary sort is not available for the specified character set .
	
Cause: Binary sorting for the specified character set is not supported.

	
Action: Check the Globalization Support Guide for a character set that supports binary sort.

	GDK-03006 The comparison strength level setting is invalid.
	
Cause: An invalid comparison strength level was specified.

	
Action: Choose a valid comparison strength level from the list -- PRIMARY, SECONDARY or TERTIARY.

	GDK-03007 The composition level setting is invalid.
	
Cause: An invalid composition level setting was specified.

	
Action: Choose a valid composition level from the list -- NO_COMPOSITION or CANONICAL_COMPOSITION.

	GDK-04001 Cannot map Oracle character to Unicode
	
Cause: The program attempted to use a character in the Oracle character set that cannot be mapped to Unicode.

	
Action: Write a separate exception handler for the invalid character, or call the withReplacement method so that the invalid character can be replaced with a valid replacement character.

	GDK-04002 Cannot map Unicode to Oracle character
	
Cause: The program attempted to use an Unicode character that cannot be mapped to a character in the Oracle character set.

	
Action: Write a separate exception handler for the invalid character, or call the withReplacement method so that the invalid character can be replaced with a valid replacement character.

	GDK-05000 A literal in the date format is too large.
	
Cause: The specified string literal in the date format was too long.

	
Action: Use a shorter string literal in the date format.

	GDK-05001 The date format is too long for internal buffer.
	
Cause: The date format pattern was too long.

	
Action: Use a shorter date format pattern.

	GDK-05002 The Julian date is out of range.
	
Cause: An illegal date range was specified.

	
Action: Make sure that date is in the specified range 0 - 3439760.

	GDK-05003 Failure in retrieving date/time
	
Cause: This is an internal error.

	
Action: Contact Oracle Support Services.

	GDK-05010 Duplicate format code found
	
Cause: The same format code was used more than once in the format pattern.

	
Action: Remove the redundant format code.

	GDK-05011 The Julian date precludes the use of the day of the year.
	
Cause: Both the Julian date and the day of the year were specified.

	
Action: Remove either the Julian date or the day of the year.

	GDK-05012 The year may only be specified once.
	
Cause: The year format code appeared more than once.

	
Action: Remove the redundant year format code.

	GDK-05013 The hour may only be specified once.
	
Cause: The hour format code appeared more than once.

	
Action: Remove the redundant hour format code.

	GDK-05014 The AM/PM conflicts with the use of A.M./P.M.
	
Cause: AM/PM was specified along with A.M./P.M.

	
Action: Use either AM/PM or A.M./P.M; do not use both.

	GDK-05015 The BC/AD conflicts with the use of B.C./A.D.
	
Cause: BC/AD was specified along with B.C./A.D.

	
Action: Use either BC/AD or B.C./A.D.; do not use both.

	GDK-05016 Duplicate month found
	
Cause: The month format code appeared more than once.

	
Action: Remove the redundant month format code.

	GDK-05017 The day of the week may only be specified once.
	
Cause: The day of the week format code appeared more than once.

	
Action: Remove the redundant day of the week format code.

	GDK-05018 The HH24 precludes the use of meridian indicator.
	
Cause: HH24 was specified along with the meridian indicator.

	
Action: Use either the HH24 or the HH12 with the meridian indicator.

	GDK-05019 The signed year precludes the use of BC/AD.
	
Cause: The signed year was specified along with BC/AD.

	
Action: Use either the signed year or the unsigned year with BC/AD.

	GDK-05020 A format code cannot appear in a date input format.
	
Cause: A format code appeared in a date input format.

	
Action: Remove the format code.

	GDK-05021 Date format not recognized
	
Cause: An unsupported format code was specified.

	
Action: Correct the format code.

	GDK-05022 The era format code is not valid with this calendar.
	
Cause: An invalid era format code was specified for the calendar.

	
Action: Remove the era format code or use anther calendar that supports the era.

	GDK-05030 The date format pattern ends before converting entire input string.
	
Cause: An incomplete date format pattern was specified.

	
Action: Rewrite the format pattern to cover the entire input string.

	GDK-05031 The year conflicts with the Julian date.
	
Cause: An incompatible year was specified for the Julian date.

	
Action: Make sure that the Julian date and the year are not in conflict.

	GDK-05032 The day of the year conflicts with the Julian date.
	
Cause: An incompatible day of year was specified for the Julian date.

	
Action: Make sure that the Julian date and the day of the year are not in conflict.

	GDK-05033 The month conflicts with the Julian date.
	
Cause: An incompatible month was specified for the Julian date.

	
Action: Make sure that the Julian date and the month are not in conflict.

	GDK-05034 The day of the month conflicts with the Julian date.
	
Cause: An incompatible day of the month was specified for the Julian date.

	
Action: Make sure that the Julian date and the day of the month are not in conflict.

	GDK-05035 The day of the week conflicts with the Julian date.
	
Cause: An incompatible day of the week was specified for the Julian date.

	
Action: Make sure that the Julian date and the day of week are not in conflict.

	GDK-05036 The hour conflicts with the seconds in the day.
	
Cause: The specified hour and the seconds in the day were not compatible.

	
Action: Make sure the hour and the seconds in the day are not in conflict.

	GDK-05037 The minutes of the hour conflicts with the seconds in the day.
	
Cause: The specified minutes of the hour and the seconds in the day were not compatible.

	
Action: Make sure the minutes of the hour and the seconds in the day are not in conflict.

	GDK-05038 The seconds of the minute conflicts with the seconds in the day.
	
Cause: The specified seconds of the minute and the seconds in the day were not compatible.

	
Action: Make sure the seconds of the minute and the seconds in the day are not in conflict.

	GDK-05039 Date not valid for the month specified
	
Cause: An illegal date for the month was specified.

	
Action: Check the date range for the month.

	GDK-05040 Input value not long enough for the date format
	
Cause: Too many format codes were specified.

	
Action: Remove unused format codes or specify a longer value.

	GDK-05041 A full year must be between -4713 and +9999, and not be 0.
	
Cause: An illegal year was specified.

	
Action: Specify the year in the specified range.

	GDK-05042 A quarter must be between 1 and 4.
	
Cause: Cause: An illegal quarter was specified.

	
Action: Action: Make sure that the quarter is in the specified range.

	GDK-05043 Not a valid month
	
Cause: An illegal month was specified.

	
Action: Make sure that the month is between 1 and 12 or has a valid month name.

	GDK-05044 The week of the year must be between 1 and 52.
	
Cause: An illegal week of the year was specified.

	
Action: Make sure that the week of the year is in the specified range.

	GDK-05045 The week of the month must be between 1 and 5.
	
Cause: An illegal week of the month was specified.

	
Action: Make sure that the week of the month is in the specified range.

	GDK-05046 Not a valid day of the week
	
Cause: An illegal day of the week was specified.

	
Action: Make sure that the day of the week is between 1 and 7 or has a valid day name.

	GDK-05047 A day of the month must be between 1 and the last day of the month.
	
Cause: An illegal day of the month was specified.

	
Action: Make sure that the day of the month is in the specified range.

	GDK-05048 A day of year must be between 1 and 365 (366 for leap year).
	
Cause: An illegal day of the year was specified.

	
Action: Make sure that the day of the year is in the specified range.

	GDK-05049 An hour must be between 1 and 12.
	
Cause: An illegal hour was specified.

	
Action: Make sure that the hour is in the specified range.

	GDK-05050 An hour must be between 0 and 23.
	
Cause: An illegal hour was specified.

	
Action: Make sure that the hour is in the specified range.

	GDK-05051 A minute must be between 0 and 59.
	
Cause: Cause: An illegal minute was specified.

	
Action: Action: Make sure the minute is in the specified range.

	GDK-05052 A second must be between 0 and 59.
	
Cause: An illegal second was specified.

	
Action: Make sure the second is in the specified range.

	GDK-05053 A second in the day must be between 0 and 86399.
	
Cause: An illegal second in the day was specified.

	
Action: Make sure second in the day is in the specified range.

	GDK-05054 The Julian date must be between 1 and 5373484.
	
Cause: An illegal Julian date was specified.

	
Action: Make sure that the Julian date is in the specified range.

	GDK-05055 Missing AM/A.M. or PM/P.M.
	
Cause: Neither AM/A.M. nor PM/P.M. was specified in the format pattern.

	
Action: Specify either AM/A.M. or PM/P.M.

	GDK-05056 Missing BC/B.C. or AD/A.D.
	
Cause: Neither BC/B.C. nor AD/A.D. was specified in the format pattern.

	
Action: Specify either BC/B.C. or AD/A.D.

	GDK-05057 Not a valid time zone
	
Cause: An illegal time zone was specified.

	
Action: Specify a valid time zone.

	GDK-05058 Non-numeric character found
	
Cause: A non-numeric character was found where a numeric character was expected.

	
Action: Make sure that the character is a numeric character.

	GDK-05059 Non-alphabetic character found
	
Cause: A non-alphabetic character was found where an alphabetic was expected.

	
Action: Make sure that the character is an alphabetic character.

	GDK-05060 The week of the year must be between 1 and 53.
	
Cause: An illegal week of the year was specified.

	
Action: Make sure that the week of the year is in the specified range.

	GDK-05061 The literal does not match the format string.
	
Cause: The string literals in the input were not the same length as the literals in the format pattern (with the exception of the leading whitespace).

	
Action: Correct the format pattern to match the literal. If the "FX" modifier has been toggled on, the literal must match exactly, with no extra whitespace.

	GDK-05062 The numeric value does not match the length of the format item.
	
Cause: The numeric value did not match the length of the format item.

	
Action: Correct the input date or turn off the FX or FM format modifier. When the FX and FM format codes are specified for an input date, then the number of digits must be exactly the number specified by the format code. For example, 9 will not match the format code DD but 09 will.

	GDK-05063 The year is not supported for the current calendar.
	
Cause: An unsupported year for the current calendar was specified.

	
Action: Check the Globalization Support Guide to find out what years are supported for the current calendar.

	GDK-05064 The date is out of range for the calendar.
	
Cause: The specified date was out of range for the calendar.

	
Action: Specify a date that is legal for the calendar.

	GDK-05065 Invalid era
	
Cause: An illegal era was specified.

	
Action: Make sure that the era is valid.

	GDK-05066 The datetime class is invalid.
	
Cause: This is an internal error.

	
Action: Contact Oracle Support Services.

	GDK-05067 The interval is invalid.
	
Cause: An invalid interval was specified.

	
Action: Specify a valid interval.

	GDK-05068 The leading precision of the interval is too small.
	
Cause: The specified leading precision of the interval was too small to store the interval.

	
Action: Increase the leading precision of the interval or specify an interval with a smaller leading precision.

	GDK-05069 Reserved for future use
	
Cause: Reserved.

	
Action: Reserved.

	GDK-05070 The specified intervals and datetimes were not mutually comparable.
	
Cause: The specified intervals and datetimes were not mutually comparable.

	
Action: Specify a pair of intervals or datetimes that are mutually comparable.

	GDK-05071 The number of seconds must be less than 60.
	
Cause: The specified number of seconds was greater than 59.

	
Action: Specify a value for the seconds to 59 or smaller.

	GDK-05072 Reserved for future use
	
Cause: Reserved.

	
Action: Reserved.

	GDK-05073 The leading precision of the interval was too small.
	
Cause: The specified leading precision of the interval was too small to store the interval.

	
Action: Increase the leading precision of the interval or specify an interval with a smaller leading precision.

	GDK-05074 An invalid time zone hour was specified.
	
Cause: The hour in the time zone must be between -12 and 13.

	
Action: Specify a time zone hour between -12 and 13.

	GDK-05075 An invalid time zone minute was specified.
	
Cause: The minute in the time zone must be between 0 and 59.

	
Action: Specify a time zone minute between 0 and 59.

	GDK-05076 An invalid year was specified.
	
Cause: A year must be at least -4713.

	
Action: Specify a year that is greater than or equal to -4713.

	GDK-05077 The string is too long for the internal buffer.
	
Cause: This is an internal error.

	
Action: Contact Oracle Support Services.

	GDK-05078 The specified field was not found in the datetime or interval.
	
Cause: The specified field was not found in the datetime or interval.

	
Action: Make sure that the specified field is in the datetime or interval.

	GDK-05079 An invalid hh25 field was specified.
	
Cause: The hh25 field must be between 0 and 24.

	
Action: Specify an hh25 field between 0 and 24.

	GDK-05080 An invalid fractional second was specified.
	
Cause: The fractional second must be between 0 and 999999999.

	
Action: Specify a value for fractional second between 0 and 999999999.

	GDK-05081 An invalid time zone region ID was specified.
	
Cause: The time zone region ID specified was invalid.

	
Action: Contact Oracle Support Services.

	GDK-05082 Time zone region name not found
	
Cause: The specified region name cannot be found.

	
Action: Contact Oracle Support Services.

	GDK-05083 Reserved for future use
	
Cause: Reserved.

	
Action: Reserved.

	GDK-05084 Internal formatting error
	
Cause: This is an internal error.

	
Action: Contact Oracle Support Services.

	GDK-05085 Invalid object type
	
Cause: An illegal object type was specified.

	
Action: Use a supported object type.

	GDK-05086 Invalid date format style
	
Cause: An illegal format style was specified.

	
Action: Choose a valid format style.

	GDK-05087 A null format pattern was specified.
	
Cause: The format pattern cannot be null.

	
Action: Provide a valid format pattern.

	GDK-05088 Invalid number format model
	
Cause: An illegal number format code was specified.

	
Action: Correct the number format code.

	GDK-05089 Invalid number
	
Cause: An invalid number was specified.

	
Action: Correct the input.

	GDK-05090 Reserved for future use
	
Cause: Reserved.

	
Action: Reserved.

	GDK-0509 Datetime/interval internal error
	
Cause: This is an internal error.

	
Action: Contact Oracle Support Services.

	GDK-05098 Too many precision specifiers
	
Cause: Extra data was found in the date format pattern while the program attempted to truncate or round dates.

	
Action: Check the syntax of the date format pattern.

	GDK-05099 Bad precision specifier
	
Cause: An illegal precision specifier was specified.

	
Action: Use a valid precision specifier.

	GDK-05200 Missing WE8ISO8859P1 data file
	
Cause: The character set data file for WE8ISO8859P1 was not installed.

	
Action: Make sure the GDK jar files are installed properly in the Java application.

	GDK-05201 Failed to convert to a hexadecimal value
	
Cause: An invalid hexadecimal string was included in the HTML/XML data.

	
Action: Make sure the string includes the hexadecimal character in the form of &x[0-9A-Fa-f]+;.

	GDK-05202 Failed to convert to a decimal value
	
Cause: An invalid decimal string was found in the HTML/XML data.

	
Action: Make sure the string includes the decimal character in the form of &[0-9]+;.

	GDK-05203 Unregistered character entity
	
Cause: An invalid character entity was found in the HTML/XML data.

	
Action: Use a valid character entity value in HTML/XML data. See HTML/XML standards for the registered character entities.

	GDK-05204 Invalid Quoted-Printable value
	
Cause: An invalid Quoted-Printable data was found in the data.

	
Action: Make sure the input data has been encoded in the proper Quoted-Printable form.

	GDK-05205 Invalid MIME header format
	
Cause: An invalid MIME header format was specified.

	
Action: Check RFC 2047 for the MIME header format. Make sure the input data conforms to the format.

	GDK-05206 Invalid numeric string
	
Cause: An invalid character in the form of %FF was found when a URL was being decoded.

	
Action: Make sure the input URL string is valid and has been encoded correctly; %FF needs to be a valid hex number.

	GDK-05207 Invalid class of the object, key, in the user-defined locale to charset mapping"
	
Cause: The class of key object in the user-defined locale to character set mapping table was not java.util.Locale.

	
Action: When you construct the Map object for the user-defined locale to character set mapping table, specify java.util.Locale for the key object.

	GDK-05208 Invalid class of the object, value, in the user-defined locale to charset mapping
	
Cause: The class of value object in the user-defined locale to character set mapping table was not java.lang.String.

	
Action: When you construct the Map object for the user-defined locale to character set mapping table, specify java.lang.String for the value object.

	GDK-05209 Invalid rewrite rule
	
Cause: An invalid regular expression was specified for the match pattern in the rewrite rule.

	
Action: Make sure the match pattern for the rewriting rule uses a valid regular expression.

	GDK-05210 Invalid character set
	
Cause: An invalid character set name was specified.

	
Action: Specify a valid character set name.

	GDK-0521 Default locale not defined as a supported locale
	
Cause: The default application locale was not included in the supported locale list.

	
Action: Include the default application locale in the supported locale list or change the default locale to the one that is in the list of the supported locales.

	GDK-05212 The rewriting rule must be a String array with three elements.
	
Cause: The rewriting rule parameter was not a String array with three elements.

	
Action: Make sure the rewriting rule parameter is a String array with three elements. The first element represents the match pattern in the regular expression, the second element represents the result pattern in the form specified in the JavaDoc of ServletHelper.rewriteURL, and the third element represents the Boolean value "True" or "False" that specifies whether the locale fallback operation is performed or not.

	GDK-05213 Invalid type for the class of the object, key, in the user-defined parameter name mapping
	
Cause: The class of key object in the user-defined parameter name mapping table was not java.lang.String.

	
Action: When you construct the Map object for the user-defined parameter name mapping table, specify java.lang.String for the key object.

	GDK-05214 The class of the object, value, in the user-defined parameter name mapping, must be of type \"java.lang.String\".
	
Cause: The class of value object in the user-defined parameter name mapping table was not java.lang.String.

	
Action: When you construct the Map object for the user-defined parameter name mapping table, specify java.lang.String for the value object.

	GDK-05215 Parameter name must be in the form [a-z][a-z0-9]*.
	
Cause: An invalid character was included in the parameter name.

	
Action: Make sure the parameter name is in the form of [a-z][a-z0-9]*.

	GDK-05216 The attribute \"var\" must be specified if the attribute \"scope\" is set.
	
Cause: Despite the attribute "scope" being set in the tag, the attribute "var" was not specified.

	
Action: Specify the attribute "var" for the name of variable.

	GDK-05217 The \"param\" tag must be nested inside a \"message\" tag.
	
Cause: The "param" tag was not nested inside a "message" tag.

	
Action: Make sure the tag "param" is inside the tag "message".

	GDK-05218 Invalid \"scope\" attribute is specified.
	
Cause: An invalid "scope" value was specified.

	
Action: Specify a valid scope as either "application," "session," "request," or "page".

	GDK-05219 Invalid date format style
	
Cause: The specified date format style was invalid.

	
Action: Specify a valid date format style as either "default," "short," or "long"

	GDK-05220 No corresponding Oracle character set exists for the IANA character set.
	
Cause: An unsupported IANA character set name was specified.

	
Action: Specify the IANA character set that has a corresponding Oracle character set.

	GDK-05221 Invalid parameter name
	
Cause: An invalid parameter name was specified in the user-defined parameter mapping table.

	
Action: Make sure the specified parameter name is supported. To get the list of supported parameter names, call LocaleSource.Parameter.toArray.

	GDK-05222 Invalid type for the class of the object, key, in the user-defined message bundle mapping.
	
Cause: The class of key object in the user-defined message bundle mapping table was not "java.lang.String."

	
Action: When you construct the Map object for the user-defined message bundle mapping table, specify java.lang.String for the key object.

	GDK-05223 Invalid type for the class of the object, value, in the user-defined message bundle mapping
	
Cause: The class of value object in the user-defined message bundle mapping table was not "java.lang.String."

	
Action: When you construct the Map object for the user-defined message bundle mapping table, specify java.lang.String for the value object.

	GDK-05224 Invalid locale string
	
Cause: An invalid character was included in the specified ISO locale names in the GDK application configuration file.

	
Action: Make sure the ISO locale names include only valid characters. A typical name format is an ISO 639 language followed by an ISO 3166 country connected by a dash character; for example, "en-US" is used to specify the locale for American English in the United States.

	GDK-06001 LCSDetector profile not available
	
Cause: The specified profile was not found.

	
Action: Make sure the GDK jar files are installed properly in the Java application.

	GDK-06002 Invalid IANA character set name or no corresponding Oracle name found
	
Cause: The IANA character set specified was either invalid or did not have a corresponding Oracle character set.

	
Action: Check that the IANA character is valid and make sure that it has a corresponding Oracle character set.

	GDK-06003 Invalid ISO language name or no corresponding Oracle name found
	
Cause: The ISO language specified was either invalid or did not have a corresponding Oracle language.

	
Action: Check to see that the ISO language specified is either invalid or does not have a corresponding Oracle language.

	GDK-06004 A character set filter and a language filter cannot be set at the same time.
	
Cause: A character set filter and a language filter were set at the same time in a LCSDetector object.

	
Action: Set only one of the two -- character set or language.

	GDK-06005 Reset is necessary before LCSDetector can work with a different data source.
	
Cause: The reset method was not invoked before a different type of data source was used for a LCSDetector object.

	
Action: Call LCSDetector.reset to reset the detector before switching to detect other types of data source.

	ORA-17154 Cannot map Oracle character to Unicode
	
Cause: The Oracle character was either invalid or incomplete and could not be mapped to an Unicode value.

	
Action: Write a separate exception handler for the invalid character, or call the withReplacement method so that the invalid character can be replaced with a valid replacement character.

	ORA-17155 Cannot map Unicode to Oracle character
	
Cause: The Unicode character did not have a counterpart in the Oracle character set.

	
Action: Write a separate exception handler for the invalid character, or call the withReplacement method so that the invalid character can be replaced with a valid replacement character.

List of Examples

	3-1 Setting NLS_LANG to American_America.WE8ISO8859P1
	3-2 Setting NLS_LANG to French_France.WE8ISO8859P1
	3-3 NLS_LANGUAGE=ITALIAN
	3-4 NLS_LANGUAGE=GERMAN
	3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA
	3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY
	3-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY
	3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA
	3-9 NLS_LANG=ITALIAN_ITALY.WE8DEC
	3-10 Change Language, Date Format, and Decimal Character
	3-11 Setting the Date Format to Display Roman Numerals
	3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names
	3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations
	3-14 NLS_DATE_LANGUAGE=FRENCH, Default Date Format
	3-15 Timestamp Format
	3-16 Setting NLS_TIMESTAMP_TZ_FORMAT
	3-17 NLS_CALENDAR='English Hijrah'
	3-18 Setting NLS_NUMERIC_CHARACTERS
	3-19 Displaying the Local Currency Symbol
	3-20 Setting NLS_ISO_CURRENCY
	3-21 Setting NLS_SORT
	4-1 Inserting Data into a DATE Column
	4-2 Inserting Data into a TIMESTAMP Column
	4-3 Inserting Data into the TIMESTAMP WITH TIME ZONE Datatype
	4-4 Inserting Data into the TIMESTAMP WITH LOCAL TIME ZONE Datatype
	4-5 Converting a Datetime Value to Another Time Zone
	4-6 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH TIME ZONE and TIMESTAMP
	4-7 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH LOCAL TIME ZONE and TIMESTAMP
	4-8 Daylight Saving Time Is Not Calculated for Regions That Do Not Use Daylight Saving Time
	5-1 Linguistic Sort Using Base Letters, Diacritics, Punctuation, and Case Information
	5-2 Case-Insensitive Linguistic Sort
	5-3 Accent-Insensitive Linguistic Sort
	5-4 Binary Sort
	5-5 Monolingual German Sort
	5-6 Comparing a Monolingual German Sort to a Multilingual Sort
	5-7 Binary Comparison Binary Sort
	5-8 Linguistic Comparison Binary Case-Insensitive Sort
	5-9 Linguistic Comparison Binary Accent-Insensitive Sort
	5-10 Linguistic Comparisons Returning Fewer Rows
	5-11 Linguistic Comparisons Using XSPANISH
	5-12 Case-Insensitive Match Using the NLS_SORT Value
	5-13 Case Insensitivity Overridden by the Runtime Match Option
	5-14 Matching with the Collation Element Operator [..]
	5-15 Matching with the Character Class Operator [::]
	5-16 Matching with the Base Letter Operator [==]
	6-1 Creating a Database with a Unicode Character Set
	6-2 Creating a Database with a National Character Set
	6-3 Unicode Solution with a Unicode Database
	6-4 Unicode Solution with Unicode Datatypes
	6-5 Unicode Solution with a Unicode Database and Unicode Datatypes
	7-1 Populating the Customers Table Using the TO_NCHAR Function
	7-2 Selecting from the Customer Table Using the TO_CHAR Function
	7-3 Selecting from the Customer Table Using the TO_DATE Function
	7-4 INSTR Function
	7-5 CONCAT Function
	7-6 RPAD Function
	8-1 HelloWorld JSP Page Code
	8-2 HelloWorld web.xml Code
	8-3 The GDK-enabled web.xml File
	8-4 GDK Configuration File gdkapp.xml
	8-5 Enabled HelloWorld JSP
	8-6 Constructing the Locale Selection List
	9-1 Specifying a German Sort with the NLS_SORT Session Parameter
	9-2 Specifying a French Sort with the NLSSORT Function
	9-3 Making a Linguistic Comparison with the WHERE Clause
	12-1 Specifying Only the File Name in the LCSSCAN Command
	12-2 Specifying the Format as HTML
	12-3 Specifying the RESULTS and BEGIN Parameters for LCSSCAN
	12-4 Specifying the RESULTS and END Parameters for LCSSCAN
	12-5 Specifying the BEGIN and END Parameters for LCSSCAN

Glossary

accent

A mark that changes the sound of a character. Because the common meaning of accent is associated with the stress or prominence of the character's sound, the preferred word in Oracle Database Globalization Support Guide is diacritic.

See also diacritic.

accent-insensitive linguistic sort

A linguistic sort that uses information only about base letters, not diacritics or case.

See also linguistic sort, base letter, diacritic, case.

AL16UTF16

The default Oracle character set for the SQL NCHAR data type, which is used for the national character set. It encodes Unicode data in the UTF-16 encoding.

See also national character set.

AL32UTF8

An Oracle character set for the SQL CHAR data type, which is used for the database character set. It encodes Unicode data in the UTF-8 encoding.

See also database character set.

ASCII

American Standard Code for Information Interchange. A common encoded 7-bit character set for English. ASCII includes the letters A-Z and a-z, as well as digits, punctuation symbols, and control characters. The Oracle character set name is US7ASCII.

base letter

A character without diacritics. For example, the base letter for a, A, ä, and Ä is a.

See also diacritic.

binary sorting

Ordering character strings based on their binary coded values.

byte semantics

Treatment of strings as a sequence of bytes.

See also character semantics and length semantics.

canonical equivalence

A basic equivalence between characters or sequences of characters. For example, ç is equivalent to the combination of c and ,. They cannot be distinguished when they are correctly rendered.

case

Refers to the condition of being uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase glyph for a, the lowercase glyph.

case conversion

Changing a character from uppercase to lowercase or vice versa.

case-insensitive linguistic sort

A linguistic sort that uses information about base letters and diacritics but not case.

See also base letter, case, diacritic, linguistic sort.

character

A character is an abstract element of text. A character is different from a glyph, which is a specific representation of a character. For example, the first character of the English upper-case alphabet can be displayed as A, A, A, and so on. These forms are different glyphs that represent the same character. A character, a character code, and a glyph are related as follows:

character --(encoding)--> character code --(font)--> glyph

For example, the first character of the English uppercase alphabet is represented in computer memory as a number. The number is called the encoding or the character code. The character code for the first character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme. The character code is 0xc1 in the EBCDIC encoding scheme.

You must choose a font to display or print the character. The available fonts depend on which encoding scheme is being used. The character can be printed or displayed as A, A, or A, for example. The forms are different glyphs that represent the same character.

See also character code and glyph.

character code

A character code is a number that represents a specific character. The number depends on the encoding scheme. For example, the character code of the first character of the English uppercase alphabet is 0x41 in the ASCII encoding scheme, but it is 0xc1 in the EBCDIC encoding scheme.

See also character.

character semantics

Treatment of strings as a sequence of characters.

See also byte semantics and length semantics.

character set

A collection of elements that represent textual information for a specific language or group of languages. One language can be represented by more than one character set.

A character set does not always imply a specific character encoding scheme. A character encoding scheme is the assignment of a character code to each character in a character set.

In this manual, a character set usually does imply a specific character encoding scheme. Therefore, a character set is the same as an encoded character set in this manual.

character set migration

Changing the character set of an existing database.

character string

An ordered group of characters.

A character string can also contain no characters. In this case, the character string is called a null string. The number of characters in a null string is 0 (zero).

character classification

Information provides details about the type of character associated with each character code. For example, a character can be uppercase, lowercase, punctuation, or control character.

character encoding scheme

A rule that assigns numbers (character codes) to all characters in a character set. Encoding scheme, encoding method, and encoding also mean character encoding scheme.

client character set

The encoded character set used by the client. A client character set can differ from the server character set. The server character set is called the database character set. If the client character set is different from the database character set, then character set conversion must occur.

See also database character set.

code point

The numeric representation of a character in a character set. For example, the code point of A in the ASCII character set is 0x41. The code point of a character is also called the encoded value of a character.

See also Unicode code point.

code unit

The unit of encoded text for processing and interchange. The size of the code unit varies depending on the character encoding scheme. In most character encodings, a code unit is 1 byte. Important exceptions are UTF-16 and UCS-2, which use 2-byte code units, and wide character, which uses 4 bytes.

See also character encoding scheme.

collation

Ordering of character strings according to rules about sorting characters that are associated with a language in a specific locale. Also called linguistic sort.

See also linguistic sort, monolingual linguistic sort, multilingual linguistic sort, accent-insensitive linguistic sort, case-insensitive linguistic sort.

data scanning

The process of identifying potential problems with character set conversion and truncation of data before migrating the database character set.

database character set

The encoded character set that is used to store text in the database. This includes CHAR, VARCHAR2, LONG, and fixed-width CLOB column values and all SQL and PL/SQL text.

diacritic

A mark near or through a character or combination of characters that indicates a different sound than the sound of the character without the diacritical mark. For example, the cedilla in façade is a diacritic. It changes the sound of c.

EBCDIC

Extended Binary Coded Decimal Interchange Code. EBCDIC is a family of encoded character sets used mostly on IBM systems.

encoded character set

A character set with an associated character encoding scheme. An encoded character set specifies the number (character code) that is assigned to each character.

See also character encoding scheme.

encoded value

The numeric representation of a character in a character set. For example, the code point of A in the ASCII character set is 0x41. The encoded value of a character is also called the code point of a character.

font

An ordered collection of character glyphs that provides a graphical representation of characters in a character set.

globalization

The process of making software suitable for different linguistic and cultural environments. Globalization should not be confused with localization, which is the process of preparing software for use in one specific locale.

glyph

A glyph (font glyph) is a specific representation of a character. A character can have many different glyphs. For example, the first character of the English uppercase alphabet can be printed or displayed as A, A, A, and so on. These forms are different glyphs that represent the same character.

See also character.

ideograph

A symbol that represents an idea. Chinese is an example of an ideographic writing system.

ISO

International Organization for Standards. A worldwide federation of national standards bodies from 130 countries. The mission of ISO is to develop and promote standards in the world to facilitate the international exchange of goods and services.

ISO 8859

A family of 8-bit encoded character sets. The most common one is ISO 8859-1 (also known as ISO Latin1), and is used for Western European languages.

ISO 14651

A multilingual linguistic sort standard that is designed for almost all languages of the world.

See also multilingual linguistic sort.

ISO/IEC 10646

A universal character set standard that defines the characters of most major scripts used in the modern world. In 1993, ISO adopted Unicode version 1.1 as ISO/IEC 10646-1:1993. ISO/IEC 10646 has two formats: UCS-2 is a 2-byte fixed-width format, and UCS-4 is a 4-byte fixed-width format. There are three levels of implementation, all relating to support for composite characters:

	
Level 1 requires no composite character support.

	
Level 2 requires support for specific scripts (including most of the Unicode scripts such as Arabic and Thai).

	
Level 3 requires unrestricted support for composite characters in all languages.

ISO currency

The 3-letter abbreviation used to denote a local currency, based on the ISO 4217 standard. For example, USD represents the United States dollar.

ISO Latin1

The ISO 8859-1 character set standard. It is an 8-bit extension to ASCII that adds 128 characters that include the most common Latin characters used in Western Europe. The Oracle character set name is WE8ISO8859P1.

See also ISO 8859.

length semantics

Length semantics determines how you treat the length of a character string. The length can be treated as a sequence of characters or bytes.

See also character semantics and byte semantics.

linguistic index

An index built on a linguistic sort order.

linguistic sort

An ordering of strings based on requirements from a locale instead of the binary representation of the strings.

See also multilingual linguistic sort and monolingual linguistic sort.

locale

A collection of information about the linguistic and cultural preferences from a particular region. Typically, a locale consists of language, territory, character set, linguistic, and calendar information defined in NLS data files.

localization

The process of providing language-specific or culture-specific information for software systems. Translation of an application's user interface is an example of localization. Localization should not be confused with globalization, which is the making software suitable for different linguistic and cultural environments.

monolingual linguistic sort

An Oracle sort that has two levels of comparison for strings. Most European languages can be sorted with a monolingual sort, but it is inadequate for Asian languages.

See also multilingual linguistic sort.

monolingual support

Support for only one language.

multibyte

Two or more bytes.

When character codes are assigned to all characters in a specific language or a group of languages, one byte (8 bits) can represent 256 different characters. Two bytes (16 bits) can represent up to 65,536 different characters. Two bytes are not enough to represent all the characters for many languages. Some characters require 3 or 4 bytes.

One example is the UTF8 Unicode encoding. In UTF8, there are many 2-byte and 3-byte characters.

Another example is Traditional Chinese, used in Taiwan. It has more than 80,000 characters. Some character encoding schemes that are used in Taiwan use 4 bytes to encode characters.

See also single byte.

multibyte character

A character whose character code consists of two or more bytes under a certain character encoding scheme.

Note that the same character may have different character codes under different encoding schemes. Oracle cannot tell whether a character is a multibyte character without knowing which character encoding scheme is being used. For example, Japanese Hankaku-Katakana (half-width Katakana) characters are one byte in the JA16SJIS encoded character set, two bytes in JA16EUC, and three bytes in UTF8.

See also single-byte character.

multibyte character string

A character string that consists of one of the following:

	
No characters (called a null string)

	
One or more single-byte characters

	
A mixture of one or more single-byte characters and one or more multibyte characters

	
One or more multibyte characters

multilingual linguistic sort

An Oracle sort that evaluates strings on three levels. Asian languages require a multilingual linguistic sort even if data exists in only one language. Multilingual linguistic sorts are also used when data exists in several languages.

national character set

An alternate character set from the database character set that can be specified for NCHAR, NVARCHAR2, and NCLOB columns. National character sets are in Unicode only.

NLB files

Binary files used by the Locale Builder to define locale-specific data. They define all of the locale definitions that are shipped with a specific release of the Oracle database server. You can create user-defined NLB files with Oracle Locale Builder.

See also Oracle Locale Builder and NLT files.

NLS

National Language Support. NLS allows users to interact with the database in their native languages. It also allows applications to run in different linguistic and cultural environments. The term is somewhat obsolete because Oracle supports global users at one time.

NLSRTL

National Language Support Runtime Library. This library is responsible for providing locale-independent algorithms for internationalization. The locale-specific information (that is, NLSDATA) is read by the NLSRTL library during run-time.

NLT files

Text files used by the Locale Builder to define locale-specific data. Because they are in text, you can view the contents.

null string

A character string that contains no characters.

Oracle Locale Builder

A GUI utility that offers a way to view, modify, or define locale-specific data. You can also create your own formats for language, territory, character set, and linguistic sort.

replacement character

A character used during character conversion when the source character is not available in the target character set. For example, ? is often used as Oracle's default replacement character.

restricted multilingual support

Multilingual support that is restricted to a group of related languages.Western European languages can be represented with ISO 8859-1, for example. If multilingual support is restricted, then Thai could not be added to the group.

SQL CHAR datatypes

Includes CHAR, VARCHAR, VARCHAR2, CLOB, and LONG datatypes.

SQL NCHAR datatypes

Includes NCHAR, NVARCHAR, NVARCHAR2, and NCLOB datatypes.

script

A collection of related graphic symbols that are used in a writing system. Some scripts can represent multiple languages, and some languages use multiple scripts. Examples of scripts include Latin, Arabic, and Han.

single byte

One byte. One byte usually consists of 8 bits. When character codes are assigned to all characters for a specific language, one byte (8 bits) can represent 256 different characters.

See also multibyte.

single-byte character

A single-byte character is a character whose character code consists of one byte under a specific character encoding scheme. Note that the same character may have different character codes under different encoding schemes. Oracle cannot tell which character is a single-byte character without knowing which encoding scheme is being used. For example, the euro currency symbol is one byte in the WE8MSWIN1252 encoded character set, two bytes in AL16UTF16, and three bytes in UTF8.

See also multibyte character.

single-byte character string

A single-byte character string is a character string that consists of one of the following:

	
No character (called a null string)

	
One or more single-byte characters

supplementary characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes to encode each character. This allowed 65,536 characters to be represented. However, more characters need to be supported because of the large number of Asian ideograms.

Unicode 3.1 defines supplementary characters to meet this need. It uses two 16-bit code units (also known as surrogate pairs) to represent a single character. This allows an additional 1,048,576 characters to be defined. The Unicode 3.1 standard added the first group of 44,944 supplementary characters.

surrogate pairs

See also supplementary characters.

syllabary

Provide a mechanism for communicating phonetic information along with the ideographic characters used by languages such as Japanese.

UCS-2

A 1993 ISO/IEC standard character set. It is a fixed-width, 16-bit Unicode character set. Each character occupies 16 bits of storage. The ISO Latin1 characters are the first 256 code points, so it can be viewed as a 16-bit extension of ISO Latin1.

UCS-4

A fixed-width, 32-bit Unicode character set. Each character occupies 32 bits of storage. The UCS-2 characters are the first 65,536 code points in this standard, so it can be viewed as a 32-bit extension of UCS-2. This is also sometimes referred to as ISO-10646.

Unicode

Unicode is a universal encoded character set that allows you information from any language to be stored by using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language.

Unicode database

A database whose database character set is UTF-8.

Unicode code point

A value in the Unicode codespace, which ranges from 0 to 0x10FFFF. Unicode assigns a unique code point to every character.

Unicode datatype

A SQL NCHAR datatype (NCHAR, NVARCHAR2, and NCLOB). You can store Unicode characters in columns of these datatypes even if the database character set is not Unicode.

unrestricted multilingual support

The ability to use as many languages as desired. A universal character set, such as Unicode, helps to provide unrestricted multilingual support because it supports a very large character repertoire, encompassing most modern languages of the world.

UTFE

A Unicode 3.0 UTF-8 Oracle database character set with 6-byte supplementary character support. It is used only on EBCDIC platforms.

UTF8

The UTF8 Oracle character set encodes characters in one, two, or three bytes. It is for ASCII-based platforms. The UTF8 character set supports Unicode 3.0 and it is compliant to the CESU-8 standard. Although specific supplementary characters were not assigned code points in Unicode until version 3.1, the code point range was allocated for supplementary characters in Unicode 3.0. Supplementary characters are treated as two separate, user-defined characters that occupy 6 bytes.

UTF-8

The 8-bit encoding of Unicode. It is a variable-width encoding. One Unicode character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters from the European scripts are represented in either 1 or 2 bytes. Characters from most Asian scripts are represented in 3 bytes. Supplementary characters are represented in 4 bytes. The Oracle character set that supports UTF-8 is AL32UTF8.

UTF-16

The 16-bit encoding of Unicode. It is an extension of UCS-2 and supports the supplementary characters defined in Unicode 3.1 by using a pair of UCS-2 code points. One Unicode character can be 2 bytes or 4 bytes in UTF-16 encoding. Characters (including ASCII characters) from European scripts and most Asian scripts are represented in 2 bytes. Supplementary characters are represented in 4 bytes. The Oracle character set that supports UTF-16 is AL16UTF16.

wide character

A fixed-width character format that is useful for extensive text processing because it allows data to be processed in consistent, fixed-width chunks. Wide characters are intended to support internal character processing.

Preface

This manual describes Oracle globalization support for the database. It explains how to set up a globalization support environment, choose and migrate a character set, customize locale data, do linguistic sorting, program in a global environment, and program with Unicode.

This preface contains these topics:

	
Intended Audience

	
Documentation Accessibility

	
Structure

	
Related Documents

	
Conventions

Intended Audience

Oracle Database Globalization Support Guide is intended for database administrators, system administrators, and database application developers who perform the following tasks:

	
Set up a globalization support environment

	
Choose, analyze, or migrate character sets

	
Sort data linguistically

	
Customize locale data

	
Write programs in a global environment

	
Use Unicode

To use this document, you need to be familiar with relational database concepts, basic Oracle server concepts, and the operating system environment under which you are running Oracle.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For additional information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

JAWS, a Windows screen reader, may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, JAWS may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Structure

This document contains:

Chapter 1, "Overview of Globalization Support"

This chapter contains an overview of globalization and Oracle's approach to globalization.

Chapter 2, "Choosing a Character Set"

This chapter describes how to choose a character set.

Chapter 3, "Setting Up a Globalization Support Environment"

This chapter contains sample scenarios for enabling globalization capabilities.

Chapter 4, "Datetime Datatypes and Time Zone Support"

This chapter describes Oracle's datetime and interval datatypes, datetime SQL functions, and time zone support.

Chapter 5, "Linguistic Sorting and String Searching"

This chapter describes linguistic sorting.

Chapter 6, "Supporting Multilingual Databases with Unicode"

This chapter describes Unicode considerations for databases.

Chapter 7, "Programming with Unicode"

This chapter describes how to program in a Unicode environment.

Chapter 8, "Oracle Globalization Development Kit"

This chapter describes the Globalization Development Kit.

Chapter 9, "SQL and PL/SQL Programming in a Global Environment"

This chapter describes globalization considerations for SQL programming.

Chapter 10, "OCI Programming in a Global Environment"

This chapter describes globalization considerations for OCI programming.

Chapter 11, "Character Set Migration"

This chapter describes character set conversion issues and character set migration.

Chapter 12, "Character Set Scanner Utilities"

This chapter describes how to use the Character Set Scanner utility to analyze character data.

Chapter 13, "Customizing Locale"

This chapter explains how to use the Oracle Locale Builder utility to customize locales. It also contains information about time zone files and customizing calendar data.

Appendix A, "Locale Data"

This appendix describes the languages, territories, character sets, and other locale data supported by the Oracle server.

Appendix B, "Unicode Character Code Assignments"

This appendix lists Unicode code point values.

Glossary

The glossary contains definitions of globalization support terms.

Related Documents

Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions

This section describes the conventions used in the text and code examples of this documentation set. It describes:

	
Conventions in Text

	
Conventions in Code Examples

	
Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms. The following table describes those conventions and provides examples of their use.

	Convention	Meaning	Example
	Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
	Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts
Ensure that the recovery catalog and target database do not reside on the same disk.

	UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, datatypes, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, usernames, and roles.	You can specify this clause only for a NUMBER column.
You can back up the database by using the BACKUP command.

Query the TABLE_NAME column in the USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS procedure.

	lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executables, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names, and connect identifiers, as well as user-supplied database objects and structures, column names, packages and classes, usernames and roles, program units, and parameter values.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	Enter sqlplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the /disk1/oracle/dbs directory.

The department_id, department_name, and location_id columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

	lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause.
Run old_release.SQL where old_release refers to the release you installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. They are displayed in a monospace (fixed-width) font and separated from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and provides examples of their use.

	Convention	Meaning	Example
	

[]

	Brackets enclose one or more optional items. Do not enter the brackets.	

DECIMAL (digits [, precision])

	

{ }

	Braces enclose two or more items, one of which is required. Do not enter the braces.	

{ENABLE | DISABLE}

	

|

	A vertical bar represents a choice of two or more options within brackets or braces. Enter one of the options. Do not enter the vertical bar.	

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

	

...

	Horizontal ellipsis points indicate either:
	
That we have omitted parts of the code that are not directly related to the example

	
That you can repeat a portion of the code

	

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM employees;

	

 .
 .
 .

	Vertical ellipsis points indicate that we have omitted several lines of code not directly related to the example.	

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

	Other notation	You must enter symbols other than brackets, braces, vertical bars, and ellipsis points as shown.	

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

	

Italics

	Italicized text indicates placeholders or variables for which you must supply particular values.	

CONNECT SYSTEM/system_password
DB_NAME = database_name

	

UPPERCASE

	Uppercase typeface indicates elements supplied by the system. We show these terms in uppercase in order to distinguish them from terms you define. Unless terms appear in brackets, enter them in the order and with the spelling shown. However, because these terms are not case sensitive, you can enter them in lowercase.	

SELECT last_name, employee_id FROM employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

	

lowercase

	Lowercase typeface indicates programmatic elements that you supply. For example, lowercase indicates names of tables, columns, or files.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	

SELECT last_name, employee_id FROM employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Conventions for Windows Operating Systems

The following table describes conventions for Windows operating systems and provides examples of their use.

	Convention	Meaning	Example
	Choose Start >	How to start a program.	To start the Database Configuration Assistant, choose Start > Programs > Oracle - HOME_NAME > Configuration and Migration Tools > Database Configuration Assistant.
	File and directory names	File and directory names are not case sensitive. The following special characters are not allowed: left angle bracket (<), right angle bracket (>), colon (:), double quotation marks ("), slash (/), pipe (|), and dash (-). The special character backslash (\) is treated as an element separator, even when it appears in quotes. If the file name begins with \\, then Windows assumes it uses the Universal Naming Convention.	

c:\winnt"\"system32 is the same as C:\WINNT\SYSTEM32

	C:\>	Represents the Windows command prompt of the current hard disk drive. The escape character in a command prompt is the caret (^). Your prompt reflects the subdirectory in which you are working. Referred to as the command prompt in this manual.	

C:\oracle\oradata>

	Special characters	The backslash (\) special character is sometimes required as an escape character for the double quotation mark (") special character at the Windows command prompt. Parentheses and the single quotation mark (') do not require an escape character. Refer to your Windows operating system documentation for more information on escape and special characters.	

C:\>exp scott/tiger TABLES=emp QUERY=\"WHERE job='SALESMAN' and sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott TABLES=(emp, dept)

	

HOME_NAME

	Represents the Oracle home name. The home name can be up to 16 alphanumeric characters. The only special character allowed in the home name is the underscore.	

C:\> net start OracleHOME_NAMETNSListener

	ORACLE_HOME and ORACLE_BASE	In releases prior to Oracle8i release 8.1.3, when you installed Oracle components, all subdirectories were located under a top level ORACLE_HOME directory that by default used one of the following names:
	
C:\orant for Windows NT

	
C:\orawin98 for Windows 98

This release complies with Optimal Flexible Architecture (OFA) guidelines. All subdirectories are not under a top level ORACLE_HOME directory. There is a top level directory called ORACLE_BASE that by default is C:\oracle. If you install the latest Oracle release on a computer with no other Oracle software installed, then the default setting for the first Oracle home directory is C:\oracle\orann, where nn is the latest release number. The Oracle home directory is located directly under ORACLE_BASE.

All directory path examples in this guide follow OFA conventions.

Refer to Oracle Database Platform Guide for Windows for additional information about OFA compliances and for information about installing Oracle products in non-OFA compliant directories.

	Go to the ORACLE_BASE\ORACLE_HOME\rdbms\admin directory.

6 Supporting Multilingual Databases with Unicode

This chapter illustrates how to use Unicode in an Oracle database environment. It includes the following topics:

	
Overview of Unicode

	
What is Unicode?

	
Implementing a Unicode Solution in the Database

	
Unicode Case Studies

	
Designing Database Schemas to Support Multiple Languages

Overview of Unicode

Dealing with many different languages in the same application or database has been complicated and difficult for a long time. To overcome the limitations of existing character encodings, several organizations began working on the creation of a global character set in the late 1980s. The need for this became even greater with the development of the World Wide Web in the mid-1990s. The Internet has changed how companies do business, with an emphasis on the global market that has made a universal character set a major requirement. A global character set needs to fulfill the following conditions:

	
Contain all major living scripts

	
Support legacy data and implementations

	
Be simple enough that a single implementation of an application is sufficient for worldwide use

A global character set should also have the following capabilities:

	
Support multilingual users and organizations

	
Conform to international standards

	
Enable worldwide interchange of data

This global character set exists, is in wide use, and is called Unicode.

What is Unicode?

Unicode is a universal encoded character set that enables information from any language to be stored using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language.

The Unicode standard has been adopted by many software and hardware vendors. Many operating systems and browsers now support Unicode. Unicode is required by standards such as XML, Java, JavaScript, LDAP, and WML. It is also synchronized with the ISO/IEC 10646 standard.

Oracle started supporting Unicode as a database character set in Oracle Database 7. In Oracle Database 10g, Unicode support has been expanded. Oracle Database 10g, Release 2 supports Unicode 4.0.

	
See Also:

http://www.unicode.org for more information about the Unicode standard

This section contains the following topics:

	
Supplementary Characters

	
Unicode Encodings

	
Oracle's Support for Unicode

Supplementary Characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes to encode each character. This allowed 65,536 characters to be represented. However, more characters need to be supported, especially additional CJK ideographs that are important for the Chinese, Japanese, and Korean markets.

Unicode 4.0 defines supplementary characters to meet this need. It uses two 16-bit code points (also known as supplementary characters) to represent a single character. This enables an additional 1,048,576 characters to be defined. The Unicode 4.0 standard defines 45,960 supplementary characters.

Adding supplementary characters increases the complexity of Unicode, but it is less complex than managing several different encodings in the same configuration.

Unicode Encodings

The Unicode standard encodes characters in different ways: UTF-8, UCS-2, and UTF-16. Conversion between different Unicode encodings is a simple bit-wise operation that is defined in the Unicode standard.

This section contains the following topics:

	
UTF-8 Encoding

	
UCS-2 Encoding

	
UTF-16 Encoding

	
Examples: UTF-16, UTF-8, and UCS-2 Encoding

UTF-8 Encoding

UTF-8 is the 8-bit encoding of Unicode. It is a variable-width encoding and a strict superset of ASCII. This means that each and every character in the ASCII character set is available in UTF-8 with the same code point values. One Unicode character can be 1 byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters from the European scripts are represented in either 1 or 2 bytes. Characters from most Asian scripts are represented in 3 bytes. Supplementary characters are represented in 4 bytes.

UTF-8 is the Unicode encoding supported on UNIX platforms and used for HTML and most Internet browsers. Other environments such as Windows and Java use UCS-2 encoding.

The benefits of UTF-8 are as follows:

	
Compact storage requirement for European scripts because it is a strict superset of ASCII

	
Ease of migration between ASCII-based characters sets and UTF-8

	
See Also:

	
"Supplementary Characters"

	
Table B-2, "Unicode Character Code Ranges for UTF-8 Character Codes"

UCS-2 Encoding

UCS-2 is a fixed-width, 16-bit encoding. Each character is 2 bytes. UCS-2 is the Unicode encoding used by Java and Microsoft Windows NT 4.0. UCS-2 supports characters defined for Unicode 3.0, so there is no support for supplementary characters.

The benefits of UCS-2 over UTF-8 are as follows:

	
More compact storage for Asian scripts because all characters are two bytes

	
Faster string processing because characters are fixed-width

	
Better compatibility with Java and Microsoft clients

	
See Also:

"Supplementary Characters"

UTF-16 Encoding

UTF-16 encoding is the 16-bit encoding of Unicode. UTF-16 is an extension of UCS-2 because it supports the supplementary characters by using two UCS-2 code points for each supplementary character. UTF-16 is a strict superset of UCS-2.

One character can be either 2 bytes or 4 bytes in UTF-16. Characters from European and most Asian scripts are represented in 2 bytes. Supplementary characters are represented in 4 bytes. UTF-16 is the main Unicode encoding used by Microsoft Windows 2000.

The benefits of UTF-16 over UTF-8 are as follows:

	
More compact storage for Asian scripts because most of the commonly used Asian characters are represented in two bytes.

	
Better compatibility with Java and Microsoft clients

	
See Also:

	
"Supplementary Characters"

	
Table B-1, "Unicode Character Code Ranges for UTF-16 Character Codes"

Examples: UTF-16, UTF-8, and UCS-2 Encoding

Figure 6-1 shows some characters and their character codes in UTF-16, UTF-8, and UCS-2 encoding. The last character is a treble clef (a music symbol), a supplementary character.

Figure 6-1 UTF-16, UTF-8, and UCS-2 Encoding Examples

[image: Description of Figure 6-1 follows]

Description of "Figure 6-1 UTF-16, UTF-8, and UCS-2 Encoding Examples"

Oracle's Support for Unicode

Oracle started supporting Unicode as a database character set in release 7. Table 6-1 summarizes the Unicode character sets supported by Oracle Database.

Table 6-1 Unicode Character Sets Supported by Oracle Database

	Character Set	Supported in RDBMS Release	Unicode Encoding	Unicode Version	Database Character Set	National Character Set
	
AL24UTFFSS

	
7.2 - 8i

	
UTF-8

	
1.1

	
Yes

	
No

	
UTF8

	
8.0 - 10g

	
UTF-8

	
For Oracle Database release 8.0 through Oracle8i release 8.1.6: 2.1

For Oracle8i Database release 8.1.7 and later: 3.0

	
Yes

	
Yes (Oracle9i Database and Oracle Database 10g only)

	
UTFE

	
8.0 - 10g

	
UTF-EBCDIC

	
For Oracle8i Database releases 8.0 through 8.1.6: 2.1

For Oracle8i Database release 8.1.7 and later: 3.0

	
Yes

	
No

	
AL32UTF8

	
9i - 10g

	
UTF-8

	
Oracle9i Database Release 1: 3.0

Oracle9i Database Release 2: 3.1

Oracle Database 10g, Release 1: 3.2

Oracle Database 10g, Release 2: 4.0

	
Yes

	
No

	
AL16UTF16

	
9i - 10g

	
UTF-16

	
Oracle9i Database Release 1: 3.0

Oracle9i Database Release 2: 3.1

Oracle Database 10g, Release 1: 3.2

Oracle Database 10g, Release 2: 4.0

	
No

	
Yes

Implementing a Unicode Solution in the Database

You can store Unicode characters in an Oracle database in two ways.

You can create a Unicode database that enables you to store UTF-8 encoded characters as SQL CHAR datatypes (CHAR, VARCHAR2, CLOB, and LONG).

If you prefer to implement Unicode support incrementally or if you need to support multilingual data only in certain columns, then you can store Unicode data in either the UTF-16 or UTF-8 encoding form in SQL NCHAR datatypes (NCHAR, NVARCHAR2, and NCLOB). The SQL NCHAR datatypes are called Unicode datatypes because they are used only for storing Unicode data.

	
Note:

You can combine a Unicode database solution with a Unicode datatype solution.

The following sections explain how to use the two Unicode solutions and how to choose between them:

	
Enabling Multilingual Support with Unicode Databases

	
Enabling Multilingual Support with Unicode Datatypes

	
How to Choose Between a Unicode Database and a Unicode Datatype Solution

	
Comparing Unicode Character Sets for Database and Datatype Solutions

Enabling Multilingual Support with Unicode Databases

The database character set specifies the encoding to be used in the SQL CHAR datatypes as well as the metadata such as table names, column names, and SQL statements. A Unicode database is a database with a UTF-8 character set as the database character set. There are three Oracle character sets that implement the UTF-8 encoding. The first two are designed for ASCII-based platforms while the third one should be used on EBCDIC platforms.

	
AL32UTF8

The AL32UTF8 character set supports the latest version of the Unicode standard. It encodes characters in one, two, or three bytes. Supplementary characters require four bytes. It is for ASCII-based platforms.

	
UTF8

The UTF8 character set encodes characters in one, two, or three bytes. It is for ASCII-based platforms.

The UTF8 character set has supported Unicode 3.0 since Oracle8i release 8.1.7 and will continue to support Unicode 3.0 in future releases of Oracle Database. Although specific supplementary characters were not assigned code points in Unicode until version 3.1, the code point range was allocated for supplementary characters in Unicode 3.0. If supplementary characters are inserted into a UTF8 database, then it does not corrupt the data in the database. The supplementary characters are treated as two separate, user-defined characters that occupy 6 bytes. Oracle recommends that you switch to AL32UTF8 for full support of supplementary characters in the database character set.

	
UTFE

The UTFE character set is for EBCDIC platforms. It is similar to UTF8 on ASCII platforms, but it encodes characters in one, two, three, and four bytes. Supplementary characters are converted as two 4-byte characters.

Example 6-1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTF8 character set, use the CREATE DATABASE statement and include the CHARACTER SET AL32UTF8 clause. For example:

CREATE DATABASE sample

CONTROLFILE REUSE
LOGFILE

GROUP 1 ('diskx:log1.log', 'disky:log1.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET AL32UTF8
NATIONAL CHARACTER SET AL16UTF16
DATAFILE

'disk1:df1.dbf' AUTOEXTEND ON,
'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE = '+02:00';

	
Note:

Specify the database character set when you create the database.

Enabling Multilingual Support with Unicode Datatypes

An alternative to storing Unicode data in the database is to use the SQL NCHAR datatypes (NCHAR, NVARCHAR, NCLOB). You can store Unicode characters into columns of these datatypes regardless of how the database character set has been defined. The NCHAR datatype is a Unicode datatype exclusively. In other words, it stores data encoded as Unicode.

You can create a table using the NVARCHAR2 and NCHAR datatypes. The column length specified for the NCHAR and NVARCHAR2 columns is always the number of characters instead of the number of bytes:

CREATE TABLE product_information
 (product_id NUMBER(6)
 , product_name NVARCHAR2(100)
 , product_description VARCHAR2(1000));

The encoding used in the SQL NCHAR datatypes is the national character set specified for the database. You can specify one of the following Oracle character sets as the national character set:

	
AL16UTF16

This is the default character set for SQL NCHAR datatypes. The character set encodes Unicode data in the UTF-16 encoding. It supports supplementary characters, which are stored as four bytes.

	
UTF8

When UTF8 is specified for SQL NCHAR datatypes, the data stored in the SQL datatypes is in UTF-8 encoding.

You can specify the national character set for the SQL NCHAR datatypes when you create a database using the CREATE DATABASE statement with the NATIONAL CHARACTER SET clause. The following statement creates a database with WE8ISO8859P1 as the database character set and AL16UTF16 as the national character set.

Example 6-2 Creating a Database with a National Character Set

CREATE DATABASE sample

CONTROLFILE REUSE
LOGFILE

GROUP 1 ('diskx:log1.log', 'disky:log1.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K

MAXLOGFILES 5
MAXLOGHISTORY 100
MAXDATAFILES 10
MAXINSTANCES 2
ARCHIVELOG
CHARACTER SET WE8ISO8859P1
NATIONAL CHARACTER SET AL16UTF16
DATAFILE

'disk1:df1.dbf' AUTOEXTEND ON,
'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_ts
UNDO TABLESPACE undo_ts
SET TIME_ZONE = '+02:00';

How to Choose Between a Unicode Database and a Unicode Datatype Solution

To choose the right Unicode solution for your database, consider the following questions:

	
Programming environment: What are the main programming languages used in your applications? How do they support Unicode?

	
Ease of migration: How easily can your data and applications be migrated to take advantage of the Unicode solution?

	
Types of data: Is your data mostly Asian or European? Do you need to store multilingual documents into LOB columns?

	
Types of applications: What type of applications are you implementing: a packaged application or a customized end-user application?

This section describes some general guidelines for choosing a Unicode database or a Unicode datatype solution. The final decision largely depends on your exact environment and requirements. This section contains the following topics:

	
When Should You Use a Unicode Database?

	
When Should You Use Unicode Datatypes?

When Should You Use a Unicode Database?

Use a Unicode database in the situations described in Table 6-2.

Table 6-2 Using a Unicode Database

	Situation	Explanation
	
You need easy code migration for Java or PL/SQL.

	
If your existing application is mainly written in Java and PL/SQL and your main concern is to minimize the code changes required to support multiple languages, then you may want to use a Unicode database solution. If the datatypes used to stored data remain as SQL CHAR datatypes, then the Java and PL/SQL code that accesses these columns does not need to change.

	
You have evenly distributed multilingual data.

	
If the multilingual data is evenly distributed in existing schema tables and you are not sure which tables contain multilingual data, then you should use a Unicode database because it does not require you to identify the kind of data that is stored in each column.

	
Your SQL statements and PL/SQL code contain Unicode data.

	
You must use a Unicode database. SQL statements and PL/SQL code are converted into the database character set before being processed. If the SQL statements and PL/SQL code contain characters that cannot be converted to the database character set, then those characters are lost. A common place to use Unicode data in a SQL statement is in a string literal.

	
You want to store multilingual documents in BLOB format and use Oracle Text for content searching.

	
You must use a Unicode database. The BLOB data is converted to the database character set before being indexed by Oracle Text. If your database character set is not UTF8, then data is lost when the documents contain characters that cannot be converted to the database character set.

When Should You Use Unicode Datatypes?

Use Unicode datatypes in the situations described in Table 6-3.

Table 6-3 Using Unicode Datatypes

	Situation	Explanation
	
You want to add multilingual support incrementally.

	
If you want to add Unicode support to the existing database without migrating the character set, then consider using Unicode datatypes to store Unicode data. You can add columns of the SQL NCHAR datatypes to existing tables or new tables to support multiple languages incrementally.

	
You want to build a packaged application.

	
If you are building a packaged application to sell to customers, then you may want to build the application using SQL NCHAR datatypes. The SQL NCHAR datatype is a reliable Unicode datatype in which the data is always stored in Unicode, and the length of the data is always specified in UTF-16 code units. As a result, you need to test the application only once. The application will run on customer databases with any database character set.

	
You want better performance with single-byte database character sets.

	
If performance is your main concern, then consider using a single-byte database character set and storing Unicode data in the SQL NCHAR datatypes.

	
You require UTF-16 support in Windows clients.

	
If your applications are written in Visual C/C++ or Visual Basic running on Windows, then you may want to use the SQL NCHAR datatypes. You can store UTF-16 data in SQL NCHAR datatypes in the same way that you store it in the wchar_t buffer in Visual C/C++ and string buffer in Visual Basic. You can avoid buffer overflow in client applications because the length of the wchar_t and string datatypes match the length of the SQL NCHAR datatypes in the database.

	
Note:

You can use a Unicode database with Unicode datatypes.

Comparing Unicode Character Sets for Database and Datatype Solutions

Oracle provides two solutions to store Unicode characters in the database: a Unicode database solution and a Unicode datatype solution. After you select the Unicode database solution, the Unicode datatype solution or a combination of both, determine the character set to be used in the Unicode database or the Unicode datatype.

Table 6-4 contains advantages and disadvantages of different character sets for a Unicode database solution. The Oracle character sets that can be Unicode database character sets are AL32UTF8, UTF8, and UTFE.

Table 6-4 Character Set Advantages and Disadvantages for a Unicode Database Solution

	Database Character Set	Advantages	Disadvantages
	
AL32UTF8

	
	
Supplementary characters are stored in 4 bytes, so there is no data conversion when supplementary characters are retrieved and inserted if the client setting is UTF-8.

	
The storage for supplementary characters requires less disk space in AL32UTF8 than in UTF8.

	
	
You cannot specify the length of SQL CHAR types in number of UCS-2 code points for supplementary characters. Supplementary characters are treated as one code point rather than the standard two code points.

	
The binary order for SQL CHAR columns is different from the binary order of SQL NCHAR columns when the data consists of supplementary characters. As a result, CHAR columns and NCHAR columns do not always have the same sort for identical strings.

	
UTF8

	
	
You can specify the length of SQL CHAR types in number of UCS-2 code points.

	
The binary order of the SQL CHAR columns is always the same as the binary order of the SQL NCHAR columns when the data consists of the same supplementary characters. As a result, CHAR columns and NCHAR columns have the same sort for identical strings.

	
	
Supplementary characters are stored as 6 bytes instead of the 4 bytes defined by Unicode 4.0. As a result, Oracle has to convert data for supplementary characters if the client setting is UTF-8.

	
UTFE

	
	
This is the only Unicode character set for the EBCDIC platform.

	
You can specify the length of SQL CHAR types in number of UCS-2 code points.

	
The binary order of the SQL CHAR columns is always the same as the binary order of the SQL NCHAR columns when the data consists of the same supplementary characters. As a result, CHAR columns and NCHAR columns have the same sort for identical strings.

	
	
Supplementary character are stored as 8 bytes (two 4-byte sequences) instead of the 5 bytes defined by the Unicode standard. As a result, Oracle has to convert data for those supplementary characters.

	
UTFE is not a standard encoding in the Unicode standard. As a result, clients requiring standard UTF-8 encoding must convert data from UTFE to the standard encoding when data is retrieved and inserted.

Table 6-5 contains advantages and disadvantages of different character sets for a Unicode datatype solution. The Oracle character sets that can be national character sets are AL16UTF16 and UTF8. The default is AL16UTF16.

Table 6-5 Character Set Advantages and Disadvantages for a Unicode Datatype Solution

	National Character Set	Advantages	Disadvantages
	
AL16UTF16

	
	
Asian data in AL16UTF16 is usually more compact than in UTF8. As a result, you save disk space and have less disk I/O when most of the multilingual data stored in the database is Asian data.

	
It is usually faster to process strings encoded in the AL16UTF16 character set than strings encoded in UTF8 because Oracle processes most characters in an AL16UTF16 encoded string as fixed-width characters.

	
The maximum length limits for the NCHAR and NVARCHAR2 columns are 1000 and 2000 characters, respectively. Because the data is fixed-width, the lengths are guaranteed.

	
	
European ASCII data requires more disk space to store in AL16UTF16 than in UTF8. If most of your data is European data, then it uses more disk space than if it were UTF8 data.

	
The maximum lengths for NCHAR and NVARCHAR2 are 1000 and 2000 characters, which is less than the lengths for NCHAR (2000) and NVARCHAR2 (4000) in UTF8.

	
UTF8

	
	
European data in UTF8 is usually more compact than in AL16UTF16. As a result, you save disk space and have better response time when most of the multilingual data stored in the database is European data.

	
The maximum lengths for the NCHAR and NVARCHAR2 columns are 2000 and 4000 characters respectively, which is more than those for NCHAR (1000) and NVARCHAR2 (2000) in AL16UTF16. Although the maximum lengths of the NCHAR and NVARCHAR2 columns are larger in UTF8, the actual storage size is still bound by the byte limits of 2000 and 4000 bytes, respectively. For example, you can store 4000 UTF8 characters in an NVARCHAR2 column if all the characters are single byte, but only 4000/3 characters if all the characters are three bytes.

	
	
Asian data requires more disk space to store in UTF8 than in AL16UTF16. If most of your data is Asian data, then disk space usage is not less efficient than when the character set is AL16UTF16.

	
Although you can specify larger length limits for NCHAR and NVARCHAR, you are not guaranteed to be able to insert the number of characters specified by these limits. This is because UTF8 allows variable-width characters.

	
It is usually slower to process strings encoded in UTF8 than strings encoded in AL16UTF16 because UTF8 encoded strings consist of variable-width characters.

Unicode Case Studies

This section describes typical scenarios for storing Unicode characters in an Oracle database:

	
Example 6-3, "Unicode Solution with a Unicode Database"

	
Example 6-4, "Unicode Solution with Unicode Datatypes"

	
Example 6-5, "Unicode Solution with a Unicode Database and Unicode Datatypes"

Example 6-3 Unicode Solution with a Unicode Database

An American company running a Java application would like to add German and French support in the next release of the application. They would like to add Japanese support at a later time. The company currently has the following system configuration:

	
The existing database has a database character set of US7ASCII.

	
All character data in the existing database is composed of ASCII characters.

	
PL/SQL stored procedures are used in the database.

	
The database is about 300 GB.

	
There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose UTF8 for the database character set because of the following reasons:

	
The database is very large and the scheduled downtime is short. Fast migration of the database to Unicode is vital. Because the database is in US7ASCII, the easiest and fastest way of enabling the database to support Unicode is to switch the database character set to UTF8 by running the CSALTER script. No data conversion is required because US7ASCII is a subset of UTF8.

	
Because most of the code is written in Java and PL/SQL, changing the database character set to UTF8 is unlikely to break existing code. Unicode support is automatically enabled in the application.

	
Because the application supports French, German, and Japanese, there are few supplementary characters. Both AL32UTF8 and UTF8 are suitable.

Example 6-4 Unicode Solution with Unicode Datatypes

A European company that runs its applications mainly on Windows platforms wants to add new Windows applications written in Visual C/C++. The new applications will use the existing database to support Japanese and Chinese customer names. The company currently has the following system configuration:

	
The existing database has a database character set of WE8ISO8859P1.

	
All character data in the existing database is composed of Western European characters.

	
The database is around 50 GB.

A typical solution is take the following actions:

	
Use NCHAR and NVARCHAR2 datatypes to store Unicode characters

	
Keep WE8ISO8859P1 as the database character set

	
Use AL16UTF16 as the national character set

The reasons for this solution are:

	
Migrating the existing database to a Unicode database required data conversion because the database character set is WE8ISO8859P1 (a Latin-1 character set), which is not a subset of UTF8. As a result, there would be some overhead in converting the data to UTF8.

	
The additional languages are supported in new applications only. They do not depend on the existing applications or schemas. It is simpler to use the Unicode datatype in the new schema and keep the existing schemas unchanged.

	
Only customer name columns require Unicode support. Using a single NCHAR column meets the customer's requirements without migrating the entire database.

	
Because the languages to be supported are mostly Asian languages, AL16UTF16 should be used as the national character set so that disk space is used more efficiently.

	
The lengths of the SQL NCHAR datatypes are defined as number of characters. This is the same as the way they are treated when using wchar_t strings in Windows C/C++ programs. This reduces programming complexity.

	
Existing applications using the existing schemas are unaffected.

Example 6-5 Unicode Solution with a Unicode Database and Unicode Datatypes

A Japanese company wants to develop a new Java application. The company expects that the application will support as many languages as possible in the long run.

	
In order to store documents as is, the company decided to use the BLOB datatype to store documents of multiple languages.

	
The company may also want to generate UTF-8 XML documents from the relational data for business-to-business data exchange.

	
The back-end has Windows applications written in C/C++ using ODBC to access the Oracle database.

In this case, the typical solution is to create a Unicode database using AL32UTF8 as the database character set and use the SQL NCHAR datatypes to store multilingual data. The national character set should be set to AL16UTF16. The reasons for this solution are as follows:

	
When documents of different languages are stored in BLOB format, Oracle Text requires the database character set to be one of the UTF-8 character sets. Because the applications may retrieve relational data as UTF-8 XML format (where supplementary characters are stored as four bytes), AL32UTF8 should be used as the database character set to avoid data conversion when UTF-8 data is retrieved or inserted.

	
Because applications are new and written in both Java and Windows C/C++, the company should use the SQL NCHAR datatype for its relational data. Both Java and Windows support the UTF-16 character datatype, and the length of a character string is always measured in the number of characters.

	
If most of the data is for Asian languages, then AL16UTF16 should be used with the SQL NCHAR datatypes because AL16UTF16 offers better storage efficiency.

Designing Database Schemas to Support Multiple Languages

In addition to choosing a Unicode solution, the following issues should be taken into consideration when the database schema is designed to support multiple languages:

	
Specifying Column Lengths for Multilingual Data

	
Storing Data in Multiple Languages

	
Storing Documents in Multiple Languages in LOB Datatypes

	
Creating Indexes for Searching Multilingual Document Contents

Specifying Column Lengths for Multilingual Data

When you use NCHAR and NVARCHAR2 datatypes for storing multilingual data, the column size specified for a column is defined in number of characters. (The number of characters means the number of Unicode code units.) Table 6-6 shows the maximum size of the NCHAR and NVARCHAR2 datatypes for the AL16UTF16 and UTF8 national character sets.

Table 6-6 Maximum Datatype Size

	National Character Set	Maximum Column Size of NCHAR Datatype	Maximum Column Size of NVARCHAR2 Datatype
	
AL16UTF16

	
1000 characters

	
2000 characters

	
UTF8

	
2000 bytes

	
4000 bytes

When you use CHAR and VARCHAR2 datatypes for storing multilingual data, the maximum length specified for each column is, by default, in number of bytes. If the database needs to support Thai, Arabic, or multibyte languages such as Chinese and Japanese, then the maximum lengths of the CHAR, VARCHAR, and VARCHAR2 columns may need to be extended. This is because the number of bytes required to encode these languages in UTF8 or AL32UTF8 may be significantly larger than the number of bytes for encoding English and Western European languages. For example, one Thai character in the Thai character set requires 3 bytes in UTF8 or AL32UTF8. In addition, the maximum column lengths for CHAR, VARCHAR, and VARCHAR2 datatypes are 2000 bytes, 4000 bytes, and 4000 bytes respectively. If applications need to store more than 4000 bytes, then they should use the CLOB datatype.

Storing Data in Multiple Languages

The Unicode character set includes characters of most written languages around the world, but it does not contain information about the language to which a given character belongs. In other words, a character such as ä does not contain information about whether it is a French or German character. In order to provide information in the language a user desires, data stored in a Unicode database should accompany the language information to which the data belongs.

There are many ways for a database schema to relate data to a language. The following sections provide different approaches:

	
Store Language Information with the Data

	
Select Translated Data Using Fine-Grained Access Control

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language column (language_id) of CHAR or VARCHAR2 datatype to the product table to identify the language of the corresponding product information. This enables applications to retrieve the information in the desired language. The possible values for this language column are the 3-letter abbreviations of the valid NLS_LANGUAGE values of the database.

	
See Also:

Appendix A, "Locale Data" for a list of NLS_LANGUAGE values and their abbreviations

You can also create a view to select the data of the current language. For example:

ALTER TABLE scott.product_information ADD (language_id VARCHAR2(50)):

CREATE OR REPLACE VIEW product AS
 SELECT product_id, product_name
 FROM product_information
 WHERE language_id = SYS_CONTEXT('USERENV','LANG');

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control enables you to limit the degree to which a user can view information in a table or view. Typically, this is done by appending a WHERE clause. When you add a WHERE clause as a fine-grained access policy to a table or view, Oracle automatically appends the WHERE clause to any SQL statements on the table at run time so that only those rows satisfying the WHERE clause can be accessed.

You can use this feature to avoid specifying the desired language of a user in the WHERE clause in every SELECT statement in your applications. The following WHERE clause limits the view of a table to the rows corresponding to the desired language of a user:

WHERE language_id = SYS_CONTEXT('userenv', 'LANG')

Specify this WHERE clause as a fine-grained access policy for product_information as follows:

CREATE FUNCTION func1 (sch VARCHAR2 , obj VARCHAR2)
RETURN VARCHAR2(100);
BEGIN
RETURN 'language_id = SYS_CONTEXT(''userenv'', ''LANG'')';
END
/

DBMS_RLS.ADD_POLICY ('scott', 'product_information', 'lang_policy', 'scott', 'func1', 'select');

Then any SELECT statement on the product_information table automatically appends the WHERE clause.

	
See Also:

Oracle Database Application Developer's Guide - Fundamentals for more information about fine-grained access control

Storing Documents in Multiple Languages in LOB Datatypes

You can store documents in multiple languages in CLOB, NCLOB, or BLOB datatypes and set up Oracle Text to enable content search for the documents.

Data in CLOB columns is stored in a format that is compatible with UCS-2 when the database character set is multibyte, such as UTF8 or AL32UTF8. This means that the storage space required for an English document doubles when the data is converted. Storage for an Asian language document in a CLOB column requires less storage space than the same document in a LONG column using UTF8, typically around 30% less, depending on the contents of the document.

Documents in NCLOB format are also stored in a proprietary format that is compatible with UCS-2 regardless of the database character set or national character set. The storage space requirement is the same as for CLOB data. Document contents are converted to UTF-16 when they are inserted into a NCLOB column. If you want to store multilingual documents in a non-Unicode database, then choose NCLOB. However, content search on NCLOB is not yet supported.

Documents in BLOB format are stored as they are. No data conversion occurs during insertion and retrieval. However, SQL string manipulation functions (such as LENGTH or SUBSTR) and collation functions (such as NLS_SORT and ORDER BY) cannot be applied to the BLOB datatype.

Table 6-7 lists the advantages and disadvantages of the CLOB, NCLOB, and BLOB datatypes when storing documents:

Table 6-7 Comparison of LOB Datatypes for Document Storage

	Datatypes	Advantages	Disadvantages
	
CLOB

	
	
Content search support

	
String manipulation support

	
	
Depends on database character set

	
Data conversion is necessary for insertion

	
Cannot store binary documents

	
NCLOB

	
	
Independent of database character set

	
String manipulation support

	
	
No content search support

	
Data conversion is necessary for insertion

	
Cannot store binary documents

	
BLOB

	
	
Independent of database character set

	
Content search support

	
No data conversion, data stored as is

	
Can store binary documents such as Microsoft Word or Microsoft Excel

	
	
No string manipulation support

Creating Indexes for Searching Multilingual Document Contents

Oracle Text enables you to build indexes for content search on multilingual documents stored in CLOB format and BLOB format. It uses a language-specific lexer to parse the CLOB or BLOB data and produces a list of searchable keywords.

Create a multilexer to search multilingual documents. The multilexer chooses a language-specific lexer for each row, based on a language column. This section describes the high level steps to create indexes for documents in multiple languages. It contains the following topics:

	
Creating Multilexers

	
Creating Indexes for Documents Stored in the CLOB Datatype

	
Creating Indexes for Documents Stored in the BLOB Datatype

	
See Also:

Oracle Text Reference

Creating Multilexers

The first step in creating the multilexer is the creation of language-specific lexer preferences for each language supported. The following example creates English, German, and Japanese lexers with PL/SQL procedures:

ctx_ddl.create_preference('english_lexer', 'basic_lexer');
ctx_ddl.set_attribute('english_lexer','index_themes','yes');
ctx_ddl.create_preference('german_lexer', 'basic_lexer');
ctx_ddl.set_attribute('german_lexer','composite','german');
ctx_ddl.set_attribute('german_lexer','alternate_spelling','german');
ctx_ddl.set_attribute('german_lexer','mixed_case','yes');
ctx_ddl.create_preference('japanese_lexer', 'JAPANESE_VGRAM_LEXER');

After the language-specific lexer preferences are created, they need to be gathered together under a single multilexer preference. First, create the multilexer preference, using the MULTI_LEXER object:

ctx_ddl.create_preference('global_lexer','multi_lexer');

Now add the language-specific lexers to the multilexer preference using the add_sub_lexer call:

ctx_ddl.add_sub_lexer('global_lexer', 'german', 'german_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'japanese', 'japanese_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'default','english_lexer');

This nominates the german_lexer preference to handle German documents, the japanese_lexer preference to handle Japanese documents, and the english_lexer preference to handle everything else, using DEFAULT as the language.

Creating Indexes for Documents Stored in the CLOB Datatype

The multilexer decides which lexer to use for each row based on a language column in the table. This is a character column that stores the language of the document in a text column. Use the Oracle language name to identify the language of a document in this column. For example, if you use the CLOB datatype to store your documents, then add the language column to the table where the documents are stored:

CREATE TABLE globaldoc
 (doc_id NUMBER PRIMARY KEY,
 language VARCHAR2(30),
 text CLOB);

To create an index for this table, use the multilexer preference and specify the name of the language column:

CREATE INDEX globalx ON globaldoc(text)
 indextype IS ctxsys.context
 parameters ('lexer
 global_lexer
 language
 column
 language');

Creating Indexes for Documents Stored in the BLOB Datatype

In addition to the language column, the character set and format columns must be added in the table where the documents are stored. The character set column stores the character set of the documents using the Oracle character set names. The format column specifies whether a document is a text or binary document. For example, the CREATE TABLE statement can specify columns called characterset and format:

CREATE TABLE globaldoc (
 doc_id NUMBER PRIMARY KEY,
 language VARCHAR2(30),
 characterset VARCHAR2(30),
 format VARCHAR2(10),
 text BLOB
);

You can put word-processing or spreadsheet documents into the table and specify binary in the format column. For documents in HTML, XML and text format, you can put them into the table and specify text in the format column.

Because there is a column in which to specify the character set, you can store text documents in different character sets.

When you create the index, specify the names of the format and character set columns:

CREATE INDEX globalx ON globaldoc(text)
 indextype is ctxsys.context
 parameters ('filter inso_filter
 lexer global_lexer
 language column language
 format column format
 charset column characterset');

You can use the charset_filter if all documents are in text format. The charset_filter converts data from the character set specified in the charset column to the database character set.

Index

A B C D E F G H I J L M N O P Q R S T U V W X

Symbols

	$ORACLE_HOME/nls/data directory, 1.1.1
	$ORACLE_HOME/oracore/zoneinfo/timezlrg.dat time zone file, 4.6
	$ORACLE_HOME/oracore/zoneinfo/timezone.dat time zone file, 4.6

Numerics

	7-bit encoding schemes, 2.1.4.1, 2.1.4.1
	8-bit encoding schemes, 2.1.4.1, 2.1.4.1

A

	abbreviations
	
	languages, A.1

	abstract datatype
	
	creating as NCHAR, 2.3.9

	accent, 5.5
	accent-insensitive linguistic sort, 5.5
	ADCS script
	
	migrating character sets in Real Application Clusters, 11.2.2.1

	ADD_MONTHS SQL function, 4.4
	ADO interface and Unicode, 7.6.6
	AL16UTF16 character set, 6.2.3, A.4.5
	AL24UTFFSS character set, 6.2.3
	AL32UTF8 character set, 6.2.3, 6.3.1, A.4.5
	ALTER SESSION statement
	
	SET NLS_CURRENCY clause, 3.8.2, 3.8.3
	SET NLS_LANGUAGE clause, 3.4.2.1
	SET NLS_NUMERIC_CHARACTERS clause, 3.7.2
	SET NLS_TERRITORY clause, 3.4.2.1

	ALTER TABLE MODIFY statement
	
	migrating from CHAR to NCHAR, 11.3.3, 11.3.3.1

	analyse_histgrm.sql script, 12.8
	analyse_rule.sql script, 12.8
	analyse_source.sql script, 12.8
	application-locales, 8.8.3
	Arial Unicode MS font, 13.1.1.1
	array parameter
	
	Database Character Set Scanner, 12.5

	ASCII encoding, 2.1.3.1
	AT LOCAL clause, 4.10
	AT TIME ZONE clause, 4.10

B

	base letters, 5.3.3.1, 5.4.1
	BFILE data
	
	loading into LOBs, 9.3.4

	binary sorts, 5.2
	
	case-insensitive and accent-insensitive, 5.5.2
	example, 5.5.3

	binding and defining CLOB and NCLOB data in OCI, 7.3.7
	binding and defining SQL CHAR datatypes in OCI, 7.3.4
	binding and defining SQL NCHAR datatypes in OCI, 7.3.5
	BLANK_TRIMMING parameter, 11.1.1.1
	BLOBs
	
	creating indexes, 6.5.4.3

	boundaries parameter
	
	Database Character Set Scanner, 12.5

	byte semantics, 2.2, 3.11.1

C

	C number format mask, 3.8.3
	Calendar Utility, 13.3.2
	calendars
	
	customizing, 13.3.2
	parameter, 3.6
	supported, A.7

	canonical equivalence, 5.3.2, 5.4.6
	capture parameter
	
	Database Character Set Scanner, 12.5

	case, 5.1
	case-insensitive linguistic sort, 5.5
	CESU-8 compliance, A.4.5
	CHAR columns
	
	migrating to NCHAR columns, 11.3.3

	character data
	
	converting with CONVERT SQL function, 9.2.1

	character data conversion
	
	database character set, 11.2

	character data scanning
	
	before character set migration, 11.2

	character rearrangement, 5.4.8
	character repertoire, 2.1.1
	character semantics, 2.2, 3.11.1
	character set
	
	conversion, 13.5.2
	data loss
	
	during conversion, 2.3.3

	detecting with Globalization Development Kit, 8.7.6
	national, 7.2.1.2

	character set conversion
	
	between OCI client and database server, 7.3.2
	parameters, 3.10

	character set definition
	
	customizing, 13.5.6
	guidelines for editing files, 13.5.5
	naming files, 13.5.5

	character set migration
	
	CSALTER script, 11.2.2
	identifying character data conversion problems, 11.2
	postmigration tasks, 11.4
	scanning character data, 11.2

	character sets
	
	AL16UTF16, 6.2.3
	AL24UTFFSS, 6.2.3
	AL32UTF8, 6.2.3
	Asian, A.4.1, A.4.1, A.4.1
	changing after database creation, 2.4
	choosing, 11.1
	choosing a character set for a Unicode database, 6.3.4
	choosing a national character set, 6.3.4
	conversion, 2.3.3, 2.5.1, 9.2.1
	conversion using OCI, 10.7
	customizing, 13.5
	data loss, 11.1.2.1
	encoding, 2.1
	European, A.4.2, A.4.2
	ISO 8859 series, 2.1.3.1
	Middle Eastern, A.4.4
	migrating and the data dictionary, 12.8
	migration, 11.1, 11.1.1
	naming, 2.1.5
	national, 6.3.2, 7.2.1.1
	restrictions on character sets used to express names, 2.3.5.1
	supersets and subsets, A.4.7
	supported, A.4
	supporting different character repertoires, 2.1.3
	universal, A.4.5
	UTFE, 6.2.3

	character snational, 2.3.8
	character type conversion
	
	error reporting, 3.10.1

	characters
	
	available in all Oracle database character sets, 2.1.3
	context-sensitive, 5.4.5
	contracting, 5.4.3
	user-defined, 13.5.1

	choosing a character set, 11.1
	choosing between a Unicode database and Unicode datatypes, 6.3.3
	client operating system
	
	character set compatibility with applications, 2.3.2

	CLOB and NCLOB data
	
	binding and defining in OCI, 7.3.7

	CLOBs
	
	creating indexes, 6.5.4.2

	code chart
	
	displaying and printing, 13.4

	code point, 2.1.1
	collation
	
	customizing, 13.6

	column parameter
	
	Database Character Set Scanner, 12.5

	compatibility
	
	client operating system and application character sets, 2.3.2

	composed characters, 5.4.3
	context-sensitive characters, 5.4.5
	contracting characters, 5.4.3
	contracting letters, 5.4.10
	control characters, encoding, 2.1.2.3
	conversion
	
	between character set ID number and character set name, 9.2.4

	CONVERT SQL function, 9.2.1
	
	character sets, A.4.6

	convert time zones, 4.10
	convertible data
	
	data dictionary, 12.8

	converting character data
	
	CONVERT SQL function, 9.2.1

	converting character data between character sets, 9.2.1
	Coordinated Universal Time, 4.2.1.3, 4.2.1.4
	creating a database with Unicode datatypes, 6.3.2
	creating a Unicode database, 6.3.1
	CSALTER script, 11.2.2, 11.2.2.1
	
	checking phase, 12.10.1
	running, 12.10
	updating phase, 12.10.2

	CSM$COLUMNS table, 12.9.1.2
	CSM$ERRORS table, 12.9.1.3
	CSM$TABLES table, 12.9.1.1
	CSMIG user, 12.4.2
	csminst.sql script
	
	running, 12.4.2

	CSMV$COLUMNS view, 12.11.1
	CSMV$CONSTRAINTS view, 12.11.2
	CSMV$ERROR view, 12.11.3
	CSMV$INDEXES view, 12.11.4
	CSMV$TABLES view, 12.11.5
	currencies
	
	formats, 3.8.1

	CURRENT_DATE SQL function, 4.4
	CURRENT_TIMESTAMP SQL function, 4.4
	customizing time zone data, 13.3.1

D

	data conversion
	
	in Pro*C/C++, 7.4.1
	OCI driver, 7.5.5.1
	ODBC and OLE DB drivers, 7.6.3
	thin driver, 7.5.5.2
	Unicode Java strings, 7.5.5

	data dictionary
	
	changing character sets, 12.8
	convertible or lossy data, 12.8

	data dictionary views
	
	NLS_DATABASE_PARAMETERS, 3.3.1
	NLS_INSTANCE_PARAMETERS, 3.3.1
	NLS_SESSION_PARAMETER, 3.3.1

	data expansion
	
	during character set migration, 11.1.1
	during data conversion, 7.3.2.3

	data inconsistencies causing data loss, 11.1.2.2
	data loss
	
	caused by data inconsistencies, 11.1.2.2
	during character set conversion, 2.3.3
	during character set migration, 11.1.2.1
	during datatype conversion
	
	exceptions, 7.2.3

	during OCI Unicode character set conversion, 7.3.2.1
	from mixed character sets, 11.1.2.2

	data truncation, 11.1.1
	
	restrictions, 11.1.1.1

	database character set
	
	character data conversion, 11.2
	choosing, 2.3
	compatibility between client operating system and applications, 2.3.2
	performance, 2.3.4

	Database Character Set Scanner, 12.5
	
	analyse_histgrm.sql script, 12.8
	analyse_rule.sql script, 12.8
	analyse_source.sql script, 12.8
	array parameter, 12.5
	boundaries parameter, 12.5
	capture parameter, 12.5
	column parameter, 12.5
	CSM$COLUMNS table, 12.9.1.2
	CSM$ERRORS table, 12.9.1.3
	CSM$TABLES table, 12.9.1.1
	CSMV$COLUMNS view, 12.11.1
	CSMV$CONSTRAINTS view, 12.11.2
	CSMV$ERROR view, 12.11.3
	CSMV$INDEXES view, 12.11.4
	CSMV$TABLES view, 12.11.5
	Database Scan Summary Report, 12.7.1
	error messages, 12.12
	exclude parameter, 12.5
	feedback parameter, 12.5
	fromnchar parameter, 12.5
	full parameter, 12.5
	help parameter, 12.5
	Individual Exception Report, 12.7.2
	invoking, 12.4.3
	lastrpt parameter, 12.5, 12.5
	maxblocks parameter, 12.5
	online help, 12.4.5
	performance, 12.9.2
	preserve parameter, 12.5
	query parameter, 12.5
	restrictions, 12.9.3
	scan modes, 12.3
	suppress parameter, 12.5
	table parameter, 12.5
	tochar parameter, 12.5
	user parameter, 12.5
	userid parameter, 12.5
	utility, 12.2
	views, 12.11

	Database Scan Summary Report, 12.7.1
	database schemas
	
	designing for multiple languages, 6.5

	database time zone, 4.8
	datatype conversion
	
	data loss and exceptions, 7.2.3
	implicit, 7.2.4
	SQL functions, 7.2.5

	datatypes
	
	abstract, 2.3.9
	DATE, 4.2.1.1
	datetime, 4.2
	inserting values into datetime datatypes, 4.2.1.5
	inserting values into interval datatypes, 4.2.2.3
	interval, 4.2, 4.2.2
	INTERVAL DAY TO SECOND, 4.2.2.2
	INTERVAL YEAR TO MONTH, 4.2.2.1
	supported, 2.3.9
	TIMESTAMP, 4.2.1.2
	TIMESTAMP WITH LOCAL TIME ZONE, 4.2.1.4
	TIMESTAMP WITH TIME ZONE, 4.2.1.3

	date and time parameters, 3.5
	DATE datatype, 4.2.1.1
	date formats, 3.5.1, 3.5.1.1, 9.3.1
	
	and partition bound expressions, 3.5.1.1

	dates
	
	ISO standard, 3.6.1.2, 9.3.2
	NLS_DATE_LANGUAGE parameter, 3.5.1.2

	datetime datatypes, 4.2
	
	inserting values, 4.2.1.5

	datetime format parameters, 4.5.1
	Daylight Saving Time
	
	Oracle support, 4.11

	daylight saving time session parameter, 4.5.3
	days
	
	format element, 3.5.1.2
	language of names, 3.5.1.2

	DB_TZ database time zone, 4.9
	DBMS_LOB PL/SQL package, 9.3.4
	DBMS_LOB.LOADBLOBFROMFILE procedure, 9.3.4
	DBMS_LOB.LOADCLOBFROMFILE procedure, 9.3.4
	DBMS_REDEFINITION.CAN_REDEF_TABLE procedure, 11.3.3.2
	DBTIMEZONE SQL function, 4.4
	dest_char_set parameter, A.4.6
	detecting language and character sets
	
	Globalization Development Kit, 8.7.6

	detection
	
	supported languages and character sets, A.5

	diacritic, 5.1
	dynamic performance views
	
	V$NLS_PARAMETERS, 3.3.2
	V$NLS_VALID_VALUES, 3.3.2

E

	encoding
	
	control characters, 2.1.2.3
	ideographic writing systems, 2.1.2.2
	numbers, 2.1.2.3
	phonetic writing systems, 2.1.2.1
	punctuation, 2.1.2.3
	symbols, 2.1.2.3

	encoding schemes
	
	7-bit, 2.1.4.1, 2.1.4.1
	8-bit, 2.1.4.1, 2.1.4.1
	fixed-width, 2.1.4.2
	multibyte, 2.1.4.2
	shift-sensitive variable-width, 2.1.4.2
	shift-sensitive variable-width multibyte, 2.1.4.2
	single-byte, 2.1.4.1
	variable-width, 2.1.4.2

	environment variables
	
	ORA_SDTZ, 4.5.2, 4.9
	ORA_TZFILE, 4.5.2

	error messages
	
	languages, A.2
	translation, A.2

	ERROR_ON_OVERLAP_TIME session parameter, 4.5.3
	euro
	
	Oracle support, 3.8.5

	exclude parameter
	
	Database Character Set Scanner, 12.5

	expanding characters, 5.4.9
	
	characters
	
	expanding, 5.4.4

	EXTRACT (datetime) SQL function, 4.4

F

	feedback parameter
	
	Database Character Set Scanner, 12.5

	fixed-width multibyte encoding schemes, 2.1.4.2
	fonts
	
	Unicode, 13.1.1
	Unicode for UNIX, 13.1.1.2
	Unicode for Windows, 13.1.1.1

	format elements, 9.3.3
	
	C, 9.3.3
	D, 9.3.3
	day, 3.5.1.2
	G, 9.3.3
	IW, 9.3.2
	IY, 9.3.2
	L, 9.3.3
	month, 3.5.1.2
	RM, 9.3.1
	RN, 9.3.3

	format masks, 3.7.2, 9.3.1
	formats
	
	currency, 3.8.1
	date, 3.5.1.1, 4.5.1
	numeric, 3.7.1
	time, 3.5.2

	FROM_TZ SQL function, 4.4
	fromchar parameter, 12.5
	
	Database Character Set Scanner, 12.5

	fromnchar parameter
	
	Database Character Set Scanner, 12.5

	full parameter
	
	Database Character Set Scanner, 12.5

G

	GDK
	
	application configuration file, 8.6.1

	GDK application configuration file, 8.8
	
	example, 8.8.8

	GDK application framework for J2EE, 8.6, 8.6
	GDK components, 8.4
	GDK error messages, 8.11
	GDK Java API, 8.7
	GDK Java supplied packages and classes, 8.9
	GDK Localizer object, 8.6.4
	gdkapp.xml application configuration file, 8.8
	gdkapp.xml GDK application configuration file, 8.6.1
	getString() method, 7.5.6.1
	getStringWithReplacement() method, 7.5.6.1
	Globalization Development Kit, 8.1
	
	application configuration file, 8.8
	character set conversion, 8.7.3
	components, 8.4
	defining supported application locales, 8.6.5
	e-mail programs, 8.7.8
	error messages, 8.11
	framework, 8.6
	integrating locale sources, 8.6.2
	Java API, 8.7
	Java supplied packages and classes, 8.9
	locale detection, 8.6.3
	Localizer object, 8.6.4
	managing localized content in static files, 8.6.7.2
	managing strings in JSPs and Java servlets, 8.6.7.1
	non_ASCII input and output in an HTML page, 8.6.6
	Oracle binary and linguistic sorts, 8.7.5
	Oracle date, number, and monetary formats, 8.7.4
	Oracle language and character set detection, 8.7.6
	Oracle locale information, 8.7.1
	Oracle locale mapping, 8.7.2
	Oracle translated locale and time zone names, 8.7.7
	supported locale resources, 8.6.2

	globalization features, 1.2
	globalization support
	
	architecture, 1.1

	Greenwich Mean Time, 4.2.1.3, 4.2.1.4
	guessing the language or character set, 12.1

H

	help parameter
	
	Database Character Set Scanner, 12.5

I

	IANA character sets
	
	mapping with ISO locales, 8.6.6

	ideographic writing systems, encoding, 2.1.2.2
	ignorable characters, 5.4.2
	implicit datatype conversion, 7.2.4
	indexes
	
	creating for documents stored as CLOBs, 6.5.4.2
	creating for multilingual document search, 6.5.4
	creating indexes for documents stored as BLOBs, 6.5.4.3
	partitioned, 9.2.5.3

	Individual Exception Report, 12.7.2
	initialization parameters
	
	NLS_DATE_FORMAT, 4.5.1
	NLS_TIMESTAMP_FORMAT, 4.5.1
	NLS_TIMESTAMP_TZ_FORMAT, 4.5.1

	INSTR SQL functions, 7.2.6, 9.2.2, 9.2.2
	Internet application
	
	locale
	
	determination, 8.3.1

	monolingual, 8.2, 8.2.1
	multilingual, 8.2, 8.2.2

	interval datatypes, 4.2, 4.2.2
	
	inserting values, 4.2.2.3

	INTERVAL DAY TO SECOND datatype, 4.2.2.2
	INTERVAL YEAR TO MONTH datatype, 4.2.2.1
	ISO 8859 character sets, 2.1.3.1
	ISO locales
	
	mapping with IANA character sets, 8.6.6

	ISO standard
	
	date format, 9.3.2

	ISO standard date format, 3.6.1.2, 9.3.2
	ISO week number, 9.3.2
	IW format element, 9.3.2
	IY format element, 9.3.2

J

	Java
	
	Unicode data conversion, 7.5.5

	Java strings
	
	binding and defining in Unicode, 7.5.1

	JDBC drivers
	
	form of use argument, 7.5.3

	JDBC OCI driver
	
	and Unicode, 7.1.1

	JDBC programming
	
	Unicode, 7.5

	JDBC Server Side internal driver
	
	and Unicode, 7.1.1

	JDBC Server Side thin driver
	
	and Unicode, 7.1.1

	JDBC thin driver
	
	and Unicode, 7.1.1

L

	language
	
	detecting with Globalization Development Kit, 8.7.6

	language abbreviations, A.1
	Language and Character Set File Scanner, 12.1
	language definition
	
	customizing, 13.2
	overriding, 3.2.2

	language support, 1.2.1
	languages
	
	error messages, A.2

	languages and character sets
	
	supported by LCSSCAN, A.5

	LAST_DAY SQL function, 4.4
	lastrpt parameter
	
	Database Character Set Scanner, 12.5, 12.5

	LCSCCAN
	
	error messages, 12.1.5

	LCSSCAN, 12.1
	
	supported languages and character sets, 12.1.4, A.5

	LCSSCAN command
	
	BEGIN parameter, 12.1.1
	END parameter, 12.1.1
	examples, 12.1.2
	FILE parameter, 12.1.1
	HELP parameter, 12.1.3
	online help, 12.1.3
	RESULTS parameter, 12.1.1
	syntax, 12.1.1

	length semantics, 2.2, 3.11
	LENGTH SQL functions, 9.2.2, 9.2.2
	LIKE conditions in SQL statements, 9.2.3
	LIKE2 SQL condition, 9.2.3
	LIKE4 SQL condition, 9.2.3
	LIKEC SQL condition, 9.2.3
	linguistic sort definitions
	
	supported, A.6

	linguistic sorts
	
	accent-insensitive, 5.5
	BINARY, 5.5.2
	BINARY_AI, linguistic sorts
	
	BINARY_CI, 5.5.2

	case-insensitive, 5.5
	controlling, 9.2.5.4
	customizing, 13.6
	
	characters with diacritics, 13.6.1, 13.6.2

	levels, 5.3.3.1
	list of defaults, A.1
	parameters, 3.9

	list parameter, 3.7
	lmsgen utility, 10.9
	loading external BFILE data into LOBs, 9.3.4
	LOBs
	
	loading external BFILE data, 9.3.4
	storing documents in multiple languages, 6.5.3

	locale, 3.2
	
	dependencies, 3.2.3
	detection
	
	Globalization Development Kit, 8.6.3

	of Internet application
	
	determining, 8.3.1

	variant, 3.2.3

	locale information
	
	mapping between Oracle and other standards, 10.4

	locale-charset-map, 8.8.1
	locale-determine-rule, 8.8.4
	LocaleMapper class, 8.7.8
	locale-parameter-name, 8.8.5
	LOCALTIMESTAMP SQL function, 4.4
	lossy data
	
	data dictionary, 12.8

	lxegen utility, 13.3.2

M

	maxblocks parameter
	
	Database Character Set Scanner, 12.5

	message-bundles, 8.8.6
	migrating a character set
	
	CSALTER script, 11.2.2

	migrating character sets in Real Application Clusters, 11.2.2.1
	migration
	
	CHAR columns to NCHAR columns, 11.3.3
	character sets, 11.1
	to NCHAR datatypes, 11.3
	version 8 NCHAR columns to Oracle9i and later, 11.3.1

	mixed character sets
	
	causing data loss, 11.1.2.2

	monetary parameters, 3.8
	monolingual Internet application, 8.2.1
	monolingual linguistic sorts
	
	example, 5.5.3
	supported, A.6

	months
	
	format element, 3.5.1.2
	language of names, 3.5.1.2

	MONTHS_BETWEEN SQL function, 4.4
	multibyte encoding schemes, 2.1.4.2
	
	fixed-width, 2.1.4.2
	shift-sensitive variable-width, 2.1.4.2
	variable-width, 2.1.4.2

	multilexers
	
	creating, 6.5.4.1

	multilingual data
	
	specifying column lengths, 6.5.1

	multilingual document search
	
	creating indexes, 6.5.4

	multilingual Internet application, 8.2.2
	multilingual linguistic sorts
	
	example, 5.5.3
	supported, A.6

	multilingual support
	
	restricted, 2.6.1
	unrestricted, 2.6.2

	multiple languages
	
	designing database schemas, 6.5
	storing data, 6.5.2
	storing documents in LOBs, 6.5.3

N

	N SQL function, 7.2.5
	national character set, 2.3.8, 6.3.2, 7.2.1.1, 7.2.1.2
	NCHAR columns
	
	migrating from version 8 to Oracle9i and later, 11.3.1

	NCHAR datatype, 7.2.1.1
	
	creating abstract datatype, 2.3.9
	migrating, 11.3
	migration, 11.3.1

	NCHR SQL function, 7.2.7
	NCLOB datatype, 7.2.1.3
	NEW_TIME SQL function, 4.4
	NEXT_DAY SQL function, 4.4
	NLB data
	
	transportable, 13.10

	NLB file, 13.1.3.1
	NLB files, 13.1
	
	generating and installing, 13.7

	NLS Calendar Utility, 13.3.2
	NLS parameters
	
	default values in SQL functions, 9.1.1
	list, 3.1
	setting, 3.1
	specifying in SQL functions, 9.1.2
	unacceptable in SQL functions, 9.1.3

	NLS Runtime Library, 1.1.1
	NLS_CALENDAR parameter, 3.6.2
	NLS_CHARSET_DECL_LEN SQL function, 9.2.4.3
	NLS_CHARSET_ID SQL function, 9.2.4.2
	NLS_CHARSET_NAME SQL function, 9.2.4.1
	NLS_COMP parameter, 3.9.2, 9.2.5.3
	NLS_CREDIT parameter, 3.8.7
	NLS_CURRENCY parameter, 3.8.2
	NLS_DATABASE_PARAMETERS data dictionary view, 3.3.1
	NLS_DATE_FORMAT initialization parameter, 4.5.1
	NLS_DATE_FORMAT parameter, 3.5.1.1
	NLS_DATE_LANGUAGE parameter, 3.5.1.2
	NLS_DEBIT parameter, 3.8.8
	NLS_DUAL_CURRENCY parameter, 3.8.4
	NLS_INITCAP SQL function, 5.4.11, 9.1
	NLS_INSTANCE_PARAMETERS data dictionary view, 3.3.1
	NLS_ISO_CURRENCY parameter, 3.8.3
	NLS_LANG parameter, 3.2
	
	choosing a locale, 3.2
	client setting, 3.2.4
	examples, 3.2.1
	OCI client applications, 7.3.3
	specifying, 3.2.1
	UNIX client, 3.2.4
	Windows client, 3.2.4

	NLS_LANGUAGE parameter, 3.4.1
	NLS_LENGTH_SEMANTICS parameter, 2.2
	NLS_LIST_SEPARATOR parameter, 3.10
	NLS_LOWER SQL function, 5.4.11, 5.5, 9.1
	NLS_MONETARY_CHARACTERS parameter, 3.8.6
	NLS_NCHAR_CONV_EXCP parameter, 3.10.1
	NLS_NUMERIC_CHARACTERS parameter, 3.7.2
	NLS_SESSION_PARAMETERS data dictionary view, 3.3.1
	NLS_SORT parameter, 3.9.1, 5.7.2.1
	NLS_TERRITORY parameter, 3.4.2
	NLS_TIMESTAMP_FORMAT initialization parameter, 4.5.1
	NLS_TIMESTAMP_FORMAT parameter
	
	parameters
	
	NLS_TIMESTAMP_FORMAT, 3.5.2.1, 3.5.2.2

	NLS_TIMESTAMP_TZ_FORMAT initialization parameter, 4.5.1
	NLS_UPPER SQL function, 5.4.11, 5.5, 9.1
	NLSRTL, 1.1.1
	NLSSORT SQL function, 9.1, 9.2.5
	
	syntax, 9.2.5.1

	NLT files, 13.1
	numbers, encoding, 2.1.2.3
	numeric formats, 3.7.1
	
	SQL masks, 9.3.3

	numeric parameters, 3.7
	NUMTODSINTERVAL SQL function, 4.4
	NUMTOYMINTERVAL SQL function, 4.4
	NVARCHAR datatype
	
	Pro*C/C++, 7.4.3

	NVARCHAR2 datatype, 7.2.1.2

O

	obsolete locale data, A.9.4
	OCI
	
	binding and defining CLOB and NCLOB data in OCI, 7.3.7
	binding and defining SQL NCHAR datatypes, 7.3.5
	setting the character set, 10.2
	SQL CHAR datatypes, 7.3.4

	OCI and Unicode, 7.1.1
	OCI character set conversion, 7.3.2.2
	
	data loss, 7.3.2.1
	performance, 7.3.2.2

	OCI client applications
	
	using Unicode character sets, 7.3.3

	OCI data conversion
	
	data expansion, 7.3.2.3

	OCI_ATTR_CHARSET_FORM attribute, 7.3.2.1
	OCI_ATTR_MAXDATA_SIZE attribute, 7.3.2.3
	OCI_UTF16ID character set ID, 7.3.1
	OCIBind() function, 7.3.4
	OCICharSetConversionIsReplacementUsed(), 10.7
	OCICharSetConvert(), 10.7
	OCICharsetToUnicode(), 10.7
	OCIDefine() function, 7.3.4
	OCIEnvNlsCreate(), 7.3.1, 10.2
	OCILobRead() function, 7.3.7
	OCILobWrite() function, 7.3.7
	OCIMessageClose(), 10.8
	OCIMessageGet(), 10.8
	OCIMessageOpen(), 10.8
	OCIMultiByteInSizeToWideChar(), 10.5
	OCIMultiByteStrCaseConversion(), 10.5
	OCIMultiByteStrcat(), 10.5
	OCIMultiByteStrcmp(), 10.5
	OCIMultiByteStrcpy(), 10.5
	OCIMultiByteStrlen(), 10.5
	OCIMultiByteStrncat(), 10.5
	OCIMultiByteStrncmp(), 10.5
	OCIMultiByteStrncpy(), 10.5
	OCIMultiByteStrnDisplayLength(), 10.5
	OCIMultiByteToWideChar(), 10.5
	OCINlsCharSetIdToName(), 10.3
	OCINlsCharSetNameTold(), 10.3
	OCINlsEnvironmentVariableGet(), 10.3
	OCINlsGetInfo(), 10.3, 10.3
	OCINlsNameMap(), 10.4
	OCINlsNumericInfoGet(), 10.3
	OCIUnicodeToCharset(), 10.7
	OCIWideCharDisplayLength(), 10.5
	OCIWideCharInSizeToMultiByte(), 10.5
	OCIWideCharIsAlnum(), 10.6
	OCIWideCharIsAlpha(), 10.6
	OCIWideCharIsCntrl(), 10.6
	OCIWideCharIsDigit(), 10.6
	OCIWideCharIsGraph(), 10.6
	OCIWideCharIsLower(), 10.6
	OCIWideCharIsPrint(), 10.6
	OCIWideCharIsPunct(), 10.6
	OCIWideCharIsSingleByte(), 10.6
	OCIWideCharIsSpace(), 10.6
	OCIWideCharIsUpper(), 10.6, 10.7
	OCIWideCharIsXdigit(), 10.6
	OCIWideCharMultibyteLength(), 10.5
	OCIWideCharStrCaseConversion(), 10.5
	OCIWideCharStrcat(), 10.5
	OCIWideCharStrchr(), 10.5
	OCIWideCharStrcmp(), 10.5
	OCIWideCharStrcpy(), 10.5
	OCIWideCharStrlen(), 10.5
	OCIWideCharStrncat(), 10.5
	OCIWideCharStrncmp(), 10.5
	OCIWideCharStrncpy(), 10.5
	OCIWideCharStrrchr(), 10.5
	OCIWideCharToLower(), 10.5
	OCIWideCharToMultiByte(), 10.5
	OCIWideCharToUpper(), 10.5
	ODBC Unicode applications, 7.6.4
	OLE DB Unicode datatypes, 7.6.5
	online table redefinition
	
	migrating from CHAR to NCHAR, 11.3.3, 11.3.3.2

	operating system
	
	character set compatibility with applications, 2.3.2

	ORA_NLS10 environment variable, 1.1.1
	ORA_SDTZ environment variable, 4.5.2, 4.9
	ORA_TZFILE environment variable, 4.5.2
	Oracle Call Interface and Unicode, 7.1.1
	Oracle Data Provide for .NET and Unicode, 7.1.1
	Oracle Language and Character Set Detection Java classes, 8.7.6
	Oracle Locale Builder
	
	choosing a calendar format, 13.3
	choosing currency formats, 13.3
	choosing date and time formats, 13.3
	displaying code chart, 13.4
	Existing Definitions dialog box, 13.1.3.1
	fonts, 13.1.1.1, 13.1.1.2
	Open File dialog box, 13.1.3.4
	Preview NLT screen, 13.1.3.3
	restrictions on names for locale objects, 13.2
	Session Log dialog box, 13.1.3.2
	starting, 13.1.2

	Oracle ODBC driver and Unicode, 7.1.1
	Oracle OLE DB driver and Unicode, 7.1.1
	Oracle Pro*C/C++ and Unicode, 7.1.1
	oracle.i18n.lcsd package, 8.9.1
	oracle.i18n.net package, 8.9.2
	oracle.i18n.servlet package, 8.9.3
	oracle.i18n.text package, 8.9.4
	oracle.i18n.util package, 8.9.5
	oracle.sql.CHAR class
	
	character set conversion, 7.5.6.1
	getString() method, 7.5.6.1
	getStringWithReplacement() method, 7.5.6.1
	toString() method, 7.5.6.1

	ORDER BY clause, 9.2.5.4
	OS_TZ local operating system time zone, 4.9
	overriding language and territory definitions, 3.2.2

P

	page-charset, 8.8.2
	parameters
	
	BLANK_TRIMMING, 11.1.1.1
	calendar, 3.6
	character set conversion, 3.10
	linguistic sorts, 3.9
	methods of setting, 3.1
	monetary, 3.8
	NLS_CALENDAR, 3.6.2
	NLS_COMP, 3.9.2
	NLS_CREDIT, 3.8.7
	NLS_CURRENCY, 3.8.2
	NLS_DATE_FORMAT, 3.5.1.1
	NLS_DATE_LANGUAGE, 3.5.1.2
	NLS_DEBIT, 3.8.8
	NLS_DUAL_CURRENCY, 3.8.4
	NLS_ISO_CURRENCY, 3.8.3
	NLS_LANG, 3.2
	NLS_LANGUAGE, 3.4.1
	NLS_LIST_SEPARATOR, 3.10
	NLS_MONETARY_CHARACTERS, 3.8.6
	NLS_NCHAR_CONV_EXCP, 3.10.1
	NLS_NUMERIC_CHARACTERS, 3.7.2
	NLS_SORT, 3.9.1
	NLS_TERRITORY, 3.4.2
	numeric, 3.7
	setting, 3.1
	time and date, 3.5
	time zone, 3.5.2.1, 3.5.2.2

	partitioned
	
	indexes, 9.2.5.3
	tables, 9.2.5.3

	performance
	
	choosing a database character set, 2.3.4
	during OCI Unicode character set conversion, 7.3.2.2

	phonetic writing systems, encoding, 2.1.2.1
	PL/SQL and SQL and Unicode, 7.1.1
	preserve parameter
	
	Database Character Set Scanner, 12.5

	primary level sort, 5.3.3.1
	Private Use Area, 13.5.3
	Pro*C/C++
	
	data conversion, 7.4.1
	NVARCHAR datatype, 7.4.3
	UVARCHAR datatype, 7.4.4
	VARCHAR datatype, 7.4.2

	punctuation, encoding, 2.1.2.3

Q

	query parameter
	
	Database Character Set Scanner, 12.5

R

	Real Application Clusters
	
	database character set migration, 11.2.2.1

	REGEXP SQL functions, 5.9
	regular expressions
	
	character class, 5.9.3
	character range, 5.9.1
	collation element delimiter, 5.9.2
	equivalence class, 5.9.4
	examples, 5.9.5
	multilingual environment, 5.9

	replacement characters
	
	CONVERT SQL function, 9.2.1

	restricted multilingual support, 2.6.1, 2.6.1
	restrictions
	
	data truncation, 11.1.1.1
	passwords, 11.1.1.1
	space padding during export, 11.1.1.1
	usernames, 11.1.1.1

	reverse secondary sorting, 5.4.7
	ROUND (date) SQL function, 4.4
	RPAD SQL function, 7.2.6

S

	scan modes
	
	Database Character Set Scanner, 12.3
	full database scan, 12.3.1
	single table scan, 12.3.3
	user tables scan, 12.3.2

	scan.err file, 12.7
	scan.out file, 12.6.1.3, 12.6.2.3, 12.6.3.3, 12.6.3.6, 12.6.4.3
	scan.txt file, 12.7
	searching multilingual documents, 6.5.4
	searching string, 5.8
	secondary level sort, 5.3.3.2
	session parameters
	
	ERROR_ON_OVERLAP, 4.5.3

	session time zone, 4.9
	SESSIONTIMEZONE SQL function, 4.4
	setFormOfUse() method, 7.5.3
	shift-sensitive variable-width multibyte encoding schemes, 2.1.4.2
	single-byte encoding schemes, 2.1.4.1
	sorting
	
	reverse secondary, 5.4.7
	specifying nondefault linguistic sorts, 3.9.1, 3.9.2

	source_char_set parameter, A.4.6
	space padding
	
	during export, 11.1.1.1

	special combination letters, 5.4.3, 5.4.10
	special letters, 5.4.4, 5.4.9
	special lowercase letters, 5.4.12
	special uppercase letters, 5.4.11
	SQL CHAR datatypes, 2.3
	
	OCI, 7.3.4

	SQL conditions
	
	LIKE2, 9.2.3
	LIKE4, 9.2.3
	LIKEC, 9.2.3

	SQL functions
	
	ADD_MONTHS, 4.4
	CONVERT, 9.2.1
	CURRENT_DATE, 4.4
	CURRENT_TIMESTAMP, 4.4
	datatype conversion, 7.2.5
	DBTIMEZONE, 4.4
	default values for NLS parameters, 9.1.1
	EXTRACT (datetime), 4.4
	FROM_TZ, 4.4
	INSTR, 7.2.6, 9.2.2, 9.2.2
	LAST_DAY, 4.4
	LENGTH, 9.2.2, 9.2.2
	LOCALTIMESTAMP, 4.4
	MONTHS_BETWEEN, 4.4
	N, 7.2.5
	NCHR, 7.2.7
	NEW_TIME, 4.4
	NEXT_DAY, 4.4
	NLS_CHARSET_DECL_LEN, 9.2.4.3
	NLS_CHARSET_ID, 9.2.4.2
	NLS_CHARSET_NAME, 9.2.4.1
	NLS_INITCAP, 5.4.11, 9.1
	NLS_LOWER, 5.4.11, 5.5, 9.1
	NLS_UPPER, 5.4.11, 5.5, 9.1
	NLSSORT, 9.1, 9.2.5
	NUMTODSINTERVAL, 4.4
	NUMTOYMINTERVAL, 4.4
	ROUND (date), 4.4
	RPAD, 7.2.6
	SESSIONTIMEZONE, 4.4
	specifying NLS parameters, 9.1.2
	SUBSTR, 9.2.2, 9.2.2
	SUBSTR2, 9.2.2
	SUBSTR4, 9.2.2
	SUBSTRB, 9.2.2
	SUBSTRC, 9.2.2
	SYS_EXTRACT_UTC, 4.4
	SYSDATE, 4.4
	SYSTIMESTAMP, 4.4
	TO_CHAR, 9.1
	TO_CHAR (datetime), 4.4
	TO_DATE, 7.2.5, 9.1
	TO_DSINTERVAL, 4.4
	TO_NCHAR, 7.2.5
	TO_NUMBER, 9.1
	TO_TIMESTAMP, 4.4
	TO_TIMESTAMP_TZ, 4.4
	TO_YMINTERVAL, 4.4
	TRUNC (date), 4.4
	TZ_OFFSET, 4.4
	unacceptable NLS parameters, 9.1.3
	UNISTR, 7.2.7

	SQL NCHAR datatypes
	
	binding and defining in OCI, 7.3.5

	SQL statements
	
	LIKE conditions, 9.2.3

	strict superset, 6.2.2.1
	string comparisons
	
	WHERE clause, 9.2.5.2

	string literals
	
	Unicode, 7.2.7

	string manipulation using OCI, 10.5
	strings
	
	searching, 5.8

	SUBSTR SQL function, 9.2.2
	SUBSTR SQL functions, 9.2.2
	
	SUBSTR, 9.2.2
	SUBSTR2, 9.2.2
	SUBSTR4, 9.2.2
	SUBSTRB, 9.2.2
	SUBSTRC, 9.2.2

	SUBSTR4 SQL function, 9.2.2
	SUBSTRB SQL function, 9.2.2
	SUBSTRC SQL function, 9.2.2
	superset, strict, 6.2.2.1
	supersets and subsets, A.4.7
	supplementary characters, 5.3.2, 6.2.1
	
	linguistic sort support, A.6

	supported datatypes, 2.3.9
	supported territories, A.3
	suppress parameter
	
	Database Character Set Scanner, 12.5

	surrogate pairs, 6.2.1
	syllabary, 2.1.2.2
	symbols, encoding, 2.1.2.3
	SYS_EXTRACT_UTC SQL function, 4.4
	SYSDATE SQL function, 4.4
	
	effect of session time zone, 4.9

	sys.sys_tzuv2_temptab table, 4.7
	SYSTIMESTAMP SQL function, 4.4

T

	table parameter
	
	Database Character Set Scanner, 12.5

	tables
	
	partitioned, 9.2.5.3

	territory
	
	dependencies, 3.2.3

	territory definition, 3.4.2
	
	customizing, 13.3
	overriding, 3.2.2

	territory support, 1.2.2, A.3
	territory variant, 3.2.3
	tertiary level sort, 5.3.3.3
	Thai and Laotian character rearrangement, 5.4.8
	tilde, 7.5.7.1
	time and date parameters, 3.5
	time zone
	
	abbreviations, 4.6
	data source, 4.6
	database, 4.8
	effect on SYSDATE SQL function, 4.9
	environment variables, 4.5.2
	names, 4.6
	parameters, 3.5.2.1, 3.5.2.2
	session, 4.9

	time zone file
	
	choosing, 4.6
	default, 4.6

	time zones
	
	converting, 4.10
	customizing, 13.3.1
	upgrading definitions, 4.7

	TIMESTAMP datatype, 4.2.1.2
	
	when to use, 4.2.1.6

	TIMESTAMP datatypes
	
	choosing, 4.2.1.6

	timestamp format, 3.5.2.1
	TIMESTAMP WITH LOCAL TIME ZONE datatype, 4.2.1.4
	
	when to use, 4.2.1.6

	TIMESTAMP WITH TIME ZONE datatype, 4.2.1.3
	
	when to use, 4.2.1.6

	timezlrg.dat file, 13.3.1
	timezone.dat file, 13.3.1
	TO_CHAR (datetime) SQL function, 4.4
	TO_CHAR SQL function, 9.1
	
	default date format, 3.5.1.1, 4.5.1
	format masks, 9.3.1
	group separator, 3.7.2
	language for dates, 3.5.1.2
	spelling of days and months, 3.5.1.2

	TO_DATE SQL function, 7.2.5, 9.1
	
	default date format, 3.5.1.1, 4.5.1
	format masks, 9.3.1
	language for dates, 3.5.1.2
	spelling of days and months, 3.5.1.2

	TO_DSINTERVAL SQL function, 4.4
	TO_NCHAR SQL function, 7.2.5
	TO_NUMBER SQL function, 9.1
	
	format masks, 9.3.1

	TO_TIMESTAMP SQL function, 4.4
	TO_TIMESTAMP_TZ SQL function, 4.4
	TO_YMINTERVAL SQL function, 4.4
	tochar parameter
	
	Database Character Set Scanner, 12.5

	toString() method, 7.5.6.1
	transportable NLB data, 13.10
	TRUNC (date) SQL function, 4.4
	TZ_OFFSET SQL function, 4.4
	TZABBREV, 4.6
	TZNAME, 4.6

U

	UCS-2 encoding, 6.2.2.2
	Unicode, 6.1
	
	binding and defining Java strings, 7.5.1
	character code assignments, B.1
	character set conversion between OCI client and database server, 7.3.2
	code ranges for UTF-16 characters, B.1
	code ranges for UTF-8 characters, B.1
	data conversion in Java, 7.5.5
	encoding, 6.2.2
	fonts, 13.1.1
	JDBC OCI driver, 7.1.1
	JDBC programming, 7.5
	JDBC Server Side internal driver, 7.1.1
	JDBC Server Side thin driver, 7.1.1
	JDBC thin driver, 7.1.1
	mode, 7.3.1
	ODBC and OLE DB programming, 7.6
	Oracle Call Interface, 7.1.1
	Oracle Data Provide for .NET, 7.1.1
	Oracle ODBC driver, 7.1.1
	Oracle OLE DB driver, 7.1.1
	Oracle Pro*C/C++, 7.1.1
	Oracle support, 6.2.3
	parsing an XML stream with Java, 7.7.3
	PL/SQL and SQL, 7.1.1
	Private Use Area, 13.5.3
	programming, 7.1
	reading an XML file with Java, 7.7.2
	string literals, 7.2.7
	UCS-2 encoding, 6.2.2.2
	UTF-16 encoding, 6.2.2.3
	UTF-8 encoding, 6.2.2.1
	writing an XML file with Java, 7.7.1
	XML programming, 7.7

	Unicode database, 6.3.1
	
	case study, 6.4
	choosing a character set, 6.3.4
	using with Unicode datatypes (case study), 6.4
	when to use, 6.3.3.1

	Unicode datatypes, 6.3.2
	
	case study, 6.4
	choosing a national character set, 6.3.4
	using with a Unicode database (case study), 6.4
	when to use, 6.3.3.2

	UNISTR SQL function, 7.2.7
	unrestricted multilingual support, 2.6.2
	url-rewrite-rule, 8.8.7
	US7ASCII
	
	supersets, A.4.7

	user parameter
	
	Database Character Set Scanner, 12.5

	user-defined characters, 13.5.1
	
	adding to a character set definition, 13.5.6
	cross-references between character sets, 13.5.4

	userid parameter
	
	Database Character Set Scanner, 12.5

	UTC, 4.2.1.3, 4.2.1.4
	UTF-16 encoding, 6.2.2.3, B.2
	UTF8 character set, 6.3.1, A.4.5
	UTF-8 encoding, 6.2.2.1, B.3
	UTFE character set, 6.2.3, 6.3.1, A.4.5
	UTL_FILE package, using with NCHAR, 7.2.9
	UTL_I18N PL/SQL package, 8.10
	UTL_LMS PL/SQL package, 8.10
	utltzuv2.sql script, 4.7
	UVARCHAR datatype
	
	Pro*C/C++, 7.4.4

V

	V$NLS_PARAMETERS dynamic performance view, 3.3.2
	V$NLS_VALID_VALUES dynamic performance view, 3.3.2
	VARCHAR datatype
	
	Pro*C/C++, 7.4.2

	variable-width multibyte encoding schemes, 2.1.4.2
	version 8 NCHAR columns
	
	migrating to Oracle9i and later, 11.3.1

W

	wave dash, 7.5.7.1
	WHERE clause
	
	string comparisons, 9.2.5.2

X

	XML
	
	parsing in Unicode with Java, 7.7.3
	reading in Unicode with Java, 7.7.2
	writing in Unicode with Java, 7.7.1

	XML programming
	
	Unicode, 7.7

1 Overview of Globalization Support

This chapter provides an overview of Oracle globalization support. It includes the following topics:

	
Globalization Support Architecture

	
Globalization Support Features

Globalization Support Architecture

Oracle's globalization support enables you to store, process, and retrieve data in native languages. It ensures that database utilities, error messages, sort order, and date, time, monetary, numeric, and calendar conventions automatically adapt to any native language and locale.

In the past, Oracle's globalization support capabilities were referred to as National Language Support (NLS) features. National Language Support is a subset of globalization support. National Language Support is the ability to choose a national language and store data in a specific character set. Globalization support enables you to develop multilingual applications and software products that can be accessed and run from anywhere in the world simultaneously. An application can render content of the user interface and process data in the native users' languages and locale preferences.

Locale Data on Demand

Oracle's globalization support is implemented with the Oracle NLS Runtime Library (NLSRTL). The NLS Runtime Library provides a comprehensive suite of language-independent functions that allow proper text and character processing and language convention manipulations. Behavior of these functions for a specific language and territory is governed by a set of locale-specific data that is identified and loaded at runtime.

The locale-specific data is structured as independent sets of data for each locale that Oracle supports. The data for a particular locale can be loaded independent of other locale data. The advantages of this design are as follows:

	
You can manage memory consumption by choosing the set of locales that you need.

	
You can add and customize locale data for a specific locale without affecting other locales.

Figure 1-1 shows that locale-specific data is loaded at runtime. In this example, French data and Japanese data are loaded into the multilingual database, but German data is not.

Figure 1-1 Loading Locale-Specific Data to the Database

[image: Description of Figure 1-1 follows]

Description of "Figure 1-1 Loading Locale-Specific Data to the Database"

The locale-specific data is stored in the $ORACLE_HOME/nls/data directory. The ORA_NLS10 environment variable should be defined only when you need to change the default directory location for the locale-specific datafiles, for example when the system has multiple Oracle homes that share a single copy of the locale-specific datafiles.

A boot file is used to determine the availability of the NLS objects that can be loaded. Oracle supports both system and user boot files. The user boot file gives you the flexibility to tailor what NLS locale objects are available for the database. Also, new locale data can be added and some locale data components can be customized.

	
See Also:

Chapter 13, "Customizing Locale"

Architecture to Support Multilingual Applications

The database is implemented to enable multitier applications and client/server applications to support languages for which the database is configured.

The locale-dependent operations are controlled by several parameters and environment variables on both the client and the database server. On the database server, each session started on behalf of a client may run in the same or a different locale as other sessions, and have the same or different language requirements specified.

The database has a set of session-independent NLS parameters that are specified when the database is created. Two of the parameters specify the database character set and the national character set, an alternate Unicode character set that can be specified for NCHAR, NVARCHAR2, and NCLOB data. The parameters specify the character set that is used to store text data in the database. Other parameters, such as language and territory, are used to evaluate check constraints.

If the client session and the database server specify different character sets, then the database converts character set strings automatically.

From a globalization support perspective, all applications are considered to be clients, even if they run on the same physical machine as the Oracle instance. For example, when SQL*Plus is started by the UNIX user who owns the Oracle software from the Oracle home in which the RDBMS software is installed, and SQL*Plus connects to the database through an adapter by specifying the ORACLE_SID parameter, SQL*Plus is considered a client. Its behavior is ruled by client-side NLS parameters.

Another example of an application being considered a client occurs when the middle tier is an application server. The different sessions spawned by the application server are considered to be separate client sessions.

When a client application is started, it initializes the client NLS environment from environment settings. All NLS operations performed locally are executed using these settings. Examples of local NLS operations are:

	
Display formatting in Oracle Developer applications

	
User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The new session initializes its NLS environment from NLS instance parameters specified in the initialization parameter file. These settings can be subsequently changed by an ALTER SESSION statement. The statement changes only the session NLS environment. It does not change the local client NLS environment. The session NLS settings are used to process SQL and PL/SQL statements that are executed on the server. For example, use an ALTER SESSION statement to set the NLS_LANGUAGE initialization parameter to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST_NAME HIRE_DATE SALARY
------------------------- --------- ----------
Sciarra 30-SET-97 962.5
Urman 07-MAR-98 975
Popp 07-DIC-99 862.5

Note that the month name abbreviations are in Italian.

Immediately after the connection has been established, if the NLS_LANG environment setting is defined on the client side, then an implicit ALTER SESSION statement synchronizes the client and session NLS environments.

	
See Also:

	
Chapter 10, "OCI Programming in a Global Environment"

	
Chapter 3, "Setting Up a Globalization Support Environment"

Using Unicode in a Multilingual Database

Unicode is a universal encoded character set that enables you to store information in any language, using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language.

Unicode has the following advantages:

	
It simplifies character set conversion and linguistic sort functions.

	
It improves performance compared with native multibyte character sets.

	
It supports the Unicode datatype based on the Unicode standard.

	
See Also:

	
Chapter 6, "Supporting Multilingual Databases with Unicode"

	
Chapter 7, "Programming with Unicode"

	
"Enabling Multilingual Support with Unicode Datatypes"

Globalization Support Features

Oracle's standard features include:

	
Language Support

	
Territory Support

	
Date and Time Formats

	
Monetary and Numeric Formats

	
Calendars Feature

	
Linguistic Sorting

	
Character Set Support

	
Character Semantics

	
Customization of Locale and Calendar Data

	
Unicode Support

Language Support

The database enables you to store, process, and retrieve data in native languages. The languages that can be stored in a database are all languages written in scripts that are encoded by Oracle-supported character sets. Through the use of Unicode databases and datatypes, the Oracle database supports most contemporary languages.

Additional support is available for a subset of the languages. The database can, for example, display dates using translated month names or how to sort text data according to cultural conventions.

When this manual uses the term language support, it refers to the additional language-dependent functionality (for example, displaying dates or sorting text), not to the ability to store text of a specific language.

For some of the supported languages, Oracle provides translated error messages and a translated user interface for the database utilities.

	
See Also:

	
Chapter 3, "Setting Up a Globalization Support Environment"

	
"Languages" for a complete list of Oracle language names and abbreviations

	
"Translated Messages" for a list of languages into which Oracle messages are translated

Territory Support

The database supports cultural conventions that are specific to geographical locations. The default local time format, date format, and numeric and monetary conventions depend on the local territory setting. Setting different NLS parameters allows the database session to use different cultural settings. For example, you can set the euro (EUR) as the primary currency and the Japanese yen (JPY) as the secondary currency for a given database session even when the territory is defined as AMERICA.

	
See Also:

	
Chapter 3, "Setting Up a Globalization Support Environment"

	
"Territories" for a list of territories that are supported by the Oracle server

Date and Time Formats

Different conventions for displaying the hour, day, month, and year can be handled in local formats. For example, in the United Kingdom, the date is displayed using the DD-MON-YYYY format, while Japan commonly uses the YYYY-MM-DD format.

Time zones and daylight saving support are also available.

	
See Also:

	
Chapter 3, "Setting Up a Globalization Support Environment"

	
Chapter 4, "Datetime Datatypes and Time Zone Support"

	
Oracle Database SQL Reference

Monetary and Numeric Formats

Currency, credit, and debit symbols can be represented in local formats. Radix symbols and thousands separators can be defined by locales. For example, in the US, the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the amount $1,234 has different meanings in different countries.

	
See Also:

Chapter 3, "Setting Up a Globalization Support Environment"

Calendars Feature

Many different calendar systems are in use around the world. Oracle supports seven different calendar systems: Gregorian, Japanese Imperial, ROC Official (Republic of China), Thai Buddha, Persian, English Hijrah, and Arabic Hijrah.

	
See Also:

	
Chapter 3, "Setting Up a Globalization Support Environment"

	
"Calendar Systems" for a list of supported calendars

Linguistic Sorting

Oracle provides linguistic definitions for culturally accurate sorting and case conversion. The basic definition treats strings as sequences of independent characters. The extended definition recognizes pairs of characters that should be treated as special cases.

Strings that are converted to upper case or lower case using the basic definition always retain their lengths. Strings converted using the extended definition may become longer or shorter.

	
See Also:

Chapter 5, "Linguistic Sorting and String Searching"

Character Set Support

Oracle supports a large number of single-byte, multibyte, and fixed-width encoding schemes that are based on national, international, and vendor-specific standards.

	
See Also:

	
Chapter 2, "Choosing a Character Set"

	
"Character Sets" for a list of supported character sets

Character Semantics

Oracle provides character semantics. It is useful for defining the storage requirements for multibyte strings of varying widths in terms of characters instead of bytes.

	
See Also:

"Length Semantics"

Customization of Locale and Calendar Data

You can customize locale data such as language, character set, territory, or linguistic sort using the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

	
See Also:

	
Chapter 13, "Customizing Locale"

	
"Customizing Calendars with the NLS Calendar Utility"

Unicode Support

You can store Unicode characters in an Oracle database in two ways:

	
You can create a Unicode database that enables you to store UTF-8 encoded characters as SQL CHAR datatypes.

	
You can support multilingual data in specific columns by using Unicode datatypes. You can store Unicode characters into columns of the SQL NCHAR datatypes regardless of how the database character set has been defined. The NCHAR datatype is an exclusively Unicode datatype.

	
See Also:

Chapter 6, "Supporting Multilingual Databases with Unicode"

